Science.gov

Sample records for aggregated suspension cultures

  1. Characterization of Aggregate Size in Taxus Suspension Cell Culture

    PubMed Central

    Kolewe, Martin E.; Henson, Michael A.; Roberts, Susan C.

    2015-01-01

    Plant cells grow as aggregates in suspension culture, but little is known about the dynamics of aggregation, and no routine methodology exists to measure aggregate size. In this study, we evaluate several different methods to characterize aggregate size in Taxus suspension cultures, in which aggregate diameters range from 50 μm to 2000 μm, including filtration and image analysis, and develop a novel method using a specially equipped Coulter counter system. We demonstrate the suitability of this technology to measure plant cell culture aggregates, and show that it can be reliably used to measure total biomass accumulation compared to standard methods such as dry weight. Furthermore, we demonstrate that all three methods can be used to measure an aggregate size distribution, but that the Coulter counter is more reliable and much faster, and also provides far better resolution. While absolute measurements of aggregate size differ based on the three evaluation techniques, we show that linear correlations are sufficient to account for these differences (R2 > 0.99). We then demonstrate the utility of the novel Coulter counter methodology by monitoring the dynamics of a batch process and find that the mean aggregate size increases by 55% during the exponential growth phase, but decreases during stationary phase. The results indicate that the Coulter counter method can be routinely used for advanced process characterization, particularly to study the relationship between aggregate size and secondary metabolite production, as well as a source of reliable experimental data for modeling aggregation dynamics in plant cell culture. PMID:20217417

  2. Expansion of undifferentiated murine embryonic stem cells as aggregates in suspension culture bioreactors.

    PubMed

    Cormier, Jaymi T; zur Nieden, Nicole I; Rancourt, Derrick E; Kallos, Michael S

    2006-11-01

    Pluripotent embryonic stem cells (ESCs) have recently been considered as a primary material for regenerating tissues lost to injuries and degenerative diseases. For clinical implementation of this technology, a quality controlled, reproducible culture system is necessary for the expansion and differentiation of the cells. Used in many bioprocess applications, suspension bioreactors have gained considerable attention for the regulated large-scale expansion of cells. The current study presents a bioreactor process for the large-scale expansion of undifferentiated murine ESCs as aggregates. In this system, the level of ESC aggregation and differentiation was effectively controlled by adjusting shear forces and inoculation density, achieving a 31-fold expansion in 5 days. Pluripotency markers Oct-4, Nanog, SSEA-1, ALP, and rex-1 were assessed using flow cytometry analysis and gene expression profiles and showed that the undifferentiated nature of the cells within the ESC aggregates was maintained. Colony-forming efficiencies and embryoid body formation tests of the expanded cultures demonstrated that characteristic functional attributes of undifferentiated cells were not lost. Overcoming a major impediment in the area of ESC expansion, this study describes a successful process for the controlled and reproducible largescale expansion of ESCs using suspension culture bioreactors.

  3. Cellular aggregate size as the critical factor for flavonoid production by suspension cultures of Saussurea medusa.

    PubMed

    Fu, Chun-xiang; Zhao, De-xiu; Huang, Yan; Ma, Feng-shan

    2005-01-01

    Three previously established cell lines (yellow, red and white) of Saussurea medusa were investigated for jaceosidin and hispidulin production. Maximum yields of the jaceosidin and hispidulin were obtained in the red cell line at 75+/-0.41 and 6.4+/-0.31 mg l-1. Production of jaceosidin and hispidulin correlated with the sizes of compact callus aggregates (CCA) and cellular viability. In the red cell line, the sizes of CCA were predominantly of 2-4 mm diameter and accounted for 64% biomass. This line had a sustained cell viability over 10 successive sub-cultures.

  4. Serum replacement with albumin-associated lipids prevents excess aggregation and enhances growth of induced pluripotent stem cells in suspension culture.

    PubMed

    Horiguchi, Ikki; Sakai, Yasuyuki

    2016-07-08

    Suspension culture systems are currently under investigation for the mass production of pluripotent stem (PS) cells for tissue engineering; however, the control of cell aggregation in suspension culture remains challenging. Existing methods to control aggregation such as microwell culture are difficult to scale up. To address this issue, in this study a novel method that incorporates the addition of KnockOut Serum Replacement (KSR) to the PS cell culture medium was described. The method regulated cellular aggregation and significantly improved cell growth (a 2- to 10-fold increase) without any influence on pluripotency. In addition, albumin-associated lipids as the major working ingredient of KSR responsible for this inhibition of aggregation were identified. This is one of the simplest methods described to date to control aggregation and requires only chemically synthesizable reagents. Thus, this method has the potential to simplify the mass production process of PS cells and thus lower their cost. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1009-1016, 2016.

  5. Scaling up a chemically-defined aggregate-based suspension culture system for neural commitment of human pluripotent stem cells.

    PubMed

    Miranda, Cláudia C; Fernandes, Tiago G; Diogo, M Margarida; Cabral, Joaquim M S

    2016-12-01

    The demand of high cell numbers for applications in cellular therapies and drug screening requires the development of scalable platforms capable to generating highly pure populations of tissue-specific cells from human pluripotent stem cells. In this work, we describe the scaling-up of an aggregate-based culture system for neural induction of human induced pluripotent stem cells (hiPSCs) under chemically-defined conditions. A combination of non-enzymatic dissociation and rotary agitation was successfully used to produce homogeneous populations of hiPSC aggregates with an optimal (140 μm) and narrow distribution of diameters (coefficient of variation of 21.6%). Scalable neural commitment of hiPSCs as 3D aggregates was performed in 50 mL spinner flasks, and the process was optimized using a factorial design approach, involving parameters such as agitation rate and seeding density. We were able to produce neural progenitor cell cultures, that at the end of a 6-day neural induction process contained less than 3% of Oct4-positive cells and that, after replating, retained more than 60% of Pax6-positive neural cells. The results here presented should set the stage for the future generation of a clinically relevant number of human neural progenitors for transplantation and other biomedical applications using controlled, automated and reproducible large-scale bioreactor culture systems.

  6. Optimized suspension culture: the rotating-wall vessel

    NASA Technical Reports Server (NTRS)

    Hammond, T. G.; Hammond, J. M.

    2001-01-01

    Suspension culture remains a popular modality, which manipulates mechanical culture conditions to maintain the specialized features of cultured cells. The rotating-wall vessel is a suspension culture vessel optimized to produce laminar flow and minimize the mechanical stresses on cell aggregates in culture. This review summarizes the engineering principles, which allow optimal suspension culture conditions to be established, and the boundary conditions, which limit this process. We suggest that to minimize mechanical damage and optimize differentiation of cultured cells, suspension culture should be performed in a solid-body rotation Couette-flow, zero-headspace culture vessel such as the rotating-wall vessel. This provides fluid dynamic operating principles characterized by 1) solid body rotation about a horizontal axis, characterized by colocalization of cells and aggregates of different sedimentation rates, optimally reduced fluid shear and turbulence, and three-dimensional spatial freedom; and 2) oxygenation by diffusion. Optimization of suspension culture is achieved by applying three tradeoffs. First, terminal velocity should be minimized by choosing microcarrier beads and culture media as close in density as possible. Next, rotation in the rotating-wall vessel induces both Coriolis and centrifugal forces, directly dependent on terminal velocity and minimized as terminal velocity is minimized. Last, mass transport of nutrients to a cell in suspension culture depends on both terminal velocity and diffusion of nutrients. In the transduction of mechanical culture conditions into cellular effects, several lines of evidence support a role for multiple molecular mechanisms. These include effects of shear stress, changes in cell cycle and cell death pathways, and upstream regulation of secondary messengers such as protein kinase C. The discipline of suspension culture needs a systematic analysis of the relationship between mechanical culture conditions and

  7. Irreversible shear-activated aggregation in non-Brownian suspensions.

    PubMed

    Guery, J; Bertrand, E; Rouzeau, C; Levitz, P; Weitz, D A; Bibette, J

    2006-05-19

    We have studied the effect of shear on the stability of suspensions made of non-Brownian solid particles. We demonstrate the existence of an irreversible transition where the solid particles aggregate at remarkably low volume fractions (phi approximately 0.1). This shear-induced aggregation is dramatic and exhibits a very sudden change in the viscosity, which increases sharply after a shear-dependent induction time. We show that this induction time is related exponentially to the shear rate, reflecting the importance of the hydrodynamic forces in reducing the repulsive energy barrier that prevents the particles from aggregating.

  8. Effect of dispersant on asphaltene suspension dynamics: aggregation and sedimentation.

    PubMed

    Hashmi, Sara M; Firoozabadi, Abbas

    2010-12-09

    When oil is mixed with light alkanes, asphaltenes can precipitate out of oil solutions in a multistep process that involves the formation of nano and colloidal scale particles, the aggregation of asphaltene colloids, and their eventual sedimentation. Amphiphilic dispersants can greatly affect this process. The mechanism of the dispersant action in colloidal asphaltene suspensions in heptane has been shown through previous work to be due in part to a reduction in the size of the colloidal asphaltene particles with the addition of dispersant. However, previous studies of the sedimentation behavior revealed evidence of aggregation processes in the colloidal asphaltenes in heptane that has yet to be investigated fully. We investigate the effect of dispersants on this aggregation behavior through the use of dynamic light scattering, showing that both the amount of dispersant and the amount of heptane dilution can slow the onset of aggregation in colloidal asphaltene suspensions. An effective dispersant acts by suppressing colloidal aggregation in asphaltene suspensions, as shown by light scattering, and therefore also slows separation from the bulk, as revealed through macroscopic sedimentation experiments.

  9. Heparin promotes suspension adaptation process of CHO-TS28 cells by eliminating cell aggregation.

    PubMed

    Li, Ling; Qin, Jun; Feng, Qiang; Tang, Hao; Liu, Rong; Xu, Liqing; Chen, Zhinan

    2011-01-01

    While heparin has been shown to eliminate cell aggregation in suspension adaptations of insect and HEK293 cells for virus-based cell cultures, the role of heparin in long period serum-free suspension adaptation of the anchorage-dependent Chinese hamster ovary (CHO) cell lines remains inconclusive. In this paper, we explore the potential application of heparin in suspension adaptation of CHO cell line which produces an anti-human chimeric antibody cHAb18. Heparin showed a concentration-dependent inhibition of CHO-TS28 cell-to-cell adhesion, with a significant inhibitory effect occurring when the concentration exceeded 250 μg/ml (P < 0.001). Heparin also exhibited a cell aggregation elimination role at all concentrations (P < 0.001). Furthermore, heparin promoted cell growth and antibody secretion, with the highest cell density ((99.83 ± 12.21) × 10(4) cells/ml, P = 0.034) and maximum antibody yield ((9.46 ± 0.94) mg/l, P < 0.001) both occurring at 250 μg/ml heparin. When agitated, cell aggregates were effectively dispersed by 250 μg/ml heparin and a single-cell suspension culture process was promoted. In suspension adapted CHO-TS28 cells, cell growth rates and specific antibody productivity were maintained; while antigen-binding activity improved slightly. Together, our results show that heparin may promote suspension adaptation of anchorage-depended CHO cells by resisting cell aggregation without reducing cell growth, antibody secretion, and antigen-binding activity.

  10. Bioprocess development for mass production of size-controlled human pluripotent stem cell aggregates in stirred suspension bioreactor.

    PubMed

    Abbasalizadeh, Saeed; Larijani, Mehran Rezaei; Samadian, Azam; Baharvand, Hossein

    2012-11-01

    Current protocols for the scalable suspension culture of human pluripotent stem cells (hPSCs) are limited by multiple biological and technical challenges that need to be addressed before their use in clinical trials. To overcome these challenges, we have developed a novel bioprocess platform for large-scale expansion of human embryonic and induced pluripotent stem cell lines as three-dimensional size-controlled aggregates. This novel bioprocess utilizes the stepwise optimization of both static and dynamic suspension culture conditions. After screening eight xeno-free media in static suspension culture and optimizing single-cell passaging in dynamic conditions, the scale-up from a static to a dynamic suspension culture in the stirred bioreactor resulted in a two- to threefold improvement in expansion rates, as measured by cell counts and metabolic activity. We successfully produced size-specific aggregates through optimization of bioreactor hydrodynamic conditions by using combinations of different agitation rates and shear protectant concentrations. The expansion rates were further improved by controlling oxygen concentration at normoxic conditions, and reached a maximum eightfold increase for both types of hPSCs. Subsequently, we demonstrated a simple and rapid scale-up strategy that produced clinically relevant numbers of hPSCs (∼2×10(9) cells) over a 1-month period by the direct transfer of "suspension-adapted frozen cells" to a stirred suspension bioreactor. We omitted the required preadaptation passages in the static suspension culture. The cells underwent proliferation over multiple passages in the demonstrated xeno-free dynamic suspension culture while maintaining their self-renewal capabilities, as determined by marker expressions and in vitro spontaneous differentiation. In conclusion, suspension culture protocols of hPSCs could be used to mass produce homogenous and pluripotent undifferentiated cells by identification and optimization of key bioprocess

  11. Particle interactions in kaolinite suspensions and corresponding aggregate structures.

    PubMed

    Gupta, Vishal; Hampton, Marc A; Stokes, Jason R; Nguyen, Anh V; Miller, Jan D

    2011-07-01

    The surface charge densities of the silica face surface and the alumina face surface of kaolinite particles, recently determined from surface force measurements using atomic force microscopy, show a distinct dependence on the pH of the system. The silica face was found to be negatively charged at pH>4, whereas the alumina face surface was found to be positively charged at pH<6, and negatively charged at pH>8. The surface charge densities of the silica face and the alumina face were utilized in this study to determine the interaction energies between different surfaces of kaolinite particles. Results indicate that the silica face-alumina face interaction is dominant for kaolinite particle aggregation at low pH. This face-face association increases the stacking of kaolinite layers, and thereby promotes the edge-face (edge-silica face and edge-alumina face) and face-face (silica face-alumina face) associations with increasing pH, and hence the maximum shear-yield stress at pH 5-5.5. With further increase in pH, the face-face and edge-face association decreases due to increasing surface charge density on the silica face and the edge surfaces, and decreasing surface charge density on the alumina face. At high pH, all kaolinite surfaces become negatively charged, kaolinite particles are dispersed, and the suspension is stabilized. The face-face association at low pH has been confirmed from cryo-SEM images of kaolinite aggregates taken from suspension which show that the particles are mostly organized in a face-face and edge-face manner. At higher pH conditions, the cryo-SEM images of the kaolinite aggregates reveal a lower degree of consolidation and the edge-edge association is evident.

  12. Effects of Hydrostatic Loading on a Self-Aggregating, Suspension Culture–Derived Cartilage Tissue Analog

    PubMed Central

    Kraft, Jeffrey J.; Jeong, Changhoon; Novotny, John E.; Seacrist, Thomas; Chan, Gilbert; Domzalski, Marcin; Turka, Christina M.; Richardson, Dean W.; Dodge, George R.

    2011-01-01

    Objective: Many approaches are being taken to generate cartilage replacement materials. The goal of this study was to use a self-aggregating suspension culture model of chondrocytes with mechanical preconditioning. Design: Our model differs from others in that it is based on a scaffold-less, self-aggregating culture model that produces a cartilage tissue analog that has been shown to share many similarities with the natural cartilage phenotype. Owing to the known loaded environment under which chondrocytes function in vivo, we hypothesized that applying force to the suspension culture–derived chondrocyte biomass would improve its cartilage-like characteristics and provide a new model for engineering cartilage tissue analogs. Results: In this study, we used a specialized hydrostatic pressure bioreactor system to apply mechanical forces during the growth phase to improve biochemical and biophysical properties of the biomaterial formed. We demonstrated that using this high-density suspension culture, a biomaterial more consistent with the hyaline cartilage phenotype was produced without any foreign material added. Unpassaged chondrocytes responded to a physiologically relevant hydrostatic load by significantly increasing gene expression of critical cartilage molecule collagen and aggrecan along with other cartilage relevant genes, CD44, perlecan, decorin, COMP, and iNOS. Conclusions: This study describes a self-aggregating bioreactor model without foreign material or scaffold in which chondrocytes form a cartilage tissue analog with many features similar to native cartilage. This study represents a promising scaffold-less, methodological advancement in cartilage tissue engineering with potential translational applications to cartilage repair. PMID:26069584

  13. Multiscale modeling of the thixotropic behavior of aggregating soft colloidal particle suspensions

    NASA Astrophysics Data System (ADS)

    Mwasame, Paul; Wagner, Norman; Beris, Antony

    A multiscale model is presented that incorporates microscopic information at the soft, aggregating, colloidal particle level to a macroscopic description of a thixotropic suspension with a yield stress. This is accomplished by incorporating the relevant physics describing aggregation and breakage at the particle level into a population balance microscopic framework. A moment approach is followed to allow for model coarsening and its incorporation into a macroscopic description. Furthermore, to describe the aggregate dynamics under flow, it is necessary to include an additional description of the aggregate deformation. The yielding behavior of gel networks observed in thixotropic suspensions is modeled by adapting micromechanical models of emulsions and pastes to describe aggregate deformation under flow. A key outcome of this work is the recognition of the important role of competition between orthokinetic and perikinetic aggregation on polydispersity and dynamical behavior. Comparison to rheological experiments on a model thixotropic suspension will also be presented to validate the model developed. NSF CBET 312146.

  14. [Effect of homogeneity on cell growth and anthocyanin biosynthesis in suspension cultures of Vitis vinifera].

    PubMed

    Qu, Jun-Ge; Zhang, Wei; Jin, Mei-Fang; Yu, Xing-Ju

    2006-09-01

    The instability of secondary metabolite production is a ubiquitous problem in plant cell culture. To understand the instability, the investigation of anthocyanin accumulation in suspension cultures of Vitis vinifera, as a model system, has been initiated in our laboratory. Suspension culture of a relatively homogeneous cell line E of V. vinifera, was established by long-term cell line selection by anthocyanin content differentiation. The aggregate size of E was smaller than that of other cell lines obtained by routine screening method. The variation coefficients of anthocyanin content in suspension cultures of E were 8.7% in long-term subcultures and 5% in repeated flasks, respectively. The effects of elicitor, precursor feeding and light irridiation on biomass and anthocyanin accumulation in suspension cultures of E had been investigated and the results showed that all the variation coefficients were lower than 12% and this indicated the importance of homogeneity on stable production in plant cell culture. With the combination treatment of 30micromol/L phenylalanine and 218micromol/L methyl jasmonate in the dark in suspension cultures of E, the anthocyanin content and production in suspension culture of E was 5.89-fold and 4.30-fold of the controls, respectively, and all the variation coefficients of biomass and anthocyanin accumulation were lower than those of the controls in 5 successive subcultures.

  15. Aggregation kinetics of carbonyl iron based magnetic suspensions in 2D.

    PubMed

    Shahrivar, Keshvad; Carreón-González, Elizabeth; Morillas, Jose R; de Vicente, Juan

    2017-04-05

    We investigate the (irreversible) two-dimensional aggregation kinetics of dilute non-Brownian magnetic suspensions in rectangular microchannels using video-microscopy, image analysis and particle-level dynamics simulations. Special emphasis is given to carbonyl iron suspensions that are of interest in the formulation of magnetorheological fluids. The results are compared to non-Brownian suspensions of magnetic latexes. We demonstrate that both suspensions follow a deterministic aggregation process. Furthermore, experimental and simulation aggregation curves can be collapsed onto a master curve when using the appropriate scaling time (∝λ(-1)ϕ2D(-2.5)) as a function of only two dimensionless numbers: the lambda ratio (λ) and the particle surface fraction (ϕ2D).

  16. Aggregation of stabilized TiO2 nanoparticle suspensions in the presence of inorganic ions.

    PubMed

    Shih, Yang-Hsin; Liu, Wei-Szu; Su, Yuh-Fan

    2012-08-01

    The present study aims to evaluate the effect of inorganic ions on the aggregation kinetics of stabilized titanium dioxide (TiO(2) ) nanoparticle (NP) suspension, an NP mode widely used in consumer goods and in aquatic environments. The point of zero charge of stabilized TiO(2) NPs was approximately pH 6.5. The particle size of the stabilized TiO(2) NP suspensions increased with the increase in salt concentrations. The additional salts caused the shift of zeta potentials of TiO(2) suspensions to a lower value. The TiO(2) NPs aggregated more obviously in the presence of anions than cations, and the effect of divalent anions was larger than that of monovalent anions. The critical coagulation concentration (CCC) values for commercial TiO(2) NP suspensions with positive surfaces were estimated as 290 and 2.3 meq/L for Cl(-) and SO 42-, respectively. These CCC values of stabilized TiO(2) NP suspensions are higher than those of TiO(2) NP powders, indicating greater stability of the commercial stabilized TiO(2) NP suspensions. The effects of commercial TiO(2) NP suspensions still need to be explored and defined. Derjaguin-Landau-Verwey-Overbeek (DLVO) analysis can explain the aggregation behaviors of stabilized TiO(2) NP suspensions. Such an understanding can facilitate the prediction of NP fate in the environment.

  17. Derivation, expansion and differentiation of induced pluripotent stem cells in continuous suspension cultures

    PubMed Central

    Fluri, David A.; Tonge, Peter D.; Song, Hannah; Baptista, Ricardo P.; Shakiba, Nika; Shukla, Shreya; Clarke, Geoffrey; Nagy, Andras; Zandstra, Peter W.

    2016-01-01

    We demonstrate derivation of induced pluripotent stem cells (iPSCs) from terminally differentiated mouse cells in serum- and feeder-free stirred suspension cultures. Temporal analysis of global gene expression revealed high correlations between cells reprogrammed in suspension and cells reprogrammed in adhesion-dependent conditions. Suspension (S) reprogrammed iPSCs (SiPSCs) could be differentiated into all three germ layers in vitro and contributed to chimeric embryos in vivo. SiPSC generation allowed for efficient selection of reprogramming factor expressing cells based on their differential survival and proliferation in suspension. Seamless integration of SiPSC reprogramming and directed differentiation enabled the scalable production of functionally and phenotypically defined cardiac cells in a continuous single cell- and small aggregate-based process. This method is an important step towards the development of a robust PSC generation, expansion and differentiation technology. PMID:22447133

  18. Callus and suspension culture induction, maintenance, and characterization.

    PubMed

    Robledo-Paz, Alejandrina; Vázquez-Sánchez, María Nélida; Adame-Alvarez, Rosa María; Jofre-Garfias, Alba Estela

    2006-01-01

    Callus and cell suspension can be used for long-term cell cultures maintenance. This chapter describes procedures for the induction of somatic embryos of garlic, keeping a regeneration capacity for more than 5 yr, as well as the maintenance of a tobacco suspension culture (NT-1 cells), for more than 10 yr. Methods for plant regeneration and growth kinetics of garlic cultures are described, as well as for cell viability of NT-1 cells stained with 2,3,5 triphenyltetrazolium chloride. The packed cell volume determination as a parameter of growth is detailed.

  19. The Effect of Underwater Blast on Aggregating Brain Cell Cultures.

    PubMed

    Sawyer, Thomas W; Lee, Julian J; Villanueva, Mercy; Wang, Yushan; Nelson, Peggy; Song, Yanfeng; Fan, Chengyang; Barnes, Julia; McLaws, Lori

    2017-01-15

    Although the deleterious effects of primary blast on gas-filled organs are well accepted, the effect of blast-induced shock waves on the brain is less clear because of factors that complicate the interpretation of clinical and experimental data. Brain cell aggregate cultures are comprised of multiple differentiated brain cell types and were used to examine the effects of underwater blast. Suspensions of these cultures encased in dialysis tubing were exposed to explosive-generated underwater blasts of low (∼300 kPa), medium (∼2,700 kPa), or high (∼14,000 kPa) intensities and harvested at 1-28 days post-exposure. No changes in gross morphology were noted immediately or weeks after blast wave exposure, and no increases in either apoptotic (caspase-3) or necrotic (lactate dehydrogenase) cell death were observed. Changes in neuronal (neurofilament H, acetylcholinesterase, and choline acetyltransferase) and glial (glial fibrillary acidic protein, glutamine synthetase) endpoints did not occur. However, significant time- and pressure-related increases in Akt (protein kinase B) phosphorylation were noted, as well as declines in vascular endothelial growth factor levels, implicating pathways involved in cellular survival mechanisms. The free-floating nature of the aggregates during blast wave exposure, coupled with their highly hydrolyzed dialysis tubing containment, results in minimized boundary effects, thus enabling accurate assessment of brain cell response to a simplified shock-induced stress wave. This work shows that, at its simplest, blast-induced shock waves produce subtle changes in brain tissue. This study has mechanistic implications for the study of primary blast-induced traumatic brain injury and supports the thesis that underwater blast may cause subtle changes in the brains of submerged individuals.

  20. Interfacial aggregation of a nonionic surfactant: Effect on the stability of silica suspensions

    SciTech Connect

    Giordano-Palmino, F.; Denoyel, R.; Rouquerol, J. . Centre de thermodynamique et Microcalorimetrie)

    1994-06-01

    Nonionic surfactants are in widespread use in technological applications such as flotation, detergency, suspension stabilization (paints, ceramic preparation, pharmaceuticals, cosmetics), and enhanced oil recovery. The adsorption of the nonionic surfactant TX 100 in two silica suspensions (Ludox HS40 and Syton W30) has been studied with the aim of relating the structure of the adsorbed layer to the stability of the suspension. First, a thermodynamic study based on the determination of adsorption isotherms and displacement enthalpies as a function of pH and solid/liquid ratio was carried out and lead to the conclusion that such a surfactant forms micelle-like aggregates on the silica surface. Then, a stability study based on visual observation, turbidimetry, and particle size determination (by photon correlation spectroscopy) was performed in order to determine the TX 100 concentration range in which flocculation occurs. Considering that the surface is covered with micelle-like aggregates in the flocculation range and that the [zeta]-potential (determined by microelectrophoresis) has varied only slightly at the onset of flocculation, it is concluded that the flocculation mechanism is a bridging of particles by surface micelles. This bridging of particles by aggregates similar in size and shape could be an explanation of the presence, in such systems, of optimum flocculation at half surface coverage.

  1. SUSPENSION CULTURE AND PLANT REGENERATION OF TYPHA LATIFOLIA

    EPA Science Inventory

    This study is the first reported attempt to generate a growth curve from Typha latifolia L. (broadleaf cattail) callus cells in suspension culture. Several media and hormone combinations were tested for their capacity to induce callus cell formation from T. latifolia leaf section...

  2. Production of recombinant proteins in suspension-cultured plant cells.

    PubMed

    Plasson, Carole; Michel, Rémy; Lienard, David; Saint-Jore-Dupas, Claude; Sourrouille, Christophe; de March, Ghislaine Grenier; Gomord, Véronique

    2009-01-01

    Plants have emerged in the past decade as a suitable alternative to the current production systems for recombinant pharmaceutical proteins and, today their potential for low-cost production of high quality, much safer and biologically active mammalian proteins is largely documented. Among various plant expression systems being explored, genetically modified suspension-cultured plant cells offer a promising system for production of biopharmaceuticals. Indeed, when compared to other plant-based production platforms that have been explored, suspension-cultured plant cells have the advantage of being totally devoid of problems associated with the vagaries of weather, pest, soil and gene flow in the environment. Because of short growth cycles, the timescale needed for the production of recombinant proteins in plant cell culture can be counted in days or weeks after transformation compared to months needed for the production in transgenic plants. Moreover, recovery and purification of recombinant proteins from plant biomass is an expensive and technically challenging business that may amount to 80-94% of the final product cost. One additional advantage of plant cell culture is that the recombinant protein fused with a signal sequence can be expressed and secreted into the culture medium, and therefore recovered and purified in the absence of large quantities of contaminating proteins. Consequently, the downstream processing of proteins extracted from plant cell culture medium is less expensive, which may/does balance the higher costs of fermentation. When needed for clinical use, recombinant proteins are easily produced in suspension-cultured plant cells under certified, controllable and sterile conditions that offer improved safety and provide advantages for good manufacturing practices and regulatory compliance. In this chapter, we present basic protocols for rapid generation of transgenic suspension-cultured cells of Nicotiana tabacum, Oriza sativa and Arabidopis

  3. Capsaicin accumulation in Capsicum spp. suspension cultures.

    PubMed

    Ochoa-Alejo, Neftalí

    2006-01-01

    Fruits of chili peppers (Capsicum spp.) specifically synthesize and accumulate a group of analogs known as capsaicinoids in the placenta tissues. These secondary metabolites are responsible for the hot taste of chili pepper fruits. Capsaicinoids are of economic importance because of their use in the food, cosmetic, military, and pharmaceutical industry. Several efforts have been focused to investigate the biosynthetic capacity of in vitro chili pepper cells and tissue cultures in order to determine the production feasibility of these compounds at the industrial level under controlled conditions. A description of techniques for the establishment of in vitro cultures of chili pepper, the addition of precursors and intermediates to the culture medium, and the selection of cell lines as a means to increase the production of capsaicinoids as well as the extraction, separation, and quantification of capsaicinoids from chili pepper cell cultures is reported in this chapter.

  4. Enzymatically degradable poly(ethylene glycol) hydrogels for the 3D culture and release of human embryonic stem cell derived pancreatic precursor cell aggregates.

    PubMed

    Amer, Luke D; Holtzinger, Audrey; Keller, Gordon; Mahoney, Melissa J; Bryant, Stephanie J

    2015-08-01

    This study aimed to develop a three dimensional culture platform for aggregates of human embryonic stem cell (hESC)-derived pancreatic progenitors that enables long-term culture, maintains aggregate size and morphology, does not adversely affect differentiation and provides a means for aggregate recovery. A platform was developed with poly(ethylene glycol) hydrogels containing collagen type I, for cell-matrix interactions, and peptide crosslinkers, for facile recovery of aggregates. The platform was first demonstrated with RIN-m5F cells, showing encapsulation and subsequent release of single cells and aggregates without adversely affecting viability. Aggregates of hESC-derived pancreatic progenitors with an effective diameter of 82 (15)μm were either encapsulated in hydrogels or cultured in suspension for 28 days. At day 14, aggregate viability was maintained in the hydrogels, but significantly reduced (88%) in suspension culture. However by day 28, viability was reduced under both culture conditions. Aggregate size was maintained in the hydrogels, but in suspension was significantly higher (∼ 2-fold) by day 28. The ability to release aggregates followed by a second enzyme treatment to achieve single cells enabled assessment by flow cytometry. Prior to encapsulation, there were 39% Pdx1(+)/Nkx6.1(+) cells, key endocrine markers required for β-cell maturation. The fraction of doubly positive cells was not affected in hydrogels but was slightly and significantly lower in suspension culture by 28 days. In conclusion, we demonstrate that a MMP-sensitive PEG hydrogel containing collagen type I is a promising platform for hESC-derived pancreatic progenitors that maintains viable aggregates, aggregate size, and progenitor state and offers facile recovery of aggregates.

  5. Embryonic stem cells remain highly pluripotent following long term expansion as aggregates in suspension bioreactors.

    PubMed

    zur Nieden, Nicole I; Cormier, Jaymi T; Rancourt, Derrick E; Kallos, Michael S

    2007-05-01

    Increasing attention has been drawn towards pluripotent embryonic stem cells (ESCs) and their potential use as the primary material in various tissue engineering applications. Successful clinical implementation of this technology would require a quality controlled reproducible culture system for the expansion of the cells to be used in the generation of functional tissues. Recently, we showed that suspension bioreactors could be used in the regulated large-scale expansion of highly pluripotent murine ESCs. The current study illustrates that these bioreactor protocols can be adapted for long term culture and that murine ESC cultures remain highly undifferentiated, when serially passaged in suspension bioreactors for extended periods. Flow cytometry analysis and gene expression profiles of several pluripotency markers, in addition to colony and embryoid body (EB) formation tests were conducted at the start and end of the experiment and all showed that the ESC cultures remained highly undifferentiated over extended culture time in suspension. In vivo teratoma formation and in vitro differentiation into neural, cardiomyocyte, osteoblast and chondrocyte lineages, performed at the end of the long term culture, further supported the presence of functional and undifferentiated ESCs in the expanded population. Overall, this system enables the controlled expansion of highly pluripotent murine ESC populations.

  6. Cell line selection combined with jasmonic acid elicitation enhance camptothecin production in cell suspension cultures of Ophiorrhiza mungos L.

    PubMed

    Deepthi, S; Satheeshkumar, K

    2017-01-01

    Ophiorrhiza mungos is a herbaceous medicinal plant which contains a quinoline alkaloid, camptothecin (CPT), an anticancer compound. A high-yielding cell line, O. mungos cell line-3 (OMC3) was selected from cell suspension cultures of O. mungos using cell aggregate cloning method and established cell suspension culture. OMC3 cell suspension produced significantly high biomass (9.25 ± 1.3 g/flask fresh weight (FW)) and CPT yield (0.095 ± 0.002 mg g(-1) dry weight (DW)) compared with the original cell suspension. Inoculum size of OMC3 cell suspension culture was optimised as 14 g L(-1). Media optimisation has shown that 5 % (w/v) sucrose and an increased ammonium/nitrate concentration of 40/20 mM favoured CPT production, whereas 3 % (w/v) sucrose, an ammonium/nitrate concentration of 20/40 mM and 1.25 mM of phosphate favoured biomass accumulation. Jasmonic acid, chitin and salicylic acid was used to elicit CPT production in the original cell suspension culture and achieved significantly high CPT production with jasmonic acid (JA) elicitation. Further, OMC3 cell suspension culture was elicited with JA (50 μM) and obtained 1.12 ± 0.08 mg g(-1) DW CPT and 9.52 ± 1.4 g/flask FW (190.4 g L(-1) FW). The combination of cell line selection and elicitation has produced 18.66-fold increases in CPT production together with significantly high biomass yield. The study is helpful in the scale-up studies of O. mungos cell suspension culture in suitable bioreactor systems for the production of CPT.

  7. Fractal aggregation kinetics contributions to thermal conductivity of nano-suspensions in unsteady thermal convection

    NASA Astrophysics Data System (ADS)

    Sui, Jize; Zhao, Peng; Bin-Mohsin, Bandar; Zheng, Liancun; Zhang, Xinxin; Cheng, Zhengdong; Chen, Ying; Chen, Goong

    2016-12-01

    Nano-suspensions (NS) exhibit unusual thermophysical behaviors once interparticle aggregations and the shear flows are imposed, which occur ubiquitously in applications but remain poorly understood, because existing theories have not paid these attentions but focused mainly on stationary NS. Here we report the critical role of time-dependent fractal aggregation in the unsteady thermal convection of NS systematically. Interestingly, a time ratio λ = tp/tm (tp is the aggregate characteristic time, tm the mean convection time) is introduced to characterize the slow and fast aggregations, which affect distinctly the thermal convection process over time. The increase of fractal dimension reduces both momentum and thermal boundary layers, meanwhile extends the time duration for the full development of thermal convection. We find a nonlinear growth relation of the momentum layer, but a linear one of the thermal layer, with the increase of primary volume fraction of nanoparticles for different fractal dimensions. We present two global fractal scaling formulas to describe these two distinct relations properly, respectively. Our theories and methods in this study provide new evidence for understanding shear-flow and anomalous heat transfer of NS associated non-equilibrium aggregation processes by fractal laws, moreover, applications in modern micro-flow technology in nanodevices.

  8. Fractal aggregation kinetics contributions to thermal conductivity of nano-suspensions in unsteady thermal convection

    PubMed Central

    Sui, Jize; Zhao, Peng; Bin-Mohsin, Bandar; Zheng, Liancun; Zhang, Xinxin; Cheng, Zhengdong; Chen, Ying; Chen, Goong

    2016-01-01

    Nano-suspensions (NS) exhibit unusual thermophysical behaviors once interparticle aggregations and the shear flows are imposed, which occur ubiquitously in applications but remain poorly understood, because existing theories have not paid these attentions but focused mainly on stationary NS. Here we report the critical role of time-dependent fractal aggregation in the unsteady thermal convection of NS systematically. Interestingly, a time ratio λ = tp/tm (tp is the aggregate characteristic time, tm the mean convection time) is introduced to characterize the slow and fast aggregations, which affect distinctly the thermal convection process over time. The increase of fractal dimension reduces both momentum and thermal boundary layers, meanwhile extends the time duration for the full development of thermal convection. We find a nonlinear growth relation of the momentum layer, but a linear one of the thermal layer, with the increase of primary volume fraction of nanoparticles for different fractal dimensions. We present two global fractal scaling formulas to describe these two distinct relations properly, respectively. Our theories and methods in this study provide new evidence for understanding shear-flow and anomalous heat transfer of NS associated non-equilibrium aggregation processes by fractal laws, moreover, applications in modern micro-flow technology in nanodevices. PMID:27995980

  9. Fractal aggregation kinetics contributions to thermal conductivity of nano-suspensions in unsteady thermal convection.

    PubMed

    Sui, Jize; Zhao, Peng; Bin-Mohsin, Bandar; Zheng, Liancun; Zhang, Xinxin; Cheng, Zhengdong; Chen, Ying; Chen, Goong

    2016-12-20

    Nano-suspensions (NS) exhibit unusual thermophysical behaviors once interparticle aggregations and the shear flows are imposed, which occur ubiquitously in applications but remain poorly understood, because existing theories have not paid these attentions but focused mainly on stationary NS. Here we report the critical role of time-dependent fractal aggregation in the unsteady thermal convection of NS systematically. Interestingly, a time ratio λ = tp/tm (tp is the aggregate characteristic time, tm the mean convection time) is introduced to characterize the slow and fast aggregations, which affect distinctly the thermal convection process over time. The increase of fractal dimension reduces both momentum and thermal boundary layers, meanwhile extends the time duration for the full development of thermal convection. We find a nonlinear growth relation of the momentum layer, but a linear one of the thermal layer, with the increase of primary volume fraction of nanoparticles for different fractal dimensions. We present two global fractal scaling formulas to describe these two distinct relations properly, respectively. Our theories and methods in this study provide new evidence for understanding shear-flow and anomalous heat transfer of NS associated non-equilibrium aggregation processes by fractal laws, moreover, applications in modern micro-flow technology in nanodevices.

  10. Somatic embryogenesis in suspension cultures of Gossypium klotzschianum anderss.

    PubMed

    Price, H J; Smith, R H

    1979-01-01

    Somatic embryoids differentiated in suspension cultures of G. klotzschianum after 3-4 weeks of culture in a liquid medium containing glutamine (optimally, 10-15 mM). Embryogenesis occurred after a preculture of callus on a medium containing 10 mg/l of the cytokinin, 2iP. The embryoids had meristematic regions, a well formed epidermis, and formed roots and vestigial leaves. Asparagine was much less effective than glutamine in promoting embryoid differentiation. The presence of 2,4-D in the medium resulted in increased vigor of the suspension cultures and subsequently in the formation of many embryoids, but does not seem to be necessary for somatic embryogenesis in cotton.

  11. Progesterone biotransformation by plant cell suspension cultures.

    PubMed Central

    Yagen, B; Gallili, G E; Mateles, R I

    1978-01-01

    Progesterone was converted to 5alpha-pregnane-3alpha-ol-20-one, delta4-pregnene-20alpha-ol-3-one, delta4-pregnene-14alpha-ol-3,20-dione, delta4-pregnene-7beta,14alpha-diol-3,20-dione, and delta4-pregnene-6beta,11alpha-diol-3,20-dione by cell cultures of Lycopersicon esculentum. Cell cultures of Capsicum frutescens (green) metabolized progesterone to delta4-pregnene-20alpha-ol-3-one in very high yield, and Vinca rosea yielded delta4-pregnene-20beta-ol-3-one and delta4-pregnene-14alpha-ol-3,20-dione. A stereospecific reduction of the keto groups and a double bond and stereospecific introduction of hydroxyl groups at the 6, 11, and 14 positions have been observed. The mono- and dihydroxylated progesterones have not previously been reported as metabolic products of progesterone by plant cell systems and represent de novo hydroxylation of a nonglycosylated steroid. PMID:697360

  12. Proteinase Inhibitor I Accumulation in Tomato Suspension Cultures 1

    PubMed Central

    Walker-Simmons, Mary; Ryan, Clarence A.

    1986-01-01

    Suspension-cultured cells of tomato accumulate proteinase Inhibitor I as the sucrose is depleted from 1% to less than 0.1% in the culture medium. Inhibitor I can be prematurely induced to accumulate in the cells by the addition to the medium of the proteinase inhibitor inducing factor, trigalacturonic acid, ethylene glycol chitin, or chitosan. In cultures grown in 0.6% initial sucrose with no inducers added, a uronic acid-rich extracellular polysaccharide appears in the medium during growth of the cells. This extracellular polysaccharide apparently contains an `endogenous inducer' of Inhibitor I synthesis. When the partially purified polysaccharide is added to the culture medium, Inhibitor I accumulation is induced. Proteinase inhibitors also accumulate in tobacco and alfalfa suspension-cultured cells as the cell cultures age. As with the tomato cultures, a uronic acid-rich component(s) appears in the media prior to inhibitor accumulation. These data suggest that an endogenous inducer may be activating proteinase inhibitor genes through a similar mechanism in all three types of cells. PMID:16664609

  13. Production of plant virus inhibitor by Phytolacca americana suspension culture.

    PubMed

    Misawa, M; Hayashi, M; Tanaka, H

    1975-09-01

    The inhibitory activity of tobacco mosaic virus (TMV) infection was assayed with the extracts of various callus tissues derived from the intact plants. Phytolacca americana callus was selected as a producer of the virus inhibitor and its cultural conditions in suspension were examined for cell growth and the inhibitor production. A modified liquid medium containing twofold concentrations of all components in that of Murashige and Skoog plus2,4-D (1.0 mg/liter) and sucrose (6%), but without any vitamins and glycine was chosen for production of higher levels of the inhibitor. TMV infections in tobacco, bean, and tomato plants were markedly inhibited by the introduction of the disrupted whole broth of suspension cultured P. americana.

  14. The effect of cations on the aggregation of commercial ZnO nanoparticle suspension

    NASA Astrophysics Data System (ADS)

    Liu, Wei-Szu; Peng, Yu-Huei; Shiung, Chia-En; Shih, Yang-hsin

    2012-12-01

    Nanoscale ZnO materials have been largely used in many products due to their distinct properties. However, ZnO nanoparticles (NPs) are hazardous to human health and the ecosystem. The characteristics and the stability of ZnO NPs are relevant to their fate in the environment and their potential toxicities. In this study, a stable commercial ZnO NP suspension was chosen to investigate its aggregation under various salt additions. Different concentrations of NaCl, KCl and CaCl2 were chosen to represent various environmental conditions. Under pH 8-9, the surface charge of commercial ZnO NPs was negative. The behavior of the stabilized ZnO NPs in water was affected by ionic combinations and ionic strength; that is, divalent cations were more effective than monovalent ones in promoting aggregation formation. The attachment efficiencies of ZnO aggregates were calculated based upon the aggregation kinetics. The critical coagulation concentration values for this commercial ZnO NPs were higher than previous reported for ZnO NPs, indicating this ZnO NP could be stable in the aquatic environment and might have increased hazardous potentials. Based upon the Derjaguin-Landau-Verwey-Overbeek theory, interactions between ZnO NPs in the presence of different ions were evaluated to illustrate the aggregation mechanism. Our results indicated that critical ionic type and concentration promote the aggregation of stable ZnO NPs. These understandings also can facilitate the design of the precipitation treatment to remove NPs from water.

  15. [Studies on the cell suspension culture of Saussarea medusa in a stirred tank bioreactor].

    PubMed

    Huang, Y; Zhao, D X; Lu, D P; Yan, F; Li, Z H; Chen, H Z; Zhao, Q

    2001-09-01

    The cell suspension culture of Saussarea medusa in a 2L aerated and agitated bioreactor with a four-pitch-blade impeller was investigated. The effects of agitation speed, aeration and inoculum size on cell growth and flavonoids production were studied and it was found that cells had optimum growth and flavonoids production when cultivated at 75 r/min, 700-1000 L/min and an inoculum of 4.0-5.0 g/L. A high cell biomass of 13.8 g/L and flavonoids production of 416 mg/L were achieved after 12 days of cultivation. Time course study revealed that flavonoids biosynthesis was growth-associated. The studies on aggregates size distribution in the bioreactor showed that the aggregates break-up caused by hydrodynamic stress might adversely affect cell growth and lead to significant reduction of cell biomass and flavonoids production.

  16. Nitric oxide generation by endothelial cells exposed to shear stress in glass tubes perfused with red blood cell suspensions: role of aggregation.

    PubMed

    Yalcin, Ozlem; Ulker, Pinar; Yavuzer, Ugur; Meiselman, Herbert J; Baskurt, Oguz K

    2008-05-01

    Endothelial function is modulated by wall shear stress acting on the vessel wall, which is determined by fluid velocity and the local viscosity near the vessel wall. Red blood cell (RBC) aggregation may affect the local viscosity by favoring axial migration. The aim of this study was to investigate the role of RBC aggregation, with or without altered plasma viscosity, in the mechanically induced nitric oxide (NO)-related mechanisms of endothelial cells. Human umbilical vein endothelial cells (HUVEC) were cultured on the inner surface of cylindrical glass capillaries that were perfused with RBC suspensions having normal and increased aggregation at a nominal shear stress of 15 dyn/cm(2). RBC aggregation was enhanced by two different approaches: 1) poloxamer-coated RBC suspended in normal, autologous plasma, resulting in enhanced aggregation but unchanged plasma viscosity and 2) normal RBC suspended in autologous plasma containing 0.5% dextran (mol mass 500 kDa), with a similar level of RBC aggregation but higher plasma viscosity. Compared with normal cells in unmodified plasma, perfusion with suspensions of poloxamer-coated RBC in normal plasma resulted in decreased levels of NO metabolites and serine 1177 phosphorylation of endothelial nitric oxide synthase (eNOS). Perfusion with normal RBC in plasma containing dextran resulted in a NO level that remained elevated, whereas only a modest decrease of phosphorylated eNOS level was observed. The results of this study suggest that increases of RBC aggregation tendency affect endothelial cell functions by altering local blood composition, especially if the alterations of RBC aggregation are due to modified cellular properties and not to plasma composition changes.

  17. Saussurea medusa cell suspension cultures for flavonoid production.

    PubMed

    Liu, Chun-Zhao; Saxena, Praveen K

    2009-01-01

    Saussurea medusa Maxim. is a valuable traditional Chinese herb. The flavonoids are the main active pharmaceutical compounds in this medicinal plant species and have effective anti-tumor and anti-inflammation properties. This species is now almost extinct in China because of over-exploitation. The establishment of plant cell cultures would be a promising alternative to avoid extinction of this species and establish cultivation for the production of bioactive flavonoids. The callus is induced from leaf explants of S. medusa on Murashiage and Skoog medium supplemented with 0.5 mg/L 6-BA, 2 mg/L NAA, 30 g/L sucrose, and 5 g/L agar. A fine cell suspension is established from the induced light-yellow calluses in the MS liquid medium with 30 g/L sucrose, 0.5 mg/L BA, and 2.0 mg/L NAA for biosynthesis of flavonoids. The kinetics of cell growth and flavonoid accumulation in the cell suspension cultures are investigated. The highest dry weight and flavonoid production reach 17.2 g/L and 607.8 mg/L respectively after 15 d. Significantly high antioxidant activity and flavonoids accumulate in the cell suspension cultures of S. medusa.

  18. Putting the Spotlight Back on Plant Suspension Cultures

    PubMed Central

    Santos, Rita B.; Abranches, Rita; Fischer, Rainer; Sack, Markus; Holland, Tanja

    2016-01-01

    Plant cell suspension cultures have several advantages that make them suitable for the production of recombinant proteins. They can be cultivated under aseptic conditions using classical fermentation technology, they are easy to scale-up for manufacturing, and the regulatory requirements are similar to those established for well-characterized production systems based on microbial and mammalian cells. It is therefore no surprise that taliglucerase alfa (Elelyso®)—the first licensed recombinant pharmaceutical protein derived from plants—is produced in plant cell suspension cultures. But despite this breakthrough, plant cells are still largely neglected compared to transgenic plants and the more recent plant-based transient expression systems. Here, we revisit plant cell suspension cultures and highlight recent developments in the field that show how the rise of plant cells parallels that of Chinese hamster ovary cells, currently the most widespread and successful manufacturing platform for biologics. These developments include medium optimization, process engineering, statistical experimental designs, scale-up/scale-down models, and process analytical technologies. Significant yield increases for diverse target proteins will encourage a gold rush to adopt plant cells as a platform technology, and the first indications of this breakthrough are already on the horizon. PMID:27014320

  19. Putting the Spotlight Back on Plant Suspension Cultures.

    PubMed

    Santos, Rita B; Abranches, Rita; Fischer, Rainer; Sack, Markus; Holland, Tanja

    2016-01-01

    Plant cell suspension cultures have several advantages that make them suitable for the production of recombinant proteins. They can be cultivated under aseptic conditions using classical fermentation technology, they are easy to scale-up for manufacturing, and the regulatory requirements are similar to those established for well-characterized production systems based on microbial and mammalian cells. It is therefore no surprise that taliglucerase alfa (Elelyso®)-the first licensed recombinant pharmaceutical protein derived from plants-is produced in plant cell suspension cultures. But despite this breakthrough, plant cells are still largely neglected compared to transgenic plants and the more recent plant-based transient expression systems. Here, we revisit plant cell suspension cultures and highlight recent developments in the field that show how the rise of plant cells parallels that of Chinese hamster ovary cells, currently the most widespread and successful manufacturing platform for biologics. These developments include medium optimization, process engineering, statistical experimental designs, scale-up/scale-down models, and process analytical technologies. Significant yield increases for diverse target proteins will encourage a gold rush to adopt plant cells as a platform technology, and the first indications of this breakthrough are already on the horizon.

  20. Culture temperature modulates aggregation of recombinant antibody in cho cells.

    PubMed

    Gomez, Natalia; Subramanian, Jayashree; Ouyang, Jun; Nguyen, Mary D H; Hutchinson, Matthew; Sharma, Vikas K; Lin, Andy A; Yuk, Inn H

    2012-01-01

    During production of therapeutic monoclonal antibodies (mAb), it is highly desirable to remove and control antibody aggregates in the manufacturing process to minimize the potential risk of immunogenicity to patients. During process development for the production of a recombinant IgG in a CHO cell line, we observed atypical high variability from 1 to 20% mAb aggregates formed during cell culture that negatively impacted antibody purification. Analytical characterization revealed the IgG aggregates were mediated by hydrophobic interactions likely caused by misfolded antibody during intracellular processing. Strikingly, data analysis showed an inverse correlation of lower cell culture temperature producing higher aggregate levels. All cultures at 37°C exhibited ≤ 5% aggregates at harvest. Aggregate levels increased 4-12-fold in 33°C cultures when compared to 37°C, with a corresponding 2-4-fold increase in heavy chain (HC) and light chain (LC) mRNA. Additionally, 37°C cases showed a greater excess of LC to HC mRNA levels. Endoplasmic reticulum (ER) chaperone expression and ER size also increased 25-75% at 33°C versus 37°C but to a lesser extent than LC and HC mRNA, consistent with a potential limiting ER folding capacity at 33°C for this cell line. Finally, we identified a 2-5-fold increase in mAb aggregate formation at 33°C compared to 37°C cultures for three additional CHO cell lines. Taken together, our observations indicate that low culture temperature can increase antibody aggregate formation in CHO cells by increasing LC and HC transcripts coupled with limited ER machinery.

  1. Experimental investigation of the aggregation-disaggregation of colliding volcanic ash particles in turbulent, low-humidity suspensions

    NASA Astrophysics Data System (ADS)

    Del Bello, Elisabetta; Taddeucci, Jacopo; Scarlato, Piergiorgio; Giacalone, Emanuele; Cesaroni, Claudio

    2015-02-01

    We present the results of laboratory experiments on the aggregation and disaggregation of colliding volcanic ash particles. Ash particles of different composition and size <90 µm were held in turbulent suspension and filmed in high speed while colliding, aggregating, and disaggregating, forming a growing layer of electrostatically bound particles along a vertical plate. At room conditions and regardless of composition, 60-80% of the colliding particles smaller than 32 µm remained aggregated. In contrast, aggregation of particles larger than 63 µm was negligible, and, when a layer formed, periods when disaggregation (mainly by collisions or drag) exceeded aggregation occurred twice as frequently than for smaller particles. An empirical relationship linking the aggregation index, i.e., the effective fraction of aggregated particles surviving disaggregation, to the mean particle collision kinetic energy is provided. Our results have potential implications on the dynamics of volcanic plumes and ash mobility in the environment.

  2. Elicitation of Diacetylenic Compounds in Suspension Cultured Cells of Eggplant

    PubMed Central

    Imoto, Setsuko; Ohta, Yoshimoto

    1988-01-01

    Induction of stress metabolites in the suspension cultured cells of eggplant (Solanum melongena L.) was examined. When autoclaved RNase A or nigeran, both of which are nonspecific phytoalexin elicitors in bean cells, were added to the cell culture of eggplant, greatly enhanced levels of three compounds were observed. One of them was cis-pentadeca-6-ene-1,3-diyne-5,15-diol, a novel diacetylenic compound. This compound has considerable fungitoxic activity. Also identified was falcarindiol, another fungitoxic diacetylenic compound previously reported as one of the phytoalexins in infected tomato fruits and leaves. Elicited compounds preferentially accumulated in the culture medium rather than in the cells and decreased to original levels during prolonged culturing. The elicitation of these compounds was closely correlated with cellular damage in terms of the decrease of growth rate and was inhibited by 10 micromolar cycloheximide. PMID:16665862

  3. Establishment of plant regeneration and cryopreservation system from zygotic embryo-derived embryogenic cell suspension cultures of Ranunculus kazusensis.

    PubMed

    Kim, Suk Weon; Oh, Myung Jin

    2009-01-01

    This chapter describes culture conditions for high-frequency plant regeneration via somatic embryogenesis and cryopreservation from cell suspension cultures of Ranunculus kazusensis. Zygotic embryos form white nodular structures and pale-yellow calli at a frequency of 84.9% on half-strength Schenk and Hildebrandt (SH) medium supplemented with 0.1 mg/L 2,4-dichlorophenoxyacetic acid (2,4- D). However, the frequency of white nodular structure and off-white callus formation decreases to 25% with an increasing concentration of 2,4- D up to 10 mg/L cell suspension cultures are established from zygotic embryo-derived pale-yellow calli using half-strength SH medium supplemented with 0.1 mg/L 2,4- D. Upon plating onto half-strength SH basal medium, over 90% cell aggregates give rise to numerous somatic embryos and develop into plantlets. Regenerated plantlets are transplanted to pots filled with soil and grown to maturity at 90% survival rate in a growth chamber. Furthermore, we have developed the cryopreservation system using embryogenic cell suspension cultures of Ranunculus kazusensis. The re-growth rate of cryopreserved cells in 20% glycerol and 10% dimethylsulfoxide (DMSO) is 10% and 28.3%, respectively. These results show that DMSO is more effective cryoprotectant than glycerol in long-term preservation of embryogenic cell suspension cultures. The plant regeneration and cryopreservation system established in this study could be applied for mass propagation and ex situ conservation of this plant species.

  4. Experimental investigation of the aggregation-disaggregation of colliding volcanic ash particles in turbulent, low-humidity suspensions

    NASA Astrophysics Data System (ADS)

    Del Bello, Elisabetta; Taddeucci, Jacopo; Scarlato, Piergiorgio

    2015-04-01

    We present the results of laboratory experiments on the aggregation and disaggregation of colliding volcanic ash particles. Ash particles of different composition and size <90 µm were held in turbulent suspension and filmed in high-speed while colliding, aggregating, and disaggregating, forming a growing layer of electrostatically-bound particles along a vertical plate. At room conditions and regardless of composition, 60-80% of the colliding particles smaller than 32 µm remained aggregated. In contrast, aggregation of particles larger than 63 µm was less efficient and, when a layer formed, got disaggregated by collisions or drag twice more frequently than that of smaller particles. An empirical relationship linking the aggregation index, i.e, the effective fraction of aggregated particles surviving disaggregation, to the mean particle collision kinetic energy is provided. Our results have potential implications on the dynamics of volcanic plumes and ash mobility in the environment.

  5. A Versatile Bioreactor for Dynamic Suspension Cell Culture. Application to the Culture of Cancer Cell Spheroids

    PubMed Central

    Madeddu, Denise; Cerino, Giulia; Falco, Angela; Frati, Caterina; Gallo, Diego; Deriu, Marco A.; Falvo D’Urso Labate, Giuseppe; Quaini, Federico; Audenino, Alberto; Morbiducci, Umberto

    2016-01-01

    A versatile bioreactor suitable for dynamic suspension cell culture under tunable shear stress conditions has been developed and preliminarily tested culturing cancer cell spheroids. By adopting simple technological solutions and avoiding rotating components, the bioreactor exploits the laminar hydrodynamics establishing within the culture chamber enabling dynamic cell suspension in an environment favourable to mass transport, under a wide range of tunable shear stress conditions. The design phase of the device has been supported by multiphysics modelling and has provided a comprehensive analysis of the operating principles of the bioreactor. Moreover, an explanatory example is herein presented with multiphysics simulations used to set the proper bioreactor operating conditions for preliminary in vitro biological tests on a human lung carcinoma cell line. The biological results demonstrate that the ultralow shear dynamic suspension provided by the device is beneficial for culturing cancer cell spheroids. In comparison to the static suspension control, dynamic cell suspension preserves morphological features, promotes intercellular connection, increases spheroid size (2.4-fold increase) and number of cycling cells (1.58-fold increase), and reduces double strand DNA damage (1.5-fold reduction). It is envisioned that the versatility of this bioreactor could allow investigation and expansion of different cell types in the future. PMID:27144306

  6. Elicitation of andrographolide in the suspension cultures of Andrographis paniculata.

    PubMed

    Gandi, Suryakala; Rao, Kiranmayee; Chodisetti, Bhuvaneswari; Giri, Archana

    2012-12-01

    Andrographis paniculata belonging to the family Acanthaceae produces a group of diterpene lactones, one of which is the pharmaceutically important-andrographolide. It is known to possess various important biological properties like anticancer, anti-HIV, anti-inflammatory, etc. This is the first report on the production of andrographolide in the cell suspension cultures of Andrographis paniculata by 'elicitation'. Elicitation was attempted to enhance the andrographolide content in the suspension cultures of Andrographis paniculata and also to ascertain its stimulation under stress conditions or in response to pathogen attack. The maximum andrographolide production was found to be 1.53 mg/g dry cell weight (DCW) at the end of stationary phase during the growth curve. The biotic elicitors (yeast, Escherichia coli, Bacillus subtilis, Agrobacterium rhizogenes 532 and Agrobacterium tumefaciens C 58) were more effective in eliciting the response when compared to the abiotic elicitors (CdCl(2), AgNO(3), CuCl(2) and HgCl(2)). Yeast has shown to stimulate maximum accumulation of 13.5 mg/g DCW andrographolide, which was found to be 8.82-fold higher than the untreated cultures.

  7. Electric-field-induced dielectrophoresis and heterogeneous aggregation in dilute suspensions of positively polarizable particles

    NASA Astrophysics Data System (ADS)

    Acrivos, Andreas; Qiu, Zhiyong; Markarian, Nikolai; Khusid, Boris

    2002-11-01

    We specified the conditions under which a dilute suspension of positively polarizable particles would undergo a heterogeneous aggregation in high-gradient strong AC fields and then examined experimentally and theoretically its kinetics [1]. Experiments were conducted on flowing dilute suspensions of heavy aluminum oxide spheres subjected to a high-gradient AC field (several kV/mm) such that the dielectrophoretic force acting on the particles was arranged in the plane perpendicular to the streamlines of the main flow. To reduce the gravitational settling of the particles, the electric chamber was kept slowly rotating around a horizontal axis. Following the application of a field, the particles were found to move towards both the high-voltage and grounded electrodes and to form arrays of "bristles" along their edges. The process was modeled by computing the motion of a single particle under the action of dielectrophoretic, viscous, and gravitational forces for negligibly small particle Reynolds numbers. The particle polarization required for the calculation of the dielectrophoretic force was measured in low-strength fields (several V/mm). The theoretical predictions for the kinetics of the particle accumulation on the electrodes were found to be in a reasonable agreement with experiment, although the interparticle interactions governed the formation of arrays of bristles. These bristles were formed in a two-step mechanism, which arose from the interplay of the dielectrophoretic force that confined the particles near the electrode edge and the dipolar interactions of nearby particles. The results of our studies provide the basic characteristics needed for the design and optimization of electro-hydrodynamic apparatuses. The work was supported by a NASA grant. The suspension characterization was conducted at the NJIT W.M. Keck Laboratory. 1. Z. Qiu, N. Markarian, B. Khusid, A. Acrivos, J. Apple. Phys., 92(5), 2002.

  8. Focussed beam reflectance measurement (FBRM) monitoring of particle size and morphology in suspension cultures of Morinda citrifolia and Centaurea calcitrapa.

    PubMed

    Jeffers, Paul; Raposo, Sara; Lima-Costa, Maria-Emilia; Connolly, Patricia; Glennon, Brian; Kieran, Patricia M

    2003-12-01

    Laser light scattering technology, as applied in the Lasentec focussed beam reflectance measurement (FBRM) system, was used to characterise two morphologically dissimilar plant cell suspension cultures, Morinda citrifolia and Centaurea calcitrapa. Shake-flask suspensions were analysed in terms of biomass concentration and aggregate size/shape over the course of typical batch growth cycles. For the heavily aggregated C. calcitrapa, biomass levels [from 10-160 g fresh weight (fw) l(-1))] were linearly correlated with FBRM counts. For M. citrifolia, which grows in unbranched chains of 2-10 elongated cells, linear correlation of biomass concentration with FBRM counts was applicable in the range 0-100 g fw l(-1); at higher levels (100-300 g fw l(-1)), biomass was non-linearly correlated with FBRM counts and length-weighted average FBRM chord length. For both cell systems, particle morphology (size/shape) was quantified using semi-automated digital image analysis. The average aggregate equivalent diameter (C. calcitrapa) and average chain length (M. citrifolia), determined using image analysis, closely tracked the FBRM average chord length. The data clearly demonstrate the potential for applying the FBRM technique for rapid characterisation of plant cell suspension cultures.

  9. Aggregation and deformation of red blood cells as probed by a laser light scattering technique in a concentrated suspension: methodology

    NASA Astrophysics Data System (ADS)

    Gandjbakhche, Amir H.; Mills, Pierre; Snabre, Patrick; Dufaux, Jacques

    1994-07-01

    A light scattering technique is presented which investigates the backscattered and transmitted flux of He-Ne laser light illuminating a concentrated suspension of red blood cells (RBC) submitted to a simple shear flow. Our experiments show that the angular distributions of scattered light are closely related to the state of the suspension (at rest, or submitted to a simple shear flow) and the rheological parameters of the suspension such as viscosity and volume concentration. Transmitted and reflected light measurements demonstrated reproducible and predictable changes in scattering cross sections of oriented and deformed RBCs by shear flow. Additionally, it is shown that the scattering cross-section of aggregated RBCs is different from disaggregated RBCs. A theoretical model, substantiated by Monte- Carlo simulations, is proposed which relates the changes in shape of the angular distribution of scattered light to the rate of aggregation and the gradients of deformation of RBCs.

  10. Conductometric study of shear-dependent processes in red cell suspensions. I. Effect of red blood cell aggregate morphology on blood conductance.

    PubMed

    Pribush, A; Meyerstein, D; Meyerstein, N

    2004-01-01

    The conductance and capacitance of flowing and quiescent red blood cell (RBC) suspensions were measured at a frequency of 0.2 MHz. The results demonstrate that the time-dependent changes in the conductance recorded during the aggregation process differ in nature for suspensions of short linear rouleaux, branched aggregates and RBC networks. It is shown that the conductance of RBC suspensions measured during the aggregation and disaggregation processes follows the morphological transformations of the RBC aggregates. Thus, this method enables characterization of the morphology of RBC aggregates formed in whole blood and in suspensions with physiological hematocrits both under flow conditions and in stasis. These results in combination with previous ones suggest that this technique can be used for studies of dynamic RBC aggregation and probably for diagnostic use.

  11. Recellularization of Decellularized Lung Scaffolds Is Enhanced by Dynamic Suspension Culture

    PubMed Central

    Crabbé, Aurélie; Liu, Yulong; Sarker, Shameema F.; Bonenfant, Nicholas R.; Barrila, Jennifer; Borg, Zachary D.; Lee, James J.; Weiss, Daniel J.; Nickerson, Cheryl A.

    2015-01-01

    Strategies are needed to improve repopulation of decellularized lung scaffolds with stromal and functional epithelial cells. We demonstrate that decellularized mouse lungs recellularized in a dynamic low fluid shear suspension bioreactor, termed the rotating wall vessel (RWV), contained more cells with decreased apoptosis, increased proliferation and enhanced levels of total RNA compared to static recellularization conditions. These results were observed with two relevant mouse cell types: bone marrow-derived mesenchymal stromal (stem) cells (MSCs) and alveolar type II cells (C10). In addition, MSCs cultured in decellularized lungs under static but not bioreactor conditions formed multilayered aggregates. Gene expression and immunohistochemical analyses suggested differentiation of MSCs into collagen I-producing fibroblast-like cells in the bioreactor, indicating enhanced potential for remodeling of the decellularized scaffold matrix. In conclusion, dynamic suspension culture is promising for enhancing repopulation of decellularized lungs, and could contribute to remodeling the extracellular matrix of the scaffolds with subsequent effects on differentiation and functionality of inoculated cells. PMID:25962111

  12. Effect of aggregate size in cell cultures of Saussurea medusa on cell growth and jaceosidin production.

    PubMed

    Zhao, D; Huang, Y; Jin, Z; Qu, W; Lu, D

    2003-07-01

    Cell suspension cultures of Saussurea medusa were grown in shake flasks and a 5-l stirred tank bioreactor. Biomass and jaceosidin distribution in cell aggregates of different sizes were investigated during the cultivation period. The results showed that on day 10, jaceosidin accumulation showed an increase with increasing size of the cell aggregate to 4 mm in diameter, with the highest jaceosidin accumulation being 12.2 mg/g. An inverse tendency was observed with cell aggregates larger than 4 mm in diameter, with the lowest accumulation being 3.1 mg/g. However, all of the cell aggregates, despite their size, synthesized almost the same amount of jaceosidin at day 12. Oxygen diffusion limitation and cell-cell contact may explain this behavior. In comparison with cells cultivated in shake flasks, decreased biomass and decreased jaceosidin concentration were observed when the cells were cultivated in a stirred tank bioreactor. The sublytic effects caused by the hydrodynamic stress in combination with insufficient nutrients in the bioreactor may cause cell damage.

  13. Monitoring aggregate formation in organotypic slice cultures from transgenic mice.

    PubMed

    Smith, Donna L; Bates, Gillian P

    2004-01-01

    Huntington's disease (HD) is a fatal neurodegenerative disorder caused by a CAG repeat expansion in the first exon of the HD gene. It encodes a protein known as huntingtin, which aggregates in the nuclei of affected neurons. These aggregates are an obvious therapeutic target, thus an organotypic slice culture assay has been designed to screen potential antiaggregation compounds using the R6/2 mouse model of HD. This assay allows the aggregates to be fully quantified using fluorescent confocal microscopy and gives additional information perturbing to drug solubility, delivery, toxicity, concentration, and efficacy of inhibitors. This information is essential to the planning and application of an in vivo drug trial in the R6/2 mice.

  14. Tuning the aggregation behaviour of single-chain bolaphospholipids in aqueous suspension: from nanoparticles to nanofibres to lamellar phases.

    PubMed

    Blume, Alfred; Drescher, Simon; Meister, Annette; Graf, Gesche; Dobner, Bodo

    2013-01-01

    The aggregation behaviour in aqueous suspensions of symmetrical bipolar phospholipids (bolalipids) composed of one long alkyl chain and two polar headgroups were studied as a function of their chemical structure, i.e. the length of their chain, the modification of the chain by introduction of hetero-atoms, triple bonds, or phenyl rings, and the size of the headgroups. Three types of aggregate structures are formed by these bolalipids, namely helical nanofibres, micelle-like aggregates and lamellar sheets. The type of aggregate formed depends not only on the chemical structure, particularly the ratio of the cross-sectional area of the headgroup and the chain, but also on the presence of attractive interactions via hydrogen bonds or repulsive electrostatic interactions between the headgroups.

  15. Binding, aggregation and photochemical properties of methylene blue in mitochondrial suspensions.

    PubMed

    Gabrielli, Dino; Belisle, Eduardo; Severino, Divinomar; Kowaltowski, Alicia J; Baptista, Mauricio S

    2004-03-01

    Methylene Blue (MB) has well-established photochemical properties and has been used in a variety of photochemical applications including photodynamic therapy. Despite the fact that most of MB's cytotoxic effects in cells are attributed to mitochondrial damage, the interactions of this dye with mitochondria and the consequent effects on photochemical properties have not yet been fully determined. We monitored MB binding, aggregation and its ability to release singlet oxygen (1O2) on irradiation when interacting with mitochondrial suspensions. MB actively binds to mitochondria and enters the matrix in a manner stimulated by the mitochondrial proton potential and by the increase in mitochondrial concentrations. The greater accumulation of MB in mitochondria with elevated proton potentials or those treated with high concentrations of MB results in the formation of MB dimers, previously shown to be less effective generators of 1O2. Accumulation of MB within mitochondria with high membrane potentials also results in the reduction of MB to the photochemically inactive leuco-MB. Indeed, irradiation of mitochondria with high proton potentials in the presence of MB results in the generation of approximately half the quantity of 1O2 compared with 1O2 generated in mitochondria with low proton potentials. These differences in photochemical properties should influence the cytotoxic effects of photodynamic treatment in the presence of MB.

  16. Cultural Consensus Theory: Aggregating Continuous Responses in a Finite Interval

    NASA Astrophysics Data System (ADS)

    Batchelder, William H.; Strashny, Alex; Romney, A. Kimball

    Cultural consensus theory (CCT) consists of cognitive models for aggregating responses of "informants" to test items about some domain of their shared cultural knowledge. This paper develops a CCT model for items requiring bounded numerical responses, e.g. probability estimates, confidence judgments, or similarity judgments. The model assumes that each item generates a latent random representation in each informant, with mean equal to the consensus answer and variance depending jointly on the informant and the location of the consensus answer. The manifest responses may reflect biases of the informants. Markov Chain Monte Carlo (MCMC) methods were used to estimate the model, and simulation studies validated the approach. The model was applied to an existing cross-cultural dataset involving native Japanese and English speakers judging the similarity of emotion terms. The results sharpened earlier studies that showed that both cultures appear to have very similar cognitive representations of emotion terms.

  17. Experimental evaluation of mechanical and electrical properties of RBC suspensions under flow. Role of RBC aggregating agent.

    PubMed

    Antonova, N; Riha, P; Ivanov, I

    2010-01-01

    Mechanical and electrical properties of red blood cells (RBC) suspensions in dextran 70 (Dx70), dextran 150 (Dx150), dextran 500 (Dx500) and polyethileneglycol (PEG) 35,000 with different concentrations were evaluated through apparent viscosity and conductivity measurements under steady and unsteady flow conditions. RBCs suspensions of the washed RBS in PBS (control) and Dx70, Dx150, Dx500 and PEG in PBS with different concentrations, adjusted to the same hematocrit of 40% were used for the experiments. Conductivity time and shear rate dependences in parallel with the rheological properties of the samples were studied under transient flow regimes at different local structure of the uniform Couette flow. Their relationships on dextrans and PEG concentrations were evaluated too. Low shear viscosity increased and conductivity decreased of RBC suspensions, compared to non-aggregating suspensions, depending on dextrans and PEG concentrations. A time course of blood conductivity recorded under different flow conditions provides experimental description of RBC aggregation-disaggregation processes and other cell-cell interactions. The results show that the blood conductivity is strongly dependent on the considered blood factors and is influenced by flow, shear rates and concentration of dextran and PEG solutions.

  18. [Establishment of a cell suspension culture system of endangered Aquilaria sinensis (Lour.) Gilg].

    PubMed

    Liu, Juan; Han, Xiao-Min; Liang, Liang; Liu, Qing-Chang; Xu, Yan-Hong; Yang, Cheng-Min; Zhang, Zheng; Sun, Jing; Wei, Jian-He

    2014-08-01

    Aquilaria sinensis callus induced by stem tips were used to establish the suspension cell system. The results showed that the most suitable medium for callus induction and subculture is MS + 2.0 mg x L(-1) NAA + 1.0 mg x L(-1) 6-BA. After 12 times of subculture, the energetic and loose callus, which were appropriate for cell suspension culture, were cultured and shook in liquid medium MS + 2.0 mg x L(-1) NAA + 1.0 mg x L(-1) 6-BA + 500.0 mg x L(-1) casein hydrolysate (CH) to establish the suspension cell system. The growth curve of suspension cells showed a "S" type. At the beginning of the culture, cell density increased slowly; during 4 to 6 days, suspension cells reached logarithmic growth period; during 7 to 12 days, suspension cells were in the platform period; but after 12 days, cell density and activity went down obviously. Agarwood sesquiterpenes were not detected in the suspension cells during the growth period, however, they could be detected in MeJA treated suspension cells. In this study, a stable and active growing suspension cell system was established, which was a proper system to study the mechanism of agarwood sesquiterpene formation, and additionally provided a potential way to generate agarwood sesquiterpenes through application of cell culture.

  19. Loss of competence for glyoxysome formation during somatic embryogenesis in anise (Pimpinella anisum L.) suspension cultures.

    PubMed

    Kudielka, R A; Theimer, R R

    1983-10-01

    Somatic embryogenesis in anise (Pimpinella anisum L.) suspension cultures induced by transfer to hormone-free growth medium may be synchronized by previous selection of cell aggregates with diameters between 100-240 μm. Around 80-90% of the embryoids are globular after 2-3 d, heart-shaped after 5-7 d and torpedo-shaped after 9 d. In embryogenic medium without source of carbon or with 20 mmol/l acetate differentiation and growth cease. But like in dedifferentiated cell aggregates the key enzyme activities for glyoxysomes such as isocitrate lyase and malate synthase are induced in globular (3 d old) and heart-shaped (5 d old) embryoids, but not in embryoids at day 7 or later. Similarly, in explants from anise hypocotyl glyoxysomes cannot be derepressed by such treatment. It is concluded that during differentiation of heart-shaped embryoids to torpedo forms the competence of the cells for the yet unknown inducing principle for glyoxysomes is lost.

  20. Growth arrest of vascular smooth muscle cells in suspension culture using low-acyl gellan gum.

    PubMed

    Natori, Tomomi; Fujiyoshi, Masachika; Uchida, Masashi; Abe, Natsuki; Kanaki, Tatsuro; Fukumoto, Yasunori; Ishii, Itsuko

    2017-03-01

    The proliferation of vascular smooth muscle cells (SMCs) causes restenosis in biomaterial vascular grafts. The purposes of this study were to establish a suspension culture system for SMCs by using a novel substrate, low-acyl gellan gum (GG) and to maintain SMCs in a state of growth inhibition. When SMCs were cultured in suspension with GG, their proliferation was inhibited. Their viability was 70% at day 2, which was maintained at more than 50% until day 5. In contrast, the viability of cells cultured in suspension without GG was 5.6% at day 2. By cell cycle analysis, the ratio of SMCs in the S phase when cultured in suspension with GG was lower than when cultured on plastic plates. In SMCs cultured in suspension with GG, the ratio of phosphorylated retinoblastoma (Rb) protein to Rb protein was decreased and p27(Kip1) expression was unchanged in comparison with SMCs cultured on plastic plates. In addition, SMCs could be induced to proliferate again by changing the culture condition from suspension with GG to plastic plates. These results suggest that our established culturing method for SMCs is useful to maintain SMCs in a state of growth inhibition with high viability.

  1. Time dependent light transmission through blood (in vivo) and RBC suspensions (in vitro) accompanied by RBC Aggregation.

    NASA Astrophysics Data System (ADS)

    Fine, Ilya; Fikhte, Boris; Shvartsman, L. D.

    2000-03-01

    Optical transmission of tissue in vivo and model red blood cells (RBC) suspensions in vitro have been measured in red and near infrared region targeting the better understanding of the nature of pulsatile signals. Two groups of experiments have been performed: the first one investigating the nature of correlation between pulsatile blood flow and pulsatile fluctuations of optical transmission of tissue. These fluctuations are the basis of nearly all major optical non-invasive blood measurements as pulse oximetry, etc., and it is customized to attribute them to the volumetric changes of blood contain in the exposed portion of tissue.This standard volumetric model is the subject of critical analysis in the present work. It is shown experimentally (both in vitro and in vivo) that the pulse signal results at least partially not from the volumetric changes but from the light scattering fluctuations. These fluctuations are caused by change of average size of RBC aggregates resulting from blood flow changes. Dependencies of the pulsatile signal on aggregates geometry, refraction indexes fluctuations, aggregates orientation, etc. are studied.Even more clearly aggregation assisted optical phenomena are seen in the second group of experiments where the pulsatile flow was ceased and RBC aggregation became continuous. We achieved the excellent correspondence between in vitro and in vivo results in both groups of experiments. Experimental factors favoring this correspondence supply the very clear indications of particular geometries of RBC aggregates.

  2. Sugar transport by maize endosperm suspension cultures. [Zea mays

    SciTech Connect

    Felker, F.C.; Goodwin, J.C.

    1987-08-01

    To determine the mechanism of sugar uptake by suspension cultures derived from developing maize (Zea mays L.) endosperm, incorporation of radioactivity from /sup 14/C-sugars by the tissue in the mid-log phase of growth was examined. Among the sugars tested was l'-deoxy-l'-fluorosucrose (FS), a derivative not hydrolyzed by invertase but recognized by sucrose carriers in other systems. At 40 mM, uptake of label from FS was 23% of that from sucrose, while uptake of label from L-glucose (used as a control for medium carry-over and adsorption) was 16% of that from sucrose. Uptake of label from sucrose did not increase at concentrations above 50 mM, possibly due to a rate-limiting requirement for extracellular hydrolysis. Kinetic analysis revealed both saturable and linear components of uptake for glucose and fructose. The rate of fructose uptake exceeded that of glucose at all concentrations. Fructose uptake at 20 mM was inhibited by NaN/sub 3/, HgCl/sub 2/, dinitrophenol, carbonyl cyanide m-chlorophenylhydrazone, and p-chloromercuribenzenesulfonic acid. Results suggest that sucrose is hydrolyzed prior to uptake, and that fructose is transported preferentially by a carrier sensitive to an external sulfhydryl group inhibitor. Metabolic activity is required for sugar uptake. The specificity of the hexose transporter is currently being investigated.

  3. Antifungal-protein production in maize (Zea mays) suspension cultures.

    PubMed

    Perri, Fabio; Della Penna, Serena; Rufini, Francesca; Patamia, Maria; Bonito, Mariantonietta; Angiolella, Letizia; Vitali, Alberto

    2009-04-01

    The growing emergency due to the phenomenon of drug resistance to micro-organisms has pushed forward the search for new potential drug alternatives to those already in use. Plants represent a suitable source of new antifungal molecules, as they produce a series of defensive proteins. Among them are the PRPs (pathogenesis-related proteins), shown to be effective in vitro against human pathogens. An optimized and established cell-suspension culture of maize (Zea mays) was shown to constitutively secrete in the medium a series of PRPs comprising the antifungal protein zeamatin (P33679) with a final yield of approx. 3 mg/litre. The in-vitro-produced zeamatin possessed antifungal activity towards a clinical strain of the human pathogenic yeast Candida albicans, an activity comparable with the one reported for the same protein extracted from maize seeds. Along with zeamatin, other PRPs were expressed: a 9 kDa lipid-transfer protein, a 26 kDa xylanase inhibitor and a new antifungal protein, PR-5. A fast, two-step chromatographic procedure was set up allowing the complete purification of the proteins considered, making this cell line a valuable system for the production of potential antifungal agents in a reliable and easy way.

  4. Agrobacterium tumefaciens Interaction with Suspension-Cultured Tomato Cells 1

    PubMed Central

    Neff, Nicola T.; Binns, Andrew N.

    1985-01-01

    Adherence of Agrobacterium tumefaciens to suspension-cultured tomato cells has been characterized using a quantitative binding assay. Saturable binding of radiolabeled A. tumefaciens to plant cells resulted in 100 to 300 bacteria bound per cell. Specificity of A. tumefaciens binding was also inferred from two additional results: (a) an initial incubation of plant cells with A. tumefaciens reduced subsequent binding of radiolabeled A. tumefaciens by 60% to 75%; (b) tomato cells bound less than three E. coli per cell. Protease treatment of plant cells had no effect on subsequent bacterial binding, but prior treatment of plant cells with pectinolytic enzymes increased binding 2- to 3-fold. Pectin-enriched and neutral polymer-enriched fractions were obtained from tomato cell walls. The soluble pectin-enriched fraction inhibited binding of bacteria to plant cells by 85% to 95%, whereas the neutral polymer fraction only partially inhibited binding. Preliminary characterization of the activity showed it is heat stable, partially inactivated by protease treatment, and substantially inactivated by acid hydrolysis. Images Fig. 2 PMID:16664024

  5. Phenylpropanoid metabolism in suspension cultures of Vanilla planifolia Andr

    SciTech Connect

    Funk, C.; Brodelius, P.E. )

    1990-09-01

    Feeding of cinnamic acid and ferulic acid to non-treated and chitosan-treated cell suspension cultures of Vanilla planifolia resulted in the formation of trace amounts of p-hydroxybenzoic acid (5.2 micrograms per gram fresh weight of cells) and vanillic acid (6.4 micrograms per gram fresh weight of cells), respectively. Addition of a 4-hydroxycinnamate: CoA-ligase inhibitor, 3,4-(methylenedioxy)-cinnamic acid (MDCA), resulted in a reduced biosynthesis of ligneous material with a simultaneous significant increased vanillic acid formation (around 75 micrograms per gram fresh weight of cells). A K{sub i} of 100 micromolar for 4-hydroxycinnamate: CoA-ligase in a crude preparation was estimated for this inhibitor. It is suggested that the conversion of cinnamic acids into benzoic acids does not involve cinnamoyl CoA esters as intermediates. Feeding of {sup 14}C-cinnamic acid and {sup 14}C-ferulic acid to cells treated with MDCA indicate that cinnamic acid, but not ferulic acid, is a precursor of vanillic acid in these cultivated cells of V. planifolia.

  6. Anaerobic bacteria grow within Candida albicans biofilms and induce biofilm formation in suspension cultures.

    PubMed

    Fox, Emily P; Cowley, Elise S; Nobile, Clarissa J; Hartooni, Nairi; Newman, Dianne K; Johnson, Alexander D

    2014-10-20

    The human microbiome contains diverse microorganisms, which share and compete for the same environmental niches. A major microbial growth form in the human body is the biofilm state, where tightly packed bacterial, archaeal, and fungal cells must cooperate and/or compete for resources in order to survive. We examined mixed biofilms composed of the major fungal species of the gut microbiome, Candida albicans, and each of five prevalent bacterial gastrointestinal inhabitants: Bacteroides fragilis, Clostridium perfringens, Escherichia coli, Klebsiella pneumoniae, and Enterococcus faecalis. We observed that biofilms formed by C. albicans provide a hypoxic microenvironment that supports the growth of two anaerobic bacteria, even when cultured in ambient oxic conditions that are normally toxic to the bacteria. We also found that coculture with bacteria in biofilms induces massive gene expression changes in C. albicans, including upregulation of WOR1, which encodes a transcription regulator that controls a phenotypic switch in C. albicans, from the "white" cell type to the "opaque" cell type. Finally, we observed that in suspension cultures, C. perfringens induces aggregation of C. albicans into "mini-biofilms," which allow C. perfringens cells to survive in a normally toxic environment. This work indicates that bacteria and C. albicans interactions modulate the local chemistry of their environment in multiple ways to create niches favorable to their growth and survival.

  7. Biotransformation of cannabinoids by a cell suspension culture of Cannabis sativa L.

    PubMed

    Braemer, R; Paris, M

    1987-04-01

    A cell suspension culture of Cannabis sativa L. is able to convert cannabidiol to bound cannabielsoins and delta-9 tetrahydrocannabinol to cannabicoumaronon. The localization and the mechanism of the bioconversion are discussed.

  8. Detection of bacterial aggregation in cell suspensions treated with pathogenic bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The early interaction between plant cells and pathogenic bacteria were studied using tobacco cell suspensions treated with pathogenic and nonpathogenic Pseudomonas species. Previous studies of this system have documented that interactions with pathogens that cause a hypersensitive response on whole...

  9. The effect of magnetically induced linear aggregates on proton transverse relaxation rates of aqueous suspensions of polymer coated magnetic nanoparticles.

    PubMed

    Saville, Steven L; Woodward, Robert C; House, Michael J; Tokarev, Alexander; Hammers, Jacob; Qi, Bin; Shaw, Jeremy; Saunders, Martin; Varsani, Rahi R; St Pierre, Tim G; Mefford, O Thompson

    2013-03-07

    It has been recently reported that for some suspensions of magnetic nanoparticles the transverse proton relaxation rate, R(2), is dependent on the time that the sample is exposed to an applied magnetic field. This time dependence has been linked to the formation of linear aggregates or chains in an applied magnetic field via numerical modeling. It is widely known that chain formation occurs in more concentrated ferrofluids systems and that this has an affect on the ferrofluid properties. In this work we examine the relationships between colloidal stability, the formation of these linear structures, and changes observed in the proton transverse relaxation rate of aqueous suspensions of magnetic particles. A series of iron oxide nanoparticles with varying stabilizing ligand brush lengths were synthesized. These systems were characterized with dynamic light scattering, transmission electron microscopy, dark-field optical microscopy, and proton transverse relaxation rate measurements. The dark field optical microscopy and R(2) measurements were made in similar magnetic fields over the same time scale so as to correlate the reduction of the transverse relaxivity with the formation of linear aggregates. Our results indicate that varying the ligand length has a direct effect on the colloidal arrangement of the system in a magnetic field, producing differences in the rate and size of chain formation, and hence systematic changes in transverse relaxation rates over time. With increasing ligand brush length, attractive inter-particle interactions are reduced, which results in slower aggregate formation and shorter linear aggregate length. These results have implications for the stabilization, characterization and potentially the toxicity of magnetic nanoparticle systems used in biomedical applications.

  10. OCT assessment of aggregation and sedimentation in concentrated RBC suspension: comparison of experimental and Monte Carlo simulated data

    NASA Astrophysics Data System (ADS)

    Kirillin, Mikhail Y.; Priezzhev, Alexander V.; Tuchin, Valery V.; Wang, Ruikang K.; Myllyla, Risto

    2005-03-01

    In this work, we use Monte Carlo simulation to obtain model OCT signals from a horizontally orientated blood layer at different stages of red blood cell (RBC) aggregation and sedimentation processes. The parameters for aggregating and sedimenting blood cells were chosen basing on the data available from literature and our earlier experimental studies. Two different models of simulated medium are considered: a suspension of washed RBC in physiological solution (where the aggregation does not take place) and RBC in blood plasma (which provides necessary conditions for aggregation). Good agreement of the simulation results with the available experimental data shows that the chosen optical parameters are reasonable. Dependencies of the numbers of photons contributing to the OCT signal on the number of experienced scattering events were analyzed for each simulated signal. It was shown, that maxima on these dependencies correspond to the peaks in the OCT signals related to the interfaces between the layers of blood plasma and blood cells. Their positions can be calculated from the optical thicknesses of the layers, and the absorption and scattering coefficients of the media.

  11. New, rapid method to measure dissolved silver concentration in silver nanoparticle suspensions by aggregation combined with centrifugation

    NASA Astrophysics Data System (ADS)

    Dong, Feng; Valsami-Jones, Eugenia; Kreft, Jan-Ulrich

    2016-09-01

    It is unclear whether the antimicrobial activities of silver nanoparticles (AgNPs) are exclusively mediated by the release of silver ions (Ag+) or, instead, are due to combined nanoparticle and silver ion effects. Therefore, it is essential to quantify dissolved Ag in nanosilver suspensions for investigations of nanoparticle toxicity. We developed a method to measure dissolved Ag in Ag+/AgNPs mixtures by combining aggregation of AgNPs with centrifugation. We also describe the reproducible synthesis of stable, uncoated AgNPs. Uncoated AgNPs were quickly aggregated by 2 mM Ca2+, forming large clusters that could be sedimented in a low-speed centrifuge. At 20,100g, the sedimentation time of AgNPs was markedly reduced to 30 min due to Ca2+-mediated aggregation, confirmed by the measurements of Ag content in supernatants with graphite furnace atomic absorption spectrometry. No AgNPs were detected in the supernatant by UV-Vis absorption spectra after centrifuging the aggregates. Our approach provides a convenient and inexpensive way to separate dissolved Ag from AgNPs, avoiding long ultracentrifugation times or Ag+ adsorption to ultrafiltration membranes.

  12. Comparison of the compressive yield response of aggregated suspensions: Pressure filtration, centrifugation, and osmotic consolidation

    SciTech Connect

    Miller, K.T.; Melant, R.M.; Zukoski, C.F.

    1996-10-01

    The compressive rheological responses of suspensions containing flocculated kaolin, alumina (average particle sizes of 0.2 and 0.5 {micro}m), and hydrous zirconia (average particle sizes of 8, 57, and 139 nm) particles have been measured using three different techniques: pressure filtration, volume fraction profile during centrifugation, and sediment height during centrifugation at multiple spinning speeds. While the volume fraction profile technique appears to be experimentally most robust, equivalent responses are found using the different techniques, indicating that the compressive yield stress is a material property of a given suspension. The compressive yield stress of each suspension increases rapidly with volume fraction but cannot be generally described using simple power-law or exponential fits. The compressive yield stress also increases with the inverse square of particle size. The packing behavior of the suspensions undergoing osmotic consolidation is compared with the mechanical compressive yield response. Some suspensions exhibited the same packing behavior as in the mechanical techniques, while others consistently packed to higher densities during osmotic consolidation. Although equivalent osmotic and mechanical loads do not always result in the same volume fractions, the similar increases in volume fraction with applied driving force suggest that both the osmotic and mechanical techniques are controlled by the force needed to rearrange the particle network.

  13. Particle Formation and Aggregation of a Therapeutic Protein in Nanobubble Suspensions.

    PubMed

    Snell, Jared R; Zhou, Chen; Carpenter, John F; Randolph, Theodore W

    2016-10-01

    The generation of nanobubbles following reconstitution of lyophilized trehalose formulations has recently been reported. Here, we characterize particle formation and aggregation of recombinant human interleukin-1 receptor antagonist (rhIL-1ra) in reconstituted formulations of lyophilized trehalose. Particle characterization methods including resonant mass measurement and nanoparticle tracking analysis were used to count and size particles generated upon reconstitution of lyophilized trehalose formulations. In addition, accelerated degradation studies were conducted to monitor rhIL-1ra aggregation in solutions containing various concentrations of suspended nanobubbles. Reconstitution of lyophilized trehalose formulations with solutions containing rhIL-1ra reduced nanobubble concentrations and generated negatively buoyant particles attributed to aggregated rhIL-1ra. Furthermore, levels of rhIL-1ra aggregation following incubation in aqueous solution correlated with concentrations of suspended nanobubbles. The results of this study suggest that nanobubbles may be a contributor to protein aggregation and particle formation in reconstituted, lyophilized therapeutic protein formulations.

  14. Field induced aggregation in electrorheological suspension: kernel form and self similar solutions

    NASA Astrophysics Data System (ADS)

    Mimouni, Zineb; Limage, René

    2009-05-01

    Within the framework of the study of the fibrillation mechanism in an electrorheological (ER) suspension, this work presents a comparison between the self similar solutions when the kernel is K i, j ~ ( i -1 + j -1) and the behaviour of the chains growth. Till now, the field induced chains formation has only been studied by numerical or experimental methods. The work of Fournier and Laurençot (Communications in Mathematical Physics 256 2005) on the Smoluchowski’s equation allows us to present an analytical solution for the field induced pearl chains in a colloidal ER suspension.

  15. Theory of dielectrophoresis and aggregation in suspensions of highly polarized particles subjected to high-gradient AC electric fields

    NASA Astrophysics Data System (ADS)

    Jacqmin, David; Khusid, Boris; Acrivos, Andreas

    2001-11-01

    The proposed mathematical model of electro-hydrodynamic phenomena consists of strongly coupled field and flow equations supplemented by constitutive equations for the dielectric polarization and the field-induced contribution to the energy and stresses in a suspension in the presence of a time-varying electric field. The suspension is viewed as an effective Newtonian fluid with a concentration-dependent viscosity. The long-range hydrodynamic interactions of the particles subjected to shear are incorporated through the concentration dependence of the suspension viscosity, the hindrance function in the expression for the particle settling velocity, and the shear-induced diffusion of the particles. For the electric energy and stress, we employed the constitutive equations of our microscopic theory for the case of strong electric energy dissipation. The equation for the total particle flux includes the flux induced by the electric force exerted on a particle due to the gradient of its chemical potential in a spatially non-uniform electric field, the flux generated by the buoyancy force, and the particle shear-diffusion. We consider the specific case of low particle Reynolds numbers which is relevant to our current experiments. We investigated the situation of "heterogeneous aggregation" when the field-induced phase transitions occur in a thin layer adjacent to the electrodes. By comparing our theoretical predictions with the results of experiments on a rotating channel, we demonstrated that the model is capable of predicting a wide range of physical processes in a suspension of highly polarizable particles, in particular, the formation of highly concentrated particle layers on both the high-voltage and the grounded electrodes.

  16. Rapid kinetic labeling of Arabidopsis cell suspension cultures: Implications for models of lipid export from plastids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    T-87 suspension cell cultures are increasingly used in Arabidopsis research, but there are no reports describing their lipid composition or biosynthesis. To evaluate if T-87 cell cultures as a model system for analysis of lipid metabolism, including tests of gene candidate functions, we have deter...

  17. Biotechnological enhancement of capsaicin biosynthesis in cell suspension cultures of Naga King Chili (Capsicum chinense Jacq.).

    PubMed

    Kehie, Mechuselie; Kumaria, Suman; Tandon, Pramod

    2016-01-01

    Cell suspension cultures were initiated from hypocotyl derived callus to induce capsaicin biosynthesis in suspension cultures of Naga King Chili (Capsicum chinense Jacq.). Efficient capsaicin production with high growth index (GI) was obtained by exposing cells to salicylic acid (SA) and calcium channel modulators in suspension cultures. The time course of capsaicin formation is related to the cell growth profile in a batch culture. Cells cultivated in the standard medium (SM) initially showed low level of capsaicin yield during active growth. When the cells approached stationary phase, cell growth and cell viability decreased whereas capsaicin production increased continuously. In the fed-batch cultures, the highest capsaicin yield (567.4 ± 8.1 μgg(1) fresh weight) (f.wt) was obtained by feeding the cells with 1 mM SA. However, SA feeding during cultivation repressed the cell growth. Enhanced cell growth (3.1 ± 0.1 GI/culture) and capsaicin yield (534 ± 7.8 μgg(-1)f.wt) were obtained when the cells were fed with calcium ionophore A23187 (0.5 mM) on day 25 as compared to the control. Addition of the calcium channel blocker verapamil hydrochloride (100 mM) inhibited cell growth and capsaicin production in Naga King Chili suspension cell cultures.

  18. Suspension culture of pluripotent stem cells: effect of shear on stem cell fate.

    PubMed

    Keller, Kevin C; Rodrigues, Beatriz; zur Nieden, Nicole I

    2014-01-01

    Despite significant promise, the routine usage of suspension cell culture to manufacture stem cell-derived differentiated cells has progressed slowly. Suspension culture is an innovative way of either expanding or differentiating cells and sometimes both are combined into a single bioprocess. Its advantages over static 2D culturing include a homogeneous and controllable culture environment and producing a large quantity of cells in a fraction of time. This feature makes suspension cell culture ideal for use in stem cell research and eventually ideal in the large-scale production of differentiated cells for regenerative medicine. Because of their tremendous differentiation capacities and unlimited growth properties, pluripotent stem cells (PSCs) in particular are considered potential sources for future cell-replacement therapies. Currently, expansion of PSCs is accomplished in 2D, which only permits a limited amount of cell growth per culture flask before cells need to be passaged. However, before stem cells can be applied clinically, several aspects of their expansion, such as directed growth, but also differentiation, need to be better controlled. This review will summarize recent advantages in suspension culture of PSCs, while at the same time highlighting current challenges.

  19. Preprophase bands in a suspension culture of the monocot Spartina pectinata.

    PubMed

    Hogan, C J

    1988-03-01

    Continuous suspension cultures of the marsh grass Spartina pectinata grow as either unorganized colonies or files of cells. Immunofluorescence of tubulin revealed microtubule (MT) structures similar to those encountered in meristematic cells, including cortical microtubule (MT) bands in some interphase cells and in all prophase cells. These MT bands were judged to be preprophase bands (PPBs) on the basis of their temporal appearance in the cell cycle and their position and orientation relative to division planes. Although PPBs are widely thought to be associated with organized tissues and polarized divisions, there are reports of PPBs in suspension cultures of four dicot species. This is the first report of a PPB in suspension cultures of a monocot species.

  20. Particle Restabilization in Silica/PEG/Ethanol Suspensions: How Strongly do Polymers Need To Adsorb To Stabilize Against Aggregation?

    SciTech Connect

    Kim, So Youn; Zukoski, Charles F.

    2014-09-24

    We study the effects of increasing the concentration of a low molecular weight polyethylene glycol on the stability of 44 nm diameter silica nanoparticles suspended in ethanol. Polymer concentration, c{sub p}, is increased from zero to that characterizing the polymer melt. Particle stability is accessed through measurement of the particle second-virial coefficient, B{sub -2}, performed by light scattering and ultrasmall angle X-ray scattering (USAXS). The results show that at low polymer concentration, c{sub p} < 3 wt %, B{sub -2} values are positive, indicating repulsive interactions between particles. B{sub -2} decreases at intermediate concentrations (3 wt % < c{sub p} < 50 wt %), and particles aggregates are formed. At high concentrations (50 wt % < c{sub p}) B{sub -2} increases and stabilizes at a value expected for hard spheres with a diameter near 44 nm, indicating the particles are thermodynamically stable. At intermediate polymer concentrations, rates of aggregation are determined by measuring time-dependent changes in the suspension turbidity, revealing that aggregation is slowed by the necessity of the particles diffusing over a repulsive barrier in the pair potential. The magnitude of the barrier passes through a minimum at c{sub p} {approx} 12 wt % where it has a value of {approx}12kT. These results are understood in terms of a reduction of electrostatic repulsion and van der Waals attractions with increasing c{sub p}. Depletion attractions are found to play a minor role in particle stability. A model is presented suggesting displacement of weakly adsorbed polymer leads to slow aggregation at intermediate concentration, and we conclude that a general model of depletion restabilization may involve increased strength of polymer adsorption with increasing polymer concentration.

  1. Collective Promotion of Cell Proliferation in an Eukaryotic Suspension Culture

    NASA Astrophysics Data System (ADS)

    Franck, Carl

    2012-02-01

    We argue that the well known transition from slow to fast population growth with time in a well mixed suspension of the amoeba Dictyostelium discoideum relies on long range chemical communication, not cell contacts as we had argued earlier (Phys. Rev. E v. 77, 041905 (2008)). We show that while such a mode of communication is biochemically plausible, an explanation for the significant variation in growth we have measured is lacking. Since the transition density is low this system offers an elegantly simple example of a multicellular life process.

  2. Isolation and culture of protoplasts from embryogenic suspension cultures of red fescue (Festuca rubva L.).

    PubMed

    Zaghmout, O M; Torello, W A

    1990-10-01

    Protoplasts were isolated from fast-growing embryogenic suspension cultures of red fescue cv. Dawson (Festuca rubra L.) without agitation. The enzyme isolation solution was highly efficient at releasing protoplasts of greater than 95% viability (5×10(6)-10(7) protoplasts per ml of packed cell volume). A three step procedure was followed for washing and transferring protoplasts from a solution high in inorganic salts to a medium containing glucose and sucrose. The addition of 30 mM sodium thiosulfate to the wash and culture media was found to be helpful in reducing the number of lysed protoplasts. Isolated protoplasts began to divide within 48-72 h when protoplasts were plated in agarose squares and surrounded by nurse cells (mixed nurse plating technique). Maximum colony formation (plating efficiency) was approximately 1%. Many of the colonies continued to grow and produced embryos when transferred to a medium consisting of half-strength MS salts, 4 mg/l 2,4-D, 3 g/l casein hydrolysate and 30 g/l sucrose. Upon transfer to hormone-free medium and exposure to light 16 h/day, many of the embryos germinated to produce green leaves and roots.

  3. Impact of Environmental Conditions (pH, Ionic Strength, And Electrolyte Type) On The Surface Charge And Aggregation Of Silver Nanoparticles Suspensions

    EPA Science Inventory

    The impact of capping agents and environmental conditions (pH, ionic strength, and background electrolytes) on surface charge and aggregation potential of silver nanoparticles (AgNPs) suspensions were investigated. Capping agents are chemicals used in the synthesis of nanopartic...

  4. Culture medium refinement by dialysis for the expansion of human induced pluripotent stem cells in suspension culture.

    PubMed

    Nath, Suman Chandra; Nagamori, Eiji; Horie, Masanobu; Kino-Oka, Masahiro

    2017-01-01

    Human induced pluripotent stem cells (hiPSCs) secrete essential autocrine factors that are removed along with toxic metabolites when the growth medium is exchanged daily. In this study, after determining the minimum inhibitory level of lactic acid for hiPSCs, a medium refining system was constructed by which toxic metabolites were removed from used culture medium and autocrine factors as well as other growth factors were recycled. Specifically, about 87 % of the basic fibroblast growth factor and 80 % of transforming growth factor beta 1 were retained in the refined medium after dialysis. The refined medium efficiently potentiated the proliferation of hiPS cells in adherent culture. When the refining system was used to refresh medium in suspension culture, a final cell density of (1.1 ± 0.1) × 10(6) cells mL(-1) was obtained, with 99.5 ± 0.2 % OCT 3/4 and 78.3 ± 1.1 % TRA-1-60 expression, on day 4 of culture. These levels of expression were similar to those observed in the conventional suspension culture. With this method, culture medium refinement by dialysis was established to remove toxic metabolites, recycle autocrine factors as well as other growth factors, and reduce the use of macromolecules for the expansion of hiPSCs in suspension culture.

  5. Suspension stability and aggregation of multi-walled carbon nanotubes as affected by dissolved organic matters extracted from agricultural wastes.

    PubMed

    Li, Helian; Qiu, Yanhua; Wang, Xiaonuan; Liu, Wenhao; Chen, Guangcai; Ma, Yibing; Xing, Baoshan

    2016-03-01

    Dissolved organic matters (DOMs) extracted from wheat straw (SDOM) and cow manure (MDOM) were used to investigate their effects on the suspension stability and aggregation of multi-walled carbon nanotubes (MWCNTs). Two types of DOM can effectively disperse and stabilize the MWCNTs. At initial MWCNT concentration of 500 mg/L, suspended MWCNT concentration ranged from 8.0 to 17.9 mg/L as DOM were varied from 50 to 200 mg/L dissolved organic carbon (DOC). The critical coagulation concentration (CCC) values were estimated to be 41.4 mM NaCl and 5.3 mM CaCl2 in the absence of DOM. The presence of SDOM and MDOM significantly retarded the aggregation rate of MWCNTs. The CCC values increased to 120 mM NaCl and 14.8 mM CaCl2 at SDOM concentration of 20 mg/L DOC. Due to its higher aromaticity and molecular weight, MDOM showed higher ability to stabilize MWCNTs, with CCC values of 201 mM and 15.8 mM at 20 mg/L DOC. These findings revealed that DOMs originated from agricultural wastes will have great impact on the dispersion and stabilization of MWCNTs, thus their fate in the aquatic environment.

  6. Biolistic transformation of cotton embryogenic cell suspension cultures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic transformation of cotton is highly dependent on the ability to regenerate fertile plants from transgenic cells through somatic embryogenesis. Induction of embryogenic cell cultures is genotype-dependant. However, once embryogenic cell cultures are available, they can be effectively used fo...

  7. Abiotic elicitation of gymnemic acid in the suspension cultures of Gymnema sylvestre.

    PubMed

    Ch, Bhuvaneswari; Rao, Kiranmayee; Gandi, Suryakala; Giri, Archana

    2012-02-01

    Elicitation is one of the few strategies that find commercial application in the enhancement of secondary metabolite production from plants as well as cell culture systems. Due to their immense medicinal value, production of saponins in suspension cultures has been attempted by many researchers. Gymnema sylvestre is a rich source of gymnemic acids (saponins) that find application in the treatment of diabetes. The present study is an attempt to evaluate the effect of various metal salts (cadmium chloride, mercuric chloride, silver nitrate, cupric chloride, cobaltous chloride and calcium chloride) in eliciting the response from G. sylvestre suspension cultures. The maximum gymnemic acid production in the suspensions was achieved on day 12 of culture, though the maximum biomass was obtained on day 16. Among the different salts, CdCl(2) gave maximum response (59.97 mg/gDCW) at 2 mM concentration after a 24 h time period, while, AgNO(3) gave the least response (18.35 mg/gDCW) on incubation of 48 h at 1 mM concentration, in terms of gymnemic acid accumulation. The accumulation of gymnemic acid was found to be dependent on treatment time and concentration of the elicitor. The enhanced gymnemic acid production shown by the suspensions in response to the metal salts indicates their role in evoking the plant defense mechanisms. These elicitation studies help in providing a platform for improved commercial supply of bioactive gymnemic acids.

  8. Comparative metabolite profiling of the insecticide thiamethoxam in plant and cell suspension culture of tomato.

    PubMed

    Karmakar, Rajib; Bhattacharya, Ramcharan; Kulshrestha, Gita

    2009-07-22

    The metabolism of thiamethoxam [(EZ)-3-(2-chloro-1,3-thiazol-5-yl-methyl)-5-methyl-1,3,5-oxadiazinan-4-ylidene (nitro) amine] was investigated in whole plant, callus, and heterotrophic cell suspension culture of aseptically and field grown tomato (Lycopersicon esculentum Mill.) plants. The structure of the metabolites was elucidated by chromatographic (HPLC) and spectroscopic (IR, NMR, and MS) methods. Thiamethoxam metabolism proceeded by the formation of a urea derivative, a nitroso product, and nitro guanidine. Both urea and nitro guanidine metabolites further degraded in plants, and a mechanism has been proposed. In the plant, organ-specific differences in thiamethoxam metabolism were observed. Only one metabolite was formed in whole plant against four in callus and eight metabolites in cell suspension culture under aseptic conditions. Out of six metabolites of thiamethoxam in tomato fruits in field conditions, five were similar to those formed in the cell suspension culture. In the cell suspension culture, thiamethoxam degraded to maximum metabolites within 72 h, whereas in plants, such extensive conversion could only be observed after 10 days.

  9. Alternative Pathways for Ammonium Assimilation in Bouvardia ternifolia Cell Suspension Cultures.

    PubMed

    Murillo, E; Sánchez de Jiménez, E

    1984-11-01

    Cell suspension cultures of young leaves (L) and roots (R) of Bouvardia temifolia were cloned and their growth was followed, measuring cell volume and fresh weight. Both cultures were depleted of nitrogen and subcultured in different nitrogen sources. The enzymes for ammonium assimilation and the ammonium pools were measured during the growth cycle. Results indicate that the two ammonium assimilation pathways, the GS/GOGAT, and the GDH-GS, are functional in both cultures. The pathway used is dependent upon the tissue and the nitrogen source in the medium. GDH seems to have an anabolic role on root cultures and is regulated by the internal concentration of ammonium.

  10. Plant regeneration through somatic embryogenesis from suspension culture-derived protoplasts of Paspalum scrobiculatum L.

    PubMed

    Nayak, P; Sen, S K

    1991-09-01

    Protoplasts were released from embryogenic suspension culture of Paspalum scrobiculatum and cultured in either liquid or semisolid KM medium supplemented with 2,4-D in the dark at 24°C with or without a feeder layer. Cell wall formation was observed in 75% of the plated protoplasts. Microcolonies developed after 10 d of culture, which in turn formed callus upon transfer to M-2 medium (Nayak and Sen, 1989). The highest plating effeciency (ca 7%) was obtained in thin-layer liquid culture. The macrocalli formed somatic embryos which regenerated to plantlets. The plantlets were grown to flowering plants upon transfer to soil.

  11. Suspension culture of gametophytes of transgenic kelp in a photobioreactor.

    PubMed

    Gao, Jiangtao; Zhang, Yicheng; Wang, Honghua; Qin, Song

    2005-07-01

    Transgenic Laminaria japonica gametophytes producing a recombinant tissue-type plasminogen activator (rtPA) protein, which is an effective third-generation thrombolytic agent for acute myocardial infarction (AMI), were cultured in an illuminated bubble column bioreactor. A maximum final dry cell weight of 1120 mg l(-1) was obtained in batch culture with an initial dry cell weight of 126 mg l(-1) and with aeration rate of 1.2 l air min(-1 )l(-1) culture, nitrate at 1.5 mM: and phosphate at 0.17 mM: . The yield of rtPA was 56 microg g(-1) dry cell wt. This is the first report regarding cultivation of a transgenic macroalga in a bioreactor.

  12. Transient aggregation and long-time diffusion of bacterial suspensions in time periodic flows

    NASA Astrophysics Data System (ADS)

    Qin, Boyang; Winter, Rebecca; Gurjar, Madhura; Gagnon, David; Patteson, Alison; Arratia, Paulo

    2016-11-01

    In this talk, the transport dynamics of swimming bacteria in time-periodic flows is investigated in experiments and simulations. Experiments are performed by introducing swimming bacteria (Vibrio cholerae) in a low Reynolds number, two-dimensional flow driven electromagnetically. We observe two distinct transport regimes: (i) entrapment of bacteria inside vortex and near elliptic points and (ii) aggregation and subsequent transport along the flow manifolds. These time-dependent behaviors are set by the interaction between swimmer kinematics (e.g. speed, tumbling frequency, etc) and flow properties. Numerical simulation using a stochastic Langevin model are able to capture the main experimental results including the entrapment of bacteria near elliptic points and the rapid spreading along manifolds. Results show a significant reduction in long-time effective diffusion of the swimmer as vortex strength is increased. The conditions for bacterial entrapment in vortex flows are discussed.

  13. Somatic Embryogenesis of Date Palm (Phoenix dactylifera L.) Through Cell Suspension Culture.

    PubMed

    Naik, Poornananda M; Al-Khayri, Jameel M

    2016-01-01

    Date palm (Phoenix dactylifera L.) is the oldest and most economically important plant species distributed in the hot arid regions of the world. Propagation of date palm by seeds produces heterogeneous offspring with inferior field performance and poor fruit quality. Traditionally, date palm is propagated by offshoots, but this method is inefficient for mass propagation because of limited availability of offshoots. Plant regeneration through tissue culture is able to provide technologies for the large-scale propagation of healthy true-to-type plants. The most commonly used technology approach is somatic embryogenesis which presents a great potential for the rapid propagation and genetic resource preservation of this species. Significant progress has been made in the development and optimization of this regeneration pathway through the establishment of embryogenic suspension cultures. This chapter focuses on the methods employed for the induction of callus from shoot tip explants, establishment of cell suspension culture, and subsequent somatic embryogenesis and plant regeneration.

  14. Culture treatments for enhancing post-thaw recovery of cryopreserved suspension cells of potato cv. Desiree.

    PubMed

    Sadia, Bushra; Anthony, Paul; Lowe, Kenneth C; Power, J Brian; Davey, Michael R

    2003-01-01

    An efficient and reproducible protocol has been developed for the cryopreservation of cell suspension cultures of the potato (Solanum tuberosum L.) cv. Desiree. An evaluation was made of the effectiveness of different pre-culture and post-thaw treatments on cell growth, as measured by changes in biomass. Cell suspensions were cultured in UM medium supplemented with 0.25, 0.5, 0.625, 0.75 or 1.0 M sucrose prior to cryopreservation. Sucrose-treated cells were harvested from suspension and 0.75 ml packed cell volumes placed in 2 ml capacity polypropylene vials with 0.5 ml of chilled cryoprotectant (glycerol 46.0 g 1(-1), dimethylsulphoxide 39.0 g 1(-1), sucrose 342.0 g 1(-1) proline 5.0 g 1(-1); pH 5.8). Cells were frozen at -0.5 degrees C min(-1) from 0 to -35 degrees C, held at -35 degrees C for 35 min and stored, for 10 days, in liquid nitrogen (-196 degrees C). The most effective pre-treatment, in terms of subsequent post-thaw cell viability as assessed by fluorescein diacetate uptake or triphenyltetrazolium chloride reduction, was culture with 0.75 M sucrose. For this treatment, the mean absorbance (490 nm) following triphenyltetrazolium chloride reduction was 88% greater (p < 0.05) than control and 59% greater (p < 0.05) for thawed cells also cultured on supporting filter paper discs.

  15. Zinc tolerance and accumulation in stable cell suspension cultures and in vitro regenerated plants of the emerging model plant Arabidopsis halleri (Brassicaceae).

    PubMed

    Vera-Estrella, Rosario; Miranda-Vergara, Maria Cristina; Barkla, Bronwyn J

    2009-03-01

    Arabidopsis halleri is increasingly employed as a model plant for studying heavy metal hyperaccumulation. With the aim of providing valuable tools for studies on cellular physiology and molecular biology of metal tolerance and transport, this study reports the development of successful and highly efficient methods for the in vitro regeneration of A. halleri plants and production of stable cell suspension lines. Plants were regenerated from leaf explants of A. halleri via a three-step procedure: callus induction, somatic embryogenesis and shoot development. Efficiency of callus proliferation and regeneration depended on the initial callus induction media and was optimal in the presence of 1 mg L(-1) 2,4-dichlorophenoxyacetic acid, and 0.05 mg L(-1) benzylaminopurine. Subsequent shoot and root regeneration from callus initiated under these conditions reached levels of 100% efficiency. High friability of the callus supported the development of cell suspension cultures with minimal cellular aggregates. Characterization of regenerated plants and cell cultures determined that they maintained not only the zinc tolerance and requirement of the whole plant but also the ability to accumulate zinc; with plants accumulating up to 50.0 micromoles zinc g(-1) FW, and cell suspension cultures 30.9 micromoles zinc g(-1) DW. Together this work will provide the experimental basis for furthering our knowledge of A. halleri as a model heavy metal hyperaccumulating plant.

  16. Production of honokiol and magnolol in suspension cultures of Magnolia dealbata Zucc.

    PubMed

    Domínguez, Fabiola; Chivez, Marco; Garduñ-Ramírez, Maria Luisa; Chávez-Avila, Víctor M; Mata, Martin; Cruz-Sosa, Francisco

    2009-07-01

    Honokiol and magnolol, important anxiolytic and anti-cancer agents, have been produced in cell-suspension cultures of the endangered Mexican plant Magnolia dealbata Zucc. In vitro cultures of the plant were established, and the accumulation of honokiol and magnolol in callus and cell-suspension cultures was measured. Leaf samples were the best explants for callus establishment and metabolite production, and Murashige and Skoog medium supplemented with 1 mg/L 2, 4-dichlorophenoxyacetic acid and 1 mg/L kinetin yielded 2.3 mg/g of honokiol and 5.9 mg/g of magnolol. Bacterial and fungal contamination was inhibited with a multiple-step tissue sterilization procedure. Oxidation was inhibited with 1 g/L activated charcoal. Cell-suspension batch cultures derived from friable callus obtained from leaves of this species were grown for 30 days in shaker flasks containing Murashige and Skoog medium. Throughout the growth cycle, honokiol and magnolol levels, fresh and dry weight, and sucrose uptake were determined. The effects of carbon source concentration on biomass accumulation and the synthesis of bioactive compounds were studied. By using 3 mL of inocula supplemented with 3% (w/v) sucrose, maximum yields of honokiol (8.1 mg/g) and magnolol (13.4 mg/g) were obtained after 25 days. These yields were 300% and 382%, respectively, of the yields of honokiol and magnolol obtained from field-grown plants.

  17. Characterization of a H Efflux from Suspension-cultured Plant Cells.

    PubMed

    Fisher, M L; Albersheim, P

    1974-03-01

    A readily assayed H(+) efflux from sycamore (Acer pseudoplatanus), rye (Lolium perenne), and bean (Phaseolus vulgaris cultivars Red Kidney and Small White) suspension-cultured cells has been detected and partially characterized. The H(+) efflux has been shown to require a source of energy, to be significantly stimulated by Na(+) and Mg(2+) but not by K(+) and Ca(2+), and to have a pH optimum at 7. The study of this H(+) efflux was undertaken because the characteristics of auxin-induced growth and of H(+)-induced growth are sufficiently similar to suggest that a H(+) efflux may be an intermediate in the mechanism of auxin-induced growth. However, the H(+) efflux from these suspension-cultured cells was found to be insensitive to exogenously added hormones.

  18. Selection, Isolation, and Characterization of Cadmium-Resistant Datura innoxia Suspension Cultures 1

    PubMed Central

    Jackson, Paul J.; Roth, E. Jill; McClure, Peter R.; Naranjo, Cleo M.

    1984-01-01

    Datura innoxia cells from suspension cultures were selected for their ability to grow and divide rapidly in normally lethal concentrations of cadmium. Cells resistant to 12.5, 25, 50, 100, 160, 200, and 250 micromolar cadmium chloride were isolated and utilized to initiate cell suspension cultures resistant to this toxic metal ion. Variant cell lines retained their ability to grow in cadmium after being grown in its absence for more than 400 generations. Resistance to cadmium was correlated with the synthesis of low molecular weight, cysteine-rich, cadium-binding proteins. Synthesis of these proteins was induced rapidly in cadmium-resistant cells in response to a challenge of cadmium. Induction was detectable within one hour after exposure of the cells to the metal ion. Accumulation of protein bound cadmium reached a maximum eight to twelve hours following exposure. Metal-binding proteins were not detectable in the cadmium sensitive D. innoxia cells from which resistant cells were derived. PMID:16663759

  19. A microwell cell culture platform for the aggregation of pancreatic β-cells.

    PubMed

    Bernard, Abigail B; Lin, Chien-Chi; Anseth, Kristi S

    2012-08-01

    Cell-cell contact between pancreatic β-cells is important for maintaining survival and normal insulin secretion. Various techniques have been developed to promote cell-cell contact between β-cells, but a simple yet robust method that affords precise control over three-dimensional (3D) β-cell cluster size has not been demonstrated. To address this need, we developed a poly(ethylene glycol) (PEG) hydrogel microwell platform using photolithography. This microwell cell-culture platform promotes the formation of 3D β-cell aggregates of defined sizes from 25 to 210 μm in diameter. Using this platform, mouse insulinoma 6 (MIN6) β-cells formed aggregates with cell-cell adherin junctions. These naturally formed cell aggregates with controllable sizes can be removed from the microwells for macroencapsulation, implantation, or other biological assays. When removed and subsequently encapsulated in PEG hydrogels, the aggregated cell clusters demonstrated improved cellular viability (>90%) over 7 days in culture, while the β-cells encapsulated as single cells maintained only 20% viability. Aggregated MIN6 cells also exhibited more than fourfold higher insulin secretion in response to a glucose challenge compared with encapsulated single β-cells. Further, the cell aggregates stained positively for E-cadherin, indicative of the formation of cell junctions. Using this hydrogel microwell cell-culture method, viable and functional β-cell aggregates of specific sizes were created, providing a platform from which other biologically relevant questions may be answered.

  20. Isolation of fatty acids and aromatics from cell suspension cultures of Lavandula angustifolia.

    PubMed

    Topçu, Gülaçti; Herrmann, Gabriele; Kolak, Ufuk; Gören, C; Porzel, Andrea; Kutchan, Toni M

    2007-02-01

    Cell suspension cultures of Lavandula angustifolia Mill. ssp. angustifolia (syn.: L. officinalis Chaix.) afforded a fatty acid composition, cis and trans p-coumaric acids (=p-hydroxy cinnamic acids), and beta-sitosterol. The fatty acid composition was analyzed by GC-MS, and the structures of the isolated three compounds were determined by 1H- and 13C-NMR, and MS spectroscopic techniques.

  1. Induction of phytic acid synthesis by abscisic acid in suspension-cultured cells of rice.

    PubMed

    Matsuno, Koya; Fujimura, Tatsuhito

    2014-03-01

    A pathway of phytic acid (PA) synthesis in plants has been revealed via investigations of low phytic acid mutants. However, the regulation of this pathway is not well understood because it is difficult to control the environments of cells in the seeds, where PA is mainly synthesized. We modified a rice suspension culture system in order to study the regulation of PA synthesis. Rice cells cultured with abscisic acid (ABA) accumulate PA at higher levels than cells cultured without ABA, and PA accumulation levels increase with ABA concentration. On the other hand, higher concentrations of sucrose or inorganic phosphorus do not affect PA accumulation. Mutations in the genes RINO1, OsMIK, OsIPK1 and OsLPA1 have each been reported to confer low phytic acid phenotypes in seeds. Each of these genes is upregulated in cells cultured with ABA. OsITPK4 and OsITPK6 are upregulated in cells cultured with ABA and in developing seeds. These results suggest that the regulation of PA synthesis is similar between developing seeds and cells in this suspension culture system. This system will be a powerful tool for elucidating the regulation of PA synthesis.

  2. Degradation of Argininosuccinate Lyase by a Protease Synthesized in Soybean Cell Suspension Cultures 1

    PubMed Central

    Shargool, P. D.

    1975-01-01

    Suspension cultures of soybean (Glycine max L.) were shown to contain protease activity which could be inhibited by the addition of protease inhibitors such as p-hydroxymercuribenzoate and ethylenediaminetetraacetic acid. The use of these inhibitors, coupled with studies of the rate of degradation of argininosuccinate lyase (argininosuccinate-lyase = l-arginino-succinate arginine-lyase, EC 4.3.2.1) in extracts of cell cultures grown for 24 hours led to the hypothesis that a metal-dependent protease is synthesized by the cells after 24 hours of growth, to remove the lyase enzyme. PMID:16659138

  3. Purification and Characterization of Abundant Secreted Protein in Suspension-Cultured Pumpkin Cells 1

    PubMed Central

    Esaka, Muneharu; Enoki, Keiko; Kouchi, Bonko; Sasaki, Takuji

    1990-01-01

    The abundant secreted protein with molecular weight of 32,000 was purified from the culture medium of suspension-cultured pumpkin (Cucurbita sp.) cells. Two steps, ammonium sulfate fractionation and Sepharose 6B column chromatography, were sufficient for purification to homogeneity. Antibodies against the pure protein were used to show that a protein of the same size is made by callus cells. There is considerable homology between the amino-terminal amino acid sequence of this secreted protein and chitinase isolated from tobacco (Nicotiana tabacum L.) or bean (Phaseolus vulgaris L.). Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:16667554

  4. The effects of turbulent jet flows on plant cell suspension cultures

    PubMed

    MacLoughlin; Malone; Murtagh; Kieran

    1998-06-20

    Cell suspensions of Morinda citrifolia were subjected to turbulent flow conditions in a submerged jet apparatus, to investigate their hydrodynamic shear susceptibility. The suspensions were exposed to repeated, pressure-driven passages through a submerged jet. Two nozzles, of 1 mm and 2 mm diameter, were employed. Average energy dissipation rates were in the range 10(3)-10(5) W/kg and cumulative energy dissipation in the range 10(5)-10(7) J/m3. System response to the imposed conditions was evaluated in terms of suspension viability (determined using a dye exclusion technique) and variations in both chain length distribution and maximum chain length. Viability loss was well-described by a first-order model, and a linear relationship was identified between the specific death rate constant and the average energy dissipation rate. This relationship was consistent with results obtained using the same suspension cultures in a turbulent capillary flow device. Morphological measurements indicated that exposure to the hydrodynamic environment generated in the jet resulted in a significant reduction in both the average and maximum chain lengths, and the reduction in the maximum chain length was identified as an appropriate measure of sustained damage. Analysis of both viability and chain length in terms of cumulative energy dissipated revealed good agreement with results reported by other authors for morphologically different plant cell systems. Copyright 1998 John Wiley & Sons, Inc.

  5. A preparative suspension culture system permitting quantitation of anchorage-independent growth by direct radiolabeling of cellular DNA.

    PubMed

    Assoian, R K; Boardman, L A; Drosinos, S

    1989-02-15

    We have developed a hybrid methylcellulose/agar suspension culture system which permits long-term colony formation of transformed mesenchymal cells. In contrast to traditional agar suspensions, our system allows for recovery of cells and direct biochemical analysis of anchorage-independent growth. The ability to readily radiolabel cellular macromolecules in these preparative cultures permits a quantitative and objective analysis of colony formation by incorporation of [3H]thymidine into newly synthesized DNA.

  6. Cultural Heritage Content Re-Use: An Aggregators's Point of View

    NASA Astrophysics Data System (ADS)

    Gavrilis, D.; Ioannides, M.; Theofanous, E.

    2015-08-01

    This paper introduces a use case of re-using aggregated and enriched metadata for the tourism creative industry. The MORe aggregation and enrichment framework is presented along with an example for enriching cultural heritage objects harvested from a number of Omeka repositories. The enriched content is then published both to the EU Digital Library Europeana (http://www.europeana.eu) and to an Elastic Search component that feeds a portal aimed at providing tourists with interesting information.

  7. Jasmonic and salicylic acids enhanced phytochemical production and biological activities in cell suspension cultures of spine gourd (Momordica dioica Roxb).

    PubMed

    Chung, Ill-Min; Rekha, Kaliyaperumal; Rajakumar, Govindasamy; Thiruvengadam, Muthu

    2017-03-01

    In vitro cell suspension culture was established for the production of commercially valuable phytochemicals in Momordica dioica. The influence of elicitors in jasmonic acid (JA) and salicylic acid (SA) increased their effect on phytochemical production and biomass accumulation in M. dioica. The results indicate that compared with non-elicited cultures, JA- and SA-elicited cell suspension cultures had significantly enhanced phenolic, flavonoid, and carotenoid production, as well as antioxidant, antimicrobial, and antiproliferative activities. Furthermore, elicited cultures produced 22 phenolic compounds, such as flavonols, hydroxycinnamic acids, and hydroxybenzoic acids. Greater biomass production, phytochemical accumulation, and biological activity occurred in JA- than in SA-elicited cell cultures. This study is the first to successfully establish M. dioica cell suspension cultures for the production of phenolic compounds and carotenoids, as well as for biomass accumulation.

  8. [Significant improved anthocyanins biosynthesis in suspension cultures of Vitis vinifera by process intensification].

    PubMed

    Qu, Jun-Ge; Yu, Xing-Ju; Zhang, Wei; Jin, Mei-Fang

    2006-03-01

    The low-production is a ubiquitous problem and has prevented the commercialization of secondary metabolite production in plant cell culture. In order to examine the effective approaches to improvement of secondary metabolite production in plant cell culture, the investigation of anthocyanins accumulation in suspension cultures of Vitis vinifera, as a model system, had been initiated in our laboratory. In this present research, various elicitors and the precursor of phenylalanine were used in combination to enhance the anthocyanins production in suspension cultures of Vitis vinifera. And an integrated process with the combination of elicitation, precursor feeding and light irradiation was reported for rational bioprocess design. Among the combination treatment of phenylalanine feeding and several elicitors (methyl-beta-cyclodextrin, dextran T-40, methyl jasmonate, extracts of Aspergillus niger and Fusarium orthoceras), the combination with methyl jasmonate gave the highest anthocyanins production in suspension cultures of Vitis vinifera. When compared to the controls, the anthocyanins content (CV/g, FCW) and production (CV/L) increased by 2.7-fold and 3.4-fold, respectively. The optimum time for the addition of phenylalanine and methyl jasmonate was 4 days after inoculation. Two cell lines with different anthocyanins-producing capacity responded differently to the optimum combination treatment of 30 micromol/L phenylalanine feeding, 218 micromol/L methyl jasmonate elicitation and 3000 to approximately 4000 1x light illumination. The high-and low-anthocyanins-producing cell lines of VV05 and VV06 produced the maximum of 2975 and 4090 CV/L of anthocyanins that were 2.5- and 5.2-fold of the controls, respectively.

  9. Simplification of aggregate culture of human mesenchymal stem cells as a chondrogenic screening assay.

    PubMed

    Welter, Jean F; Solchaga, Luis A; Penick, Kitsie J

    2007-06-01

    Aggregate culture provides a three-dimensional (3-D) environment for differentiating or differentiated cells; it is particularly useful to study in vitro chondrogenesis and cartilage biology. We have recently ported this method from a conical tube-based format to a 96-well plate format for the study of mesenchymal stem cell (MSC) chondrogenesis. The microplate format has greatly reduced the workload and materials cost, while maintaining reproducible chondrogenic differentiation. A long-term goal is to fully automate aggregate culture--this requires critically identifying all the indispensable steps of the protocol. Robotic laboratory equipment for manipulating microplate assays are commercially available; however centrifugation steps are difficult to implement automatically. We, therefore, tested whether the centrifugation step can be eliminated, thus significantly streamlining the assay workflow. By comparing aggregates prepared from human bone marrow-derived MSCs (hMSCs) that were formed either through centrifugation or through free sedimentation, we found that both methods produce aggregates with similar formation kinetics, and that there was no perceptible difference in the timing of the appearance of markers of chondrogenesis. Thus, it appears safe to eliminate the centrifugation step from the aggregate culture protocol. This results in significant time and effort savings and paves the way for future full automation of the aggregate assay.

  10. Semicontinuous Bioreactor Production of Recombinant Butyrylcholinesterase in Transgenic Rice Cell Suspension Cultures

    PubMed Central

    Corbin, Jasmine M.; Hashimoto, Bryce I.; Karuppanan, Kalimuthu; Kyser, Zachary R.; Wu, Liying; Roberts, Brian A.; Noe, Amy R.; Rodriguez, Raymond L.; McDonald, Karen A.; Nandi, Somen

    2016-01-01

    An active and tetrameric form of recombinant butyrylcholinesterase (BChE), a large and complex human enzyme, was produced via semicontinuous operation in a transgenic rice cell suspension culture. After transformation of rice callus and screening of transformants, the cultures were scaled up from culture flask to a lab scale bioreactor. The bioreactor was operated through two phases each of growth and expression. The cells were able to produce BChE during both expression phases, with a maximum yield of 1.6 mg BChE/L of culture during the second expression phase. Cells successfully regrew during a 5-day growth phase. A combination of activity assays and Western blot analysis indicated production of an active and fully assembled tetramer of BChE. PMID:27066048

  11. Pseudomonas aeruginosa PAO1 preferentially grows as aggregates in liquid batch cultures and disperses upon starvation.

    PubMed

    Schleheck, David; Barraud, Nicolas; Klebensberger, Janosch; Webb, Jeremy S; McDougald, Diane; Rice, Scott A; Kjelleberg, Staffan

    2009-01-01

    In both natural and artificial environments, bacteria predominantly grow in biofilms, and bacteria often disperse from biofilms as freely suspended single-cells. In the present study, the formation and dispersal of planktonic cellular aggregates, or 'suspended biofilms', by Pseudomonas aeruginosa in liquid batch cultures were closely examined, and compared to biofilm formation on a matrix of polyester (PE) fibers as solid surface in batch cultures. Plankton samples were analyzed by laser-diffraction particle-size scanning (LDA) and microscopy of aggregates. Interestingly, LDA indicated that up to 90% of the total planktonic biomass consisted of cellular aggregates in the size range of 10-400 microm in diameter during the growth phase, as opposed to individual cells. In cultures with PE surfaces, P. aeruginosa preferred to grow in biofilms, as opposed to planktonicly. However, upon carbon, nitrogen or oxygen limitation, the planktonic aggregates and PE-attached biofilms dispersed into single cells, resulting in an increase in optical density (OD) independent of cellular growth. During growth, planktonic aggregates and PE-attached biofilms contained densely packed viable cells and extracellular DNA (eDNA), and starvation resulted in a loss of viable cells, and an increase in dead cells and eDNA. Furthermore, a release of metabolites and infective bacteriophage into the culture supernatant, and a marked decrease in intracellular concentration of the second messenger cyclic di-GMP, was observed in dispersing cultures. Thus, what traditionally has been described as planktonic, individual cell cultures of P. aeruginosa, are in fact suspended biofilms, and such aggregates have behaviors and responses (e.g. dispersal) similar to surface associated biofilms. In addition, we suggest that this planktonic biofilm model system can provide the basis for a detailed analysis of the synchronized biofilm life cycle of P. aeruginosa.

  12. Somatic embryogenesis and plant regeneration from cell suspension and tissue cultures of mature himalayan poplar (Populus ciliata).

    PubMed

    Cheema, G S

    1989-02-01

    Somatic embryogenesis and plantlet formation were obtained from callus and cell suspension cultures of 40-year- old Himalayan Poplar (Populus ciliata Wall ex Royle). Callus and cell suspensions were obtained by transfer of inoculum of semiorganized leaf cultures, which were maintained on Murashige and Skoog (MS) medium supplemented with benzylaminopurine (BAP), to MS with 2,4-dichlorophenoxyacetic acid (2,4-D). Reduction of 2,4-D concentration during subsequent subculture of cell suspensions resulted in the formation of embryoids. These embryoids developed further only after being transferred to agar-based MS medium supplemented with BAP and naphthalene acetic acid. Loss of embryogenic potential was observed in cell suspensions after 6 subcultures. However, callus cultures retained the embryogenic potential even after repeated subcultures for more than a year. Plantlets could be successfully hardened and grown in natural outdoor conditions.

  13. [Establishment of embryogenic cell suspension culture and plant regeneration of edible banana Musa acuminata cv. Mas (AA)].

    PubMed

    Wei, Yue-Rong; Huang, Xue-Lin; Li, Jia; Huang, Xia; Li, Zhe; Li, Xiao-Ju

    2005-01-01

    Conventional breeding for dual resistance of disease and pest of Musa cultivars remains a difficult endeavor, as the plant is polyploidic and high in sterility. Biotechnological techniques, eg., genetic engineering, in vitro mutation breeding, or protoplast fusion, may overcome the difficulties and improve the germplasm. Establishment of a stable embryogenic cell suspension (ECS) is a prerequisite for any of the biotechnological breeding methods. In this study an embryogenic cell suspension was established from immature male flower of Musa acuminata cv. Mas (AA), a popular commercial variety of banana in the South-East Asian region. After culture for 5-6 months on callus induction media, which consisted of MS salts, different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D), 4.1 micromol/L biotin, 5.7 micromol/L indoleacetic acid (IAA), 5.4 micromol/L naphthaleneacetic acid (NAA), other vitamins, 87 mmol/L sucrose, and solidified with 7 g/L agarose, meristematic globules and yellow, friable embryogenic cultures were induced from the explants of 1-15th row young floral hands of immature male flowers. Of the four treatments of 2,4-D, 9 micromol/L was the most effective on the callus induction, it transformed 40.96% and 7.45% of the cultivated male floral hands into callus and embryogenic callus respectively. The explants to produce highest frequency of the embryogenic calli were floral hands of 6 to 12th rows, which generated 5.79% of the embryogenic calli. Suspension cultures were initiated from these embryogenic calli in liquid medium supplemented with 4.5 micromol/L 2, 4-D. After sieving selection of the cultures using a stainless steel metallic strainer with pore sizes of 154 microm at 15 day intervals for 3 months, homogeneous and yellow embryogenic cell suspensions, composed of single cells and small cell aggregates, were established. Based upon the growth quantity and growth rate of ECS, it was determined that the appropriate inoculum was 2.0 mL PCV

  14. [Research on ursolic acid production of Eriobotrya japonica cell suspension culture in WAVE bioreactor].

    PubMed

    Li, Hui-hua; Yao, De-heng; Xu, Jian; Wang, Wei; Chang, Qiang; Su, Ming-hua

    2015-05-01

    Through scale-up cultivation of Eriobotrya japonica suspension cells using WAVE bioreactor, the cell growth and ursolic acid (UA) accumulation were studied. The comparison test was carried out in the flask and the reactor with cell dry weight (DW) and UA content as evaluation indexes. The culture medium, DW and UA content were compared in 1 L and 5 L working volumes of bioreactor. The orthogonal test with main actors of inoculation amount, speed and angle of rotation was developed to find the optimal combination, in 1 L working volume of bioreactor. DW of the cell growth and the UA content in bioreactor were higher than those of the shaker by 105.5% and 27.65% respectively. In bioreactor, the dynamic changes of elements in the fluid culture, the dry weight of the cell growth and the UA content in 1 L and 5 L working volumes were similar. Inoculation of 80 g, rotational speed of 26 r · min(-1), and angle of 6 ° was the optimal combination, and the cell biomass of 19.01 g · L(-1) and the UA content of 27.750 mg · g(-1) were achieved after 100 h cultivation in 1 L working volume of bioreactor. WAVE Bioreactor is more suitable than flasks for the E. japonica cell suspension culture, and culture parameters can be achieved from 1 L to 5 L amplification.

  15. Production of functional human vascular endothelial growth factor(165) in transgenic rice cell suspension cultures.

    PubMed

    Chung, Nguyen-Duc; Kim, Nan-Sun; Giap, Do Van; Jang, Seon-Hui; Oh, Sun-Mi; Jang, Sun-Hee; Kim, Tae-Geum; Jang, Yong-Suk; Yang, Moon-Sik

    2014-09-01

    Vascular endothelial growth factors (VEGFs) are secreted by tumor cells and other cells exposed to hypoxia, and play a critical role in the development and differentiation of the vascular system. In this study, we investigated the production of functional recombinant human VEGF165 (rhVEGF165) in transgenic rice cell suspension culture. Complementary DNA was synthesized from human leukemia HL60 cells and cloned into expression vectors under the control of the rice α-amylase 3D (RAmy3D) promoter. The rice seed (Oryza sativa L. cv. Dongjin) was transformed with this recombinant vector by the Agrobacterium mediated method and the integration of the target gene into the plant genome was confirmed by genomic PCR. The expression of rhVEGF165 in the rice cells was determined by Northern blot and Western blot analyses. The accumulated rhVEGF165 protein in the culture medium was 19 mg/L after 18 days of culturing in a sugar-free medium. The rhVEGF165 was purified using a heparin HP column and its biological activity was tested on human umbilical vein endothelial cells (HUVECs). The purified rhVEGF165 significantly increased the proliferative activity of the HUVECs. Therefore, it was demonstrated that functional rhVEGF165 could be produced using transgenic rice suspension culture vector under the control of the RAmy3D promoter.

  16. Large-scale mammalian cell culture: Design and use of an economical batch suspension system.

    PubMed

    Tolbert, W R; Schoenfeld, R A; Lewis, C; Feder, J

    1982-07-01

    Large-scale mammalian cell culture in the absence of antibiotics requires stringent conditions of sterility for all vessels, procedure, and systems used. Application of existing fermentation technology suffers from the differences between mammalian and bacterial cultures. Relatively simple and inexpensive 100-L vessels have been designed specifically for medium storage and antibiotic-free mammalian cell culture. These vessels are portable and sterilized in a 2 x 3 x 5 ft conventional or VACUMATIC autoclave. They consist of 30-gal 316 stainless-steel sanitary process drums whose heads have been modified to meet the rapid pressure changes that occur during autoclaving. The vessels incorporate systems for aseptic introduction and removal of both liquids and gases required for inoculation, growth, and harvesting of cell suspensions. A two-disk vibromixer is used for agitation with inoculation at a laminar flow hood and incubation in a warm room. These vessels have been used for culture of one rat and eight human tumor lines for over 2 x 10(5) L of suspension.

  17. Extensive proliferative capacity of single isolated CD34 human cord blood cells in suspension culture.

    PubMed

    Xiao, M; Broxmeyer, H E; Horie, M; Grigsby, S; Lu, L

    1994-01-01

    Nonadherent, low-density T-lymphocyte-depleted (NALT-) CD34 cells from normal human cord blood were assessed in suspension culture for the effects of recombinant cytokines on their proliferation, differentiation, and generation of myeloid progenitor cells. In this cell population, 82% of cells expressed c-kit protein as assessed by in situ hybridization, and their cloning efficiency was 85% when cells were plated at low cell numbers with combinations of growth factors. CD34 cells were sorted as 1, 5, or 10 cell(s) per well and also at 5000 cells per dish to initiate stromal-free suspension cultures in the presence of steel factor (SLF), interleukin (IL)-1 alpha, and IL-3. Forty-eight percent of the wells started with a single CD34 cell were positive for growth after 14 days, and the wells contained greater than 5 x 10(3) cells by 21-28 days. Progenitors were assayed weekly with cultures initiated with 1 or 5000 cells. While the fold expansion of nucleated cells was greater in cultures initiated with one cell per well (> 5000 compared to 791-fold expansion for 5000 cells), the fold expansion of progenitors was greater than 5000 cells were used to initiate cultures. Under optimal conditions, there was, respectively, a 160-, 164-, and 57-fold output of high proliferative potential colony-forming cells, granulocyte-macrophage colony-forming units, and erythroid burst-forming units/granulocyte erythroid macrophage megakaryocyte colony-forming units within 1-3 weeks for cultures initiated with 5000 CD34 cells compared with respective fold increases of 29, 16, and 1, for single-initiated cultures. These results demonstrate the expansion capacity of single CD34 cord blood cells and demonstrate that factors in addition to SLF, IL-1 alpha, and IL-3 are necessary for optimal expansion of progenitors from single isolated CD34 cells.

  18. Synthesis and Accumulation of Calmodulin in Suspension Cultures of Carrot (Daucus carota L.) 1

    PubMed Central

    Perera, Imara Y.; Zielinski, Raymond E.

    1992-01-01

    The expression of calmodulin mRNA and protein were measured during a growth cycle of carrot (Daucus carota L.) cells grown in suspension culture. A full-length carrot calmodulin cDNA clone isolated from a λgt10 library was used to measure steady-state calmodulin mRNA levels. During the exponential phase of culture growth when mitotic activity and oxidative respiration rates were maximal, calmodulin mRNA levels were 4- to 5-fold higher than they were during the later stages of culture growth, when respiration rates were lower and growth was primarily by cell expansion. Net calmodulin polypeptide synthesis, as measured by pulse-labeling in vivo with [35S]methionine, paralleled the changes in calmodulin steady-state mRNA level during culture growth. As a consequence, net calmodulin polypeptide synthesis declined 5- to 10-fold during the later stages of culture growth. The qualitative spectrum of polypeptides synthesized and accumulated by the carrot cells during the course of a culture cycle, however, remained largely unchanged. Calmodulin polypeptide levels, in contrast to its net synthesis, remained relatively constant during the exponential phases of the culture growth cycle and increased during the later stages of culture growth. Our data are consistent with increased calmodulin polypeptide turnover associated with periods of rapid cell proliferation and high levels of respiration. Images Figure 1 Figure 2 Figure 4 PMID:16653062

  19. Maintenance of undifferentiated mouse embryonic stem cells in suspension by the serum- and feeder-free defined culture condition

    PubMed Central

    Tsuji, Yukiiko; Yoshimura, Naoko; Aoki, Hitomi; Sharov, Alexei A.; Ko, Minoru S.H.; Motohashi, Tsutomu; Kunisada, Takahiro

    2008-01-01

    The proven pluripotency of ES cells is expected to allow their therapeutic use for regenerative medicine. We present here a novel suspension culture method that facilitates the proliferation of pluripotent ES cells without feeder cells. The culture medium contains polyvinyl alcohol (PVA), free of either animal-derived or synthetic serum, and contains very low amounts of peptidic or proteinaceous materials, which are favorable for therapeutic use. ES cells showed sustained proliferation in the suspension culture, and their undifferentiated state and pluripotency were experimentally verified. DNA microarray analyses showed a close relationship between the elevated expression of genes related to cell adhesions. We suggest that this suspension culture condition provides a better alternative to the conventional attached cell culture condition, especially for possible therapeutic use, by limiting the exposure of ES cells to feeder cells and animal products. PMID:18624284

  20. Enhanced Production of Anthraquinones and Phenolic Compounds and Biological Activities in the Cell Suspension Cultures of Polygonum multiflorum.

    PubMed

    Thiruvengadam, Muthu; Rekha, Kaliyaperumal; Rajakumar, Govindasamy; Lee, Taek-Jun; Kim, Seung-Hyun; Chung, Ill-Min

    2016-11-16

    Anthraquinones (AQs) and phenolic compounds are important phytochemicals that are biosynthesized in cell suspension cultures of Polygonum multiflorum. We wanted to optimize the effects of plant growth regulators (PGRs), media, sucrose, l-glutamine, jasmonic acid (JA), and salicylic acid (SA) for the production of phytochemicals and biomass accumulation in a cell suspension culture of P. multiflorum. The medium containing Murashige and Skoog (MS) salts and 4% sucrose supplemented with 1 mg/L 2,4-dichlorophenoxyacetic acid, 0.5 mg/L thidiazuron, and 100 µM l-glutamine at 28 days of cell suspension culture was suitable for biomass accumulation and AQ production. Maximum biomass accumulation (12.5 and 12.35 g fresh mass (FM); 3 and 2.93 g dry mass (DM)) and AQ production (emodin 295.20 and 282 mg/g DM; physcion 421.55 and 410.25 mg/g DM) were observed using 100 µM JA and SA, respectively. JA- and SA-elicited cell cultures showed several-fold higher biomass accumulation and AQ production than the control cell cultures. Furthermore, the cell suspension cultures effectively produced 23 phenolic compounds, such as flavonols and hydroxycinnamic and hydroxybenzoic acid derivatives. PGR-, JA-, and SA-elicited cell cultures produced a higher amount of AQs and phenolic compounds. Because of these metabolic changes, the antioxidant, antimicrobial, and anticancer activities were high in the PGR-, JA-, and SA-elicited cell cultures. The results showed that the elicitors (JA and SA) induced the enhancement of biomass accumulation and phytochemical (AQs and phenolic compounds) production as well as biological activities in the cell suspension cultures of P. multiflorum. This optimized protocol can be developed for large-scale biomass accumulation and production of phytochemicals (AQs and phenolic compounds) from cell suspension cultures, and the phytochemicals can be used for various biological activities.

  1. Enhanced Production of Anthraquinones and Phenolic Compounds and Biological Activities in the Cell Suspension Cultures of Polygonum multiflorum

    PubMed Central

    Thiruvengadam, Muthu; Rekha, Kaliyaperumal; Rajakumar, Govindasamy; Lee, Taek-Jun; Kim, Seung-Hyun; Chung, Ill-Min

    2016-01-01

    Anthraquinones (AQs) and phenolic compounds are important phytochemicals that are biosynthesized in cell suspension cultures of Polygonum multiflorum. We wanted to optimize the effects of plant growth regulators (PGRs), media, sucrose, l-glutamine, jasmonic acid (JA), and salicylic acid (SA) for the production of phytochemicals and biomass accumulation in a cell suspension culture of P. multiflorum. The medium containing Murashige and Skoog (MS) salts and 4% sucrose supplemented with 1 mg/L 2,4-dichlorophenoxyacetic acid, 0.5 mg/L thidiazuron, and 100 µM l-glutamine at 28 days of cell suspension culture was suitable for biomass accumulation and AQ production. Maximum biomass accumulation (12.5 and 12.35 g fresh mass (FM); 3 and 2.93 g dry mass (DM)) and AQ production (emodin 295.20 and 282 mg/g DM; physcion 421.55 and 410.25 mg/g DM) were observed using 100 µM JA and SA, respectively. JA- and SA-elicited cell cultures showed several-fold higher biomass accumulation and AQ production than the control cell cultures. Furthermore, the cell suspension cultures effectively produced 23 phenolic compounds, such as flavonols and hydroxycinnamic and hydroxybenzoic acid derivatives. PGR-, JA-, and SA-elicited cell cultures produced a higher amount of AQs and phenolic compounds. Because of these metabolic changes, the antioxidant, antimicrobial, and anticancer activities were high in the PGR-, JA-, and SA-elicited cell cultures. The results showed that the elicitors (JA and SA) induced the enhancement of biomass accumulation and phytochemical (AQs and phenolic compounds) production as well as biological activities in the cell suspension cultures of P. multiflorum. This optimized protocol can be developed for large-scale biomass accumulation and production of phytochemicals (AQs and phenolic compounds) from cell suspension cultures, and the phytochemicals can be used for various biological activities. PMID:27854330

  2. Accumulation of phenylpropanoid derivatives in chitosan-induced cell suspension culture of Cocos nucifera.

    PubMed

    Chakraborty, Moumita; Karun, Anitha; Mitra, Adinpunya

    2009-01-01

    Chitosan-induced elicitation responses of dark-incubated Cocos nucifera (coconut) endosperm cell suspension cultures led to the rapid formation of phenylpropanoid derivatives, which essentially mimics the defense-induced biochemical changes in coconut palm as observed under in vivo conditions. An enhanced accumulation of p-hydroxybenzoic acid as the major wall-bound phenolics was evident. This was followed by p-coumaric acid and ferulic acid. Along with enhanced peroxidases activities in elicited lines, the increase in activities of the early phenylpropanoid pathway enzymes such as, phenylalanine ammonia lyase (PAL), p-coumaroyl-CoA ligase (4CL) and p-hydroxybenzaldehyde dehydrogenase (HBD) in elicited cell cultures were also observed. Furthermore, supplementation of specific inhibitors of PAL, C4H and 4CL in elicited cell cultures led to suppressed accumulation of p-hydroxybenzoic acid, which opens up interesting questions regarding the probable route of the biosynthesis of this phenolic acid in C. nucifera.

  3. Uptake and metabolism of sugars by suspension-cultured catharanthus roseus cells

    SciTech Connect

    Ashihara, Hiroshi; Sagishima, Kyoko; Kubota, Kaoru )

    1989-04-01

    The Uptake and metabolism of sugars by suspension-cultured Catharanthus roseus cells were investigated. Substantially all the sucrose in the culture medium was hydrolyzed to glucose and fructose before being taken up by the cells. The activity of invertase bound to cell walls, determined in situ, was high at the early stage of culture. Glucose was more easily taken up by the cells than was fructose. Tracer experiments using (U-{sup 14}C)glucose and (U-{sup 14}C)fructose indicated that glucose is a better precursor for respiration than fructose, while fructose is preferentially utilized for the synthesis of sucrose, especially in the early phase of cell growth. These results suggest that fructose is utilized for the synthesis of sucrose via the reaction catalyzed by sucrose synthase, prior to the phosphorylation by hexokinase or fructokinase.

  4. Towards high-yield production of pharmaceutical proteins with plant cell suspension cultures.

    PubMed

    Xu, Jianfeng; Ge, Xumeng; Dolan, Maureen C

    2011-01-01

    "Molecular farming" in plants with significant advantages in cost and safety is touted as a promising platform for the production of complex pharmaceutical proteins. While whole-plant produced biopharmaceuticals account for a significant portion of the preclinical and clinical pipeline, plant cell suspension culture, which integrates the merits of whole-plant systems with those of microbial fermentation, is emerging as a more compliant alternative "factory". However, low protein productivity remains a major obstacle that limits extensive commercialization of plant cell bioproduction platform. This review highlights the advantages and recent progress in plant cell culture technology and outlines viable strategies at both the biological and process engineering levels for advancing the economic feasibility of plant cell-based protein production. Approaches to overcome and solve the associated challenges of this culture system that include non-mammalian glycosylation and genetic instability will also be discussed.

  5. Suspension cell culture in microgravity and development of a space bioreactor

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.

    1987-01-01

    NASA has methodically developed unique suspension type cell and recovery apparatus culture systems for bioprocess technology experiments and production of biological products in microgravity. The first space bioreactor has been designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small (500 ml) bioreactor is being constructed for flight experiments in the Shuttle middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption, and control of low shear stress on cells.

  6. Structural features and biological activity of xyloglucans from suspension-cultured plant cells.

    PubMed

    Joseleau, J P; Cartier, N; Chambat, G; Faik, A; Ruel, K

    1992-01-01

    Different xyloglucan (XG) fractions were isolated from Rubus fruticosus cells cultured in suspension. Sequential extraction showed that two distinct xyloglucans existed in the primary walls. The first could be easily extracted in alkali and the second was tightly associated to cellulose. A third fraction was isolated from the extracellular polysaccharides of the culture medium. The alkali-soluble XG and the extracellular XG showed many structural features in common. By use of an anti-XG polyclonal antibody, electron microscopy examination suggests that the extracellular hemicellulose is progressively released from the wall by a sloughing mechanism. Oligosaccharides prepared from the extracellular XG were purified and their structure examined by FAB-ms technique. When the nonasaccharide was added at low concentrations (10(-5) mg/ml) to the culture medium it was able to elicit several different glycanohydrolase activities associated to the cell wall.

  7. Serum-Free Suspension Culture of MDCK Cells for Production of Influenza H1N1 Vaccines.

    PubMed

    Huang, Ding; Peng, Wen-Juan; Ye, Qian; Liu, Xu-Ping; Zhao, Liang; Fan, Li; Xia-Hou, Kang; Jia, Han-Jing; Luo, Jian; Zhou, Lin-Ting; Li, Bei-Bei; Wang, Shi-Lei; Xu, Wen-Ting; Chen, Ze; Tan, Wen-Song

    2015-01-01

    Development of serum-free suspension cell culture processes is very important for influenza vaccine production. Previously, we developed a MDCK suspension cell line in a serum-free medium. In the present study, the growth kinetics of suspension MDCK cells and influenza virus production in the serum-free medium were investigated, in comparison with those of adherent MDCK cells in both serum-containing and serum-free medium. It was found that the serum-free medium supported the stable subculture and growth of both adherent and suspension cells. In batch culture, for both cell lines, the growth kinetics in the serum-free medium was comparable with those in the serum-containing medium and a commercialized serum-free medium. In the serum-free medium, peak viable cell density (VCD), haemagglutinin (HA) and median tissue culture infective dose (TCID50) titers of the two cell lines reached 4.51×106 cells/mL, 2.94Log10(HAU/50 μL) and 8.49Log10(virions/mL), and 5.97×106 cells/mL, 3.88Log10(HAU/50 μL), and 10.34Log10(virions/mL), respectively. While virus yield of adherent cells in the serum-free medium was similar to that in the serum-containing medium, suspension culture in the serum-free medium showed a higher virus yield than adherent cells in the serum-containing medium and suspension cells in the commercialized serum-free medium. However, the percentage of infectious viruses was lower for suspension culture in the serum-free medium. These results demonstrate the great potential of this suspension MDCK cell line in serum-free medium for influenza vaccine production and further improvements are warranted.

  8. Effect of Magnetic Nanoparticles on Tobacco BY-2 Cell Suspension Culture

    PubMed Central

    Krystofova, Olga; Sochor, Jiri; Zitka, Ondrej; Babula, Petr; Kudrle, Vit; Adam, Vojtech; Kizek, Rene

    2012-01-01

    Nanomaterials are structures whose exceptionality is based on their large surface, which is closely connected with reactivity and modification possibilities. Due to these properties nanomaterials are used in textile industry (antibacterial textiles with silver nanoparticles), electronics (high-resolution imaging, logical circuits on the molecular level) and medicine. Medicine represents one of the most important fields of application of nanomaterials. They are investigated in connection with targeted therapy (infectious diseases, malignant diseases) or imaging (contrast agents). Nanomaterials including nanoparticles have a great application potential in the targeted transport of pharmaceuticals. However, there are some negative properties of nanoparticles, which must be carefully solved, as hydrophobic properties leading to instability in aqueous environment, and especially their possible toxicity. Data about toxicity of nanomaterials are still scarce. Due to this fact, in this work we focused on studying of the effect of magnetic nanoparticles (NPs) and modified magnetic nanoparticles (MNPs) on tobacco BY-2 plant cell suspension culture. We aimed at examining the effect of NPs and MNPs on growth, proteosynthesis—total protein content, thiols—reduced (GSH) and oxidized (GSSG) glutathione, phytochelatins PC2-5, glutathione S-transferase (GST) activity and antioxidant activity of BY-2 cells. Whereas the effect of NPs and MNPs on growth of cell suspension culture was only moderate, significant changes were detected in all other biochemical parameters. Significant changes in protein content, phytochelatins levels and GST activity were observed in BY-2 cells treated with MNPs nanoparticles treatment. Changes were also clearly evident in the case of application of NPs. Our results demonstrate the ability of MNPs to negatively affect metabolism and induce biosynthesis of protective compounds in a plant cell model represented by BY-2 cell suspension culture. The

  9. Characterization of transmembrane auxin transport in Arabidopsis suspension-cultured cells.

    PubMed

    Seifertová, Daniela; Skůpa, Petr; Rychtář, Jan; Laňková, Martina; Pařezová, Markéta; Dobrev, Petre I; Hoyerová, Klára; Petrášek, Jan; Zažímalová, Eva

    2014-03-15

    Polar auxin transport is a crucial process for control and coordination of plant development. Studies of auxin transport through plant tissues and organs showed that auxin is transported by a combination of phloem flow and the active, carrier-mediated cell-to-cell transport. Since plant organs and even tissues are too complex for determination of the kinetics of carrier-mediated auxin uptake and efflux on the cellular level, simplified models of cell suspension cultures are often used, and several tobacco cell lines have been established for auxin transport assays. However, there are very few data available on the specificity and kinetics of auxin transport across the plasma membrane for Arabidopsis thaliana suspension-cultured cells. In this report, the characteristics of carrier-mediated uptake (influx) and efflux for the native auxin indole-3-acetic acid and synthetic auxins, naphthalene-1-acetic and 2,4-dichlorophenoxyacetic acids (NAA and 2,4-D, respectively) in A. thaliana ecotype Landsberg erecta suspension-cultured cells (LE line) are provided. By auxin competition assays and inhibitor treatments, we show that, similarly to tobacco cells, uptake carriers have high affinity towards 2,4-D and that NAA is a good tool for studies of auxin efflux in LE cells. In contrast to tobacco cells, metabolic profiling showed that only a small proportion of NAA is metabolized in LE cells. These results show that the LE cell line is a useful experimental system for measurements of kinetics of auxin carriers on the cellular level that is complementary to tobacco cells.

  10. Biochemical precursor effects on the fatty acid production in cell suspension cultures of Theobroma cacao L.

    PubMed

    Parra, O; Gallego, A M; Urrea, A; Rojas, L F; Correa, C; Atehortúa, L

    2017-02-01

    Cocoa butter (CB) is composed of 96% palmitic, stearic, oleic, linoleic and linolenic fatty acids that are responsible for the hardness, texture and fusion properties of chocolate. Through in vitro plant cell culture it is possible to modify CB lipid profiles and to study the fatty acid biosynthesis pathway on a subcellular level, evaluating fundamental aspects to enhance in vitro fatty acid production in a specific and controlled way. In this research, culture media was supplemented with acetate, biotin, pyruvate, bicarbonate and glycerol at three different concentrations and the effects on the biomass production (g/L), cell viability, and fatty acids profile and production was evaluated in in vitro cell suspensions culture. It was found that biotin stimulated fatty acid synthesis without altering cell viability and cell growth. It was also evident a change in the lipid profile of cell suspensions, increasing middle and long chain fatty acids proportion, which are unusual to those reported in seeds; thus implying that it is possible to modify lipid profiles according to the treatment used. According to the results of sucrose gradients and enzyme assays performed, it is proposed that cacao cells probably use the pentose phosphate pathway, mitochondria being the key organelle in the carbon flux for the synthesis of reductant power and fatty acid precursors.

  11. Evaluation of Simulated Microgravity Environments Induced by Diamagnetic Levitation of Plant Cell Suspension Cultures

    NASA Astrophysics Data System (ADS)

    Kamal, Khaled Y.; Herranz, Raúl; van Loon, Jack J. W. A.; Christianen, Peter C. M.; Medina, F. Javier

    2016-06-01

    Ground-Based Facilities (GBF) are essetial tools to understand the physical and biological effects of the absence of gravity and they are necessary to prepare and complement space experiments. It has been shown previously that a real microgravity environment induces the dissociation of cell proliferation from cell growth in seedling root meristems, which are limited populations of proliferating cells. Plant cell cultures are large and homogeneous populations of proliferating cells, so that they are a convenient model to study the effects of altered gravity on cellular mechanisms regulating cell proliferation and associated cell growth. Cell suspension cultures of the Arabidopsis thaliana cell line MM2d were exposed to four altered gravity and magnetic field environments in a magnetic levitation facility for 3 hours, including two simulated microgravity and Mars-like gravity levels obtained with different magnetic field intensities. Samples were processed either by quick freezing, to be used in flow cytometry for cell cycle studies, or by chemical fixation for microscopy techniques to measure parameters of the nucleolus. Although the trend of the results was the same as those obtained in real microgravity on meristems (increased cell proliferation and decreased cell growth), we provide a technical discussion in the context of validation of proper conditions to achieve true cell levitation inside a levitating droplet. We conclude that the use of magnetic levitation as a simulated microgravity GBF for cell suspension cultures is not recommended.

  12. Saccharomyces cerevisiae gene expression changes during rotating wall vessel suspension culture

    NASA Technical Reports Server (NTRS)

    Johanson, Kelly; Allen, Patricia L.; Lewis, Fawn; Cubano, Luis A.; Hyman, Linda E.; Hammond, Timothy G.

    2002-01-01

    This study utilizes Saccharomyces cerevisiae to study genetic responses to suspension culture. The suspension culture system used in this study is the high-aspect-ratio vessel, one type of the rotating wall vessel, that provides a high rate of gas exchange necessary for rapidly dividing cells. Cells were grown in the high-aspect-ratio vessel, and DNA microarray and metabolic analyses were used to determine the resulting changes in yeast gene expression. A significant number of genes were found to be up- or downregulated by at least twofold as a result of rotational growth. By using Gibbs promoter alignment, clusters of genes were examined for promoter elements mediating these genetic changes. Candidate binding motifs similar to the Rap1p binding site and the stress-responsive element were identified in the promoter regions of differentially regulated genes. This study shows that, as in higher order organisms, S. cerevisiae changes gene expression in response to rotational culture and also provides clues for investigations into the signaling pathways involved in gravitational response.

  13. Salicylic Acid induces cyanide-resistant respiration in tobacco cell-suspension cultures.

    PubMed

    Kapulnik, Y; Yalpani, N; Raskin, I

    1992-12-01

    Cyanide-resistant, alternative respiration in Nicotiana tabacum L. cv Xanthi-nc was analyzed in liquid suspension cultures using O(2) uptake and calorimetric measurements. In young cultures (4-8 d after transfer), cyanide inhibited O(2) uptake by up to 40% as compared to controls. Application of 20 mum salicylic acid (SA) to young cells increased cyanide-resistant O(2) uptake within 2 h. Development of KCN resistance did not affect total O(2) uptake, but was accompanied by a 60% increase in the rate of heat evolution from cells as measured by calorimetry. This stimulation of heat evolution by SA was not significantly affected by 1 mm cyanide, but was reduced by 10 mm salicylhydroxamic acid (SHAM), an inhibitor of cyanide-resistant respiration. Treatment of SA-induced or uninduced cells with a combination of cyanide and SHAM blocked most of the O(2) consumption and heat evolution. Fifty percent of the applied SA was taken up within 10 min, with most of the intracellular SA metabolized in 2 h. 2,6-Dihydroxybenzoic and 4-hydroxybenzoic acids also induced cyanide-resistant respiration. These data indicate that in tobacco cell-suspension culture, SA induces the activity and the capacity of cyanide-resistant respiration without affecting the capacity of the cytochrome c respiration pathway.

  14. Evaluation of Antioxidant and Antibacterial Potentials of Nigella sativa L. Suspension Cultures under Elicitation

    PubMed Central

    Chaudhry, Hera; Fatima, Nida; Ahmad, Iffat Zareen

    2015-01-01

    Nigella sativa L. (family Ranunculaceae) is an annual herb of immense medicinal properties because of its major active components (i.e., thymoquinone (TQ), thymohydroquinone (THQ), and thymol (THY)). Plant tissue culture techniques like elicitation, Agrobacterium mediated transformation, hairy root culture, and so on, are applied for substantial metabolite production. This study enumerates the antibacterial and antioxidant potentials of N. sativa epicotyl suspension cultures under biotic and abiotic elicitation along with concentration optimization of the elicitors for enhanced TQ and THY production. Cultures under different concentrations of pectin and manganese chloride (MnCl2) elicitation (i.e., 5 mg/L, 10 mg/L, and 15 mg/L) showed that the control, MnCl2 10 mg/L, and pectin 15 mg/L suspension extracts greatly inhibited the growth of E. coli, S. typhimurium, and S. aureus (MIC against E. coli, i.e., 2.35 ± 0.8, 2.4 ± 0.2, and 2.46 ± 0.5, resp.). Elicitation decreased SOD enzyme activity whereas CAT enzyme activity increased remarkably under MnCl2 elicitation. MnCl2 10 mg/L and pectin 15 mg/L elicitation enhanced the DPPH radical inhibition ability, but ferric scavenging activity was comparable to the control. TQ and THY were quantified by LC-MS/MS in the cultures with high bioactive properties revealing maximum content under MnCl2 10 mg/L elicitation. Therefore, MnCl2 elicitation can be undertaken on large scale for sustainable metabolite production. PMID:26347883

  15. Determination of triterpenic acids and screening for valuable secondary metabolites in Salvia sp. suspension cultures.

    PubMed

    Kümmritz, Sibylle; Haas, Christiane; Pavlov, Atanas I; Geib, Doris; Ulber, Roland; Bley, Thomas; Steingroewer, Juliane

    2014-01-01

    Plant in vitro cultures are a prospective alternative for biochemicals production, for example the triterpenes oleanolic and ursolic acid present in plants and cell cultures of Salvia sp. Our objective was to develop a suitable analysis protocol for evaluation of triterpenic acid yield in plant raw material and in vitro cultures supporting selection processes. Moreover, valuable bioactive compounds had to be revealed. Thus, different strategies enhancing the separation for a sensitive and effective HPLC-UV method were investigated and the developed method was validated for linearity, precision, accuracy, limits of detection and quantification. A baseline separation of these isomers enabled detection limits of below 0.4 microg/mL and quantification limits of about 1.2 microg/mL. Over the tested concentration range a good linearity was observed (R2 > 0.9999). The variations in the method were below 6% for intra- and inter-day assays of concentration. Recoveries were between 85-98% for both compounds using ethanol as extraction solvent. Additionally, metabolite profiling of cell suspension culture extracts by GC-MS has shown the production variability of different plant metabolites and especially the presence of plant phenols and sterols. These studies provide a method suitable for screening plant and cell culture productivity of triterpenic acids and highlighted interesting co-products of plant cell cultures.

  16. Aggregation and deformation of red blood cells as probed by a laser light scattering technique in a concentrated suspension: comparison between normal and pathological red blood cells

    NASA Astrophysics Data System (ADS)

    Gandjbakhche, Amir H.; Othmane, Ali; Mills, Pierre; Snabre, Patrick; Dufaux, Jacques

    1994-07-01

    Changes in aggregability and/or deformability of red blood cells (RBC) can cause severe complications in blood circulation. We use a laser light scattering technique, which can distinguish between normal and pathological RBCs by studying the angular distributions of backscattered and transmitted light of concentrated suspensions of RBCs submitted to a simple shear flow. In order to study the deformation, we induced partial rigidity in the RBC membrane, and showed that the gradients of deformation and the relaxation times of normal and partially rigidified RBC membranes can be quantified using a non-Newtonian rheological model. We observe that blood aggregation of patients with `microcirculatory' diseases, such as diabetes, differs from that of healthy individuals.

  17. Production of Gymnemic Acid from Cell Suspension Cultures of Gymnema sylvestre.

    PubMed

    Nagella, Praveen; Dandin, Vijayalaxmi S; Murthy, Hosakatte Niranjana

    2016-01-01

    Gymnema sylvestre R. Br. is a popular herbal medicine. It has been used in ayurvedic system of medicine for thousands of years. It is popularly called as "Gur-mar" for its distinctive property of temporarily destroying the taste of sweetness and is used in the treatment of diabetes. The leaves of gymnema possess antidiabetic, antimicrobial, anti-hypercholesterolemic, anti-sweetener, anti-inflammatory, and hepatoprotective properties and have traditional uses in the treatment of asthma, eye complaints, and snake bite. The leaves contain triterpene saponins such as gymnemic acid which is an active ingredient of Gymnema. Since the cultivation of G. sylvestre is a very slow process and the content of gymnemic acid depends on the environmental factors, cell suspension culture is sought as an alternative means for the production of Gymnema biomass and to enhance the gymnemic acid content. In this chapter, the methods employed for the induction of callus and subsequent establishment of cell suspension cultures for the production of biomass and analysis of gymnemic acid using high performance liquid chromatography are described.

  18. Effect of cultured autologous oral keratinocyte suspension in fibrin glue on oral wound healing in rabbits.

    PubMed

    Lis, G J; Zarzecka, J; Litwin, J A; Jasek, E; Cichocki, T; Zapała, J

    2012-09-01

    The effect of cultured autologous oral keratinocyte suspension in fibrin glue on the healing of surgically produced oral mucosal wounds was assessed in the rabbit model. Using the light microscope and a digital image analysis system, the epithelization parameters (marginal epithelization and percentage of wound re-epithelization) were measured in haematoxylin-eosin stained sections of the wound area and compared with those of wounds treated with fibrin glue alone and untreated ones. The epithelization was significantly higher in keratinocytes plus fibrin glue-treated wounds on postoperative days 3 and 7. No significant differences were observed on postoperative day 1, when the healing process had just begun, and on postoperative day 14, when re-epithelization was completed or nearly completed in all groups. The inflammatory infiltration of the wounded mucosa was weakest in keratinocyte-treated wounds and strongest in untreated wounds. In conclusion, suspension of cultured autologous oral keratinocytes in fibrin glue significantly accelerates oral wound healing in the rabbit model and could be beneficial in the treatment of oral wounds in patients.

  19. Acid-growth response and alpha-expansins in suspension cultures of bright yellow 2 tobacco

    NASA Technical Reports Server (NTRS)

    Link, B. M.; Cosgrove, D. J.

    1998-01-01

    The possibility that Bright Yellow 2 (BY2) tobacco (Nicotiana tabacum L.) suspension-cultured cells possess an expansin-mediated acid-growth mechanism was examined by multiple approaches. BY2 cells grew three times faster upon treatment with fusicoccin, which induces an acidification of the cell wall. Exogenous expansins likewise stimulated BY2 cell growth 3-fold. Protein extracted from BY2 cell walls possessed the expansin-like ability to induce extension of isolated walls. In western-blot analysis of BY2 wall protein, one band of 29 kD was recognized by anti-expansin antibody. Six different classes of alpha-expansin mRNA were identified in a BY2 cDNA library. Northern-blot analysis indicated moderate to low abundance of multiple alpha-expansin mRNAs in BY2 cells. From these results we conclude that BY2 suspension-cultured cells have the necessary components for expansin-mediated cell wall enlargement.

  20. A culture filtrate of Phytophthora infestans primes defense reaction in potato cell suspensions.

    PubMed

    Val, F; Desender, S; Bernard, K; Potin, P; Hamelin, G; Andrivon, D

    2008-06-01

    Priming of defense reactions by an elicitor results in an enhanced ability of the plant to respond to subsequent pathogen challenges. We previously showed that application of lipopolysaccharides (LPS) to potato cell suspensions causes apoplastic acidification, but does not stimulate lipoxygenase (LOX) activity. Here, we tested the ability of various elicitors to prime and elicit defense reactions in potato cell suspensions. Adding 20 microg ml(1) LPS, laminarin, harpin N, or a concentrated culture filtrate (CCF) of Phytophthora infestans to cell cultures 18 h before a second elicitation with LPS did not alter the intensity of apoplastic acidification compared with a single LPS application. Conversely, high concentrations (200 or 400 microg ml(1)) of LPS, laminarin, and harpin N activated LOX in cells pretreated with 1 microg ml(1) CCF, but not in cells pretreated with LPS, laminarin, or harpin N. LOX response was maximal in pretreated cells of potato cv. Bintje when the second elicitation occurred 18 to 24 h after CCF application. These results showed that LOX activation is primed in potato cells by CCF, but not by LPS, harpin N, or laminarin. Finally, bioassays showed a slightly greater reduction of rot weight in half tubers treated with CCF followed by LPS before inoculation with Pectobacterium atrosepticum than in half tubers treated with either preparation alone, indicating a priming effect of CCF on both LOX induction and disease suppression.

  1. Characterization of anthocyanic vacuolar inclusions in Vitis vinifera L. cell suspension cultures.

    PubMed

    Conn, Simon; Franco, Chris; Zhang, Wei

    2010-05-01

    Anthocyanic vacuolar inclusions (AVIs) are intra-vacuolar structures capable of concentrating anthocyanins and are present in over 50 of the highest anthocyanin-accumulating plant species. Presence of AVIs alters pigment intensity, total anthocyanin levels, pigment hue and causes bathochromic shifts in a spatio-temporal manner within various flowers, vegetables and fruits. A year-long study on Vitis vinifera cell suspension cultures found a strong correlation between AVI prevalence and anthocyanin content, but not the number of pigmented cells, growth rate or stilbene content. Furthermore, enhancement of the prevalence of AVIs and anthocyanins was achieved by treatment of V. vinifera cell suspension cultures with sucrose, jasmonic acid and white light. A unique autofluorescence of anthocyanins was used to demonstrate microscopically that AVIs proceed from the cytosol across the tonoplast and were able to coalesce intravacuolarly, with fewer, larger AVIs predominating as cells mature. Purification and characterisation of these bodies were performed, showing that they were dense, highly organic structures, with a lipid component indicative of membrane-encasement. These purified AVIs were also shown to comprise long-chain tannins and possessed an increased affinity for binding acylated anthocyanins, though no unique protein component was detected.

  2. Isolation of a Kaurene Synthetase Inhibitor from Castor Bean Seedlings and Cell Suspension Cultures

    PubMed Central

    Gafni, Yedidya; Shechter, Ishaiahu

    1981-01-01

    Biosynthesis of ent-kaurene was investigated in extracts of cell suspension cultures and seedlings of castor bean. Both cell-free extracts contain an inhibitor of kaurene synthetase. The inhibition affects mainly the cyclization of geranylgeranyl pyrophosphate to copalyl pyrophosphate (activity A) and has little or no effect on the further cyclization of copalyl pyrophosphate to ent-kaurene (activity B) in both castor bean and Fusarium moniliforme cell-free enzyme preparations. In castor bean cell suspension cultures, the inhibitor diffuses out of the cells to the growth medium. The inhibitor is stable to 100 C heat treatment for 10 minutes and exposure to pH values of 2.0 or 13.0, and it diffuses through a dialysis bag (104-dalton cutoff). Gel filtration chromatography of the inhibitor on a calibrated Bio-Gel P-10 column indicated a molecular weight of 7,500. Kinetic studies indicate that the inhibition of activity of A of kaurene synthetase is noncompetitive and reversible. PMID:16661830

  3. Enhanced camptothecin production by ethanol addition in the suspension culture of the endophyte, Fusarium solani.

    PubMed

    Venugopalan, Aarthi; Srivastava, Smita

    2015-01-01

    Ethanolic extract of a non-camptothecin producing plant, Catharanthus roseus when added in the suspension culture of the endophyte Fusarium solani known to produce camptothecin, resulted in enhanced production of camptothecin by 10.6-fold in comparison to that in control (2.8 μg/L). Interestingly, addition of pure ethanol (up to 5% v/v) in the suspension culture of F. solani resulted in maximum enhancement in camptothecin production (up to 15.5-fold) from that obtained in control. In the presence of ethanol, a reduced glucose uptake (by ∼ 40%) and simultaneous ethanol consumption (up to 9.43 g/L) was observed during the cultivation period (14 days). Also, the total NAD level and the protein content in the biomass increased by 3.7- and 1.9-fold, respectively, in comparison to that in control. The study indicates a dual role of ethanol, presumably as an elicitor and also as a carbon/energy source, leading to enhanced biomass and camptothecin production.

  4. [Effects of media on the production of flavonoids by suspension cultures of Saussurea medusa].

    PubMed

    Zhao, D X; Li, M Y

    2000-01-01

    Flavonoids were produced from cell suspension cultures of Saussurea medusa. The results of studies on eight types of culture media showed that the MS medium was the best for cell growth and flavonoids formation, We investigated the effects of all the components of MS medium on the cell growth and flavonoids production, and found that carbon, nitrogen and phytohormone had especially marked effects. With MG medium a modified MS medium, the yield of cell growth was 24.8 g(dwt)/L, with MP medium another modified MS mediums, the yield of flavonoids production was 1. 75 g/L. The yield of cell growth and flavonoids production in MG and MP medium were 32% and 70% higher than that in MS medium respectively.

  5. Mineral Nutrient Requirements of a Loblolly Pine (Pinus taeda) Cell Suspension Culture 1

    PubMed Central

    Teasdale, Robert D.; Dawson, Pamela A.; Woolhouse, Harold W.

    1986-01-01

    The mineral nutrient requirements of Pinus taeda cells were explored using quantitative cell culture growth measurements. An appraisal was thereby made of the critical features of a novel and successful medium which was developed specifically for this gymnosperm using chemical composition data for developing seeds, and characterized by generally high concentration of all micronutrients, high magnesium, and low calcium. The high magnesium concentration was found not to be detrimental and possibly beneficial whereas the calcium level bordered on a deficiency threshold. Within the microelements high iodide was found to be essential, as was a higher borate level than is present in media developed for angiosperms. High zinc concentrations were also beneficial, with normal levels permitting slower but nevertheless healthy growth. An improved medium was thereby formulated which was stress-free and exhibited broader genotype specificity. This new formulation has proved very successful in maintaining long-term growth of highly uniform and apparently meristematic suspension cultures of Pinus radiata. PMID:16665170

  6. Enhanced rosmarinic acid production by Lavandula vera MM cell suspension culture through elicitation with vanadyl sulfate.

    PubMed

    Georgiev, Milen; Kuzeva, Sonya; Pavlov, Atanas; Kovacheva, Elena; Ilieva, Mladenka

    2006-01-01

    The influence of elicitation on rosmarinic acid biosynthesis by Lavandula vera MM cell suspension culture was investigated using vanadyl sulfate as an abiotic elicitor. It was established that 12 h after treatment with 25 mg/l vanadyl sulfate the rosmarinic acid production was increased up to 3.92 g/l (2.8 times higher compared to the control cultivation). No significant amounts of rosmarinic acid were detected in the culture medium in comparison with its intracellular content. However, it was observed that the extracellular content of rosmarinic acid is 3.3 times higher compared to the control variant (4 h after treatment at elicitor concentration 25 mg/l).

  7. Methods for suspension culture, protoplast extraction, and transformation of high-biomass yielding perennial grass Arundo donax.

    PubMed

    Pigna, Gaia; Dhillon, Taniya; Dlugosz, Elizabeth M; Yuan, Joshua S; Gorman, Connor; Morandini, Piero; Lenaghan, Scott C; Stewart, C Neal

    2016-12-01

    Arundo donax L. is a promising biofuel feedstock in the Mediterranean region. Despite considerable interest in its genetic improvement, Arundo tissue culture and transformation remains arduous. The authors developed methodologies for cell- and tissue culture and genetic engineering in Arundo. A media screen was conducted, and a suspension culture was established using callus induced from stem axillary bud explants. DBAP medium, containing 9 µM 2,4-D and 4.4 µM BAP, was found to be the most effective medium among those tested for inducing cell suspension cultures, which resulted in a five-fold increase in tissue mass over 14 days. In contrast, CIM medium containing 13 µM 2,4-D, resulted in just a 1.4-fold increase in mass over the same period. Optimized suspension cultures were superior to previously-described solidified medium-based callus culture methods for tissue mass increase. Suspension cultures proved to be very effective for subsequent protoplast isolation. Protoplast electroporation resulted in a 3.3 ± 1.5% transformation efficiency. A dual fluorescent reporter gene vector enabled the direct comparison of the CAMV 35S promoter with the switchgrass ubi2 promoter in single cells of Arundo. The switchgrass ubi2 promoter resulted in noticeably higher reporter gene expression compared with that conferred by the 35S promoter in Arundo.

  8. Characterization of fullerene colloidal suspension in a cell culture medium for in vitro toxicity assessment.

    PubMed

    Kato, Haruhisa; Shinohara, Naohide; Nakamura, Ayako; Horie, Masanori; Fujita, Katsuhide; Takahashi, Kayori; Iwahashi, Hitoshi; Endoh, Shigehisa; Kinugasa, Shinichi

    2010-07-01

    To elucidate important parameters for in vitro toxicity assessment of C(60) and C(70) fullerene colloidal particles, experiments were carried out in culture medium using pulsed field gradient nuclear magnetic resonance (PFG-NMR), asymmetrical flow field-flow fractionation (AFFFF), and dynamic light scattering (DLS) methods. First, the amounts of total and bulk bovine serum albumin (BSA) molecules in C(60) and C(70) fullerene colloidal suspensions were determined using the PFG-NMR and AFFFF methods. Because the amount of bulk BSA molecules in the cell culture medium is a significant factor in inducing cell growth and because BSA can strongly adsorb onto the fullerene particles, this value is an important parameter for toxicological assessment. It was found that most of the BSA molecules are freely diffusing for both fullerene colloidal suspensions, at least in the range of fullerene concentration from 0.0025-0.15 mg mL(-1). Second, structural analysis of the fullerene colloidal nanoparticles was successfully performed using AFFFF-multi angle light scattering (MALS) and DLS methods. Based on the observed light scattering profiles obtained from a narrow size distribution of colloidal particles collected after AFFFF separation, it was estimated that the fullerene colloidal nanoparticles of both C(60) and C(70) did not adopt a hard spherical structure in the culture medium. The results from combined analysis using the AFFFF-MALS and DLS methods also supported this conclusion and indicated that the fullerene colloidal particles adopted a more flexible structure in culture medium. Since carbon nanomaterials with different geometric structures exhibit quite different cytotoxicity and bioactivity, these results are important for in vitro toxicity assessment.

  9. [Impact of subculture cycles and inoculum sizes on suspension cultures of Vitis vinifera].

    PubMed

    Qu, Jun-Ge; Zhang, Wei; Hu, Quan-Li; Jin, Mei-Fang

    2006-11-01

    The commercial application of plant cell cultures is often hindered by the instability of secondary metabolite biosynthesis, where the metabolite yield fluctuates and decline dramatically over subcultures. This study proposed that such instability is due to the fluctuations of culture variables. To validate this hypothesis, the effects of the fluctuations of two culture variables (subculture cycle and inoculum size) on the biomass, anthocyanin biosynthesig, intracellular carbon, nitrogen and phosphate during continuous 10 subculture cycles were investigated. The subculture cycle was fluctuated for 12h in a 7 day cycle (6.5, 7 and 7.5 d), and the inoculum size was fluctuated by 20% on basis of 2.00 g (1.60, 2.00 and 2.40 g). It was found that all the measured culture parameters fluctuated over the 10 subculture cycles. The fluctuation in terms of inoculum sizes had a greater effect on the stability of anthocyanin biosynthesis in suspension cultures of V. vinifera. Among all the subculture conditions investigated, 7d-subculture cycle and 1.60 g-inoculum size was the best one to hold the relatively stable anthocyanin production. The anthocyanin yield presented a negative correlation with intracellular sucrose content or intracellular total phosphate content.

  10. Induction of linalool as a pharmaceutical and medicinal metabolite via cell suspension culture of cumin (Cuminum cyminum L.).

    PubMed

    Kazemi, N; Kahrizi, D; Mansouri, M; Karim, H; Vaziri, S; Zargooshi, J; Khanahmadi, M; Shokrinia, M; Mohammadi, N

    2016-05-30

    Cumin is an important medicinal plant in Iran. Plant cell suspension culture is a method for the production of medicinal and secondary metabolites. The linalool is a plant secondary metabolite that has been recognized as a neuroprotective agent. The purpose of this study was to evaluate the effects of salicylic acid elicitor on induction of linalool in cell suspension culture of cumin. For this purpose, the cumin seeds were prepared, to obtain sterile seedling, were disinfected with sodium hypochlorite and alcohol, and were cultured on MS basal medium. This research was conducted in two separate experiments including callus induction and suspension cultures. Leaf explants were prepared from sterile seedlings and used to produce callus on MS medium supplemented with 1 mg/l NAA and 0.5 mg/l BAP. In order to establish suspension culture, the appropriate calli were transferred to liquid medium. Then cell cultures were treated with elicitors. The effects of elicitor on the production of linalool secondary metabolite and cell viability were assessed by GC-Mass and tetrazolium test respectively. For this purpose, the salicylic acid (at concentrations of 0, 1, 2, 4 and 8 mg/l) was used. The experimental design was a completely randomized design with five treatments and three replications. The results of cell culture and GC-Mass analysis showed that salicylic acid had significant effects on the linalool production (<0.01). At all concentrations of salicylic acid, viability of the cells in suspension culture experiments was lower than control. Increasing the elicitor concentrations lead to reduction in cell survival. In conclusion it is possible to produce linalool as a secondary metabolite and pharmaceutical agent in cell culture of cumin. It is necessary to determine the best combination of medium and elicitor.

  11. Reduced receptor aggregation and altered cytoskeleton in cultured myocytes after space-flight

    NASA Technical Reports Server (NTRS)

    Gruener, R.; Roberts, R.; Reitstetter, R.

    1994-01-01

    We carried out parallel experiments first on the slow clinostat and then in space-flight to examine the effects of altered gravity on the aggregation of the nicotinic acetylcholine receptors and the structure of the cytoskeleton in cultured Xenopus embryonic muscle cells. By examining the concordance between results from space flight and the clinostat, we tested whether the slow clinostat is a relevant simulation paradigm. Space-flown cells showed marked changes in the distribution and organization of actin filaments and had a reduced incidence of acetylcholine receptor aggregates at the site of contact with polystyrene beads. Similar effects were found after clinostat rotation. The sensitivity of synaptic receptor aggregation and cytoskeletal morphology suggests that in the microgravity of space cell behavior may be importantly altered.

  12. High-level production of human interleukin-10 fusions in tobacco cell suspension cultures

    PubMed Central

    Kaldis, Angelo; Ahmad, Adil; Reid, Alexandra; McGarvey, Brian; Brandle, Jim; Ma, Shengwu; Jevnikar, Anthony; Kohalmi, Susanne E; Menassa, Rima

    2013-01-01

    The production of pharmaceutical proteins in plants has made much progress in recent years with the development of transient expression systems, transplastomic technology and humanizing glycosylation patterns in plants. However, the first therapeutic proteins approved for administration to humans and animals were made in plant cell suspensions for reasons of containment, rapid scale-up and lack of toxic contaminants. In this study, we have investigated the production of human interleukin-10 (IL-10) in tobacco BY-2 cell suspension and evaluated the effect of an elastin-like polypeptide tag (ELP) and a green fluorescent protein (GFP) tag on IL-10 accumulation. We report the highest accumulation levels of hIL-10 obtained with any stable plant expression system using the ELP fusion strategy. Although IL-10-ELP has cytokine activity, its activity is reduced compared to unfused IL-10, likely caused by interference of ELP with folding of IL-10. Green fluorescent protein has no effect on IL-10 accumulation, but examining the trafficking of IL-10-GFP over the cell culture cycle revealed fluorescence in the vacuole during the stationary phase of the culture growth cycle. Analysis of isolated vacuoles indicated that GFP alone is found in vacuoles, while the full-size fusion remains in the whole-cell extract. This indicates that GFP is cleaved off prior to its trafficking to the vacuole. On the other hand, IL-10-GFP-ELP remains mostly in the ER and accumulates to high levels. Protein bodies were observed at the end of the culture cycle and are thought to arise as a consequence of high levels of accumulation in the ER. PMID:23297698

  13. Suspension cell culture as a tool for the characterization of class III peroxidases in sugarcane.

    PubMed

    Cesarino, Igor; Araújo, Pedro; Paes Leme, Adriana Franco; Creste, Silvana; Mazzafera, Paulo

    2013-01-01

    Secreted class III peroxidases (EC 1.11.1.7) are implicated in a broad range of physiological processes throughout the plant life cycle. However, the unambiguous determination of the precise biological role of an individual class III peroxidase isoenzyme is still a difficult task due to genetic redundancy and broad substrate specificity in vitro. In addition, many difficulties are encountered during extraction and analysis of cell wall proteins. Since class III peroxidases are also secreted into the apoplast, the use of suspension cell cultures can facilitate isolation and functional characterization of individual isoforms. Here, we report on the characterization of class III peroxidases secreted in the spent medium of sugarcane suspension cell cultures. After treatment with specific inducers of cell wall lignification, peroxidases were isolated and activities assayed with guaiacol, syringaldazine and coniferyl alcohol. Enzymatic activity was not significantly different after treatments, regardless of the substrate, with the exception of methyl-jasmonate treatment, which led to a decreased guaiacol peroxidase activity. Remarkably, peroxidases isolated from the medium were capable of oxidizing syringaldazine, an analog to sinapyl alcohol, suggesting that sugarcane cultures can produce peroxidases putatively correlated to lignification. A proteomic approach using activity staining of 2-DE gels revealed a complex isoperoxidase profile, composed predominantly of cationic isoforms. Individual spots were excised and analyzed by LC-ESI-Q-TOF and homology-based search against the Sugarcane EST Database resulted in the identification of several proteins. Spatio-temporal expression pattern of selected genes was determined for validation of identified class III peroxidases that were preferentially expressed during sugarcane stem development.

  14. An embryogenic suspension cell culture system for Agrobacterium-mediated transformation of citrus.

    PubMed

    Dutt, M; Grosser, J W

    2010-11-01

    A method for the genetic transformation of several citrus cultivars is described, including cultivars observed to be recalcitrant to conventional epicotyl-mediated transformation. Embryogenic cell suspension cultures, established from unfertilized ovules were used as target tissues for Agrobacterium-mediated transformation. Several modifications were made to the culture environment to investigate factors required for efficient transfer of the T-DNA and the subsequent regeneration of transgenic citrus plants. It was determined that co-cultivation of citrus cells and Agrobacterium in EME medium supplemented with maltose (EME-M) and 100 μM acetosyringone for 5 days at 25°C was optimum for transformation of each of the citrus cultivars. Efficient selection was obtained and escapes were prevented when the antibiotic hygromycin B was used as a selection antibiotic following transformation with an Agrobacterium strain containing hptII in the T-DNA region. Transgenic embryo regeneration and development was enhanced in medium that contained a liquid overlay consisting of a 1:2 mixture of 0.6 M BH3 and 0.15 M EME-M media. PCR and Southern blot analyses confirmed the presence of the T-DNA and the stable integration into the genome of regenerated plants, while RT-PCR demonstrated variable amounts of RNA being transcribed in different transgenic lines. This protocol can create an avenue for insertion of useful traits into any polyembryonic citrus cultivar that can be established as embryogenic cell suspension cultures, including popular specialty mandarins and seedless cultivars.

  15. Differential accumulation of monolignol-derived compounds in elicited flax (Linum usitatissimum) cell suspension cultures.

    PubMed

    Hano, C; Addi, M; Bensaddek, L; Crônier, D; Baltora-Rosset, S; Doussot, J; Maury, S; Mesnard, F; Chabbert, B; Hawkins, S; Lainé, E; Lamblin, F

    2006-04-01

    Lignin and lignans share monolignols as common precursors and are both potentially involved in plant defence against pathogens. In this study, we investigated the effects of fungal elicitors on lignin and lignan metabolism in flax (Linum usitatissimum) cell suspensions. Cell suspension cultures of flax were treated with elicitor preparations made from mycelium extracts of Botrytis cinerea, Phoma exigua and Fusarium oxysporum F ssp lini. Elicitors induced a rapid stimulation of the monolignol pathway, as confirmed by the increase in PAL (phenylalanine ammonia-lyase, EC 4.1.3.5), CCR (cinnamoyl-CoA reductase EC 1.2.1.44) and CAD (cinnamyl alcohol dehydrogenase EC 1.1.1.195) gene expression and PAL activity. At the same time, CCR activity only increased significantly in F. oxysporum-treated cells 24 h post elicitation. On the other hand, CAD activity measured for coniferyl alcohol formation was transiently decreased but a substrate-specific activation of CAD activity was observed in F. oxysporum-treated cells when using sinapyl alcohol as substrate. The accumulation of monolignol-derived products varied according to the elicitor used. B. cinerea or P. exigua-elicited cell cultures were characterised by a reinforcement of the cell wall by a deposit of 8-O-4'-linked non-condensed lignin structures and phenolic monomers, while at the same time no stimulation of 8-8'-linked lignan or 8-5'-linked phenylcoumaran lignan accumulation was observed. Additionally, elicitation of cell cultures with F. oxysporum extracts even triggered a strong incorporation of monolignols in the non condensed labile ether-linked lignin fraction concomitantly with a decrease in lignan and phenylcoumaran lignan accumulation. Several hypotheses are proposed to explain the putative role of these compounds in the defence response of flax cells against pathogens.

  16. Assessment of Cultivation Factors that Affect Biomass and Geraniol Production in Transgenic Tobacco Cell Suspension Cultures

    PubMed Central

    Vasilev, Nikolay; Schmitz, Christian; Grömping, Ulrike; Fischer, Rainer; Schillberg, Stefan

    2014-01-01

    A large-scale statistical experimental design was used to determine essential cultivation parameters that affect biomass accumulation and geraniol production in transgenic tobacco (Nicotiana tabacum cv. Samsun NN) cell suspension cultures. The carbohydrate source played a major role in determining the geraniol yield and factors such as filling volume, inoculum size and light were less important. Sucrose, filling volume and inoculum size had a positive effect on geraniol yield by boosting growth of plant cell cultures whereas illumination of the cultures stimulated the geraniol biosynthesis. We also found that the carbohydrates sucrose and mannitol showed polarizing effects on biomass and geraniol accumulation. Factors such as shaking frequency, the presence of conditioned medium and solubilizers had minor influence on both plant cell growth and geraniol content. When cells were cultivated under the screened conditions for all the investigated factors, the cultures produced ∼5.2 mg/l geraniol after 12 days of cultivation in shaking flasks which is comparable to the yield obtained in microbial expression systems. Our data suggest that industrial experimental designs based on orthogonal arrays are suitable for the selection of initial cultivation parameters prior to the essential medium optimization steps. Such designs are particularly beneficial in the early optimization steps when many factors must be screened, increasing the statistical power of the experiments without increasing the demand on time and resources. PMID:25117009

  17. Pulsed electric field stimulates plant secondary metabolism in suspension cultures of Taxus chinensis.

    PubMed

    Ye, Hong; Huang, Lin-Ling; Chen, Shu-De; Zhong, Jian-Jiang

    2004-12-20

    The effects of pulsed electric field (PEF) on growth and secondary metabolite production by plant cell culture were investigated by using suspension cultures of Taxus chinensis as a model system. Cultured cells in different growth phases were exposed to a PEF (50 Hz, 10 V/m) for various periods of time. A significant increase in intracellular accumulation of taxuyunnanine C (Tc), a bioactive secondary metabolite, was observed by exposing the cells in the early exponential growth phase to a 30-min PEF. The Tc content (i.e., the specific production based on dry cell weight) was increased by 30% after exposure to PEF, without loss of biomass, compared with the control. The combination of PEF treatment and sucrose feeding proved useful for improving secondary metabolite formation. Production levels of reactive oxygen species, extracellular Tc, and phenolics were all increased, whereas cell capacitance was decreased with PEF treatment. The results show that PEF induced a defense response of plant cells and may have altered the cell/membrane's dielectric properties. PEF, an external stimulus or stress, is proposed as a promising new abiotic elicitor for stimulating secondary metabolite biosynthesis in plant cell cultures.

  18. Erythrocytic malaria growth or invasion inhibition assays with emphasis on suspension culture GIA.

    PubMed

    Haynes, J David; Moch, J Kathleen; Smoot, Douglas S

    2002-01-01

    Erythrocytic cycle malaria parasite growth or invasion inhibition assays (GIA) compare the effects of various test and control substances on malaria parasite growth in erythrocytes or invasion into erythrocytes in vitro. Although inhibitions by antimalarial drugs in vitro correlate well with drug protective levels required in vivo, as yet there are too few data to know how well inhibitions by antibodies in vitro correlate with the types and degrees of immune protection in vivo. Antibody-mediated GIA is frequently complicated by parasite strain-specific inhibitions, as well as nonspecific inhibitory factors generated in sera collected or stored under nonoptimal conditions. In this chapter, we describe methods for collecting and processing sera, for using different strains of parasite, and a simplified method for staining parasite DNA with Hoechst dye 33342 before quantitating parasites using ultraviolet (UV)-excited flow cytometry. We also describe a new type of GIA using suspension cultures in a 48-well plate. Critical to this method is enclosing the plate in a gassed, heat-sealed plastic bag, which, being low mass, can easily be rested at a 13.5 degrees angle on a rotor platform (114 rpm with 1-in. displacement) to produce gentle pulsatile waves of media in each well. The suspension GIA, which, relative to the static GIA, increased inhibition by one antibody and decreased inhibition by another (Table 1), may better simulate in vivo blood flow and may thus better predict in vivo efficacy.

  19. [Adherent and single-cell suspension culture of Madin-Darby canine kidney cells in serum-free medium].

    PubMed

    Huang, Ding; Zhao, Liang; Tan, Wensong

    2011-04-01

    In recent years, there are tremendous economic and social losses across the world because of virus-related diseases. It is well known that Madin-Darby canine kidney (MDCK) cells are easily handled, quickly amplified and efficiently infected with influenza virus. Therefore, they are considered as one of the most important cell lines for the production of influenza vaccine. In this work, we first developed a serum-free adherent culture process for MDCK cells with an in-house prepared serum-free medium MDCK-SFM. Next, we derived a cell line named ssf-MDCK, which was amenable for single-cell suspension culture in the serum-free medium. We found that during serum-free batch culture of MDCK cells, the peak viable cell density and maximum specific growth rate were 3.81 x 10(6) cells/mL and 0.056 h(-1), respectively; 3.6- and 1.6-fold increase compared with those in serum-containing adherent batch culture. In addition, we compared growth and metabolic characteristics of MDCK cells in serum-containing adherent culture, serum-free adherent culture and serum-free single-cell suspension culture. We found that less metabolic by-products were produced in both serum-free cultures. In serum-free single-cell suspension batch culture, the viable cell density was highest. These results are critical for establishing large-scale suspension culture of MDCK cells as subsequent well as large-scale influenza vaccine production.

  20. Cell Size Clues for the Allee Effect in Vegetative Amoeba Suspension Culture

    NASA Astrophysics Data System (ADS)

    Franck, Carl; Rappazzo, Brendan; Wang, Xiaoning; Segota, Igor

    That cells proliferate at higher rates with increasing density helps us appreciate and understand the development of multicellular behavior through the study of dilute cell systems. However, arduous cell counting with a microscope reveals that in the model eukaryote, Dictyostelium discoideum this transition is difficult to ascertain and thereby further explore despite our earlier progress (Phys. Rev. E 77, 041905, (2008)). Here we report preliminary evidence that the slow proliferation phase is well characterized by reduced cell size compared to the wide distribution of cell sizes in the familiar exponential proliferation phase of moderate densities. This observation is enabled by a new system for characterizing cells in stirred suspension cultures. Our technique relies on quickly acquiring magnitude distributions of detected flashes of laser light scattered in situ by cell targets.

  1. Purification and Characterization of a Secreted Purple Phosphatase from Soybean Suspension Cultures 1

    PubMed Central

    LeBansky, Brian R.; McKnight, Thomas D.; Griffing, Lawrence R.

    1992-01-01

    We purified and partially sequenced a purple (λmax = 556 nanometers) acid phosphatase (APase; EC 3.1.3.2) secreted by soybean (Glycine max) suspension-culture cells. The enzyme is a metalloprotein with a Mn2+ cofactor. This APase appears to be a glycoprotein with a monomer subunit molecular weight of 58,000 and an active dimer molecular weight of approximately 130,000. The protein has an isoelectric point of about 5.0 and a broad pH optimum centered near 5.5. The purified enzyme, assayed with p-nitrophenyl phosphate as the substrate, has a specific activity of 512 units per milligram protein and a Km of approximately 0.3 millimolar; phosphate is a competitive inhibitor with a Ki of 0.7 millimolar. This APase is similar to one found in soybean seed meal but dissimilar to that found in soybean seedlings. ImagesFigure 1 PMID:16668896

  2. In Vitro Binding of Agrobacterium tumefaciens to Plant Cells from Suspension Culture 1

    PubMed Central

    Ohyama, Kanji; Pelcher, Lawrence E.; Schaefer, Angelika; Fowke, Larry C.

    1979-01-01

    In vitro binding experiments were carried out using 32P-labeled cells of the virulent Agrobacterium tumefaciens strain B6 and Datura innoxia cells from suspension culture. Binding kinetics showed that adherence of bacteria to Datura cells increased gradually during the first 60 minutes and attained a maximum level within 120 minutes of incubation. Maximum binding occurred at pH 6.0. The presence of Ca2+ and Mg2+ reduced binding slightly and EDTA had little effect at concentrations of 0.1 to 10 millimolar. The binding of bacteria to Datura cells was temperature-dependent. Escherichia coli, Salmonella typhimurium, Rhizobium japonicum, and Micrococcus lysodeikticus did not compete with virulent A. tumefaciens strain B6 for binding to Datura cells. The admixture of avirulent A. tumefaciens strain IIBNV6 enhanced adherence of virulent A. tumefaciens strain B6 to Datura cells. Octopine had no effect on the binding of virulent A. tumefaciens strain B6 to Datura cells, but 10 millimolar canavanine was inhibitory. Arginine enhanced the adherence of the bacteria at concentrations higher than 0.1 millimolar. Incubation with DNase, RNase, and lipase did not affect the binding, but protease stimulated the adherence of bacteria to Datura cells. Concanavaline A and soybean lectin had little effect whereas lecithin and lysolecithin enhanced binding slightly. Poly-l-lysine markedly stimulated the bacteria-plant cell adherence. Cells from suspension cultures of pea, vetch, and soybean had a 2- to 3-fold higher binding capacity than Datura cells, whereas cells from wheat, corn, rice, and sorghum had a considerably lower affinity for binding with virulent A. tumefaciens strain B6. Bacterial adherence to plant cells was confirmed by autoradiography and electron microscopy. Autoradiographic analysis showed that bacteria were associated with the cell wall, and that often binding of bacteria was localized. Electron micrographs clearly illustrated a tight association of virulent A

  3. Development of a low capital investment reactor system: application for plant cell suspension culture

    PubMed

    Hsiao; Bacani; Carvalho; Curtis

    1999-01-01

    Growth of plant cell cultures is demonstrated in an uncontrolled, simple, and inexpensive plastic-lined vessel. Sustained specific growth rates of 0.22 day-1 for Hyoscyamus muticus cell suspension cultures are achieved in a low-cost gas-sparged bioreactor configuration (6.5 L working volume, wv) which is comparable to an "optimized" 5 L wv mechanically agitated fermentor. In an effort to reduce bioreactor costs, the need for an autoclavable vessel was eliminated. Sterilization is achieved by separate autoclaving of the plastic liner and by gas-phase sterilization using ethylene oxide. The initial run sterilized with ethylene oxide displayed a long lag, apparently due to residual sterilant gas. Because ethylene oxide could eliminate costs associated with autoclave rated vessels, a quantitative basis for aeration time was developed by experimental measurements and modeling of diffusion in the polymer liner. Operational techniques to eliminate toxicity are implemented to grow 0.2 kg dry weight of plant cells in 13 days in a 40 L (28.5 L wv) air-lift bioreactor without autoclave sterilization. The biomass yields for all reactors were statistically indistinguishable from shake flask culture.

  4. [Effect of calcium on medium alkalinization induced by salicylic acid in Salvia miltiorrhiza suspension cultures].

    PubMed

    Liu, Liancheng; Wang, Cong; Dong, Juan'e; Su, Hui; Zhuo, Zequn; Xue, Yaxin

    2013-07-01

    We studied medium alkalinization in Salvia miltiorrhiza suspension cultures treated with salicylic acid and the effect of Ca2+ in this process through application of calcium channel antagonists (Verapamil, LaCl3, LiCl, 2-APB) and ionophore A23187. The results show that salicylic acid could induce significant medium alkalinization in S. miltiorrhiza culture. Verapamil and LaCl3 or LiCl and 2-APB, two different groups of calcium channel antagonist, significantly inhibited the medium alkalinization induced by salicylic acid. However, the suppression effect of verapamil or LaCl3 on medium alkalinization induced by salicylic acid was higher than that of LiCl or 2-APB. When two types of calcium channel inhibitor (LaCl3 and 2-APB) were used together, the medium alkalinization induced by salicylic acid was completely suppressed and even reduced the pH in medium. On the other hand, A23187 could promote the medium alkalinization. Based on the results above, we speculated that salicylic acid could induce significant medium alkalinization in S. miltiorrhiza culture, depending on the calcium from both extracell and intracell. Moreover, calcium from extracell plays a more dominant role in this process. Reveal of relationship in this research between Ca2+ and medium alkalinization can provide theory evidence for mechanism of the plant secondary metabolism.

  5. Three sesquiterpene compounds biosynthesised from artemisinic acid using suspension-cultured cells of Averrhoa carambola (Oxalidaceae).

    PubMed

    Yang, Li; Zhu, Jianhua; Song, Liyan; Shi, Xiaojian; Li, Xingyi; Yu, Rongmin

    2012-01-01

    A new sesquiterpene glycoside, artemisinic acid 3-β-O-β-D-glucopyranoside (3, 31.24%) and other two biotransformation products, 3-β-hydroxyartemisinic acid (2, 36.69%) and 3-β-hydroxyartemisinic acid β-D-glucopyranosyl ester (4, 7.03%), were biosynthesised after artemisinic acid (1) was administered to the cultured cells of Averrhoa carambola. The three biotransformation products were obtained for the first time by using the suspension-cultured cells of A. carambola as a new biocatalyst system, and their structures were identified on the basis of the physico-chemical properties, NMR and mass spectral analyses. The results indicate that the cultured cells of A. carambola have the abilities to hydroxylate and glycosylate sesquiterpene compounds in a regio- and stereoselective manner. Furthermore, the anti-tumour activity of compounds 3 and 4 was evaluated against K562 and HeLa cell lines. Compound 4 showed strong activity against HeLa cell line, with the IC₅₀ value of 0.56 µmol mL⁻¹.

  6. Adsorptive loss of secreted recombinant proteins in transgenic rice cell suspension cultures.

    PubMed

    Kwon, Jun-Young; Lee, Kyoung-Hoon; Cheon, Su-Hwan; Ryu, Hyun-Nam; Kim, Sun Jin; Kim, Dong-Il

    2012-03-01

    Adsorptive loss of human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig) in transgenic rice cell suspension cultures was investigated using glass flasks, plastic flasks, disposable vessels, and stainless steel vessels. When hCTLA4Ig was added to the glass flasks containing sterile AA medium, a rapid decrease in the concentration of hCTLA4Ig, independent on pH, was observed resulting in more than 90% of the protein loss within 1 h due to the surface adsorption. When the same experiments were performed on four different types of culture equipments mentioned above, the lowest adsorption level was observed in the plastic flasks and the highest level was observed in the glass flasks. The use of the plastic flasks retarded the adsorptive loss of hCTLA4Ig at the early stage of the protein production. There was a significant increase in the production of hCTLA4Ig when the flasks were coated with bovine serum albumin. However, the spike test of purified hCTLA4Ig at two different concentrations of 15 and 100 mg L(-1) in 500-mL spinner flasks confirmed that the amount of hCTLA4Ig adsorbed was dependent on the surface area of the flasks but not on the concentrations. In conclusion, although the protein adsorption affected the total amount of the protein yielded to some extent, it could be regarded as a minor factor in transgenic plant cell cultures with higher titer.

  7. Secretion of active recombinant phytase from soybean cell-suspension cultures.

    PubMed Central

    Li, J; Hegeman, C E; Hanlon, R W; Lacy, G H; Denbow, M D; Grabau, E A

    1997-01-01

    Phytase, an enzyme that degrades the phosphorus storage compound phytate, has the potential to enhance phosphorus availability in animal diets when engineered into soybean (Glycine max) seeds. The phytase gene from Aspergillus niger was inserted into soybean transformation plasmids under control of constitutive and seed-specific promoters, with and without a plant signal sequence. Suspension cultures were used to confirm phytase expression in soybean cells. Phytase mRNA was observed in cultures containing constitutively expressed constructs. Phytase activity was detected in the culture medium from transformants that received constructs containing the plant signal sequence, confirming expectations that the protein would follow the default secretory pathway. Secretion also facilitated characterization of the biochemical properties of recombinant phytase. Soybean-synthesized phytase had a lower molecular mass than did the fungal enzyme. However, deglycosylation of the recombinant and fungal phytase yielded polypeptides of identical molecular mass (49 kD). Temperature and pH optima of the recombinant phytase were indistinguishable from the commercially available fungal phytase. Thermal inactivation studies of the recombinant phytase suggested that the additional protein stability would be required to withstand the elevated temperatures involved in soybean processing. PMID:9232886

  8. Optimization of lycopene extraction from tomato cell suspension culture by response surface methodology.

    PubMed

    Lu, Chi-Hua; Engelmann, Nancy J; Lila, Mary Ann; Erdman, John W

    2008-09-10

    Radioisotope-labeled lycopene is an important tool for biomedical research but currently is not commercially available. A tomato cell suspension culture system for the production of radioisotope-labeled lycopene was previously developed in our laboratory. In the current study, the goal was to optimize the lycopene extraction efficiency from tomato cell cultures for preparatory high-performance liquid chromatography (HPLC) separation. We employed response surface methodology (RSM), which combines fractional factorial design and a second-degree polynomial model. Tomato cells were homogenized with ethanol, saponified by KOH, and extracted with hexane, and the lycopene content was analyzed by HPLC-PDA. We varied five factors at five levels: ethanol volume (1.33-4 mL/g); homogenization period (0-40 s/g); saturated KOH solution volume (0-0.67 mL/g); hexane volume (1.67-3 mL/g); and vortex period (5-25 s/g). Ridge analysis by SAS suggested that the optimal extraction procedure to extract 1 g of tomato cells was at 1.56 mL of ethanol, 28 s homogenization, 0.29 mL of KOH, 2.49 mL of hexane, and 17.5 s vortex. These optimal conditions predicted by RSM were confirmed to enhance lycopene yield from standardized tomato cell cultures by more than 3-fold.

  9. Bioconversion of the antihistaminc drug loratadine by tobacco cell suspension cultures expressing human cytochrome P450 3A4.

    PubMed

    Warzecha, Heribert; Ferme, Daniela; Peer, Markus; Frank, Andreas; Unger, Matthias

    2010-03-01

    In this study we have expanded the metabolic potential of plant cell suspension cultures by introducing active human cytochrome P450 monooxygenase 3A4 into tobacco cells. Exogenously supplied loratadine was metabolized in a 3A4-specific manner, showing the capacity of this system for the generation of metabolites.

  10. Effect of culture conditions on synthesis of triterpenoids in suspension cultures of Lantana camara L.

    PubMed

    Srivastava, Priyanka; Sisodia, Vikash; Chaturvedi, Rakhi

    2011-01-01

    Present report is aimed to study the batch kinetics of Lantana camara. Dynamic changes of parameters, such as pH, conductivity, wet and dry cell concentrations, consumption of major nutrients, carbon source and agitation speeds were investigated to understand the culture characteristics of suspended cells grown on MS + BAP + 2,4-D + NAA in shake flasks. Results indicated that the consumption of phosphate resulted in the onset of stationary phase in cultures. Maltose as carbon source resulted in production of maximum triterpenoid content (31.08 mg/L) while the least was found on glucose (10.69 mg/L). Notably, both did not support accumulation of betulinic acid. Sucrose, although stood second in terms of quantity (21.6 mg/L), supported the production of all the three triterpenoids-oleanolic, ursolic and betulinic acids. Maximum viable cultures were obtained at a rotation speed of 120 rpm. The present finding will form a background for further scale-up related studies.

  11. Milk protein suspensions enriched with three essential minerals: Physicochemical characterization and aggregation induced by a novel enzymatic pool.

    PubMed

    Lombardi, Julia; Spelzini, Darío; Corrêa, Ana Paula Folmer; Brandelli, Adriano; Risso, Patricia; Boeris, Valeria

    2016-04-01

    Structural changes of casein micelles and their aggregation induced by a novel enzymatic pool isolated from Bacillus spp. in the presence of calcium, magnesium or zinc were investigated. The effect of cations on milk protein structure was studied using fluorescence and dynamic light scattering. In the presence of cations, milk protein structure rearrangements and larger casein micelle size were observed. The interaction of milk proteins with zinc appears to be of a different nature than that with calcium or magnesium. Under the experimental conditions assayed, the affinity of each cation for some groups present in milk proteins seems to play an important role, besides electrostatic interaction. On the other hand, the lowest aggregation times were achieved at the highest calcium and zinc concentrations (15 mM and 0.25 mM, respectively). The study found that the faster the aggregation of casein micelles, the less compact the gel matrix obtained. Cation concentrations affected milk protein aggregation kinetics and the structure of the aggregates formed.

  12. Monoterpenoid oxindole alkaloid production by Uncaria tomentosa (Willd) D.C. cell suspension cultures in a stirred tank bioreactor.

    PubMed

    Trejo-Tapia, Gabriela; Cerda-García-Rojas, Carlos M; Rodríguez-Monroy, Mario; Ramos-Valdivia, Ana C

    2005-01-01

    Cell growth, monoterpenoid oxindole alkaloid (MOA) production, and morphological properties of Uncaria tomentosa cell suspension cultures in a 2-L stirred tank bioreactor were investigated. U. tomentosa (cell line green Uth-3) was able to grow in a stirred tank at an impeller tip speed of 95 cm/s (agitation speed of 400 rpm), showing a maximum biomass yield of 11.9 +/- 0.6 g DW/L and a specific growth rate of 0.102 d(-1). U. tomentosa cells growing in a stirred tank achieved maximum volumetric and specific MOA concentration (467.7 +/- 40.0 microg/L, 44.6 +/- 5.2 microg/g DW) at 16 days of culture. MOA chemical profile of cell suspension cultures growing in a stirred tank resembled that of the plant. Depending on culture time, from the total MOA produced, 37-100% was found in the medium in the bioreactor culture. MOA concentration achieved in a stirred tank was up to 10-fold higher than that obtained in Erlenmeyer flasks (agitated at 110 rpm). In a stirred tank, average area of the single cells of U. tomentosa increased up to 4-fold, and elliptical form factor increased from 1.40 to 2.55, indicating enlargement of U. tomentosa single cells. This work presents the first report of U. tomentosa green cell suspension cultures that grow and produce MOA in a stirred tank bioreactor.

  13. Effects of mercury (II) species on cell suspension cultures of catharanthus roseus

    SciTech Connect

    Zhu, L. ); Cullen, W.R. )

    1994-11-01

    Mercury has received considerable attention because of its high toxicity. Widespread contamination with mercury poses severe environmental problems despite our extensive knowledge of its toxicity in living systems. It is generally accepted that the toxicity of mercury is related to its oxidation states and species, the organic forms being more toxic than the inorganic forms. In the aquatic environment, the toxicity of mercury depends on the aqueous speciation of the mercuric ion (Hg[sup 2+]). Because of the complex coordination chemistry of mercury in aqueous systems, the nature of the Hg[sup 2+] species present in aquatic environments is influenced greatly by water chemistry (e. g, pH, inorganic ion composition, and dissolved organics). Consequently, the influence of environmental factors on the aqueous speciation of mercury has been the focus of much attention. However, there is very little information available regarding the effects of the species and speciation on Hg (II) toxicity in plant-tissue cultures. Catharanthus roseus (C. roseus), commonly called the Madagascar Periwinkle, is a member of the alkaloid rich family Apocynaceae. The present investigation was concerned with the toxicity of mercury on the growth of C. roseus cell suspension cultures as influenced by mercury (II) species and speciation. The specific objectives of the study were to (a) study the effects of mercury species on the growth of C. roseus cultures from the point of view of environmental biology and toxicology; (b) evaluate the effects of selenate, selenite and selected ligands such as chloride, 1-cysteine in the media on the acute toxicity of mercuric oxide; (c) determine the impact of the initial pH of the culture media on the toxicities of mercuric compounds; (d) discuss the dependence of the toxicity on the chemical species and speciation of Hg (II). 11 refs., 7 figs., 2 tabs.

  14. Copper-mediated oxidative burst in Nicotiana tabacum L. cv. Bright Yellow 2 cell suspension cultures.

    PubMed

    Raeymaekers, T; Potters, G; Asard, H; Guisez, Y; Horemans, N

    2003-05-01

    In cell suspension cultures of Nicotiana tabacum L. cv. Bright Yellow 2 (BY-2) a rapid and concentration-dependent accumulation of H(2)O(2) is induced by excess concentrations of copper (up to 100 microM). This specific and early response towards copper stress was shown to be extracellular. Addition of 300 U of catalase per ml decreased the level of H(2)O(2). Superoxide dismutase (5 U/ml) induced an increase in H(2)O(2) production by 22.2%. This indicates that at least part of the H(2)O(2) is produced by dismutation of superoxide. Pretreatment of the cell cultures with the NAD(P)H oxidase inhibitors diphenylene iodonium (2 and 10 microM) and quinacrine (1 and 5 mM) prevented the generation of H(2)O(2) under copper stress for 90%. The influence of the pH on the H(2)O(2) production revealed the possible involvement of cell-wall-dependent peroxidases in the generation of reactive oxygen species after copper stress.

  15. Rosmarinic acid and antioxidant enzyme activities in Lavandula vera MM cell suspension culture: a comparative study.

    PubMed

    Georgiev, Milen; Abrashev, Radoslav; Krumova, Ekaterina; Demirevska, Klimentina; Ilieva, Mladenka; Angelova, Maria

    2009-11-01

    The growth and intracellular protein content of lavender (Lavandula vera MM) cell suspension culture was followed along with some antioxidant defense system members-non-enzymatic (rosmarinic acid) and enzymatic [superoxide dismutase (EC 1.15.1.1) and catalase (EC 1.11.1.6)]. It was found that the media content and the cultivation mode strongly influenced the production of plant defense compounds as well as the ratio between non-enzymatic and enzymatic ones. The bioreactor culture contains about two times more rosmarinic acid, superoxide dismutase, and catalase compared to the shake-flask cultivation. These findings are discussed with respect to the relative stress levels and plant antioxidant orchestra system. It was concluded that investigated defense system components (enzymatic and non-enzymatic) were closely associated in a complex balance. The three isoenzyme forms of SOD (Cu/ZnSOD, FeSOD, and MnSOD) in the cells of Lavandula vera were revealed by polyacrylamide gel electrophoresis analysis, and the FeSOD isoform exhibited highest activity.

  16. Biotransformation of 21-O-acetyl-deoxycorticosterone by cell suspension cultures of Digitalis lanata (strain W.1.4).

    PubMed

    de Pádua, Rodrigo Maia; Meitinger, Nadine; de Souza Filho, José Dias; Waibel, Reiner; Gmeiner, Peter; Braga, Fernão Castro; Kreis, Wolfgang

    2012-11-01

    Cell cultures of Digitalis species are known to accept exogenous substrates for biotransformation reactions. We here report the biotransformation of 21-O-acetyl-deoxycorticosterone (1) by cell suspension cultures of Digitalis lanata strain W.1.4. Nine derivatives of 1 were obtained and their chemical structures determined by spectroscopic methods. 2β-Hydroxylation and C-21-glucosylation of the steroidal nucleus were described for the first time in suspension-cultured plant cells. Steroid 5α- and 5β-reduction products were also observed. Among the compounds isolated and structures elucidated were 2β,3β,21-trihydroxy-4-pregnen-20-one, 2β,3α,21-trihydroxy-4-pregnen-20-one and 3β,21-dihydroxy-5α-pregnan-20-one-3β-O-β-glucoside.

  17. Design of serum-free medium for suspension culture of CHO cells on the basis of general commercial media.

    PubMed

    Miki, Hideo; Takagi, Mutsumi

    2015-08-01

    The design of serum-free media for suspension culture of genetically engineered Chinese hamster ovary (CHO) cells using general commercial media as a basis was investigated. Subcultivation using a commercial serum-free medium containing insulin-like growth factor (IGF)-1 with or without FCS necessitated additives other than IGF-1 to compensate for the lack of FCS and improve cell growth. Suspension culture with media containing several combinations of growth factors suggested the effectiveness of addition of both IGF-1 and the lipid signaling molecule lysophosphatidic acid (LPA) for promoting cell growth. Subcultivation of CHO cells in suspension culture using the commercial serum-free medium EX-CELL™302, which contained an IGF-1 analog, supplemented with LPA resulted in gradually increasing specific growth rate comparable to the serum-containing medium and in almost the same high antibody production regardless of the number of generations. The culture with EX-CELL™302 supplemented with LPA in a jar fermentor with pH control at 6.9 showed an apparently higher cell growth rate than the cultures without pH control and with pH control at 6.8. The cell growth in the medium supplemented with aurintricarboxylic acid (ATA), which was much cheaper than IGF-1, in combination with LPA was synergistically promoted similarly to that in the medium supplemented with IGF-1 and LPA. In conclusion, the serum-free medium designed on the basis of general commercial media could support the growth of CHO cells and antibody production comparable to serum-containing medium in suspension culture. Moreover, the possibility of cost reduction by the substitution of IGF-1 with ATA was also shown.

  18. Efficient Secretion of Recombinant Proteins from Rice Suspension-Cultured Cells Modulated by the Choice of Signal Peptide

    PubMed Central

    Huang, Li-Fen; Tan, Chia-Chun; Yeh, Ju-Fang; Liu, Hsin-Yi; Liu, Yu-Kuo; Ho, Shin-Lon; Lu, Chung-An

    2015-01-01

    Plant-based expression systems have emerged as a competitive platform in the large-scale production of recombinant proteins. By adding a signal peptide, αAmy3sp, the desired recombinant proteins can be secreted outside transgenic rice cells, making them easy to harvest. In this work, to improve the secretion efficiency of recombinant proteins in rice expression systems, various signal peptides including αAmy3sp, CIN1sp, and 33KDsp have been fused to the N-terminus of green fluorescent protein (GFP) and introduced into rice cells to explore the efficiency of secretion of foreign proteins. 33KDsp had better efficiency than αAmy3sp and CIN1sp for the secretion of GFP from calli and suspension-cultured cells. 33KDsp was further applied for the secretion of mouse granulocyte-macrophage colony-stimulating factor (mGM-CSF) from transgenic rice suspension-cultured cells; approximately 76%–92% of total rice-derived mGM-CSF (rmGM-CSF) was detected in the culture medium. The rmGM-CSF was bioactive and could stimulate the proliferation of a murine myeloblastic leukemia cell line, NSF-60. The extracellular yield of rmGM-CSF reached 31.7 mg/L. Our study indicates that 33KDsp is better at promoting the secretion of recombinant proteins in rice suspension-cultured cell systems than the commonly used αAmy3sp. PMID:26473722

  19. Involvement of abscisic acid in ozone-induced puerarin production of Pueraria thomsnii Benth. suspension cell cultures.

    PubMed

    Sun, Lina; Su, Hu; Zhu, Yun; Xu, Maojun

    2012-01-01

    Exposure to ozone induced a rapid increase in the levels of the sesquiterpene phytohormone abscisic acid (ABA) and the isoflavone puerarin in suspension cell cultures of Pueraria thomsnii Benth. The observed increases in ABA and puerarin were dependent on the concentration of ozone applied to P. thomsnii cell cultures. In order to examine the role of ABA in ozone-induced puerarin production, cell suspensions were pretreated with the ABA biosynthetic inhibitor fluridone. Following ozone exposure, fluridone treatment suppressed ABA accumulation suggesting ABA was normally synthesized de novo through the carotenoid pathway. Fluridone also blocked ozone-induced puerarin production, which could be reversed through application of exogenous ABA. However, in the absence of ozone, ABA itself had no effect on puerarin accumulation in the suspension cells. Taken together, the data indicate that ozone is an efficient elicitor of puerarin production and may be particularly applicable for improving puerarin production in plant cell cultures. Furthermore, we demonstrate that ABA is one factor associated with ozone-induced puerarin production in P. thomsnii cell cultures.

  20. Birds, seals and the suspension culture of mussels in Bantry Bay, a non-seaduck area in Southwest Ireland

    NASA Astrophysics Data System (ADS)

    Roycroft, D.; Kelly, T. C.; Lewis, L. J.

    2004-12-01

    Concerns about the environmental impacts of mariculture have grown in recent years in response to the rapid expansion of the industry. The blue mussel ( Mytilus edulis) is the main product of shellfish mariculture in the Northeast Atlantic and Baltic Sea, with approximately one third of the harvest cultured using suspended longlines within sheltered marine areas. The main aim of this study was to examine the interactions, and assess the impacts (if any) of mussel suspension culture on the seabird and seal community, employing a simultaneous study of culture and control sites. The study spanned a 20-month period (from November 2001 to August 2003) and encompassed six sites in Bantry Bay (Southwest Ireland). There was no significant difference in species richness between mussel and control sites. Similarly, species diversity did not significantly differ between the mussel and control sites although control sites were generally more diverse than mussel sites, the latter particularly dominated by large numbers of Laridae. Significantly higher numbers of Phalacrocoracidae, Laridae and Alcidae were recorded in mussel sites than in control sites. However, no significant difference was found between Gaviidae or common seal ( Phoca vitulina) numbers in mussel and control sites. Seasonal patterns of abundance were similar in mussel and control sites, with peak numbers of most species groups occurring in spring. Mussel suspension culture does not appear to have an adverse effect on the abundance of seabirds or common seals in this area. The safe perching platforms provided by suspension culture floats, combined with a number of other factors, contribute to an increased abundance of a number of seabird species, particularly Laridae. The possible interactions between vertebrate predators and mussel suspension aquaculture are discussed and possible explanations for the increased seabird abundance observed in these areas are offered.

  1. Biomass Yield and Steviol Glycoside Production in Callus and Suspension Culture of Stevia rebaudiana Treated with Proline and Polyethylene Glycol.

    PubMed

    Gupta, Pratibha; Sharma, Satyawati; Saxena, Sanjay

    2015-06-01

    Enhanced production of steviol glycosides (SGs) was observed in callus and suspension culture of Stevia rebaudiana treated with proline and polyethylene glycol (PEG). To study their effect, yellow-green and compact calli obtained from in vitro raised Stevia leaves were sub-cultured on MS medium supplemented with 2.0 mg l(-1) NAA and different concentrations of proline (2.5-10 mM) and PEG (2.5-10 %) for 2 weeks, and incubated at 24 ± 1 °C and 22.4 μmol m(-2) s(-1) light intensity provided by white fluorescent tubes for 16 h. Callus and suspension culture biomass (i.e. both fresh and dry weight content) was increased with 5 mM proline and 5 % PEG, while at further higher concentrations, they got reduced. Further, quantification of SGs content in callus (collected at 15th day) and suspension culture (collected at 10th and 15th day) treated with and without elicitors was analysed by HPLC. It was observed that chemical stress enhanced the production of SGs significantly. In callus, the content of SGs increased from 0.27 (control) to 1.09 and 1.83 % with 7.5 mM proline and 5 % PEG, respectively, which was about 4.0 and 7.0 times higher than control. However, in the case of suspension culture, the same concentrations of proline and polyethylene glycol enhanced the SG content from 1.36 (control) to 5.03 and 6.38 %, respectively, on 10th day which were 3.7 times and 4.7 times higher than control.

  2. Aggregation, Gelation and Glass Transition in Mixed Suspension of Polystyrene Microsphere and Poly(N-isopropyl-acrylamide) Microgel

    NASA Astrophysics Data System (ADS)

    Yuan, Guangcui; Zhao, Chuanzhuang; Han, Charles; Joint Laboratory Of Polymer Science; Materials, Iccas Team

    2013-03-01

    Poly(N-isopropylacrylamide) microgel is adsorbable to the polystyrene microsphere surface. The saturated adsorption concentration of microgel (Φ*MG) is in a linear relationship with the given concentration of microsphere (ΦMS) . Depending on the concentration of microgel (ΦMG) added into the suspension microspheres, the microgel can induce bridging (ΦMG < Φ*MG) , stabilizing (ΦMG = Φ*MG) and depletion (ΦMG > Φ*MG) effect. With combination of various ΦMS and ΦMG/ Φ*MG , different structures including stable solution, bridging and depletion cluster, bridging and depletion gel, attractive glass and repulsive glass, were obtained. The transitions between these states were investigated by rheology and microscopy. Two-step yielding behavior was observed in attractive glass, which was contributed from bridging bonds of microgels and caging effect of dense microspheres. This work is supported by the National Basic Research Program of China (973 Program, 2012CB821503)

  3. Regulation of thyroid peroxidase activity by thyrotropin, epidermal growth factor and phorbol ester in porcine thyroid follicles cultured in suspension

    SciTech Connect

    Kasai, Kikuo; Hiraiwa, Masaki; Emoto, Tatsushi; Hattori, Yoshiyuki; Shimoda, Shin-Ichi ); Ohmori, Takeshi; Koizumi, Narumi; Hosoya, Toichiro )

    1989-01-01

    The activity of thyroid peroxidase (TPO) in porcine follicles cultured for 96 h in suspension with five hormones (5H) still attained over 50% of that in the freshly isolated follicles. On the other hand, the activity in those cultured with 5H + TSH (6H) was several times higher than that cultured with 5H after 96 h, although an initial decrease of TPO activity during the first 24 h of culture was observed in both conditions. The ability of follicles to metabolize iodide when cultured with 6H for 96 h was also several times higher than that of those cultured with 5H. The half-maximal dose of TSH for stimulation of TPO activity and iodide metabolism was 0.03 - 0.04 mU/ml and the effect was mediated by cAMP. These results indicate that in porcine thyroid follicles in primary suspension culture, TPO activity as well as the ability of iodide metabolism is induced by chronic TSH stimulation. In addition, epidermal growth factor and phorbol 12-myristate 13-acetate completely inhibited TSH stimulation on both activities and also basal (5H) activity of iodide metabolism.

  4. Salt-induced lipid changes in Catharanthus roseus cultured cell suspensions.

    PubMed

    Elkahoui, Salem; Smaoui, Abderrazek; Zarrouk, Mokhtar; Ghrir, Rachid; Limam, Férid

    2004-07-01

    Salt treatment strongly affected cell growth by decreasing dry weight. Exposure of Catharanthus roseus cell suspensions to increasing salinity significantly enhanced total lipid (TL) content. The observed increase is mainly due to high level of phospholipids (PL). Hundred mM NaCl treatment increased phospholipid species phosphatidylcholine (PC) and phosphatidylethanolamine (PE), whereas it reduced glycolipid ones monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) but not sulfoquinovosyldiacylglycerol (SQDG). Moreover, fatty acid composition was clearly modified when cells were cultured in the presence of 100 mM NaCl, whereas only few changes occurred at 50 mM. Salt treatment decreased palmitic acid (16:0) level and increased that of linolenic acid (18:2). Such effect was observed in phospholipid species PC and PE and in glycolipid DGDG. Double bond index (DBI) was enhanced more than 2-fold in fatty acids of either glycolipids or phospholipids from cells submitted to 100 mM NaCl. Free sterol content was also significantly enhanced, especially at 100 mM NaCl, whereas free sterols/phospholipids (St/PL) ratio was slightly decreased. All these salt-induced changes in membrane lipids suggest an increase in membrane fluidity of C. roseus cells.

  5. Complete solubilization of pectins from cotton suspension culture cell walls with retention of most structural features

    SciTech Connect

    Mort, A.J.; Oiu, Feng; Otiko, G.; Maness, N.O.; West, P. ); An, Jinhua Univ. of Georgia, Athens ); Oi, Xiaoyang Univ. of Cincinnati, OH )

    1993-05-01

    Cotton suspension culture cell walls contain four major pectin substructures: (1) rhamnogalacturonan I (RGI), (2) rhamnogalacturonan II, (3) highly methyl esterified homogalacturonan, and (4) homogalacturonan of low degree of methyl esterification. Methods are described to solubilize and isolate each of the four major substructures from the cell walls in high yields. RGII is completely solubilized by an easily purified endopolygalacturonase (EPG). Around 40% of RGI can be solubilized by the sequential action of this EPG and a commercially available cellulase. Almost all of the RGI along with xyloglucan can be solubilized after the EPG treatment using strong alkali. Highly methyl esterified homogalacturonan (degree of methyl esterification [approximately]40%) is solubilized into water after HF treatment of the untreated walls, at [minus]23[degrees], and homogalacturonans with a very low degree of methyl esterification ([approximately]10%) can subsequently be solubilized into 500 mM imidazole buffer. the highly methyl esterified homogalacturonan co-solubilizes with the RGI during several extraction procedures and co-chromatographs with it, indicating that they are covalently attached to each other in the cell walls. Little of the RGI is solubilized from cotton walls by EPG digestion without a subsequent treatment that co-solubilizes the xyloglucan or degrades the xyloglucan, indicating crosslinks exist between the RGI and much of the xyloglucan.

  6. Impact of pr-10a overexpression on the cryopreservation success of Solanum tuberosum suspension cultures.

    PubMed

    Vaas, Lea A I; Marheine, Maja; Seufert, Stephanie; Schumacher, Heinz Martin; Kiesecker, Heiko; Heine-Dobbernack, Elke

    2012-06-01

    Although many genes are supposed to be a part of plant cell tolerance mechanisms against osmotic or salt stress, their influence on tolerance towards stress during cryopreservation procedures has rarely been investigated. For instance, the overexpression of the pathogenesis-related gene 10a (pr-10a) leads to improved osmotic tolerance in a transgenic cell culture of Solanum tuberosum cv. Désirée. In this study, a cryopreservation method, consisting of osmotic pretreatment, cryoprotection with DMSO and controlled-rate freezing, was used to characterize the relation between cryopreservation success and pr-10a expression in suspension cultures of S. tuberosum wild-type cells and cells overexpressing pathogenesis-related protein 10a (Pr-10a). By varying the sorbitol concentration, thus modifying the strength of the osmotic stress during the pretreatment phase, it can be shown that the wild type can successfully be cryopreserved only in a relatively narrow range of sorbitol concentrations, while the pr-10a overexpression leads to an enhanced cryopreservation success over the whole range of applied sorbitol concentrations. Together with transcription data we show that the pr-10a overexpression causes an enhanced osmotic tolerance, which in turn leads to enhanced cryopreservability, but also indicates a role of pr-10a in signal transduction. An increased cryopreservability of the transgenic cell line occurs for pretreatments longer than 24 h. Since both genotypes, characterized by distinct baseline levels of expression, exhibited similar patterns of expression induction, the induction of pr-10a appears to be a key step in the stress signal transduction of plant cells under osmotic stress.

  7. Proteins differentially expressed in elicited cell suspension culture of Podophyllum hexandrum with enhanced podophyllotoxin content

    PubMed Central

    2012-01-01

    Background Podophyllotoxin (PTOX), the precursor for semi-synthesis of cancer therapeutics like etoposide, teniposide and etophos, is primarily obtained from an endangered medicinal herb, Podophyllum hexandrum Royle. PTOX, a lignan is biosynthetically derived from the phenylpropanoid pathway. The aim of this study is to investigate changes in the P. hexandrum cell proteome potentially related to PTOX accumulation in response to methyl jasmonate (MeJA) elicitation. High-resolution two-dimensional gel electrophoresis (2-DE) followed by colloidal Coomassie staining and mass spectrometric analysis was used to detect statistically significant changes in cell’s proteome. Result The HPLC analysis showed approximately 7–8 fold change in accumulation of PTOX, in the 12day old cell suspension culture (i.e. after 9days of elicitation) elicited with 100 μM MeJA as compared to the control. Using 2-DE a total of 233 spots was detected, out of which 105 spots were identified by MALDI TOF-TOF MS/MS. Data were subjected to functional annotation from a biological point of view through KEGG. The phenylpropanoid and monolignol pathway enzymes were identified, amongst these, chalcone synthase, polyphenol oxidase, caffeoyl CoA 3-O-methyltransferase, S-adenosyl-L-methionine-dependent methyltransferases, caffeic acid-O-methyl transferase etc. are noted as important. The relation of other differentially accumulated proteins with varied effects caused by elicitors on P. hexandrum cells namely stress and defense related protein, transcription and DNA replication and signaling are also discussed. Conclusions Elicitor-induced PTOX accumulation in P. hexandrum cell cultures provides a responsive model system to profile modulations in proteins related to phenylpropanoid/monolignol biosynthesis and other defense responses. Present findings form a baseline for future investigation on a non-sequenced medicinal herb P. hexandrum at molecular level. PMID:22621772

  8. QUASIMODO 3 (QUA3) is a putative homogalacturonan methyltransferase regulating cell wall biosynthesis in Arabidopsis suspension-cultured cells

    PubMed Central

    Miao, Yansong; Li, Hong-Ye; Shen, Jinbo; Wang, Junqi; Jiang, Liwen

    2011-01-01

    Pectins are complex polysaccharides that are essential components of the plant cell wall. In this study, a novel putative Arabidopsis S-adenosyl-L-methionine (SAM)-dependent methyltransferase, termed QUASIMODO 3 (QUA3, At4g00740), has been characterized and it was demonstrated that it is a Golgi-localized, type II integral membrane protein that functions in methylesterification of the pectin homogalacturonan (HG). Although transgenic Arabidopsis seedlings with overexpression, or knock-down, of QUA3 do not show altered phenotypes or changes in pectin methylation, this enzyme is highly expressed and abundant in Arabidopsis suspension-cultured cells. In contrast, in cells subjected to QUA3 RNA interference (RNAi) knock-down there is less pectin methylation as well as altered composition and assembly of cell wall polysaccharides. Taken together, these observations point to a Golgi-localized QUA3 playing an essential role in controlling pectin methylation and cell wall biosynthesis in Arabidopsis suspension cell cultures. PMID:21725030

  9. Proper selection of 1 g controls in simulated microgravity research as illustrated with clinorotated plant cell suspension cultures

    NASA Astrophysics Data System (ADS)

    Kamal, Khaled Y.; Hemmersbach, Ruth; Medina, F. Javier; Herranz, Raúl

    2015-04-01

    Understanding the physical and biological effects of the absence of gravity is necessary to conduct operations on space environments. It has been previously shown that the microgravity environment induces the dissociation of cell proliferation from cell growth in young seedling root meristems, but this source material is limited to few cells in each row of meristematic layers. Plant cell cultures, composed by a large and homogeneous population of proliferating cells, are an ideal model to study the effects of altered gravity on cellular mechanisms regulating cell proliferation and associated cell growth. Cell suspension cultures of Arabidopsis thaliana cell line (MM2d) were exposed to 2D-clinorotation in a pipette clinostat for 3.5 or 14 h, respectively, and were then processed either by quick freezing, to be used in flow cytometry, or by chemical fixation, for microscopy techniques. After long-term clinorotation, the proportion of cells in G1 phase was increased and the nucleolus area, as revealed by immunofluorescence staining with anti-nucleolin, was decreased. Despite the compatibility of these results with those obtained in real microgravity on seedling meristems, we provide a technical discussion in the context of clinorotation and proper 1 g controls with respect to suspension cultures. Standard 1 g procedure of sustaining the cell suspension is achieved by continuously shaking. Thus, we compare the mechanical forces acting on cells in clinorotated samples, in a control static sample and in the standard 1 g conditions of suspension cultures in order to define the conditions of a complete and reliable experiment in simulated microgravity with corresponding 1 g controls.

  10. In vitro induction of α-pinene, pulegone, menthol, menthone and limonene in cell suspension culture of pennyroyal (Mentha pulegium).

    PubMed

    Darvishi, E; Kahrizi, D; Bahraminejad, S; Mansouri, M

    2016-03-20

    Medicinal plants are known as important sources of secondary metabolites. Because of the economic value of pennyroyal [Mentha pulegium L. (Lamiaceae)] in food industries, propagation of this valuable plant has special importance. Plant cell suspension culture can increase some produced components. The aim of this research was performing cell culture for induction of some secondary metabolites of M. pulegium and compares it with native one. The MS medium was used for suspension culture. To investigate quantitative materials, 4 levels of yeast extract elicitor (20, 40, 60 and 80 mg/L) and salicylic acid in 4 levels (2, 4, 6 and 8 mg/L) were used. Obtained extracts were analyzed by GC-MS. Statistical analysis showed that the amount of limonene, menthone, menthol and α-pinene were more than mentioned compounds in natural plant as control. The maximum amount of this metabolites were obtained as limonene (in 60 mg/l yeast extract), menthone (in 40 mg/l yeast extract and 2 mg/l salicylic acid), menthol (in 6 mg/l salicylic acid) and α-pinene (in 4 mg/l salicylic acid) in the M. pulegium cell culture. The Pulegone was fond more in natural plants than cell culture mass. The most important secondary metabolites were increased by cell culture containing of salicylic acid and yeast extract elicitors in M. pulegume.

  11. Pretreatment of Parsley Suspension Cultures with Salicylic Acid Enhances Spontaneous and Elicited Production of H2O2.

    PubMed Central

    Kauss, H.; Jeblick, W.

    1995-01-01

    Suspension-cultured cells of parsley (Petroselinum crispum L.) were used to study the regulation of extracellular H2O2. After resuspension, the washed cells regulated the H2O2 concentration spontaneously to a constant level that was greatly increased when the cultures were pretreated for 1 d with salicylic acid (SA). The H2O2 level was further increased on addition of a fungal elicitor preparation, macromolecular chitosan, the sterol-binding polyene macrolide amphotericin B, the G protein-activating peptide mastoparan, or La3+. In all cases, this induced H2O2 burst was also greatly enhanced in cell suspensions pretreated with SA. Both the spontaneous and the induced H2O2 production were decreased by the protein kinase inhibitor K-252a. It is suggested that production of extracellular H2O2 occurs by an endogenously controlled plasma membrane enzyme complex that requires continuous phosphorylation for function and whose activity is increased by pretreatment of the cells with SA. This system can also receive various external stimuli, including those resulting from binding of fungal elicitor. SA can induce acquired resistance against pathogens. The conditioning of the parsley suspension culture by SA represents, therefore, a model for the long-term regulation of apoplastic H2O2 concentration by this signal substance, as suggested previously for the wound hormone methyl jasmonate. PMID:12228535

  12. Immune suppression of human lymphoid tissues and cells in rotating suspension culture and onboard the International Space Station.

    PubMed

    Fitzgerald, Wendy; Chen, Silvia; Walz, Carl; Zimmerberg, Joshua; Margolis, Leonid; Grivel, Jean-Charles

    2009-12-01

    The immune responses of human lymphoid tissue explants or cells isolated from this tissue were studied quantitatively under normal gravity and microgravity. Microgravity was either modeled by solid body suspension in a rotating, oxygenated culture vessel or was actually achieved on the International Space Station (ISS). Our experiments demonstrate that tissues or cells challenged by recall antigen or by polyclonal activator in modeled microgravity lose all their ability to produce antibodies and cytokines and to increase their metabolic activity. In contrast, if the cells were challenged before being exposed to modeled microgravity suspension culture, they maintained their responses. Similarly, in microgravity in the ISS, lymphoid cells did not respond to antigenic or polyclonal challenge, whereas cells challenged prior to the space flight maintained their antibody and cytokine responses in space. Thus, immune activation of cells of lymphoid tissue is severely blunted both in modeled and true microgravity. This suggests that suspension culture via solid body rotation is sufficient to induce the changes in cellular physiology seen in true microgravity. This phenomenon may reflect immune dysfunction observed in astronauts during space flights. If so, the ex vivo system described above can be used to understand cellular and molecular mechanisms of this dysfunction.

  13. More for less: Improving the biomass yield of a pear cell suspension culture by design of experiments

    PubMed Central

    Rasche, Stefan; Herwartz, Denise; Schuster, Flora; Jablonka, Natalia; Weber, Andrea; Fischer, Rainer; Schillberg, Stefan

    2016-01-01

    Plant cell suspension cultures are widely used for the production of recombinant proteins and secondary metabolites. One of the most important steps during process development is the optimization of yields by testing different cultivation parameters, including the components of the growth medium. However, we have shown that the biomass yield of a cell suspension culture derived from the pear cultivar Pyrus communis cv. Champagner Bratbirne can be significantly improved solely by varying the temperature, inoculum density, illumination, and incubation time. In contrast to medium optimization, these simple physical factors are easily controlled and varied, thereby reducing the effort required. Using an experimental design approach, we improved the biomass yield from 146 g fresh weight (FW)/L to 407 g FW/L in only 5 weeks, simultaneously reducing the costs of goods sold per kg biomass from €125 to €45. Our simple approach therefore offers a rapid, efficient and economical process for the optimization of plant cell suspension cultures. PMID:26988402

  14. Enhanced Biosynthesis of Withanolides by Elicitation and Precursor Feeding in Cell Suspension Culture of Withania somnifera (L.) Dunal in Shake-Flask Culture and Bioreactor

    PubMed Central

    Sivanandhan, Ganeshan; Selvaraj, Natesan; Ganapathi, Andy; Manickavasagam, Markandan

    2014-01-01

    The present study investigated the biosynthesis of major and minor withanolides of Withania somnifera in cell suspension culture using shake-flask culture and bioreactor by exploiting elicitation and precursor feeding strategies. Elicitors like cadmium chloride, aluminium chloride and chitosan, precursors such as cholesterol, mevalonic acid and squalene were examined. Maximum total withanolides detected [withanolide A (7606.75 mg), withanolide B (4826.05 mg), withaferin A (3732.81 mg), withanone (6538.65 mg), 12 deoxy withanstramonolide (3176.63 mg), withanoside IV (2623.21 mg) and withanoside V (2861.18 mg)] were achieved in the combined treatment of chitosan (100 mg/l) and squalene (6 mM) along with 1 mg/l picloram, 0.5 mg/l KN, 200 mg/l L-glutamine and 5% sucrose in culture at 4 h and 48 h exposure times respectively on 28th day of culture in bioreactor. We obtained higher concentrations of total withanolides in shake-flask culture (2.13-fold) as well as bioreactor (1.66-fold) when compared to control treatments. This optimized protocol can be utilized for commercial level production of withanolides from suspension culture using industrial bioreactors in a short culture period. PMID:25089711

  15. Production and secretion of biologically active human granulocyte-macrophage colony stimulating factor in transgenic tomato suspension cultures.

    PubMed

    Kwon, Tae-Ho; Kim, Young-Sook; Lee, Jae-Hwa; Yang, Moon-Sik

    2003-09-01

    A complementary DNA encoding human granulocyte-macrophage colony stimulating factor (hGM-CSF) was cloned and introduced into tomato (Lycopersicon esculentum cv. Seokwang) using Agrobacterium-mediated transformation. Genomic PCR and Northern blot analysis demonstrated the integration of the construction into the plant nuclear genome and expression of the hGM-CSF in transgenic tomato. The cell suspension culture was established from leaf-derived calli of the transgenic tomato plants transformed with the hGM-CSF gene. Recombinant hGM-CSF was synthesized by the transgenic cell culture and secreted into the growth medium at 45 microg l(-1) after 10 d' cultivation.

  16. Glyphosate inhibition of 5-enolpyruvylshikimate 3-phosphate synthease from suspension-cultured cells of Nicotiana silvestris

    SciTech Connect

    Rubin, J.L.; Gaines, C.G.; Jensen, R.A.

    1984-07-01

    Treatment of isogenic suspension-cultured cells of Nicotiana silvestris Speg, et Comes with glyphosate (N-(phosphonomethyl)glycine) led to elevated levels of intracellular shikimate (364-fold increase by 1.0 millimolar glyphosate). In the presence of glyphosate, it is likely that most molecules of shikimate originate from the action of 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase-Mn since this isozyme, in contrast to the DAHP synthase-Co isozyme, is insensitive to inhibition by glyphosate. 5-Enolpyruvylshikimate 3-phosphate (EPSP) synthase (EC 2.5.1.19) from N. silvestris was sensitive to micromolar concentrations of glyphosate and possessed a single inhibitor binding site. Rigorous kinetic studies of EPSP synthase required resolution from the multiple phosphatase activities present in crude extracts, a result achieved by ion-exchange column chromatography. Although EPSP synthase exhibited a broad pH profile (50% of maximal activity between pH 6.2 and 8.5), sensitivity to glyphosate increased dramatically with increasing pH within this range. In accordance with these data and the pK/sub a/ values of glyphosate, it is likely that the ionic form of glyphosate inhibiting EPSP synthase is COO/sup -/CH/sub 2/NH/sub 2//sup +/CH/sub 2/PO/sub 3//sup 2 -/, and that a completely ionized phosphono group is essential for inhibition. At pH 7.0, inhibition was competitive with respect to phosphoenolpyruvate (K/sub i/ = 1.25 micromolar) and uncompetitive with respect to shikimate-3-P (K/sub i/ = 18.3 micromolar). All data were consistent with a mechanism of inhibition in which glyphosate competes with PEP for binding to an (enzyme:shikimate-3-P) complex and ultimately forms the dead-end complex of (enzyme:shikimate-3-P:glyphosate). 36 references, 8 figures, 1 table.

  17. Programmed cell death activated by Rose Bengal in Arabidopsis thaliana cell suspension cultures requires functional chloroplasts

    PubMed Central

    Gutiérrez, Jorge; González-Pérez, Sergio; García-García, Francisco; Daly, Cara T.; Lorenzo, Óscar; Revuelta, José L.; McCabe, Paul F.; Arellano, Juan B.

    2014-01-01

    Light-grown Arabidopsis thaliana cell suspension culture (ACSC) were subjected to mild photooxidative damage with Rose Bengal (RB) with the aim of gaining a better understanding of singlet oxygen-mediated defence responses in plants. Additionally, ACSC were treated with H2O2 at concentrations that induced comparable levels of protein oxidation damage. Under low to medium light conditions, both RB and H2O2 treatments activated transcriptional defence responses and inhibited photosynthetic activity, but they differed in that programmed cell death (PCD) was only observed in cells treated with RB. When dark-grown ACSC were subjected to RB in the light, PCD was suppressed, indicating that the singlet oxygen-mediated signalling pathway in ACSC requires functional chloroplasts. Analysis of up-regulated transcripts in light-grown ACSC, treated with RB in the light, showed that both singlet oxygen-responsive transcripts and transcripts with a key role in hormone-activated PCD (i.e. ethylene and jasmonic acid) were present. A co-regulation analysis proved that ACSC treated with RB exhibited higher correlation with the conditional fluorescence (flu) mutant than with other singlet oxygen-producing mutants or wild-type plants subjected to high light. However, there was no evidence for the up-regulation of EDS1, suggesting that activation of PCD was not associated with the EXECUTER- and EDS1-dependent signalling pathway described in the flu mutant. Indigo Carmine and Methylene Violet, two photosensitizers unable to enter chloroplasts, did not activate transcriptional defence responses in ACSC; however, whether this was due to their location or to their inherently low singlet oxygen quantum efficiencies was not determined. PMID:24723397

  18. Xyloglucan biosynthesis by Golgi membranes from suspension-cultured sycamore (Acer pseudoplatanus) cells

    SciTech Connect

    White, A.R.; Xin, Yi )

    1990-05-01

    Xyloglucan is a major hemicellulose polysaccharide in plant cell walls. Biosynthesis of such cell wall polysaccharides is closely linked to the process of plant cell growth and development. Xyloglucan polysaccharides consist of a {beta}-1,4 glucan backbone synthesized by xyloglucan synthase and sidechains of xylose, galactose, and fucose added by other transferase enzymes. Most plant Golgi and plasma membranes also contain glucan synthases I II, which make {beta}-1,4 and {beta}-1,3 glucans, respectively. All of these enzymes have very similar activities. Cell walls on suspension-cultured cells from Acer pseudoplatanus (sycamore maple) were enzymatically softened prior to cell disruption by passing through a 30 {mu}m nylon screen. Cell membranes from homogenates were separated by ultracentrifugation on top-loaded or flotation sucrose density gradients. Samples were collected by gradient fractionation and assayed for membrane markers and xyloglucan and glucan synthase activities. Standard marker assays (cyt. c reductase for eR, IDPase UDPase for Golgi, and eosin 5{prime}-malelmide binding for plasma membrane) showed partial separation of these three membrane types. Golgi and plasma membrane markers overlapped in most gradients. Incorporation of {sup 14}C-labeled sugars from UDP-glucose and UDP-xylose was used to detect xyloglucan synthase, glucan synthases I II, and xylosyl transferase in Golgi membrane fractions. These activities overlapped, although distinct peaks of xyloglucan synthase and xylosyl transferase were found. Ca{sup ++} had a stimulatory effect on glucan synthases I II, while Mn{sup ++} had an inhibitory effect on glucan synthase I in the presence of Ca{sup ++}. The similarity of these various synthase activities demonstrates the need for careful structural characterization of newly synthesized polysaccharides.

  19. Stimulation of betacyanin synthesis through exogenous methyl jasmonate and other elicitors in suspension-cultured cells of Portulaca.

    PubMed

    Bhuiyan, Nazmul H; Adachi, Taiji

    2003-09-01

    Betacyanin production in suspension-cultured cells of Portulaca was significantly enhanced by both abiotic and biotic elicitors. Betacyanin levels increased 1.3 and 1.5-fold over the controls in the presence of two abiotic elicitors (20 mumol/L CuSO4 and 100 mumol/L FeEDTA) and increased 1.8 and 1.6-fold in the presence of two biotic elicitors (0.5 mg/L beta-glucan and 0.5 mg/L chitosan). Maximum betacyanin synthesis with the two most effective elicitors was obtained when cultures were treated on day 1 and day 0 by beta-glucan and FeEDTA, respectively. A concentration-dependent response was exhibited by cultures treated with exogenous methyl jasmonate (MJ). MJ alone at 0.1 mumol/L caused a 2.6-fold increase in betacyanin synthesis when administered to the suspension culture on day 3. However, no additive effect on betacyanin accumulation was observed in treatments, which combined MJ and beta-glucan or FeEDTA. Treatment with ibuprofen (IB), an inhibitor of jasmonate biosynthesis, reduced the level of betacyanin in cells cultured in standard medium at all concentrations tested (25, 50, 100 mumol/L). The effect of IB on betacyanin synthesis in the cells treated with MJ or beta-glucan, however, differed with the IB concentration applied. The two higher concentrations (50 and 100 mumol/L) of IB significantly reduced the betacyanin content while the lower concentration (25 mumol/L) did not show an adverse effect on the betacyanin enhancement triggered by MJ or beta-glucan. Our findings suggest that, in suspension-cultured cells of Portulaca, an MJ-mediated signal transduction pathway prominently exists in betacyanin synthesis. This pathway seems to act antagonistically towards beta-glucan-mediated signaling. As far as we know this is the first report on the elevation of betacyanin level by jasmonate or other elicitors in cell suspension cultures.

  20. Brain Aggregates: An Effective In Vitro Cell Culture System Modeling Neurodegenerative Diseases

    PubMed Central

    Kalume, Franck; Pitstick, Rose; Oehler, Abby; Carlson, George; DeArmond, Stephen J.

    2016-01-01

    Drug discovery for neurodegenerative diseases is particularly challenging because of the discrepancies in drug effects between in vitro and in vivo studies. These discrepancies occur in part because current cell culture systems used for drug screening have many limitations. First, few cell culture systems accurately model human aging or neurodegenerative diseases. Second, drug efficacy may differ between dividing and stationary cells, the latter resembling nondividing neurons in the CNS. Brain aggregates (BrnAggs) derived from embryonic day 15 gestation mouse embryos may represent neuropathogenic processes in prion disease and reflect in vivo drug efficacy. Here, we report a new method for the production of BrnAggs suitable for drug screening and suggest that BrnAggs can model additional neurological diseases such as tauopathies. We also report a functional assay with BrnAggs by measuring electrophysiological activities. Our data suggest that BrnAggs could serve as an effective in vitro cell culture system for drug discovery for neurodegenerative diseases. PMID:26851378

  1. Preparation of Membrane Vesicles Enriched in ATP-Dependent Proton Transport from Suspension Cultures of Tomato Cells

    PubMed Central

    Dupont, Frances M.; Zabala, Maria De Gracia

    1985-01-01

    Membranes enriched in ATP-dependent proton transport were prepared from suspension cultures of tomato cells (Lycopersicon esculentum Mill cv VF36). Suspension cultures were a source of large quantities of membranes from rapidly growing, undifferentiated cells. Proton transport activity was assayed as quench of acridine orange fluorescence. The activity of the proton translocating ATPase and of several other membrane enzymes was measured as a function of the cell culture cycle. The relative distribution of the enzymes between the 3,000, 10,000, and 100,000g pellets remained the same throughout the cell culture cycle, but yield of total activity and activity per gram fresh weight with time had a unique profile for each enzyme tested. Maximal yield of the proton translocating ATPase activity was obtained from cells in the middle logarithmic phase of growth, and from 50 to 90% of the activity was found in the 10,000g pellet. The proton translocating ATPase activity was separable from NADPH cytochrome c reductase and cytochrome c oxidase on a sucrose gradient. Proton transport activity had a broad pH optimum (7.0-8.0), was stimulated by KCl with a Km of 5 to 10 millimolar, stimulation being due to the anion, Cl−, and not the cation, K+, and was not inhibited by vanadate, but was inhibited by NO3−. The activity is tentatively identified as the tonoplast ATPase. PMID:16664030

  2. Glycyrrhiza glabra (Linn.) and Lavandula officinalis (L.) cell suspension cultures-based biotransformation of β-artemether.

    PubMed

    Patel, Suman; Gaur, Rashmi; Upadhyaya, Mohita; Mathur, Archana; Mathur, Ajay K; Bhakuni, Rajendra S

    2011-07-01

    The biotransformation of β-artemether (1) by cell suspension cultures of Glycyrrhiza glabra and Lavandula officinalis is reported here for the first time. The major biotransformed product appeared as a grayish-blue color spot on thin-layer chromatography (TLC) with transparent crystal-like texture. Based on its infrared (IR) and (1)H nuclear magnetic resonance (NMR) spectra, the product was characterized as a tetrahydrofuran (THF)-acetate derivative (2). The highest conversion efficiencies of 57 and 60% were obtained when 8-9-day-old cell suspensions of G. glabra and L. officinalis were respectively fed with 4-7 mg of compound 1 in 40 ml of medium per culture and the cells were harvested after 2-5 days of incubation. The addition of compound 1 at the beginning of the culture cycle caused severe growth depression in a dose-dependent manner, resulting in poor bioconversion efficiency of ~25% at 2-5 mg/culture dose only.

  3. Elicitation of gymnemic acid production in cell suspension cultures of Gymnema sylvestre R.Br. through endophytic fungi.

    PubMed

    Netala, Vasudeva Reddy; Kotakadi, Venkata Subbaiah; Gaddam, Susmila Aparna; Ghosh, Sukhendu Bikash; Tartte, Vijaya

    2016-12-01

    The enhancement of plant secondary metabolite production in cell suspension cultures through biotic or abiotic elicitation has become a potential biotechnological approach for commercialization or large-scale production of bioactive compounds. Gymnema sylvestre R.Br. is an important medicinal plant, rich in a group of oleanane triterpenoid saponins called gymnemic acid, well known for its anti-diabetic activity. Two endophytic fungal strains were isolated from the leaves of G. sylvestre and identified as Polyancora globosa and Xylaria sp. based on the PCR amplification and internal transcribed spacer (ITS 1-5.8S-ITS 2) sequencing of 18S rRNA gene. The process of elicitation of cell suspension cultures of G. sylvestre with dried powder of fungal mycelia (DPFM) and extracellular culture filtrate (ECF) of endophytic fungi consistently enhanced the accumulation of gymnemic acid and the DPFM was proved to be an effective elicitor when compared to the ECF. The DPFM elicited the gymnemic acid content in the range of 2.57-10.45-fold, while the ECF elicited the gymnemic acid content in the range of 2.39-7.8-fold. P. globosa, a novel and a rare endophytic fungal strain, has shown a great influence on the production of gymnemic acid. Cell suspension cultures elicited with DPFM of P. globosa produced higher amount of gymnemic acid content (124.23 mg/g dried cell weight) compared to the cultures elicited with DPFM of Xylaria sp. (102.24 mg/g DCW). But the cultures treated with consortium of DPFM of both fungi showed great influence on the production of gymnemic acid (139.98 mg/g DCW) than the cultures treated with DPFM alone. Similarly, cultures treated with consortium of ECF of both fungi produced more gymnemic acid content (94.86 mg/g DCW) compared with cultures treated with ECF of Xylaria sp. (77.93 mg/g DCW) and ECF of P. globosa (78.65 mg/g DCW) alone.

  4. Induction and Analysis of the Alkaloid Mitragynine Content of a Mitragyna speciosa Suspension Culture System upon Elicitation and Precursor Feeding

    PubMed Central

    Mohamad Zuldin, Nor Nahazima; Said, Ikram Md.; Mohd Noor, Normah; Zainal, Zamri; Jin Kiat, Chew; Ismail, Ismanizan

    2013-01-01

    This study aimed to determine the effects of different concentrations and combinations of the phytohormones 2,4-dichlorophenoxy acetic acid (2,4-D), kinetin, 6-benzylaminopurine (BAP), and 1-naphthaleneacetic acid (NAA) on callus induction and to demonstrate the role of elicitors and exogenous precursors on the production of mitragynine in a Mitragyna speciosa suspension culture. The best callus induction was achieved from petiole explants cultured on WPM that was supplemented with 4 mg L−1 2, 4-D (70.83%). Calli were transferred to liquid media and agitated on rotary shakers to establish Mitragyna speciosa cell suspension cultures. The optimum settled cell volume was achieved in the presence of WPM that contained 3 mg L−1 2,4-D and 3% sucrose (9.47 ± 0.4667 mL). The treatment of cultures with different concentrations of yeast extract and salicylic acid for different inoculation periods revealed that the highest mitragynine content as determined by HPLC was achieved from the culture treated with 250 mg L−1 yeast extract (9.275 ± 0.082 mg L−1) that was harvested on day 6 of culturing; salicylic acid showed low mitragynine content in all concentrations used. Tryptophan and loganin were used as exogenous precursors; the highest level of mitragynine production was achieved in cultures treated with 3 μM tryptophan and harvested at 6 days (13.226 ± 1.98 mg L−1). PMID:24065873

  5. Induction and analysis of the alkaloid mitragynine content of a Mitragyna speciosa suspension culture system upon elicitation and precursor feeding.

    PubMed

    Mohamad Zuldin, Nor Nahazima; Said, Ikram Md; Mohd Noor, Normah; Zainal, Zamri; Jin Kiat, Chew; Ismail, Ismanizan

    2013-01-01

    This study aimed to determine the effects of different concentrations and combinations of the phytohormones 2,4-dichlorophenoxy acetic acid (2,4-D), kinetin, 6-benzylaminopurine (BAP), and 1-naphthaleneacetic acid (NAA) on callus induction and to demonstrate the role of elicitors and exogenous precursors on the production of mitragynine in a Mitragyna speciosa suspension culture. The best callus induction was achieved from petiole explants cultured on WPM that was supplemented with 4 mg L⁻¹ 2,4-D (70.83%). Calli were transferred to liquid media and agitated on rotary shakers to establish Mitragyna speciosa cell suspension cultures. The optimum settled cell volume was achieved in the presence of WPM that contained 3 mg L⁻¹ 2,4-D and 3% sucrose (9.47 ± 0.4667 mL). The treatment of cultures with different concentrations of yeast extract and salicylic acid for different inoculation periods revealed that the highest mitragynine content as determined by HPLC was achieved from the culture treated with 250 mg L⁻¹ yeast extract (9.275 ± 0.082 mg L⁻¹) that was harvested on day 6 of culturing; salicylic acid showed low mitragynine content in all concentrations used. Tryptophan and loganin were used as exogenous precursors; the highest level of mitragynine production was achieved in cultures treated with 3  μM tryptophan and harvested at 6 days (13.226 ± 1.98 mg L⁻¹).

  6. Propagation of Brazilian Zika virus strains in static and suspension cultures using Vero and BHK cells.

    PubMed

    Nikolay, Alexander; Castilho, Leda R; Reichl, Udo; Genzel, Yvonne

    2017-03-23

    The recent spread of Zika virus (ZIKV) in the Americas and the Pacific has reached alarming levels in more than 60 countries. However, relatively little is known about the disease on a virological and epidemiological level and its consequences for humans. Accordingly, a large demand for in vitro derived Brazilian ZIKV material to support in vitro and in vivo studies has arisen. However, a prompt supply of ZIKV and ZIKV antigens cannot be guaranteed as the production of this virus typically using Vero or C6/36 cell lines remains challenging. Here we present a production platform based on BHK-21 suspension (BHK-21SUS) cells to propagate Brazilian ZIKV at larger quantities in perfusion bioreactors. Scouting experiments performed in tissue culture flasks using adherent BHK-21 and Vero cells have demonstrated similar permissivity and virus yields for four different Brazilian ZIKV isolates. The cell-specific yield of infectious virus particles varied between respective virus strains (1-48PFU/cell), and the ZIKV isolate from the Brazilian state Pernambuco (ZIKV(PE)) showed to be a best performing isolate for both cell lines. However, infection studies of BHK-21SUS cells with ZIKV(PE) in shake flasks resulted in poor virus replication, with a maximum titer of 8.9×10(3)PFU/mL. Additional RT-qPCR measurements of intracellular and extracellular viral RNA levels revealed high viral copy numbers within the cell, but poor virus release. Subsequent cultivation in a perfusion bioreactor using an alternating tangential flow filtration system (ATF) under controlled process conditions enabled cell concentrations of about 1.2×10(7)cells/mL, and virus titers of 3.9×10(7)PFU/mL. However, while the total number of infectious virus particles was increased, the cell-specific yield (3.3PFU/cell) remained lower than determined in adherent cell lines. Nevertheless, the established perfusion process allows to provide large amounts of ZIKV material for research and is a first step towards

  7. Biotransformation of artemisinin using cell suspension cultures of Catharanthus roseus (L.) G.Don and Lavandula officinalis L.

    PubMed

    Patel, Suman; Gaur, Rashmi; Verma, Priyanka; Bhakuni, Rajendra S; Mathur, Archana

    2010-08-01

    Artemisinin, an antimalarial compound, at 5 mg/40 ml, was transformed by cell suspension cultures of Catharanthus roseus (L.) G.Don and Lavandula officinalis L. into deoxyartemisinin with yields >78% (3.93 mg deoxyartemisinin from 5 mg artemisinin). Maximum conversion (78.6 and 78%) occurred after 6 and 7 days of adding artemisinin to 20 and 9 days old cultures of C. roseus and L. officinalis, respectively. The procedure was scaled up by and 500 mg artemisinin was transformed into 390 mg deoxyartemisinin. Addition of artemisinin at the beginning of the culture cycle resulted in >50% reduction in dry biomass production with no bioconversion. Conversion of artemisinin occurred intracellularly followed by leaching of the product into the medium.

  8. Accumulation of quinolizidine alkaloids in plants and cell suspension cultures: genera lupinus, cytisus, baptisia, genista, laburnum, and sophora.

    PubMed

    Wink, M; Witte, L; Hartmann, T; Theuring, C; Volz, V

    1983-08-01

    The patterns of quinolizidine alkaloids in cell cultures of 10 species of Fabaceae were analyzed by high-resolution GLC and GLC-MS and compared with the alkaloids present in the leaves of the respective plants. Lupanine was produced in all 10 cell suspension cultures as the main alkaloid. It was accompanied by sparteine, tetrahydrorhombifoline, 17-oxosparteine, 13-hydroxylupanine, 4-hydroxylupanine, 17-oxolupanine, and 13-hydroxylupanine esters as minor alkaloids in some species. The alkaloid patterns of the plants differed markedly in that alpha-pyridone alkaloids were the major alkaloids in the genera Cytisus, Genista, Laburnum and Sophora but were not accumulated in the cell cultures. These data further support the assumption that the pathway leading to lupanine is the basic pathway of quinolizidine alkaloids biosynthesis and that the other alkaloids are derived from lupanine.

  9. A promising approach on biomass accumulation and withanolides production in cell suspension culture of Withania somnifera (L.) Dunal.

    PubMed

    Sivanandhan, Ganeshan; Kapil Dev, Gnanajothi; Jeyaraj, Murugaraj; Rajesh, Manoharan; Muthuselvam, Manickam; Selvaraj, Natesan; Manickavasagam, Markandan; Ganapathi, Andy

    2013-08-01

    Withanolide is one of the most extensively exploited steroidal lactones, which are biosynthesized in Withania somnifera. Its production from cell suspension culture was analyzed to defeat limitations coupled with its regular supply from the plant organs. In order to optimize the different factors for sustainable production of withanolides and biomass accumulations, different concentrations of auxins or cytokinins and their combinations, carbon sources, agitation speed, organic additives and seaweed extracts was studied in cell suspension culture. Maximum biomass accumulation (16.72 g fresh weight [FW] and 4.18 g dry weight [DW]) and withanolides production (withanolide A 7.21 mg/g DW, withanolide B 4.23 mg/g DW, withaferin A 3.88 mg/g DW and withanone 6.72 mg/g DW) were achieved in the treatment of Gracilaria edulis extract at 40 % level. Organic additive L-glutamine at 200 mg/l in combination with picloram (1 mg/l) and KN (0.5 mg/l) promoted growth characteristics (11.87 g FW and 2.96 g DW) and withanolides synthesis (withanolide A 5.04 mg/g DW, withanolide B 2.59 mg/g DW, withaferin A 2.36 mg/g DW and withanone 4.32 mg/g DW). Sucrose at 5 % level revolved out to be a superior carbon source yielded highest withanolides production (withanolide A 2.88 mg/g DW, withanolide B 1.48 mg/g DW, withaferin A 1.35 mg/g DW and withanone 2.47 mg/g DW), whereas biomass (7.28 g FW and 1.82 g DW) was gratefully increased at 2 % level of sucrose in cell suspension culture. This optimized protocol can be utilized for large scale cultivation of W. somnifera cells in industrial bioreactors for mass synthesis of major withanolides.

  10. Efficient embryogenic suspension culturing and rapid transformation of a range of elite genotypes of sweet potato (Ipomoea batatas [L.] Lam.).

    PubMed

    Yang, Jun; Bi, Hui-Ping; Fan, Wei-Juan; Zhang, Min; Wang, Hong-Xia; Zhang, Peng

    2011-12-01

    Efficient Agrobacterium tumefaciens-mediated transformation was developed using embryogenic suspension cell cultures of elite sweet potato (Ipomoea batatas [L.] Lam.) cultivars, including Ayamurasaki, Sushu2, Sushu9, Sushu11, Wanshu1, Xushu18 and Xushu22. Embryogenic suspension cultures were established in LCP medium using embryogenic calli induced from apical or axillary buds on an induction medium containing 2 mg l(-1) 2,4-D. Suspension cultures were co-cultivated with A. tumefaciens strain LBA4404 harboring the binary plasmid pCAMBIA1301 with the hpt gene as a selectable marker and an intron-interrupted uidA gene as a visible marker. Several key steps of the sweet potato transformation system have been investigated and optimized, including the appropriate antibiotics and their concentrations for suppressing Agrobacterium growth and the optimal doses of hygromycin for transformant selection. A total of 485 putative transgenic plant lines were produced from the transformed calli via somatic embryogenesis and germination to plants under 10 mg l(-1) hygromycin and 200 mg l(-1) cefotaxime. PCR, GUS and Southern blot analyses of the regenerated plants showed that 92.35% of them were transgenic. The number of T-DNA insertions varied from one to three in most transgenic plant lines. Plants showed 100% survival when 308 transgenics were transferred to soil in the greenhouse and then to the field. Most of them were morphologically normal, with the production of storage roots after 3 months of cultivation in the greenhouse or fields. The development of such a robust transformation method suitable to a range of sweet potato genotypes not only provides a routine tool for genetic improvement via transgenesis but also allows us to conduct a functional verification of endogenous genes in sweet potato.

  11. Detoxification of Formaldehyde by the Spider Plant (Chlorophytum comosum L.) and by Soybean (Glycine max L.) Cell-Suspension Cultures.

    PubMed Central

    Giese, M.; Bauer-Doranth, U.; Langebartels, C.; Sandermann, H.

    1994-01-01

    The phytotoxicity of formaldehyde for spider plants (Chlorophytum comosum L.), tobacco plants (Nicotiana tabacum L. cv Bel B and Bel W3), and soybean (Glycine max L.) cell-suspension cultures was found to be low enough to allow metabolic studies. Spider plant shoots were exposed to 7.1 [mu]L L-1 (8.5 mg m-3) gaseous [14C]-formaldehyde over 24 h. Approximately 88% of the recovered radioactivity was plant associated and was found to be incorporated into organic acids, amino acids, free sugars, and lipids as well as cell-wall components. Similar results were obtained upon feeding [14C]formaldehyde from aqueous solution to aseptic soybean cell-suspension cultures. Serine and phosphatidylcholine were identified as major metabolic products. Spider plant enzyme extracts contained two NAS+-dependent formaldehyde dehydrogenase activities with molecular mass values of about 129 and 79 kD. Only the latter enzyme activity required glutathione as an obligatory second cofactor. It had an apparent Km value of 30 [mu]M for formaldehyde and an isoelectric point at pH 5.4. Total cell-free dehydrogenase activity corresponded to 13 [mu]g formaldehyde oxidized h-1 g-1 leaf fresh weight. Glutathione-dependent formaldehyde dehydrogenases were also isolated from shoots and leaves of Equisetum telmateia and from cell-suspension cultures of wheat (Triticum aestivum L.) and maize (Zea mays L.). The results obtained are consistent with the concept of indoor air decontamination with common room plants such as the spider plant. Formaldehyde appears to be efficiently detoxified by oxidation and subsequent C1 metabolism. PMID:12232169

  12. Scale-up of Agrobacterium-mediated transient protein expression in bioreactor-grown Nicotiana glutinosa plant cell suspension culture.

    PubMed

    O'Neill, Kristin M; Larsen, Jeffrey S; Curtis, Wayne R

    2008-01-01

    The reporter gene beta-glucuronidase was transiently expressed in a 51-L bioreactor-grown plant cell suspension culture of Nicotiana glutinosa at a yield of approximately 1.1 mg through co-culture with an auxotrophic strain of Agrobacterium tumefaciens. The three order of magnitude scale-up involved the investigation of factors contributing to transient expression including the timing of Agrobacterium inoculation relative to the plant cell growth phase, plant tissue culture hormonal triggers and plant cell cycle synchronization. The co-culture process was simplified to facilitate implementation in a pilot-scale bioreactor. At the shake flask scale it was determined that elevated concentrations of oxygen in the headspace were detrimental to transient expression levels and the addition of acetosyringone to the co-culture had a negligible effect. The bacterial preparation process was also streamlined, permitting the direct transfer of the Agrobacterium culture from a bench-scale fermentor to the pilot-scale plant cell culture bioreactor. Increasing expression levels and overcoming batch-to-batch variability despite extensive procedure systemization remain the major technical hurdles.

  13. Cluster-cluster aggregation with particle replication and chemotaxy: a simple model for the growth of animal cells in culture

    NASA Astrophysics Data System (ADS)

    Alves, S. G.; Martins, M. L.

    2010-09-01

    Aggregation of animal cells in culture comprises a series of motility, collision and adhesion processes of basic relevance for tissue engineering, bioseparations, oncology research and in vitro drug testing. In the present paper, a cluster-cluster aggregation model with stochastic particle replication and chemotactically driven motility is investigated as a model for the growth of animal cells in culture. The focus is on the scaling laws governing the aggregation kinetics. Our simulations reveal that in the absence of chemotaxy the mean cluster size and the total number of clusters scale in time as stretched exponentials dependent on the particle replication rate. Also, the dynamical cluster size distribution functions are represented by a scaling relation in which the scaling function involves a stretched exponential of the time. The introduction of chemoattraction among the particles leads to distribution functions decaying as power laws with exponents that decrease in time. The fractal dimensions and size distributions of the simulated clusters are qualitatively discussed in terms of those determined experimentally for several normal and tumoral cell lines growing in culture. It is shown that particle replication and chemotaxy account for the simplest cluster size distributions of cellular aggregates observed in culture.

  14. Correlation of cotyledonary node shoot proliferation and somatic embryoid development in suspension cultures of soybean (Glycine max L. Merr.).

    PubMed

    Kerns, H R; Barwale, U B; Meyer, M M; Widholm, J M

    1986-04-01

    Suspension cultures of soybean were initiated from hypocotyl or cotyledon callus tissue of several soybean genotypes. When these were grown on L2 medium with 0.4 mg/liter 2,4-D several genotypes produced numerous embryoids while others produced only a few such structures. Due to internal anatomy, no embryoid developed into a complete plant. A genotype's propensity to form normal appearing embryoids was correlated with the ability to proliferate shoots at the cotyledonary node on a medium with benzylaminopurine as determined in previous testing.

  15. Altered nitrogen metabolism associated with de-differentiated suspension cultures derived from root cultures of Datura stramonium studied by heteronuclear multiple bond coherence (HMBC) NMR spectroscopy.

    PubMed

    Fliniaux, Ophélie; Mesnard, François; Raynaud-Le Grandic, Sophie; Baltora-Rosset, Sylvie; Bienaimé, Christophe; Robins, Richard J; Fliniaux, Marc-André

    2004-05-01

    De-differentiation of transformed root cultures of Datura stramonium has previously been shown to cause a loss of tropane alkaloid synthetic capacity. This indicates a marked shift in physiological status, notably in the flux of primary metabolites into tropane alkaloids. Nitrogen metabolism in transformed root cultures of D. stramonium (an alkaloid-producing system) and de-differentiated suspension cultures derived therefrom (a non-producing system) has been compared using Nuclear Magnetic Resonance (NMR) spectroscopy. (15)N-Labelled precursors [((15)NH(4))(2)SO(4) and K(15)NO(3)] were fed and their incorporation into nitrogenous metabolites studied using Heteronuclear Multiple Bond Coherence (HMBC) NMR spectroscopy. In both cultures, the same amino acids were resolved in the HMBC spectra. However, marked differences were found in the intensity of labelling of a range of nitrogenous compounds. In differentiated root cultures, cross-peaks corresponding to secondary metabolites, such as tropine, were observed, whereas these were absent in the de-differentiated cultures. By contrast, N- acetylputrescine and gamma-aminobutyric acid (GABA) accumulated in the de-differentiated cultures to a much larger extent than in the root cultures. It can therefore be suggested that the loss of alkaloid biosynthesis was compensated by the diversion of putrescine metabolism away from the tropane pathway and toward the synthesis of GABA via N-acetylputrescine.

  16. Non-specific pinocytosis by human endothelial cells cultured as multicellular aggregates: uptake of lucifer yellow and horse radish peroxidase.

    PubMed

    Catizone, A; Chiantore, M V; Andreola, F; Coletti, D; Medolago Albani, L; Alescio, T

    1996-12-01

    We have analyzed the pattern of time-dependent and concentration-dependent incorporation of Lucifer Yellow CH (LY) and Horseradish Peroxidase (HRP) by human umbilical vein endothelial cells cultured on a non-adhesive substratum, where they they become organized into stable, multicellular aggregates. The data were compared with those previously obtained from low-density cultures of non-growing endothelial cells adherent to plastic. While the linear trend of the incorporation kinetics is preserved, the rate of uptake with both time and concentrations is highly dependent on the culture conditions, namely typology of cell-cell and cell-substrate interactions. An at least two-fold increase of the rate of uptake was observed with both markers in the aggregated cells. The extracellular concentration of LY required to saturate the binding capacity of the cell surface shifts from approximately 0.25 mg/ml, with the adherent cells, to approximately 0.5 mg/ml in the aggregated cells; the rate of uptake of three different forms of HRP shows, besides a sharp quantitative increase, also qualitative variations, testified by differential changes of their incorporation rates. These results are entirely consistent with the assumption that the association of the endothelial cells into multicellular aggregates increases the rate of pinocytic uptake by modifying the physicochemical properties of the cell surface, thereby increasing its differential affinity for the extracellular markers.

  17. Carbon starvation increases endoglycosidase activities and production of "unconjugated N-glycans" in Silene alba cell-suspension cultures.

    PubMed Central

    Lhernould, S; Karamanos, Y; Priem, B; Morvan, H

    1994-01-01

    We previously reported the occurrence of oligomannosides and xylomannosides corresponding to unconjugated N-glycans (UNGs) in the medium of a white campion (Silene alba) cell suspension. Attention has been focused on these oligosaccharides since it was shown that they confer biological activities in plants. In an attempt to elucidate the origin of these oligosaccharides, we studied two endoglycosidase activities, putative enzymes involved in their formation. The previously described peptide-N4-(N-acetyl-glucosaminyl) asparagine amidase activity and the endo-N-acetyl-beta-D-glucosaminidase activity described in this paper were both quantified in white campion cells during the culture cycle with variable initial concentrations of sucrose. The lower the sucrose supply, the higher the two activities. Furthermore, endoglycosidase activities were greatly enhanced after the disappearance of sugar from the medium. The production of UNGs in the culture medium rose correlatively. These data strongly suggest that the production of UNGs in our white campion cell-suspension system is due to the increase of these endoglycosidase activities, which reach their highest levels of activity during conditions of carbon starvation. PMID:7991689

  18. Differential patterns of arabinosylation by membranes of suspension-cultured cells of Phaseolus vulgaris (French bean) after subculture or elicitation.

    PubMed

    Bolwell, G P

    1984-09-01

    Suspension-cultured cells of Phaseolus vulgaris (French bean) incorporated [1-3H] arabinose in vivo into high-Mr polymers that could be separated into glycoprotein and polysaccharide. Microsomal membranes from suspension-cultured cells of beans incorporated arabinose from UDP-beta-L-arabinose in vitro into both polysaccharide and glycoprotein. The enzyme involved in arabinan synthesis, arabinan synthase, appeared to be immunologically distinct from the protein:arabinosyltransferase system. Both these activities are inducible, but behave differently with either plant-growth-regulator or fungal-elicitor treatments. After subculture of cells entering the stationary growth phase the arabinan synthase activity reaches much higher values than does that of the protein transferase system during the initial period of cell division and growth, whereas after elicitation at the same growth stage, all the increased incorporation of arabinose occurs into glycoprotein of Mr higher than 200 000 and to a greater extent into a specific glycoprotein of Mr 42 500. Preliminary characterization of these glycoproteins prepared under non-reducing conditions and after acid and alkaline hydrolysis suggests that the high-Mr glycoprotein material is similar to arabinogalactan protein, whereas the lower-Mr material may be a hydroxyproline-rich protein existing as a dimer and that specifically increases during the hypersensitive response of the cells to the fungal elicitor from Colletotrichum lindemuthianum.

  19. Five 2-(2-Phenylethyl)chromones from Sodium Chloride-Elicited Aquilaria sinensis Cell Suspension Cultures.

    PubMed

    Zhang, Zhongxiu; Wang, Xiaohui; Yang, Wanqing; Wang, Juan; Su, Cong; Liu, Xiao; Li, Jun; Zhao, Yunfang; Shi, Shepo; Tu, Pengfei

    2016-04-27

    Five 2-(2-phenylethyl)chromones including a new one, (5S,6R,7S,8R)-5,8-dichloro-6,7-dihydroxy-2-phenylethyl-5,6,7,8-tetrahydro-4H-chromen-4-one (1), and four known ones (2-5), were isolated from 150 mM NaCl-elicited Aquilaria sinensis cell suspension cultures. In addition, three feruloyl amides (6-8), six nucleosides (9-14), (+)-syringaresinol (15), indole-3-carboxaldehyde (16), and two glycosides (17-18) were also obtained. The structures were unambiguously identified by analysis of their UV, IR, NMR, and HRESIMS data. The absolute configuration of the new 2-(2-phenylethyl)chromone (1) was established by a dimolybdenum tetraacetate-induced circular dichroism experiment. Compared to un-elicited cell lines, the appearance of 2-(2-phenylethyl)chromones in NaCl-treated cells occurred on the 3rd and 5th days of their treatment. 2-(2-Phenylethyl)chromones, feruloyl amides, nucleosides, and lignins have been reported to be closely related to plant defense; therefore, the identification of these compounds from NaCl-elicited A. sinensis cell suspension cultures would be useful for further exploring the mechanism of agarwood formation.

  20. Phosphatidic acid formation is required for extracellular ATP-mediated nitric oxide production in suspension-cultured tomato cells.

    PubMed

    Sueldo, Daniela J; Foresi, Noelia P; Casalongué, Claudia A; Lamattina, Lorenzo; Laxalt, Ana M

    2010-03-01

    *In animals and plants, extracellular ATP exerts its effects by regulating the second messengers Ca(2+), nitric oxide (NO) and reactive oxygen species (ROS). In animals, phospholipid-derived molecules, such as diacylglycerol, phosphatidic acid (PA) and inositol phosphates, have been associated with the extracellular ATP signaling pathway. The involvement of phospholipids in extracellular ATP signaling in plants, as it is established in animals, is unknown. *In vivo phospholipid signaling upon extracellular ATP treatment was studied in (32)P(i)-labeled suspension-cultured tomato (Solanum lycopersicum) cells. *Here, we report that, in suspension-cultured tomato cells, extracellular ATP induces the formation of the signaling lipid phosphatidic acid. Exogenous ATP at doses of 0.1 and 1 mM induce the formation of phosphatidic acid within minutes. Studies on the enzymatic sources of phosphatidic acid revealed the participation of both phospholipase D and C in concerted action with diacylglycerol kinase. *Our results suggest that extracellular ATP-mediated nitric oxide production is downstream of phospholipase C/diacylglycerol kinase activation.

  1. Maize black Mexican sweet suspension cultured cells are a convenient tool for studying aquaporin activity and regulation.

    PubMed

    Cavez, Damien; Hachez, Charles; Chaumont, François

    2009-09-01

    Aquaporins (AQPs) are channel proteins that facilitate and regulate the permeation of water across biological membranes. Black Mexican sweet suspension cultured cells are a convenient model for studying the regulation of maize AQP expression and activity. Among other advantages, a single cell system allows the contribution of plasma membrane AQPs (PIPs, plasma membrane intrinsic proteins) to the membrane water permeability coefficient (P(f)) to be determined using biophysical measurement methods, such as the cell pressure probe or protoplast swelling assay. We generated a transgenic cell culture line expressing a tagged version of ZmPIP2;6 and used this material to demonstrate that the ZmPIP2;6 and ZmPIP2;1 isoforms physically interact. This kind of interaction could be an additional mechanism for regulating membrane water permeability by acting on the activity and/or trafficking of PIP hetero-oligomers.

  2. Enhanced extracellular production of trans-resveratrol in Vitis vinifera suspension cultured cells by using cyclodextrins and methyljasmonate.

    PubMed

    Belchí-Navarro, Sarai; Almagro, Lorena; Lijavetzky, Diego; Bru, Roque; Pedreño, María A

    2012-01-01

    In this work, the effect of different inducing factors on trans-resveratrol extracellular production in Monastrell grapevine suspension cultured cells is evaluated. A detailed analysis provides the optimal concentrations of cyclodextrins, methyljasmonate and UV irradiation dosage, optimal cell density, elicitation time and sucrose content in the culture media. The results indicate that trans-resveratrol production decreases as the initial cell density increases for a constant elicitor concentration in Monastrell suspension cultured cells treated with cyclodextrins individually or in combination with methyljasmonate; the decrease observed in cell cultures elicited with cyclodextrins alone is far more drastic than those observed in the combined treatment. trans-Resveratrol extracellular production observed by the joint use of cyclodextrins and methyljasmonate (1,447.8 ± 60.4 μmol trans-resveratrol g(-1) dry weight) is lower when these chemical compounds are combined with UV light short exposure (669.9 ± 45.2 μmol trans-resveratrol g(-1) dry weight). Likewise, trans-resveratrol production is dependent on levels of sucrose in the elicitation medium with the maximal levels observed with 20 g l(-1) sucrose and the joint action of cyclodextrins and 100 μM methyljasmonate. The sucrose concentration did not seem to limit the process although it affects significantly the specific productivity since the lowest sucrose concentration is 10 g l(-1), the highest productivity is reached (100.7 ± 5.8 μmol trans-resveratrol g(-1) dry weight g(-1) sucrose) using cyclodextrins and 25 μM methyljasmonate.

  3. Method for Producing Non-Neoplastic, Three Dimensional, Mammalian Tissue and Cell Aggregates Under Microgravity Culture Conditions and the Products Produced Therefrom

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Wolf, David A. (Inventor); Spaulding, Glenn F. (Inventor); Prewett, Tracey L. (Inventor)

    1996-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural, and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  4. Biosynthesis of 14C-phytoene from tomato cell suspension cultures (Lycopersicon esculentum) for utilization in prostate cancer cell culture studies.

    PubMed

    Campbell, Jessica K; Rogers, Randy B; Lila, Mary Ann; Erdman, John W

    2006-02-08

    This work describes the development and utilization of a plant cell culture production approach to biosynthesize and radiolabel phytoene and phytofluene for prostate cancer cell culture studies. The herbicide norflurazon was added to established cell suspension cultures of tomato (Lycopersicon esculentum cv. VFNT cherry), to induce the biosynthesis and accumulation of the lycopene precursors, phytoene and phytofluene, in their natural isomeric forms (15-cis-phytoene and two cis-phytofluene isomers). Norflurazon concentrations, solvent carrier type and concentration, and duration of culture exposure to norflurazon were screened to optimize phytoene and phytofluene synthesis. Maximum yields of both phytoene and phytofluene were achieved after 7 days of treatment with 0.03 mg norflurazon/40 mL fresh medium, provided in 0.07% solvent carrier. Introduction of 14C-sucrose to the tomato cell culture medium enabled the production of 14C-labeled phytoene for subsequent prostate tumor cell uptake studies. In DU 145 prostate tumor cells, it was determined that 15-cis-phytoene and an oxidized product of phytoene were taken up and partially metabolized by the cells. The ability to biosynthesize, radiolabel, and isolate these carotenoids from tomato cell cultures is a novel, valuable methodology for further in vitro and in vivo investigations into the roles of phytoene and phytofluene in cancer chemoprevention.

  5. Characterization of an immunomodulatory Der p 2-FIP-fve fusion protein produced in transformed rice suspension cell culture.

    PubMed

    Su, Chin-Fen; Kuo, I-Chun; Chen, Peng-Wen; Huang, Chiung-Hui; Seow, See Voon; Chua, Kaw Yan; Yu, Su-May

    2012-02-01

    Der p 2, a major allergen of Dermatophagoides pteronyssinus mites, is one of the most clinically relevant allergens to allergic patients worldwide. FIP-fve protein (Fve) from the golden needle mushroom (Flammulina velutipes) is an immunomodulatory protein with potential Th1-skewed adjuvant properties. Here, we produced and immunologically evaluated a Der p 2-Fve fusion protein as a potential immunotherapeutic for allergic diseases. Using an inducible expression system in cultured rice suspension cells, the recombinant Der p 2-Fve fusion protein (designated as OsDp2Fve) was expressed in rice cells under the control of an α-amylase gene (αAmy8) promoter and secreted under sucrose starvation. OsDp2Fve was partially purified from the cultured medium. The conformation of Der p 2 in OsDp2Fve remains intact as reflected by its unaltered allergenicity, as assessed by human IgE ELISA and histamine release assays, compared to non-fusion Der p 2 protein. Furthermore, the Fve protein expressed in OsDp2Fve retains its in vitro lymphoproliferative activity but loses its hemagglutination and lymphoagglutination effects compared to the native protein. Notably, in vivo evaluation showed that mice administered with OsDp2Fve possessed an enhanced production of Der p 2-specific IgG antibodies without potentiating the production of Der p 2-specific IgE and Th2 effector cytokines in comparison with mice co-administered with native Fve and Der p 2 proteins. These results suggest that the recombinant Der p 2-Fve fusion protein produced in rice suspension cell cultures has a great potential for allergy immunotherapy.

  6. Inducible packaging cells for large-scale production of lentiviral vectors in serum-free suspension culture.

    PubMed

    Broussau, Sophie; Jabbour, Nadine; Lachapelle, Guillaume; Durocher, Yves; Tom, Rosanne; Transfiguracion, Julia; Gilbert, Rénald; Massie, Bernard

    2008-03-01

    We have developed new packaging cell lines (293SF-PacLV) that can produce lentiviral vectors (LVs) in serum-free suspension cultures. A cell line derived from 293SF cells, expressing the repressor (CymR) of the cumate switch and the reverse transactivator (rtTA2(S)-M2) of the tetracycline (Tet) switch, was established first. We next generated clones stably expressing the Gag/Pol and Rev genes of human immunodeficiency virus-1, and the glycoprotein of vesicular stomatitis virus (VSV-G). Expression of Rev and VSV-G was tightly regulated by the cumate and Tet switches. Our best packaging cells produced up to 2.6 x 10(7) transducing units (TU)/ml after transfection with the transfer vector. Up to 3.4 x 10(7) TU/ml were obtained using stable producers generated by transducing the packaging cells with conditional-SIN-LV. The 293SF-PacLV was stable, as shown by the fact that some producers maintained high-level LV production for 18 weeks without selective pressure. The utility of the 293SF-PacLV for scaling up production in serum-free medium was demonstrated in suspension cultures and in a 3.5-L bioreactor. In shake flasks, the best packaging cells produced between 3.0 and 8.0 x 10(6) TU/ml/day for 3 days, and the best producer cells, between 1.0 and 3.4 x 10(7) TU/ml/day for 5 days. In the bioreactor, 2.8 liters containing 2.0 x 10(6) TU/ml was obtained after 3 days of batch culture following the transfection of packaging cells. In summary, the 293SF-PacLV possesses all the attributes necessary to become a valuable tool for scaling up LV production for preclinical and clinical applications.

  7. Components of Torpedo electric organ and muscle that cause aggregation of acetylcholine receptors on cultured muscle cells

    PubMed Central

    1984-01-01

    The synaptic portion of a muscle fiber's basal lamina sheath has molecules tightly bound to it that cause aggregation of acetylcholine receptors (AChRs) on regenerating myofibers. Since basal lamina and other extracellular matrix constituents are insoluble in isotonic saline and detergent solutions, insoluble detergent-extracted fractions of tissues receiving cholinergic input may provide an enriched source of the AChR-aggregating molecules for detailed characterization. Here we demonstrate that such an insoluble fraction from Torpedo electric organ, a tissue with a high concentration of cholinergic synapses, causes AChRs on cultured chick muscle cells to aggregate. We have partially characterized the insoluble fraction, examined the response of muscle cells to it, and devised ways of extracting the active components with a view toward purifying them and learning whether they are similar to those in the basal lamina at the neuromuscular junction. The insoluble fraction from the electric organ was rich in extracellular matrix constituents; it contained structures resembling basal lamina sheaths and had a high density of collagen fibrils. It caused a 3- to 20-fold increase in the number of AChR clusters on cultured myotubes without significantly affecting the number or size of the myotubes. The increase was first seen 2-4 h after the fraction was added to cultures and it was maximal by 24 h. The AChR-aggregating effect was dose dependent and was due, at least in part, to lateral migration of AChRs present in the muscle cell plasma membrane at the time the fraction was applied. Activity was destroyed by heat and by trypsin. The active component(s) was extracted from the insoluble fraction with high ionic strength or pH 5.5 buffers. The extracts increased the number of AChR clusters on cultured myotubes without affecting the number or degradation rate of surface AChRs. Antiserum against the solubilized material blocked its effect on AChR distribution and bound to the

  8. Influence of rare earth elements on metabolism and related enzyme activity and isozyme expression in Tetrastigma hemsleyanum cell suspension cultures.

    PubMed

    Xin, Peng; Shuang-Lin, Zhou; Jun-Yao, He; Li, Ding

    2013-04-01

    The effects of rare earth elements (REEs) not only on cell growth and flavonoid accumulation of Tetrastigma hemsleyanum suspension cells but also on the isoenzyme patterns and activities of related enzymes were studied in this paper. There were no significant differences in enhancement of flavonoid accumulation in T. hemsleyanum suspension cells among La(3+), Ce(3+), and Nd(3+). Whereas their inductive effects on cell proliferation varied greatly. The most significant effects were achieved with 100 μM Ce(3+)and Nd(3+). Under treatment over a 25-day culture period, the maximal biomass levels reached 1.92- and 1.74-fold and the total flavonoid contents are 1.45- and 1.49-fold, than that of control, respectively. Catalase, phenylalanine ammonia-lyase (PAL), and peroxidase (POD) activity was activated significantly when the REE concentration range from 0 to 300 μM, whereas no significant changes were found in superoxide dismutase activity. Differences of esterase isozymes under REE treatment only laid in expression level, and there were no specific bands. The expression level of some POD isozymes strengthened with increasing concentration of REEs within the range of 50-200 μM. When REE concentration was higher than 300 μM, the expression of some POD isozymes was inhibited; meanwhile, some other new POD isozymes were induced. Our results also showed REEs did not directly influence PAL activity. So, we speculated that 50-200 μM REEs could activate some of antioxidant enzymes, adjust some isozymes expression, trigger the defense responses of T. hemsleyanum suspension cells, and stimulate flavonoid accumulation by inducing PAL activity.

  9. Inflammatory responses in aggregating rat brain cell cultures subjected to different demyelinating conditions.

    PubMed

    Defaux, Antoinette; Zurich, Marie-Gabrielle; Honegger, Paul; Monnet-Tschudi, Florianne

    2010-09-24

    To study inflammatory reactions occurring in relation to demyelination, aggregating rat brain cell cultures were subjected to three different demyelinating insults, i.e., (i) lysophosphatidylcholine (LPC), (ii) interferon-gamma combined with lipopolysaccharide (IFN-gamma+LPS), and (iii) anti-MOG antibodies plus complement (alpha-MOG+C). Demyelination was assessed by measuring the expression of myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG), and the activity of 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP). The accompanying inflammatory reactions were examined by the quantification of microglia-specific staining, by immunostaining for glial fibrillary acidic protein (GFAP), and by measuring the mRNA expression of a panel of inflammation-related genes. It was found that all three demyelinating insults decreased the expression of MBP and MOG, and induced microglial reactivity. LPC and alpha-MOG+C, but not IFN-gamma+LPS, decreased CNP activity; they also caused the appearance of macrophagic microglia, and increased GFAP staining indicating astrogliosis. LPC affected also the integrity of neurons and astrocytes. LPC and IFN-gamma+LPS upregulated the expression of the inflammation-related genes IL-6, TNF-alpha, Ccl5, Cxcl1, and iNOS, although to different degrees. Other inflammatory markers were upregulated by only one of the three insults, e.g., Cxcl2 by LPC; IL-1beta and IL-15 by IFN-gamma+LPS; and IFN-gamma by alpha-MOG+C. These findings indicate that each of the three demyelinating insults caused distinct patterns of demyelination and inflammatory reactivity, and that of the demyelinating agents tested only LPC exhibited general toxicity.

  10. Chemical Elicitor-Induced Modulation of Antioxidant Metabolism and Enhancement of Secondary Metabolite Accumulation in Cell Suspension Cultures of Scrophularia kakudensis Franch

    PubMed Central

    Manivannan, Abinaya; Soundararajan, Prabhakaran; Park, Yoo Gyeong; Jeong, Byoung Ryong

    2016-01-01

    Scrophularia kakudensis is an important medicinal plant with pharmaceutically valuable secondary metabolites. To develop a sustainable source of naturaceuticals with vital therapeutic importance, a cell suspension culture was established in S. kakudensis for the first time. Friable calli were induced from the leaf explants cultured on a Murashige and Skoog (MS) medium containing 3.0 mg·L−1 6-benzyladenine (BA) in a combination with 2 mg·L−1 2,4-dichlorophenoxy acetic acid (2,4-D). From the callus cultures, a cell suspension culture was initiated and the cellular differentiation was investigated. In addition, the effect of biotic elicitors such as methyl jasmonate (MeJa), salicylic acid (SA), and sodium nitroprusside (SNP) on the accumulation of secondary metabolites and antioxidant properties was demonstrated. Among the elicitors, the MeJa elicited the accumulation of total phenols, flavonoids, and acacetin, a flavonoid compound with multiple pharmaceutical values. Similarly, the higher concentrations of the MeJa significantly modulated the activities of antioxidant enzymes and enhanced the scavenging potentials of free radicals of cell suspension extracts. Overall, the outcomes of this study can be utilized for the large scale production of pharmaceutically important secondary metabolites from S. kakudensis through cell suspension cultures. PMID:26999126

  11. Effect of phenylalanine on Taxol production and antioxidant activity of extracts of suspension-cultured hazel (Corylus avellana L.) cells.

    PubMed

    Bemani, Ebrahim; Ghanati, Faezeh; Rezaei, Ayatollah; Jamshidi, Mitra

    2013-07-01

    Taxol is produced by a few microorganisms and plants such as yew (Taxus sp.). Recent researches have shown that hazel (Corylus avellana L.) is also able to produce Taxol. In the present study, effects of different concentrations of phenylalanine (Phe) on the production of Taxol, antioxidant activity, and cytotoxic effects of extracts of suspension-cultured hazel cells were investigated. The cells were treated with different concentrations of Phe on day 7 of subculture and were harvested on day 14. The results showed that the amounts of Taxol and antioxidant activity were increased by increasing the phenylalanine supply. Interestingly, the cytotoxic effects of hazel cell extract were even stronger than that of pure Taxol (standard), suggesting hazel cell extract as a novel and suitable probe for treating human cancer. Application of phenylalanine to hazel cells exaggerates their effects.

  12. Efficacy of low-temperature high hydrostatic pressure processing in inactivating Vibrio parahaemolyticus in culture suspension and oyster homogenate.

    PubMed

    Phuvasate, Sureerat; Su, Yi-Cheng

    2015-03-02

    Culture suspensions of five clinical and five environmental Vibrio parahaemolyticus strains in 2% NaCl solution were subjected to high pressure processing (HPP) under various conditions (200-300MPa for 5 and 10 min at 1.5-20°C) to study differences in pressure resistance among the strains. The most pressure-resistant and pressure-sensitive strains were selected to investigate the effects of low temperatures (15, 5 and 1.5°C) on HPP (200 or 250MPa for 5 min) to inactivate V. parahaemolyticus in sterile oyster homogenates. Inactivation of V. parahaemolyticus cells in culture suspensions and oyster homogenates was greatly enhanced by lowering the processing temperature from 15 to 5 or 1.5°C. A treatment of oyster homogenates at 250MPa for 5 min at 5°C decreased the populations of V. parahaemolyticus by 6.2logCFU/g for strains 10290 and 100311Y11 and by >7.4logCFU/g for strain 10292. Decreasing the processing temperature of the same treatment to 1.5°C reduced all the V. parahaemolyticus strains inoculated to oyster homogenates to non-detectable (<10CFU/g) levels. Factors including pressure level, processing temperature and time all need to be considered for developing effective HPP for eliminating pathogens from foods. Further studies are needed to validate the efficacy of the HPP (250MPa for 5 min at 1.5°C) in inactivating V. parahaemolyticus cells in whole oysters.

  13. [Enhanced production of taxuyunnanine c in cell suspension cultures of Taxus chinensis by methyl jasmonate elicitation and in situ absorption].

    PubMed

    Gao, Mingbo; Zhang, Wei; Yu, Xingju

    2010-02-01

    A bioprocess intensification strategy that combines both elicitation and in situ absorption was developed to improve the production of taxuyunnanine c (Tc) in cell suspension cultures of Taxus chinensis. When 100 micromol/L methyl jasmonate was added as an elicitor on Day 7, the Tc content and yield increased 3.6 and 3.3 times respectively, however the cell growth was reduced by 10%-30%. Significant improvement in Tc yield was observed when an absorbent XAD-7 was added on different time of the culture period. The optimum Tc yield was achieved when 100 g/L XAD-7 was added simultaneously with 100 micromol/L methyl jasmonate on Day 7. The maximum Tc yield of 477.4 mg/L was obtained on Day 21 of the culture, being 6.3-fold of the control and 1.9-fold of the 100 micromol/L methyl jasmonate treatment alone. In the combined treatment, 94% of the Tc produced was secreted outside of the cells and absorbed on XAD-7 absorbents. The results demonstrated that the process strategy combining elicitation and in situ absorption was effective to intensify the Tc biosynthesis via elicitation with the removal of product feedback inhibition via absorption, presenting a great potential in commercial applications.

  14. Effects of inorganic iodide, epidermal growth factor and phorbol ester on hormone synthesis by porcine thyroid follicles cultured in suspension

    SciTech Connect

    Kasai, Kikuo; Ichimura, Kenichi; Banba, Nobuyuki; Emoto, Tatsushi; Hiraiwa, Masaki; Hishinuma, Akira; Hattori, Yoshiyuki; Shimoda, Shinichi ); Yamaguchi, Fumihiko; Hosoya, Toichiro )

    1992-01-01

    Porcine thyroid follicles cultured in suspension for 96 h synthesized and secreted thyroid hormones in the presence of thyrotropin (TSH). The secretion of newly synthesized hormones was assessed by determining in the contents of thyroxine (T{sub 4}) and triiodothyronine (T{sub 3}) in the media and by paperchromatographic analysis of {sup 125}I-labeled hormones in the media where the follicles were cultured in the presence and absence of inhibitors of hormone synthesis. The hormone synthesis and secretion was modified by exogenously added NaI. The maximal response was obtained at 1 {mu}M. Thyroid peroxidase (TPO) activity in the cultured follicles with TSH for 96 h was dose-dependently inhibited by NaI. One hundred {mu}M and NaI completely inhibited TSH-induced TPO activity. Moreover, both epidermal growth factor and phorbol 12-myristate 13-acetate inhibited de novo hormone synthesis. An induction of TPO activity by TSH was also inhibited by either agent. These data provide direct evidences that thyroid hormone synthesis is regulated by NaI as well as TSH at least in part via regulation of TPO activity and also that both EGF and PMA are inhibitory on thyroid hormone formation.

  15. Enhanced extracellular production of trans-resveratrol in Vitis vinifera suspension cultured cells by using cyclodextrins and coronatine.

    PubMed

    Almagro, Lorena; Belchí-Navarro, Sarai; Martínez-Márquez, Ascensión; Bru, Roque; Pedreño, María A

    2015-12-01

    In the present work the effect of cyclodextrin and coronatine on both trans-resveratrol production and the expression of stilbene biosynthetic genes in Vitis vinifera L. cv Monastrell suspension cultured cells were evaluated. The results showed the maximum level of trans-resveratrol produced by cells and secreted to the culture medium with 50 mM cyclodextrins and 1 μM coronatine. Since the levels of trans-resveratrol produced in the combined treatment were higher than the sum of the individual treatments, a synergistic effect between both elicitors was assumed. In addition, all the analysed genes were induced by cyclodextrins and/or coronatine. The expression of the phenylalanine ammonia lyase and stilbene synthase genes was greatly enhanced by coronatine although an increase in the amount of trans-resveratrol in the spent medium was not detected. Therefore, despite the fact that trans-resveratrol production is related with the expression of genes involved in the biosynthetic process, other factors may be involved, such as post-transcriptional and post-traductional regulation. The expression maximal levels of cinnamate 4-hydroxylase and 4-coumarate-CoA ligase genes were found with cyclodextrins alone or in combination with coronatine suggesting that the activity of these enzymes could be not only important for the formation of intermediates of trans-R biosynthesis but also for those intermediates involved in the biosynthesis of lignins and/or flavonoids.

  16. Ethylene Production by Auxin-Deprived, Suspension-Cultured Pear Fruit Cells in Response to Auxins, Stress, or Precursor

    PubMed Central

    Puschmann, Rolf; Romani, Roger

    1983-01-01

    Auxin-deprived, mannitol-supplemented, suspension-cultured pear (Pyrus communis L. Passe Crassane) fruit cells produce large quantities (20-40 nanoliters ethylene per 106 cells per hour) of ethylene in response to auxins, CuCl2 or 1-amino-cyclopropane-1-carboxylic acid (ACC). Maximum rates of production are achieved about 12 hours after the addition of optimal amounts of indoleacetic acid (IAA), naphthalene acetic acid (NAA), 2,4-dichlorophenoxyacetic acid (2,4-D), 4 to 5 hours after the addition of CuCl2 and 1 to 2 hours after the addition of ACC. Supraoptimal concentrations of IAA result in a lag phase followed by a normal response. High concentrations of NAA and 2,4-D result in an early (4-5 hours) stress response and injury. Continuous protein and RNA synthesis are essential for elaboration of the full IAA response; only protein synthesis is necessary for the response to CuCl2 and ACC. Based on polysomal states and rates of amino acid incorporation, CuCl2 partially inhibits protein synthesis while nonetheless stimulating ethylene production. In general, ethylene production by the pear cells resembles that of other plant systems. Some differences may reflect the sensitivity of the cells and are discussed. The relatively high levels of ethylene produced and the experimental convenience of the cultured cells should make them especially suitable for further investigations of ethylene production and physiology. PMID:16663320

  17. Comparison between Biosynthesis of ent-Kaurene in Germinating Tomato Seeds and Cell Suspension Cultures of Tomato and Tobacco

    PubMed Central

    Yafin, Yitshak; Shechter, Ishaiahu

    1975-01-01

    Biosynthesis of ent-kaurene was investigated in extracts of cell suspension cultures derived from tobacco callus (Nicotiana tabacum L.), tomato callus (Solanum lycopersicum L.), and in germinating tomato seeds. Incubation of extracts derived from the two cell cultures with either isopentenyl pyrophosphate-14C or with 14C-labeled mevalonate, followed by alkaline phosphatase hydrolysis, resulted in the formation of trans-geranylgeraniol-14C and trans-farnesol-14C. The corresponding pyrophosphates of trans-geranyl-geraniol-14C and trans-farnesol-14C were also detected. No detectable amount of ent-kaurene-14C was produced by these enzymatic preparations when trans-geranylgeranyl-14C pyrophosphate served as substrate. However, copalyl-14C pyrophosphate served as a substrate for the production of ent-kaurene. Cell-free extracts derived from germinating tomato seeds catalyzed the formation of ent-kaurene-14C from mevalonate-14C, isopentenyl-14C pyrophosphate, trans-geranylgeranyl-14C pyrophosphate, and copalyl-14C pyrophosphate. PMID:16659368

  18. Effects of Mg-ATP on the flavonoid production in the Scutellaria baicalensis Georgii suspension cultures.

    PubMed

    Krsková, Z; Martin, J; Pec, J; Dusek, J

    2008-06-01

    This work focused on the cultivation of S. baicalensis Georgii in vitro cultures and on the possibilities of increasing the production of secondary metabolites in these cultures. The aim of the Sstudy was to determine whether the baicalin transport through vacuolar membrane is dependent on the presence of Mg-ATP. Our results showed that Mg-ATP had a significant effect on the ratio of baicalin and baicalein content and on the transport speed of these flavonoids. Therefore, the transport mechanism for baicalin are probably some of the MRP proteins which are the subfamily of the ABC transporte

  19. Positive dielectrophoresis and aggregation in suspensions of highly polarized particles subjected to high-gradient AC electric fields in macro-scale flow and microfluidics

    NASA Astrophysics Data System (ADS)

    Acrivos, Andreas; Qiu, Zhiyong; Khusid, Boris; Markarian, Nikolai

    2001-11-01

    The recent surge of activity in the area of electro-hydrodynamics of suspensions subjected to strong electric fields ( several kV/mm) is motivated not only by scientific curiosity but also by numerous technological applications from separation to filtration to microfluidics. We will present the results of theoretical and experimental studies of particle motions and segregation in a suspension subjected to high-gradient strong fields and shear. To study macro-scale electro-hydrodynamic phenomena in suspensions of highly polarized, heavy particles, we developed a setup in which a suspension flows through a channel rotating around a horizontal axis along with a special technique to energize the electrodes. At the rotation speed of several tens rpm, the buoyancy force averaged over the period of rotation equals zero whereas the centrifugal force appears to be negligibly small. Next we fabricated several electro-hydrodynamic microfluidics, each consisting of silicon and glass wafers bonded together and containing an array of 174 individually operated electric chambers (6 mm in length with the 3 mm X 30 um cross-section). These chambers are equipped with electrodes having the thickness of 2-um, 5-um, and 10-um. We found that the particle behavior in micro- and macro-flows appears to be quite similar and can be predicted by our theoretical models. The work was supported in parts by grants from NASA, the Office of Naval Research, and the New Jersey Commission on Science & Technology MEMS Initiative. The measurements of the suspension complex dielectric permittivity and the particle size distribution were conducted using the instrumentation of the NJIT W.M. Keck Foundation Laboratory for Electro-hydrodynamics of Suspensions.

  20. The in vitro biokinetics of chlorpromazine and diazepam in aggregating rat brain cell cultures after repeated exposure.

    PubMed

    Broeders, Jessica J W; Hermens, Joop L M; Blaauboer, Bas J; Zurich, Marie-Gabrielle

    2015-12-25

    Neurotoxic effects of compounds can be tested in vitro using cell systems. One example is aggregating rat brain cell cultures. For the extrapolation of in vitro data to the in vivo situation, it is important to take the biokinetics of the test compound into account. In addition, the exposure in vivo is often for a longer period of time; therefore, it is crucial to incorporate this into in vitro assays as well. In this study, aggregating rat brain cell cultures were exposed to chlorpromazine (CPZ) and diazepam (DZP) for 12-days with repeated exposure. Samples were taken from the stocks, test media, cell culture media and cells at specific time points on the first and last exposure day. These samples were analysed by HPLC-UV. The amount of CPZ in the medium decreased over time, whereas the amount in the cells showed an increase. Accumulation of CPZ in the cells was seen over the 12-day repeated exposure. The amount of DZP in the medium remained stable over time and only up to 2% of DZP added was found in the cells. Different biokinetic behaviour was found for CPZ and DZP. Possible explanations are differences in uptake into the cells or efflux out of the cells. The decrease of CPZ in the medium versus the stable amount of DZP results in differences in exposure concentrations over time, which should be taken into account when interpreting in vitro effect data.

  1. Growth and production optimization of tropane alkaloids in Datura stramonium cell suspension culture.

    PubMed

    Iranbakhsh, A R; Oshagi, M A; Ebadi, M

    2007-04-15

    Abstract: A number of physicochemical conditions such different concentration of glucose, sucrose, potassium nitrate, ammonium nitrate, calcium chloride and temperatures were tested to optimize growth and production of tropane alkaloids from Datura stramonium (Solanaceae) plants. Cell suspension from semi-clear calli of leave explants developed in MS medium containing kinetin (0.5 mg L(-1)) and NAA (2 mg L(-1)) hormones was used to measure biomass and total alkaloids and comparison of treatments. The results showed that 30 and 40 g L(-1) glucose led to the highest level of alkaloids and biomass productions, respectively. 20 and 40 g L(-1) sucrose concentrations resulted in order the most rates of alkaloids and biomass productions. The results showed that increasing of nitrate concentration led to the reduction of the alkaloids. The best concentration of potassium nitrate for the production of tropane alkaloids and biomass were in order 9.4 and 3.76 mM. Also it was evinced that the optimized concentration of ammonium nitrate for alkaloids production was 10.3 mM and for the biomass was 41.22 mM. The best concentration of calcium chloride for growth and production of the alkaloids was 7.92 mM. Testing different temperature specified that the best condition for production of the alkaloids was 20 degrees C whereas it was 25 degrees C for biomass production. The results of this study could be recommended to farmers involved in production of D. stramonium for tropain alkaloids at industrial and semi-industrial scales.

  2. The mycorrhizal fungus Amanita muscaria induces chitinase activity in roots and in suspension-cultured cells of its host Picea abies.

    PubMed

    Sauter, M; Hager, A

    1989-08-01

    A cell-wall fraction of the mycorrhizal fungus Amanita muscaria increased the chitinase activity in suspension-cultured cells of spruce (Picea abies (L.) Karst.) which is a frequent host of Amanita muscaria in nature. Chitinase activity was also increased in roots of spruce trees upon incubation with the fungal elicitor. Non-induced levels of chitinase activity in spruce were higher in suspension cells than in roots whereas the elicitorinduced increase of chitinase activity was higher in roots. Treatment of cells with hormones (auxins and cytokinin) resulted in a severalfold depression of enzyme activity. However, the chitinase activity of hormone-treated as well as hormone-free cells showed an elicitor-induced increase. Suspension cells of spruce secreted a large amount of enzyme into the medium. It is postulated that chitinases released from the host cells in an ectomycorrhizal system partly degrade the fungal cell walls, thus possibly facilitating the exchange of metabolites between the symbionts.

  3. Effect of salts (NaCl and Na2CO3) on callus and suspension culture of Stevia rebaudiana for Steviol glycoside production.

    PubMed

    Gupta, Pratibha; Sharma, Satyawati; Saxena, Sanjay

    2014-03-01

    Steviol glycosides are natural non-caloric sweeteners which are extracted from the leaves of Stevia rebaudiana plant. Present study deals the effect of salts (NaCl and Na2CO3) on callus and suspension culture of Stevia plant for steviol glycoside (SGs) production. Yellow-green and compact calli obtained from in vitro raised Stevia leaves sub-cultured on MS medium supplemented with 2.0 mg l(-1) NAA and different concentrations of NaCl (0.05-0.20%) and Na2CO3 (0.0125-0.10%) for 2 weeks, and incubated at 24 ± 1 °C and 22.4 μmol m(-2) s(-1) light intensity provided by white fluorescent tubes for 16 h. Callus and suspension biomass cultured on salts showed less growth as well as browning of medium when compared with control. Quantification of SGs content in callus culture (collected on 15th day) and suspension cultures (collected at 10th and 15th days) treated with and without salts were analyzed by HPLC. It was found that abiotic stress induced by the salts increased the concentration of SGs significantly. In callus, the quantity of SGs got increased from 0.27 (control) to 1.43 and 1.57% with 0.10% NaCl, and 0.025% Na2CO3, respectively. However, in case of suspension culture, the same concentrations of NaCl and Na2CO3 enhanced the SGs content from 1.36 (control) to 2.61 and 5.14%, respectively, on the 10th day.

  4. Comparison of use of Vero cell line and suspension culture of murine macrophage to attenuation of virulence of Neospora caninum.

    PubMed

    Khordadmehr, Monireh; Namavari, Mehdi; Khodakaram-Tafti, Azizollah; Mansourian, Maryam; Rahimian, Abdollah; Daneshbod, Yahya

    2013-10-01

    In this study the tachyzoite yields of Neospora caninum were compared in two cell lines: Vero (African Green Monkey Kidney) and suspension culture of murine macrophage (J774) cell lines. Then, N. caninum were continuously passaged in these cell lines for 3 months and the effect of host cells on virulence of tachyzoites was assessed by broiler chicken embryonated eggs. Inoculation was performed in the chorioallantoic (CA) liquid of the embryonated eggs with different dilutions (0.5 × 10(4), 1.0 × 10(4), 1.5 × 10(4)) of tachtzoites isolated from these cell cultures. The mortality pattern and pathological changes of the dead embryos and hatched chickens were noted. Tissue samples of brain, liver and heart were examined by histopathological and detection of DNA of parasite by polymerase chain reaction (PCR). Also, consecutive sections of the tissues examined histologically were used for immunohistochemical (IHC) examination. Embryos inoculated with tachyzoites derived from Vero cell line (group V) showed a higher mortality rate (100%) than the embryos that received tachyzoites derived from J774 cell line (group J) (10% mortality rate). The results of this study indicated that the culture of N. caninum in J774 cell led to a marked increase in the number of tachyzoite yields and rapid attenuation in comparison to Vero, so the results were confirmed by IHC and PCR. This study is the first report of the significant effect of host cell on the attenuation of virulence of N. caninum tachyzoites. These findings could potentially provide a practical approach in the mass production of N. caninum tachyzoites, and also in producing live attenuated vaccine.

  5. Theoretical and experimental analysis of the sedimentation kinetics of concentrated red cell suspensions in a centrifugal field: determination of the aggregation and deformation of RBC by flux density and viscosity functions.

    PubMed

    Lerche, D; Frömer, D

    2001-01-01

    detail the rheological behavior of suspended rigid spheres at low Reynolds numbers ranging from 10(-6) to 10(-3). The method here introduced also enabled us to investigate RBC suspensions with respect to the deformability and interactions of the cells by means of the separation analysis. Normal, rigid as well as aggregating RBC exhibited marked differences in the sedimentation kinetics, which were quantified by means of the flux and viscosity functions based on the theory of kinematic waves.

  6. Chloride secretagogues stimulate inositol phosphate formation in shark rectal gland tubules cultured in suspension

    SciTech Connect

    Ecay, T.W.; Valentich, J.D. )

    1991-03-01

    Neuroendocrine activation of transepithelial chloride secretion by shark rectal gland cells is associated with increases in cellular cAMP, cGMP, and free calcium concentrations. We report here on the effects of several chloride secretagogues on inositol phosphate formation in cultured rectal gland tubules. Vasoactive intestinal peptide (VIP), atriopeptin (AP), and ionomycin increase the total inositol phosphate levels of cultured tubules, as measured by ion exchange chromatography. Forskolin, a potent chloride secretagogue, has no effect on inositol phosphate formation. The uptake of {sup 3}H-myo-inositol into phospholipids is very slow, preventing the detection of increased levels of inositol trisphosphate. However, significant increases in inositol monophosphate (IP1) and inositol biphosphate (IP2) were measured. The time course of VIP- and AP-stimulated IP1 and IP2 formation is similar to the effects of these agents on the short-circuit current responses of rectal gland monolayer cultures. In addition, aluminum fluoride, an artificial activator of guanine nucleotide-binding proteins, stimulates IP1 and IP2 formation. We conclude that rectal gland cells contain VIP and AP receptors coupled to the activation of phospholipase C. Coupling may be mediated by G-proteins. Receptor-stimulated increases in inositol phospholipid metabolism is one mechanism leading to increased intracellular free calcium concentrations, an important regulatory event in the activation of transepithelial chloride secretion by shark rectal gland epithelial cells.

  7. Manipulating anthocyanin composition in Vitis vinifera suspension cultures by elicitation with jasmonic acid and light irradiation.

    PubMed

    Curtin, Chris; Zhang, Wei; Franco, Chris

    2003-07-01

    Jasmonic acid altered the accumulation of major anthocyanins in Vitis vinifera cell culture. Peonidin 3-glucoside content at day three was increased from 0.3 to 1.7 mg g(-1) dry cell wt while other major anthocyanins were increased by smaller increments. By day 14, the content of methylated and acylated anthocyanins (peonidin 3-p-coumaroylglucoside and malvidin 3-p-coumaroylglucoside) was 6.3 mg g(-1) DCW, in response to treatment with jasmonic acid, and comprising approximately 45% (w/w) of total anthocyanins. In comparison, the untreated control culture contained 1.2 mg g(-1) DCW which made up approximately 32% (w/w) of total anthocyanins. Light further enhanced anthocyanin accumulation induced by jasmonic acid elicitation. The content of peonidin 3-glucoside at day 3 was 6.6 mg g(-1) DCW, 22-fold higher than control cultures while the content in response to light irradiation alone was 0.6 mg g(-1) DCW. When a highly pigmented cell line was elicited with jasmonic acid total anthocyanins increased from 9.2 to 20.7 mg g(-1) DCW, but there was no change in the anthocyanin composition.

  8. Biotic elicitor enhanced production of psoralen in suspension cultures of Psoralea corylifolia L.

    PubMed Central

    Ahmed, Syed Abrar; Baig, Mirza Mushtaq Vaseem

    2014-01-01

    Cell cultures of Psoralea corylifolia L. were established from the leaf disk derived callus. The effect of different biotic elicitors prepared from the fungal extract (Aspergillus niger and Penicillium notatum), yeast extract and chitosan with different concentrations was studied. The increased synthesis of psoralen in 16-day old cell cultures under 16 h of light and 8 h of dark period was studied. Elicitation of psoralen in A. niger elicitor treated cells was found 9-fold higher over control cells. Treating the cells with P. notatum, yeast extract and chitosan elicitors lead to four to seven-fold higher psoralen accumulation over control cells. The extract of A. niger at 1.0% v/v increased the significant accumulation of psoralen (9850 μg/g DCW) in the cultured cells. Our study clearly shows that all the elicitors had the potential to increase the accumulation of psoralen but the A. niger elicitor at 1.0% v/v induced maximum accumulation. PMID:25313287

  9. Effects of agitation speed on the ex vivo expansion of cord blood hematopoietic stem/progenitor cells in stirred suspension culture.

    PubMed

    Jing, Qiang; Cai, Haibo; Du, Zheng; Ye, Zhaoyang; Tan, Wen-song

    2013-04-01

    The mononuclear cells were cultivated in stirred flasks at different agitation speeds of 30 rpm, 45 rpm, 60 rpm and 80 rpm. At the agitation speed of 30 rpm, total cells achieved higher expansion folds and the CFC density increased. When at higher agitation speed of 60 rpm or 80 rpm, the number of cells dropped rapidly and characteristics of hematopoietic stem/progenitor cells (HSPCs) were not maintained. Moreover, the culture duration of 6-9 days was better for HSPCs ex vivo expansion. These data indicated that HSPCs should be cultured at relatively low agitation speed and for a short-term period when cultured in stirred suspension system.

  10. Two parametric cell cycle analyses of plant cell suspension cultures with fragile, isolated nuclei to investigate heterogeneity in growth of batch cultivations.

    PubMed

    Haas, Christiane; Hegner, Richard; Helbig, Karsten; Bartels, Kristin; Bley, Thomas; Weber, Jost

    2016-06-01

    Plant cell suspensions are frequently considered to be heterogeneous with respect to growth in terms of progression of the cells through the cell cycle and biomass accumulation. Thus, segregated data of fractions in different cycle phases during cultivation is needed to develop robust production processes. Bromodeoxyuridine (BrdU) incorporation and BrdU-antibodies or 5-ethynyl-2'-deoxyuridine (EdU) click-it chemistry are frequently used to acquire such information. However, their use requires centrifugation steps that cannot be readily applied to sensitive cells, particularly if nuclei have to be extracted from the protective cellular milieu and envelopes for DNA analysis. Therefore, we have established a BrdU-Hoechst stain quenching protocol for analyzing nuclei directly isolated from delicate plant cell suspension cultures. After adding BrdU to test Harpagophytum procumbens cell suspension cultures the cell cycle distribution could be adequately resolved using its incorporation for the following 72 h (after which BrdU slowed biomass accumulation). Despite this limitation, the protocol allows resolution of the cell cycle distribution of cultures that cannot be analyzed using commonly applied methods due to the cells' fragility. The presented protocol enabled analysis of cycling heterogeneities in H. procumbens batch cultivations, and thus should facilitate process control of secondary metabolite production from fragile plant in vitro cultures. Biotechnol. Bioeng. 2016;113: 1244-1250. © 2015 Wiley Periodicals, Inc.

  11. Cloning and regulation of flavonol 3-sulfotransferase in cell-suspension cultures of Flaveria bidentis.

    PubMed Central

    Ananvoranich, S; Varin, L; Gulick, P; Ibrahim, R

    1994-01-01

    Flaveria spp. accumulate flavonol sulfate esters whose biosynthesis is catalyzed by a number of position-specific flavonol sulfotransferases. Although the accumulation of sulfated flavonols appears to be tissue specific and developmentally regulated and to vary among related species, little is known about the mechanism of regulation controlling the synthesis of these metabolites. In the present work, we report the isolation of a cDNA clone from Flaveria bidentis (pBFST3) encoding flavonol 3-sulfotransferase (F3-ST), which catalyzes the first step in the biosynthesis of flavonol polysulfates. This clone (pBFST3) was expressed in Escherichia coli and produced an F3-ST with high affinity for the flavonol aglycones, quercetin, and its 7-methyl derivative, rhamnetin. In addition, the synthetic auxin 2,4-dichlorophenoxyacetic acid was shown to induce F3-ST enzyme activity and F3-ST mRNA transcript levels in cell cultures of F. bidentis. The F3-ST mRNA levels increased within the first 3 h, reaching a maximum after 24 h of treatment, and remained elevated for up to 48 h. Treatments with either quercetin 3-sulfate or quercetin 3,7,4'-trisulfate reduced F3-ST enzyme activity in cell cultures but had no effect on the transcript levels. These results are discussed in relation to the putative role of flavonoid conjugates in the regulation of auxin transport. PMID:7991681

  12. Membranes replace irradiated blast cells as growth requirement for leukemic blast progenitors in suspension culture

    SciTech Connect

    Nara, N.; McCulloch, E.A.

    1985-11-01

    The blast cells of acute myeloblastic leukemia (AML) may be considered as a renewal population, maintained by blast stem cells capable of both self-renewal and the generation of progeny with reduced or absent proliferative potential. This growth requires that two conditions be met: first, the cultures must contain growth factors in media conditioned either by phytohemagglutinin (PHA)-stimulated mononuclear leukocytes (PHA-LCM), or by cells of the continuous bladder carcinoma line HTB9 (HTB9-CM). Second, the cell density must be maintained at 10(6) blasts/ml; this may be achieved by adding irradiated cells to smaller numbers of intact blasts. The authors are concerned with the mechanism of the feeding function. They present evidence that (a) cell-cell contact is required. (b) Blasts are heterogeneous in respect to their capacity to support growth. (c) Fractions containing membranes from blast cells will substitute for intact cells in promoting the generation of new blast progenitors in culture. (d) This membrane function may be specific for AML blasts, since membranes from blasts of lymphoblastic leukemia or normal marrow cells were inactive.

  13. Iron transport in cancer cell culture suspensions measured by cell magnetophoresis

    PubMed Central

    Jin, Xiaoxia; Chalmers, Jeffrey J.; Zborowski, Maciej

    2012-01-01

    Cell motion in a magnetic field reveals the presence of intracellular paramagnetic elements, such as iron or manganese. Under controlled field and liquid media composition, such motion previously allowed us to compare the paramagnetic contribution to cell magnetic susceptibility in erythrocytes differing in the spin state of heme associated with hemoglobin. The method is now tested on cells with less obvious paramagnetic properties: cell cultures derived from human cancers in order to determine if the magnetophoretic mobility (MM) measurement is sufficiently sensitive to the dysregulation of the intracellular iron metabolism as suggested by reports on loss of iron homeostasis in cancer. The cell lines included hepatocellular carcinoma (Hep 3B 2.1-7 and Hep G2), promyelocytic (HL-60) and chronic myelogenous (K-562) leukemias, histiocytic lymphoma (U-937), tongue (CAL 27) and pharyngeal (Detroit 562) carcinomas, and epitheloid carcinoma (HeLa), whose MM was measured in complete media with standard and elevated soluble iron (ferric nitrate and ferric ammonium citrate), against oxy- and met-hemoglobin erythrocytes used as controls. Different cell lines responded differently to the magnetic field and the soluble iron concentrations in culture media establishing the possibility of single cell elemental analysis by magnetophoresis and magnetic cell separation based upon differences in intracellular iron concentration. PMID:22500468

  14. Delta-9-tetrahydrocannabinol accumulation, metabolism and cell-type-specific adverse effects in aggregating brain cell cultures

    SciTech Connect

    Monnet-Tschudi, Florianne Hazekamp, Arno; Perret, Nicolas; Zurich, Marie-Gabrielle; Mangin, Patrice; Giroud, Christian; Honegger, Paul

    2008-04-01

    Despite the widespread use of Cannabis as recreational drug or as medicine, little is known about its toxicity. The accumulation, metabolism and toxicity of THC were analyzed 10 days after a single treatment, and after repeated exposures during 10 days. Mixed-cell aggregate cultures of fetal rat telencephalon were used as in vitro model, as well as aggregates enriched either in neurons or in glial cells. It was found that THC accumulated preferentially in neurons, and that glia-neuron interactions decreased THC accumulation. The quantification of 11-OH-THC and of THC-COOH showed that brain aggregates were capable of THC metabolism. No cell-type difference was found for the metabolite 11-OH-THC, whereas the THC-COOH content was higher in mixed-cell cultures. No cell death was found at THC concentrations of 2 {mu}M in single treatment and of 1 {mu}M and 2 {mu}M in repeated treatments. Neurons, and particularly GABAergic neurons, were most sensitive to THC. Only the GABAergic marker was affected after the single treatment, whereas the GABAergic, cholinergic and astrocytic markers were decreased after the repeated treatments. JWH 015, a CB2 receptor agonist, showed effects similar to THC, whereas ACEA, a CB1 receptor agonist, had no effect. The expression of the cytokine IL-6 was upregulated 48 h after the single treatment with 5 {mu}M of THC or JWH 015, whereas the expression of TNF-{alpha} remained unchanged. These results suggest that the adverse effects of THC were related either to THC accumulation or to cannabinoid receptor activation and associated with IL-6 upregulation.

  15. Delta-9-tetrahydrocannabinol accumulation, metabolism and cell-type-specific adverse effects in aggregating brain cell cultures.

    PubMed

    Monnet-Tschudi, Florianne; Hazekamp, Arno; Perret, Nicolas; Zurich, Marie-Gabrielle; Mangin, Patrice; Giroud, Christian; Honegger, Paul

    2008-04-01

    Despite the widespread use of Cannabis as recreational drug or as medicine, little is known about its toxicity. The accumulation, metabolism and toxicity of THC were analyzed 10 days after a single treatment, and after repeated exposures during 10 days. Mixed-cell aggregate cultures of fetal rat telencephalon were used as in vitro model, as well as aggregates enriched either in neurons or in glial cells. It was found that THC accumulated preferentially in neurons, and that glia-neuron interactions decreased THC accumulation. The quantification of 11-OH-THC and of THC-COOH showed that brain aggregates were capable of THC metabolism. No cell-type difference was found for the metabolite 11-OH-THC, whereas the THC-COOH content was higher in mixed-cell cultures. No cell death was found at THC concentrations of 2 microM in single treatment and of 1 microM and 2 microM in repeated treatments. Neurons, and particularly GABAergic neurons, were most sensitive to THC. Only the GABAergic marker was affected after the single treatment, whereas the GABAergic, cholinergic and astrocytic markers were decreased after the repeated treatments. JWH 015, a CB2 receptor agonist, showed effects similar to THC, whereas ACEA, a CB1 receptor agonist, had no effect. The expression of the cytokine IL-6 was upregulated 48 h after the single treatment with 5 microM of THC or JWH 015, whereas the expression of TNF-alpha remained unchanged. These results suggest that the adverse effects of THC were related either to THC accumulation or to cannabinoid receptor activation and associated with IL-6 upregulation.

  16. Aggregated Alpha-Synuclein Transfer Efficiently between Cultured Human Neuron-Like Cells and Localize to Lysosomes

    PubMed Central

    Severinsson, Emelie; Agholme, Lotta; Bergström, Joakim; Ingelsson, Martin

    2016-01-01

    Parkinson’s disease and other alpha-synucleinopathies are progressive neurodegenerative diseases characterized by aggregates of misfolded alpha-synuclein spreading throughout the brain. Recent evidence suggests that the pathological progression is likely due to neuron-to-neuron transfer of these aggregates between neuroanatomically connected areas of the brain. As the impact of this pathological spreading mechanism is currently debated, we aimed to investigate the transfer and subcellular location of alpha-synuclein species in a novel 3D co-culture human cell model based on highly differentiated SH-SY5Y cells. Fluorescently-labeled monomeric, oligomeric and fibrillar species of alpha-synuclein were introduced into a donor cell population and co-cultured with an EGFP-expressing acceptor-cell population of differentiated neuron-like cells. Subsequent transfer and colocalization of the different species were determined with confocal microscopy. We could confirm cell-to-cell transfer of all three alpha-synuclein species investigated. Interestingly the level of transferred oligomers and fibrils and oligomers were significantly higher than monomers, which could affect the probability of seeding and pathology in the recipient cells. Most alpha-synuclein colocalized with the lysosomal/endosomal system, both pre- and postsynaptically, suggesting its importance in the processing and spreading of alpha-synuclein. PMID:28030591

  17. Characterization of Acetate and Pyruvate Metabolism in Suspension Cultures of Zea mays by 13C NMR Spectroscopy

    PubMed Central

    Ashworth, Dennis J.; Lee, Rino Y.; Adams, Douglas O.

    1987-01-01

    Carbon-13 nuclear magnetic resonance (NMR) spectroscopy has been applied to the direct observation of acetate and pyruvate metabolism in suspension cultures of Zea mays (var Black Mexican Sweet). Growth of the corn cells in the presence of 2 millimolar [2-13C]acetate resulted in a rapid uptake of the substrate from the medium and initial labeling (0-4 hours) of primarily the intracellular glutamate and malate pools. Further metabolism of these intermediates resulted in labeling of glutamine, aspartate, and alanine. With [1-13C]acetate as the substrate very little incorporation into intermediary metabolites was observed in the 13C NMR spectra due to loss of the label as 13CO2. Uptake of [3-13C]pyruvate by the cells was considerably slower than with [2-13C]acetate; however, the labelling patterns were similar with the exception of increased [3-13C] alanine generation with pyruvate as the substrate. Growth of the cells for up to 96 hours with 2 millimolar [3-13C]pyruvate ultimately resulted in labeling of valine, leucine, isoleucine, threonine, and the polyamine putrescine. PMID:16665721

  18. Enhanced accumulation of phytosterols and phenolic compounds in cyclodextrin-elicited cell suspension culture of Daucus carota.

    PubMed

    Miras-Moreno, Begoña; Almagro, Lorena; Pedreño, M A; Sabater-Jara, Ana Belén

    2016-09-01

    In this work, suspension-cultured cells of Daucus carota were used to evaluate the effect of β-cyclodextrins on the production of isoprenoid and phenolic compounds. The results showed that the phytosterols and phenolic compounds were accumulated in the extracellular medium (15100μgL(-1) and 477.46μgL(-1), respectively) in the presence of cyclodextrins. Unlike the phytosterol and phenolic compound content, β-carotene (1138.03μgL(-1)), lutein (25949.54μgL(-1)) and α-tocopherol (8063.82μgL(-1)) chlorophyll a (1625.13μgL(-1)) and b (9.958 (9958.33μgL(-1)) were mainly accumulated inside the cells. Therefore, cyclodextrins were able to induce the cytosolic mevalonate pathway, increasing the biosynthesis of phytosterols and phenolic compounds, and accumulate them outside the cells. However, in the absence of these cyclic oligosaccharidic elicitors, carrot cells mainly accumulated carotenoids through the methylerythritol 4-phosphate pathway. Therefore, the use of cyclodextrins would allow the extracellular accumulation of both phytosterols and phenolic compounds by diverting the carbon flux towards the cytosolic mevalonate/phenylpropanoid pathway.

  19. Changes in Cell Wall Properties Coincide with Overexpression of Extensin Fusion Proteins in Suspension Cultured Tobacco Cells

    DOE PAGES

    Tan, Li; Pu, Yunqiao; Pattathil, Sivakumar; ...

    2014-12-23

    Extensins are one subfamily of the cell wall hydroxyproline-rich glycoproteins, containing characteristic SerHyp4 glycosylation motifs and intermolecular cross-linking motifs such as the TyrXaaTyr sequence. Extensins are believed to form a cross-linked network in the plant cell wall through the tyrosine-derivatives isodityrosine, pulcherosine, and di-isodityrosine. Overexpression of three synthetic genes encoding different elastin-arabinogalactan protein-extensin hybrids in tobacco suspension cultured cells yielded novel cross-linking glycoproteins that shared features of the extensins, arabinogalactan proteins and elastin. The cell wall properties of the three transgenic cell lines were all changed, but in different ways. One transgenic cell line showed decreased cellulose crystallinity and increasedmore » wall xyloglucan content; the second transgenic cell line contained dramatically increased hydration capacity and notably increased cell wall biomass, increased di-isodityrosine, and increased protein content; the third transgenic cell line displayed wall phenotypes similar to wild type cells, except changed xyloglucan epitope extractability. In conclusion, these data indicate that overexpression of modified extensins may be a route to engineer plants for bioenergy and biomaterial production.« less

  20. Changes in Cell Wall Properties Coincide with Overexpression of Extensin Fusion Proteins in Suspension Cultured Tobacco Cells

    SciTech Connect

    Tan, Li; Pu, Yunqiao; Pattathil, Sivakumar; Avci, Utku; Qian, Jin; Arter, Allison; Chen, Liwei; Hahn, Michael G.; Ragauskas, Arthur J.; Kieliszewski, Marcia J.

    2014-12-23

    Extensins are one subfamily of the cell wall hydroxyproline-rich glycoproteins, containing characteristic SerHyp4 glycosylation motifs and intermolecular cross-linking motifs such as the TyrXaaTyr sequence. Extensins are believed to form a cross-linked network in the plant cell wall through the tyrosine-derivatives isodityrosine, pulcherosine, and di-isodityrosine. Overexpression of three synthetic genes encoding different elastin-arabinogalactan protein-extensin hybrids in tobacco suspension cultured cells yielded novel cross-linking glycoproteins that shared features of the extensins, arabinogalactan proteins and elastin. The cell wall properties of the three transgenic cell lines were all changed, but in different ways. One transgenic cell line showed decreased cellulose crystallinity and increased wall xyloglucan content; the second transgenic cell line contained dramatically increased hydration capacity and notably increased cell wall biomass, increased di-isodityrosine, and increased protein content; the third transgenic cell line displayed wall phenotypes similar to wild type cells, except changed xyloglucan epitope extractability. In conclusion, these data indicate that overexpression of modified extensins may be a route to engineer plants for bioenergy and biomaterial production.

  1. Effect of Chitosan on Membrane Permeability of Suspension-Cultured Glycine max and Phaseolus vulgaris Cells 1

    PubMed Central

    Young, David H.; Köhle, Harald; Kauss, Heinrich

    1982-01-01

    Treatment of suspension-cultured Glycine max cv Harosoy 63 cells with soluble chitosan (20-500 micrograms per milliliter) increased membrane permeability as shown by leakage of electrolytes, protein, and UV absorbing material. Severe damage to the cell membrane by chitosan (100 and 500 μg/ml) was also indicated by reduced staining with fluorescein diacetate and the leakage of fluorescein from preloaded cells. Other basic polymers (poly-l-lysine, histone, DEAE-dextran, protamine sulfate, and glycol chitosan) also increased permeability, whereas the basic monomers l-lysine and d-glucosamine, and acidic or neutral polymers were not active. Chitosan-induced leakage was inhibited by divalent cations, the order of effectiveness being Ba2+ > Ca2+ > Sr2+ > Mg2+. Na polygalacturonate and Na poly-l-aspartate also reduced polycation-induced leakage, probably by formation of polycation-polyanion complexes. A chitosan-polygalacturonate complex precipitated on mixing solutions of the two polymers containing approximately equal numbers of galacturonate and glucosamine residues, but not with either polymer in excess. A similar concentration-dependent precipitation of chitosan by Na poly-l-aspartate was found. Leakage from Phaseolus vulgaris cv Grandessa cells was also induced by chitosan, and was inhibited by Ca2+ and Na polygalacturonate. PMID:16662696

  2. Highly protein-resistant coatings and suspension cell culture thereon from amphiphilic block copolymers prepared by RAFT polymerization.

    PubMed

    Haraguchi, Kazutoshi; Kubota, Kazuomi; Takada, Tetsuo; Mahara, Saori

    2014-06-09

    Novel amphiphilic block copolymers composed of hydrophobic (poly(2-methoxyethyl acrylate): M) and hydrophilic (poly(N,N-dimethylacrylamide): D) segments were synthesized by living radical polymerization: a reversible addition-fragmentation chain-transfer polymerization. Two types of amphiphilic block copolymers, triblock (MDM) and 4-arm block ((MD)4) copolymers with specific compositions (D/M = (750-1500)/250), were prepared by a versatile one-pot synthesis. These copolymers show good adhesion to various types of substrates (e.g., polystyrene, polycarbonate, polypropylene, Ti, and glass), and the surface coating showed high protein repellency and a low contact angle for water, regardless of the substrate. The two opposing characteristics of high protein repellency and good substrate adhesion were achieved by the combined effects of the molecular architecture of the block copolymers, the high molecular weight, and the characteristics of each segment, that is, low protein adsorption capability of both segments and low glass transition temperature of the hydrophobic segment. Further, a polystyrene dish coated with the MDM block copolymer could be sterilized by γ-ray irradiation and used as a good substrate for a suspension cell culture that exhibits low cell adhesion and good cell growth.

  3. Nitric Oxide Is Involved in Cadmium-Induced Programmed Cell Death in Arabidopsis Suspension Cultures1[C][W

    PubMed Central

    De Michele, Roberto; Vurro, Emanuela; Rigo, Chiara; Costa, Alex; Elviri, Lisa; Di Valentin, Marilena; Careri, Maria; Zottini, Michela; Sanità di Toppi, Luigi; Lo Schiavo, Fiorella

    2009-01-01

    Exposure to cadmium (Cd2+) can result in cell death, but the molecular mechanisms of Cd2+ cytotoxicity in plants are not fully understood. Here, we show that Arabidopsis (Arabidopsis thaliana) cell suspension cultures underwent a process of programmed cell death when exposed to 100 and 150 μm CdCl2 and that this process resembled an accelerated senescence, as suggested by the expression of the marker senescence-associated gene12 (SAG12). CdCl2 treatment was accompanied by a rapid increase in nitric oxide (NO) and phytochelatin synthesis, which continued to be high as long as cells remained viable. Hydrogen peroxide production was a later event and preceded the rise of cell death by about 24 h. Inhibition of NO synthesis by NG-monomethyl-arginine monoacetate resulted in partial prevention of hydrogen peroxide increase, SAG12 expression, and mortality, indicating that NO is actually required for Cd2+-induced cell death. NO also modulated the extent of phytochelatin content, and possibly their function, by S-nitrosylation. These results shed light on the signaling events controlling Cd2+ cytotoxicity in plants. PMID:19261736

  4. Enhanced resveratrol production in Vitis vinifera cell suspension cultures by heavy metals without loss of cell viability.

    PubMed

    Cai, Zhenzhen; Kastell, Anja; Speiser, Claire; Smetanska, Iryna

    2013-09-01

    The effects of heavy metal ions (Co(2+), Ag(+), Cd(2+)) on cell viability and secondary metabolite production, particularly anthocyanins and phenolic acids in Vitis vinifera cell suspension cultures, were investigated. Of these, Co at all three used concentrations (5.0, 25, and 50 μM), Ag, and Cd at low concentration (5.0 μM) were most effective to stimulate the phenolic acid production, increasing the 3-O-glucosyl-resveratrol up to 1.6-fold of the control level (250.5 versus 152.4 μmol/g), 4 h after the treatments. Meanwhile, the elicitors at effective concentrations did not suppress cell growth, while the cell viability maintained. In contrast, Ag and Cd at high concentrations (25 and 50 μM) remarkably reduced the cell viability, decreasing the cell viability up to about 15 % of the control level, 24 h after the treatments. The heavy metal ions did not affect the anthocyanin production. These observations show how, in a single system, different groups of secondary products can show distinct differences in their responses to potential elicitors. The 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, peroxidase activity, medium pH value, and conductivity were only slightly elevated by the heavy metal ions. The results suggest that some of the secondary metabolites production was stimulated by the used elicitors, but there was not a stress response of the cells.

  5. Chilling-Induced Inactivation and Its Recovery of Tonoplast H+-ATPase in Mung Bean Cell Suspension Cultures 12

    PubMed Central

    Yoshida, Shizuo

    1991-01-01

    The processes involved in adaptation to cold temperature were examined by growing suspension cultured cells of mung bean (Vigna radiata [L.] Wilczek) at 2°C for various periods of time and assaying the activities of various membrane-bound enzymes in vitro. The tonoplast H+-ATPase activity and the ATP-proton transport extracted from cells incubated at 2°C declined rapidly and reached a minimum level after 10 hours. The inactivation was reversible within 24 hours of chilling. The recovery of the cold-inactivated H+-ATPase was found to proceed in two steps, a faster recovery of ATP hydrolysis activity and a slower recovery of the proton transport. The recovery was markedly inhibited by the presence of azide, but not affected by 0.578 millimolar cycloheximide. This suggested the involvement of an energy process that had no requirement for de novo synthesis of protein. The cold-induced inactivation of the H+-ATPase may be due to a structural alteration of the enzyme. The slower recovery of proton transport relative to ATP hydrolysis during warming suggests that the protogenic domains in the enzyme may be affected differently by chilling. PMID:16668005

  6. Nitric oxide functions as a signal in ultraviolet-B-induced baicalin accumulation in Scutellaria baicalensis suspension cultures.

    PubMed

    Zhang, Jin-Jie; Li, Xue-Qin; Sun, Jun-Wei; Jin, Song-Heng

    2014-03-18

    Stress induced by ultraviolet-B (UV-B) irradiation stimulates the accumulation of various secondary metabolites in plants. Nitric oxide (NO) serves as an important secondary messenger in UV-B stress-induced signal transduction pathways. NO can be synthesized in plants by either enzymatic catalysis or an inorganic nitrogen pathway. The effects of UV-B irradiation on the production of baicalin and the associated molecular pathways in plant cells are poorly understood. In this study, nitric oxide synthase (NOS) activity, NO release and the generation of baicalin were investigated in cell suspension cultures of Scutellaria baicalensis exposed to UV-B irradiation. UV-B irradiation significantly increased NOS activity, NO release and baicalin biosynthesis in S. baicalensis cells. Additionally, exogenous NO supplied by the NO donor, sodium nitroprusside (SNP), led to a similar increase in the baicalin content as the UV-B treatment. The NOS inhibitor, Nω-nitro-l-arginine (LNNA), and NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) partially inhibited UV-B-induced NO release and baicalin accumulation. These results suggest that NO is generated by NOS or NOS-like enzymes and plays an important role in baicalin biosynthesis as part of the defense response of S. baicalensis cells to UV-B irradiation.

  7. Hodgkin-Huxley analysis of whole-cell outward rectifying K(+)-currents in protoplasts from tobacco cell suspension cultures.

    PubMed

    Van Duijn, B

    1993-02-01

    The voltage and time dependence of outward-rectifying K+ currents (IK,out) measured in protoplasts from tobacco cell suspension cultures in the whole-cell configuration of the patch-clamp technique are quantitatively analyzed. The voltage and time dependence was described according to the Hodgkin and Huxley model for IK,out currents in the squid giant axon, and to allow comparison, in analogy with the quantitative analysis of IK,out currents in Vicia faba guard cell protoplasts as described by Schroeder (J. Membrane Biol., 107:229-235, 1989). The IK,out from tobacco could be described by a similar model as the IK,out from guard cell protoplasts (i.e., sigmoid activation time course, activation variable raised to second power, single exponential deactivating tail currents, absence of inactivation). However, in contrast to guard cells, both the activation and deactivation time constants were strongly voltage dependent in tobacco protoplasts. The voltage dependence of the transition rates for channel opening and channel closing was slightly asymmetrical and inverse to the asymmetry found in guard cells. The data presented show that the voltage-dependent kinetic properties of the IK,out conductance of tobacco protoplasts are different from these properties in guard cell protoplasts. This analysis provides a basis for the study of IK,out conductance function and modulation.

  8. Analysis of the Proteins Secreted from the Oryza meyeriana Suspension-Cultured Cells Induced by Xanthomonas oryzae pv. oryzae

    PubMed Central

    Chen, Xian; Dong, Yan; Yu, Chulang; Fang, XianPing; Deng, Zhiping; Yan, Chengqi; Chen, Jianping

    2016-01-01

    Oryza meyeriana, a wild species of rice from China, shows high resistance to Xanthomonas oryzae pv. oryzae (Xoo), the cause of rice bacterial blight, one of the most serious rice pathogens. To better understand the resistance mechanism, a proteomic study was conducted to identify changes in the proteins secreted in embryo cell suspension cultures in response to Xoo. After two-dimensional difference gel electrophoresis (2D-DIGE), 72 differentially expressed protein spots corresponding to 34 proteins were identified by Matrix-Assisted Laser Desorption/ Ionization Time of Flight Mass Spectrometry. Of the 34 proteins, 10 were up regulated and 24 down regulated. The secreted proteins identified were predicted to be involved in various biological processes, including signal transduction, defense, ROS and cell wall modification. 77% of the 34 proteins were predicted to have a signal peptide by Signal P. Quantitative Real-Time PCR showed that transcript levels of 14 secreted proteins were not well correlated with secreted protein levels. Peroxidase activity was up regulated in both O. meyriana and susceptible rice but was about three times higher in O. meyeriana. This suggests that peroxidases may play an important role in the early response to Xoo in O. meyeriana. These results not only provide a better understanding of the resistance mechanism of O. meyeriana, but have implications for studies of the interactions between other plants and their pathogens. PMID:27196123

  9. Changes in Cell Wall Properties Coincide with Overexpression of Extensin Fusion Proteins in Suspension Cultured Tobacco Cells

    PubMed Central

    Tan, Li; Avci, Utku; Qian, Jin; Arter, Allison; Chen, Liwei; Hahn, Michael G.; Ragauskas, Arthur J.; Kieliszewski, Marcia J.

    2014-01-01

    Extensins are one subfamily of the cell wall hydroxyproline-rich glycoproteins, containing characteristic SerHyp4 glycosylation motifs and intermolecular cross-linking motifs such as the TyrXaaTyr sequence. Extensins are believed to form a cross-linked network in the plant cell wall through the tyrosine-derivatives isodityrosine, pulcherosine, and di-isodityrosine. Overexpression of three synthetic genes encoding different elastin-arabinogalactan protein-extensin hybrids in tobacco suspension cultured cells yielded novel cross-linking glycoproteins that shared features of the extensins, arabinogalactan proteins and elastin. The cell wall properties of the three transgenic cell lines were all changed, but in different ways. One transgenic cell line showed decreased cellulose crystallinity and increased wall xyloglucan content; the second transgenic cell line contained dramatically increased hydration capacity and notably increased cell wall biomass, increased di-isodityrosine, and increased protein content; the third transgenic cell line displayed wall phenotypes similar to wild type cells, except changed xyloglucan epitope extractability. These data indicate that overexpression of modified extensins may be a route to engineer plants for bioenergy and biomaterial production. PMID:25536327

  10. Human adipose stem cells maintain proliferative, synthetic and multipotential properties when suspension cultured as self-assembling spheroids

    PubMed Central

    Kapur, S K; Wang, X; Shang, H; Yun, S; Li, X; Feng, G; Khurgel, M; Katz, A J

    2012-01-01

    Adipose Derived Stromal/Stem Cells (ASCs) have been gaining recognition as extremely versatile cell source in tissue engineering. The usefulness of ASCs in biofabrication is further enhanced by our demonstration of unique properties of these cells when they are cultured as three dimensional cellular aggregates or spheroids. As described herein, three-dimensional formulations or self-assembling ASC spheroids develop their own extracellular matrix that serves to increase the robustness of the cells to mechanical stresses. The composition of the extracellular matrix can be altered based on the external environment of the spheroids and these constructs can be grown in a reproducible manner and to a consistent size. The spheroid formulation helps preserve the viability and developmental plasticity of ASCs even in defined, serum-free media conditions. For the first time, we show that multiple generations of adherent ASCs produced from these spheroids retain their developmental plasticity and their ability to differentiate into multiple cell/tissue types. These demonstrated properties support the fact that culture expanded ASCs are an excellent candidate cellular material for “organ printing” – the approach of developing complex tissue structures from a standardized cell “ink” or cell formulation. PMID:22522924

  11. Cryopreservation enhances embryogenic capacity of Gentiana cruciata (L.) suspension culture and maintains (epi)genetic uniformity of regenerants.

    PubMed

    Mikuła, Anna; Tomiczak, Karolina; Rybczyński, Jan J

    2011-04-01

    The embryogenic cell suspension culture of Gentiana cruciata, cryopreserved by the encapsulation/dehydration method, survived both short- (48 h) and long-term (1.5 years) cryostorage with more than 80% viability. To assess the influence of cryotreatments on the embryogenic potential, a proembryogenic mass was encapsulated and exposed to the following treatments: (1) osmotic dehydration (OD), (2) OD + air desiccation (AD) and (3) OD + AD + cryostorage (LN). The somatic embryogenesis efficiency increased ten times after osmotic dehydration. The AD and LN cryotreatments did not cause any significant alterations in somatic embryo production. We monitored the (epi)genetic stability of 288 regenerants derived from: non-cryotreated, short-term, and long-term cryostored tissue using metAFLP markers and ten primer combinations. Changes in the sequence and DNA methylation levels were studied by subjecting the DNA to digestion with two pairs of isoschisomer restriction enzymes (KpnI/MseI and Acc65I/MseI). Two new AFLP unique DNA fragments at the DNA sequence level, with no differences at the methylation level, were found between regenerants derived from cryopreserved tissue, compared with the non-cryotreated controls. The Acc65I/MseI methylation levels for the three groups of regenerants were not significantly different. Cluster analysis was capable of identifying a number of sub-clusters. Only one of the sub-clusters comprises almost all regenerants derived from non-cryotreated and short-term cryostored tissue. Plantlets derived from long-term cryostored tissue were grouped into separate clusters. The observed AFLP alterations did not appear to be associated with the use of cryopreservation, but were probably related to the process of in vitro culture.

  12. Early Transcriptional Defense Responses in Arabidopsis Cell Suspension Culture under High-Light Conditions1[C][W][OA

    PubMed Central

    González-Pérez, Sergio; Gutiérrez, Jorge; García-García, Francisco; Osuna, Daniel; Dopazo, Joaquín; Lorenzo, Óscar; Revuelta, José L.; Arellano, Juan B.

    2011-01-01

    The early transcriptional defense responses and reactive oxygen species (ROS) production in Arabidopsis (Arabidopsis thaliana) cell suspension culture (ACSC), containing functional chloroplasts, were examined at high light (HL). The transcriptional analysis revealed that most of the ROS markers identified among the 449 transcripts with significant differential expression were transcripts specifically up-regulated by singlet oxygen (1O2). On the contrary, minimal correlation was established with transcripts specifically up-regulated by superoxide radical or hydrogen peroxide. The transcriptional analysis was supported by fluorescence microscopy experiments. The incubation of ACSC with the 1O2 sensor green reagent and 2′,7′-dichlorofluorescein diacetate showed that the 30-min-HL-treated cultures emitted fluorescence that corresponded with the production of 1O2 but not of hydrogen peroxide. Furthermore, the in vivo photodamage of the D1 protein of photosystem II indicated that the photogeneration of 1O2 took place within the photosystem II reaction center. Functional enrichment analyses identified transcripts that are key components of the ROS signaling transduction pathway in plants as well as others encoding transcription factors that regulate both ROS scavenging and water deficit stress. A meta-analysis examining the transcriptional profiles of mutants and hormone treatments in Arabidopsis showed a high correlation between ACSC at HL and the fluorescent mutant family of Arabidopsis, a producer of 1O2 in plastids. Intriguingly, a high correlation was also observed with ABA deficient1 and more axillary growth4, two mutants with defects in the biosynthesis pathways of two key (apo)carotenoid-derived plant hormones (i.e. abscisic acid and strigolactones, respectively). ACSC has proven to be a valuable system for studying early transcriptional responses to HL stress. PMID:21531897

  13. Detection of Changes in the Medicago sativa Retinoblastoma-Related Protein (MsRBR1) Phosphorylation During Cell Cycle Progression in Synchronized Cell Suspension Culture.

    PubMed

    Ayaydin, Ferhan; Kotogány, Edit; Ábrahám, Edit; Horváth, Gábor V

    2017-01-01

    Deepening our knowledge on the regulation of the plant cell division cycle depends on techniques that allow for the enrichment of cell populations in defined cell cycle phases. Synchronization of cell division can be achieved using different plant tissues; however, well-established cell suspension cultures provide large amount of biological sample for further analyses. Here, we describe the methodology of the establishment, propagation, and analysis of a Medicago sativa suspension culture that can be used for efficient synchronization of the cell division. A novel 5-ethynyl-2'-deoxyuridine (EdU)-based method is used for the estimation of cell fraction that enters DNA synthesis phase of the cell cycle and we also demonstrate the changes in the phosphorylation level of Medicago sativa retinoblastoma-related protein (MsRBR1) during cell cycle progression.

  14. Liver tissue engineering based on aggregate assembly: efficient formation of endothelialized rat hepatocyte aggregates and their immobilization with biodegradable fibres.

    PubMed

    Pang, Y; Montagne, K; Shinohara, M; Komori, K; Sakai, Y

    2012-12-01

    To realize long-term in vitro culture of hepatocytes at a high density while maintaining a high hepatic function for aggregate-based liver tissue engineering, we report here a novel culture method whereby endothelialized rat hepatocyte aggregates were formed using a PDMS microwell device and cultured in a perfusion bioreactor by introducing spacers between aggregates to improve oxygen and nutrient supply. Primary rat hepatocyte aggregates around 100 µm in diameter coated with human umbilical vein endothelial cells were spontaneously and quickly formed after 12 h of incubation, thanks to the continuous supply of oxygen by diffusion through the PDMS honeycomb microwell device. Then, the recovered endothelialized rat hepatocyte aggregates were mixed with biodegradable poly-l-lactic acid fibres in suspension and packed into a PDMS-based bioreactor. Perfusion culture of 7 days was successfully achieved with more than 73.8% cells retained in the bioreactor. As expected, the fibres acted as spacers between aggregates, which was evidenced from the enhanced albumin production and more spherical morphology compared with fibre-free packing. In summary, this study shows the advantages of using PDMS-based microwells to form heterotypic aggregates and also demonstrates the feasibility of spacing tissue elements for improving oxygen and nutrient supply to tissue engineering based on modular assembly.

  15. Cell suspension culture-mediated incorporation of the rice bel gene into transgenic cotton.

    PubMed

    Ke, Liping; Liu, RuiE; Chu, Bijue; Yu, Xiushuang; Sun, Jie; Jones, Brian; Pan, Gang; Cheng, Xiaofei; Wang, Huizhong; Zhu, Shuijin; Sun, Yuqiang

    2012-01-01

    Cotton plants engineered for resistance to the herbicides, glyphosate or glufosinate have made a considerable impact on the production of the crop worldwide. In this work, embryogenic cell cultures derived from Gossypium hirsutum L. cv Coker 312 hypocotyl callus were transformed via Agrobacterium tumefaciens with the rice cytochrome P450 gene, CYP81A6 (bel). In rice, bel has been shown to confer resistance to both bentazon and sulfanylurea herbicides. Transformed cells were selected on a liquid medium supplemented alternately or simultaneously with kanamycin (50mg/L) and bentazon (4.2 µmol). A total of 17 transgenic cotton lines were recovered, based on the initial resistance to bentazon and on PCR detection of the bel transgene. Bel integration into the cotton genome was confirmed by Southern blot and expression of the transgene was verified by RT-PCR. In greenhouse and experimental plot trials, herbicide (bentazon) tolerance of up to 1250 mg/L was demonstrated in the transgenic plants. Transgenic lines with a single copy of the bel gene showed normal Mendelian inheritance of the characteristic. Importantly, resistance to bentazon was shown to be stably incorporated in the T1, T2 and T3 generations of self-fertilised descendents and in plants outcrossed to another upland cotton cultivar. Engineering resistance to bentazon in cotton through the heterologous expression of bel opens the possibility of incorporating this trait into elite cultivars, a strategy that would give growers a more flexible alternative to weed management in cotton crops.

  16. Fast Filtration of Bacterial or Mammalian Suspension Cell Cultures for Optimal Metabolomics Results

    PubMed Central

    Bordag, Natalie; Janakiraman, Vijay; Nachtigall, Jonny; González Maldonado, Sandra; Bethan, Bianca; Laine, Jean-Philippe; Fux, Elie

    2016-01-01

    The metabolome offers real time detection of the adaptive, multi-parametric response of the organisms to environmental changes, pathophysiological stimuli or genetic modifications and thus rationalizes the optimization of cell cultures in bioprocessing. In bioprocessing the measurement of physiological intracellular metabolite levels is imperative for successful applications. However, a sampling method applicable to all cell types with little to no validation effort which simultaneously offers high recovery rates, high metabolite coverage and sufficient removal of extracellular contaminations is still missing. Here, quenching, centrifugation and fast filtration were compared and fast filtration in combination with a stabilizing washing solution was identified as the most promising sampling method. Different influencing factors such as filter type, vacuum pressure, washing solutions were comprehensively tested. The improved fast filtration method (MxP® FastQuench) followed by routine lipid/polar extraction delivers a broad metabolite coverage and recovery reflecting well physiological intracellular metabolite levels for different cell types, such as bacteria (Escherichia coli) as well as mammalian cells chinese hamster ovary (CHO) and mouse myeloma cells (NS0).The proposed MxP® FastQuench allows sampling, i.e. separation of cells from medium with washing and quenching, in less than 30 seconds and is robustly designed to be applicable to all cell types. The washing solution contains the carbon source respectively the 13C-labeled carbon source to avoid nutritional stress during sampling. This method is also compatible with automation which would further reduce sampling times and the variability of metabolite profiling data. PMID:27438065

  17. Stable production of a human growth hormone antagonist from CHO cells adapted to serum-free suspension culture.

    PubMed

    Haldankar, R; Kopchick, J J; Ridgway, D

    1999-01-01

    Human growth hormone (hGH) is a polypeptide with 191 amino acids and a molecular mass of 22 kDa. An hGH analogue was created with a single amino acid substitution (glycine[G] 120 to arginine[R]) in the third alpha-helix of the hGH molecule. This hGH analogue, named hGHG120R, was found to be an hGH antagonist. It is a parenteral drug candidate for treating conditions in which hGH levels are abnormally high, as found in type I diabetics. Previously, a genetically engineered anchorage-dependent mouse L cell line was created that produced and secreted hGHG120R in culture media (Dulbecco's modified Eagle's medium, DMEM) supplemented with 5% NuSerum IV. A multistep downstream process was developed to purify hGHG120R. The process consisted of cell clarification, salt precipitation, membrane ultrafiltration, size exclusion chromatography, reversed phase high-performance liquid chromatography, phase separation, and lyophilization. Here, we present the development of a superior eukaryotic system using a proper combination of genetic elements, cell line, and media formulation. This system is suitable for the large-scale production of the recombinant protein and is superior to the previously developed system in that it increases the specific production rate and at the same time eases the burden of the purification process, in both time and efficiency. Dihydrofolate reductase mutant (DHFR-) Chinese hamster ovary (CHO) cells were used that were stably transfected with an expression vector in which the hGHG120R gene is driven by the relatively strong human cytomegalovirus-early gene regulatory region. The hGHG120R tested to be biologically active. These cells were then adapted to grow in suspension in CHO-S-SFM (serum-free media). High cell densities, typically 2.0 x 10(6) cells/mL were obtained from spinner flask cultures. Partial purification of hGHG120R from CHO cell cultured media revealed that the level of impurities in SFM was significantly lower than the serum

  18. Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins.

    PubMed

    Conn, Simon; Curtin, Chris; Bézier, Annie; Franco, Chris; Zhang, Wei

    2008-01-01

    The ligandin activity of specific glutathione S-transferases (GSTs) is necessary for the transport of anthocyanins from the cytosol to the plant vacuole. Five GSTs were purified from Vitis vinifera L. cv. Gamay Fréaux cell suspension cultures by glutathione affinity chromatography. These proteins underwent Edman sequencing and mass spectrometry fingerprinting, with the resultant fragments aligned with predicted GSTs within public databases. The corresponding coding sequences were cloned, with heterologous expression in Escherichia coli used to confirm GST activity. Transcriptional profiling of these candidate GST genes and key anthocyanin biosynthetic pathway genes (PAL, CHS, DFR, and UFGT) in cell suspensions and grape berries against anthocyanin accumulation demonstrated strong positive correlation with two sequences, VvGST1 and VvGST4, respectively. The ability of VvGST1 and VvGST4 to transport anthocyanins was confirmed in the heterologous maize bronze-2 complementation model, providing further evidence for their function as anthocyanin transport proteins in grape cells. Furthermore, the differential induction of VvGST1 and VvGST4 in suspension cells and grape berries suggests functional differences between these two proteins. Further investigation of these candidate ligandins may identify a mechanism for manipulating anthocyanin accumulation in planta and in vitro suspension cells.

  19. Laminin-adherent versus suspension-non-adherent cell culture conditions for the isolation of cancer stem cells in the DAOY medulloblastoma cell line.

    PubMed

    de la Rosa, Javier; Sáenz Antoñanzas, Ander; Shahi, Mehdi H; Meléndez, Bárbara; Rey, Juan A; Castresana, Javier S

    2016-09-01

    Medulloblastoma (MB) is a highly malignant tumor of childhood. MB seems to be initiated and maintained by a small group of cells, known as cancer stem cells (CSCs). The CSC hypothesis suggests that a subset of tumor cells is able to proliferate, sustain the tumor, and develop chemoresistance, all of which make of CSC an interesting target for new anticancer therapies. The MB cell line DAOY was cultured in suspension by a medullosphere traditional culturing method and in adherent conditions by laminin-pre-coated flasks and serum-free medium enriched with specific growth factors. An increase in the stem features was shown when cells were successively cultured in hypoxia conditions. By contrast, a reduction in these properties was appreciated when cells were exposed to differentiation conditions. In addition, the CD133+ and CD133- subpopulations were isolated from cells grown in laminin-pre-coated flasks, and in vitro experiments showed that the CD133+ fraction represented the stem population and it could have CSC with a higher probability than the CD133- fraction. We can conclude that the laminin culture method in adherent conditions and the medullosphere traditional culturing method in suspension are similarly good for obtaining stem-like cells in the DAOY cell line.

  20. An Intracellular Arrangement of Histoplasma capsulatum Yeast-Aggregates Generates Nuclear Damage to the Cultured Murine Alveolar Macrophages

    PubMed Central

    Pitangui, Nayla de Souza; Sardi, Janaina de Cássia Orlandi; Voltan, Aline R.; dos Santos, Claudia T.; da Silva, Julhiany de Fátima; da Silva, Rosangela A. M.; Souza, Felipe O.; Soares, Christiane P.; Rodríguez-Arellanes, Gabriela; Taylor, Maria Lucia; Mendes-Giannini, Maria J. S.; Fusco-Almeida, Ana M.

    2016-01-01

    Histoplasma capsulatum is responsible for a human systemic mycosis that primarily affects lung tissue. Macrophages are the major effector cells in humans that respond to the fungus, and the development of respiratory disease depends on the ability of Histoplasma yeast cells to survive and replicate within alveolar macrophages. Therefore, the interaction between macrophages and H. capsulatum is a decisive step in the yeast dissemination into host tissues. Although the role played by components of cell-mediated immunity in the host's defense system and the mechanisms used by the pathogen to evade the host immune response are well understood, knowledge regarding the effects induced by H. capsulatum in host cells at the nuclear level is limited. According to the present findings, H. capsulatum yeast cells display a unique architectural arrangement during the intracellular infection of cultured murine alveolar macrophages, characterized as a formation of aggregates that seem to surround the host cell nucleus, resembling a “crown.” This extranuclear organization of yeast-aggregates generates damage on the nucleus of the host cell, producing DNA fragmentation and inducing apoptosis, even though the yeast cells are not located inside the nucleus and do not trigger changes in nuclear proteins. The current study highlights a singular intracellular arrangement of H. capsulatum yeast near to the nucleus of infected murine alveolar macrophages that may contribute to the yeast's persistence under intracellular conditions, since this fungal pathogen may display different strategies to prevent elimination by the host's phagocytic mechanisms. PMID:26793172

  1. Complex aggregation patterns in drying nanocolloidal suspensions: size matters when it comes to the thermomechanical stability of nanoparticle-based structures.

    PubMed

    Darwich, Samer; Mougin, Karine; Haidara, Hamidou

    2010-11-16

    We report the results of a model study on the interrelation among the occurrence of complex aggregation patterns in drying nanofluids, the size of the constitutive nanoparticles (NPs), and the drying temperature, which is a critical issue in the genesis of complex drying patterns that was never systematically reported before. We show that one can achieve fine control over the occurrence and topological features of these drying-mediated complex structures through the combination of the particle size, the drying temperature, and the substrate surface energy. Most importantly, we show that a transition in the occurrence of the patterns appears with the temperature and the particle size, which accounts for the size dependence of the thermomechanical stability of the aggregates in the nanoscale range. Using simple phenomenological and scaling considerations, we showed that the thermomechanical stability of the aggregates was underpinned by physical quantities that scale with the size of the NPs (R) either as R(-2) or R(-3). These insights into the size-dependent dissipation mechanisms in nanoclusters should help in designing NPs-based structures with tailored thermomechanical and environmental stability and hence with an optimized morphological stability that guarantees their long-term functional properties.

  2. Hemagglutinin and neuraminidase containing virus-like particles produced in HEK-293 suspension culture: An effective influenza vaccine candidate.

    PubMed

    Venereo-Sanchez, Alina; Gilbert, Renald; Simoneau, Melanie; Caron, Antoine; Chahal, Parminder; Chen, Wangxue; Ansorge, Sven; Li, Xuguang; Henry, Olivier; Kamen, Amine

    2016-06-17

    Virus-like particles (VLPs) constitute a promising alternative as influenza vaccine. They are non-replicative particles that mimic the morphology of native viruses which make them more immunogenic than classical subunit vaccines. In this study, we propose HEK-293 cells in suspension culture in serum-free medium as an efficient platform to produce large quantities of VLPs. For this purpose, a stable cell line expressing the main influenza viral antigens hemagglutinin (HA) and neuraminidase (NA) (subtype H1N1) under the regulation of a cumate inducible promoter was developed (293HA-NA cells). The production of VLPs was evaluated by transient transfection of plasmids encoding human immunodeficiency virus (HIV) Gag or M1 influenza matrix protein. To facilitate the monitoring of VLPs production, Gag was fused to the green fluorescence protein (GFP). The transient transfection of the gag containing plasmid in 293HA-NA cells increased the release of HA and NA seven times more than its counterpart transfected with the M1 encoding plasmid. Consequently, the production of HA-NA containing VLPs using Gag as scaffold was evaluated in a 3-L controlled stirred tank bioreactor. The VLPs secreted in the culture medium were recovered by ultracentrifugation on a sucrose cushion and ultrafiltered by tangential flow filtration. Transmission electron micrographs of final sample revealed the presence of particles with the average typical size (150-200nm) and morphology of HIV-1 immature particles. The concentration of the influenza glycoproteins on the Gag-VLPs was estimated by single radial immunodiffusion and hemagglutination assay for HA and by Dot-Blot for HA and NA. More significantly, intranasal immunization of mice with influenza Gag-VLPs induced strong antigen-specific mucosal and systemic antibody responses and provided full protection against a lethal intranasal challenge with the homologous virus strain. These data suggest that, with further optimization and characterization

  3. Single cell dual adherent-suspension co-culture micro-environment for studying tumor-stromal interactions with functionally selected cancer stem-like cells.

    PubMed

    Chen, Yu-Chih; Zhang, Zhixiong; Fouladdel, Shamileh; Deol, Yadwinder; Ingram, Patrick N; McDermott, Sean P; Azizi, Ebrahim; Wicha, Max S; Yoon, Euisik

    2016-08-07

    Considerable evidence suggests that cancer stem-like cells (CSCs) are critical in tumor pathogenesis, but their rarity and transience has led to much controversy about their exact nature. Although CSCs can be functionally identified using dish-based tumorsphere assays, it is difficult to handle and monitor single cells in dish-based approaches; single cell-based microfluidic approaches offer better control and reliable single cell derived sphere formation. However, like normal stem cells, CSCs are heavily regulated by their microenvironment, requiring tumor-stromal interactions for tumorigenic and proliferative behaviors. To enable single cell derived tumorsphere formation within a stromal microenvironment, we present a dual adherent/suspension co-culture device, which combines a suspension environment for single-cell tumorsphere assays and an adherent environment for co-culturing stromal cells in close proximity by selectively patterning polyHEMA in indented microwells. By minimizing dead volume and improving cell capture efficiency, the presented platform allows for the use of small numbers of cells (<100 cells). As a proof of concept, we co-cultured single T47D (breast cancer) cells and primary cancer associated fibroblasts (CAF) on-chip for 14 days to monitor sphere formation and growth. Compared to mono-culture, co-cultured T47D have higher tumorigenic potential (sphere formation rate) and proliferation rates (larger sphere size). Furthermore, 96-multiplexed single-cell transcriptome analyses were performed to compare the gene expression of co-cultured and mono-cultured T47D cells. Phenotypic changes observed in co-culture correlated with expression changes in genes associated with proliferation, apoptotic suppression, tumorigenicity and even epithelial-to-mesechymal transition. Combining the presented platform with single cell transcriptome analysis, we successfully identified functional CSCs and investigated the phenotypic and transcriptome effects induced

  4. Induction of trans-resveratrol and extracellular pathogenesis-related proteins in elicited suspension cultured cells of Vitis vinifera cv Monastrell.

    PubMed

    Belchí-Navarro, Sarai; Almagro, Lorena; Sabater-Jara, Ana Belén; Fernández-Pérez, Francisco; Bru, Roque; Pedreño, Maria Angeles

    2013-02-15

    Suspension-cultured cells of Vitis vinifera cv Monastrell were used to investigate the effects of methyljasmonate, ethylene and salicylic acid separately or in combination with cyclodextrins on both trans-resveratrol production and the induction of defense responses. The results showed that the addition of methyljasmonate or ethylene to suspension-cultured cells jointly treated with cyclodextrins and salicylic acid provoked a decrease of trans-resveratrol levels suggesting that salicylic acid has a negative and antagonistic effect with methyljasmonate or ethylene on trans-resveratrol production. Likewise, the exogenous application of these compounds induced the accumulation of pathogenesis-related proteins. Analysis of the extracellular proteome showed the presence of amino acid sequences homologous to an specific β-1,3-glucanase, class III peroxidases and a β-1,4-mannanase, which suggests that these signal molecules could play a role in mediating defense-related gene product expression in V. vinifera cv Monastrell. Apart from these inducible proteins, other proteins were found in both the control and elicited cell cultures of V. vinifera. These included class IV chitinase, polygalacturonase inhibitor protein and reticuline oxidase-like protein, suggesting that their expression is constitutive being involved in the modification of the cell wall architecture during cell culture growth and in the prevention of pathogen attack.

  5. Cell suspension culture of Eriobotrya japonica regulates the diabetic and hyperlipidemic signs of high-fat-fed mice.

    PubMed

    Shih, Chun-Ching; Ciou, Jiun-Lin; Lin, Cheng-Hsiu; Wu, Jin-Bin; Ho, Hui-Ya

    2013-03-01

    The present study investigates the anti-hyperlipidemic and antihyperglycemic effects and mechanism in high-fat (HF)-fed mice of cell suspension culture of Eriobotrya japonica (TA), which contains a great number of pentacyclic terpenoids. Firstly, C57BL/6J mice were randomly divided into two groups: the control (CON) group was fed with a low-fat diet (n = 9), whereas the experimental group was fed a 45% HF diet for 8 weeks. Afterwards, the CON group was treated with vehicle, whereas the HF group was subdivided into five groups and was orally given TA or rosiglitazone or not for 4 weeks. Blood and visceral adipose tissue, liver tissue and skeletal muscle were examined. Treatment with TA reduced body weight gain, weights of white adipose tissue (WAT) (including epididymal, perirenal, mesenteric WAT and visceral fat), and hepatic triacylglycerol content significantly without affecting food intake in diet-induced diabetic mice. TA effectively prevented HF diet-induced increases in the levels of blood glucose, insulin, leptin and HOMA-IR index (p < 0.001, p < 0.05, p < 0.05, p < 0.01, respectively) and attenuated insulin resistance. Treatment with TA, adipocytes in the visceral depots showed a reduction in size. TA effectively significantly increased the protein contents of phosphorylation of AMPK-α (Thr172) both in liver and adipose tissue. It is shown that TA exhibits hypolipidemic effect in HF-fed mice by decreasing gene expressions of fatty acid synthesis, including acyl-coenzyme A: diacylglycerol acyltransferase (DGAT) 2, which catalyzes the final step in the synthesis of triglycerides, and antidiabetic properties occurred as a result of decreased hepatic glucose production via phosphenolpyruvate carboxykinase (PEPCK) down- regulation, improved insulin sensitization and TA (at 1.0 g/kg dose) decreased expression of hepatic and adipose 11-β-hydroxysteroid dehydroxygenase (11β-HSD1) gene, which contributed in attenuating diabetic state. Futhermore, TA at doses of 0

  6. An inverse relationship between allelopathic activity and salt tolerance in suspension cultures of three mangrove species, Sonneratia alba, S. caseolaris and S. ovata: development of a bioassay method for allelopathy, the protoplast co-culture method.

    PubMed

    Hasegawa, Ai; Oyanagi, Tomoya; Minagawa, Reiko; Fujii, Yoshiharu; Sasamoto, Hamako

    2014-11-01

    A bioassay method for allelopathy, the 'protoplast co-culture method' was developed to study the relationship between salt tolerance and allelopathy of three mangrove species, Sonneratia alba, S. caseolaris, and S. ovata. Plants of S. alba grow in the seaward-side high salinity region and plants of the latter two species grow in upstream-side regions of a mangrove forest, respectively. Effects of five sea salts (NaCl, KCl, MgCl2, MgSO4 and CaCl2) on the growth of the suspension cells of the latter two species were first investigated by a small-scale method using 24-well culture plates. S. ovata cells showed higher tolerance than S. caseolaris cells to NaCl and other salts, but were not as halophilic as S. alba cells. Protoplasts isolated from suspension cells were co-cultured with lettuce protoplasts in Murashige and Skoog's (MS) basal medium containing 1 μM 2,4-dichlorophenoxyacetic acid, 0.1 μM benzyladenine, 3% sucrose and 0.6-0.8 M osmoticum. S. caseolaris protoplasts had a higher inhibitory effect on lettuce protoplast cell divisions than S. alba protoplasts at any lettuce protoplast density, and the effect of S. ovata was intermediate between the two. These results were similar to those obtained from a different in vitro bioassay method for allelopathy, the 'sandwich method' with dried leaves. The inverse relationship between allelopathic activity and salt tolerance in suspension cells of Sonneratia mangroves is discussed.

  7. Diadenosine triphosphate is a novel factor which in combination with cyclodextrins synergistically enhances the biosynthesis of trans-resveratrol in Vitis vinifera cv. Monastrell suspension cultured cells.

    PubMed

    Pietrowska-Borek, Małgorzata; Czekała, Lukasz; Belchí-Navarro, Sarai; Pedreño, María Angeles; Guranowski, Andrzej

    2014-11-01

    Dinucleoside polyphosphates are considered as signal molecules that may evoke response of plant cells to stress. Other compounds whose biological effects have been recognized are cyclodextrins. They are cyclic oligosaccharides that chemically resemble the alkyl-derived pectic oligosaccharides naturally released from the cell walls during fungal attack, and they act as true elicitors, since, when added to plant cell culture, they induce the expression of genes involved in some secondary metabolism pathways. Previously, we demonstrated that some dinucleoside polyphosphates triggered the biosynthesis of enzymes involved in the phenylpropanoid pathway in Arabidopsis thaliana. In Vitis vinifera suspension cultured cells, cyclodextrins were shown to enhance the accumulation of trans-resveratrol, one of the basic units of the stilbenes derived from the phenylpropanoid pathway. Here, we show that diadenosine triphosphate, applied alone or in combination with cyclodextrins to the grapevine suspension-cultured cells, increased the transcript level of genes encoding key phenylpropanoid-pathway enzymes as well as the trans-resveratrol production inside cells and its secretion into the extracellular medium. In the latter case, these two compounds acted synergistically. However, the accumulation of trans-resveratrol and its glucoside trans-piceid inside cells were stimulated much better by diadenosine triphosphate than by cyclodextrins.

  8. Production of Limonoids with Insect Antifeedant Activity in a Two-Stage Bioreactor Process with Cell Suspension Culture of Azadirachta indica.

    PubMed

    Vásquez-Rivera, Andrés; Chicaiza-Finley, Diego; Hoyos, Rodrigo A; Orozco-Sánchez, Fernando

    2015-09-01

    Neem tree (Azadirachta indica) cell suspension culture is an alternative for the production of limonoids for insect control that overcomes limitations related to the supply of neem seeds. To establish conditions for cell growth and azadiracthin-related limonoid production, the effect of different sucrose concentrations, nitrate and phosphate in Murashige and Skoog (MS) medium, and the addition of one precursor and three elicitors was evaluated in shake flasks. The process was scaled up to a 3-l stirred tank bioreactor in one- and two-stage batch cultivation. In shake flasks, more than fivefold increase in the production of limonoids with the modified MS medium was observed (increase from 0.77 to 4.52 mg limonoids/g dry cell weight, DCW), while an increase of more than fourfold was achieved by adding the elicitors chitosan, salicylic acid, and jasmonic acid together (increase from 1.03 to 4.32 mg limonoids/g DCW). In the bioreactor, the volumetric production of limonoids was increased more than threefold with a two-stage culture in day 18 (13.82 mg limonoids/l in control single-stage process and 41.44 mg/l in two-stage process). The cultivation and operating mode of the bioreactor reported in this study may be adapted and used in optimization and process plant development for production of insect antifeedant limonoids with A. indica cell suspension cultures.

  9. Transforming growth factor-beta 1 stimulates synthesis of proteoglycan aggregates in calf articular cartilage organ cultures

    SciTech Connect

    Morales, T.I. )

    1991-04-01

    Previous work showed that transforming growth factor-beta 1 (TGF-beta 1), added alone to bovine cartilage organ cultures, stimulated (35S)sulfate incorporation into macromolecular material but did not investigate the fidelity of the stimulated system to maintain synthesis of cartilage-type proteoglycans. This paper provides evidence that chondrocytes synthesize the appropriate proteoglycan matrix under TGF-beta 1 stimulation: (1) there is a coordinated increase in hyaluronic acid and proteoglycan monomer synthesis, (2) link-stable proteoglycan aggregates are assembled, (3) the hybrid chondroitin sulfate/keratan sulfate monomeric species is synthesized, and (4) there is an increase in protein core synthesis. Some variation in glycosylation patterns was observed when proteoglycans synthesized under TGF-beta 1 stimulation were compared to those synthesized under basal conditions. Thus comparing TGF-beta 1 to basal samples respectively, the monomers were larger (Kav on Sepharose CL-2B = 0.29 vs 0.41), the chondroitin sulfate chains were longer by approximately 3.5 kDa, the percentage of total glycosaminoglycan in keratan sulfate increased slightly from approximately 4% (basal) to approximately 6%, and the unsulfated disaccharide decreased from 28% (basal) to 12%. All of these variations are in the direction of a more anionic proteoglycan. Since the ability of proteoglycans to confer resiliency to the cartilage matrix is directly related to their anionic nature, these changes would presumably have a beneficial effect on tissue function.

  10. Targeted Gene Deletion Using DNA-Free RNA-Guided Cas9 Nuclease Accelerates Adaptation of CHO Cells to Suspension Culture.

    PubMed

    Lee, Namil; Shin, JongOh; Park, Jin Hyoung; Lee, Gyun Min; Cho, Suhyung; Cho, Byung-Kwan

    2016-11-18

    Chinese hamster ovary (CHO) cells are the preferred host for the production of a wide array of biopharmaceuticals. Thus, efficient and rational CHO cell line engineering methods have been in high demand to improve quality and productivity. Here, we provide a novel genome engineering platform for increasing desirable phenotypes of CHO cells based upon the integrative protocol of high-throughput RNA sequencing and DNA-free RNA-guided Cas9 (CRISPR associated protein9) nuclease-based genome editing. For commercial production of therapeutic proteins, CHO cells have been adapted for suspension culture in serum-free media, which is highly beneficial with respect to productivity and economics. To engineer CHO cells for rapid adaptation to a suspension culture, we exploited strand-specific RNA-seq to identify genes differentially expressed according to their adaptation trajectory in serum-free media. More than 180 million sequencing reads were generated and mapped to the currently available 109,152 scaffolds of the CHO-K1 genome. We identified significantly downregulated genes according to the adaptation trajectory and then verified their effects using the genome editing method. Growth-based screening and targeted amplicon sequencing revealed that the functional deletions of Igfbp4 and AqpI gene accelerate suspension adaptation of CHO-K1 cells. The availability of this strand-specific transcriptome sequencing and DNA-free RNA-guided Cas9 nuclease mediated genome editing facilitates the rational design of the CHO cell genome for efficient production of high quality therapeutic proteins.

  11. Comparative Proteomic Analysis of Cultured Suspension Cells of the Halophyte Halogeton glomeratus by iTRAQ Provides Insights into Response Mechanisms to Salt Stress

    PubMed Central

    Wang, Juncheng; Yao, Lirong; Li, Baochun; Meng, Yaxiong; Ma, Xiaole; Lai, Yong; Si, Erjing; Ren, Panrong; Yang, Ke; Shang, Xunwu; Wang, Huajun

    2016-01-01

    Soil salinity severely threatens land use capability and crop yields worldwide. An analysis of the molecular mechanisms of salt tolerance in halophytes will contribute to the development of salt-tolerant crops. In this study, a combination of physiological characteristics and iTRAQ-based proteomic approaches was conducted to investigate the molecular mechanisms underlying the salt response of suspension cell cultures of halophytic Halogeton glomeratus. These cells showed halophytic growth responses comparable to those of the whole plant. In total, 97 up-regulated proteins and 192 down-regulated proteins were identified as common to both 200 and 400 mM NaCl concentration treatments. Such salinity responsive proteins were mainly involved in energy, carbohydrate metabolism, stress defense, protein metabolism, signal transduction, cell growth, and cytoskeleton metabolism. Effective regulatory protein expression related to energy, stress defense, and carbohydrate metabolism play important roles in the salt-tolerance of H. glomeratus suspension cell cultures. However, known proteins regulating Na+ efflux from the cytoplasm and its compartmentalization into the vacuole did not change significantly under salinity stress suggesting our existing knowledge concerning Na+ extrusion and compartmentalization in halophytes needs to be evaluated further. Such data are discussed in the context of our current understandings of the mechanisms involved in the salinity response of the halophyte, H. glomeratus. PMID:26904073

  12. Regulation of initiation of DNA synthesis in Chinese hamster cells. I. Production of stable, reversible G1-arrested populations in suspension culture.

    PubMed

    Tobey, R A; Ley, K D

    1970-07-01

    Suspension cultures of Chinese hamster cells (line CHO) were grown to stationary phase (approximately 8-9 x 10(5) cells/ml) in F-10 medium. Cells remained viable (95%) for at least 80 hr in stationary phase, and essentially all of the cells were in G(1) Upon resuspension or dilution with fresh medium, the cells were induced to resume traverse of the life cycle in in synchrony, and the patterns of DNA synthesis and division were similar to those observed in cultures prepared by mitotic selection. Immediately after dilution, the rates of synthesis of RNA and protein increased threefold. This system provides a simple technique for production of large quantities of highly synchronized cells and may ultimately provide information on the biochemical mechanisms regulating cell-cycle traverse.

  13. Effects of pulsed electric field on secondary metabolism of Vitis vinifera L. cv. Gamay Fréaux suspension culture and exudates.

    PubMed

    Cai, Zhenzhen; Riedel, Heidi; Thaw Saw, Nay Min Min; Kütük, Onur; Mewis, Inga; Jäger, Henry; Knorr, Dietrich; Smetanska, Iryna

    2011-06-01

    Plant cell cultures provide a large potential for the production of secondary metabolites. Through the application of different physical and chemical cell stress factors, we investigated the production of the secondary metabolites in plant cell cultures. The effects of pulsed electric field (PEF) and ethephon on growth and secondary metabolism, particularly anthocyanins and phenolic acids synthesis, were investigated by using suspension culture of Vitis vinifera L. cv. Gamay Fréaux as a model system. Anthocyanins were measured by spectrophotometer and extracellular phenolic acids were determined by high-performance liquid chromatography. The compounds were identified by liquid chromatography-mass spectrometry and nuclear magnetic resonance. After the treatments with PEF and ethephon, the concentrations of anthocyanins and phenolic acids in cell culture were higher than in the control, without loss of biomass. The combination of PEF treatment and ethephon improved secondary metabolites formation. Production levels of extracellular phenolic acids, 3-O-glucosyl-resveratrol were increased by PEF and ethephon treatments. The results show that PEF induced a defense response of plant cells and may have altered the cell/membrane's dielectric properties. PEF, an external stimulus or stress, is proposed as a promising new abiotic elicitor for stimulating secondary metabolites biosynthesis in plant cell cultures.

  14. Enhancement of recombinant human EPO production and glycosylation in serum-free suspension culture of CHO cells through expression and supplementation of 30Kc19.

    PubMed

    Park, Ju Hyun; Wang, Zesong; Jeong, Hee-Jin; Park, Hee Ho; Kim, Byung-Gee; Tan, Wen-Song; Choi, Shin Sik; Park, Tai Hyun

    2012-11-01

    We previously reported that the expression of Bombyx mori 30Kc19 gene in CHO cells significantly improved both the production and sialylation of recombinant human EPO (rHuEPO) in adhesion culture mode. In this study, the effects of 30Kc19 expression and supplementation of 30Kc19 recombinant protein on the productivity and glycosylation pattern of rHuEPO were investigated in the serum-free suspension culture mode. Especially, glycosylation pattern was examined in detail using a quantitative MALDI-TOF MS method. The expression of 30Kc19 increased the EPO production by 2.5-folds and the host cells produced rHuEPO with more complex glycan structures and a larger content of sialic acid and fucose. The glycan structures of rHuEPO in the 30Kc19-expressing cell consisted of bi-, tri-, tetra-, and penta-antennary branching (35, 18, 33, and 14 %, respectively), while the control cells produced predominantly bi-antennary branching (70 %). About 53 % of the glycans from rHuEPO in the 30Kc19-expressing cell was terminally sialylated, while no obvious sialylated glycan was found in the control cells. The percentage of fucosylated glycans from the 30Kc19-expressing cell culture was 77 %, whereas only 61 % of the glycans from the control cell were fucosylated glycans. We also examined whether these effects were observed when the recombinant 30Kc19 protein produced from Escherichia coli was supplemented into the culture medium for CHO cells. In the control cell line without the 30Kc19 gene, EPO production increased by 41.6 % after the addition of 0.2 mg/mL of the recombinant 30Kc19 protein to the culture medium. By the Western blot analysis after two-dimensional electrophoresis (2-DE) of isoforms of EPO, we confirmed that 30Kc19 enhanced the sialylation of EPO glycans. These results demonstrated that both 30Kc19 gene expression and the recombinant 30Kc19 protein addition enhanced rHuEPO productivity and glycosylation in suspension culture. In conclusion, the utilization of

  15. Biogrid--a microfluidic device for large-scale enzyme-free dissociation of stem cell aggregates.

    PubMed

    Wallman, Lars; Åkesson, Elisabet; Ceric, Dario; Andersson, Per Henrik; Day, Kelly; Hovatta, Outi; Falci, Scott; Laurell, Thomas; Sundström, Erik

    2011-10-07

    Culturing stem cells as free-floating aggregates in suspension facilitates large-scale production of cells in closed systems, for clinical use. To comply with GMP standards, the use of substances such as proteolytic enzymes should be avoided. Instead of enzymatic dissociation, the growing cell aggregates may be mechanically cut at passage, but available methods are not compatible with large-scale cell production and hence translation into the clinic becomes a severe bottle-neck. We have developed the Biogrid device, which consists of an array of micrometerscale knife edges, micro-fabricated in silicon, and a manifold in which the microgrid is placed across the central fluid channel. By connecting one side of the Biogrid to a syringe or a pump and the other side to the cell culture, the culture medium with suspended cell aggregates can be aspirated, forcing the aggregates through the microgrid, and ejected back to the cell culture container. Large aggregates are thereby dissociated into smaller fragments while small aggregates pass through the microgrid unaffected. As proof-of-concept, we demonstrate that the Biogrid device can be successfully used for repeated passage of human neural stem/progenitor cells cultured as so-called neurospheres, as well as for passage of suspension cultures of human embryonic stem cells. We also show that human neural stem/progenitor cells tolerate transient pressure changes far exceeding those that will occur in a fluidic system incorporating the Biogrid microgrids. Thus, by using the Biogrid device it is possible to mechanically passage large quantities of cells in suspension cultures in closed fluidic systems, without the use of proteolytic enzymes.

  16. Comparative study of withanolide production and the related transcriptional responses of biosynthetic genes in fungi elicited cell suspension culture of Withania somnifera in shake flask and bioreactor.

    PubMed

    Ahlawat, Seema; Saxena, Parul; Ali, Athar; Khan, Shazia; Abdin, Malik Z

    2017-02-17

    Ashwagandha (Withania somnifera) is one of the most reputed medicinal plants in the traditional medicinal system. In this study, cell suspension culture of W. somnifera was elicited with cell homogenates of fungi (A. alternata, F. solani, V. dahliae and P. indica) in shake flask and the major withanolides like withanolide A, withaferin A and withanone were analysed. Simultaneously expression levels of key pathway genes from withanolides biosynthetic pathways were also checked via quantitative PCR in shake flask as well as in bioreactor. The results show that highest gene expression of 10.8, 5.8, 4.9, and 3.3 folds were observed with HMGR among all the expressed genes in cell suspension cultures with cell homogenates of 3% P. indica, 5% V. dahliae, 3% A. alternata and 3% F. solani, respectively, in comparison to the control in shake flask. Optimized concentration of cell homogenate of P. indica (3% v/v) was added to the growing culture in 5.0-l bioreactor under optimized up-scaling conditions and harvested after 22 days. The genes of MVA, MEP and withanolides biosynthetic pathways like HMGR, SS, SE, CAS, FPPS, DXR and DXS were up-regulated by 12.5, 4.9, 2.18, 4.65, 2.34, 1.89 and 1.4 folds, respectively in bioreactor. The enhancement of biomass (1.13 fold) and withanolides [withanolide A (1.7), withaferin A (1.5), and withanone (1.5) folds] in bioreactor in comparison to shake flask was also found to be in line with the up-regulation of genes of withanolide biosynthetic pathways.

  17. Stem Cells in Aggregate Form to Enhance Chondrogenesis in Hydrogels

    PubMed Central

    Sridharan, BanuPriya; Lin, Staphany M.; Hwu, Alexander T.; Laflin, Amy D.; Detamore, Michael S.

    2015-01-01

    There are a variety of exciting hydrogel technologies being explored for cartilage regenerative medicine. Our overall goal is to explore whether using stem cells in an aggregate form may be advantageous in these applications. 3D stem cell aggregates hold great promise as they may recapitulate the in vivo skeletal tissue condensation, a property that is not typically observed in 2D culture. We considered two different stem cell sources, human umbilical cord Wharton’s jelly cells (hWJCs, currently being used in clinical trials) and rat bone marrow-derived mesenchymal stem cells (rBMSCs). The objective of the current study was to compare the influence of cell phenotype, aggregate size, and aggregate number on chondrogenic differentiation in a generic hydrogel (agarose) platform. Despite being differing cell sources, both rBMSC and hWJC aggregates were consistent in outperforming cell suspension control groups in biosynthesis and chondrogenesis. Higher cell density impacted biosynthesis favorably, and the number of aggregates positively influenced chondrogenesis. Therefore, we recommend that investigators employing hydrogels consider using cells in an aggregate form for enhanced chondrogenic performance. PMID:26719986

  18. Enhanced anthocyanins and resveratrol production in Vitis vinifera cell suspension culture by indanoyl-isoleucine, N-linolenoyl-L-glutamine and insect saliva.

    PubMed

    Cai, Zhenzhen; Knorr, Dietrich; Smetanska, Iryna

    2012-01-05

    The effects of two synthetic elicitor indanoyl-isoleucine (In-Ile), N-linolenoyl-L-glutamine (Lin-Gln) and one biotic elicitor insect saliva (from Manduca sexta larvae) on plant cell cultures with respect to the induction of secondary metabolite production were investigated. Stimulated production of secondary metabolites, particularly anthocyanins in plant cells and phenolic acids in culture medium, was studied by using suspension culture of Vitis vinifera L. cv. Gamay Fréaux as a model system. In the treatments with In-Ile, the production of anthocyanins was enhanced 2.6-fold. In-Ile, Lin-Gln and saliva significantly elevated the accumulation of phenolic acids, particularly 3-O-glucosyl-resveratrol. The used elicitors did not suppress cell growth. Secondary metabolites were differently responsive to elicitation. 3-O-glucosyl-resveratrol was the predominant phenolic acid in V. vinifera cell culture, and its production was significantly stimulated by saliva, with 7.0-fold of the control level 24 h after treatment. The production of 4-(3,5-dihydroxy-phenyl)-phenol was significantly stimulated by In-Ile with 6.4-fold of the control level 24 h after treatment.

  19. Rethinking Suspensions

    ERIC Educational Resources Information Center

    Stetson, Frank H.; Collins, Betty J.

    2010-01-01

    The overrepresentation of the Black and Hispanic subgroups in suspension data is a national problem and a troubling issue for schools and school systems across the United States. In Maryland, an analysis of student suspensions by school districts for the 2006-2007 school year revealed disproportionality issues. In 23 of the 24 jurisdictions,…

  20. Chinese hamster ovary cells cultured in low concentrations of fetal bovine serum: cloning efficiency, growth in suspension, and selection of drug-resistant mutant phenotypes

    SciTech Connect

    Carver, J.H.; Salazar, E.P.; Knize, M.G.

    1983-09-01

    Reducing serum concentrations in media provides a potential cost advantage. To determine whether such media could be used for applied mutagenesis assays, cloning efficiency and growth parameters in suspension of Chinese hamster ovary cells cultured were measured in reduced serum with or without additives (1 ..mu..g/ml insulin, 3 x 10/sup -7/ M linoleic acid, 1 x 10/sup -8/ M H/sub 2/SeO/sub 3/) or bovine serum albumin (BSA, 1% wt/vol). With the additives and less than or equal to 0.5% fetal bovine serum (FBS), Ham's F12 medium (without hypoxanthine and thymidine) was more optimal than alpha Eagle's minimum essential medium (MEM) (without ribosides and deoxyribosides) for low density cloning and high density suspension growth. The spontaneous frequency of azaadenine-resistant phenotypes (mutant at the aprt locus) in 1% FBS plus BSA was significantly lower than the frequency observed in 2% FBS plus BSA or 10% DFBS. Frequencies of spontaneous mutants resistant to thioguanine (hgprt locus) or fluorodeoxy-uridine (tk locus) were similar with 10% DFBS, 1% FBS plus BSA, or 2% FBS plus BSA. Compared to alpha MEM with 10% DFBS, frequencies of drug-resistant mutants induced by ethyl methanesulfonate or mitomycin C (MMC) were not significantly lower in alpha MEM with 2% FBS plus BSA; observed mutant frequencies induced by dimethylnitrosamine or benzo(a)pyrene seemed to be decreased at lower survival levels.

  1. Influence of Carbohydrates on Quantitative Aspects of Growth and Embryo Formation in Wild Carrot Suspension Cultures 12

    PubMed Central

    Verma, Devi C.; Dougall, Donald K.

    1977-01-01

    Wild carrot (Daucus carota L.) cell suspensions were grown on a mineral salt medium supplemented with 10 mmmyoinositol in the presence and absence of 2.25 μm 2,4-dichlorophenoxyacetic acid (2,4-D), and a variety of carbon sources. The data obtained on growth and embryo number in the absence of 2,4-D show that wild carrot suspensions were able to utilize sucrose, glucose, fructose, galactose, mannose, maltose, raffinose, or stachyose as a carbon source. A highly significant correlation between dry weight and embryo number was obtained regardless of the carbohydrate source suggesting the involvement of a common intermediate in the metabolism of the various sugars. In the presence of 2.25 μm 2,4-D, embryo formation was suppressed. Time course of dry weights obtained in the presence and absence of 2,4-D show that 2,4-D increased the growth rate of the tissue when glucose, fructose, mannose, or stachyose was used as the carbon source. The growth rates on other sugars remained unchanged under these conditions. PMID:16659793

  2. Improved oxidative tolerance in suspension-cultured cells of C4-pepctransgenic rice by H2O2 and Ca(2+) under PEG-6000.

    PubMed

    Qian, Baoyun; Li, Xia; Liu, Xiaolong; Wang, Man

    2015-06-01

    To understand the molecular responses of PC (Overexpressing the maize C4-pepc gene, which encodes phosphoenolpyruvate carboxylase (PEPC)), to drought stress at cell level, we analyzed changes in the levels of signaling molecules (hydrogen peroxide (H2O2), calcium ion (Ca(2+)), and nitric oxide (NO)) in suspension-cultured PC and wild-type (WT) rice (Oryza sativa L.) cell under drought stress induced by 20% polyethylene glycol 6000 (PEG-6000). Results demonstrated that PC improved drought tolerance by enhancing antioxidant defense, retaining higher relative water content, survival percentages, and dry weight of cells. In addition, PEPC activity in PC under PEG treatment was strengthened by addition of H2O2 inhibitor, dimethylthiourea (DMTU) and NO synthesis inhibitor, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), respectively, while that in PC was weakened by addition of free calcium chelator, ethylene glycol-bis(b-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) + calcium channel outflow inhibitor, ruthenium red (RR) + plasma membrane channel blocker La(NO3)3, but EGTA + RR did not. Results also showed that NO and Ca(2+) was lying downstream of H2O2 in drought-induced signaling. Calcium ion was also involved in the expression of C4-pepc in PC. These results suggested that PC could improve oxidative tolerance in suspension-cultured cells and the acquisition of this tolerance required downregulation of H2O2 and the entry of extracellular Ca(2+) into cells across the plasma membrane for regulation of PEPC activity and C4-pepc expression.

  3. [Effect of salicylic acid on cell growth and polysaccharide production in suspension cultures of protocorm-like bodies from Dendrobium huoshanense].

    PubMed

    Wang, Bo; Pan, Lihua; Luo, Jianping; Zha, Xueqiang

    2009-07-01

    Polysaccharides from Dendrobium huoshanense possess immunostimulating activity, antioxidant activity and anticataract activity. In order to produce the active polysaccharides from Dendrobium huoshanense through cell culture, we investigated the effects of salicylic acid on cell growth, accumulation of polysaccharides and utilization of carbon source in suspension cultures of protocorm-like bodies from Dendrobium huoshanense. Although salicylic acid slightly inhibited the cell growth, it was beneficial to the utilization of carbon source, thus leading to significant increase in the contents of polysaccharides. The highest polysaccharide production occurred on the medium supplied with 100 micromoI/L salicylic acid. After 18 days of culture the production of polysaccharides reached 3.129 g/L, which was 1.63 times that of the control. Further, we established the kinetic models describing cell growth, polysaccharide production and carbon source utilization based on Logistic equation, Luedeking-Piret equation and Luedeking-Piret-Like equation. The calculated values from the kinetic models showed a good fit to the experimental values, suggesting that salicylic acid could be an effective compound to enhance the production of active polysaccharides from protcorm-like bodies from Dendrobium huoshanense.

  4. Effects of polysaccharide elicitors from endophytic Fusarium oxysporium Dzf17 on growth and diosgenin production in cell suspension culture of Dioscorea zingiberensis.

    PubMed

    Li, Peiqin; Mou, Yan; Shan, Tijiang; Xu, Jianmei; Li, Yan; Lu, Shiqiong; Zhou, Ligang

    2011-10-26

    Three polysaccharides, namely exopolysaccharide (EPS), water-extracted mycelial polysaccharide (WPS) and sodium hydroxide-extracted mycelial polysaccharide (SPS), were prepared from the endophytic fungus Fusarium oxysporium Dzf17 isolated from the rhizomes of Dioscorea zingiberensis. The effects of the time of addition and polysaccharide concentration on the growth and diosgenin accumulation in cell suspension culture of D. zingiberensis were studied. Among them, WPS was found to be the most effective polysaccharide. When WPS was added to the medium at 20 mg/L on the 25th day of culture, the cell dry weight was increased 1.34-fold, diosgenin content 2.85-fold, and diosgenin yield 3.83-fold in comparison to those of control. EPS and SPS showed moderate and relatively weak enhancement effects on cell growth and diosgenin accumulation, respectively. The dynamics of cell growth and diosgenin accumulation when WPS was added to the medium at 20 mg/L on the 25th day of culture were investigated, and results showed that dry weight of cells reached a maximum value on day 30 but the maximum diosgenin content was achieved on day 31.

  5. Optimization of BY-2 cell suspension culture medium for the production of a human antibody using a combination of fractional factorial designs and the response surface method.

    PubMed

    Vasilev, Nikolay; Grömping, Ulrike; Lipperts, Anja; Raven, Nicole; Fischer, Rainer; Schillberg, Stefan

    2013-09-01

    We have developed a strategy for the optimization of plant cell suspension culture media using a combination of fractional factorial designs (FFDs) and response surface methodology (RSM). This sequential approach was applied to transformed tobacco BY-2 cells secreting a human antibody (M12) into the culture medium, in an effort to maximize yields. We found that the nutrients KNO₃, NH₄NO₃ and CaCl₂ and the hormones 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzylaminopurine (BAP) had the most significant impact on antibody accumulation. The factorial screening revealed strong interactions within the nutrients group (KNO₃, NH₄NO₃ and CaCl₂) and also individually between 2,4-D and three other components (KNO₃, NH₄NO₃ and BAP). The RSM design resulted in a fivefold increase in the antibody concentration after 5 days and a twofold reduction in the packed cell volume (PCV). Longer cultivation in the optimized medium led to the further accumulation of antibody M12 in the culture medium (up to 107 μg/mL, day 10). Because the packed cell volume was reduced in the optimized medium, this enhanced the overall yield by 20-fold (day 7) and 31-fold (day 10) compared to the conventional MS medium.

  6. The age-dependent epigenetic and physiological changes in an Arabidopsis T87 cell suspension culture during long-term cultivation

    SciTech Connect

    Kwiatkowska, Aleksandra; Zebrowski, Jacek; Oklejewicz, Bernadetta; Czarnik, Justyna; Halibart-Puzio, Joanna; Wnuk, Maciej

    2014-05-02

    Highlights: • A decrease in proliferation rate during long-term cultivation of Arabidopsis cells. • Age-dependent increase in senescence-associated gene expression in Arabidopsis cells. • Age-related increase in DNA methylation, H3K9me2, and H3K27me3 in Arabidopsis cells. • High potential of photosynthetic efficiency of long-term cultured Arabidopsis cells. - Abstract: Plant cell suspension cultures represent good model systems applicable for both basic research and biotechnological purposes. Nevertheless, it is widely known that a prolonged in vitro cultivation of plant cells is associated with genetic and epigenetic instabilities, which may limit the usefulness of plant lines. In this study, the age-dependent epigenetic and physiological changes in an asynchronous Arabidopsis T87 cell culture were examined. A prolonged cultivation period was found to be correlated with a decrease in the proliferation rate and a simultaneous increase in the expression of senescence-associated genes, indicating that the aging process started at the late growth phase of the culture. In addition, increases in the heterochromatin-specific epigenetic markers, i.e., global DNA methylation, H3K9 dimethylation, and H3K27 trimethylation, were observed, suggesting the onset of chromatin condensation, a hallmark of the early stages of plant senescence. Although the number of live cells decreased with an increase in the age of the culture, the remaining viable cells retained a high potential to efficiently perform photosynthesis and did not exhibit any symptoms of photosystem II damage.

  7. Generation of HIV-1 Gag VLPs by transient transfection of HEK 293 suspension cell cultures using an optimized animal-derived component free medium.

    PubMed

    Cervera, Laura; Gutiérrez-Granados, Sonia; Martínez, Marta; Blanco, Julià; Gòdia, Francesc; Segura, María Mercedes

    2013-07-20

    Virus-like particles (VLPs) offer great promise as candidates for new vaccine strategies. Large-scale approaches for the manufacturing of HIV-1 Gag VLPs have mainly focused on the use of the baculovirus expression system. In this work, the development and optimization of an HIV-1 Gag VLP production protocol by transient gene expression in mammalian cell suspension cultures is reported. To facilitate process optimization, a Gag-GFP fusion construct enabling the generation of fluorescent VLPs was used. The great majority of Gag-GFP present in cell culture supernatants was shown to be correctly assembled into virus-like particles of the expected size and morphology consistent with immature HIV-1 particles. Medium optimization was performed using design of experiments (DoE). Culture medium supplementation with non-animal derived components including recombinant proteins and lipids of synthetic or non-animal-derived origin resulted in improved HEK 293 cell growth and VLP production. The maximum cell density attained using the optimized Freestyle culture medium was 5.4×10(6)cells/mL in batch mode, almost double of that observed using the unsupplemented medium (2.9×10(6)cells/mL). Best production performance was attained when cells were transfected at mid-log phase (2-3×10(6)cells/mL) with medium exchange at the time of transfection using standard amounts of plasmid DNA and polyethylenimine. By using an optimized production protocol, VLP titers were increased 2.4-fold obtaining 2.8μg of Gag-GFP/mL or 2.7×10(9)VLPs/mL according to ELISA and nanoparticle tracking quantification analyses, respectively.

  8. Holographic characterization of protein aggregates

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Zhong, Xiao; Ruffner, David; Stutt, Alexandra; Philips, Laura; Ward, Michael; Grier, David

    Holographic characterization directly measures the size distribution of subvisible protein aggregates in suspension and offers insights into their morphology. Based on holographic video microscopy, this analytical technique records and interprets holograms of individual aggregates in protein solutions as they flow down a microfluidic channel, without requiring labeling or other exceptional sample preparation. The hologram of an individual protein aggregate is analyzed in real time with the Lorenz-Mie theory of light scattering to measure that aggregate's size and optical properties. Detecting, counting and characterizing subvisible aggregates proceeds fast enough for time-resolved studies, and lends itself to tracking trends in protein aggregation arising from changing environmental factors. No other analytical technique provides such a wealth of particle-resolved characterization data in situ. Holographic characterization promises accelerated development of therapeutic protein formulations, improved process control during manufacturing, and streamlined quality assurance during storage and at the point of use. Mrsec and MRI program of the NSF, Spheryx Inc.

  9. Enhanced hepatic differentiation of rat bone marrow-derived mesenchymal stem cells in spheroidal aggregate culture on a decellularized liver scaffold

    PubMed Central

    Bao, Ji; Wu, Qiong; Wang, Yujia; Li, Yi; Li, Li; Chen, Fei; Wu, Xiujuan; Xie, Mingjun; Bu, Hong

    2016-01-01

    In the present study, we aimed to determine whether the combination of aggregate culture and decellularized liver scaffolds (DLSs) promoted the hepatic differentiation of murine bone marrow-derived mesenchymal stem cells (BM-MSCs) into high yields of mature hepatocytes in vitro. Four culturing methods for differentiation [single cell (2D), spheroids (3D), 2D + DLS and 3D + DLS] were studied. To determine the differentiation stages of the MSCs, RT-qPCR of the hepatocyte genes, immunostaining of hepatocyte markers, and functional analyses were all performed. Compared with the other groups, hepatocyte-like cells which differentiated from BM-MSC spheroids on extracellular matrix (ECM) exhibited more intensive staining of stored glycogen, an elevated level of urea biosynthesis and albumin secretion as well as the higher expression of hepatocyte-specific genes. Our results indicated that DLSs combined with spheroidal aggregate culture may be used as an effective method to facilitate the hepatic maturation of BM-MSCs and may have future applications in stem cell-based liver regenerative medicine. PMID:27314916

  10. Rapid Activation of Phenylpropanoid Metabolism in Elicitor-Treated Hybrid Poplar (Populus trichocarpa Torr. & Gray × Populus deltoides Marsh) Suspension-Cultured Cells 1

    PubMed Central

    de Sá, Mário Moniz; Subramaniam, Rajgopal; Williams, Frank E.; Douglas, Carl J.

    1992-01-01

    Elicitor induction of phenylpropanoid metabolism was investigated in suspension-cultured cells of the fast-growing poplar hybrid (Populus trichocarpa Torr. & Gray × Populus deltoides Marsh) H11-11. Treatment of cells with polygalacturonic acid lyase or two fungal elicitors resulted in rapid and transient increases in extractable l-phenylalanine ammonia lyase and 4-coumarate:coenzyme A ligase enzyme activities. The substrate specificity of the inducible 4-coumarate:coenzyme A ligase enzyme activity appeared to differ from substrate specificity of 4-coumarate:coenzyme A ligase enzyme activity in untreated control cells. Large and transient increases in the accumulation of l-phenylalanine ammonia-lyase and 4-coumarate:coenzyme A ligase mRNAs preceded the increases in enzyme activities and were detectable by 30 minutes after the start of elicitor treatment. Chalcone synthase, cinnamyl alcohol dehydrogenase, and coniferin β-glucosidase enzyme activities were unaffected by the elicitors, but a large and transient increase in β-glucosidase activity capable of hydrolyzing 4-nitrophenyl-β-glucoside was observed. Subsequent to increases in l-phenylalanine ammonialyase and 4-coumarate:coenzyme A ligase enzyme activities, cell wall-bound thioglycolic acid-extractable compounds accumulated in elicitor-treated cultures, and these cells exhibited strong staining with phloroglucinol, suggesting the accumulation of wall-bound phenolic compounds. ImagesFigure 7Figure 9 PMID:16668702

  11. Cryopreservation by encapsulation of Gentiana spp cell suspensions maintains regrowth, embryogenic competence and DNA content.

    PubMed

    Mikula, Anna; Olas, Marta; Sliwinska, Elwira; Rybczynski, Jan J

    2008-01-01

    A reliable technique for cryopreservation by encapsulation was developed for two suspension cultures of gentian species (Gentiana tibetica and G. cruciata) of different ages and embryogenic potential. The effect of water content, aggregate size and the subculture time on viability was determined by the 2,3,5-triphenyltetrazolium chloride (TTC) test. Regrowth of a proembryogenic mass (PEM) on agar, liquid or agar/liquid media was assayed by measuring the increase in biomass. A water content of 24-30% (fresh weight basis) after 5-6 h dehydration of encapsulated cells of gentians yielded the highest survival (68% for G. tibetica and 83% for G. cruciata) after cryopreservation. Regardless of species, aggregate size and subculture time, the lowest PEM survival was 44%. These parameters did not influence the survival of G. tibetica PEM, but the survival of G. cruciata was higher when the smaller aggregates were cryopreserved on the 5th day of culture. Agar/liquid culture caused the greatest biomass increase. Cryopreservation did not affect the characteristics of suspension cultures and their regrowth after thawing, nor the number and dynamics of somatic embryos formed. Flow cytometry showed that cryopreservation did not change the genome size of the PEMs or regenerants.

  12. Role of cellular antioxidants (glutathione and ascorbic acid) in the growth and development of wild carrot suspension cultures

    SciTech Connect

    Earnshaw, B.A.

    1986-01-01

    Determinations of endogenous glutathione (GSH), glutathione disulfide (GSSG), ascorbic acid (AA) and dehydroascorbic acid (DHA) in proliferating and developing wild carrot cultures showed that lower levels of GSH and AA were associated with developing cultures. The GSSG and DHA levels did not account for the changes in the levels of antioxidants between proliferating and developing cultures. Studies were designed to test an observed auxin (2,4-Dichlorophenoxyacetic acid, 2,4-D)-antioxidant association. Two fractions (embryo and less developed) were obtained by screening developed cultures which were previously grown in the presence of /sup 14/C-2, 4-D. The embryo fraction had a lower concentration of /sup 14/C than the less developed fraction, supporting the association, since the two fractions showed this relationship with respect to GSH and AA concentrations. Determinations of GSH and AA levels of cells grown in various concentrations of 2,4-D showed the association, decreases in the 2,4-D concentration correlated with decreases in the GSH and AA concentrations. The existence of a respiratory pathway involving GSSG reductase, DHA reductase, and AA oxidase was investigated to test whether inhibition of AA oxidase by 2,4-D could explain the auxin-antioxidant association; however, AA oxidase activity was not detected.

  13. The Effect of Various Media and Hormones via Suspension Culture on Secondary Metabolic Activities of (Cape Jasmine) Gardenia jasminoides Ellis

    PubMed Central

    Mat Taha, Rosna; Rashid, Kamaludin; Syafawati Yaacob, Jamilah

    2014-01-01

    The leaf of Gardenia jasminoides Ellis was used as explants and was cultured on MS and WPM media supplemented with various concentrations of NAA, IAA, 2,4-D, IBA, TDZ, and Kn (0 to 5 mg L−1 with 0.5 increment). After six months, the higher percentage of callus (100%) and the best dry and fresh weight of callus were formed on WPM medium supplemented with 2,4-D and NAA (2.0-3.0 mg L−1) and this amount was decreased from (84%) to (69%) when this media supplemented with Kinetin and TDZ (1 mg L−1) respectively were used. Leaf segments cultured on WPM media added with Kn (1 mg L−1) and TDZ (2 mg L−1) yielded the least amount of callus. It was found that WPM media added with IAA (4.5–5.0 mg L−1) were optimum for root induction from G. jasminoides plantlets. Antibacterial screening of leaf extracts (in vivo) showed no inhibitory effect against E. coli, P. aeruginosa, S. aureus, and B. cereus, in contrast to callus extracts from leaf cultures supplemented with NAA, which showed inhibition activity against E. coli and B. cereus. The callus extracts from leaf cultures grown on both MS and WPM media showed higher antioxidant and superoxide dismutase activities than leaf extracts. PMID:24967432

  14. The effect of various media and hormones via suspension culture on secondary metabolic activities of (Cape Jasmine) Gardenia jasminoides Ellis.

    PubMed

    Farzinebrahimi, Reza; Mat Taha, Rosna; Rashid, Kamaludin; Syafawati Yaacob, Jamilah

    2014-01-01

    The leaf of Gardenia jasminoides Ellis was used as explants and was cultured on MS and WPM media supplemented with various concentrations of NAA, IAA, 2,4-D, IBA, TDZ, and Kn (0 to 5 mg L(-1) with 0.5 increment). After six months, the higher percentage of callus (100%) and the best dry and fresh weight of callus were formed on WPM medium supplemented with 2,4-D and NAA (2.0-3.0 mg L(-1)) and this amount was decreased from (84%) to (69%) when this media supplemented with Kinetin and TDZ (1 mg L(-1)) respectively were used. Leaf segments cultured on WPM media added with Kn (1 mg L(-1)) and TDZ (2 mg L(-1)) yielded the least amount of callus. It was found that WPM media added with IAA (4.5-5.0 mg L(-1)) were optimum for root induction from G. jasminoides plantlets. Antibacterial screening of leaf extracts (in vivo) showed no inhibitory effect against E. coli, P. aeruginosa, S. aureus, and B. cereus, in contrast to callus extracts from leaf cultures supplemented with NAA, which showed inhibition activity against E. coli and B. cereus. The callus extracts from leaf cultures grown on both MS and WPM media showed higher antioxidant and superoxide dismutase activities than leaf extracts.

  15. Composition analysis of fractions of extracellular polymeric substances from an activated sludge culture and identification of dominant forces affecting microbial aggregation

    NASA Astrophysics Data System (ADS)

    Guo, Xuan; Wang, Xu; Liu, Junxin

    2016-06-01

    Extracellular polymeric substances (EPS) appear to play a critical role in the formation of bioaggregates, such as sludge flocs, in activated sludge processes. Here, we systematically investigated the composition and chemical structure of various EPS fractions excreted from an activated sludge culture using multi-analysis techniques to examine the ability of the sludge to aggregate. Chemical analysis was used with a three-dimensional excitation emission matrix and Fourier transform infrared spectroscopy, applying inter-particle forces theory. The combined findings revealed that hydrophobic groups, especially protein-related N–H, were present in a greater proportion in tightly bound EPS (TB-EPS). This result, which explained the specificity of TB-EPS in the chemical structure, was consistent with data indicating that TB-EPS contained a large amount of protein-like substances (86.7 mg/g of mixed liquor volatile suspended solids, 39.7% of the total EPS). Subsequently, a novel experimental procedure was developed to pinpoint key inter-particle forces in sludge aggregation. The result revealed that hydrogen bonds are the predominant triggers that promote sludge aggregation. This comprehensive analysis indicated that hydrophobic proteins in TB-EPS are responsible for the critical role played by hydrogen bonds in sludge formation. Our findings highlight the need to elucidate the mechanisms of TB-EPS-mediated flocculation in future efforts.

  16. Composition analysis of fractions of extracellular polymeric substances from an activated sludge culture and identification of dominant forces affecting microbial aggregation

    PubMed Central

    Guo, Xuan; Wang, Xu; Liu, Junxin

    2016-01-01

    Extracellular polymeric substances (EPS) appear to play a critical role in the formation of bioaggregates, such as sludge flocs, in activated sludge processes. Here, we systematically investigated the composition and chemical structure of various EPS fractions excreted from an activated sludge culture using multi-analysis techniques to examine the ability of the sludge to aggregate. Chemical analysis was used with a three-dimensional excitation emission matrix and Fourier transform infrared spectroscopy, applying inter-particle forces theory. The combined findings revealed that hydrophobic groups, especially protein-related N–H, were present in a greater proportion in tightly bound EPS (TB-EPS). This result, which explained the specificity of TB-EPS in the chemical structure, was consistent with data indicating that TB-EPS contained a large amount of protein-like substances (86.7 mg/g of mixed liquor volatile suspended solids, 39.7% of the total EPS). Subsequently, a novel experimental procedure was developed to pinpoint key inter-particle forces in sludge aggregation. The result revealed that hydrogen bonds are the predominant triggers that promote sludge aggregation. This comprehensive analysis indicated that hydrophobic proteins in TB-EPS are responsible for the critical role played by hydrogen bonds in sludge formation. Our findings highlight the need to elucidate the mechanisms of TB-EPS-mediated flocculation in future efforts. PMID:27311788

  17. Establishment of a fully automated microtiter plate-based system for suspension cell culture and its application for enhanced process optimization.

    PubMed

    Markert, Sven; Joeris, Klaus

    2017-01-01

    We developed an automated microtiter plate (MTP)-based system for suspension cell culture to meet the increased demands for miniaturized high throughput applications in biopharmaceutical process development. The generic system is based on off-the-shelf commercial laboratory automation equipment and is able to utilize MTPs of different configurations (6-24 wells per plate) in orbital shaken mode. The shaking conditions were optimized by Computational Fluid Dynamics simulations. The fully automated system handles plate transport, seeding and feeding of cells, daily sampling, and preparation of analytical assays. The integration of all required analytical instrumentation into the system enables a hands-off operation which prevents bottlenecks in sample processing. The modular set-up makes the system flexible and adaptable for a continuous extension of analytical parameters and add-on components. The system proved suitable as screening tool for process development by verifying the comparability of results for the MTP-based system and bioreactors regarding profiles of viable cell density, lactate, and product concentration of CHO cell lines. These studies confirmed that 6 well MTPs as well as 24 deepwell MTPs were predictive for a scale up to a 1000 L stirred tank reactor (scale factor 1:200,000). Applying the established cell culture system for automated media blend screening in late stage development, a 22% increase in product yield was achieved in comparison to the reference process. The predicted product increase was subsequently confirmed in 2 L bioreactors. Thus, we demonstrated the feasibility of the automated MTP-based cell culture system for enhanced screening and optimization applications in process development and identified further application areas such as process robustness. The system offers a great potential to accelerate time-to-market for new biopharmaceuticals. Biotechnol. Bioeng. 2017;114: 113-121. © 2016 Wiley Periodicals, Inc.

  18. Effect of light wavelength on cell growth, content of phenolic compounds and antioxidant activity in cell suspension cultures of Thevetia peruviana.

    PubMed

    Arias, J P; Zapata, K; Rojano, B; Arias, M

    2016-10-01

    Thevetia peruviana (T. peruviana) has been considered as a potentially important plant for industrial and pharmacological application. Among the number of compounds which are produced by T. peruviana, antioxidants and polyphenols are of particular interest due to their benefits on human health. Cell suspension cultures of T. peruviana were established under different conditions: 1) constant illumination (24h/day) at different light wavelengths (red, green, blue, yellow and white), 2) darkness and 3) control (12h/12h: day light/dark) to investigate their biomass, substrate uptake, polyphenols production and oxidizing activity. The results showed biomass concentrations between 17.1g dry weight (DW)/l (green light) and 18.2g DW/l (control) after 13days. The cultures that grew under green light conditions consumed completely all substrates after 10days, while other cultures required at least 13days or more. The total phenolic content was between 7.21 and 9.46mg gallic acid (GA)/g DW for all light conditions. In addition the ferric reducing antioxidant power and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid antioxidant activity ranged from 5.41-6.58mg ascorbic acid (AA)/g DW and 82.93-110.39μmol Trolox/g DW, respectively. Interestingly, the samples which grew under the darkness presented a higher phenolic content and antioxidant capacity when compared to the light conditions. All together, these results demonstrate the extraordinary effect of different lighting conditions on polyphenols production and antioxidant compounds by T. peruviana.

  19. Reprogramming of enteroendocrine K cells to pancreatic β-cells through the combined expression of Nkx6.1 and Neurogenin3, and reaggregation in suspension culture

    SciTech Connect

    Lee, Esder; Ryu, Gyeong Ryul; Moon, Sung-Dae; Ko, Seung-Hyun; Ahn, Yu-Bae; Song, Ki-Ho

    2014-01-17

    Highlights: •K cells were selected from STC-1 cells, a heterogeneous enteroendocrine cell line. •K cells did not express Nkx6.1 and Neurogenin3. •Combined expression of Nkx6.1 and Neurogenin3 reprogrammed K cells to β-cells. •Reprogramming of K cells to β-cells was not complete. -- Abstract: Recent studies have demonstrated that adult cells such as pancreatic exocrine cells can be converted to pancreatic β-cells in a process called cell reprogramming. Enteroendocrine cells and β-cells share similar pathways of differentiation during embryonic development. Notably, enteroendocrine K cells express many of the key proteins found in β-cells. Thus, K cells could be reprogrammed to β-cells under certain conditions. However, there is no clear evidence on whether these cells convert to β-cells. K cells were selected from STC-1 cells, an enteroendocrine cell line expressing multiple hormones. K cells were found to express many genes of transcription factors crucial for islet development and differentiation except for Nkx6.1 and Neurogenin3. A K cell clone stably expressing Nkx6.1 (Nkx6.1{sup +}-K cells) was established. Induction of Neurogenin3 expression in Nkx6.1{sup +}-K cells, by either treatment with a γ-secretase inhibitor or infection with a recombinant adenovirus expressing Neurogenin3, led to a significant increase in Insulin1 mRNA expression. After infection with the adenovirus expressing Neurogenin3 and reaggregation in suspension culture, about 50% of Nkx6.1{sup +}-K cells expressed insulin as determined by immunostaining. The intracellular insulin content was increased markedly. Electron microscopy revealed the presence of insulin granules. However, glucose-stimulated insulin secretion was defective, and there was no glucose lowering effect after transplantation of these cells in diabetic mice. In conclusion, we demonstrated that K cells could be reprogrammed partially to β-cells through the combined expression of Nkx6.1 and Neurogenin3, and

  20. Arginine–glycine–aspartic acid–polyethylene glycol–polyamidoamine dendrimer conjugate improves liver-cell aggregation and function in 3-D spheroid culture

    PubMed Central

    Chen, Zhanfei; Lian, Fen; Wang, Xiaoqian; Chen, Yanling; Tang, Nanhong

    2016-01-01

    The polyamidoamine (PAMAM) dendrimer, a type of macromolecule material, has been used in spheroidal cell culture and drug delivery in recent years. However, PAMAM is not involved in the study of hepatic cell-spheroid culture or its biological activity, particularly in detoxification function. Here, we constructed a PAMAM-dendrimer conjugate decorated by an integrin ligand: arginine–glycine–aspartic acid (RGD) peptide. Our studies demonstrate that RGD–polyethylene glycol (PEG)–PAMAM conjugates can promote singly floating hepatic cells to aggregate together in a sphere-like growth with a weak reactive oxygen species. Moreover, RGD-PEG-PAMAM conjugates can activate the AKT–MAPK pathway in hepatic cells to promote cell proliferation and improve basic function and ammonia metabolism. Together, our data support the hepatocyte sphere treated by RGD-PEG-PAMAM conjugates as a potential source of hepatic cells for a biological artificial liver system. PMID:27621619

  1. Arginine-glycine-aspartic acid-polyethylene glycol-polyamidoamine dendrimer conjugate improves liver-cell aggregation and function in 3-D spheroid culture.

    PubMed

    Chen, Zhanfei; Lian, Fen; Wang, Xiaoqian; Chen, Yanling; Tang, Nanhong

    The polyamidoamine (PAMAM) dendrimer, a type of macromolecule material, has been used in spheroidal cell culture and drug delivery in recent years. However, PAMAM is not involved in the study of hepatic cell-spheroid culture or its biological activity, particularly in detoxification function. Here, we constructed a PAMAM-dendrimer conjugate decorated by an integrin ligand: arginine-glycine-aspartic acid (RGD) peptide. Our studies demonstrate that RGD-polyethylene glycol (PEG)-PAMAM conjugates can promote singly floating hepatic cells to aggregate together in a sphere-like growth with a weak reactive oxygen species. Moreover, RGD-PEG-PAMAM conjugates can activate the AKT-MAPK pathway in hepatic cells to promote cell proliferation and improve basic function and ammonia metabolism. Together, our data support the hepatocyte sphere treated by RGD-PEG-PAMAM conjugates as a potential source of hepatic cells for a biological artificial liver system.

  2. NMR spectroscopicsearch module for Spektraris, an online resource for plant natural product identification – taxane diterpenoids from Taxus × media cell suspension cultures as a case study

    PubMed Central

    Fischedick, Justin T.; Johnson, Sean R.; Ketchum, Raymond E.B.; Croteau, Rodney B.; Lange, B. Markus

    2014-01-01

    Development and testing of Spektraris-NMR an online spectral resource, is reported for the NMR-based structural identification of plant natural products (PNPs). Spektraris-NMRallows users to search with multiple spectra at once and returns a table with alist of hits arranged according to the goodness of fit between query data and database entries. For each hit, a link to a tabulated alignment of 1H-NMR and 13C-NMR spectroscopic peaks (query versus database entry) is provided. Furthermore, full spectroscopic records and experimental meta information about each database entry can be accessed online. To test the utility of Spektraris-NMR for PNP identification, the database was populated with NMR data (total of 466 spectra) for ∼250 taxanes, which are structurally complex diterpenoids (including the anticancer drug taxol) commonly found in the genus Taxus. NMR data generated used was then generated with metabolites purified from Taxus cell suspension cultures to search Spektraris-NMR, and were able to identify eight taxanes with high confidence. A ninth isolated metabolite could be assigned, based on spectral searches, to a taxane skeletal class, but no high confidence hit was produced. Using various spectroscopic methods, this metabolite was characterized as the taxane 2-deacetylbaccatin IV, a novel taxane. These results indicate that Spektraris-NMR is a valuable resource for rapid and reliable identification of known metabolites and has the potential to contribute to de-replication efforts in the search for novel PNPs. PMID:25534952

  3. Chlorogenic acid biosynthesis: characterization of a light-induced microsomal 5-O-(4-coumaroyl)-D-quinate/shikimate 3'-hydroxylase from carrot (Daucus carota L. ) cell suspension cultures

    SciTech Connect

    Kuehnl, T.K.; Koch, U.; Heller, W.; Wellmann, E.

    1987-10-01

    Microsomal preparations from carrot (Daucus carota L.) cell suspension cultures catalyze the formation of trans-5-O-caffeoyl-D-quinate (chlorogenate) from trans-5-O-(4-coumaroyl)-D-quinate. trans-5-O-(4-Coumaroyl)shikimate is converted to about the same extent to trans-5-O-caffeoylshikimate. trans-4-O-(4-Coumaroyl)-D-quinate, trans-3-O-(4-coumaroyl)-D-quinate, trans-4-coumarate, and cis-5-O-(4-coumaroyl)-D-quinate do not act as substrates. The reaction is strictly dependent on molecular oxygen and on NADPH as reducing cofactor. NADH and ascorbic acid cannot substitute for NADPH. Cytochrome c, Tetcyclacis, and carbon monoxide inhibit the reaction suggesting a cytochrome P-450-dependent mixed-function monooxygenase. Competition experiments as well as induction and inhibition phenomena indicate that there is only one enzyme species which is responsible for the hydroxylation of the 5-O-(4-coumaric) esters of both D-quinate and shikimate. The activity of this enzyme is greatly increased by in vivo irradiation of the cells with blue/uv light. We conclude that the biosynthesis of the predominant caffeic acid conjugates in carrot cells occurs via the corresponding 4-coumaric acid esters. Thus, in this system, 5-O-(4-coumaroyl)-D-quinate can be seen as the final intermediate in the chlorogenic acid pathway.

  4. Prevention of copper-induced calcium influx and cell death by prion-derived peptide in suspension-cultured tobacco cells.

    PubMed

    Kagenishi, Tomoko; Yokawa, Ken; Kuse, Masaki; Isobe, Minoru; Bouteau, François; Kawano, Tomonori

    2009-01-01

    Impact of copper on the oxidative and calcium signal transductions leading to cell death in plant cells and the effects of the copper-binding peptide derived from the human prion protein (PrP) as a novel plant-protecting agent were assessed using a cell suspension culture of transgenic tobacco (Nicotiana tabacum L., cell line BY-2) expressing the aequorin gene. Copper induces a series of biological and chemical reactions in plant cells including the oxidative burst reflecting the production of reactive oxygen species (ROS), such as hydroxyl radicals, and stimulation of calcium channel opening, allowing a transient increase in cytosolic calcium concentrations. The former was proven by the action of specific ROS scavengers blocking the calcium responses and the latter was proven by an increase in aequorin luminescence and its inhibition by specific channel blockers. Following these early events completed within 10 min, the development of copper-induced cell death was observed during additional 1 h in a dose-dependent manner. Addition of a synthetic peptide (KTNMKHMA) corresponding to the neurotoxic sequence in human PrP, prior to the addition of copper, effectively blocked both calcium influx and cell death induced by copper. Lastly, a possible mechanism of peptide action and future applications of this peptide in the protection of plant roots from metal toxicity or in favour of phytoremediation processes are discussed.

  5. Assessment of cytotoxic and genotoxic activity of alcohol extract of Polyscias filicifolia shoot, leaf, cell biomass of suspension culture and saponin fraction.

    PubMed

    Marczewska, Jadwiga; Karwicka, Ewa; Drozd, Janina; Anuszewskal, Elzbieta; Sliwińska, Anita; Nosov, Aleksander; Olszowska, Olga

    2011-01-01

    Some medicinal plants are the object of biotechnologists' special interest owing to their content of secondary metabolites, which have a strong pharmacological effect. Polyscias filicifolia is a plant known for long in traditional medicine of the Southeast Asia. Literature data suggest that it acts on the endocrine system, has adaptogenic and antiulcerative activity, shows bactericidal and insecticidal properties, restores the activity of the protein synthesis system in the conditions of long- and short-term anoxia, as well as reduces the effect of many mutagens in vitro. The purpose of the studies was to assess the cytotoxic and genotoxic effect of ethanol extracts from Polyscias filicifolia dry shoots and leaves obtained in vitro, as well as cell biomass from suspension culture. Saponin fraction from dried shoots was also tested. Initially, the cytotoxic effect was evaluated using the murine connective tissue cell line C3H/AN - L929. The genotoxic properties of the extracts were assessed using standard screening tests: the Ames test and the micronucleus test. Based on the obtained results it can be concluded that none of the extracts increases the number of revertants, both in tests with and without metabolic activation. The lack of in vitro genotoxic and mutagenic activity of tested shoot, dried leaf, cell biomass extracts, as well as the saponin fraction from dried shoots allows us to hope that Polyscias filicifolia could be used as a possible pharmaceutical raw material showing therapeutic properties.

  6. [Effects of germanium on cell growth, polysaccharide production and cellular redox status in suspension cultures of protocorm-like bodies of Dendrobium huoshanense].

    PubMed

    Wei, Ming; Yang, Chaoying; Jiang, Shaotong

    2010-03-01

    To solve the problem of low growth rate and metabolism level in suspension cultures of protocorm-like bodies (PLBs) of Dendrobium huoshanense. The effects of germanium on PLB proliferation and accumulation of polysaccharides together with nutrient utilization were investigated and the contents of reducing sugars, soluble proteins, the activities of antioxidant enzymes and redox status of the cells of PLB were analyzed. The results indicated that the optimum concentration of germanium dioxide (4.0 mg/L) significantly enhanced the cell growth and accumulation of polysaccharides, greatly improved contents of reducing sugars and soluble proteins, increased the activities of superoxide dismutase (SOD) and catalase (CAT) but decreased the activity of peroxidase(POD). The cell dry weight and production of polysaccharides were 32.6 g/L and 3.78 g/L, respectively. The analysis of cellular redox status showed that the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) in cells and the activity of glutathione reductase were significantly increased by the addition of germanium dioxide. The suitable concentration of germanium dioxide was beneficial to the cell growth and the accumulation of polysaccharides.

  7. cDNA cloning and characterization of a putative 1,3-beta-D-glucanase transcript induced by fungal elicitor in bean cell suspension cultures.

    PubMed

    Edington, B V; Lamb, C J; Dixon, R A

    1991-01-01

    Synthetic oligonucleotides based on similarity between tobacco 1,3-beta-D-glucanase and barley 1,3-1,4-beta-D-glucanase were used to prime the synthesis and amplification of a 162 bp bean (Phaseolus vulgaris L.) beta-glucanase cDNA by the polymerase chain reaction (PCR). The PCR product was used to isolate a near full-length beta-glucanase cDNA corresponding to an approximately 1400 bp full-length transcript, from a library containing cDNA sequences complementary to mRNA from fungal elicitor-treated bean cells. At the amino acid level, the bean beta-glucanase cDNA was 59% similar to tobacco 1,3-beta-D-glucanase, 46% similar to barley 1,3-beta-D-glucanase and 46% similar to barley 1,3-1,4-beta-D-glucanase. At the nucleotide level, the similarities were 65, 50 and 53% respectively. The beta-glucanase appeared to be encoded by a single gene with similar genomic organization in bean cultivars Canadian Wonder, Imuna and Saxa. On the basis of predicted Mr, isoelectric point, sequence similarity, and comparisons of rate of transcript appearance with induced enzyme activity, it was concluded that the cDNA encodes the basic bean endo-1,3-beta-D-glucanase. Glucanase transcripts were induced, from very low basal levels, with similar kinetics to chitinase transcripts in elicitor-treated bean cell suspension cultures.

  8. NMR spectroscopic search module for Spektraris, an online resource for plant natural product identification--Taxane diterpenoids from Taxus × media cell suspension cultures as a case study.

    PubMed

    Fischedick, Justin T; Johnson, Sean R; Ketchum, Raymond E B; Croteau, Rodney B; Lange, B Markus

    2015-05-01

    Development and testing of Spektraris-NMR, an online spectral resource, is reported for the NMR-based structural identification of plant natural products (PNPs). Spektraris-NMR allows users to search with multiple spectra at once and returns a table with a list of hits arranged according to the goodness of fit between query data and database entries. For each hit, a link to a tabulated alignment of (1)H NMR and (13)C NMR spectroscopic peaks (query versus database entry) is provided. Furthermore, full spectroscopic records and experimental meta information about each database entry can be accessed online. To test the utility of Spektraris-NMR for PNP identification, the database was populated with NMR data (total of 466 spectra) for ∼ 250 taxanes, which are structurally complex diterpenoids (including the anticancer drug taxol) commonly found in the genus Taxus. NMR data generated with metabolites purified from Taxus cell suspension cultures were then used to search Spektraris-NMR, and enabled the identification of eight taxanes with high confidence. A ninth isolated metabolite could be assigned, based on spectral searches, to a taxane skeletal class, but no high confidence hit was produced. Using various spectroscopic methods, this metabolite was characterized as 2-deacetylbaccatin IV, a novel taxane. These results indicate that Spektraris-NMR is a valuable resource for rapid and reliable identification of known metabolites and has the potential to contribute to de-replication efforts in novel PNP discovery.

  9. Rice suspension cultured cells are evaluated as a model system to study salt responsive networks in plants using a combined proteomic and metabolomic profiling approach.

    PubMed

    Liu, Dawei; Ford, Kristina L; Roessner, Ute; Natera, Siria; Cassin, Andrew M; Patterson, John H; Bacic, Antony

    2013-06-01

    Salinity is one of the major abiotic stresses affecting plant productivity but surprisingly, a thorough understanding of the salt-responsive networks responsible for sustaining growth and maintaining crop yield remains a significant challenge. Rice suspension culture cells (SCCs), a single cell type, were evaluated as a model system as they provide a ready source of a homogenous cell type and avoid the complications of multicellular tissue types in planta. A combination of growth performance, and transcriptional analyses using known salt-induced genes was performed on control and 100 mM NaCl cultured cells to validate the biological system. Protein profiling was conducted using both DIGE- and iTRAQ-based proteomics approaches. In total, 106 proteins were identified in DIGE experiments and 521 proteins in iTRAQ experiments with 58 proteins common to both approaches. Metabolomic analysis provided insights into both developmental changes and salt-induced changes of rice SCCs at the metabolite level; 134 known metabolites were identified, including 30 amines and amides, 40 organic acids, 40 sugars, sugar acids and sugar alcohols, 21 fatty acids and sterols, and 3 miscellaneous compounds. Our results from proteomic and metabolomic studies indicate that the salt-responsive networks of rice SCCs are extremely complex and share some similarities with thee cellular responses observed in planta. For instance, carbohydrate and energy metabolism pathways, redox signaling pathways, auxin/indole-3-acetic acid pathways and biosynthesis pathways for osmoprotectants are all salt responsive in SCCs enabling cells to maintain cellular function under stress condition. These data are discussed in the context of our understanding of in planta salt-responses.

  10. Fusion of mitochondria in tobacco suspension cultured cells is dependent on the cellular ATP level but not on actin polymerization.

    PubMed

    Wakamatsu, Kairo; Fujimoto, Masaru; Nakazono, Mikio; Arimura, Shin-ichi; Tsutsumi, Nobuhiro

    2010-10-01

    Mitochondria in plant cells undergo fusion and fission frequently. Although the mechanisms and proteins of mitochondrial fusion are well known in yeast and mammalian cells, they remain poorly understood in plant cells. To clarify the physiological requirements for plant mitochondrial fusion, we investigated the fusion frequency of mitochondria in tobacco cultured cells using the photoconvertible fluorescent protein Kaede and some physiological inhibitors. The latter included two uncouplers, 2,4-dinitrophenol (DNP) and carbonyl cyanide m-chlorophenylhydrazone (CCCP), an inhibitor of mitochondrial ATP synthase, oligomycin, and an actin polymerization inhibitor, latrunculin B (Lat B). The frequency of mitochondrial fusion was clearly reduced by DNP, CCCP and oligomycin, but not by Lat B, although Lat B severely inhibited mitochondrial movement. Moreover, DNP, CCCP and oligomycin evidently lowered the cellular ATP levels. These results indicate that plant mitochondrial fusion depends on the cellular ATP level, but not on actin polymerization.

  11. α-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells

    PubMed Central

    Hansen, Christian; Angot, Elodie; Bergström, Ann-Louise; Steiner, Jennifer A.; Pieri, Laura; Paul, Gesine; Outeiro, Tiago F.; Melki, Ronald; Kallunki, Pekka; Fog, Karina; Li, Jia-Yi; Brundin, Patrik

    2011-01-01

    Post-mortem analyses of brains from patients with Parkinson disease who received fetal mesencephalic transplants show that α-synuclein–containing (α-syn–containing) Lewy bodies gradually appear in grafted neurons. Here, we explored whether intercellular transfer of α-syn from host to graft, followed by seeding of α-syn aggregation in recipient neurons, can contribute to this phenomenon. We assessed α-syn cell-to-cell transfer using microscopy, flow cytometry, and high-content screening in several coculture model systems. Coculturing cells engineered to express either GFP– or DsRed-tagged α-syn resulted in a gradual increase in double-labeled cells. Importantly, α-syn–GFP derived from 1 neuroblastoma cell line localized to red fluorescent aggregates in other cells expressing DsRed–α-syn, suggesting a seeding effect of transmitted α-syn. Extracellular α-syn was taken up by cells through endocytosis and interacted with intracellular α-syn. Next, following intracortical injection of recombinant α-syn in rats, we found neuronal uptake was attenuated by coinjection of an endocytosis inhibitor. Finally, we demonstrated in vivo transfer of α-syn between host cells and grafted dopaminergic neurons in mice overexpressing human α-syn. In summary, intercellularly transferred α-syn interacts with cytoplasmic α-syn and can propagate α-syn pathology. These results suggest that α-syn propagation is a key element in the progression of Parkinson disease pathology. PMID:21245577

  12. Further characterization and regulation of malonyl-coenzyme A: flavonoid glucoside malonyltransferases from parsley cell suspension cultures

    SciTech Connect

    Matern, U.; Feser, C.; Hammer, D.

    1983-10-01

    Two malonyltransferases, malonyl-CoA:flavone/flavonol 7-O-glucoside malonyltransferase and malonyl-CoA:flavonol 3-O-glucoside malonyltransferase, were purified to apparent homogeneity from uv-irradiated parsley cell cultures. Both purified enzymes appear to be specific for flavonoid glycosides. Additional malonyltransferases, active toward several phenol glucosides other than flavonoids, were present in partially purified 7-O-glucoside malonyltransferase preparations. Antibodies raised against the purified 3-O-glucoside malonyltransferase did not inhibit the activity of the 7-O-glucoside malonyltransferase over a wide antibody concentration range. Determination of the rate of synthesis in vivo of the 3-O-glucoside malonyltransferase after ultraviolet light-pulse induction of parsley cells revealed two maxima at 6 and 30 h, respectively. These results indicate that the induced changes in 3-O-glucoside malonyltransferase activity were the consequence of either a repeated change in the rate of synthesis of one enzyme species or changes in the synthesis rates of more than one enzyme species.

  13. The non-host pathogen Botrytis cinerea enhances glucose transport in Pinus pinaster suspension-cultured cells.

    PubMed

    Azevedo, Herlânder; Conde, Carlos; Gerós, Hernâni; Tavares, Rui Manuel

    2006-02-01

    Botrytis cinerea is the causal agent of grey mould disease and a non-host necrotrophic pathogen of maritime pine (Pinus pinaster). Recent evidence suggests that pathogen challenge can alter carbon uptake in plant cells; however, little is known on how elicitor-derived signalling pathways control sugar transport activity. P. pinaster suspended cells are able to absorb D-[14C]glucose with high affinity, have an H+-dependent transport system (Km, 0.07 mM; Vmax, 1.5 nmol min(-1) mg(-1) DW), are specific for D-glucose, D-fructose, D-galactose and D-xylose, and are subject to glucose repression. When elicited by B. cinera spores, suspended cells exhibit calcium-dependent biphasic reactive oxygen species (ROS) production, the second burst also being dependent on NADPH oxidase, mitogen-activated protein kinase (MAPK), and de novo transcription and protein synthesis. Challenging suspended cells incubated in sugar-free medium resulted in an up to 3-fold increase in glucose transport capacity over non-elicited cultures 24 h after elicitation, and a 14-fold increase over elicited cells incubated with 2% glucose. Enhanced glucose uptake depended on NADPH oxidase and calcium influx, but not MAPK. In contrast, the increase of glucose transport activity induced by sugar starvation was dependent on the activation of MAPK but not NADPH oxidase. Both responses appeared to be dependent on de novo transcription and protein synthesis.

  14. Microbial protein production in activated suspension tanks manipulating C:N ratio in feed and the implications for fish culture.

    PubMed

    Azim, M E; Little, D C; Bron, J E

    2008-06-01

    The present experiment investigated the possibility of microbial protein production in 250 l indoor tanks by manipulating C:N ratio in fish feed applied. Two different levels of protein feed (35% and 22% CP) resulting in C:N ratio of 8.4 and 11.6, respectively, were applied at 25 g daily in each tank. Tanks were aerated and agitated continuously using a dome diffuser. The experiment was carried out for eight weeks. The biofloc development in terms of VSS and BOD5 was better in the low protein fed tanks than in the high protein fed tanks. An estimated biofloc productivity ranged 3-5 g Cm(-3)day(-1). A 3-D image stained with DAPI indicates that the biofloc is comprised of hundreds of bacterial nuclei, size being ranged from 100 to 200 microm. Biofloc quality was independent of the quality of feed applied and contained more than 50% crude protein, 2.5% crude lipid, 4% fibre, 7% ash and 22 kJ g(-1) energy on dry matter basis. The dietary composition and size of biofloc can be considered as appropriate for all omnivorous fish species. The underlying ecological processes are explained through factor analysis. The potential of using biofloc in fish culture is also discussed.

  15. [Producing recombinant adenovirus encoding green fluorescent protein (Ad-GFP) by suspension cultured HEK-293 N3S cells].

    PubMed

    Tian, Bo; Wu, Bin; Zhang, Qun-Wei; Bi, Jian-Jin; Wang, Lan; Zhu, Bao-Zhen; Geng, Yue; Wu, Zu-Ze

    2007-09-01

    Adenovirus vectors are one of the most promising gene transfer systems. They are of great value for gene therapy because these vectors achieve temporal high-level transgene expression and high gene transfer efficiency. To meet increasing needs of adenovirus vectors for gene therapy programs, parallel development of efficient, scalable and reproducible production processes is required. Perfusion cultivation of 293 cells is one of the most commonly used methods to produce adenovirus vectors and it is suitable for industrialized production specially. Experimental studies had been carried out to produce recombinant adenovirus containing the green fluorescent protein gene (Ad-GFP) by perfusion cultivation of HEK-293 N3S cells in a 5L stirring bioreactors. Perfusion rate was 1-2 volume/day. To infect the 293 N3S cells with Ad-GFP at the density of (2-4) x 10(6) cells/ ml. The time of collecting cells was 48 hours post infection. After three rounds of freeze/thaw and centrifugation, the crude viral lysates were stored at--80 degrees C until use. Then to get the Ad-GFP products by 2 x CsCl-gradient purification. The purity of the products was determined by the A260/A280 ratio and a high performance liquid chromatography (HPLC) assay. The infective titer was determined by a TCID50 assay. The culture term was 10-12 days. The infectious titer, the number of virus particle and the ratio of infectious titer to virus particle for the product were 1.0 x 10(11) IU/mL, 1.68 x 10(12) VP/mL and 6.0% IU/VP respectively. The A260/A280 ratio was 1.33, and the purity determined by HPLC was 99.2%. The cell specific productivity was around 1000 IU/cell. By perfusion cultivation of 293 N3S cells in a 5L stirring bioreactors, we established the production process for Ad-GFP, which paves a way to produce other recombinant adenovirus for gene therapy.

  16. Induction of extracellular defense-related proteins in suspension cultured-cells of Daucus carota elicited with cyclodextrins and methyl jasmonate.

    PubMed

    Sabater-Jara, Ana B; Almagro, Lorena; Pedreño, María A

    2014-04-01

    Suspension cultured-cells (SCC) of Daucus carota were used to evaluate the effect of methyl jasmonate and cyclodextrins, separately or in combination, on the induction of defense responses, particularly the accumulation of pathogenesis-related proteins. A comparative study of the extracellular proteome (secretome) between control and elicited carrot SCC pointed to the presence of amino acid sequences homologous to glycoproteins which have inhibitory activity against the cell-wall-degrading enzymes secreted by pathogens and/or are induced when carrot cells are exposed to a pathogen elicitor. Other amino acid sequences were homologous to Leucine-Rich Repeat domain-containing proteins, which play an essential role in defense against pathogens, as well as in the recognition of microorganisms, making them important players in the innate immunity of this plant. Also, some tryptic peptides were shown to be homologous to a thaumatin-like protein, showing high specificity to abiotic stress and to different reticuline oxidase-like proteins that displayed high levels of antifungal activity, suggesting that methyl jasmonate and cyclodextrins could play a role in mediating defense-related gene product expression in SCC of D. carota. Apart from these elicitor-inducible proteins, we observed the presence of PR-proteins in both control and elicited carrot SCC, suggesting that their expression is mainly constitutive. These PR-proteins are putative class IV chitinases, which also have inhibitory activity against pathogen growth and the class III peroxidases that participate in response to environmental stress (e.g. pathogen attack and oxidative), meaning that they are involved in defense responses triggered by both biotic and abiotic factors.

  17. O-glycans and O-glycosylation sites of recombinant human GM-CSF derived from suspension-cultured rice cells, and their structural role.

    PubMed

    Kim, Jihye; Park, Heajin; Park, Byung Tae; Hwang, Hye Seong; Kim, Jae Il; Kim, Dae Kyong; Kim, Ha Hyung

    2016-10-14

    Recombinant human GM-CSF (rhGM-CSF) from yeast has been clinically applied to immunosuppressed patients. The production of suspension-cultured rice-cell-derived rhGM-CSF (rrhGM-CSF), which has a longer blood clearance time and the same bioactivity as yeast-derived rhGM-CSF, and the analysis of its N-glycans have been reported recently. However, there are no previous reports of the O-glycosylation of rhGM-CSF from plant cells, and so this study investigated O-glycans, O-glycosylation sites, and their structural role in rrhGM-CSF. Monosaccharide analysis revealed the presence of O-glycans comprising arabinose and galactose. Eight O-glycans comprising four arabinose residues with zero to seven galactose residues along with their relative quantities were analyzed. Analysis of pronase-digested glycopeptides indicated that the O-glycans are partially attached to Ser 5, Ser 7, Ser 9, or Thr 10 residues, and glycan heterogeneity was confirmed at each site. Pro-to-hydroxyproline conversions occurred at Pro 2, Pro 6, and Pro 8 residues. The preparation of deglycosylated rrhGM-CSFs revealed that deglycosylation greatly affects their α-helix structures. These findings indicate that O-glycans of rrhGM-CSF are essential for maintaining its structural stability and result in an extended in vivo half-life, but without affecting its biological function. This is the first report on the O-glycosylation of rhGM-CSF derived from plant cells.

  18. Multiple Signaling Pathways in Gene Expression during Sugar Starvation. Pharmacological Analysis of din Gene Expression in Suspension-Cultured Cells of Arabidopsis1

    PubMed Central

    Fujiki, Yuki; Ito, Masaki; Nishida, Ikuo; Watanabe, Akira

    2000-01-01

    We have identified many dark-inducible (din) genes that are expressed in Arabidopsis leaves kept in the dark. In the present study we addressed the question of how plant cells sense the depletion of sugars, and how sugar starvation triggers din gene expression in suspension-cultured cells of Arabidopsis. Depletion of sucrose in the medium triggered marked accumulation of din transcripts. Suppression of din gene expression by 2-deoxy-Glc, and a non-suppressive effect exerted by 3-O-methyl-Glc, suggested that sugar-repressible expression of din genes is mediated through the phosphorylation of hexose by hexokinase, as exemplified in the repression of photosynthetic genes by sugars. We have further shown that the signaling triggered by sugar starvation involves protein phosphorylation and dephosphorylation events, and have provided the first evidence that multiple pathways of protein dephosphorylation exist in sugar starvation-induced gene expression. An inhibitor of serine/threonine protein kinase, K-252a, inhibited din gene expression in sugar-depleted cells. Okadaic acid, which may preferentially inhibit type 2A protein phosphatases over type 1, enhanced the transcript levels of all din genes, except din6 and din10, under sugar starvation. Conversely, a more potent inhibitor of type 1 and 2A protein phosphatases, calyculin A, increased transcripts from din2 and din9, but decreased those from other din genes, in sugar-depleted cells. On the other hand, calyculin A, but not okadaic acid, completely inhibited the gene expression of chlorophyll a/b-binding protein under sugar starvation. These results indicate that multiple signaling pathways, mediated by different types of protein phosphatases, regulate gene expression during sugar starvation. PMID:11080291

  19. Construction aggregates

    USGS Publications Warehouse

    Tepordei, V.V.

    1995-01-01

    Part of the 1994 Industrial Minerals Review. The production, consumption, and applications of construction aggregates are reviewed. In 1994, the production of construction aggregates, which includes crushed stone and construction sand and gravel combined, increased 7.7 percent to 2.14 Gt compared with the previous year. These record production levels are mostly a result of funding for highway construction work provided by the Intermodal Surface Transportation Efficiency Act of 1991. Demand is expected to increase for construction aggregates in 1995.

  20. Improvement in the suspension-culture production of recombinant adeno-associated virus-LacZ in HEK-293 cells using polyethyleneimine-DNA complexes in combination with hypothermic treatment.

    PubMed

    Feng, Lei; Guo, Meijin; Zhang, Shuxiang; Chu, Ju; Zhuang, Yingping; Zhang, Siliang

    2008-06-01

    rAAV (recombinant adeno-associated virus) has become a very useful gene-delivery vector for gene therapy. However, it is very difficult to generate rAAV using triple transfection on a commercial scale, owing to its low transfection efficiency. An optimal procedure for transfection in suspension-culture mode was developed for rAAV-LacZ production in suspension-cultured HEK-293 (human embryonic kidney-293) cells mediated by PEI (polyethyleneimine)-DNA complexes in combination with transient severe hypothermia at 4 degrees C for 1 h in the present study (LacZ is the product of the reporter gene lacZ, which codes for beta-D-galactosidase). It showed that the PEI/DNA ratio, cell density at the beginning of transfection and cell-cycle arrest in G2/M-phase were key factors affecting suspension-culture triple-transfection efficiency and rAAV-LacZ productivity. After incubation at 4 degrees C for 1 h and re-warming at 37 degrees C for 18 h, HEK-293 cells at 1x10(6) cells/ml were transfected with PEI-DNA complexes at a PEI/DNA ratio of 5:1 (w/w) with final concentrations of 30 mug/ml 25 kDa linear PEI and 6 mug/ml plasmid DNA in culture. After 6 h incubation for transfection, an equal volume of medium was added to the culture for additional 48 h growth until harvest. Finally, the high transfection efficiency of some 75% and rAAV-LacZ titre of (7.48+/-0.59)x10(11) physical particles or 1.86+/-0.96x10(10) infectious particles were achieved in 250 ml shake flasks with 60 ml working volume, indicating a promising application for scale-up.

  1. Suspension and Debarment Regulations

    EPA Pesticide Factsheets

    Governmentwide Nonprocurement Suspension and Debarment Guidelines and EPA Implementation. Executive Order 12549 provides for a governmentwide system of nonprocurment (grants and cooperative agreements) debarment and suspension.

  2. Fibronectin Aggregation and Assembly

    PubMed Central

    Ohashi, Tomoo; Erickson, Harold P.

    2011-01-01

    The mechanism of fibronectin (FN) assembly and the self-association sites are still unclear and contradictory, although the N-terminal 70-kDa region (I1–9) is commonly accepted as one of the assembly sites. We previously found that I1–9 binds to superfibronectin, which is an artificial FN aggregate induced by anastellin. In the present study, we found that I1–9 bound to the aggregate formed by anastellin and a small FN fragment, III1–2. An engineered disulfide bond in III2, which stabilizes folding, inhibited aggregation, but a disulfide bond in III1 did not. A gelatin precipitation assay showed that I1–9 did not interact with anastellin, III1, III2, III1–2, or several III1–2 mutants including III1–2KADA. (In contrast to previous studies, we found that the III1–2KADA mutant was identical in conformation to wild-type III1–2.) Because I1–9 only bound to the aggregate and the unfolding of III2 played a role in aggregation, we generated a III2 domain that was destabilized by deletion of the G strand. This mutant bound I1–9 as shown by the gelatin precipitation assay and fluorescence resonance energy transfer analysis, and it inhibited FN matrix assembly when added to cell culture. Next, we introduced disulfide mutations into full-length FN. Three disulfide locks in III2, III3, and III11 were required to dramatically reduce anastellin-induced aggregation. When we tested the disulfide mutants in cell culture, only the disulfide bond in III2 reduced the FN matrix. These results suggest that the unfolding of III2 is one of the key factors for FN aggregation and assembly. PMID:21949131

  3. Microgravity combustion of dust suspensions

    NASA Technical Reports Server (NTRS)

    Lee, John H. S.; Peraldi, Olivier; Knystautas, Rom

    1993-01-01

    Unlike the combustion of homogeneous gas mixtures, there are practically no reliable fundamental data (i.e., laminar burning velocity, flammability limits, quenching distance, minimum ignition energy) for the combustion of heterogeneous dust suspensions. Even the equilibrium thermodynamic data such as the constant pressure volume combustion pressure and the constant pressure adiabatic flame temperature are not accurately known for dust mixtures. This is mainly due to the problem of gravity sedimentation. In normal gravity, turbulence, convective flow, electric and acoustic fields are required to maintain a dust in suspension. These external influences have a dominating effect on the combustion processes. Microgravity offers a unique environment where a quiescent dust cloud can in principle be maintained for a sufficiently long duration for almost all combustion experiments (dust suspensions are inherently unstable due to Brownian motion and particle aggregation). Thus, the microgravity duration provided by drop towers, parabolic flights, and the space shuttle, can all be exploited for different kinds of dust combustion experiments. The present paper describes some recent studies on microgravity combustion of dust suspension carried out on the KC-135 and the Caravelle aircraft. The results reported are obtained from three parabolic flight campaigns.

  4. Aggregation of Montmorillonite and Organic Matter in Aqueous Media Containing Artificial Seawater

    DTIC Science & Technology

    2009-01-23

    laboratory kaolinite and montmorillonite aggregation in which the dispersion-aggregation properties of pure clay suspensions were found to be primarily...Article 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Aggregation of montmorillonite and organic matter in aqueous media containing...properties of suspended colloids and aggregates) were determined for systems containing suspended montmorillonite , humic acid, and/or chitin at the

  5. An improved protocol for the preparation of protoplasts from an established Arabidopsis thaliana cell suspension culture and infection with RNA of turnip yellow mosaic tymovirus: a simple and reliable method.

    PubMed

    Schirawski, J; Planchais, S; Haenni, A L

    2000-04-01

    An improved method for preparation of protoplasts of Arabidopsis thaliana cells grown in suspension culture is presented. This method is fast, reliable and can be used for the production of virtually an unlimited number of protoplasts at any time. These protoplasts can be transformed efficiently with RNA from turnip yellow mosaic tymovirus (TYMV) by polyethyleneglycol-mediated transfection. The simple transfection procedure has been optimized at various steps. Replication of TYMV can be monitored routinely by detection of the coat protein in as few as 2 x 10(4) infected protoplasts.

  6. Flow-induced aggregation of colloidal particles in viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    Xie, Donglin; Qiao, Greg G.; Dunstan, Dave E.

    2016-08-01

    The flow-induced aggregation of dilute colloidal polystyrene nanoparticles suspended in Newtonian and viscoelastic solutions is reported. A rheo-optical method has been used to detect real-time aggregation processes via measuring optical absorption or scattering in a quartz Couette cell. The observed absorbance decreases over time are attributed to the flow-induced coagulation. Numerical simulations show that the aggregation processes still follow the Smoluchowski coagulation equation in a revised version. Suspensions in a series of media are studied to evaluate the effect of the media rheological properties on the particle aggregation. The data shows that elasticity reduces the aggregation while the solution viscosity enhances the aggregation processes.

  7. Equilibrium structure of ferrofluid aggregates.

    PubMed

    Yoon, Mina; Tománek, David

    2010-11-17

    We study the equilibrium structure of large but finite aggregates of magnetic dipoles, representing a colloidal suspension of magnetite particles in a ferrofluid. With increasing system size, the structural motif evolves from chains and rings to multi-chain and multi-ring assemblies. Very large systems form single- and multi-wall coils, tubes and scrolls. These structural changes result from a competition between various energy terms, which can be approximated analytically within a continuum model. We also study the effect of external parameters such as magnetic field on the relative stability of these structures. Our results may give insight into experimental data obtained during solidification of ferrofluid aggregates at temperatures where thermal fluctuations become negligible in comparison to inter-particle interactions. These data may also help to experimentally control the aggregation of magnetic particles.

  8. Equilibrium structure of ferrofluid aggregates

    SciTech Connect

    Yoon, Mina; Tomanek, David

    2010-01-01

    We study the equilibrium structure of large but finite aggregates of magnetic dipoles, representing a colloidal suspension of magnetite particles in a ferrofluid. With increasing system size, the structural motif evolves from chains and rings to multi-chain and multi-ring assemblies. Very large systems form single- and multi-wall coils, tubes and scrolls. These structural changes result from a competition between various energy terms, which can be approximated analytically within a continuum model. We also study the effect of external parameters such as magnetic field on the relative stability of these structures. Our results may give insight into experimental data obtained during solidification of ferrofluid aggregates at temperatures where thermal fluctuations become negligible in comparison to inter-particle interactions. These data may also help to experimentally control the aggregation of magnetic particles.

  9. Physics of colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Huang, Jiping

    Colloidal suspensions are complex fluids that consist of mesoscopic particles suspended in a solvent, e.g. water, oil, etc. In this thesis, the objective is to investigate the four aspects of colloidal suspensions: electrorotation, dielectrophoresis, dielectric dispersion spectrum, and nonlinear alternating current (AC) response. The traditional theories failed to fit the recent experimental data, and hence, for the purpose of a better fitting, we aim to develop new theories. In addition, our theories also predicted some new phenomena which are expected to be verified in experiments. Electrorotation has been increasingly employed as a sensitive tool for non-invasive studies of a broad variety of microparticles, ranging from living cells to spores and seeds, as well as synthetic materials. In order to analyze the abundant experimental data, we extend here the existing theory by taking into account crucial elements, such as inhomogeneities, multipolar interactions, nonspherical shapes as well as many-body (local-field) effects. Good agreement is shown between our theoretical results and the experimental data. Dielectrophoresis is typically used for micromanipulation and separation of biological cellular size particles, and it has recently been successfully applied to submicron size particles as well. Specific applications include diverse problems in medicine, colloidal science and nanotechnology. To analyze the recent experimental observations, we present a theory which includes the effects of both charging and multipolar interactions. Our theoretical results are favorably compared with the recent experimental observations. Recent experiments revealed that the dielectric dispersion spectrum of fission yeast cells in a suspension was mainly composed of two sub-dispersions. The low-frequency sub-dispersion depended on the cell length, while the high-frequency one was independent of it. However, the existing theory does not fit the experimental data. Hence, we here put

  10. Microarray and suppression subtractive hybridization analyses of gene expression in hybrid poplar (Populus alba × Populus tremula var. glandulosa) cell suspension cultures after exposure to NaCl.

    PubMed

    Bae, Eun-Kyung; Lee, Hyoshin; Lee, Jae-Soon; Noh, Eun-Woon; Choi, Young-Im; Lee, Byung-Hyun; Choi, Dong-Woog

    2012-09-01

    The gene expression profiles of hybrid poplar (Populus alba × Populus tremula var. glandulosa) cells in suspension culture after exposure to salinity (NaCl) induced stress were examined by constructing two suppression subtractive hybridization (SSH) libraries. cDNA from non-treated cells was used as a driver and cDNA samples from cell suspension cultures exposed to 150 mM NaCl for 2 or 10 h were used as testers. Randomly selected clones from each SSH library were sequenced and 727 high-quality expressed sequence tags (ESTs) were obtained and analyzed. Four novel ESTs were identified. Between the two libraries, 542 unique SSH clones were selected for placement on a cDNA microarray. In total, 18 differentially expressed genes were identified with 4 and 12 genes being significantly differentially expressed 2 and 10 h after the treatment, respectively. Genes related to metabolism and protein synthesis and several genes whose protein products are implicated in salt or other abiotic stress-related responses were expressed in the salt-stressed cells.

  11. Effect of salicylic acid on the activity of PAL and PHB geranyltransferase and shikonin derivatives production in cell suspension cultures of Arnebia euchroma (Royle) Johnst--a medicinally important plant species.

    PubMed

    Kumar, Pawan; Saini, Mahak; Bhushan, Shashi; Warghat, Ashish R; Pal, Tarun; Malhotra, Nikhil; Sood, Archit

    2014-05-01

    Cell suspension cultures of Arnebia euchroma were established from the friable callus on liquid Murashige and Skoog medium supplemented with 6-benzylaminopurine (10.0 μM) and indole-3-butyric acid (5.0 μM). Salicylic acid was used to study its effect on the enzymes which participate in shikonin biosynthesis with respect to metabolite (shikonin) content in the cell suspension culture of A. euchroma. In our study, phenylalanine ammonia lyase and PHB geranyltransferase were selected from the entire biosynthetic pathway. Results showed that phenylalanine ammonia lyase is responsible for growth and PHB geranyltransferase for metabolite production. Salicylic acid exhibited an inverse relationship with the metabolite content (shikonin); salicylic acid (100 μM) completely inhibited shikonin biosynthesis. The results presented in the current study can be successfully employed for the metabolic engineering of its biosynthetic pathway for the enhancement of shikonin, which will not only help in meeting its industrial demand but also lead to the conservation of species in its natural habitat.

  12. Effects of biodegradable plastics on the predominant culturable bacteria associated with soil aggregate formation and stability after 9 months of incubation in natural soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An in vitro study of the effects of biodegradable plastics on the predominant soil aggregating bacteria associated to soil aggregate formation and stability after 9 months of incubation in soil. Caesar-TonThat TC, Fukui R*, Caesar AJ., Lartey, RT, and Gaskin, JF. USDA-Agricultural Research Service, ...

  13. Heat-induced phenomena in soy protein suspensions. Rheometric data and theoretical interpretation.

    PubMed

    Berli, C L; Deiber, J A; Añón, M C

    1999-03-01

    Heat-induced aggregation of soy proteins in aqueous suspensions was studied through cone and plate rheometry for two different heating conditions. The rheometric data obtained covered the temperature range from 20 degrees C (stable colloidal suspension) to approximately 90 degrees C (onset of network formation). Calorimetric data for the soy protein samples were also obtained to evaluate the degree of protein denaturation in the rheometric cell. Heat-induced transitions in soy globulins, such as dissociation, denaturation, and aggregation, were analyzed in relation to the rheological response of the suspension. The viscosity of the stable colloidal suspension satisfies the Cross model. A viscosity equation for the aggregating suspension was also derived by considering the fractal structure of the particle clusters and the Brownian aggregation mechanism. This equation is suitable to describe the experimental viscosity data.

  14. EDITORIAL: Colloidal suspensions Colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Petukhov, Andrei; Kegel, Willem; van Duijneveldt, Jeroen

    2011-05-01

    Special issue in honour of Henk Lekkerkerker's 65th birthday Professor Henk N W Lekkerkerker is a world-leading authority in the field of experimental and theoretical soft condensed matter. On the occasion of his 65th birthday in the summer of 2011, this special issue celebrates his many contributions to science. Henk Lekkerkerker obtained his undergraduate degree in chemistry at the University of Utrecht (1968) and moved to Calgary where he received his PhD in 1971. He moved to Brussels as a NATO fellow at the Université Libre de Bruxelles and was appointed to an assistant professorship (1974), an associate professorship (1977) and a full professorship (1980) in physical chemistry at the Vrije Universiteit Brussel. In 1985 he returned to The Netherlands to take up a professorship at the Van 't Hoff Laboratory, where he has been ever since. He has received a series of awards during his career, including the Onsager Medal (1999) of the University of Trondheim, the Bakhuys Roozeboom Gold Medal (2003) of the Royal Dutch Academy of Arts and Sciences (KNAW), the ECIS-Rhodia European Colloid and Interface Prize (2003), and the Liquid Matter Prize of the European Physical Society (2008). He was elected a member of KNAW in 1996, was awarded an Academy Chair position in 2005, and has held several visiting lectureships. Henk's work focuses on phase transitions in soft condensed matter, and he has made seminal contributions to both the theoretical and experimental aspects of this field. Here we highlight three major themes running through his work, and a few selected publications. So-called depletion interactions may lead to phase separation in colloid-polymer mixtures, and Henk realised that the partitioning of polymer needs to be taken into account to describe the phase behaviour correctly [1]. Colloidal suspensions can be used as model fluids, with the time- and length-scales involved leading to novel opportunities, notably the direct observation of capillary waves at a

  15. Effect of aging on rheology of ball clay suspensions

    NASA Astrophysics Data System (ADS)

    Tonthai, Tienchai

    2002-01-01

    The behaviors of clay-water suspensions such as deflocculation or rheological properties are not constant but change with time. Aging has been recognized for changing the rheological properties of clay suspensions. This work provided information about the effects of the moisture contents in ball clay lumps and clay air exposure time on their processability. Dynamic oscillatory rheometry using a vane-in-cup geometry was used to characterize the rheological behavior of ball clay suspensions in terms of elastic modulus, viscous modulus and yield stress as a function of aging time. A light scattering size analyzer was used to examine the agglomerate size distribution of ball clay suspensions which affected the rheological behavior. Soluble ion release (both cations and anions) in the filtrate of suspensions was measured by ion chromatography. Low and high lignitic ball clay suspensions were dispersed with sodium silicate (Na2SiO3) or sodium polyacrylate at specific gravity 1.3 and 1.6 in two dispersion states: fully deflocculated (minimum viscosity) and under deflocculated. Suspensions prepared using freshly mined ball clays required more dispersant than suspensions prepared using dry ball clays to achieve minimum viscosity due to a difference in agglomerate size distribution. The agglomerate size distribution of suspensions prepared using dry clays was broader than that of suspensions prepared using freshly mined clays. In suspensions prepared using freshly mined clays, there were many uniformly small agglomerates having loose water inside, while in suspensions prepared using dry clays, the capillary effect and bonding between clay particles resulting from drying broke clay aggregates apart into agglomerate structures composed of a few to many clay particles. For suspensions prepared using dry clays after one day suspension aging, the elastic modulus and yield stress decreased due to the change in agglomerate size distribution of suspensions but increased for

  16. Urinary incontinence - retropubic suspension

    MedlinePlus

    ... Marchetti-Krantz (MMK) procedure; Laparoscopic retropubic colposuspension; Needle suspension; Burch colposuspension ... bladder. There are two ways to do retropubic suspension: open surgery or laparoscopic surgery. Either way, surgery ...

  17. Dewatering of flocculated suspensions by pressure filtration

    NASA Astrophysics Data System (ADS)

    Landman, K. A.; Sirakoff, C.; White, L. R.

    1991-06-01

    Pressure filtration is an important method for removing liquids from a suspension. Previous work used linear models or applied to stable suspensions. Nonlinear models for flocculated suspensions are studied here. The equations governing the consolidation of flocculated suspensions under the influence of an applied pressure are based on the assumption that when the volume fraction is high enough, the network formed from the aggregation of flocs possesses a compressive yield stress Py(φ) that is a function of local volume fraction φ only. There are two modes of operation of the pressure filter—the fluid flux or the applied pressure is specified—and both of these are studied. The resulting nonlinear partial differential equations involve the time-dependent piston position, and in the case of the suspension being initially unnetworked, another internal moving boundary below which the suspension is networked. The small time behavior of these systems is obtained with an asymptotic method. In general, at later times, the solution can only be found numerically and an algorithm for doing this is discussed. The important parameters and properties of the filter cake are described. The results suggest various ways of controlling the filtration process, which may be useful in the manufacture of ceramics.

  18. Construction aggregates

    USGS Publications Warehouse

    Nelson, T.I.; Bolen, W.P.

    2007-01-01

    Construction aggregates, primarily stone, sand and gravel, are recovered from widespread naturally occurring mineral deposits and processed for use primarily in the construction industry. They are mined, crushed, sorted by size and sold loose or combined with portland cement or asphaltic cement to make concrete products to build roads, houses, buildings, and other structures. Much smaller quantities are used in agriculture, cement manufacture, chemical and metallurgical processes, glass production and many other products.

  19. Construction aggregates

    USGS Publications Warehouse

    Tepordei, V.V.

    1996-01-01

    Part of the Annual Commodities Review 1995. Production of construction aggregates such as crushed stone and construction sand and gravel showed a marginal increase in 1995. Most of the 1995 increases were due to funding for highway construction work. The major areas of concern to the industry included issues relating to wetlands classification and the classification of crystalline silica as a probable human carcinogen. Despite this, an increase in demand is anticipated for 1996.

  20. Quantification of alginate by aggregation induced by calcium ions and fluorescent polycations.

    PubMed

    Zheng, Hewen; Korendovych, Ivan V; Luk, Yan-Yeung

    2016-01-01

    For quantification of polysaccharides, including heparins and alginates, the commonly used carbazole assay involves hydrolysis of the polysaccharide to form a mixture of UV-active dye conjugate products. Here, we describe two efficient detection and quantification methods that make use of the negative charges of the alginate polymer and do not involve degradation of the targeted polysaccharide. The first method utilizes calcium ions to induce formation of hydrogel-like aggregates with alginate polymer; the aggregates can be quantified readily by staining with a crystal violet dye. This method does not require purification of alginate from the culture medium and can measure the large amount of alginate that is produced by a mucoid Pseudomonas aeruginosa culture. The second method employs polycations tethering a fluorescent dye to form suspension aggregates with the alginate polyanion. Encasing the fluorescent dye in the aggregates provides an increased scattering intensity with a sensitivity comparable to that of the conventional carbazole assay. Both approaches provide efficient methods for monitoring alginate production by mucoid P. aeruginosa.

  1. Anomalous electrical conductivity of nanoscale colloidal suspensions.

    PubMed

    Chakraborty, Suman; Padhy, Sourav

    2008-10-28

    The electrical conductivity of colloidal suspensions containing nanoscale conducting particles is nontrivially related to the particle volume fraction and the electrical double layer thickness. Classical electrochemical models, however, tend to grossly overpredict the pertinent effective electrical conductivity values, as compared to those obtained under experimental conditions. We attempt to address this discrepancy by appealing to the complex interconnection between the aggregation kinetics of the nanoscale particles and the electrodynamics within the double layer. In particular, we model the consequent alterations in the effective electrophoretic mobility values of the suspension by addressing the fundamentals of agglomeration-deagglomeration mechanisms through the pertinent variations in the effective particulate dimensions, solid fractions, as well as the equivalent suspension viscosity. The consequent alterations in the electrical conductivity values provide a substantially improved prediction of the corresponding experimental findings and explain the apparent anomalous behavior predicted by the classical theoretical postulates.

  2. Acetylcholine receptors and concanavalin A-binding sites on cultured Xenopus muscle cells: electrophoresis, diffusion, and aggregation [corrected and republished article originally printed in J Cell Biol 1988 May;106(5):1723-34

    PubMed Central

    1988-01-01

    Using digitally analyzed fluorescence videomicroscopy, we have examined the behavior of acetylcholine receptors and concanavalin A binding sites in response to externally applied electric fields. The distributions of these molecules on cultured Xenopus myoballs were used to test a simple model which assumes that electrophoresis and diffusion are the only important processes involved. The model describes the distribution of concanavalin A sites quite well over a fourfold range of electric field strengths; the results suggest an average diffusion constant of approximately 2.3 X 10(-9) cm2/s. At higher electric field strengths, the asymmetry seen is substantially less than that predicted by the model. Acetylcholine receptors subjected to electric fields show distributions substantially different from those predicted on the basis of simple electrophoresis and diffusion, and evidence a marked tendency to aggregate. Our results suggest that this aggregation is due to lateral migration of surface acetylcholine receptors, and is dependent on surface interactions, rather than the rearrangement of microfilaments or microtubules. The data are consistent with a diffusion-trap mechanism of receptor aggregation, and suggest that the event triggering receptor localization is a local increase in the concentration of acetylcholine receptors, or the electrophoretic concentration of some other molecular species. These observations suggest that, whatever mechanism(s) trigger initial clustering events in vivo, the accumulation of acetylcholine receptors can be substantially enhanced by passive, diffusion-mediated aggregation. PMID:3170634

  3. Cells of Escherichia coli are protected against severe chemical stress by co-habiting cell aggregates formed by Pseudomonas aeruginosa.

    PubMed

    Jagmann, Nina; Henke, Sebastian Franz; Philipp, Bodo

    2015-10-01

    Bacterial cells within biofilms and cell aggregates show increased resistance against chemical stress compared with suspended cells. It is not known whether bacteria that co-habit biofilms formed by other bacteria also acquire such resistance. This scenario was investigated in a proof-of-principle experiment with Pseudomonas aeruginosa strain PAO1 as cell aggregate-forming bacterium and Escherichia coli strain MG1655 as potential co-habiting bacterium equipped with an inducible bioluminescence system. Cell aggregation of strain PAO1 can be induced by the toxic detergent sodium dodecyl sulfate (SDS). In single cultures of strain MG1655, bioluminescence was inhibited by the protonophor carbonylcyanide-m-chlorophenylhydrazone (CCCP) but the cells were still viable. By applying CCCP and SDS together, cells of strain MG1655 lost their bioluminescence and viability indicating the importance of energy-dependent resistance mechanisms against SDS. In co-suspensions with strain PAO1, bioluminescence of strain MG1655 was sustained in the presence of SDS and CCCP. Image analysis showed that bioluminescent cells were located in cell aggregates formed by strain PAO1. Thus, cells of strain MG1655 that co-habited cell aggregates formed by strain PAO1 were protected against a severe chemical stress that was lethal to them in single cultures. Co-habiting could lead to increased survival of pathogens in clinical settings and could be employed in biotechnological applications involving toxic milieus.

  4. Cultivation of Thalictrum rugosum cell suspension in an improved airlift bioreactor: stimulatory effect of carbon dioxide and ethylene on alkaloid production.

    PubMed

    Kim, D I; Pedersen, H; Chin, C K

    1991-08-05

    Airlift bioreactor operations have been studied for the growth-associated production of secondary metabolites from plant cell suspension cultures. The model system used in this work was Thalictrum rugosum producing berberine, an isoquinoline alkaloid. The airlift system was well suited for growth of Thalictrum cell suspension cultures unless the cell density was high. At high cell density, the airlift system with a draught tube was not adequate due to large aggregates clogging the recirculation paths. This was overcome by use of a cell scraper in the reactor. For berberine production, gas-stripping also played a significant role and it was discovered that CO(2) and ethylene were important for product formation. By supplying a mixture of CO(2) and ethylene into the airlift system, the specific berberine content was increased twofold. It is evident that continuous gas sparging was harmful for the production of berberine without supplementation with other gases.

  5. A 3D sphere culture system containing functional polymers for large-scale human pluripotent stem cell production.

    PubMed

    Otsuji, Tomomi G; Bin, Jiang; Yoshimura, Azumi; Tomura, Misayo; Tateyama, Daiki; Minami, Itsunari; Yoshikawa, Yoshihiro; Aiba, Kazuhiro; Heuser, John E; Nishino, Taito; Hasegawa, Kouichi; Nakatsuji, Norio

    2014-05-06

    Utilizing human pluripotent stem cells (hPSCs) in cell-based therapy and drug discovery requires large-scale cell production. However, scaling up conventional adherent cultures presents challenges of maintaining a uniform high quality at low cost. In this regard, suspension cultures are a viable alternative, because they are scalable and do not require adhesion surfaces. 3D culture systems such as bioreactors can be exploited for large-scale production. However, the limitations of current suspension culture methods include spontaneous fusion between cell aggregates and suboptimal passaging methods by dissociation and reaggregation. 3D culture systems that dynamically stir carrier beads or cell aggregates should be refined to reduce shearing forces that damage hPSCs. Here, we report a simple 3D sphere culture system that incorporates mechanical passaging and functional polymers. This setup resolves major problems associated with suspension culture methods and dynamic stirring systems and may be optimal for applications involving large-scale hPSC production.

  6. Chain Dynamics in Magnetorheological Suspensions

    NASA Technical Reports Server (NTRS)

    Gast, A. P.; Furst, E. M.

    1999-01-01

    Magnetorheological (MR) suspensions are composed of colloidal particles which acquire dipole moments when subjected to an external magnetic field. At sufficient field strengths and concentrations, the dipolar particles rapidly aggregate to form long chains. Subsequent lateral cross-linking of the dipolar chains is responsible for a rapid liquid-to-solid-like rheological transition. The unique, magnetically-activated rheological properties of MR suspensions make them ideal for interfacing mechanical systems to electronic controls. Additionally, the ability to experimentally probe colloidal suspensions interacting through tunable anisotropic potentials is of fundamental interest. Our current experimental work has focused on understanding the fluctuations of dipolar chains. It has been proposed by Halsey and Toor (HT) that the strong Landau-Peierls thermal fluctuations of dipolar chains could be responsible for long-range attractions between chains. Such interactions will govern the long-time relaxation of MR suspensions. We have synthesized monodisperse neutrally buoyant MR suspensions by density matching stabilized ferrofluid emulsion droplets with D2O. This allows us to probe the dynamics of the dipolar chains using light scattering without gravitational, interfacial, and polydispersity effects to resolve the short-wavelength dynamics of the dipolar chains. We used diffusing wave spectroscopy to measure these dynamics. The particle displacements at short times that show an independence to the field strength, but at long times exhibit a constrained, sub-diffusive motion that slows as the dipole strength is increased. The experiments are in good qualitative agreement with Brownian dynamics simulations of dipolar chains. Although there have been several important and detailed studies of the structure and interactions in MR suspensions, there has not been conclusive evidence that supports or contradicts the HT model prediction that long-range interactions exist between

  7. Collapsing granular suspensions.

    PubMed

    Kadau, D; Andrade, J S; Herrmann, H J

    2009-11-01

    A 2D contact dynamics model is proposed as a microscopic description of a collapsing suspension/soil to capture the essential physical processes underlying the dynamics of generation and collapse of the system. Our physical model is compared with real data obtained from in situ measurements performed with a natural collapsing/suspension soil. We show that the shear strength behavior of our collapsing suspension/soil model is very similar to the behavior of this collapsing suspension soil, for both the unperturbed and the perturbed phases of the material.

  8. Stress Responses in Alfalfa (XXI. Activation of Caffeic Acid 3-O-Methyltransferase and Caffeoyl Coenzyme A 3-O-Methyltransferase Genes Does Not Contribute to Changes in Metabolite Accumulation in Elicitor-Treated Cell-Suspension Cultures).

    PubMed Central

    Ni, W.; Sewalt, VJH.; Korth, K. L.; Blount, J. W.; Ballance, G. M.; Dixon, R. A.

    1996-01-01

    Transcription of genes encoding L-phenylalanine ammonia-lyase (PAL), the first enzyme of the phenylpropanoid pathway, and caffeic acid 3-O-methyltransferase (COMT) and caffeoyl CoA 3-O-methyltransferase (CCOMT), enzymes involved in the synthesis of lignin and wall-esterified phenolic compounds, was strongly activated in elicitor-treated cell-suspension cultures of alfalfa (Medicago sativa L.). However, consequent changes in the extractable activities of COMT and CCOMT were small to nonexistent compared with a 15- to 16-fold increase in PAL activity. Only low levels of COMT and CCOMT transcripts were reflected in the total and polysomal RNA fractions compared with PAL transcripts. Elicited cell cultures did not accumulate lignin or the products of COMT and CCOMT in the soluble and wall-esterified phenolic fractions. In one alfalfa cell line in which elicitation resulted in very high PAL activity and increased deposition of methoxyl groups in the insoluble wall fraction, there was still no change in COMT and CCOMT activities. Overall, these results indicate that the initial gene transcription events in elicited cells may be less selective than the subsequent metabolic changes, highlighting the importance of posttranscriptional events in the control of phenylpropanoid biosynthesis. PMID:12226420

  9. Formation Kinetics of Aqueous Suspensions of Fullerenes:Meeting in New Orleans.

    EPA Science Inventory

    Stable colloidal suspension of C60 is commonly achieved through various solvent exchange techniques. Nevertheless, the additives such as tetrahydrofuran may be retained in the C60 aggregates, which may influence the surface properties of the suspension. In this study, colloidal...

  10. Sponge cell reaggregation: Cellular structure and morphogenetic potencies of multicellular aggregates.

    PubMed

    Lavrov, Andrey I; Kosevich, Igor A

    2016-02-01

    Sponges (phylum Porifera) are one of the most ancient extant multicellular animals and can provide valuable insights into origin and early evolution of Metazoa. High plasticity of cell differentiations and anatomical structure is characteristic feature of sponges. Present study deals with sponge cell reaggregation after dissociation as the most outstanding case of sponge plasticity. Dynamic of cell reaggregation and structure of multicellular aggregates of three demosponge species (Halichondria panicea (Pallas, 1766), Haliclona aquaeductus (Sсhmidt, 1862), and Halisarca dujardinii Johnston, 1842) were studied. Sponge tissue dissociation was performed mechanically. Resulting cell suspensions were cultured at 8-10°C for at least 5 days. Structure of multicellular aggregates was studied by light, transmission and scanning electron microscopy. Studied species share common stages of cell reaggregation-primary multicellular aggregates, early-stage primmorphs and primmorphs, but the rate of reaggregation varies considerably among species. Only cells of H. dujardinii are able to reconstruct functional and viable sponge after primmorphs formation. Sponge reconstruction in this species occurs due to active cell locomotion. Development of H. aquaeductus and H. panicea cells ceases at the stages of early primmorphs and primmorphs, respectively. Development of aggregates of these species is most likely arrested due to immobility of the majority of cells inside them. However, the inability of certain sponge species to reconstruct functional and viable individuals during cell reaggregation may be not a permanent species-specific characteristic, but depends on various factors, including the stage of the life cycle and experimental conditions.

  11. Monitoring nanoparticle aggregation by optical procedures

    NASA Astrophysics Data System (ADS)

    Chicea, Dan

    2013-11-01

    The traditional Dynamic Light Scattering (DLS) produces the average size of the suspended particles from a recorded time series of the light scattered at a particular angle. A modified and simplified version of DLS was designed, tested and used in monitoring FE3O4 nanoparticle aggregation in aqueous suspensions. In addition two another simple and easy to implement optical procedures were tested aiming a qualitative monitoring of the nanoparticle aggregation process. One of them consists of monitoring the time variation of the scattered light intensity at a certain angle and fitting an analytic function on it and the other one in monitoring the refractive index of the aqueous suspension during nanofluid dilution. The results are presented and discussed.

  12. Investigating the feasibility of scale up and automation of human induced pluripotent stem cells cultured in aggregates in feeder free conditions☆

    PubMed Central

    Soares, Filipa A.C.; Chandra, Amit; Thomas, Robert J.; Pedersen, Roger A.; Vallier, Ludovic; Williams, David J.

    2014-01-01

    The transfer of a laboratory process into a manufacturing facility is one of the most critical steps required for the large scale production of cell-based therapy products. This study describes the first published protocol for scalable automated expansion of human induced pluripotent stem cell lines growing in aggregates in feeder-free and chemically defined medium. Cells were successfully transferred between different sites representative of research and manufacturing settings; and passaged manually and using the CompacT SelecT automation platform. Modified protocols were developed for the automated system and the management of cells aggregates (clumps) was identified as the critical step. Cellular morphology, pluripotency gene expression and differentiation into the three germ layers have been used compare the outcomes of manual and automated processes. PMID:24440272

  13. Serum-Free Culture of the Suspension Cell Line QB-Tn9-4s of the Cabbage Looper, Trichoplusia ni, is Highly Productive for Virus Replication and Recombinant Protein Expression

    PubMed Central

    Zheng, Gui-Ling; Zhou, Hong-Xu; Li, Chang-You

    2014-01-01

    Serum-free cultures of insect cells play an important role in the fields of protein engineering, medicine, and biology. In this paper, the suspension cell line QB-Tn9-4s of Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae) was successfully adapted to serum-free Sf-900 III medium and passaged for 52 generations. The adapted QB-Tn9-4s cells grew faster. Their population doubling time shortened from 27.4 hr in serum-containing medium to 24.1 hr, and their maximal density increased by 1.83-fold, reaching 3.50 × 106 cells/mL in serum-free culture in T-flasks. The cells readily adapted to spinner culture, with maximum cell density of 4.40 × 106 cells/mL in a spinner flask. Although the infection rate of Autographa californica multiple nucleopolyhedrovirus and production of occlusion bodies (OBs) of the adapted QB-Tn9-4s cells were 91.0% and 85.4 OBs/cell, respectively, similar to those of QB-Tn9-4s cells cultured in serum-containing medium and control BTI-Tn5B1-4 cells, their budded virus titer was 4.97 × 107 TCID50/mL, significantly higher than those of the latter two. In addition, the expression levels of β-galactosidase at six days post-infection and secreted alkaline phosphatase at seven days postinfection in the adapted QB-Tn9-4s cells reached 2.98 ± 0.15×104 IU/mL and 3.34 ± 0.13 IU/mL, respectively, significantly higher than those of QB-Tn9-4s and control BTI-Tn5B1-4 cultured in serum-containing media. The above findings establish a foundation for industrial production of virus and recombinant proteins in QB-Tn9-4s serum-free culture. PMID:25373171

  14. Research on School Suspension

    ERIC Educational Resources Information Center

    Iselin, Anne-Marie

    2010-01-01

    Schools across the nation report increases in the use of punitive disciplinary methods (e.g., suspension). The need for these disciplinary practices to address serious student misconduct is undisputed. What research has questioned is why some students seem to be suspended more often than others, what effects suspension has on students, and whether…

  15. Suspension Geometry Measuring

    NASA Astrophysics Data System (ADS)

    Kao, M. J.; Yu, C. C.; Chang, H.; Tsung, T. T.; Lin, H. M.

    2006-10-01

    This paper describes the instrumentation and analysis of the Vehicle suspension's electrical signals. It will measure the Vehicle suspensions' Vertical Displacement, Track Change, Camber Angle, Caster Angle Steer Angle and convert physical quantity into electrical signals in a various vehicle load change. With using electrical signals for computer control, the electrical controlled vehicle has brought great convenience, great safety and thoughtful kindness vehicle system in our daily life. It will measure the Vehicle suspensions' Vertical Displacement, Track Change, Camber Angle, Caster Angle Steer Angle and convert physical quantity into electrical signals in a various vehicle load change. The function of a suspension system in an automobile is to improve ride comfort and stability. Advances in electronic control technology, applied to the automobile, can improve those functions. The results show that the photocell can convert the electrical signals of suspension for peripheral communications link between the vehicle driving and the electronic control unit (ECU) employed for processing.

  16. A Novel Method to Quantify Soil Aggregate Stability by Measuring Aggregate Bond Energies

    NASA Astrophysics Data System (ADS)

    Efrat, Rachel; Rawlins, Barry G.; Quinton, John N.; Watts, Chris W.; Whitmore, Andy P.

    2016-04-01

    energy (Pb; input energy used in aggregate breakdown) can be calculated by the following equation: ΣPi - Ph = Pb The novel technique was tested by comparing the bond energies measured from a series of soil aggregates sampled from different land management histories, to the samples corresponding stability measurement obtained from standard modern stability tests. The effectiveness of the heavy liquid as a suspension (as opposed to water) was evaluated by comparing the bond energies of samples measured in both suspensions. Our results determine i) how disruptive water is in aggregate stability tests, ii) how accurate and representative standard aggregate stability tests are, and iii) how bond strength varies depending on land use. Keywords: Aggregate; Bond; Fragmentation; Soil; Sonication; Stability References: Zhu, Z. L., Minasny, B. & Field D. J. 2009. Measurement of aggregate bond energy using ultrasonic dispersion. European Journal of Soil Science, 60, 695-705

  17. Aggregate breakup in a contracting nozzle.

    PubMed

    Soos, Miroslav; Ehrl, Lyonel; Bäbler, Matthäus U; Morbidelli, Massimo

    2010-01-05

    The breakup of dense aggregates in an extensional flow was investigated experimentally. The flow was realized by pumping the suspension containing the aggregates through a contracting nozzle. Variation of the cluster mass distribution during the breakage process was measured by small-angle light scattering. Because of the large size of primary particles and the dense aggregate structure image analysis was used to determine the shape and structure of the produced fragments. It was found, that neither aggregate structure, characterized by a fractal dimension d(f) = 2.7, nor shape, characterized by an average aspect ratio equal to 1.5, was affected by breakage. Several passes through the nozzle were required to reach the steady state. This is explained by the radial variation of the hydrodynamic stresses at the nozzle entrance, characterized through computational fluid dynamics, which implies that only the fraction of aggregates whose strength is smaller than the local hydrodynamic stress is broken during one pass through the nozzle. Scaling of the steady-state aggregate size as a function of the hydrodynamic stress was used to determine the aggregate strength.

  18. Inhibition of sup 125 I organification and thyroid hormone release by interleukin-1, tumor necrosis factor-alpha, and interferon-gamma in human thyrocytes in suspension culture

    SciTech Connect

    Sato, K.; Satoh, T.; Shizume, K.; Ozawa, M.; Han, D.C.; Imamura, H.; Tsushima, T.; Demura, H.; Kanaji, Y.; Ito, Y. )

    1990-06-01

    To elucidate the mechanism of decreased 131I uptake by the thyroid gland in patients with subacute thyroiditis and painless thyroiditis, human thyroid follicles were cultured with interleukin-1 (IL-1), tumor necrosis factor-alpha (TNF alpha), and/or interferon-gamma (IFN gamma), and the effects of these cytokines on thyroid function were studied in vitro. When human thyrocytes were cultured in RPMI-1640 medium containing 0.5% fetal calf serum and TSH for 5-8 days, the cells incorporated 125I, synthesized de novo (125I)iodotyrosines and (125I)iodothyronines, and secreted (125I)T4 and (125I)T3 into the medium. IL-1 alpha and IL-1 beta inhibited 125I incorporation and (125I)iodothyronine release in a concentration-dependent manner. The minimal inhibitory effect was detected at 10 pg/ml. Electron microscopic examination revealed a marked decrease in lysosome formation in IL-1-treated thyrocytes. TNF alpha and IFN gamma also inhibited thyroid function in a concentration-dependent manner. Furthermore, when thyrocytes were cultured with IL-1, TNF alpha and IFN gamma, these cytokines more than additively inhibited thyroid function. Although the main mechanism of 131I uptake suppression in the thyroid gland in subacute thyroiditis is due to cellular damage and suppression of TSH release, our present findings suggest that IL-1, TNF alpha, and IFN gamma produced in the inflammatory process within the thyroid gland further inhibit iodine incorporation and at least partly account for the decreased 131I uptake by the thyroid gland in destruction-induced hyperthyroidism.

  19. Early habituation of maize (Zea mays) suspension-cultured cells to 2,6-dichlorobenzonitrile is associated with the enhancement of antioxidant status.

    PubMed

    Largo-Gosens, Asier; Encina, Antonio; de Castro, María; Mélida, Hugo; Acebes, José L; García-Angulo, Penélope; Álvarez, Jesús M

    2016-06-01

    The cellulose biosynthesis inhibitor 2,6-dichlorobenzonitrile (DCB) has been widely used to gain insights into cell wall composition and architecture. Studies of changes during early habituation to DCB can provide information on mechanisms that allow tolerance/habituation to DCB. In this context, maize-cultured cells with a reduced amount of cellulose (∼20%) were obtained by stepwise habituation to low DCB concentrations. The results reported here attempt to elucidate the putative role of an antioxidant strategy during incipient habituation. The short-term exposure to DCB of non-habituated maize-cultured cells induced a substantial increase in oxidative damage. Concomitantly, short-term treated cells presented an increase in class III peroxidase and glutathione S-transferase activities and total glutathione content. Maize cells habituated to 0.3-1 µM DCB (incipient habituation) were characterized by a reduction in the relative cell growth rate, an enhancement of ascorbate peroxidase and class III peroxidase activities, and a net increment in total glutathione content. Moreover, these cell lines showed increased levels of glutathione S-transferase activity. Changes in antioxidant/conjugation status enabled 0.3 and 0.5 µM DCB-habituated cells to control lipid peroxidation levels, but this was not the case of maize cells habituated to 1 μM DCB, which despite showing an increased antioxidant capacity were not capable of reducing the oxidative damage to control levels. The results reported here confirm that exposure and incipient habituation of maize cells to DCB are associated with an enhancement in antioxidant/conjugation activities which could play a role in incipient DCB habituation of maize-cultured cells.

  20. Synthesis, characterization, and controlled aggregation of biotemplated polystyrene nanodisks

    NASA Astrophysics Data System (ADS)

    Tekobo, Samuel; Richter, Andrew G.; Dergunov, Sergey A.; Pingali, Sai Venkatesh; Urban, Volker S.; Yan, Bing; Pinkhassik, Eugene

    2011-12-01

    Cross-linked polystyrene nanodisks were prepared by controlled polymerization of styrene and divinylbenzene in the interior of bicelles, discoidal lipid aggregates. Aggregation behavior of polymer nanodisks was studied in water, organic solvents, and solid phase. Nanodisks form stable dispersions in aqueous solutions of surfactants, such as sodium dodecyl sulfate (SDS). Varying SDS/nanodisk ratio allowed us to control the size of nanodisk aggregates. Nanodisks are readily solubilized in nonpolar organic solvents, such as toluene and carbon tetrachloride, to yield stable monodisperse suspensions. These findings open opportunities for creating nanodisk-based nanocomposite materials. Stable nanodisk suspension in toluene enabled small angle neutron scattering (SANS) measurements. SANS data confirmed the nanodisk diameter and allowed accurate measurement of nanodisk thickness (19.5 ± 1.0 Å). In solid phase, nanodisks aggregate in sub-micron platelets.

  1. Synthesis, characterization, and controlled aggregation of biotemplated polystyrene nanodisks

    SciTech Connect

    Tekobo, Samuel; Richter, Andrew; Dergunov, Sergey; Pingali, Sai Venkatesh; Urban, Volker S; Yan, Bing; Pinkhassik, Eugene

    2011-01-01

    Cross-linked polystyrene nanodisks were prepared by controlled polymerization of styrene and divinylbenzene in the interior of bicelles, discoidal lipid aggregates. Aggregation behavior of polymer nanodisks was studied in water, organic solvents, and solid phase. Nanodisks form stable dispersions in aqueous solutions of surfactants, such as sodium dodecyl sulfate (SDS). Varying SDS/nanodisk ratio allowed us to control the size of nanodisk aggregates. Nanodisks are readily solubilized in nonpolar organic solvents, such as toluene and carbon tetrachloride, to yield stable monodisperse suspensions. These findings open opportunities for creating nanodisk-based nanocomposite materials. Stable nanodisk suspension in toluene enabled small angle neutron scattering (SANS) measurements. SANS data confirmed the nanodisk diameter and allowed accurate measurement of nanodisk thickness (19.5 1.0 ). In solid phase, nanodisks aggregate in sub-micron platelets.

  2. Electrorheology of suspensions containing interfacially active constituents.

    PubMed

    McIntyre, Carl; Yang, Hengxi; Green, Peter F

    2013-09-25

    We recently showed that a suspension of micrometer-sized polystyrene (PS) particles in a PDMS liquid, mixed with small (1 wt %) amounts of a nanocage, sulfonated polyhedral oligomeric silsesquioxane (s-POSS), exhibited significant electrorheological (ER) behavior. This behavior was associated with the formation of a thin adsorbed layer of s-POSS onto the surfaces of PS and the subsequent formation of polarization-induced aggregates, or structures, responsible for the ER effect in an applied electric, E, field. Current theory suggests that the ER effect would largely be determined by the dielectric and conductive properties of the conductive layer of core/shell particles in ER suspensions. We show here that sulfonated-PS (s-PS)/PDMS suspensions exhibit further increases in the yield stress of over 200%, with the addition of s-POSS. The yield stress of this system, moreover, scales as τy [proportionality] E(2). The dielectric relaxation studies reveal the existence of a new relaxation peak in the s-POSS/s-PS/PDMS system that is absent in the s-POSS/PS/PDMS suspension. The relative sizes of these peaks are sensitive to the concentration of s-POSS and are associated with changes in the ER behavior. The properties of this class of ER fluids are not appropriately rationalized in terms of current theories.

  3. Flow cytometric methods to investigate culture heterogeneities for plant metabolic engineering.

    PubMed

    Gaurav, Vishal; Kolewe, Martin E; Roberts, Susan C

    2010-01-01

    Plant cell cultures provide an important method for production and supply of a variety of natural products, where conditions can be easily controlled, manipulated, and optimized. Development and optimization of plant cell culture processes require both bioprocess engineering and metabolic engineering approaches. Cultures are generally highly heterogeneous, with significant variability amongst cells in terms of growth, metabolism, and productivity of key metabolites. Taxus cultures produce the important anti-cancer agent Taxol((R)) (i.e., paclitaxel) and have demonstrated significant variability amongst cell populations in culture with regard to paclitaxel accumulation, cell cycle participation, and protein synthesis. To fully understand the link between cellular metabolism and culture behavior and to enable targeted metabolic engineering approaches, cultures need to be studied at a single cell level. This chapter describes the application of plant cell flow cytometric techniques to investigate culture heterogeneity at the single cell level, in order to optimize culture performance through targeted metabolic engineering. Flow cytometric analytical methods are described to study Taxus single cells, protoplasts, and nuclei suspensions with respect to secondary metabolite accumulation, DNA content, cell size, and complexity. Reproducible methods to isolate these single particle suspensions from aggregated Taxus cultures are discussed. Methods to stain both fixed and live cells for a variety of biological markers are provided to enable characterization of cell phenotypes. Fluorescence-activated cell sorting (FACS) methods are also presented to facilitate isolation of certain plant cell culture populations for both analysis and propagation of superior cell lines for use in bioprocesses.

  4. Culture.

    ERIC Educational Resources Information Center

    1997

    Twelve conference papers on cultural aspects of second language instruction include: "Towards True Multiculturalism: Ideas for Teachers" (Brian McVeigh); Comparing Cultures Through Critical Thinking: Development and Interpretations of Meaningful Observations" (Laurel D. Kamada); "Authority and Individualism in Japan and the…

  5. The Metabolic Fate of Deoxynivalenol and Its Acetylated Derivatives in a Wheat Suspension Culture: Identification and Detection of DON-15-O-Glucoside, 15-Acetyl-DON-3-O-Glucoside and 15-Acetyl-DON-3-Sulfate.

    PubMed

    Schmeitzl, Clemens; Warth, Benedikt; Fruhmann, Philipp; Michlmayr, Herbert; Malachová, Alexandra; Berthiller, Franz; Schuhmacher, Rainer; Krska, Rudolf; Adam, Gerhard

    2015-08-12

    Deoxynivalenol (DON) is a protein synthesis inhibitor produced by the Fusarium species, which frequently contaminates grains used for human or animal consumption. We treated a wheat suspension culture with DON or one of its acetylated derivatives, 3-acetyl-DON (3-ADON), 15-acetyl-DON (15-ADON) and 3,15-diacetyl-DON (3,15-diADON), and monitored the metabolization over a course of 96 h. Supernatant and cell extract samples were analyzed using a tailored LC-MS/MS method for the quantification of DON metabolites. We report the formation of tentatively identified DON-15-O-β-D-glucoside (D15G) and of 15-acetyl-DON-3-sulfate (15-ADON3S) as novel deoxynivalenol metabolites in wheat. Furthermore, we found that the recently identified 15-acetyl-DON-3-O-β-D-glucoside (15-ADON3G) is the major metabolite produced after 15-ADON challenge. 3-ADON treatment led to a higher intracellular content of toxic metabolites after six hours compared to all other treatments. 3-ADON was exclusively metabolized into DON before phase II reactions occurred. In contrast, we found that 15-ADON was directly converted into 15-ADON3G and 15-ADON3S in addition to metabolization into deoxynivalenol-3-O-β-D-glucoside (D3G). This study highlights significant differences in the metabolization of DON and its acetylated derivatives.

  6. A xylosyltransferase involved in the synthesis of a protein-associated xyloglucan in suspension-cultured dwarf-French-bean (Phaseolus vulgaris) cells and its interaction with a glucosyltransferase.

    PubMed

    Campbell, R E; Brett, C T; Hillman, J R

    1988-08-01

    A particulate enzyme preparation made from suspension-cultured dwarf-French-bean (Phaseolus vulgaris) cv. Canadian Wonder cells was shown to incorporate xylose from UDP-D-[14C]xylose into polysaccharide. The reaction was dependent upon the presence of UDP-D-glucose and was stimulated, and apparently protected, by GDP-D-glucose and GDP-D-mannose, though neither was able to replace UDP-D-glucose as a glycosyl donor. The product of the reaction was identified as xyloglucan by analysis of products of enzyme breakdown and acid hydrolysis. Mr determination after proteinase K digestion indicated that the nascent xyloglucan is closely associated with protein. Preincubation of the enzyme with UDP-D-glucose stimulated incorporation from UDP-D-[14C]xylose, suggesting an 'imprecise' mechanism of biosynthesis, as defined by Waldron & Brett [(1985) in Biochemistry of Plant Cell Walls (Brett, C. T. & Hillman, J. R., eds.) (SEB Semin. Ser. 28), pp. 79-97, Cambridge University Press, Cambridge].

  7. Production of occlusion bodies of Anticarsia gemmatalis multiple nucleopolyhedrovirus in serum-free suspension cultures of the saUFL-AG-286 cell line: influence of infection conditions and statistical optimization.

    PubMed

    Micheloud, Gabriela A; Gioria, Verónica V; Pérez, Gustavo; Claus, Juan D

    2009-12-01

    The influence of the conditions of infection on the yield of occlusion bodies (OBs) of the Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV), produced in serum-free suspension cultures of saUFL-AG-286 cells, was investigated by two 2(2) full factorial experiments with centre point. Each experiment tested the effects of the initial cell density and the multiplicity of infection at two levels, in the four possible combinations of levels and conditions, plus a further combination with each condition set at the middle of its extreme levels. The yield of occlusion bodies proved to be sensitive to the modification of infection conditions. Maximum yield as high as 3 x 10(8) OBs mL(-1) was attained provided that the maximum density of viable cells was in the range between 4 and 8 x 10(5) cells mL(-1). The optimum value of the maximum density of viable cells could be reached by the combination of several values of initial cell density and multiplicity of infection. A regression model was established and validated in order to optimize the infection conditions. These results demonstrate the importance of an adequate selection of infection conditions, and they could be useful in the development of a feasible in vitro process to produce the AgMNPV insecticide in a new serum-free medium.

  8. Examination and Manipulation of Clay Aggregates - Initial Inquiry

    DTIC Science & Technology

    2011-06-06

    and the first conclusions in the examination and testing of clay aggregates composed of montmorillonite clay and a polysaccharide (xanthan gum, also...and the first conclusions in the examination and testing of clay aggregates composed of montmorillonite clay and a polysaccharide (xanthan gum, also...PSU and the X-gum content from 0% to 10% of the mineral content of the clay (by weight). Montmorillonite was used in all the suspensions prepared

  9. Impact of Particle Aggregation on Nanoparticle Reactivity

    NASA Astrophysics Data System (ADS)

    Jassby, David

    2011-12-01

    nanoparticle that photoluminesces after exposure to UV; TiO2 and ZnO nanoparticles---photocatalytic nanoparticles that generate reactive oxygen species upon UV irradition; and, fullerene nanoparticles used in the filtration experiments, selected for their potential use, small size, and surface chemistry. Our primary methods used to characterize particle and aggregate characteristics include dynamic light scattering used to describe particle size, static light scattering used to characterize aggregate structure (fractal dimension), transmission electron microscopy used to verify primary particle sizes, and electrophoretic mobility measurements to evaluate suspension stability. The reactive property of ZnS that was measured as a function of aggregation was photoluminescence, which was measured using a spectrofluorometer. The reactive property of TiO2 and ZnO that was studied was their ability to generate hydroxyl radicals; these were measured by employing a fluorescent probe that becomes luminescent upon interaction with the hydroxyl radical. To detect the presence of fullerene nanoparticles and calculate removal efficiencies, we used total organic carbon measurements. Additionally, we used UV-vis spectroscopy to approximate the impact of particle shadowing in TiO2 and ZnO aggregates, and Fourier transformed infrared spectroscopy to determine how different electrolytes interact with fullerene surface groups. Our findings indicate that the impact of aggregation on nanoparticle reactivity is material specific. ZnS nanoparticles exhibit a 2-fold increase in band-edge photoluminescence alongside a significant decrease in defect-site photoluminescence. This is attributed to aggregate size-dependent surface tension. Additionally, we used photoluminescence measurements to develop a new method for calculating the critical coagulation concentration of a nanoparticle suspension. The ability of both TiO2 and ZnO to generate hydroxyl radicals was significantly hampered by aggregation. The

  10. Influence of red blood cell aggregation on perfusion of an artificial microvascular network.

    PubMed

    Reinhart, Walter H; Piety, Nathaniel Z; Shevkoplyas, Sergey S

    2016-09-19

    Red blood cells (RBCs) suspended in plasma form multicellular aggregates under low flow conditions, increasing apparent blood viscosity at low shear rates. It has previously been unclear, however, if RBC aggregation affects microvascular perfusion. Here we analyzed the impact of RBC aggregation on perfusion and 'capillary' hematocrit in an artificial microvascular network (AMVN) at driving pressures ranging from 5 to 60 cmH2 O to determine if aggregation could improve tissue oxygenation. RBCs were suspended at 30% hematocrit in either 46.5 g/L dextran 40 (D40, non-aggregating medium) or 35 g/L dextran 70 (D70, aggregating medium) solutions with equal viscosity. Aggregation was readily observed in the AMVN for RBCs suspended in D70 at driving pressures ≤ 40 cmH2 O. The AMVN perfusion rate was the same for RBCs suspended in aggregating and non-aggregating medium, at both 'venular' and 'capillary' level. Estimated 'capillary' hematocrit was higher for D70 suspensions than for D40 suspensions at intermediate driving pressures (5 - 40 cm H2 O). We conclude that although RBC aggregation did not affect the AMVN perfusion rate independently of the driving pressure, a higher hematocrit in the 'capillaries' of the network for D70 suspensions suggested a better oxygen transport capacity in the presence of RBC aggregation. This article is protected by copyright. All rights reserved.

  11. Fragility in dense suspensions

    NASA Astrophysics Data System (ADS)

    Mari, Romain; Cates, Mike

    Dense suspensions can jam under shear when the volume fraction of solid material is large enough. In this work we investigate the mechanical properties of shear jammed suspensions with numerical simulations. In particular, we address the issue of the fragility of these systems, i.e., the type of mechanical response (elastic or plastic) they show when subject to a mechanical load differing from the one applied during their preparation history.

  12. L-Phenylalanine ammonia-lyase from Phaseolus vulgaris. Characterisation and differential induction of multiple forms from elicitor-treated cell suspension cultures.

    PubMed

    Bolwell, G P; Bell, J N; Cramer, C L; Schuch, W; Lamb, C J; Dixon, R A

    1985-06-03

    L-Phenylalanine ammonia-lyase (EC 4.3.1.5) has been purified over 200-fold from cell cultures of bean (phaseolus vulgaris L.) exposed to elicitor heat-released from the cell walls of the phytopathogenic fungus Colletotrichum lindemuthianum. Four forms of the enzyme, with identical Mr but differing apparent pI values of 5.4, 5.2, 5.05 and 4.85, were observed following the final chromatofocussing stage of the purification. A preparation (purified 43-fold by ammonium sulphate precipitation, gel-filtration and ion-exchange chromatography) containing all four forms exhibited apparent negative rate cooperativity with respect to substrates. However, the individual forms displayed normal Michaelis-Menten kinetics, with Km values of 0.077 mM, 0.122 mM, 0.256 mM and 0.302 mM in order of decreasing apparent pI value. A preparation purified 200-fold and containing all four forms was used to immunise rabbits for the production of anti-(phenylalanine ammonia-lyase) serum. The antiserum was characterised by: immunotitration experiments; solid phase enzyme-linked immunosorbent assays; comparison of immunoprecipitates of 35S-labelled phenylalanine ammonia-lyase subunits (synthesized both in vivo and in vitro) on both one-dimensional and two-dimensional polyacrylamide gels after immunoprecipitation with the bean antiserum or antisera raised against pea and parsley phenylalanine ammonia-lyase preparations and immune blotting. SDS/polyacrylamide gels and SDS/polyacrylamide gel electrophoresis followed by immune blotting, indicated that the Mr of newly synthesized (in vivo and in vitro) bean phenylalanine ammonia-lyase subunits is 77000; a 70000-Mr form is readily generated as a partial degradation product during purification. Immunoprecipitates of bean phenylalanine ammonia-lyase synthesized both in vivo and in vitro showed the presence of multiple subunit types of identical Mr but differing in pI. Furthermore, treatment of bean cultures with Colletotrichum elicitor resulted in a 10

  13. Phase and structural transformations in magnetorheological suspensions

    NASA Astrophysics Data System (ADS)

    Iskakova, L. Yu.; Romanchuk, A. P.; Zubarev, A. Yu.

    2006-07-01

    Particle condensation in magnetorheological suspensions (MRS) under external magnetic field is studied theoretically. It is shown that the bulk condensation of particles into dense phases is preceded by the formation of fairly long chain aggregates. Phase transition occurs as a condensation of such chains due to their magnetic interaction. In thin layers of MRS, placed into the normal magnetic field, scenario of the phase transition differs essentially from that in infinite volumes of these systems. Equilibrium state of the system after the phase transition corresponds to the formation of ensemble of discrete domains of the dense phase rather than to separation into two massive phases as it takes place in infinite media.

  14. Involvement of nitric oxide in oxidative burst, phenylalanine ammonia-lyase activation and Taxol production induced by low-energy ultrasound in Taxus yunnanensis cell suspension cultures.

    PubMed

    Wang, Jian Wen; Zheng, Li Ping; Wu, Jian Yong; Tan, Ren Xiang

    2006-12-01

    This work was to characterize the generation of nitric oxide (NO) in Taxus yunnanensis cells exposed to low-energy ultrasound (US) and the signal role of NO in elicitation of plant defense responses and secondary metabolite accumulation. The US sonication (3.5-55.6 mW/cm(3) at 40 kHz fixed frequency) for 2 min induced a rapid and dose-dependent NO production in the Taxus cell culture, which exhibited a biphasic time course, reaching the first plateau within 1.5 h and the second within 7 h after US sonication. The NO donor sodium nitroprusside (SNP) potentiated US-induced H(2)O(2) production and cell death. Inhibition of nitric oxide synthase (NOS) activity by N(omega)-nitro-L-arginine (L-NNA) or scavenging NO by 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxyde (PTIO) partially blocked the US-induced H(2)O(2) production and cell death. Moreover, the NO inhibitors suppressed US-induced activation of phenylalanine ammonium-lyase (PAL) and accumulation of diterpenoid taxanes (Taxol and baccatin III). These results suggest that NO plays a signal role in the US-induced responses and secondary metabolism activities in the Taxus cells.

  15. Partitioning of red blood cell aggregates in bifurcating microscale flows

    NASA Astrophysics Data System (ADS)

    Kaliviotis, E.; Sherwood, J. M.; Balabani, S.

    2017-03-01

    Microvascular flows are often considered to be free of red blood cell aggregates, however, recent studies have demonstrated that aggregates are present throughout the microvasculature, affecting cell distribution and blood perfusion. This work reports on the spatial distribution of red blood cell aggregates in a T-shaped bifurcation on the scale of a large microvessel. Non-aggregating and aggregating human red blood cell suspensions were studied for a range of flow splits in the daughter branches of the bifurcation. Aggregate sizes were determined using image processing. The mean aggregate size was marginally increased in the daughter branches for a range of flow rates, mainly due to the lower shear conditions and the close cell and aggregate proximity therein. A counterintuitive decrease in the mean aggregate size was apparent in the lower flow rate branches. This was attributed to the existence of regions depleted by aggregates of certain sizes in the parent branch, and to the change in the exact flow split location in the T-junction with flow ratio. The findings of the present investigation may have significant implications for microvascular flows and may help explain why the effects of physiological RBC aggregation are not deleterious in terms of in vivo vascular resistance.

  16. Partitioning of red blood cell aggregates in bifurcating microscale flows

    PubMed Central

    Kaliviotis, E.; Sherwood, J. M.; Balabani, S.

    2017-01-01

    Microvascular flows are often considered to be free of red blood cell aggregates, however, recent studies have demonstrated that aggregates are present throughout the microvasculature, affecting cell distribution and blood perfusion. This work reports on the spatial distribution of red blood cell aggregates in a T-shaped bifurcation on the scale of a large microvessel. Non-aggregating and aggregating human red blood cell suspensions were studied for a range of flow splits in the daughter branches of the bifurcation. Aggregate sizes were determined using image processing. The mean aggregate size was marginally increased in the daughter branches for a range of flow rates, mainly due to the lower shear conditions and the close cell and aggregate proximity therein. A counterintuitive decrease in the mean aggregate size was apparent in the lower flow rate branches. This was attributed to the existence of regions depleted by aggregates of certain sizes in the parent branch, and to the change in the exact flow split location in the T-junction with flow ratio. The findings of the present investigation may have significant implications for microvascular flows and may help explain why the effects of physiological RBC aggregation are not deleterious in terms of in vivo vascular resistance. PMID:28303921

  17. Aggregation and Gelation of Anisometric Colloidal Particles

    NASA Astrophysics Data System (ADS)

    Mohraz, Ali; Solomon, Michael J.

    2002-11-01

    The quiescent and flow-induced structure and dynamics of colloidal aggregates and gels of anisometric particles are studied by means of static and dynamic light scattering. Ground-based studies of weak gels are possible due to the submicron size of the boehmite rod suspensions investigated; however, microgravity conditions would be required for more general studies. The properties of colloidal rod suspensions are compared to typical properties of spherical particle gels to understand the role of anisotropic excluded volume on gel structure and dynamics. The structure and dynamics of colloidal aggregates and gels have long been of scientific and technological interest; however, most research has focused on suspensions of spherical particles. Yet, aggregates and gels of anisometric particles - colloidal rods and platelets - may exhibit structure and dynamics that are quite different from spherical colloids. For example, suspensions of colloidal rods gel at extremely low volume fractions and form birefringent sediments. The rheology of solutions and gels of colloidal rods and platelets differs dramatically from that of colloidal spheres. Scientifically, studies with anisometric particles offer the opportunity to assess the role of anisotropic excluded volume and particle orientation in aggregates and gels. Technologically, anisometric colloids find use in a wide range of materials such as ceramics, polymer nanocomposites, well-bore drilling fluids and magnetic storage media. Model colloidal boehmite rods of approximately monodisperse dimension and aspect ratio have been synthesized according to the method of Philipse and coworkers. In aqueous solution, these materials undergo gelation upon the addition of divalent salt. By means of a novel grafting reaction and procedure for solvent refractive index matching, the rods have also been dispersed in mixed organic solvents. In this case, gelation is induced by means of depletion interaction. We report the effect of

  18. Hybrid superconducting magnetic suspensions

    SciTech Connect

    Tixador, P.; Hiebel, P.; Brunet, Y.

    1996-07-01

    Superconductors, especially high T{sub c} ones, are the most attractive materials to design stable and fully passive magnetic suspensions which have to control five degrees of freedom. The hybrid superconducting magnetic suspensions present high performances and a simple cooling mode. They consist of a permanent magnet bearing, stabilized by a suitable magnet-superconductor structure. Several designs are given and compared in terms of forces and stiffnesses. The design of the magnet bearing plays an important part. The superconducting magnetic bearing participates less in levitation but must provide a high stabilizing stiffness. This is achieved by the magnet configuration, a good material in term of critical current density and field cooling. A hybrid superconducting suspension for a flywheel is presented. This system consists of a magnet thrust bearing stabilized by superconductors interacting with an alternating polarity magnet structure. First tests and results are reported. Superconducting materials are magnetically melt-textured YBaCuO.

  19. Thermal transport phenomena in nanoparticle suspensions

    NASA Astrophysics Data System (ADS)

    Cardellini, Annalisa; Fasano, Matteo; Bozorg Bigdeli, Masoud; Chiavazzo, Eliodoro; Asinari, Pietro

    2016-12-01

    Nanoparticle suspensions in liquids have received great attention, as they may offer an approach to enhance thermophysical properties of base fluids. A good variety of applications in engineering and biomedicine has been investigated with the aim of exploiting the above potential. However, the multiscale nature of nanosuspensions raises several issues in defining a comprehensive modelling framework, incorporating relevant molecular details and much larger scale phenomena, such as particle aggregation and their dynamics. The objectives of the present topical review is to report and discuss the main heat and mass transport phenomena ruling macroscopic behaviour of nanosuspensions, arising from molecular details. Relevant experimental results are included and properly put in the context of recent observations and theoretical studies, which solved long-standing debates about thermophysical properties enhancement. Major transport phenomena are discussed and in-depth analysis is carried out for highlighting the role of geometrical (nanoparticle shape, size, aggregation, concentration), chemical (pH, surfactants, functionalization) and physical parameters (temperature, density). We finally overview several computational techniques available at different scales with the aim of drawing the attention on the need for truly multiscale predictive models. This may help the development of next-generation nanoparticle suspensions and their rational use in thermal applications.

  20. Modeling of concentrated suspensions

    NASA Astrophysics Data System (ADS)

    van den Brule, B. H. A. A.; Jongschaap, R. J. J.

    1991-03-01

    The constitutive equation of a concentrated suspension of spherical particles in a Newtonian medium is derived. To this end the method of local volume averaging is employed. To calculate the contribution of the particles to the stress tensor it is assumed that the stress generated in the interstitial holes between the particles is negligible compared to the stress generated in !he narrow gaps separating the particles. The use of the resulting expression is demonstrated with two examples on a cubical arrangement of particles: pure shear and simple shear. Furthermore, the validity of the lubrication approximation employed in this work is checked against the results derived by Nunan and Keller for periodic suspensions.

  1. Bacterial suspensions under flow

    NASA Astrophysics Data System (ADS)

    Clement, Eric; Lindner, Anke; Douarche, Carine; Auradou, Harold

    2016-11-01

    Fluids laden with motile bacteria enter in the category of active matter, a new field currently developing at the convergence of biology, hydrodynamics and statistical physics. Such suspensions were shown recently to exhibit singular macroscopic transport properties. In this paper we review some recent results, either theoretical or experimental, on the active fluid rheology. We focus principally on bacteria suspensions and the objective is to provide the basis for understanding the emergence of the singular constitutive relations characterizing the macroscopic transport properties of such an active fluid under flow.

  2. Magnetic Suspension Technology Workshop

    NASA Technical Reports Server (NTRS)

    Keckler, Claude R. (Editor); Groom, Nelson J. (Editor); Britcher, Colin P. (Editor)

    1993-01-01

    In order to identify the state of magnetic suspension technology in such areas as rotating systems, pointing of experiments or subsystems, payload isolation, and superconducting materials, a workshop on Magnetic Suspension Technology was held at the Langley Research Center in Hampton, Virginia, on 2-4 Feb. 1988. The workshop included five technical sessions in which a total of 24 papers were presented. The technical sessions covered the areas of pointing, isolation, and measurement, rotating systems, modeling and control, and superconductors. A list of attendees is provided.

  3. Thermodynamics of Protein Aggregation

    NASA Astrophysics Data System (ADS)

    Osborne, Kenneth L.; Barz, Bogdan; Bachmann, Michael; Strodel, Birgit

    Amyloid protein aggregation characterizes many neurodegenerative disorders, including Alzheimer's, Parkinson's, and Creutz- feldt-Jakob disease. Evidence suggests that amyloid aggregates may share similar aggregation pathways, implying simulation of full-length amyloid proteins is not necessary for understanding amyloid formation. In this study we simulate GNNQQNY, the N-terminal prion-determining domain of the yeast protein Sup35 to investigate the thermodynamics of structural transitions during aggregation. We use a coarse-grained model with replica-exchange molecular dynamics to investigate the association of 3-, 6-, and 12-chain GNNQQNY systems and we determine the aggregation pathway by studying aggregation states of GN- NQQNY. We find that the aggregation of the hydrophilic GNNQQNY sequence is mainly driven by H-bond formation, leading to the formation of /3-sheets from the very beginning of the assembly process. Condensation (aggregation) and ordering take place simultaneously, which is underpinned by the occurrence of a single heat capacity peak only.

  4. Networking and rheology of concentrated clay suspensions "matured" in mineral medicinal water.

    PubMed

    Aguzzi, Carola; Sánchez-Espejo, Rita; Cerezo, Pilar; Machado, José; Bonferoni, Cristina; Rossi, Silvia; Salcedo, Inmaculada; Viseras, César

    2013-09-10

    This work studied the influence of "maturation" conditions (time and agitation) on aggregation states, gel structure and rheological behaviour of a special kind of pharmaceutical semisolid products made of concentrated clay suspensions in mineral medicinal water. Maturation of the samples was carried out in distilled and sulphated mineral medicinal water, both in static conditions (without agitation) and with manual stirring once a week, during a maximum period of three months. At the measured pH interval (7.5-8.0), three-dimensional band-type networks resulting from face/face contacts were predominant in the laminar (disc-like) clay suspensions, whereas the fibrous (rod-like) particles formed micro-aggregates by van der Waals attractions. The high concentration of solids in the studied systems greatly determined their behaviour. Rod-like sepiolite particles tend to align the major axis in aggregates promoted by low shearing maturation, whereas aggregates of disc-like smectite particles did not have a preferential orientation and their complete swelling required long maturation time, being independent of stirring. Maturation of both kinds of suspensions resulted in improved rheological properties. Laminar clay suspensions became more structured with time, independently from static or dynamic maturation conditions, whereas for fibrous clay periodic agitation was also required. Rheological properties of the studied systems have been related to aggregation states and networking mechanisms, depending on the type of clay minerals constituents. Physical stability of the suspensions was not impaired by the specific composition of the Graena medicinal water.

  5. Keep solids in suspension

    SciTech Connect

    Gladki, H.Z.

    1997-10-01

    Mixing is an important operation in the CPI. It is not synonymous with agitation. Mixing is a random distribution into and through one another of two or more initially separate phases. Within that broad definition is the important specialty area of liquid-solid dispersion. This paper addresses the dispersion of solids in lower concentrations that don`t affect the rheological properties of the fluid. The just suspended condition represents the lowest grade of complete suspension, but this level of agitation is the most efficient for solids-liquid agitation. Higher mixing speeds waste energy. Undersized mixers need replacing. The top-entering mixer has a long history in the CPI and the environmental area. Many suspension studies were run with this type. These papers result in empirical correlations for just suspension conditions to scale up from laboratory measurement. Variables considered are the agitation speed, liquid and solids physical properties, solids concentration, system geometry and impeller type. Lately, submersible mixers are becoming more popular, but there are no published sizing methods. This article will explain how to define the critical hydraulic conditions in the tank to reach just solids suspension for a submersible agitator of the type described here as FJFA (Free Jet Flow Agitator).

  6. Flywheel Magnetic Suspension Developments

    NASA Technical Reports Server (NTRS)

    Palazzolo, Alan; Kenny, Andrew; Sifford, Curtiss; Thomas, Erwin; Bhuiyan, Mohammad; Provenza, Andrew; Kascak, Albert; Montague, Gerald; Lei, Shuliang; Kim, Yeonkyu; Sun, Guangyoung; Chon, ChonHee; Tucker, Randy; Preuss, Jason; Li, Ming; Minihan, Thomas

    2002-01-01

    The paper provides an overview of many areas of the flywheel magnetic suspension (MS) R&D being performed at the Texas A&M Vibration Control and Electromechanics Lab (TAMU-VCEL). This includes system response prediction, actuator optimization and redundancy, controller realizations and stages, sensor enhancements and backup bearing reliability.

  7. Crewbot Suspension Design

    NASA Technical Reports Server (NTRS)

    Wood, Nathan A.

    2005-01-01

    Planetary Surface Robot Work Crews (RWC) represent a new class of construction robots for future deployment in planetary exploration. Rovers currently being used for the RWC platform lack the load carrying capabilities required in regular work. Two new rovers, dubbed CrewBots, being designed in JPL's Planetary Robotics Lab specifically for RWC applications greatly increase the load carrying capabilities of the platform. A major component of the rover design was the design of the rocker type suspension, which increases rover mobility. The design of the suspension for the Crewbots departed from the design of recent rovers. While many previous rovers have used internal bevel gear differentials, the increased load requirements of the Crewbots calls for a more robust system. The solution presented is the use of an external modified three-bar, slider-linkage, rocker-style suspension that increases the moment arm of the differential. The final product is a suspension system capable of supporting the extreme loading cases the RWC platform presents, without consuming a large portion of the Crewbots' internal space.

  8. Alternatives to Student Suspension

    ERIC Educational Resources Information Center

    Robinett, David

    2012-01-01

    Seven years ago, James A. Garfield High School in East Los Angeles set a school record with 613 student suspensions, out of a total enrollment of 5,000 students. The school, made famous by the 1988 film "Stand and Deliver", was no stranger to the high rates of student discipline all too common within the Los Angeles Unified School…

  9. Viscosity of colloidal suspensions

    SciTech Connect

    Cohen, E.G.D.; Schepper, I.M. de

    1995-12-31

    Simple expressions are given for the effective Newtonian viscosity as a function of concentration as well as for the effective visco-elastic response as a function of concentration and imposed frequency, of monodisperse neutral colloidal suspensions over the entire fluid range. The basic physical mechanisms underlying these formulae are discussed. The agreement with existing experiments is very good.

  10. Clustering in Bubble Suspensions

    NASA Astrophysics Data System (ADS)

    Zenit, Roberto

    2000-11-01

    A monidisperse bubble suspension is studied experimentally for the limit in which the Weber number is small and the Reynolds number is large. For this regime the suspension can be modeled using potential flow theory to describe the dynamics of the interstitial fluid. Complete theoretical descriptions have been composed (Spelt and Sangani, 1998) to model the behavior of these suspensions. Bubble clustering is a natural instability that arises from the potential flow considerations, in which bubbles tend to align in horizontal rafts as they move upwards. The appearance of bubble clusters was recently corroborated experimentally by Zenit et al. (2000), who found that although clusters did appear, their strength was not as strong as the predictions. Experiments involving gravity driven shear flows are used to explain the nature of the clustering observed in these type of flows. Balances of the bubble phase pressure (in terms of a calculated diffusion coefficient) and the Maxwell pressure (from the potential flow description) are presented to predict the stability of the bubble suspension. The predictions are compared with experimental results.

  11. On mean type aggregation.

    PubMed

    Yager, R R

    1996-01-01

    We introduce and define the concept of mean aggregation of a collection of n numbers. We point out that the lack of associativity of this operation compounds the problem of the extending mean of n numbers to n+1 numbers. The closely related concepts of self identity and the centering property are introduced as one imperative for extending mean aggregation operators. The problem of weighted mean aggregation is studied. A new concept of prioritized mean aggregation is then introduced. We next show that the technique of selecting an element based upon the performance of a random experiment can be considered as a mean aggregation operation.

  12. Coarsening mechanics of a colloidal suspension in toggled fields.

    PubMed

    Bauer, Jonathan L; Liu, Yifei; Kurian, Martin J; Swan, James W; Furst, Eric M

    2015-08-21

    Suspensions of paramagnetic colloids are driven to phase separate and self-assemble in toggled magnetic fields. At field strengths above 575 A/m and toggle frequencies between 0.66 and 2 Hz, an initial gel-like, arrested network collapses into condensed, ellipsoidal aggregates. The evolution to this equilibrium structure occurs via a Rayleigh-Plateau instability. The toggle frequency ν determines the fluidity of the breakup process. At frequencies between 0.66 and 1.5 Hz, the suspension breaks up similar to a viscous, Newtonian fluid. At frequencies ν > 1.5 Hz, the network ruptures like a viscoplastic material. The field strength alters the onset time of the instability. A power law relationship emerges as the scaled frequency and field strength can be used to predict the onset of breakup. These results further aid in understanding the mechanics and dynamics of the phase separation process of suspensions of polarizable colloids in toggled external fields.

  13. Emergence of flat cells from glia in stationary cultures of embryonic chick neural retina.

    PubMed

    Moyer, M; Bullrich, F; Sheffield, J B

    1990-11-01

    When embryonic retina is dissociated into a single cell suspension and maintained in stationary culture, a population of flat cells is found on the culture dish. We have carried out a morphologic and immunologic study of the emergence of this population in vitro. Ten- and fourteen-day-old chick embryo retinas were dissociated with trypsin, seeded on glass cover slips for various times, and prepared for scanning electron microscopy (SEM) and immunofluorescence (IF) for Vimentin, an intermediate filament protein. SEM indicates that the characteristic flat cell morphology is initiated in some cells in as little as 30 min after the start of the culture. Not all of the cells that attach flatten. As incubation proceeds, small clusters of cells that had formed in suspension attach to the substrate, and flat cells emerge from them. The flattened cells are positive for Vimentin by IF within 10 min of attachment. The percent of fluorescent cells found on the substrate is constant during the time in culture. This suggests that flat cells do not attach first, followed by neural cells, but that the neural cells and flat cells attach to the dish at the same rate. When aggregates that had formed in suspension attach to the substrate, they are anchored by flat cells that migrate out of the aggregate. Since Vimentin appears in the cultured cells within 10 min, it is unlikely that it has been newly synthesized. Thus, the same cells that contained Vimentin in the retina now express it as flat cells. This supports the hypothesis that flat cells derive from the same cells in the retina that give rise to Müller cells. We have also observed the emergence of a population of cells with short (0.5 micron) microvilli that appear within 8 h of culture. They seem to be a distinct subpopulation of the cells on the upper portion of attached clusters.

  14. Space applications of diamagnetic suspensions

    NASA Technical Reports Server (NTRS)

    Pelrine, Ronald E.

    1992-01-01

    Conventional noncontact magnetic suspensions require power and sensor feedback to maintain stability of the levitated object. Magnetic suspensions using superconductors require neither power nor feedback for stability but must be maintained at low temperatures. This paper discusses a little known type of magnetic bearing that does not require power, sensor feedback, or cooling: diamagnetic suspension. While the bearing pressure for diamagnetic suspensions is typically limited to 1 g/sq cm, their simplicity, environmental tolerances, and wide range of material choices suggest that they may be useful for a number of space applications. This paper discusses the fundamentals of diamagnetic suspensions as well as their potential space applications.

  15. Considering the formation of hematite spherules on Mars by freezing aqueous hematite nanoparticle suspensions

    NASA Astrophysics Data System (ADS)

    Sexton, M. R.; Elwood Madden, M. E.; Swindle, A. L.; Hamilton, V. E.; Bickmore, B. R.; Elwood Madden, A. S.

    2017-04-01

    The enigmatic and unexpected occurrence of coarse crystalline (gray) hematite spherules at Terra Meridiani on Mars in association with deposits of jarosite-rich sediments fueled a variety of hypotheses to explain their origin. In this study, we tested the hypothesis that freezing of aqueous hematite nanoparticle suspensions, possibly produced from low-temperature weathering of jarosite-bearing deposits, could produce coarse-grained hematite aggregate spherules. We synthesized four hematite nanoparticle suspensions with a range of sizes and morphologies and performed freezing experiments. All sizes of hematite nanoparticles rapidly aggregate during freezing. Regardless of the size or shape of the initial starting material, they rapidly collect into aggregates that are then too big to push in front of a stable advancing ice front, leading to incohesive masses of particles, rather than solid spherules. We also explored the effects of "seed" silicates, a matrix of sand grains, various concentrations of NaCl and CaCl2, and varying the freezing temperature on hematite nanoparticle aggregation. However, none of these factors resulted in mm-scale spherical aggregates. By comparing our measured freezing rates with empirical and theoretical values from the literature, we conclude that the spherules on Mars could not have been produced through the freezing of aqueous hematite nanoparticle suspensions; ice crystallization front instability disrupts the aggregation process and prevents the formation of mm-scale continuous aggregates.

  16. Articulated Suspension Without Springs

    NASA Technical Reports Server (NTRS)

    Bickler, Donald B.

    1990-01-01

    Wheels negotiate bumps and holes with minimal tilting of vehicle body. In new suspension, wheel climbs obstacle as high as 1 1/2 times its diameter without excessive tilting of chassis. Provides highly stable ride over rough ground for such vehicles as wheelchairs, military scout cars, and police and fire robots. System of levers distributes weight to wheels. Sized to distribute equal or other desired portions of load among wheels.

  17. Assessment of formulation robustness for nano-crystalline suspensions using failure mode analysis or derisking approach.

    PubMed

    Nakach, Mostafa; Authelin, Jean-René; Voignier, Cecile; Tadros, Tharwat; Galet, Laurence; Chamayou, Alain

    2016-06-15

    The small particle size of nano-crystalline suspensions can be responsible for their physical instability during drug product preparation (downstream processing), storage and administration. For that purpose, the commercial formulation needs to be sufficiently robust to various triggering conditions, such as ionic strength, shear rate, wetting/dispersing agent desorption by dilution, temperature and pH variation. In our previous work we described a systematic approach to select the suitable wetting/dispersant agent for the stabilization of nano-crystalline suspension. In this paper, we described the assessment of the formulation robustness (stabilized using a mixture of sodium dodecyl sulfate (SDS) and polyvinylpyrrolidone (PVP) and) by measuring the rate of perikinetic (diffusion-controlled) and orthokinetic (shear-induced) aggregation as a function of ionic strength, temperature, pH and dilution. The results showed that, using the SDS/PVP system, the critical coagulation concentration is about five times higher than that observed in the literature for suspension colloidaly stable at high concentration. The nano-suspension was also found to be very stable at ambient temperature and at different pH conditions. Desorption test confirmed the high affinity between API and wetting/dispersing agent. However, the suspension undergoes aggregation at high temperature due to the desorption of the wetting/dispersing agent and disaggregation of SDS micelles. Furthermore, aggregation occurs at very high shear rate (orhokinetic aggregation) by overcoming the energy barrier responsible for colloidal stability of the system.

  18. A rapid method for simultaneous evaluation of free light chain content and aggregate content in culture media of Chinese hamster ovary cells expressing monoclonal antibodies for cell line screening.

    PubMed

    Ishii, Yoichi; Tsukahara, Masayoshi; Wakamatsu, Kaori

    2016-04-01

    The goal of developing a monoclonal antibody (mAb) production process is high productivity and high quality. Because the productivity and quality of mAbs depend on cell line properties, the selection of cell lines suitable for large-scale production is an important stage in process development for mAb production. The light chain (LC) is important for antibody folding and assembly in the endoplasmic reticulum; cell lines that secrete a large amount of LCs in the medium secrete high-quality antibodies with high productivity. LC contents in culture media have been estimated by western blotting, reverse-phase high-performance liquid chromatography, and enzyme-linked immunosorbent assay. However, these analyses require fine tuning of experimental conditions for each antibody analyzed. Here we report a rapid and simple high-sensitivity size-exclusion chromatography (HS-SEC) method to evaluate the contents of low-molecular weight species (LMWS, mainly consisting of LC monomers and dimers) and high-molecular weight species (HMWS, aggregates) in the media for cell line screening. Because LMWS and HMWS are important indicators of productivity and quality, respectively, for cell line screening, HS-SEC will be useful in the first step of cell line selection needed for large-scale production.

  19. Dense Suspension Splash

    NASA Astrophysics Data System (ADS)

    Zhang, Wendy; Dodge, Kevin M.; Peters, Ivo R.; Ellowitz, Jake; Klein Schaarsberg, Martin H.; Jaeger, Heinrich M.

    2014-03-01

    Upon impact onto a solid surface at several meters-per-second, a dense suspension plug splashes by ejecting liquid-coated particles. We study the mechanism for splash formation using experiments and a numerical model. In the model, the dense suspension is idealized as a collection of cohesionless, rigid grains with finite surface roughness. The grains also experience lubrication drag as they approach, collide inelastically and rebound away from each other. Simulations using this model reproduce the measured momentum distribution of ejected particles. They also provide direct evidence supporting the conclusion from earlier experiments that inelastic collisions, rather than viscous drag, dominate when the suspension contains macroscopic particles immersed in a low-viscosity solvent such as water. Finally, the simulations reveal two distinct routes for splash formation: a particle can be ejected by a single high momentum-change collision. More surprisingly, a succession of small momentum-change collisions can accumulate to eject a particle outwards. Supported by NSF through its MRSEC program (DMR-0820054) and fluid dynamics program (CBET-1336489).

  20. Stress in dilute suspensions

    NASA Technical Reports Server (NTRS)

    Passman, Stephen L.

    1989-01-01

    Generally, two types of theory are used to describe the field equations for suspensions. The so-called postulated equations are based on the kinetic theory of mixtures, which logically should give reasonable equations for solutions. The basis for the use of such theory for suspensions is tenuous, though it at least gives a logical path for mathematical arguments. It has the disadvantage that it leads to a system of equations which is underdetermined, in a sense that can be made precise. On the other hand, the so-called averaging theory starts with a determined system, but the very process of averaging renders the resulting system underdetermined. A third type of theory is proposed in which the kinetic theory of gases is used to motivate continuum equations for the suspended particles. This entails an interpretation of the stress in the particles that is different from the usual one. Classical theory is used to describe the motion of the suspending medium. The result is a determined system for a dilute suspension. Extension of the theory to more concentrated systems is discussed.

  1. The Tail Suspension Test

    PubMed Central

    Terrillion, Chantelle E.; Piantadosi, Sean C.; Bhat, Shambhu; Gould, Todd D.

    2012-01-01

    The tail-suspension test is a mouse behavioral test useful in the screening of potential antidepressant drugs, and assessing of other manipulations that are expected to affect depression related behaviors. Mice are suspended by their tails with tape, in such a position that it cannot escape or hold on to nearby surfaces. During this test, typically six minutes in duration, the resulting escape oriented behaviors are quantified. The tail-suspension test is a valuable tool in drug discovery for high-throughput screening of prospective antidepressant compounds. Here, we describe the details required for implementation of this test with additional emphasis on potential problems that may occur and how to avoid them. We also offer a solution to the tail climbing behavior, a common problem that renders this test useless in some mouse strains, such as the widely used C57BL/6. Specifically, we prevent tail climbing behaviors by passing mouse tails through a small plastic cylinder prior to suspension. Finally, we detail how to manually score the behaviors that are manifested in this test. PMID:22315011

  2. Comparative Proteomics of Ovarian Cancer Aggregate Formation Reveals an Increased Expression of Calcium-activated Chloride Channel Regulator 1 (CLCA1)*

    PubMed Central

    Musrap, Natasha; Tuccitto, Alessandra; Karagiannis, George S.; Saraon, Punit; Batruch, Ihor; Diamandis, Eleftherios P.

    2015-01-01

    Ovarian cancer is a lethal gynecological disease that is characterized by peritoneal metastasis and increased resistance to conventional chemotherapies. This increased resistance and the ability to spread is often attributed to the formation of multicellular aggregates or spheroids in the peritoneal cavity, which seed abdominal surfaces and organs. Given that the presence of metastatic implants is a predictor of poor survival, a better understanding of how spheroids form is critical to improving patient outcome, and may result in the identification of novel therapeutic targets. Thus, we attempted to gain insight into the proteomic changes that occur during anchorage-independent cancer cell aggregation. As such, an ovarian cancer cell line, OV-90, was cultured in adherent and non-adherent conditions using stable isotope labeling with amino acids in cell culture (SILAC). Anchorage-dependent cells (OV-90AD) were grown in tissue culture flasks, whereas anchorage-independent cells (OV-90AI) were grown in suspension using the hanging-drop method. Cellular proteins from both conditions were then identified using LC-MS/MS, which resulted in the quantification of 1533 proteins. Of these, 13 and 6 proteins were up-regulated and down-regulated, respectively, in aggregate-forming cells compared with cells grown as monolayers. Relative gene expression and protein expression of candidates were examined in other cell line models of aggregate formation (TOV-112D and ES-2), which revealed an increased expression of calcium-activated chloride channel regulator 1 (CLCA1). Moreover, inhibitor and siRNA transfection studies demonstrated an apparent effect of CLCA1 on cancer cell aggregation. Further elucidation of the role of CLCA1 in the pathogenesis of ovarian cancer is warranted. PMID:26004777

  3. Comparative Proteomics of Ovarian Cancer Aggregate Formation Reveals an Increased Expression of Calcium-activated Chloride Channel Regulator 1 (CLCA1).

    PubMed

    Musrap, Natasha; Tuccitto, Alessandra; Karagiannis, George S; Saraon, Punit; Batruch, Ihor; Diamandis, Eleftherios P

    2015-07-10

    Ovarian cancer is a lethal gynecological disease that is characterized by peritoneal metastasis and increased resistance to conventional chemotherapies. This increased resistance and the ability to spread is often attributed to the formation of multicellular aggregates or spheroids in the peritoneal cavity, which seed abdominal surfaces and organs. Given that the presence of metastatic implants is a predictor of poor survival, a better understanding of how spheroids form is critical to improving patient outcome, and may result in the identification of novel therapeutic targets. Thus, we attempted to gain insight into the proteomic changes that occur during anchorage-independent cancer cell aggregation. As such, an ovarian cancer cell line, OV-90, was cultured in adherent and non-adherent conditions using stable isotope labeling with amino acids in cell culture (SILAC). Anchorage-dependent cells (OV-90AD) were grown in tissue culture flasks, whereas anchorage-independent cells (OV-90AI) were grown in suspension using the hanging-drop method. Cellular proteins from both conditions were then identified using LC-MS/MS, which resulted in the quantification of 1533 proteins. Of these, 13 and 6 proteins were up-regulated and down-regulated, respectively, in aggregate-forming cells compared with cells grown as monolayers. Relative gene expression and protein expression of candidates were examined in other cell line models of aggregate formation (TOV-112D and ES-2), which revealed an increased expression of calcium-activated chloride channel regulator 1 (CLCA1). Moreover, inhibitor and siRNA transfection studies demonstrated an apparent effect of CLCA1 on cancer cell aggregation. Further elucidation of the role of CLCA1 in the pathogenesis of ovarian cancer is warranted.

  4. Growth hormone aggregates in the rat adenohypophysis

    NASA Technical Reports Server (NTRS)

    Farrington, M.; Hymer, W. C.

    1990-01-01

    Although it has been known for some time that GH aggregates are contained within the rat anterior pituitary gland, the role that they might play in pituitary function is unknown. The present study examines this issue using the technique of Western blotting, which permitted visualization of 11 GH variants with apparent mol wt ranging from 14-88K. Electroelution of the higher mol wt variants from gels followed by their chemical reduction with beta-mercaptoethanol increased GH immunoassayability by about 5-fold. With the blot procedure we found 1) that GH aggregates greater than 44K were associated with a 40,000 x g sedimentable fraction; 2) that GH aggregates were not present in glands from thyroidectomized rats, but were in glands from the thyroidectomized rats injected with T4; 3) that GH aggregates were uniquely associated with a heavily granulated somatotroph subpopulation isolated by density gradient centrifugation; and 4) that high mol wt GH forms were released from the dense somatotrophs in culture, since treatment of the culture medium with beta-mercaptoethanol increased GH immunoassayability by about 5-fold. Taken together, the results show that high mol wt GH aggregates are contained in secretory granules of certain somatotrophs and are also released in aggregate form from these cells in vitro.

  5. Wavelength selection in measuring red blood cell aggregation based on light transmittance.

    PubMed

    Uyuklu, Mehmet; Canpolat, Murat; Meiselman, Herbert J; Baskurt, Oguz K

    2011-11-01

    The reversible aggregation of red blood cells (RBC) is of current basic science and clinical interest. Using a flow channel and light transmittance (LT) through RBC suspensions, we have examined the effects of wavelength (500 to 900 nm) on the static and dynamic aspects of RBC aggregation for normal blood and suspensions with reduced or enhanced aggregation; the effects of oxygenation were also explored. Salient observations include: 1. significant effects of wavelength on aggregation parameters reflecting the extent of aggregation (i.e., number of RBC per aggregate); 2. no significant effects of wavelength on parameters reflecting the time course of RBC aggregation; 3. a prominent influence of hemoglobin oxygen saturation on both extent and time-course related aggregation parameters measured at wavelengths less than 700 nm, but only on the time-course at 800 nm; and 4. the power of parameters in detecting a given alteration of RBC aggregation is affected by wavelength, in general being greater at higher wavelengths. It is recommended that light sources with wavelengths around 800 nm be used in instruments for measuring RBC aggregation via LT.

  6. Wavelength selection in measuring red blood cell aggregation based on light transmittance

    NASA Astrophysics Data System (ADS)

    Uyuklu, Mehmet; Canpolat, Murat; Meiselman, Herbert J.; Baskurt, Oguz K.

    2011-11-01

    The reversible aggregation of red blood cells (RBC) is of current basic science and clinical interest. Using a flow channel and light transmittance (LT) through RBC suspensions, we have examined the effects of wavelength (500 to 900 nm) on the static and dynamic aspects of RBC aggregation for normal blood and suspensions with reduced or enhanced aggregation; the effects of oxygenation were also explored. Salient observations include: 1. significant effects of wavelength on aggregation parameters reflecting the extent of aggregation (i.e., number of RBC per aggregate); 2. no significant effects of wavelength on parameters reflecting the time course of RBC aggregation; 3. a prominent influence of hemoglobin oxygen saturation on both extent and time-course related aggregation parameters measured at wavelengths less than 700 nm, but only on the time-course at 800 nm; and 4. the power of parameters in detecting a given alteration of RBC aggregation is affected by wavelength, in general being greater at higher wavelengths. It is recommended that light sources with wavelengths around 800 nm be used in instruments for measuring RBC aggregation via LT.

  7. Characterization of Ovine Dermal Papilla Cell Aggregation

    PubMed Central

    Sari, Agnes Rosarina Prita; Rufaut, Nicholas Wolfgang; Jones, Leslie Norman; Sinclair, Rodney Daniel

    2016-01-01

    Context: The dermal papilla (DP) is a condensation of mesenchymal cells at the proximal end of the hair follicle, which determines hair shaft size and regulates matrix cell proliferation and differentiation. DP cells have the ability to regenerate new hair follicles. These cells tend to aggregate both in vitro and in vivo. This tendency is associated with the ability of papilla cells to induce hair growth. However, human papilla cells lose their hair-inducing activity in later passage number. Ovine DP cells are different from human DP cells since they do not lose their aggregative behavior or hair-inducing activity in culture. Nonetheless, our understanding of ovine DP cells is still limited. Aim: The aim of this study was to observe the expression of established DP markers in ovine cells and their association with aggregation. Subjects and Methods: Ovine DP cells from three different sheep were compared. Histochemistry, immunoflourescence, and polymerase chain reaction experiments were done to analyze the DP markers. Results: We found that ovine DP aggregates expressed all the 16 markers evaluated, including alkaline phosphatase and versican. Expression of the versican V0 and V3 isoforms, neural cell adhesion molecule, and corin was increased significantly with aggregation, while hey-1 expression was significantly decreased. Conclusions: Overall, the stable expression of numerous markers suggests that aggregating ovine DP cells have a similar phenotype to papillae in vivo. The stability of their molecular phenotype is consistent with their robust aggregative behavior and retained follicle-inducing activity after prolonged culture. Their phenotypic stability in culture contrasts with DP cells from other species, and suggests that a better understanding of ovine DP cells might provide opportunities to improve the hair-inducing activity and therapeutic potential of human cells. PMID:27625564

  8. Novel oral suspensions: a review.

    PubMed

    Kathpalia, Harsha; Phadke, Chetan

    2014-01-01

    An oral pharmaceutical suspension has been one of the most favorable dosage forms for pediatric and geriatric patients or patients unable to tolerate solid dosage forms. The liquid form is preferred because of the ease of swallowing and flexibility in the administration of doses. This emerging area of suspensions as applied to the pharmaceutical field are discussed in the current article enlightening the vision of the readers towards pharmaceutical formulations including nanosuspensions, non-aqueous suspensions and modified release suspensions. The emphasis in the article focuses on the essential principles involved in the process of formation of different types of suspensions and their applications, since novel oral suspensions have potential to provide various strategy systems.

  9. Fimbriae and lipopolysaccharides are necessary for co-aggregation between Lactobacilli and Escherichia coli.

    PubMed

    Mizuno, Kouhei; Furukawa, Soichi; Usui, Yumi; Ishiba, Madoka; Ogihara, Hirokazu; Morinaga, Yasushi

    2014-01-01

    Cells of Lactobacilli co-aggregated with Escherichia coli K-12 cells to form co-aggregates under mixed-culture conditions at 37 °C for 24 h. Co-aggregation was inhibited by sodium dodecyl sulfate but not by protease. E. coli deletion mutants of fimbriae formation and lipopolysaccharide (LPS) formation did not co-aggregate with Lactobacilli. These results showed that fimbriae and LPS are necessary for co-aggregation between Lactobacilli and E. coli.

  10. Aggregations in Flatworms.

    ERIC Educational Resources Information Center

    Liffen, C. L.; Hunter, M.

    1980-01-01

    Described is a school project to investigate aggregations in flatworms which may be influenced by light intensity, temperature, and some form of chemical stimulus released by already aggregating flatworms. Such investigations could be adopted to suit many educational levels of science laboratory activities. (DS)

  11. Unbonded Aggregate Surface Roads

    DTIC Science & Technology

    2006-12-01

    are sufficiently angular and rough in texture, thus ensuring mixture stability. A popular asphalt mixture design method called Superpave Level 1...would not pass either of the Superpave aggregate requirements. Table 18 Additional Characteristics for the Fine Fraction Abbreviated Common Name...CBR values when compacted wet of optimum. This is likely attributable to their relatively high permeabilities . For soaked CBR tests, the aggregates

  12. Erosion of dust aggregates

    NASA Astrophysics Data System (ADS)

    Seizinger, A.; Krijt, S.; Kley, W.

    2013-12-01

    Aims: The aim of this work is to gain a deeper insight into how much different aggregate types are affected by erosion. Especially, it is important to study the influence of the velocity of the impacting projectiles. We also want to provide models for dust growth in protoplanetary disks with simple recipes to account for erosion effects. Methods: To study the erosion of dust aggregates we employed a molecular dynamics approach that features a detailed micro-physical model of the interaction of spherical grains. For the first time, the model has been extended by introducing a new visco-elastic damping force, which requires a proper calibration. Afterwards, different sample generation methods were used to cover a wide range of aggregate types. Results: The visco-elastic damping force introduced in this work turns out to be crucial to reproduce results obtained from laboratory experiments. After proper calibration, we find that erosion occurs for impact velocities of 5 ms-1 and above. Though fractal aggregates as formed during the first growth phase are most susceptible to erosion, we observe erosion of aggregates with rather compact surfaces as well. Conclusions: We find that bombarding a larger target aggregate with small projectiles results in erosion for impact velocities as low as a few ms-1. More compact aggregates suffer less from erosion. With increasing projectile size the transition from accretion to erosion is shifted to higher velocities. This allows larger bodies to grow through high velocity collisions with smaller aggregates.

  13. Effective Viscosity of Microswimmer Suspensions

    NASA Astrophysics Data System (ADS)

    Rafaï, Salima; Jibuti, Levan; Peyla, Philippe

    2010-03-01

    The measurement of a quantitative and macroscopic parameter to estimate the global motility of a large population of swimming biological cells is a challenge. Experiments on the rheology of active suspensions have been performed. Effective viscosity of sheared suspensions of live unicellular motile microalgae (Chlamydomonas Reinhardtii) is far greater than for suspensions containing the same volume fraction of dead cells. In addition, suspensions show shear thinning behavior. We relate these macroscopic measurements to the orientation of individual swimming cells under flow and discuss our results in the light of several existing models.

  14. Effective viscosity of microswimmer suspensions.

    PubMed

    Rafaï, Salima; Jibuti, Levan; Peyla, Philippe

    2010-03-05

    The measurement of a quantitative and macroscopic parameter to estimate the global motility of a large population of swimming biological cells is a challenge. Experiments on the rheology of active suspensions have been performed. Effective viscosity of sheared suspensions of live unicellular motile microalgae (Chlamydomonas Reinhardtii) is far greater than for suspensions containing the same volume fraction of dead cells. In addition, suspensions show shear thinning behavior. We relate these macroscopic measurements to the orientation of individual swimming cells under flow and discuss our results in the light of several existing models.

  15. Controls of maglev suspension systems

    SciTech Connect

    Cai, Y.; Zhu, S.; Chen, S.S.; Rote, D.M.

    1993-06-01

    This study investigates alternative control designs of maglev vehicle suspension systems. Active and semi-active control law designs are introduced into primary and secondary suspensions of maglev vehicles. A one-dimensional vehicle with two degrees of freedom, to simulate the German Transrapid Maglev System, is used for suspension control designs. The transient and frequency responses of suspension systems and PSDs of vehicle accelerations are calculated to evaluate different control designs. The results show that active and semi-active control designs indeed improve the response of vehicle and provide an acceptable ride comfort for maglev systems.

  16. Modelling of strongly coupled particle growth and aggregation

    NASA Astrophysics Data System (ADS)

    Gruy, F.; Touboul, E.

    2013-02-01

    The mathematical modelling of the dynamics of particle suspension is based on the population balance equation (PBE). PBE is an integro-differential equation for the population density that is a function of time t, space coordinates and internal parameters. Usually, the particle is characterized by a unique parameter, e.g. the matter volume v. PBE consists of several terms: for instance, the growth rate and the aggregation rate. So, the growth rate is a function of v and t. In classical modelling, the growth and the aggregation are independently considered, i.e. they are not coupled. However, current applications occur where the growth and the aggregation are coupled, i.e. the change of the particle volume with time is depending on its initial value v0, that in turn is related to an aggregation event. As a consequence, the dynamics of the suspension does not obey the classical Von Smoluchowski equation. This paper revisits this problem by proposing a new modelling by using a bivariate PBE (with two internal variables: v and v0) and by solving the PBE by means of a numerical method and Monte Carlo simulations. This is applied to a physicochemical system with a simple growth law and a constant aggregation kernel.

  17. Control hydrogel-hyaluronic acid aggregation toward the design of biomimetic superlubricants.

    PubMed

    Seekell, Raymond P; Dever, Rachel; Zhu, Yingxi

    2014-07-14

    Healthy synovial fluids (SFs) are complex fluids consisting of biopolymers, globule proteins, and lipids and regarded as superlubricants to provide nearly life-long low friction and wear protection of synovial joints in mammals. In this paper, we report that the intricate lubricious mixture can be simulated by the aggregation of hyaluronic acid (HA) and hydrogel particles in aqueous suspensions. In the HA aqueous suspensions added with synthetic polymer microgels, we have effectively captured the bulk rheological properties of healthy SFs. It is also confirmed by light scattering and fluorescence microscopic characterization that added hydrogel particles can enhance the HA network by hydrogel-mediated hydrogen bonding, leading to the fractal HA-hydrogel aggregating networks in aqueous suspensions. The potential application of HA-hydrogel particle aggregates as biomimetic superlubricants is supported by the comparable low friction at high load to that of healthy SFs.

  18. 20 CFR 416.1320 - Suspensions; general.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Suspensions; general. 416.1320 Section 416..., BLIND, AND DISABLED Suspensions and Terminations § 416.1320 Suspensions; general. (a) When suspension is proper. Suspension of benefit payments is required when a recipient is alive but no longer meets...

  19. Stability of zinc oxide nanofluids prepared with aggregated nanocrystalline powders.

    PubMed

    Leonard, J P; Chung, S J; Nettleship, I; Soong, Y; Martello, D V; Chyu, M K

    2008-12-01

    Aqueous zinc oxide (ZnO) suspensions were prepared using a two-step preparation method in which an aggregated nanocrystalline ZnO powder was dispersed in water using a polyelectrolyte. The fluid showed anomalously high thermal conductivity when compared with the Maxwell and Hamilton-Crosser predictions. However, analysis of the particle size distribution showed that the fluid contained aggregated 20 nm crystallites of ZnO with a high volume fraction of particles larger than 100 nm. Sedimentation experiments revealed that particles settled out of the stationary fluid over times ranging from 0.1 hours to well over 10,000 hours. The size of the particles remaining in suspension agreed well with predictions made using Stoke's law, suggesting flocculation was not occurring in the fluids. Finally, a new concept of nanofluid stability is introduced based on the height of the fluid, sedimentation, Brownian motion and the kinetic energy of the particles.

  20. Neonatal rat heart cells cultured in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Akins, Robert E.; Schroedl, Nancy A.; Gonda, Steve R.; Hartzell, Charles R.

    1994-01-01

    In vitro characteristics of cardiac cells cultured in simulated microgravity are reported. Tissue culture methods performed at unit gravity constrain cells to propagate, differentiate, and interact in a two dimensional (2D) plane. Neonatal rat cardiac cells in 2D culture organize predominantly as bundles of cardiomyocytes with the intervening areas filled by non-myocyte cell types. Such cardiac cell cultures respond predictably to the addition of exogenous compounds, and in many ways they represent an excellent in vitro model system. The gravity-induced 2D organization of the cells, however, does not accurately reflect the distribution of cells in the intact tissue. We have begun characterizations of a three-dimensional (3D) culturing system designed to mimic microgravity. The NASA designed High-Aspect-Ratio-Vessel (HARV) bioreactors provide a low shear environment which allows cells to be cultured in static suspension. HARV-3D cultures were prepared on microcarrier beads and compared to control-2D cultures using a combination of microscopic and biochemical techniques. Both systems were uniformly inoculated and medium exchanged at standard intervals. Cells in control cultures adhered to the polystyrene surface of the tissue culture dishes and exhibited typical 2D organization. Cells in cultured in HARV's adhered to microcarrier beads, the beads aggregated into defined clusters containing 8 to 15 beads per cluster, and the clusters exhibited distinct 3D layers: myocytes and fibroblasts appeared attached to the surfaces of beads and were overlaid by an outer cell type. In addition, cultures prepared in HARV's using alternative support matrices also displayed morphological formations not seen in control cultures. Generally, the cells prepared in HARV and control cultures were similar, however, the dramatic alterations in 3D organization recommend the HARV as an ideal vessel for the generation of tissue-like organizations of cardiac cells in simulated microgravity.

  1. Neonatal rat heart cells cultured in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Akins, R. E.; Schroedl, N. A.; Gonda, S. R.; Hartzell, C. R.

    1997-01-01

    In vitro characteristics of cardiac cells cultured in simulated microgravity are reported. Tissue culture methods performed at unit gravity constrain cells to propagate, differentiate, and interact in a two-dimensional (2D) plane. Neonatal rat cardiac cells in 2D culture organize predominantly as bundles of cardiomyocytes with the intervening areas filled by nonmyocyte cell types. Such cardiac cell cultures respond predictably to the addition of exogenous compounds, and in many ways they represent an excellent in vitro model system. The gravity-induced 2D organization of the cells, however, does not accurately reflect the distribution of cells in the intact tissue. We have begun characterizations of a three-dimensional (3D) culturing system designed to mimic microgravity. The NASA-designed High-Aspect Ratio Vessel (HARV) bioreactors provide a low shear environment that allows cells to be cultured in static suspension. HARV-3D cultures were prepared on microcarrier beads and compared to control-2D cultures using a combination of microscopic and biochemical techniques. Both systems were uniformly inoculated and medium exchanged at standard intervals. Cells in control cultures adhered to the polystyrene surface of the tissue culture dishes and exhibited typical 2D organization. Cells cultured in HARVs adhered to microcarrier beads, the beads aggregated into defined clusters containing 8 to 15 beads per cluster, and the clusters exhibited distinct 3D layers: myocytes and fibroblasts appeared attached to the surfaces of beads and were overlaid by an outer cell type. In addition, cultures prepared in HARVs using alternative support matrices also displayed morphological formations not seen in control cultures. Generally, the cells prepared in HARV and control cultures were similar; however, the dramatic alterations in 3D organization recommend the HARV as an ideal vessel for the generation of tissuelike organization of cardiac cells in vitro.

  2. Magnetic Suspension Technology Development

    NASA Technical Reports Server (NTRS)

    Britcher, Colin

    1998-01-01

    This Cooperative Agreement, intended to support focused research efforts in the area of magnetic suspension systems, was initiated between NASA Langley Research Center (LaRC) and Old Dominion University (ODU) starting January 1, 1997. The original proposal called for a three-year effort, but funding for the second year proved to be unavailable, leading to termination of the agreement following a 5-month no-cost extension. This report covers work completed during the entire 17-month period of the award. This research built on work that had taken place over recent years involving both NASA LARC and the Principal Investigator (PI). The research was of a rather fundamental nature, although specific applications were kept in mind at all times, such as wind tunnel Magnetic Suspension and Balance Systems (MSBS), space payload pointing and vibration isolation systems, magnetic bearings for unconventional applications, magnetically levitated ground transportation and electromagnetic launch systems. Fundamental work was undertaken in areas such as the development of optimized magnetic configurations, analysis and modelling of eddy current effects, control strategies for magnetically levitated wind tunnel models and system calibration procedures. Despite the termination of this Cooperative Agreement, several aspects of the research work are currently continuing with alternative forms of support.

  3. Dense suspension splash

    NASA Astrophysics Data System (ADS)

    Dodge, Kevin M.; Peters, Ivo R.; Ellowitz, Jake; Schaarsberg, Martin H. Klein; Jaeger, Heinrich M.; Zhang, Wendy W.

    2014-11-01

    Impact of a dense suspension drop onto a solid surface at speeds of several meters-per-second splashes by ejecting individual liquid-coated particles. Suppression or reduction of this splash is important for thermal spray coating and additive manufacturing. Accomplishing this aim requires distinguishing whether the splash is generated by individual scattering events or by collective motion reminiscent of liquid flow. Since particle inertia dominates over surface tension and viscous drag in a strong splash, we model suspension splash using a discrete-particle simulation in which the densely packed macroscopic particles experience inelastic collisions but zero friction or cohesion. Numerical results based on this highly simplified model are qualitatively consistent with observations. They also show that approximately 70% of the splash is generated by collective motion. Here an initially downward-moving particle is ejected into the splash because it experiences a succession of low-momentum-change collisions whose effects do not cancel but instead accumulate. The remainder of the splash is generated by scattering events in which a small number of high-momentum-change collisions cause a particle to be ejected upwards. Current Address: Physics of Fluids Group, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.

  4. Charged Dust Aggregate Interactions

    NASA Astrophysics Data System (ADS)

    Matthews, Lorin; Hyde, Truell

    2015-11-01

    A proper understanding of the behavior of dust particle aggregates immersed in a complex plasma first requires a knowledge of the basic properties of the system. Among the most important of these are the net electrostatic charge and higher multipole moments on the dust aggregate as well as the manner in which the aggregate interacts with the local electrostatic fields. The formation of elongated, fractal-like aggregates levitating in the sheath electric field of a weakly ionized RF generated plasma discharge has recently been observed experimentally. The resulting data has shown that as aggregates approach one another, they can both accelerate and rotate. At equilibrium, aggregates are observed to levitate with regular spacing, rotating about their long axis aligned parallel to the sheath electric field. Since gas drag tends to slow any such rotation, energy must be constantly fed into the system in order to sustain it. A numerical model designed to analyze this motion provides both the electrostatic charge and higher multipole moments of the aggregate while including the forces due to thermophoresis, neutral gas drag, and the ion wakefield. This model will be used to investigate the ambient conditions leading to the observed interactions. This research is funded by NSF Grant 1414523.

  5. Aggregate and the environment

    USGS Publications Warehouse

    Langer, William H.; Drew, Lawrence J.; Sachs, J.S.

    2004-01-01

    This book is designed to help you understand our aggregate resources-their importance, where they come from, how they are processed for our use, the environmental concerns related to their mining and processing, how those concerns are addressed, and the policies and regulations designed to safeguard workers, neighbors, and the environment from the negative impacts of aggregate mining. We hope this understanding will help prepare you to be involved in decisions that need to be made-individually and as a society-to be good stewards of our aggregate resources and our living planet.

  6. 48 CFR 209.407 - Suspension.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Suspension. 209.407... OF DEFENSE ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS Debarment, Suspension, and Ineligibility 209.407 Suspension....

  7. 75 FR 27923 - Nonprocurement Debarment and Suspension

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-19

    ... 3150-AI76 Nonprocurement Debarment and Suspension AGENCY: Nuclear Regulatory Commission. ACTION: Final... nonprocurement debarment and suspension. These regulations cover grants, cooperative agreements and other...) guidance on nonprocurement debarment and suspension found in OMB's regulations. DATES: Effective June...

  8. Flow properties of concentrated suspensions

    NASA Technical Reports Server (NTRS)

    Hattori, K.; Izumi, K.

    1984-01-01

    The viscosity and flow behavior of a concentrated suspension, with special emphasis on fresh concrete containing a superplasticizer, is analyzed according to Newton's law of viscosity. The authors interpreted Newton's law in a new way, and explain non-Newton flow from Newton's law. The outline of this new theory is given. Viscosity of suspensions, and the effect of dispersants are analyzed.

  9. Diesel Technology: Steering and Suspension.

    ERIC Educational Resources Information Center

    Miller, Roger; Scarberry, Terry; Tesch, Carl; Kellum, Mary

    Competency-based teacher and student materials on steering and suspension are provided for a diesel technology curriculum. Eleven units of instruction cover the following topics: chassis, tires, and wheels; steering; and suspension. The materials are based on the curriculum-alignment concept of first stating the objectives, then developing…

  10. Aggregate Morphology Evolution by Sintering: Number & Diameter of Primary Particles

    PubMed Central

    Eggersdorfer, Max L.; Kadau, Dirk; Herrmann, Hans J.; Pratsinis, Sotiris E.

    2013-01-01

    The structure of fractal-like agglomerates (physically-bonded) and aggregates (chemically- or sinter-bonded) is important in aerosol synthesis of nanoparticles, and in monitoring combustion emissions and atmospheric particles. It influences also particle mobility, scattering, and eventually performance of nanocomposites, suspensions and devices made with such particles. Here, aggregate sintering by viscous flow of amorphous materials (silica, polymers) and grain boundary diffusion of crystalline ceramics (titania, alumina) or metals (Ni, Fe, Ag etc.) is investigated. A scaling law is found between average aggregate projected area and equivalent number of constituent primary particles during sintering: from fractal-like agglomerates to aggregates and eventually compact particles (e.g. spheres). This is essentially a relation independent of time, material properties and sintering mechanisms. It is used to estimate the equivalent primary particle diameter and number in aggregates. The evolution of aggregate morphology or structure is quantified by the effective fractal dimension (Df) and mass-mobility exponent (Dfm) and the corresponding prefactors. The Dfm increases monotonically during sintering converging to 3 for a compact particle. Therefore Dfm and its prefactor could be used to gauge the degree or extent of sintering of agglomerates made by a known collision mechanism. This analysis is exemplified by comparison to experiments of silver nanoparticle aggregates sintered at different temperatures in an electric tube furnace. PMID:23658467

  11. Aggregate Morphology Evolution by Sintering: Number & Diameter of Primary Particles.

    PubMed

    Eggersdorfer, Max L; Kadau, Dirk; Herrmann, Hans J; Pratsinis, Sotiris E

    2012-04-01

    The structure of fractal-like agglomerates (physically-bonded) and aggregates (chemically- or sinter-bonded) is important in aerosol synthesis of nanoparticles, and in monitoring combustion emissions and atmospheric particles. It influences also particle mobility, scattering, and eventually performance of nanocomposites, suspensions and devices made with such particles. Here, aggregate sintering by viscous flow of amorphous materials (silica, polymers) and grain boundary diffusion of crystalline ceramics (titania, alumina) or metals (Ni, Fe, Ag etc.) is investigated. A scaling law is found between average aggregate projected area and equivalent number of constituent primary particles during sintering: from fractal-like agglomerates to aggregates and eventually compact particles (e.g. spheres). This is essentially a relation independent of time, material properties and sintering mechanisms. It is used to estimate the equivalent primary particle diameter and number in aggregates. The evolution of aggregate morphology or structure is quantified by the effective fractal dimension (Df ) and mass-mobility exponent (Dfm ) and the corresponding prefactors. The Dfm increases monotonically during sintering converging to 3 for a compact particle. Therefore Dfm and its prefactor could be used to gauge the degree or extent of sintering of agglomerates made by a known collision mechanism. This analysis is exemplified by comparison to experiments of silver nanoparticle aggregates sintered at different temperatures in an electric tube furnace.

  12. Marine aggregate dynamics

    NASA Astrophysics Data System (ADS)

    The direction and scope of the Office of Naval Research's Marine Aggregate Dynamics Accelerated Research Initiative will be the topic of an open-house style meeting February 14, 7:30-10:00 P.M. in Ballroom D of the Hyatt Regency New Orleans at the Louisiana Superdome. This meeting is scheduled during the AGU/American Society of Limnology and Oceanography Ocean Sciences Meeting February 12-16 in New Orleans.The critical focus of the ARI is the measurement and modeling of the dynamics of the biological, physical, chemical and molecular processes that drive aggregation and produce aggregates. This new ARI will provide funding in Fiscal Years 1991-1995 to identify and quantify mechanisms that determine the distribution, abundance and size spectrum of aggregated particulate matter in the ocean.

  13. Protein Colloidal Aggregation Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J. (Compiler)

    2014-01-01

    To investigate the pathways and kinetics of protein aggregation to allow accurate predictive modeling of the process and evaluation of potential inhibitors to prevalent diseases including cataract formation, chronic traumatic encephalopathy, Alzheimer's Disease, Parkinson's Disease and others.

  14. Aggregation and Averaging.

    ERIC Educational Resources Information Center

    Siegel, Irving H.

    The arithmetic processes of aggregation and averaging are basic to quantitative investigations of employment, unemployment, and related concepts. In explaining these concepts, this report stresses need for accuracy and consistency in measurements, and describes tools for analyzing alternative measures. (BH)

  15. Suspension Needn't Arrest Learning.

    ERIC Educational Resources Information Center

    Seegrist, Ruth

    1985-01-01

    An inschool suspension program at a Pennsylvania school district is described. Students spend suspension time completing classroom assignments under strict teacher supervision in detention halls. (TE)

  16. Suspensions of carbon nanofibers in organic medium: rheo-electrical properties.

    PubMed

    Youssry, Mohamed; Guyomard, Dominique; Lestriez, Bernard

    2015-12-28

    The nonaqueous suspensions of carbon nanofibers (CNFs) in 1 M lithium bis(trifluoromethanesulfonaimide) in propylene carbonate electrolyte reveal unique structural evolution and shear-induced transition due to the high aspect ratio. The rheo-electrical behavior elucidates a microstructural transition from entangled-to-aggregated networks above a distinct percolation threshold. Under shear flow, both networks show a three-regime flow curve and an inverted-bell-like conductivity curve as a consequence of shear-induced alignment (entangled network) and shear-induced breaking up (aggregated network). The different particle morphology of carbon nanofibers (anisometric) and carbon black (CB; isometric) causes different aggregation mechanisms (aggregate vs. particulate) and then varied microstructure for their suspensions in the same electrolyte. This fact explains the higher rigidity and lower electric conductivity of CNFs than CB suspensions. Interestingly, the suspension of hybrid carbons at the optimum mixing ratio merges the advantages of both carbons to operate efficiently as precursors in the formulation of electrodes for energy storage systems.

  17. Dielectric Constant of Suspensions

    NASA Astrophysics Data System (ADS)

    Mendelson, Kenneth S.; Ackmann, James J.

    1997-03-01

    We have used a finite element method to calculate the dielectric constant of a cubic array of spheres. Extensive calculations support preliminary conclusions reported previously (K. Mendelson and J. Ackmann, Bull. Am. Phys. Soc. 41), 657 (1996).. At frequencies below 100 kHz the real part of the dielectric constant (ɛ') shows oscillations as a function of the volume fraction of suspension. These oscillations disappear at low conductivities of the suspending fluid. Measurements of the dielectric constant (J. Ackmann, et al., Ann. Biomed. Eng. 24), 58 (1996). (H. Fricke and H. Curtis, J. Phys. Chem. 41), 729 (1937). are not sufficiently sensitive to show oscillations but appear to be consistent with the theoretical results.

  18. Electrorheology of nanofiber suspensions

    PubMed Central

    2011-01-01

    Electrorheological (ER) fluid, which can be transformed rapidly from a fluid-like state to a solid-like state under an external electric field, is considered to be one of the most important smart fluids. However, conventional ER fluids based on microparticles are subjected to challenges in practical applications due to the lack of versatile performances. Recent researches of using nanoparticles as the dispersal phase have led to new interest in the development of non-conventional ER fluids with improved performances. In this review, we especially focus on the recent researches on electrorheology of various nanofiber-based suspensions, including inorganic, organic, and inorganic/organic composite nanofibers. Our goal is to highlight the advantages of using anisotropic nanostructured materials as dispersal phases to improve ER performances. PMID:21711790

  19. Influence of formulation pH and suspension state on freezing-induced agglomeration of aluminum adjuvants.

    PubMed

    Salnikova, Maya S; Davis, Harrison; Mensch, Christopher; Celano, Lauren; Thiriot, David S

    2012-03-01

    Freezing and thawing of vaccines containing aluminum adjuvants can lead to formation of aggregates and loss in vaccine potency. We sought to understand whether and to what extent the freeze-thaw damage to aluminum adjuvants would differ based on suspension state (flocculation and settlement) at the time of freezing. As flocculation and settlement characteristics of aluminum adjuvants are driven largely by the electrostatic charges on the adjuvant particles, which, in turn, are strongly influenced by the pH of the suspension, we conducted freeze-thaw studies on both Adjuphos and Alhydrogel™ samples at three pH levels (4, 6.5, and 7.2) in buffer solutions with 9% sucrose. Significantly less aggregation occurred in the buffered sucrose solutions at the pH furthest from the aluminum adjuvant point of zero charge during slow freezing at -20°C. The freezing-induced aggregation for the samples with 9% sucrose at each pH was minimal during fast freezing at -70°C and -115°C. Suspensions that were flocculated and settled to a greater extent experienced the most freeze-thaw aggregation, whereas suspensions that were frozen before significant flocculation and settlement occurred showed little or no aggregation. Because pH of formulation can affect flocculation and settling time, it indirectly affects the extent of freeze-thaw aggregation.

  20. Aggregation kinetics of human mesenchymal stem cells under wave motion.

    PubMed

    Tsai, Ang-Chen; Liu, Yijun; Yuan, Xuegang; Chella, Ravindran; Ma, Teng

    2016-12-20

    Human mesenchymal stem cells (hMSCs) are primary candidates in cell therapy and regenerative medicine but preserving their therapeutic potency following culture expansion is a significant challenge. hMSCs can spontaneously assemble into three-dimensional (3D) aggregates that enhance their regenerative properties. The present study investigated the impact of hydrodynamics conditions on hMSC aggregation kinetics under controlled rocking motion. While various laboratory methods have been developed for hMSC aggregate production, the rocking platform provides gentle mixing and can be scaled up using large bags as in wave motion bioreactors. The results show that the hMSC aggregation is mediated by cell adhesion molecules and that aggregate size distribution is influenced by seeding density, culture time, and hydrodynamic conditions. The analysis of fluid shear stress by COMSOL indicated that aggregate size distribution is inversely correlated with shear stress and that the rocking angle had a more pronounced effect on aggregate size distribution than the rocking speed due to its impact on shear stress. hMSC aggregates obtained from the bioreactor exhibit increased stemness, migratory properties, and expression of angiogenic factors. The results demonstrate the potential of the rocking platform to produce hMSC aggregates with controlled size distribution for therapeutic application.

  1. Three-dimensional chemotaxis-driven aggregation of tumor cells

    PubMed Central

    Puliafito, Alberto; De Simone, Alessandro; Seano, Giorgio; Gagliardi, Paolo Armando; Di Blasio, Laura; Chianale, Federica; Gamba, Andrea; Primo, Luca; Celani, Antonio

    2015-01-01

    One of the most important steps in tumor progression involves the transformation from a differentiated epithelial phenotype to an aggressive, highly motile phenotype, where tumor cells invade neighboring tissues. Invasion can occur either by isolated mesenchymal cells or by aggregates that migrate collectively and do not lose completely the epithelial phenotype. Here, we show that, in a three-dimensional cancer cell culture, collective migration of cells eventually leads to aggregation in large clusters. We present quantitative measurements of cluster velocity, coalescence rates, and proliferation rates. These results cannot be explained in terms of random aggregation. Instead, a model of chemotaxis-driven aggregation – mediated by a diffusible attractant – is able to capture several quantitative aspects of our results. Experimental assays of chemotaxis towards culture conditioned media confirm this hypothesis. Theoretical and numerical results further suggest an important role for chemotactic-driven aggregation in spreading and survival of tumor cells. PMID:26471876

  2. Chemotaxis affects hydrodynamics in suspensions of micro-swimmers

    NASA Astrophysics Data System (ADS)

    Lushi, Enkeleida; Shelley, Michael

    2010-11-01

    Microorganisms are known to respond to a dissolved chemical substance by moving preferentially away or toward its source. We study such chemotactic responses at the population level when micro-swimmers are hydrodynamically coupled. To do this we couple a recently developed kinetic model of motile suspension dynamics with a field equation for a chemical substance that diffuses and is advected by the large-scale fluid flows created by the micro-swimmers. We also allow this substance to be produced or consumed by the swimmers themselves. Two models of chemotactic response are considered. One is a simple model for an organism smoothly turning, while moving at constant speed, to align with a chemical gradient. The second is a previously developed model of the effect of modulated run-and-tumble dynamics by individual swimmers. We investigate the linear stability of nearly isotropic suspensions for both models by considering both Pusher micro-swimmers and Pullers. An instability due to chemotaxis is shown to occur in a band of perturbation wavelengths. Nonlinear dynamics are investigated using numerical simulation in two dimensions. We observe aggregation and possible concentration divergences in suspensions of Pullers and the formation of mixing flows in suspensions of Pushers. In the latter case we observe that chemotaxis slows and modifies the mixing dynamics of the system.

  3. Kinetic studies on the aggregation of Aspergillus niger conidia.

    PubMed

    Grimm, L H; Kelly, S; Hengstler, J; Göbel, A; Krull, R; Hempel, D C

    2004-07-20

    Morphology has a crucial effect on productivity and the supply of substrate for cultures of filamentous fungi. However, cultivation parameters leading to the desired morphology are often chosen empirically as the mechanisms governing the processes involved are usually unknown. For coagulating microorganisms like Aspergillus niger the morphological development is considered to start with the aggregation of conidia right after inoculation. To elucidate the mechanism of this process, kinetic studies were carried out using an in-line particle size analyzer. Based on the data obtained from these experiments a model for conidial aggregation is proposed in this article. It consists of two separate aggregation steps. The first one takes place immediately after inoculation, but only leads to a small decrease of total particle concentration. Most suspended conidia aggregate after a second aggregation step triggered by germination and hyphal growth. Aggregation velocity of this second phase is linearly dependent on the particle growth rate.

  4. The cell aggregating propensity of probiotic actinobacterial isolates: isolation and characterization of the aggregation inducing peptide pheromone.

    PubMed

    Muthu Selvam, Ramu; Vinothini, Gopal; Palliyarai Thaiyammal, Sethuramalingam; Latha, Selvanathan; Chinnathambi, Arunachalam; Dhanasekaran, Dharumadurai; Padmanabhan, Parasuraman; Ali Alharbi, Sulaiman; Archunan, Govindaraju

    2016-01-01

    The auto-aggregating ability of a probiotic is a prerequisite for colonization and protection of the gastrointestinal tract, whereas co-aggregation provides a close interaction with pathogenic bacteria. Peptide pheromone mediated signaling has been studied in several systems. However, it has not yet been explored in prokaryotes, especially actinobacteria. Hence, in the present study, the diffusible aggregation promoting factor was purified from the culture supernatant of a potent actinobacterial probiont and characterized using 20 different actinobacterial cultures isolated from the gut region of chicken and goat. The results showed that the pheromone-like compound induces the aggregation propensity of treated isolates. The factor was found to be a heat stable, acidic pH resistant, low molecular weight peptide which enhances the biofilm forming ability of other actinobacterial isolates. The aggregation promoting factor represents a bacterial sex factor (pheromone) and its characterization confirms its usage in the probiotic formulation.

  5. Unifying suspension and granular rheology.

    PubMed

    Boyer, François; Guazzelli, Élisabeth; Pouliquen, Olivier

    2011-10-28

    Using an original pressure-imposed shear cell, we study the rheology of dense suspensions. We show that they exhibit a viscoplastic behavior similarly to granular media successfully described by a frictional rheology and fully characterized by the evolution of the friction coefficient μ and the volume fraction ϕ with a dimensionless viscous number I(v). Dense suspension and granular media are thus unified under a common framework. These results are shown to be compatible with classical empirical models of suspension rheology and provide a clear determination of constitutive laws close to the jamming transition.

  6. Aggregation of organic matter by pelagic tunicates

    SciTech Connect

    Pomeroy, L.R.; Deibel, D.

    1980-07-01

    Three genera of pelagic tunicates were fed concentrates of natural seston and an axenic diatom culture. Fresh and up to 4-day-old feces resemble flocculent organic aggregates containing populations of microorganisms, as described from highly productive parts of the ocean, and older feces resemble the nearly sterile flocculent aggregates which are ubiquitous in surface waters. Fresh feces consist of partially digested phytoplankton and other inclusions in an amorphous gelatinous matrix. After 18 to 36 h, a population of large bacteria develops in the matrix and in some of the remains of phytoplankton contained in the feces. From 48 to 96 h, protozoan populations arise which consume the bacteria and sometimes the remains of the phytoplankton in the feces. Thereafter only a sparse population of microorganisms remains, and the particles begin to fragment. Water samples taken in or below dense populations of salps and doliolids contained greater numbers of flocculent aggregates than did samples from adjacent stations.

  7. F-actin aggregates in transformed cells

    PubMed Central

    1981-01-01

    Polymerized actin has been found aggregated into distinctive patches inside transformed cells in culture. The F-actin-specific fluorescent probe, nitrobenzoxadiazole-phallacidin, labels these F-actin aggregates near the ventral cell surface of cells transformed by RNA or DNA tumor viruses, or by chemical mutagens, or spontaneously. Their appearance in all eight transformed cell types studied suggests their ubiquity and involvement in transformation morphology. Actin patches developed in normal rat kidney (NRK) cells transformed by a temperature-sensitive mutant of Rous sarcoma virus (LA23-NRK) within 30 min after a shift from the nonpermissive (39 degrees C) to the permissive temperature (32 degrees C). Patch appearance paralleling viral src gene expression tends to implicate pp60src kinase activity in destabilizing the cytoskeleton. However, appearance of the actin aggregates in cells not transformed by retrovirus calls for alternative mechanisms, perhaps involving an endogenous kinase, for this apparently common trait. PMID:6270163

  8. Simultaneous monitoring of electrical conductance and light transmittance during red blood cell aggregation.

    PubMed

    Baskurt, O K; Uyuklu, M; Meiselman, H J

    2009-01-01

    The electrical properties of red blood cell (RBC) suspensions are influenced by flow conditions, and prior studies indicate that electrical properties may reflect the kinetics of RBC aggregation. Changes of conductance and capacitance were monitored and had a time course resembling a "syllectogram" (i.e., temporal change of light reflectance from an RBC suspension after sudden cessation of flow). In the present study, both AC electrical conductance (EC) across and light transmission (LT) through a 1 mm ID glass tube were recorded simultaneously after a sudden stoppage of flow for RBC at various hematocrits in plasma or in isotonic saline (PBS). Preliminary results indicate that EC and LT signals for RBC in plasma have similar time courses, both increasing after an initial decrement of a few seconds duration. Aggregation indexes and aggregation half times calculated using LT and EC showed a similar dependence on hematocrits between 30-50%. Interestingly, RBC in PBS also exhibited a syllectogram time course for conductance, whereas LT continued to decrease after an initial decline reflecting RBC shape recovery. These results suggest that electrical conductance in aggregating and non-aggregating suspensions may be sensitive to phenomena other than RBC aggregation.

  9. Caregivers' moral narratives of their African American children's out-of-school suspensions: implications for effective family-school collaborations.

    PubMed

    Gibson, Priscilla A; Haight, Wendy

    2013-07-01

    In this qualitative study, the authors examined the culturally nuanced meanings of out-of-school suspensions for 30 lower income caregivers of African American children suspended from school. Caregivers were invited to describe their experiences of their children's suspensions during in-depth, individual, audiotaped interviews. Caregivers generally valued their children's school success, recognized when their children had misbehaved, and supported educators' imposition of appropriate consequences. Out-of-school suspensions, however, were rarely viewed as appropriate consequences. On the contrary, caregivers produced emotionally laden moral narratives that generally characterized their children's suspensions as unjust; harmful to children; negligent in helping children with underlying problems such as bullying; undermining parents' racial socialization; and, in general, racially problematic. Suspensions also contributed to some families' withdrawal from participation in their schools. Understanding how caregivers experience children's out-of-school suspensions provides important clues to how families and schools can work together to effectively reduce racial disparities in out-of-school suspensions.

  10. 76 FR 70899 - Suspension of Community Eligibility

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ... SECURITY Federal Emergency Management Agency 44 CFR Part 64 Suspension of Community Eligibility AGENCY...), that are scheduled for suspension on the effective dates listed within this rule because of... measures prior to the effective suspension date given in this rule, the suspension will not occur and...

  11. 78 FR 65212 - Suspension of Community Eligibility

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ... SECURITY Federal Emergency Management Agency 44 CFR Part 64 Suspension of Community Eligibility AGENCY...) that are scheduled for suspension on the effective dates listed within this rule because of... measures prior to the effective suspension date given in this rule, the suspension will not occur and...

  12. 77 FR 41320 - Suspension of Community Eligibility

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... SECURITY Federal Emergency Management Agency 44 CFR Part 64 Suspension of Community Eligibility AGENCY...) that are scheduled for suspension on the effective dates listed within this rule because of... measures prior to the effective suspension date given in this rule, the suspension will not occur and...

  13. 76 FR 58405 - Suspension of Community Eligibility

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-21

    ... SECURITY Federal Emergency Management Agency 44 CFR Part 64 Suspension of Community Eligibility AGENCY...), that are scheduled for suspension on the effective dates listed within this rule because of... measures prior to the effective suspension date given in this ] rule, the suspension will not occur and...

  14. 2 CFR 182.670 - Suspension.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 2 Grants and Agreements 1 2010-01-01 2010-01-01 false Suspension. 182.670 Section 182.670 Grants... Suspension. Suspension means an action taken by a Federal agency that immediately prohibits a recipient from... guidance on nonprocurement debarment and suspension (2 CFR part 180, which implements Executive...

  15. 13 CFR 147.670 - Suspension.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Suspension. 147.670 Section 147...-FREE WORKPLACE (NONPROCUREMENT) Definitions § 147.670 Suspension. Suspension means an action taken by a..., subpart 9.4) and the common rule, Government-wide Debarment and Suspension (Nonprocurement),...

  16. 75 FR 60 - Suspension of Community Eligibility

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-04

    ... Part 64 [Docket ID FEMA-2008-0020; Internal Agency Docket No. FEMA-8111] Suspension of Community... Insurance Program (NFIP), that are scheduled for suspension on the effective dates listed within this rule... floodplain management measures prior to the effective suspension date given in this rule, the suspension...

  17. 45 CFR 1173.670 - Suspension.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Suspension. 1173.670 Section 1173.670 Public... (FINANCIAL ASSISTANCE) Definitions § 1173.670 Suspension. Suspension means an action taken by a Federal..., subpart 9.4) and the common rule, Government-wide Debarment and Suspension (Nonprocurement),...

  18. 77 FR 20988 - Suspension of Community Eligibility

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-09

    ... SECURITY Federal Emergency Management Agency 44 CFR Part 64 Suspension of Community Eligibility AGENCY...) that are scheduled for suspension on the effective dates listed within this rule because of... measures prior to the effective suspension date given in this rule, the suspension will not occur and...

  19. 78 FR 70235 - Suspension of Community Eligibility

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ... SECURITY Federal Emergency Management Agency 44 CFR Part 64 Suspension of Community Eligibility AGENCY...) that are scheduled for suspension on the effective dates listed within this rule because of... measures prior to the effective suspension date given in this rule, the suspension will not occur and...

  20. 78 FR 17130 - Suspension of Community Eligibility

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... SECURITY Federal Emergency Management Agency 44 CFR Part 64 Suspension of Community Eligibility AGENCY...) that are scheduled for suspension on the effective dates listed within this rule because of... measures prior to the effective suspension date given in this rule, the suspension will not occur and...

  1. 49 CFR 32.670 - Suspension.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Suspension. 32.670 Section 32.670 Transportation... ASSISTANCE) Definitions § 32.670 Suspension. Suspension means an action taken by a Federal agency that...-wide Debarment and Suspension (Nonprocurement), that implements Executive Order 12549 and...

  2. 34 CFR 682.705 - Suspension proceedings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false Suspension proceedings. 682.705 Section 682.705... EDUCATION, DEPARTMENT OF EDUCATION FEDERAL FAMILY EDUCATION LOAN (FFEL) PROGRAM Limitation, Suspension, or....705 Suspension proceedings. (a) Scope. (1) A suspension by the Secretary removes a...

  3. 77 FR 68697 - Suspension of Community Eligibility

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ... SECURITY Federal Emergency Management Agency 44 CFR Part 64 Suspension of Community Eligibility AGENCY...) that are scheduled for suspension on the effective dates listed within this rule because of... measures prior to the effective suspension date given in this rule, the suspension will not occur and...

  4. 22 CFR 1509.670 - Suspension.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Suspension. 1509.670 Section 1509.670 Foreign... ASSISTANCE) Definitions § 1509.670 Suspension. Suspension means an action taken by a Federal agency that...-wide Debarment and Suspension (Nonprocurement), that implements Executive Order 12549 and...

  5. 76 FR 5284 - Suspension of Community Eligibility

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ... SECURITY Federal Emergency Management Agency 44 CFR Part 64 Suspension of Community Eligibility AGENCY...), that are scheduled for suspension on the effective dates listed within this rule because of... measures prior to the effective suspension date given in this rule, the suspension will not occur and...

  6. 77 FR 13010 - Suspension of Community Eligibility

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... SECURITY Federal Emergency Management Agency 44 CFR Part 64 Suspension of Community Eligibility AGENCY...) that are scheduled for suspension on the effective dates listed within this rule because of... measures prior to the effective suspension date given in this rule, the suspension will not occur and...

  7. 77 FR 57032 - Suspension of Community Eligibility

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-17

    ... SECURITY Federal Emergency Management Agency 44 CFR Part 64 Suspension of Community Eligibility AGENCY...) that are scheduled for suspension on the effective dates listed within this rule because of... measures prior to the effective suspension date given in this rule, the suspension will not occur and...

  8. 78 FR 57523 - Suspension of Community Eligibility

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-19

    ... SECURITY Federal Emergency Management Agency 44 CFR Part 64 Suspension of Community Eligibility AGENCY...) that are scheduled for suspension on the effective dates listed within this rule because of... measures prior to the effective suspension date given in this rule, the suspension will not occur and...

  9. 78 FR 75485 - Suspension of Community Eligibility

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-12

    ... SECURITY Federal Emergency Management Agency 44 CFR Part 64 Suspension of Community Eligibility AGENCY...) that are scheduled for suspension on the effective dates listed within this rule because of... measures prior to the effective suspension date given in this rule, the suspension will not occur and...

  10. 77 FR 28282 - Suspension of Community Eligibility

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ... SECURITY Federal Emergency Management Agency 44 CFR Part 64 Suspension of Community Eligibility AGENCY...) that are scheduled for suspension on the effective dates listed within this rule because of... measures prior to the effective suspension date given in this rule, the suspension will not occur and...

  11. 22 CFR 312.670 - Suspension.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Suspension. 312.670 Section 312.670 Foreign... § 312.670 Suspension. Suspension means an action taken by a Federal agency that immediately prohibits a... Debarment and Suspension (Nonprocurement), that implements Executive Order 12549 and Executive Order...

  12. 78 FR 57525 - Suspension of Community Eligibility

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-19

    ... SECURITY Federal Emergency Management Agency 44 CFR Part 64 Suspension of Community Eligibility AGENCY...) that are scheduled for suspension on the effective dates listed within this rule because of... measures prior to the effective suspension date given in this rule, the suspension will not occur and...

  13. 78 FR 69001 - Suspension of Community Eligibility

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-18

    ... SECURITY Federal Emergency Management Agency 44 CFR Part 64 Suspension of Community Eligibility AGENCY...) that are scheduled for