Science.gov

Sample records for aggregated gold nanoparticles

  1. Unique Gold Nanoparticle Aggregates as a Highly Active SERS Substrate

    SciTech Connect

    Schwartzberg, A M; Grant, C D; Wolcott, A; Talley, C E; Huser, T R; Bogomolni, R; Zhang, J Z

    2004-04-06

    A unique gold nanoparticle aggregate (GNA) system has been shown to be an excellent substrate for surface-enhanced Raman scattering (SERS) applications. Rhodamine 6G (R6G), a common molecule used for testing SERS activity on silver, but generally difficult to detect on gold substrates, has been found to readily bind to the GNA and exhibit strong SERS activity due to the unique surface chemistry afforded by sulfur species on the surface. This GNA system has yielded a large SERS enhancement of 10{sup 7}-10{sup 9} in bulk solution for R6G, on par with or greater than any previously reported gold SERS substrate. SERS activity has also been successfully demonstrated for several biological molecules including adenine, L-cysteine, L-lysine, and L-histidine for the first time on a gold SERS substrate, showing the potential of this GNA as a convenient and powerful SERS substrate for biomolecular detection. In addition, SERS spectrum of R6G on single aggregates has been measured. We have shown that the special surface properties of the GNA, in conjunction with strong near IR absorption, make it useful for SERS analysis of a wide variety of molecules.

  2. Tuning Optical Properties of Encapsulated Clusters of Gold Nanoparticles through Stimuli-Triggered Controlled Aggregation.

    PubMed

    Dergunov, Sergey A; Kim, Mariya D; Shmakov, Sergey N; Richter, Andrew G; Weigand, Steven; Pinkhassik, Eugene

    2016-06-01

    Gold nanoparticles entrapped in the hollow polymer nanocapsules undergo pH-mediated controlled aggregation. Encapsulated clusters of nanoparticles show absorbance at higher wavelengths compared with individual nanoparticles. The size of the aggregates is controlled by the number of nanoparticles entrapped in individual nanocapsules. Such controlled aggregation may permit small biocompatible nanoparticles exhibit desirable properties for biomedical applications that are typically characteristic of large nanoparticles. PMID:27159384

  3. Preparation of gold nanoparticle aggregates and their photothermal heating property.

    PubMed

    Kim, Jun-Hyun; Lavin, Brian W

    2011-01-01

    This report describes simple synthetic strategies to prepare partially aggregated gold nanoparticles (GNPs) and their ability to produce photothermally-induced heating of an aqueous medium upon exposure to broadband light. The formation of various GNPs and their aggregates were accomplished in the absence of surfactants at room temperature. The morphologies, structures, and absorption properties of these GNPs were carefully characterized. Given that the resulting GNPs possessing strong and wide absorption bands fall in the most intense solar radiation spectrum, the photothermally-induced heating of water was examined in the presence of the GNPs via irradiation with a solar simulator (i.e., 100 mW/cm2; 1-sun condition). Our GNPs exhibited a slightly greater increase in the water temperature (3-4 degrees C) than that of conventional citrate-stabilized GNPs. This superior photothermal heating property of our GNPs directly indicated that the intense and broad absorption band effectively improved the conversion of highly absorbed photon energy into heat. PMID:21446405

  4. Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer

    NASA Astrophysics Data System (ADS)

    Sun, Mengmeng; Liu, Fei; Zhu, Yukun; Wang, Wansheng; Hu, Jin; Liu, Jing; Dai, Zhifei; Wang, Kun; Wei, Yen; Bai, Jing; Gao, Weiping

    2016-02-01

    The challenge in photothermal therapy (PTT) is to develop biocompatible photothermal transducers that can absorb and convert near-infrared (NIR) light into heat with high efficiency. Herein, we report salt-induced aggregation of gold nanoparticles (GNPs) in biological media to form highly efficient and biocompatible NIR photothermal transducers for PTT and photothermal/photoacoustic (PT/PA) imaging of cancer. The GNP depots in situ formed by salt-induced aggregation of GNPs show strong NIR absorption induced by plasmonic coupling between adjacent GNPs and very high photothermal conversion efficiency (52%), enabling photothermal destruction of tumor cells. More interestingly, GNPs in situ aggregate in tumors to form GNP depots, enabling simultaneous PT/PA imaging and PTT of the tumors. These findings may provide a simple and effective way to develop a new class of intelligent and biocompatible NIR photothermal transducers with high efficiency for PT/PA imaging and PTT.The challenge in photothermal therapy (PTT) is to develop biocompatible photothermal transducers that can absorb and convert near-infrared (NIR) light into heat with high efficiency. Herein, we report salt-induced aggregation of gold nanoparticles (GNPs) in biological media to form highly efficient and biocompatible NIR photothermal transducers for PTT and photothermal/photoacoustic (PT/PA) imaging of cancer. The GNP depots in situ formed by salt-induced aggregation of GNPs show strong NIR absorption induced by plasmonic coupling between adjacent GNPs and very high photothermal conversion efficiency (52%), enabling photothermal destruction of tumor cells. More interestingly, GNPs in situ aggregate in tumors to form GNP depots, enabling simultaneous PT/PA imaging and PTT of the tumors. These findings may provide a simple and effective way to develop a new class of intelligent and biocompatible NIR photothermal transducers with high efficiency for PT/PA imaging and PTT. Electronic supplementary

  5. Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer.

    PubMed

    Sun, Mengmeng; Liu, Fei; Zhu, Yukun; Wang, Wansheng; Hu, Jin; Liu, Jing; Dai, Zhifei; Wang, Kun; Wei, Yen; Bai, Jing; Gao, Weiping

    2016-02-28

    The challenge in photothermal therapy (PTT) is to develop biocompatible photothermal transducers that can absorb and convert near-infrared (NIR) light into heat with high efficiency. Herein, we report salt-induced aggregation of gold nanoparticles (GNPs) in biological media to form highly efficient and biocompatible NIR photothermal transducers for PTT and photothermal/photoacoustic (PT/PA) imaging of cancer. The GNP depots in situ formed by salt-induced aggregation of GNPs show strong NIR absorption induced by plasmonic coupling between adjacent GNPs and very high photothermal conversion efficiency (52%), enabling photothermal destruction of tumor cells. More interestingly, GNPs in situ aggregate in tumors to form GNP depots, enabling simultaneous PT/PA imaging and PTT of the tumors. These findings may provide a simple and effective way to develop a new class of intelligent and biocompatible NIR photothermal transducers with high efficiency for PT/PA imaging and PTT. PMID:26847879

  6. Surfactant induced aggregation behavior of Merocyanine-540 adsorbed on polymer coated positively charged gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Das, K.; Uppal, A.; Saini, R. K.

    2016-01-01

    Surfactant induced aggregation behavior of Merocyanine 540 adsorbed on polymer (PDD) coated gold nanoparticles (AuNP) is reported. The absorption band of the dye shifts to higher energy in the presence of free polymer and polymer coated AuNP implying aggregation. Addition of a negatively charged surfactant (SDS) induces multiple bands in the extinction spectrum of the dye adsorbed on nanoparticle surface. The highest (460 nm) and lowest (564 nm) energy bands of the dye become prominent at 10 and >50 μM SDS concentrations respectively (dye: 10 μM; AuNP: 100-200 pM). Based on earlier results the high energy band is likely to originate from dye aggregates and the low energy band is likely to originate from dye monomers. This is attributed to the interplay between polymer-surfactant and polymer-dye interactions at the AuNP surface. The extinction spectra of dye adsorbed at AuNP surface remain unaffected in the presence of a positively charged (CTAB) or a neutral surfactant (Tx-100), at low surfactant concentrations. However at higher surfactant concentrations (>60 μM) dye aggregation takes place which is attributed to dye-surfactant interactions. The fluorescence intensity of the dye quenched significantly but its lifetime increased in the presence of polymer coated AuNP. This is attributed to aggregation and reduction in the photoisomerization rate of the dye adsorbed on AuNP surface.

  7. Amino acid induced fractal aggregation of gold nanoparticles: Why and how.

    PubMed

    Doyen, Matthieu; Goole, Jonathan; Bartik, Kristin; Bruylants, Gilles

    2016-02-15

    Gold colloids are the object of many studies as they are reported to have potential biological sensing, imaging and drug delivery applications. In the presence of certain amino acids the aggregation of the gold nanoparticles into linear structures is observed, as highlighted by the appearance of a second plasmon band in the UV-Vis spectra of the colloid. The mechanism behind this phenomenon is still under debate. In order to help elucidate this issue, the interaction between gold colloids and different amino acids, modified amino acids and molecules mimicking their side-chain was monitored by UV-Vis absorption, DLS and TEM. The results show that phenomenon can be rationalized in terms of the Diffusion Limited Colloid Aggregation (DLCA) model which gives rise to the fractal aggregation colloids. The global charge of the compound, which influences the ionic strength of the solution, and the ease with which the compound can interact with the GNPs and affect their surface potential, are, the two parameters which control the DLCA regime. Calculations based on the Derjaguin, Landau, Verwey and Overbeek (DLVO) theory confirm all the experimental observations. PMID:26613335

  8. Thioglucose-stabilized gold nanoparticles as a novel platform for colorimetric bioassay based on nanoparticle aggregation.

    PubMed

    Watanabe, Shigeru; Yoshida, Kazuma; Shinkawa, Keitarou; Kumagawa, Daisuke; Seguchi, Hideki

    2010-12-01

    Gold nanoparticles stabilized with thioglucose (TGlu-AuNPs), which have carboxyl groups on the particle surface as anchoring sites for covalent immobilization of biomolecules, were prepared by the chemical reduction of HAuCl4 using 1-thio-β-D-glucose as a reducing and stabilizing agent, and their application to colorimetric bioassay was demonstrated using the carbohydrate-lectin system. p-Aminophenyl α-D-mannose (Man-NH2) was covalently attached by a conventional method to the activated carboxyl groups on the TGlu-AuNPs. On addition of Con A to the Man-AuNPs, multiple binding events occurred between Con A and the mannoses immobilized on the particle surface. This Con A-induced aggregation resulted in a significant red shift in local surface plasmon resonance. The binding isotherm showed a sigmoidal curve, indicating cooperativity in the binding of Con A and the Man-AuNPs. In addition, Hill plots showed two nonequivalent binding modes, with the Kd values for high- and low-affinity binding of 11.3 and 66.5 pM, respectively, which was significantly lower than that for methyl-α-D-mannose binding to Con A. The enhanced binding affinity between Man-AuNPs and Con A involves the cluster effect of the carbohydrate groups on the AuNPs. A linear correlation curve was obtained in the range 10-100 nM (R2=0.983). The limit of detection (LOD) for Con A was 9.0 nM in aqueous buffer, which is comparable to that of other conventional methods such as ELISA. PMID:20801619

  9. Detection of Gold Nanoparticles Aggregation Growth Induced by Nucleic Acid through Laser Scanning Confocal Microscopy

    PubMed Central

    Gary, Ramla; Carbone, Giovani; Petriashvili, Gia; De Santo, Maria Penelope; Barberi, Riccardo

    2016-01-01

    The gold nanoparticle (GNP) aggregation growth induced by deoxyribonucleic acid (DNA) is studied by laser scanning confocal and environmental scanning electron microscopies. As in the investigated case the direct light scattering analysis is not suitable, we observe the behavior of the fluorescence produced by a dye and we detect the aggregation by the shift and the broadening of the fluorescence peak. Results of laser scanning confocal microscopy images and the fluorescence emission spectra from lambda scan mode suggest, in fact, that the intruding of the hydrophobic moiety of the probe within the cationic surfactants bilayer film coating GNPs results in a Förster resonance energy transfer. The environmental scanning electron microscopy images show that DNA molecules act as template to assemble GNPs into three-dimensional structures which are reminiscent of the DNA helix. This study is useful to design better nanobiotechnological devices using GNPs and DNA. PMID:26907286

  10. Colorimetric detection of bisphenol A based on unmodified aptamer and cationic polymer aggregated gold nanoparticles.

    PubMed

    Zhang, Dongwei; Yang, Jiayi; Ye, Jing; Xu, Lurong; Xu, Hanchu; Zhan, Shenshan; Xia, Bing; Wang, Lumei

    2016-04-15

    In this study, a colorimetric method was exploited to detect bisphenol A (BPA) based on BPA-specific aptamer and cationic polymer-induced aggregation of gold nanoparticles (AuNPs). The principle of this assay is very classical. The aggregation of AuNPs was induced by the concentration of cationic polymer, which is controlled by specific recognition of aptamer with BPA and the reaction of aptamer and cationic polymer forming "duplex" structure. This method enables colorimetric detection of BPA with selectivity and a detection limit of 1.50 nM. In addition, this colorimetric method was successfully used to determine spiked BPA in tap water and river water samples. PMID:26820097

  11. Detection of Gold Nanoparticles Aggregation Growth Induced by Nucleic Acid through Laser Scanning Confocal Microscopy.

    PubMed

    Gary, Ramla; Carbone, Giovani; Petriashvili, Gia; De Santo, Maria Penelope; Barberi, Riccardo

    2016-01-01

    The gold nanoparticle (GNP) aggregation growth induced by deoxyribonucleic acid (DNA) is studied by laser scanning confocal and environmental scanning electron microscopies. As in the investigated case the direct light scattering analysis is not suitable, we observe the behavior of the fluorescence produced by a dye and we detect the aggregation by the shift and the broadening of the fluorescence peak. Results of laser scanning confocal microscopy images and the fluorescence emission spectra from lambda scan mode suggest, in fact, that the intruding of the hydrophobic moiety of the probe within the cationic surfactants bilayer film coating GNPs results in a Förster resonance energy transfer. The environmental scanning electron microscopy images show that DNA molecules act as template to assemble GNPs into three-dimensional structures which are reminiscent of the DNA helix. This study is useful to design better nanobiotechnological devices using GNPs and DNA. PMID:26907286

  12. High spatial resolution mapping of surface plasmon resonance modes in single and aggregated gold nanoparticles assembled on DNA strands

    NASA Astrophysics Data System (ADS)

    Diaz-Egea, Carlos; Sigle, Wilfried; van Aken, Peter A.; Molina, Sergio I.

    2013-07-01

    We present the mapping of the full plasmonic mode spectrum for single and aggregated gold nanoparticles linked through DNA strands to a silicon nitride substrate. A comprehensive analysis of the electron energy loss spectroscopy images maps was performed on nanoparticles standing alone, dimers, and clusters of nanoparticles. The experimental results were confirmed by numerical calculations using the Mie theory and Gans-Mie theory for solving Maxwell's equations. Both bright and dark surface plasmon modes have been unveiled.

  13. Generic phosphatase activity detection using zinc mediated aggregation modulation of polypeptide-modified gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Selegård, Robert; Enander, Karin; Aili, Daniel

    2014-11-01

    A challenge in the design of plasmonic nanoparticle-based colorimetric assays is that the change in colloidal stability, which generates the colorimetric response, is often directly linked to the biomolecular recognition event. New assay strategies are hence required for every type of substrate and enzyme of interest. Here, a generic strategy for monitoring of phosphatase activity is presented where substrate recognition is completely decoupled from the nanoparticle stability modulation mechanism, which enables detection of a wide range of enzymes using different natural substrates with a single simple detection scheme. Phosphatase activity generates inorganic phosphate that forms an insoluble complex with Zn2+. In a sample containing a preset concentration of Zn2+, phosphatase activity will markedly reduce the concentration of dissolved Zn2+ from the original value, which in turn affects the aggregation of gold nanoparticles functionalized with a designed Zn2+ responsive polypeptide. The change in nanoparticle stability thus provides a rapid and sensitive readout of the phosphatase activity. The assay is not limited to a particular enzyme or enzyme substrate, which is demonstrated using three completely different phosphatases and five different substrates, and thus constitutes a highly interesting system for drug screening and diagnostics.A challenge in the design of plasmonic nanoparticle-based colorimetric assays is that the change in colloidal stability, which generates the colorimetric response, is often directly linked to the biomolecular recognition event. New assay strategies are hence required for every type of substrate and enzyme of interest. Here, a generic strategy for monitoring of phosphatase activity is presented where substrate recognition is completely decoupled from the nanoparticle stability modulation mechanism, which enables detection of a wide range of enzymes using different natural substrates with a single simple detection scheme

  14. Highly sensitive colorimetric determination of amoxicillin in pharmaceutical formulations based on induced aggregation of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Akhond, Morteza; Absalan, Ghodratollah; Ershadifar, Hamid

    2015-05-01

    A novel, simple and highly sensitive colorimetric method is developed for determination of Amoxicillin (AMX). The system is based on aggregation of citrate-capped gold nanoparticles (AuNP) in acetate buffer (pH = 4.5) in the presence of the degradation product of Amoxicillin (DPAMX). It was found that the color of gold nanoparticles changed from red to purple and the intensity of surface plasmon resonance (SPR) peak of AuNPs decreased. A new absorption band was appeared in the wavelength range of 600-700 nm upon addition of DPAMX. The absorbance ratio at the wavelength of 660 and 525 nm (A660/A525) was chosen as the analytical signal indirectly related to AMX concentration. The linearity of the calibration graph was found over the concentration range of 0.3-4.5 μM AMX with a correlation coefficient of 0.9967. Under the optimum experimental conditions, the detection limit was found to be 0.15 μM. The applicability of the method was successfully demonstrated by analysis of AMX in pharmaceutical formulations including capsules and oral suspensions.

  15. Surface enhanced Raman spectroscopy on dielectrophoresis induced diffusion limited aggregation of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Chowdhury, Faisal Khair

    Wires formed by diffusion limited aggregation (DLA) induced by dielectrophoresis (DEP) of gold nanoparticles were investigated as an effective sample preparation method for surface enhanced Raman spectroscopy (SERS). Thymine was used as a test molecule and its SERS was measured to investigate the effectiveness of this technique that reproducibly resulted in x10 9 enhancement. It is known that molecules adsorbed near or at the surface of certain nanostructures produce strongly increased Raman signals and such phenomena is attributed to the concentration of electromagnetic (EM) optical fields at "hotspots" that usually occur at nanoscale junctions or clefts in metal nanostructures. Similarly, the enhancement obtained is attributed to the localized surface Plasmon's of the gold nanoparticles and the formation of "hotspots" in DEP wires. There are other methods that reproducibly yield in excess of x108 enhancement in SERS using tunable lasers and very elaborate Raman spectroscopy. The results presented here are obtained using a fixed laser excitation source at 785 nm and a simple spectrometer (5 cm-1 resolution).

  16. Colorimetric assay for heterogeneous-catalyzed lipase activity: enzyme-regulated gold nanoparticle aggregation.

    PubMed

    Zhang, Wei; Tang, Yan; Liu, Jia; Jiang, Ling; Huang, Wei; Huo, Feng-Wei; Tian, Danbi

    2015-01-14

    Lipase is a neglected enzyme in the field of gold nanoparticle-based enzyme assays. This paper reports a novel colorimetric probe to rapidly visualize lipase activities by using Tween 20 functioned GNPs (Tween 20-GNPs) as a reporter. The present strategy hence could overcome the limitations caused by the heterogeneous interface in lipase assay. Catalytic hydrolytic cleavage of the ester bond in Tween 20-GNPs by lipase will trigger the rapid aggregation of GNPs at a high salt solution. The color change from red to purple could be used to sense the activity of lipase. The detection limit (3σ) is as low as 2.8 × 10-2 mg/mL. A preliminary enzyme activity screening was carried out for seven commercially purchased lipase samples. It also has been successfully applied to detecting lipase in fermentation broth of Bacillus subtilis without any pretreatment. PMID:25516269

  17. In-situ suspended aggregate microextraction of gold nanoparticles from water samples and determination by electrothermal atomic absorption spectrometry.

    PubMed

    Choleva, Tatiana G; Kappi, Foteini A; Tsogas, George Z; Vlessidis, Athanasios G; Giokas, Dimosthenis L

    2016-05-01

    This work describes a new method for the extraction and determination of gold nanoparticles in environmental samples by means of in-situ suspended aggregate microextraction and electrothermal atomic absorption spectrometry. The method relies on the in-situ formation of a supramolecular aggregate phase through ion-association between a cationic surfactant and a benzene sulfonic acid derivative. Gold nanoparticles are physically entrapped into the aggregate phase which is separated from the bulk aqueous solution by vacuum filtration on the surface of a cellulose filter in the form of a thin film. The film is removed from the filter surface and is dissociated into an acidified methanolic solution which is used for analysis. Under the optimized experimental conditions, gold nanoparticles can be efficiently extracted from water samples with recovery rates between 81.0-93.3%, precision 5.4-12.0% and detection limits as low as 75femtomolL(-1) using only 20mL of sample volume. The satisfactory analytical features of the method along with the simplicity indicate the efficiency of this new approach to adequately collect and extract gold nanoparticle species from water samples. PMID:26946014

  18. Ultrasensitive detection of target analyte-induced aggregation of gold nanoparticles using laser-induced nanoparticle Rayleigh scattering.

    PubMed

    Lin, Jia-Hui; Tseng, Wei-Lung

    2015-01-01

    Detection of salt- and analyte-induced aggregation of gold nanoparticles (AuNPs) mostly relies on costly and bulky analytical instruments. To response this drawback, a portable, miniaturized, sensitive, and cost-effective detection technique is urgently required for rapid field detection and monitoring of target analyte via the use of AuNP-based sensor. This study combined a miniaturized spectrometer with a 532-nm laser to develop a laser-induced Rayleigh scattering technique, allowing the sensitive and selective detection of Rayleigh scattering from the aggregated AuNPs. Three AuNP-based sensing systems, including salt-, thiol- and metal ion-induced aggregation of the AuNPs, were performed to examine the sensitivity of laser-induced Rayleigh scattering technique. Salt-, thiol-, and metal ion-promoted NP aggregation were exemplified by the use of aptamer-adsorbed, fluorosurfactant-stabilized, and gallic acid-capped AuNPs for probing K(+), S-adenosylhomocysteine hydrolase-induced hydrolysis of S-adenosylhomocysteine, and Pb(2+), in sequence. Compared to the reported methods for monitoring the aggregated AuNPs, the proposed system provided distinct advantages of sensitivity. Laser-induced Rayleigh scattering technique was improved to be convenient, cheap, and portable by replacing a diode laser and a miniaturized spectrometer with a laser pointer and a smart-phone. Using this smart-phone-based detection platform, we can determine whether or not the Pb(2+) concentration exceed the maximum allowable level of Pb(2+) in drinking water. PMID:25476277

  19. DNA base-stacking assay utilizing catalytic hairpin assembly-induced gold nanoparticle aggregation for colorimetric protein sensing.

    PubMed

    Chang, Chia-Chen; Chen, Chie-Pein; Chen, Chen-Yu; Lin, Chii-Wann

    2016-03-18

    A label-free and enzyme-free colorimetric sensing platform for the amplified detection of fibronectin was developed based on an ingenious combination of catalytic hairpin assembly and a base stacking hybridization-based gold nanoparticle aggregation strategy. The detection limit of 2.3 pM is at least one order of magnitude lower than that of established fibronectin biosensors. PMID:26906691

  20. Colorimetric recognition of pazufloxacin mesilate based on the aggregation of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Kong, Sumei; Liao, Ming; Gu, Yu; Li, Nan; Wu, Pinping; Zhang, Tingting; He, Hua

    2016-03-01

    A novel colorimetric nanomaterial-assisted optical sensor for pazufloxacin mesilate was proposed for the first time. Pazufloxacin mesilate could induce the aggregation of glucose-reduced gold nanoparticles (AuNPs) through hydrogen-bonding interaction and electrostatic attraction, leading to the changes in color and absorption spectra of AuNPs. The effect of different factors such as pH, the amount of AuNPs, reaction time and reaction temperature was inspected. Under the optimum condition, UV-vis spectra showed that the absorption ratio (A670/A532) was linear with the concentration of pazufloxacin mesilate in the range from 9 × 10- 8 mol L- 1 to 7 × 10- 7 mol L- 1 with a linear coefficient of 0.9951. This method can be applied to detecting pazufloxacin mesilate with an ultralow detection limit of 7.92 × 10- 9 mol L- 1 without any complicated instruments. Through inspecting other analytes and ions, the anti-interference performance of AuNP detection system for pazufloxacin mesilate was excellent. For its high efficiency, rapid response rate as well as wide linear range, it had been successfully used to the analysis of pazufloxacin mesilate in human urine quantificationally.

  1. Colorimetric recognition of pazufloxacin mesilate based on the aggregation of gold nanoparticles.

    PubMed

    Kong, Sumei; Liao, Ming; Gu, Yu; Li, Nan; Wu, Pinping; Zhang, Tingting; He, Hua

    2016-03-15

    A novel colorimetric nanomaterial-assisted optical sensor for pazufloxacin mesilate was proposed for the first time. Pazufloxacin mesilate could induce the aggregation of glucose-reduced gold nanoparticles (AuNPs) through hydrogen-bonding interaction and electrostatic attraction, leading to the changes in color and absorption spectra of AuNPs. The effect of different factors such as pH, the amount of AuNPs, reaction time and reaction temperature was inspected. Under the optimum condition, UV-vis spectra showed that the absorption ratio (A670/A532) was linear with the concentration of pazufloxacin mesilate in the range from 9×10(-8) mol L(-1) to 7×10(-7) mol L(-1) with a linear coefficient of 0.9951. This method can be applied to detecting pazufloxacin mesilate with an ultralow detection limit of 7.92×10(-9) mol L(-1) without any complicated instruments. Through inspecting other analytes and ions, the anti-interference performance of AuNP detection system for pazufloxacin mesilate was excellent. For its high efficiency, rapid response rate as well as wide linear range, it had been successfully used to the analysis of pazufloxacin mesilate in human urine quantificationally. PMID:26774816

  2. Heat generation by optically and thermally interacting aggregates of gold nanoparticles under illumination

    NASA Astrophysics Data System (ADS)

    Zeng, Nan; Murphy, Anthony B.

    2009-09-01

    The generation of heat by clusters and arrays of gold nanoparticles under illumination is investigated theoretically. The nanoparticles are embedded in a homogeneous dielectric medium, and the finite thermal resistance at the interface between the nanoparticle and the medium is taken into account. An analytic solution is derived for the case of a single nanoparticle. The T-matrix method is used to calculate the energy absorption efficiency of groups of nanoparticles, taking into account their optical interactions. Heat transfer equations are developed that take into account thermal interactions between nanoparticles. The equations are solved numerically using the finite element software COMSOL. Periodic boundary conditions are applied to treat the thermal interactions between the nanoparticles for arrays of nanoparticles. Results are presented for illumination by a standard xenon flash lamp. The thermal resistance at the nanoparticle-medium interface is found to strongly influence the nanoparticle temperature, but to have negligible influence on the temperature of the dielectric medium after a few tens of nanoseconds of exposure to the flash lamp pulse. Optical interactions are found to be important if particle centres are separated by about twice the particle diameter or less. Thermal interactions between nanoparticles via the medium are found to be the dominant factor in determining the temperature increase in the dielectric medium. The maximum temperature increase is proportional to the volume fraction of the nanoparticles in the medium.

  3. Heat generation by optically and thermally interacting aggregates of gold nanoparticles under illumination.

    PubMed

    Zeng, Nan; Murphy, Anthony B

    2009-09-16

    The generation of heat by clusters and arrays of gold nanoparticles under illumination is investigated theoretically. The nanoparticles are embedded in a homogeneous dielectric medium, and the finite thermal resistance at the interface between the nanoparticle and the medium is taken into account. An analytic solution is derived for the case of a single nanoparticle. The T-matrix method is used to calculate the energy absorption efficiency of groups of nanoparticles, taking into account their optical interactions. Heat transfer equations are developed that take into account thermal interactions between nanoparticles. The equations are solved numerically using the finite element software COMSOL. Periodic boundary conditions are applied to treat the thermal interactions between the nanoparticles for arrays of nanoparticles. Results are presented for illumination by a standard xenon flash lamp. The thermal resistance at the nanoparticle-medium interface is found to strongly influence the nanoparticle temperature, but to have negligible influence on the temperature of the dielectric medium after a few tens of nanoseconds of exposure to the flash lamp pulse. Optical interactions are found to be important if particle centres are separated by about twice the particle diameter or less. Thermal interactions between nanoparticles via the medium are found to be the dominant factor in determining the temperature increase in the dielectric medium. The maximum temperature increase is proportional to the volume fraction of the nanoparticles in the medium. PMID:19706944

  4. Controllable g5p-Protein-Directed Aggregation of ssDNA-Gold Nanoparticles

    SciTech Connect

    Lee, S.; Maye, M; Zhang, Y; Gang, O; van der Lelie, D

    2009-01-01

    We assembled single-stranded DNA (ssDNA) conjugated nanoparticles using the phage M13 gene 5 protein (g5p) as the molecular glue to bind two antiparallel noncomplementary ssDNA strands. The entire process was controlled tightly by the concentration of the g5p protein and the presence of double-stranded DNA. The g5p-ssDNA aggregate was disintegrated by hybridization with complementary ssDNA (C-ssDNA) that triggers the dissociation of the complex. Polyhistidine-tagged g5p was bound to nickel nitrilotriacetic acid (Ni2+-NTA) conjugated nanoparticles and subsequently used to coassemble the ssDNA-conjugated nanoparticles into multiparticle-type aggregates. Our approach offers great promise for designing biologically functional, controllable protein/nanoparticle composites.

  5. Relating surface-enhanced Raman scattering signals of cells to gold nanoparticle aggregation as determined by LA-ICP-MS micromapping.

    PubMed

    Büchner, Tina; Drescher, Daniela; Traub, Heike; Schrade, Petra; Bachmann, Sebastian; Jakubowski, Norbert; Kneipp, Janina

    2014-11-01

    The cellular response to nanoparticle exposure is essential in various contexts, especially in nanotoxicity and nanomedicine. Here, 14-nm gold nanoparticles in 3T3 fibroblast cells are investigated in a series of pulse-chase experiments with a 30-min incubation pulse and chase times ranging from 15 min to 48 h. The gold nanoparticles and their aggregates are quantified inside the cellular ultrastructure by laser ablation inductively coupled plasma mass spectrometry micromapping and evaluated regarding the surface-enhanced Raman scattering (SERS) signals. In this way, both information about their localization at the micrometre scale and their molecular nanoenvironment, respectively, is obtained and can be related. Thus, the nanoparticle pathway from endocytotic uptake, intracellular processing, to cell division can be followed. It is shown that the ability of the intracellular nanoparticles and their accumulations and aggregates to support high SERS signals is neither directly related to nanoparticle amount nor to high local nanoparticle densities. The SERS data indicate that aggregate geometry and interparticle distances in the cell must change in the course of endosomal maturation and play a critical role for a specific gold nanoparticle type in order to act as efficient SERS nanoprobe. This finding is supported by TEM images, showing only a minor portion of aggregates that present small interparticle spacing. The SERS spectra obtained after different chase times show a changing composition and/or structure of the biomolecule corona of the gold nanoparticles as a consequence of endosomal processing. PMID:25120183

  6. Recyclable Photo-Thermal Nano-Aggregates of Magnetic Nanoparticle Conjugated Gold Nanorods for Effective Pathogenic Bacteria Lysis.

    PubMed

    Ramasamy, Mohankandhasamy; Kim, Sanghyo; Lee, Su Seong; Yi, Dong Kee

    2016-01-01

    We describe the nucleophilic hybridization technique for fabricating magnetic nanoparticle (MNP) around gold nanorod (AuNR) for desired photo-thermal lysis on pathogenic bacteria. From the electromagnetic energy conversion into heat to the surrounding medium, a significant and quicker temperature rise was noted after light absorption on nanohybrids, at a controlled laser light output and optimum nanoparticle concentration. We observed a similar photo-thermal pattern for more than three times for the same material up on repeated magnetic separation. Regardless of the cell wall nature, superior pathogenic cell lysis has been observed for the bacteria suspensions of individual and mixed samples of Salmonella typhi (S.typhi) and Bacillus subtilis (B.subtilis) by the photo-heated nanoparticles. The synthesis of short gold nanorod, conjugation with magnetic nanoparticle and its subsequent laser exposure provides a rapid and reiterated photo-thermal effect with enhanced magnetic separation for efficient bactericidal application in water samples. Resultant novel properties of the nano-aggregates makes them a candidate to be used for a rapid, effective, and re-iterated photo-thermal agent against a wide variety of pathogens to attain microbe free water. PMID:27398487

  7. Formation and decay of charge carriers in aggregate nanofibers consisting of poly(3-hexylthiophene)-coated gold nanoparticles.

    PubMed

    Lee, Dongki; Lee, Jaewon; Song, Ki-Hee; Rhee, Hanju; Jang, Du-Jeon

    2016-01-21

    Thin nanofibers (NFs) of J-dominant aggregates with a thickness of 15 nm and thick NFs of H-dominant aggregates with a thickness of 25 nm were fabricated by the self-assembly of poly(3-hexylthiophene)-coated gold nanoparticles. The formation and decay dynamics of the charge carriers, which are dependent on the aggregate types of NFs, was investigated by time-resolved emission and transient-absorption spectroscopy. With increasing excitation energy, the fraction of the fast emission decay component decreased, suggesting that the fast formation of polaron pairs (PP), localized (LP), and delocalized polarons (DP) results from higher singlet exciton states produced by the singlet fusion. The faster decay dynamics of DP and LP in the thick NFs than in thin NFs is due to the increased delocalization of DP and LP. As the interchain aggregation is weaker than intrachain aggregation, PP decays faster in thin NFs than in thick NFs. In both thin and thick NFs, although triplet (T1) excitons were barely observed with excitation at 532 nm on a nanosecond time scale, they were observed with excitation at 355 nm, showing that T1 excitons within NFs are generated mainly through the singlet fission from a higher singlet exciton state rather than through intersystem crossing. PMID:26691880

  8. "Smart" gold nanoparticles for photoacoustic imaging: an imaging contrast agent responsive to the cancer microenvironment and signal amplification via pH-induced aggregation.

    PubMed

    Song, Jaejung; Kim, Jeesu; Hwang, Sekyu; Jeon, Mansik; Jeong, Sanghwa; Kim, Chulhong; Kim, Sungjee

    2016-07-01

    'Smart' gold nanoparticles can respond to mild acidic environments, rapidly form aggregates, and shift the absorption to red and near-infrared. They were used as a photoacoustic imaging agent responsive to the cancer microenvironment, and have demonstrated the cancer-specific accumulation at the cellular level and an amplified signal which is twice higher than the control in vivo. PMID:27292365

  9. Pegylation increases platelet biocompatibility of gold nanoparticles.

    PubMed

    Santos-Martinez, Maria Jose; Rahme, Kamil; Corbalan, J Jose; Faulkner, Colm; Holmes, Justin D; Tajber, Lidia; Medina, Carlos; Radomski, Marek Witold

    2014-06-01

    The increasing use of gold nanoparticles in medical diagnosis and treatment has raised the concern over their blood compatibility. The interactions of nanoparticles with blood components may lead to platelet aggregation and endothelial dysfunction. Therefore, medical applications of gold nanoparticles call for increased nanoparticle stability and biocompatibility. Functionalisation of nanoparticles with polythelene glycol (PEGylation) is known to modulate cell-particle interactions. Therefore, the aim of the current study was to investigate the effects of PEGylated-gold nanoparticles on human platelet function and endothelial cells in vitro. Gold nanoparticles, 15 nm in diameter, were synthesised in water using sodium citrate as a reducing and stabilising agent. Functionalised polyethylene glycol-based thiol polymers were used to coat and stabilise pre-synthesised gold nanoparticles. The interaction of gold nanoparticles-citrate and PEGylated-gold nanoparticles with human platelets was measured by Quartz Crystal Microbalance with Dissipation. Platelet-nanoparticles interaction was imaged using phase-contrast, scanning and transmission electron microscopy. The inflammatory effects of gold nanoparticles-citrate and PEGylated-gold nanoparticles in endothelial cells were measured by quantitative real time polymerase chain reaction. PEGylated-gold nanoparticles were stable under physiological conditions and PEGylated-gold nanoparticles-5400 and PEGylated-gold nanoparticles-10800 did not affect platelet aggregation as measured by Quartz Crystal Microbalance with Dissipation. In addition, PEGylated-gold nanoparticles did not induce an inflammatory response when incubated with endothelial cells. Therefore, this study shows that PEGylated-gold nanoparticles with a higher molecular weight of the polymer chain are both platelet- and endothelium-compatible making them attractive candidates for biomedical applications. PMID:24749395

  10. Kinetics of aggregation and growth processes of PEG-stabilised mono- and multivalent gold nanoparticles in highly concentrated halide solutions.

    PubMed

    Stein, Benjamin; Zopes, David; Schmudde, Madlen; Schneider, Ralf; Mohsen, Ahmed; Goroncy, Christian; Mathur, Sanjay; Graf, Christina

    2015-01-01

    5-6 nm gold nanoparticles were prepared by hydrolytic decomposition of [NMe4][Au(CF3)2] and functionalized in situ with mono- and multivalent thiolated PEG ligands. Time-dependent changes of the nanoparticles were monitored in aqueous NaCl, NaBr, and NaI solutions by UV-Vis spectroscopy, TEM, and HRTEM. The purely sterically protected particles are stable in ≤1 M NaCl and NaBr solutions, regardless of the valence of the ligands. At higher concentrations (≥2 M), the monovalent stabilized particles show minor reaction limited colloidal aggregation. In NaBr but not in NaCl solutions a minor Ostwald ripening also occurs. The divalent stabilized particles remain colloidally stable in both halide solutions, even if the temperature is raised or the concentration is increased above 2 M. In ≤1 M aqueous NaI solutions the particles remain stable. Above, the monovalent stabilized particles undergo an oxidative reaction, resulting in a time-dependent shift and broadening of the absorbance spectrum. Finally, this process slows down while the width of the spectra slightly narrows. The kinetics of this process can be described by a two-step sigmoidal process, comprising a slow induction period where active species are formed, followed by a fast growth and aggregation process. The increasing concentration of fused structures from the aggregates during this process results in a narrowing of the size distributions. The divalent stabilized particles show only some minor broadening and a slight shift of the absorbance spectra in ≤3 M NaI solutions. These observations confirm the excellent stability of the multivalent stabilized particles from this chloride-free particle synthesis. PMID:25972038

  11. Ultrastable and Biofunctionalizable Gold Nanoparticles.

    PubMed

    Gupta, Akash; Moyano, Daniel F; Parnsubsakul, Attasith; Papadopoulos, Alexander; Wang, Li-Sheng; Landis, Ryan F; Das, Riddha; Rotello, Vincent M

    2016-06-01

    Gold nanoparticles provide an excellent platform for biological and material applications due to their unique physical and chemical properties. However, decreased colloidal stability and formation of irreversible aggregates while freeze-drying nanomaterials limit their use in real world applications. Here, we report a new generation of surface ligands based on a combination of short oligo (ethylene glycol) chains and zwitterions capable of providing nonfouling characteristics while maintaining colloidal stability and functionalization capabilities. Additionally, conjugation of these gold nanoparticles with avidin can help the development of a universal toolkit for further functionalization of nanomaterials. PMID:27191946

  12. Aromatic Surfactant as Aggregating Agent for Aptamer-Gold Nanoparticle-Based Detection of Plasmodium Lactate Dehydrogenase.

    PubMed

    Jain, Priyamvada; Chakma, Babina; Singh, Naveen Kumar; Patra, Sanjukta; Goswami, Pranab

    2016-07-01

    A novel ssDNA aptamer (P38), with a 40 mer random region flanked by primer-binding sites on both sides, targeting Plasmodium falciparum lactate dehydrogenase (PfLDH) has been developed through systematic evolution of ligands by exponential enrichment (SELEX), including counter SELEX against human lactate dehydrogenase A and B (hLDH A and B). The 2D structure of P38 shows the presence of three stem loops with a δG of -9.18 kcal/mol. EMSA studies on P38 complexes with the increasing concentration of PfLDH revealed a dissociation constant of 0.35 µM. P38 has been exploited for the quantitative detection of PfLDH using cationic surfactant-mediated aggregation of gold nanoparticles (16-nm diameter) as an optical probe. Among the three different cationic surfactants, characterized by different hydrocarbon tail groups, benzalkonium chloride (BCK) was found to be most efficient with a limit of detection of 281 ± 11 pM. This BCK-based approach with the novel highly selective aptamer provides simple and sensitive detection of PfLDH in the clinically relevant range. PMID:27189484

  13. In vivo tumor-targeted dual-modal fluorescence/CT imaging using a nanoprobe co-loaded with an aggregation-induced emission dye and gold nanoparticles.

    PubMed

    Zhang, Jimei; Li, Chan; Zhang, Xu; Huo, Shuaidong; Jin, Shubin; An, Fei-Fei; Wang, Xiaodan; Xue, Xiangdong; Okeke, C I; Duan, Guiyun; Guo, Fengguang; Zhang, Xiaohong; Hao, Jifu; Wang, Paul C; Zhang, Jinchao; Liang, Xing-Jie

    2015-02-01

    As an intensely studied computed tomography (CT) contrast agent, gold nanoparticle has been suggested to be combined with fluorescence imaging modality to offset the low sensitivity of CT. However, the strong quenching of gold nanoparticle on fluorescent dyes requires complicated design and shielding to overcome. Herein, we report a unique nanoprobe (M-NPAPF-Au) co-loading an aggregation-induced emission (AIE) red dye and gold nanoparticles into DSPE-PEG(2000) micelles for dual-modal fluorescence/CT imaging. The nanoprobe was prepared based on a facile method of "one-pot ultrasonic emulsification". Surprisingly, in the micelles system, fluorescence dye (NPAPF) efficiently overcame the strong fluorescence quenching of shielding-free gold nanoparticles and retained the crucial AIE feature. In vivo studies demonstrated the nanoprobe had superior tumor-targeting ability, excellent fluorescence and CT imaging effects. The totality of present studies clearly indicates the significant potential application of M-NPAPF-Au as a dual-modal non-invasive fluorescence/X-ray CT nanoprobe for in vivo tumor-targeted imaging and diagnosis. PMID:25542798

  14. The Importance of Excess Poly(N-isopropylacrylamide) for the Aggregation of Poly(N-isopropylacrylamide)-Coated Gold Nanoparticles

    PubMed Central

    2016-01-01

    Thermoresponsive materials are generating significant interest on account of the sharp and tunable temperature deswelling transition of the polymer chain. Such materials have shown promise in drug delivery devices, sensing systems, and self-assembly. Incorporation of nanoparticles (NPs), typically through covalent attachment of the polymer chains to the NP surface, can add additional functionality and tunability to such hybrid materials. The versatility of these thermoresponsive polymer/nanoparticle materials has been shown previously; however, significant and important differences exist in the published literature between virtually identical materials. Here we use poly(N-isopropylacrylamide) (PNIPAm)-AuNPs as a model system to understand the aggregation behavior of thermoresponsive polymer-coated nanoparticles in pure water, made by either grafting-to or grafting-from methods. We show that, contrary to popular belief, the aggregation of PNIPAm-coated AuNPs, and likely other such materials, relies on the size and concentration of unbound “free” PNIPAm in solution. It is this unbound polymer that also leads to an increase in solution turbidity, a characteristic that is typically used to prove nanoparticle aggregation. The size of PNIPAm used to coat the AuNPs, as well as the concentration of the resultant polymer–AuNP composites, is shown to have little effect on aggregation. Without free PNIPAm, contraction of the polymer corona in response to increasing temperature is observed, instead of nanoparticle aggregation, and is accompanied by no change in solution turbidity or color. We develop an alternative method for removing all traces of excess free polymer and develop an approach for analyzing the aggregation behavior of such materials, which truly allows for heat-triggered aggregation to be studied. PMID:26788966

  15. Fluorescence spectroscopy in probing spontaneous and induced aggregation amongst size-selective gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Rahman, Dewan S.; Ghosh, Sujit Kumar

    2014-06-01

    Gold nanoparticles have been synthesized by borohydride reduction using poly(N-vinyl 2-pyrrolidone) as the stabilizing agent in aqueous medium in the size regime of 1-5 nm. Aggregation amongst these polymer-stabilized gold nanoparticles has been accomplished by the controlled addition of hydrazine or aggregation may occur spontaneously (devoid of any chemicals) that is ubiquitous to nanoparticulate systems. Now, fluorescencein isothiocyanate (FITC), a prototype molecular probe has been employed in understanding the physical principles of aggregation phenomenon of the size-selective gold nanoparticles undergoing spontaneous and induced-aggregation under stipulated conditions. It is seen that there is enhancement of fluorescence intensity of FITC in the presence of both spontaneously and induced-aggregated gold nanoclusters as compared to free FITC. Interestingly, it is observed that the fluorescence sensitivity is able to distinguish seven different sizes of the gold nanoparticles in the aggregates and maximum enhancement of intensity arises at higher concentration with increase in size of gold particles within the aggregates. With increase in concentration of gold nanoparticle aggregates, the intensity increases, initially, reaches a maximum at a threshold concentration and then, gradually decreases in the presence of both spontaneously and induced-aggregated gold particles. However, the salient feature of physical significance is that the maximum enhancement of intensity with time has remained almost same for induced-aggregated gold while decreases exponentially with spontaneously aggregated gold particles.

  16. Gold Nanoparticles Cytotoxicity

    NASA Astrophysics Data System (ADS)

    Mironava, Tatsiana

    Over the last two decades gold nanoparticles (AuNPs) have been used for many scientific applications and have attracted attention due to the specific chemical, electronic and optical size dependent properties that make them very promising agents in many fields such as medicine, imagine techniques and electronics. More specifically, biocompatible gold nanoparticles have a huge potential for use as the contrast augmentation agent in X-ray Computed Tomography and Photo Acoustic Tomography for early tumor diagnostic as well these nanoparticles are extensively researched for enhancing the targeted cancer treatment effectiveness such as photo-thermal and radiotherapy. In most biomedical applications biocompatible gold nanoparticles are labeled with specific tumor or other pathology targeting antibodies and used for site specific drug delivery. However, even though gold nanoparticles poses very high level of anti cancer properties, the question of their cytotoxicity ones they are released in normal tissue has to be researched. Moreover, the huge amount of industrially produced gold nanoparticles raises the question of these particles being a health hazard, since the penetration is fairly easy for the "nano" size substances. This study focuses on the effect of AuNPs on a human skin tissue, since it is fall in both categories -- the side effects for biomedical applications and industrial workers and users' exposure during production and handling. Therefore, in the present project, gold nanoparticles stabilized with the biocompatible agent citric acid were generated and characterized by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). The cytotoxic effect of AuNPs release to healthy skin tissue was modeled on 3 different cell types: human keratinocytes, human dermal fibroblasts, and human adipose derived stromal (ADS) cells. The AuNPs localization inside the cell was found to be cell type dependent. Overall cytotoxicity was found to be dependent

  17. A visual assay and spectrophotometric determination of LLM-105 explosive using detection of gold nanoparticle aggregation at two pH values.

    PubMed

    He, Yi; Cheng, Yang

    2016-08-01

    We report a simple, rapid, and sensitive assay for visual and spectrophotometric detection of the 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) explosive. The assay is based on different interactions between LLM-105 and gold nanoparticle (AuNP) dispersions at two pH values, leading to the formation of dispersed or aggregated AuNPs. Two AuNP dispersions at two pH values were applied to recognize and detect LLM-105 instead of traditional AuNP dispersion under an aptotic pH to improve the anti-interference ability. The developed assay showed excellent sensitivity with a detection limit of 3 ng/mL, and the presence of as low as 0.2 μg/mL LLM-105 can be directly detected with the bare eye. This sensitivity is about six orders of magnitude higher than that of the reported traditional assays. Additionally, the assay exhibited good selectivity toward LLM-105 over other explosives, sulfur-containing compounds, and amines. Graphical abstract A simple, sensitive, and selective assay for LLM-105 was developed based on the pH-dependent interaction between the LLM-105 explosive and gold nanoparticle dispersion. PMID:27230624

  18. Techniques for Accurate Sizing of Gold Nanoparticles Using Dynamic Light Scattering with Particular Application to Chemical and Biological Sensing Based on Aggregate Formation.

    PubMed

    Zheng, Tianyu; Bott, Steven; Huo, Qun

    2016-08-24

    Gold nanoparticles (AuNPs) have found broad applications in chemical and biological sensing, catalysis, biomolecular imaging, in vitro diagnostics, cancer therapy, and many other areas. Dynamic light scattering (DLS) is an analytical tool used routinely for nanoparticle size measurement and analysis. Due to its relatively low cost and ease of operation in comparison to other more sophisticated techniques, DLS is the primary choice of instrumentation for analyzing the size and size distribution of nanoparticle suspensions. However, many DLS users are unfamiliar with the principles behind the DLS measurement and are unware of some of the intrinsic limitations as well as the unique capabilities of this technique. The lack of sufficient understanding of DLS often leads to inappropriate experimental design and misinterpretation of the data. In this study, we performed DLS analyses on a series of citrate-stabilized AuNPs with diameters ranging from 10 to 100 nm. Our study shows that the measured hydrodynamic diameters of the AuNPs can vary significantly with concentration and incident laser power. The scattered light intensity of the AuNPs has a nearly sixth order power law increase with diameter, and the enormous scattered light intensity of AuNPs with diameters around or exceeding 80 nm causes a substantial multiple scattering effect in conventional DLS instruments. The effect leads to significant errors in the reported average hydrodynamic diameter of the AuNPs when the measurements are analyzed in the conventional way, without accounting for the multiple scattering. We present here some useful methods to obtain the accurate hydrodynamic size of the AuNPs using DLS. We also demonstrate and explain an extremely powerful aspect of DLS-its exceptional sensitivity in detecting gold nanoparticle aggregate formation, and the use of this unique capability for chemical and biological sensing applications. PMID:27472008

  19. In vitro monitoring of oxidative processes with self-aggregating gold nanoparticles using all-optical photoacoustic spectroscopy.

    PubMed

    Yasmin, Zannatul; Khachatryan, Edward; Lee, Yuan-Hao; Maswadi, Saher; Glickman, Randolph; Nash, Kelly L

    2015-02-15

    In this work, the assembly of gold nanoparticles of (AuNPs) is used to detect the presence of the biomolecule glutathione (GSH) using a novel technique called "all-optical photoacoustic spectroscopy" (AOPAS). The AOPAS technique coupled with AuNPs forms the basis of a biosensing technique capable of probing the dynamic evolution of nano-bio interfaces within a microscopic volume. Dynamic Light Scattering (DLS) and ultraviolet-visible (UV-vis) spectra were measured to describe the kinetics governing the interparticle interactions by monitoring the AuNPs assembly and evolution of the surface plasmon resonance (SPR) band. A comparison of the same dynamic evolution of AuNPs assembly was performed using the AOPAS technique to confirm the validity of this method. The fundamental study is complemented by a demonstration of the performance of this biosensing technique in the presence of cell culture medium containing fetal bovine serum (FBS), which forms a protein corona on the surface of the AuNPs. This work demonstrates that the in vitro monitoring capabilities of the AOPAS provides sensitive measurement at the microscopic level and low nanoparticle concentrations without the artifacts limiting the use of conventional biosensing methods, such as fluorescent indicators. The AOPAS technique not only provides a facile approach for in vitro biosensing, but also shed a light on the real-time detection of thiol containing oxidative stress biomarkers in live systems using AuNPs. PMID:25441418

  20. Dopamine assay based on an aggregation-induced reversed inner filter effect of gold nanoparticles on the fluorescence of graphene quantum dots.

    PubMed

    Lin, Feng-E; Gui, Chuang; Wen, Wei; Bao, Ting; Zhang, Xiuhua; Wang, Shengfu

    2016-09-01

    We describe a fluorescent dopamine assay that is based on the inner filter effect (IFE) of gold nanoparticles (AuNPs) on the fluorescence of graphene quantum dots (GQDs). The green fluorescence of GQDs is remarkably inhibited in the presence of citrate-stabilized AuNPs via IFE. Upon the addition of dopamine (DA), aggregation of the AuNPs occurs which is associated with a color change from red to blue. The IFE can no longer occur and the fluorescence of GQDs is recovered. Under the optimum conditions, a linear correlation exists between fluorescence intensity and the concentration of DA in the range from 20nM to 200nM with a detection limit of 15nM (at 3σ/s). The assay is rapid, inexpensive and highly sensitive. PMID:27343608

  1. Unusual sequence length-dependent gold nanoparticles aggregation of the ssDNA sticky end and its application for enzyme-free and signal amplified colorimetric DNA detection

    PubMed Central

    He, Hongfei; Dai, Jianyuan; Duan, Zhijuan; Zheng, Baozhan; Meng, Yan; Guo, Yong; Dan Xiao

    2016-01-01

    It is known that the adsorption of short single-stranded DNA (ssDNA) on unmodified gold nanoparticles (AuNPs) is much faster than that for long ssDNA, and thus leads to length-dependent AuNPs aggregation after addition of salt, the color of the solutions sequentially changed from red to blue in accordance with the increase of ssDNA length. However, we found herein that the ssDNA sticky end of hairpin DNA exhibited a completely different adsorption behavior compared to ssDNA, an inverse blue-to-red color variation was observed in the colloid solution with the increase of sticky end length when the length is within a certain range. This unusual sequence length-dependent AuNPs aggregation might be ascribed to the effect of the stem of hairpin DNA. On the basis of this unique phenomenon and catalytic hairpin assembly (CHA) based signal amplification, a novel AuNPs-based colorimetric DNA assay with picomolar sensitivity and specificity was developed. This unusual sequence length-dependent AuNPs aggregation of the ssDNA sticky end introduces a new direction for the AuNPs-based colorimetric assays. PMID:27477392

  2. Unusual sequence length-dependent gold nanoparticles aggregation of the ssDNA sticky end and its application for enzyme-free and signal amplified colorimetric DNA detection

    NASA Astrophysics Data System (ADS)

    He, Hongfei; Dai, Jianyuan; Duan, Zhijuan; Zheng, Baozhan; Meng, Yan; Guo, Yong; Dan Xiao

    2016-08-01

    It is known that the adsorption of short single-stranded DNA (ssDNA) on unmodified gold nanoparticles (AuNPs) is much faster than that for long ssDNA, and thus leads to length-dependent AuNPs aggregation after addition of salt, the color of the solutions sequentially changed from red to blue in accordance with the increase of ssDNA length. However, we found herein that the ssDNA sticky end of hairpin DNA exhibited a completely different adsorption behavior compared to ssDNA, an inverse blue-to-red color variation was observed in the colloid solution with the increase of sticky end length when the length is within a certain range. This unusual sequence length-dependent AuNPs aggregation might be ascribed to the effect of the stem of hairpin DNA. On the basis of this unique phenomenon and catalytic hairpin assembly (CHA) based signal amplification, a novel AuNPs-based colorimetric DNA assay with picomolar sensitivity and specificity was developed. This unusual sequence length-dependent AuNPs aggregation of the ssDNA sticky end introduces a new direction for the AuNPs-based colorimetric assays.

  3. 1,4-Benzenediboronic-Acid-Induced Aggregation of Gold Nanoparticles: Application to Hydrogen Peroxide Detection and Biotin-Avidin-Mediated Immunoassay with Naked-Eye Detection.

    PubMed

    Yang, Ya-Chun; Tseng, Wei-Lung

    2016-05-17

    Hydrogen-peroxide (H2O2)-induced growth of small-sized gold nanoparticles (AuNPs) is often implemented for H2O2 sensing and plasmonic immunoassay. In contrast, there is little-to-no information in the literature regarding the application of H2O2-inhibited aggregation of citrate-capped AuNPs. This study discloses that benzene-1,4-diboronic acid (BDBA) was effective in driving the aggregation of citrate-capped AuNPs through an interaction between α-hydroxycarboxylate of citrate and boronic acids of BDBA. The H2O2-mediated oxidation of BDBA resulted in the conversion of boronic acid groups to phenol groups. The oxidized BDBA was incapable of triggering the aggregation of citrate-capped AuNPs. Thus, the presence of H2O2 prohibited BDBA-induced aggregation of citrate-capped AuNPs. The BDBA-induced aggregation of citrate-capped AuNPs can be paired with the glucose oxidase (GOx)-glucose system to design a colorimetric probe for glucose. Moreover, a H2O2·BDBA·AuNP probe was integrated with sandwich immunoassay, biotinylated antibody, and avidin-conjugated GOx for the selective naked-eye detection of rabbit immunoglobulin G (IgG) and human-prostate-specific antigen (PSA). The lowest detectable concentrations of rabbit IgG and human PSA by the naked eye were down to 0.1 and 4 ng/mL, respectively. More importantly, the proposed plasmonic immunoassay allowed the naked-eye quantification of 0-10 ng/mL PSA at an interval of 2 ng/mL in plasma samples. PMID:27091002

  4. A label-free colorimetric aptasensor for simple, sensitive and selective detection of Pt (II) based on platinum (II)-oligonucleotide coordination induced gold nanoparticles aggregation.

    PubMed

    Fan, Daoqing; Zhai, Qingfeng; Zhou, Weijun; Zhu, Xiaoqing; Wang, Erkang; Dong, Shaojun

    2016-11-15

    Herein, a gold nanoparticles (AuNPs) based label-free colorimetric aptasensor for simple, sensitive and selective detection of Pt (II) was constructed for the first time. Four bases (G-G mismatch) mismatched streptavidin aptamer (MSAA) was used to protect AuNPs from salt-induced aggregation and recognize Pt (II) specifically. Only in the presence of Pt (II), coordination occurs between G-G bases and Pt (II), leading to the activation of streptavidin aptamer. Streptavidin coated magnetic beads (MBs) were used as separation agent to separate Pt (II)-coordinated MSAA. The residual less amount of MSAA could not efficiently protect AuNPs anymore and aggregation of AuNPs will produce a colorimetric product. With the addition of Pt (II), a pale purple-to-blue color variation could be observed by the naked eye. A detection limit of 150nM and a linear range from 0.6μM to 12.5μM for Pt (II) could be achieved without any amplification. PMID:27281107

  5. A new strategy for the controlled deposition of gold nanoparticle aggregates on two-dimensional polystyrene arrays and its application in glucose oxidase immobilization.

    PubMed

    Xia, Yuetong; Li, Jinru; Jiang, Long

    2012-07-01

    Nano/microstructures play an important role in nanoparticle applications. This paper describes an innovative strategy to fabricate a variety of gold nanoparticle aggregates (AuNPs) on large-scale arrays of up to ∼1 cm(2) made from polystyrene (PS). A dendritic surfactant, C18N3, has multi-amine head groups that can control the thickness of a double layer adsorbed on the PS sphere surface in a pH-dependent manner. Controlling the pH and immersion time in the C18N3 solution allows the morphology of AuNPs deposited on the PS spheres (PS@AuNP) to be regulated. The influence of nano/microstructures on the activity enhancement of glucose oxidase (GOD) was investigated. The results indicated that well-ordered PS@AuNP arrays performed much better in the specific activity enhancement of GOD compared with free GOD and GOD immobilized on PS arrays. Furthermore, it was observed that the immobilized GOD on 2D PS@AuNP arrays maintained a highly improved operational stability compared to free GOD. The mechanism behind this effect is discussed. For practical applications, prepared PS@AuNP arrays can be used as an effective chip for GOD immobilization and application. PMID:22498366

  6. Ultrafast electron relaxation dynamics in coupled metal nanoparticles in aggregates.

    PubMed

    Jain, Prashant K; Qian, Wei; El-Sayed, Mostafa A

    2006-01-12

    We report the effect of aggregation in gold nanoparticles on their ultrafast electron-phonon relaxation dynamics measured by femtosecond transient absorption pump-probe spectroscopy. UV-visible extinction and transient absorption of the solution-stable aggregates of gold nanoparticles show a broad absorption in the 550-700-nm region in addition to the isolated gold nanoparticle plasmon resonance. This broad red-shifted absorption can be attributed to contributions from gold nanoparticle aggregates with different sizes and/or different fractal structures. The electron-phonon relaxation, reflected as a fast decay component of the transient bleach, is found to depend on the probe wavelength, suggesting that each wavelength interrogates one particular subset of the aggregates. As the probe wavelength is changed from 520 to 635 nm across the broad aggregate absorption, the rate of electron-phonon relaxation increases. The observed trend in the hot electron lifetimes can be explained on the basis of an increased overlap of the electron oscillation frequency with the phonon spectrum and enhanced interfacial electron scattering, with increasing extent of aggregation. The experimental results strongly suggest the presence of intercolloid electronic coupling within the nanoparticle aggregates, besides the well-known dipolar plasmon coupling. PMID:16471511

  7. The adjuvanticity of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Dykman, Lev A.; Bogatyrev, Vladimir A.; Staroverov, Sergey A.; Pristensky, Dmitry V.; Shchyogolev, Sergey Yu.; Khlebtsov, Nikolai G.

    2006-06-01

    A new variant of a technique for in vivo production of antibodies to various antigens with colloidal-gold nanoparticles as carrier is discussed. With this technique we obtained highly specific and relatively high-titre antibodies to different antigens. The antibodies were tested by an immunodot assay with gold nanoparticle markers. Our results provide the first demonstration that immunization of animals with colloidal gold complexed with either haptens or complete antigens gives rise to highly specific antibodies even without the use of complete Freund's adjuvant. These findings may attest to the adjuvanticity of gold nanoparticles itself. We provide also experimental results and discussion aimed at elucidation of possible mechanisms of the discovered colloidal-gold-adjuvanticity effect.

  8. Iodide-induced organothiol desorption and photochemical reaction, gold nanoparticle (AuNP) fusion, and SERS signal reduction in organothiol-containing AuNP aggregates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gold nanoparticles (AuNPs) have been used extensively as surface-enhanced Raman spectroscopic (SERS) substrates for their large SERS enhancements and widely believed chemical stability. Presented is the finding that iodide can rapidly reduce the SERS intensity of the ligands, including organothiols ...

  9. Shaped gold and silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Sun, Yugang; An, Changhua

    2011-03-01

    Advance in the synthesis of shaped nanoparticles made of gold and silver is reviewed in this article. This review starts with a new angle by analyzing the relationship between the geometrical symmetry of a nanoparticle shape and its internal crystalline structures. According to the relationship, the nanoparticles with well-defined shapes are classified into three categories: nanoparticles with single crystallinity, nanoparticles with angular twins, and nanoparticles with parallel twins. Discussion and analysis on the classical methods for the synthesis of shaped nanoparticles in each category are also included and personal perspectives on the future research directions in the synthesis of shaped metal nanoparticles are briefly summarized. This review is expected to provide a guideline in designing the strategy for the synthesis of shaped nanoparticles and analyzing the corresponding growth mechanism.

  10. Biomedical applications of gold nanoparticles.

    PubMed

    Cabuzu, Daniela; Cirja, Andreea; Puiu, Rebecca; Grumezescu, Alexandru Mihai

    2015-01-01

    Gold nanoparticles may be used in different domains, one of most important being the biomedical field. They have suitable properties for controlled drug delivery, cancer treatment, biomedical imaging, diagnosis and many others, due to their excellent compatibility with the human organism, low toxicity and tunable stability, small dimensions, and possibility to interact with a variety of substances. They also have optical properties, being able to absorb infrared light. Moreover, due to their large surface and the ability of being coated with a variety of therapeutic agents, gold nanoparticles have been showed a great potential to be used as drug delivery systems. Gold nanoparticles are intensively studied in biomedicine, and recent studies revealed the fact that they can cross the blood-brain barrier, may interact with the DNA and produce genotoxic effects. Because of their ability of producing heat, they can target and kill the tumors, being used very often in photodynamic therapy. Gold nanoparticles can be synthesized in many ways, but the most common are the biological and chemical methods, however the chemical method offers the advantage of better controlling the size and shape of the nanoparticles. In this review, we present the principal applications of gold nanoparticles in the biomedical field, like cancer treatment, amyloid-like fibrillogenesis inhibitors, transplacental treatment, the development of specific scaffolds and drug delivery systems. PMID:25877087

  11. Influence of gold nanoparticles on platelets functional activity in vitro

    NASA Astrophysics Data System (ADS)

    Akchurin, Garif G.; Akchurin, George G.; Ivanov, Alexey N.; Kirichuk, Vyacheslav F.; Terentyuk, George S.; Khlebtsov, Boris N.; Khlebtsov, Nikolay G.

    2008-02-01

    Now in the leading biomedical centers of the world approved new technology of laser photothermal destruction of cancer cells using plasmon gold nanoparticles. Investigations of influence of gold nanoparticles on white rat platelets aggregative activity in vitro have been made. Platelet aggregation was investigated in platelet rich plasma (PRP) with help of laser analyzer 230 LA <>, Russia). Aggregation inductor was ADP solution in terminal concentration 2.5 micromole (<>, Russia). Gold nanoshells soluted in salt solution were used for experiments. Samples of PRP were incubated with 50 or 100 μl gold nanoshells solution in 5 minute, after that we made definition ADP induced platelet aggregation. We found out increase platelet function activity after incubation with nanoparticles solution which shown in maximum ADP-induced aggregation degree increase. Increase platelet function activity during intravenous nanoshells injection can be cause of thrombosis on patients. That's why before clinical application of cancer cell destruction based on laser photothermal used with plasmon gold nanoparticles careful investigations of thrombosis process and detail analyze of physiological blood parameters are very necessary.

  12. Synthesis of large uniform gold and core-shell gold-silver nanoparticles: Effect of temperature control

    NASA Astrophysics Data System (ADS)

    Tiunov, I. A.; Gorbachevskyy, M. V.; Kopitsyn, D. S.; Kotelev, M. S.; Ivanov, E. V.; Vinokurov, V. A.; Novikov, A. A.

    2016-01-01

    The temperatures of nucleation and growth for gold and silver nanoparticles are quite close to each other in citrate-based seeded-growth synthesis. Hence, thorough temperature control during the synthesis of gold and gold-silver core-shell nanoparticles is expected to improve the yield of uniform non-aggregated nanoparticles suitable for selective contrasting of surface defects. Gold and gold-silver core-shell nanoparticles of size ranging from 20 to 160 nm were synthesized using various means of temperature control. The synthesized nanoparticles were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS) and UV-Vis spectroscopy. Model nanocracks were milled on pipeline steel specimen by focused ion beam (FIB). It was found that to produce large uniform core-shell nanoparticles, thorough temperature control is required during formation of the gold seeds and the silver shell. Moreover, the synthesized nanoparticles were used for selective contrasting of defects on metal surface.

  13. Nanomanufacturing of gold nanoparticle superstructures from the "bottom-up"

    NASA Astrophysics Data System (ADS)

    Rao, Tingling

    48 nm, the corresponding number of PEO chains on each particle was estimated to increase proportionally from 6 to 140. Consequently, the structure of the final products could be manipulated from gold dimer to raspberry-like structures. The third part of my work demonstrated the fabrication of 2-dimensional (2-D) gold nanoparticle arrays using peptide-derivatized block copolymer thin film templates. A triblock polystyrene-b-poly(methyl methacrylate)-b-A3 peptide (PS-b-PMMA-A3) was synthesized and processed into thin film with highly-ordered surface patterns via cold zone annealing (CZA). Gold nanoparticles were selectively immobilized onto PMMA domains due to the binding affinity of A3 peptide located at the PMMA chain end. Gold nanoparticle structures such as hexagonally-packed gold nanoparticle clusters and parallel gold nanoparticle wires have been achieved using this method. GISAXS results indicate that the hexagonal gold-hierarchical structure is constituted of two different structures: a primary structure induced by nanofeatures on the thin film template and a secondary structure formed through gold nanoparticle packing within each cluster domain. Selectivity of the thin film template to gold nanoparticles and the nanoparticle aggregation are two competing phenomena that affect resolution of the hierarchical structures.

  14. Gold nanoparticles enhancing protontherapy efficiency.

    PubMed

    Torrisi, Lorenzo

    2015-01-01

    The insertion of gold nanoparticles in biological liquids, tissues and organs permits to increase the equivalent atomic number of the medium that, if used as target to be irradiated by ionizing radiation, permits an increment of the absorbed dose. No toxic nanoparticles, such as the Au, can be injected in the cancer tissues at different concentrations before using a localized treatment that uses energetic proton beams for radiotherapy. Due to the high density and atomic number of the used gold nanoparticles, the absorbed radiation dose can be increased to about a factor six per cent using relatively low concentration of nanoparticles injectable as solution in the tumor tissue. This means to reduce the exposition to ionizing radiation or to increase the dose to the tumor site. Simulation programs of proton energy loss in tissues, using SRIM Code, are employed to evaluate the Bragg peak enhancing in presence of Au nanoparticles, so it will be presented and discussed. Some research findings and patents in the gold nanoparticle preparation and application to Medicine are reviewed in the present paper. PMID:25986229

  15. Gold nanoparticles for photoacoustic imaging.

    PubMed

    Li, Wanwan; Chen, Xiaoyuan

    2015-01-01

    Photoacoustic (PA) imaging is a biomedical imaging modality that provides functional information regarding the cellular and molecular signatures of tissue by using endogenous and exogenous contrast agents. There has been tremendous effort devoted to the development of PA imaging agents, and gold nanoparticles as exogenous contrast agents have great potential for PA imaging due to their inherent and geometrically induced optical properties. The gold-based nanoparticles that are most commonly employed for PA imaging include spheres, rods, shells, prisms, cages, stars and vesicles. This article provides an overview of the current state of research in utilizing these gold nanomaterials for PA imaging of cancer, atherosclerotic plaques, brain function and image-guided therapy. PMID:25600972

  16. Gold nanoparticles for photoacoustic imaging

    PubMed Central

    Li, Wanwan; Chen, Xiaoyuan

    2015-01-01

    Photoacoustic (PA) imaging is a biomedical imaging modality that provides functional information regarding the cellular and molecular signatures of tissue by using endogenous and exogenous contrast agents. There has been tremendous effort devoted to the development of PA imaging agents, and gold nanoparticles as exogenous contrast agents have great potential for PA imaging due to their inherent and geometrically induced optical properties. The gold-based nanoparticles that are most commonly employed for PA imaging include spheres, rods, shells, prisms, cages, stars and vesicles. This article provides an overview of the current state of research in utilizing these gold nanomaterials for PA imaging of cancer, atherosclerotic plaques, brain function and image-guided therapy. PMID:25600972

  17. Antibacterial efficacy of acridine derivatives conjugated with gold nanoparticles.

    PubMed

    Mitra, Piyali; Chakraborty, Prabal Kumar; Saha, Partha; Ray, Pulak; Basu, Samita

    2014-10-01

    Adsorption of acridine derivatives viz. 9-aminoacridine hydrochloride hydrate (9AA-HCl), acridine yellow (AY), acridine orange (AO), and proflavine (Pro) on citrate stabilized gold nanoparticle surface were studied using different analytical techniques like UV-vis absorption spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM). The amine moiety of acridine derivative binds strongly to the gold nanoparticles as confirmed by spectroscopic studies. The plasmon band observed for the wine red colloidal gold at 525 nm in the UV-vis spectrum is characteristic of gold nanoparticles. However, with the addition of acridine derivatives the intensity of the absorption band at 525 nm decreases and a new peak emerges at red-end region - a signature of formation of gold-drug complex. The TEM images show the average size of citrate stabilized gold nanoparticles as 15-20 nm, which becomes larger in the presence of various drugs due to aggregation. From the thermogravimetric analyses (TGA) we have measured the number of drug molecules attached per gold nanoparticle (AuNP). These gold nanoparticles are very important as drug delivery vehicles and for clinical applications it is necessary to understand their activity in vivo. The antibacterial efficacy of drugs coated gold nanoparticles were studied against various strains of Gram positive and Gram negative bacteria. Among the four drugs, 9AA-HCl and AO showed antibacterial activity and for both of them the AuNP conjugated drug showed better antibacterial efficacy than the bare drug. Because of the high penetrating power and large surface area of Au(0), a single gold nanoparticle can adsorb multiple drug molecules, hence this total entity acts as a single group against the bacteria. PMID:25087507

  18. Sonochemical intercalation of preformed gold nanoparticles into multilayered clays.

    PubMed

    Belova, Valentina; Möhwald, Helmuth; Shchukin, Dmitry G

    2008-09-01

    Multilayered Na (+)-montmorillonite clays intercalated with Au nanoparticles were synthesized by direct ultrasonic impregnation of preformed gold colloid into the clay matrix. The sonicated composite product then consists of Au nanoparticles homogeneously dispersed in the clay. The resulting clay/nano-Au composite was calcined at 800 degrees C and characterized by BET surface area analysis, transmission electron microscopy, scanning electron microscopy, X-ray diffraction, and Fourier transform infrared measurements. Nearly spherical-shaped gold nanoparticles, with a size of 6 +/- 0.5 nm, are located in the pores of clay calcined at 800 degrees C. Their nanocomposites are thermally stable as was shown by thermogravimetric analysis. No aggregation of the gold nanoparticles was observed during calcination. The proposed ultrasonic intercalation approach is an universal one and can be employed for synthesis of catalytically active metal-clay nanocomposites stable at high temperatures with high dispersability of the metal nanoparticles in the clay matrix. PMID:18652497

  19. Application of Gold Nanoparticles to Paint Colorants

    NASA Astrophysics Data System (ADS)

    Ishibashi, Hideo

    Metal nanoparticles possess unique properties that they do not exhibit in their bulk states. One of these properties is the color due to surface plasmon resonance. Gold nanoparticles appear red. This color has been utilized in glass for a long long time. In recent years, highly concentrated pastes of gold and silver nanoparticles have been successfully produced by using a special type of protective polymer and a mild reductant. The paste of gold nanoparticles can be used for paint and other materials as red colorants. In this article,application examples of gold nanoparticles as colorant are introduced. Recently, methods for producing bimetal nanoparticles such as gold/silver and gold/copper have been developed. These nanoparticles allow colors from yellow to green to be created. These methods and colors they produce are also described in this article.

  20. Gold nanoparticles and vaccine development.

    PubMed

    Salazar-González, Jorge Alberto; González-Ortega, Omar; Rosales-Mendoza, Sergio

    2015-01-01

    Mucosal vaccines constitute an advantageous immunization approach to achieve broad immunization against widespread diseases; however, improvements in this field are still required to expand their exploitation. As gold nanoparticles are biocompatible and can be easily functionalized with antigens, they have been proposed as carriers for the delivery of vaccines. The study of gold nanoparticles (AuNPs) in vaccinology has been of interest for a number of research groups in recent years and important advances have been made. This review provides a summary of the AuNPs synthesis methodologies and an updated overview of the current AuNPs-based vaccines under development. The implications of these advances for the development of new mucosal vaccines as well as future prospects for the field are discussed. PMID:26152550

  1. Microwave extinction characteristics of nanoparticle aggregates

    NASA Astrophysics Data System (ADS)

    Wu, Y. P.; Cheng, J. X.; Liu, X. X.; Wang, H. X.; Zhao, F. T.; Wen, W. W.

    2016-07-01

    Structure of nanoparticle aggregates plays an important role in microwave extinction capacity. The diffusion-limited aggregation model (DLA) for fractal growth is utilized to explore the possible structures of nanoparticle aggregates by computer simulation. Based on the discrete dipole approximation (DDA) method, the microwave extinction performance by different nano-carborundum aggregates is numerically analyzed. The effects of the particle quantity, original diameter, fractal structure, as well as orientation on microwave extinction are investigated, and also the extinction characteristics of aggregates are compared with the spherical nanoparticle in the same volume. Numerical results give out that proper aggregation of nanoparticle is beneficial to microwave extinction capacity, and the microwave extinction cross section by aggregated granules is better than that of the spherical solid one in the same volume.

  2. Interactions of iodoperfluorobenzene compounds with gold nanoparticles.

    PubMed

    Blakey, Idriss; Merican, Zul; Rintoul, Llewellyn; Chuang, Ya-Mi; Jack, Kevin S; Micallef, Aaron S

    2012-03-14

    Understanding the interactions of small molecules with gold nanoparticles is important for controlling their surface chemistry and, hence, how they can be used in specific applications. The interaction of iodoperfluorobenzene compounds with gold nanoparticles was investigated by UV-Vis difference spectroscopy, surface enhanced Raman spectroscopy (SERS) and Synchrotron X-ray photoelectron spectroscopy (XPS). Results from UV-Vis difference spectroscopy demonstrated that iodoperfluorobenzene compounds undergo charge transfer complexation with gold nanoparticles. SERS of the small molecule-gold nanoparticle adducts provided further evidence for formation of charge transfer complexes, while Synchrotron X-ray photoelectron spectroscopy provided evidence of the binding mechanism. Demonstration of interactions of iodoperfluorobenzene compounds with gold nanoparticles further expands the molecular toolbox that is available for functionalising gold nanoparticles and has significant potential for expanding the scope for generation of hybrid halogen bonded materials. PMID:22314792

  3. Responsive Block Copolymer and Gold Nanoparticle Hybrid Nanotubes.

    NASA Astrophysics Data System (ADS)

    Chang, Sehoon; Singamaneni, Srikanth; Young, Seth; Tsukruk, Vladimir

    2009-03-01

    We demonstrate the facile fabrication of responsive polymer and metal nanoparticle composite nanotube structures. The nanotubes are comprised of responsive block copolymer, polystyrene-block-poly (2-vinylpyridine) (PS-b-P2VP), and gold nanoparticles. PS-b-P2VP nanotubes were fabricated using porous alumina template and in situ reduction of the gold nanoparticles in P2VP domains. Owing to the pH sensitive nature of P2VP (anionic polymer with a pKa of 3.8), the nanotubes exhibit a dramatic change in topology in response to the changes in the external pH. Furthermore, the gold nanoparticles in the responsive block exhibit a reversible aggregation, causing a reversible change in optical properties such as absorption.

  4. Does Shining Light on Gold Colloids Influence Aggregation?

    PubMed Central

    Bhattacharya, Susmita; Narasimha, Suda; Roy, Anushree; Banerjee, Soumitro

    2014-01-01

    In this article we revisit the much-studied behavior of self-assembled aggregates of gold colloidal particles. In the literature, the electrostatic interactions, van der Waals interactions, and the change in free energy due to ligand-ligand or ligand-solvent interactions are mainly considered to be the dominating factors in determining the characteristics of the gold aggregates. However, our light scattering and imaging experiments clearly indicate a distinct effect of light in the growth structure of the gold colloidal particles. We attribute this to the effect of a non-uniform distribution of the electric field in aggregated gold colloids under the influence of light. PMID:24909824

  5. Colorimetric As (V) detection based on S-layer functionalized gold nanoparticles.

    PubMed

    Lakatos, Mathias; Matys, Sabine; Raff, Johannes; Pompe, Wolfgang

    2015-11-01

    Herein, we present simple and rapid colorimetric and UV/VIS spectroscopic methods for detecting anionic arsenic (V) complexes in aqueous media. The methods exploit the aggregation of S-layer-functionalized spherical gold nanoparticles of sizes between 20 and 50 nm in the presence of arsenic species. The gold nanoparticles were functionalized with oligomers of the S-layer protein of Lysinibacillus sphaericus JG-A12. The aggregation of the nanoparticles results in a color change from burgundy-red for widely dispersed nanoparticles to blue for aggregated nanoparticles. A detailed signal analysis was achieved by measuring the shift of the particle plasmon resonance signal with UV/VIS spectroscopy. To further improve signal sensitivity, the influence of larger nanoparticles was tested. In the case of 50 nm gold nanoparticles, a concentration of the anionic arsenic (V) complex lower than 24 ppb was detectable. PMID:26452816

  6. Ordering Gold Nanoparticles with DNA Origami Nanoflowers.

    PubMed

    Schreiber, Robert; Santiago, Ibon; Ardavan, Arzhang; Turberfield, Andrew J

    2016-08-23

    Nanostructured materials, including plasmonic metamaterials made from gold and silver nanoparticles, provide access to new materials properties. The assembly of nanoparticles into extended arrays can be controlled through surface functionalization and the use of increasingly sophisticated linkers. We present a versatile way to control the bonding symmetry of gold nanoparticles by wrapping them in flower-shaped DNA origami structures. These "nanoflowers" assemble into two-dimensonal gold nanoparticle lattices with symmetries that can be controlled through auxiliary DNA linker strands. Nanoflower lattices are true composites: interactions between the gold nanoparticles are mediated entirely by DNA, and the DNA origami will fold into its designed form only in the presence of the gold nanoparticles. PMID:27341272

  7. Aggregation kinetics and colloidal stability of functionalized nanoparticles.

    PubMed

    Gambinossi, Filippo; Mylon, Steven E; Ferri, James K

    2015-08-01

    The functionalization of nanoparticles has primarily been used as a means to impart stability in nanoparticle suspensions. In most cases even the most advanced nanomaterials lose their function should suspensions aggregate and settle, but with the capping agents designed for specific solution chemistries, functionalized nanomaterials generally remain monodisperse in order to maintain their function. The importance of this cannot be underestimated in light of the growing use of functionalized nanomaterials for wide range of applications. Advanced functionalization schemes seek to exert fine control over suspension stability with small adjustments to a single, controllable variable. This review is specific to functionalized nanoparticles and highlights the synthesis and attachment of novel functionalization schemes whose design is meant to affect controllable aggregation. Some examples of these materials include stimulus responsive polymers for functionalization which rely on a bulk solution physicochemical threshold (temperature or pH) to transition from a stable (monodisperse) to aggregated state. Also discussed herein are the primary methods for measuring the kinetics of particle aggregation and theoretical descriptions of conventional and novel models which have demonstrated the most promise for the appropriate reduction of experimental data. Also highlighted are the additional factors that control nanoparticle stability such as the core composition, surface chemistry and solution condition. For completeness, a case study of gold nanoparticles functionalized using homologous block copolymers is discussed to demonstrate fine control over the aggregation state of this type of material. PMID:25150615

  8. Dendritic functionalization of monolayer-protected gold nanoparticles

    SciTech Connect

    Cutler, Erin C.; Lundin, Erik; Garabato, B. Davis; Choi, Daeock; Shon, Young-Seok . E-mail: young.shon@wku.edu

    2007-06-05

    This paper describes the facile synthesis of nanoparticle-cored dendrimers (NCDs) and nanoparticle megamers from monolayer-protected gold clusters using either single or multi-step reactions. First, 11-mercaptoundecanoic acid/hexanethiolate-protected gold clusters were synthesized using the Schiffrin reaction followed by the ligand place-exchange reaction. A convergent approach for the synthesis of nanoparticle-cored dendrimers uses a single step reaction that is an ester coupling reaction of hydroxy-functionalized dendrons with carboxylic acid-functionalized gold clusters. A divergent approach, which is based on multi-step reactions, employs the repetition of an amide coupling reaction and a Michael addition reaction to build polyamidoamine dendritic architectures around a nanoparticle core. Nanoparticle megamers, which are large dendrimer-induced nanoparticle aggregates with an average diameter of more than 300 nm, were prepared by the amide coupling reaction between polyamiodoamine [G-2] dendrimers and carboxylic acid-functionalized gold clusters. {sup 1}H NMR spectroscopy, FT-IR spectroscopy, thermogravimetric analysis (TGA), and transmission electron microscopy (TEM) were used for the characterization of these hybrid nanoparticles.

  9. Gold Nanoparticles for Nucleic Acid Delivery

    PubMed Central

    Ding, Ya; Jiang, Ziwen; Saha, Krishnendu; Kim, Chang Soo; Kim, Sung Tae; Landis, Ryan F; Rotello, Vincent M

    2014-01-01

    Gold nanoparticles provide an attractive and applicable scaffold for delivery of nucleic acids. In this review, we focus on the use of covalent and noncovalent gold nanoparticle conjugates for applications in gene delivery and RNA-interference technologies. We also discuss challenges in nucleic acid delivery, including endosomal entrapment/escape and active delivery/presentation of nucleic acids in the cell. PMID:24599278

  10. Gold nanoparticle photosensitized radical photopolymerization.

    PubMed

    Anyaogu, Kelechi C; Cai, Xichen; Neckers, Douglas C

    2008-12-01

    We report the photopolymerization of an acrylic monomer using thiol-stabilized gold nanoparticles (AuNPs) and [4-[(octyloxy)phenyl] phenyl] iodonium hexafluoroantimonate (OPPI) as photoinitiator and coinitiator, respectively. Polymerization occurred only when the AuNPs, in the presence of the iodonium salt, were irradiated at the particle plasmonic absorption region (lambda>450 nm). The AuNPs activate the coinitiator by intermolecular electron transfer since OPPI has no absorption in the visible region. Fourier transform infrared spectroscopy was used to monitor polymerization. UV-Vis spectroscopy and transmission electron microscopy measurements were used to characterize the NPs. PMID:19037499

  11. [Biosynthesis of gold nanoparticles by Azospirillum brasilense].

    PubMed

    Kupriashina, M A; Vetchinkina, E P; Burov, A M; Ponomareva, E G; Nikitina, V E

    2014-01-01

    Plant-associated nitrogen-fixing soil bacteria Azospirillum brasilense were shown to reduce the gold of chloroauric acid to elemental gold, resulting in formation of gold nanoparicles. Extracellular phenoloxidizing enzymes (laccases and Mn peroxidases) were shown to participate in reduction of Au+3 (HAuCl4) to Au(0). Transmission electron microscopy revealed accumulation of colloidal gold nanoparticles of diverse shape in the culture liquid of A. brasilense strains Sp245 and Sp7. The size of the electron-dense nanospheres was 5 to 50 nm, and the size of nanoprisms varied from 5 to 300 nm. The tentative mechanism responsible for formation of gold nanoparticles is discussed. PMID:25423733

  12. Gold Nanoparticle Aggregation as a Probe of Antifreeze (Glyco) Protein-Inspired Ice Recrystallization Inhibition and Identification of New IRI Active Macromolecules

    NASA Astrophysics Data System (ADS)

    Mitchell, Daniel E.; Congdon, Thomas; Rodger, Alison; Gibson, Matthew I.

    2015-10-01

    Antifreeze (glyco)proteins are found in polar fish species and act to slow the rate of growth of ice crystals; a property known as ice recrystallization inhibition. The ability to slow ice growth is of huge technological importance especially in the cryopreservation of donor cells and tissue, but native antifreeze proteins are often not suitable, nor easily available. Therefore, the search for new materials that mimic this function is important, but currently limited by the low-throughout assays associated with the antifreeze properties. Here 30 nm gold nanoparticles are demonstrated to be useful colorimetric probes for ice recrystallization inhibition, giving a visible optical response and is compatible with 96 well plates for high-throughout studies. This method is faster, requires less infrastructure, and has easier interpretation than the currently used ‘splat’ methods. Using this method, a series of serum proteins were identified to have weak, but specific ice recrystallization inhibition activity, which was removed upon denaturation. It is hoped that high-throughput tools such as this will accelerate the discovery of new antifreeze mimics.

  13. Gold Nanoparticle Aggregation as a Probe of Antifreeze (Glyco) Protein-Inspired Ice Recrystallization Inhibition and Identification of New IRI Active Macromolecules

    PubMed Central

    Mitchell, Daniel E.; Congdon, Thomas; Rodger, Alison; Gibson, Matthew I.

    2015-01-01

    Antifreeze (glyco)proteins are found in polar fish species and act to slow the rate of growth of ice crystals; a property known as ice recrystallization inhibition. The ability to slow ice growth is of huge technological importance especially in the cryopreservation of donor cells and tissue, but native antifreeze proteins are often not suitable, nor easily available. Therefore, the search for new materials that mimic this function is important, but currently limited by the low-throughout assays associated with the antifreeze properties. Here 30 nm gold nanoparticles are demonstrated to be useful colorimetric probes for ice recrystallization inhibition, giving a visible optical response and is compatible with 96 well plates for high-throughout studies. This method is faster, requires less infrastructure, and has easier interpretation than the currently used ‘splat’ methods. Using this method, a series of serum proteins were identified to have weak, but specific ice recrystallization inhibition activity, which was removed upon denaturation. It is hoped that high-throughput tools such as this will accelerate the discovery of new antifreeze mimics. PMID:26499135

  14. Induced growth of dendrite gold nanostructure by controlling self-assembly aggregation dynamics.

    PubMed

    Abdellatif, M H; Abdelrasoul, G N; Scarpellini, A; Marras, S; Diaspro, A

    2015-11-15

    Self-assembly of gold nanoparticles (AuNPs) is an important growth mode for fabricating functional materials. In this work we report a dendrite structure formed by slowing down the aggregation dynamics of AuNPs self-assembly. The obtained results show that the aggregation dynamics is dominated by the Reaction Limited Aggregation Model (RLA) more than the Diffusion Limited Aggregation Model (DLA). In which the repulsion due to electrostatic forces is dominant by the Van Der Walls attraction forces, and low sticking probability of nanoparticles. The aggregation dynamics of AuNPs can be slowed down if the water evaporation of the drop casted colloidal AuNPs on a quartz substrate is slowed. Slowing down the evaporation allows electrostatic repulsion forces to decrease gradually. At certain point, the attraction forces become higher than the electrostatic repulsion and hence cluster aggregation take place slowly. The slow aggregation dynamics allows the nanoparticles to sample all possible orientation in the sticking site, searching for the lowest energy configuration. The size distribution of the nanoparticles in liquid is confirmed using dynamic light scattering based on Stokes-Einstein equation for diffusion coefficient in water. X-ray and photoluminescence (PL) spectra of the sample after aggregation showed a shift which is related to the aggregation compared with non-aggregated colloidal nanoparticles in the solution. The study shows that dendrite self similar structure can be formed by slowing down the aggregation dynamics of nanoparticles as a result of minimizing the Helmholtz free surface energy of the system. PMID:26233557

  15. Impact of Particle Aggregation on Nanoparticle Reactivity

    NASA Astrophysics Data System (ADS)

    Jassby, David

    2011-12-01

    The prevalence of nanoparticles in the environment is expected to grow in the coming years due to their increasing pervasiveness in consumer and industrial applications. Once released into the environment, nanoparticles encounter conditions of pH, salinity, UV light, and other solution conditions that may alter their surface characteristics and lead to aggregation. The unique properties that make nanoparticles desirable are a direct consequence of their size and increased surface area. Therefore, it is critical to recognize how aggregation alters the reactive properties of nanomaterials, if we wish to understand how these properties are going to behave once released into the environment. The size and structure of nanoparticle aggregates depend on surrounding conditions, including hydrodynamic ones. Depending on these conditions, aggregates can be large or small, tightly packed or loosely bound. Characterizing and measuring these changes to aggregate morphology is important to understanding the impact of aggregation on nanoparticle reactive properties. Examples of decreased reactivity due to aggregation include the case where tightly packed aggregates have fewer available surface sites compared to loosely packed ones; also, photocatalytic particles embedded in the center of large aggregates will experience less light when compared to particles embedded in small aggregates. However, aggregation also results in an increase in solid-solid interfaces between nanoparticles. This can result in increased energy transfer between neighboring particles, surface passivation, and altered surface tension. These phenomena can lead to an increase in reactivity. The goal of this thesis is to examine the impacts of aggregation on the reactivity of a select group of nanomaterials. Additionally, we examined how aggregation impacts the removal efficiency of fullerene nanoparticles using membrane filtration. The materials we selected to study include ZnS---a metal chalcogenide

  16. Functionalization of gold nanoparticles as antidiabetic nanomaterial

    NASA Astrophysics Data System (ADS)

    Venkatachalam, M.; Govindaraju, K.; Mohamed Sadiq, A.; Tamilselvan, S.; Ganesh Kumar, V.; Singaravelu, G.

    2013-12-01

    In the present investigation, functionalization of gold nanoparticles synthesized using propanoic acid 2-(3-acetoxy-4,4,14-trimethylandrost-8-en-17-yl) (PAT) an active biocomponent isolated from Cassia auriculata is studied in detail. On reaction of PAT with aqueous HAuCl4, rapid formation of stable gold nanoparticles was achieved. Formation of gold nanoparticles was confirmed by UV-vis spectroscopy, XRD, GC-MS, FTIR, TEM and SEM with EDAX. Gold nanoparticles mostly were monodisperse, spherical in shape and ranged in size 12-41 nm. Gold nanoparticles synthesised using PAT was administered to alloxan (150 mg/kg body weight) induced diabetic male albino rats at different doses (0.25, 0.5, 0.75 and 1.0 mg/kg body weight) for 28 days. Plasma glucose level, cholesterol and triglyceride were significantly (p < 0.001) reduced in experimental animals treated with gold nanoparticles at dosage of 0.5 mg/kg body weight and plasma insulin increased significantly. The newly genre green gold nanoparticles exhibit remarkable protein tyrosine phosphatase 1B inhibitory activity.

  17. Dendritic assembly of gold nanoparticles during fuel-forming electrocatalysis.

    PubMed

    Manthiram, Karthish; Surendranath, Yogesh; Alivisatos, A Paul

    2014-05-21

    We observe the dendritic assembly of alkanethiol-capped gold nanoparticles on a glassy carbon support during electrochemical reduction of protons and CO2. We find that the primary mechanism by which surfactant-ligated gold nanoparticles lose surface area is by taking a random walk along the support, colliding with their neighbors, and fusing to form dendrites, a type of fractal aggregate. A random walk model reproduces the fractal dimensionality of the dendrites observed experimentally. The rate at which the dendrites form is strongly dependent on the solubility of the surfactant in the electrochemical double layer under the conditions of electrolysis. Since alkanethiolate surfactants reductively desorb at potentials close to the onset of CO2 reduction, they do not poison the catalytic activity of the gold nanoparticles. Although catalyst mobility is typically thought to be limited for room-temperature electrochemistry, our results demonstrate that nanoparticle mobility is significant under conditions at which they electrochemically catalyze gas evolution, even in the presence of a high surface area carbon and binder. A careful understanding of the electrolyte- and polarization-dependent nanoparticle aggregation kinetics informs strategies for maintaining catalyst dispersion during fuel-forming electrocatalysis. PMID:24766431

  18. Gold nanoparticles with different amino acid surfaces: serum albumin adsorption, intracellular uptake and cytotoxicity.

    PubMed

    Cai, Huanxin; Yao, Ping

    2014-11-01

    Gold nanoparticles with aspartate, glycine, leucine, lysine, and serine surfaces were produced from the mixed solutions of HAuCl4 and respective amino acids via UV irradiation. The amino acids bind to the nanoparticle surfaces via amine groups and their carboxylic groups extend out to stabilize the nanoparticles. The nanoparticles have diameters of 15-47 nm in pH 7.4 aqueous solution and have diameters of 62-73 nm after 48 h incubation in cell culture containing serum. The nanoparticles adsorb human and bovine serum albumins on their surfaces by specific interactions, characterized by the intrinsic fluorescence quenching of the albumins. The albumin adsorption effectively decreases the aggregation of the nanoparticles in cell culture and also decreases the intracellular uptake of the nanoparticles. The gold nanoparticles produced from leucine and lysine, which have amphiphilic groups on their surfaces, present better biocompatibility than the other gold nanoparticles. PMID:25466455

  19. Gold Nanoparticle Labels Amplify Ellipsometric Signals

    NASA Technical Reports Server (NTRS)

    Venkatasubbarao, Srivatsa

    2008-01-01

    The ellipsometric method reported in the immediately preceding article was developed in conjunction with a method of using gold nanoparticles as labels on biomolecules that one seeks to detect. The purpose of the labeling is to exploit the optical properties of the gold nanoparticles in order to amplify the measurable ellipsometric effects and thereby to enable ultrasensitive detection of the labeled biomolecules without need to develop more-complex ellipsometric instrumentation. The colorimetric, polarization, light-scattering, and other optical properties of nanoparticles depend on their sizes and shapes. In the present method, these size-and-shape-dependent properties are used to magnify the polarization of scattered light and the diattenuation and retardance of signals derived from ellipsometry. The size-and-shape-dependent optical properties of the nanoparticles make it possible to interrogate the nanoparticles by use of light of various wavelengths, as appropriate, to optimally detect particles of a specific type at high sensitivity. Hence, by incorporating gold nanoparticles bound to biomolecules as primary or secondary labels, the performance of ellipsometry as a means of detecting the biomolecules can be improved. The use of gold nanoparticles as labels in ellipsometry has been found to afford sensitivity that equals or exceeds the sensitivity achieved by use of fluorescence-based methods. Potential applications for ellipsometric detection of gold nanoparticle-labeled biomolecules include monitoring molecules of interest in biological samples, in-vitro diagnostics, process monitoring, general environmental monitoring, and detection of biohazards.

  20. Therapeutic gold, silver, and platinum nanoparticles.

    PubMed

    Yamada, Miko; Foote, Matthew; Prow, Tarl W

    2015-01-01

    There are an abundance of nanoparticle technologies being developed for use as part of therapeutic strategies. This review focuses on a narrow class of metal nanoparticles that have therapeutic potential that is a consequence of elemental composition and size. The most widely known of these are gold nanoshells that have been developed over the last two decades for photothermal ablation in superficial cancers. The therapeutic effect is the outcome of the thickness and diameter of the gold shell that enables fine tuning of the plasmon resonance. When these metal nanoparticles are exposed to the relevant wavelength of light, their temperature rapidly increases. This in turn induces a localized photothermal ablation that kills the surrounding tumor tissue. Similarly, gold nanoparticles have been developed to enhance radiotherapy. The high-Z nature of gold dramatically increases the photoelectric cross-section. Thus, the photoelectric effects are significantly increased. The outcome of these interactions is enhanced tumor killing with lower doses of radiation, all while sparing tissue without gold nanoparticles. Silver nanoparticles have been used for their wound healing properties in addition to enhancing the tumor-killing effects of anticancer drugs. Finally, platinum nanoparticles are thought to serve as a reservoir for platinum ions that can induce DNA damage in cancer cells. The future is bright with the path to clinical trials is largely cleared for some of the less complex therapeutic metal nanoparticle systems. PMID:25521618

  1. Banana peel extract mediated synthesis of gold nanoparticles.

    PubMed

    Bankar, Ashok; Joshi, Bhagyashree; Kumar, Ameeta Ravi; Zinjarde, Smita

    2010-10-01

    Gold nanoparticles were synthesized by using banana peel extract (BPE) as a simple, non-toxic, eco-friendly 'green material'. The boiled, crushed, acetone precipitated, air-dried peel powder was used to reduce chloroauric acid. A variety of nanoparticles were formed when the reaction conditions were altered with respect to pH, BPE content, chloroauric acid concentration and temperature of incubation. The reaction mixtures displayed vivid colors and UV-vis spectra characteristic of gold nanoparticles. Dynamic light scattering (DLS) studies revealed that the average size of the nanoparticles under standard synthetic conditions was around 300nm. Scanning electron microscopy and energy dispersive spectrometry (EDS) confirmed these results. A coffee ring phenomenon, led to the aggregation of the nanoparticles into microcubes and microwire networks towards the periphery of the air-dried samples. X-ray diffraction studies of the samples revealed spectra that were characteristic for gold. Fourier transform infra red (FTIR) spectroscopy indicated the involvement of carboxyl, amine and hydroxyl groups in the synthetic process. The BPE mediated nanoparticles displayed efficient antimicrobial activity towards most of the tested fungal and bacterial cultures. PMID:20620890

  2. Gold Nanoparticles and Microwave Irradiation Inhibit Beta-Amyloid Amyloidogenesis

    NASA Astrophysics Data System (ADS)

    Araya, Eyleen; Olmedo, Ivonne; Bastus, Neus G.; Guerrero, Simón; Puntes, Víctor F.; Giralt, Ernest; Kogan, Marcelo J.

    2008-11-01

    Peptide-Gold nanoparticles selectively attached to β-amyloid protein (Aβ) amyloidogenic aggregates were irradiated with microwave. This treatment produces dramatic effects on the Aβ aggregates, inhibiting both the amyloidogenesis and the restoration of the amyloidogenic potential. This novel approach offers a new strategy to inhibit, locally and remotely, the amyloidogenic process, which could have application in Alzheimer’s disease therapy. We have studied the irradiation effect on the amyloidogenic process in the presence of conjugates peptide-nanoparticle by transmission electronic microscopy observations and by Thioflavine T assays to quantify the amount of fibrils in suspension. The amyloidogenic aggregates rather than the amyloid fibrils seem to be better targets for the treatment of the disease. Our results could contribute to the development of a new therapeutic strategy to inhibit the amyloidogenic process in Alzheimer’s disease.

  3. Metal enhanced fluorescence with gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Mattingly, Shaina LaRissa Strating

    A novel hybrid nanocomposite of Au nanoparticle-modified silicon nanowire was developed for surface enhanced fluorescence applications. The designed nanocomposite contained a silicon nanowire, gold nanoparticles and a silica layer doped with dye molecules. The hybrid nanomaterial was characterized using scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), fluorescence measurements, Fourier transform infrared (FT-IR) spectroscopy, and energy-dispersive X-ray spectroscopy (EDS). The results showed that the gold nanoparticles were uniformly adhered on the silicon nanowires and covered by a thin silica layer. The nanostructure exhibited strong capacity for surface enhanced fluorescence. Different enhancement factors were obtained by changing synthetic conditions. The second goal of the project was to determine if the shape of gold nanoparticles affects the extent of its fluorescence enhancement under constant external factors. Two shapes of gold nanoparticles were synthesized and characterized by SEM, STEM, zeta potential and absorbance measurements. Then they were coated with fluorescent dye-doped silica and the fluorescence intensity was measured and compared to the pure fluorescent dye. Gold nanorods enhanced fluorescence more than gold nanostars and that the fluorescent dye Alexafluor 700 showed a greater fluorescence intensity change in the presence of nanoparticles than methylene blue.

  4. Biogenic silver and gold nanoparticles synthesized using red ginseng root extract, and their applications.

    PubMed

    Singh, Priyanka; Kim, Yeon Ju; Wang, Chao; Mathiyalagan, Ramya; El-Agamy Farh, Mohamed; Yang, Deok Chun

    2016-05-01

    In the present study, we report a green methodology for the synthesis of silver and gold nanoparticles, using the root extract of the herbal medicinal plant Korean red ginseng. The silver and gold nanoparticles were synthesized within 1 h and 10 min respectively. The nanoparticles generated were not aggregated, and remained stable for a long time, which suggests the nature of nanoparticles. The phytochemicals and ginsenosides present in the root extract assist in reducing and stabilizing the synthesized nanoparticles. The red ginseng root extract-generated silver nanoparticles exhibit antimicrobial activity against pathogenic microorganisms including Vibrio parahaemolyticus, Staphylococcus aureus, Bacillus cereus, and Candida albicans. In addition, the silver nanoparticles exhibit biofilm degrading activity against S. aureus and Pseudomonas aeruginosa. Thus, the present study opens up a new possibility of synthesizing silver and gold nanoparticles in a green and rapid manner using Korean red ginseng root extract, and explores their biomedical applications. PMID:25706249

  5. Radiofrequency Heating Pathways for Gold Nanoparticles

    PubMed Central

    Collins, C. B.; McCoy, R. S.; Ackerson, B. J.; Collins, G. J.

    2015-01-01

    This feature article reviews the thermal dissipation of nanoscopic gold under radiofrequency (RF) irradiation. It also presents previously unpublished data addressing obscure aspects of this phenomenon. While applications in biology motivated initial investigation of RF heating of gold nanoparticles, recent controversy concerning whether thermal effects can be attributed to nanoscopic gold highlight the need to understand the involved mechanism or mechanisms of heating. Both the nature of the particle and the nature of the RF field influence heating. Aspects of nanoparticle chemistry and physics, including the hydrodynamic diameter of the particle, the oxidation state and related magnetism of the core, and the chemical nature of the ligand shell may all strongly influence to what extent a nanoparticle heats in an RF field. Aspects of RF include: power, frequency and antenna designs that emphasize relative strength of magnetic or electric fields, and also influence the extent to which a gold nanoparticle heats in RF. These nanoparticle and RF properties are analysed in the context of three heating mechanisms proposed to explain gold nanoparticle heating in an RF field. This article also makes a critical analysis of the existing literature in the context of the nanoparticle preparations, RF structure, and suggested mechanisms in previously reported experiments. PMID:24962620

  6. Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules.

    PubMed

    Diegoli, Sara; Manciulea, Adriana L; Begum, Shakiela; Jones, Ian P; Lead, Jamie R; Preece, Jon A

    2008-08-25

    The increasing exploitation of nanomaterials into many consumer and other products is raising concerns as these nanomaterials are likely to be released into the environment. Due to our lack of knowledge about the environmental chemistry, transport and ecotoxicology of nanomaterials, it is of paramount importance to study how natural aquatic colloids can interact with manufactured gold nanoparticles as these interactions will determine their environmental fate and behaviour. In this context, our work aims to quantify the effect of naturally occurring riverine macromolecules--International Humic Substances Society (IHSS) Suwannee River Humic Acid Standard (SRHA)--on citrate- and acrylate-stabilized gold nanoparticles. The influence of SRHA on the stability of the gold colloids was studied as a function of pH by UV-visible absorption spectroscopy, dynamic light scattering (DLS) and transmission electron microscopy (TEM). At high ionic strengths (0.1 M), extensive and rapid aggregation occurred, while more subtle effects were observed at lower ionic strength values. Evidence was found that SRHA enhances particle stability at extreme pH values (ionic strength<0.01 M) by substituting and/or over-coating the original stabilizer on the gold nanoparticle surface, thus affecting surface charge and chemistry. These findings have important implications for the fate and behaviour of nanoparticles in the environment and their ecotoxicity. PMID:18534664

  7. Gold nanoparticles extraction from dielectric scattering background

    NASA Astrophysics Data System (ADS)

    Hong, Xin; Wang, Jingxin

    2014-11-01

    The unique advantages such as brightness, non-photobleaching, good bio-compatibility make gold nanoparticles desirable labels and play important roles in biotech and related research and applications. Distinguishing gold nanoparticles from other dielectric scattering particles is of more importance, especially in bio-tracing and imaging. The enhancement image results from the localized surface plasmon resonance associated with gold nanopartilces makes themselves distinguishable from other dielectric particles, based on which, we propose a dual-wavelength detection method by employing a high sensitive cross-polarization microscopy.

  8. Biosynthesis of Gold Nanoparticles Using Pseudomonas Aeruginosa

    SciTech Connect

    Abd El-Aziz, M.; Badr, Y.; Mahmoud, M. A.

    2007-02-14

    Pseudomonas aeruginosa were used for extracellular biosynthesis of gold nanoparticles (Au NPs). Consequently, Au NPs were formed due to reduction of gold ion by bacterial cell supernatant of P. aeruginos ATCC 90271, P. aeruginos (2) and P. aeruginos (1). The UV-Vis. and fluorescence spectra of the bacterial as well as chemical prepared Au NPs were recorded. Transmission electron microscopy (TEM) micrograph showed the formation of well-dispersed gold nanoparticles in the range of 15-30 nm. The process of reduction being extracellular and may lead to the development of an easy bioprocess for synthesis of Au NPs.

  9. Effects of protein shell on properties of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Phan, Anh; Hoang, Trinh X.; Tracy, Dustin A.; Woods, Lilia M.

    2014-03-01

    Optical properties and surface interactions between nanoparticles present opportunities for many novel applications. Protein-conjugated nanoparticles are of particular interest in regards to various medical applications. Theoretical investigations are presented of protein-coated gold nanoparticles using the Mie theory and the coupled dipole method. The Mie theory along with the absorption spectra can be used to quantitatively determine the number of protein bovine serum molecules that aggregate on the gold surfaces. The internal field of protein-conjugated gold nanoparticles remains constant for large wavelength of light due to screening from the protein shell. Effects from other nanoparticles significantly influence the peak position in the spectra. Our study shows the specific regimes in terms of optical characteristics where cascaded plasmon resonant field enhancement can be observed. Results for the maximum ratio of the internal field to the incident field is also obtained and discussed. This work was supported by the Nafosted Grant No. 103.01-2013.16. Lilia M. Woods acknowledges the Department of Energy under Contract No. DE-FG02-06ER46297.

  10. Gold Nanoparticle Mediated Cancer Immunotherapy

    PubMed Central

    Almeida, Joao Paulo Mattos; Figueroa, Elizabeth Raquel; Drezek, Rebekah Anna

    2013-01-01

    Significant progress has been made in the field of cancer immunotherapy, where the goal is to activate or modulate the body’s immune response against cancer. However, current immunotherapy approaches exhibit limitations of safety and efficacy due to systemic delivery. In this context, the use of nanotechnology for the delivery of cancer vaccines and immune adjuvants presents a number of advantages such as targeted delivery to immune cells, enhanced therapeutic effect, and reduced adverse outcomes. Recently, gold nanoparticles (AuNP) have been explored as immunotherapy carriers, creating new AuNP applications that merit a critical overview. This review highlights recent advances in the development of AuNP mediated immunotherapies that harness AuNP biodistribution, optical properties and their ability to deliver macromolecules such as peptides and oligonucleotides. It has been demonstrated that the use of AuNP carriers can improve the delivery and safety of immunotherapy agents, and that AuNP immunotherapies are well suited for synergistic combination therapy with existing cancer therapies like photothermal ablation. PMID:24103304

  11. Subchronic inhalation toxicity of gold nanoparticles

    PubMed Central

    2011-01-01

    Background Gold nanoparticles are widely used in consumer products, including cosmetics, food packaging, beverages, toothpaste, automobiles, and lubricants. With this increase in consumer products containing gold nanoparticles, the potential for worker exposure to gold nanoparticles will also increase. Only a few studies have produced data on the in vivo toxicology of gold nanoparticles, meaning that the absorption, distribution, metabolism, and excretion (ADME) of gold nanoparticles remain unclear. Results The toxicity of gold nanoparticles was studied in Sprague Dawley rats by inhalation. Seven-week-old rats, weighing approximately 200 g (males) and 145 g (females), were divided into 4 groups (10 rats in each group): fresh-air control, low-dose (2.36 × 104 particle/cm3, 0.04 μg/m3), middle-dose (2.36 × 105 particle/cm3, 0.38 μg/m3), and high-dose (1.85 × 106 particle/cm3, 20.02 μg/m3). The animals were exposed to gold nanoparticles (average diameter 4-5 nm) for 6 hours/day, 5 days/week, for 90-days in a whole-body inhalation chamber. In addition to mortality and clinical observations, body weight, food consumption, and lung function were recorded weekly. At the end of the study, the rats were subjected to a full necropsy, blood samples were collected for hematology and clinical chemistry tests, and organ weights were measured. Cellular differential counts and cytotoxicity measurements, such as albumin, lactate dehydrogenase (LDH), and total protein were also monitored in a cellular bronchoalveolar lavage (BAL) fluid. Among lung function test measurements, tidal volume and minute volume showed a tendency to decrease comparing control and dose groups during the 90-days of exposure. Although no statistically significant differences were found in cellular differential counts, histopathologic examination showed minimal alveoli, an inflammatory infiltrate with a mixed cell type, and increased macrophages in the high-dose rats. Tissue distribution of gold

  12. Antithrombotic functions of small molecule-capped gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Tian, Yue; Zhao, Yuyun; Zheng, Wenfu; Zhang, Wei; Jiang, Xingyu

    2014-07-01

    Here we report the antithrombotic functions of pyrimidinethiol-capped gold nanoparticles (Au_DAPT NPs). They can prolong coagulation parameters when injected intravenously in normal mice. Applied in two typical thrombosis models, mice tail thrombosis and pulmonary thromboembolism, gold NPs can inhibit both thrombosis and improve the survival rates of mice tremendously, without increasing the bleeding risk. The anticoagulant mechanisms include inhibiting the platelet aggregation as well as interfering with thrombin and fibrin generation.Here we report the antithrombotic functions of pyrimidinethiol-capped gold nanoparticles (Au_DAPT NPs). They can prolong coagulation parameters when injected intravenously in normal mice. Applied in two typical thrombosis models, mice tail thrombosis and pulmonary thromboembolism, gold NPs can inhibit both thrombosis and improve the survival rates of mice tremendously, without increasing the bleeding risk. The anticoagulant mechanisms include inhibiting the platelet aggregation as well as interfering with thrombin and fibrin generation. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01937g

  13. Accumulation of Gold Nanoparticles in Brassic Juncea

    SciTech Connect

    Marshall, A.T.; Haverkamp, R.G.; Davies, C.E.; Parsons, J.G.; Gardea-Torresdey, J.L.; Agterveld, D.van

    2009-06-03

    Enzymatic digestion is proposed as a method for concentrating gold nanoparticles produced in plants. The mild conditions of digestion are used in order to avoid an increase in the gold particle size, which would occur with a high-temperature process, so that material suitable for catalysis may be produced. Gold nanoparticles of a 5-50-nm diameter, as revealed by transmission electron microscopy (TEM), at concentrations 760 and 1120 ppm Au, were produced within Brassica juncea grown on soil with 22-48 mg Au kg{sup -1}. X-ray absorption near edge spectroscopy (XANES) reveals that the plant contained approximately equal quantities of Au in the metallic (Au{sup 0}) and oxidized (Au{sup +1}) states. Enzymatic digestion dissolved 55-60 wt% of the plant matter. Due to the loss of the soluble gold fraction, no significant increase in the total concentration of gold in the samples was observed. However, it is likely that the concentration of the gold nanoparticles increased by a factor of two. To obtain a gold concentration suitable for catalytic reactions, around 95 wt% of the starting dry biomass would need to be solubilized or removed, which has not yet been achieved.

  14. Luminescent gold nanoparticles for bioimaging

    NASA Astrophysics Data System (ADS)

    Zhou, Chen

    Inorganic nanoparticles (NPs) with tunable and diverse material properties hold great potential as contrast agents for better disease management. Over the past decades, luminescent gold nanoparticles (AuNPs) with intrinsic emissions ranging from the visible to the near infrared have been synthesized and emerge as a new class of fluorophores for bioimaging. This dissertation aims to fundamentally understand the structure-property relationships in luminescent AuNPs and apply them as contrast agents to address some critical challenges in bioimaging at both the in vitro and in vivo level. In Chapter 2, we described the synthesized ~20 nm polycrystalline AuNPs (pAuNPs), which successfully integrated and enhanced plasmonic and fluorescence properties into a single AuNP through the grain size effect. The combination of these properties in one NP enabled AuNPs to serve as a multimodal contrast agent for in vitro optical microscopic imaging, making it possible to develop correlative microscopic imaging techniques. In Chapters 3-5, we proposed a feasible approach to optimize the in vivo kinetics and clearance profile of nanoprobes for multimodality in vivo bioimaging applications by using straightforward surface chemistry with luminescent AuNPs as a model. Luminescent glutathione-coated AuNPs of ~2 nm were synthesized. Investigation of the biodistribution showed that these glutathione-coated AuNPs (GS-AuNPs) exhibit stealthiness to the reticuloendothelial system (RES) organs and efficient renal clearance, with only 3.7+/-1.9% and 0.3+/-0.1% accumulating in the liver and spleen, and over 65% of the injection dose cleared out via the urine within the first 72 hours. In addition, ~2.5 nm NIR-emitting radioactive glutathione-coated [198Au]AuNPs (GS-[198Au]AuNPs) were synthesized for further evaluation of the pharmacokinetic profile of GS-AuNPs and potential multimodal imaging. The results showed that the GS-[198Au]AuNPs behave like small-molecule contrast agents in

  15. Rapid Non-Crosslinking Aggregation of DNA-Functionalized Gold Nanorods and Nanotriangles for Colorimetric Single-Nucleotide Discrimination.

    PubMed

    Wang, Guoqing; Akiyama, Yoshitsugu; Takarada, Tohru; Maeda, Mizuo

    2016-01-01

    Gold nanoparticles modified with DNA duplexes are rapidly and spontaneously aggregated at high ionic strength. In contrast, this aggregation is greatly suppressed when the DNA duplex has a single-base mismatch or a single-nucleotide overhang located at the outermost surface of the particle. These colloidal features emerge irrespective of the size and composition of the particle core; however, the effects of the shape remain unexplored. Using gold nanorods and nanotriangles (nanoplatelets), we show herein that both remarkable rapidity in colloidal aggregation and extreme susceptibility to DNA structural perturbations are preserved, regardless of the shape and aspect ratio of the core. It is also demonstrated that the DNA-modified gold nanorods and nanotriangles are applicable to naked-eye detection of a single-base difference in a gene model. The current study corroborates the generality of the unique colloidal properties of DNA-functionalized nanoparticles, and thus enhances the feasibility of their practical use. PMID:26767586

  16. Synthesis, purification and assembly of gold and iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Qiu, Penghe

    , 6 & 7), nanoparticles were assembled into three different hierachical structures through both template-assisted and template-free approaches. In the template-assisted assembly, gold nanorods were aligned into ordered 1D linear pattern by using soft biological filamentous, namely bacteria flagella, as templates. Two different ways of assembling nanorods onto flagella were investigated. In another study, a highly commercialized polymer, polyvinylpyrrolidone (PVP), was discovered for the first time to be able to self-assemble into branched hollow fibers. Based on this discovery, two approaches (one through direct deposition of silica onto the PVP aggregate and the other through co-assembly of PVP covered gold nanoparticles with free PVP molecules) by which the self-assembly behavior of PVP could be exploited to template the formation of branched hollow inorganic fibers were demonstrated. In the template-free assembly, a general method for assembling nanoparticle into clusters (NPCs) in an oil-in-water emulsion system was investigated. Detailed studies on the mechanism of formation of NPCs structure, optimized conditions, scalable production and surface chemistry manipulation were carried out. Besides, comparison of the properties of individual and clustered iron oxide nanoparticles was conducted. It was discovered that due to their collective properties, NPCs are more responsive to an external magnetic field and can potentially serve as better contrast enhancement agents than individually dispersed magnetic NPs in Magnetic Resonance Imaging (MRI).

  17. Orientations of polyoxometalate anions on gold nanoparticles.

    PubMed

    Sharet, Shelly; Sandars, Ella; Wang, Yifeng; Zeiri, Offer; Neyman, Alevtina; Meshi, Louisa; Weinstock, Ira A

    2012-09-01

    Cryogenic transmission electron microscopy of polyoxometalate-protected gold nanoparticles reveals that the Preyssler ion, [NaP(5)W(30)O(110)](14-), lies "face down" with its C(5) axis perpendicular to the gold surface, while the Finke-Droege ion, [P(4)W(30)Zn(4)(H(2)O)(2)O(112)](16-), is "tilted", with its long axis close to 60° from the normal to the surface. PMID:22510818

  18. Optical Epitaxial Growth of Gold Nanoparticle Arrays.

    PubMed

    Huang, Ningfeng; Martínez, Luis Javier; Jaquay, Eric; Nakano, Aiichiro; Povinelli, Michelle L

    2015-09-01

    We use an optical analogue of epitaxial growth to assemble gold nanoparticles into 2D arrays. Particles are attracted to a growth template via optical forces and interact through optical binding. Competition between effects determines the final particle arrangements. We use a Monte Carlo model to design a template that favors growth of hexagonal particle arrays. We experimentally demonstrate growth of a highly stable array of 50 gold particles with 200 nm diameter, spaced by 1.1 μm. PMID:26230429

  19. Gold Nanoparticle Quantitation by Whole Cell Tomography.

    PubMed

    Sanders, Aric W; Jeerage, Kavita M; Schwartz, Cindi L; Curtin, Alexandra E; Chiaramonti, Ann N

    2015-12-22

    Many proposed biomedical applications for engineered gold nanoparticles require their incorporation by mammalian cells in specific numbers and locations. Here, the number of gold nanoparticles inside of individual mammalian stem cells was characterized using fast focused ion beam-scanning electron microscopy based tomography. Enhanced optical microscopy was used to provide a multiscale map of the in vitro sample, which allows cells of interest to be identified within their local environment. Cells were then serially sectioned using a gallium ion beam and imaged using a scanning electron beam. To confirm the accuracy of single cross sections, nanoparticles in similar cross sections were imaged using transmission electron microscopy and scanning helium ion microscopy. Complete tomographic series were then used to count the nanoparticles inside of each cell and measure their spatial distribution. We investigated the influence of slice thickness on counting single particles and clusters as well as nanoparticle packing within clusters. For 60 nm citrate stabilized particles, the nanoparticle cluster packing volume is 2.15 ± 0.20 times the volume of the bare gold nanoparticles. PMID:26563983

  20. Biosynthesis of gold nanoparticles: A green approach.

    PubMed

    Ahmed, Shakeel; Annu; Ikram, Saiqa; Yudha S, Salprima

    2016-08-01

    Nanotechnology is an immensely developing field due to its extensive range of applications in different areas of technology and science. Different types of methods are employed for synthesis of nanoparticles due to their wide applications. The conventional chemical methods have certain limitations with them either in the form of chemical contaminations during their syntheses procedures or in later applications and use of higher energy. During the last decade research have been focussed on developing simple, clean, non-toxic, cost effective and eco-friendly protocols for synthesis of nanoparticles. In order to get this objective, biosynthesis methods have been developed in order to fill this gap. The biosynthesis of nanoparticles is simple, single step, eco-friendly and a green approach. The biochemical processes in biological agents reduce the dissolved metal ions into nano metals. The various biological agents like plant tissues, fungi, bacteria, etc. are used for biosynthesis for metal nanoparticles. In this review article, we summarised recent literature on biosynthesis of gold nanoparticles which have revolutionised technique of synthesis for their applications in different fields. Due to biocompatibility of gold nanoparticles, it has find its applications in biomedical applications. The protocol and mechanism of biosynthesis of gold nanoparticles along with various applications have also been discussed. PMID:27236049

  1. Gold-coated nanoparticles for use in biotechnology applications

    DOEpatents

    Berning, Douglas E.; Kraus, Jr., Robert H.; Atcher, Robert W.; Schmidt, Jurgen G.

    2007-06-05

    A process of preparing gold-coated magnetic nanoparticles is disclosed and includes forming a suspension of magnetic nanoparticles within a suitable liquid, adding an amount of a reducible gold compound and a reducing agent to the suspension, and, maintaining the suspension for time sufficient to form gold-coated magnetic nanoparticles.

  2. Gold-coated nanoparticles for use in biotechnology applications

    DOEpatents

    Berning, Douglas E.; Kraus, Jr., Robert H.; Atcher; Robert W.; Schmidt, Jurgen G.

    2009-07-07

    A process of preparing gold-coated magnetic nanoparticles is disclosed and includes forming a suspension of magnetic nanoparticles within a suitable liquid, adding an amount of a reducible gold compound and a reducing agent to the suspension, and, maintaining the suspension for time sufficient to form gold-coated magnetic nanoparticles.

  3. Applications of gold nanoparticles in cancer nanotechnology

    PubMed Central

    Cai, Weibo; Gao, Ting; Hong, Hao; Sun, Jiangtao

    2008-01-01

    It has been almost 4 decades since the “war on cancer” was declared. It is now generally believed that personalized medicine is the future for cancer patient management. Possessing unprecedented potential for early detection, accurate diagnosis, and personalized treatment of cancer, nanoparticles have been extensively studied over the last decade. In this review, we will summarize the current state-of-the-art of gold nanoparticles in biomedical applications targeting cancer. Gold nanospheres, nanorods, nanoshells, nanocages, and surface enhanced Raman scattering nanoparticles will be discussed in detail regarding their uses in in vitro assays, ex vivo and in vivo imaging, cancer therapy, and drug delivery. Multifunctionality is the key feature of nanoparticle-based agents. Targeting ligands, imaging labels, therapeutic drugs, and other functionalities can all be integrated to allow for targeted molecular imaging and molecular therapy of cancer. Big strides have been made and many proof-of-principle studies have been successfully performed. The future looks brighter than ever yet many hurdles remain to be conquered. A multifunctional platform based on gold nanoparticles, with multiple receptor targeting, multimodality imaging, and multiple therapeutic entities, holds the promise for a “magic gold bullet” against cancer. PMID:24198458

  4. Applications of gold nanoparticles in cancer nanotechnology

    PubMed Central

    Cai, Weibo; Gao, Ting; Hong, Hao; Sun, Jiangtao

    2013-01-01

    It has been almost 4 decades since the “war on cancer” was declared. It is now generally believed that personalized medicine is the future for cancer patient management. Possessing unprecedented potential for early detection, accurate diagnosis, and personalized treatment of cancer, nanoparticles have been extensively studied over the last decade. In this review, we will summarize the current state-of-the-art of gold nanoparticles in biomedical applications targeting cancer. Gold nanospheres, nanorods, nanoshells, nanocages, and surface enhanced Raman scattering nanoparticles will be discussed in detail regarding their uses in in vitro assays, ex vivo and in vivo imaging, cancer therapy, and drug delivery. Multifunctionality is the key feature of nanoparticle-based agents. Targeting ligands, imaging labels, therapeutic drugs, and other functionalities can all be integrated to allow for targeted molecular imaging and molecular therapy of cancer. Big strides have been made and many proof-of-principle studies have been successfully performed. The future looks brighter than ever yet many hurdles remain to be conquered. A multifunctional platform based on gold nanoparticles, with multiple receptor targeting, multimodality imaging, and multiple therapeutic entities, holds the promise for a “magic gold bullet” against cancer. PMID:24163578

  5. Radiofrequency heating pathways for gold nanoparticles.

    PubMed

    Collins, C B; McCoy, R S; Ackerson, B J; Collins, G J; Ackerson, C J

    2014-08-01

    This feature article reviews the thermal dissipation of nanoscopic gold under radiofrequency (RF) irradiation. It also presents previously unpublished data addressing obscure aspects of this phenomenon. While applications in biology motivated initial investigation of RF heating of gold nanoparticles, recent controversy concerning whether thermal effects can be attributed to nanoscopic gold highlight the need to understand the involved mechanism or mechanisms of heating. Both the nature of the particle and the nature of the RF field influence heating. Aspects of nanoparticle chemistry which may affect thermal dissipation include the hydrodynamic diameter of the particle, the oxidation state and related magnetism of the core, and the chemical nature of the ligand shell. Aspects of RF which may affect thermal dissipation include power, frequency and antenna designs that emphasize relative strength of magnetic or electric fields. These nanoparticle and RF properties are analysed in the context of three heating mechanisms proposed to explain gold nanoparticle heating in an RF field. This article also makes a critical analysis of the existing literature in the context of the nanoparticle preparations, RF structure, and suggested mechanisms in previously reported experiments. PMID:24962620

  6. Detection of single-nucleotide polymorphisms using gold nanoparticles and single-strand-specific nucleases.

    PubMed

    Chen, Yen-Ting; Hsu, Chiao-Ling; Hou, Shao-Yi

    2008-04-15

    The current study reports an assay approach that can detect single-nucleotide polymorphisms (SNPs) and identify the position of the point mutation through a single-strand-specific nuclease reaction and a gold nanoparticle assembly. The assay can be implemented via three steps: a single-strand-specific nuclease reaction that allows the enzyme to truncate the mutant DNA; a purification step that uses capture probe-gold nanoparticles and centrifugation; and a hybridization reaction that induces detector probe-gold nanoparticles, capture probe-gold nanoparticles, and the target DNA to form large DNA-linked three-dimensional aggregates of gold nanoparticles. At high temperature (63 degrees C in the current case), the purple color of the perfect match solution would not change to red, whereas a mismatched solution becomes red as the assembled gold nanoparticles separate. Using melting analysis, the position of the point mutation could be identified. This assay provides a convenient colorimetric detection that enables point mutation identification without the need for expensive mass spectrometry. To our knowledge, this is the first report concerning SNP detection based on a single-strand-specific nuclease reaction and a gold nanoparticle assembly. PMID:18211817

  7. Toward efficient modification of large gold nanoparticles with DNA

    NASA Astrophysics Data System (ADS)

    Gill, R.; Göeken, K.; Subramaniam, V.

    2014-03-01

    DNA-coated gold nanoparticles are one of the most researched nano-bio hybrid systems. Traditionally their synthesis has been a long and tedious process, involving slow salt addition and long incubation steps. This stems from the fact that both DNA and gold particles are negatively charged, therefore efficient interaction is possible only at high salt concentration. However, unmodified particles are susceptible to aggregation at high salt concentrations. Most of the recent modification methods involve the use of surfactants or other small molecules to stabilize the nanoparticles against aggregation, enabling faster modification. Here we present our result on an alternative route to reach fast modification in low salt conditions, namely, reduction of the charge of DNA. We will discuss both the use of natural DNA under acidic pH conditions, and the use of DNA with a cationic, spermine-based "tail" which is commercially available under the name ZNA. Additionally we introduce a characterization method based on ensemble localized surface plasmon resonance measurement (LSPR) which enabled us to extract the kinetics of DNA absorbance without the need for fluorescent tags. Lastly we show that the same ZNA-based modification protocol can be effectively used for silver nanoparticle modification.

  8. Gold Nanoparticle Hyperthermia Reduces Radiotherapy Dose

    PubMed Central

    Lin, Lynn; Slatkin, Daniel N.; Dilmanian, F. Avraham; Vadas, Timothy M.; Smilowitz, Henry M.

    2014-01-01

    Gold nanoparticles can absorb near infrared light, resulting in heating and ablation of tumors. Gold nanoparticles have also been used for enhancing the dose of X-rays in tumors during radiotherapy. The combination of hyperthermia and radiotherapy is synergistic, importantly allowing a reduction in X-ray dose with improved therapeutic results. Here we intratumorally infused small 15 nm gold nanoparticles engineered to be transformed from infrared-transparent to infrared-absorptive by the tumor, which were then heated by infrared followed by X-ray treatment. Synergy was studied using a very radioresistant subcutaneous squamous cell carcinoma (SCCVII) in mice. It was found that the dose required to control 50% of the tumors, normally 55 Gy, could be reduced to <15 Gy (a factor of >3.7). Gold nanoparticles therefore provide a method to combine hyperthermia and radiotherapy to drastically reduce the X-ray radiation needed, thus sparing normal tissue, reducing the side effects, and making radiotherapy more effective. PMID:24990355

  9. Cholesteric liquid crystal devices with nanoparticle aggregation.

    PubMed

    Jeng, Shie-Chang; Hwang, Shug-June; Hung, Yu-Hsiang; Chen, Sheng-Chieh

    2010-10-11

    A broadband cholesteric liquid crystal (CLC) device with a multi-domain structure is demonstrated by using an aggregation of polyhedral oligomeric silsesquioxane (POSS) nanoparticles in the CLC layer. The aggregation pattern of the self-assembled POSS nanoparticles depends on the concentration of POSS doped in the mixture of POSS/CLC and the cooling rate of the mixture from a temperature higher than the clear point. POSS-induced changes in the bulk and surface properties of the cholesteric cells, such as a promotion of homeotropic alignment, help to form a cholesteric structure with a broadband reflection of light; the latter can be used for improvement of bistable CLC devices. A higher POSS concentration and a higher cooling rate both improve the appearance of the black-white CLC device. PMID:20941154

  10. Molecular dynamics simulations on the melting of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Qiao, Zhiwei; Feng, Haijun; Zhou, Jian

    2014-01-01

    Molecular dynamics is employed to study the melting of bulk gold and gold nanoparticles. PCFF, Sutton-Chen and COMPASS force fields are adopted to study the melting point of bulk gold and we find out that the Sutton-Chen force field is the most accurate model in predicting the melting point of bulk gold. Consequently, the Sutton-Chen force field is applied to study the melting points of spherical gold nanoparticles with different diameters. Variations of diffusion coefficient, potential energy and translational order parameter with temperature are analyzed. The simulated melting points of gold nanoparticles are between 615∼1115 K, which are much lower than that of bulk gold (1336 K). As the diameter of gold nanoparticle drops, the melting point also descends. The melting mechanism is also analyzed for gold nanoparticles.

  11. Thermal optical nonlinearity enhanced by gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Souza, Rogério F.; Alencar, Márcio A. R. C.; Nascimento, César M.; da Silva, Monique G. A.; Meneghetti, Mario R.; Hickmann, Jandir M.

    2006-08-01

    We report on the observation of a large thermal nonlinearity of an organic material enhanced by the presence of gold nanoparticles. The studied system consisted of a colloid of castor oil and gold particles with average diameter of 10 nm, with filling factor of 4.0x10 -5. Z-scan measurements were performed for an excitation wavelength tuned at 810 nm in the CW regime. It was observed that this colloidal system presents a large thermal nonlinear refractive index, which was equal to -7.4x10 -8 cm2/W. This value is about 41 times larger than the n II of the host material. The thermo-optic coefficient of the colloid was also evaluated, and a large enhancement was observed in its value owing to the presence of the gold nanoparticles in the organic material.

  12. Antifungal activity of gold nanoparticles prepared by solvothermal method

    SciTech Connect

    Ahmad, Tokeer; Wani, Irshad A.; Lone, Irfan H.; Ganguly, Aparna; Manzoor, Nikhat; Ahmad, Aijaz; Ahmed, Jahangeer; Al-Shihri, Ayed S.

    2013-01-15

    Graphical abstract: Gold nanoparticles (7 and 15 nm) of very high surface area (329 and 269 m{sup 2}/g) have been successfully synthesized through solvothermal method by using tin chloride and sodium borohydride as reducing agents. As-prepared gold nanoparticles shows very excellent antifungal activity against Candida isolates and activity increases with decrease in the particle size. Display Omitted Highlights: ► Effect of reducing agents on the morphology of gold nanoparticles. ► Highly uniform and monodisperse gold nanoparticles (7 nm). ► Highest surface area of gold nanoparticles (329 m{sup 2/}g). ► Excellent antifungal activity of gold nanoparticles against Candida strains. -- Abstract: Gold nanoparticles have been successfully synthesized by solvothermal method using SnCl{sub 2} and NaBH{sub 4} as reducing agents. X-ray diffraction studies show highly crystalline and monophasic nature of the gold nanoparticles with face centred cubic structure. The transmission electron microscopic studies show the formation of nearly spherical gold nanoparticles of average size of 15 nm using SnCl{sub 2}, however, NaBH{sub 4} produced highly uniform, monodispersed and spherical gold nanoparticles of average grain size of 7 nm. A high surface area of 329 m{sup 2}/g for 7 nm and 269 m{sup 2}/g for 15 nm gold nanoparticles was observed. UV–vis studies assert the excitations over the visible region due to transverse and longitudinal surface plasmon modes. The gold nanoparticles exhibit excellent size dependant antifungal activity and greater biocidal action against Candida isolates for 7 nm sized gold nanoparticles restricting the transmembrane H{sup +} efflux of the Candida species than 15 nm sized gold nanoparticles.

  13. Growth of gold nanoparticles at gelatin-silica bio-interfaces

    NASA Astrophysics Data System (ADS)

    Bensaid, Imen; Masse, Sylvie; Selmane, Mohamed; Fessi, Shemseddine; Coradin, Thibaud

    2016-01-01

    The growth of gold nanoparticles via chemical reduction of HAuCl4 dispersed in gelatin-silicate mixtures was studied. Gelatin leads to densely packed nanoparticles whereas open colloidal aggregates with tight boundaries are formed within silica. Within the bio-hybrid systems, gold species are located within the gelatin-silicate particles and/or within the gelatin phase, depending on the preparation conditions. These various localizations and their impact on the final nanoparticle structure are discussed considering attractive and repulsive electrostatic interactions existing between the three components. These data suggest that bio-hybrid systems are interesting and versatile interfaces to study crystallization processes in confined environments.

  14. Strong plasmon-exciton coupling in a hybrid system of gold nanostars and J-aggregates

    PubMed Central

    2013-01-01

    Hybrid materials formed by plasmonic nanostructures and J-aggregates provide a unique combination of highly localized and enhanced electromagnetic field in metal constituent with large oscillator strength and extremely narrow exciton band of the organic component. The coherent coupling of localized plasmons of the multispiked gold nanoparticles (nanostars) and excitons of JC1 dye J-aggregates results in a Rabi splitting reaching 260 meV. Importantly, broad absorption features of nanostars extending over a visible and near-infrared spectral range allowed us to demonstrate double Rabi splitting resulting from the simultaneous coherent coupling between plasmons of the nanostars and excitons of J-aggregates of two different cyanine dyes. PMID:23522305

  15. The golden age: gold nanoparticles for biomedicine.

    PubMed

    Dreaden, Erik C; Alkilany, Alaaldin M; Huang, Xiaohua; Murphy, Catherine J; El-Sayed, Mostafa A

    2012-04-01

    Gold nanoparticles have been used in biomedical applications since their first colloidal syntheses more than three centuries ago. However, over the past two decades, their beautiful colors and unique electronic properties have also attracted tremendous attention due to their historical applications in art and ancient medicine and current applications in enhanced optoelectronics and photovoltaics. In spite of their modest alchemical beginnings, gold nanoparticles exhibit physical properties that are truly different from both small molecules and bulk materials, as well as from other nanoscale particles. Their unique combination of properties is just beginning to be fully realized in range of medical diagnostic and therapeutic applications. This critical review will provide insights into the design, synthesis, functionalization, and applications of these artificial molecules in biomedicine and discuss their tailored interactions with biological systems to achieve improved patient health. Further, we provide a survey of the rapidly expanding body of literature on this topic and argue that gold nanotechnology-enabled biomedicine is not simply an act of 'gilding the (nanomedicinal) lily', but that a new 'Golden Age' of biomedical nanotechnology is truly upon us. Moving forward, the most challenging nanoscience ahead of us will be to find new chemical and physical methods of functionalizing gold nanoparticles with compounds that can promote efficient binding, clearance, and biocompatibility and to assess their safety to other biological systems and their long-term term effects on human health and reproduction (472 references). PMID:22109657

  16. X-ray optics of gold nanoparticles.

    PubMed

    Letfullin, Renat R; Rice, Colin E W; George, Thomas F

    2014-11-01

    Gold nanoparticles have been investigated as contrast agents for traditional x-ray medical procedures, utilizing the strong absorption characteristics of the nanoparticles to enhance the contrast of the detected x-ray image. Here we use the Kramers-Kronig relation for complex atomic scattering factors to find the real and imaginary parts of the index of refraction for the medium composed of single-element materials or compounds in the x-ray range of the spectrum. These complex index of refraction values are then plugged into a Lorenz-Mie theory to calculate the absorption efficiency of various size gold nanoparticles for photon energies in the 1-100 keV range. Since the output from most medical diagnostic x-ray devices follows a wide and filtered spectrum of photon energies, we introduce and compute the effective intensity-absorption-efficiency values for gold nanoparticles of radii varying from 5 to 50 nm, where we use the TASMIP model to integrate over all spectral energies generated by typical tungsten anode x-ray tubes with kilovolt potentials ranging from 50 to 150 kVp. PMID:25402878

  17. Irradiation stability and cytotoxicity of gold nanoparticles for radiotherapy

    PubMed Central

    Zhang, Xiao-Dong; Guo, Mei-Li; Wu, Hong-Ying; Sun, Yuan-Ming; Ding, Yan-Qiu; Feng, Xin; Zhang, Liang-An

    2009-01-01

    Gold nanoparticles are promising as a kind of novel radiosensitizer in radiotherapy. If gold nanoparticles are shown to have good irradiation stability and biocompatibility, they would play an important role in radiotherapy. In this work, we investigated irradiation effects of gold nanoparticles under 2–10 kR gamma irradiation and cytotoxicity of gold nanoparticles with human K562 cells by using Cell Titre-Glo™ luminescent cell viability assay. The results revealed that gamma irradiation had not induced any obvious instability and size variations in gold nanoparticles. We found that gold nanoparticles showed excellent radiation hardness with an absorbed dose conversation factor of 9.491 rad/R. Meanwhile, the surface plasmon resonance of gold nanoparticles was enhanced obviously after 2–10 kR gamma irradiation. Subsequently, cytotoxicity tests indicated that the extremely high concentration of gold nanoparticles could cause a sharp decrease in K562 cell viability, while the low concentration of gold nanoparticles had no obvious influence on the cell viability. Our results revealed that gold nanoparticles were stable under high-energy ray irradiation and showed concentration-dependent cytotoxicity. PMID:19774115

  18. Assembly of functional gold nanoparticle on silica microsphere.

    PubMed

    Wang, Hsuan-Lan; Lee, Fu-Cheng; Tang, Tse-Yu; Zhou, Chenguang; Tsai, De-Hao

    2016-05-01

    We demonstrate a controlled synthesis of silica microsphere with the surface-decorated functional gold nanoparticles. Surface of silica microsphere was modified by 3-aminopropypltriethoxysilane and 3-aminopropyldimethylethoxysilane to generate a positive electric field, by which the gold nanoparticles with the negative charges (unconjugated, thiolated polyethylene glycol functionalized with the traceable packing density and conformation) were able to be attracted to the silica microsphere. Results show that both the molecular conjugation on gold nanoparticle and the uniformity in the amino-silanization of silica microsphere influenced the loading and the homogeneity of gold nanoparticles on silica microsphere. The 3-aminopropyldimethylethoxysilane-functionalized silica microsphere provided an uniform field to attract gold nanoparticles. Increasing the ethanol content in aminosilane solution significantly improved the homogeneity and the loading of gold nanoparticles on the surface of silica microsphere. For the gold nanoparticle, increasing the molecular mass of polyethylene glycol yielded a greater homogeneity but a lower loading on silica microsphere. Bovine serum albumin induced the desorption of gold nanoparticles from silica microsphere, where the extent of desorption was suppressed by the presence of high-molecular mass polyethylene glycol on gold nanoparticles. This work provides the fundamental understanding for the synthesis of gold nanoparticle-silica microsphere constructs useful to the applications in chemo-radioactive therapeutics. PMID:26874272

  19. Glutathione-mediated release of Bodipy® from PEG cofunctionalized gold nanoparticles

    PubMed Central

    Kumar, Dhiraj; Meenan, Brian J; Dixon, Dorian

    2012-01-01

    Gold nanoparticles synthesized via sodium citrate reduction of chloroauric acid (HAuCl4) were functionalized with either various concentrations of thiol-terminated Bodipy® FL L-cystine (0.5, 1.0, 1.5, and 2.0 μg/mL) or Bodipy-poly(ethylene glycol) at concentrations of 0.5–18.75, 1.0–12.50, and 1.5–6.25 μg/mL to form a mixed monolayer of BODIPY-PEG. Thiol-terminated Bodipy, a fluorescing molecule, was used as the model drug, while PEG is widely used in drug-delivery applications to shield nanoparticles from unwanted immune responses. Understanding the influence of PEG-capping on payload release is critical because it is the most widely used type of nanoparticle functionalization in drug delivery studies. It has been previously reported that glutathione can trigger release of thiol-bound payloads from gold nanoparticles. Bodipy release from Bodipy capped and from Bodipy-PEG functionalized gold nanoparticles was studied at typical intracellular glutathione levels. It was observed that the addition of PEG capping inhibits the initial burst release observed in gold nanoparticles functionalized only with Bodipy and inhibits nanoparticle aggregation. Efficient and controlled payload release was observed in gold nanoparticles cofunctionalized with only a limited amount of PEG, thus enabling the coattachment of large amounts of drug, targeting groups or other payloads. PMID:22915847

  20. Template based synthesis of gold nanotubes using biologically synthesized gold nanoparticles.

    PubMed

    Ballabh, R; Nara, S

    2015-12-01

    Reliable experimental protocols using green technologies to synthesize metallic nanostructures widen their applications, both biological as well as biomedical. Here, we describe a method for synthesizing gold nanotubes using biologically synthesized gold nanoparticles in a template based approach. E. coli DH5α was used as bionanofactory to synthesize gold nanoparticles. These nanoparticles were then deposited on sodium sulfate (Na2SO4) nanowires which were employed as sacrificial template for gold nanotube (Au-NT) formation. The gold nanoparticles, sodium sulphate nanowires and gold nanotubes were appropriately characterized using transmission electron microscopy. The TEM results showed that the average diameter of gold nanotubes was 72 nm and length up to 4-7 μm. The method discussed herein is better than other reported conventional chemical synthesis approaches as it uses biologically synthesized gold nanoparticles, and does not employ any harsh conditions/solvents for template removal which makes it a clean and ecofriendly method. PMID:26742328

  1. Terminalia chebula mediated green and rapid synthesis of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Mohan Kumar, Kesarla; Mandal, Badal Kumar; Sinha, Madhulika; Krishnakumar, Varadhan

    2012-02-01

    Biologically inspired experimental process in synthesising nanoparticles is of great interest in present scenario. Biosynthesis of nanoparticles is considered to be one of the best green techniques in synthesising metal nanoparticles. Here, an in situ green biogenic synthesis of gold nanoparticles using aqueous extracts of Terminalia chebula as reducing and stabilizing agent is reported. Gold nanoparticles were confirmed by surface plasmon resonance in the range of 535 nm using UV-visible spectrometry. TEM analysis revealed that the morphology of the particles thus formed contains anisotropic gold nanoparticles with size ranging from 6 to 60 nm. Hydrolysable tannins present in the extract of T. chebula are responsible for reductions and stabilization of gold nanoparticles. Antimicrobial activity of gold nanoparticles showed better activity towards gram positive S. aureus compared to gram negative E. coli using standard well diffusion method.

  2. Three-dimensional mapping of single gold nanoparticles embedded in a homogeneous transparent matrix using optical second-harmonic generation.

    PubMed

    Butet, Jérémy; Bachelier, Guillaume; Duboisset, Julien; Bertorelle, Franck; Russier-Antoine, Isabelle; Jonin, Christian; Benichou, Emmanuel; Brevet, Pierre-François

    2010-10-11

    We report the three-dimensional mapping of 150 nm gold metallic nanoparticles dispersed in a homogeneous transparent polyacrylamide matrix using second-harmonic generation. We demonstrate that the position of single nanoparticles can be well defined using only one incident fundamental beam and the harmonic photon detection performed at right angle. The fundamental laser beam properties are determined using its spatial autocorrelation function and used to prove that single nanoparticles are observed. Polarization resolved measurements are also performed allowing for a clear separation of the second-harmonic response of the single gold metallic nanoparticles from that of aggregates of such nanoparticles. PMID:20941132

  3. Novel monolayer and bilayer shell aggregate gold nanostructures

    NASA Astrophysics Data System (ADS)

    Angelidou, Myria; Pitris, Costas

    2011-03-01

    Various gold nanostructures are being investigated for medical and biological uses. For many medical applications, it would be beneficial to use near infrared (NIR) excitation as well as small gold nanospheres which can easily reach the cytoplasm and cell nucleus. For that purpose, we propose a novel nanostructure, the "shell aggregate," which consists of small nanospheres aggregated around a core such as an intracellular organelle. The extinction efficiency of such monolayfer and bilayer shell aggregates is thoroughly investigated with appropriate simulations using the Descrete Dipole Approximation (DDA) method. This technique can deal with any arbitrary size, shape, synthesis and external environment. The effect of parameters such as the overall radius of the nanostructure, the small nanosphere radius, and the distance between the nanospheres, on the extinction efficiency factor of the nanostructures was examined. The results indicate that the extinction spectra appear to depend heavily on the distance between the small nanospheres. Finally, the monolayer shell aggregate could be a suitable candidate for use in various biological, intracellular, applications since it provides a reasonably tunable plasmon resonance wavelength while the small size of its components can be exploited for intracellular distribution.

  4. Immobilization of gold nanoparticles on cell culture surfaces for safe and enhanced gold nanoparticle-mediated laser transfection

    NASA Astrophysics Data System (ADS)

    Kalies, Stefan; Heinemann, Dag; Schomaker, Markus; Gentemann, Lara; Meyer, Heiko; Ripken, Tammo

    2014-07-01

    In comparison to standard transfection methods, gold nanoparticle-mediated laser transfection has proven to be a versatile alternative. This is based on its minor influence on cell viability and its high efficiency, especially for the delivery of small molecules like small interfering RNA. However, in order to transfer it to routine usage, a safety aspect is of major concern: The avoidance of nanoparticle uptake by the cells is desired. The immobilization of the gold nanoparticles on cell culture surfaces can address this issue. In this study, we achieved this by silanization of the appropriate surfaces and the binding of gold nanoparticles to them. Comparable perforation efficiencies to the previous approaches of gold nanoparticle-mediated laser transfection with free gold nanoparticles are demonstrated. The uptake of the immobilized particles by the cells is unlikely. Consequently, these investigations offer the possibility of bringing gold nanoparticle-mediated laser transfection closer to routine usage.

  5. Protein Cages as Containers for Gold Nanoparticles.

    PubMed

    Liu, Aijie; Verwegen, Martijn; de Ruiter, Mark V; Maassen, Stan J; Traulsen, Christoph H-H; Cornelissen, Jeroen J L M

    2016-07-01

    Abundant and highly diverse, viruses offer new scaffolds in nanotechnology for the encapsulation, organization, or even synthesis of novel materials. In this work the coat protein of the cowpea chlorotic mottle virus (CCMV) is used to encapsulate gold nanoparticles with different sizes and stabilizing ligands yielding stable particles in buffered solutions at neutral pH. The sizes of the virus-like particles correspond to T = 1, 2, and 3 Caspar-Klug icosahedral triangulation numbers. We developed a simple one-step process enabling the encapsulation of commercially available gold nanoparticles without prior modification with up to 97% efficiency. The encapsulation efficiency is further increased using bis-p-(sufonatophenyl)phenyl phosphine surfactants up to 99%. Our work provides a simplified procedure for the preparation of metallic particles stabilized in CCMV protein cages. The presented results are expected to enable the preparation of a variety of similar virus-based colloids for current focus areas. PMID:27135176

  6. Thiolate–Protected Gold Nanoparticles Via Physical Approach: Unusual Structural and Photophysical Characteristics

    NASA Astrophysics Data System (ADS)

    Ishida, Yohei; Akita, Ikumi; Sumi, Taiki; Matsubara, Masaki; Yonezawa, Tetsu

    2016-07-01

    Here we report a novel physical approach for thiolate–protected fluorescent gold nanoparticles with a controlled size of the order of a few nanometers. This approach is based on a sputtering of gold into a liquid matrix containing thiolate ligand as a stabilizer at various concentrations, thus no reductant was used. The size of the gold nanoparticles was successfully controlled to range from 1.6 to 7.4 nm by adjusting the thiol concentrations. Surface plasmon absorption was observed in larger nanoparticles, but it was not observed in smaller ones. Such smaller nanoparticles fluoresced at around 670 nm with a small spectral shift according to their size, however, the diameter (1.6–2.7 nm) was very strange to show such red emission compared with photophysical characteristics of reported gold cluster or nanoparticles synthesized by chemical method. By detailed investigations using TEM, HAADF-STEM, XPS, and TGA, and size fractionation by size exclusion chromatography, we finally arrived at the plausible mechanism for the origin of unusual fluorescence property; the obtained gold nanoparticles are not single-crystal and are composed of aggregates of very small components such as multinuclear gold clusters or complexes.

  7. Thiolate–Protected Gold Nanoparticles Via Physical Approach: Unusual Structural and Photophysical Characteristics

    PubMed Central

    Ishida, Yohei; Akita, Ikumi; Sumi, Taiki; Matsubara, Masaki; Yonezawa, Tetsu

    2016-01-01

    Here we report a novel physical approach for thiolate–protected fluorescent gold nanoparticles with a controlled size of the order of a few nanometers. This approach is based on a sputtering of gold into a liquid matrix containing thiolate ligand as a stabilizer at various concentrations, thus no reductant was used. The size of the gold nanoparticles was successfully controlled to range from 1.6 to 7.4 nm by adjusting the thiol concentrations. Surface plasmon absorption was observed in larger nanoparticles, but it was not observed in smaller ones. Such smaller nanoparticles fluoresced at around 670 nm with a small spectral shift according to their size, however, the diameter (1.6–2.7 nm) was very strange to show such red emission compared with photophysical characteristics of reported gold cluster or nanoparticles synthesized by chemical method. By detailed investigations using TEM, HAADF-STEM, XPS, and TGA, and size fractionation by size exclusion chromatography, we finally arrived at the plausible mechanism for the origin of unusual fluorescence property; the obtained gold nanoparticles are not single-crystal and are composed of aggregates of very small components such as multinuclear gold clusters or complexes. PMID:27427446

  8. Thiolate-Protected Gold Nanoparticles Via Physical Approach: Unusual Structural and Photophysical Characteristics.

    PubMed

    Ishida, Yohei; Akita, Ikumi; Sumi, Taiki; Matsubara, Masaki; Yonezawa, Tetsu

    2016-01-01

    Here we report a novel physical approach for thiolate-protected fluorescent gold nanoparticles with a controlled size of the order of a few nanometers. This approach is based on a sputtering of gold into a liquid matrix containing thiolate ligand as a stabilizer at various concentrations, thus no reductant was used. The size of the gold nanoparticles was successfully controlled to range from 1.6 to 7.4 nm by adjusting the thiol concentrations. Surface plasmon absorption was observed in larger nanoparticles, but it was not observed in smaller ones. Such smaller nanoparticles fluoresced at around 670 nm with a small spectral shift according to their size, however, the diameter (1.6-2.7 nm) was very strange to show such red emission compared with photophysical characteristics of reported gold cluster or nanoparticles synthesized by chemical method. By detailed investigations using TEM, HAADF-STEM, XPS, and TGA, and size fractionation by size exclusion chromatography, we finally arrived at the plausible mechanism for the origin of unusual fluorescence property; the obtained gold nanoparticles are not single-crystal and are composed of aggregates of very small components such as multinuclear gold clusters or complexes. PMID:27427446

  9. Detection of squamous carcinoma cells using gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Dai, Wei-Yun; Lee, Sze-tsen; Hsu, Yih-Chih

    2015-03-01

    The goal of this study is to use gold nanoparticle as a diagnostic agent to detect human squamous carcinoma cells. Gold nanoparticles were synthesized and the gold nanoparticle size was 34.3 ± 6.2 nm. Based on the over-expression of epidermal growth factor receptor (EGFR) biomarkers in squamous carcinoma cells, we hypothesized that EGFR could be a feasible biomarker with a target moiety for detection. We further modified polyclonal antibodies of EGFR on the surface of gold nanoparticles. We found selected squamous carcinoma cells can be selectively detected using EGFR antibody-modified gold nanoparticles via receptor-mediated endocytosis. Cell death was also examined to determine the survival status of squamous carcinoma cells with respect to gold nanoparticle treatment and EGFR polyclonal antibody modification.

  10. Thermally controlled photocatalytic coalescence of functionalized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Cohen, Moshik; Zalevsky, Zeev; Pocoví-Martínez, Salvador; Shahmoon, Asaf; Pérez-Prieto, Julia

    2014-05-01

    The selective synthesis of gold nanoparticles of any desired size is of great interest. Benzophenone in THF has proved to act as an efficient photocatalyst for the growth of thiolate-capped nanoparticles in the presence and in the absence of gold salts. Consequently, we explored the effect of applying thermal energy to control these processes. These studies have provided key information for the effective growth of gold nanoparticles tailored to specific applications.

  11. Gold nanoparticles as novel agents for cancer therapy

    PubMed Central

    Jain, S; Hirst, D G; O'Sullivan, J M

    2012-01-01

    Gold nanoparticles are emerging as promising agents for cancer therapy and are being investigated as drug carriers, photothermal agents, contrast agents and radiosensitisers. This review introduces the field of nanotechnology with a focus on recent gold nanoparticle research which has led to early-phase clinical trials. In particular, the pre-clinical evidence for gold nanoparticles as sensitisers with ionising radiation in vitro and in vivo at kilovoltage and megavoltage energies is discussed. PMID:22010024

  12. Gold nanoparticles as novel agents for cancer therapy.

    PubMed

    Jain, S; Hirst, D G; O'Sullivan, J M

    2012-02-01

    Gold nanoparticles are emerging as promising agents for cancer therapy and are being investigated as drug carriers, photothermal agents, contrast agents and radiosensitisers. This review introduces the field of nanotechnology with a focus on recent gold nanoparticle research which has led to early-phase clinical trials. In particular, the pre-clinical evidence for gold nanoparticles as sensitisers with ionising radiation in vitro and in vivo at kilovoltage and megavoltage energies is discussed. PMID:22010024

  13. Enhancing Therapeutic Efficacy through Designed Aggregation of Nanoparticles

    PubMed Central

    Sadhukha, Tanmoy; Wiedmann, Timothy Scott; Panyama, Jayanth

    2015-01-01

    Particle size is a key determinant of biological performance of sub-micron size delivery systems. Previous studies investigating the effect of particle size have primarily focused on well-dispersed nanoparticles. However, inorganic nanoparticles are prone to aggregation in biological environments. In our studies, we examined the consequence of aggregation on superparamagnetic iron oxide (SPIO) nanoparticle-induced magnetic hyperthermia. Here we show that the extent and mechanism of hyperthermia-induced cell kill is highly dependent on the aggregation state of SPIO nanoparticles. Well-dispersed nanoparticles induced apoptosis, similar to that observed with conventional hyperthermia. Sub-micron size aggregates, on the other hand, induced temperature-dependent autophagy through generation of oxidative stress. Micron size aggregates caused rapid membrane damage, resulting in acute cell kill. Overall, this work highlights the potential for developing highly effective anticancer therapeutics through designed aggregation of nano delivery systems. PMID:24947232

  14. Growth behavior of gold nanoparticles synthesized in unsaturated fatty acids by vacuum evaporation methods.

    PubMed

    Fujita, Akito; Matsumoto, Yusuke; Takeuchi, Mitsuaki; Ryuto, Hiromichi; Takaoka, Gikan H

    2016-02-21

    Physical vapor evaporation of metals on low vapor pressure liquids is a simple and clean method to synthesize nanoparticles and thin films, though only little work has been conducted so far. Here, gold nanoparticles were synthesized by vacuum evaporation (VE) methods in ricinoleic acid and oleic acid, two typical unsaturated fatty acids (UFAs). The two solvents formed black aggregates after deposition and then shrunk and finally disappeared with the progress of time. By transmission electron microscopy (TEM) images, nanoparticles in ricinoleic acids formed aggregates and then dispersed by time, while in oleic acid big aggregates were not observed in all timescales. From TEM images and small angle X-ray scattering (SAXS) measurements, the mean size of the nanoparticles was about 4 nm in both ricinoleic and oleic acids. UV-Vis spectra were also taken as a function of time and the results were consistent with the growth behavior presumed by TEM images. Air exposure had an influence on the behavior of the sample triggering the nanoparticle formation in both solvents. From control experiments, we discovered that oxygen gas triggered the phenomenon and nanoparticles function as a catalyst for the oxidation of the UFAs. It stimulates the phenomenon and in ricinoleic acid, specifically, electrons are transferred from riconleic acid to the gold nanoparticles, enhancing the surface potential of the nanoparticles and the repulsive force between their electronic double layers. PMID:26821883

  15. Gold nanoparticle based plasmon resonance light-scattering method as a new approach for glycogen-biomacromolecule interactions.

    PubMed

    Xiang, Minghui; Xu, Xiao; Liu, Feng; Li, Na; Li, Ke-An

    2009-03-01

    A model was developed for the interactions between glycogen and biomacromolecules by gold nanoparticle plasmon resonance light-scattering method. The interactions between glycogen and biomacromolecules can alter the aggregation status of gold nanoparticles, which produced intensity changes in plasmon resonance light-scattering. This is a sensitive method to study the interactions between glycogen and biomacromolecules from nano- to micromolar level. And it is also a simple method that measurement can be carried out with a common fluorospectrometer using label-free gold nanoparticles as the transducer. PMID:19708110

  16. Sargassum myriocystum mediated biosynthesis of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Stalin Dhas, T.; Ganesh Kumar, V.; Stanley Abraham, L.; Karthick, V.; Govindaraju, K.

    2012-12-01

    Functionalized metal nanoparticles are unique in nature and are being developed for its specificity in drug targeting. In the present study, aqueous extract of Sargassum myriocystum is used for the biosynthesis of gold nanoparticles (AuNPs) by the reduction of chloroauric acid. The formation of nanoparticles reaction was complete within 15 min at 76 °C. The size, shape and elemental analysis of AuNPs were carried out using UV-visible absorption spectroscopy, FT-IR, TEM, SEM-EDAX, and XRD analysis. The newly formed AuNPs are stable, well-defined, polydispersed (triangular and spherical) and crystalline with an average size of 15 nm. The biomolecule involved in stabilizing AuNPs was identified using GC-MS.

  17. SERS-active nanoparticle aggregate technology for tags and seals

    SciTech Connect

    Brown, Leif O; Montoya, Velma M; Havrilla, George J; Doorn, Stephen K

    2010-06-03

    In this paper, we describe our efforts to create a modern tagging and sealing technology for international safeguards application. Our passive tagging methods are based on SANAs (SERS-Active Nanoparticle Aggregates; SERS: Surface Enhanced Raman Scattering). These SANAs offer robust spectral barcoding capability in an inexpensive tag/seal, with the possibility of rapid in-field verification that requires no human input. At INMM 2009, we introduced SANAs, and showed approaches to integrating our technology with tags under development at Sandia National Laboratories (SNL). Here, we will focus on recent LANL development work, as well as adding additional dimensionality to the barcoding technique. The field of international safeguards employs a broad array of tags, seals, and tamper-indicating devices to assist with identification, tracking, and verification of components and materials. These devices each have unique strengths suited to specific applications, and span a range of technologies from passive metal cup seals and adhesive seals to active, remotely monitored fiber optic seals. Regardless of the technology employed, essential characteristics center around security, environmental and temporal stability, ease of use, and the ability to provide confidence to all parties. Here, we present a new inexpensive tagging technology that will deliver these attributes, while forming the basis of either a new seal, or as a secure layer added to many existing devices. Our approach uses the Surface Enhanced Raman Scattering (SERS) response from SANAs (SERS-Active Nanoparticle Aggregates, Figure 1) to provide a unique identifier or signature for tagging applications. SANAs are formed from gold or silver nanoparticles in the 40-80 nm size range. A chemical dye is installed on the nanoparticle surface, and the nanoparticles are then aggregated into ensembles of {approx}100 to 500 nm diameter, prior to being coated with silica. The silica shell protects the finished SANA from

  18. X-Ray Spectroscopy of Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.; Montenegro, M.; Pradhan, A. K.; Pitzer, R.

    2009-06-01

    Inner shell transitions, such as 1s-2p, in heavy elements can absorb or produce hard X-rays, and hence are widely used in nanoparticles. Bio-medical research for cancer treatment has been using heavy element nanoparticles, embeded in malignant tumor, for efficient absorption of irradiated X-rays and leading emission of hard X-rays and energetic electrons to kill the surrounding cells. Ejection of a 1s electron during ionization of the element by absorption of a X-ray photon initiates the Auger cascades of emission of photons and electrons. We have investigated gold nanoparticles for the optimal energy range, below the K-edge (1s) ionization threshold, that corresponds to resonant absorption of X-rays with large attenuation coefficients, orders of magnitude higher over the background as well as to that at K-edge threshold. We applied these attenuation coefficients in Monte Carlo simulation to study the intensities of emission of photons and electrons by Auger cascades. The numerical experiments were carried out in a phantom of water cube with a thin layer, 0.1mm/g, of gold nanoparticles 10 cm inside from the surface using the well-known code Geant4. We will present results on photon and electron emission spectra from passing monochromatic X-ray beams at 67 keV, which is the resonant energy for resonant K_{α} lines, at 82 keV, the K-shell ionization threshold, and at 2 MeV where the resonant effect is non-existent. Our findings show a high peak in the gold nanoparticle absorption curve indicating complete absorption of radiation within the gold layer. The photon and electron emission spectra show resonant features. Acknowledgement: Partially supported by a Large Interdisciplinary Grant award of the Ohio State University and NASA APRA program (SNN). The computational work was carried out on the Cray X1 and Itanium 4 cluster at the Ohio Supercomputer Center, Columbus Ohio. "Resonant X-ray Irradiation of High-Z Nanoparticles For Cancer Theranostics" (refereed

  19. Aggregate of nanoparticles: rheological and mechanical properties

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Wu, Xiaojun; Yang, Wei; Zhai, Yuanming; Xie, Banghu; Yang, Mingbo

    2011-12-01

    The understanding of the rheological and mechanical properties of nanoparticle aggregates is important for the application of nanofillers in nanocompoistes. In this work, we report a rheological study on the rheological and mechanical properties of nano-silica agglomerates in the form of gel network mainly constructed by hydrogen bonds. The elastic model for rubber is modified to analyze the elastic behavior of the agglomerates. By this modified elastic model, the size of the network mesh can be estimated by the elastic modulus of the network which can be easily obtained by rheology. The stress to destroy the aggregates, i.e., the yield stress ( σ y ), and the elastic modulus ( G') of the network are found to be depended on the concentration of nano-silica ( ϕ, wt.%) with the power of 4.02 and 3.83, respectively. Via this concentration dependent behavior, we can extrapolate two important mechanical parameters for the agglomerates in a dense packing state ( ϕ = 1): the shear modulus and the yield stress. Under large deformation (continuous shear flow), the network structure of the aggregates will experience destruction and reconstruction, which gives rise to fluctuations in the viscosity and a shear-thinning behavior.

  20. Self-assembled peptide beads used as a template for ordered gold nanoparticle superstructures.

    PubMed

    de Bruyn Ouboter, Dirk; Schuster, Thomas B; Sigg, Severin J; Meier, Wolfgang P

    2013-12-01

    Using peptide-based materials to tailor self-assembled, nano-scaled hybrid materials with potentially high biocompatibility/biodegradability is gaining importance in developing a broad range of new applications, in areas such as diagnostics and medicine. Here, we investigated how the self-assembly ability of amphiphilic peptides can be used to create organized inorganic materials, i.e. gold nanoparticles. A bead-forming, purely peptidic amphiphile Ac-[K(Ac)]3-[W-l]3-W-NH2, containing acetylated (Ac) l-lysine (K), l-tryptophan (W) and d-leucine (l), was C-terminally modified with a l-cysteine (C) and linked to gold nanoparticles. Subsequent peptide-driven self-assembly of the peptide-coated gold nanoparticles with increasing water content led to controlled aggregation of the gold-core micelles, forming composite peptide-gold superstructures. The individual gold nanoparticles did not agglomerate but were separated from each other by a peptide film within the composite material, as revealed by electron microscopy studies. Structural investigation on 2D template-stripped gold demonstrated the ability of the peptides to form self-assembled monolayers. Structural elements of β-turns and weak hydrogen bonding of the hydrophobic moiety of the peptide were evident, thereby suggesting that the secondary structure remains intact. PMID:24099645

  1. Synthesis of gold nanoparticles and silver nanoparticles via green technology

    NASA Astrophysics Data System (ADS)

    Ahmed, Zulfiqaar; Balu, S. S.

    2012-11-01

    The proposed work describes the comparison of various methods of green synthesis for preparation of Gold and Silver nanoparticles. Pure extracts of Lemon (Citrus limon) and Tomato (Solanum lycopersicum) were mixed with aqueous solution of auric tetrachloride and silver nitrate. The resultant solutions were treated with four common techniques to assist in the reduction namely photo catalytic, thermal, microwave assisted reduction and solvo - thermal reduction. UV - Visible Spectroscopy results and STM images of the final solutions confirmed the formation of stable metallic nanoparticles. A preliminary account of the green synthesis work is presented here.

  2. Preparation of porous polymer monoliths featuring enhanced surface coverage with gold nanoparticles

    PubMed Central

    Lv, Yongqin; Alejandro, Fernando Maya; Fréchet, Jean M. J.

    2012-01-01

    A new approach to the preparation of porous polymer monoliths with enhanced coverage of pore surface with gold nanoparticles has been developed. First, a generic poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith was reacted with cystamine followed by the cleavage of its disulfide bonds with tris(2-carboxylethyl)phosphine which liberated the desired thiol groups. Dispersions of gold nanoparticles with sizes varying from 5 to 40 nm were then pumped through the functionalized monoliths. The materials were then analyzed using both energy dispersive X-ray spectroscopy and thermogravimetric analysis. We found that the quantity of attached gold was dependent on the size of nanoparticles, with the maximum attachment of more than 60 wt% being achieved with 40 nm nanoparticles. Scanning electron micrographs of the cross sections of all the monoliths revealed the formation of a non-aggregated, homogenous monolayer of nanoparticles. The surface of the bound gold was functionalized with 1-octanethiol and 1-octadecanethiol, and these monolithic columns were used successfully for the separations of proteins in reversed phase mode. The best separations were obtained using monoliths modified with 15, 20, and 30 nm nanoparticles since these sizes produced the most dense coverage of pore surface with gold. PMID:22542442

  3. Discrimination of Proteins Using an Array of Surfactant-Stabilized Gold Nanoparticles.

    PubMed

    Rogowski, Jacob L; Verma, Mohit S; Gu, Frank X

    2016-08-01

    Protein analysis is a fundamental aspect of biochemical research. Gold nanoparticles are an emerging platform for various biological applications given their high surface area, biocompatibility, and unique optical properties. The colorimetric properties of gold nanoparticles make them ideal for point-of-care diagnostics. Different aspects of gold nanoparticle-protein interactions have been investigated to predict the effect of protein adsorption on colloidal stability, but the role of surfactants is often overlooked, despite their potential to alter both protein and nanoparticle properties. Herein we present a method by which gold nanoparticles can be prepared in various surfactants and used for array-based quantification and identification of proteins. The exchange of surfactant not only changed the zeta potential of those gold nanoparticles but also drastically altered their aggregation response to five different proteins (bovine serum albumin, human serum albumin, immunoglobulin G, lysozyme, and hemoglobin) in a concentration-dependent manner. Finally, we demonstrate that varying surfactant concentration can be used to control assay sensitivity. PMID:27399345

  4. Kinetics of colloidal gold nanoparticle chain assembly via in situ liquid cell electron microscopy observations

    NASA Astrophysics Data System (ADS)

    Woehl, Taylor; Prozorov, Tanya; Emergent Atomic; Magnetic Structures Team

    2014-11-01

    Various types of colloidal nanoparticles are known to self-assemble into hierarchical mesostructures via anisotropic interparticle interactions. Previous modeling and experiments have suggested that dipolar interactions may be responsible for assembly of one dimensional nanoparticle chain structures; however, due to a lack of in situobservations little is known about the kinetics of the self-assembly. Here we use real-time nanoscale observations to measure the self-assembly kinetics of colloidal gold nanoparticles into one dimensional chains. Gold nanoparticles suspended in acetate buffer were observed viain situ liquid electron microscopy to self-assemble into chains of 5--10 nanoparticles over a time of minutes. Self-assembly is initiated upon irradiation of the nanoparticles with the imaging electron beam. Measurements of the self-assembly kinetics revealed that the chains formed via second order aggregation kinetics during the first tens of seconds. We investigate the effects of the electron beam current and ionic strength of the buffer solution on the effective aggregation rate and chain formation mechanism. Our observations suggest that the aggregation rate increases with the effective diffusivity of the nanoparticles. T.P. acknowledges support from the Department of Energy Office of Science Early Career Research Award, Biomolecular Materials Program. This work was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences.

  5. Gold nanoparticles: Opportunities and Challenges in Nanomedicine

    PubMed Central

    Arvizo, Rochelle; Bhattacharya, Resham; Mukherjee, Priyabrata

    2010-01-01

    Importance of the field Site-specific drug delivery is an important area of research that is anticipated to increase the efficacy of the drug and reduce potential side effects. Due to this, substantial work has been done developing non-invasive and targeted tumor treatment with nano-scale metallic particles. Areas covered in this review This review focuses on the work done in the last several years developing gold nanoparticles as cancer therapeutics and diagnostic agents. However, there are challenges in using gold nanoparticles as drug delivery systems such as biodistribution, pharmacokinetics, and possible toxicity. Approaches to limit these issues are proposed. What the reader will gain Different approaches from several different disciplines are discussed. Potential clinical applications of these engineered nanoparticles is also presented. Take home message Because of their unique size-dependent physico-chemical and optical properties, adaptability, sub-cellular size, and bio-compatibility, these nanosized carriers offer an apt means of transporting small molecules as well as biomacromoleculs to diseased cells/ tissues. PMID:20408736

  6. Surface modification of silica particles with gold nanoparticles as an augmentation of gold nanoparticle mediated laser perforation

    PubMed Central

    Kalies, Stefan; Gentemann, Lara; Schomaker, Markus; Heinemann, Dag; Ripken, Tammo; Meyer, Heiko

    2014-01-01

    Gold nanoparticle mediated (GNOME) laser transfection/perforation fulfills the demands of a reliable transfection technique. It provides efficient delivery and has a negligible impact on cell viability. Furthermore, it reaches high-throughput applicability. However, currently only large gold particles (> 80 nm) allow successful GNOME laser perforation, probably due to insufficient sedimentation of smaller gold nanoparticles. The objective of this study is to determine whether this aspect can be addressed by a modification of silica particles with gold nanoparticles. Throughout the analysis, we show that after the attachment of gold nanoparticles to silica particles, comparable or better efficiencies to GNOME laser perforation are reached. In combination with 1 µm silica particles, we report laser perforation with gold nanoparticles with sizes down to 4 nm. Therefore, our investigations have great importance for the future research in and the fields of laser transfection combined with plasmonics. PMID:25136494

  7. Surface modification of silica particles with gold nanoparticles as an augmentation of gold nanoparticle mediated laser perforation.

    PubMed

    Kalies, Stefan; Gentemann, Lara; Schomaker, Markus; Heinemann, Dag; Ripken, Tammo; Meyer, Heiko

    2014-08-01

    Gold nanoparticle mediated (GNOME) laser transfection/perforation fulfills the demands of a reliable transfection technique. It provides efficient delivery and has a negligible impact on cell viability. Furthermore, it reaches high-throughput applicability. However, currently only large gold particles (> 80 nm) allow successful GNOME laser perforation, probably due to insufficient sedimentation of smaller gold nanoparticles. The objective of this study is to determine whether this aspect can be addressed by a modification of silica particles with gold nanoparticles. Throughout the analysis, we show that after the attachment of gold nanoparticles to silica particles, comparable or better efficiencies to GNOME laser perforation are reached. In combination with 1 µm silica particles, we report laser perforation with gold nanoparticles with sizes down to 4 nm. Therefore, our investigations have great importance for the future research in and the fields of laser transfection combined with plasmonics. PMID:25136494

  8. A DNA-gold nanoparticle-based colorimetric competition assay for the detection of cysteine.

    PubMed

    Lee, Jae-Seung; Ulmann, Pirmin A; Han, Min Su; Mirkin, Chad A

    2008-02-01

    We report the development of a highly sensitive and selective colorimetric detection method for cysteine based upon oligonucleotide-functionalized gold nanoparticle probes that contain strategically placed thymidine-thymidine (T-T) mismatches complexed with Hg2+. This assay relies upon the distance-dependent optical properties of gold nanoparticles, the sharp melting transition of oligonucleotide-linked nanoparticle aggregates, and the very selective coordination of Hg2+ with cysteine. The concentration of cysteine can be determined by monitoring with the naked eye or a UV-vis spectrometer the temperature at which the purple-to-red color change associated with aggregate dissociation takes place. This assay does not utilize organic cosolvents, enzymatic reactions, light-sensitive dye molecules, lengthy protocols, or sophisticated instrumentation thereby overcoming some of the limitations of more conventional methods. PMID:18205426

  9. Gold Nanoparticle Assemblies on Surfaces: Reactivity Tuning through Capping-Layer and Cross-Linker Design.

    PubMed

    Shankar, Sreejith; Orbach, Meital; Kaminker, Revital; Lahav, Michal; van der Boom, Milko E

    2016-01-26

    The immobilization of metal nanoparticles (NPs) with molecular control over their organization is challenging. Herein, we report the formation of molecularly cross-linked AuNP assemblies using a layer-by-layer approach. We observed four types of assemblies: 1) small aggregates of individual AuNPs, 2) large aggregates of individual AuNPs, 3) networks of fused AuNPs, and 4) gold islands. Interestingly, these assemblies with the different cross-linkers and capping layers represent different stages in the complete fusion of AuNPs to afford islands of continuous gold. We demonstrate that the stability toward fusion of the nanoparticles of the on-surface structures can be controlled by the reactivity of the cross-linkers and the hydrophilicity/hydrophobicity of the nanoparticles. PMID:26743768

  10. Undergraduate Laboratory Experiment Modules for Probing Gold Nanoparticle Interfacial Phenomena

    ERIC Educational Resources Information Center

    Karunanayake, Akila G.; Gunatilake, Sameera R.; Ameer, Fathima S.; Gadogbe, Manuel; Smith, Laura; Mlsna, Deb; Zhang, Dongmao

    2015-01-01

    Three gold-nanoparticle (AuNP) undergraduate experiment modules that are focused on nanoparticles interfacial phenomena have been developed. Modules 1 and 2 explore the synthesis and characterization of AuNPs of different sizes but with the same total gold mass. These experiments enable students to determine how particle size affects the AuNP…

  11. Advances in cancer research using gold nanoparticles mediated photothermal ablation

    PubMed Central

    MOCAN, LUCIAN; MATEA, CRISTIAN T.; BARTOS, DANA; MOSTEANU, OFELIA; POP, TEODORA; MOCAN, TEODORA; IANCU, CORNEL

    2016-01-01

    Recent research suggests that nanotechnologies may lead to the development of novel cancer treatment. Gold nanoparticles with their unique physical and chemical properties hold great hopes for the development of thermal-based therapies against human malignancies. This review will focus on various strategies that have been developed to use gold nanoparticles as photothermal agents against human cancers. PMID:27152068

  12. Monolayer coated gold nanoparticles for delivery applications

    PubMed Central

    Rana, Subinoy; Bajaj, Avinash; Mout, Rubul; Rotello, Vincent M.

    2011-01-01

    Gold nanoparticles (AuNPs) provide attractive vehicles for delivery of drugs, genetic materials, proteins, and small molecules. AuNPs feature low core toxicity coupled with the ability to parametrically control particle size and surface properties. In this review, we focus on engineering of the AuNP surface monolayer, highlighting recent advances in tuning monolayer structures for efficient delivery of drugs and biomolecules. This review covers two broad categories of particle functionalization, organic monolayers and biomolecule coatings, and discusses their applications in drug, DNA/RNA, protein and small molecule delivery. PMID:21925556

  13. Application of gold nanoparticles in cancer therapy.

    PubMed

    Zhao, Chuan-tong; Liu, Zhen-bao

    2014-06-01

    With their unique physicochemical properties including excellent stability and biocompatibility, large specific surface area, and easy surface modification, gold nanoparticles (AuNPs) can be used as delivery vectors for drugs, genes, proteins, etc. In addition, AuNPs have excellent photothermal effects and radiosensitization characteristics, and therefore can be widely applied in the photothermal therapy and radiotherapy of cancers. This article reviews the construction, cellular uptake, and drug release of AuNPs drug-delivery systems and their applications in the treatment of tumors. PMID:24997828

  14. Green Chemistry Techniques for Gold Nanoparticles Synthesis

    NASA Astrophysics Data System (ADS)

    Cannavino, Sarah A.; King, Christy A.; Ferrara, Davon W.

    Gold nanoparticles (AuNPs) are often utilized in many technological and research applications ranging from the detection of tumors, molecular and biological sensors, and as nanoantennas to probe physical processes. As these applications move from the research laboratory to industrial settings, there is a need to develop efficient and sustainable synthesis techniques. Recent research has shown that several food products and beverages containing polyphenols, a common antioxidant, can be used as reducing agents in the synthesis of AuNPs in solution. In this study, we explore a variety of products to determine which allow for the most reproducible solution of nanoparticles based on the size and shapes of particles present. We analyzed the AuNPs solutions using extinction spectroscopy and atomic force microscopy. We also develop a laboratory activity to introduce introductory chemistry and physics students to AuNP synthesis techniques and analysis.

  15. Strong hyper-Rayleigh scattering from silver nanoparticle aggregates to be used for the optical bio-sensing assay

    NASA Astrophysics Data System (ADS)

    Kim, Joon Heon; Park, Jung Su; Kim, Min-Gon

    2013-05-01

    Hyper-Rayleigh Scattering (HRS) is a second-order nonlinear optical process in which the scattered light can be detected at the second harmonic wavelength of the input laser beam. Due to its incoherent nature, it can be observed from metal nanoparticles whose size is much smaller than the wavelength. Its sensitive response to the nanoparticle aggregation can be used as a powerful diagnostic tool for the detection of biological target molecules. Many previous bio-sensing applications of HRS have used gold nanoparticles as their sensing platform due to easy synthesis and functionalization of them. Here, we demonstrate that the aggregation of silver nanoparticles induced by poly-L-lysine molecules can generate much higher HRS than that from gold nanoparticle aggregates when using a Ti:Sapphire femtosecond laser. In spite of several drawbacks of silver nanoparticle system regarding the nonlinear response to target concentration and the difficulty of surface functionalization compared to the gold nanoparticle system, much higher HRS from silver nanoparticles can be definitely useful for the sensitive detection of very small amount of target molecules.

  16. Silver and gold nanoparticles for sensor and antibacterial applications

    NASA Astrophysics Data System (ADS)

    Bindhu, M. R.; Umadevi, M.

    2014-07-01

    Green biogenic method for the synthesis of gold and silver nanoparticles using Solanum lycopersicums extract as reducing agent was studied. The biomolecules present in the extract was responsible for reduction of Au3+ and Ag+ ions from HAuCl4 and AgNO3 respectively. The prepared nanoparticles were characterized by UV-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) technique to identify the size, shape of nanoparticles and biomolecules act as reducing agents. UV-visible spectra show the surface plasmon resonance peak at 546 nm and 445 nm corresponding to gold and silver nanoparticles respectively. Crystalline nature of the nanoparticles was evident from TEM images and XRD analysis. TEM images showed average size of 14 nm and 12 nm for prepared gold and silver nanoparticles respectively. FTIR analysis provides the presence of biomolecules responsible for the reduction and stability of the prepared silver and gold nanoparticles. XRD analysis of the silver and gold nanoparticles confirmed the formation of metallic silver and gold. The prepared gold and silver nanoparticles show good sensing and antimicrobial activity.

  17. Silver and gold nanoparticles for sensor and antibacterial applications.

    PubMed

    Bindhu, M R; Umadevi, M

    2014-07-15

    Green biogenic method for the synthesis of gold and silver nanoparticles using Solanum lycopersicums extract as reducing agent was studied. The biomolecules present in the extract was responsible for reduction of Au(3+) and Ag(+) ions from HAuCl4 and AgNO3 respectively. The prepared nanoparticles were characterized by UV-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) technique to identify the size, shape of nanoparticles and biomolecules act as reducing agents. UV-visible spectra show the surface plasmon resonance peak at 546 nm and 445 nm corresponding to gold and silver nanoparticles respectively. Crystalline nature of the nanoparticles was evident from TEM images and XRD analysis. TEM images showed average size of 14 nm and 12 nm for prepared gold and silver nanoparticles respectively. FTIR analysis provides the presence of biomolecules responsible for the reduction and stability of the prepared silver and gold nanoparticles. XRD analysis of the silver and gold nanoparticles confirmed the formation of metallic silver and gold. The prepared gold and silver nanoparticles show good sensing and antimicrobial activity. PMID:24657466

  18. Facile Decoration of Multiwalled Carbon Nanotubes with Hetero-oligophenylene Stabilized-Gold Nanoparticles: Visible Light Photocatalytic Degradation of Rhodamine B Dye.

    PubMed

    Kaur, Sharanjeet; Bhalla, Vandana; Kumar, Manoj

    2015-08-01

    A hetero-oligophenylene derivative 3 has been designed and synthesized which forms fluorescent spherical aggregates in mixed aqueous media due to its aggregation-induced emission enhancement characteristics. These fluorescent aggregates act as a ratiometric probe for the detection of gold ions in aqueous media and serve as reactors and stabilizers for the preparation of gold nanoparticles. The in situ generated gold nanoparticles have been decorated on multiwalled carbon nanotubes to form AuNPs@MWCNTs nanohybrid materials, which serve as recyclable photocatalysts for carrying out degradation of rhodamine dye in aqueous media. PMID:26156289

  19. Growth of gold nanoparticles in human cells.

    PubMed

    Anshup, Anshup; Venkataraman, J Sai; Subramaniam, Chandramouli; Kumar, R Rajeev; Priya, Suma; Kumar, T R Santhosh; Omkumar, R V; John, Annie; Pradeep, T

    2005-12-01

    Gold nanoparticles of 20-100 nm diameter were synthesized within HEK-293 (human embryonic kidney), HeLa (human cervical cancer), SiHa (human cervical cancer), and SKNSH (human neuroblastoma) cells. Incubation of 1 mM tetrachloroaurate solution, prepared in phosphate buffered saline (PBS), pH 7.4, with human cells grown to approximately 80% confluency yielded systematic growth of nanoparticles over a period of 96 h. The cells, stained due to nanoparticle growth, were adherent to the bottom of the wells of the tissue culture plates, with their morphology preserved, indicating that the cell membrane was intact. Transmission electron microscopy of ultrathin sections showed the presence of nanoparticles within the cytoplasm and in the nucleus, the latter being much smaller in dimension. Scanning near field microscopic images confirmed the growth of large particles within the cytoplasm. Normal cells gave UV-visible signatures of higher intensity than the cancer cells. Differences in the cellular metabolism of cancer and noncancer cells were manifested, presumably in their ability to carry out the reduction process. PMID:16316080

  20. The aggregation enhanced photoluminescence of gold nanorods in aqueous solutions.

    PubMed

    Cen, Yan; Huang, Xiao; Zhang, Ren; Chen, Ji-Yao

    2014-09-01

    The photoluminescence (PL) properties of single gold nanorod (AuNR) under one-photon excitation (OPE) have been reported recently. In this work, the PL of AuNRs in aqueous solutions were studied with OPE of 514 or 633 nm to characterize the emissions of transverse and longitudinal surface Plasmon resonance (TSPR and LSPR) bands, because the AuNRs aqueous solution was frequently used in bio-medical applications. We found that under 514 nm OPE the TSPR emissions of four groups of AuNRs with different aspect ratios in aqueous solutions were all strong dominating the PL emission with the quantum yield (QY) of 10(-4), which is at least three orders of magnitude higher than that of single AuNR. We further found that the aggregate was the basic form of AuNRs in aqueous solution and living cells, measured by the elastic light scattering and transmission electron microscopy measurements. The Plasmon coupling particularly the TSPR coupling between the neighbored AuNRs in aggregates enhanced the PL and increased the QY, because the conjugation of the rod side to side was a main aggregate mode. Under 633 nm OPE, only LSPR emissions of AuNRs aqueous solutions occurred with the QY level of 10(-5) which is very similar to that of singe AuNR, because of the negligible LSPR coupling. PMID:25096523

  1. Crystallization of DNA-capped gold nanoparticles in high-concentration, divalent salt environments.

    PubMed

    Tan, Shawn J; Kahn, Jason S; Derrien, Thomas L; Campolongo, Michael J; Zhao, Mervin; Smilgies, Detlef-M; Luo, Dan

    2014-01-27

    The multiparametric nature of nanoparticle self-assembly makes it challenging to circumvent the instabilities that lead to aggregation and achieve crystallization under extreme conditions. By using non-base-pairing DNA as a model ligand instead of the typical base-pairing design for programmability, long-range 2D DNA-gold nanoparticle crystals can be obtained at extremely high salt concentrations and in a divalent salt environment. The interparticle spacings in these 2D nanoparticle crystals can be engineered and further tuned based on an empirical model incorporating the parameters of ligand length and ionic strength. PMID:24459055

  2. Green synthesis of gold nanoparticles using Cinnamomum zeylanicum leaf broth

    NASA Astrophysics Data System (ADS)

    Smitha, S. L.; Philip, Daizy; Gopchandran, K. G.

    2009-10-01

    Development of biologically inspired experimental processes for the synthesis of nanoparticles is an important branch of nanotechnology. The synthesis of gold nanoparticles using Cinnamomum zeylanicum leaf broth as the reducing agent is reported. The morphology of the particles formed consists of a mixture of gold nanoprisms and spheres with fcc (1 1 1) structure of gold. At lower concentrations of the extract, formation of prism shaped Au particles dominates, while at higher concentrations almost spherical particles alone are observed. Good crystallinity of the nanoparticles with fcc phase is evident from XRD patterns, clear lattice fringes in the high resolution TEM image and bright circular rings in the SAED pattern. Au nanoparticles grown are observed to be photoluminescent and the intensity of photoemission is found to increase with increase in leaf broth concentration. The ability to modulate the shape of nanoparticles as observed in this study for gold nanoparticles opens up the exciting possibility of developing further synthetic routes employing ecofriendly sources.

  3. Simple colorimetric detection of doxycycline and oxytetracycline using unmodified gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Jie; Fan, Shumin; Li, Zhigang; Xie, Yuanzhe; Wang, Rui; Ge, Baoyu; Wu, Jing; Wang, Ruiyong

    2014-08-01

    The interaction between tetracycline antibiotics and gold nanoparticles was studied. With citrate-coated gold nanoparticles as colorimetric probe, a simple and rapid detection method for doxycycline and oxytetracycline has been developed. This method relies on the distance-dependent optical properties of gold nanoparticles. In weakly acidic buffer medium, doxycycline and oxytetracycline could rapidly induce the aggregation of gold nanoparticles, resulting in red-to-blue (or purple) colour change. The experimental parameters were optimized with regard to pH, the concentration of the gold nanoparticles and the reaction time. Under optimal experimental conditions, the linear range of the colorimetric sensor for doxycycline/oxytetracycline was 0.06-0.66 and 0.59-8.85 μg mL-1, respectively. The corresponding limit of detection for doxycycline and oxytetracycline was 0.0086 and 0.0838 μg mL-1, respectively. This assay was sensitive, selective, simple and readily used to detect tetracycline antibiotics in food products.

  4. Microbial synthesis of Flower-shaped gold nanoparticles.

    PubMed

    Singh, Priyanka; Kim, Yeon Ju; Wang, Chao; Mathiyalagan, Ramya; Yang, Deok Chun

    2016-09-01

    The shape of nanoparticles has been recognized as an important attribute that determines their applicability in various fields. The flower shape (F-shape) has been considered and is being focused on, because of its enhanced properties when compared to the properties of the spherical shape. The present study proposed the microbial synthesis of F-shaped gold nanoparticles within 48 h using the Bhargavaea indica DC1 strain. The F-shaped gold nanoparticles were synthesized extracellularly by the reduction of auric acid in the culture supernatant of B. indica DC1. The shape, size, purity, and crystalline nature of F-shaped gold nanoparticles were revealed by various instrumental techniques including UV-Vis, FE-TEM, EDX, elemental mapping, XRD, and DLS. The UV-Vis absorbance showed a maximum peak at 536 nm. FE-TEM revealed the F-shaped structure of nanoparticles. The EDX peak obtained at 2.3 keV indicated the purity. The peaks obtained on XRD analysis corresponded to the crystalline nature of the gold nanoparticles. In addition, the results of elemental mapping indicated the maximum distribution of gold elements in the nanoproduct obtained. Particle size analysis revealed that the average diameter of the F-shaped gold nanoparticles was 106 nm, with a polydispersity index (PDI) of 0.178. Thus, the methodology developed for the synthesis of F-shaped gold nanoparticles is completely green and economical. PMID:25943137

  5. The structure and morphology of gold nanoparticles produced in cationic gemini surfactant systems

    NASA Astrophysics Data System (ADS)

    Murawska, Magdalena; Wiatr, Michalina; Nowakowski, Paweł; Szutkowski, Kosma; Skrzypczak, Andrzej; Kozak, Maciej

    2013-12-01

    Potential applications of gold nanoparticles (GNP) are strictly connected with their size and shape. The influence of different dicationic (gemini) surfactants, alkyloxymethylimidazolium derivatives derivatives, on the structure and morphology of GNP was studied. The synthesis of nanoparticles was performed in the presence of various gemini surfactants—dodecyloxymethylimidazolium nitrate (IMI_NO3_C4_C12), propionate (IMI_PROP_C4_C12) and 3,3'-[1,9-(2,8-dioxanonane)]bis-(1-nonyloxymethylimidazolium) chloride (IMI_Cl_oxyC7_C9), used as stabilizers and templates for obtaining different size and shape of gold nanoparticles. The samples obtained were examined using transmission electron microscopy (TEM), small angle scattering of synchrotron radiation (SAXS), UV-vis spectroscopy and NMR PFG spectroscopy. For the obtained solutions of nanoparticles the plasmon resonance was observed at the wavelengths corresponding to the presence of gold nanoparticles of sizes ranging from 5-100 nm, with a significant shift towards higher wavelength for the samples prepared with addition of dicationic surfactants. TEM images evidence the presence of gold nanoparticles with tetrahedral and spherical morphology in solutions prepared with the surfactants IMI_PROP_C4_C12, IMI_NO3_C4_C12, and those of spherical morphology, but strongly aggregated, in the solution with the cationic surfactant IMI_Cl_oxyC7_C9.

  6. Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles.

    PubMed

    Walkey, Carl D; Olsen, Jonathan B; Song, Fayi; Liu, Rong; Guo, Hongbo; Olsen, D Wesley H; Cohen, Yoram; Emili, Andrew; Chan, Warren C W

    2014-03-25

    Using quantitative models to predict the biological interactions of nanoparticles will accelerate the translation of nanotechnology. Here, we characterized the serum protein corona 'fingerprint' formed around a library of 105 surface-modified gold nanoparticles. Applying a bioinformatics-inspired approach, we developed a multivariate model that uses the protein corona fingerprint to predict cell association 50% more accurately than a model that uses parameters describing nanoparticle size, aggregation state, and surface charge. Our model implicates a set of hyaluronan-binding proteins as mediators of nanoparticle-cell interactions. This study establishes a framework for developing a comprehensive database of protein corona fingerprints and biological responses for multiple nanoparticle types. Such a database can be used to develop quantitative relationships that predict the biological responses to nanoparticles and will aid in uncovering the fundamental mechanisms of nano-bio interactions. PMID:24517450

  7. Toxicity of silver and gold nanoparticles on marine microalgae.

    PubMed

    Moreno-Garrido, Ignacio; Pérez, Sara; Blasco, Julián

    2015-10-01

    The increased use of nanomaterials in several novel industrial applications during the last decade has led to a rise in concerns about the potential toxic effects of released engineered nanoparticles (NPs) into the environment, as their potential toxicity to aquatic organisms is just beginning to be recognised. Toxicity of metallic nanoparticles to aquatic organisms, including microalgae, seems to be related to their physical and chemical properties, as well as their behaviour in the aquatic media where processes of dissolution, aggregation and agglomeration can occur. Although the production of these particles has increased considerably in recent years, data on their toxicity on microalgae, especially those belonging to marine or estuarine environments remain scarce and scattered. The literature shows a wide variation of results on toxicity, mainly due to the different methodology used in bioassays involving microalgae. These can range for up to EC50 data, in the case of AgNPs, representing five orders of magnitude. The importance of initial cellular density is also addressed in the text, as well as the need for keeping test conditions as close as possible to environmental conditions, in order to increase their environmental relevance. This review focuses on the fate and toxicity of silver, gold, and gold-silver alloy nanoparticles on microalgae, as key organisms in aquatic ecosystems. It is prompted by their increased production and use, and taking into account that oceans and estuaries are the final sink for those NPs. The design of bioassays and further research in the field of microalgae nanoecotoxicology is discussed, with a brief survey on newly developed technology of green (algae mediated) production of Ag, Au and Ag-Au bimetallic NPs, as well as some final considerations about future research on this field. PMID:26002248

  8. Adsorption of a Protein Monolayer via Hydrophobic Interactions Prevents Nanoparticle Aggregation under Harsh Environmental Conditions

    PubMed Central

    Dominguez-Medina, Sergio; Blankenburg, Jan; Olson, Jana; Landes, Christy F.; Link, Stephan

    2013-01-01

    We find that citrate-stabilized gold nanoparticles aggregate and precipitate in saline solutions below the NaCl concentration of many bodily fluids and blood plasma. Our experiments indicate that this is due to complexation of the citrate anions with Na+ cations in solution. A dramatically enhanced colloidal stability is achieved when bovine serum albumin is adsorbed to the gold nanoparticle surface, completely preventing nanoparticle aggregation under harsh environmental conditions where the NaCl concentration is well beyond the isotonic point. Furthermore, we explore the mechanism of the formation of this albumin ‘corona’ and find that monolayer protein adsorption is most likely ruled by hydrophobic interactions. As for many nanotechnology-based biomedical and environmental applications, particle aggregation and sedimentation are undesirable and could substantially increase the risk of toxicological side-effects, the formation of the BSA corona presented here provides a low-cost bio-compatible strategy for nanoparticle stabilization and transport in highly ionic environments. PMID:23914342

  9. Aggregation in charged nanoparticles solutions induced by different interactions

    NASA Astrophysics Data System (ADS)

    Abbas, S.; Kumar, Sugam; Aswal, V. K.; Kohlbrecher, J.

    2016-05-01

    Small-angle neutron scattering (SANS) has been used to study the aggregation of anionic silica nanoparticles as induced through different interactions. The nanoparticle aggregation is induced by addition of salt (NaCl), cationic protein (lysozyme) and non-ionic surfactant (C12E10) employing different kind of interactions. The results show that the interaction in presence of salt can be explained using DLVO theory whereas non-DLVO forces play important role for interaction of nanoparticles with protein and surfactant. The presence of salt screens the repulsion between charged nanoparticles giving rise to a net attraction in the DLVO potential. On the other hand, strong electrostatic attraction between nanoparticle and oppositely charged protein leads to protein-mediated nanoparticle aggregation. In case of non-ionic surfactant, the relatively long-range attractive depletion interaction is found to be responsible for the particle aggregation. Interestingly, the completely different interactions lead to similar kind of aggregate morphology. The nanoparticle aggregates formed are found to have mass fractal nature having a fractal dimension (~2.5) consistent with diffusion limited type of fractal morphology in all three cases.

  10. Biophysical characterization of gold nanoparticles-loaded liposomes.

    PubMed

    Mady, Mohsen Mahmoud; Fathy, Mohamed Mahmoud; Youssef, Tareq; Khalil, Wafaa Mohamed

    2012-10-01

    Gold nanoparticles were prepared and loaded into the bilayer of dipalmitoylphosphatidylcholine (DPPC) liposomes, named as gold-loaded liposomes. Biophysical characterization of gold-loaded liposomes was studied by transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy as well as turbidity and rheological measurements. FTIR measurements showed that gold nanoparticles made significant changes in the frequency of the CH(2) stretching bands, revealing that gold nanoparticles increased the number of gauche conformers and create a conformational change within the acyl chains of phospholipids. The transmission electron micrographs (TEM) revealed that gold nanoparticles were loaded in the liposomal bilayer. The zeta potential of DPPC liposomes had a more negative value after incorporating of Au NPs into liposomal membranes. Turbidity studies revealed that the loading of gold nanoparticles into DPPC liposomes results in shifting the temperature of the main phase transition to a lower value. The membrane fluidity of DPPC bilayer was increased by loading the gold nanoparticles as shown from rheological measurements. Knowledge gained in this study may open the door to pursuing liposomes as a viable strategy for Au NPs delivery in many diagnostic and therapeutic applications. PMID:22027546

  11. GOLD NANOPARTICLES: A REVIVAL IN PRECIOUS METAL ADMINISTRATION TO PATIENTS

    PubMed Central

    Thakor, AS; Jokerst, J; Zaveleta, C; Massoud, TF; Gambhir, SS

    2011-01-01

    Gold has been used as a therapeutic agent to treat a wide variety of rheumatic diseases including psoriatic arthritis, juvenile arthritis and discoid lupus erythematosus. Although the use of gold has been largely superseded by newer drugs, gold nanoparticles are being used effectively in laboratory based clinical diagnostic methods whilst concurrently showing great promise in vivo either as a diagnostic imaging agent or a therapeutic agent. For these reasons, gold nanoparticles are therefore well placed to enter mainstream clinical practice in the near future. Hence, the present review summarizes the chemistry, pharmacokinetics, bio-distribution, metabolism and toxicity of bulk gold in humans based on decades of clinical observation and experiments in which gold was used to treat patients with rheumatoid arthritis. The beneficial attributes of gold nanoparticles, such as their ease of synthesis, functionalization and shape control are also highlighted demonstrating why gold nanoparticles are an attractive target for further development and optimization. The importance of controlling the size and shape of gold nanoparticles to minimize any potential toxic side effects is also discussed. PMID:21846107

  12. Multifunctional gold nanoparticles for diagnosis and therapy of disease

    PubMed Central

    Mieszawska, Aneta J.; Mulder, Willem J. M.; Fayad, Zahi A.

    2013-01-01

    Gold nanoparticles (AuNPs) have a number of physical properties that make them appealing for medical applications. For example, the attenuation of X-rays by gold nanoparticles has led to their use in computed tomography imaging and as adjuvants for radiotherapy. AuNPs have numerous other applications in imaging, therapy and diagnostic systems. The advanced state of synthetic chemistry of gold nanoparticles offers precise control over physicochemical and optical properties. Furthermore gold cores are inert and are considered to be biocompatible and non-toxic. The surface of gold nanoparticles can easily be modified for a specific application and ligands for targeting, drugs or biocompatible coatings can be introduced. AuNPs can be incorporated into larger structures such as polymeric nanoparticles or liposomes that deliver large payloads for enhanced diagnostic applications, efficiently encapsulate drugs for concurrent therapy or add additional imaging labels. This array of features has led to the afore-mentioned applications in biomedical fields, but more recently in approaches where multifunctional gold nanoparticles are used for multiple methods, such as concurrent diagnosis and therapy, so called theranostics. The following review covers basic principles and recent findings in gold nanoparticle applications for imaging, therapy and diagnostics, with a focus on reports of multifunctional AuNPs. PMID:23360440

  13. Oligonucleotide-Functionalized Anisotropic Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Jones, Matthew Robert

    In this thesis, we describe the properties of oligonucleotide-functionalized gold colloids under the unique set of conditions where the particles are geometrically anisotropic and have nanometer-scale dimensions. While nearly two decades of previous work elucidated numerous unexpected and emergent phenomena arising from the combination of inorganic nanoparticles with surface-bound DNA strands, virtually nothing was known about how these properties are altered when the shape of the nanoparticle core is chosen to be non-spherical. In particular, we are interested in understanding, and ultimately controlling, the ways in which these DNA-conjugated anisotropic nanostructures interact when their attraction is governed by programmable DNA hybridization events. Chapter 1 introduces the field of DNA-based materials assembly by discussing how nanoscale building blocks which present rigid, directional interactions can be thought of as possessing artificial versions of the familiar chemical principles of "bonds" and "valency". In chapter 2 we explore the fundamental interparticle binding thermodynamics of DNA-functionalized spherical and anisotropic nanoparticles, which reveals enormous preferences for collective ligand interactions occurring between flat surfaces over those that occur between curved surfaces. Using these insights, chapter 3 demonstrates that when syntheses produce mixtures of different nanoparticle shapes, the tailorable nature of DNA-mediated interparticle association can be used to selectively crystallize and purify the desired anisotropic nanostructure products, leaving spherical impurity particles behind. Chapter 4 leverages the principle that the flat facets of anisotropic particles generate directional DNA-based hybridization interactions to assemble a variety of tailorable nanoparticle superlattices whose symmetry and dimensionality are a direct consequence of the shape of the nanoparticle building block used in their construction. Chapter 5 explores

  14. Multifunctional gold nanoparticles for photodynamic therapy of cancer

    NASA Astrophysics Data System (ADS)

    Khaing Oo, Maung Kyaw

    As an important and growing branch of photomedicine, photodynamic therapy (PDT) is being increasingly employed in clinical applications particularly for the treatment of skin cancer. This dissertation focuses on the synthesis, characterization and deployment of gold nanoparticles for enhanced PDT of fibrosarcoma cancer cells. We have developed robust strategies and methods in fabrication of gold nanoparticles with positively- and negatively-tethered surface charges by photo-reduction of gold chloride salt using branched polyethyleneimine and sodium citrate respectively. An optimal concentration window of gold salt has been established to yield the most stable and monodispersed gold nanoparticles. 5-aminolevulinic acid (5-ALA), a photosensitizing precursor, has been successfully conjugated on to positively charged gold nanoparticles through electrostatic interactions. The 5-ALA/gold nanoparticle conjugates are biocompatible and have shown to be preferably taken up by cancer cells. Subsequent light irradiation results in the generation of reactive oxygen species (ROS) in cancer cells, leading to their destruction without adverse effects on normal fibroblasts. We have demonstrated for the first time that gold nanoparticles can enhance PDT efficacy by 50% compared to the treatment with 5-ALA alone. Collected evidence has strongly suggested that this enhancement stems from the elevated formation of ROS via the strongly localized electric field of gold nanoparticles. Through single cell imaging using surface-enhanced Raman scattering enabled by the very same gold nanoparticles, we have shown that multifunctionality of gold nanoparticles can be harvested concurrently for biomedical applications in general and for PDT in specific. In other words, gold nanoparticles can be used not only for targeted drug delivery and field-enhanced ROS formation, but also for monitoring cell destructions during PDT. Finally, our COMSOL Multiphysics simulation of the size-dependent electric

  15. Heparin Assisted Photochemical Synthesis of Gold Nanoparticles and Their Performance as SERS Substrates

    PubMed Central

    Rodríguez-Torres, Maria del Pilar; Díaz-Torres, Luis Armando; Romero-Servin, Sergio

    2014-01-01

    Reactive and pharmaceutical-grade heparins were used as biologically compatible reducing and stabilizing agents to photochemically synthesize colloidal gold nanoparticles. Aggregates and anisotropic shapes were obtained photochemically under UV black-light lamp irradiation (λ = 366 nm). Heparin-functionalized gold nanoparticles were characterized by Scanning Electron Microscopy and UV-Vis spectroscopy. The negatively charged colloids were used for the Surface Enhanced Raman Spectroscopy (SERS) analysis of differently charged analytes (dyes). Measurements of pH were taken to inspect how the acidity of the medium affects the colloid-analyte interaction. SERS spectra were taken by mixing the dyes and the colloidal solutions without further functionalization or addition of any aggregating agent. PMID:25342319

  16. Synthesis of gold nanoparticles with different atomistic structural characteristics

    SciTech Connect

    Esparza, R. . E-mail: roesparza@gmail.com; Rosas, G.; Lopez Fuentes, M.; Sanchez Ramirez, J.F.; Pal, U.; Ascencio, J.A.; Perez, R.

    2007-08-15

    A chemical reduction method was used to produce nanometric gold particles. Depending on the concentration of the main reactant compound different nanometric sizes and consequently different atomic structural configurations of the particles are obtained. Insights on the structural nature of the gold nanoparticles are obtained through a comparison between digitally-processed experimental high-resolution electron microscopy images and theoretically-simulated images obtained with a multislice approach of the dynamical theory of electron diffraction. Quantum molecular mechanical calculations, based on density functional theory, are carried out to explain the relationships between the stability of the gold nanoparticles, the atomic structural configurations and the size of nanoparticles.

  17. A zwitterion-DNA coating stabilizes nanoparticles against Mg2+ driven aggregation enabling attachment to DNA nanoassemblies.

    PubMed

    Mudalige, Thilak Kumara; Gang, Oleg; Sherman, William B

    2012-04-28

    Plasmonics and photonics demand new methods for the controlled construction of nanoparticle (NP) arrays. Complex, low-symmetry configurations of DNA-functionalized NPs are obtained by connection to scaffolds of branched and folded DNA nanostructures. However, the stabilization of these branched structures by Mg(2+) counterions also drives the uncontrolled aggregation of NPs. We demonstrate, using a two-dimensional DNA scaffold, that derivatizing gold nanoparticles (AuNPs) with zwitterionic ligands overcomes this problem. PMID:22473590

  18. Effects of Soy Protein Nanoparticle Aggregate Size on the Viscoelastic Properties of Styrene-Butadiene Composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soy protein nanoparticle aggregates were prepared by alkaline hydrolysis of soy protein isolate (SPI). Light scattering measurements indicated a narrow size distribution of SPI aggregates. Nanocomposites were formed by mixing hydrolyzed SPI (HSPI) nanoparticle aggregates with styrene-butadiene (SB...

  19. Gold Nanoparticle Conjugation Enhances the Antiacanthamoebic Effects of Chlorhexidine.

    PubMed

    Aqeel, Yousuf; Siddiqui, Ruqaiyyah; Anwar, Ayaz; Shah, Muhammad Raza; Khan, Naveed Ahmed

    2016-03-01

    Acanthamoeba keratitis is a serious infection with blinding consequences and often associated with contact lens wear. Early diagnosis, followed by aggressive topical application of drugs, is a prerequisite in successful treatment, but even then prognosis remains poor. Several drugs have shown promise, including chlorhexidine gluconate; however, host cell toxicity at physiologically relevant concentrations remains a challenge. Nanoparticles, subcolloidal structures ranging in size from 10 to 100 nm, are effective drug carriers for enhancing drug potency. The overall aim of the present study was to determine whether conjugation with gold nanoparticles enhances the antiacanthamoebic potential of chlorhexidine. Gold-conjugated chlorhexidine nanoparticles were synthesized. Briefly, gold solution was mixed with chlorhexidine and reduced by adding sodium borohydride, resulting in an intense deep red color, indicative of colloidal gold-conjugated chlorhexidine nanoparticles. The synthesis was confirmed using UV-visible spectrophotometry that shows a plasmon resonance peak of 500 to 550 nm, indicative of gold nanoparticles. Further characterization using matrix-assisted laser desorption ionization-mass spectrometry showed a gold-conjugated chlorhexidine complex at m/z 699 ranging in size from 20 to 100 nm, as determined using atomic force microscopy. To determine the amoebicidal and amoebistatic effects, amoebae were incubated with gold-conjugated chlorhexidine nanoparticles. For controls, amoebae also were incubated with gold and silver nanoparticles alone, chlorhexidine alone, neomycin-conjugated nanoparticles, and neomycin alone. The findings showed that gold-conjugated chlorhexidine nanoparticles exhibited significant amoebicidal and amoebistatic effects at 5 μM. Amoebicidal effects were observed by parasite viability testing using a Trypan blue exclusion assay and flow-cytometric analysis using propidium iodide, while amoebistatic effects were observed using growth

  20. Gold Nanoparticle Conjugation Enhances the Antiacanthamoebic Effects of Chlorhexidine

    PubMed Central

    Aqeel, Yousuf; Siddiqui, Ruqaiyyah; Anwar, Ayaz; Shah, Muhammad Raza

    2015-01-01

    Acanthamoeba keratitis is a serious infection with blinding consequences and often associated with contact lens wear. Early diagnosis, followed by aggressive topical application of drugs, is a prerequisite in successful treatment, but even then prognosis remains poor. Several drugs have shown promise, including chlorhexidine gluconate; however, host cell toxicity at physiologically relevant concentrations remains a challenge. Nanoparticles, subcolloidal structures ranging in size from 10 to 100 nm, are effective drug carriers for enhancing drug potency. The overall aim of the present study was to determine whether conjugation with gold nanoparticles enhances the antiacanthamoebic potential of chlorhexidine. Gold-conjugated chlorhexidine nanoparticles were synthesized. Briefly, gold solution was mixed with chlorhexidine and reduced by adding sodium borohydride, resulting in an intense deep red color, indicative of colloidal gold-conjugated chlorhexidine nanoparticles. The synthesis was confirmed using UV-visible spectrophotometry that shows a plasmon resonance peak of 500 to 550 nm, indicative of gold nanoparticles. Further characterization using matrix-assisted laser desorption ionization-mass spectrometry showed a gold-conjugated chlorhexidine complex at m/z 699 ranging in size from 20 to 100 nm, as determined using atomic force microscopy. To determine the amoebicidal and amoebistatic effects, amoebae were incubated with gold-conjugated chlorhexidine nanoparticles. For controls, amoebae also were incubated with gold and silver nanoparticles alone, chlorhexidine alone, neomycin-conjugated nanoparticles, and neomycin alone. The findings showed that gold-conjugated chlorhexidine nanoparticles exhibited significant amoebicidal and amoebistatic effects at 5 μM. Amoebicidal effects were observed by parasite viability testing using a Trypan blue exclusion assay and flow-cytometric analysis using propidium iodide, while amoebistatic effects were observed using growth

  1. Synthesis and antimicrobial activity of gold nanoparticle conjugates with cefotaxime

    NASA Astrophysics Data System (ADS)

    Titanova, Elena O.; Burygin, Gennady L.

    2016-04-01

    Gold nanoparticles (GNPs) have attracted significant interest as a novel platform for various applications to nanobiotechnology and biomedicine. The conjugates of GNPs with antibiotics and antibodies were also used for selective photothermal killing of protozoa and bacteria. Also the conjugates of some antibiotics with GNPs decreased the number of bacterial growing cells. In this work was made the procedure optimization for conjugation of cefotaxime (a third-generation cephalosporin antibiotic) with GNPs (15 nm) and we examined the antimicrobial properties of this conjugate to bacteria culture of E. coli K-12. Addition of cefotaxime solution to colloidal gold does not change their color and extinction spectrum. For physiologically active concentration of cefotaxime (3 μg/mL), it was shown that the optimum pH for the conjugation was more than 9.5. A partial aggregation of the GNPs in saline medium was observed at pH 6.5-7.5. The optimum concentration of K2CO3 for conjugation cefotaxime with GNPs-15 was 5 mM. The optimum concentration of cefotaxime was at 0.36 μg/mL. We found the inhibition of the growth of E. coli K12 upon application cefotaxime-GNP conjugates.

  2. Extracellular mycosynthesis of gold nanoparticles using Fusarium solani

    NASA Astrophysics Data System (ADS)

    Gopinath, K.; Arumugam, A.

    2014-08-01

    The development of eco-friendly methods for the synthesis of nanomaterial shape and size is an important area of research in the field of nanotechnology. The present investigation deals with the extracellular rapid biosynthesis of gold nanoparticles using Fusarium solani culture filtrate. The UV-vis spectra of the fungal culture filtrate medium containing gold ion showed peak at 527 nm corresponding to the plasmon absorbance of gold nanoparticles. FTIR spectra provide an evidence for the presence of heterocyclic compound in the culture filtrate, which increases the stability of the synthesized gold nanoparticles. The X-ray analysis respects the Bragg's law and confirmed the crystalline nature of the gold nanoparticles. AFM analysis showed the results of particle sizes (41 nm). Transmission electron microscopy (TEM) showed that the gold nanoparticles are spherical in shape with the size range from 20 to 50 nm. The use of F. solani will offer several advantages since it is considered as a non-human pathogenic organism. The fungus F. solani has a fast growth rate, rapid capacity of metallic ions reduction, NPs stabilization and facile and economical biomass handling. Extracellular biosynthesis of gold nanoparticles could be highly advantageous from the point of view of synthesis in large quantities, time consumption, eco-friendly, non-toxic and easy downstream processing.

  3. Silver, Gold, Palladium Nanoparticles: Ligand Design, Synthesis and Polymer Composites

    NASA Astrophysics Data System (ADS)

    Iqbal, Muhammad

    least stable, although dialkyl dithiophosphates bind as bi-dentate ligands and are most stable towards cyanide etching. In contrast, dialkyl dithiophosphinates show mixed mono- and bi-dentate binding that generates loosely packed monolayers of low degree of crystallinity. Another part of this thesis (Chapter 4 and 5) employs AuNPs and silver particles as fillers to improve the electrical and thermal conductivities of polyurethane composites. High anisotropic electrical conductivity of thin composite films are obtained after curing at unprecedentedly low gold contents, which is reasoned with the coagulation of AuNPs to conductive gold networks in domains of high concentration of AuNPs. Silver particles and flakes of sizes between 20 nm and 1.5 micron were dispersed in polyurethane to investigate the effect of their size, morphology, aggregation, and dispersion on the thermal conductivity of the composites. Unexpectedly, composites filled with micron sized silver particles outperformed those filled with silver nanoparticles in thermal conductivity and stability. Finally, PdNPs were synthesized in the presence of thiolate ligands of different conical bulk (single phase surfactant free approach) to study the influence of the different ligands on their size (Chapter 6). No systematic effect was observed in contrast to a similar study on AuNPs, which is reasoned with a weaker binding of ligands to the Pd surface.

  4. A Renewable Electrochemical Magnetic Immunosensor Based on Gold Nanoparticle Labels

    SciTech Connect

    Liu, Guodong; Lin, Yuehe

    2005-05-24

    A particle-based renewable electrochemical magnetic immunosensor was developed by using magnetic beads and a gold nanoparticle label. Anti-IgG antibody-modified magnetic beads were attached to a renewable carbon paste transducer surface by magnets that were fixed inside the sensor. A gold nanoparticle label was capsulated to the surface of magnetic beads by sandwich immunoassay. Highly sensitive electrochemical stripping analysis offers a simple and fast method to quantify the capatured gold nanoparticle tracer and avoid the use of an enzyme label and substrate. The stripping signal of gold nanoparticle is related to the concentration of target IgG in the sample solution. A transmission electron microscopy image shows that the gold nanoparticles were successfully capsulated to the surface of magnetic beads through sandwich immunoreaction events. The parameters of immunoassay, including the loading of magnetic beads, the amount of gold nanoparticle conjugate, and the immunoreaction time, were optimized. The detection limit of 0.02 μg ml-1of IgG was obtained under optimum experimental conditions. Such particle-based electrochemical magnetic immunosensors could be readily used for simultaneous parallel detection of multiple proteins by using multiple inorganic metal nanoparticle tracers and are expected to open new opportunities for disease diagnostics and biosecurity.

  5. Gold nanoparticles assembled with dithiocarbamate-anchored molecular wires

    PubMed Central

    Reeler, Nini E. A.; Lerstrup, Knud A.; Somerville, Walter; Speder, Jozsef; Petersen, Søren V.; Laursen, Bo W.; Arenz, Matthias; Qiu, Xiaohui; Vosch, Tom; Nørgaard, Kasper

    2015-01-01

    A protocol for the bottom-up self-assembly of nanogaps is developed through molecular linking of gold nanoparticles (AuNPs). Two π-conjugated oligo(phenylene ethynylene) molecules (OPE) with dithiocarbamate anchoring groups are used as ligands for the AuNPs. OPE-4S with a dithiocarbamate in each end of the molecule and a reference molecule OPE-2S with only a single dithiocarbamate end group. The linking mechanism of OPE-4S is investigated by using a combination of TEM, UV-Vis absorption and surface enhanced Raman spectroscopy (SERS) as well as studying the effect of varying the OPE-4S to AuNP concentration ratio. UV-Vis absorption confirms the formation of AuNP aggregates by the appearance of an extended plasmon band (EPB) for which the red shift and intensity depend on the OPE-4S:AuNP ratio. SERS confirms the presence of OPE-4S and shows a gradual increase of the signal intensity with increasing OPE-4S:AuNP ratios up to a ratio of about 4000, after which the SERS intensity does not increase significantly. For OPE-2S, no linking is observed below full coverage of the AuNPs indicating that the observed aggregate formation at high OPE-2S:AuNP ratios, above full AuNP coverage, is most likely of a physical nature (van der Waals forces or π-π interactions). PMID:26471461

  6. Gold nanoparticles assembled with dithiocarbamate-anchored molecular wires.

    PubMed

    Reeler, Nini E A; Lerstrup, Knud A; Somerville, Walter; Speder, Jozsef; Petersen, Søren V; Laursen, Bo W; Arenz, Matthias; Qiu, Xiaohui; Vosch, Tom; Nørgaard, Kasper

    2015-01-01

    A protocol for the bottom-up self-assembly of nanogaps is developed through molecular linking of gold nanoparticles (AuNPs). Two π-conjugated oligo(phenylene ethynylene) molecules (OPE) with dithiocarbamate anchoring groups are used as ligands for the AuNPs. OPE-4S with a dithiocarbamate in each end of the molecule and a reference molecule OPE-2S with only a single dithiocarbamate end group. The linking mechanism of OPE-4S is investigated by using a combination of TEM, UV-Vis absorption and surface enhanced Raman spectroscopy (SERS) as well as studying the effect of varying the OPE-4S to AuNP concentration ratio. UV-Vis absorption confirms the formation of AuNP aggregates by the appearance of an extended plasmon band (EPB) for which the red shift and intensity depend on the OPE-4S:AuNP ratio. SERS confirms the presence of OPE-4S and shows a gradual increase of the signal intensity with increasing OPE-4S:AuNP ratios up to a ratio of about 4000, after which the SERS intensity does not increase significantly. For OPE-2S, no linking is observed below full coverage of the AuNPs indicating that the observed aggregate formation at high OPE-2S:AuNP ratios, above full AuNP coverage, is most likely of a physical nature (van der Waals forces or π-π interactions). PMID:26471461

  7. Theranostic potential of gold nanoparticle-protein agglomerates.

    PubMed

    Sanpui, Pallab; Paul, Anumita; Chattopadhyay, Arun

    2015-11-28

    Owing to the ever-increasing applications, glittered with astonishing success of gold nanoparticles (Au NPs) in biomedical research as diagnostic and therapeutic agents, the study of Au NP-protein interaction seems critical for maximizing their theranostic efficiency, and thus demands comprehensive understanding. The mutual interaction of Au NPs and proteins at physiological conditions may result in the aggregation of protein, which can ultimately lead to the formation of Au NP-protein agglomerates. In the present article, we try to appreciate the plausible steps involved in the Au NP-induced aggregation of proteins and also the importance of the proteins' three-dimensional structures in the process. The Au NP-protein agglomerates can potentially be exploited for efficient loading and subsequent release of various therapeutically important molecules, including anticancer drugs, with the unique opportunity of incorporating hydrophilic as well as hydrophobic drugs in the same nanocarrier system. Moreover, the Au NP-protein agglomerates can act as 'self-diagnostic' systems, allowing investigation of the conformational state of the associated protein(s) as well as the protein-protein or protein-Au NP interaction within the agglomerates. Furthermore, the potential of these Au NP-protein agglomerates as a novel platform for multifunctional theranostic application along with exciting future-possibilities is highlighted here. PMID:26508277

  8. Theranostic potential of gold nanoparticle-protein agglomerates

    NASA Astrophysics Data System (ADS)

    Sanpui, Pallab; Paul, Anumita; Chattopadhyay, Arun

    2015-11-01

    Owing to the ever-increasing applications, glittered with astonishing success of gold nanoparticles (Au NPs) in biomedical research as diagnostic and therapeutic agents, the study of Au NP-protein interaction seems critical for maximizing their theranostic efficiency, and thus demands comprehensive understanding. The mutual interaction of Au NPs and proteins at physiological conditions may result in the aggregation of protein, which can ultimately lead to the formation of Au NP-protein agglomerates. In the present article, we try to appreciate the plausible steps involved in the Au NP-induced aggregation of proteins and also the importance of the proteins' three-dimensional structures in the process. The Au NP-protein agglomerates can potentially be exploited for efficient loading and subsequent release of various therapeutically important molecules, including anticancer drugs, with the unique opportunity of incorporating hydrophilic as well as hydrophobic drugs in the same nanocarrier system. Moreover, the Au NP-protein agglomerates can act as `self-diagnostic' systems, allowing investigation of the conformational state of the associated protein(s) as well as the protein-protein or protein-Au NP interaction within the agglomerates. Furthermore, the potential of these Au NP-protein agglomerates as a novel platform for multifunctional theranostic application along with exciting future-possibilities is highlighted here.

  9. Exploitation of marine bacteria for production of gold nanoparticles

    PubMed Central

    2012-01-01

    Background Gold nanoparticles (AuNPs) have found wide range of applications in electronics, biomedical engineering, and chemistry owing to their exceptional opto-electrical properties. Biological synthesis of gold nanoparticles by using plant extracts and microbes have received profound interest in recent times owing to their potential to produce nanoparticles with varied shape, size and morphology. Marine microorganisms are unique to tolerate high salt concentration and can evade toxicity of different metal ions. However, these marine microbes are not sufficiently explored for their capability of metal nanoparticle synthesis. Although, marine water is one of the richest sources of gold in the nature, however, there is no significant publication regarding utilization of marine micro-organisms to produce gold nanoparticles. Therefore, there might be a possibility of exploring marine bacteria as nanofactories for AuNP biosynthesis. Results In the present study, marine bacteria are exploited towards their capability of gold nanoparticles (AuNPs) production. Stable, monodisperse AuNP formation with around 10 nm dimension occur upon exposure of HAuCl4 solution to whole cells of a novel strain of Marinobacter pelagius, as characterized by polyphasic taxonomy. Nanoparticles synthesized are characterized by Transmission electron microscopy, Dynamic light scattering and UV-visible spectroscopy. Conclusion The potential of marine organisms in biosynthesis of AuNPs are still relatively unexplored. Although, there are few reports of gold nanoparticles production using marine sponges and sea weeds however, there is no report on the production of gold nanoparticles using marine bacteria. The present work highlighted the possibility of using the marine bacterial strain of Marinobacter pelagius to achieve a fast rate of nanoparticles synthesis which may be of high interest for future process development of AuNPs. This is the first report of AuNP synthesis by marine bacteria

  10. Modelling encapsulation of gold and silver nanoparticles inside lipid nanotubes

    NASA Astrophysics Data System (ADS)

    Baowan, Duangkamon; Thamwattana, Ngamta

    2014-02-01

    Lipid nanotubes are of particular interest for use as a template to create various one-dimensional nanostructures and as a carrier for drug and gene delivery. Understanding the encapsulation process is therefore crucial for such development. This paper models the interactions between lipid nanotubes and spheres of gold and silver nanoparticles and determines the critical dimension of lipid nanotubes that maximises the interaction with the nanoparticles. Our results confirm the acceptance of gold and silver nanoparticles inside lipid nanotubes. Further, we find that the lipid nanotube of radius approximately 10.23 nm is most favourable to encapsulate both types of nanoparticles.

  11. Direct Patterning of Engineered Ionic Gold Nanoparticles via Nanoimprint Lithography

    SciTech Connect

    Yu, Xi; Pham, Jonathan; Subramani, Chandramouleeswaran; Creran, Brian; Yeh, Yi-Cheun; Du, Kan; Patra, Debabrata; Miranda, Oscar; Crosby, Alfred J.; Rotello, Vincent M.

    2012-10-01

    Gold nanoparticles are engineered for direct imprinting of stable structures. This imprinting strategy provides access to new device architectures, as demonstrated through the fabrication of a prototype photoswitchable device.

  12. Impact of multivalent charge presentation on peptide-nanoparticle aggregation.

    PubMed

    Schöne, Daniel; Schade, Boris; Böttcher, Christoph; Koksch, Beate

    2015-01-01

    Strategies to achieve controlled nanoparticle aggregation have gained much interest, due to the versatility of such systems and their applications in materials science and medicine. In this article we demonstrate that coiled-coil peptide-induced aggregation based on electrostatic interactions is highly sensitive to the length of the peptide as well as the number of presented charges. The quaternary structure of the peptide was found to play an important role in aggregation kinetics. Furthermore, we show that the presence of peptide fibers leads to well-defined nanoparticle assembly on the surface of these macrostructures. PMID:26124881

  13. Abiotic and biotic factors that influence the bioavailability of gold nanoparticles to aquatic macrophytes.

    PubMed

    Glenn, J Brad; Klaine, Stephen J

    2013-09-17

    This research identified and characterized factors that influenced nanomaterial bioavailability to three aquatic plants: Azolla caroliniana Willd, Egeria densa Planch., and Myriophyllum simulans Orch. Plants were exposed to 4-, 18-, and 30-nm gold nanoparticles. Uptake was influenced by nanoparticle size, the presence of roots on the plant, and dissolved organic carbon in the media. Statistical analysis of the data also revealed that particle uptake was influenced by a 4-way (plant species, plant roots, particle size, and dissolved organic carbon) interaction suggesting nanoparticle bioavailability was a complex result of multiple parameters. Size and species dependent absorption was observed that was dependent on the presence of roots and nanoparticle size. The presence of dissolved organic carbon was found to associate with 4- and 18-nm gold nanoparticles in suspension and form a nanoparticle/organic matter complex that resulted in (1) minimized particle aggregation and (2) a decrease of nanoparticle absorption by the aquatic plants. The same effect was not observed with the 30-nm nanoparticle treatment. These results indicate that multiple factors, both biotic and abiotic, must be taken into account when predicting bioavailability of nanomaterials to aquatic plants. PMID:23947987

  14. Glutathione-facilitated design and fabrication of gold nanoparticle-based logic gates and keypad lock

    NASA Astrophysics Data System (ADS)

    Huang, Zhenzhen; Wang, Haonan; Yang, Wensheng

    2014-06-01

    In this paper, we describe how we developed a simple design and fabrication method for logic gates and a device by using a commercially available tripeptide, namely glutathione (GSH), together with metal ions and disodium ethylenediaminetetraacetate (EDTA) to control the dispersion and aggregation of gold nanoparticles (NPs). With the fast adsorption of GSH on gold NPs and the strong coordination of GSH with metal ions, the addition of GSH and Pb2+ ions immediately resulted in the aggregation of gold NPs, giving rise to an AND function. Either Pb2+ or Ba2+ ions induced the aggregation of gold NPs in the presence of GSH, supporting an OR gate. Based on the fact that EDTA has a strong capacity to bind metal ions, thus preventing the aggregation of gold NPs, an INHIBIT gate was also fabricated. More interestingly, we found that the addition sequence of GSH and Hg2+ ions influenced the aggregation of gold NPs in a controlled manner, which was used to design a sequential logic gate and a three-input keypad lock for potential use in information security. The GSH strategy addresses concerns of low cost, simple fabrication, versatile design and easy operation, and offers a promising platform for the development of functional logic systems.In this paper, we describe how we developed a simple design and fabrication method for logic gates and a device by using a commercially available tripeptide, namely glutathione (GSH), together with metal ions and disodium ethylenediaminetetraacetate (EDTA) to control the dispersion and aggregation of gold nanoparticles (NPs). With the fast adsorption of GSH on gold NPs and the strong coordination of GSH with metal ions, the addition of GSH and Pb2+ ions immediately resulted in the aggregation of gold NPs, giving rise to an AND function. Either Pb2+ or Ba2+ ions induced the aggregation of gold NPs in the presence of GSH, supporting an OR gate. Based on the fact that EDTA has a strong capacity to bind metal ions, thus preventing the

  15. Single-Point Mutation Detection in RNA Extracts using Gold Nanoparticles Modified with Hydrophobic Molecular Beacon-Like Structures

    PubMed Central

    Latorre, Alfonso; Posch, Christian; Garcimartín, Yolanda; Ortiz-Urda, Susana; Somoza, Álvaro

    2015-01-01

    Gold nanoparticles functionalized with oligonucleotides that bear a cholesterol group are used as gene sensors. The hydrophobic molecule is buried inside the nanostructure but when the complementary RNA sequence is present the structure unfolds exposing the cholesterol group to the water. This rearrangement leads to the aggregation of the nanostructures. PMID:24496380

  16. The Effect of Nanoparticle Aggregation Processes on Aggregate Structure and Metal Uptake

    NASA Astrophysics Data System (ADS)

    Gilbert, B.; Ching, K. A.; Ono, R. K.; Kim, C. S.

    2007-12-01

    Nanoscale oxide and oxyhydroxide minerals are commonly found in the natural environment, and play important roles in adsorbing and sequestering aqueous ions including nutrients such as phosphates and contaminants such as heavy metals. After formation, these materials are typically subjected to natural flocculation events that reduce the nanoparticle surface area that is accessible by aqueous ions. However, no studies have addressed the impact of different aggregation processes on the capacity of the nanoparticles to sorb aqueous metal ions. We synthesized a suspension of ~6 nm iron oxyhydroxide nanoparticles and subjected portions of this suspension to analogues of natural aggregation processes. These included: pH variation around the point of zero surface charge (simulating the neutralization of acid mine drainage); ionic strength elevation (simulating mixing of aquifer and saline water); drying; and freezing. The effect of aggregation on metal ion uptake was then studied by exposing batches of aggregated and control samples to 0.5 mM Cu(NO3)2 at pH 6.0 for 24 hours. In addition, we used in situ small-angle x-ray scattering to quantify and visualize the aggregate morphology. We found that the aggregates produced by the different mechanisms varied considerably in their interior porosity and their ability to sequester aqueous ions. In particular, the results demonstrate the important role of water in preserving hydrated channels among aggregated nanoparticles that are permeable to aqueous metal ions.

  17. Chemically functionalized gold nanoparticles: Synthesis, characterization, and applications

    NASA Astrophysics Data System (ADS)

    Daniel, Weston Lewis

    This thesis focuses on the development and application of gold nanoparticle based detection systems and biomimetic structures. Each class of modified nanoparticle has properties that are defined by its chemical moieties that interface with solution and the gold nanoparticle core. In Chapter 2, a comparison of the biomolecular composition and binding properties of various preparations of antibody oligonucleotide gold nanoparticle conjugates is presented. These constructs differed significantly in terms of their structure and binding properties. Chapter 3 reports the use of electroless gold deposition as a light scattering signal enhancer in a multiplexed, microarray-based scanometric immunoassay using the gold nanoparticle probes evaluated in Chapter 2. The use of gold development results in greater signal enhancement than the typical silver development, and multiple rounds of metal development were found to increase the resulting signal compared to one development. Chapter 4 describes an amplified scanometric detection method for human telomerase activity. Gold nanoparticles functionalized with specific oligonucleotide sequences can efficiently capture telomerase enzymes and subsequently be elongated. Both the elongated and unmodified oligonucleotide sequences are simultaneously measured. At low telomerase concentrations, elongated strands cannot be detected, but the unmodified sequences, which come from the same probe particles, can be detected because their concentration is higher, providing a novel form of amplification. Chapter 5 reports the development of a novel colorimetric nitrite and nitrate ion assay based upon gold nanoparticle probes functionalized with Griess reaction reagents. This assay takes advantage of the distance-dependent plasmonic properties of the gold nanoparticles and the ability of nitrite ion to facilitate the cross coupling of novel nanoparticle probes. The assay works on the concept of a kinetic end point and can be triggered at the EPA

  18. Using femtosecond lasers to modify sizes of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    da Silva Cordeiro, Thiago; Almeida de Matos, Ricardo; Silva, Flávia Rodrigues de Oliveira; Vieira, Nilson D.; Courrol, Lilia C.; Samad, Ricardo E.

    2016-04-01

    Metallic nanoparticles are important on several scientific, medical and industrial areas. The control of nanoparticles characteristics has fundamental importance to increase the efficiency on the processes and applications in which they are employed. The metallic nanoparticles present specific surface plasmon resonances (SPR). These resonances are related with the collective oscillations of the electrons presents on the metallic nanoparticle. The SPR is determined by the potential defined by the nanoparticle size and geometry. There are several methods of producing gold nanoparticles, including the use of toxic chemical polymers. We already reported the use of natural polymers, as for example, the agar-agar, to produce metallic nanoparticles under xenon lamp irradiation. This technique is characterized as a "green" synthesis because the natural polymers are inoffensive to the environment. We report a technique to produce metallic nanoparticles and change its geometrical and dimensional characteristics using a femtosecond laser. The 1 ml initial solution was irradiate using a laser beam with 380 mW, 1 kHz and 40 nm of bandwidth centered at 800 nm. The setup uses an Acousto-optic modulator, Dazzler, to change the pulses spectral profiles by introduction of several orders of phase, resulting in different temporal energy distributions. The use of Dazzler has the objective of change the gold nanoparticles average size by the changing of temporal energy distributions of the laser pulses incident in the sample. After the laser irradiation, the gold nanoparticles average diameter were less than 15 nm.

  19. How Do the Size, Charge and Shape of Nanoparticles Affect Amyloid β Aggregation on Brain Lipid Bilayer?

    PubMed

    Kim, Yuna; Park, Ji-Hyun; Lee, Hyojin; Nam, Jwa-Min

    2016-01-01

    Here, we studied the effect of the size, shape, and surface charge of Au nanoparticles (AuNPs) on amyloid beta (Aβ) aggregation on a total brain lipid-based supported lipid bilayer (brain SLB), a fluid platform that facilitates Aβ-AuNP aggregation process. We found that larger AuNPs induce large and amorphous aggregates on the brain SLB, whereas smaller AuNPs induce protofibrillar Aβ structures. Positively charged AuNPs were more strongly attracted to Aβ than negatively charged AuNPs, and the stronger interactions between AuNPs and Aβ resulted in fewer β-sheets and more random coil structures. We also compared spherical AuNPs, gold nanorods (AuNRs), and gold nanocubes (AuNCs) to study the effect of nanoparticle shape on Aβ aggregation on the brain SLB. Aβ was preferentially bound to the long axis of AuNRs and fewer fibrils were formed whereas all the facets of AuNCs interacted with Aβ to produce the fibril networks. Finally, it was revealed that different nanostructures induce different cytotoxicity on neuroblastoma cells, and, overall, smaller Aβ aggregates induce higher cytotoxicity. The results offer insight into the roles of NPs and brain SLB in Aβ aggregation on the cell membrane and can facilitate the understanding of Aβ-nanostructure co-aggregation mechanism and tuning Aβ aggregate structures. PMID:26782664

  20. How Do the Size, Charge and Shape of Nanoparticles Affect Amyloid β Aggregation on Brain Lipid Bilayer?

    NASA Astrophysics Data System (ADS)

    Kim, Yuna; Park, Ji-Hyun; Lee, Hyojin; Nam, Jwa-Min

    2016-01-01

    Here, we studied the effect of the size, shape, and surface charge of Au nanoparticles (AuNPs) on amyloid beta (Aβ) aggregation on a total brain lipid-based supported lipid bilayer (brain SLB), a fluid platform that facilitates Aβ-AuNP aggregation process. We found that larger AuNPs induce large and amorphous aggregates on the brain SLB, whereas smaller AuNPs induce protofibrillar Aβ structures. Positively charged AuNPs were more strongly attracted to Aβ than negatively charged AuNPs, and the stronger interactions between AuNPs and Aβ resulted in fewer β-sheets and more random coil structures. We also compared spherical AuNPs, gold nanorods (AuNRs), and gold nanocubes (AuNCs) to study the effect of nanoparticle shape on Aβ aggregation on the brain SLB. Aβ was preferentially bound to the long axis of AuNRs and fewer fibrils were formed whereas all the facets of AuNCs interacted with Aβ to produce the fibril networks. Finally, it was revealed that different nanostructures induce different cytotoxicity on neuroblastoma cells, and, overall, smaller Aβ aggregates induce higher cytotoxicity. The results offer insight into the roles of NPs and brain SLB in Aβ aggregation on the cell membrane and can facilitate the understanding of Aβ-nanostructure co-aggregation mechanism and tuning Aβ aggregate structures.

  1. Lack of Aggregation of Molecules on Ice Nanoparticles.

    PubMed

    Pysanenko, Andriy; Habartová, Alena; Svrčková, Pavla; Lengyel, Jozef; Poterya, Viktoriya; Roeselová, Martina; Fedor, Juraj; Fárník, Michal

    2015-08-27

    Multiple molecules adsorbed on the surface of nanosized ice particles can either remain isolated or form aggregates, depending on their mobility. Such (non)aggregation may subsequently drive the outcome of chemical reactions that play an important role in atmospheric chemistry or astrochemistry. We present a molecular beam experiment in which the controlled number of guest molecules is deposited on the water and argon nanoparticles in a pickup chamber and their aggregation is studied mass spectrometrically. The studied molecules (HCl, CH3Cl, CH3CH2CH2Cl, C6H5Cl, CH4, and C6H6) form large aggregates on argon nanoparticles. On the other hand, no aggregation is observed on ice nanoparticles. Molecular simulations confirm the experimental results; they reveal a high degree of aggregation on the argon nanoparticles and show that the molecules remain mostly isolated on the water ice surface. This finding will influence the efficiency of ice grain-mediated synthesis (e.g., in outer space) and is also important for the cluster science community because it shows some limitations of pickup experiments on water clusters. PMID:26214577

  2. Design and applications of gold nanoparticle conjugates by exploiting biomolecule-gold nanoparticle interactions

    NASA Astrophysics Data System (ADS)

    Su, Shao; Zuo, Xiaolei; Pan, Dun; Pei, Hao; Wang, Lianhui; Fan, Chunhai; Huang, Wei

    2013-03-01

    Gold nanoparticles (AuNPs) are a type of widely used nanomaterials with unique chemical and physical properties. AuNPs can be readily synthesized, and modified with various chemical or biological molecules, making them promising candidates for catalysis, drug delivery and biological imaging applications. In this review, we mainly focus on recent advances in the design and synthesis of conjugates of AuNPs by exploiting biomolecule-AuNP interactions. We will also discuss a variety of bioapplications of AuNP-based conjugates.

  3. Aggregation kinetics and dissolution of coated silver nanoparticles.

    PubMed

    Li, Xuan; Lenhart, John J; Walker, Harold W

    2012-01-17

    Determining the fate of manufactured nanomaterials in the environment is contingent upon understanding how stabilizing agents influence the stability of nanoparticles in aqueous systems. In this study, the aggregation and dissolution tendencies of uncoated silver nanoparticles and the same particles coated with three common coating agents, trisodium citrate, sodium dodecyl sulfate (SDS), and Tween 80 (Tween), were evaluated. Early stage aggregation kinetics of the uncoated and coated silver nanoparticles were assessed by dynamic light scattering over a range of electrolyte types (NaCl, NaNO(3), and CaCl(2)) and concentrations that span those observed in natural waters. Although particle dissolution was observed, aggregation of all particle types was still consistent with classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The aggregation of citrate-coated particles and SDS-coated particles were very similar to that for the uncoated particles, as the critical coagulation concentrations (CCC) of the particles in different electrolytes were all approximately the same (40 mM NaCl, 30 mM NaNO(3), and 2 mM CaCl(2)). The Tween-stabilized particles were significantly more stable than the other particles, however, and in NaNO(3) aggregation was not observed up to an electrolyte concentration of 1 M. Differences in the rate of aggregation under diffusion-limited aggregation conditions at high electrolyte concentrations for the SDS and Tween-coated particles, in combination with the moderation of their electrophoretic mobilities, suggest SDS and Tween imparted steric interactions to the particles. The dissolution of the silver nanoparticles was inhibited by the SDS and Tween coatings, but not by the citrate coating, and in chloride-containing electrolytes a secondary precipitate of AgCl was observed bridging the individual particles. These results indicate that coating agents could significant influence the fate of silver nanoparticles in aquatic systems, and in some

  4. pH-independent optical sensing of heparin based on ionic liquid-capped gold nanoparticles.

    PubMed

    Hemmateenejad, Bahram; Dorostkar, Samira; Shakerizadeh-Shirazi, Fatemeh; Shamsipur, Mojtaba

    2013-09-01

    A simple pH-independent optical method for the sensing of heparin, as a biomedically important polyionic drug, based on aggregation of gold nanoparticles (AuNPs) is described. The polyanionic heparin induces the aggregation of positively charged ionic liquid stabilized AuNPs, which results in a shift in the surface plasmon band and a consequent color change of the AuNPs from red to blue. The color change was monitored using UV-vis spectrophotometry and image analysis methods. The aggregation was confirmed by transmission electron microscopic measurements. The degree of aggregation was found to be proportional to the concentration of the added heparin, allowing its quantitative detection. The change in the absorbance and color-value has been used to monitor the concentration of heparin. This optical method can quantify heparin as low as 0.010 μg mL(-1) and the calibration is linear for a wide range of concentration. PMID:23826612

  5. Impedimetric investigation of gold nanoparticles - guanine modified electrode

    SciTech Connect

    Vulcu, A.; Pruneanu, S.; Berghian-Grosan, C.; Olenic, L.; Muresan, L. M.; Barbu-Tudoran, L.

    2013-11-13

    In this paper we report the preparation of a modified electrode with gold nanoparticles and guanine. The colloidal suspension of gold nanoparticles was obtained by Turkevich method and was next analyzed by UV-Vis spectroscopy and Transmission Electron Microscopy (TEM). The gold electrode was modified by self-assembling the gold nanoparticles with guanine, the organic molecule playing also the role of linker. The electrochemical characteristics of the bare and modified electrode were investigated by Electrochemical Impedance Spectroscopy (EIS). A theoretical model was developed based on an electrical equivalent circuit which contain solution resistance (R{sub s}), charge transfer resistance (R{sub ct}), Warburg impedance (Z{sub W}) and double layer capacitance (C{sub dl})

  6. Protein-Nanoparticle Interaction-Induced Changes in Protein Structure and Aggregation.

    PubMed

    Kim, Yuna; Ko, Sung Min; Nam, Jwa-Min

    2016-07-01

    Large surface area, small size, strong optical properties, controllable structural features, variety of bioconjugation chemistries, and biocompatibility make many different types of nanoparticles (NPs), such as gold NPs, useful for many biological applications, such as biosensing, cellular imaging, disease diagnostics, drug delivery, and therapeutics. Recently, interactions between proteins and NPs have been extensively studied to understand, control, and utilize the interactions involved in biomedical applications of NPs and several biological processes, such as protein aggregation, for many diseases, including Alzheimer's disease. These studies also offer fundamental knowledge on changes in protein structure, protein aggregation mechanisms, and ways to unravel the roles and fates of NPs within the human body. This review focuses on recent studies on the roles and uses of NPs in protein structural changes and aggregation processes. PMID:27062521

  7. Electrostatic assembly and growth of gold nanoparticles in cellulosic fibres.

    PubMed

    Pinto, Ricardo J B; Marques, Paula A A P; Martins, Manuel A; Neto, Carlos Pascoal; Trindade, Tito

    2007-08-15

    Synthetic studies of nanocomposites containing gold nanoparticles attached onto wood or bacterial cellulosic fibres have been performed in situ in the presence of the fibres or by polyelectrolyte-assisted deposition. The optical properties of the final nanocomposites could be tailored not only by the starting Au nanoparticles characteristics but also by the preparative method associated to the type of cellulosic fibres used as the substrate. Thus, gold nanoparticles assembled or generated in situ within cellulosic fibres, are excellent components for long term optical and chemically stable nanocomposites, which appear particularly interesting for security paper applications. PMID:17459404

  8. Gold, palladium, and gold-palladium alloy nanoshells on silica nanoparticle cores.

    PubMed

    Kim, Jun-Hyun; Bryan, William W; Chung, Hae-Won; Park, Chan Young; Jacobson, Allan J; Lee, T Randall

    2009-05-01

    The synthesis of gold, palladium, and gold-palladium alloy nanoshells (approximately 15-20 nm thickness) was accomplished by the reduction of gold and palladium ions onto dielectric silica core particles (approximately 100 nm in diameter) seeded with small gold nanoparticles (approximately 2-3 nm in diameter). The size, morphology, elemental composition, and optical properties of the nanoshells were characterized using field-emission scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and ultraviolet-visible spectroscopy. The results demonstrate the successful growth of gold, palladium, and gold-palladium alloy nanoshells, where the optical properties systematically vary with the relative content of gold and palladium. The alloy nanoshells are being prepared for use in applications that stand to benefit from photoenhanced catalysis. PMID:20355892

  9. Amoxicillin functionalized gold nanoparticles reverts MRSA resistance.

    PubMed

    Kalita, Sanjeeb; Kandimalla, Raghuram; Sharma, Kaustav Kalyan; Kataki, Amal Chandra; Deka, Manab; Kotoky, Jibon

    2016-04-01

    In this study, we have described the biosynthesis of biocompatible gold nanoparticles (GNPs) from aqueous extract of the aerial parts of a pteridophyte, "Adiantum philippense" by microwave irradiation and its surface functionalization with broad spectrum beta lactam antibiotic, amoxicillin (Amox). The functionalization of amoxicillin on GNPs (GNP-Amox) was carried out via electrostatic interaction of protonated amino group and thioether moiety mediated attractive forces. The synthesized GNPs and GNP-Amox were physicochemically characterized. UV-Vis spectroscopy, Zeta potential, XRD, FTIR and SERS (surface enhanced raman spectra) results confirmed the loading of Amox into GNPs. Loading of Amox to GNPs reduce amoxicillin cytotoxicity, whereas GNPs were found to be nontoxic to mouse fibroblast cell line (L929) as evident from MTT and acridine orange/ethidium bromide (AO/EtBr) live/dead cell assays. The GNP-Amox conjugates demonstrated enhanced broad-spectrum bactericidal activity against both Gram-positive and Gram-negative bacteria. Furthermore, in-vitro and in-vivo assays of GNP-Amox revealed potent anti-MRSA activity and improved the survival rate. This indicates the subversion of antibiotic resistance mechanism by overcoming the effect of high levels of β-lactamase produced by methicillin resistant Staphylococcus aureus (MRSA). Taken together, this study demonstrates the positive attributes from GNP-Amox conjugates as a promising antibacterial therapeutic agent against MRSA as well as other pathogens. PMID:26838902

  10. Gold Nanoparticles Inhibit Matrix Metalloproteases without Cytotoxicity.

    PubMed

    Hashimoto, M; Sasaki, J I; Yamaguchi, S; Kawai, K; Kawakami, H; Iwasaki, Y; Imazato, S

    2015-08-01

    Nanoparticles (NPs) are currently the focus of considerable attention for dental applications; however, their biological effects have not been fully elucidated. The long-term, slow release of matrix metalloproteases (MMPs) digests collagen fibrils within resin-dentin bonds. Therefore, MMP inhibitors can prolong the durability of resin-dentin bonds. However, there have been few reports evaluating the combined effect of MMP inhibition and the cytotoxic effects of NPs for dentin bonding. The aim of this study was to evaluate MMP inhibition and cytotoxic responses to gold (AuNPs) and platinum nanoparticles (PtNPs) stabilized by polyvinylpyrrolidone (PVP) in cultured murine macrophages (RAW264) by using MMP inhibition assays, measuring cell viability and inflammatory responses (quantitative reverse transcription polymerase chain reaction [RT-qPCR]), and conducting a micromorphological analysis by fluorescence and transmission electron microscopy. Cultured RAW264 cells were exposed to metal NPs at various concentrations (1, 10, 100, and 400 µg/mL). AuNPs and PtNPs markedly inhibited MMP-8 and MMP-9 activity. Although PtNPs were cytotoxic at high concentrations (100 and 400 µg/mL), no cytotoxic effects were observed for AuNPs at any concentration. Transmission electron microscopy images showed a significant nonrandom intercellular distribution for AuNPs and PtNPs, which were mostly observed to be localized in lysosomes but not in the nucleus. RT-qPCR analysis demonstrated inflammatory responses were not induced in RAW264 cells by AuNPs or PtNPs. The cytotoxicity of nanoparticles might depend on the core metal composition and arise from a "Trojan horse" effect; thus, MMP inhibition could be attributed to the surface charge of PVP, which forms the outer coating of NPs. The negative charge of the surface coating of PVP binds to Zn(2+) from the active center of MMPs by chelate binding and results in MMP inhibition. In summary, AuNPs are attractive NPs that effectively

  11. Microscale Heat Transfer Transduced by Surface Plasmon Resonant Gold Nanoparticles

    PubMed Central

    Roper, D. Keith; Ahn, W.; Hoepfner, M.

    2008-01-01

    Visible radiation at resonant frequencies is transduced to thermal energy by surface plasmons on gold nanoparticles. Temperature in ≤10-microliter aqueous suspensions of 20-nanometer gold particles irradiated by a continuous wave Ar+ ion laser at 514 nm increased to a maximum equilibrium value. This value increased in proportion to incident laser power and in proportion to nanoparticle content at low concentration. Heat input to the system by nanoparticle transduction of resonant irradiation equaled heat flux outward by conduction and radiation at thermal equilibrium. The efficiency of transducing incident resonant light to heat by microvolume suspensions of gold nanoparticles was determined by applying an energy balance to obtain a microscale heat-transfer time constant from the transient temperature profile. Measured values of transduction efficiency were increased from 3.4% to 9.9% by modulating the incident continuous wave irradiation. PMID:19011696

  12. Thermo-optical properties of gold nanoparticles in colloidal systems

    NASA Astrophysics Data System (ADS)

    Ortega, M. A.; Rodriguez, L.; Castillo, J.; Piscitelli, V.; Fernandez, A.; Echevarria, L.

    2008-10-01

    In this work, we report the thermo-optical properties of nanoparticles in colloidal suspensions. Spherical gold nanoparticles obtained by laser ablation in condensed media were characterized using thermal lens spectroscopy pumping at 532 nm with a 10 ns pulse laser-Nd-YAG system. The obtained nanoparticles were stabilized in the time by surfactants (sodium dodecyl sulfate or SDS) in water with different molar concentrations. The morphology and size of the gold nanoparticles were determined by transmission electron microscopy (TEM) and UV-visible techniques. The plasmonic resonance bands in gold nanoparticles are responsible for the light optical absorption, and the positions of the absorption maximum and bandwidth in the UV-visible spectra are given by the morphological characteristics of these systems. The thermo-optical constants such as thermal diffusion, thermal diffusivity, and (dn/dT) are functions of the nanoparticle sizes and the dielectric function of the media. For these reasons, the thermal lens (TL) signal is also dependent on nanoparticle sizes. An analysis of the TL signal of the nanoparticles reveals the existence of an inverse dependence between the thermo-optical functions and the size. This methodology can be used in order to evaluate these systems and characterize nanoparticles in different media. These results are expected to have an impact in bioimaging, biosensors, and other technological applications such as cooling systems.

  13. Near Infrared Resonant Gold / Gold Sulfide Nanoparticles as a Photothermal Cancer Therapeutic Agent

    PubMed Central

    Gobin, André M.; Watkins, Emily M.; Quevedo, Elizabeth; Colvin, Vicki L.; West, Jennifer L.

    2010-01-01

    The development and optimization of near-infrared (nIR) absorbing nanoparticles for use as photothermal cancer therapeutic agents has been ongoing. We have previously reported on larger layered gold / silica nanoshells (~140 nm) for combined therapy and imaging applications. This work exploits the properties of smaller gold / gold sulfide (GGS) nIR absorbing nanoparticles (~35–55 nm) that provide higher absorption (98% absorption & 2% scattering for GGS versus 70% absorption & 30% scattering for gold/silica nanoshells) as well as potentially better tumor penetration. In this work we demonstrate ability to ablate tumor cells in vitro, and efficacy for photothermal cancer therapy, where in an in vivo model we show significantly increased long-term, tumor-free survival. Further, enhanced circulation and bio-distribution is observed in vivo. This class of nIR absorbing nanoparticles has potential to improve upon photothermal tumor ablation for cancer therapy. PMID:20183810

  14. Zirconia coating for enhanced thermal stability of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Pastre, A.; Cristini-Robbe, O.; Bois, L.; Chassagneux, F.; Branzea, D.; Boé, A.; Kinowski, C.; Raulin, K.; Rolland, N.; Bernard, R.

    2016-01-01

    This paper describes a rapid, simple and one-step method for the preparation of 2-4 nm diameter zirconia-coated gold nanoparticles at room temperature. These nanoparticles were synthesized by two simultaneous processes: the chemical reduction of tetrachloroauric acid with sodium borohydride and the formation of zirconia sol-gel matrices. All the gold nanoparticle sols were characterized by UV-visible absorption and transmission electron microscopy to determine the nanoparticle size and shape. The synthesis method is a combination of a polymeric structure of the amorphous zirconia and the use of a strong reducing agent, and it yields to very small quasi-spherical gold nanoparticles at room temperature. The thermal stability up to 1200 °C of the coated nanoparticles was studied by x-ray diffraction. The metastable tetragonal phase of the zirconia coating was obtained at 400 °C, and a progressive transformation from tetragonal to monoclinic phases of the zirconia coating was observed up to 1100 °C. After the heat treatment at 400 °C, the crystallite size of the gold nanoparticles was about 29 nm, and it remained unchanged from 400 °C to 1200 °C. These results are promising for the development of such materials as doping elements for optical fiber applications.

  15. Surface Charge Controls the Suborgan Biodistributions of Gold Nanoparticles.

    PubMed

    Elci, Sukru Gokhan; Jiang, Ying; Yan, Bo; Kim, Sung Tae; Saha, Krishnendu; Moyano, Daniel F; Yesilbag Tonga, Gulen; Jackson, Liam C; Rotello, Vincent M; Vachet, Richard W

    2016-05-24

    Surface chemistry plays a deciding role in nanoparticle biodistribution, yet very little is known about how surface chemistry influences the suborgan distributions of nanomaterials. Here, using quantitative imaging based on laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), we demonstrate that surface charge dictates the suborgan distributions of nanoparticles in the kidney, liver, and spleen of mice intravenously injected with functionalized gold nanoparticles. Images of the kidney show that positively charged nanoparticles accumulate extensively in the glomeruli, the initial stage in filtering for the nephron, suggesting that these nanoparticles may be filtered by the kidney at a different rate than the neutral or negatively charged nanoparticles. We find that positively and negatively charged nanoparticles accumulate extensively in the red pulp of the spleen. In contrast, uncharged nanoparticles accumulate in the white pulp and marginal zone of the spleen to a greater extent than the positively or negatively charged nanoparticles. Moreover, these uncharged nanoparticles are also more likely to be found associated with Kupffer cells in the liver. Positively charged nanoparticles accumulate extensively in liver hepatocytes, whereas negatively charged nanoparticles show a broader distribution in the liver. Together these observations suggest that neutral nanoparticles having 2 nm cores may interact with the immune system to a greater extent than charged nanoparticles, highlighting the value of determining the suborgan distributions of nanomaterials for delivery and imaging applications. PMID:27164169

  16. Shape control technology during electrochemical synthesis of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Xiu-yu; Cui, Cong-ying; Cheng, Ying-wen; Ma, Hou-yi; Liu, Duo

    2013-05-01

    Gold nanoparticles with different shapes and sizes were prepared by adding gold precursor (HAuCl4) to an electrolyzed aqueous solution of poly( N-vinylpyrrolidone) (PVP) and KNO3, which indicates the good reducing capacity of the PVP-containing solution after being treated by electrolysis. Using a catholyte and an anolyte as the reducing agents for HAuCl4, respectively, most gold nanoparticles were spherical particles in the former case but plate-like particles in the latter case. The change in the pH value of electrolytes caused by the electrolysis of water would be the origin of the differences in shape and morphology of gold nanoparticles. A hypothesis of the H+ or OH- catalyzed PVP degradation mechanism was proposed to interpret why the pH value played a key role in determining the shape or morphology of gold nanoparticles. These experiments open up a new method for effectively controlling the shape and morphology of metal nanoparticles by using electrochemical methods.

  17. Mycofabrication of gold nanoparticles and evaluation of their antioxidant activities.

    PubMed

    Chakravarty, Ipsita; Pradeepam, Roshan J; Kundu, Kanika; Singh, Pankaj K; Kundu, Subir

    2015-01-01

    Gold nanoparticles have found prominence in pharmaceutical applications due to their unique physical properties as well as their inert nature. Mycosynthesis of noble metal nanoparticles is less stringent and eco-friendly. In this paper, we have reported the economically-viable synthesis of gold nanoparticles, mediated by five different fungal strains Aspergillus flavus NCIM650, Phoma exigua NCIM1237, Aspergillus niger NCIM 616, Aspergillus niger NCIM 1025 and Trichoderma reesei NCIM 1186. An efficient approach for fungal growth was discussed wherein the biomass was cultivated in non-limiting conditions, followed by addition of gold salt solution. Cyclic Voltammetry studies were conducted to show the varying reducing capacities of these strains. The surface plasmon peaks for gold nanoparticles produced by Aspergillus flavus NCIM650, Phoma exigua NCIM1237, Aspergillus niger NCIM 616, Aspergillus niger NCIM 1025 and Trichoderma reesei NCIM 1186 were recorded as 536nm, 543nm, 542nm, 560nm, 537nm respectively. Based on the cyclic voltammetry studies and UV-Visible spectroscopy, transmission electron microscopy (TEM) analysis was done. Among the five strains, gold nanoparticles fabricated by Aspergillus niger NCIM 616 gave quite promising results. The antioxidant activities were evaluated using DPPH quenching assay and hydrogen peroxide assay. PMID:26044865

  18. Catalytic activity of allamanda mediated phytosynthesized anisotropic gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Gangwar, Rajesh K.; Dhumale, Vinayak A.; Gosavi, S. W.; Sharma, Rishi B.; Datar, Suwarna S.

    2013-12-01

    A simple and eco-friendly method has been developed for the synthesis of gold nanoparticles using allamanda flower extract. In this green synthesis method, chloroauric acid (HAuCl4) solution was reduced with the help of allamanda flower extract. The synthesized gold nanoparticles were characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM) and x-ray diffraction technique for their morphological and structural analysis. The size of the spherical and triangular gold nanoparticles was found to be in the range of 5-40 and 20-70 nm, respectively. The x-ray diffraction analysis revealed that the crystallite size of face-centered cubic (FCC) gold nanoparticles was ˜ 11 nm. These synthesized gold nanoparticles exhibit good catalytic activity towards the reduction of H2O2. The fabricated sensor exhibits good sensitivity of 21.33 μA mM-1 cm-2 with linear relationship (R2 = 0.996) in the range from 2 to 10 mM of H2O2 concentration. This work can be extended further for potential applications such as antimicrobial studies, bio-imaging and drug-delivery owing to the known properties of the allamanda flower extract.

  19. Adsorption and Unfolding of a Single Protein Triggers Nanoparticle Aggregation

    PubMed Central

    2016-01-01

    The response of living systems to nanoparticles is thought to depend on the protein corona, which forms shortly after exposure to physiological fluids and which is linked to a wide array of pathophysiologies. A mechanistic understanding of the dynamic interaction between proteins and nanoparticles and thus the biological fate of nanoparticles and associated proteins is, however, often missing mainly due to the inadequacies in current ensemble experimental approaches. Through the application of a variety of single molecule and single particle spectroscopic techniques in combination with ensemble level characterization tools, we identified different interaction pathways between gold nanorods and bovine serum albumin depending on the protein concentration. Overall, we found that local changes in protein concentration influence everything from cancer cell uptake to nanoparticle stability and even protein secondary structure. We envision that our findings and methods will lead to strategies to control the associated pathophysiology of nanoparticle exposure in vivo. PMID:26751094

  20. Adsorption and Unfolding of a Single Protein Triggers Nanoparticle Aggregation.

    PubMed

    Dominguez-Medina, Sergio; Kisley, Lydia; Tauzin, Lawrence J; Hoggard, Anneli; Shuang, Bo; D S Indrasekara, A Swarnapali; Chen, Sishan; Wang, Lin-Yung; Derry, Paul J; Liopo, Anton; Zubarev, Eugene R; Landes, Christy F; Link, Stephan

    2016-02-23

    The response of living systems to nanoparticles is thought to depend on the protein corona, which forms shortly after exposure to physiological fluids and which is linked to a wide array of pathophysiologies. A mechanistic understanding of the dynamic interaction between proteins and nanoparticles and thus the biological fate of nanoparticles and associated proteins is, however, often missing mainly due to the inadequacies in current ensemble experimental approaches. Through the application of a variety of single molecule and single particle spectroscopic techniques in combination with ensemble level characterization tools, we identified different interaction pathways between gold nanorods and bovine serum albumin depending on the protein concentration. Overall, we found that local changes in protein concentration influence everything from cancer cell uptake to nanoparticle stability and even protein secondary structure. We envision that our findings and methods will lead to strategies to control the associated pathophysiology of nanoparticle exposure in vivo. PMID:26751094

  1. Enhanced radiation therapy with multilayer microdisks containing radiosensitizing gold nanoparticles.

    PubMed

    Zhang, Peipei; Qiao, Yong; Xia, Junfei; Guan, Jingjiao; Ma, Liyuan; Su, Ming

    2015-03-01

    A challenge of X-ray radiation therapy is that high dose X-rays at therapeutic conditions damage normal cells. This paper describes the use of gold nanoparticle-loaded multilayer microdisks to enhance X-ray radiation therapy, where each microdisk contains over 10(5) radiosensitizing nanoparticles. The microdisks are attached on cell membranes through electrostatic interaction. Upon X-ray irradiation, more photoelectrons and Auger electrons are generated in the vicinity of the nanoparticles, which cause water ionization and lead to the formation of free radicals that damage the DNA of adjacent cancer cells. By attaching a large amount of gold nanoparticles on cancer cells, the total X-ray dose required for DNA damage and cell killing can be reduced. Due to their controllable structure and composition, multilayer microdisks can be a viable choice for enhanced radiation therapy with nanoparticles. PMID:25679345

  2. Gold nanoparticle imaging and radiotherapy of brain tumors in mice

    PubMed Central

    Hainfeld, James F; Smilowitz, Henry M; O'Connor, Michael J; Dilmanian, Farrokh Avraham; Slatkin, Daniel N

    2013-01-01

    Aim To test intravenously injected gold nanoparticles for x-ray imaging and radiotherapy enhancement of large, imminently lethal, intracerebral malignant gliomas. Materials & methods Gold nanoparticles approximately 11 nm in size were injected intravenously and brains imaged using microcomputed tomography. A total of 15 h after an intravenous dose of 4 g Au/kg was administered, brains were irradiated with 30 Gy 100 kVp x-rays. Results Gold uptake gave a 19:1 tumor-to-normal brain ratio with 1.5% w/w gold in tumor, calculated to increase local radiation dose by approximately 300%. Mice receiving gold and radiation (30 Gy) demonstrated 50% long term (>1 year) tumor-free survival, whereas all mice receiving radiation only died. Conclusion Intravenously injected gold nanoparticles cross the blood–tumor barrier, but are largely blocked by the normal blood–brain barrier, enabling high-resolution computed tomography tumor imaging. Gold radiation enhancement significantly improved long-term survival compared with radiotherapy alone. This approach holds promise to improve therapy of human brain tumors and other cancers. PMID:23265347

  3. Ultrasensitive aptamer biosensor for malathion detection based on cationic polymer and gold nanoparticles.

    PubMed

    Bala, Rajni; Kumar, Munish; Bansal, Kavita; Sharma, Rohit K; Wangoo, Nishima

    2016-11-15

    In this work, we have demonstrated a novel sensing strategy for an organophosphorus pesticide namely, malathion, employing unmodified gold nanoparticles, aptamer and a positively charged, water-soluble polyelectrolyte Polydiallyldimethylammonium chloride (PDDA). The PDDA when associated with the aptamer prevents the aggregation of the gold-nanoparticles while no such inhibition is observed when the aptamer specific pesticide is added to the solution, thereby changing the color of the solution from red to blue. This type of biosensor is quite simple and straightforward and can be completed in a few minutes without the need of any expensive equipment or trained personnel. The proposed method was linear in the concentration range of 0.5-1000pM with 0.06pM as the limit of detection. Moreover, the proposed assay selectively recognized malathion in the presence of other interfering substances and thus, can be applied to real samples for the rapid screening of malathion. PMID:27208476

  4. Towards optimization and characterization of dye-embedded gold nanoparticle clusters for multiplexed optical imaging

    NASA Astrophysics Data System (ADS)

    McDonald, M. A.; Hight Walker, A. R.

    2009-02-01

    Metallic nanoparticle clusters coupling strong surface plasmons with a Raman reporter molecule have been developed for application in multiplexed optical imaging. Of interest to our work is the ability of the agents to serve as surface-enhanced Raman spectroscopy (SERS) probes. We present the seed-mediated synthesis and characterization of rhodamine B isothiocyante Au nanoparticle clusters (RhB-AuNPCs). RhB-AuNPCs are anisotropic structures which contain the Raman reporter, RhB, embedded between a gold aggregate core and gold surface layer. In contrast to typical SERS studies, the Raman signal originates from the probe (RhB-AuNPCs) and not from RhB incubated with a noble metal colloid. Characterization of the probes' optical properties is presented. The overall goal of our study is to prepare probes that may be used for the identification and spectroscopic labeling of multiple molecular biomarkers utilizing SERS imaging.

  5. Utilizing Gold Nanoparticle Probes to Visually Detect DNA Methylation.

    PubMed

    Chen, Kui; Zhang, Mingyi; Chang, Ya-Nan; Xia, Lin; Gu, Weihong; Qin, Yanxia; Li, Juan; Cui, Suxia; Xing, Gengmei

    2016-12-01

    The surface plasmon resonance (SPR) effect endows gold nanoparticles (GNPs) with the ability to visualize biomolecules. In the present study, we designed and constructed a GNP probe to allow the semi-quantitative analysis of methylated tumor suppressor genes in cultured cells. To construct the probe, the GNP surfaces were coated with single-stranded DNA (ssDNA) by forming Au-S bonds. The ssDNA contains a thiolated 5'-end, a regulatory domain of 12 adenine nucleotides, and a functional domain with absolute pairing with methylated p16 sequence (Met-p16). The probe, paired with Met-p16, clearly changed the color of aggregating GNPs probe in 5 mol/L NaCl solution. Utilizing the probe, p16 gene methylation in HCT116 cells was semi-quantified. Further, the methylation of E-cadherin, p15, and p16 gene in Caco2, HepG2, and HCT116 cell lines were detected by the corresponding probes, constructed with three domains. This simple and cost-effective method was useful for the diagnosis of DNA methylation-related diseases. PMID:27325520

  6. Gold nanoparticles based colorimetric nanodiagnostics for cancer and infectious diseases

    NASA Astrophysics Data System (ADS)

    Valentini, Paola; Persano, Stefano; Cecere, Paola; Sabella, Stefania; Pompa, Pier Paolo

    2014-03-01

    Traditional in vitro diagnostics requires specialized laboratories and costly instrumentation, both for the amplification of nucleic acid targets (usually achieved by PCR) and for the assay readout, often based on fluorescence. We are developing hybrid nanomaterials-based sensors for the rapid and low-cost diagnosis of various disease biomarkers, for applications in portable platforms for diagnostics at the point-of-care. To this aim, we exploited the size and distancedependent optical properties of gold nanoparticles (AuNPs) to achieve colorimetric detection. Moreover, in order to avoid the complexity of thermal cycles associated to traditional PCR, the design of our systems includes signal amplification schemes, achieved by the use of enzymes (nucleases, helicase) or DNAzymes. Focused on instrument-free and sensitive detection, we carefully combined the intrinsic sensitivity by multivalency of functionalized AuNPs with isothermal and non-stringent enzyme-aided reaction conditions, controlled AuNPs aggregates, universal reporters and magnetic microparticles, the latter used both as a substrate and as a means for the colorimetric detection. We obtained simple and robust assays for the sensitive (pM range or better) naked-eye detection of cancer or infectious diseases (HPV, HCV) biomarkers, requiring no instrumentation except for a simple heating plate. Finally, we are also developing non-medical applications of these bio-nanosensors, such as in the development of on-field rapid tests for the detection of pollutants and other food and water contaminants.

  7. Utilizing Gold Nanoparticle Probes to Visually Detect DNA Methylation

    NASA Astrophysics Data System (ADS)

    Chen, Kui; Zhang, Mingyi; Chang, Ya-Nan; Xia, Lin; Gu, Weihong; Qin, Yanxia; Li, Juan; Cui, Suxia; Xing, Gengmei

    2016-06-01

    The surface plasmon resonance (SPR) effect endows gold nanoparticles (GNPs) with the ability to visualize biomolecules. In the present study, we designed and constructed a GNP probe to allow the semi-quantitative analysis of methylated tumor suppressor genes in cultured cells. To construct the probe, the GNP surfaces were coated with single-stranded DNA (ssDNA) by forming Au-S bonds. The ssDNA contains a thiolated 5'-end, a regulatory domain of 12 adenine nucleotides, and a functional domain with absolute pairing with methylated p16 sequence (Met- p16). The probe, paired with Met- p16, clearly changed the color of aggregating GNPs probe in 5 mol/L NaCl solution. Utilizing the probe, p16 gene methylation in HCT116 cells was semi-quantified. Further, the methylation of E-cadherin, p15, and p16 gene in Caco2, HepG2, and HCT116 cell lines were detected by the corresponding probes, constructed with three domains. This simple and cost-effective method was useful for the diagnosis of DNA methylation-related diseases.

  8. Diffraction patterns and nonlinear optical properties of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Majles Ara, M. H.; Dehghani, Z.; Sahraei, R.; Daneshfar, A.; Javadi, Z.; Divsar, F.

    2012-03-01

    Stable gold nanoparticles have been prepared by using soluble starch as both the reducing and stabilizing agents; this reaction was carried out at 40 °C for 5 h. The obtained gold nanoparticles were characterized by UV-Vis absorption spectroscopy, transmission electron microscopy (TEM) and z-scan technique. The size of these nanoparticles was found to be in the range of 12-22 nm as analyzed using transmission electron micrographs. The optical properties of gold nanoparticles have been measured showing the surface plasmon resonance. The second-order nonlinear optical (NLO) properties were investigated by using a continuous-wave (CW) He-Ne laser beam with a wavelength of 632.8 nm at three different incident intensities by means of single beam techniques. The nonlinear refractive indices of gold nanoparticles were obtained from close aperture z-scan in order of 10-7 cm2/W. Then, they were compared with diffraction patterns observed in far-field. The nonlinear absorption of these nanoparticles was obtained from open aperture z-scan technique. The values of nonlinear absorption coefficient are obtained in order of 10-1 cm/W.

  9. Spectroscopic studies of nucleic acid additions during seed-mediated growth of gold nanoparticles

    PubMed Central

    Tapp, Maeling; Sullivan, Rick; Dennis, Patrick; Naik, Rajesh R.

    2015-01-01

    The effect of adding nucleic acids to gold seeds during the growth stage of either nanospheres or nanorods was investigated using UV-Vis spectroscopy to reveal any oligonucleotide base or structure-specific effects on nanoparticle growth kinetics or plasmonic signatures. Spectral data indicate that the presence of DNA duplexes during seed ageing drastically accelerated nanosphere growth while the addition of single-stranded polyadenine at any point during seed ageing induces nanosphere aggregation. For seeds added to a gold nanorod growth solution, single-stranded polythymine induces a modest blue-shift in the longitudinal peak wavelength. Moreover, a particular sequence comprised of 50% thymine bases was found to induce a faster, more dramatic blue-shift in the longitudinal peak wavelength compared to any of the homopolymer incubation cases. Monomeric forms of the nucleic acids, however, do not yield discernable spectral differences in any of the gold suspensions studied. PMID:25960601

  10. Gold nanoparticle chemiresistors operating in biological fluids.

    PubMed

    Hubble, Lee J; Chow, Edith; Cooper, James S; Webster, Melissa; Müller, Karl-Heinz; Wieczorek, Lech; Raguse, Burkhard

    2012-09-01

    Functionalised gold nanoparticle (Au(NP)) chemiresistors are investigated for direct sensing of small organic molecules in biological fluids. The principle reason that Au(NP) chemiresistors, and many other sensing devices, have limited operation in biological fluids is due to protein and lipid fouling deactivating the sensing mechanism. In order to extend the capability of such chemiresistor sensors to operate directly in biofluids, it is essential to minimise undesirable matrix effects due to protein and lipidic components. Ultrafiltration membranes were investigated as semi-permeable size-selective barriers to prevent large biomolecule interactions with Au(NP) chemiresistors operating in protein-loaded biofluids. All of the ultrafiltration membranes protected the Au(NP) chemiresistors from fouling by the globular biomolecules, with the 10 kDa molecular weight cut-off size being optimum for operation in biofluids. Titrations of toluene in different protein-loaded fluids indicated that small molecule detection was possible. A sensor array consisting of six different thiolate-functionalised Au(NP) chemiresistors protected with a size-selective ultrafiltration membrane successfully identified, and discriminated the spoilage of pasteurised bovine milk. This proof-of-principle study demonstrates the on-chip protein separation and small metabolite detection capability, illustrating the potential for this technology in the field of microbial metabolomics. Overall, these results demonstrate that a sensor array can be protected from protein fouling with the use of a membrane, significantly increasing the possible application areas of Au(NP) chemiresistors ranging from the food industry to health services. PMID:22824995

  11. Synthesis, density functional theory, molecular dynamics and electrochemical studies of 3-thiopheneacetic acid-capped gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Sosibo, Ndabenhle M.; Mdluli, Phumlane S.; Mashazi, Philani N.; Dyan, Busiswa; Revaprasadu, Neerish; Nyokong, Tebello; Tshikhudo, Robert T.; Skepu, Amanda; van der Lingen, Elma

    2011-12-01

    Gold nanoparticles capped with a bifunctional ligand, 3-thiopheneacetic acid (3-TAA) were synthesised by borohydride reduction at room temperature. The transmission electron microscopy (TEM) analysis showed that the particle aggregates and had semi-linear partial linkages that could be attributed to multi-modal binding of the ligand with various gold nanoparticles through the terminal thiolether (-S-) group and oxygen of the carboxylic (-COOH) group. This bimodal interaction led to limited stability of the resultant nanoparticles when tested using highly electrolytic media. To investigate further, density functional theory (DFT) quantum chemical and molecular dynamic calculations were conducted. The energetically favorable binding modes of the ligand to gold nanoparticle surfaces using the Gaussian program were studied. The DFT results showed kinetic stability of Au-3-TAA-Au interactions leading to inter-particle coupling or aggregation. Electrochemical analysis of the resultant nature of the capping agent revealed that 3-thiopheneacetic acid did not form a polymer during the preparation of Au-3-TAA. The cyclic voltammograms of Au-3-TAA nanoparticles coated glassy carbon electrode showed a typical gold character with the oxidation and reduction peaks at 1.4 V and 0.9 V, respectively.

  12. Solvent-mediated plasmon-tuning in a gold nanoparticle-poly(ionic liquid) composite.

    SciTech Connect

    Batra, D.; Seifert, S.; Varela, L.; Firestone, M. A.

    2007-05-01

    The design, synthesis, and characterization of a hierarchically ordered composite whose structure and optical properties can be reversibly switched by adjustment of solvent conditions are described. Solvent-induced swelling and de-swelling is shown to provide control over the internal packing arrangement and hence, optical properties of in situ synthesized metal nanoparticles. Specifically, a gold-nanoparticle-containing ionic-liquid-derived polymer is synthesized in a single step by UV irradiation of a metal-ion-precursor-doped, self-assembled ionic liquid gel, 1-decyl-3-vinylimidazolium chloride. Small-angle X-ray scattering (SAXS) studies indicate that in the de-swollen state, the freestanding polymer adopts a perforated lamellar structure. Optical spectroscopy of the dried composite reveals plasmon resonances positioned in the near-IR. Strong particle-particle interactions arise from matrix-promoted formation of aggregated 1D clusters or chains of gold nanoparticles. Upon swelling in alcohol, the composite undergoes a structural conversion to a disordered structure, which is accompanied by a color change from purple to pale pink and a shift in the surface plasmon resonance to 527 nm, consistent with isolated, non-interacting particles. These results demonstrate the far-field tuning of the plasmonic spectrum of gold nanoparticles by solvent-mediated changes in its encapsulating matrix, offering a straightforward, low-cost strategy for the fabrication of nanophotonic materials.

  13. Femtosecond laser generated gold nanoparticles and their plasmonic properties

    NASA Astrophysics Data System (ADS)

    Das, Rupali; Navas M., P.; Soni, R. K.

    2016-05-01

    The pulsed laser ablation in liquid medium is now commonly used to generate stable colloidal nanoparticles (NPs) in absence of any chemical additives or stabilizer with diverse applications. In this paper, we report generation of gold NPs (Au NPs) by ultra-short laser pulses. Femtosecond (fs) laser radiation (λ = 800 nm) has been used to ablate a gold target in pure de-ionized water to produce gold colloids with smallsize distribution. The average size of the particles can be further controlled by subjecting to laser-induced post-irradiation providing a versatile physical method of size-selected gold nanoparticles. The optical extinction and morphological dimensions were investigated with UV-Vis spectroscopy and Transmission Electron Microscopy measurements, respectively. Finite difference time domain (FDTD) method is employed to calculate localized surface plasmon (LSPR) wavelength and the near-field generated by Au NPs and their hybrids.

  14. Synthesis of gold nanoparticles: an ecofriendly approach using Hansenula anomala.

    PubMed

    K, Sathish Kumar; R, Amutha; Arumugam, Palaniappan; Berchmans, Sheela

    2011-05-01

    This work describes a bioassisted approach for the preparation of metal nanoparticles using yeast species Hansenula anomala. Gold nanoparticles were prepared using gold salt as the precursor, amine-terminated polyamidoamine dendrimer as the stabilizer, and the extracellular material from H. anomala as the bioreductant. It could also be demonstrated that, using our approach, small molecules such as cysteine can act as stabilizers as well. This synthetic approach offers a greener alternative route to the preparation of gold sols that are devoid of cellular and toxic chemical components. The ability of as-synthesized gold sol to function as biological ink for producing patterns for the analysis of fingerprints and to act as an antimicrobial reagent is evaluated. The generality of this toxin-free synthetic approach to other metals was assessed using palladium and silver. PMID:21517037

  15. Welding of gold nanoparticles on graphitic templates for chemical sensing.

    PubMed

    Ding, Mengning; Sorescu, Dan C; Kotchey, Gregg P; Star, Alexander

    2012-02-22

    Controlled self-assembly of zero-dimensional gold nanoparticles and construction of complex gold nanostructures from these building blocks could significantly extend their applications in many fields. Carbon nanotubes are one of the most promising inorganic templates for this strategy because of their unique physical, chemical, and mechanical properties, which translate into numerous potential applications. Here we report the bottom-up synthesis of gold nanowires in aqueous solution through self-assembly of gold nanoparticles on single-walled carbon nanotubes followed by thermal-heating-induced nanowelding. We investigate the mechanism of this process by exploring different graphitic templates. The experimental work is assisted by computational studies that provide additional insight into the self-assembly and nanowelding mechanism. We also demonstrate the chemical sensitivity of the nanomaterial to parts-per-billion concentrations of hydrogen sulfide with potential applications in industrial safety and personal healthcare. PMID:22280145

  16. Long-term exposure to gold nanoparticles accelerates larval metamorphosis without affecting mass in wood frogs (Lithobates sylvaticus) at environmentally relevant concentrations.

    PubMed

    Fong, Peter P; Thompson, Lucas B; Carfagno, Gerardo L F; Sitton, Andrea J

    2016-09-01

    Nanoparticles are environmental contaminants of emerging concern. Exposure to engineered nanoparticles has been shown to have detrimental effects on aquatic organisms. The authors synthesized gold nanoparticles (18.1 ± 3.5 nm) and tested their effects on time to and weight at metamorphosis in wood frog (Lithobates sylvaticus) tadpoles, a species known to be sensitive to environmental stressors. Continuous exposure to all concentrations of gold nanoparticles (0.05 pM, 0.5 pM, and 5 pM in particles) for up to 55 d significantly reduced time to metamorphosis by as much as an average of 3 d (p < 0.05). However, exposure to gold nanoparticles had no effect on tadpole mass at metamorphosis. The approximately 18-nm gold nanoparticles used were metastable in dechlorinated tap water, resulting in a change in surface charge and aggregation over time, leading to negatively charged aggregates that were on the order of 60 nm to 110 nm. Nanoparticle aggregation could exacerbate the effect on time to metamorphosis. To the authors' knowledge, the present study is the first report on the effect of engineered nanoparticles of any kind on life-history variables in an amphibian, a taxonomic group that has been declining globally for at least 25 yr. Environ Toxicol Chem 2016;35:2304-2310. © 2016 SETAC. PMID:26873819

  17. Gold Nanoparticles in Biology and Medicine: Recent Advances and Prospects

    PubMed Central

    Dykman, L.A.; Khlebtsov, N.G.

    2011-01-01

    Functionalized gold nanoparticles with controlled geometrical and optical properties are the subject of intensive studies and biomedical applications, including genomics, biosensorics, immunoassays, clinical chemistry, laser phototherapy of cancer cells and tumors, the targeted delivery of drugs, DNA and antigens, optical bioimaging and the monitoring of cells and tissues with the use of state-of-the-art detection systems. This work will provide an overview of the recent advances and current challenges facing the biomedical application of gold nanoparticles of various sizes, shapes, and structures. The review is focused on the application of gold nanoparticle conjugates in biomedical diagnostics and analytics, photothermal and photodynamic therapies, as a carrier for delivering target molecules, and on the immunological and toxicological properties. Keeping in mind the huge volume and high speed of the data update rate, 2/3 of our reference list (certainly restricted to 250 Refs.) includes publications encompassing the past 5 years. PMID:22649683

  18. Biochemical synthesis of gold and zinc nanoparticles in reverse micelles

    NASA Astrophysics Data System (ADS)

    Egorova, E. M.

    2010-04-01

    Gold and zinc nanoparticles were obtained in AOT reverse micelles in isooctane by reduction of the corresponding metal ions by the natural pigment quercetin (the biochemical synthesis technique). Gold and zinc ions were introduced into the micellar solution of quercetin in the form of aqueous solutions, HAuCl4 and [Zn(NH3)4]SO4, to the water to AOT molar ratios 1-3 and 3-4, respectively. The process of nanoparticle formation was investigated by spectrophotometry. Nanoparticle size and shape were determined by transmission electron microscopy. The data obtained allow to conclude that there are two steps in metal ion-quercetin interaction: (1) complex formation, and (2) complex dissociation with subsequent formation of nanoparticles and a second product, presumably oxidized quercetin. Gold nanoparticles were found to be of various shapes (spheres, hexahedrons, triangles, and cylinders) and sizes, mainly in the 10-20 nm range; zinc nanoparticles are chiefly spherical and ˜5 nm in size. In both cases, the nanoparticles are stable in the air in micellar solution over long periods of time (from a several months to a several years).

  19. Gold and Gallium Nanoparticle Growth on Silicon (100)

    NASA Astrophysics Data System (ADS)

    Madsen, Rees; Brown, Hunter L.; Ames, Sadie; Rasmussen, J. Leland; Tobler, Samuel

    2014-03-01

    Nanoparticles are used for various applications in today's research. Some researcher's interests involve using the nanoparticles to grow silicon nanowires on a silicon substrate. Before growing nanowires can be accomplished a study must be made of the formation of nanoparticles. Most often the metal used to make the nanoparticles is gold. In this study both gold and gallium were used to make the nanoparticles, by thermal evaporation. The gold and gallium nanoparticles were grown on silicon (100). Between one to three monolayers of material was added to the substrate, with the particle sizes ranging from 0.5 microns to 3 microns in diameter. Densities of nanoparticles varied based on the time of growth and on the intensity of the source. The variable sizes were seen with sample temperatures between 700 C and 900 C measured using a disappearing filament optical pyrometer. The growth process occurred at pressures below 3e-7 Torr. This presentation will summarize the growth process and show the similarities and differences between the two metals.

  20. Sub-chronic toxicity of gold nanoparticles in male mice

    PubMed Central

    Ajdary, Marziyeh; Ghahnavieh, Marziyeh Ziaee; Naghsh, Nooshin

    2015-01-01

    Background: Gold nanoparticles have many industrial applications; moreover, they are photothermic agents for clinical treatment of cancer. This study was provided to investigate the effects associated with different doses of applied gold nanoparticles by injection and contact procedures on the alterations of the serum levels and certain factors in male mice. Materials and Methods: 72 male mice were randomly assigned into two protocols in terms of touching and injection. The injection protocol was included of five groups: Sham, control, 25, 50, and 100 ppm. They received gold nanoparticles at 25, 50, and 100 ppm concentrations administered in form of 0.3 ml/day for the period of 14 days and that of touching protocol were received 0.2 ml/day gold nanoparticles. Blood sample of which was taken to measure the serum level of creatine kinase phosphate, fasting blood, creatinine, albumin, blood urea nitrogen and eventually, the kidney was dissected for the intent of pathological analysis. Results: The serum level of creatine kinase phosphate and fasting blood sugar at middle dose was significantly different (P ≤ 0.05) in touching protocol. In both protocols, the serum level of creatinine in high and medium doses showed a significant difference (P < 0.05) associated with the treated group. In the touching method, in high and medium doses administered to the treated group, the alteration was significant (P ≤ 0.05). In the both protocols, the serum level of albumin in high and medium doses of the treated group showed significant difference (P < 0.05). Thus, the gold nanoparticles could result in undesirable effects upon kidney tissue. Conclusion: The result of this study indicated that the administration of gold nanoparticles by touching method was more effective on the serum levels of these factors than that of injection method. PMID:25878992

  1. In situgrowth of gold nanoparticles on latent fingerprints--from forensic applications to inkjet printed nanoparticle patterns

    NASA Astrophysics Data System (ADS)

    Hussain, Irshad; Hussain, Syed Zajif; Habib-Ur-Rehman, Affa; Ihsan, Ayesha; Rehman, Asma; Khalid, Zafar M.; Brust, Mathias; Cooper, Andrew I.

    2010-12-01

    Latent fingerprints are made visible in a single step by in situgrowth of gold nanoparticles on ridge patterns. The chemicals, among the essential components of human sweat, found responsible for the formation and assembly of gold nanoparticles are screened and used as ink to write invisible patterns, using common ball pen and inkjet printer, which are then developed by selectively growing gold nanoparticles by soaking them in gold salt solution.Latent fingerprints are made visible in a single step by in situgrowth of gold nanoparticles on ridge patterns. The chemicals, among the essential components of human sweat, found responsible for the formation and assembly of gold nanoparticles are screened and used as ink to write invisible patterns, using common ball pen and inkjet printer, which are then developed by selectively growing gold nanoparticles by soaking them in gold salt solution. Electronic supplementary information (ESI) available: Detailed experimental procedure and some supporting images. See DOI: 10.1039/c0nr00593b

  2. Laser-targeted photofabrication of gold nanoparticles inside cells.

    PubMed

    Smith, Nicholas I; Mochizuki, Kentaro; Niioka, Hirohiko; Ichikawa, Satoshi; Pavillon, Nicolas; Hobro, Alison J; Ando, Jun; Fujita, Katsumasa; Kumagai, Yutaro

    2014-01-01

    Nanoparticle manipulation is of increasing interest, since they can report single molecule-level measurements of the cellular environment. Until now, however, intracellular nanoparticle locations have been essentially uncontrollable. Here we show that by infusing a gold ion solution, focused laser light-induced photoreduction allows in situ fabrication of gold nanoparticles at precise locations. The resulting particles are pure gold nanocrystals, distributed throughout the laser focus at sizes ranging from 2 to 20 nm, and remain in place even after removing the gold solution. We demonstrate the spatial control by scanning a laser beam to write characters in gold inside a cell. Plasmonically enhanced molecular signals could be detected from nanoparticles, allowing their use as nano-chemical probes at targeted locations inside the cell, with intracellular molecular feedback. Such light-based control of the intracellular particle generation reaction also offers avenues for in situ plasmonic device creation in organic targets, and may eventually link optical and electron microscopy. PMID:25298313

  3. Natural organic matter concentration and hydrochemistry influence aggregation kinetics of functionalized engineered nanoparticles.

    PubMed

    Liu, Junfeng; Legros, Samuel; von der Kammer, Frank; Hofmann, Thilo

    2013-05-01

    Understanding the colloidal stability of functionalized engineered nanoparticles (FENPs) in aquatic environments is of paramount importance in order to assess the risk related to FENPs. In this study, gold nanoparticles (GNPs) of 68 and 43 nm diameter, coated with citrate and 11-mercaptoundecanoic acid (MUA) respectively, were used as models of FENPs. Time-resolved dynamic light scattering was employed to investigate the aggregation kinetics of two types of GNPs. The results show that without Suwannee river natural organic matter (SRNOM), MUA coating resulted in greater stability than citrate coating for GNPs. Cations have a destabilizing effect on both GNPs following the order Ca(2+) ≈ Mg(2+) > Na(+); different anions (Cl(-) and SO4(2-)) showed no difference in effects. In the fast aggregation regime, adding SRNOM enhanced the stability of MUA-coated GNPs in both Ca(2+) and Mg(2+) solutions. However citrate-coated GNPs were only stabilized in Mg(2+) solution but enhanced aggregation occurred in high Ca(2+) concentration due to interparticle bridging. For the investigated GNPs and in the presence of SRNOM, Ca(2+) does not always act as a strong coagulant. This indicates that for the new materials emerging from the application of nanotechnology the well-described aggregation mechanisms of colloids in the environment require a detailed re-examination. PMID:23560437

  4. Bio-mediated synthesis, characterization and cytotoxicity of gold nanoparticles.

    PubMed

    Klekotko, Magdalena; Matczyszyn, Katarzyna; Siednienko, Jakub; Olesiak-Banska, Joanna; Pawlik, Krzysztof; Samoc, Marek

    2015-11-21

    We report here a "green" approach for the synthesis of gold nanoparticles (GNPs) in which the Mentha piperita extract was applied for the bioreduction of chloroauric acid and the stabilization of the formed nanostructures. The obtained GNPs were characterized by UV-Vis absorption spectroscopy and transmission electron microscopy (TEM). The reduction of gold ions with the plant extract leads to the production of nanoparticles with various shapes (spherical, triangular and hexagonal) and sizes (from 10 to 300 nm). The kinetics of the reaction was monitored and various conditions of the synthesis were investigated. As a result, we established protocols optimized towards the synthesis of nanospheres and nanoprisms of gold. The cytotoxic effect of the obtained gold nanoparticles was studied by performing MTT assay, which showed lower cytotoxicity of the biosynthesized GNPs compared to gold nanorods synthesized using the usual seed-mediated growth. The results suggest that the synthesis using plant extracts may be a useful method to produce gold nanostructures for various biological and medical applications. PMID:26456245

  5. Gold nanoparticles in breast cancer treatment: Promise and potential pitfalls

    PubMed Central

    Lee, Jihyoun; Chatterjee, Dev Kumar; Lee, Min Hyuk; Krishnan, Sunil

    2014-01-01

    Despite remarkable achievements in the treatment of breast cancer, some obstacles still remain. Gold nanoparticles may prove valuable in addressing these problems owing to their unique characteristics, including their enhanced permeability and retention in tumor tissue, their light absorbance and surface plasmon resonance in near-infrared light, their interaction with radiation to generate secondary electrons, and their ability to be conjugated with drugs or other agents. Herein, we discuss some basic concepts of gold nanoparticles, and early results from studies regarding their use in breast cancer, including toxicity and side effects. We also discuss these particles’ potential clinical applications. PMID:24556077

  6. Gold nanoparticles in breast cancer treatment: promise and potential pitfalls.

    PubMed

    Lee, Jihyoun; Chatterjee, Dev Kumar; Lee, Min Hyuk; Krishnan, Sunil

    2014-05-28

    Despite remarkable achievements in the treatment of breast cancer, some obstacles still remain. Gold nanoparticles may prove valuable in addressing these problems owing to their unique characteristics, including their enhanced permeability and retention in tumor tissue, their light absorbance and surface plasmon resonance in near-infrared light, their interaction with radiation to generate secondary electrons, and their ability to be conjugated with drugs or other agents. Herein, we discuss some basic concepts of gold nanoparticles, and early results from studies regarding their use in breast cancer, including toxicity and side effects. We also discuss these particles' potential clinical applications. PMID:24556077

  7. Biointeractions of ultrasmall glutathione-coated gold nanoparticles: effect of small size variations

    NASA Astrophysics Data System (ADS)

    Sousa, Alioscka A.; Hassan, Sergio A.; Knittel, Luiza L.; Balbo, Andrea; Aronova, Maria A.; Brown, Patrick H.; Schuck, Peter; Leapman, Richard D.

    2016-03-01

    Recent in vivo studies have established ultrasmall (<3 nm) gold nanoparticles coated with glutathione (AuGSH) as a promising platform for applications in nanomedicine. However, systematic in vitro investigations to gain a more fundamental understanding of the particles' biointeractions are still lacking. Herein we examined the behavior of ultrasmall AuGSH in vitro, focusing on their ability to resist aggregation and adsorption from serum proteins. Despite having net negative charge, AuGSH particles were colloidally stable in biological media and able to resist binding from serum proteins, in agreement with the favorable bioresponses reported for AuGSH in vivo. However, our results revealed disparate behaviors depending on nanoparticle size: particles between 2 and 3 nm in core diameter were found to readily aggregate in biological media, whereas those strictly under 2 nm were exceptionally stable. Molecular dynamics simulations provided microscopic insight into interparticle interactions leading to aggregation and their sensitivity to the solution composition and particle size. These results have important implications, in that seemingly small variations in size can impact the biointeractions of ultrasmall AuGSH, and potentially of other ultrasmall nanoparticles as well.Recent in vivo studies have established ultrasmall (<3 nm) gold nanoparticles coated with glutathione (AuGSH) as a promising platform for applications in nanomedicine. However, systematic in vitro investigations to gain a more fundamental understanding of the particles' biointeractions are still lacking. Herein we examined the behavior of ultrasmall AuGSH in vitro, focusing on their ability to resist aggregation and adsorption from serum proteins. Despite having net negative charge, AuGSH particles were colloidally stable in biological media and able to resist binding from serum proteins, in agreement with the favorable bioresponses reported for AuGSH in vivo. However, our results revealed disparate

  8. Characterization of Nanoparticle Aggregation in Biologically Relevant Fluids

    NASA Astrophysics Data System (ADS)

    McEnnis, Kathleen; Lahann, Joerg

    Nanoparticles (NPs) are often studied as drug delivery vehicles, but little is known about their behavior in blood once injected into animal models. If the NPs aggregate in blood, they will be shunted to the liver or spleen instead of reaching the intended target. The use of animals for these experiments is costly and raises ethical questions. Typically dynamic light scattering (DLS) is used to analyze aggregation behavior, but DLS cannot be used because the components of blood also scatter light. As an alternative, a method of analyzing NPs in biologically relevant fluids such as blood plasma has been developed using nanoparticle tracking analysis (NTA) with fluorescent filters. In this work, NTA was used to analyze the aggregation behavior of fluorescent polystyrene NPs with different surface modifications in blood plasma. It was expected that different surface chemistries on the particles will change the aggregation behavior. The effect of the surface modifications was investigated by quantifying the percentage of NPs in aggregates after addition to blood plasma. The use of this characterization method will allow for better understanding of particle behavior in the body, and potential problems, specifically aggregation, can be addressed before investing in in vivo studies.

  9. Gold nanoparticle localization at the core surface by using thermosensitive core-shell particles as a template.

    PubMed

    Suzuki, Daisuke; Kawaguchi, Haruma

    2005-12-01

    We report novel thermosensitive hybrid core-shell particles via in situ gold nanoparticle formation using thermosensitive core-shell particles as a template. This method for the in situ synthesis of gold nanoparticles with microgel interiors offers the advantage of eliminating or significantly reducing particle aggregation. In addition, by using thermosensitive microgel structures in which the shell has thermosensitive and gel properties in water--whereas the core itself is a water-insoluble polymer--we were able to synthesize the gold nanoparticles only at the surface of the core, which had reactive sites to bind metal ions. After the gold nanoparticles were synthesized, electroless gold plating was carried out to control the thickness of the gold nanoshells. The dispersions of the obtained hybrid particles were characterized by dynamic light scattering and UV-vis absorption spectroscopy, and the dried particles were also observed by electron microscopy. Adaptation of the technique shown here will create a number of applications as optical, electronic, and biomedical functional materials. PMID:16316147

  10. Nucleation and island growth of alkanethiolate ligand domains on gold nanoparticles.

    PubMed

    Wang, Yifeng; Zeiri, Offer; Neyman, Alevtina; Stellacci, Francesco; Weinstock, Ira A

    2012-01-24

    The metal oxide cluster α-AlW(11)O(39)(9-) (1), readily imaged by cryogenic transmission electron microscopy (cryo-TEM), is used as a diagnostic protecting anion to investigate the self-assembly of alkanethiolate monolayers on electrostatically stabilized gold nanoparticles in water. Monolayers of 1 on 13.8 ± 0.9 nm diameter gold nanoparticles are displaced from the gold surface by mercaptoundecacarboxylate, HS(CH(2))(10)CO(2)(-) (11-MU). During this process, no aggregation is observed by UV-vis spectroscopy, and the intermediate ligand-shell organizations of 1 in cryo-TEM images indicate the presence of growing hydrophobic domains, or "islands", of alkanethiolates. UV-vis spectroscopic "titrations", based on changes in the surface plasmon resonance upon exchange of 1 by thiol, reveal that the 330 ± 30 molecules of 1 initially present on each gold nanoparticle are eventually replaced by 2800 ± 30 molecules of 11-MU. UV-vis kinetic data for 11-MU-monolayer formation reveal a slow phase, followed by rapid self-assembly. The Johnson, Mehl, Avrami, and Kolmogorov model gives an Avrami parameter of 2.9, indicating continuous nucleation and two-dimensional island growth. During nucleation, incoming 11-MU ligands irreversibly displace 1 from the Au-NP surface via an associative mechanism, with k(nucleation) = (6.1 ± 0.4) × 10(2) M(-1) s(-1), and 19 ± 8 nuclei, each comprised of ca. 8 alkanethiolates, appear on the gold-nanoparticle surface before rapid growth becomes kinetically dominant. Island growth is also first-order in [11-MU], and its larger rate constant, k(growth), (2.3 ± 0.2) × 10(4) M(-1) s(-1), is consistent with destabilization of molecules of 1 at the boundaries between the hydrophobic (alkanethiolate) and the electrostatically stabilized (inorganic) domains. PMID:22136457

  11. Near-field heat transfer between gold nanoparticle arrays

    SciTech Connect

    Phan, Anh D.; Phan, The-Long; Woods, Lilia M.

    2013-12-07

    The radiative heat transfer between gold nanoparticle layers is presented using the coupled dipole method. Gold nanoparticles are modelled as effective electric and magnetic dipoles interacting via electromagnetic fluctuations. The effect of higher-order multipoles is implemented in the expression of electric polarizability to calculate the interactions at short distances. Our findings show that the near-field radiation reduces as the radius of the nanoparticles is increased. Also, the magnetic dipole contribution to the heat exchange becomes more important for larger particles. When one layer is displayed in parallel with respect to the other layer, the near-field heat transfer exhibits oscillatory-like features due to the influence of the individual nanostructures. Further details about the effect of the nanoparticles size are also discussed.

  12. Synthesis, characterization, and functionalization of gold nanoparticles for cancer imaging.

    PubMed

    Craig, Gary A; Allen, Peter J; Mason, Michael D

    2010-01-01

    This chapter describes the methodology by which mAb-F19-conjugated gold nanoparticles were prepared and used to label human pancreatic adenocarcinoma. Specifically, gold nanoparticles were coated with dithiol bearing hetero-bifunctional PEG (polyethylene glycol), and cancer-specific mAb F19 was attached by means of NHS-EDC coupling chemistry taking advantage of a carboxylic acid group on the heterobifunctional PEG. These conjugates were completely stable and were characterized by a variety of methods, including UV-Vis absorbance spectrometry, darkfield microscopy, DLS (dynamic light scattering), TEM (transmission electron microscopy), SEC (size-exclusion chromatography), and confocal microscopy. Nanoparticle bioconjugates were used to label sections of healthy and cancerous human pancreatic tissue. Labeled tissue sections were examined by darkfield microscopy and indicate that these nanoparticle bioconjugates may selectively bind to cancerous tissue and provide a means of optical contrast. PMID:20217596

  13. Gold Nanoparticle-Polymer/Biopolymer Complexes for Protein Sensing

    PubMed Central

    Moyano, Daniel F.; Rana, Subinoy; Bunz, Uwe H. F.; Rotello, Vincent M.

    2014-01-01

    Nanoparticle-based sensor arrays have been used to distinguish a wide range of biomolecular targets through pattern recognition. Such biosensors require selective receptors that generate a unique response pattern for each analyte. The tunable surface properties of gold nanoparticles make these systems excellent candidates for the recognition process. Likewise, the metallic core makes these particles fluorescence superquenchers, facilitating transduction of the binding event. In this report we analyze the role of gold nanoparticles as receptors in differentiating a diversity of important human proteins different, and the role of the polymer/biopolymer fluorescent probes for transducing the binding event. A structure-activity relationship analysis of both the probes and the nanoparticles is presented, providing direction for the engineering of future sensor systems. PMID:22455037

  14. Contrasting effects of nanoparticle-protein attraction on amyloid aggregation

    PubMed Central

    Radic, Slaven; Davis, Thomas P; Ke, Pu Chun; Ding, Feng

    2015-01-01

    Nanoparticles (NPs) have been experimentally found to either promote or inhibit amyloid aggregation of proteins, but the molecular mechanisms for such complex behaviors remain unknown. Using coarse-grained molecular dynamics simulations, we investigated the effects of varying the strength of nonspecific NP-protein attraction on amyloid aggregation of a model protein, the amyloid-beta peptide implicated in Alzheimer's disease. Specifically, with increasing NP-peptide attraction, amyloid aggregation on the NP surface was initially promoted due to increased local protein concentration on the surface and destabilization of the folded state. However, further increase of NP-peptide attraction decreased the stability of amyloid fibrils and reduced their lateral diffusion on the NP surface necessary for peptide conformational changes and self-association, thus prohibiting amyloid aggregation. Moreover, we found that the relative concentration between protein and NPs also played an important role in amyloid aggregation. With a high NP/protein ratio, NPs that intrinsically promote protein aggregation may display an inhibitive effect by depleting the proteins in solution while having a low concentration of the proteins on each NP's surface. Our coarse-grained molecular dynamics simulation study offers a molecular mechanism for delineating the contrasting and seemingly conflicting effects of NP-protein attraction on amyloid aggregation and highlights the potential of tailoring anti-aggregation nanomedicine against amyloid diseases. PMID:26989481

  15. Gold nanoparticles deposited on glass: physicochemical characterization and cytocompatibility

    NASA Astrophysics Data System (ADS)

    Reznickova, Alena; Novotna, Zdenka; Kasalkova, Nikola Slepickova; Svorcik, Vaclav

    2013-05-01

    Properties of gold films sputtered under different conditions onto borosilicate glass substrate were studied. Mean thickness of sputtered gold film was measured by gravimetry, and film contact angle was determined by goniometry. Surface morphology was examined by atomic force microscopy, and electrical sheet resistance was determined by two-point technique. The samples were seeded with rat vascular smooth muscle cells, and their adhesion and proliferation were studied. Gold depositions lead to dramatical changes in the surface morphology and roughness in comparison to pristine substrate. For sputtered gold structures, the rapid decline of the sheet resistance appears on structures deposited for the times above 100 s. The thickness of deposited gold nanoparticles/layer is an increasing function of sputtering time and current. AFM images prove the creation of separated gold islands in the initial deposition phase and a continuous gold coverage for longer deposition times. Gold deposition has a positive effect on the proliferation of vascular smooth muscle cells. Largest number of cells was observed on sample sputtered with gold for 20 s and at the discharge current of 40 mA. This sample exhibits lowest contact angle, low relative roughness, and only mild increase of electrical conductivity.

  16. Complete light annihilation in an ultrathin layer of gold nanoparticles.

    PubMed

    Svedendahl, Mikael; Johansson, Peter; Käll, Mikael

    2013-07-10

    We experimentally demonstrate that an incident light beam can be completely annihilated in a single layer of randomly distributed, widely spaced gold nanoparticle antennas. Under certain conditions, each antenna dissipates more than 10 times the number of photons that enter its geometric cross-sectional area. The underlying physics can be understood in terms of a critical coupling to localized plasmons in the nanoparticles or, equivalently, in terms of destructive optical Fano interference and so-called coherent absorption. PMID:23806090

  17. Assembly of hybrid oligonucleotide modified gold (Au) and alloy nanoparticles building blocks.

    PubMed

    Kuo, Yu-Ching; Jen, Chun-Ping; Chen, Yu-Hung; Su, Chia-Hao; Tsai, Shu-Hui; Yeh, Chen-Sheng

    2006-01-01

    The alloy-based hybrid materials with macroscopic network arrays were developed by AuAg/Au and AuAgPd/Au nanoparticle composites through oligonucleotides hybridization. AuAg/Au and AuAgPd/Au exhibited distinct organization. The morphology of AuAg/Au conjugation assembled mainly as compact aggregates while AuAgPd/Au hybrid conjugated into the loosen network assemblies. The dehybridization temperatures were studied as a function of molar ratio of alloy/Au. It was found that higher alloy/gold molar ratio led to stronger hybridization for alloy/gold composite, accompanied with increased melting temperature. These results could be interpreted in terms of more alloy nanoparticles bound to a Au particle when the molar ratio of alloy/gold increased. The thermal analysis also showed that AuAg/Au exhibited higher dehybridization temperature. A modified model describing the dehybridization probability of an intact Au/alloy aggregate was performed to support the dehybridization temperature increased with increasing alloy/Au molar ratio. As to more oligonucleotides carried by AuAg (4.9 +/- 1.9 nm) than by AuAgPd (4.4 +/- 1.5 nm) due to larger size in AuAg, the efficient hybridization could result in higher dehybridization temperature in AuAg/Au. PMID:16573077

  18. Quantitative detection of liver-relevant biomarkers by SERS-immunolabeled gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Payne, William Mark

    Lab-on-a-chip technology has the potential to rapidly change the way experiments are conducted in a variety of fields ranging from medicine to environmental science. Specifically, sensors, detectors, and monitoring devices are increasingly being miniaturized to perform many experiments or measurements on a single chip. In this research, we develop an immunolabeled gold nanoparticle complex capable of detecting liver organoid biomarkers intended for use in a microfluidic device. Human Serum Albumin (HSA) and alpha-Glutathione S-Transferase (alpha-GST) are liver biomarkers that indicate liver health and damage respectively. Herein we demonstrate detection of the liver organoid biomarkers at nanomolar concentrations. Through plasmonic coupling induced by aggregation in the presence of analyte, the SERS signal obtained from the nanoparticles is dramatically increased. Furthermore, detection is demonstrated in a simple fluidic device to show the feasibility of implementing an optimized SERS-immunolabeled nanoparticle for translational application.

  19. Gold nanoparticle capture within protein crystal scaffolds.

    PubMed

    Kowalski, Ann E; Huber, Thaddaus R; Ni, Thomas W; Hartje, Luke F; Appel, Karina L; Yost, Jarad W; Ackerson, Christopher J; Snow, Christopher D

    2016-07-01

    DNA assemblies have been used to organize inorganic nanoparticles into 3D arrays, with emergent properties arising as a result of nanoparticle spacing and geometry. We report here the use of engineered protein crystals as an alternative approach to biologically mediated assembly of inorganic nanoparticles. The protein crystal's 13 nm diameter pores result in an 80% solvent content and display hexahistidine sequences on their interior. The hexahistidine sequence captures Au25(glutathione)∼17 (nitrilotriacetic acid)∼1 nanoclusters throughout a chemically crosslinked crystal via the coordination of Ni(ii) to both the cluster and the protein. Nanoparticle loading was validated by confocal microscopy and elemental analysis. The nanoparticles may be released from the crystal by exposure to EDTA, which chelates the Ni(ii) and breaks the specific protein/nanoparticle interaction. The integrity of the protein crystals after crosslinking and nanoparticle capture was confirmed by single crystal X-ray crystallography. PMID:27264210

  20. Light absorption and plasmon - exciton interaction in three-layer nanorods with a gold core and outer shell composed of molecular J- and H-aggregates of dyes

    NASA Astrophysics Data System (ADS)

    Shapiro, B. I.; Tyshkunova, E. S.; Kondorskiy, A. D.; Lebedev, V. S.

    2015-12-01

    Optical properties of hybrid rod-like nanoparticles, consisting of a gold core, an intermediate passive organic layer (spacer) and outer layer of ordered molecular cyanine dye aggregates, are experimentally and theoretically investigated. It is shown that these dyes can form not only ordered J-aggregates but also H-aggregates (differing by the packing angle of dye molecules in an aggregate and having other spectral characteristics) in the outer shell of the hybrid nanostructure. Absorption spectra of synthesised three-layer nanorods are recorded, and their sizes are determined. The optical properties of the composite nanostructures under study are found to differ significantly, depending on the type of the molecular aggregate formed in the outer shell. The experimental data are quantitatively explained based on computer simulation using the finite-difference time-domain (FDTD) method, and characteristic features of the plasmon - exciton interaction in the systems under study are revealed.

  1. Gold nanoparticle capture within protein crystal scaffolds

    NASA Astrophysics Data System (ADS)

    Kowalski, Ann E.; Huber, Thaddaus R.; Ni, Thomas W.; Hartje, Luke F.; Appel, Karina L.; Yost, Jarad W.; Ackerson, Christopher J.; Snow, Christopher D.

    2016-06-01

    DNA assemblies have been used to organize inorganic nanoparticles into 3D arrays, with emergent properties arising as a result of nanoparticle spacing and geometry. We report here the use of engineered protein crystals as an alternative approach to biologically mediated assembly of inorganic nanoparticles. The protein crystal's 13 nm diameter pores result in an 80% solvent content and display hexahistidine sequences on their interior. The hexahistidine sequence captures Au25(glutathione)~17 (nitrilotriacetic acid)~1 nanoclusters throughout a chemically crosslinked crystal via the coordination of Ni(ii) to both the cluster and the protein. Nanoparticle loading was validated by confocal microscopy and elemental analysis. The nanoparticles may be released from the crystal by exposure to EDTA, which chelates the Ni(ii) and breaks the specific protein/nanoparticle interaction. The integrity of the protein crystals after crosslinking and nanoparticle capture was confirmed by single crystal X-ray crystallography.DNA assemblies have been used to organize inorganic nanoparticles into 3D arrays, with emergent properties arising as a result of nanoparticle spacing and geometry. We report here the use of engineered protein crystals as an alternative approach to biologically mediated assembly of inorganic nanoparticles. The protein crystal's 13 nm diameter pores result in an 80% solvent content and display hexahistidine sequences on their interior. The hexahistidine sequence captures Au25(glutathione)~17 (nitrilotriacetic acid)~1 nanoclusters throughout a chemically crosslinked crystal via the coordination of Ni(ii) to both the cluster and the protein. Nanoparticle loading was validated by confocal microscopy and elemental analysis. The nanoparticles may be released from the crystal by exposure to EDTA, which chelates the Ni(ii) and breaks the specific protein/nanoparticle interaction. The integrity of the protein crystals after crosslinking and nanoparticle capture was

  2. The structure and properties of graphene on gold nanoparticles.

    PubMed

    Osváth, Z; Deák, A; Kertész, K; Molnár, Gy; Vértesy, G; Zámbó, D; Hwang, C; Biró, L P

    2015-03-12

    Graphene covered metal nanoparticles constitute a novel type of hybrid material, which provides a unique platform to study plasmonic effects, surface-enhanced Raman scattering (SERS), and metal-graphene interactions at the nanoscale. Such a hybrid material is fabricated by transferring graphene grown by chemical vapor deposition onto closely spaced gold nanoparticles produced on a silica wafer. The morphology and physical properties of nanoparticle-supported graphene are investigated by atomic force microscopy, optical reflectance spectroscopy, scanning tunneling microscopy and spectroscopy (STM/STS), and confocal Raman spectroscopy. This study shows that the graphene Raman peaks are enhanced by a factor which depends on the excitation wavelength, in accordance with the surface plasmon resonance of the gold nanoparticles, and also on the graphene-nanoparticle distance which is tuned by annealing at moderate temperatures. The observed SERS activity is correlated with the nanoscale corrugation of graphene. STM and STS measurements show that the local density of electronic states in graphene is modulated by the underlying gold nanoparticles. PMID:25735599

  3. Vascular targeting of a gold nanoparticle to breast cancer metastasis

    PubMed Central

    Peiris, Pubudu M.; Deb, Partha; Doolittle, Elizabeth; Doron, Gilad; Goldberg, Amy; Govender, Priya; Shah, Shruti; Rao, Swetha; Carbone, Sarah; Cotey, Thomas; Sylvestre, Meilyn; Singh, Sohaj; Schiemann, William P.; Lee, Zhenghong; Karathanasis, Efstathios

    2015-01-01

    The vast majority of breast cancer deaths are due to metastatic disease. While deep tissue targeting of nanoparticles is suitable for some primary tumors, vascular targeting may be a more attractive strategy for micrometastasis. This study combined a vascular targeting strategy with the enhanced targeting capabilities of a nanoparticle to evaluate the ability of a gold nanoparticle to specifically target the early spread of metastatic disease. As a ligand for the vascular targeting strategy, we utilized a peptide targeting alpha(v) beta(3) integrin, which is functionally linked to the development of micrometastases at a distal site. By employing a straightforward radiolabeling method to incorporate Technetium-99m into the gold nanoparticles, we used the high sensitivity of radionuclide imaging to monitor the longitudinal accumulation of the nanoparticles in metastatic sites. Animal and histological studies showed that vascular targeting of the nanoparticle facilitated highly accurate targeting of micrometastasis in the 4T1 mouse model of breast cancer metastasis using radionuclide imaging and a low dose of the nanoparticle. Due to the efficient targeting scheme, 14% of the injected AuNP deposited at metastatic sites in the lungs within 60 min after injection, indicating that the vascular bed of metastasis is a viable target site for nanoparticles. PMID:26036431

  4. Effect of gold ion concentration on size and properties of gold nanoparticles in TritonX-100 based inverse microemulsions

    NASA Astrophysics Data System (ADS)

    Ahmad, Tokeer; Wani, Irshad A.; Ahmed, Jahangeer; Al-Hartomy, Omar A.

    2014-04-01

    Gold nanoparticles have been prepared successfully using TritonX-100 inverse microemulsion at different concentrations of HAuCl4 (0.1, 0.05, 0.04, 0.03, 0.02 and 0.01 M). We have studied the effect of gold ion concentration on the particle size, morphology, surface area and optical properties of the gold nanoparticles. The gold nanoparticles were characterized by X-ray diffraction, transmission electron microscopy, UV-Visible spectroscopy and Brunauer-Emmett-Teller surface area analysis. X-ray diffraction studies show the monophasic nature of the gold nanoparticles. TritonX-100 stabilized gold nanoparticles were appeared to be agglomerated at higher concentrations (0.1 and 0.05 M) of Au3+ with an average grain size of 60 and 50 nm, respectively. Monodisperse and uniform gold nanoparticles with well-defined morphologies of an average grain size of 15 and 25 nm were obtained at lower concentrations (0.01 and 0.02 M). UV-Visible spectroscopy shows the characteristic surface plasmon resonance peak ~540 nm along with the peaks at shorter and longer wavelengths may be due to the higher order plasmon resonance of the gold nanoparticles. The surface areas of the gold nanoparticles were found to be in the range of 5.8-107 m2/g which were well in agreement with the electron microscopic studies.

  5. Effect of gold ion concentration on size and properties of gold nanoparticles in TritonX-100 based inverse microemulsions

    NASA Astrophysics Data System (ADS)

    Ahmad, Tokeer; Wani, Irshad A.; Ahmed, Jahangeer; Al-Hartomy, Omar A.

    2013-04-01

    Gold nanoparticles have been prepared successfully using TritonX-100 inverse microemulsion at different concentrations of HAuCl4 (0.1, 0.05, 0.04, 0.03, 0.02 and 0.01 M). We have studied the effect of gold ion concentration on the particle size, morphology, surface area and optical properties of the gold nanoparticles. The gold nanoparticles were characterized by X-ray diffraction, transmission electron microscopy, UV-Visible spectroscopy and Brunauer-Emmett-Teller surface area analysis. X-ray diffraction studies show the monophasic nature of the gold nanoparticles. TritonX-100 stabilized gold nanoparticles were appeared to be agglomerated at higher concentrations (0.1 and 0.05 M) of Au3+ with an average grain size of 60 and 50 nm, respectively. Monodisperse and uniform gold nanoparticles with well-defined morphologies of an average grain size of 15 and 25 nm were obtained at lower concentrations (0.01 and 0.02 M). UV-Visible spectroscopy shows the characteristic surface plasmon resonance peak ~540 nm along with the peaks at shorter and longer wavelengths may be due to the higher order plasmon resonance of the gold nanoparticles. The surface areas of the gold nanoparticles were found to be in the range of 5.8-107 m2/g which were well in agreement with the electron microscopic studies.

  6. Biofunctionalized gold nanoparticles for colorimetric sensing of botulinum neurotoxin A light chain.

    PubMed

    Liu, Xiaohu; Wang, Yi; Chen, Peng; Wang, Yusong; Zhang, Jinling; Aili, Daniel; Liedberg, Bo

    2014-03-01

    Botulinum neurotoxin is considered as one of the most toxic food-borne substances and is a potential bioweapon accessible to terrorists. The development of an accurate, convenient, and rapid assay for botulinum neurotoxins is therefore highly desirable for addressing biosafety concerns. Herein, novel biotinylated peptide substrates designed to mimic synaptosomal-associated protein 25 (SNAP-25) are utilized in gold nanoparticle-based assays for colorimetric detection of botulinum neurotoxin serotype A light chain (BoLcA). In these proteolytic assays, biotinylated peptides serve as triggers for the aggregation of gold nanoparticles, while the cleavage of these peptides by BoLcA prevents nanoparticle aggregation. Two different assay strategies are described, demonstrating limits of detection ranging from 5 to 0.1 nM of BoLcA with an overall assay time of 4 h. These hybrid enzyme-responsive nanomaterials provide rapid and sensitive detection for one of the most toxic substances known to man. PMID:24484451

  7. DNA-directed self-assembly of gold nanoparticles into binary and ternary nanostructures

    NASA Astrophysics Data System (ADS)

    Yao, Hui; Yi, Changqing; Tzang, Chi-Hung; Zhu, Junjie; Yang, Mengsu

    2007-01-01

    The assembly and characterization of gold nanoparticle-based binary and ternary structures are reported. Two strategies were used to assemble gold nanoparticles into ordered nanoscale architectures: in strategy 1, gold nanoparticles were functionalized with single-strand DNA (ssDNA) first, and then hybridized with complementary ssDNA-labelled nanoparticles to assemble designed architectures. In strategy 2, the designed architectures were constructed through hybridization between complementary ssDNA first, then by assembling gold nanoparticles to the scaffolding through gold-sulfur bonds. Both TEM measurements and agarose gel electrophoresis confirmed that the latter strategy is more efficient in generating the designed nanostructures.

  8. Highly Sensitive Colorimetric Detection of Ochratoxin A by a Label-Free Aptamer and Gold Nanoparticles

    PubMed Central

    Luan, Yunxia; Chen, Jiayi; Li, Cheng; Xie, Gang; Fu, Hailong; Ma, Zhihong; Lu, Anxiang

    2015-01-01

    A label-free aptamer-based assay for the highly sensitive and specific detection of Ochratoxin A (OTA) was developed using a cationic polymer and gold nanoparticles (AuNPs). The OTA aptamer was used as a recognition element for the colorimetric detection of OTA based on the aggregation of AuNPs by the cationic polymer. By spectroscopic quantitative analysis, the colorimetric assay could detect OTA down to 0.009 ng/mL with high selectivity in the presence of other interfering toxins. This study offers a new alternative in visual detection methods that is rapid and sensitive for OTA detection. PMID:26690477

  9. “Smart” Diblock Copolymers as Templates for Magnetic-Core Gold-Shell Nanoparticle Synthesis

    SciTech Connect

    Nash, Michael A.; Lai, James J.; Hoffman, Allan S.; Yager, Paul; Stayton, Partick S.

    2010-01-13

    We report a new strategy for synthesizing temperature-responsive γ-Fe2O3-core/Au-shell nanoparticles (Au-mNPs) from diblock copolymer micelles. The amphiphilic diblock copolymer chains were synthesized using reversible addition-fragmentation chain-transfer (RAFT) with a thermally responsive “smart” poly(N-isopropylacrylamide) (pNIPAAm) block and an amine-containing poly(N,N-dimethylaminoethylacrylamide) (DMAEAm) block that acted as a reducing agent during gold shell formation. The Au-mNPs reversibly aggregated upon heating the solution above the transition temperature of pNIPAAm, resulting in a red-shifted localized surface plasmon resonance.

  10. Gold nanoparticles as a label-free probe for the detection of amyloidogenic protein.

    PubMed

    Zhang, Hai-Jie; Zheng, Hu-Zhi; Long, Yi-Juan; Xiao, Geng-Fu; Zhang, Ling-Yan; Wang, Qin-Long; Gao, Mei; Bai, Wen-Jun

    2012-01-30

    Because amyloidogenic proteins, such as prion protein, β-amyloid peptide and α-synuclein, are associated with a variety of diseases, methods for their detection are important. Recombinant prion protein (rPrP) can selectively induce aggregation of dihydrolipoic acid capped gold nanoparticles (DHLA-AuNPs), which reduces the absorbance of the DHLA-AuNPs and changes their color from red to blue. These changes were used for label-free qualitative and quantitative detection of amyloidogenic protein. The addition of NaCl improved the detection sensitivity considerably, and the detection limit was as low as 33 pmol/L. PMID:22284509

  11. A Rapid Colorimetric Sensor of Clenbuterol Based on Cysteamine-Modified Gold Nanoparticles.

    PubMed

    Kang, Jingyan; Zhang, Yujie; Li, Xing; Miao, Lijing; Wu, Aiguo

    2016-01-13

    Demonstrated was a simple visual and rapid colorimetric sensor for detection of clenbuterol (CLB) based on gold nanoparticles (AuNPs) modified with cysteamine (CA) and characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), UV-vis. The solution color from red to blue gray with increasing clenbuterol concentration resulted from the aggregation of AuNPs. The detection limit of clenbuterol is 50 nM by naked eyes. The selectivity of CA-AuNPs detection system for clenbuterol is excellent compared with other interferents in food. This sensor has been successfully applied to detect clenbuterol in real blood sample. PMID:26673452

  12. Gold-Nanoparticle-Based Colorimetric Sensor Array for Discrimination of Organophosphate Pesticides.

    PubMed

    Fahimi-Kashani, Nafiseh; Hormozi-Nezhad, M Reza

    2016-08-16

    There is a growing interest in developing high-performance sensors monitoring organophosphate pesticides, primarily due to their broad usage and harmful effects on mammals. In the present study, a colorimetric sensor array consisting of citrate-capped 13 nm gold nanoparticles (AuNPs) has been proposed for the detection and discrimination of several organophosphate pesticides (OPs). The aggregation-induced spectral changes of AuNPs upon OP addition has been analyzed with pattern recognition techniques, including hierarchical cluster analysis (HCA) and linear discriminant analysis (LDA). In addition, the proposed sensor array has the capability to identify individual OPs or mixtures of them in real samples. PMID:27412472

  13. A Facile pH Controlled Citrate-Based Reduction Method for Gold Nanoparticle Synthesis at Room Temperature.

    PubMed

    Tyagi, Himanshu; Kushwaha, Ajay; Kumar, Anshuman; Aslam, Mohammed

    2016-12-01

    The synthesis of gold nanoparticles using citrate reduction process has been revisited. A simplified room temperature approach to standard Turkevich synthesis is employed to obtain fairly monodisperse gold nanoparticles. The role of initial pH alongside the concentration ratio of reactants is explored for the size control of Au nanoparticles. The particle size distribution has been investigated using UV-vis spectroscopy and transmission electron microscope (TEM). At optimal pH of 5, gold nanoparticles obtained are highly monodisperse and spherical in shape and have narrower size distribution (sharp surface plasmon at 520 nm). For other pH conditions, particles are non-uniform and polydisperse, showing a red-shift in plasmon peak due to aggregation and large particle size distribution. The room temperature approach results in highly stable "colloidal" suspension of gold nanoparticles. The stability test through absorption spectroscopy indicates no sign of aggregation for a month. The rate of reduction of auric ionic species by citrate ions is determined via UV absorbance studies. The size of nanoparticles under various conditions is thus predicted using a theoretical model that incorporates nucleation, growth, and aggregation processes. The faster rate of reduction yields better size distribution for optimized pH and reactant concentrations. The model involves solving population balance equation for continuously evolving particle size distribution by discretization techniques. The particle sizes estimated from the simulations (13 to 25 nm) are close to the experimental ones (10 to 32 nm) and corroborate the similarity of reaction processes at 300 and 373 K (classical Turkevich reaction). Thus, substitution of experimentally measured rate of disappearance of auric ionic species into theoretical model enables us to capture the unusual experimental observations. PMID:27526178

  14. Resistive pressure sensors based on freestanding membranes of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Schlicke, Hendrik; Rebber, Matthias; Kunze, Svenja; Vossmeyer, Tobias

    2015-12-01

    In this communication the application of gold nanoparticle membranes as ambient pressure sensors with electromechanical signal transduction is demonstrated. The devices were fabricated by sealing microstructured cavities with membranes of 1,6-hexanedithiol cross-linked gold nanoparticles, which were electrically contacted by metal electrodes deposited on both sides of the cavities. Variations of the external pressure resulted in a deflection of the membranes and, thus, increased the average interparticle distances. Therefore, the pressure change could easily be detected by simply monitoring the resistance of the membranes.In this communication the application of gold nanoparticle membranes as ambient pressure sensors with electromechanical signal transduction is demonstrated. The devices were fabricated by sealing microstructured cavities with membranes of 1,6-hexanedithiol cross-linked gold nanoparticles, which were electrically contacted by metal electrodes deposited on both sides of the cavities. Variations of the external pressure resulted in a deflection of the membranes and, thus, increased the average interparticle distances. Therefore, the pressure change could easily be detected by simply monitoring the resistance of the membranes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06937h

  15. Gold Nanoparticles: Preparation, Properties, and Applications in Bionanotechnology

    PubMed Central

    Yeh, Yi-Cheun; Creran, Brian; Rotello, Vincent M.

    2014-01-01

    Gold nanoparticles (AuNPs) are important components for biomedical applications. AuNPs have been widely employed for diagnostics, and have seen increasing use in the area of therapeutics. In this mini-review, we present fabrication strategies for AuNPs and highlight a selection of recent applications of these materials in bionanotechnology. PMID:22076024

  16. Multiple strategies to activate gold nanoparticles as antibiotics

    NASA Astrophysics Data System (ADS)

    Zhao, Yuyun; Jiang, Xingyu

    2013-08-01

    Widespread antibiotic resistance calls for new strategies. Nanotechnology provides a chance to overcome antibiotic resistance by multiple antibiotic mechanisms. This paper reviews the progress in activating gold nanoparticles with nonantibiotic or antibiotic molecules to combat bacterial resistance, analyzes the gap between experimental achievements and real clinical application, and suggests some potential directions in developing antibacterial nanodrugs.

  17. Multiple strategies to activate gold nanoparticles as antibiotics.

    PubMed

    Zhao, Yuyun; Jiang, Xingyu

    2013-09-21

    Widespread antibiotic resistance calls for new strategies. Nanotechnology provides a chance to overcome antibiotic resistance by multiple antibiotic mechanisms. This paper reviews the progress in activating gold nanoparticles with nonantibiotic or antibiotic molecules to combat bacterial resistance, analyzes the gap between experimental achievements and real clinical application, and suggests some potential directions in developing antibacterial nanodrugs. PMID:23893008

  18. Ligand adsorption and exchange on pegylated gold nanoparticles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous researchers proposed that thiolated poly(ethylene glycol) (PEG-SH) adopts a “mushroom-like” conformation on gold nanoparticles (AuNPs) in water. However, information regarding the size and permeability of the PEG-SH mushroom caps and surface area passivated by the PEG-SH mushroom stems are ...

  19. Low-ppm-Level colorimetric acid detection using gold nanoparticles with electro-steric stabilization.

    PubMed

    Bae, Doo Ri; Lee, You-Jin; Lee, Sung Woo; Han, Young-Kyu; Yoon, Jae-Sik; Lee, Ji-Hyun; Lee, Sang-Gil; Chang, Ki Soo; Yi, Gi-Ra; Lee, Gaehang

    2014-12-01

    Electro-sterically stabilized gold suspensions were employed in a colorimetric system for the detection of strong acid in water. Using oleyamine and oleic acid as steric stabilizer in 1,2-dichlorobenzene, hydrophobic gold nanoparticles were first synthesized by a reduction reaction of gold salts and were then transferred into water with a cationic surfactant. When the hydrochlo- ric acid solution higher than critical concentration was injected, particles were quickly aggregated and precipitated, creating a clear solution from the colored suspension. The particles were stable against chemical etching by corrosive ion such as chloride. Critical concentration was dependent of the size and concentration of the particles. The minimum concentration of dramatic color change was at 5 ppm level of hydrochloric acid, in which the largest colloidal gold nanoparticles (54 nm) were used. Furthermore, because of their steric repulsive soft layer on particles, particles could be reused for further detection experiments after regeneration by the simple pH-neutralization and washing process. PMID:25971086

  20. Aquatic Fern (Azolla Sp.) Assisted Synthesis of Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Jha, Anal K.; Prasad, K.

    2016-02-01

    Aquatic pteridophyte (Azolla sp.) was taken to assess its potential to synthesize the metal (Au) nanoparticles. The synthesized particles were characterized using X-ray, UV-visible, scanning and transmission electron microscopy analyses. Nanoparticles almost spherical in shape having the sizes of 5-17nm are found. UV-visible study revealed the surface plasmon resonance at 538nm. Responsible phytochemicals for the transformation were principally phenolics, tannins, anthraquinone glycosides and sugars present abundantly in the plant thereby bestowing it adaptive prodigality. Also, the use of Azolla sp. for the synthesis of gold nanoparticles offers the benefit of eco-friendliness.

  1. Gold nanoparticle encapsulation into a mixed lipid nanodisk: molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Sharma, Hari; Wang, Zilu; Dormidontova, Elena

    There is a growing interest in applications of nanoparticles in biomedicine. For practical applications of gold nanoparticles it is often desirable to encapsulate them into lipid nanocarriers. To this end it is important to understand gold-lipid interactions at the molecular level. We have performed coarse grained molecular dynamics simulations using a MARTINI force field of a lipid nanodisk composed of long and short tail lipids, DPPC and DHPC mixed in the ratio of 3:1 and studied its interaction with small gold nanoparticles (AuNP) functionalized with hydrophobic alkane tethers. We found that the inhomogeneous distribution of lipids in the nanodisk affects the outcome the AuNP-nanodisk interaction. The ordered arrangement of long chain lipids forming the interior region of the nanodisk are found to be less accessible for AuNP penetration compared to the rim of the nanodisk, where more mobile short lipids are located. Once encapsulated into a nanodisk, AuNP's have tendency to aggregate, especially if temperature is not too low. The results of computer modeling will be compared to experiment and the implications of our findings for experimental design of lipid nanocarriers for AuNP delivery will be discussed.

  2. Synthesis of new liquid crystals embedded gold nanoparticles for photoswitching properties.

    PubMed

    Rahman, Md Lutfor; Biswas, Tapan Kumar; Sarkar, Shaheen M; Yusoff, Mashitah Mohd; Yuvaraj, A R; Kumar, Sandeep

    2016-09-15

    A new series of liquid crystals decorated gold nanoparticles is synthesized whose molecular architecture has azobenzenes moieties as the peripheral units connected to gold nanoparticles (Au NPs) via alkyl groups. The morphology and mesomorphic properties were investigated by field emission scanning electron microscope, high-resolution transmission electron microscopy, differential scanning calorimetry and polarizing optical microscopy. The thiolated ligand molecules (3a-c) showed enantiotropic smectic A phase, whereas gold nanoparticles (5a-c) exhibit nematic and smectic A phase with monotropic nature. HR-TEM measurement showed that the functionalized Au NPs are of the average size of 2nm and they are well dispersed without any aggregation. The trans-form of azo compounds showed a strong band in the UV region at ∼378nm for the π-π(∗) transition, and a weak band in the visible region at ∼472nm due to the n-π(∗) transition. These molecules exhibit attractive photoisomerization behaviour in which trans-cis transition takes about 15s whereas the cis-trans transition requires about 45min for compound 5c. The extent of reversible isomerization did not decay after 10 cycles, which proved that the photo-responsive properties of 5c were stable and repeatable. Therefore, these materials may be suitably exploited in the field of molecular switches and the optical storage devices. PMID:27341036

  3. Colorimetric detection of ractopamine and salbutamol using gold nanoparticles functionalized with melamine as a probe.

    PubMed

    Zhou, Ying; Wang, Peilong; Su, Xiaoou; Zhao, Hong; He, Yujian

    2013-08-15

    A highly selective and sensitive method is developed for colorimetric detection of ractopamine and salbutamol using gold nanoparticles (AuNPs) functionalized with melamine (MA), respectively. The presence of these β-agonists induces the aggregation of gold nanoparticles through hydrogen-bonding interaction that was accompanied by a distinct change in color and optical properties, which could be monitored by a UV-vis spectrophotometer or even naked eyes. This process caused a significant decrease in the absorbance ratio (A670 nm/A520 nm) of melamine-gold nanoparticles (MA-AuNPs), and the color changed from wine red to blue. The systems exhibited a wide liner range, from 1×10(-10)M to 5×10(-7)mol/L with a correlation coefficient of 0.995 for ractopamine, and 1×10(-10)M to 1×10(-5)mol/L with a correlation coefficient of 0.996 for salbutamol, with measuring the absorbance ratio (A670 nm/A520 nm). The detection limit of these β-agonists is as low as 1×10(-11)mol/L. Particularly, the developed method has been applied to the analysis of real swine feed samples and has achieved satisfactory results. PMID:23708531

  4. Anodic Stripping Voltammetry of Silver Nanoparticles: Aggregation Leads to Incomplete Stripping

    PubMed Central

    Cloake, Samantha J; Toh, Her Shuang; Lee, Patricia T; Salter, Chris; Johnston, Colin; Compton, Richard G

    2015-01-01

    The influence of nanoparticle aggregation on anodic stripping voltammetry is reported. Dopamine-capped silver nanoparticles were chosen as a model system, and melamine was used to induce aggregation in the nanoparticles. Through the anodic stripping of the silver nanoparticles that were aggregated to different extents, it was found that the peak area of the oxidative signal corresponding to the stripping of silver to silver(I) ions decreases with increasing aggregation. Aggregation causes incomplete stripping of the silver nanoparticles. Two possible mechanisms of ‘partial oxidation’ and ‘inactivation’ of the nanoparticles are proposed to account for this finding. Aggregation effects must be considered when anodic stripping voltammetry is used for nanoparticle detection and quantification. Hence, drop casting, which is known to lead to aggregation, is not encouraged for preparing electrodes for analytical purposes. PMID:25861566

  5. Shaping and patterning gold nanoparticles via micelle templated photochemistry

    NASA Astrophysics Data System (ADS)

    Kundrat, F.; Baffou, G.; Polleux, J.

    2015-09-01

    Shaping and positioning noble metal nanostructures are essential processes that still require laborious and sophisticated techniques to fabricate functional plasmonic interfaces. The present study reports a simple photochemical approach compatible with micellar nanolithography and photolithography that enables the growth, arrangement and shaping of gold nanoparticles with tuneable plasmonic resonances on glass substrates. Ultraviolet illumination of surfaces coated with gold-loaded micelles leads to the formation of gold nanoparticles with micro/nanometric spatial resolution without requiring any photosensitizers or photoresists. Depending on the extra-micellar chemical environment and the illumination wavelength, block copolymer micelles act as reactive and light-responsive templates, which enable to grow gold deformed nanoparticles (potatoids) and nanorings. Optical characterization reveals that arrays of individual potatoids and rings feature a localized plasmon resonance around 600 and 800 nm, respectively, enhanced photothermal properties and high temperature sustainability, making them ideal platforms for future developments in nanochemistry and biomolecular manipulation controlled by near-infrared-induced heat.Shaping and positioning noble metal nanostructures are essential processes that still require laborious and sophisticated techniques to fabricate functional plasmonic interfaces. The present study reports a simple photochemical approach compatible with micellar nanolithography and photolithography that enables the growth, arrangement and shaping of gold nanoparticles with tuneable plasmonic resonances on glass substrates. Ultraviolet illumination of surfaces coated with gold-loaded micelles leads to the formation of gold nanoparticles with micro/nanometric spatial resolution without requiring any photosensitizers or photoresists. Depending on the extra-micellar chemical environment and the illumination wavelength, block copolymer micelles act as

  6. Gold nanoparticles - the theranostic challenge for PPPM: nanocardiology application

    PubMed Central

    2013-01-01

    The article overviews the potential biomedical applications of nanoscale gold particles for predictive, preventive and personalised nanomedicine in cardiology. The review demonstrates the wide opportunities for gold nanoparticles due to their unique biological properties. The use of gold nanoparticles in cardiology is promising to develop fundamentally new methods of diagnosis and treatment. The nanotheranostics in cardiovascular diseases allows the non-invasive imaging associated with simultaneous therapeutic intervention and predicting treatment outcomes. Imaging may reflect the effectiveness of treatment and has become a fundamental optimisation setting for therapeutic protocol. Combining the application of biomolecular and cellular therapies with nanotechnologies foresees the development of complex integrated nanodevices. Nanocardiology may challenge existing healthcare system and economic benefits as cardiovascular diseases are the leading cause of morbidity and mortality at present. PMID:23800174

  7. Extracellular microbial synthesis of gold nanoparticles using fungus Hormoconis resinae

    NASA Astrophysics Data System (ADS)

    Mishra, Anuj Narayan; Bhadauria, Seema; Gaur, Mulayam Singh; Pasricha, Renu

    2010-11-01

    In this study, the fungus Hormoconis resinae was screened from soil near a refinery and was found to produce stable gold nanoparticles extracellularly. The kinetics of the reaction was studied using UV-Vis spectroscopy and was further characterized by x-ray diffraction, energy dispersive x-ray (EDX) analysis, and high-resolution transmission electron microscopy. These analyses revealed that the gold nanoparticles are spherical and in nano-regime. The most important feature of Hormoconis resinae fungi is the following fact: they have a widespread presence in soil and can produce huge biomass. Such a cheap source of material gives the opportunity for cost-effective preparation of various gold-based nanostructures.

  8. A simple gel electrophoresis method for separating polyhedral gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Kim, Suhee; Lee, Hye Jin

    2015-07-01

    In this paper, a simple approach to separate differently shaped and sized polyhedral gold nanoparticles (NPs) within colloidal solutions via gel electrophoresis is described. Gel running parameters for separating efficiently gold NPs including gel composition, added surfactant types and applied voltage were investigated. The plasmonic properties and physical structure of the separated NPs extracted from the gel matrix were then investigated using transmission electron microscopy (TEM) and UV-vis spectrophotometry respectively. Data analysis revealed that gel electrophoresis conditions of a 1.5 % agarose gel with 0.1 % sodium dodecyl sulfate (SDS) surfactant under an applied voltage of 100 V resulted in the selective isolation of ~ 50 nm polyhedral shaped gold nanoparticles. Further efforts are underway to apply the method to purify biomolecule-conjugated polyhedral Au NPs that can be readily used for NP-enhanced biosensing platforms.

  9. Synthesis, Structure, Stability and Redispersion of Gold-based Nanoparticles

    NASA Astrophysics Data System (ADS)

    Tiruvalam, Ram Chandra

    Nanoscale gold has been shown to possess an intriguing combination of unexpected optical, photochemical and catalytic properties. The ability to control the size, shape, morphology, composition and dispersion of gold-based nanostructures is key to optimizing their performance for nanotechnology applications. The advanced electron microscopy studies described in this thesis analyze three important aspects of gold and gold-palladium alloy nanoparticles: namely, (i) the ability to synthesize gold nanoparticles of controlled size and shape in an aqueous medium; (ii) the colloidal preparation of designer gold-palladium alloys for selective oxidation catalysis; and (iii) the ability to disperse gold as finely and homogeneously as possible on a metal oxide or carbon support. The ability to exploit the nanoscale properties of gold for various engineering applications often depends on our ability to control size and shape of the nanoscale entity by careful manipulation of the synthesis parameters. We have explored an aqueous based synthesis route, using oleylamine as both a reductant and surfactant, for preparing gold nanostructures. By systematically varying synthesis parameters such as oleylamine concentration, reaction temperature, and aging time it is possible to identify processing regimens that generate Au nanostructures having either pseudo-spherical, faceted polyhedral, nanostar or wire shaped morphologies. Furthermore, by quenching the reaction partway through it is possible to create a class of metastable Au-containing structures such as nanocubes, nanoboxes and nanowires. Possible formation mechanisms for these gold based nano-objects are discussed. There is a growing interest in using supported bimetallic AuPd alloy nanoparticles for selective oxidation reactions. In this study, a systematic series of size controlled AuPd bimetallic particles have been prepared by colloidal synthesis methods. Particles having random alloy structures, as well as `designer

  10. Can small hydrophobic gold nanoparticles inhibit β2-microglobulin fibrillation?

    NASA Astrophysics Data System (ADS)

    Brancolini, Giorgia; Toroz, Dimitrios; Corni, Stefano

    2014-06-01

    Inorganic nanoparticles stabilized by a shell of organic ligands can enhance or suppress the natural propensity of proteins to form fibrils. Functionalization facilitates targeted delivery of the nanoparticles to various cell types, bioimaging, drug delivery and other therapeutic and diagnostic applications. In this study, we provide a computational model of the effect of a prototypical thiol-protected gold nanoparticle, Au25L18- (L = S(CH2)2Ph) on the β2-microglobulin natural fibrillation propensity. To reveal the molecular basis of the protein-nanoparticle association process, we performed various simulations at multiple levels (Classical Molecular Dynamics and Brownian Dynamics) that cover multiple length- and timescales. The results provide a model of the ensemble of structures constituting the protein-gold nanoparticle complexes, and insights into the driving forces for the binding of β2-microglobulin to hydrophobic small size gold nanoparticles. We have found that the small nanoparticles can bind the protein to form persistent complexes. This binding of nanoparticles is able to block the active sites of domains from binding to another protein, thus leading to potential inhibition of the fibrillation activity. A comparison with the binding patches identified for the interaction of the protein with a known inhibitor of fibrillation, supports our conclusion.Inorganic nanoparticles stabilized by a shell of organic ligands can enhance or suppress the natural propensity of proteins to form fibrils. Functionalization facilitates targeted delivery of the nanoparticles to various cell types, bioimaging, drug delivery and other therapeutic and diagnostic applications. In this study, we provide a computational model of the effect of a prototypical thiol-protected gold nanoparticle, Au25L18- (L = S(CH2)2Ph) on the β2-microglobulin natural fibrillation propensity. To reveal the molecular basis of the protein-nanoparticle association process, we performed various

  11. Nanoparticles in relation to peptide and protein aggregation

    PubMed Central

    Zaman, Masihuz; Ahmad, Ejaz; Qadeer, Atiyatul; Rabbani, Gulam; Khan, Rizwan Hasan

    2014-01-01

    Over the past two decades, there has been considerable research interest in the use of nanoparticles in the study of protein and peptide aggregation, and of amyloid-related diseases. The influence of nanoparticles on amyloid formation yields great interest due to its small size and high surface area-to-volume ratio. Targeting nucleation kinetics by nanoparticles is one of the most searched for ways to control or induce this phenomenon. The observed effect of nanoparticles on the nucleation phase is determined by particle composition, as well as the amount and nature of the particle’s surface. Various thermodynamic parameters influence the interaction of proteins and nanoparticles in the solution, and regulate the protein assembly into fibrils, as well as the disaggregation of preformed fibrils. Metals, organic particles, inorganic particles, amino acids, peptides, proteins, and so on are more suitable candidates for nanoparticle formulation. In the present review, we attempt to explore the effects of nanoparticles on protein and peptide fibrillation processes from both perspectives (ie, as inducers and inhibitors on nucleation kinetics and in the disaggregation of preformed fibrils). Their formulation and characterization by different techniques have been also addressed, along with their toxicological effects, both in vivo and in vitro. PMID:24611007

  12. Preparation of DPPE-Stabilized Gold Nanoparticles

    ERIC Educational Resources Information Center

    Dungey, Keenan E.; Muller, David P.; Gunter, Tammy

    2005-01-01

    An experiment is presented that introduces students to nanotechnology through the preparation of nanoparticles and their visualization using transmission electron microscopy (TEM). The experiment familiarizes the students with nonaqueous solvents, biphasic reactions, phase-transfer agents, ligands to stabilize growing nanoparticles, and bidentate…

  13. Cascade synthesis of a gold nanoparticle-network polymer composite

    NASA Astrophysics Data System (ADS)

    Grubjesic, Simonida; Ringstrand, Bryan S.; Jungjohann, Katherine L.; Brombosz, Scott M.; Seifert, Sönke; Firestone, Millicent A.

    2016-01-01

    The multi-step, cascade synthesis of a self-supporting, hierarchically-structured gold nanoparticle hydrogel composite is described. The composite is spontaneously prepared from a non-covalent, lamellar lyotropic mesophase composed of amphiphiles that support the reactive constituents, a mixture of hydroxyl- and acrylate-end-derivatized PEO117-PPO47-PEO117 and [AuCl4]-. The reaction sequence begins with the auto-reduction of aqueous [AuCl4]- by PEO117-PPO47-PEO117 which leads to both the production of Au NPs and the free radical initiated polymerization and crosslinking of the acrylate end-derivatized PEO117-PPO47-PEO117 to yield a network polymer. Optical spectroscopy and TEM monitored the reduction of [AuCl4]-, formation of large aggregated Au NPs and oxidative etching into a final state of dispersed, spherical Au NPs. ATR/FT-IR spectroscopy and thermal analysis confirms acrylate crosslinking to yield the polymer network. X-ray scattering (SAXS and WAXS) monitored the evolution of the multi-lamellar structured mesophase and revealed the presence of semi-crystalline PEO confined within the water layers. The hydrogel could be reversibly swollen without loss of the well-entrained Au NPs with full recovery of composite structure. Optical spectroscopy shows a notable red shift (Δλ ~ 45 nm) in the surface plasmon resonance between swollen and contracted states, demonstrating solvent-mediated modulation of the internal NP packing arrangement.The multi-step, cascade synthesis of a self-supporting, hierarchically-structured gold nanoparticle hydrogel composite is described. The composite is spontaneously prepared from a non-covalent, lamellar lyotropic mesophase composed of amphiphiles that support the reactive constituents, a mixture of hydroxyl- and acrylate-end-derivatized PEO117-PPO47-PEO117 and [AuCl4]-. The reaction sequence begins with the auto-reduction of aqueous [AuCl4]- by PEO117-PPO47-PEO117 which leads to both the production of Au NPs and the free radical

  14. Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril "glue".

    PubMed

    Taylor, Richard W; Lee, Tung-Chun; Scherman, Oren A; Esteban, Ruben; Aizpurua, Javier; Huang, Fu Min; Baumberg, Jeremy J; Mahajan, Sumeet

    2011-05-24

    Cucurbit[n]urils (CB[n]) are macrocyclic host molecules with subnanometer dimensions capable of binding to gold surfaces. Aggregation of gold nanoparticles with CB[n] produces a repeatable, fixed, and rigid interparticle separation of 0.9 nm, and thus such assemblies possess distinct and exquisitely sensitive plasmonics. Understanding the plasmonic evolution is key to their use as powerful SERS substrates. Furthermore, this unique spatial control permits fast nanoscale probing of the plasmonics of the aggregates "glued" together by CBs within different kinetic regimes using simultaneous extinction and SERS measurements. The kinetic rates determine the topology of the aggregates including the constituent structural motifs and allow the identification of discrete plasmon modes which are attributed to disordered chains of increasing lengths by theoretical simulations. The CBs directly report the near-field strength of the nanojunctions they create via their own SERS, allowing calibration of the enhancement. Owing to the unique barrel-shaped geometry of CB[n] and their ability to bind "guest" molecules, the aggregates afford a new type of in situ self-calibrated and reliable SERS substrate where molecules can be selectively trapped by the CB[n] and exposed to the nanojunction plasmonic field. Using this concept, a powerful molecular-recognition-based SERS assay is demonstrated by selective cucurbit[n]uril host-guest complexation. PMID:21488693

  15. Thin porous alumina sheets as supports for stabilizing gold nanoparticles.

    PubMed

    Wang, Jie; Lu, An-Hui; Li, Mingrun; Zhang, Weiping; Chen, Yong-Sheng; Tian, Dong-Xu; Li, Wen-Cui

    2013-06-25

    Thin porous alumina sheets have been synthesized using a lysine-assisted hydrothermal approach resulting in an extraordinary catalyst support that can stabilize Au nanoparticles at annealing temperatures up to 900 °C. Remarkably, the unique architecture of such an alumina with thin sheets (average thickness ~15 nm and length 680 nm) and rough surface is beneficial to prevent gold nanoparticles from sintering. HRTEM observations clearly showed that the epitaxial growth between Au nanoparticles and alumina support was due to strong interfacial interactions, further explaining the high sinter-stability of the obtained Au/Al2O3 catalyst. Consequently, despite calcination at 700 °C, the catalyst maintains its gold nanoparticles of size predominantly 2 ± 0.8 nm. Surprisingly, catalyst annealed at 900 °C retained the highly dispersed small gold nanoparticles. It was also observed that a few gold particles (6-25 nm) were encapsulated by an alumina layer (thickness less than 1 nm) to minimize the surface energy, revealing a surface restructuring of the gold/support interface. As a typical and size-dependent reaction, CO oxidation is used to evaluate the performance of Au/Al2O3 catalysts. The results obtained demonstrated Au/Al2O3 catalyst calcined at 700 °C exhibited excellent activity with a complete CO conversion at ∼30 °C (T100% = 30 °C), and even after calcination at 900 °C, the catalyst still achieved its T50% at 158 °C. In sharp contrast, Au catalyst prepared using conventional alumina support shows almost no activity under the same preparation and catalytic test conditions. PMID:23682983

  16. Optimization and stabilization of gold nanoparticles by using herbal plant extract with microwave heating

    NASA Astrophysics Data System (ADS)

    Yasmin, Akbar; Ramesh, Kumaraswamy; Rajeshkumar, Shanmugam

    2014-04-01

    In this study, we have synthesized the gold nanoparticles by using Hibiscus rosa-sinensis, a medicinal plant. The gold nanoparticles were synthesized rapidly by the involvement of microwave heating. By changing of plant extract concentration, gold solution concentration, microwave heating time and power of microwave heating the optimized condition was identified. The surface Plasmon resonance found at 520 nm confirmed the gold nanoparticles synthesis. The spherical sized nanoparticles in the size range of 16-30 nm were confirmed by Transmission Electron Microscope (TEM). The stability of the nanoparticles is very well proved in the invitro stability tests. The biochemical like alkaloids and flavonoids play a vital role in the nanoparticles synthesis was identified using the Fourier Transform Infrared Spectroscopy (FTIR). Combining the phytochemical and microwave heating, the rapid synthesis of gold nanoparticles is the novel process for the medically applicable gold nanoparticles production.

  17. Surface plasma resonant effect of gold nanoparticles on the photoelectrodes of dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Meen, Teen-Hang; Tsai, Jenn-Kai; Chao, Shi-Mian; Lin, Yu-Chien; Wu, Tien-Chuan; Chang, Tang-Yun; Ji, Liang-Wen; Water, Walter; Chen, Wen-Ray; Tang, I.-Tseng; Huang, Chien-Jung

    2013-10-01

    In this study, we prepared different shapes of gold nanoparticles by seed-mediated growth method and applied them on the photoelectrodes of dye-sensitized solar cells (DSSCs) to study the surface plasma resonant (SPR) effect of gold nanoparticles on the photoelectrodes of dye-sensitized solar cells. The analyses of field emission scanning electron microscopy show that the average diameter of the spherical gold nanoparticles is 45 nm, the average length and width of the short gold nanorods were 55 and 22 nm, respectively, and the average length and width of the long gold nanorods were 55 and 14 nm, respectively. The aspect ratio of the short and long gold nanorods was about 2.5 and 4, respectively. The results of ultraviolet-visible absorption spectra show that the absorption wavelength is about 540 nm for spherical gold nanoparticles, and the absorption of the gold nanorods reveals two peaks. One is about 510 to 520 nm, and the other is about 670 and 710 nm for the short and long gold nanorods, respectively. The best conversion efficiency of the dye-sensitized solar cells with spherical gold nanoparticles and short and long gold nanorods added in is 6.77%, 7.08%, and 7.29%, respectively, and is higher than that of the cells without gold nanoparticles, which is 6.21%. This result indicates that the effect of gold nanoparticles on the photoelectrodes can increase the conductivity and reduce the recombination of charges in the photoelectrodes, resulting in the increase of conversion efficiency for DSSCs. In addition, the long gold nanorods have stronger SPR effect than the spherical gold nanoparticles and short gold nanorods at long wavelength. This may be the reason for the higher conversion efficiency of DSSCs with long gold nanorods than those of the cells with spherical gold nanoparticles and short gold nanorods.

  18. Photosensitivity of neurons enabled by cell-targeted gold nanoparticles

    PubMed Central

    Carvalho-de-Souza, João L.; Treger, Jeremy S.; Dang, Bobo; Kent, Stephen B. H.; Pepperberg, David R.; Bezanilla, Francisco

    2015-01-01

    Summary Unmodified neurons can be directly stimulated with light to produce action potentials, but such techniques have lacked localization of the delivered light energy. Here we show that gold nanoparticles can be conjugated to high-avidity ligands for a variety of cellular targets. Once bound to a neuron, these particles transduce millisecond pulses of light into heat which changes membrane capacitance, depolarizing the cell and eliciting action potentials. Compared to non-functionalized nanoparticles, ligand-conjugated nanoparticles highly resist convective washout, and enable photothermal stimulation with lower delivered energy and resulting temperature increase. Ligands targeting three different membrane proteins were tested; all showed similar activity and washout resistance. This suggests that many types of ligands can be bound to nanoparticles, preserving ligand and nanoparticle function, and that many different cell phenotypes can be targeted by appropriate choice of ligand. The findings have applications as an alternative to optogenetics, and potentially for therapies involving neuronal photostimulation. PMID:25772189

  19. Photosensitivity of neurons enabled by cell-targeted gold nanoparticles.

    PubMed

    Carvalho-de-Souza, João L; Treger, Jeremy S; Dang, Bobo; Kent, Stephen B H; Pepperberg, David R; Bezanilla, Francisco

    2015-04-01

    Unmodified neurons can be directly stimulated with light to produce action potentials, but such techniques have lacked localization of the delivered light energy. Here we show that gold nanoparticles can be conjugated to high-avidity ligands for a variety of cellular targets. Once bound to a neuron, these particles transduce millisecond pulses of light into heat, which changes membrane capacitance, depolarizing the cell and eliciting action potentials. Compared to non-functionalized nanoparticles, ligand-conjugated nanoparticles highly resist convective washout and enable photothermal stimulation with lower delivered energy and resulting temperature increase. Ligands targeting three different membrane proteins were tested; all showed similar activity and washout resistance. This suggests that many types of ligands can be bound to nanoparticles, preserving ligand and nanoparticle function, and that many different cell phenotypes can be targeted by appropriate choice of ligand. The findings have applications as an alternative to optogenetics and potentially for therapies involving neuronal photostimulation. PMID:25772189

  20. Shape-Dependent Nonlinear Optical Properties of Anisotropic Gold Nanoparticles.

    PubMed

    Hua, Yi; Chandra, Kavita; Dam, Duncan Hieu M; Wiederrecht, Gary P; Odom, Teri W

    2015-12-17

    This Letter reports the shape-dependent third-order nonlinear optical properties of anisotropic gold nanoparticles. We characterized the nonlinear absorption coefficients of nanorods, nanostars, and nanoshells using femtosecond Z-scan measurements. By comparing nanoparticle solutions with a similar linear extinction at the laser excitation wavelength, we separated shape effects from that of the localized surface plasmon wavelength. We found that the nonlinear response depended on particle shape. Using pump-probe spectroscopy, we measured the ultrafast transient response of nanoparticles, which supported the strong saturable absorption observed in nanorods and weak nonlinear response in nanoshells. We found that the magnitude of saturable absorption as well as the ultrafast spectral responses of nanoparticles were affected by the linear absorption of the nanoparticles. PMID:26595327

  1. Gold nanoparticles in model biological membranes: A computational perspective.

    PubMed

    Rossi, Giulia; Monticelli, Luca

    2016-10-01

    The electronic, optical, catalytic, and magnetic properties of metal nanoparticles (NPs) make them extremely interesting for biomedical applications. In this rapidly moving field, monolayer-protected gold nanoparticles emerge both as a reference system and as promising candidates for drug and gene delivery, photothermal treatment, and imaging applications. Despite the technological relevance, there is still poor understanding of the molecular processes driving the interactions of metal nanoparticles with cells, and with cell membranes in particular. In this paper we review molecular-level computational studies of the interaction between monolayer-protected gold NPs and model lipid membranes. Our review comprises a brief description of the most relevant experimental results in this field and of the questions they raised, followed by a description of the computational achievements reported so far. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. PMID:27060434

  2. Optical absorption properties of dispersed gold and silver alloy nanoparticles.

    PubMed

    Wilcoxon, Jess

    2009-03-01

    The oldest topic in nanoscience is the size-dependent optical properties of gold and silver colloids or nanoparticles, first investigated scientifically by Michael Faraday in 1857. In the modern era, advances in both synthesis and characterization have resulted in new insights into the size-dependent absorbance of Au and Ag nanoparticles with sizes below the classical limit for Mie theory. In this paper we discuss the synthesis and properties of core/shell and nanoalloy particles of Au and Ag, compare them to particles of pure gold and silver, and discuss how alloying affects nanoparticle chemical stability. We show that composition, size, and nanostructure (e.g., core/shell vs quasi-random nanoalloy) can all be employed to adjust the optical absorbance properties. The type of nanostructure--core/shell vs alloy--is reflected in their optical absorbance features. PMID:19708105

  3. Unprecedented inhibition of tubulin polymerization directed by gold nanoparticles inducing cell cycle arrest and apoptosis

    NASA Astrophysics Data System (ADS)

    Choudhury, Diptiman; Xavier, Paulrajpillai Lourdu; Chaudhari, Kamalesh; John, Robin; Dasgupta, Anjan Kumar; Pradeep, Thalappil; Chakrabarti, Gopal

    2013-05-01

    The effect of gold nanoparticles (AuNPs) on the polymerization of tubulin has not been examined till now. We report that interaction of weakly protected AuNPs with microtubules (MTs) could cause inhibition of polymerization and aggregation in the cell free system. We estimate that single citrate capped AuNPs could cause aggregation of ~105 tubulin heterodimers. Investigation of the nature of inhibition of polymerization and aggregation by Raman and Fourier transform-infrared (FTIR) spectroscopies indicated partial conformational changes of tubulin and microtubules, thus revealing that AuNP-induced conformational change is the driving force behind the observed phenomenon. Cell culture experiments were carried out to check whether this can happen inside a cell. Dark field microscopy (DFM) combined with hyperspectral imaging (HSI) along with flow cytometric (FC) and confocal laser scanning microscopic (CLSM) analyses suggested that AuNPs entered the cell, caused aggregation of the MTs of A549 cells, leading to cell cycle arrest at the G0/G1 phase and concomitant apoptosis. Further, Western blot analysis indicated the upregulation of mitochondrial apoptosis proteins such as Bax and p53, down regulation of Bcl-2 and cleavage of poly(ADP-ribose) polymerase (PARP) confirming mitochondrial apoptosis. Western blot run after cold-depolymerization revealed an increase in the aggregated insoluble intracellular tubulin while the control and actin did not aggregate, suggesting microtubule damage induced cell cycle arrest and apoptosis. The observed polymerization inhibition and cytotoxic effects were dependent on the size and concentration of the AuNPs used and also on the incubation time. As microtubules are important cellular structures and target for anti-cancer drugs, this first observation of nanoparticles-induced protein's conformational change-based aggregation of the tubulin-MT system is of high importance, and would be useful in the understanding of cancer therapeutics

  4. Molecular dynamics simulations of interfacial interactions between small nanoparticles during diffusion-limited aggregation

    NASA Astrophysics Data System (ADS)

    Lu, Jing; Liu, Dongmei; Yang, Xiaonan; Zhao, Ying; Liu, Haixing; Tang, Huan; Cui, Fuyi

    2015-12-01

    Due to the limitations of experimental methods at the atomic level, research on the aggregation of small nanoparticles (D < 5 nm) in aqueous solutions is quite rare. The aggregation of small nanoparticles in aqueous solutions is very different than that of normal sized nanoparticles. The interfacial interactions play a dominant role in the aggregation of small nanoparticles. In this paper, molecular dynamics simulations, which can explore the microscopic behavior of nanoparticles during the diffusion-limited aggregation at an atomic level, were employed to reveal the aggregation mechanism of small nanoparticles in aqueous solutions. First, the aggregation processes and aggregate structure were depicted. Second, the particle-particle interaction and surface diffusion of nanoparticles during aggregation were investigated. Third, the water-mediated interactions during aggregation were ascertained. The results indicate that the aggregation of nanoparticle in aqueous solutions is affected by particle size. The strong particle-particle interaction and high surface diffusion result in the formation of particle-particle bonds of 2 nm TiO2 nanoparticles, and the water-mediated interaction plays an important role in the aggregation process of 3 and 4 nm TiO2 nanoparticles.

  5. Characterization of Conventional One-Step Sodium Thiosulfate Facilitated Gold Nanoparticle Synthesis

    NASA Astrophysics Data System (ADS)

    Saverot, Scott-Eugene; Reese, Laura M.; Cimini, Daniela; Vikesland, Peter J.; Bickford, Lissett Ramirez

    2015-05-01

    Gold-gold sulfide nanoparticles are of interest for drug delivery, biomedical imaging, and photothermal therapy applications due to a facile synthesis method resulting in small particles with high near-infrared (NIR) absorption efficiency. Previous studies suggest that the NIR sensitivity of these nanoparticles was due to hexagonally shaped metal-coated dielectric nanoparticles that consist of a gold sulfide core and gold shell. Here, we illustrate that the conventional synthesis procedure results in the formation of polydisperse samples of icosahedral gold particles, gold nanoplates, and small gold spheres. Importantly, through compositional analysis, via UV/vis absorption spectrophotometry, transmission electron microscopy (TEM), and energy dispersive x-ray spectroscopy (EDS), we show that all of the nanoparticles exhibit identical face center cubic (FCC) gold crystalline structures, thus suggesting that sulfide is not present in the final fabricated nanoparticles. We show that icosahedrally shaped nanoparticles result in a blue-shifted absorbance, with a peak in the visible range. Alternatively, the nanoplate nanoparticles result in the characteristic NIR absorbance peak. Thus, we report that the NIR-contributing species in conventional gold-gold sulfide formulations are nanoplates that are comprised entirely of gold. Furthermore, polydisperse gold nanoparticle samples produced by the traditional one-step reduction of HAuCl4 by sodium thiosulfate show increased in vitro toxicity, compared to isolated and more homogeneous constituent samples. This result exemplifies the importance of developing monodisperse nanoparticle formulations that are well characterized in order to expedite the development of clinically beneficial nanomaterials.

  6. Sonosynthesis of gold nanoparticles from a geranium leaf extract.

    PubMed

    Franco-Romano, M; Gil, M L A; Palacios-Santander, J M; Delgado-Jaén, J J; Naranjo-Rodríguez, I; Hidalgo-Hidalgo de Cisneros, J L; Cubillana-Aguilera, L M

    2014-07-01

    A rapid in situ biosynthesis of gold nanoparticles (AuNPs) is proposed in which a geranium (Pelargonium zonale) leaf extract was used as a non-toxic reducing and stabilizing agent in a sonocatalysis process based on high-power ultrasound. The synthesis process took only 3.5 min in aqueous solution under ambient conditions. The stability of the nanoparticles was studied by UV-Vis absorption spectroscopy with reference to the surface plasmon resonance (SPR) band. AuNPs have an average lifetime of about 8 weeks at 4 °C in the absence of light. The morphology and crystalline phase of the gold nanoparticles were characterized by transmission electron microscopy (TEM). The composition of the nanoparticles was evaluated by electron diffraction and X-ray energy dispersive spectroscopy (EDS). A total of 80% of the gold nanoparticles obtained in this way have a diameter in the range 8-20 nm, with an average size of 12±3 nm. Fourier transform infrared spectroscopy (FTIR) indicated the presence of biomolecules that could be responsible for reducing and capping the biosynthesized gold nanoparticles. A hypothesis concerning the type of organic molecules involved in this process is also given. Experimental design linked to the simplex method was used to optimize the experimental conditions for this green synthesis route. To the best of our knowledge, this is the first time that a high-power ultrasound-based sonocatalytic process and experimental design coupled to a simplex optimization process has been used in the biosynthesis of AuNPs. PMID:24530142

  7. Biointeractions of ultrasmall glutathione-coated gold nanoparticles: effect of small size variations.

    PubMed

    Sousa, Alioscka A; Hassan, Sergio A; Knittel, Luiza L; Balbo, Andrea; Aronova, Maria A; Brown, Patrick H; Schuck, Peter; Leapman, Richard D

    2016-03-28

    Recent in vivo studies have established ultrasmall (<3 nm) gold nanoparticles coated with glutathione (AuGSH) as a promising platform for applications in nanomedicine. However, systematic in vitro investigations to gain a more fundamental understanding of the particles' biointeractions are still lacking. Herein we examined the behavior of ultrasmall AuGSH in vitro, focusing on their ability to resist aggregation and adsorption from serum proteins. Despite having net negative charge, AuGSH particles were colloidally stable in biological media and able to resist binding from serum proteins, in agreement with the favorable bioresponses reported for AuGSH in vivo. However, our results revealed disparate behaviors depending on nanoparticle size: particles between 2 and 3 nm in core diameter were found to readily aggregate in biological media, whereas those strictly under 2 nm were exceptionally stable. Molecular dynamics simulations provided microscopic insight into interparticle interactions leading to aggregation and their sensitivity to the solution composition and particle size. These results have important implications, in that seemingly small variations in size can impact the biointeractions of ultrasmall AuGSH, and potentially of other ultrasmall nanoparticles as well. PMID:26934984

  8. A novel class of potential prion drugs: preliminary in vitro and in vivo data for multilayer coated gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Ai Tran, Hoang Ngoc; Sousa, Fernanda; Moda, Fabio; Mandal, Subhra; Chanana, Munish; Vimercati, Chiara; Morbin, Michela; Krol, Silke; Tagliavini, Fabrizio; Legname, Giuseppe

    2010-12-01

    Gold nanoparticles coated with oppositely charged polyelectrolytes, such as polyallylamine hydrochloride and polystyrenesulfonate, were examined for potential inhibition of prion protein aggregation and prion (PrPSc) conversion and replication. Different coatings, finishing with a positive or negative layer, were tested, and different numbers of layers were investigated for their ability to interact and reduce the accumulation of PrPSc in scrapie prion infected ScGT1 and ScN2a cells. The particles efficiently hampered the accumulation of PrPSc in ScN2a cells and showed curing effects on ScGT1 cells with a nanoparticle concentration in the picomolar range. Finally, incubation periods of prion-infected mice treated with nanomolar concentrations of gold nanoparticles were significantly longer compared to untreated controls.Gold nanoparticles coated with oppositely charged polyelectrolytes, such as polyallylamine hydrochloride and polystyrenesulfonate, were examined for potential inhibition of prion protein aggregation and prion (PrPSc) conversion and replication. Different coatings, finishing with a positive or negative layer, were tested, and different numbers of layers were investigated for their ability to interact and reduce the accumulation of PrPSc in scrapie prion infected ScGT1 and ScN2a cells. The particles efficiently hampered the accumulation of PrPSc in ScN2a cells and showed curing effects on ScGT1 cells with a nanoparticle concentration in the picomolar range. Finally, incubation periods of prion-infected mice treated with nanomolar concentrations of gold nanoparticles were significantly longer compared to untreated controls. Electronic supplementary information (ESI) available: HRTEM image of a 2A coated nanogold particle; Western blot of cell lysate from ScGT1 cells treated with nanoparticles (a) 2A, (b) 2A-46 nm, (c) 5S, and (d) 5S-46 nm. See DOI: 10.1039/c0nr00551g

  9. Gold and silver nanoparticles from Trianthema decandra: synthesis, characterization, and antimicrobial properties

    PubMed Central

    Geethalakshmi, R; Sarada, DVL

    2012-01-01

    Background There is an increasing commercial demand for nanoparticles due to their wide applicability in various markets, including medicine, catalysis, electronics, chemistry, and energy. In this report, a simple and ecofriendly chemical reaction for the synthesis of gold and silver nanoparticles from Trianthema decandra (Aizoaceae) has been developed. Methods and results On treatment of aqueous solutions containing chloroauric acid or silver nitrate with root extract of T. decandra, stable gold or silver nanoparticles were rapidly formed. The kinetics of reduction of gold and silver ions during the reaction was analyzed by ultraviolet-visible spectroscopy. Field emission-scanning electron microscopy showed formation of gold nanoparticles in various shapes, including spherical, cubical, triangular, and hexagonal, while silver nanoparticles were spherical. The size of the gold nanoparticles was 33–65 nm and that of the silver nanoparticles was 36–74 nm. Energy dispersive x-ray and Fourier transform infrared spectroscopy confirmed the presence of metallic gold and metallic silver in the respective nanoparticles. The antimicrobial properties of the synthesized nanoparticles were analyzed using the Kirby-Bauer method. The results show varied susceptibility of microorganisms to the gold and silver nanoparticles. Conclusion It is believed that phytochemicals present in T. decandra extract reduce the silver and gold ions into metallic nanoparticles. This strategy reduces the cost of production and the environmental impact. The silver and gold nanoparticles formed showed strong activity against all microorganisms tested. PMID:23091381

  10. The optical nonlinearity of gold nanoparticles prepared by bioreduction method

    NASA Astrophysics Data System (ADS)

    Balbuena Ortega, A.; Arroyo Carrasco, M. L.; Gayou, V. L.; Orduña Díaz, A.; Delgado Macuil, R.; Rojas López, Marlon

    2013-11-01

    Nonlinear optical and electronic properties of nanosized metal particles have drawn considerable attention because of their strong and size-dependent plasmon resonance absorption. In a metal nanoparticle system such as gold dispersed in a transparent matrix, an absorption peak due to surface plasmon resonance is usually observed in the visible spectral region. Metal nanoparticles are of special interest as nonlinear materials for optical switching and computing because of their relatively large third-order nonlinearity (χ3) and ultrafast response time. The purpose of this study was to analyze the nonlinear optical properties of biosynthesized gold nanoparticles. The samples were prepared by biosynthesis method using yeast extract as reducing agent and the nonlinear optical properties of the nanoparticles were investigated using a single beam Z-scan technique with a beam power of 20 mW and operated at wavelength of 514 nm. The reaction between metal ions and yeast extracts were monitored by UV-visible spectra of Au nanoparticles in aqueous solution with different pH (3-6). The surface plasmon peak position was shifted from 528 nm to 573 nm, according to of pH variation 4 to 6. The average particle size was calculated by the absorption peak position using the Fernig method, from 42 to 103 nm. The z-scan curves showed a negative nonlocal nonlinear refractive index with a magnitude dependent on the nanoparticle size.

  11. Photothermal lens detection of gold nanoparticles: theory and experiments.

    PubMed

    Brusnichkin, Anton V; Nedosekin, Dmitry A; Proskurnin, Mikhail A; Zharov, Vladimir P

    2007-11-01

    An approach for mode-mismatched two-beam (pump-probe) photothermal lens detection of multipoint light-absorbing targets in solution (e.g., gold nanoparticles) is developed for continuous-wave intensity-modulated laser-excitation mode. A description of the blooming of the thermooptical element (thermal lens) upon absorption of the excitation laser radiation is based on the summation of individual thermal waves from multiple heat sources. This description makes it possible to estimate the irregularities of the temperature (and, thus, the refractive index) profile for a discrete number of nanoparticles in the irradiated area and a change in the concentration and particle size parameters. Experimental results are in good agreement with theoretical dependences of the photothermal signal on nanoparticle size and concentration and excitation laser power. Calibration plots for particles from 2 to 250 nm show long linear ranges, limits of detection of gold nanoparticles at the level of hundreds of nanoparticles with the current setup, and the photothermal-lens sensitivity coefficient increases as a cubic function of particle size. Further improvements are discussed, including increasing the sensitivity thresholds up to one nanoparticle in the detected volume. PMID:18028698

  12. Quantification of laser local hyperthermia induced by gold plasmonic nanoparticles.

    PubMed

    Yakunin, Alexander N; Avetisyan, Yuri A; Tuchin, Valery V

    2015-05-01

    This paper discusses one of the key problems of laser-induced tissue/cell hyperthermia mediated by gold nanoparticles, namely, quantifying and precise prediction of the light exposure to provide a controllable local heating impact on living organisms. The distributions of such parameters as an efficiency factor of absorption, differential and integral absorbing power of a nanoparticle, temperature increment, and Arrhenius damage integral were used to quantify nanoparticle effectiveness in the two-dimensional coordinate space “laser wavelength (λ) × radius of gold nanoparticles (R).” It was found that the fulfillment of required spatial and temporal characteristics of temperature fields in the vicinity of nanoparticle determines the optimal λ and R. As a result, the area in the space (λ × R) with a minimal criticality to alterations of the local hyperthermia may be significantly displaced from the position of the plasmonic resonance. The aspects of generalization of the proposed methodology for the analysis of local hyperthermia using nanoparticles of different shapes (nanoshells, nanorods, nanostars) and short pulse laser radiation are discussed. PMID:25629389

  13. Time-dependent Protein-directed Growth of Gold Nanoparticles within a Single Crystal of Lysozyme

    SciTech Connect

    H Wei; Z Wang; J Zhang; S House; Y Gao; L Yang; H Robinson; L Tan; H Xing; C Hou

    2011-12-31

    Gold nanoparticles are useful in biomedical applications due to their distinct optical properties and high chemical stability. Reports of the biogenic formation of gold colloids from gold complexes has also led to an increased level of interest in the biomineralization of gold. However, the mechanism responsible for biomolecule-directed gold nanoparticle formation remains unclear due to the lack of structural information about biological systems and the fast kinetics of biomimetic chemical systems in solution. Here we show that intact single crystals of lysozyme can be used to study the time-dependent, protein-directed growth of gold nanoparticles. The protein crystals slow down the growth of the gold nanoparticles, allowing detailed kinetic studies to be carried out, and permit a three-dimensional structural characterization that would be difficult to achieve in solution. Furthermore, we show that additional chemical species can be used to fine-tune the growth rate of the gold nanoparticles.

  14. Time-dependent, protein-directed growth of gold nanoparticles within a single crystal of lysozyme

    SciTech Connect

    Wei, H.; Robinson, H.; Wang, Z.; Zhang, J.; House, S.; Gao, Y.-G.; Yang, L.; Tan, L. H.; Xing, H.; Hou, C.; Robertson, I. M.; Zuo, J.-M.; Lu, Y.

    2011-01-30

    Gold nanoparticles are useful in biomedical applications due to their distinct optical properties and high chemical stability. Reports of the biogenic formation of gold colloids from gold complexes has also led to an increased level of interest in the biomineralization of gold. However, the mechanism responsible for biomolecule-directed gold nanoparticle formation remains unclear due to the lack of structural information about biological systems and the fast kinetics of biomimetic chemical systems in solution. Here we show that intact single crystals of lysozyme can be used to study the time-dependent, protein-directed growth of gold nanoparticles. The protein crystals slow down the growth of the gold nanoparticles, allowing detailed kinetic studies to be carried out, and permit a three-dimensional structural characterization that would be difficult to achieve in solution. Furthermore, we show that additional chemical species can be used to fine-tune the growth rate of the gold nanoparticles.

  15. Silver and Gold Nanoparticles Alter Cathepsin Activity In vitro

    NASA Astrophysics Data System (ADS)

    Speshock, Janice L.; Braydich-Stolle, Laura K.; Szymanski, Eric R.; Hussain, Saber M.

    2011-12-01

    Nanomaterials are being incorporated into many biological applications for use as therapeutics, sensors, or labels. Silver nanomaterials are being utilized for biological implants and wound dressings as an antiviral material, whereas gold nanomaterials are being used as biological labels or sensors due to their surface properties and biocompatibility. Cytotoxicity data of these materials are becoming more prevalent; however, little research has been performed to understand how the introduction of these materials into cells affects cellular processes. Here, we demonstrate the impact that silver and gold nanoparticles have on cathepsin activity in vitro. Cathepsins are important cellular proteases that are imperative for proper immune system function. We have selected to examine gold and silver nanoparticles due to the increased use of these materials in biological applications. This manuscript depicts how both of these types of nanomaterials affect cathepsin activity, which could impact the host's immune system and its ability to respond to pathogens. Cathepsin B activity decreases in a dose-dependent manner with all nanoparticles tested. Alternatively, the impact of nanoparticles on cathepsin L activity depends greatly on the type and size of the material.

  16. Charging gold nanoparticles in ZnO by electric fields.

    PubMed

    Obradovic, M; Di Vece, M; Grandjean, D; Houben, K; Lievens, P

    2016-01-27

    Controlling the plasmon resonance frequency of metal nanostructures holds promise for both fundamental and applied research in optics. The plasmon resonance frequency depends on the number of free electrons in the metal. By adding or removing electrons to a metal nano-object, the plasmon resonance frequency shifts. In this study we indirectly change the number of free electrons in gold nanoparticles by applying an electrical potential difference over a heterostructure consisting of a ZnO layer with embedded gold nanoparticles. The potential difference induces shifts of defect energy levels in the ZnO by the electric field. This results in an exchange of electrons between particles and matrix which in turn modifies the gold nanoparticle plasmon properties. The positive charge shifts the ZnO optical absorption peak from 377 nm to 386 nm and shifts the nanoparticle plasmon from 549 nm to 542 nm. This electro-optical effect is a promising way to obtain fast optical switching in a solid state composition. PMID:26732742

  17. Field effect on digestive ripening of thiol-capped gold nanoparticles

    SciTech Connect

    Lin, Meng-Lin; Peng, J. S.; Lee, Sanboh; Yang, Fuqian

    2014-02-07

    We studied the digestive ripening of thiol-capped gold nanoparticles under simultaneous action of electric field and reflux heating in a silicone oil bath at 130 °C, using transmission electron microscopy. Observation revealed that a polydispersed gold nanoparticle system reached the state of nearly monodispersity under the action of an electric field and the thiol-capped gold nanoparticles carried negative charges. The electric field caused the increase of the particle size for the nearly monodispersed gold nanoparticle system. The self-assembly of the nearly monodisperse gold nanoparticles under the action of an electric field of a high field intensity was observed. The gold nanoparticles tended to form self-assembled nanostructures of six-fold symmetry. This study provides a new route for system engineering to control the particle size of metallic nanoparticles by electric field and digestive ripening.

  18. Gold nanoparticles embedded silicon channel biosensor for improved sensitivity

    NASA Astrophysics Data System (ADS)

    Chang, H. Y.; Arshad, M. K. Md.; M. Nuzaihan M., N.; Fathil, M. F. M.; Hashim, U.

    2016-07-01

    This project discusses the fabrication steps of a biosensor device on silicon-on-insulator (SOI) wafer. Conventional photolithography technique is used to fabricate the device. The gold nanoparticles (GNPs) are then used to enhance the sensitivity of the device. By incorporating the GNPs, it is expected to get higher current compared with the device without GNPs due to better conductivity of gold and higher volume-to-ratio. Hence, with the addition of GNPs, it may boost up the signal and enhance the sensitivity of the device.

  19. Computational Investigation of Quantum Size Effects in Gold Nanoparticles

    SciTech Connect

    2010-01-01

    Electron density perturbation from carbon monoxide adsorption on a multi-hundred atom gold nanoparticle. The perturbation causes significant quantum size effects in CO catalysis on gold particles. Science: Jeff Greeley and Nick Romero, Argonne National Laboratory; Jesper Kleis, Karsten Jacobsen, Jens Nørskov, Technical University of Denmark
 Visualization: Joseph Insley, Argonne National Laboratory This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Dept. of Energy under contract DE-AC02-06CH11357.

  20. Synthesis of netlike gold nanoparticles using ampicillin as a stabilizing reagent and its application

    SciTech Connect

    Song, Y.Z.; Zhou, J.F.; Song, Y.; Cheng, Z.P.; Xu, J.

    2012-12-15

    Graphical abstract: Electrochemical deposition of netlike gold nanoparticles (GNPs) on the surface of glassy carbon electrode and preparation of netlike GNPs in aqueous solution using ampicillin as a stabilizing reagent were proposed. The catalytic properties of netlike gold nanoparticles on the glassy carbon electrode for dopamine were demonstrated. The results indicate that the netlike gold nanoparticle modified electrode has an excellent repeatability and reproducibility. Display Omitted Highlights: ► Synthesis of netlike gold nanoparticles using ampicillin as a stabilizing reagent. ► Excellent repeatability and reproducibility of netlike gold nanoparticle modified glassy carbon electrode. ► The catalytic properties of netlike gold nanoparticle for dopamine. -- Abstract: Electrochemical deposition of netlike gold nanoparticles on the surface of glassy carbon electrode and preparation of netlike GNPs in aqueous solution using ampicillin as a stabilizing reagent were proposed. The netlike gold nanoparticles were characterized by scanning electron microscope, transmission electron microscope, infrared spectrometer, UV spectrophotometer, powder X-ray diffractometer and electrochemical analyzer. The catalysis of the netlike gold nanoparticles on the glassy carbon electrode for dopamine was demonstrated. The results indicate that the gold nanoparticle modified electrode has an excellent repeatability and reproducibility.

  1. A novel class of potential prion drugs: preliminary in vitro and in vivo data for multilayer coated gold nanoparticles.

    PubMed

    Ai Tran, Hoang Ngoc; Sousa, Fernanda; Moda, Fabio; Mandal, Subhra; Chanana, Munish; Vimercati, Chiara; Morbin, Michela; Krol, Silke; Tagliavini, Fabrizio; Legname, Giuseppe

    2010-12-01

    Gold nanoparticles coated with oppositely charged polyelectrolytes, such as polyallylamine hydrochloride and polystyrenesulfonate, were examined for potential inhibition of prion protein aggregation and prion (PrPSc) conversion and replication. Different coatings, finishing with a positive or negative layer, were tested, and different numbers of layers were investigated for their ability to interact and reduce the accumulation of PrPSc in scrapie prion infected ScGT1 and ScN2a cells. The particles efficiently hampered the accumulation of PrPSc in ScN2a cells and showed curing effects on ScGT1 cells with a nanoparticle concentration in the picomolar range. Finally, incubation periods of prion-infected mice treated with nanomolar concentrations of gold nanoparticles were significantly longer compared to untreated controls. PMID:20944860

  2. The biodistribution of gold nanoparticles designed for renal clearance

    NASA Astrophysics Data System (ADS)

    Alric, Christophe; Miladi, Imen; Kryza, David; Taleb, Jacqueline; Lux, François; Bazzi, Rana; Billotey, Claire; Janier, Marc; Perriat, Pascal; Roux, Stéphane; Tillement, Olivier

    2013-06-01

    Owing to their tunable optical properties and their high absorption cross-section of X- and γ-ray, gold nanostructures appear as promising agents for remotely controlled therapy. Since the efficiency of cancer therapy is not limited to the eradication of the tumour but rests also on the sparing of healthy tissue, a biodistribution study is required in order to determine whether the behaviour of the nanoparticles after intravenous injection is safe (no accumulation in healthy tissue, no uptake by phagocytic cell-rich organs (liver, spleen) and renal clearance). The biodistribution of Au@DTDTPA nanoparticles which are composed of a gold core and a DTDTPA (dithiolated polyaminocarboxylate) shell can be established by X-ray imaging (owing to the X-ray absorption of the gold core) and by magnetic resonance imaging (MRI) since the DTDTPA shell was designed for the immobilization of paramagnetic gadolinium ions. However scintigraphy appears better suited for a biodistribution study owing to a great sensitivity. The successful immobilization of radioelements (99mTc, 111In) in the DTDTPA shell, instead of gadolinium ions, renders possible the follow up of Au@DTDTPA by scintigraphy which showed that Au@DTDTPA nanoparticles exhibit a safe behaviour after intravenous injection to healthy rats.Owing to their tunable optical properties and their high absorption cross-section of X- and γ-ray, gold nanostructures appear as promising agents for remotely controlled therapy. Since the efficiency of cancer therapy is not limited to the eradication of the tumour but rests also on the sparing of healthy tissue, a biodistribution study is required in order to determine whether the behaviour of the nanoparticles after intravenous injection is safe (no accumulation in healthy tissue, no uptake by phagocytic cell-rich organs (liver, spleen) and renal clearance). The biodistribution of Au@DTDTPA nanoparticles which are composed of a gold core and a DTDTPA (dithiolated polyaminocarboxylate

  3. Modeling the atomistic growth behavior of gold nanoparticles in solution

    NASA Astrophysics Data System (ADS)

    Turner, C. Heath; Lei, Yu; Bao, Yuping

    2016-04-01

    The properties of gold nanoparticles strongly depend on their three-dimensional atomic structure, leading to an increased emphasis on controlling and predicting nanoparticle structural evolution during the synthesis process. In order to provide this atomistic-level insight and establish a link to the experimentally-observed growth behavior, a kinetic Monte Carlo simulation (KMC) approach is developed for capturing Au nanoparticle growth characteristics. The advantage of this approach is that, compared to traditional molecular dynamics simulations, the atomistic nanoparticle structural evolution can be tracked on time scales that approach the actual experiments. This has enabled several different comparisons against experimental benchmarks, and it has helped transition the KMC simulations from a hypothetical toy model into a more experimentally-relevant test-bed. The model is initially parameterized by performing a series of automated comparisons of Au nanoparticle growth curves versus the experimental observations, and then the refined model allows for detailed structural analysis of the nanoparticle growth behavior. Although the Au nanoparticles are roughly spherical, the maximum/minimum dimensions deviate from the average by approximately 12.5%, which is consistent with the corresponding experiments. Also, a surface texture analysis highlights the changes in the surface structure as a function of time. While the nanoparticles show similar surface structures throughout the growth process, there can be some significant differences during the initial growth at different synthesis conditions.

  4. Modeling the atomistic growth behavior of gold nanoparticles in solution.

    PubMed

    Turner, C Heath; Lei, Yu; Bao, Yuping

    2016-04-28

    The properties of gold nanoparticles strongly depend on their three-dimensional atomic structure, leading to an increased emphasis on controlling and predicting nanoparticle structural evolution during the synthesis process. In order to provide this atomistic-level insight and establish a link to the experimentally-observed growth behavior, a kinetic Monte Carlo simulation (KMC) approach is developed for capturing Au nanoparticle growth characteristics. The advantage of this approach is that, compared to traditional molecular dynamics simulations, the atomistic nanoparticle structural evolution can be tracked on time scales that approach the actual experiments. This has enabled several different comparisons against experimental benchmarks, and it has helped transition the KMC simulations from a hypothetical toy model into a more experimentally-relevant test-bed. The model is initially parameterized by performing a series of automated comparisons of Au nanoparticle growth curves versus the experimental observations, and then the refined model allows for detailed structural analysis of the nanoparticle growth behavior. Although the Au nanoparticles are roughly spherical, the maximum/minimum dimensions deviate from the average by approximately 12.5%, which is consistent with the corresponding experiments. Also, a surface texture analysis highlights the changes in the surface structure as a function of time. While the nanoparticles show similar surface structures throughout the growth process, there can be some significant differences during the initial growth at different synthesis conditions. PMID:27091290

  5. Dynamic Positron Emission Tomography Imaging of Renal Clearable Gold Nanoparticles.

    PubMed

    Chen, Feng; Goel, Shreya; Hernandez, Reinier; Graves, Stephen A; Shi, Sixiang; Nickles, Robert J; Cai, Weibo

    2016-05-01

    Optical imaging has been the primary imaging modality for nearly all of the renal clearable nanoparticles since 2007. Due to the tissue depth penetration limitation, providing accurate organ kinetics non-invasively has long been a huge challenge. Although a more quantitative imaging technique has been developed by labeling nanoparticles with single-photon emission computed tomography (SPECT) isotopes, the low temporal resolution of SPECT still limits its potential for visualizing the rapid dynamic process of renal clearable nanoparticles in vivo. The dynamic positron emission tomography (PET) imaging of renal clearable gold (Au) nanoparticles by labeling them with copper-64 ((64) Cu) to form (64) Cu-NOTA-Au-GSH is reported. Systematic nanoparticle synthesis and characterizations are performed to demonstrate the efficient renal clearance of as-prepared nanoparticles. A rapid renal clearance of (64) Cu-NOTA-Au-GSH is observed (>75%ID at 24 h post-injection) with its elimination half-life calculated to be less than 6 min, over 130 times shorter than previously reported similar nanoparticles. Dynamic PET imaging not only addresses the current challenges in accurately and non-invasively acquiring the organ kinetics, but also potentially provides a highly useful tool for studying renal clearance mechanism of other ultra-small nanoparticles, as well as the diagnosis of kidney diseases in the near future. PMID:27062146

  6. Colorimetric Detection of Cadmium Ions Using DL-Mercaptosuccinic Acid-Modified Gold Nanoparticles.

    PubMed

    Chen, Na; Chen, Jun; Yang, Jing-Hua; Bai, Lian-Yang; Zhang, Yu-Ping

    2016-01-01

    A colorimetric assay has been developed for detection of Cd²⁺ utilizing DL-mercaptosuccinic acid-modified gold nanoparticles (MSA-AuNPs). The method showed good selectivity for Cd²⁺ over other metal ions. As a result, the linear relationships (r > 0.9606) between concentration 0.07 mM and 0.20 mM for cadmium ion were obtained. The detection limit was as low as 0.07 mM by the naked eye. The effect of pH on the aggregation was optimized. The MSA-AuNPs probe could be used to detect Cd²⁺ in an aqueous solution based on the aggregation-induced color change of MSA-AuNPs. PMID:27398533

  7. Detection of urinary creatinine using gold nanoparticles after solid phase extraction

    NASA Astrophysics Data System (ADS)

    Sittiwong, Jarinya; Unob, Fuangfa

    2015-03-01

    Label-free gold nanoparticles (AuNPs) were utilized in the detection of creatinine in human urine after a sample preparation by extraction of creatinine on sulfonic acid functionalized silica gel. With the proposed sample preparation method, the interfering effects of the urine matrix on creatinine detection by AuNPs were eliminated. Parameters affecting creatinine extraction were investigated. The aggregation of AuNPs induced by creatinine resulted in a change in the surface plasmon resonance signal with a concomitant color change that could be observed by the naked eye and quantified spectrometrically. The effect of AuNP concentration and reaction time on AuNP aggregation was investigated. The method described herein provides a determination of creatinine in a range of 15-40 mg L-1 with a detection limit of 13.7 mg L-1 and it was successfully used in the detection of creatinine in human urine samples.

  8. Shape and surface effects on the cytotoxicity of nanoparticles: Gold nanospheres versus gold nanostars.

    PubMed

    Favi, Pelagie Marlene; Gao, Ming; Johana Sepúlveda Arango, Liuda; Ospina, Sandra Patricia; Morales, Mariana; Pavon, Juan Jose; Webster, Thomas Jay

    2015-11-01

    Gold nanoparticles are materials with unique optical properties that have made them very attractive for numerous biomedical applications. With the increasing discovery of techniques to synthesize novel nanoparticles such as star-shaped gold nanoparticles for biomedical applications, the safety and performance of these new nanomaterials must be systematically assessed before use. In this study, gold nanostars (AuNSTs) with multibranched surface structures were synthesized, and their influence on the cytotoxicity of human skin fibroblasts and rat fat pad endothelial cells (RFPECs) were assessed and compared with that of gold nanospheres (AuNSPs) with unbranched surfaces. Results showed that the AuNSPs with diameters of approximately 61.46 nm showed greater toxicity with fibroblast cells and RFPECs compared with the synthesized AuNSTs with diameters of approximately 33.69 nm. The AuNSPs were lethal at concentrations of 40 μg/mL for both cell lines, whereas the AuNSTs were less toxic at higher concentrations (400 μg/mL). The calculated IC50 (50% inhibitory concentration) values of the AuNSPs exposed to fibroblast cells were greater at 1 and 4 days of culture (26.4 and 27.7 μg/mL, respectively) compared with the RFPECs (13.6 and 13.8 μg/mL, respectively), indicating that the AuNSPs have a greater toxicity to endothelial cells. It was proposed that possible factors that could be promoting the reduced toxicity effects of the AuNSTs to fibroblast cells and RFPECs, compared with the AuNSPs may be size, surface chemistry, and shape of the gold nanoparticles. The reduced cell toxicity observed with the AuNSTs suggests that AuNSTs may be a promising material for use in biomedical applications. PMID:25904210

  9. Singlet Oxygen Generation by Laser Irradiation of Gold Nanoparticles

    PubMed Central

    2016-01-01

    The formation of singlet oxygen by irradiation of gold nanoparticles in their plasmon resonance band with continuous or pulsed laser light has been investigated. Citrate-stabilized nanoparticles were found to facilitate the photogeneration of singlet oxygen, albeit with low quantum yield. The reaction caused by pulsed laser irradiation makes use of the equilibrated hot electrons that can reach temperatures of several thousand degrees during the laser pulse. Although less efficient, continuous irradiation, which acts via the short-lived directly excited primary “hot” electrons only, can produce enough singlet oxygen for photodynamic cancer therapy and has significant advantages for practical applications. However, careful design of the nanoparticles is needed, since even a moderately thick capping layer can completely inhibit singlet oxygen formation. Moreover, the efficiency of the process also depends on the nanoparticle size. PMID:27239247

  10. Gold-nanoparticle-based multifunctional amyloid-β inhibitor against Alzheimer's disease.

    PubMed

    Gao, Nan; Sun, Hanjun; Dong, Kai; Ren, Jinsong; Qu, Xiaogang

    2015-01-01

    Targeting amyloid-β (Aβ)-induced complex neurotoxicity has received considerable attention in the therapeutic and preventive treatment of Alzheimer's disease (AD). The complex pathogenesis of AD suggests that it requires comprehensive treatment, and drugs with multiple functions against AD are more desirable. Herein, AuNPs@POMD-pep (AuNPs: gold nanoparticles, POMD: polyoxometalate with Wells-Dawson structure, pep: peptide) were designed as a novel multifunctional Aβ inhibitor. AuNPs@POMD-pep shows synergistic effects in inhibiting Aβ aggregation, dissociating Aβ fibrils and decreasing Aβ-mediated peroxidase activity and Aβ-induced cytotoxicity. By taking advantage of AuNPs as vehicles that can cross the blood-brain barrier (BBB), AuNPs@POMD-pep can cross the BBB and thus overcome the drawbacks of small-molecule anti-AD drugs. Thus, this work provides new insights into the design and synthesis of inorganic nanoparticles as multifunctional therapeutic agents for treatment of AD. PMID:25376633

  11. Mixed stimuli-responsive magnetic and gold nanoparticle system for rapid purification, enrichment, and detection of biomarkers.

    PubMed

    Nash, Michael A; Yager, Paul; Hoffman, Allan S; Stayton, Patrick S

    2010-12-15

    A new diagnostic system for the enrichment and detection of protein biomarkers from human plasma is presented. Gold nanoparticles (AuNPs) were surface-modified with a diblock copolymer synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization. The diblock copolymer contained a thermally responsive poly(N-isopropylacrylamide) (pNIPAAm) block, a cationic amine-containing block, and a semi-telechelic PEG₂-biotin end group. When a mixed suspension of 23 nm pNIPAAm-modified AuNPs was heated with pNIPAAm-coated 10 nm iron oxide magnetic nanoparticles (mNPs) in human plasma, the thermally responsive pNIPAAm directed the formation of mixed AuNP/mNP aggregates that could be separated efficiently with a magnet. Model studies showed that this mixed nanoparticle system could efficiently purify and strongly enrich the model biomarker protein streptavidin in spiked human plasma. A 10 ng/mL streptavidin sample was mixed with the biotinylated pNIPAAm-modified AuNPs and magnetically separated in the mixed nanoparticle system with pNIPAAm mNPs. The aggregates were concentrated into a 50-fold smaller fluid volume at room temperature where the gold nanoparticle reagent redissolved with the streptavidin target still bound. The concentrated gold-labeled streptavidin could be subsequently analyzed directly using lateral flow immunochromatography. This rapid capture and enrichment module thus utilizes the mixed stimuli-responsive nanoparticle system to achieve concentration of a gold-labeled biomarker that can be directly analyzed using lateral flow or other rapid diagnostic strategies. PMID:21070026

  12. A Mixed Stimuli-Responsive Magnetic and Gold Nanoparticle System for Rapid Purification, Enrichment, and Detection of Biomarkers

    PubMed Central

    Nash, Michael A.; Yager, Paul; Hoffman, Allan S.; Stayton, Patrick S.

    2010-01-01

    A new diagnostic system for the enrichment and detection of protein biomarkers from human plasma is presented. Gold nanoparticles (AuNPs) were surface-modified with a diblock copolymer synthesized using reversible addition fragmentation chain transfer (RAFT) polymerization. The diblock copolymer contained a thermally-responsive poly(N-isopropylacrylamide) (pNIPAAm) block, a cationic amine-containing block, and a semi-telechelic PEG2-biotin end group. When a mixed suspension of 23 nm pNIPAAm-modified AuNPs was heated with pNIPAAm-coated 10 nm iron oxide magnetic nanoparticles (mNPs) in human plasma, the thermally-responsive pNIPAAm directed the formation of mixed AuNP/mNP aggregates that could be separated efficiently with a magnet. Model studies showed that this mixed nanoparticle system could efficiently purify and strongly enrich the model biomarker protein streptavidin in spiked human plasma. A 10 ng/mL streptavidin sample was mixed with the biotinylated and pNIPAAm modified AuNP and magnetically separated in the mixed nanoparticle system with pNIPAAm mNPs. The aggregates were concentrated into a 50-fold smaller fluid volume at room temperature where the gold nanoparticle reagent redissolved with the streptavidin target still bound. The concentrated gold-labeled streptavidin could be subsequently analyzed directly using lateral flow immunochromatography. This rapid capture and enrichment module thus utilizes the mixed stimuli-responsive nanoparticle system to achieve direct concentration of a gold-labeled biomarker that can be directly analyzed using lateral flow or other rapid diagnostic strategies. PMID:21070026

  13. Gold-Coated Superparamagnetic Nanoparticles for Single Methyl Discrimination in DNA Aptamers

    PubMed Central

    Tintoré, Maria; Mazzini, Stefania; Polito, Laura; Marelli, Marcello; Latorre, Alfonso; Somoza, Álvaro; Aviñó, Anna; Fàbrega, Carme; Eritja, Ramon

    2015-01-01

    Au- and iron-based magnetic nanoparticles (NPs) are promising NPs for biomedical applications due to their unique properties. The combination of a gold coating over a magnetic core puts together the benefits from adding the magnetic properties to the robust chemistry provided by the thiol functionalization of gold. Here, the use of Au-coated magnetic NPs for molecular detection of a single methylation in DNA aptamer is described. Binding of α-thrombin to two aptamers conjugated to these NPs causes aggregation, a phenomenon that can be observed by UV, DLS and MRI. These techniques discriminate a single methylation in one of the aptamers, preventing aggregation due to the inability of α-thrombin to recognize it. A parallel study with gold and ferromagnetic NPs is detailed, concluding that the Au coating of FexOy NP does not affect their performance and that they are suitable as complex biosensors. These results prove the high detection potency of Au-coated SPIONs for biomedical applications especially for DNA repair detection. PMID:26593913

  14. Gold-Coated Superparamagnetic Nanoparticles for Single Methyl Discrimination in DNA Aptamers.

    PubMed

    Tintoré, Maria; Mazzini, Stefania; Polito, Laura; Marelli, Marcello; Latorre, Alfonso; Somoza, Álvaro; Aviñó, Anna; Fàbrega, Carme; Eritja, Ramon

    2015-01-01

    Au- and iron-based magnetic nanoparticles (NPs) are promising NPs for biomedical applications due to their unique properties. The combination of a gold coating over a magnetic core puts together the benefits from adding the magnetic properties to the robust chemistry provided by the thiol functionalization of gold. Here, the use of Au-coated magnetic NPs for molecular detection of a single methylation in DNA aptamer is described. Binding of α-thrombin to two aptamers conjugated to these NPs causes aggregation, a phenomenon that can be observed by UV, DLS and MRI. These techniques discriminate a single methylation in one of the aptamers, preventing aggregation due to the inability of α-thrombin to recognize it. A parallel study with gold and ferromagnetic NPs is detailed, concluding that the Au coating of FexOy NP does not affect their performance and that they are suitable as complex biosensors. These results prove the high detection potency of Au-coated SPIONs for biomedical applications especially for DNA repair detection. PMID:26593913

  15. Enhanced chemiluminescence-based detection on gold substrate after electrografting of diazonium precursor-coated gold nanoparticles.

    PubMed

    Houmed Adabo, Ali; Zeggari, Rabah; Mohamed Saïd, Nasser; Bazzi, Rana; Elie-Caille, Céline; Marquette, Christophe; Martini, Matteo; Tillement, Olivier; Perriat, Pascal; Chaix, Carole; Boireau, Wilfrid; Roux, Stéphane

    2016-04-01

    Since it was demonstrated that nanostructured surfaces are more efficient for the detection based on the specific capture of analytes, there is a real need to develop strategies for grafting nanoparticles onto flat surfaces. Among the different routes for the functionalization of a surface, the reduction of diazonium salts appears very attractive for the covalent immobilization of nanoparticles because this method does not require a pre-treatment of the surface. For achieving this goal, gold nanoparticles coated by precursor of diazonium salts were synthesized by reduction of gold salt in presence of mercaptoaniline. These mercaptoaniline-coated gold nanoparticles (Au@MA) were successfully immobilized onto various conducting substrates (indium tin oxide (ITO), glassy carbon (GC) and gold electrodes with flat terraces) after addition of sodium nitrite at fixed potential. When applied onto the gold electrodes, such a grafting strategy led to an obvious enhancement of the luminescence of luminol used for the biodetection. PMID:26803605

  16. Dielectrophoresis of gold nanoparticles conjugated to DNA origami structures

    PubMed Central

    Wiens, Matthew; Lakatos, Mathias; Heerwig, Andreas; Ostermaier, Frieder; Haufe, Nora

    2016-01-01

    Summary DNA nanostructures are promising construction materials to bridge the gap between self-assembly of functional molecules and conventional top-down fabrication methods in nanotechnology. Their positioning onto specific locations of a microstructured substrate is an important task towards this aim. Here we study manipulation and positioning of pristine and of gold nanoparticle-conjugated tubular DNA origami structures using ac dielectrophoresis. The dielectrophoretic behavior was investigated employing fluorescence microscopy. For the pristine origami, a significant dielectrophoretic response was found to take place in the megahertz range, whereas, due to the higher polarizability of the metallic nanoparticles, the nanoparticle/DNA hybrid structures required a lower electrical field strength and frequency for a comparable trapping at the edges of the electrode structure. The nanoparticle conjugation additionally resulted in a remarkable alteration of the DNA structure arrangement. The growth of linear, chain-like structures in between electrodes at applied frequencies in the megahertz range was observed. The long-range chain formation is caused by a local, gold nanoparticle-induced field concentration along the DNA nanostructures, which in turn, creates dielectrophoretic forces that enable the observed self-alignment of the hybrid structures. PMID:27547612

  17. In vivo integrity of polymer-coated gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Kreyling, Wolfgang G.; Abdelmonem, Abuelmagd M.; Ali, Zulqurnain; Alves, Frauke; Geiser, Marianne; Haberl, Nadine; Hartmann, Raimo; Hirn, Stephanie; de Aberasturi, Dorleta Jimenez; Kantner, Karsten; Khadem-Saba, Gülnaz; Montenegro, Jose-Maria; Rejman, Joanna; Rojo, Teofilo; de Larramendi, Idoia Ruiz; Ufartes, Roser; Wenk, Alexander; Parak, Wolfgang J.

    2015-07-01

    Inorganic nanoparticles are frequently engineered with an organic surface coating to improve their physicochemical properties, and it is well known that their colloidal properties may change upon internalization by cells. While the stability of such nanoparticles is typically assayed in simple in vitro tests, their stability in a mammalian organism remains unknown. Here, we show that firmly grafted polymer shells around gold nanoparticles may degrade when injected into rats. We synthesized monodisperse radioactively labelled gold nanoparticles (198Au) and engineered an 111In-labelled polymer shell around them. Upon intravenous injection into rats, quantitative biodistribution analyses performed independently for 198Au and 111In showed partial removal of the polymer shell in vivo. While 198Au accumulates mostly in the liver, part of the 111In shows a non-particulate biodistribution similar to intravenous injection of chelated 111In. Further in vitro studies suggest that degradation of the polymer shell is caused by proteolytic enzymes in the liver. Our results show that even nanoparticles with high colloidal stability can change their physicochemical properties in vivo.

  18. Effects of gold nanoparticles on the stability of microbubbles.

    PubMed

    Mohamedi, Graciela; Azmin, Mehrdad; Pastoriza-Santos, Isabel; Huang, Victoria; Pérez-Juste, Jorge; Liz-Marzán, Luis M; Edirisinghe, Mohan; Stride, Eleanor

    2012-10-01

    Surfactant-coated microbubbles are utilized in a wide variety of applications, from wastewater purification to contrast agents in medical ultrasound imaging. In many of these applications, the stability of the microbubbles is crucial to their effectiveness. Controlling this, however, represents a considerable challenge. In this study, the potential for stabilizing microbubbles using solid nanoparticles adsorbed onto their surfaces was explored. A new theoretical model has been developed to describe the influence of interfacially adsorbed solid particles upon the dissolution of a gas bubble in a liquid. The aim of this work was to test experimentally the prediction of the model that the presence of the nanoparticles would inhibit gas diffusion and coalescence/disproportionation, thus increasing the life span of the bubbles. Near-monodisperse microbubbles (~100 μm diameter) were prepared using a microfluidic device and coated with a surfactant, with and without the addition of a suspension of spherical gold nanoparticles (~15 nm diameter). The experimental results confirmed the theoretical predictions that as the surface concentration of gold nanoparticles increased the bubbles underwent negligible changes in their size and size distribution over a period of 30 days at the ambient temperature and pressure. Under the same conditions, bubbles coated with the same surfactant but no nanoparticles survived only a matter of hours. PMID:22928997

  19. Dielectrophoresis of gold nanoparticles conjugated to DNA origami structures.

    PubMed

    Henning-Knechtel, Anja; Wiens, Matthew; Lakatos, Mathias; Heerwig, Andreas; Ostermaier, Frieder; Haufe, Nora; Mertig, Michael

    2016-01-01

    DNA nanostructures are promising construction materials to bridge the gap between self-assembly of functional molecules and conventional top-down fabrication methods in nanotechnology. Their positioning onto specific locations of a microstructured substrate is an important task towards this aim. Here we study manipulation and positioning of pristine and of gold nanoparticle-conjugated tubular DNA origami structures using ac dielectrophoresis. The dielectrophoretic behavior was investigated employing fluorescence microscopy. For the pristine origami, a significant dielectrophoretic response was found to take place in the megahertz range, whereas, due to the higher polarizability of the metallic nanoparticles, the nanoparticle/DNA hybrid structures required a lower electrical field strength and frequency for a comparable trapping at the edges of the electrode structure. The nanoparticle conjugation additionally resulted in a remarkable alteration of the DNA structure arrangement. The growth of linear, chain-like structures in between electrodes at applied frequencies in the megahertz range was observed. The long-range chain formation is caused by a local, gold nanoparticle-induced field concentration along the DNA nanostructures, which in turn, creates dielectrophoretic forces that enable the observed self-alignment of the hybrid structures. PMID:27547612

  20. Preparation of gold and silver nanoparticles by pulsed laser ablation of solid target in water

    NASA Astrophysics Data System (ADS)

    Nikov, R. G.; Nikolov, A. S.; Atanasov, P. A.

    2010-10-01

    Colloidal solutions of gold and silver nanoparticles (NPs) were prepared using a method pulsed laser ablation of target in liquid media. A gold and silver targets immersed in double distilled water are irradiated for 20 min by laser pulses with duration of 15 ns and repetition rate of 10 Hz. In order to investigate influences of laser wavelength and fluence on the particle size, shape and optical properties the experiments were preformed by using two different wavelength - the fundamental and the second harmonic (SH) (λ = 1064 and 532 nm, respectively) of a Nd:YAG laser system. Two different values of the laser fluence for each wavelength at the experimental conditions chosen were used and thus it was changed from several J/cm2 to tens of J/cm2. For characterization of the NPs shape and size distribution were used transmission electron microscope (TEM) and optical transmission spectroscopy in the near UV and in the visible region. Spherical shape of the nanoparticles at the low laser fluence and appearance of aggregation and building of nanowires at the SH and high laser fluence is seen. Dependence of the mean particle size at the SH on the laser fluence was established. The mean diameter of gold NPs became smaller with decrease in laser wavelength.

  1. Monomer adsorption of indocyanine green to gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Guerrini, Luca; Hartsuiker, Liesbeth; Manohar, Srirang; Otto, Cees

    2011-10-01

    NIR-dye encoded gold nanoparticles (GNP) are rapidly emerging as contrast agents in many bio-imaging/sensing applications. The coding process is usually carried out without control or a clear understanding of the metal-liquid interface properties which, in contrast, are critical in determining the type and extension of dye-metal interaction. In this paper, we investigated the effect of gold surface composition on the adsorption of indocyanine green (ICG) on GNP, simulating the surface conditions of gold nanorods on citrate-capped gold nanospheres. These substrates allowed a careful control of the metal-liquid interface composition and, thus, detailed absorption and fluorescence concentration studies of the effects of each individual chemical in the colloidal solution (i.e. bromide anions, cetyl trimethylammonium ions and Ag+ ions) on the ICG-gold interaction. This study reveals the drastic effect that these experimental parameters can have on the ICG adsorption on GNP.NIR-dye encoded gold nanoparticles (GNP) are rapidly emerging as contrast agents in many bio-imaging/sensing applications. The coding process is usually carried out without control or a clear understanding of the metal-liquid interface properties which, in contrast, are critical in determining the type and extension of dye-metal interaction. In this paper, we investigated the effect of gold surface composition on the adsorption of indocyanine green (ICG) on GNP, simulating the surface conditions of gold nanorods on citrate-capped gold nanospheres. These substrates allowed a careful control of the metal-liquid interface composition and, thus, detailed absorption and fluorescence concentration studies of the effects of each individual chemical in the colloidal solution (i.e. bromide anions, cetyl trimethylammonium ions and Ag+ ions) on the ICG-gold interaction. This study reveals the drastic effect that these experimental parameters can have on the ICG adsorption on GNP. Electronic supplementary

  2. Electron energy loss spectroscopy of gold nanoparticles on graphene

    SciTech Connect

    DeJarnette, Drew; Roper, D. Keith

    2014-08-07

    Plasmon excitation decay by absorption, scattering, and hot electron transfer has been distinguished from effects induced by incident photons for gold nanoparticles on graphene monolayer using electron energy loss spectroscopy (EELS). Gold nano-ellipses were evaporated onto lithographed graphene, which was transferred onto a silicon nitride transmission electron microscopy grid. Plasmon decay from lithographed nanoparticles measured with EELS was compared in the absence and presence of the graphene monolayer. Measured decay values compared favorably with estimated radiative and non-radiative contributions to decay in the absence of graphene. Graphene significantly enhanced low-energy plasmon decay, increasing mode width 38%, but did not affect higher energy plasmon or dark mode decay. This decay beyond expected radiative and non-radiative mechanisms was attributed to hot electron transfer, and had quantum efficiency of 20%, consistent with previous reports.

  3. Fabrication of Gold Nanoparticles for targeted therapy in pancreatic cancer**

    PubMed Central

    Patra, Chitta Ranjan; Bhattacharya, Resham; Mukhopadhyay, Debabrata; Mukherjee, Priyabrata

    2009-01-01

    The targeted delivery of a drug should result in enhanced therapeutic efficacy with low to minimal side effects. This is a widely accepted concept, but limited in application due to lack of available technologies and process of validation. Biomedical nanotechnology can play an important role in this respect. Biomedical nanotechnology is a burgeoning field with myriads of opportunities and possibilities for advancing medical science and disease treatment. Cancer nanotechnology (1–100 nm size range) is expected to change the very foundations of cancer treatment, diagnosis and detection. Nanomaterials, especially gold nanoparticles (AuNPs) have unique physicochemical properties, such as ultra small size, large surface area to mass ratio, and high surface reactivity, presence of surface plasmon resonance (SPR) bands, biocompatibility and ease of surface functionalization. In this review, we will discuss how the unique physico-chemical properties of gold nanoparticles may be utilized for targeted drug delivery in pancreatic cancer leading to increased efficacy of traditional chemotherapeutics. PMID:19914317

  4. The Formation and Binding of Gold Nanoparticles onto Wool Fibres

    SciTech Connect

    Johnston, James H.; Burridge, Kerstin A.; Kelly, Fern M.

    2009-07-23

    This paper presents the novel use of nanosize gold with different plasmon resonance colours, as stable colourfast colourants on wool fibres for use in high quality fabrics and textiles. The gold nanoparticles are synthesised by the controlled reduction of Au{sup 3+} in the AuCl{sub 4}{sup -} complex to Au{sup 0} onto the surface of the wool where they attach to the S in the cystine amino acids in wool keratin proteins. Scanning electronmicroscopy shows the nanoparticles are present on the cuticles of the fibre surface and are concentrated at the edges of these cuticles. EDS analysis shows a strong correlation of Au with S and X-ray photoelectron spectroscopy suggests Au-S bond formation. Hence the nanogold colourants are chemically bound to the wool fibre surface and do not fade as traditional organic dyes do. A range of coloured fibres have been produced.

  5. Towards Effective Photothermal/Photodynamic Treatment Using Plasmonic Gold Nanoparticles.

    PubMed

    Bucharskaya, Alla; Maslyakova, Galina; Terentyuk, Georgy; Yakunin, Alexander; Avetisyan, Yuri; Bibikova, Olga; Tuchina, Elena; Khlebtsov, Boris; Khlebtsov, Nikolai; Tuchin, Valery

    2016-01-01

    Gold nanoparticles (AuNPs) of different size and shape are widely used as photosensitizers for cancer diagnostics and plasmonic photothermal (PPT)/photodynamic (PDT) therapy, as nanocarriers for drug delivery and laser-mediated pathogen killing, even the underlying mechanisms of treatment effects remain poorly understood. There is a need in analyzing and improving the ways to increase accumulation of AuNP in tumors and other crucial steps in interaction of AuNPs with laser light and tissues. In this review, we summarize our recent theoretical, experimental, and pre-clinical results on light activated interaction of AuNPs with tissues and cells. Specifically, we discuss a combined PPT/PDT treatment of tumors and killing of pathogen bacteria with gold-based nanocomposites and atomic clusters, cell optoporation, and theoretical simulations of nanoparticle-mediated laser heating of tissues and cells. PMID:27517913

  6. Towards Effective Photothermal/Photodynamic Treatment Using Plasmonic Gold Nanoparticles

    PubMed Central

    Bucharskaya, Alla; Maslyakova, Galina; Terentyuk, Georgy; Yakunin, Alexander; Avetisyan, Yuri; Bibikova, Olga; Tuchina, Elena; Khlebtsov, Boris; Khlebtsov, Nikolai; Tuchin, Valery

    2016-01-01

    Gold nanoparticles (AuNPs) of different size and shape are widely used as photosensitizers for cancer diagnostics and plasmonic photothermal (PPT)/photodynamic (PDT) therapy, as nanocarriers for drug delivery and laser-mediated pathogen killing, even the underlying mechanisms of treatment effects remain poorly understood. There is a need in analyzing and improving the ways to increase accumulation of AuNP in tumors and other crucial steps in interaction of AuNPs with laser light and tissues. In this review, we summarize our recent theoretical, experimental, and pre-clinical results on light activated interaction of AuNPs with tissues and cells. Specifically, we discuss a combined PPT/PDT treatment of tumors and killing of pathogen bacteria with gold-based nanocomposites and atomic clusters, cell optoporation, and theoretical simulations of nanoparticle-mediated laser heating of tissues and cells. PMID:27517913

  7. Enhanced photoacoustic signal from DNA assembled gold nanoparticle networks

    NASA Astrophysics Data System (ADS)

    Buchkremer, A.; Beckmann, M. F.; Linn, M.; Ruff, J.; Rosencrantz, R. R.; von Plessen, G.; Schmitz, G.; Simon, U.

    2014-12-01

    We report an experimental finding of photoacoustic signal enhancement from finite sized DNA-gold nanoparticle networks. We synthesized DNA-functionalized hollow and solid gold nanospheres (AuNS) to form finite sized networks, which were characterized by means of optical extinction spectroscopy, dynamic light scattering, and scanning electron microscopy in transmission mode. It is shown that the signal amplification scales with network size for networks comprising either hollow or solid AuNS as well as networks consisting of both types of nanoparticles. The laser intensities applied in our multispectral setup (λ = 650 nm, 850 nm, 905 nm) were low enough to maintain the structural integrity of the networks. This reflects that the binding and recognition properties of the temperature-sensitive cross-linking DNA-molecules are retained.

  8. Paper-based tuberculosis diagnostic devices with colorimetric gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Ting; Shen, Shu-Wei; Cheng, Chao-Min; Chen, Chien-Fu

    2013-08-01

    A colorimetric sensing strategy employing gold nanoparticles and a paper assay platform has been developed for tuberculosis diagnosis. Unmodified gold nanoparticles and single-stranded detection oligonucleotides are used to achieve rapid diagnosis without complicated and time-consuming thiolated or other surface-modified probe preparation processes. To eliminate the use of sophisticated equipment for data analysis, the color variance for multiple detection results was simultaneously collected and concentrated on cellulose paper with the data readout transmitted for cloud computing via a smartphone. The results show that the 2.6 nM tuberculosis mycobacterium target sequences extracted from patients can easily be detected, and the turnaround time after the human DNA is extracted from clinical samples was approximately 1 h.

  9. Plant-mediated biosynthesis of silver and gold nanoparticles.

    PubMed

    Dwivedi, Amarendra Dhar; Gopal, Krishna

    2011-02-01

    Single-pot biosynthesis of silver and gold quasi-spherical nanoparticles (SNPs and GNPs) in the size range of 10-30 nm was attempted using Chenopodium album (an obnoxious weed). This method is rapid, facile, convenient and environmentally safe. Average crystal size was approximately 12 nm and 10 nm for silver and gold nanocrystals respectively. Synthesized NPs were stable in a wide range of pH as there was less variation in zeta potential values. In synthesis of SNPs and GNPs, naturally occurring oxalic acid played significant role in bio-reduction of silver nitrate and auric acid solution into their corresponding silver and gold nano-colloids in single step rapid process. PMID:21485852

  10. Vascular Targeting of a Gold Nanoparticle to Breast Cancer Metastasis.

    PubMed

    Peiris, Pubudu M; Deb, Partha; Doolittle, Elizabeth; Doron, Gilad; Goldberg, Amy; Govender, Priya; Shah, Shruti; Rao, Swetha; Carbone, Sarah; Cotey, Thomas; Sylvestre, Meilyn; Singh, Sohaj; Schiemann, William P; Lee, Zhenghong; Karathanasis, Efstathios

    2015-08-01

    The vast majority of breast cancer deaths are due to metastatic disease. Although deep tissue targeting of nanoparticles is suitable for some primary tumors, vascular targeting may be a more attractive strategy for micrometastasis. This study combined a vascular targeting strategy with the enhanced targeting capabilities of a nanoparticle to evaluate the ability of a gold nanoparticle (AuNP) to specifically target the early spread of metastatic disease. As a ligand for the vascular targeting strategy, we utilized a peptide targeting alpha(v) beta(3) integrin, which is functionally linked to the development of micrometastases at a distal site. By employing a straightforward radiolabeling method to incorporate Technetium-99m into the AuNPs, we used the high sensitivity of radionuclide imaging to monitor the longitudinal accumulation of the nanoparticles in metastatic sites. Animal and histological studies showed that vascular targeting of the nanoparticle facilitated highly accurate targeting of micrometastasis in the 4T1 mouse model of breast cancer metastasis using radionuclide imaging and a low dose of the nanoparticle. Because of the efficient targeting scheme, 14% of the injected AuNP deposited at metastatic sites in the lungs within 60 min after injection, indicating that the vascular bed of metastasis is a viable target site for nanoparticles. PMID:26036431

  11. Iron oxide and gold nanoparticles in cancer therapy

    NASA Astrophysics Data System (ADS)

    Gotman, Irena; Psakhie, Sergey G.; Lozhkomoev, Aleksandr S.; Gutmanas, Elazar Y.

    2016-08-01

    Continuous research activities in the field of nanomedicine in the past decade have, to a great extent, been focused on nanoparticle technologies for cancer therapy. Gold and iron oxide nanoparticles (NP) are two of the most studied inorganic nanomaterials due to their unique optical and magnetic properties. Both types of NPs are emerging as promising systems for anti-tumor drug delivery and for nanoparticle-mediated thermal therapy of cancer. In thermal therapy, localized heating inside tumors or in proximity of tumor cells can be induced, for example, with Au NPs by radiofrequency ablation heating or conversion of photon energy (photothermal therapy) and in iron oxide magnetic NPs by heat generation through relaxation in an alternating magnetic field (magnetic hyperthermia). Furthermore, the superparamagnetic properties of iron oxide nanoparticles have led to their use as potent MRI (magnetic resonance imaging) contrast agents. Surface modification/coating can produce NPs with tailored and desired properties, such as enhanced blood circulation time, stability, biocompatibility and water solubility. To target nanoparticles to specific tumor cells, NPs should be conjugated with targeting moieties on the surface which bind to receptors or other molecular structures on the cell surface. The article presents several approaches to enhancing the specificity of Au and iron oxide nanoparticles for tumor tissue by appropriate surface modification/functionalization, as well as the effect of these treatments on the saturation magnetization value of iron oxide NPs. The use of other nanoparticles and nanostructures in cancer treatment is also briefly reviewed.

  12. Cellular network formation of hydrophobic alkanethiol capped gold nanoparticles on mica surface mediated by water islands.

    PubMed

    John, Neena S; Raina, Gargi; Sharma, Ashutosh; Kulkarni, Giridhar U

    2010-09-01

    Dendritic and cellular networks of nanoparticles are known to form commonly either by random diffusion-limited aggregation or by solvent evaporation dynamics. Using alkanethiol capped gold nanoparticles deposited on mica imaged under ambient and controlled water vapor conditions by atomic force microscope and in situ scanning electron microscope, respectively, we show a third mechanism in action. The cellular network consisting of open and closed polygons is formed by the nucleation and lateral growth of adsorbed water islands, the contact lines of which push the randomly distributed hydrophobic nanoparticles along the growth directions, eventually leading to the polygonal structure formation as the boundaries of the growing islands meet. Such nanoparticle displacement has been possible due to the weakly adhering nature of the hydrophilic substrate, mica. These results demonstrate an important but hitherto neglected effect of adsorbed water in the structure formation on hydrophilic substrates and provide a facile tool for the fabrication of nanoparticle networks without specific particle or substrate modifications and without a tight control on particle deposition conditions during the solvent evaporation. PMID:20831330

  13. Peroxidase-like activity of gold nanoparticles stabilized by hyperbranched polyglycidol derivatives over a wide pH range.

    PubMed

    Drozd, Marcin; Pietrzak, Mariusz; Parzuchowski, Paweł; Mazurkiewicz-Pawlicka, Marta; Malinowska, Elżbieta

    2015-12-11

    The aim of this work was to carry out comparative studies on the peroxidase-like activity of gold nanoparticles (AuNPs) stabilized with low molecular weight hyperbranched polyglycidol (HBPG-OH) and its derivative modified with maleic acid residues (HBPG-COOH). The influence of the stabilizer to gold precursor ratio on the size and morphology of nanoparticles obtained was checked, and prepared nanoparticles were characterized by means of transmission electron microscopy and UV-Vis spectroscopy. The results indicated the divergent effect of increasing the concentration of stabilizers (HBPG-OH or HBPG-COOH) on the size of the nanostructures obtained. The gold nanoparticles obtained were characterized as having intrinsic peroxidase-like activity and the mechanism of catalysis in acidic and alkaline mediums was consistent with the standard Michaelis-Menten kinetics, revealing a strong affinity of AuNPs with 2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 3, 3', 5, 5'-tetramethylbenzidine (TMB), and significantly lower affinity towards phenol. By comparing the kinetic parameters, a negligible effect of polymeric ligand charge on activity against various types of substrates (anionic or cationic) was indicated. The superiority of steric stabilization via the application of tested low-weight hyperbranched polymers over typical stabilizers in preventing salt-induced aggregation and maintaining high catalytic activity in time was proved. The applied hyperbranched stabilizers provide a good tool for manufacturing gold-based nanozymes, which are highly stable and active over a wide pH range. PMID:26567596

  14. Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium, Shewanella oneidensis

    SciTech Connect

    Suresh, Anil K; Pelletier, Dale A; Wang, Wei; Broich, Michael L; Moon, Ji Won; Gu, Baohua; Allison, David P; Joy, David Charles; Phelps, Tommy Joe; Doktycz, Mitchel John

    2011-01-01

    Nanocrystallites have garnered substantial interest due to their varying applications including catalysis. Consequently important aspects related to control of shape/size and syntheses through economical and non-hazardous means are desirable. Highly efficient bioreduction based natural fabrication approaches that utilize microbes and or -plant extracts are poised to meet these needs. Here we show that the gamma- proteobacterium, Shewanella oneidensis MR-1, can reduce tetrachloro aurate (III) ions, producing discrete extracellular spherical gold nanocrystallites. The particles were homogeneous with multiple size distributions and produced under ambient conditions at high yield, 88% of theoretical maximum. Further characterization revealed that the particles consist of spheres in the size range of 2-50 nm, with an average of 12 5 nm. The nanoparticles were hydrophilic, biocompatible, and resisted aggregation even after several months. The particles are likely capped by a detachable protein/peptide coat. UV-vis and Fourier transform infrared spectroscopy, X-ray diffraction, energy dispersive X-ray spectra and transmission electron microscopy measurements confirmed the formation as well the crystalline nature of the nanoparticles. The antibacterial activity of these gold nanoparticles was assessed using Gram-negative (E. coli and S. oneidensis) and Gram-positive (B. subtilis) bacteria. Toxicity assessments divulged that the particles were neither toxic nor inhibitory to any of these bacteria.

  15. Dual plasmonic gold nanoparticles for multispectral photoacoustic imaging application

    NASA Astrophysics Data System (ADS)

    Raghavan, Vijay; Subhash, Hrebesh; Breathnach, Aedán.; Leahy, Martin; Dockery, Peter; Olivo, Malini

    2014-03-01

    Nanoparticle contrast agents for molecular targeted imaging have widespread interest in diagnostic applications with cellular resolution, specificity and selectivity for visualization and assessment of various disease processes. Of particular interest is gold nanoparticle owing to its tunability of the surface plasmon resonance (SPR) and its relative inertness. Here we present the synthesis of anisotropic multi-branched star shaped gold nanoparticles exhibiting dual-band plasmon absorption peaks and its application as a contrast agent for multispectral photoacoustic imaging. The transverse plasmon absorption peak of the synthesised dual plasmonic gold nanostar (DPGNS) was around 700 nm and that of longitudinal plasmon absorption in the longer wavelength region around 1050-1150 nm. Unlike most reported PA contrast agent with surface plasmon absorption in the range of 700 to 800 nm showing moderate tissue penetration, 1050-1200 nm range lies in the farther region of the optical window of biological tissue where scattering and the intrinsic optical extinction of endogenous chromophores is at its minimum. We also present a proof of principle demonstration of DPGNS as contrast agent for multispectral photoacoustic animal imaging. Our results show that DPGNS are promising for PA imaging with extended-depth imaging applications.

  16. Imaging and radiation effects of gold nanoparticles in tumour cells

    NASA Astrophysics Data System (ADS)

    McQuaid, Harold N.; Muir, Mark F.; Taggart, Laura E.; McMahon, Stephen J.; Coulter, Jonathan A.; Hyland, Wendy B.; Jain, Suneil; Butterworth, Karl T.; Schettino, Giuseppe; Prise, Kevin M.; Hirst, David G.; Botchway, Stanley W.; Currell, Fred J.

    2016-01-01

    Gold nanoparticle radiosensitization represents a novel technique in enhancement of ionising radiation dose and its effect on biological systems. Variation between theoretical predictions and experimental measurement is significant enough that the mechanism leading to an increase in cell killing and DNA damage is still not clear. We present the first experimental results that take into account both the measured biodistribution of gold nanoparticles at the cellular level and the range of the product electrons responsible for energy deposition. Combining synchrotron-generated monoenergetic X-rays, intracellular gold particle imaging and DNA damage assays, has enabled a DNA damage model to be generated that includes the production of intermediate electrons. We can therefore show for the first time good agreement between the prediction of biological outcomes from both the Local Effect Model and a DNA damage model with experimentally observed cell killing and DNA damage induction via the combination of X-rays and GNPs. However, the requirement of two distinct models as indicated by this mechanistic study, one for short-term DNA damage and another for cell survival, indicates that, at least for nanoparticle enhancement, it is not safe to equate the lethal lesions invoked in the local effect model with DNA damage events.

  17. Wavelength specific excitation of gold nanoparticle thin-films

    NASA Astrophysics Data System (ADS)

    Lucas, Thomas M.; James, Kurtis T.; Beharic, Jasmin; Moiseeva, Evgeniya V.; Keynton, Robert S.; O'Toole, Martin G.; Harnett, Cindy K.

    2014-01-01

    Advances in microelectromechanical systems (MEMS) continue to empower researchers with the ability to sense and actuate at the micro scale. Thermally driven MEMS components are often used for their rapid response and ability to apply relatively high forces. However, thermally driven MEMS often have high power consumption and require physical wiring to the device. This work demonstrates a basis for designing light-powered MEMS with a wavelength specific response. This is accomplished by patterning surface regions with a thin film containing gold nanoparticles that are tuned to have an absorption peak at a particular wavelength. The heating behavior of these patterned surfaces is selected by the wavelength of laser directed at the sample. This method also eliminates the need for wires to power a device. The results demonstrate that gold nanoparticle films are effective wavelength-selective absorbers. This "hybrid" of infrared absorbent gold nanoparticles and MEMS fabrication technology has potential applications in light-actuated switches and other mechanical structures that must bend at specific regions. Deposition methods and surface chemistry will be integrated with three-dimensional MEMS structures in the next phase of this work. The long-term goal of this project is a system of light-powered microactuators for exploring cellular responses to mechanical stimuli, increasing our fundamental understanding of tissue response to everyday mechanical stresses at the molecular level.

  18. Dependence of Gold Nanoparticle Radiosensitization on Functionalizing Layer Thickness.

    PubMed

    Spaas, Cedric; Dok, Rüveyda; Deschaume, Olivier; De Roo, Bert; Vervaele, Mattias; Seo, Jin Won; Bartic, Carmen; Hoet, Peter; Van den Heuvel, Frank; Nuyts, Sandra; Locquet, Jean-Pierre

    2016-04-01

    Gold nanoparticles functionalized with polyethylene glycol of different chain lengths are used to determine the influence of the capping layer thickness on the radiosensitizing effect of the particles. The size variations in organic coating, built up with polyethylene glycol polymers of molecular weight 1-20 kDa, allow an evaluation of the decrease in dose enhancement percentages caused by the gold nanoparticles at different radial distances from their surface. With localized eradication of malignant cells as a primary focus, radiosensitization is most effective after internalization in the nucleus. For this reason, we performed controlled radiation experiments, with doses up to 20 Gy and particle diameters in a range of 5-30 nm, and studied the relaxation pattern of supercoiled DNA. Subsequent gel electrophoresis of the suspensions was performed to evaluate the molecular damage and consecutively quantify the gold nanoparticle sensitization. In conclusion, on average up to 58.4% of the radiosensitizing efficiency was lost when the radial dimensions of the functionalizing layer were increased from 4.1 to 15.3 nm. These results serve as an experimental supplement for biophysical simulations and demonstrate the influence of an important parameter in the development of nanomaterials for targeted therapies in cancer radiotherapy. PMID:26950059

  19. Imaging and radiation effects of gold nanoparticles in tumour cells

    PubMed Central

    McQuaid, Harold N.; Muir, Mark F.; Taggart, Laura E.; McMahon, Stephen J.; Coulter, Jonathan A.; Hyland, Wendy B.; Jain, Suneil; Butterworth, Karl T.; Schettino, Giuseppe; Prise, Kevin M.; Hirst, David G.; Botchway, Stanley W.; Currell, Fred J.

    2016-01-01

    Gold nanoparticle radiosensitization represents a novel technique in enhancement of ionising radiation dose and its effect on biological systems. Variation between theoretical predictions and experimental measurement is significant enough that the mechanism leading to an increase in cell killing and DNA damage is still not clear. We present the first experimental results that take into account both the measured biodistribution of gold nanoparticles at the cellular level and the range of the product electrons responsible for energy deposition. Combining synchrotron-generated monoenergetic X-rays, intracellular gold particle imaging and DNA damage assays, has enabled a DNA damage model to be generated that includes the production of intermediate electrons. We can therefore show for the first time good agreement between the prediction of biological outcomes from both the Local Effect Model and a DNA damage model with experimentally observed cell killing and DNA damage induction via the combination of X-rays and GNPs. However, the requirement of two distinct models as indicated by this mechanistic study, one for short-term DNA damage and another for cell survival, indicates that, at least for nanoparticle enhancement, it is not safe to equate the lethal lesions invoked in the local effect model with DNA damage events. PMID:26787230

  20. Multiplex Electrochemical Immunoassay Using Gold Nanoparticle Probes and Immunochromatographic Strips

    SciTech Connect

    Mao, Xun; Baloda, Meenu; Gurung, Anant; Lin, Yuehe; Liu, Guodong

    2008-10-20

    We describe a multiplex electrochemical immunoassay based on the use of gold nanoparticle (Au-NP) probes and immunochromatographic strips (ISs). The approach takes advantage of the speed and low cost of the conventional IS tests and the high sensitivities of the nanoparticle-based electrochemical immunoassays. Rabbit IgG(R-IgG) and human IgM (H-IgM) were used as model targets for the demonstration of the proof of concept. The Au-NPs based sandwich immunoreactions were performed on the IS, and the captured gold nanoparticle labels on the test zones were determined by highly-sensitive stripping voltammetric measurement of the dissolved gold ions (III) with a carbon paste electrode. The detection limits are 1.0 and 1.5 ng/mL with the linear ranges of 2.5-250 ng/mL for quantitative detection of R-IgG and H-IgM, respectively. The total assay time is around 25 minutes. Such multiplex electrochemical immunoassay could be readily highly multiplexed to allow simultaneous parallel detection of numerous proteins and is expected to open new opportunities for protein diagnostics and biosecurity.

  1. In Situ Observation of Hematite Nanoparticle Aggregates Using Liquid Cell Transmission Electron Microscopy.

    PubMed

    Liu, Juan; Wang, Zhiwei; Sheng, Anxu; Liu, Feng; Qin, Fuyu; Wang, Zhong Lin

    2016-06-01

    Aggregation of nanoparticles impacts their reactivity, stability, transport, and fate in aqueous environments, but limited methods are available to characterize structural features and movement of aggregates in liquid. Here, liquid cell transmission electron microscopy (LCTEM) was utilized to directly observe the size, morphology, and motion of aggregates that were composed of 9 and 36 nm hematite nanoparticles, respectively, in water or NaCl solution. When mass concentrations were same, the aggregates of 9 nm nanoparticles were statistically more compact and slightly larger than those of 36 nm nanoparticles. Aggregates in both samples were typically nonspherical. Increasing ionic strength resulted in larger aggregates, and also enhanced the stability of aggregates under electron-beam irradiation. In water, small aggregates moved randomly and approached repeatedly to large aggregates before final attachment. In NaCl solution, small aggregates moved directly toward large aggregates and attached to the latter quickly. This observation provided a direct confirmation of the DLVO theory that the energy barrier to aggregation is higher in water than in salt solutions. This study not only presented the influences of particle size and ionic strength on aggregation state, but also demonstrated that LCTEM is a promising method to link aggregation state to dynamic processes of nanoparticles. PMID:27127831

  2. Preparation Of Gold Nanoparticle-Quercetin Complexes By Citrate Reduction Method

    NASA Astrophysics Data System (ADS)

    Pal, Rajat; Chakraborti, Abhay Sankar

    2010-10-01

    Quercetin is an important flavonoid and possesses strong antioxidant property. The aim of the present study is to formulate and characterize quercetin coated gold nanoparticles. Quercetin was conjugated with gold nanoparticle during synthesis of the particle by citrate reduction of chloroauric acid. The conjugates were characterized by different techniques like Atomic Force Microscopy, Dynamic Light Scattering, Transmission Electron Microscopy, Absorption Spectroscopy, Differential Scanning Calorimetry and Thermal Gravimetric Analysis. All these studies suggest formation of stable quercetin-gold nanoparticle complex.

  3. Toxicological risk assessment of elemental gold following oral exposure to sheets and nanoparticles - A review.

    PubMed

    Hadrup, Niels; Sharma, Anoop K; Poulsen, Morten; Nielsen, Elsa

    2015-07-01

    Elemental gold is used as a food coloring agent and in dental fillings. In addition, gold nanoparticles are gaining increasing attention due to their potential use as inert carriers for medical purposes. Although elemental gold is considered to be inert, there is evidence to suggest the release of gold ions from its surface. Elemental gold, or the released ions, is, to some extent, absorbed in the gastrointestinal tract. Gold is distributed to organs such as the liver, heart, kidneys and lungs. The main excretion route of absorbed gold is through urine. Data on the oral toxicity of elemental gold is limited. The acute toxicity of elemental gold seems to be low, as rats were unaffected by a single dose of 2000mg nanoparticles/kg of body weight. Information on repeated dose toxicity is very limited. Skin rashes have been reported in humans following the ingestion of liquors containing gold. In addition, gold released from dental restorations has been reported to increase the risk of developing gold hypersensitivity. Regarding genotoxicity, in vitro studies indicate that gold nanoparticles induce DNA damage in mammalian cells. In vivo, gold nanoparticles induce genotoxic effects in Drosophila melanogaster; however, genotoxicity studies in mammals are lacking. Overall, based on the literature and taking low human exposure into account, elemental gold via the oral route is not considered to pose a health concern to humans in general. PMID:25929617

  4. First identification of primary nanoparticles in the aggregation of HMF.

    PubMed

    Zhang, Mu; Yang, Hong; Liu, Yinong; Sun, Xudong; Zhang, Dongke; Xue, Dongfeng

    2012-01-01

    5-Hydroxymethylfurfural [HMF] is an important intermediate compound for fine chemicals. It is often obtained via hydrothermal treatment of biomass-derived carbohydrates, such as fructose, glucose and sucrose. This study investigates the formation of carbonaceous spheres from HMF created by dehydration of fructose under hydrothermal conditions. The carbonaceous spheres, ranging between 0.4 and 10 μm in diameter, have granulated morphologies both on the surface and in the interior. The residual solution is found to contain a massive number of primary nanoparticles. The chemical structure of the carbonaceous spheres was characterised by means of FTIR and NMR spectroscopies. Based on these observations, a mechanism involving the formation and aggregation of the nanoparticles is proposed. This mechanism differs considerably from the conventional understanding in the open literature. PMID:22221552

  5. First identification of primary nanoparticles in the aggregation of HMF

    NASA Astrophysics Data System (ADS)

    Zhang, Mu; Yang, Hong; Liu, Yinong; Sun, Xudong; Zhang, Dongke; Xue, Dongfeng

    2012-01-01

    5-Hydroxymethylfurfural [HMF] is an important intermediate compound for fine chemicals. It is often obtained via hydrothermal treatment of biomass-derived carbohydrates, such as fructose, glucose and sucrose. This study investigates the formation of carbonaceous spheres from HMF created by dehydration of fructose under hydrothermal conditions. The carbonaceous spheres, ranging between 0.4 and 10 μm in diameter, have granulated morphologies both on the surface and in the interior. The residual solution is found to contain a massive number of primary nanoparticles. The chemical structure of the carbonaceous spheres was characterised by means of FTIR and NMR spectroscopies. Based on these observations, a mechanism involving the formation and aggregation of the nanoparticles is proposed. This mechanism differs considerably from the conventional understanding in the open literature.

  6. First identification of primary nanoparticles in the aggregation of HMF

    PubMed Central

    2012-01-01

    5-Hydroxymethylfurfural [HMF] is an important intermediate compound for fine chemicals. It is often obtained via hydrothermal treatment of biomass-derived carbohydrates, such as fructose, glucose and sucrose. This study investigates the formation of carbonaceous spheres from HMF created by dehydration of fructose under hydrothermal conditions. The carbonaceous spheres, ranging between 0.4 and 10 μm in diameter, have granulated morphologies both on the surface and in the interior. The residual solution is found to contain a massive number of primary nanoparticles. The chemical structure of the carbonaceous spheres was characterised by means of FTIR and NMR spectroscopies. Based on these observations, a mechanism involving the formation and aggregation of the nanoparticles is proposed. This mechanism differs considerably from the conventional understanding in the open literature. PMID:22221552

  7. Gold nanoparticle-based colorimetric and "turn-on" fluorescent probe for mercury(II) ions in aqueous solution.

    PubMed

    Wang, Hao; Wang, Yongxiang; Jin, Jianyu; Yang, Ronghua

    2008-12-01

    An approach for visual and fluorescent sensing of Hg2+ in aqueous solution is presented. This method is based on the Hg(2+)-induced conformational change of a thymine (T)-rich single-stranded DNA (ssDNA) and the difference in electrostatic affinity between ssDNA and double-stranded (dsDNA) with gold nanoparticles. The dye-tagged ssDNA containing T-T mismatched sequences was chosen as Hg2+ acceptor. At high ionic strength, introduction of the ssDNA to a colloidal solution of the aggregates of gold nanoparticles results in color change, from blue-gray to red of the solution, and the fluorescence quenching of the dye. Binding of Hg2+ with the ssDNA forms the double-stranded structure. This formation of dsDNA reduces the capability to stabilize bare nanoparticles against salt-induced aggregation, remaining a blue-gray in the color of the solution, but fluorescence signal enhancement compared with that without Hg2+. With the optimum conditions described, the system exhibits a dynamic response range for Hg2+ from 9.6 x 10(-8) to 6.4 x 10(-6) M with a detection limit of 4.0 x 10(-8) M. Both the color and fluorescence changes of the system are extremely specific for Hg2+ even in the presence of high concentrations of other heavy and transition metal ions, which meet the selective requirements for biomedical and environmental application. The combined data from transmission electron microscopy, fluorescence anisotropy measurements, and dialysis experiments indicate that both the color and the fluorescence emission changes of the DNA-functioned gold nanoparticles generated by Hg2+ are the results of the metal-induced formation of dsDNA and subsequent formation of nanoparticle aggregates. PMID:19551976

  8. Targeted Placement of Gold Nanoparticles on SWCNT Transistors Using Electrodeposition

    NASA Astrophysics Data System (ADS)

    Liu, Yian; Barbara, Paola; Paranjape, Makarand

    2013-03-01

    We present a simple in-situ electrochemical method to target the deposition of gold and other metallic nanoparticles along a single-walled carbon nanotube (SWCNT) field effect transistor (CNTFET). The transistors, fabricated on SiO2/Si substrates, are passivated by a thin layer of poly(methyl-methacrylate), or PMMA. Areas of the PMMA along the carbon nanotube are exposed using electron-beam lithography to target the locations where Au nanoparticles need to be placed. An appropriate potential difference is applied between an in-situ sacrificial gold electrode and the SWCNT, all immersed under a droplet of electrolyte solution. By adjusting the applied voltage and time of deposition, the size of the Au nanoparticle can be controlled from 10 nm to over 100 nm. This method provides better control and is much easier to carry out compared to other site-specific deposition techniques. Such decorated Au nanoparticle/CNTFET heterostructures will allow for a better understanding of single-electron transport behavior, as well as finding application in site-specific biomolecule anchoring for the development of highly sensitive and selective biosensors.

  9. Oxidation of bioethanol using zeolite-encapsulated gold nanoparticles.

    PubMed

    Mielby, Jerrik; Abildstrøm, Jacob Oskar; Wang, Feng; Kasama, Takeshi; Weidenthaler, Claudia; Kegnaes, Søren

    2014-11-10

    With the ongoing developments in biomass conversion, the oxidation of bioethanol to acetaldehyde may become a favorable and green alternative to the preparation from ethylene. Here, a simple and effective method to encapsulate gold nanoparticles in zeolite silicalite-1 is reported and their high activity and selectivity for the catalytic gas-phase oxidation of ethanol are demonstrated. The zeolites are modified by a recrystallization process, which creates intraparticle voids and mesopores that facilitate the formation of small and disperse nanoparticles upon simple impregnation. The individual zeolite crystals comprise a broad range of mesopores and contain up to several hundred gold nanoparticles with a diameter of 2-3 nm that are distributed inside the zeolites rather than on the outer surface. The encapsulated nanoparticles have good stability and result in 50 % conversion of ethanol with 98 % selectivity toward acetaldehyde at 200 °C, which (under the given reaction conditions) corresponds to 606 mol acetaldehyde/mol Au hour(-1) . PMID:25196739

  10. Gold nanoparticle based surface enhanced fluorescence for detection of organophosphorus agents

    NASA Astrophysics Data System (ADS)

    Dasary, Samuel S. R.; Rai, Uma S.; Yu, Hongtao; Anjaneyulu, Yerramilli; Dubey, Madan; Ray, Paresh Chandra

    2008-07-01

    Organophosphorus agents (OPA) represent a serious concern to public safety as nerve agents and pesticides. Here we report the development of gold nanoparticle based surface enhanced fluorescence (NSEF) spectroscopy for rapid and sensitive screening of organophosphorus agents. Fluorescent from Eu 3+ ions that are bound within the electromagnetic field of gold nanoparticles exhibit a strong enhancement. In the presence of OPA, Eu 3+ ions are released from the gold nanoparticle surface and thus a very distinct fluorescence signal change was observed. We discussed the mechanism of fluorescence enhancement and the role of OPA for fluorescence intensity change in the presence of gold nanoparticles.

  11. High-Yield Synthesis and Applications of Anisotropic Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Vigderman, Leonid

    This work will describe research directed towards the synthesis of anisotropic gold nanoparticles as well as their functionalization and biological applications. The thesis will begin by describing a new technique for the high-yield synthesis of gold nanorods using hydroquinone as a reducing agent. This addresses important limitations of the traditional nanorod synthesis including low yield of gold ions conversion to metallic form and inability to produce rods with longitudinal surface plasmon peak above 850 nm. The use of hydroquinone was also found to improve the synthesis of gold nanowires via the nanorod-seed mediated procedure developed in our lab. The thesis will next present the synthesis of novel starfruitshaped nanorods, mesorods, and nanowires using a modified nanorod-seed mediated procedure. The starfruit particles displayed increased activity as surfaceenhanced Raman spectroscopy (SERS) substrates as compared to smooth structures. Next, a method for the functionalization of gold nanorods using a cationic thiol, 16-mercaptohexadecyltrimethylammonium bromide (MTAB), will be described. By using this thiol, we were able to demonstrate the complete removal of toxic surfactant from the nanorods and were also able to precisely quantify the grafting density of thiol molecules on the nanorod surface through a combination of several analytical techniques. Finally, this thesis will show that MTABfunctionalized nanorods are nontoxic and can be taken up in extremely high numbers into cancer cells. The thesis will conclude by describing the surprising uptake of larger mesorods and nanowires functionalized with MTAB into cells in high quantities.

  12. Gold Coated Lanthanide Phosphate Nanoparticles for Targeted Alpha Generator Radiotherapy

    SciTech Connect

    McLaughlin, Mark F; Woodward, Jonathan; Boll, Rose Ann; Wall, Jonathan; Rondinone, Adam Justin; Kennel, Steve J; Mirzadeh, Saed; Robertson, David J.

    2013-01-01

    Targeted radiotherapies maximize cytotoxicty to cancer cells. In vivo generators such as 225Ac, which emits four particles in its decay chain, can significantly amplify the radiation dose delivered to the target site. However, renal dose from unbound 213Bi escaping during the decay process limits the dose of 225Ac that can be administered. Traditional chelating moieties are unable to sequester the radioactive daughters because of the high recoil energy from alpha particle emission. To counter this, we demonstrate that an engineered multilayered nanoparticle-antibody conjugate can both deliver radiation and contain the decay daughters of the in vivo -generator 225Ac while targeting biologically relevant receptors. These multi-shell nanoparticles combine the radiation resistance of crystalline lanthanide phosphate to encapsulate and contain 225Ac and its radioactive decay daughters, the magnetic properties of gadolinium phosphate for easy separation, and established surface chemistry of gold for attachment of nanoparticles to targeting antibodies.

  13. Luminescence quantum yields of gold nanoparticles varying with excitation wavelengths.

    PubMed

    Cheng, Yuqing; Lu, Guowei; He, Yingbo; Shen, Hongming; Zhao, Jingyi; Xia, Keyu; Gong, Qihuang

    2016-01-28

    Luminescence quantum yields (QYs) of gold nanoparticles including nanorods, nanobipyramids and nanospheres are measured elaborately at a single nanoparticle level with different excitation wavelengths. It is found that the QYs of the nanostructures are essentially dependent on the excitation wavelength. The QY is higher when the excitation wavelength is blue-detuned and close to the nanoparticles' surface plasmon resonance peak. A phenomenological model based on the plasmonic resonator concept is proposed to understand the experimental findings. The excitation wavelength dependent QY is attributed to the wavelength dependent coupling efficiency between the free electron oscillation and the intrinsic plasmon resonant radiative mode. These studies should contribute to the understanding of one-photon luminescence from metallic nanostructures and plasmonic surface enhanced spectroscopy. PMID:26731570

  14. Luminescence quantum yields of gold nanoparticles varying with excitation wavelengths

    NASA Astrophysics Data System (ADS)

    Cheng, Yuqing; Lu, Guowei; He, Yingbo; Shen, Hongming; Zhao, Jingyi; Xia, Keyu; Gong, Qihuang

    2016-01-01

    Luminescence quantum yields (QYs) of gold nanoparticles including nanorods, nanobipyramids and nanospheres are measured elaborately at a single nanoparticle level with different excitation wavelengths. It is found that the QYs of the nanostructures are essentially dependent on the excitation wavelength. The QY is higher when the excitation wavelength is blue-detuned and close to the nanoparticles' surface plasmon resonance peak. A phenomenological model based on the plasmonic resonator concept is proposed to understand the experimental findings. The excitation wavelength dependent QY is attributed to the wavelength dependent coupling efficiency between the free electron oscillation and the intrinsic plasmon resonant radiative mode. These studies should contribute to the understanding of one-photon luminescence from metallic nanostructures and plasmonic surface enhanced spectroscopy.

  15. Poly(amino acid) functionalized maghemite and gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Perego, Davide; Masciocchi, Norberto; Guagliardi, Antonietta; Domínguez-Vera, José Manuel; Gálvez, Natividad

    2013-02-01

    Bimodal MRI/OI imaging probes are of great interest in nanomedicine. Although many organic polymers have been studied thoroughly for in vivo applications, reports on the use of poly(amino acid)s as coating polymers are scarce. In this paper, poly-(d-glutamic acid, d-lysine) (PGL) has been used for coating maghemite and gold nanoparticles. An advantage of this flexible and biocompatible polymer is that, once anchored to the nanoparticle surface, dangling lysine amino groups are available for the incorporation of new functionalities. As an example, Alexa Fluor derivatives have been attached to PGL-coated maghemite nanoparticles to obtain magnetic/fluorescent materials. These dual-property materials could be used as bimodal MRI/OI probes for in vivo imaging.

  16. Investigating the Toxicity, Uptake, Nanoparticle Formation and Genetic Response of Plants to Gold

    PubMed Central

    Taylor, Andrew F.; Rylott, Elizabeth L.; Anderson, Christopher W. N.; Bruce, Neil C.

    2014-01-01

    We have studied the physiological and genetic responses of Arabidopsis thaliana L. (Arabidopsis) to gold. The root lengths of Arabidopsis seedlings grown on nutrient agar plates containing 100 mg/L gold were reduced by 75%. Oxidized gold was subsequently found in roots and shoots of these plants, but gold nanoparticles (reduced gold) were only observed in the root tissues. We used a microarray-based study to monitor the expression of candidate genes involved in metal uptake and transport in Arabidopsis upon gold exposure. There was up-regulation of genes involved in plant stress response such as glutathione transferases, cytochromes P450, glucosyl transferases and peroxidases. In parallel, our data show the significant down-regulation of a discreet number of genes encoding proteins involved in the transport of copper, cadmium, iron and nickel ions, along with aquaporins, which bind to gold. We used Medicago sativa L. (alfalfa) to study nanoparticle uptake from hydroponic culture using ionic gold as a non-nanoparticle control and concluded that nanoparticles between 5 and 100 nm in diameter are not directly accumulated by plants. Gold nanoparticles were only observed in plants exposed to ionic gold in solution. Together, we believe our results imply that gold is taken up by the plant predominantly as an ionic form, and that plants respond to gold exposure by up-regulating genes for plant stress and down-regulating specific metal transporters to reduce gold uptake. PMID:24736522

  17. Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold.

    PubMed

    Taylor, Andrew F; Rylott, Elizabeth L; Anderson, Christopher W N; Bruce, Neil C

    2014-01-01

    We have studied the physiological and genetic responses of Arabidopsis thaliana L. (Arabidopsis) to gold. The root lengths of Arabidopsis seedlings grown on nutrient agar plates containing 100 mg/L gold were reduced by 75%. Oxidized gold was subsequently found in roots and shoots of these plants, but gold nanoparticles (reduced gold) were only observed in the root tissues. We used a microarray-based study to monitor the expression of candidate genes involved in metal uptake and transport in Arabidopsis upon gold exposure. There was up-regulation of genes involved in plant stress response such as glutathione transferases, cytochromes P450, glucosyl transferases and peroxidases. In parallel, our data show the significant down-regulation of a discreet number of genes encoding proteins involved in the transport of copper, cadmium, iron and nickel ions, along with aquaporins, which bind to gold. We used Medicago sativa L. (alfalfa) to study nanoparticle uptake from hydroponic culture using ionic gold as a non-nanoparticle control and concluded that nanoparticles between 5 and 100 nm in diameter are not directly accumulated by plants. Gold nanoparticles were only observed in plants exposed to ionic gold in solution. Together, we believe our results imply that gold is taken up by the plant predominantly as an ionic form, and that plants respond to gold exposure by up-regulating genes for plant stress and down-regulating specific metal transporters to reduce gold uptake. PMID:24736522

  18. Production of antibody labeled gold nanoparticles for influenza virus H5N1 diagnosis kit development

    NASA Astrophysics Data System (ADS)

    Pham, Van Dong; Hoang, Ha; Hoang Phan, Trong; Conrad, Udo; Chu, Hoang Ha

    2012-12-01

    Preparation of colloidal gold conjugated antibodies specific for influenza A/H5N1 and its use in developing a virus A/H5N1 rapid diagnostic kit is presented. Colloidal gold nanoparticles (AuNPs) were prepared through citrate reduction. Single chain antibodies specific to H5N1 (scFv7 and scFv24) were produced using pTI2 + vector and E. coli strain HB2151. These antibodies were purified by affinity chromatography technique employing HiTrap Chelating HP columns pre-charged with Ni2 + . The method for preparation of antibody–colloidal gold conjugate was based on electrostatic force binding antibody with colloidal gold. The effect of factors such as pH and concentration of antibody has been quantitatively analyzed using spectroscopic methods after adding 1 wt% NaCl which induced AuNP aggregation. The morphological study by scanning electron microscopy (SEM) showed that the average size of the spherical AuNPs was 23 nm with uniform sizes. The spectroscopic properties of colloidal AuNPs showed the typical surface plasmon resonance band at 523 nm in UV-visible spectrum. The optimal pH of conjugated colloidal gold was found between 8.0 and 10.0. The activity of synthesized antibody labeled AuNPs for detection of H5N1 flu virus was checked by dot blot immunological method. The results confirmed the ability in detection of the A/H5N1 virus of the prepared antibody labeled gold particles and opened up the possibility of using them in manufacturing rapid detection kit for this virus.

  19. Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles

    PubMed Central

    Coulter, Jonathan A; Jain, Suneil; Butterworth, Karl T; Taggart, Laura E; Dickson, Glenn R; McMahon, Stephen J; Hyland, Wendy B; Muir, Mark F; Trainor, Coleman; Hounsell, Alan R; O’Sullivan, Joe M; Schettino, Giuseppe; Currell, Fred J; Hirst, David G; Prise, Kevin M

    2012-01-01

    Background This follow-up study aims to determine the physical parameters which govern the differential radiosensitization capacity of two tumor cell lines and one immortalized normal cell line to 1.9 nm gold nanoparticles. In addition to comparing the uptake potential, localization, and cytotoxicity of 1.9 nm gold nanoparticles, the current study also draws on comparisons between nanoparticle size and total nanoparticle uptake based on previously published data. Methods We quantified gold nanoparticle uptake using atomic emission spectroscopy and imaged intracellular localization by transmission electron microscopy. Cell growth delay and clonogenic assays were used to determine cytotoxicity and radiosensitization potential, respectively. Mechanistic data were obtained by Western blot, flow cytometry, and assays for reactive oxygen species. Results Gold nanoparticle uptake was preferentially observed in tumor cells, resulting in an increased expression of cleaved caspase proteins and an accumulation of cells in sub G1 phase. Despite this, gold nanoparticle cytotoxicity remained low, with immortalized normal cells exhibiting an LD50 concentration approximately 14 times higher than tumor cells. The surviving fraction for gold nanoparticle-treated cells at 3 Gy compared with that of untreated control cells indicated a strong dependence on cell type in respect to radiosensitization potential. Conclusion Gold nanoparticles were most avidly endocytosed and localized within cytoplasmic vesicles during the first 6 hours of exposure. The lack of significant cytotoxicity in the absence of radiation, and the generation of gold nanoparticle-induced reactive oxygen species provide a potential mechanism for previously reported radiosensitization at megavoltage energies. PMID:22701316

  20. Nanoparticle-Induced Ellipse-to-Vesicle Morphology Transition of Rod-Coil-Rod Triblock Copolymer Aggregates.

    PubMed

    Yang, Chaoying; Li, Qing; Cai, Chunhua; Lin, Jiaping

    2016-07-12

    Cooperative self-assembly behavior of rod-coil-rod poly(γ-benzyl-l-glutamate)-block-poly(ethylene glycol)-block-poly(γ-benzyl-l-glutamate) (PBLG-b-PEG-b-PBLG) amphiphilic triblock copolymers and hydrophobic gold nanoparticles (AuNPs) was investigated by both experiments and dissipative particle dynamics (DPD) simulations. It was discovered that pure PBLG-b-PEG-b-PBLG copolymers self-assemble into ellipse-like aggregates, and the morphology transforms into vesicles as AuNPs are introduced. When the hydrophobicity of AuNPs is close to that of the copolymers, AuNPs are homogeneously distributed in the vesicle wall. While for the AuNPs with higher hydrophobicity, they are embedded in the vesicle wall as clusters. In addition to the experimental observations, DPD simulations were performed on the self-assembly behavior of triblock copolymer/nanoparticle mixtures. Simulations well reproduced the morphology transition observed in the experiments and provided additional information such as chain packing mode in aggregates. It is deduced that the main reason for the ellipse-to-vesicle transition of the aggregates is attributed to the breakage of ordered and dense packing of PBLG rods in the aggregate core by encapsulating AuNPs. This study deepens our understanding of the self-assembly behavior of rod-coil copolymer/nanoparticle mixtures and provides strategy for designing hybrid polypeptide nanostructures. PMID:27314970

  1. Controlling stability of gold nanoparticles in mesoporous silica

    NASA Astrophysics Data System (ADS)

    Bore, Mangesh Tukaram

    Metal particles deposited on oxide supports are used extensively as heterogeneous catalysts. By using a suitable combination of active metal phases and supports, the catalysts are designed for high activity, selectivity and mechanical strength. However, catalysts undergo deactivation, with poisoning, fouling, sintering and volatilization being some of the common reasons for loss of catalyst activity. For supported metal catalysts, sintering of metal particles is a major cause of catalyst deactivation. The rate and extent of sintering of supported metals depends upon temperature, atmosphere, support, promoter and metal. It is known that gold nanoparticles show high reactivity for CO oxidation at low temperature, but only when the Au particles are very small (<5 nm). Gold nanoparticles supported on silica show rapid sintering at 200°C--400°C. Porosity of support could play an important role in controlling the sintering of metal particles. But the role of pore size, pore curvature and structure is difficult to study with conventional supported metal catalysts. Surfactant templated mesoporous silica is a promising support material since it provides well defined pores of uniform size and structure. Hence, these silica supports provide ideal model systems for control of nanoparticle sintering. Limitations of mesoporous silica are its low hydrothermal stability at elevated temperatures and its inert nature. The pores of mesoporous silica reportedly collapse at temperatures above 500°C and gold nanoparticles supported on reducible oxides such as TiO2, CO3O4 and Fe2O 3 are more active compared to pure silica for CO oxidation. In this work highly dispersed gold nanoparticles (<2 nm) were prepared within the pores of silica with pore sizes ranging from 2.2 nm to 6.5 nm and differing pore architecture (2D-hexagonal, 3D-hexagonal, cubic and pores coiled-up in spherical geometry). In the 2D-hexagonal pore structure, the pores are one dimensional and terminate on the particle

  2. Directed assembly of gold nanowires on silicon via reorganization and simultaneous fusion of randomly distributed gold nanoparticles.

    PubMed

    Reinhardt, Hendrik M; Bücker, Kerstin; Hampp, Norbert A

    2015-05-01

    Laser-induced reorganization and simultaneous fusion of nanoparticles is introduced as a versatile concept for pattern formation on surfaces. The process takes advantage of a phenomenon called laser-induced periodic surface structures (LIPSS) which originates from periodically alternating photonic fringe patterns in the near-field of solids. Associated photonic fringe patterns are shown to reorganize randomly distributed gold nanoparticles on a silicon wafer into periodic gold nanostructures. Concomitant melting due to optical heating facilitates the formation of continuous structures such as periodic gold nanowire arrays. Generated patterns can be converted into secondary structures using directed assembly or self-organization. This includes for example the rotation of gold nanowire arrays by arbitrary angles or their fragmentation into arrays of aligned gold nanoparticles. PMID:25969286

  3. Scaling of transverse nuclear magnetic relaxation due to magnetic nanoparticle aggregation.

    PubMed

    Brown, Keith A; Vassiliou, Christophoros C; Issadore, David; Berezovsky, Jesse; Cima, Michael J; Westervelt, R M

    2010-10-01

    The aggregation of superparamagnetic iron oxide (SPIO) nanoparticles decreases the transverse nuclear magnetic resonance (NMR) relaxation time T2CP of adjacent water molecules measured by a Carr-Purcell-Meiboom-Gill (CPMG) pulse-echo sequence. This effect is commonly used to measure the concentrations of a variety of small molecules. We perform extensive Monte Carlo simulations of water diffusing around SPIO nanoparticle aggregates to determine the relationship between T2CP and details of the aggregate. We find that in the motional averaging regime T2CP scales as a power law with the number N of nanoparticles in an aggregate. The specific scaling is dependent on the fractal dimension d of the aggregates. We find T2CP∝N-0.44 for aggregates with d = 2.2, a value typical of diffusion limited aggregation. We also find that in two-nanoparticle systems, T2CP is strongly dependent on the orientation of the two nanoparticles relative to the external magnetic field, which implies that it may be possible to sense the orientation of a two-nanoparticle aggregate. To optimize the sensitivity of SPIO nanoparticle sensors, we propose that it is best to have aggregates with few nanoparticles, close together, measured with long pulse-echo times. PMID:20689678

  4. SERS immunoassay based on the capture and concentration of antigen-assembled gold nanoparticles.

    PubMed

    Lopez, Arielle; Lovato, Francis; Oh, Soon Hwan; Lai, Yen H; Filbrun, Seth; Driskell, Elizabeth A; Driskell, Jeremy D

    2016-01-01

    A simple, rapid, and sensitive immunoassay has been developed based on antigen-mediated aggregation of gold nanoparticles (AuNP) and surface-enhanced Raman spectroscopy (SERS). Central to this platform is the extrinsic Raman label (ERL), which consists of a gold nanoparticle modified with a mixed monolayer of a Raman active molecule and an antibody. ERLs are mixed with sample, and antigen induces the aggregation of the ERLs. A membrane filter is then used to isolate and concentrate the ERL aggregates for SERS analysis. Preliminary work to establish proof-of-principle of the platform technology utilized mouse IgG as a model antigen. The effects of membrane pore diameter and AuNP size on the analytical performance of the assay were systematically investigated, and it was determined that a pore diameter of 200 nm and AuNP diameter of 80 nm provide maximum sensitivity while minimizing signal from blank samples. Optimization of the assay provided a detection limit of 1.9 ng/mL, 20-fold better than the detection limit achieved by an ELISA employing the same antibody-antigen system. Furthermore, this assay required only 60 min compared to 24h for the ELISA. To validate this assay, mouse serum was directly analyzed to accurately quantify IgG. Collectively, these results demonstrate the potential advantages of this technology over current diagnostic tests for protein biomarkers with respect to time, simplicity, and detection limits. Thus, this approach provides a framework for prospective development of new and more powerful tools that can be designed for point-of-care diagnostic or point-of-need detection. PMID:26695280

  5. Size dependent fractal aggregation mediated through surfactant in silica nanoparticle solution

    NASA Astrophysics Data System (ADS)

    Kumar, Sugam; Aswal, V. K.; Kohlbrecher, J.

    2012-06-01

    Small-angle neutron scattering (SANS) has been used to study aggregation of anionic silica nanoparticles in presence of cationic surfactant (DTAB) in aqueous solution. The measurements were carried out for different sizes of nanoparticles (8.2, 16.4 and 26.4 nm) at fixed (1 wt%) nanoparticles and surfactant concentration. It is found that the adsorption of surfactant micelles on the silica nanoparticles leads to the aggregation of nanoparticles, which is characterized by a fractal structure. The number of adsorbed micelles on nanoparticle increases from 7 to 152 with the increase in the size of the nanoparticle from 8.2 to 26.4 nm, whereas interestingly the fractal dimension remains same. The aggregate morphology in these systems is expected to be governed by the diffusion limited aggregation.

  6. Microwave-induced synthesis of highly dispersed gold nanoparticles within the pore channels of mesoporous silica

    NASA Astrophysics Data System (ADS)

    Gu, Jinlou; Fan, Wei; Shimojima, Atsushi; Okubo, Tatsuya

    2008-04-01

    Highly dispersed gold nanoparticles have been incorporated into the pore channels of SBA-15 mesoporous silica through a newly developed strategy assisted by microwave radiation (MR). The sizes of gold are effectively controlled attributed to the rapid and homogeneous nucleation, simultaneous propagation and termination of gold precursor by MR. Diol moieties with high dielectric and dielectric loss constants, and hence a high microwave activation, were firstly introduced to the pore channels of SBA-15 by a simple addition reaction between amino group and glycidiol and subsequently served as the reduction centers for gold nanoparticles. Extraction of the entrapped gold from the nanocomposite resulted in milligram quantities of gold nanoparticles with low dispersity. The successful assembly process of diol groups and formation of gold nanoparticles were monitored and tracked by solid-state NMR and UV-vis measurements. Characterization by small angle X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicated that the incorporation of gold nanoparticles would not breakup the structural integrity and long-range periodicity of SBA-15. The gold nanoparticles had a narrow size distribution with diameters in the size range of 5-10 nm through TEM observation. The average particles size is 7.9 nm via calculation by the Scherrer formula and TEM measurements. Nitrogen adsorption and desorption isotherms gave further evidence that the employed method was efficient and gold nanoparticles were successfully incorporated into the pore channels of SBA-15.

  7. Facile green synthesis of variable metallic gold nanoparticle using Padina gymnospora, a brown marine macroalga

    NASA Astrophysics Data System (ADS)

    Singh, M.; Kalaivani, R.; Manikandan, S.; Sangeetha, N.; Kumaraguru, A. K.

    2013-04-01

    The process of development of reliable and eco-friendly metallic nanoparticles is an important step in the field of nanotechnology. To achieve this, use of natural sources like biological systems becomes essential. In the present work, extracellular biosynthesis of gold nanoparticles using Padina gymnospora has been attempted and achieved rapid formation of gold nanoparticles in a short duration. The UV-vis spectrum of the aqueous medium containing gold ion showed peak at 527 nm corresponding to the plasmon absorbance of gold nanoparticles. Scanning electron microscopy showed the formation of well-dispersed gold nanoparticles. FTIR spectra of brown alga confirmed that hydroxyl groups present in the algal polysaccharides were involved in the gold bioreduction. AFM analysis showed the results of particle sizes (53-67 nm) and average height of the particle roughness (60.0 nm). X-ray diffraction (XRD) spectrum of the gold nanoparticles exhibited Bragg reflections corresponding to gold nanoparticles. This environment-friendly method of biological gold nanoparticle synthesis can be applied potentially in various products that directly come in contact with the human body, such as cosmetics, and foods and consumer goods, besides medical applications.

  8. The effect of visible light on gold nanoparticles and some bioeffects on environmental fungi.

    PubMed

    Andries, Maria; Pricop, Daniela; Oprica, Lacramioara; Creanga, Dorina-Emilia; Iacomi, Felicia

    2016-05-30

    The oxidative stress induced by light exposed gold nanoparticles in some microorganism cells was investigated. Gold nanoparticles are currently used in biomedical and pharmaceutical research. For this study citrate-gold nanoparticles were synthesized in alkaline conditions at constant temperature of 85°C under magnetic stirring. Equal volumes of such prepared colloidal solution, were exposed to visible light at different wavelengths for 90min at room temperature. The spectra in the visible and ultraviolet range have revealed an increase in the intensity of the absorption band for gold nanoparticles exposed to light, due to the effect of surface plasmon resonance. Versatility of gold nanoparticles photocatalytic action was shown by means of manipulating wavelengths of incident light, which evidenced differences in the bioeffects induced in cellulolytic fungi - known for their environmental role but also for other applications such as in cosmetics industry. The comparative analysis of fungal response to gold nanoparticle stressors has revealed different enzyme activity and lipid peroxidation when fungi were supplied with gold nanoparticles exposed to different wavelength lights. The activity of catalase and superoxide dismutase were remarkably increased for green light exposure of gold nanoparticles suggesting fungi adaption to increased oxidative stress induced by irradiated particles; increased level of lipid peroxidation was showed by high concentration of malondialdehyde for white light exposed gold particles since antioxidant enzymes were less active. PMID:27063667

  9. Study of concentration-dependent quantum yield of Rhodamine 6G by gold nanoparticles using thermal-lens technique

    NASA Astrophysics Data System (ADS)

    Kumar, B. Rajesh; Basheer, N. Shemeena; Kurian, Achamma; George, Sajan D.

    2014-06-01

    Tailoring optical properties of the dye molecules using metal nanoparticles is a burgeoning area of research. In this work, we report our results on the studies of how the absorption and emission behavior of Rhodamine 6G dye is tailored using gold nanoparticles. Furthermore, the influence of dye concentration on these properties for a given concentration of nanoparticles in the dye-nanoparticle mixture is investigated. In addition, the difference between the concentration-dependent fluorescence quantum yield of the dye molecules is measured in the absence and presence of nanoparticles using the dual-beam thermal-lens technique. Our absorption spectral studies show additional spectral features due to nanoparticle aggregation on interaction with cationic Rhodamine 6G dye. Dye concentration-dependent steady-state fluorescence studies in the presence of nanoparticles indicate a blue shift in peak fluorescence emission wavelength. The quantum yield value measured using thermal-lens technique exhibit a non-monotonic behavior with dye concentration with substantial quenching for lower dye concentrations. The results are interpreted in terms of dye-nanoparticle interaction and the formation of dye shell around the nanoparticle.

  10. Biosynthesis and characterization of gold nanoparticles using extracts of tamarindus indica L leaves

    NASA Astrophysics Data System (ADS)

    Correa, S. N.; Naranjo, A. M.; Herrera, A. P.

    2016-02-01

    This study reports the biosynthesis of gold nanoparticles using an extract of Tamarindus indica L. leaves. Phenols, ketones and carboxyls were present in the leaves of T. indica. These organic compounds that allowed the synthesis of nanoparticles were identified by gas chromatography coupled to mass spectrometry (GC/MS) and High Pressure Liquid Chromatographic (HPLC). Synthesis of gold nanoparticles was performed with the extract of T. indica leaves and an Au+3 aqueous solutions (HAuCl4) at room temperature with one hour of reaction time. Characterization of gold nanoparticles was performed by UV visible spectroscopy, scanning electron microscopy (SEM) and EDX. The results indicated the formation of gold nanoparticles with a wavelength of 576nm and an average size of 52±5nm. The EDX technique confirmed the presence of gold nanoparticles with 12.88% in solution.

  11. Green synthesis of biocompatible gold nanoparticles using Fagopyrum esculentum leaf extract

    NASA Astrophysics Data System (ADS)

    Babu, Punuri Jayasekhar; Sharma, Pragya; Kalita, Mohan Chandra; Bora, Utpal

    2011-12-01

    This report describes the use of ethnolic extract of Fagopyrum esculentum leaves for the synthesis of gold nanoparticles. UV-visible spectroscopy analysis indicated the successful formation of gold nanoparticles. The synthesized nanoparticles were characterized by transmission electron microscopy (TEM), high resolution TEM (HRTEM) and were found to be spherical, hexagonal and triangular in shape with an average size of 8.3 nm. The crystalline nature of the gold nanoparticles was confirmed from X-ray diffraction (XRD) and selected-area electron diffraction (SAED) patterns. Fourier transform infrared (FT-IR) and energy-dispersive X-ray analysis (EDX) suggested the presence of organic biomolecules on the surface of the gold nanoparticles. Cytotoxicity tests against human HeLa, MCF-7 and IMR-32 cancer cell lines revealed that the gold nanoparticles were non-toxic and thus have potential for use in various biomedical applications.

  12. Gold-Speckled Multimodal Nanoparticles for Noninvasive Bioimaging

    PubMed Central

    2008-01-01

    In this report the synthesis, characterization, and functional evaluation of a multimodal nanoparticulate contrast agent for noninvasive imaging through both magnetic resonance imaging (MRI) and photoacoustic tomography (PAT) is presented. The nanoparticles described herein enable high resolution and highly sensitive three-dimensional diagnostic imaging through the synergistic coupling of MRI and PAT capabilities. Gadolinium (Gd)-doped gold-speckled silica (GSS) nanoparticles, ranging from 50 to 200 nm, have been prepared in a simple one-pot synthesis using nonionic microemulsions. The photoacoustic signal is generated from a nonuniform, discontinuous gold nanodomains speckled across the silica surface, whereas the MR contrast is provided through Gd incorporated in the silica matrix. The presence of a discontinuous speckled surface, as opposed to a continuous gold shell, allows sufficient bulk water exchange with the Gd ions to generate a strong MR contrast. The dual imaging capabilities of the particles have been demonstrated through in silicio and in vitro methods. The described particles also have the capacity for therapeutic applications including the thermal ablation of tumors through the absorption of irradiated light. PMID:19466201

  13. Urease immobilized fluorescent gold nanoparticles for urea sensing.

    PubMed

    Parashar, Upendra Kumar; Nirala, Narsingh R; Upadhyay, Chandan; Saxena, P S; Srivastava, Anchal

    2015-05-01

    We report a surfactant-free synthesis of monodispersed gold nanoparticles (AuNPs) with average size of 15 nm. An approach for visual and fluorescent sensing of urea in aqueous solution based on shift in surface plasmon band (SPB) maxima as well as quench in fluorescence intensity. To enable the urea detection, we functionalized the thiol-capped gold nanoparticles with urease, the enzyme specific to urea using carbodiimide chemistry. The visible color changed of the gold colloidal solution from red to blue (or purple); this was evident from quenching in absorbance and fluorescence intensity, is the principle applied here for the sensing of urea. The solution turns blue when the urea concentration exceeds 8 mg/dL which reveals visual lower detection limit. The lower detection limits governed by the fluorescence quenching were found 5 mg/dL (R(2) = 0.99) which is highly sensitive and selective compared to shift in SPB maxima. The approach depicted here seems to be important in clinical diagnosis. PMID:25809996

  14. Electrical Detection of Protein Using Gold Nanoparticles and Nanogap Electrodes

    NASA Astrophysics Data System (ADS)

    Tsai, Chien-Ying; Chang, Tien-Li; Uppala, Ramesh; Chen, Chun-Chi; Ko, Fu-Hsiang; Chen, Ping-Hei

    2005-07-01

    A method of electrically detecting of protein described is developed using self-assembled multilayer gold nanoparticles (AuNPs) on a SiO2/Si substrate between gold electrodes. Electrical measurements are performed at room temperature using a probe station. A monoclonal antibody is immobilized on the top surface of the first layer of AuNPs (14 nm). The second layer of AuNPs is formed through specific binding among a target antigen [hepatitis C virus, (HCV)], the monoclonal antibody, and the conjugate of a AuNP-polyclonal antibody. Once the specific binding among the monoclonal antibody, target antigen, and polyclonal antibody occurs, a significant electric current is detected through multilayer self-assembled gold nanoparticles between nanogap electrodes. No significant current (<1 pA) can be measured through a monolayer of AuNPs. A significant difference between the IV curves of the monolayer and the multilayer of AuNPs is used to identify whether the target antigen exists in the tested sample.

  15. The use of quartz crystal microbalance with dissipation (QCM-D) for studying nanoparticle-induced platelet aggregation

    PubMed Central

    Santos-Martinez, Maria Jose; Inkielewicz-Stepniak, Iwona; Medina, Carlos; Rahme, Kamil; D’Arcy, Deirdre M; Fox, Daniel; Holmes, Justin D; Zhang, Hongzhou; Radomski, Marek Witold

    2012-01-01

    Interactions between blood platelets and nanoparticles have both pharmacological and toxicological significance and may lead to platelet activation and aggregation. Platelet aggregation is usually studied using light aggregometer that neither mimics the conditions found in human microvasculature nor detects microaggregates. A new method for the measurement of platelet microaggregation under flow conditions using a commercially available quartz crystal microbalance with dissipation (QCM-D) has recently been developed. The aim of the current study was to investigate if QCM-D could be used for the measurement of nanoparticle-platelet interactions. Silica, polystyrene, and gold nanoparticles were tested. The interactions were also studied using light aggregometry and flow cytometry, which measured surface abundance of platelet receptors. Platelet activation was imaged using phase contrast and scanning helium ion microscopy. QCM-D was able to measure nanoparticle-induced platelet microaggregation for all nanoparticles tested at concentrations that were undetectable by light aggregometry and flow cytometry. Microaggregates were measured by changes in frequency and dissipation, and the presence of platelets on the sensor surface was confirmed and imaged by phase contrast and scanning helium ion microscopy. PMID:22275839

  16. Dispersion and Aggregation of Magnetic Nanoparticles for Nuclear Waste Separation

    NASA Astrophysics Data System (ADS)

    Han, H.; Singh, M. Kaur T.; Qiang, Y.; Johnson, A.; Paszczynski, A.

    2009-05-01

    A novel method of nuclear waste separation using conjugates of actinide chelators and magnetic nanoparticles (MNPs) is developed. The fast separation can be facilitated by the high magnetic moments of core-shell MNPs. Highly uniform dispersion of MNPs in solutions is required for the efficient conjugation. However, stabilization of well dispersed MNPs hinders fast magnetic collection of the conjugates. To address this dilemma, the dispersion and aggregation of the MNPs has been investigated in both mechanical and chemical approaches. In the mechanical approach, continuous ultrasonic dispersed the MNPs, whereas they re-aggregated after up to 20 minutes treatment. Bead beating method improved the MNPs' suspension time by up to two factors. Nevertheless, the magnetization of MNPs dropped sharply due to the generation of non-magnetic beads' residual. Chemical method using electrolyte and agents with different polarizations had significant effects on the suspension and aggregation of the various sized MNPs. The fine balance of Van de Waals, Brownian forces, magnetic dipole and Coulomb interactions are discussed.

  17. Evaluation of nanoparticle aggregation in human blood serum.

    PubMed

    Rausch, Kristin; Reuter, Anika; Fischer, Karl; Schmidt, Manfred

    2010-11-01

    In a certain stage of development, the performance of nanoparticle- or polymer-drug conjugates is tested "in vivo", that is, in mice or rats. Besides pharmaceutical and chemical characterization, the structural characterization of such drug carrier systems in terms of size, size distribution, and shape is typically performed in physiological salt solution prior to animal tests. The present work introduces a simple method based on dynamic light scattering to monitor the particle size in blood serum. Utilizing a model system of pegylated poly-l-lysines (PLL-g-PEOx) of various degrees of pegylation, x, it is demonstrated that large aggregates may form in human serum solution that are not observed in isotonic salt solution. Aggregates of a few hundred nanometers in size were found in mixtures of serum solution and PLL-g-PEOx with degrees of pegylation <10%, whereas no aggregates are being observed if the degree of pegylation exceeds 20%. The described method may have the potential to become an easy and routine test for drug carrier systems prior to animal applications. PMID:20961117

  18. Modulating Gold Nanoparticle in vivo Delivery for Photothermal Therapy Applications Using a T Cell Delivery System

    NASA Astrophysics Data System (ADS)

    Kennedy, Laura Carpin

    This thesis reports new gold nanoparticle-based methods to treat chemotherapy-resistant and metastatic tumors that frequently evade conventional cancer therapies. Gold nanoparticles represent an innovative generation of diagnostic and treatment agents due to the ease with which they can be tuned to scatter or absorb a chosen wavelength of light. One area of intensive investigation in recent years is gold nanoparticle photothermal therapy (PTT), in which gold nanoparticles are used to heat and destroy cancer. This work demonstrates the utility of gold nanoparticle PTT against two categories of cancer that are currently a clinical challenge: trastuzumab-resistant breast cancer and metastatic cancer. In addition, this thesis presents a new method of gold nanoparticle delivery using T cells that increases gold nanoparticle tumor accumulation efficiency, a current challenge in the field of PTT. I ablated trastuzumab-resistant breast cancer in vitro for the first time using anti-HER2 labeled silica-gold nanoshells, demonstrating the potential utility of PTT against chemotherapy-resistant cancers. I next established for the first time the use of T cells as gold nanoparticle vehicles in vivo. When incubated with gold nanoparticles in culture, T cells can internalize up to 15000 nanoparticles per cell with no detrimental effects to T cell viability or function (e.g. migration and cytokine secretion). These AuNP-T cells can be systemically administered to tumor-bearing mice and deliver gold nanoparticles four times more efficiently than by injecting free nanoparticles. In addition, the biodistribution of AuNP-T cells correlates with the normal biodistribution of T cell carrier, suggesting the gold nanoparticle biodistribution can be modulated through the choice of nanoparticle vehicle. Finally, I apply gold nanoparticle PTT as an adjuvant treatment for T cell adoptive transfer immunotherapy (Hyperthermia-Enhanced Immunotherapy or HIT) of distant tumors in a melanoma mouse

  19. Highly stable noble metal nanoparticles dispersible in biocompatible solvents: synthesis of cationic phosphonium gold nanoparticles in water and DMSO.

    PubMed

    Ju-Nam, Yon; Abdussalam-Mohammed, Wanisa; Ojeda, Jesus J

    2016-04-12

    In this work, we report the synthesis of novel cationic phosphonium gold nanoparticles dispersible in water and dimethyl sulfoxide (DMSO) for their potential use in biomedical applications. All the cationic-functionalising ligands currently reported in the literature are ammonium-based species. Here, the synthesis and characterisation of an alternative system, based on phosphonioalkylthiosulfate zwitterions and phosphonioalkylthioacetate were carried out. We have also demonstrated that our phosphonioalkylthiosulfate zwitterions readily disproportionate into phosphonioalkylthiolates in situ during the synthesis of gold nanoparticles produced by the borohydride reduction of gold(iii) salts. The synthesis of the cationic gold nanoparticles using these phosphonium ligands was carried out in water and DMSO. UV-visible spectroscopic and TEM studies have shown that the phosphonioalkylthiolates bind to the surface of gold nanoparticles which are typically around 10 nm in diameter. The resulting cationic-functionalised gold nanoparticles are dispersible in aqueous media and in DMSO, which is the only organic solvent approved by the U.S. Food and Drug Administration (FDA) for drug carrier tests. This indicates their potential future use in biological applications. This work shows the synthesis of a new family of phosphonium-based ligands, which behave as cationic masked thiolate ligands in the functionalisation of gold nanoparticles. These highly stable colloidal cationic phosphonium gold nanoparticles dispersed in water and DMSO can offer a great opportunity for the design of novel biorecognition and drug delivery systems. PMID:26796782

  20. Approach and Coalescence of Gold Nanoparticles Driven by Surface Thermodynamic Fluctuations and Atomic Interaction Forces.

    PubMed

    Wang, Jiadao; Chen, Shuai; Cui, Kai; Li, Dangguo; Chen, Darong

    2016-02-23

    The approach and coalescence behavior of gold nanoparticles on a silicon surface were investigated by experiments and molecular dynamics simulations. By analyzing the behavior of the atoms in the nanoparticles in the simulations, it was found that the atoms in a single isolated nanoparticle randomly fluctuated and that the surface atoms showed greater fluctuation. The fluctuation increased as the temperature increased. When there were two or more neighboring nanoparticles, the fluctuating surface atoms of the nanoparticles "flowed" toward the neighboring nanoparticle because of atomic interaction forces between the nanoparticles. With the surface atoms "flowing", the gold nanoparticles approached and finally coalesced. The simulation results were in good agreement with the experimental results. It can be concluded that surface thermodynamic fluctuations and atomic interaction forces are the causes of the approach and coalescence behavior of the gold nanoparticles. PMID:26756675

  1. Fluctuation-driven anisotropy in effective pair interactions between nanoparticles: Thiolated gold nanoparticles in ethane

    SciTech Connect

    Jabes, B. Shadrack; Yadav, Hari O. S.; Chakravarty, Charusita; Kumar, Sanat K.

    2014-10-21

    Fluctuations within the ligand shell of a nanoparticle give rise to a significant degree of anisotropy in effective pair interactions for low grafting densities [B. Bozorgui, D. Meng, S. K. Kumar, C. Chakravarty, and A. Cacciuto, Nano Lett. 13, 2732 (2013)]. Here, we examine the corresponding fluctuation-driven anisotropy for gold nanocrystals densely passivated with short ligands. In particular, we consider gold nanocrystals capped by alkylthiols, both in vacuum and in ethane solvent at high density. As in the preceding study, we show that the anisotropy in the nanoparticle pair potential can be quantified by an angle-dependent correction term to the isotropic potential of mean force (PMF). We find that the anisotropy of the ligand shells is distance dependent, and strongly influenced by ligand interdigitation effects as well as expulsion of ligand chains from the interparticle region at short distances. Such fluctuation-driven anisotropy can be significant for alkylthiol-coated gold nanoparticles, specially for longer chain lengths, under good solvent conditions. The consequences of such anisotropy for self-assembly, specially as a function of grafting density, solvent quality and at interfaces, should provide some interesting insights in future work. Our results clearly show that an isotropic two-body PMF cannot adequately describe the thermodynamics and assembly behavior of nanoparticles in this dense grafting regime and inclusion of anisotropic effects, as well as possibly many-body interactions, is necessary. Extensions of this approach to other passivated nanoparticle systems and implications for self-assembly are considered.

  2. Porous Carbon-Supported Gold Nanoparticles for Oxygen Reduction Reaction: Effects of Nanoparticle Size.

    PubMed

    Wang, Likai; Tang, Zhenghua; Yan, Wei; Yang, Hongyu; Wang, Qiannan; Chen, Shaowei

    2016-08-17

    Porous carbon-supported gold nanoparticles of varied sizes were prepared using thiolate-capped molecular Au25, Au38, and Au144 nanoclusters as precursors. The organic capping ligands were removed by pyrolysis at controlled temperatures, resulting in good dispersion of gold nanoparticles within the porous carbons, although the nanoparticle sizes were somewhat larger than those of the respective nanocluster precursors. The resulting nanocomposites displayed apparent activity in the electroreduction of oxygen in alkaline solutions, which increased with decreasing nanoparticle dimensions. Among the series of samples tested, the nanocomposite prepared with Au25 nanoclusters displayed the best activity, as manifested by the positive onset potential at +0.95 V vs RHE, remarkable sustainable stability, and high numbers of electron transfer at (3.60-3.92) at potentials from +0.50 to +0.80 V. The performance is comparable to that of commercial 20 wt % Pt/C. The results demonstrated the unique feasibility of porous carbon-supported gold nanoparticles as high-efficiency ORR catalysts. PMID:27454707

  3. Surface geometry of tryptophan adsorbed on gold colloidal nanoparticles

    NASA Astrophysics Data System (ADS)

    Hussain, Shafqat; Pang, Yoonsoo

    2015-09-01

    Two distinct surface-enhanced Raman (SER) spectra of tryptophan depending on the surface adsorption geometry were obtained by using colloidal gold nanoparticles reduced by borohydride and citrate ions. According to the vibrational assignments based on DFT simulations, the SER spectra of tryptamine and 3-indolepropionic acid, and the pH dependence of tryptophan SER spectrum, we found that some indole ring vibrations are very sensitive to the surface adsorption geometry of the molecules. With citrate-reduced gold colloids, tryptophan and related molecules mainly adsorb via the protonated amine group while maintaining a perpendicular geometry of the indole ring to the surface. However, a flat geometry of the indole ring to the surface is preferred on the borohydride-reduced gold colloids where the surface adsorption occurs mainly through the indole ring π electrons. By comparing our results with previous reports on the SER spectra of tryptophan on various silver and gold surfaces, we propose a general adsorption model of tryptophan on metal nanosurfaces.

  4. Gold Nanoparticles and Radiofrequency in Experimental Models for Hepatocellular Carcinoma

    PubMed Central

    Raoof, Mustafa; Corr, Stuart J.; Zhu, Cihui; Cisneros, Brandon T.; Kaluarachchi, Warna D; Phounsavath, Sophia; Wilson, Lon J.; Curley, Steven A.

    2015-01-01

    Hepatocellular carcinoma (HCC) is one of the most lethal and chemo-refractory cancers, clearly, alternative treatment strategies are needed. We utilized 10nm gold nanoparticles as a scaffold to synthesize nanoconjugates bearing a targeting antibody (cetuximab, C225) and gemcitabine. Loading efficiency of gemcitabine on the gold nanoconjugates was 30%. Targeted gold nanoconjugates in combination with RF were selectively cytotoxic to EGFR expressing Hep3B and SNU449 cells when compared to isotype particles with/without RF (p<0.05). In animal experiments, targeted gold nanoconjugates halted the growth of subcutaneous Hep3B xenografts in combination with RF exposure (p<0.05). These xenografts also demonstrated increased apoptosis, necrosis and decreased proliferation compared to controls. Normal tissues were unharmed. We have demonstrated that non-invasive RF-induced hyperthermia when combined with targeted delivery of gemcitabine is more effective and safe at dosages ~275-fold lower than the current clinically-delivered systemic dose of gemcitabine. PMID:24650884

  5. Influence of structure of iron nanoparticles in aggregates on their magnetic properties

    NASA Astrophysics Data System (ADS)

    Rosická, Dana; Šembera, Jan

    2011-09-01

    Zero-valent iron nanoparticles rapidly aggregate. One of the reasons is magnetic forces among the nanoparticles. Magnetic field around particles is caused by composition of the particles. Their core is formed from zero-valent iron, and shell is a layer of magnetite. The magnetic forces contribute to attractive forces among the nanoparticles and that leads to increasing of aggregation of the nanoparticles. This effect is undesirable for decreasing of remediation properties of iron particles and limited transport possibilities. The aggregation of iron nanoparticles was established for consequent processes: Brownian motion, sedimentation, velocity gradient of fluid around particles and electrostatic forces. In our previous work, an introduction of influence of magnetic forces among particles on the aggregation was presented. These forces have significant impact on the rate of aggregation. In this article, a numerical computation of magnetic forces between an aggregate and a nanoparticle and between two aggregates is shown. It is done for random position of nanoparticles in an aggregate and random or arranged directions of magnetic polarizations and for structured aggregates with arranged vectors of polarizations. Statistical computation by Monte Carlo is done, and range of dominant area of magnetic forces around particles is assessed.

  6. One at a time: counting single-nanoparticle/electrode collisions for accurate particle sizing by overcoming the instability of gold nanoparticles under electrolytic conditions.

    PubMed

    Qiu, Danfeng; Wang, Song; Zheng, Yuanqin; Deng, Zhaoxiang

    2013-12-20

    In response to an increasing demand for understanding electrochemical processes on the nanometer scale, it now becomes possible to monitor electron transfer reactions at the single-nanoparticle level, namely particle collision electrochemistry. This technique has great potential in the development of research tools towards single-particle electrocatalysis and selective and multiplexed particle sizing. However, one existing problem that may discourage these applications is the relatively weak colloidal stability of nanoparticles in an electrolytic solution. Here we report on a facile but efficient way to achieve a good stability of gold nanoparticles in an acidic media so that 'zero-aggregation' collisions can be achieved at a carbon ultramicroelectrode. This allows us to obtain anodic dissolution currents from individual nanoparticles in a 'one particle at a time' manner, based on which accurate particle sizing with a resolution of 1-2 nm can be achieved. Our work strongly suggests that to maintain a well dispersed nanoparticle solution during a particle impact electrochemical experiment is critically important for accurate particle sizing, as well as other applications that require information to be extracted from individual nanoparticles (not their aggregates). PMID:24269991

  7. Biosynthesis of gold nanoparticles by Pseudomonas veronii AS41G inhabiting Annona squamosa L.

    PubMed

    Baker, Syed; Satish, Sreedharamurthy

    2015-11-01

    Biogenic principles to nanotechnology have generated tremendous attention in recent past owing eco friendly benign process for synthesis of nanoparticles. Present investigation reports extracellular synthesis of gold nanoparticles using cell free supernatant of Pseudomonas veronii AS 41G, a novel endophyte isolated from Annona squamosa L. Gold nanoparticles formation was confirmed with UV-Visible spectrophotometer. FTIR analysis predicted various functional groups responsible for reduction of metal salts and stabilization of gold nanoparticles. Nanoparticles were crystalline in nature as shown in XRD pattern. TEM analysis revealed morphological characteristics of nanoparticles with different size. Thus the present study attributes for facile process for synthesis of gold nanoparticles as an alternative for conventional methods. The study also highlights the new role of novel bacterium Pseudomonas veronii AS41G which will be very valuable as a record for the researchers working on it. PMID:26093965

  8. Adsorption of ozone and plasmonic properties of gold hydrosol: the effect of the nanoparticle size.

    PubMed

    Ershov, Boris G; Abkhalimov, Evgeny V; Roldughin, Vyacheslav I; Rudoy, Viktor M; Dement'eva, Olga V; Solovov, Roman D

    2015-07-28

    The impact of the size of gold nanoparticles on the magnitude of the bathochromic shift of their plasmon resonance peak upon ozone adsorption is revealed and analyzed. Namely, the plasmon band position of 7, 10, 14 and 32 nm nanoparticles shifts toward longer wavelengths by 51, 35, 23 and 9 nm respectively, i.e. the smaller the nanoparticles, the greater the shift of the band. Thus, the sensor efficiency of gold hydrosol increases with a decrease in the nanoparticle size. The shift of the Fermi level is a linear function of the inverse radius of nanoparticles. The observed alterations in the gold nanoparticle plasmonic properties and the Fermi level position are explained by a decrease in the electron density of nanoparticles caused by the electrons' partial binding by adsorbed O3 molecules. The insignificance of oxygen and nitrous oxide effects on plasmonic properties of gold hydrosol is observed. PMID:26106813

  9. Anticancer studies of the synthesized gold nanoparticles against MCF 7 breast cancer cell lines

    NASA Astrophysics Data System (ADS)

    Kamala Priya, M. R.; Iyer, Priya R.

    2014-09-01

    It has been previously stated that gold nanoparticles have been successfully synthesized using various green extracts of plants. The synthesized gold nanoparticles were characterized under scanning electron microscopy and EDX to identify the size of the nanoparticles. It was found that the nanoparticles were around 30 nm in size, which is a commendable nano dimension achieved through a plant mediated synthesis. The nanoparticles were further studied for their various applications. In the current study, we have made attempts to exploit the anticancer ability of the gold nano particles. The nanoparticles were studied against MCF 7 breast cancer cell lines. The results obtained from the studies of anticancer activity showed that gold nanoparticles gave an equivalent good results, in par with the standard drugs against cancer. The AuNP's proved to be efficient even from the minimum concentrations of 2 μg/ml, and as the concentration increased the anticancer efficacy as well increased.

  10. Anticancer studies of the synthesized gold nanoparticles against MCF 7 breast cancer cell lines

    NASA Astrophysics Data System (ADS)

    Kamala Priya, M. R.; Iyer, Priya R.

    2015-04-01

    It has been previously stated that gold nanoparticles have been successfully synthesized using various green extracts of plants. The synthesized gold nanoparticles were characterized under scanning electron microscopy and EDX to identify the size of the nanoparticles. It was found that the nanoparticles were around 30 nm in size, which is a commendable nano dimension achieved through a plant mediated synthesis. The nanoparticles were further studied for their various applications. In the current study, we have made attempts to exploit the anticancer ability of the gold nano particles. The nanoparticles were studied against MCF 7 breast cancer cell lines. The results obtained from the studies of anticancer activity showed that gold nanoparticles gave an equivalent good results, in par with the standard drugs against cancer. The AuNP's proved to be efficient even from the minimum concentrations of 2 μg/ml, and as the concentration increased the anticancer efficacy as well increased.

  11. The fabrication of nanochain structure of gold nanoparticles and its application in ractopamine sensing.

    PubMed

    Duan, Jiahua; He, Dawei; Wang, Wenshuo; Liu, Yongchuan; Wu, Hongpeng; Wang, Yongsheng; Fu, Ming; Li, Shulei

    2013-10-15

    The illegal food additives including ractopamine and melamine throw a serious threat to human health. In this paper, the ractopamine and melamine were first used to form the nanochain structure of citrate-stabilized gold nanoparticles (AuNPs) with a convenient and inexpensive method. The fabricated nanochain structure consisting of several AuNPs was characterized by Scanning Electron Microscopy. A new longitudinal surface plasma resonance, which could be adjusted from visible to near infrared range, was observed in absorption spectra due to the aggregation of AuNPs. This could be well explained by Finite Different Time Domain algorithm theoretically. As confirmed by Fourier Transform Infrared Spectroscopy, the complex formed by hydrogen-bonding interaction between melamine and ractopamine could effectively promote the aggregation of AuNPs that was useful to develop the sensitivity and selectivity for the detection of ractopamine. Hence, the plasmonic coupling phenomenon of gold nanochain could be applied in bio-assay for ractopamine through the change of solution's color and optical absorption band with naked eye or absorption spectra. The linear range was broadened to (1.23 × 10(-7)M, 1.11 × 10(-6)M) and the limit of detection was extended to 4.10 × 10(-8)M (S/N=3). More importantly, this time-saving method will be promising in rapid and selective detection of β-agonist for clinical applications. PMID:24054693

  12. Analytical and Theranostic Applications of Gold Nanoparticles and Multifunctional Nanocomposites

    PubMed Central

    Khlebtsov, Nikolai; Bogatyrev, Vladimir; Dykman, Lev; Khlebtsov, Boris; Staroverov, Sergey; Shirokov, Alexander; Matora, Larisa; Khanadeev, Vitaly; Pylaev, Timofey; Tsyganova, Natalia; Terentyuk, Georgy

    2013-01-01

    Gold nanoparticles (GNPs) and GNP-based multifunctional nanocomposites are the subject of intensive studies and biomedical applications. This minireview summarizes our recent efforts in analytical and theranostic applications of engineered GNPs and nanocomposites by using plasmonic properties of GNPs and various optical techniques. Specifically, we consider analytical biosensing; visualization and bioimaging of bacterial, mammalian, and plant cells; photodynamic treatment of pathogenic bacteria; and photothermal therapy of xenografted tumors. In addition to recently published reports, we discuss new data on dot immunoassay diagnostics of mycobacteria, multiplexed immunoelectron microscopy analysis of Azospirillum brasilense, materno-embryonic transfer of GNPs in pregnant rats, and combined photodynamic and photothermal treatment of rat xenografted tumors with gold nanorods covered by a mesoporous silica shell doped with hematoporphyrin. PMID:23471188

  13. Plasmonic properties of gold nanoparticles can promote neuronal activity

    NASA Astrophysics Data System (ADS)

    Paviolo, Chiara; Haycock, John W.; Yong, Jiawey; Yu, Aimin; McArthur, Sally L.; Stoddart, Paul R.

    2013-02-01

    As-synthesized, poly(4-styrenesulfonic acid) (PSS)-coated and SiO2 coated gold nanorods were taken up by NG108-15 neuronal cells. Exposure to laser light at the plasmon resonance wavelength of gold nanorods was found to trigger the differentiation process in the nanoparticle treated cells. Results were assessed by measuring the maximum neurite length, the number of neurites per neuron and the percentage of neurons with neurites. When the intracellular Ca2+ signaling was monitored, evidence of photo-generated transients were recorded without altering other normal cell functions. These results open new opportunities for peripheral nerve regeneration treatments and for the process of infrared nerve stimulation.

  14. Characterization of crystalline dendrimer-stabilized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Shi, Xiangyang; Ganser, T. Rose; Sun, Kai; Balogh, Lajos P.; Baker, James R., Jr.

    2006-02-01

    Monodispersed, highly crystalline dendrimer-stabilized gold nanoparticles (Au DSNPs) were synthesized via hydrazine reduction chemistry and stabilized using primary amine-terminated poly(amidoamine) (PAMAM) dendrimers of different generations (generations 2-6) with the same molar ratios of dendrimer terminal nitrogen ligands/gold atoms. The sizes of the synthesized Au DSNPs decrease with the increase of the number of dendrimer generations. These Au DSNPs are fluorescent and display strong blue emission intensity at 458 nm. Polyacrylamide gel electrophoresis (PAGE) analysis indicates that all Au DSNPs are stable and both metal NPs and dendrimer stabilizers do not separate from each other during the electrophoresis process. The synthesized inorganic/organic hybrid Au DSNPs provide new nanoplatforms that will be further modified with various biological ligands for the application of biosensing and targeted cancer therapeutics.

  15. Fluorosurfactant-capped gold nanoparticles-based label-free colorimetric assay for Au³⁺ with tunable dynamic range via a redox strategy.

    PubMed

    Yang, Bin; Zhang, Xiao-Bing; Liu, Wei-Na; Hu, Rong; Tan, Weihong; Shen, Guo-Li; Yu, Ru-Qin

    2013-10-15

    Gold nanoparticles-based colorimetric assay possesses several unique advantages, and has been applied for a wide range of targets, varying from nucleic acids to different metal ions. However, due to the lack of proper coordinating ligand, gold nanoparticles-based colorimetric sensing system for Au³⁺ has not been developed so far. It is well-known that Au³⁺ could induce the oxidation transition of thiol compounds to disulfide compounds. In this article, for the first time we converted such thiol masking reaction into colorimetric sensing system for label-free detection of Au³⁺ via a target-controlled aggregation of nanoparticles strategy. In the new proposed sensing system, fluorosurfactant-capped gold nanoparticles were chosen as signal reporter units, while an Au³⁺-triggered oxidation of cysteine (Cys), which inhibited the aggregation of gold nanoparticles, acted as the recognition unit. By varying the amount of Cys, a tunable response range accompanied with different windows of color change could be obtained for Au³⁺, illustrating the universality of the sensing system for Au³⁺ samples with different sensitivity requirements. Under optimized condition, the proposed sensing system exhibits a high sensitivity towards Au³⁺ with a detection limit of 50 nM, which is lower than previously reported spectroscopic methods. It has also been applied for detection of Au³⁺ in practical water samples with satisfactory result. PMID:23644005

  16. Multiplexed Enrichment and Detection of Malarial Biomarkers Using a Stimuli-Responsive Iron Oxide and Gold Nanoparticle Reagent System

    PubMed Central

    Nash, Michael A.; Waitumbi, John N.; Hoffman, Allan S.; Yager, Paul; Stayton, Patrick S.

    2014-01-01

    There is a need for simple yet robust biomarker and antigen purification and enrichment strategies that are compatible with current rapid diagnostic modalities. Here, a stimuli-responsive nanoparticle system is presented for multiplexed magneto-enrichment and non-instrumented lateral flow strip detection of model antigens from spiked pooled plasma. The integrated reagent system allows purification and enrichment of the gold-labeled biomarker half-sandwich that can be applied directly to lateral flow test strips. A linear diblock copolymer with a thermally-responsive poly(N-isopropylacrylamide) (pNIPAm) segment and a gold-binding block composed of NIPAm-co-N,N-dimethylaminoethylacrylamide (DMAEAm) was prepared by reversible addition fragmentation chain transfer (RAFT) polymerization. The diblock copolymer was used to functionalize gold nanoparticles (AuNPs), with subsequent bioconjugation to yield thermally-responsive pNIPAm-AuNPs that were co-decorated with streptavidin. These AuNPs efficiently complexed biotinylated capture antibody reagents that were bound to picomolar quantities of pan-aldolase and Plasmodium Falciparum histidine rich protein 2 (PfHRP2) in spiked pooled plasma samples. The gold-labeled biomarker half-sandwich was then purified and enriched using 10 nm thermally-responsive magnetic nanoparticles that were similarly decorated with pNIPAm. When a thermal stimulus was applied in conjunction with a magnetic field, co-aggregation of the AuNP-half-sandwiches with the pNIPAm-coated iron oxide nanoparticles created large aggregates that were efficiently magnetophoresed and separated from bulk serum. The purified biomarkers from a spiked pooled plasma sample could be concentrated 50-fold into a small volume and applied directly to a commercial multiplexed lateral flow strip to dramatically improve the signal-to-noise ratio and test sensitivity. PMID:22804625

  17. Miscibility and alignment effects of mixed monolayer cyanobiphenyl liquid-crystal-capped gold nanoparticles in nematic cyanobiphenyl liquid crystal hosts.

    PubMed

    Qi, Hao; Kinkead, Brandy; Marx, Vanessa M; Zhang, Huai R; Hegmann, Torsten

    2009-06-01

    Against the rule: Liquid crystal hosts (5CB and 8CB) are doped with different thiol decorated gold nanoparticles (see figure). The "simple" hexanethiol and dodecanethiol capped nanoparticles (Au1 and Au2) are more compatible to the nematic cyanobiphenyl liquid crystals than nanoparticles capped simultaneously with alkylthiols and a nematic cyanobiphenyl thiol (Au3 and Au4).This study focuses on the miscibility of liquid crystal (LC) decorated gold nanoparticles (NPs) in nematic LCs. To explore if LC functional groups on the gold NP corona improve the compatibility (miscibility) with structurally related LC hosts, we examined mixtures of two LC hosts, 5CB and 8CB, doped at 5 wt % with different types of gold NPs. Four alkanethiol-capped NPs were synthesized; two homogeneously coated with alkanethiols (Au1 with C(6)H(13)SH and Au2 with C(12)H(25)SH), and two that were additionally capped at a different ratio with a mesogenic cyanobiphenyl end-functionalized alkanethiol HS10OCB (C(6)H(13)SH + HS10OCB for Au3 and C(12)H(25)SH + HS10OCB for Au4). Investigating these mixtures in the bulk for settling of the NPs, and in thin films using polarized optical microscopy (POM) between untreated glass slides as well as POM studies and electro-optic tests in planar ITO/polyimide test cells, reveal that the alkanethiol capped NPs Au1 and Au2 are more compatible with the two polar cyanobiphenyl hosts in comparison to the NPs decorated with the cyanobiphenyl moieties. All NPs induce homeotropic alignment in 5CB and 8CB between untreated glass slides, with Au1 and Au2 showing characteristic birefringent stripes, and Au3 and A4 exhibiting clear signs of aggregation. In rubbed polyimide cells, however, Au3 and Au4 fail to induce homeotropic alignment and show clear signs of macroscopic aggregation. PMID:19334026

  18. Polymer coated gold nanoparticles for tracing the mobility of engineered nanoparticles in the subsurface

    NASA Astrophysics Data System (ADS)

    Uthuppu, Basil; Sidelmann Fjordbøge, Annika; Caspersen, Eva; Broholm, Mette Martina; Havsteen Jakobsen, Mogens

    2014-05-01

    Nanoparticles (NPs) are manufactured for their specific properties providing possibilities for new and improved products and applications. The use of engineered nanoparticles (ENPs) has therefore brought significant innovation and advances to society, including benefits for human health and the environment. At the same time, little is known about the potential risk associated with the inevitable release of these new materials to the environment, and their new properties are poorly understood . Suspensions of ENPs are not very stable, as they tend to aggregate thereby losing their properties as single particles. Coatings, including a large variety of natural and synthetic polymers, are used to enhance the colloid stability in high concentrations . However, increasing the stability of these materials may lead to unintended effects, such as enhancing their mobility in surface water and groundwater leading to inadvertent impacts on aquatic ecosystems and human health. Detection of ENPs in natural water systems, however, has proved very challenging. Hence, there is a need for tracing of ENP behaviour in the environment. We suggest a possibility of introducing inert gold NPs with the same mobility as the reactive NPs, as tracer particles. Colloidal gold has been of great interest for centuries due to its vibrant colors produced by the interaction with visible light. The unusual optical-electronic properties, high chemical stability and relatively low toxicity have made them the model system of choice in this context. Also, the natural occurrence of these particles in the proposed environment is very rare. Laboratory based experiments conducted in sand columns show that stable aqueous suspensions of gold NPs coated with amphiphilic block co polymers (PVP-VA and PVA-COOH) are extremely mobile (retardation factors of 1.0-1.2) with high recovery values (50-95 %). The specific retardation and recovery depends on the coating type, concentration and grafting method. The NPs

  19. Microwave-induced synthesis of highly dispersed gold nanoparticles within the pore channels of mesoporous silica

    SciTech Connect

    Gu Jinlou; Fan Wei; Shimojima, Atsushi; Okubo, Tatsuya

    2008-04-15

    Highly dispersed gold nanoparticles have been incorporated into the pore channels of SBA-15 mesoporous silica through a newly developed strategy assisted by microwave radiation (MR). The sizes of gold are effectively controlled attributed to the rapid and homogeneous nucleation, simultaneous propagation and termination of gold precursor by MR. Diol moieties with high dielectric and dielectric loss constants, and hence a high microwave activation, were firstly introduced to the pore channels of SBA-15 by a simple addition reaction between amino group and glycidiol and subsequently served as the reduction centers for gold nanoparticles. Extraction of the entrapped gold from the nanocomposite resulted in milligram quantities of gold nanoparticles with low dispersity. The successful assembly process of diol groups and formation of gold nanoparticles were monitored and tracked by solid-state NMR and UV-vis measurements. Characterization by small angle X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicated that the incorporation of gold nanoparticles would not breakup the structural integrity and long-range periodicity of SBA-15. The gold nanoparticles had a narrow size distribution with diameters in the size range of 5-10 nm through TEM observation. The average particles size is 7.9 nm via calculation by the Scherrer formula and TEM measurements. Nitrogen adsorption and desorption isotherms gave further evidence that the employed method was efficient and gold nanoparticles were successfully incorporated into the pore channels of SBA-15. - Graphical abstract: A facile and novel strategy has been developed to incorporate gold nanoparticles into the pore channels of mesoporous SBA-15 assisted by microwave radiation (MR) with mild reaction condition and rapid reaction speed. Due to the rapid and homogeneous nucleation, simultaneous propagation and termination by MR, the size of gold nanoparticles are effectively controlled.

  20. A molecular ruler based on plasmon coupling of single gold andsilver nanoparticles

    SciTech Connect

    Sonnichsen, Carsten; Reinhard, Bjorn M.; Liphardt, Jan; Alivisatos, A. Paul

    2005-05-22

    Molecular rulers based on Foerster Resonance Energy Transfer (FRET) that report conformational changes and intramolecular distances of single biomolecules have helped to understand important biological processes. However, these rulers suffer from low and fluctuating signal intensities from single dyes and limited observation time due to photobleaching. The plasmon resonance in noble metal particles has been suggested as an alternative probe to overcome the limitations of organic fluorophores and the coupling of plasmons in nearby particles has been exploited to detect particle aggregation by a distinct color change in bulk experiments. Here we demonstrate that plasmon coupling can be used to monitor distances between single pairs of gold and silver nanoparticles. We use this effect to follow the directed assembly of gold and silver nanoparticle dimers in real time and to study the time dynamics of single DNA hybridization events. These ''plasmon rulers'' allowed us to continuously monitor separations of up to 70 nm for more than 3000 seconds. Single molecule in vitro studies of biological processes previously inaccessible with fluorescence based molecular rulers are enabled with plasmon rulers with extended time and distance range.

  1. In vivo optical detection of intranuclear cancer biomarkers using gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumar, Sonia; Sokolov, Konstantin; Richards-Kortum, Rebecca

    2006-02-01

    Specific genotypes of human papillomavirus (HPV) are well correlated with cervical oncogenesis. The major transforming and immortalizing protein in high risk HPVs, namely HPV16, is E7 protein. E7 protein functions by deregulating the cell cycle and promoting S-phase reentry in differentiated keratinocytes. Currently, clinical diagnosis of cervical cancer is based on phenotypic changes observed in a screening Papanicolaou smear. Although screening has been effective in reducing the occurrence of cervical cancer, the low specificity of the Pap smear results in resources wasted on the evaluation of low-grade lesions not likely to progress to cervical cancer. Molecular characterization of active HPV infections using molecular specific contrast agents are combined with in-vivo optical imaging is proposed to be a cost-effective, non-invasive technique for the detection of cervical pre-cancers. Contrast is achieved by exploiting the peak absorbance and scattering shift in aggregated gold nanoparticles over isolated ones and molecular specificity is achieved via recognition moieties with high affinities for E7. Conjugates of gold nanoparticles and HPV16 anti-E7 antibodies are delivered into the nucleus of living cells and imaged with reflectance confocal microscopy. These contrast agents have been used to successfully enhance contrast in HPV16+ cervical cancer cells over HPV- cells by a factor of 2.5. Further characterization and development of these contrast agents will provide a robust, low cost screening tool for the detection of cervical pre-cancers.

  2. Geometric optics of gold nanoparticle-polydimethylsiloxane thin films

    NASA Astrophysics Data System (ADS)

    Dunklin, Jeremy R.; Forcherio, Gregory T.; Roper, D. Keith

    2014-09-01

    Interest in the optical properties of plasmonic nanoparticles embedded in transparent polymers is expanding due to potential uses in sustainability, biomedicine, and manufacturing. Geometric optics of polydimethylsiloxane (PDMS) thin films containing uniformly or asymmetrically distributed polydisperse reduced gold nanoparticles (AuNPs) or uniformly distributed monodisperse solution synthesized AuNPs were recently evaluated using a compact linear algebraic sum. Algebraic calculation of geometric transmission, reflection, and attenuation for AuNP-PDMS films provides a simple, workable alternative to effective medium approximations, computationally expensive methods, and fitting of experimental data. Generally, transmission and reflection increased with AuNP isotropy and particle density, as displayed on a novel ternary diagram. Irregular AuNP morphology and size distribution caused optical attenuation from polydisperse films to increase in proportion to log10 increases in gold content, resulting in lower attenuation per gold mass when compared to monodisperse AuNPs. Uniform monodisperse AuNP-PDMS films attenuated light in proportion to gold content, with films attenuating 0.15 fractional units per 0.1 mass-percent AuNPs. Thin layers of concentrated AuNPs attenuated light more efficiently. A 25 micron thick layer of 1.2 mass-percent AuNPs attenuated 0.5 fractional units, the same number as a 130 micron thick 0.6 mass-percent film. Measured optical responses from asymmetric AuNP-PDMS films with an adjacent back-reflector and pairs of uniformly distributed films were predictable within 0.04 units of linear algebraic estimates based on geometric optics. This approach allows for the summative optical responses of a sequence of 2D elements comprising a 3D assembly to be analyzed.

  3. Order/Disorder Dynamics in a Dodecanethiol-Capped Gold Nanoparticles Supracrystal by Small-Angle Ultrafast Electron Diffraction.

    PubMed

    Mancini, Giulia Fulvia; Latychevskaia, Tatiana; Pennacchio, Francesco; Reguera, Javier; Stellacci, Francesco; Carbone, Fabrizio

    2016-04-13

    The design and the characterization of functionalized gold nanoparticles supracrystals require atomically resolved information on both the metallic core and the external organic ligand shell. At present, there is no known approach to characterize simultaneously the static local order of the ligands and of the nanoparticles, nor their dynamical evolution. In this work, we apply femtosecond small-angle electron diffraction combined with angular cross-correlation analysis, to retrieve the local arrangement from nanometer to interatomic scales in glassy aggregates. With this technique we study a two-dimensional distribution of functionalized gold nanoparticles deposited on amorphous carbon. We show that the dodecanethiol ligand chains, coating the gold cores, order in a preferential orientation on the nanoparticle surface and throughout the supracrystal. Furthermore, we retrieve the dynamics of the supracrystal upon excitation with light and show that the positional disorder is induced by light pulses, while its overall homogeneity is surprisingly found to transiently increase. This new technique will enable the systematic investigation of the static and dynamical structural properties of nanoassembled materials containing light elements, relevant for several applications including signal processing and biology. PMID:26918756

  4. Gold Nanoparticles and Their Alternatives for Radiation Therapy Enhancement

    NASA Astrophysics Data System (ADS)

    Cooper, Daniel; Bekah, Devesh; Nadeau, Jay

    2014-10-01

    Radiation therapy is one of the most commonly used treatments for cancer. The dose of delivered ionizing radiation can be amplified by the presence of high-Z materials via an enhancement of the photoelectric effect; the most widely studied material is gold (atomic number 79). However, a large amount is needed to obtain a significant dose enhancement, presenting a challenge for delivery. In order to make this technique of broader applicability, the gold must be targeted, or alternative formulations developed that do not rely solely on the photoelectric effect. One possible approach is to excite scintillating nanoparticles with ionizing radiation, and then exploit energy transfer between these particles and attached dyes in a manner analogous to photodynamic therapy. Doped rare-earth halides and semiconductor quantum dots have been investigated for this purpose. However, although the spectrum of emitted light after radiation excitation is usually similar to that seen with light excitation, the yield is not. Measurement of scintillation yields is challenging, and in many cases has been done only for bulk materials, with little understanding of how the principles translate to the nanoscale. Another alternative is to use local heating using gold or iron, followed by application of ionizing radiation. Hyperthermia pre-sensitizes the tumors, leading to an improved response. Another approach is to use chemotherapeutic drugs that can radiosensitize tumors. Drugs may be attached to high-Z nanoparticles or encapsulated. This article discusses each of these techniques, giving an overview of the current state of nanoparticle-assisted radiation therapy and future directions.

  5. Investigation of thiol derivatized gold nanoparticle sensors for gas analysis

    NASA Astrophysics Data System (ADS)

    Stephens, Jared S.

    Analysis of volatile organic compounds (VOCs) in air and exhaled breath by sensor array is a very useful testing technique. It can provide non-invasive, fast, inexpensive testing for many diseases. Breath analysis has been very successful in identifying cancer and other diseases by using a chemiresistor sensor or array with gold nanoparticles to detect biomarkers. Acetone is a biomarker for diabetes and having a portable testing device could help to monitor diabetic and therapeutic progress. An advantage to this testing method is it is conducted at room temperature instead of 200 degrees Celsius. 3. The objective of this research is to determine the effect of thiol derivatized gold nanoparticles based on sensor(s) detection of VOCs. The VOCs to be tested are acetone, ethanol, and a mixture of acetone and ethanol. Each chip is tested under all three VOCs and three concentration levels (0.1, 1, and 5.0 ppm). VOC samples are used to test the sensors' ability to detect and differentiate VOCs. Sensors (also referred to as a chip) are prepared using several types of thiol derivatized gold nanoparticles. The factors are: thiol compound and molar volume loading of the thiol in synthesis. The average resistance results are used to determine the VOC selectivity of the sensors tested. The results show a trend of increasing resistance as VOC concentration is increased relative to dry air; which is used as baseline for VOCs. Several sensors show a high selectivity to one or more VOCs. Overall the 57 micromoles of 4-methoxy-toluenethiol sensor shows the strongest selectivity for VOCs tested. 3. Gerfen, Kurt. 2012. Detection of Acetone in Air Using Silver Ion Exchanged ZSM-5 and Zinc Oxide Sensing Films. Master of Science thesis, University of Louisville.

  6. Gold nanoparticles and their alternatives for radiation therapy enhancement

    PubMed Central

    Cooper, Daniel R.; Bekah, Devesh; Nadeau, Jay L.

    2014-01-01

    Radiation therapy is one of the most commonly used treatments for cancer. The dose of delivered ionizing radiation can be amplified by the presence of high-Z materials via an enhancement of the photoelectric effect; the most widely studied material is gold (atomic number 79). However, a large amount is needed to obtain a significant dose enhancement, presenting a challenge for delivery. In order to make this technique of broader applicability, the gold must be targeted, or alternative formulations developed that do not rely solely on the photoelectric effect. One possible approach is to excite scintillating nanoparticles with ionizing radiation, and then exploit energy transfer between these particles and attached dyes in a manner analogous to photodynamic therapy (PDT). Doped rare-earth halides and semiconductor quantum dots have been investigated for this purpose. However, although the spectrum of emitted light after radiation excitation is usually similar to that seen with light excitation, the yield is not. Measurement of scintillation yields is challenging, and in many cases has been done only for bulk materials, with little understanding of how the principles translate to the nanoscale. Another alternative is to use local heating using gold or iron, followed by application of ionizing radiation. Hyperthermia pre-sensitizes the tumors, leading to an improved response. Another approach is to use chemotherapeutic drugs that can radiosensitize tumors. Drugs may be attached to high-Z nanoparticles or encapsulated. This article discusses each of these techniques, giving an overview of the current state of nanoparticle-assisted radiation therapy and future directions. PMID:25353018

  7. Plasmon resonances of novel monolayer and bilayer shell aggregate gold nanostructures

    NASA Astrophysics Data System (ADS)

    Angelidou, Myria; Pitris, Costas

    2011-07-01

    Various gold nanostructures have being investigated for medical and biological uses, such as surface enhanced-Raman spectroscopy (SERS) and photoacoustic imaging (PAI), each having its advantages and limitations depending on the specific application. For many imaging and spectroscopic applications, it would be beneficial to use near infrared (NIR) excitation as well as small gold nanospheres which can easily reach the cytoplasm and cell nucleus. For that purpose, we propose a novel nanostructure, the "shell aggregate," which consists of small nanospheres aggregated (mono/bi-layer) around a core such as an intracellular organelle. The extinction efficiency of such monolayer and bilayer shell aggregates is thoroughly investigated with appropriate simulations using the Discrete Dipole Approximation (DDA) method. The effect of parameters such as the overall radius of the nanostructure, the small nanosphere radius, and the distance between the nanospheres, on the extinction efficiency factor of the nanostructures was examined. The results indicate that the extinction spectra appear to depend heavily on the distance between the small nanospheres. Two distinct absorption peak wavelengths are observed for a specific nanostructure. The monolayer shell aggregate provides a reasonably tunable plasmon resonance wavelength while the small size of its components can be exploited for intracellular distribution.

  8. Enhanced charge separation in chlorophyll a solar cell by gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Barazzouk, Saïd; Hotchandani, Surat

    2004-12-01

    An efficient organic photoelectrochemical cell based on chlorophyll a (Chla) and gold nanoparticles is constructed. The enhanced performance of this cell is due to the beneficial role of gold nanoparticles in accepting and shuttling the photogenerated electrons in Chla to the collecting electrode. This produces a long-distance charge-separated state, resulting into an enhancement in charge separation efficiency.

  9. Physically-synthesized gold nanoparticles containing multiple nanopores for enhanced photothermal conversion and photoacoustic imaging.

    PubMed

    Park, Jisoo; Kang, Heesung; Kim, Young Heon; Lee, Sang-Won; Lee, Tae Geol; Wi, Jung-Sub

    2016-08-25

    Physically-synthesized gold nanoparticles having a narrow size distribution and containing multiple nanopores have been utilized as photothermal converters and imaging contrast agents. Nanopores within the gold nanoparticles make it possible to increase the light-absorption cross-section and consequently exhibit distinct improvements in photothermal conversion and photoacoustic imaging efficiencies. PMID:27527067

  10. Gold-plated silver nanoparticles engineered for sensitive plasmonic detection amplified by morphological changes.

    PubMed

    Hobbs, Krysten; Cathcart, Nicole; Kitaev, Vladimir

    2016-07-28

    Gold-plated silver nanoparticles have been developed to undergo morphological changes that enhance the surface plasmon resonance (SPR) sensing response. These morphological changes were realized through thin-frame gold plating that both reinforces the nanoparticle edges and enables partial silver etching upon exposure to several biological molecules, including thiols and amines. PMID:27418122

  11. Magnetic controlling of migration of DNA and proteins using one-step modified gold nanoparticles.

    PubMed

    Xu, Lu; Feng, Lei; Dong, Shuli; Hao, Jingcheng

    2015-06-01

    A protocol was developed for preparing magnetic gold nanoparticles via one-step modification with a paramagnetic cationic surfactant. These magnetic gold nanoparticles can bind to and manipulate a low strength magnetic field-based delivery of DNA and proteins powerfully and non-invasively. PMID:25847127

  12. Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles

    PubMed Central

    Elavazhagan, Tamizhamudu; Arunachalam, Kantha D

    2011-01-01

    We used an aqueous leaf extract of Memecylon edule (Melastomataceae) to synthesize silver and gold nanoparticles. To our knowledge, this is the first report where M. edule leaf broth was found to be a suitable plant source for the green synthesis of silver and gold nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with M. edule leaf extract, stable silver and gold nanoparticles were rapidly formed. The gold nanoparticles were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and Fourier transform infra-red spectroscopy (FTIR). The kinetics of reduction of aqueous silver and gold ions during reaction with the M. edule leaf broth were easily analyzed by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to M. edule leaf broth, were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20–50 nm. TEM analysis of gold nanoparticles showed formation of triangular, circular, and hexagonal shapes in the size range 10–45 nm. The resulting silver nanoparticles were predominantly square with uniform size range 50–90 nm. EDAX results confirmed the presence of triangular nanoparticles in the adsorption peak of 2.30 keV. Further FTIR analysis was also done to identify the functional groups in silver and gold nanoparticles. The characterized nanoparticles of M. edule have potential for various medical and industrial applications. Saponin presence in aqueous extract of M. edule is responsible for the mass production of silver and gold nanoparticles. PMID:21753878

  13. Assembly of gold nanoparticles of different diameters between nanogap electrodes

    SciTech Connect

    Cheon, Donguk; Kumar, Sanjeev; Kim, Gil-Ho

    2010-01-04

    Gold nanoparticles (NPs) of different diameters i.e., 5, 10, and 20 nm, were assembled between 20 nm gap electrodes using ac dielectrophoresis (DEP) process. DEP parameters, such as frequency, trapping time, and voltage of value 1 MHz, 1 s, and 2-3 V, respectively, led to the pearl-chain assembly corresponding to each type of NPs between 20 nm gap electrodes. Mutual DEP could be attributed to the NPs chaining in low field regions and subsequently the DEP force directs these chains to the trapping region. Such controlled assembly of individual NPs may find application in fabricating devices for molecular electronics.

  14. Gold nanorods-silica Janus nanoparticles for theranostics

    NASA Astrophysics Data System (ADS)

    Wang, Ying-Shuai; Shao, Dan; Zhang, Lu; Zhang, Xu-Lin; Li, Jing; Feng, Jing; Xia, Hong; Huo, Qi-Sheng; Dong, Wen-Fei; Sun, Hong-Bo

    2015-04-01

    A multi-functional gold nanorods-mesoporous silica Janus nanoparticles (NPs) were fabricated by a facile and mild strategy. These Janus NPs not only exhibit small shift of the local surface plasmon resonance wavelength but also have high potential for drug loading and low cytotoxicity. More importantly, the Janus nano-composites could efficiently deliver the imaging agents or drugs into liver cancer cells, at the same time the Janus NPs have good effect on photothermal, which indicate that the unique Janus NPs could be a promising candidate of theranostic system for combined photothermo-/chemo-cancer therapy.

  15. Ellipsometry study on gold-nanoparticle-coated gold thin film for biosensing application

    PubMed Central

    Moirangthem, Rakesh Singh; Chang, Yia-Chung; Wei, Pei-Kuen

    2011-01-01

    The amplified plasmonic response from various distributions of gold nanoparticles (AuNPs) coated on top of gold thin film was studied via ellipsometry under total internal reflection mode. The surface plasmon resonance dip can be tuned from the visible to near infrared by simply varying the AuNP concentration. Theoretical modeling based on effective medium theory with a multi-slice model has been employed to fit the experimental results. Additionally, this experimental tool has been further extended to study bio-molecular interactions with metal surfaces as well as in studying protein-protein interaction without any labeling. Hence, this technique could provide a non-destructive way of designing tunable label-free optical biosensors with very high sensitivity. PMID:21991549

  16. Isolation and identification of gold nanoparticles synthesizing fungi from Indian Kolar Gold Field mine soil.

    PubMed

    Lakshmi, V Jhansi; Kannan, K P

    2016-07-01

    An indigenous fungal strain was isolated from Indian Kolar Gold Field mine soil. The isolate was heterothallic, branched septate, deeply floccose, fast-growing, dull green with white background conidial columnar mycelium from Aspergillus section Fumigati. Diverse metabolic patterns of the isolate exhibit high metal, thermal resistance which grews well from 28 ± 1 degrees C to 37 degrees C and pH concentration was significant on the growth of isolate. Phylogenetic analysis of 16srRNA β-Tubulin gene sequence established relationship among isolate and other taxa. Molecular identification and morphological features of fungal isolate were consistent with those of Neosartorya udagawae. Heterothallic N. udagawae FJ830683 strain was closely related to homothallic N. aureola EF661890. Fungal isolate extract synthesized narrow sized stable Gold nanoparticles (AuNPs). PMID:27498502

  17. Dielectric Anisotropy of Gold Nanoparticle Colloids in Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Visco, Angelo; Foust, Jon; Mahmood, Rizwan

    We present electrical and optical studies of hexanethiol-treated gold nanoparticle (GNPs) colloids in 4-cyano-4 '-pentyl-biphenyl (5CB) liquid crystals. Preliminary data analysis suggests an unusual behavior of sudden drop and then rise in the dielectric anisotropy at a critical concentration of 0.0862% by wt. GNPs and a sudden rise and then drop in the nematic to isotropic transition temperature. Above the critical concentration the data level off to within the uncertainty of the experimental errors. This colloidal system will help us to understand the interaction and the effects of nanoparticles on the self-assembly of LC molecules and the manner in which these particles organize in LC. This study is important for further developments in nanotechnology, sharp and fast display panels, and within the medical field.

  18. Evaluation of Methods to Predict Reactivity of Gold Nanoparticles

    SciTech Connect

    Allison, Thomas C.; Tong, Yu ye J.

    2011-06-20

    Several methods have appeared in the literature for predicting reactivity on metallic surfaces and on the surface of metallic nanoparticles. All of these methods have some relationship to the concept of frontier molecular orbital theory. The d-band theory of Hammer and Nørskov is perhaps the most widely used predictor of reactivity on metallic surfaces, and it has been successfully applied in many cases. Use of the Fukui function and the condensed Fukui function is well established in organic chemistry, but has not been so widely applied in predicting the reactivity of metallic nanoclusters. In this article, we will evaluate the usefulness of the condensed Fukui function in predicting the reactivity of a family of cubo-octahedral gold nanoparticles and make comparison with the d-band method.

  19. Gold Nanoparticle Monolayers with Tunable Optical and Electrical Properties.

    PubMed

    Yang, Guang; Hu, Longqian; Keiper, Timothy D; Xiong, Peng; Hallinan, Daniel T

    2016-04-26

    Centimeter-scale gold nanoparticle (Au NP) monolayer films have been fabricated using a water/organic solvent self-assembly strategy. A recently developed approach, drain to deposit, is demonstrated to be most effective in transferring the Au NP films from the water/organic solvent interface to various solid substrates while maintaining their integrity. The interparticle spacing was tuned from 1.4 to 3.1 nm using alkylamine ligands of different lengths. The ordering of the films increased with increasing ligand length. The surface plasmon resonance and the in-plane electrical conductivity of the Au NP films both exhibit an exponential dependence on the interparticle spacing. These findings show great potential in scaling up the manufacturing of high-performance optical and electronic devices based on two-dimensional metallic nanoparticle superlattices. PMID:27018432

  20. Antibacterial gold nanoparticles-biomass assisted synthesis and characterization.

    PubMed

    Badwaik, Vivek D; Willis, Chad B; Pender, Dillon S; Paripelly, Rammohan; Shah, Monic; Kherde, Yogesh A; Vangala, Lakshmisri M; Gonzalez, Matthew S; Dakshinamurthy, Rajalingam

    2013-10-01

    Xylose is a natural monosaccharide found in biomass such as straw, pecan shells, cottonseed hulls, and corncobs. Using this monosaccharide, we report the facile, green synthesis and characterization of stable xylose encapsulated gold nanoparticles (Xyl-GNPs) with potent antibacterial activity. Xyl-GNPs were synthesized using the reduction property of xylose in an aqueous solution containing choloraurate anions carried out at room temperature and atmospheric pressure. These nanoparticles were stable and near spherical in shape with an average diameter of 15 +/- 5 nm. Microbiological assay results showed the concentration dependent antibacterial activity of these particles against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus epidermidis) bacteria. Thus the facile, environmentally friendly Xyl-GNPs have many potential applications in chemical and biomedical industries, particularly in the development of antibacterial agents in the field of biomedicine. PMID:24015501

  1. Biosynthesis of anisotropic gold nanoparticles using Maduca longifolia extract and their potential in infrared absorption.

    PubMed

    Fayaz, A Mohammed; Girilal, M; Venkatesan, R; Kalaichelvan, P T

    2011-11-01

    Metal nanoparticles, in general, and gold nanoparticles, in particular, are very attractive because of their size- and shape-dependent properties. Biosynthesis of anisotropic gold nanoparticles using aqueous extract of Madhuca longifolia and their potential as IR blockers has been demonstrated. The tyrosine residue was identified as the active functional group for gold ion reduction. These gold nanoparticles were characterized by of UV-Vis spectrophotometer, FTIR, TEM and HrTEM. The presence of proteins was identified by FTIR, SDS-PAGE, UV-Vis and fluorescence spectroscopy. The micrograph revealed the formation of anisotropic gold nanoaprticles. The biologically synthesized gold nanotriangles can be easily coated in the glass windows which are highly efficient in absorbing IR radiations. PMID:21802261

  2. Gold Nanoparticles: Synthesising, Characterizing and Reviewing Novel Application in Recent Years

    NASA Astrophysics Data System (ADS)

    Granmayeh Rad, Adeleh; Abbasi, Hamed; Afzali, Mohammad Hossein

    In this paper we report the synthesis of gold nanoparticles during laser ablation of a metal gold plate in distilled water. The experiments were performed with a first harmonic (1064 nm, 6 ns, 10 Hz) output of a Nd:YAG laser varying the operative fluency between 5 Jcm-2 and 15 Jcm-2. The results indicate that gold nanoparticles are synthesized at room temperature.In this paper we give an overview of the properties of gold relevant to its potential application in molecular-scale devices absorption spectroscopy and Transmission Electron Microscopy (TEM) were employed to determine the optical properties and size of gold nanoparticles. And novel applications of gold nanoparticles have been studied in various fields.

  3. Use of Soybean Lecithin in Shape Controlled Synthesis of Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ayres, Benjamin Robert

    The work presented in this dissertation is a composite of experiments in the growth of gold nanoparticles with specific optical properties of interest. The goal is to synthesize these gold nanoparticles using soybean extract for not only shape control, but for propensity as a biocompatible delivery system. The optical properties of these nanoparticles has found great application in coloring glass during the Roman empire and, over the centuries, has grown into its own research field in applications of nanoparticulate materials. Many of the current functions include use in biological systems as biosensors and therapeutic applications, thus making biocompatibility a necessity. Current use of cetyltrimethylammonium bromide leads to rod-shaped gold nanoparticles, however, the stability of these gold nanoparticles does not endure for extended periods of time in aqueous media. In my research, two important components were found to be necessary for stable, anisotropic growth of gold nanoparticles. In the first experiments, it was found that bromide played a key role in shape control. Bromide exchange on the gold atoms led to specific packing of the growing crystals, allowing for two-dimensional growth of gold nanoparticles. It was also discerned that soybean lecithin contained ligands that blocked specific gold facets leading to prismatic gold nanoparticle growth. These gold nanoprisms give a near infrared plasmon absorption similar to that of rod-shaped gold nanoparticles. These gold nanoprisms are discovered to be extremely stable in aqueous media and remain soluble for extended periods of time, far longer than that of gold nanoparticles grown using cetyltrimethylammonium bromide. Since soy lecithin has a plethora of compounds present, it became necessary to discover which compound was responsible for the shape control of the gold nanoprisms in order to optimize the synthesis and allow for a maximum yield of the gold nanoprisms. Many of these components were identified

  4. Fractal dimensions of soy protein nanoparticle aggregates determined by dynamic mechanical method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fractal dimension of the protein aggregates can be estimated by dynamic mechanical methods when the particle aggregates are imbedded in a polymer matrix. Nanocomposites were formed by mixing hydrolyzed soy protein isolate (HSPI) nanoparticle aggregates with styrene-butadiene (SB) latex, followe...

  5. Highly stable gelatin layer-protected gold nanoparticles as surface-enhanced Raman scattering substrates.

    PubMed

    Lee, Changwon; Zhang, Peng

    2014-06-01

    Amine and carboxylic groups rich gelatin was used as reducing and stabilizing agent to form highly stable gold nanoparticles for surface-enhanced Raman scattering (SERS) applications. The size of the particle was determined to be 13 nm by TEM with mono-dispersity. The size of the gold nanoparticles was little affected by the initial gelatin concentration. The gelatin-gold nanoparticles show strong SERS activity with Rhodamine 6G and Ruthenium bipyridine as reporter molecules. Both carboxylic acid groups and amine groups were identified by FT-IR to be present on the gelatin-gold nanoparticle surface, providing the possibility of further conjugation with other molecules. The gelatin-protected gold nanoparticles prepared by this simple, green, method displayed very good solubility and stability in many solvents, and good monodispersity, all desirable features as good SERS substrates. PMID:24738391

  6. Assessment of the In Vivo Toxicity of Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Shiun; Hung, Yao-Ching; Liau, Ian; Huang, G. Steve

    2009-08-01

    The environmental impact of nanoparticles is evident; however, their toxicity due to their nanosize is rarely discussed. Gold nanoparticles (GNPs) may serve as a promising model to address the size-dependent biological response to nanoparticles because they show good biocompatibility and their size can be controlled with great precision during their chemical synthesis. Naked GNPs ranging from 3 to 100 nm were injected intraperitoneally into BALB/C mice at a dose of 8 mg/kg/week. GNPs of 3, 5, 50, and 100 nm did not show harmful effects; however, GNPs ranging from 8 to 37 nm induced severe sickness in mice. Mice injected with GNPs in this range showed fatigue, loss of appetite, change of fur color, and weight loss. Starting from day 14, mice in this group exhibited a camel-like back and crooked spine. The majority of mice in these groups died within 21 days. Injection of 5 and 3 nm GNPs, however, did not induce sickness or lethality in mice. Pathological examination of the major organs of the mice in the diseased groups indicated an increase of Kupffer cells in the liver, loss of structural integrity in the lungs, and diffusion of white pulp in the spleen. The pathological abnormality was associated with the presence of gold particles at the diseased sites, which were verified by ex vivo Coherent anti-Stoke Raman scattering microscopy. Modifying the surface of the GNPs by incorporating immunogenic peptides ameliorated their toxicity. This reduction in the toxicity is associated with an increase in the ability to induce antibody response. The toxicity of GNPs may be a fundamental determinant of the environmental toxicity of nanoparticles.

  7. Photocatalytic and antibacterial response of biosynthesized gold nanoparticles.

    PubMed

    Khan, Arif Ullah; Yuan, Qipeng; Wei, Yun; Khan, Gul Majid; Khan, Zia Ul Haq; Khan, Shafiullah; Ali, Farman; Tahir, Kamran; Ahmad, Aftab; Khan, Faheem Ullah

    2016-09-01

    Increase in the bacterial resistance to available antibiotics and water contamination by different toxic organic dyes are both severe problems throughout the world. To overcome these concerns, new methodologies including synthesis of nontoxic, human friendly and efficient nanoparticles is required. These nanoparticles not even inhibit the growth of microorganisms but are also effective in the degradation of toxic organics in waste water thus providing a clean and human friendly environment. The use of plants extracts to synthesize and stabilize noble metal nanoparticles have been considered as safe, cost-effective, eco-benign and green approach nowadays. In the present study, Longan fruit juice proficiently reduced ionic gold (Au(+3)) to gold nanoparticles (AuNPs) as well as mediated the stabilization of AuNPs. The antibacterial activity of AuNPs was carried out against both gram positive and gram negative bacteria using agar well diffusion method, followed by the determination of Minimum inhibitory concentration (MIC) values. AuNPs were found to have significant antibacterial activity against Escherichia coli with MIC values of 75μg/ml while outstanding MIC values of 50μg/ml against Staphylococcus areous and Basilus subtilus. AuNPs revealed significant photocatalytic degradation (76%) of methylene blue in time period of 55min, indicating the effective photocatalytic property of biosynthesized AuNPs (K=0.29/min, r(2)=0.95). The considerable antibacterial and photocatalytic activities of the photosynthesized AuNPs can be attributed towards their small size, spherical morphology and uniform dispersion. Our finding suggests the possible therapeutic potential of biogenic AuNPs in the development of new antibacterial agents as well as in the development of effective photocatalysts. PMID:27394010

  8. Assessment of the In Vivo Toxicity of Gold Nanoparticles.

    PubMed

    Chen, Yu-Shiun; Hung, Yao-Ching; Liau, Ian; Huang, G Steve

    2009-01-01

    The environmental impact of nanoparticles is evident; however, their toxicity due to their nanosize is rarely discussed. Gold nanoparticles (GNPs) may serve as a promising model to address the size-dependent biological response to nanoparticles because they show good biocompatibility and their size can be controlled with great precision during their chemical synthesis. Naked GNPs ranging from 3 to 100 nm were injected intraperitoneally into BALB/C mice at a dose of 8 mg/kg/week. GNPs of 3, 5, 50, and 100 nm did not show harmful effects; however, GNPs ranging from 8 to 37 nm induced severe sickness in mice. Mice injected with GNPs in this range showed fatigue, loss of appetite, change of fur color, and weight loss. Starting from day 14, mice in this group exhibited a camel-like back and crooked spine. The majority of mice in these groups died within 21 days. Injection of 5 and 3 nm GNPs, however, did not induce sickness or lethality in mice. Pathological examination of the major organs of the mice in the diseased groups indicated an increase of Kupffer cells in the liver, loss of structural integrity in the lungs, and diffusion of white pulp in the spleen. The pathological abnormality was associated with the presence of gold particles at the diseased sites, which were verified by ex vivo Coherent anti-Stoke Raman scattering microscopy. Modifying the surface of the GNPs by incorporating immunogenic peptides ameliorated their toxicity. This reduction in the toxicity is associated with an increase in the ability to induce antibody response. The toxicity of GNPs may be a fundamental determinant of the environmental toxicity of nanoparticles. PMID:20596373

  9. Characterization and catalytic activity of gold nanoparticles synthesized using ayurvedic arishtams

    NASA Astrophysics Data System (ADS)

    Aswathy Aromal, S.; Dinesh Babu, K. V.; Philip, Daizy

    2012-10-01

    The development of new synthesis methods for monodispersed nanocrystals using cheap and nontoxic chemicals, environmentally benign solvents and renewable materials remains a challenge to the scientific community. The present work reports a new green method for the synthesis of gold nanoparticles. Four different ayurvedic arishtams are used for the reduction of Au3+ to Au nanoparticles. This method is simple, efficient, economic and nontoxic. Gold nanoparticles having different sizes in the range from 15 to 23 nm could be obtained. The nanoparticles have been characterized by UV-Visible spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and FTIR analysis. The high crystallinity of nanoparticles is evident from bright circular spots in the SAED pattern and peaks in the XRD pattern. The synthesized gold nanoparticles show good catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol by excess NaBH4. The synthesized nanoparticles are found to exhibit size dependent catalytic property, the smaller nanoparticles showing faster activity.

  10. Brownian dynamics study of the self-assembly of ligated gold nanoparticles and other colloidal systems

    NASA Astrophysics Data System (ADS)

    Khan, Siddique J.

    We carry out Brownian Dynamics Simulations to study the self-assembly of ligated gold nanoparticles for various ligand chain lengths. First, we develop a phenomenological model for an effective nanoparticle-nanoparticle pair potential by treating the ligands as flexible polymer chains. Besides van der Waals interactions, we incorporate both the free energy of mixing and elastic contributions from compression of the ligands in our effective pair potentials. The separation of the nanoparticles at the potential minimum compares well with experimental results of gold nanoparticle superlattice constants for various ligand lengths. Next, we use the calculated pair potentials as input to Brownian dynamics simulations for studying the formation of nanoparticle assembly in three dimensions. For dodecanethiol ligated nanoparticles in toluene, our model gives a relatively shallower well depth and the clusters formed after a temperature quench are compact in morphology. Simulation results for the kinetics of cluster growth in this case are compared with phase separations in binary mixtures. For decanethiol ligated nanoparticles, the model well depth is found to be deeper, and simulations show hybrid, fractal-like morphology for the clusters. Cluster morphology in this case shows a compact structure at short length scales and a fractal structure at large length scales. Growth kinetics for this deeper potential depth is compared with the diffusion-limited cluster-cluster aggregation (DLCA) model. We also did simulation studies of nanoparticle supercluster (NPSC) nucleation from a temperature quenched system. Induction periods are observed with times that yield a reasonable supercluster interfacial tension via classical nucleation theory (CNT). However, only the largest pre-nucleating clusters are dense and the cluster size can occasionally range greater than the critical size in the pre-nucleation regime until a cluster with low enough energy occurs, then nucleation ensues. Late

  11. Electromagnetically assisted synthesis of highly concentrated gold nanoparticle colloids

    NASA Astrophysics Data System (ADS)

    Hernandez, Laura; Rosas, Walter; Naranjo, Guillermo; Peralta, Xomalin G.; Vargas, Watson L.

    2015-03-01

    The synthesis of metallic nanoparticles is currently an extremely active area of research due to the multiple potential applications of nanomaterials to areas ranging from nano-medicine to catalysis. Some of the current challenges of nanoparticle synthesis protocols include synthesizing nanoparticles in high concentrations with a small polydispersity. The present study contrasts and compares the synthesis of highly concentrated colloidal gold using three different sources of electromagnetic radiation to assist the reaction. The first source was a Spectra Physics Mai Tai Ti:Sapphire laser made by Sperian, this laser generates 70 fs FWHM pulses with wavelengths in the range of 690-1040 nm. The second source was sun light; this was measured to have a power of 10W. The third source was a lowelDP lamp with a measured intensity of 25W. Both the solar light and the lamp's rays were concentrated using a 28cm x 28cm Fresnel lens. Results will be presented highlighting differences and similarities in size, shape, crystallinity and time of the reaction. We speculate about the role played by variations in wavelength, temporal profile of the electromagnetic source (pulsed vs. continuous), temperature of the reaction and excitation power in the final structure of the nanoparticles generated.

  12. A Dual Gold Nanoparticle System for Mesenchymal Stem Cell Tracking

    PubMed Central

    Ricles, L.M.; Nam, S.Y.; Treviño, E.A.; Emelianov, S.Y.; Suggs, L.J.

    2015-01-01

    Stem cell-based therapies have demonstrated improved outcomes in preclinical and clinical trials for treating cardiovascular ischemic diseases. However, the contribution of stem cells to vascular repair is poorly understood. To elucidate these mechanisms, many have attempted to monitor stem cells following their delivery in vivo, but these studies have been limited by the fact that many contrast agents, including nanoparticles, are commonly passed on to non-stem cells in vivo. Specifically, cells of the reticuloendothelial system, such as macrophages, frequently endocytose free contrast agents, resulting in the monitoring of macrophages instead of the stem cell therapy. Here we demonstrate a dual gold nanoparticle system which is capable of monitoring both delivered stem cells and infiltrating macrophages using photoacoustic imaging. In vitro analysis confirmed preferential labeling of the two cell types with their respective nanoparticles and the maintenance of cell function following nanoparticle labeling. In addition, delivery of the system within a rat hind limb ischemia model demonstrated the ability to monitor stem cells and distinguish and quantify macrophage infiltration. These findings were confirmed by histology and mass spectrometry analysis. This work has important implications for cell tracking and monitoring cell-based therapies. PMID:25709814

  13. 4-mercaptophenylboronic acid functionalized gold nanoparticles for colorimetric sialic acid detection.

    PubMed

    Sankoh, Supannee; Thammakhet, Chongdee; Numnuam, Apon; Limbut, Warakorn; Kanatharana, Proespichaya; Thavarungkul, Panote

    2016-11-15

    A simple and selective colorimetric sensor for sialic acid detection, based on the aggregation of 4-mercaptophenylboronic acid functionalized gold nanoparticles (4-MPBA-AuNPs) was developed. The color of the solution changed from wine-red to blue after binding with sialic acid. The colorimetric sensor provided good analytical performances with a linear dynamic range of 80µM to 2.00mM and a 68±2µM limit of detection without any effect from possible interferences and sample matrix. In addition, the quantitative results were obtained within only 10min. This developed sensor was used to detect sialic acid in blood serum samples and the results were in good agreement with those from the current periodate-resorcinol method (P>0.05) thus indicating that this developed colorimetric sensor can be used as an alternative method for sialic acid detection with a shorter analysis time and a high accuracy. PMID:27266659

  14. Resonance light scattering determination of uranyl based on labeled DNAzyme-gold nanoparticle system

    NASA Astrophysics Data System (ADS)

    Zhou, Bin; Shi, Lin-Fei; Wang, Yong-Sheng; Yang, Hui-Xian; Xue, Jin-Hua; Liu, Lu; Wang, Yong-Song; Yin, Ji-Cheng; Wang, Jia-Cheng

    2013-06-01

    A resonance light scattering (RLS) method has been developed using a uranyl (UO22+) specific DNAzyme and gold nanoparticles (AuNPs). In this strategy, the cleavage of the substrate strand (SDNA) of DNAzyme results in releasing a shorter duplex in the presence of UO22+, leading to the aggregation of AuNPs and the increase of RLS intensity. The response signals linearly correlated with the concentration of UO22+ over the range of 1.36 × 10-8-1.50 × 10-7 mol L-1. The limit of detection (LOD) is 4.09 × 10-9 mol L-1. The method has excellent selectivity and higher sensitivity. It could provide a promising potential for the detection of metal ions, and be benefit to extend the application of RLS method.

  15. Concentration Effect of Reducing Agents on Green Synthesis of Gold Nanoparticles: Size, Morphology, and Growth Mechanism.

    PubMed

    Kim, Hyun-Seok; Seo, Yu Seon; Kim, Kyeounghak; Han, Jeong Woo; Park, Youmie; Cho, Seonho

    2016-12-01

    Under various concentration conditions of reducing agents during the green synthesis of gold nanoparticles (AuNPs), we obtain the various geometry (morphology and size) of AuNPs that play a crucial role in their catalytic properties. Through both theoretical and experimental approaches, we studied the relationship between the concentration of reducing agent (caffeic acid) and the geometry of AuNPs. As the concentration of caffeic acid increases, the sizes of AuNPs were decreased due to the adsorption and stabilizing effect of oxidized caffeic acids (OXCAs). Thus, it turns out that optimal concentration exists for the desired geometry of AuNPs. Furthermore, we investigated the growth mechanism for the green synthesis of AuNPs. As the caffeic acid is added and adsorbed on the surface of AuNPs, the aggregation mechanism and surface free energy are changed and consequently resulted in the AuNPs of various geometry. PMID:27119158

  16. Concentration Effect of Reducing Agents on Green Synthesis of Gold Nanoparticles: Size, Morphology, and Growth Mechanism

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-seok; Seo, Yu Seon; Kim, Kyeounghak; Han, Jeong Woo; Park, Youmie; Cho, Seonho

    2016-04-01

    Under various concentration conditions of reducing agents during the green synthesis of gold nanoparticles (AuNPs), we obtain the various geometry (morphology and size) of AuNPs that play a crucial role in their catalytic properties. Through both theoretical and experimental approaches, we studied the relationship between the concentration of reducing agent (caffeic acid) and the geometry of AuNPs. As the concentration of caffeic acid increases, the sizes of AuNPs were decreased due to the adsorption and stabilizing effect of oxidized caffeic acids (OXCAs). Thus, it turns out that optimal concentration exists for the desired geometry of AuNPs. Furthermore, we investigated the growth mechanism for the green synthesis of AuNPs. As the caffeic acid is added and adsorbed on the surface of AuNPs, the aggregation mechanism and surface free energy are changed and consequently resulted in the AuNPs of various geometry.

  17. A pH-responsive DNA nanomachine-controlled catalytic assembly of gold nanoparticles.

    PubMed

    Yao, Dongbao; Li, Hui; Guo, Yijun; Zhou, Xiang; Xiao, Shiyan; Liang, Haojun

    2016-06-18

    The toehold-mediated DNA-strand-displacement reaction has unique programmable properties for driving the catalytic assembly of gold nanoparticles (AuNPs). Herein, we introduced a pH-responsive triplex structure into the DNA-strand-displacement-based catalytic assembly system of DNA-AuNPs to add an additional controlling factor, namely the pH. In this catalytic system, the aggregation rate of AuNPs could be regulated by both internal factors (concentrations of substrate, target, etc.) and an external control (pH gradient). This strategy can be used to construct pH-induced DNA logic gates and sophisticated DNA networks as well as to image instantaneous pH changes in living cells. PMID:27225943

  18. Highly sensitive detection of chromium (III) ions by resonance Rayleigh scattering enhanced by gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Min; Cai, Huai-Hong; Yang, Fen; Lin, Dewen; Yang, Pei-Hui; Cai, Jiye

    2014-01-01

    Simple and sensitive determination of chromium (III) ions (Cr3+) has potential applications for detecting trace contamination in environment. Here, the assay is based on the enhancement of resonance Rayleigh scattering (RRS) by Cr3+-induced aggregation of citrate-capped gold nanoparticles (AuNPs). Transmission electron microscopy (TEM) and UV-vis absorption spectroscopy were employed to characterize the nanostructures and spectroscopic properties of the Cr3+-AuNP system. The experiment conditions, such as reaction time, pH value, salt concentration and interfering ions, were investigated. The combination of signal amplification of Cr3+-citrate chelation with high sensitivity of RRS technique allow a selective assay of Cr3+ ions with a detection limit of up to 1.0 pM. The overall assay can be carried out at room temperature within only twenty minutes, making it suitable for high-throughput routine applications in environment and food samples.

  19. Rapid and sensitive detection of melamine in milk with gold nanoparticles by Surface Enhanced Raman Scattering.

    PubMed

    Giovannozzi, Andrea Mario; Rolle, Francesca; Sega, Michela; Abete, Maria Cesarina; Marchis, Daniela; Rossi, Andrea Mario

    2014-09-15

    A rapid and sensitive method to detect melamine in liquid milk based on Surface Enhanced Raman Scattering (SERS) spectroscopy is presented, exploiting the selective binding of gold nanoparticles (AuNPs) with this analyte. This interaction promotes the aggregation of the AuNPs inducing a huge enhancement of the melamine signals in the Raman spectrum due to the formation of SERS "hot spots". An external standard calibration method was employed for quantitative analysis and the method was validated for linearity, sensitivity, repeatability and recovery. A good linearity (R(2)=0.99) was found in the concentration range of 0.31-5.0 mg l(-1) in milk with a limit of detection of 0.17 mg l(-1). This method does not require a long extraction procedure (total analysis time can be lower than 30 min) and can be reliably used for melamine detection in milk matrix in accordance with the European law limits. PMID:24767052

  20. Extracellular biosynthesis of gold and silver nanoparticles using Krishna tulsi ( Ocimum sanctum) leaf

    NASA Astrophysics Data System (ADS)

    Philip, Daizy; Unni, C.

    2011-05-01

    Aqueous extract of Ocimum sanctum leaf is used as reducing agent for the environmentally friendly synthesis of gold and silver nanoparticles. The nanoparticles were characterized using UV-vis, transmission electron microscopy (TEM), X-ray diffraction (XRD) and FTIR analysis. These methods allow the synthesis of hexagonal gold nanoparticles having size ∼30 nm showing two surface plasmon resonance (SPR) bands by changing the relative concentration of HAuCl 4 and the extract. Broadening of SPR is observed at larger quantities of the extract possibly due to biosorption of gold ions. Silver nanoparticles with size in the range 10-20 nm having symmetric SPR band centered around 409 nm are obtained for the colloid synthesized at room temperature at a pH of 8. Crystallinity of the nanoparticles is confirmed from the XRD pattern. Biomolecules responsible for capping are different in gold and silver nanoparticles as evidenced by the FTIR spectra.

  1. The Green synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia L

    NASA Astrophysics Data System (ADS)

    Suman, T. Y.; Radhika Rajasree, S. R.; Ramkumar, R.; Rajthilak, C.; Perumal, P.

    2014-01-01

    In the present work, we describe the synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia. UV-vis spectroscopy, XRD, FTIR, FE-SEM, EDX and TEM were performed to characterize the formation of gold nanoparticles. The synthesized gold nanoparticles were characterized by a peak at 540 nm in the UV-vis spectrum. The XRD peaks at 38°, 44°, 64° and 77° can be indexed to the (1 1 1), (2 0 0), (2 2 0) and (3 1 1) Bragg's reflections of cubic structure of metallic gold, respectively. The FTIR result showed that extract containing protein might be responsible for the formation of the nanoparticles and may play an important role in the stabilization of the formed nanoparticles. FESEM images revealed that the particles were triangle and mostly spherical in shape. TEM images clearly revealed the size of the nanoparticles were 12.17-38.26 nm in size.

  2. The Green synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia L.

    PubMed

    Suman, T Y; Rajasree, S R Radhika; Ramkumar, R; Rajthilak, C; Perumal, P

    2014-01-24

    In the present work, we describe the synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia. UV-vis spectroscopy, XRD, FTIR, FE-SEM, EDX and TEM were performed to characterize the formation of gold nanoparticles. The synthesized gold nanoparticles were characterized by a peak at 540 nm in the UV-vis spectrum. The XRD peaks at 38°, 44°, 64° and 77° can be indexed to the (111), (200), (220) and (311) Bragg's reflections of cubic structure of metallic gold, respectively. The FTIR result showed that extract containing protein might be responsible for the formation of the nanoparticles and may play an important role in the stabilization of the formed nanoparticles. FESEM images revealed that the particles were triangle and mostly spherical in shape. TEM images clearly revealed the size of the nanoparticles were 12.17-38.26 nm in size. PMID:24036301

  3. Antitumor activity of galactoxyloglucan-gold nanoparticles against murine ascites and solid carcinoma.

    PubMed

    Joseph, Manu M; Aravind, S R; George, Suraj K; Pillai, K Raveendran; Mini, S; Sreelekha, T T

    2014-04-01

    Galactoxyloglucan polysaccharide (PST001), isolated from the seed kernels of Tamarindus indica (Ti), was used both as reducing and capping agent for the preparation of gold nanoparticles (PST-Gold) of 20 nm size. The present study evaluated the anticancer effects of the PST-Gold nanoparticles both in vitro and in vivo. The cytotoxicity was evaluated in the murine cancer cell lines, Dalton's lymphoma ascites (DLA) and Ehrlich's ascites carcinoma (EAC). Galactoxyloglucan-gold nanoparticles (PST-Gold) not only retained the anticancer effects of PST001, but also showed enhanced cytotoxicity via induction of apoptosis even at lower doses and lesser incubation times. In vivo antitumor activity was tested in DLA and EAC murine ascites and EAC solid-tumor syngeneic mouse models. PST-Gold nanoparticles reduced tumor burden and increased median survival and life span significantly in both tumor models compared to the controls. The PST-Gold nanoparticles were very effective as a chemopreventive agent, showing the best overall response when administered prior to tumor induction. In the case of solid tumors, intratumoral administration of the PST-Gold nanoparticles yielded significant results with regard to survival and increment in lifespan as compared to intraperitoneal mode of drug administration. Further studies in higher animal models and in patients at high-risk for recurrence are warranted to fully explore and develop the potential of PST-Gold nanoconjugates as a chemopreventive and therapeutic anti-cancer agent. PMID:24486833

  4. Gold nanoparticles assisted characterization of amine functionalized polystyrene multiwell plate and glass slide surfaces

    NASA Astrophysics Data System (ADS)

    Dharanivasan, Gunasekaran; Rajamuthuramalingam, Thangavelu; Michael Immanuel Jesse, Denison; Rajendiran, Nagappan; Kathiravan, Krishnan

    2015-01-01

    We demonstrated citrate-capped gold nanoparticles assisted characterization of amine functionalized polystyrene plate and glass slide surfaces through AuNPs staining method. The effect of AuNPs concentration on the characterization of amine modified surfaces was also studied with different concentration of AuNPs (ratios 1.0-0.0). 3-Aminopropylyl triethoxy silane has been used as amine group source for the surface modification. The interactions of AuNPs on modified and unmodified surfaces were investigated using atomic force microscopy and the dispersibility, and the aggregation of AuNPs was analyzed using UV-visible spectrophotometer. Water contact angle measurement and X-ray photoelectron spectroscopy (XPS) were used to further confirmation of amine modified surfaces. The aggregation of AuNPs in modified multiwell plate leads to the color change from red to purple and they are found to be adsorped on the modified surfaces. Aggregation and adsorption of AuNPs on the modified surfaces through the electrostatic interactions and the hydrogen bonds were revealed by XPS analysis. Remarkable results were found even in the very low concentration of AuNPs (ratio 0.2). This AuNPs staining method is simple, cost-effective, less time consuming, and required very low concentration of AuNPs. These results can be read out through the naked eye without the help of sophisticated equipments.

  5. Preparation, Physicochemical Characterization and Performance Evaluation of Gold Nanoparticles in Radiotherapy

    PubMed Central

    Kamiar, Ali; Ghotalou, Reza; Valizadeh, Hadi

    2013-01-01

    Purpose: The aim of the present study was preparation, physicochemical characterization and performance evaluation of gold nanoparticles (GNPs) in radiotherapy. Another objective was the investigation of anti-bacterial efficacy of gold nanoparticle against E. coli clinical strains. Methods: Gold nanoparticles prepared by controlled reduction of an aqueous HAuCl4 solution using Tri sodium citrate. Particle size analysis and Transmission electron microscopy were used for physicochemical characterization. Polymer gel dosimetry was used for evaluation of the enhancement of absorbed dose. Diffusion method in agar media was used for investigation of anti-bacterial effect. Results: Gold nanoparticles synthesized in size range from 57 nm to 346 nm by planning different formulation. Gold nanoparticle in 57 nm size increased radiation dose effectiveness with the magnitude of about 21 %. At the concentration of 400 ppm, Nano gold exhibited significant anti-bacterial effect against E. coli clinical strains. Conclusion: It is concluded that gold nanoparticles can be applied as dose enhancer in radiotherapy. The Investigation of anti-bacterial efficacy showed that gold nanoparticle had significant effect against E. coli clinical strains. PMID:24312871

  6. Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar.

    PubMed

    Zhai, Guangshu; Walters, Katherine S; Peate, David W; Alvarez, Pedro J J; Schnoor, Jerald L

    2014-02-11

    Poplar plants (Populus deltoides × nigra, DN-34) were used as a model to explore vegetative uptake of commercially available gold nanoparticles (AuNPs) and their subsequent translocation and transport into plant cells. AuNPs were directly taken up and translocated from hydroponic solution to poplar roots, stems and leaves. Total gold concentrations in leaves of plants treated with 15, 25 and 50 nm AuNPs at exposure concentrations of 498±50.5, 247±94.5 and 263±157 ng/mL in solutions were: 0.023±0.006, 0.0218±0.004 and 0.005±0.0003 µg/g dry weight, respectively, which accounted for 0.05, 0.10 and 0.03%, respectively, of the total gold mass added. The presence of total gold in plant tissues was measured by inductively coupled plasma mass spectrometry, while AuNPs were observed by transmission electron microscopy in plant tissues. In solution, AuNPs were distinguished from Au(III) ions by membrane separation and centrifugation. AuNPs behaved conservatively inside the plants and were not dissolved into gold ions. On the other hand, Au(III) ions were taken up and reduced into AuNPs inside whole plants. AuNPs were observed in the cytoplasm and various organelles of root and leaf cells. A distinct change in color from yellow to pink was observed as Au(III) ions were reduced and precipitated in hydroponic solution. The accumulation of AuNPs in the plasmodesma of the phloem complex in root cells clearly suggests ease of transport between cells and translocation throughout the whole plant, inferring the potential for entry and transfer in food webs. PMID:25386566

  7. Facile synthesis of size-tunable gold nanoparticles by pomegranate (Punica granatum) leaf extract: Applications in arsenate sensing

    SciTech Connect

    Rao, Ashit; Mahajan, Ketakee; Bankar, Ashok; Srikanth, Rapole; Kumar, Ameeta Ravi; Gosavi, Suresh; Zinjarde, Smita

    2013-03-15

    Highlights: ► Pomegranate leaf extracts mediated rapid gold nanoparticle (AuNP) synthesis. ► The phyto-inspired AuNPs were size-tuned and characterized. ► The reducing and capping agents in the extract were identified. ► The nanoparticles reacted specifically with arsenate (V) ions. - Abstract: When pomegranate leaf extracts were incubated with chloroauric acid (HAuCl{sub 4}), gold nanoparticles (AuNPs) were synthesized. These were characterized by a variety of techniques. With an increasing content of the leaf extract, a gradual decrease in size and an increase in monodispersity were observed. Transmission electron microscope (TEM) images showed that the phyto-fabricated AuNPs were surrounded by an amorphous layer. Gallic acid in the extract mediated the reduction and a natural decapeptide capped the nanostructures. Blocking of thiol groups in the decapeptide cysteine residues caused the nanoparticles to aggregate. On interaction with arsenate (V) ions, the UV–vis spectra of the nanoparticles showed a decrease in intensity and a red-shift. Energy dispersive spectra confirmed the presence of arsenate associated with the AuNPs. Thus, by using these AuNPs, a method for sensing the toxic arsenate ions could be developed.

  8. Piper betle-mediated green synthesis of biocompatible gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Punuri, Jayasekhar Babu; Sharma, Pragya; Sibyala, Saranya; Tamuli, Ranjan; Bora, Utpal

    2012-08-01

    Here, we report the novel use of the ethonolic leaf extract of Piper betle for gold nanoparticle (AuNP) synthesis. The successful formation of AuNPs was confirmed by UV-visible spectroscopy, and different parameters such as leaf extract concentration (2%), gold salt concentration (0.5 mM), and time (18 s) were optimized. The synthesized AuNPs were characterized with different biophysical techniques such as transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDX). TEM experiments showed that nanoparticles were of various shapes and sizes ranging from 10 to 35 nm. FT-IR spectroscopy revealed that AuNPs were functionalized with biomolecules that have primary amine group -NH2, carbonyl group, -OH groups, and other stabilizing functional groups. EDX showed the presence of the elements on the surface of the AuNPs. FT-IR and EDX together confirmed the presence of biomolecules bounded on the AuNPs. Cytotoxicity of the AuNPs was tested on HeLa and MCF-7 cancer cell lines, and they were found to be nontoxic, indicating their biocompatibility. Thus, synthesized AuNPs have potential for use in various biomedical applications.

  9. Tuning the structure of thermosensitive gold nanoparticle monolayers.

    PubMed

    Rezende, Camila A; Shan, Jun; Lee, Lay-Theng; Zalczer, Gilbert; Tenhu, Heikki

    2009-07-23

    Gold nanoparticles grafted with poly(N-isopropylacrylamide) (PNIPAM) are rendered amphiphilic and thermosensitive. When spread on the surface of water, they form stable Langmuir monolayers that exhibit surface plasmon resonance. Using Langmuir balance and contrast-matched neutron reflectivity, the detailed structural properties of these nanocomposite monolayers are revealed. At low surface coverage, the gold nanoparticles are anchored to the interface by an adsorbed PNIPAM layer that forms a thin and compact pancake structure. Upon isothermal compression (T=20 degrees C), the adsorbed layer thickens with partial desorption of polymer chains to form brush structures. Two distinct polymer conformations thus coexist: an adsorbed conformation that assures stability of the monolayer, and brush structures that dangle in the subphase. An increase in temperature to 30 degrees C results in contractions of both adsorbed and brush layers with a concomitant decrease in interparticle distance, indicating vertical as well as lateral contractions of the graft polymer layer. The reversibility of this thermal response is also shown by the contraction-expansion of the polymer layers in heating-cooling cycles. The structure of the monolayer can thus be tuned by compression and reversibly by temperature. These compression and thermally induced conformational changes are discussed in relation to optical properties. PMID:19569632

  10. Gold Nanoparticles-Enhanced Proton Exchange Membrane (PEM) Fuel Cell

    NASA Astrophysics Data System (ADS)

    Li, Hongfei; Pan, Cheng; Liu, Ping; Zhu, Yimei; Adzic, Radoslav; Rafailovich, Miriam

    Proton exchange membrane fuel cells have drawn great attention and been taken as a promising alternated energy source. One of the reasons hamper the wider application of PEM fuel cell is the catalytic poison effect from the impurity of the gas flow. Haruta has predicted that gold nanoparticles that are platelet shaped and have direct contact with the metal oxide substrate to be the perfect catalysts of the CO oxidization, yet the synthesis method is difficult to apply in the Fuel Cell. In our approach, thiol-functionalized gold nanoparticles were synthesized through two-phase method developed by Brust et al. We deposit these Au particles with stepped surface directly onto the Nafion membrane in the PEM fuel cell by Langmuir-Blodgett method, resulting in over 50% enhancement of the efficiency of the fuel cell. DFT calculations were conducted to understand the theory of this kind of enhancement. The results indicated that only when the particles were in direct surface contact with the membrane, where AuNPs attached at the end of the Nafion side chains, it could reduce the energy barrier for the CO oxidation that could happen at T<300K.

  11. Gold Nanoparticle-Decorated Scaffolds Promote Neuronal Differentiation and Maturation.

    PubMed

    Baranes, Koby; Shevach, Michal; Shefi, Orit; Dvir, Tal

    2016-05-11

    Engineered 3D neuronal networks are considered a promising approach for repairing the damaged spinal cord. However, the lack of a technological platform encouraging axonal elongation over branching may jeopardize the success of such treatment. To address this issue we have decorated gold nanoparticles on the surface of electrospun nanofiber scaffolds, characterized the composite material, and investigated their effect on the differentiation, maturation, and morphogenesis of primary neurons and on an immature neuronal cell line. We have shown that the nanocomposite scaffolds have encouraged a longer outgrowth of the neurites, as judged by the total length of the branching trees and the length and total distance of neurites. Moreover, neurons grown on the nanocomposite scaffolds had less neurites originating out of the soma and lower number of branches. Taken together, these results indicate that neurons cultivated on the gold nanoparticle scaffolds prefer axonal elongation over forming complex branching trees. We envision that such cellular constructs may be useful in the future as implantable cellular devices for repairing damaged neuronal tissues, such as the spinal cord. PMID:26674672

  12. Electro-mechanical sensing in freestanding monolayered gold nanoparticle membranes

    NASA Astrophysics Data System (ADS)

    Gauvin, M.; Grisolia, J.; Alnasser, T.; Viallet, B.; Xie, S.; Brugger, J.; Ressier, L.

    2016-06-01

    The electro-mechanical sensing properties of freestanding monolayered membranes of dodecanethiol coated 7 nm gold nanoparticles (NPs) are investigated using AFM force spectroscopy and conductive AFM simultaneously. The electrical resistance of the NP membranes increases sensitively with the point-load force applied in the center of the membranes using an AFM tip. Numerical simulations of electronic conduction in a hexagonally close-packed two-dimensional (2D) array of NPs under point load-deformation are carried out on the basis of electronic transport measurements at low temperatures and strain modeling of the NP membranes by finite element analysis. These simulations, supporting AFM-based electro-mechanical measurements, attribute the high strain sensitivity of the monolayered NP membranes to the exponential dependence of the tunnel electron transport in 2D NP arrays on the strain-induced length variation of the interparticle junctions. This work thus evidences a new class of highly sensitive nano-electro-mechanical systems based on freestanding monolayered gold NP membranes.The electro-mechanical sensing properties of freestanding monolayered membranes of dodecanethiol coated 7 nm gold nanoparticles (NPs) are investigated using AFM force spectroscopy and conductive AFM simultaneously. The electrical resistance of the NP membranes increases sensitively with the point-load force applied in the center of the membranes using an AFM tip. Numerical simulations of electronic conduction in a hexagonally close-packed two-dimensional (2D) array of NPs under point load-deformation are carried out on the basis of electronic transport measurements at low temperatures and strain modeling of the NP membranes by finite element analysis. These simulations, supporting AFM-based electro-mechanical measurements, attribute the high strain sensitivity of the monolayered NP membranes to the exponential dependence of the tunnel electron transport in 2D NP arrays on the strain

  13. A new green chemistry method based on plant extracts to synthesize gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Montes Castillo, Milka Odemariz

    Extraordinary chemical and physical properties exhibited by nanomaterials, as compared to their bulk counterparts, have made the area of nanotechnology a growing realm in the past three decades. It is the nanoscale size (from 1 to 100 nm) and the morphologies of nanomaterials that provide several properties and applications not possible for the same material in the bulk. Magnetic and optical properties, as well as surface reactivity are highly dependent on the size and morphology of the nanomaterial. Diverse nanomaterials are being widely used in molecular diagnostics as well as in medicine, electronic and optical devices. Among the most studied nanomaterials, gold nanoparticles are of special interest due to their multifunctional capabilities. For instance, spherical gold nanoparticles measuring 15-20 nm in diameter have been studied due to their insulin binding properties. Also, thiol functionalized gold nanoparticles between 5 and 30 nm are used in the detection of DNA. Thus, harnessing the shape and size of gold nanoparticles plays an important role in science and technology. The synthesis of gold nanoparticles via the reduction of gold salts, using citrate or other reducing agents, has been widely studied. In recent years, algae, fungi, bacteria, and living plants have been used to reduce trivalent gold (Au3+) to its zero oxidation state (Au 0) forming gold nanoparticles of different sizes and shapes. In addition, plant biomasses have also been studied for their gold-reducing power and nanoparticle formation. Although there is information about the synthesis of the gold nanoparticles by biologically based materials; to our knowledge, the study of the use of alfalfa extracts has not been reported. This innovation represents a significant improvement; that is an environmentally friendly method that does not use toxic chemicals. Also, the problem of extracting the formed gold nanoparticles from biomaterials is addressed in this research but still remains to be

  14. Root extracts of Polygala tenuifolia for the green synthesis of gold nanoparticles.

    PubMed

    Jun, Sang Hui; Kim, Hyun-Seok; Koo, Yean Kyoung; Park, Yohan; Kim, Jinwoong; Cho, Seonho; Park, Youmie

    2014-08-01

    Traditional medicinal plants possess diverse active constituents for exerting their biological activities. Recently, the innovative applications of plant extracts have revealed their promise as 'green' reducing agents for the reduction of metal ions during the synthesis of metallic nanoparticles. Herein, we report the use of 70% ethanol extracts from Polygala tenuifolia roots as a 'green' reducing agent for the production of gold nanoparticles by reducing gold(III) chloride trihydrate. Gold nanoparticles were characterized using UV-Visible spectrophotometry, high-resolution transmission electron microscopy (HR-TEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). The gold nanoparticles had characteristic surface plasmon resonance bands at 535 nm. HR-TEM and AFM images revealed major spherical-shaped nanoparticles. The average diameter was measured to be 9.77±3.09 nm using HR-TEM images. The crystalline structure of the gold nanoparticles was confirmed through lattice fringes and circular spots within the selected area electron diffraction in the HR-TEM images along with the XRD peaks. The gold nanoparticles exhibited enhanced anticoagulant activity, as assessed by activated partial thromboplastin time. The current method is a straightforward, environmentally friendly, and inexpensive method for the production of gold nanoparticles using extracts from traditional medicinal plants. PMID:25936087

  15. Green Chemistry Approach for the Synthesis of Gold Nanoparticles Using the Fungus Alternaria sp.

    PubMed

    Dhanasekar, Naresh Niranjan; Rahul, Ganga Ravindran; Narayanan, Kannan Badri; Raman, Gurusamy; Sakthivel, Natarajan

    2015-07-01

    The synthesis of gold nanoparticles has gained tremendous attention owing to their immense applications in the field of biomedical sciences. Although several chemical procedures are used for the synthesis of nanoparticles, the release of toxic and hazardous by-products restricts their use in biomedical applications. In the present investigation, gold nanoparticles were synthesized biologically using the culture filtrate of the filamentous fungus Alternaria sp. The culture filtrate of the fungus was exposed to three different concentrations of chloroaurate ions. In all cases, the gold ions were reduced to Au(0), leading to the formation of stable gold nanoparticles of variable sizes and shapes. UV-Vis spectroscopy analysis confirmed the formation of nanoparticles by reduction of Au(3+) to Au(0). TEM analysis revealed the presence of spherical, rod, square, pentagonal, and hexagonal morphologies for 1 mM chloroaurate solution. However, quasi-spherical and spherical nanoparticles/heart-like morphologies with size range of about 7-13 and 15-18 nm were observed for lower molar concentrations of 0.3 and 0.5 mM gold chloride solution, respectively. The XRD spectrum revealed the face-centered cubic crystals of synthesized gold nanoparticles. FT-IR spectroscopy analysis confirmed the presence of aromatic primary amines, and the additional SPR bands at 290 and 230 nm further suggested that the presence of amino acids such as tryptophan/tyrosine or phenylalanine acts as the capping agent on the synthesized mycogenic gold nanoparticles. PMID:25737119

  16. Green synthesis of gold nanoparticles using Stevia rebaudiana leaf extracts: Characterization and their stability.

    PubMed

    Sadeghi, Babak; Mohammadzadeh, M; Babakhani, B

    2015-07-01

    Various methods invented and developed for the synthesis of gold nanoparticles that increases daily consumed. According to this method, including potential environmental pollution problems and the complexity of the synthesis, in this study, the feasibility of using the leaves extract of Stevia rebaudiana (SR) for the reduction of gold ions to nanoparticles form have been studied. Stevia leaves were used to prepare the aqueous extract for this study. Gold nanoparticles were characterized with different techniques such as UV-vis spectroscopy, FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Transmission electron microscopy experiments showed that these nanoparticles are spherical and uniformly distributed and its size is from 5 to 20 nm. FT-IR spectroscopy revealed that gold nanoparticles were functionalized with biomolecules that have primary amine group (NH2), carbonyl group, OH groups and other stabilizing functional groups. X-ray diffraction pattern showed high purity and face centered cubic structure of gold nanoparticles with size of 17 nm. The scanning electron microscopy (SEM) implies the right of forming gold nanoparticles. The results, confirm that gold nanoparticles have synthesized by the leaves extract of S. rebaudiana (SR). PMID:25900555

  17. Effect of gold nanoparticles on the optical properties of Rhodamine 6G

    NASA Astrophysics Data System (ADS)

    Barzan, Mohammad; Hajiesmaeilbaigi, Fereshteh

    2016-05-01

    Gold nanoparticles are synthesized by the laser ablation method and characterized by transmission electron microscopy and UV-visible absorption spectroscopy. The absorption and emission spectra and powers of Rhodamine 6G in the absence and presence of 27 nm diameter gold nanoparticles were studied. Empirical measurements represented that presence of gold nanoparticles lead to decrease the fluorescence power and fluorescence quantum yield, and increase the absorbance and absorbed power of Rhodamine 6G. Also, Stern-Volmer quenching constant of dye in proximity of nanoparticles shows high value which implies efficient quenching of the dye fluorescence by gold nanoparticles. Fluorescence quantum yield, radiative and nonradiative decay rate of Rhodamine 6G-gold nanoparticles assembly, in parallel orientation, as a function of dye's dipole moment distance from gold nanoparticle's surface, based on Gersten-Nitzan model, are calculated. Calculations show variations of the fluorescence quenching is strongly depended on the distance between the dye molecules and the Nps' surface. Also, calculated radiative decay rate indicates good agreement with the experimental value, and results of the ratio of the nonradiative to the radiative decay rate of Rhodamine 6G-gold nanoparticles mixture show nonradiative energy transfer is better explained in terms of NSET rather than FRET mechanism.

  18. Substrate decomposition in galvanic displacement reaction: Contrast between gold and silver nanoparticle formation

    SciTech Connect

    Ghosh, Tapas; Satpati, Biswarup

    2015-06-24

    We have investigated substrate decomposition during formation of silver and gold nanoparticles in galvanic displacement reaction on germanium surfaces. Silver and gold nanoparticles were synthesized by electroless deposition on sputter coated germanium thin film (∼ 200 nm) grown initially on silicon substrate. The nanoparticles formation and the substrate corrosion were studied using scanning transmission electron microscopy (STEM) and the energy dispersive X-ray (EDX) spectroscopy.

  19. Gold nanoparticle wires for sensing DNA and DNA/protein interactions

    NASA Astrophysics Data System (ADS)

    Shao, Liqin; Diao, J. J.; Tang, Zhipeng; Liu, Song; Shen, Sophie C.; Liu, Jiankang; Rui, Xianfeng; Yu, Dapeng; Zhao, Qing

    2014-03-01

    The discontinuous Vertical Evaporation-driven Colloidal Deposition (dVECD) method has been used as a green technique for formatting nanoparticle wires by the direct deposition of nanoparticles from colloid suspensions onto hydrophilic substrates, without any lithographic procedures. Gold nanoparticles of different sizes are deposited into wire arrays for electronic detection of biological molecules. A sensitive detection of DNA molecules as low as ~1 pM is achieved due to a high surface to volume ratio of the porous structures. The effects of the gold nanoparticles' size, DNA concentration, and DNA length on detection sensitivity of these gold nanoparticle wire sensors are discussed. Moreover, we can also detect the interaction between DNAs and proteins. Gold nanoparticle wires prepared by the nontoxic and simple dVECD are promising for detecting viruses involved in diseases.The discontinuous Vertical Evaporation-driven Colloidal Deposition (dVECD) method has been used as a green technique for formatting nanoparticle wires by the direct deposition of nanoparticles from colloid suspensions onto hydrophilic substrates, without any lithographic procedures. Gold nanoparticles of different sizes are deposited into wire arrays for electronic detection of biological molecules. A sensitive detection of DNA molecules as low as ~1 pM is achieved due to a high surface to volume ratio of the porous structures. The effects of the gold nanoparticles' size, DNA concentration, and DNA length on detection sensitivity of these gold nanoparticle wire sensors are discussed. Moreover, we can also detect the interaction between DNAs and proteins. Gold nanoparticle wires prepared by the nontoxic and simple dVECD are promising for detecting viruses involved in diseases. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr06560j

  20. Optical coherence tomography image enhancement by using gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Ponce-de-Leon, Y. R.; Lopez-Rios, J. A.; Pichardo-Molina, J. L.; Alcalá Ochoa, N.

    2011-08-01

    Optical Coherence Tomography (OCT) is an imaging technique to get cross-sectional images with resolutions of a few microns and deep penetration in tissue of some millimeters. For many years OCT has been applied to analyze different human tissues like eyes, skin, teeth, urinary bladders, gastrointestinal, respiratory or genitourinary tracts and recently breast cancer tissues have been studied. Many of these tissues are composed specially of lipids and collagen, proteins which cause multiple light scattering (MLS) reducing significantly the optical depth and the contrast of OCT imaging. So, one of the big challenges of this technique is to acquire images with good contrast. Gold nanoparticles (NPs) exhibit interesting optical properties due to its plasmon resonance frequency. Optical absorbance is strong when gold NPs have dimension under 50 nm, but over this size optical scattering becomes dominant. In this work we show the preliminary results of the use of gold NPs as a contrast medium to enhance the OCT images quality. Our experimental results show which type of particles (morphology and size) present the best enhancement in the region of 1325 nm which corresponds to the central wavelength source excitation. All our experiments were carried out with a commercial OCT (thorlabs) system and our NPs were tested in water and gel phantoms.

  1. Click Chemistry Immobilization of Antibodies on Polymer Coated Gold Nanoparticles.

    PubMed

    Finetti, Chiara; Sola, Laura; Pezzullo, Margherita; Prosperi, Davide; Colombo, Miriam; Riva, Benedetta; Avvakumova, Svetlana; Morasso, Carlo; Picciolini, Silvia; Chiari, Marcella

    2016-07-26

    The goal of this work is to develop an innovative approach for the coating of gold nanoparticles (AuNPs) with a synthetic functional copolymer. This stable coating with a thickness of few nanometers provides, at the same time, stabilization and functionalization of the particles. The polymeric coating consists of a backbone of polydimethylacrylamide (DMA) functionalized with an alkyne monomer that allows the binding of azido modified molecules by Cu(I)-catalyzed azide/alkyne 1,3-dipolar cycloaddition (CuAAC, click chemistry). The thin polymer layer on the surface stabilizes the colloidal suspension whereas the alkyne functions pending from the backbone are available for the reaction with azido-modified proteins. The reactivity of the coating is demonstrated by immobilizing an azido modified anti-mouse IgG antibody on the particle surface. This approach for the covalent binding of antibody to a gold-NPs is applied to the development of gold labels in biosensing techniques. PMID:27367748

  2. Peptide-modified gold nanoparticles for improved cancer therapeutics

    NASA Astrophysics Data System (ADS)

    Yang, Celina; Prooijen, Monique V.; Chithrani, Devika B.

    2014-03-01

    The field of nanotechnology is currently undergoing explosive development on many fronts. The technology is expected to generate innovations and play a critical role in cancer therapeutics. Among other nanoparticle (NP) systems, there has been tremendous progress made in the use of spherical gold NPs (GNPs) in cancer therapeutics. In treating cancer, radiation therapy and chemotherapy remain the most widely used treatment options. These nanostructures further provide strategies for improving loading, targeting, and controlling the release of drugs to minimize the side effects of highly toxic anticancer drugs used in chemotherapy. Our recent results show enhancement of cell death during radiation therapy when GNPs are targeted to nucleus. In addition, we have seen enhanced therapeutic effects when GNPs are used as anticancer drug carriers. Hence, gold nanostructures provide a versatile platform to integrate many therapeutic options leading to effective combinational therapy in the fight against cancer. A multifunctional platform based on gold nanostructures with targeting ligands, therapeutic molecules, and imaging contrast agents will hold the possibility of promising directions in cancer research.

  3. Gold nanoparticle formation in diamond-like carbon using two different methods: Gold ion implantation and co-deposition of gold and carbon

    SciTech Connect

    Salvadori, M. C.; Teixeira, F. S.; Araujo, W. W. R.; Sgubin, L. G.; Cattani, M.; Spirin, R. E.; Brown, I. G.

    2012-10-01

    We describe work in which gold nanoparticles were formed in diamond-like carbon (DLC), thereby generating a Au-DLC nanocomposite. A high-quality, hydrogen-free DLC thin film was formed by filtered vacuum arc plasma deposition, into which gold nanoparticles were introduced using two different methods. The first method was gold ion implantation into the DLC film at a number of decreasing ion energies, distributing the gold over a controllable depth range within the DLC. The second method was co-deposition of gold and carbon, using two separate vacuum arc plasma guns with suitably interleaved repetitive pulsing. Transmission electron microscope images show that the size of the gold nanoparticles obtained by ion implantation is 3-5 nm. For the Au-DLC composite obtained by co-deposition, there were two different nanoparticle sizes, most about 2 nm with some 6-7 nm. Raman spectroscopy indicates that the implanted sample contains a smaller fraction of sp{sup 3} bonding for the DLC, demonstrating that some sp{sup 3} bonds are destroyed by the gold implantation.

  4. Oligonucleoside assisted one pot synthesis and self-assembly of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Nimrodh Ananth, A.; Ghosh, Goutam; Umapathy, S.; Jothi Rajan, M. A.

    2013-12-01

    Gold nanoparticles (AuNPs) were synthesized using two different mono-deoxynucleosides, namely, deoxycytidine (dC) and deoxyadenosine (dA) and the size of the nanoparticles in aqueous dispersions was measured to be approximately 10 and 23 nm, respectively. It was also observed that the AuNPs, synthesized using deoxycytidine (dC), self-assembled to a stable cauliflower-type structure of size approximately 230 nm over a long period of ageing, during which the solution colour was seen continuously changing from pale yellow to deep green. The self-assembly of dC-Au nanoparticles (dC-AuNPs) with time was investigated using UV-visible spectroscopy and dynamic light scattering (DLS) techniques. We have also observed that the self-assembly of dC-AuNPs was dependent on the solution pH; i.e. the aggregates could be dissociated and re-associated upon varying the solution pH which we assumed to be due to breaking and forming of hydrogen bonds between --OH and ==O groups of dC among the neighbouring dC-AuNPs. In contrast, AuNPs synthesized using deoxyadenosine (dA-AuNPs) were quite stable in aqueous medium.

  5. Potential therapeutic application of gold nanoparticles in B-chronic lymphocytic leukemia (BCLL): enhancing apoptosis

    PubMed Central

    Mukherjee, Priyabrata; Bhattacharya, Resham; Bone, Nancy; Lee, Yean K; Patra, Chitta Ranjan; Wang, Shanfeng; Lu, Lichun; Secreto, Charla; Banerjee, Pataki C; Yaszemski, Michael J; Kay, Neil E; Mukhopadhyay, Debabrata

    2007-01-01

    B-Chronic Lymphocytic Leukemia (CLL) is an incurable disease predominantly characterized by apoptosis resistance. We have previously described a VEGF signaling pathway that generates apoptosis resistance in CLL B cells. We found induction of significantly more apoptosis in CLL B cells by co-culture with an anti-VEGF antibody. To increase the efficacy of these agents in CLL therapy we have focused on the use of gold nanoparticles (GNP). Gold nanoparticles were chosen based on their biocompatibility, very high surface area, ease of characterization and surface functionalization. We attached VEGF antibody (AbVF) to the gold nanoparticles and determined their ability to kill CLL B cells. Gold nanoparticles and their nanoconjugates were characterized using UV-Visible spectroscopy (UV-Vis), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). All the patient samples studied (N = 7) responded to the gold-AbVF treatment with a dose dependent apoptosis of CLL B cells. The induction of apoptosis with gold-AbVF was significantly higher than the CLL cells exposed to only AbVF or GNP. The gold-AbVF treated cells showed significant down regulation of anti-apoptotic proteins and exhibited PARP cleavage. Gold-AbVF treated and GNP treated cells showed internalization of the nanoparticles in early and late endosomes and in multivesicular bodies. Non-coated gold nanoparticles alone were able to induce some levels of apoptosis in CLL B cells. This paper opens up new opportunities in the treatment of CLL-B using gold nanoparticles and integrates nanoscience with therapy in CLL. In future, potential opportunities exist to harness the optoelectronic properties of gold nanoparticles in the treatment of CLL. PMID:17488514

  6. Photoinduced charge separation reactions of J-aggregates coated on silver nanoparticles.

    SciTech Connect

    Hranisavljevic, J.; Dimitrijevic, N. M.; Wurtz, G. A.; Wiederrecht, G. P.; Chemistry

    2002-05-01

    The photochemistry of cyanine J-aggregates on the surface of colloidal Ag nanoparticles is reported. The photochemistry is initiated through ultrafast photoexcitation of the plasmon band in Ag nanoparticles, producing an enhanced near-field that interacts with the J-aggregate monolayer. Through transient absorption spectroscopy, we show that photoexcitation of the plasmon in Ag nanoparticles leads to exciton dynamics that differ strongly from J-aggregates alone or for J-aggregate monolayers on bulk metal surfaces. Specifically, charge-separated states with a lifetime of 300 ps between the J-aggregate and Ag colloid are formed. The reduction of the Ag nanoparticles is shown to be a multielectron process.

  7. Predicting the thermodynamic properties of gold nanoparticles using different force fields

    NASA Astrophysics Data System (ADS)

    Park, Yongjin

    The objective of this research was to learn how to predict the thermodynamic properties of gold nanoparticles using computational tools. The lowest energy structures of gold nanoparticles of various sizes were determined and thermodynamic properties such as the free energy (F), internal energy (U), entropy (S), and specific heat (Cv) of the gold nanoparticles were investigated using a fully-atomistic Monte Carlo simulation method that utilizes a modified Wang-Landau algorithm. Eight well-known force fields for metallic systems were employed to model gold nanoparticles: the Lennard-Jones potential (LJ), the Lennard-Jones potential with Heinz's parameterization (LJH), the Gupta potential, the Sutton-Chen potential (SC), the Sutton-Chen potential with Pawluk's parameterization for small clusters (SCP), the Quantum Sutton-Chen potential (Q-SC), the Embedded Atom Method (EAM) by Cai and Ye, and the empirical potential for gold proposed by Olivier and coworkers (POT). Subsequently, we explored the accuracy of each force field in the description of the thermodynamic behavior of gold nanoparticles. The thermodynamic properties of gold nanoparticles were computed from the Density of States which was obtained as a result of the Monte Carlo simulation. Afterwards, the melting point of gold nanoparticles was determined from the behavior of the calculated thermodynamic properties and was compared with theory, experimental observations and other simulation results. The force fields employed predicted melting points of gold nanoparticles over a wide range of temperatures. A thorough comparison with the available experimental observations showed that the Quantum Sutton-Chen potential (Q-SC) correctly described the melting behavior of gold nanoparticles with sizes smaller than 1.3 nanometers.

  8. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate.

    PubMed

    Ngo, Ying Hui; Li, Dan; Simon, George P; Garnier, Gil

    2012-06-12

    This work investigates the effect of gold nanoparticle (AuNP) addition to paper substrate and examines the ability of these composite materials to amplify the surface enhanced Raman scattering (SERS) signal of a dye adsorbed. Paper has a three-dimensional (3D), porous, and heterogeneous morphology. The manner in which paper adsorbs the nanoparticles is crucial to its SERS properties, particularly with regards to aggregation. In this work, we sought to maintain the same degree of aggregation, while changing the concentration of nanoparticles deposited on paper. We achieved this by dipping paper into AuNP solutions of different, known concentration and found that the initial packing density of AuNPs in solutions was retained on paper with the same degree of aggregation. The surface coverage of AuNPs on paper was found to scale linearly to their concentration profile in solutions. The SERS performances of the AuNP-treated papers were evaluated with 4-aminothiophenol (4-ATP) as the Raman molecule, and their SERS intensities increased linearly with the AuNPs' concentration. Compared to AuNP-treated silicon, the Raman enhancement factor (EF) from paper was relatively higher due to a more uniform and greater degree of adsorption of AuNPs. The effect of the spatial distribution of AuNPs in their substrates on SERS activity was also investigated. In this experiment, the number of AuNPs was kept constant (a 1 μL droplet of AuNPs was deposited on all substrates), and the distribution profile of AuNPs was controlled by the nature of the substrate: paper, silicon, and hydrophobized paper. The AuNP droplet on paper showed the most reproducible and sensitive SERS signal. This highlighted the role of the z-distribution (through film) of AuNPs within the bulk of the paper, producing a 3D multilayer structure to allow inter- and intralayer plasmon coupling, and hence amplifying the SERS signal. The SERS performance of nanoparticle-functionalized paper can thus be optimized by

  9. Ultrasmall gold nanoparticles anchored to graphene and enhanced photothermal effects by laser irradiation of gold nanostructures in graphene oxide