Science.gov

Sample records for aggregates ions precipitants

  1. Precipitation Aggregation and the Local Environment

    NASA Astrophysics Data System (ADS)

    Smalley, Mark

    The details of large-scale spatial structures of precipitation have only recently become apparent with the advent of high-resolution near-global observations from space-borne radars. As such, the relationships between these structures and the local environment and global climate are just beginning to emerge in the scientific community. Precipitation aggregates on a wide variety of scales, from individual boundary layer instabilities to extra-tropical cyclones. Separate aggregation states have been associated with widely varying precipitation rates and atmospheric states, motivating the inclusion of spatial information in hydrologic and climate models. This work adds to the body of knowledge surrounding large-scale precipitation aggregation and its driving factors by describing and demonstrating a new method of defining the spatial characteristics of precipitation events. The analysis relies on the high sensitivity and high resolution of the CloudSat Cloud Profiling Radar for the identification of precipitation with near-global coverage. The method is based on the dependence of the probability of precipitation on search area, or spatial resolution. Variations in this relationship are caused by variations in the principal characteristics of event spatial patterns: the relative spacing between events, the number density of events, and the overall fraction of precipitating scenes at high resolution. Here, this relationship is modeled by a stretched exponential containing two coefficients, that are shown to depict seasonal general circulation patterns as well as local weather. NASA's Modern-Era Retrospective analysis for Research and Applications is then used to place those spatial characteristics in the context of the local and large-scale environment. At regional scale, precipitation event density during the Amazon wet season is shown to be dependent on zonal wind speed. On a global scale, the relative spacing of shallow oceanic precipitation depends on the

  2. The Jovian aurora: Electron or ion precipitation

    NASA Technical Reports Server (NTRS)

    Waite, J. H., Jr.; Clarke, J. T.; Cravens, T. E.

    1986-01-01

    High signal-to-noise spectra of the Jovian aurora at UV wavelengths obtained using the International Ultraviolet Explorer Observatory (including the brightest Jovian aurora observed to date) set strigent upper limits for sulfur and oxygen emissions, which would be associated with the precipitation of energetic heavy ions in the upper Jovian atmosphere if they were solely responsible for Jovian auroral processes. Model calculations of heavy ion precipitation and corresponding estimates of the associated sulfur and oxygen UV emissions previously carried out suggest emission values for 1304 A OI emission that are at least 30 times larger than the upper limit values set by the IUE observations reported. On the other hand the observed (feature of SII at 1256 A of 2 kR) is quite comparable to the theoretically predicted emission intensity. Taken together these observations and calculations suggest that electron as well as ion precipitation play a role in Jovian auroral processes. In light of earlier X-ray observations and in-situ plasma observations that suggest energetic heavy ion precipitation in the Jovian auroral zone, a scenario is suggested where heavy ion auroral energy deposition is concentrated at altitudes below the homopause. Electrons with energies of 10 to 30 keV are responsible for the bulk of the observable UV and EUV emissions since they deposit their energy above the methane absorbing layer defined by the homopause.

  3. Ion aggregation in high salt solutions: ion network versus ion cluster.

    PubMed

    Kim, Seongheun; Kim, Heejae; Choi, Jun-Ho; Cho, Minhaeng

    2014-09-28

    The critical aggregation phenomena are ubiquitous in many self-assembling systems. Ions in high salt solutions could also spontaneously form larger ion aggregates, but their effects on hydrogen-bond structures in water have long been controversial. Here, carrying out molecular dynamics (MD) simulation studies of high salt solutions and comparing the MD simulation results with infrared absorption and pump-probe spectroscopy of O-D stretch mode of HDO in highly concentrated salt solutions and (13)C-NMR chemical shift of S(13)CN(-) in KSCN solutions, we find evidence on the onset of ion aggregate and large-scale ion-ion network formation that concomitantly breaks water hydrogen-bond structure in certain salt solutions. Despite that these experimental results cannot provide direct evidence on the three-dimensional morphological structures of ion aggregates, they serve as reference data for verifying MD simulation methods. The MD results suggest that disrupted water hydrogen-bond network is intricately intertwined with ion-ion network. This further shows morphological variation of ion aggregate structures from ion cluster to ion network in high salt solutions that are interrelated to the onset of macroscopic aggregate formation and the water hydrogen-bond structure making and breaking processes induced by Hofmeister ions.

  4. Ion aggregation in high salt solutions. VI. Spectral graph analysis of chaotropic ion aggregates

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Ho; Cho, Minhaeng

    2016-11-01

    Carrying out molecular dynamics simulations and graph theoretical analyses of high salt solutions, and comparing numerically calculated vibrational spectroscopic properties of water with femtosecond IR pump-probe experimental data, we have recently found that ions in high salt solutions can form two morphologically different ion aggregate structures. In the cases of NaCl solutions, Na+ and Cl- tend to form compact cluster-like ion aggregate in high NaCl solutions. In contrast, K+ and SCN- form spatially extended network-like ion aggregates that also exhibit a percolating network behavior. Interestingly, a variety of graph theoretical properties of ion network in high KSCN solutions were found to be very similar to those of water H-bonding network. It was shown that spatially extended ion networks in high KSCN solutions are completely intertwined with water H-bonding networks, which might be the key to understand the high solubility of thiocyanate salts in water. Here, we further consider two salts that have been extensively studied experimentally by using femtosecond IR pump-probe technique, which are NaClO4 and NaBF4. Note that ClO4 - and BF4 - are well-known chaotropic ions that have been believed to behave as water structure breaker. To understand how such chaotropic ions affect water H-bonding structure, we carried out spectral graph analyses of molecular dynamics simulation data of these aqueous solutions. Graph spectra and degree distribution of ion aggregates formed in high NaBF4 and NaClO4 solutions show that these chaotropic anions also have a strong propensity to form ion networks. The fact that salts containing chaotropic ions like SCN-, BF4 - , and ClO4 - have very high solubility limits in water could then be related to our observation that these chaotropic anions with counter cations in high salt solutions are capable of forming intricate ion networks intertwined with water H-bonding networks. We anticipate that the present graph theoretical analysis

  5. Precipitation of alkylbenzene sulfonates with metal ions

    SciTech Connect

    Peacock, J.M.; Matijevic, E.

    1980-10-01

    The precipitation domains of P-(1-methylnonyl)benzene sulfonate ions with Li/sup +/, Na/sup +/, K/sup +/, Ca/sup 2 +/, Mg/sup 2 +/, Al/sup 3 +/, and La/sup 3 +/ and of Ca/sup 2 +/-P-(hexyloctyl)benzene sulfonate have been determined at constant pH and 25 C. The linear solubility boundaries reverse their slope at the critical micellar concentration of the surfactant. A semiquantitative interpretation of the data is offered. The properties of the solids formed also are described. 18 references.

  6. Ion aggregation in high salt solutions. II. Spectral graph analysis of water hydrogen-bonding network and ion aggregate structures.

    PubMed

    Choi, Jun-Ho; Cho, Minhaeng

    2014-10-21

    Graph theory in mathematics and computer science is the study of graphs that are structures with pairwise connections between any objects. Here, the spectral graph theory and molecular dynamics simulation method are used to describe both morphological variation of ion aggregates in high salt solutions and ion effects on water hydrogen-bonding network structure. From the characteristic value analysis of the adjacency matrices that are graph theoretical representations of ion clusters, ion networks, and water H-bond structures, we obtained the ensemble average eigenvalue spectra revealing intricate connectivity and topology of ion aggregate structure that can be classified as either ion cluster or ion network. We further show that there is an isospectral relationship between the eigenvalue spectra of ion networks in high KSCN solutions and those of water H-bonding networks. This reveals the isomorphic relationship between water H-bond structure and ion-ion network structure in KSCN solution. On the other hand, the ion clusters formed in high NaCl solutions are shown to be graph-theoretically and morphologically different from the ion network structures in KSCN solutions. These observations support the bifurcation hypothesis on large ion aggregate growth mechanism via either ion cluster or ion network formation. We thus anticipate that the present spectral graph analyses of ion aggregate structures and their effects on water H-bonding network structures in high salt solutions can provide important information on the specific ion effects on water structures and possibly protein stability resulting from protein-water interactions.

  7. Ion aggregation in high salt solutions. V. Graph entropy analyses of ion aggregate structure and water hydrogen bonding network

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Ho; Cho, Minhaeng

    2016-05-01

    Dissolved ions in water tend to form polydisperse ion aggregates such as ion pairs, relatively compact ion clusters, and even spatially extended ion networks with increasing salt concentration. Combining molecular dynamics simulation and graph theoretical analysis methods, we recently studied morphological structures of ion aggregates with distinctively different characteristics. They can be distinguished from each other by calculating various spectral graph theoretical properties such as eigenvalues and eigenvectors of adjacency matrices of ion aggregates and water hydrogen-bonding networks, minimum path lengths, clustering coefficients, and degree distributions. Here, we focus on percolation and graph entropic properties of ion aggregates and water hydrogen-bonding networks in high salt solutions. Ion network-forming K+ and SCN- ions at high concentrations show a percolating behavior in their aqueous solutions, but ion cluster-forming ions in NaCl solutions do not show such a transition from isolated ion aggregates to percolating ion-water mixture morphology. Despite that the ion aggregate structures are strikingly different for either cluster- or network-forming ions in high salt solutions, it is interesting that the water structures remain insensitive to the electrostatic properties, such as charge densities and polydentate properties, of dissolved ions, and morphological structures of water H-bonding networks appear to be highly robust regardless of the nature and concentration of salt. We anticipate that the present graph entropy analysis results would be of use in understanding a variety of anomalous behaviors of interfacial water around biomolecules as well as electric conductivities of high electrolyte solutions.

  8. Ion exchange chromatography of proteins and clearance of aggregates.

    PubMed

    Yigzaw, Y; Hinckley, P; Hewig, A; Vedantham, G

    2009-06-01

    Clearance of product related aggregates in therapeutic proteins is a major focus of purification process development. A typical purification process will have one or two chromatographic steps that remove these product related aggregates to an acceptable level. Both cation exchange and anion exchange chromatography can provide robust clearance of aggregates. The primary factors that are critical for aggregate clearance are: resin chemistry, binding and elution condition, peak collection and column load factor. This review covers how these factors can be optimized to increase the effectiveness of ion exchange chromatography in removing aggregates.

  9. Ion aggregation in high salt solutions. IV. Graph-theoretical analyses of ion aggregate structure and water hydrogen bonding network.

    PubMed

    Choi, Jun-Ho; Cho, Minhaeng

    2015-09-14

    Ions in high salt solutions form a variety of ion aggregates, from ion pairs to clusters and networks. Their influences on water hydrogen bonding (H-bonding) network structures have long been of great interest. Recently, we have shown that the morphological structures of ion aggregates can be analyzed by using a spectral graph analysis theory, where each ion cluster or ion network is represented by a properly defined graph with edges and vertices. Here, to further examine the network properties of ion aggregates and water H-bonding networks in high salt solutions, we consider a few representative graph-theoretical descriptors: clustering coefficient, minimum path length, global efficiency, and degree distribution of ion aggregates. From the molecular dynamics trajectories, these graph theoretical properties of ion aggregates and water structures in NaCl and kosmotropic solutions are calculated and shown to be strongly dependent on the two types of ion aggregate structures, i.e., ion cluster and ion network. Ion clusters in high NaCl solutions exhibit typical behaviors of scale free network. The corresponding graph theoretical properties of ion networks in high KSCN solutions are notably different from those of NaCl ion clusters and furthermore they are very similar to those of water hydrogen-bonding network. The present graph-theoretical analysis results indicate that the high solubility limits of KSCN and other ion-network-forming salts might originate from their ability to form a large scale morphological network that can be intertwined with co-existing water H-bonding network. Furthermore, it is shown that the graph-theoretical properties of water H-bonding network structures do not strongly depend on the nature of dissolved ions nor on the morphological structures of ion aggregates, indicating that water's H-bonding interaction and network-forming capability are highly robust. We anticipate that the present graph-theoretical analysis results of high salt

  10. Ion aggregation in high salt solutions. IV. Graph-theoretical analyses of ion aggregate structure and water hydrogen bonding network

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Ho; Cho, Minhaeng

    2015-09-01

    Ions in high salt solutions form a variety of ion aggregates, from ion pairs to clusters and networks. Their influences on water hydrogen bonding (H-bonding) network structures have long been of great interest. Recently, we have shown that the morphological structures of ion aggregates can be analyzed by using a spectral graph analysis theory, where each ion cluster or ion network is represented by a properly defined graph with edges and vertices. Here, to further examine the network properties of ion aggregates and water H-bonding networks in high salt solutions, we consider a few representative graph-theoretical descriptors: clustering coefficient, minimum path length, global efficiency, and degree distribution of ion aggregates. From the molecular dynamics trajectories, these graph theoretical properties of ion aggregates and water structures in NaCl and kosmotropic solutions are calculated and shown to be strongly dependent on the two types of ion aggregate structures, i.e., ion cluster and ion network. Ion clusters in high NaCl solutions exhibit typical behaviors of scale free network. The corresponding graph theoretical properties of ion networks in high KSCN solutions are notably different from those of NaCl ion clusters and furthermore they are very similar to those of water hydrogen-bonding network. The present graph-theoretical analysis results indicate that the high solubility limits of KSCN and other ion-network-forming salts might originate from their ability to form a large scale morphological network that can be intertwined with co-existing water H-bonding network. Furthermore, it is shown that the graph-theoretical properties of water H-bonding network structures do not strongly depend on the nature of dissolved ions nor on the morphological structures of ion aggregates, indicating that water's H-bonding interaction and network-forming capability are highly robust. We anticipate that the present graph-theoretical analysis results of high salt

  11. PRECIPITATION OF ZIRCONIUM AND FLUORIDE IONS FROM SOLUTIONS

    DOEpatents

    Newby, B.J.

    1963-06-11

    A process is given for removing zirconium and fluorine ions from aqueous solutions also containing uranium(VI). The precipitation is carried out with sodium formate, and the uranium remains in solution. (AEC)

  12. Secondary Ion Mass Spectrometry Imaging of Dictyostelium discoideum Aggregation Streams

    SciTech Connect

    Debord, J. Daniel; Smith, Donald F.; Anderton, Christopher R.; Heeren, Ronald M.; Pasa-Tolic, Ljiljana; Gomer, Richard H.; Fernandez-Lima, Francisco A.

    2014-06-09

    High resolution imaging mass spectrometry could become a valuable tool for cell and developmental biology, but both, high spatial and mass spectral resolution are needed to enable this. In this report, we employed Bi3 bombardment time-of-flight (Bi3 ToF-SIMS) and C60 bombardment Fourier transform ion cyclotron resonance secondary ion mass spectrometry (C60 FTICR-SIMS) to image Dictyostelium discoideum aggregation streams. Nearly 300 lipid species were identified from the aggregation streams. High resolution mass spectrometry imaging (FTICR-SIMS) enabled the generation of multiple molecular ion maps at the nominal mass level and provided good coverage for fatty acyls, prenol lipids, and sterol lipids. The comparison of Bi3 ToF-SIMS and C60 FTICR-SIMS suggested that while the first provides fast, high spatial resolution molecular ion images, the chemical complexity of biological samples warrants the use of high resolution analyzers for accurate ion identification.

  13. Contribution of Eu ions on the precipitation of silver nanoparticles in Ag-Eu co-doped borate glasses

    SciTech Connect

    Jiao, Qing; Qiu, Jianbei; Zhou, Dacheng; Xu, Xuhui

    2014-03-01

    Graphical abstract: - Highlights: • Silver nanoparticles are precipitated from the borate glasses during the melting process without any further heat treatment. • The reduction of Eu{sup 3+} ions to Eu{sup 2+} ions is presented in this material. • The intensity of Ag{sup +} luminescence. • The introduction of Eu ions accelerated the reaction between Eu{sup 2+} ions and silver ions inducing the silver clusters formation. - Abstract: Ag{sup +} doped sodium borate glasses with different Eu ions concentration were prepared by the melt-quenching method. The absorption at about 410 nm which was caused by the surface plasmon resonance (SPR) of Ag nanoparticles (NPs) is promoted with increasing of Eu ions concentration. Meanwhile, the luminescent spectra showed that the emission intensity of Ag{sup +} decreased while that of the Ag aggregates increased simultaneously. The results indicated that the Ag ions intend to form the high-polymeric state such as Ag aggregates and nanoparticles with increasing of europium ions. Owing to the self-reduction of Eu{sup 3+} to Eu{sup 2+} in our glass system, it revealed that Ag{sup +} has been reduced by the neighboring Eu{sup 2+} which leads to the formation of Ag aggregates and the precipitation of Ag NPs in the matrix. In addition, energy transfer (ET) process from Ag{sup +}/Ag aggregates to the Eu{sup 3+} was investigated for the enhancement of Eu{sup 3+} luminescence.

  14. Precipitation of Relativistic Electrons by Electromagnetic Ion Cyclotron (EMIC) Waves

    NASA Astrophysics Data System (ADS)

    Denton, R. E.

    2015-12-01

    We use the electromagnetic ion cyclotron (EMIC) wave fields produced in a two dimensional hybrid code simulation (full dynamics particle ions, but inertialess fluid electrons) in dipole geometry in order to investigate the effect of magnetospheric EMIC waves on relativistic electrons. The plane of the simulation includes variation in the L shell direction and along magnetic field lines. Relativistic test particle electrons are inserted into the simulation when the wave fields are near their maximum amplitude. These electrons can be scattered into the loss cone so that they precipitate into the ionosphere. We find the effective pitch angle diffusion coefficient and probability of precipitation using these test particles. The pitch angle diffusion coefficients are largest for relativistic energies greater than 2 MeV, though they may be substantial for lower energies. The probability of precipitation is highest for low energy particles at small initial equatorial pitch angle. For high initial equatorial pitch angles, the probability of precipitation increases greatly with respect to particle energy. Starting from an isotropic pitch angle distribution of relativistic electrons with a Gaussian spread in the relativistic momentum, we find only a small drop in the probability of precipitation during 13 s time as the particle energy decreases. But that result depends on the initial pitch angle distribution. Starting with a distribution of particles steeply peaked at 90° initial equatorial pitch angle, the probability of precipitation would be greater for high-energy particles. We will discuss the mechanism of pitch angle scattering.

  15. Extreme Precipitation Strengthening in Ion-Implanted Nickel

    SciTech Connect

    Follstaedt, D.M.; Knapp, J.A.; Myers, S.M.; Petersen, G.A.

    1999-05-03

    Precipitation strengthening of nickel was investigated using ion-implantation alloying and nanoindentation testing for particle separations in the nanometer range and volume fractions extending above 10O/O. Ion implantation of either oxygen alone or oxygen plus aluminum at room temperature was shown to produce substantial strengthening in the ion-treated layer, with yield strengths near 5 GPa in both cases. After annealing to 550"C the oxygen-alone layer loses much of the benefit, with its yield strength reduced to 1.2 GP~ but the dual ion-implanted layer retains a substantially enhanced yield strength of over 4 GPa. Examination by transmission electron f microscopy showed very fine dispersions of 1-5 nm diameter NiO and y-A1203 precipitates in the implanted layers before annealing. The heat treatment at 550"C induced ripening of the NiO particles to sizes ranging from 7 to 20 nm, whereas the more stable ~-A1203 precipitates were little changed. The extreme strengthening we observe is in semiquantitative agreement with predictions based on the application of dispersion-hardening theory to these microstructure.

  16. Electrostatic precipitator apparatus having an improved ion generating means

    SciTech Connect

    Fitch, R.A.; Roe, J.T.

    1982-12-21

    A system is disclosed for removing particles from a gaseous medium and comprises an upstream precipitating stage followed by a downstream precipitating stage having one or more electrically charged shells with corona discharge apparatuses therein which produce ions at predictable, generally uniformly spaced locations. The shells have flat sides and openings at the upstream and downstream ends so as to permit a portion of the gaseous medium to flow through the interior of the shell and flat sides which act as collecting means. The flat sides of the shells are generally parallel to collecting side plates for providing a uniform electric field between the shells and collecting plates, the sides of the shells having openings to permit the passage of ions generated in the interior of the shell.

  17. Fractionation of equine antivenom using caprylic acid precipitation in combination with cationic ion-exchange chromatography.

    PubMed

    Raweerith, Rutai; Ratanabanangkoon, Kavi

    2003-11-01

    A combined process of caprylic acid (CA) precipitation and ion-exchange chromatography on SP-Sepharose was studied as a means to fractionate pepsin-digested horse antivenom F(ab')(2) antibody. In the CA precipitation, the optimal concentration for fractionation of F(ab')(2) from pepsin-digested horse plasma was 2%, in which 89.61% of F(ab')(2) antibody activity was recovered in the supernatant with 1.5-fold purification. A significant amount of pepsin was not precipitated and remained active under these conditions. An analytical cation exchanger Protein-Pak SP 8HR HPLC column was tested to establish optimal conditions for the effective separation of IgG, albumin, pepsin and CA from the F(ab')(2) product. From these results, the supernatant from CA precipitation of pepsin-digested plasma was subjected to a SP-Sepharose column chromatography using a linear salt gradient. With stepwise elution, a peak containing F(ab')(2) antibody could be obtained by elution with 0.25 M NaCl. The total recovery of antibody was 65.56% with 2.91-fold purification, which was higher than that achieved by ammonium sulfate precipitation. This process simultaneously and effectively removed residual pepsin, high molecular weight aggregates and CA in the final F(ab')(2) product, and should be suitable for large-scale fractionation of therapeutic equine antivenoms.

  18. Morphological and chemical analysis of different precipitates on mineral trioxide aggregate immersed in different fluids.

    PubMed

    Han, Linlin; Okiji, Takashi; Okawa, Seigo

    2010-10-01

    The purpose of this study was to analyze the ultrastructures and chemical compositions of precipitates formed on mineral trioxide aggregate (MTA; White ProRoot MTA) immersed in distilled water (DW) or phosphate buffered saline (PBS), based on the attribution that MTA's bioactivity and sealing ability are influenced by its interaction with the external fluid environment. After 1 and 14 days of immersion, precipitates formed on MTA disks were analyzed using wavelength-dispersive X-ray spectroscopy electron probe microanalyzer with image observation function (SEM-EPMA; EPMA1601, Shimadzu, Kyoto, Japan), and Fourier transform-infrared (FT-IR) spectroscopy. On DW specimens, cubic-like crystals containing Ca, O, and C (17, 66, and 17 at% respectively) were produced. State analysis of calcium k(β)spectrum also revealed calcium hydroxide. On PBS specimens, acicular-spherical and lath-like crystals with Ca/P molar ratios of 1.42 and 1.58 respectively were produced. In conclusion, the precipitates formed on DW specimens were identified as calcium carbonate and calcium hydroxide primarily, whereas the precipitates on PBS specimens were inferred to be amorphous calcium phosphate.

  19. Inhibition of precipitation and aggregation of metacinnabar (mercuric sulfide) by dissolved organic matter isolated from the Florida Everglades

    USGS Publications Warehouse

    Ravichandran, M.; Aiken, G.R.; Ryan, J.N.; Reddy, M.M.

    1999-01-01

    Precipitation and aggregation of metacinnabar (black HgS) was inhibited in the presence of low concentrations (???3 mg C/L) of humic fractions of dissolved organic matter (DOM) isolated from the Florida Everglades. At low Hg concentrations (??? x 10-8 M), DOM prevented the precipitation of metacinnabar. At moderate Hg concentrations (5 x 10-5 M), DOM inhibited the aggregation of colloidal metacinnabar (Hg passed through a 0.1 ??m filter but was removed by centrifugation). At Hg concentrations greater than 5 x 10-4 M, mercury formed solid metacinnabar particles that were removed from solution by a 0.1 ??m filter. Organic matter rich in aromatic moleties was preferentially removed with the solid. Hydrophobic organic acids (humic and fulvic acids) inhibited aggregation better than hydrophilic organic acids. The presence of chloride, acetate, salicylate, EDTA, and cysteine did not inhibit the precipitation or aggregation of metacinnabar. Calcium enhanced metacinnabar aggregation even in the presence of DOM, but the magnitude of the effect was dependent on the concentrations of DOM, Hg, and Ca. Inhibition of metacinnabar precipitation appears to be a result of strong DOM-Hg binding. Prevention of aggregation of colloidal particles appears to be caused by adsorption of DOM and electrostatic repulsion.Precipitation and aggregation of metacinnabar (black HgS) was inhibited in the presence of low concentrations (???3 mg C/L) of humic fractions of dissolved organic matter (DOM) isolated from the Florida Everglades. At low Hg concentrations (???5??10-8 M), DOM prevented the precipitation of metacinnabar. At moderate Hg concentrations (5??10-5 M), DOM inhibited the aggregation of colloidal metacinnabar (Hg passed through a 0.1 ??m filter but was removed by centrifugation). At Hg concentrations greater than 5??10-4 M, mercury formed solid metacinnabar particles that were removed from solution by a 0.1 ??m filter. Organic matter rich in aromatic moieties was preferentially

  20. Inhibition of precipitation and aggregation of metacinnabar (mercuric sulfide) by dissolved organic matter isolated from the Florida Everglades

    SciTech Connect

    Ravichandran, M.; Ryan, J.N.; Aiken, G.R.; Reddy, M.M.

    1999-05-01

    Precipitation and aggregation of metacinnabar (black HgS) was inhibited in the presence of low concentrations of humic fractions of dissolved organic matter (DOM) isolated from the Florida Everglades. At low Hg concentrations, DOM prevented the precipitation of metacinnabar. At moderate Hg concentrations, DOM inhibited the aggregation of colloidal metacinnabar At Hg concentrations greater than 5 {times} 10{sup {minus}4} M, mercury formed solid metacinnabar particles that were removed from solution by a 0.1 {micro}m filter. Organic matter rich in aromatic moieties was preferentially removed with the solid. Hydrophobic organic acids inhibited aggregation better than hydrophilic organic acids. The presence of chloride, acetate, salicylate, EDTA, and cysteine did not inhibit the precipitation or aggregation of metacinnabar. Calcium enhanced metacinnabar aggregation even in the presence of DOM,m but the magnitude of the effect was dependent on the concentrations of DOM, Hg, and Ca. Inhibition of metacinnabar precipitation appears to be a result of strong DOM-Hg binding. Prevention of aggregation of colloidal particles appears to be caused by adsorption of DOM and electrostatic repulsion.

  1. Features of the planetary distribution of ion precipitation at different levels of magnetic activity

    NASA Astrophysics Data System (ADS)

    Vorobjev, V. G.; Yagodkina, O. I.; Antonova, E. E.

    2015-09-01

    Observations from DMSP F6 and F7 spacecraft were used to examine the features of the planetary distribution of ion precipitation. Ion characteristics were defined within the boundaries of different types of auroral electron precipitation, which in accordance with the conclusions from (Starkov et al., 2002) were divided into a structured precipitation of an auroral oval (AOP) and zones of diffuse precipitation DAZ and SDP located equatorward and poleward of AOP, respectively. Analogous to electron precipitation, ion precipitation did not demonstrate dependences of the average energy and the average energy flux of precipitating particles on the Dst index value. In the diffuse precipitation zone (DAZ) equatorward of the auroral oval, ion energies clearly peaked in the sector of 1500-1800 MLT. The average energy value grows as magnetic activity increases from ~12 keV at AL =-1000 nT to ~18 keV at AL =-1000 nT. In the region of structured precipitation (AOP), the minimum of the average ion energy is observed in the dawn sector of 0600-0900 MLT. Ion energy fluxes ( F i ) are maximal in the nighttime MLT sectors. In the zone of soft diffuse precipitation (SDP) poleward of AOP, the highest ion energy fluxes are observed in the daytime sector, while the nightside F i values are insignificant. Ion energy fluxes in the SDP zone show an anticorrelation with the average ion energy in the same MLT sector. An ion precipitation model was created which yields a global distribution of both the average ion energies and the ion energy fluxes depending on the magnetic activity expressed by AL and Dst indices. Comparison of this model with the model of electron precipitation shows that the planetary power of ion precipitation at low magnetic activity (| AL| = 100 nT) is ~12% of the electron precipitation power and exponentially decreases to ~4% at | AL| > 1000 nT. The ion precipitation model was used to calculate the plasma pressure at the ionospheric altitudes. The planetary

  2. MAGNESIUM PRECIPITATION AND DIFUSSION IN Mg+ ION IMPLANTED SILICON CARBIDE

    SciTech Connect

    Jiang, Weilin; Jung, Hee Joon; Kovarik, Libor; Wang, Zhaoying; Roosendaal, Timothy J.; Zhu, Zihua; Edwards, Danny J.; Hu, Shenyang Y.; Henager, Charles H.; Kurtz, Richard J.; Wang, Yongqiang

    2015-03-02

    As a candidate material for fusion reactor applications, silicon carbide (SiC) undergoes transmutation reactions under high-energy neutron irradiation with magnesium as the major metallic transmutant; the others include aluminum, beryllium and phosphorus in addition to helium and hydrogen gaseous species. Calculations by Sawan et al. predict that at a dose of ~100 dpa (displacements per atom), there is ~0.5 at.% Mg generated in SiC. The impact of these transmutants on SiC structural stability is currently unknown. This study uses ion implantation to introduce Mg into SiC. Multiaxial ion-channeling analysis of the as-produced damage state indicates a lower dechanneling yield observed along the <100> axis. The microstructure of the annealed sample was examined using high-resolution scanning transmission electron microscopy. The results show a high concentration of likely non-faulted tetrahedral voids and possible stacking fault tetrahedra near the damage peak. In addition to lattice distortion, dislocations and intrinsic and extrinsic stacking faults are also observed. Magnesium in 3C–SiC prefers to substitute for Si and it forms precipitates of cubic Mg2Si and tetragonal MgC2. The diffusion coefficient of Mg in 3C–SiC single crystal at 1573 K has been determined to be 3.8 ± 0.4E-19 m2/s.

  3. Jupiter's X-ray aurora via polar ion precipitation

    NASA Astrophysics Data System (ADS)

    Young, Jackson; Houston, Stephen

    2017-01-01

    Jupiter's auroral X-ray emission was first observed by the Einstein X-ray Observatory in 1979 and has since been observed over the past 20 years by the Roentgen satellite, Chandra X-ray Observatory, and XMM-Newton. The strong X-ray emission produces a spectacular 1 GW of total power at the polar caps. There has been extensive research of X-ray production from incident electrons; however, this has not been able to account for the full power of the generated X-rays. The remainder of the X-ray production can be modeled and reproduced into observable results by the precipitation of several MeV oxygen and sulfur ions from the outer magnetosphere into an atmosphere that has been adapted to the auroral conditions. The present research uses a revised model of a hybrid Monte Carlo method with varying oxygen ion energies (10 keV/u - 5 MeV/u) and updated collision cross-sections to concentrate on the ionization of the atmosphere, generation of secondary electron fluxes and their escape from the atmosphere, and characterization of the H2 Lyman-Werner band emission. Predictions relevant to awaited NASA's Juno results are made: escaping electrons with an energy range of 1 eV to 6 keV, H2 band emission rates of 80 kR, and downward field-aligned currents of at least 2 MA.

  4. Depletion attraction of sheet-like ion aggregates in low-dielectric ionomer melts

    NASA Astrophysics Data System (ADS)

    Lu, Keran; Maranas, Janna K.; Milner, Scott T.

    2017-02-01

    Ionomers are polymers in which an ionic group is covalently bonded to the polymer backbone. Ion aggregates in ionomers have morphologies that allow for the packing of the attached polymer backbone. Using ion-only coarse-grained molecular dynamics, we observe that string-like ion aggregates become flat and sheet-like at lower dielectric constants. A consequence of the changing morphology is that the sheet-like aggregates self-assemble to form ordered, lamellar structures. We use a simple thermodynamic model to demonstrate that depletion attraction mediated by small aggregates can explain the observed order. Our results suggest that depletion attraction can drive ions to form structures that have the size scale suggested by direct visualization, produce the commonly observed experimental correlation peak from X-ray and neutron scattering, and satisfy chain-packing constraints that have been demonstrated to be important in simulations.

  5. Spontaneous aggregation of lithium ion coordination polymers in fluorinated electrolytes for high-voltage batteries

    DOE PAGES

    Malliakas, Christos D.; Leung, Kevin; Pupek, Krzysztof Z.; ...

    2016-03-31

    Fluorinated carbonate solvents are pursued as liquid electrolytes for high-voltage Li-ion batteries. We report aggregation of [Li+(FEC)3]n polymer species from fluoroethylene carbonate containing electrolytes and scrutinized the causes for this behavior.

  6. Spontaneous aggregation of lithium ion coordination polymers in fluorinated electrolytes for high-voltage batteries.

    PubMed

    Malliakas, Christos D; Leung, Kevin; Pupek, Krzysztof Z; Shkrob, Ilya A; Abraham, Daniel P

    2016-04-28

    Fluorinated carbonates are pursued as liquid electrolyte solvents for high-voltage Li-ion batteries. Here we report aggregation of [Li(+)(FEC)3]n polymer species in fluoroethylene carbonate containing electrolytes and scrutinize the causes for this behavior.

  7. Metal ions modulate thermal aggregation of beta-lactoglobulin: a joint chemical and physical characterization.

    PubMed

    Navarra, Giovanna; Tinti, Anna; Di Foggia, Michele; Leone, Maurizio; Militello, Valeria; Torreggiani, Armida

    2014-08-01

    Molecular basis of the role played by Cu(2+) and Zn(2+) ions during the thermal aggregation processes of beta-lactoglobulin (BLG) was studied by using a joint application of different techniques. In particular, Raman spectroscopy was very useful in identifying the different effects caused by the two metals at molecular level (i.e. changes in His protonation state, disulfides bridge conformation, and micro-environment of aromatic residues), evidencing the primary importance of the protein charge distribution during the aggregation process. Both metal ions are able to act on this factor and favor the protein aggregation, but Zn(2+) is able to alter the natural conformational state of BLG, causing a slight unfolding, whereas Cu(2+) ions play a role only during the thermal treatment. Thus, Zn(2+) ions favor the formation of bigger aggregates and branched fibril-like structures, whereas for Cu(2+) ions a greater number of cross-beta structures during thermal incubation and finally, fibrillar structures. The aggregation process occurs in two phases, as suggested by the measurements on the time evolution of the BLG aggregates: the first one is characterized by a partial unfolding of the protein and aggregate growth, forming oligomers and protofibrils, whereas the second one is characterized by further supramolecular assembly, leading to the formation of fibrils.

  8. The Aggregate Description of Semi-Arid Vegetation with Precipitation-Generated Soil Moisture Heterogeneity

    NASA Technical Reports Server (NTRS)

    White, Cary B.; Houser, Paul R.; Arain, Altaf M.; Yang, Zong-Liang; Syed, Kamran; Shuttleworth, W. James

    1997-01-01

    Meteorological measurements in the Walnut Gulch catchment in Arizona were used to synthesize a distributed, hourly-average time series of data across a 26.9 by 12.5 km area with a grid resolution of 480 m for a continuous 18-month period which included two seasons of monsoonal rainfall. Coupled surface-atmosphere model runs established the acceptability (for modelling purposes) of assuming uniformity in all meteorological variables other than rainfall. Rainfall was interpolated onto the grid from an array of 82 recording rain gauges. These meteorological data were used as forcing variables for an equivalent array of stand-alone Biosphere-Atmosphere Transfer Scheme (BATS) models to describe the evolution of soil moisture and surface energy fluxes in response to the prevalent, heterogeneous pattern of convective precipitation. The calculated area-average behaviour was compared with that given by a single aggregate BATS simulation forced with area-average meteorological data. Heterogeneous rainfall gives rise to significant but partly compensating differences in the transpiration and the intercepted rainfall components of total evaporation during rain storms. However, the calculated area-average surface energy fluxes given by the two simulations in rain-free conditions with strong heterogeneity in soil moisture were always close to identical, a result which is independent of whether default or site-specific vegetation and soil parameters were used. Because the spatial variability in soil moisture throughout the catchment has the same order of magnitude as the amount of rain failing in a typical convective storm (commonly 10% of the vegetation's root zone saturation) in a semi-arid environment, non-linearitv in the relationship between transpiration and the soil moisture available to the vegetation has limited influence on area-average surface fluxes.

  9. Dependence of ion concentration in simulated body fluid on apatite precipitation on titania surface

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Akira; Nakano, Masayuki; Hieda, Junko; Ohtake, Naoto; Akasaka, Hiroki

    2015-08-01

    Titanium and its alloys are used as biomaterials, because of their high biocompatibility. Apatite precipitates on a titania surface in vivo, and living bone and titanium alloy are coupled through the thin apatite layer. The initial precipitation behavior of apatite on titania in simulated body fluid (SBF) solutions was evaluated and the effect of inorganic ions in the SBF was investigated. Measurement using the SPR phenomenon was used to evaluate the initial apatite precipitation. An SBF containing approximately equal ion concentrations to those in blood plasma was added to a titania surface and the SPR profile was obtained, from which the initial apatite precipitation rate was found to be 1.14 nm/h. Furthermore, the relationship between the inorganic concentration and the precipitation rate was determined for SBFs with different Na+ and Ca2+ concentrations. Apatite precipitation did not occur in the SBF with a low Na+ concentration, whereas the initial apatite precipitation rate in the SBF that did not contain Ca2+ was 0.32 nm/h. According to these results, Ca2+ has little effect on the initial apatite precipitation. In the initial reaction of apatite precipitation, sodium titanate is formed by the absorption of Na+. Next, calcium titanate precipitates upon the substitution of Na+ with Ca2+. Finally, Na+, phosphate ions and hydroxyl ions are attracted to the surface and apatite is formed. Thus, the rate-limiting factor in the initial nucleation of apatite is the Na+ concentration.

  10. Comparative characteristics of ion and electron precipitation in the dawn and dusk sectors

    NASA Astrophysics Data System (ADS)

    Vorobjev, V. G.; Yagodkina, O. I.

    2014-01-01

    Characteristics of ion and electron precipitations in the dawn and dusk sectors are investigated by DMSP F6 and F7 satellite observations. It is shown that in the dusk sector the positions of electron and ion precipitation boundaries are nearly coincident for all levels of magnetic activity; however the latitudinal distribution of energy fluxes indicates that the positions of electron and ion precipitation maxima are spatially separated. Maximum energy fluxes of ions is observed at the equatorial precipitation boundary, while those of electrons at the poleward one. In the dawn sector, the electron precipitation region is 3°-4° wider than that of ions. The isotropy boundary in the dusk sector is located in the region of diffuse precipitation (DAZ) near its poleward boundary for all levels of magnetic activity, while in the dawn sector it falls in the region of structured precipitations (AOP). Electron precipitations are dominating in the dawn sector. Here in the region of diffuse precipitation (DAZ), the ion energy fluxes Fi make less than 5% as compared to the electron energy flux Fe. In the region of structured precipitations (AOP), the portion of Fi decreases with increasing magnetic activity from ~10-20% for AL ≈ -100 nT to <5% for AL ≈ -1000 nT. As for the dusk sector, in the AOP region, electron precipitations are dominating as well, while in the DAZ region the ion energy fluxes are significant. In the 1500-1800 MLT sector, the ratio Fi/Fe increases from ~0.7 to ~3.0 with AL changing from -100 nT to -1000 nT.

  11. Effect of annealing on Cu precipitates in H ion irradiated Fe-0.6%Cu studied by positron annihilation

    NASA Astrophysics Data System (ADS)

    Jin, Shuoxue; Zhang, Peng; Lu, Eryang; Wang, Baoyi; Yuan, Daqing; Wei, Long; Cao, Xingzhong

    2016-10-01

    Fe-0.6%Cu alloy was irradiated with H ions to 0.1 dpa, and then annealed for 30 min from 150 °C to 500 °C. We focused the evolution of Cu precipitates in irradiated Fe-0.6%Cu alloy after the isochronal annealing from the perspective of positron annihilation. The ΔW parameters after thermal annealing (400 °C and 500 °C) were much larger than that induced by 0.1 dpa H irradiation. Annealing could promote the aggregation of the Cu-vacancy complexes, and form the Cu cluster-vacancies complexes. When the vacancy-like defects recovered around 500 °C, it meant the formation and growing of the defect-free Cu precipitates.

  12. Aggregation-induced emission active tetraphenylethene-based sensor for uranyl ion detection.

    PubMed

    Wen, Jun; Huang, Zeng; Hu, Sheng; Li, Shuo; Li, Weiyi; Wang, Xiaolin

    2016-11-15

    A novel tetraphenylethene-based fluorescent sensor, TPE-T, was developed for the detection of uranyl ions. The selective binding of TPE-T to uranyl ions resulted in a detectable signal owing to the quenching of its aggregation-induced emission. The developed sensor could be used to visually distinguish UO2(2+) from lanthanides, transition metals, and alkali metals under UV light; the presence of other metal ions did not interfere with the detection of uranyl ions. In addition, TPE-T was successfully used for the detection of uranyl ions in river water, illustrating its potential applications in environmental systems.

  13. Study of Ca-ATMP precipitation in the presence of magnesium ion.

    PubMed

    Tantayakom, V; Fogler, H Scott; de Moraes, F F; Bualuang, M; Chavadej, S; Malakul, P

    2004-03-16

    ATMP (aminotri(methylenephosphonic acid)), a phosphonate scale inhibitor used in the petroleum industry, was used as a model scale inhibitor in this study. One of the goals of this work was to determine the range of conditions under which Mg ions, which are formed in reservoir formations containing dolomite, modulate the formation of Ca-ATMP precipitate as a scale inhibitor. The results revealed that the amount of ATMP precipitated decreased with addition of Mg ions in solution at all values of the solution pH. Furthermore, an increase in both the solution pH and the concentration of the divalent cations in solution resulted in a change of the molar ratio of (Ca + Mg) to ATMP in the precipitates. At a low solution pH (pH 1.5), Mg ions had little effect on the composition of the Ca-ATMP precipitate. However, at higher values of the solution pH (pH 4 and 7), the Ca to ATMP molar ratio in the precipitates decreased with increasing concentration of the Mg. Here it was found that Mg ions replaced Ca ions on available reactive sites of ATMP molecules. These results determined the limits of the Mg ion concentration, which affects the precipitation of Ca-ATMP, Mg-ATMP, and (Ca + Mg)-ATMP. The dissolution of the scale inhibitors was studied using a rotating disk reactor. These experiments showed that the total divalent cation molar ratio (Ca + Mg) to ATMP in the precipitates is the primary factor that controls the rate of dissolution (release) of the phosphonate precipitates. The phosphonate precipitate dissolution rates decreased as the molar ratio of divalent cations to ATMP in the precipitates increased.

  14. CHARACTERIZATION OF PRECIPITATES IN CUBIC SILICON CARBIDE IMPLANTED WITH 25Mg+ IONS

    SciTech Connect

    Jiang, Weilin; Spurgeon, Steven R.; Liu, Jia; Edwards, Danny J.; Schreiber, Daniel K.; Henager, Charles H.; Kurtz, Richard J.; Wang, Yongqiang

    2016-09-26

    The aim of this study is to characterize precipitates in Mg+ ion implanted and high-temperature annealed cubic silicon carbide using scanning transmission electron microscopy, electron energy loss spectroscopy and atom probe tomography.

  15. Statistical properties of planetary heavy ion precipitations toward the Martian ionosphere based on Mars Express observations

    NASA Astrophysics Data System (ADS)

    Hara, T.; Seki, K.; Futaana, Y.; Yamauchi, M.; Barabash, S.; Fedorov, A. O.; Yagi, M.; Delcourt, D. C.

    2013-09-01

    Picked-up ion precipitations are a potential mechanism to increase an atmospheric escape from the unmagnetized planet of Mars. The interplanetary magnetic field (IMF) embedded in the supersonic solar wind is one of the crucial parameters to control the behavior of the Martian planetary heavy ions. We statistically investigated the effects of the IMF orientation on planetary heavy ions precipitating toward the Martian ionosphere by using data obtained from the Ion Mass Analyzer (IMA) onboard the Mars Express (MEX). To compensate for the absence of a magnetometer onboard MEX, we estimated the IMF orientation from the velocity distribution function of exospheric protons observed in the solar wind. The statistical analysis shows that the precipitations of planetary heavy ions tend to be observed in the direction or the anti-parallel direction of the solar wind electric field inferred from the estimated IMF orientation. We defined the IMF polarity for one event via comparisons of the ion velocity distribution function obtained from MEX/IMA observations and a statistical trajectory tracing of test particles. The estimated polarity corresponds to the anti-parallel direction to the solar wind electric field and is consistent with the asymmetrical distribution of planetary heavy ion precipitation in terms of the solar wind electric field derived from the previous numerical simulations. The observed precipitating planetary heavy ions are accelerated only up to a few keV. This feature may reflect the short distance from the picked-up region in the magnetosheath.

  16. Metal ions as cofactors for aggregation of therapeutic peptide salmon calcitonin.

    PubMed

    Rastogi, Neeraj; Mitra, Kalyan; Kumar, Dinesh; Roy, Raja

    2012-05-21

    The effects of multivalent metal ions (Cu(2+)/Zn(2+)/Al(3+)) on the aggregation of salmon calcitonin (sCT)--a therapeutic peptide used worldwide in the treatment of osteoporosis and Paget's disease--have been studied in vitro using NMR (both solution state and solid state), TEM, ThT-fluorescence, and FT-IR spectroscopy. Overall, the various results indicated that the metal-ions-induced conformational transitions in the peptide--mostly toward the β-sheet--facilitate the aggregation of sCT in solution. First, the solution NMR has been used to check the interaction between the peptide and the metal ions. Following this, the formation and characterization of calcitonin aggregates has been performed using TEM, solid state NMR, and FT-IR spectroscopy. The TEM and ThT-fluorescence results revealed that the sCT peptide incubated with Cu(2+) and Zn(2+) metal ions (in aqueous environment) forms globular aggregates, while that with Al(3+) ions forms fibrils. The solid state NMR and FT-IR studies revealed the presence of a substantial amount of β-sheet content in sCT aggregates (formed in the presence of these metal ions) compared to the monomeric sCT, indicating that the metal binding is concomitant with conformational changes. The present study becomes crucial while prescribing this drug peptide under physio-pathological conditions associated with an abnormal accumulation of metal ions (Cu(2+)/Zn(2+)/Al(3+)) in the body (i.e., abnormal metal ion homeostasis).

  17. Solution structure of copper ion-induced molecular aggregates of tyrosine melanin.

    PubMed

    Gallas, J M; Littrell, K C; Seifert, S; Zajac, G W; Thiyagarajan, P

    1999-08-01

    Melanin, the ubiquitous biological pigment, provides photoprotection by efficient filtration of light and also by its antioxidant behavior. In solutions of synthetic melanin, both optical and antioxidant behavior are affected by the aggregation states of melanin. We have utilized small-angle x-ray and neutron scattering to determine the molecular dimensions of synthetic tyrosine melanin in its unaggregated state in D(2)O and H(2)O to study the structure of melanin aggregates formed in the presence of copper ions at various copper-to-melanin molar ratios. In the absence of copper ions, or at low copper ion concentrations, tyrosine melanin is present in solution as a sheet-like particle with a mean thickness of 12.5 A and a lateral extent of approximately 54 A. At a copper-to-melanin molar ratio of 0.6, melanin aggregates to form long, rod-like structures with a radius of 32 A. At a higher copper ion concentration, with a copper-to-melanin ratio of 1.0, these rod-like structures further aggregate, forming sheet-like structures with a mean thickness of 51 A. A change in the charge of the ionizable groups induced by the addition of copper ions is proposed to account for part of the aggregation. The data also support a model for the copper-induced aggregation of melanin driven by pi stacking assisted by peripheral Cu(2+) complexation. The relationship between our results and a previous hypothesis for reduced cellular damage from bound-to-melanin redox metal ions is also discussed.

  18. Solution structure of copper ion-induced molecular aggregates of tyrosine melanin.

    PubMed Central

    Gallas, J M; Littrell, K C; Seifert, S; Zajac, G W; Thiyagarajan, P

    1999-01-01

    Melanin, the ubiquitous biological pigment, provides photoprotection by efficient filtration of light and also by its antioxidant behavior. In solutions of synthetic melanin, both optical and antioxidant behavior are affected by the aggregation states of melanin. We have utilized small-angle x-ray and neutron scattering to determine the molecular dimensions of synthetic tyrosine melanin in its unaggregated state in D(2)O and H(2)O to study the structure of melanin aggregates formed in the presence of copper ions at various copper-to-melanin molar ratios. In the absence of copper ions, or at low copper ion concentrations, tyrosine melanin is present in solution as a sheet-like particle with a mean thickness of 12.5 A and a lateral extent of approximately 54 A. At a copper-to-melanin molar ratio of 0.6, melanin aggregates to form long, rod-like structures with a radius of 32 A. At a higher copper ion concentration, with a copper-to-melanin ratio of 1.0, these rod-like structures further aggregate, forming sheet-like structures with a mean thickness of 51 A. A change in the charge of the ionizable groups induced by the addition of copper ions is proposed to account for part of the aggregation. The data also support a model for the copper-induced aggregation of melanin driven by pi stacking assisted by peripheral Cu(2+) complexation. The relationship between our results and a previous hypothesis for reduced cellular damage from bound-to-melanin redox metal ions is also discussed. PMID:10423458

  19. Solubility and interaction parameters as references for solution properties II: precipitation and aggregation of asphaltene in organic solvents.

    PubMed

    Johansson, Bjarne; Friman, Rauno; Hakanpää-Laitinen, Hannele; Rosenholm, Jarl B

    2009-01-01

    The total combinatory Gibbs free energy was successfully used to model the solubility of two purified asphaltenes in pure and mixed solvents, as well as the precipitation of asphaltenes from mixed solvents. Intrinsic viscosity and aggregate size both sensitively reflected the state of the asphaltenes in homogeneous solution and were used for determining the solubility parameters of the asphaltenes. Phase separation was clearly reflected by a dramatic increase in aggregate size. The interaction parameter was subdivided into enthalpy and entropy contributions. All parameters indicate an extensive association or phase transition when the phase boundary was followed by simultaneously varying the temperature and the solubility parameter of the solvent. However, the interaction parameter is frequently derived in two ways. We show that, depending on the definition, the enthalpy and entropy contributions lead to conflicting results. These were evaluated on thermodynamic grounds.

  20. Dynamics and aggregation of the peptide ion channel alamethicin. Measurements using spin-labeled peptides.

    PubMed Central

    Archer, S J; Ellena, J F; Cafiso, D S

    1991-01-01

    Two spin-labeled derivatives of the ion conductive peptide alamethicin were synthesized and used to examine its binding and state of aggregation. One derivative was spin labeled at the C-terminus and the other, a leucine analogue, was spin labeled at the N-terminus. In methanol, both the C and N terminal labeled peptides were monomeric. In aqueous solution, the C-terminal derivative was monomeric at low concentrations, but aggregated at higher concentrations with a critical concentration of 23 microM. In the membrane, the C-terminal label was localized to the membrane-aqueous interface using 13C-NMR, and could assume more than one orientation. The membrane binding of the C-terminal derivative was examined using EPR, and it exhibited a cooperativity seen previously for native alamethicin. However, this cooperativity was not the result of an aggregation of the peptide in the membrane. When the spectra of either the C or N-terminal labeled peptide were examined over a wide range of membrane lipid to peptide ratios, no evidence for aggregation could be found and the peptides remained monomeric under all conditions examined. Because electrical measurements on this peptide provide strong evidence for an ion-conductive aggregate, the ion-conductive form of alamethicin likely represents a minor fraction of the total membrane bound peptide. PMID:1717016

  1. Selective nucleation induced by defect nanostructures: A way to control cobalt disilicide precipitation during ion implantation

    SciTech Connect

    Fortuna, F.; Nguyen, M.-A.; Ruault, M.-O.; Kirk, M. A.; Borodin, V. A.; Ganchenkova, M. G.

    2012-12-15

    In this paper, we show a way to control cobalt disilicide precipitation during Co ion implantation at high temperatures (650 Degree-Sign C) by affecting radiation defects involved in precipitate nucleation and growth. We demonstrate that the relative shares of different precipitate types nucleated by implantation are strongly affected by defect microstructures deliberately created in investigated samples prior to cobalt implantation. Especially interesting is the effect of a dense ensemble of extremely small (1-3 nm) cavities, which promotes the formation of a relatively uniform layer of coherent cobalt disilicide precipitates with a narrow size distribution. In order to better understand the mechanism of the microstructural influence on the precipitate nucleation modes during Co implantation, we investigate the disilicide precipitation using different implantation setups and compare the results with those for cavity-free Si specimens implanted in similar conditions.

  2. Effects of humic substance on precipitation and aggregation of zinc sulfide nanoparticles

    USGS Publications Warehouse

    Deonarine, Amrika; Lau, Boris L.T.; Aiken, George R.; Ryan, Joseph N.; Hsu-Kim, Heileen

    2011-01-01

    Nanoparticulate metal sulfides such as ZnS can influence the transport and bioavailability of pollutant metals in anaerobic environments. The aim of this work was to investigate how the composition of dissolved natural organic matter (NOM) influences the stability of zinc sulfide nanoparticles as they nucleate and aggregate in water with dissolved NOM. We compared NOM fractions that were isolated from several surface waters and represented a range of characteristics including molecular weight, type of carbon, and ligand density. Dynamic light scattering was employed to monitor the growth and aggregation of Zn-S-NOM nanoparticles in supersaturated solutions containing dissolved aquatic humic substances. The NOM was observed to reduce particle growth rates, depending on solution variables such as type and concentration of NOM, monovalent electrolyte concentration, and pH. The rates of growth increased with increasing ionic strength, indicating that observed growth rates primarily represented aggregation of charged Zn-S-NOM particles. Furthermore, the observed rates decreased with increasing molecular weight and aromatic content of the NOM fractions, while carboxylate and reduced sulfur content had little effect. Differences between NOM were likely due to properties that increased electrosteric hindrances for aggregation. Overall, results of this study suggest that the composition and source of NOM are key factors that contribute to the stabilization and persistence of zinc sulfide nanoparticles in the aquatic environment.

  3. Effects of humic substances on precipitation and aggregation of zinc sulfide nanoparticles

    USGS Publications Warehouse

    Deonarine, A.; Lau, B.L.T.; Aiken, G.R.; Ryan, J.N.; Hsu-Kim, H.

    2011-01-01

    Nanoparticulate metal sulfides such as ZnS can influence the transport and bioavailability of pollutant metals in anaerobic environments. The aim of this work was to investigate how the composition of dissolved natural organic matter (NOM) influences the stability of zinc sulfide nanoparticles as they nucleate and aggregate in water with dissolved NOM. We compared NOM fractions that were isolated from several surface waters and represented a range of characteristics including molecular weight, type of carbon, and ligand density. Dynamic light scattering was employed to monitor the growth and aggregation of Zn-S-NOM nanoparticles in supersaturated solutions containing dissolved aquatic humic substances. The NOM was observed to reduce particle growth rates, depending on solution variables such as type and concentration of NOM, monovalent electrolyte concentration, and pH. The rates of growth increased with increasing ionic strength, indicating that observed growth rates primarily represented aggregation of charged Zn-S-NOM particles. Furthermore, the observed rates decreased with increasing molecular weight and aromatic content of the NOM fractions, while carboxylate and reduced sulfur content had little effect. Differences between NOM were likely due to properties that increased electrosteric hindrances for aggregation. Overall, results of this study suggest that the composition and source of NOM are key factors that contribute to the stabilization and persistence of zinc sulfide nanoparticles in the aquatic environment. ?? 2011 American Chemical Society.

  4. Influence of Inorganic Ions on Aggregation and Adsorption Behaviors of Human Adenovirus

    EPA Science Inventory

    In this study, we investigated the influence of inorganic ions on the aggregation and deposition (adsorption) behavior of human adenovirus (HAdV). Experiments were conducted to determine the surface charge and size of HAdV and viral adsorption capacity of sand in different salt c...

  5. Spontaneous aggregation of lithium ion coordination polymers in fluorinated electrolytes for high-voltage batteries

    SciTech Connect

    Malliakas, Christos D.; Leung, Kevin; Pupek, Krzysztof Z.; Shkrob, Ilya A.; Abraham, Daniel P.

    2016-03-31

    Fluorinated carbonate solvents are pursued as liquid electrolytes for high-voltage Li-ion batteries. We report aggregation of [Li+(FEC)3]n polymer species from fluoroethylene carbonate containing electrolytes and scrutinized the causes for this behavior.

  6. Precipitation of fast ion beams from the plasma sheet boundary layer

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, M.; Zelenyi, L. M.; Bosqued, J. M.; Kovrazhkin, R. A.

    1992-01-01

    This paper presents a model of precipitated fluxes from the PSBL and CPS. Simulation results and data from Aureol-3 spacecraft indicate the presence of velocity dispersed precipitated ion structures (VDIS) at the poleward edge of the auroral oval. These structures are associated with fast ion beams in the PSBL region of the earth's magnetotail, confirming previous experimental results. The simulations also reveal possible substructuring of the VDIS. The bulk of the PSBL population which is not precipitated is very effectively thermalized and quasi-isotropized after multiple interactions with the magnetotail current layer. After each reflection cycle some part of the distribution is precipitated and forms multiple 'echoes' of VDIS. The CPS distributions occurring as a result of scattering, convection, multiple reflections and Fermi acceleration appear isotropic in the simulation model. This paper portrays the important role of the VDIS auroral region medium for complicated and energetically significant processes occurring in different regions of the distant magnetotail.

  7. A general association between discrete auroras and ion precipitation from the tail

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.; Fennell, J. F.; Vampola, A. L.

    1988-01-01

    Observations from the spinning polar-orbiting S3-3 satellite were used to compare the locations of discrete auroral arcs (defined to be regions containing particle distributions consistent with field-aligned potential drops of not less than 0.5 kV) with regions of isotropic ion precipitation. It was found that the regions of discrete aurora are almost exclusively confined to the region of isotropic ion precipitation at all local times studied (polar cap arcs and local times near noon were not considered). It was also found that, throughout the local time interval studied, the discrete aurora was generally associated with spatial structure and boundaries in the precipitating ions, indicating that arc generation may be associated with structure in the particle population within the tail current sheet.

  8. Precursor Ion–Ion Aggregation in the Brust–Schiffrin Synthesis of Alkanethiol Nanoparticles

    SciTech Connect

    Graham, Trent R.; Renslow, Ryan; Govind, Niranjan; Saunders, Steven R.

    2016-09-08

    Tetraoctylammonium bromide is used in the Brust-Schiffrin nanoparticle synthesis to phase-transfer chloroaurate ions from the aqueous phase to the organic phase. While it is established that the quaternary ammonium complex self-associates in the organic phase, the actual self-assembled structure is debated. We have confirmed the presence of ion-ion aggregates through quantitative 1H Nuclear Magnetic Resonance spectroscopy (NMR), pulsed field gradient, diffusion-ordered NMR (DOSY-NMR) and density functional theory (DFT) based NMR shift calculations. Tetraoctylammonium complexes (TOA-X, where X = Br, Cl, AuCl4-xBrx, AuBr4/Br and AuCl4-xBrx/Br) were investigated to measure the extraction of water into the organic phase. 1H NMR and DFT based NMR shielding calculations indicated that deshielding of water is due to hydration of the anion and not the formation of the aqueous core of a reverse micelle. DOSYNMR results were consistent with the formation of small aggregates at typical Brust-Schiffrin synthesis concentrations. The extent of aggregation correlated with the size and electronegativity of the anion and was analyzed with a modified, isodesmic, indefinite aggregation model. The substitution of bromoauric acid for chlororoauric acid at conditions emulating the Brust-Schiffrin synthesis increased the aggregation of the quaternary ammonium complex. The increase in aggregation corresponded with an increase in the size of the produced nanoparticles from 4.3 to 4.6 nm. Understanding the selfassembly and supramolecular structure of precursors in the Brust-Schiffrin synthesis will enable further refinement of models that predict the growth of noble metal nanoparticles.

  9. Using magnetic seeds to improve the aggregation and precipitation of nanoparticles from backside grinding wastewater.

    PubMed

    Wan, Terng-Jou; Shen, Shu-Min; Siao, Sheng-Han; Huang, Chong-Fu; Cheng, Chiung-Yi

    2011-12-01

    Backside grinding (BG) wastewater treatment typically requires large quantities of chemicals, i.e. polyaluminum chloride (PAC) coagulant and produces considerable amounts of sludge, increasing the loading and cost of subsequent sludge treatment and disposal processes. This study investigated the effects of the addition of magnetic seeds (FeO*Fe(2)O(3)) of selected particle sizes and of optimized combinations of magnetic seeds and PAC on the aggregation of silica nanoparticles from BG wastewater and on the sedimentation time at various pH values. The results show that the turbidity of BG wastewater was significantly reduced by the magnetic aggregation treatment. The dosage of PAC combined with 2.49gL(-1) or 1.24gL(-1) of magnetic seeds was reduced by 83% (from 60 to 10mgL(-1)) compared to the conventional process of using only PAC as a coagulant. The turbidity of the BG wastewater, initially 1900-2500NTU, could also be successfully decreased about to 23NTU by the addition of 3.74gL(-1) magnetite (FeO*Fe(2)O(3)) only at pH 5 with an applied magnetic field of 1000G. Different coagulation conditions using magnetic seeds combined with coagulant resulted in different aggregation performances. The treatment performance was more effective by using two-stage dosing, in which magnetic seeds and PAC were added separately, than that with one-stage dosing, where the magnetic seeds and PAC were added simultaneously during rapid mixing. The two-stage dosing allowed for a reduction in the optimum dosage of magnetic seeds from 3.74gL(-1) to 2.49gL(-1) or 1.24gL(-1) without affecting performance when coupled with 0.01gL(-1) of PAC coagulant. The developed method effectively reduced the production of waste sludge.

  10. On the Importance of Pickup Ion Precipitation to the Martian Thermosphere Under Severe Solar Wind Conditions

    NASA Astrophysics Data System (ADS)

    Fang, X.; Bougher, S. W.; Johnson, R. E.; Luhmann, J. G.; Liemohn, M. W.; Ma, Y.

    2012-12-01

    Ionization of Martian neutral species and the subsequent pickup by the solar wind provides not only a non-thermal atmospheric loss process, but also a significant heating source to the thermosphere, depending on whether the ions ultimately leave or return to the planet. In this study, we will explore the importance of returning energetic pickup ions to the Martian thermosphere on a global scale. To accomplish this, two global models are coupled: the Monte Carlo Pickup Ion Transport model (MCPIT) for the tracing of pickup ion motion and the evaluation of energetic particle precipitation at the exobase, and the Mars Global Ionosphere Thermosphere Model (MGITM) for the calculation of the upper atmospheric response to this extra kinetic energy input. Three cases are selected to explore the ion precipitation importance under nominal quiet, active, and extreme solar wind conditions, respectively, at solar maximum. It is found that while the change in the thermospheric temperature is almost negligible under the quiet solar wind conditions, the temperature is significantly enhanced in the active case, when the upstream solar wind speed is greatly elevated with all the other parameters unchanged. The temperature variation in the active case is meaningful and large enough to be experimentally detected. We also examine the responses of the thermosphere to an extreme case, in which the impinging solar wind has greatly elevated dynamic pressure and magnetic field. Our simulations show that the thermosphere reacts dramatically to the extreme scenario: heating from pickup ion bombardment can totally overwhelm the solar EUV heating on the dayside, and the horizontal winds become much faster as well. It is suggested that under disturbed solar wind conditions, precipitating pickup ions represent an important energy source to the Martian thermosphere and should be taken into account in global atmospheric modeling. Considering the largely increased temperature and thus significantly

  11. Latitudinal and longitudinal displacement of cusp ion precipitation controlled by IMF By and Bz

    NASA Astrophysics Data System (ADS)

    Asai, K. T.; Maezawa, K.; Mukai, T.; Hayakawa, H.

    2005-07-01

    Dependence of the location of the cusp precipitation on the orientation of interplanetary magnetic field (IMF) is investigated using data from the Akebono satellite taken at altitudes of several thousands of km. More than a hundred cusp precipitation events have been identified with the low-energy particle detector (LEP) onboard Akebono. The observed energy spectra of ions precipitating at the cusp are dispersed by the convection motion of field lines. We pay special attention to the location where precipitating ions have the highest energy in the energy dispersion curve as recorded along the satellite's path; such location would represent the one nearest to the foot point of the dayside reconnection line (we here assume that the cusp ion injection is triggered by the magnetopause reconnection). We study this location as a proxy for the foot point of the reconnection line and call it "ion entry point" in this paper. Our analysis shows that the location of the "ion entry point" has a strong dependence on the sign and magnitude of IMF By and Bz . By and Bz have almost orthogonal effects on the location of the entry point, with the latitudinal displacement linearly related to Bz, and the longitudinal displacement linearly related to By . We find that the Bz dependence of the ion entry point is represented by a single regression line for entire range of Bz irrespective of its north/south polarity. We also find that the By dependence is larger for positive Bz than for negative Bz . The distribution of ion entry points for positive IMF By is almost a mirror image of that for negative IMF By with respect to the noon-midnight meridian plane. We discuss the dependence of the "ion entry point" on the IMF from the viewpoint of where and how the magnetopause reconnection (merging) occurs for various orientations of IMF.

  12. Insights into riming and aggregation processes as revealed by aircraft, radar, and disdrometer observations for a 27 April 2011 widespread precipitation event: Insights into Riming and Aggregation

    SciTech Connect

    Giangrande, Scott E.; Toto, Tami; Bansemer, Aaron; Kumjian, Matthew R.; Mishra, Subhashree

    2016-05-19

    Our study presents aircraft spiral ascent and descent observations intercepting a transition to riming processes during widespread stratiform precipitation. The sequence is documented using collocated scanning and profiling radar, including longer-wavelength dual polarization measurements and shorter-wavelength Doppler spectra. Riming regions are supported using aircraft measurements recording elevated liquid water concentrations, spherical particle shapes, and saturation with respect to water. Profiling cloud radar observations indicate riming regions during the event as having increasing particle fall speeds, rapid time-height changes, and bimodalities in Doppler spectra. These particular riming signatures are coupled to scanning dual polarization radar observations of higher differential reflectivity (ZDR) aloft. Moreover, reduced melting layer enhancements and delayed radar bright-band signatures in the column are also observed during riming periods, most notably with the profiling radar observations. The bimodal cloud radar Doppler spectra captured near riming zones indicate two time-height spectral ice peaks, one rimed particle peak, and one peak associated with pristine ice needle generation and/or growth between -4°C and -7°C also sampled by aircraft probes. We observe this pristine needle population near the rimed particle region which gives a partial explanation for the enhanced ZDR. The riming signatures aloft and radar measurements within the melting level are weakly lag correlated (r~0.6) with smaller median drop sizes at the surface, as compared with later times when aggregation of larger particle sizes was believed dominant.

  13. Insights into riming and aggregation processes as revealed by aircraft, radar, and disdrometer observations for a 27 April 2011 widespread precipitation event: Insights into Riming and Aggregation

    DOE PAGES

    Giangrande, Scott E.; Toto, Tami; Bansemer, Aaron; ...

    2016-05-19

    Our study presents aircraft spiral ascent and descent observations intercepting a transition to riming processes during widespread stratiform precipitation. The sequence is documented using collocated scanning and profiling radar, including longer-wavelength dual polarization measurements and shorter-wavelength Doppler spectra. Riming regions are supported using aircraft measurements recording elevated liquid water concentrations, spherical particle shapes, and saturation with respect to water. Profiling cloud radar observations indicate riming regions during the event as having increasing particle fall speeds, rapid time-height changes, and bimodalities in Doppler spectra. These particular riming signatures are coupled to scanning dual polarization radar observations of higher differential reflectivity (ZDR)more » aloft. Moreover, reduced melting layer enhancements and delayed radar bright-band signatures in the column are also observed during riming periods, most notably with the profiling radar observations. The bimodal cloud radar Doppler spectra captured near riming zones indicate two time-height spectral ice peaks, one rimed particle peak, and one peak associated with pristine ice needle generation and/or growth between -4°C and -7°C also sampled by aircraft probes. We observe this pristine needle population near the rimed particle region which gives a partial explanation for the enhanced ZDR. The riming signatures aloft and radar measurements within the melting level are weakly lag correlated (r~0.6) with smaller median drop sizes at the surface, as compared with later times when aggregation of larger particle sizes was believed dominant.« less

  14. Mars heavy ion precipitating flux as measured by Mars Atmosphere and Volatile EvolutioN

    NASA Astrophysics Data System (ADS)

    Leblanc, F.; Modolo, R.; Curry, S.; Luhmann, J.; Lillis, R.; Chaufray, J. Y.; Hara, T.; McFadden, J.; Halekas, J.; Eparvier, F.; Larson, D.; Connerney, J.; Jakosky, B.

    2015-11-01

    In the absence of an intrinsic dipole magnetic field, Mars' O+ planetary ions are accelerated by the solar wind. Because of their large gyroradius, a population of these planetary ions can precipitate back into Mars' upper atmosphere with enough energy to eject neutrals into space via collision. This process, referred to as sputtering, may have been a dominant atmospheric loss process during earlier stages of our Sun. Yet until now, a limited number of observations have been possible; Analyzer of Space Plasmas and Energetic Atoms-3/Mars Express observed such a precipitation only during extreme conditions, suggesting that sputtering might be not as intense as theoretically predicted. Here we describe one example of precipitation of heavy ions during quiet solar conditions. Between November 2014 and April 2015, the average precipitating flux is significant and in agreement with predictions. From these measured precipitating fluxes, we estimate that a maximum of 1.0 × 1024 O/s could have been lost due to sputtering.

  15. An Improved Process for Precipitating Cyanide Ions from the Barren Solution at Different pHs

    NASA Astrophysics Data System (ADS)

    Figueroa, Gabriela V.; Parga, José R.; Valenzuela, Jesus L.; Vázquez, Victor; Valenzuela, Alejandro; Rodriguez, Mario

    2016-02-01

    In recent decades, the use of metal sulfides instead of hydroxide precipitation in hydrometallurgical processes has gained prominence. Some arguments for its preferential use are as follows: a high degree of metal removal at relatively low pH values, the sparingly soluble nature of sulfide precipitates, favorable dewatering characteristics, and the stability of the formed metal sulfides. The Merrill-Crowe zinc-precipitation process has been applied worldwide in a large number of operations for the recovery of gold and silver from cyanide solutions. However, in some larger plants, the quality of this precious precipitate is low because copper, zinc and especially lead are precipitated along with gold and silver. This results in higher consumption of zinc dust and flux during the smelting of the precipitate, the formation of the matte, and a shorter crucible life. The results show that pH has a significant effect on the removal efficiency of zinc and copper cyanide ions. The optimal pH range was determined to be 3-4, and the removal efficiency of zinc and copper cyanide ions was up to 99%.

  16. The chemical precipitation of nickel on ion exchangers and active carbons

    NASA Astrophysics Data System (ADS)

    Khorol'Skaya, S. V.; Zolotukhina, E. V.; Polyanskii, L. N.; Peshkov, S. V.; Kravchenko, T. A.; Krysanov, V. A.

    2010-12-01

    The chemical precipitation of nickel in the form of poorly soluble precipitates in ion exchanger matrices and on active carbons from solutions of nickel chloride and chemical nickel plating electrolytes was studied. The sorption of nickel ions from a solution of nickel chloride occurs most effectively on Purolite D24002 macroporous chelate forming ion exchanger, KU-23-15/100 sulfo cation exchanger, and KU-2-8 gel sulfo cation exchanger. Nickel enters sulfo cation exchangers in the form of counterions, and is adsorbed on Purolite D24002 largely because of complex formation. The subsequent precipitation of nickel in the solid state in matrix pores liberates ionogenic centers, which allows repeated sorption cycles to be performed. After three chemical precipitation cycles under static conditions, the amount of nickel is higher by 170-250% than the ion exchange capacity of the sorbents. The electrolyte of chemical nickel plating contains nickel predominantly in the form of negatively charged and neutral complexes with glycine, which cannot form bonds with the matrices under study. It is therefore reasonable to perform sorption at decreased solution pH values.

  17. AUREOL-3 observations of new boundaries in the auroral ion precipitation

    NASA Technical Reports Server (NTRS)

    Bosqued, Jean M.; Ashour-Abdalla, Maha; El Alaoui, Mostafa; Zelenyj, Lev M.; Berthlier, Annick

    1993-01-01

    Interesting and well-separated structures in the 1-20 keV ion precipitation pattern have been revealed by an analysis of more than 50 crossings of the nightside (21-03 MLT) auroral zone by the AUREOL-3 satellite. First, velocity-dispersed ion structures (VDIS) are crossed near the poleward edge of the oval, and are the best ionospheric signature of ion beams flowing along the plasma sheet boundary layer. Proceeding equatorward, a large majority of VDIS events are bounded by a new and interesting narrow band of strongly reduced precipitation, or a gap, which delineates VDIS from the diffuse precipitation region connected to the CPS. A statistical analysis shows that the gap has an extent of about 1-2 deg, which is almost independent of magnetic activity; its location, about 70 deg ILAT, shifts significantly equatorward with higher magnetic activity levels. Intense electron arcs are observed near the equatorward edge of the gap. An important result is that the overall sequence of VDIS-gap-CPS can be explained in terms of orbital dynamics in the tail. The gap in precipitation appears as the counterpart of the 'wall' regime in the equatorial plane, in which a cross-tail current carried by energetic ions is strongly enhanced between 8 and 12 R(E). This region has important consequences for the development of substorms.

  18. IMPROVEMENT UPON THE CARRIER PRECIPITATION OF PLUTONIUM IONS FROM NITRIC ACID SOLUTIONS

    DOEpatents

    James, R.A.; Thompson, S.G.

    1958-12-23

    A process is reported for improving the removal of plutonlum by carrier precipitation by the addition of nitrite ions to a nitrlc acid solutlon of neutronirradiated unanium so as to destroy any hydrazine that may be present in the solution since the hydrazine tends to complex the tetravalent plutonium and prevents removal by the carrier precipltate, such as bismuth phospbate.

  19. Ion beam mixing effects in Ag precipitates embedded in MgO crystals

    NASA Astrophysics Data System (ADS)

    Fuchs, G.; Abouchacra, G.; Treilleux, M.; Thevenard, P.; Serughetti, J.

    1988-05-01

    MgO single crystals have been implanted at room temperature with 8 × 10 16 Ag cm -2 of 180 keV energy. After 973 K thermal annealing, Ag atoms precipitate in the MgO matrix. The MgOAg samples were then irradiated at 77 K with 800 keV xenon up to 1.7 × 10 16 ions cm -2. The modification of the metallic precipitated phase induced by such ionic bombardment, has been characterized by optical absorption spectroscopy (OAS) and transmission electron microscopy (TEM). The evolution of the optical spectra with xenon bombardment has been interpreted in terms of silver precipitate dispersion induced by ion beam mixing effects. The inhibition of atomic diffusion or radiation induced diffusion, due the low sample temperature during irradiation, increases the efficiency of atomic mixing effects. TEM observations confirm this assumption.

  20. Metal ion-induced lateral aggregation of filamentous viruses fd and M13.

    PubMed Central

    Tang, Jay X; Janmey, Paul A; Lyubartsev, Alexander; Nordenskiöld, Lars

    2002-01-01

    We report a detailed comparison between calculations of inter-filament interactions based on Monte-Carlo simulations and experimental features of lateral aggregation of bacteriophages fd and M13 induced by a number of divalent metal ions. The general findings are consistent with the polyelectrolyte nature of the virus filaments and confirm that the solution electrostatics account for most of the experimental features observed. One particularly interesting discovery is resolubilization for bundles of either fd or M13 viruses when the concentration of the bundle-inducing metal ion Mg(2+) or Ca(2+) is increased to large (>100 mM) values. In the range of Mg(2+) or Ca(2+) concentrations where large bundles of the virus filaments are formed, the optimal attractive interaction energy between the virus filaments is estimated to be on the order of 0.01 kT per net charge on the virus surface when a recent analytical prediction to the experimentally defined conditions of resolubilization is applied. We also observed qualitatively distinct behavior between the alkali-earth metal ions and the divalent transition metal ions in their action on the charged viruses. The understanding of metal ions-induced reversible aggregation based on solution electrostatics may lead to potential applications in molecular biology and medicine. PMID:12080143

  1. Multiple Timescale Comparison of the Aggregate Drought Index (ADI), the Standardized Precipitation Index (SPI), and Tree Rings in Southern California

    NASA Astrophysics Data System (ADS)

    Keyantash, J.; Sakata, C.

    2012-12-01

    The Aggregate Drought Index (ADI) [Keyantash and Dracup, 2004] is a drought index computed using the principal components of selected hydrological variables such as precipitation, evaporation, streamflow, reservoir storage, soil moisture, and alpine snowpack. Like the widely-used Standardized Precipitation Index (SPI), the ADI possesses the ability to simultaneously assess the shortage/abundance of water over a variety of desired timescales (e.g., 1 month, 12 month, 24 month, etc.). In this paper, the ADI is compared against the SPI, over multiple timescales, in the San Jacinto and Santa Ana River basins of Southern California. The comparisons occur between water years 1962 and 2011, an interval which spans three historic Southern California droughts (1976-77, 1987-1992, and 2007-2009). In both river basins, the drought indices are also compared against tree ring reconstructions of Big Cone Douglas Fir (Pseudotsuga macrocarpa), during a common crossover period in the latter 20th century. For historical perspective, the oldest tree ring reconstruction extends back to the year 1375.

  2. Geochemical mass-balance relationships for selected ions in precipitation and stream water, Catoctin Mountains, Maryland.

    USGS Publications Warehouse

    Katz, B.G.; Bricker, O.P.; Kennedy, M.M.

    1985-01-01

    Results of a study of input/output mass balances for major ions based on the chemical composition of precipitation and stream-water, geochemical reactions with different loading rates of hydrogen ion, and watershed processes influencing the chemical character of stream-waters in two small watershed areas are reported with a view to predicting the effect of additions of acidic rain to the watershed systems. Geochemical weathering processes account for the observed changes in the chemistry of stream flow. Although present in bedrock in extremely small quantities, calcite plays an important role in neutralization of the total hydrogen-ion input.-M.S.

  3. Use of ion chromatography for analysis of MAP3S precipitation samples

    SciTech Connect

    Rothert, J.

    1980-07-01

    The Multistate Atmospheric Power Production Pollution Study/Regional Acidity of Industrial Emissions, MAP3S/RAINE program includes measurement and modeling of fossil-fuel effluent concentrations in precipitation and air in the northeastern United States. To determine precipitation concentrations of sulfur and nitrogen oxides as well as PO/sub 4//sup 3 -/, Cl/sup -/, Na/sup +/, K/sup +/, NH/sub 4//sup +/, Ca/sup 2 +/, Mg/sup 2 +/, pH, and conductivity, an eight-1 site precipitation network in rural eastern United States has been established. Two Dionex Model 10 ion chromatographs are being used to analyze the precipitation samples. This paper describes the use and operation of these instruments. (ACR)

  4. Modeling the effects of ion dose and crystallographic symmetry on the morphological evolution of embedded precipitates under thermal annealing

    NASA Astrophysics Data System (ADS)

    Li, Kun-Dar

    2014-10-01

    Thermal annealing is one of the most common techniques to synthesize embedded precipitates by ion implantation process. In this study, an anisotropic phase field model is presented to investigate the effects of ion dose and crystallographic symmetry on the morphological formation and evolution of embedded precipitates during post-implantation thermal annealing process. This theoretical model provides an efficient numerical approach to understand the phenomenon of faceted precipitates formation by ion implantation. As a theoretical analysis, the interfacial energy and diffusion kinetics play prominent roles in the mechanism of atomic diffusion for the precipitates formation. With a low ion dose, faceted precipitates are developed by virtue of the anisotropic interfacial energy. As an increase of ion dose, connected precipitates with crystallographic characters on the edge are appeared. For a high ion dose, labyrinth-like nanostructures of precipitates are produced and the characteristic morphology of crystallographic symmetry becomes faint. These simulation results for the morphological evolutions of embedded precipitates by ion implantation are corresponded with many experimental observations in the literatures. The quantitative analyses of the simulations are also well described the consequence of precipitates formation under different conditions.

  5. Precipitation behavior of AlxCoCrFeNi high entropy alloys under ion irradiation

    PubMed Central

    Yang, Tengfei; Xia, Songqin; Liu, Shi; Wang, Chenxu; Liu, Shaoshuai; Fang, Yuan; Zhang, Yong; Xue, Jianming; Yan, Sha; Wang, Yugang

    2016-01-01

    Materials performance is central to the satisfactory operation of current and future nuclear energy systems due to the severe irradiation environment in reactors. Searching for structural materials with excellent irradiation tolerance is crucial for developing the next generation nuclear reactors. Here, we report the irradiation responses of a novel multi-component alloy system, high entropy alloy (HEA) AlxCoCrFeNi (x = 0.1, 0.75 and 1.5), focusing on their precipitation behavior. It is found that the single phase system, Al0.1CoCrFeNi, exhibits a great phase stability against ion irradiation. No precipitate is observed even at the highest fluence. In contrast, numerous coherent precipitates are present in both multi-phase HEAs. Based on the irradiation-induced/enhanced precipitation theory, the excellent structural stability against precipitation of Al0.1CoCrFeNi is attributed to the high configurational entropy and low atomic diffusion, which reduces the thermodynamic driving force and kinetically restrains the formation of precipitate, respectively. For the multiphase HEAs, the phase separations and formation of ordered phases reduce the system configurational entropy, resulting in the similar precipitation behavior with corresponding binary or ternary conventional alloys. This study demonstrates the structural stability of single-phase HEAs under irradiation and provides important implications for searching for HEAs with higher irradiation tolerance. PMID:27562023

  6. Precipitation behavior of AlxCoCrFeNi high entropy alloys under ion irradiation.

    PubMed

    Yang, Tengfei; Xia, Songqin; Liu, Shi; Wang, Chenxu; Liu, Shaoshuai; Fang, Yuan; Zhang, Yong; Xue, Jianming; Yan, Sha; Wang, Yugang

    2016-08-26

    Materials performance is central to the satisfactory operation of current and future nuclear energy systems due to the severe irradiation environment in reactors. Searching for structural materials with excellent irradiation tolerance is crucial for developing the next generation nuclear reactors. Here, we report the irradiation responses of a novel multi-component alloy system, high entropy alloy (HEA) AlxCoCrFeNi (x = 0.1, 0.75 and 1.5), focusing on their precipitation behavior. It is found that the single phase system, Al0.1CoCrFeNi, exhibits a great phase stability against ion irradiation. No precipitate is observed even at the highest fluence. In contrast, numerous coherent precipitates are present in both multi-phase HEAs. Based on the irradiation-induced/enhanced precipitation theory, the excellent structural stability against precipitation of Al0.1CoCrFeNi is attributed to the high configurational entropy and low atomic diffusion, which reduces the thermodynamic driving force and kinetically restrains the formation of precipitate, respectively. For the multiphase HEAs, the phase separations and formation of ordered phases reduce the system configurational entropy, resulting in the similar precipitation behavior with corresponding binary or ternary conventional alloys. This study demonstrates the structural stability of single-phase HEAs under irradiation and provides important implications for searching for HEAs with higher irradiation tolerance.

  7. Precipitation behavior of AlxCoCrFeNi high entropy alloys under ion irradiation

    NASA Astrophysics Data System (ADS)

    Yang, Tengfei; Xia, Songqin; Liu, Shi; Wang, Chenxu; Liu, Shaoshuai; Fang, Yuan; Zhang, Yong; Xue, Jianming; Yan, Sha; Wang, Yugang

    2016-08-01

    Materials performance is central to the satisfactory operation of current and future nuclear energy systems due to the severe irradiation environment in reactors. Searching for structural materials with excellent irradiation tolerance is crucial for developing the next generation nuclear reactors. Here, we report the irradiation responses of a novel multi-component alloy system, high entropy alloy (HEA) AlxCoCrFeNi (x = 0.1, 0.75 and 1.5), focusing on their precipitation behavior. It is found that the single phase system, Al0.1CoCrFeNi, exhibits a great phase stability against ion irradiation. No precipitate is observed even at the highest fluence. In contrast, numerous coherent precipitates are present in both multi-phase HEAs. Based on the irradiation-induced/enhanced precipitation theory, the excellent structural stability against precipitation of Al0.1CoCrFeNi is attributed to the high configurational entropy and low atomic diffusion, which reduces the thermodynamic driving force and kinetically restrains the formation of precipitate, respectively. For the multiphase HEAs, the phase separations and formation of ordered phases reduce the system configurational entropy, resulting in the similar precipitation behavior with corresponding binary or ternary conventional alloys. This study demonstrates the structural stability of single-phase HEAs under irradiation and provides important implications for searching for HEAs with higher irradiation tolerance.

  8. Spatial distribution and energy deposition of precipitating Oxygen ions and their relation with the Martian crustal fields

    NASA Astrophysics Data System (ADS)

    Li, Lei; Zhang, Yiteng

    In the electromagnetic environment set by the MHD model (Ma et al.,2004), considering the dynamic feature of O+ ions, the spatial distributions and energy spectra of O+ ions impacting the atmosphere of Mars are calculated by tracing the trajectories of cold O+ ions launched from the sunlit hemisphere. The effects of the crustal fields on the spatial distribution of precipitating O+ ions are investigated by turning on or off the crustal fields. Global maps of precipitating O+ ion flux show that the crustal fields have no significant effect on the spatial distribution of lower energy precipitating ions(<100eV), while the distribution of higher energyprecipitating O+ ions (>100eV) is closely related with the distribution of the crustal fields. Most O+ ions originated in lower exosphere impact day side atmosphere before getting much energy since the electric field is weak there. O+ ions from higher source may impact the atmosphere with higher energy deposition, forming patchy precipitation regions both at dayside and nightside when the crustal fields are present. A precipitation belt formed by high energy O+ ions (around 1keV) is found near the midnight region, revealing that the crustal fields may change the electromagnetic environment near Mars significantly and result in the acceleration of precipitating O+ ions at the nightside. Together with the rotation of the planet, the consequences of the impacting of O+, including heating and sputtering of the atmosphere and ionosphere, should be much more complicated than expected.

  9. Compressive strength and resistance to chloride ion penetration and carbonation of recycled aggregate concrete with varying amount of fly ash and fine recycled aggregate.

    PubMed

    Sim, Jongsung; Park, Cheolwoo

    2011-11-01

    Construction and demolition waste has been dramatically increased in the last decade, and social and environmental concerns on the recycling have consequently been increased. Recent technology has greatly improved the recycling process for waste concrete. This study investigates the fundamental characteristics of concrete using recycled concrete aggregate (RCA) for its application to structural concrete members. The specimens used 100% coarse RCA, various replacement levels of natural aggregate with fine RCA, and several levels of fly ash addition. Compressive strength of mortar and concrete which used RCA gradually decreased as the amount of the recycled materials increased. Regardless of curing conditions and fly ash addition, the 28 days strength of the recycled aggregate concrete was greater than the design strength, 40 MPa, with a complete replacement of coarse aggregate and a replacement level of natural fine aggregate by fine RCA up to 60%. The recycled aggregate concrete achieved sufficient resistance to the chloride ion penetration. The measured carbonation depth did not indicate a clear relationship to the fine RCA replacement ratio but the recycled aggregate concrete could also attain adequate carbonation resistance. Based on the results from the experimental investigations, it is believed that the recycled aggregate concrete can be successfully applied to structural concrete members.

  10. Formation of stable nanocarriers by in situ ion pairing during block-copolymerdirected rapid precipitation

    PubMed Central

    Pinkerton, Nathalie M.; Grandeury, Arnaud; Fisch, Andreas; Brozio, Jörg; Riebesehl, Bernd U.; Prud’homme, Robert K.

    2013-01-01

    We present an in situ hydrophobic salt forming technique for the encapsulation of weakly hydrophobic, ionizable active pharmaceutical ingredients (API) into stable nanocarriers (NCs) formed via a rapid precipitation process. Traditionally, NC formation via rapid precipitation has been difficult with APIs in this class because their intermediate solubility makes achieving high supersaturation difficult during the precipitation process and the intermediate solubility causes rapid Ostwald ripening or recrystallization after precipitation. By forming a hydrophobic salt in situ, the API solubility and crystallinity can be tuned to allow for NC formation. Unlike covalent API modification, the hydrophobic salt formation modifies properties via ionic interactions, thus circumventing the need for full FDA re-approval. This technique greatly expands the types of APIs that can be successfully encapsulated in NC form. Three model API’s were investigated and successfully incorporated into NCs by forming salts with hydrophobic counter ions: cinnarizine, an antihistamine, clozapine, an antipsychotic and α-lipoic acid, a common food supplement. We focus on cinnarizine to develop the rules for the in situ nanoprecipitation of salt NCs. These rules include the pKa’s and solubilities of the API and counter ion, the effect of the salt former-to-API ratio on particle stability and encapsulation efficiency, and the control of NC size. Finally, we present results on the release rates of these ion pair APIs from the NCs. PMID:23259920

  11. Quantification of alginate by aggregation induced by calcium ions and fluorescent polycations.

    PubMed

    Zheng, Hewen; Korendovych, Ivan V; Luk, Yan-Yeung

    2016-01-01

    For quantification of polysaccharides, including heparins and alginates, the commonly used carbazole assay involves hydrolysis of the polysaccharide to form a mixture of UV-active dye conjugate products. Here, we describe two efficient detection and quantification methods that make use of the negative charges of the alginate polymer and do not involve degradation of the targeted polysaccharide. The first method utilizes calcium ions to induce formation of hydrogel-like aggregates with alginate polymer; the aggregates can be quantified readily by staining with a crystal violet dye. This method does not require purification of alginate from the culture medium and can measure the large amount of alginate that is produced by a mucoid Pseudomonas aeruginosa culture. The second method employs polycations tethering a fluorescent dye to form suspension aggregates with the alginate polyanion. Encasing the fluorescent dye in the aggregates provides an increased scattering intensity with a sensitivity comparable to that of the conventional carbazole assay. Both approaches provide efficient methods for monitoring alginate production by mucoid P. aeruginosa.

  12. Na+, Ca2+, and Mg2+ in brines affect supercritical CO2-brine-biotite interactions: ion exchange, biotite dissolution, and illite precipitation.

    PubMed

    Hu, Yandi; Ray, Jessica R; Jun, Young-Shin

    2013-01-02

    For sustainable geologic CO(2) sequestration (GCS), a better understanding of the effects of brine cation compositions on mica dissolution, surface morphological change, and secondary mineral precipitation under saline hydrothermal conditions is needed. Batch dissolution experiments were conducted with biotite under conditions relevant to GCS sites (55-95 °C and 102 atm CO(2)). One molar NaCl, 0.4 M MgCl(2), or 0.4 M CaCl(2) solutions were used to mimic different brine compositions, and deionized water was used for comparison. Faster ion exchange reactions (Na(+)-K(+), Mg(2+)-K(+), and Ca(2+)-K(+)) occurred in these salt solutions than in water (H(+)-K(+)). The ion exchange reactions affected bump, bulge, and crack formation on the biotite basal plane, as well as the release of biotite framework ions. In these salt solutions, numerous illite fibers precipitated after reaction for only 3 h at 95 °C. Interestingly, in slow illite precipitation processes, oriented aggregation of hexagonal nanoparticles forming the fibrous illite was observed. These results provide new information for understanding scCO(2)-brine-mica interactions in saline aquifers with different brine cation compositions, which can be useful for GCS as well as other subsurface projects.

  13. Middle atmosphere NO/x/ production due to ion propulsion induced radiation belt proton precipitation

    NASA Technical Reports Server (NTRS)

    Aikin, A. C.; Jackman, C. H.

    1980-01-01

    The suggestion that keV Ar(+) resulting from ion propulsion operations during solar power satellite construction could cause energetic proton precipitation from the inner radiation belt is examined to determine if such precipitation could cause significant increases in middle atmosphere nitric oxide concentrations thereby adversely affecting stratospheric ozone. It is found that the initial production rate of NO (mole/cu cm-sec) at 50 km is 130 times that due to nitrous oxide reacting with excited oxygen. However, since the time required to empty the inner belt of protons is about 1 sec and short compared to the replenishment time due to neutron decay, precipitation of inner radiation belt protons will have no adverse atmospheric environmental effect.

  14. Stability and Vapor Pressure of Aqueous Aggregates and Aerosols Containing a Monovalent Ion.

    PubMed

    Perez Sirkin, Yamila A; Factorovich, Matías H; Molinero, Valeria; Scherlis, Damián A

    2017-04-06

    The incidence of charged particles on the nucleation and the stability of aqueous aggregates and aerosols was reported more than a century ago. Many studies have been conducted ever since to characterize the stability, structure, and nucleation barrier of ion-water droplets. Most of these studies have focused on the free-energy surface as a function of cluster size, with an emphasis on the role of ionic charge and radius. This knowledge is fundamental to go beyond the rudimentary ion-induced classical nucleation theory. In the present article, we address this problem from a different perspective, by computing the vapor pressures of (H2O)nLi(+) and (H2O)nCl(-) aggregates using molecular simulations. Our calculations shed light on the structure, the critical size, the range of stability, and the role of ion-water interactions in aqueous clusters. Moreover, they allow one to assess the accuracy of the classical thermodynamic model, highlighting its strengths and weaknesses.

  15. PROGRESS IN CHARACTERIZATION OF PRECIPITATES AND DEFECT STRUCTURES IN Mg+ ION IMPLANTED CUBIC SILICON CARBIDE

    SciTech Connect

    Jiang, Weilin; Zhang, Jiandong; Zhu, Zihua; Roosendaal, Timothy J.; Hu, Shenyang Y.; Henager, Charles H.; Kurtz, Richard J.; Wang, Yongqiang

    2015-09-01

    This report describes the progress of our current experimental effort on Mg+ ion implanted 3C-SiC. Following our initial study [ ] that suggests possible formation of Mg2Si and MgC2 precipitates as well as tetrahedral voids in 24Mg+ ion implanted 3C-SiC, we have designed specific experiments to confirm the results and examine the inclusions and defects. Relatively low fluence (5.0×1015 24Mg+/cm2) implantation in 3C-SiC was performed to reduce defect concentrations and isolate individual defect features for characterization. In addition, 25Mg+ isotope was implanted in 3C-SiC to the same previously applied ion fluence (9.6×1016 ions/cm2) for atom probe tomography (APT) study of precipitates. Each set of the samples was annealed at 1573 K for 2, 6 and 12 h, respectively. The depth profiles of the implanted Mg were measured using secondary ion mass spectrometry (SIMS) before and after the annealing steps. The samples are currently being analyzed using transmission electron microscopy (TEM) and APT.

  16. Aggregation of stabilized TiO2 nanoparticle suspensions in the presence of inorganic ions.

    PubMed

    Shih, Yang-Hsin; Liu, Wei-Szu; Su, Yuh-Fan

    2012-08-01

    The present study aims to evaluate the effect of inorganic ions on the aggregation kinetics of stabilized titanium dioxide (TiO(2) ) nanoparticle (NP) suspension, an NP mode widely used in consumer goods and in aquatic environments. The point of zero charge of stabilized TiO(2) NPs was approximately pH 6.5. The particle size of the stabilized TiO(2) NP suspensions increased with the increase in salt concentrations. The additional salts caused the shift of zeta potentials of TiO(2) suspensions to a lower value. The TiO(2) NPs aggregated more obviously in the presence of anions than cations, and the effect of divalent anions was larger than that of monovalent anions. The critical coagulation concentration (CCC) values for commercial TiO(2) NP suspensions with positive surfaces were estimated as 290 and 2.3 meq/L for Cl(-) and SO 42-, respectively. These CCC values of stabilized TiO(2) NP suspensions are higher than those of TiO(2) NP powders, indicating greater stability of the commercial stabilized TiO(2) NP suspensions. The effects of commercial TiO(2) NP suspensions still need to be explored and defined. Derjaguin-Landau-Verwey-Overbeek (DLVO) analysis can explain the aggregation behaviors of stabilized TiO(2) NP suspensions. Such an understanding can facilitate the prediction of NP fate in the environment.

  17. Composite alginate hydrogel microparticulate delivery system of zidovudine hydrochloride based on counter ion induced aggregation

    PubMed Central

    Roy, Harekrishna; Rao, P. Venkateswar; Panda, Sanjay Kumar; Biswal, Asim Kumar; Parida, Kirti Ranjan; Dash, Jharana

    2014-01-01

    Aim: The present study deals with preparation of zidovudine loaded microparticle by counter ion induced aggregation method. During this study effect of polyacrylates and hypromellose polymers on release study were investigated. Materials and Methods: The ion induced aggregated alginate based microparticles were characterized for surface morphology, particle size analysis, drug entrapment study, in-vitro study, Fourier-transform infrared (FTIR) spectroscopy, and differential scanning calorimetry (DSC) study. Results and Discussion: The result showed Eudragit RL-100 (ERL) based formulations had smoother surface as well as their mean particle sizes were found greater compared with Eudragit RS-100 (ERS) microparticles. Furthermore, drug entrapments were found to be more in ERL formulae as compared with ERS. RL3 released 101.05% drug over a period of 8th h and followed Higuchi profile and Fickian diffusion. Moreover, data obtained illustrated that, higher amount of quaternary ammonium group, alkali value, and glass transition temperature may be possible reason for improving permeability of ERL based formulations. It was also noticed, hyroxypropyl methylcellulose (HPMC) K4M premium grade polymer sustained drug release more than HPMC K15M. In addition, drug-excipient interaction study was carried out by FTIR and DSC study. PMID:25298940

  18. An observational study of the relationship between precipitating ions and ENAs emerging from the ion/atmosphere interaction region

    NASA Astrophysics Data System (ADS)

    Mackler, David A.

    Plasmasheet particles transported Earthward during times of active magnetospheric convection can interact with thermospheric neutrals through charge exchange. The resulting Energetic Neutral Atoms (ENAs) are free to leave the influence of the magnetosphere and can be remotely detected. ENAs associated with low altitude (300--800 km) ion precipitation in the high latitude atmosphere/ionosphere are termed Low Altitude Emissions (LAEs). Remotely observed LAEs are highly non-isotropic in velocity space such that the pitch angle distribution at the time of charge exchange is near 90 degrees. The Geomagnetic Emission Cone (GEC) of LAEs can be mapped spatially, showing where proton energy is deposited during times of varying geomagnetic activity. In this study we present a statistical look at the correlation between LAE flux (intensity and location) and geomagnetic activity as well as comparisons of LAE signatures with in situ ion precipitation. The LAE data is from the MENA imager on the IMAGE satellite over the declining phase of solar cycle 23 (2000--2005). The SYM-H, AE, and Kp indices are used to describe geomagnetic activity. The in situ data is from the Defense Meteorological Satellite Program (DMSP). The goal of the study is to evaluate properties of LAEs in ENA images and determine if those images can be used to infer properties of ion precipitation. Results indicate a general positive correlation to LAE flux for all three indices, with the SYM-H showing the greatest non-linearity. The MLT distribution of LAEs are centered about midnight and spread with increasing activity. The Invariant Latitude for all indices has a slightly negative correlation. The combined results indicate that both LAE and DMSP data behave similarly to geomagnetic activity. LAEs are more spread out in latitude, possibly due to multiple charge exchange interactions, while the in situ data changes to lower latitudes dramatically with increasing flux. The bulk of the data indicates that the

  19. The Effect of the CO32- to Ca2+ Ion activity ratio on calcite precipitation kinetics and Sr2+ partitioning

    PubMed Central

    2012-01-01

    Background A proposed strategy for immobilizing trace metals in the subsurface is to stimulate calcium carbonate precipitation and incorporate contaminants by co-precipitation. Such an approach will require injecting chemical amendments into the subsurface to generate supersaturated conditions that promote mineral precipitation. However, the formation of reactant mixing zones will create gradients in both the saturation state and ion activity ratios (i.e., aCO32-/aCa2+). To better understand the effect of ion activity ratios on CaCO3 precipitation kinetics and Sr2+ co-precipitation, experiments were conducted under constant composition conditions where the supersaturation state (Ω) for calcite was held constant at 9.4, but the ion activity ratio (r=aCO32-/aCa2+) was varied between 0.0032 and 4.15. Results Calcite was the only phase observed, by XRD, at the end of the experiments. Precipitation rates increased from 41.3 ± 3.4 μmol m-2 min-1 at r = 0.0315 to a maximum rate of 74.5 ± 4.8 μmol m-2 min-1 at r = 0.306 followed by a decrease to 46.3 ± 9.6 μmol m-2 min-1 at r = 1.822. The trend was simulated using a simple mass transfer model for solute uptake at the calcite surface. However, precipitation rates at fixed saturation states also evolved with time. Precipitation rates accelerated for low r values but slowed for high r values. These trends may be related to changes in effective reactive surface area. The aCO32-/aCa2+ ratios did not affect the distribution coefficient for Sr in calcite (DPSr2+), apart from the indirect effect associated with the established positive correlation between DPSr2+ and calcite precipitation rate. Conclusion At a constant supersaturation state (Ω = 9.4), varying the ion activity ratio affects the calcite precipitation rate. This behavior is not predicted by affinity-based rate models. Furthermore, at the highest ion ratio tested, no precipitation was observed, while at the lowest ion ratio precipitation occurred immediately

  20. Thermally induced denaturation and aggregation of BLG-A: effect of the Cu(2+) and Zn (2+) metal ions.

    PubMed

    Stirpe, A; Rizzuti, B; Pantusa, M; Bartucci, R; Sportelli, L; Guzzi, R

    2008-10-01

    There is growing evidence that metal ions can accelerate the aggregation process of several proteins. This process, associated with several neuro-degenerative diseases, has been reported also for non-pathological proteins. In the present work, the effects of copper and zinc ions on the denaturation and aggregation processes of beta-lactoglobulin A (BLG-A) are investigated by differential scanning calorimetry (DSC), fluorescence, electron paramagnetic resonance (EPR) and optical density. The DSC profiles reveal that the thermal behaviour of BLG-A is a complex process, strongly dependent on the protein concentration. For concentrations 0.13 mM an exothermic peak also appears, above 90 degrees C, related to the aggregation of the denaturated BLG-A molecules. The thioflavin T fluorescence indicates that the thermally induced aggregates show fibrillar features. The presence of either equimolar Cu(2+) or Zn(2+) ions in the protein solution has different effects. In particular, copper binds to the protein in the native state, as evidenced by EPR experiments, and destabilizes BLG-A by decreasing the denaturation temperature by about 10 degrees C, whereas zinc ions probably perturb the partially denaturated state of the protein. The kinetics of BLG-A aggregation shows that both metal ions abolish the lag phase before the aggregation starts. Moreover, the rate of the process is 4.6-fold higher in the presence of copper, whereas the effect of zinc is negligible. The increase of the aggregation rate, induced by copper, may be due to a site-specific binding of the metal ion on the protein.

  1. Statistical properties of planetary heavy-ion precipitations toward the Martian ionosphere obtained from Mars Express

    NASA Astrophysics Data System (ADS)

    Hara, Takuya; Seki, Kanako; Futaana, Yoshifumi; Yamauchi, Masatoshi; Barabash, Stas; Fedorov, Andrei O.; Yagi, Manabu; Delcourt, Dominique C.

    2013-08-01

    The interplanetary magnetic field (IMF) embedded in the solar wind interacts with the Martian crustal magnetic field and atmosphere. The IMF orientation is one of the important parameters to control the acceleration and precipitation of planetary heavy ions (PHIs). We statistically investigate the effects of the IMF orientation on PHI precipitations toward the ionosphere based on observations by Mars Express (MEX). We identified 59 PHI precipitation events between July 2007 and September 2009. To estimate the IMF orientation without magnetometer that MEX does not carry, we used the velocity distribution of exospheric-origin pickup protons. We estimated the IMF orientation without its polarity for 10 events. The results show that the precipitations of PHIs tend to be observed around pole regions in the MSE (Mars-centered, solar electrical) coordinates determined from the solar wind electric field (Esw), in which the pole axis directs to the parallel or antiparallel to Esw due to the ambiguity in the IMF polarity determination. The observed precipitating PHIs are accelerated only up to a few keV. This feature may reflect the short distance from the picked-up region. For one of these 10 events, we estimated the IMF polarity by comparing the velocity distribution of exospheric-origin pickup protons observed by MEX with those obtained from statistical trajectory tracing simulations under two cases of possible IMF polarity conditions. The estimated polarity indicates that the PHI precipitation in this event is observed in the downward electric field hemisphere in MSE, where Esw points to Mars in the pole region.

  2. Highly efficient precipitation of phosphoproteins using trivalent europium, terbium, and erbium ions.

    PubMed

    Güzel, Yüksel; Rainer, Matthias; Mirza, Munazza Raza; Bonn, Günther K

    2012-05-01

    This study describes a highly efficient method for the selective precipitation of phosphoproteins by trivalent europium, terbium, and erbium metal ions. These metal cations belong to the group of lanthanides and are known to be hard acceptors with an overwhelming preference for oxygen-containing anions such as phosphates to which they form very tight ionic bonds. The method could be successfully applied to specifically precipitate phosphoproteins from complex samples including milk and egg white by forming solid metal-protein complexes. Owing to the low solubility product of the investigated lanthanide salts, the produced metal-protein complexes showed high stability. The protein pellets were extensively washed to remove nonphosphorylated proteins and contaminants. For the analysis of proteins the pellets were first dissolved in 30 % formic acid and subjected to matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) MS. For peptide mass-fingerprint analysis the precipitated phosphoproteins were enzymatically digested using microwave-assisted digestion. The method was found to be highly specific for the isolation and purification of phosphoproteins. Protein quantification was performed by colorimetric detection of total precipitated phosphoproteins and revealed more than 95 % protein recovery for each lanthanide salt.

  3. Aggregation induced emission enhancement from Bathophenanthroline microstructures and its potential use as sensor of mercury ions in water.

    PubMed

    Mazumdar, Prativa; Das, Debasish; Sahoo, Gobinda Prasad; Salgado-Morán, Guillermo; Misra, Ajay

    2014-04-07

    Bathophenanthroline (BA) microstructures of various morphologies have been synthesized using a reprecipitation method. The morphologies of the particles are characterized using optical and scanning electron microscopy (SEM) methods. An aqueous dispersion of BA microstructures shows aggregation induced emission enhancement (AIEE) compared to BA in a good solvent, THF. This luminescent property of aggregated BA hydrosol is used for the selective detection of trace amounts of mercury ion (Hg(2+)) in water. It is observed that Hg(2+) ions can quench the photoluminescence (PL) intensity of BA aggregates even at very low concentrations, compared to other heavy metal ions e.g. nickel (Ni(2+)), manganese (Mn(2+)), cadmium (Cd(2+)), cobalt (Co(2+)), copper (Cu(2+)), ferrous (Fe(2+)) and zinc (Zn(2+)). This strong fluorescence quenching of aggregated BA in the presence of Hg(2+) ions has been explained as a complex interplay between the ground state complexation between BA and Hg(2+) ions and external heavy atom induced perturbation by Hg(2+) ions on the excited states of the fluorophore BA.

  4. Investigation of metal ion extraction and aggregate formation combining acidic and neutral organophosphorous reagents

    SciTech Connect

    Braatz, A.D.; Nilsson, M.; Ellis, R.; Antonio, M.

    2013-07-01

    In the present study, we investigate how varying mixtures of tri-n-butyl phosphate (TBP) and dibutyl phosphate (HDBP) results in enhanced extraction of lanthanum(III), La{sup 3+}, and dysprosium(III), Dy{sup 3+}. Water and metal ion extraction were carefully monitored as a function of TBP:HDBP mole ratio.In addition to these techniques, EXAFS was used to determine the coordination environment of the metal ion in this system. To produce the necessary signal, a concentration of 1.25*10{sup -3} M La{sup 3+} and Dy{sup 3+} was used. Although previous studies of synergistic extraction of metal cations using combinations of neutral and acidic reagents explain the enhanced extraction by increased dehydration of the metal ion and the formation of mixed extractant complexes, our evidence for the increased water extraction coupled with the aggregate formation suggests a reverse micellar aspect to synergism in the system containing TBP and HDBP. It is quite possible that both of these phenomena contribute to our system behavior. The EXAFS data shows that, based on coordination numbers alone, several possible structures may exist. From this study, we cannot provide a definitive answer as to the nature of extraction in this system or the exact complex formed during extraction.

  5. The Effect of the CO32- to Ca2+ Ion activity ratio on calcite precipitation kinetics and Sr2+ partitioning

    SciTech Connect

    Tsigabu Gebrehiwet; Mikala S. Beig; George Redden; Yoshiko Fujita; Robert W. Smith

    2012-01-01

    Engineering the precipitation of calcium carbonate, which can co-precipitate trace metal contaminants, is a proposed strategy for remediating toxic or radioactive metals in subsurface environments. Engineering precipitation of multi-component minerals will involve injection of chemical amendments that must be mixed at a molecular level to supersaturated conditions that are sufficient to promote rapid mineral precipitation relative to natural systems. In subsurface systems this often means reactant mixing zones will be formed that are characterized by gradients in solute concentrations, saturation state, and solute activity ratios. To better understand the effect of ion activity ratios on CaCO{sub 3} precipitation kinetics and Sr{sup 2+} co-precipitation we experiments were conducted under constant composition conditions where the supersaturation state ({Omega}) with respect to calcite was held constant at 9.4, but the ion activity ratio (r = a{sub co{sub 3}{sup 2-}}/a{sub Ca{sup 2+}}) ranged from 0.003 to 4.15. Results: Under the chosen experimental conditions the CaCO{sub 3} phase formed was calcite and initial precipitation rates varied from a maximum rate of 84.7 {mu}mol/ m{sup 2}/min for a carbonate to calcium activity ratio of (0.21). However, precipitation rates were found to vary with time which could be indicative of variations in precipitation mechanisms that are related to the ion activity ratio. The observed trends in the distribution coefficients for co-precipitated Sr2+ (D{sup P}{sub Sr}{sup 2+}) relative to the calcite precipitation rate (i.e. a positive correlation) indicate that increasing calcite precipitation rates increase the incorporation of Sr{sup 2+}. Conclusion: The observed variation between the rate maxima and minima based on the ion activity ratio could have great deal of implication for sequestering radionuclides (e.g. {sup 90}Sr) and other toxic metals in engineered systems at contaminated sites. Extending our data plot range allowed us

  6. Spatial relationships between region 2 field-aligned currents and electron and ion precipitation in the evening sector

    NASA Technical Reports Server (NTRS)

    Fujii, R.; Hoffman, R. A.; Sugiura, M.

    1990-01-01

    The equatorward cutoff of ion and electron precipitation in relation to the evening region 2 field-aligned current during isolated substorms has been investigated using the magnetic field and plasma data obtained from the Dynamics Explorer 2 satellite. The equatorward boundaries of the region 2 currents relative to those of central plasma sheet (CPS) electron precipitation are determined predominantly by magnetic local time and subsequently change with substorm phases. With approaching midnight, the equatorward boundary of CPS electron precipitation extends toward and eventually equatorward of that of the region 2 current. On the other hand, the equatorward boundary of the region 2 current coincides well with that of 10-20 keV ion precipitation during the whole course of substorms. It is proposed that these ions originate in the so-called Alfven layer and that the location of this inner boundary determines the lower latitude boundary of the region 2 current.

  7. Monte Carlo Model of High Energy Ion Precipitation in the Martian Atmosphere

    NASA Astrophysics Data System (ADS)

    Jolitz, R.; Lillis, R. J.; Brain, D.; Parkinson, C. D.; Lin, R. P.

    2011-12-01

    Precipitation of high-energy charged particles into planetary atmospheres is an important source of energy input, causing ionization, excitation, dissociation, neutral heating and altering neutral chemistry and photochemistry. We have developed a Monte Carlo program that can track energetic ion trajectories and collisions in the Martian atmosphere. Important considerations for this model framework include three-dimensional electric and magnetic fields, neutral density profile, cross sections and angular phase functions of several ion-neutral and neutral-neutral interaction processes. We will present preliminary results from this model, including three-dimensional profiles of rates of common processes such as charge exchange, impact ionization, electron stripping, etc. Ultimately this will form part of a comprehensive model of solar wind interactions with Mars and long-term Martian atmospheric erosion for comparison with MAVEN results.

  8. Influence of impurity ions and magnetic field on the properties of freshly precipitated calcium carbonate.

    PubMed

    Hołysz, Lucyna; Chibowski, Emil; Szcześ, Aleksandra

    2003-08-01

    Static magnetic field (MF) effects on the properties of freshly precipitated calcium carbonate have been investigated in the presence of impurity ion Mg(2+), Fe(2+), or SO4(2-). One or both solutions, CaCl2 and Na2CO3, were exposure to MF (0.5T) for 20min at 20 degrees C. Then calcium carbonate was precipitated and zeta potential, pH and light absorbance (lambda=543.3 nm) were measured. The same parameters were also determined for the reference systems in which the solutions were not MF-treated. It was found that in all the systems tested MF effects as determined by the above mentioned parameters had appeared. They depended on the kind of the impurity ion present, as well as on which solution, CaCl2, Na2CO3 or both, MF interacted. For example, if Mg(2+) ion was present in CaCl2 solution, the largest shift in the zeta potential toward higher positive values was observed if Na2CO3 was MF-treated (e.g. from 2 to 12mV) and the same was true as for the maximum in the light absorbance and the pH increase. Interestingly, if (CaCl2 + Mg(2+)) was MF-treated pH of the slurry had decreased. Moreover, a correlation between above mentioned MF effects and the entropy of hydration of the ions has also been found. This points to the changes in the hydrating water structure caused by magnetic field.

  9. Mathematical model and computer simulation on moving precipitate boundary electrophoresis for offline sample pre- concentration of heavy metal ion.

    PubMed

    Chang, Jiang; Zhang, Jie; Wang, Hou-Yu; Fan, Liu-Yin; Fan, Yin-Ping; Li, Shan; Cao, Cheng-Xi

    2013-01-15

    In this paper, a mathematical model and computer simulator were developed for offline sample pretreatment of heavy metal ion based on moving precipitate boundary (MPB) electrophoresis. The simulation indicates that (i) the program can easily accomplish numerical computations, such as the velocities of MPB and elution boundary (EB), and enrichment factor (EF) etc; (ii) the simulator can vividly imitate the dynamics of MPB, EB, precipitate zone, and precipitate-elution; and (iii) the software may simply optimized experimental conditions via the influence factors (e.g., voltage, hydroxyl, hydrogen and metal ions) on the EF. As a proof of concept, copper ion and its precipitate with definite blue color were, respectively chosen as mode heavy metal ion and alkaline precipitate for the relevant experiments of MPB-based sample preconcentration of heavy metal ion in large tube. All of the experimental results manifest the validity of developed mathematical model and the relevant simulation results. The model and simulator advanced herein are of clear significance to the optimization of experimental conditions and understanding of offline MPB- based sample condensation of heavy metal ion.

  10. Changes in precipitation isotope-climate relationships from temporal grouping and aggregation of weekly-resolved USNIP data: impacts on paleoclimate and environmental applications

    NASA Astrophysics Data System (ADS)

    Akers, P. D.; Welker, J. M.

    2015-12-01

    Spatial variations in precipitation isotopes have been the focus of much recent research, but relatively less work has explored changes at various temporal scales. This is partly because most spatially-diverse and long-term isotope databases are offered at a monthly resolution, while daily or event-level records are spatially and temporally limited by cost and logistics. A subset of 25 United States Network for Isotopes in Precipitation (USNIP) sites with weekly-resolution in the east-central United States was analyzed for site-specific relationships between δ18O and δD (the local meteoric water line/LMWL), δ18O and surface temperature, and δ18O and precipitation amount. Weekly data were then aggregated into monthly and seasonal data to examine the effect of aggregation on correlation and slope values for each of the relationships. Generally, increasing aggregation improved correlations (>25% for some sites) due to a reduced effect of extreme values, but estimates on regression variable error increased (>100%) because of reduced sample sizes. Aggregation resulted in small, but significant drops (5-25%) in relationship slope values for some sites. Weekly data were also grouped by month and season to explore changes in relationships throughout the year. Significant subannual variability exists in slope values and correlations even for sites with very strong overall correlations. LMWL slopes are highest in winter and lowest in summer, while the δ18O-surface temperature relationship is strongest in spring. Despite these overall trends, a high level of month-to-month and season-to-season variability is the norm for these sites. Researchers blindly applying overall relationships drawn from monthly-resolved databases to paleoclimate or environmental research risk assuming these relationships apply at all temporal resolutions. When possible, researchers should match the temporal resolution used to calculate an isotopic relationship with the temporal resolution of

  11. Highly sensitive dual-mode fluorescence detection of lead ion in water using aggregation-induced emissive polymers.

    PubMed

    Saha, Sukanta Kumar; Ghosh, Khama Rani; Gao, Jian Ping; Wang, Zhi Yuan

    2014-09-01

    A series of fluorene-based conjugated polymers containing the aggregation-induced emissive (AIE)-active tetraphenylethene and dicarboxylate pseudocrown as a receptor exhibits a unique dual-mode sensing ability for selective detection of lead ion in water. Fluorescence turn-off and turn-on detections are realized in 80%-90% and 20% water in tetrahydrofuran (THF), respectively, for lead ion with a concentration as low as 10(-8) m.

  12. Effect of humic substances aggregation on the determination of fluoride in water using an ion selective electrode.

    PubMed

    Shen, Junjie; Gagliardi, Simona; McCoustra, Martin R S; Arrighi, Valeria

    2016-09-01

    The control of drinking water quality is critical in preventing fluorosis. In this study humic substances (HS) are considered as representative of natural organic matter (NOM) in water. We show that when HS aggregate the response of fluoride ion selective electrodes (ISE) may be perturbed. Dynamic light scattering (DLS) results of both synthetic solutions and natural water sample suggest that low pH and high ionic strength induce HS aggregation. In the presence of HS aggregates, fluoride concentration measured by ISE has a reduction up to 19%. A new "open cage" concept has been developed to explain this reversible phenomenon. The interference of HS aggregation on fluoride measurement can be effectively removed by centrifugation pretreatment.

  13. Global Pickup Oxygen Ion Precipitation in the Martian Thermosphere: Distributions, Effects, and Implications

    NASA Astrophysics Data System (ADS)

    Fang, X.; Bougher, S. W.; Johnson, R. E.; Ma, Y.; Liemohn, M. W.

    2011-12-01

    We apply a coupled set of 3-D numerical models to study the global aeronomical effects of precipitating pickup oxygen ions in the Martian thermosphere. While atmospheric constituents can be ionized, picked up, and then stripped away by the solar wind, a majority of pickup ions are directed by the electromagnetic fields to the planet and then deposit their energy in and sputter neutrals out of the thermosphere. A MHD field-based Monte Carlo pickup ion transport model is applied in this study with billions of test particles, allowing for the calculation of the detailed incident energy spectra and angular distributions of the return oxygen ion flux. More importantly, such detailed information is obtained globally, avoiding the errors arising from global averaging and thus enabling an unprecedented examination of the differences of particle impact between in the dayside and the nightside, within and outside of crustal magnetic anomaly regions. While accelerated return particles represent a significant energy source to the neutral atmosphere at Mars, their aeronomical effects are not included in any global models, which may lead to a serious problem with our understanding of the thermosphere and ionosphere. In this work, the associated sputtering loss and heating effects will be incorporated into the Mars Thermosphere General Circulation Model (MTGCM) to analyze for the first time the response of the thermosphere in a global perspective. The combination of these models allows for a quantitative assessment of the global impact of return pickup ions on the compositional and thermal structures of the thermosphere. The examination of particle impact under extreme solar wind and solar radiation conditions provides physical insight into the processes involved in the Mars-solar wind interaction and their implications on the Martian thermosphere and ionosphere.

  14. Auroral precipitation flux of ions and electrons in Saturn's outer magnetosphere

    NASA Astrophysics Data System (ADS)

    Barbosa, D. D.

    1990-10-01

    This paper examines particles and fields data obtained by Voyager in Saturn's outer magnetosphere with a view toward assessing the role that medium-energy ions and electrons have in stimulating the UV aurora. The magnetic field displays a high level of fluctuation of two characteristic types: large-scale coherent depressions in the field strength associated with the plumes of Titan and a small-scale incoherent turbulence presumed to be a consequence of the high-beta plasma environment. Electrons are assumed to interact strongly with lower hybrid waves and are accelerated to energies of a few kiloelectron volts. The available energy input to the aurora by protons is 5 x 10 to the 9th W, while an upper bound to that of N(+) ions is about 2 x 10 to the 10th W. Electrons in the range 1-10 keV can contribute upward of 5 x 10 to the 10th W and perhaps more if a field-aligned potential drop above the aurora is present. It is concluded that electrons are most likely the primary precipitation energy source for the aurora as a result of energy transfer from Titanogenic N(+) pickup ions in a corotation-dominated magnetosphere.

  15. Ion substitutions and non-stoichiometry of carbonated apatite-(CaOH) synthesised by precipitation and hydrothermal methods

    NASA Astrophysics Data System (ADS)

    Frank-Kamenetskaya, Olga; Kol'tsov, Alexander; Kuz'mina, Maria; Zorina, Maina; Poritskaya, Lilya

    2011-04-01

    Apatite-(CaOH), either carbonate-free or with different concentrations of carbonate ions of the predominantly (not less than 60%) B type, was synthesised by precipitation from solutions, by hydrothermal methods from solid compounds and by hydrothermal treatment of calcite. In B type apatite, the concentration of CO32- ions could be up to 20.5 wt.%. The reverse precipitation method and hydrothermal treatment of calcite obtained monophase samples with a maximal concentration of CO32- ions of 10.3-10.5 wt.%. In apatites of a mixed type, the total concentration of CO32- ions did not exceed 8 wt.%. The synthesised apatites could be divided into three groups according to the degree and origin of non-stoichiometry: Apatite of nearly stoichiometric composition. Apatite of this type was synthesised by all methods. Calcium-deficient apatite. The Ca deficit was mainly due to CO32- incorporation. Monophase samples with maximal concentrations of CO32- ions were synthesised by the reverse precipitation method and by hydrothermal treatment of calcite. Calcium-deficient apatite. The Ca deficit was mainly due to a deficit of OH - ions and resulted in the incorporation of water into channels of the crystal structure. This group was synthesised by reverse precipitation and hydrothermal methods. This apatite was a crystal chemical analogue of the apatite formed in the hard tissues of the human body such as teeth, bone and different stones. Apatites formed by the precipitation methods revealed higher variations in composition (including variations in the concentration of CO32- ions), compared to hydrothermally-synthesised samples. The observed effect of aqueous solution composition on the ion substitution and apatite composition was stronger than previously reported.

  16. Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries.

    PubMed

    Sun, Liang; Qiu, Keqiang

    2012-08-01

    Spent lithium-ion batteries containing lots of strategic resources such as cobalt and lithium are considered as an attractive secondary resource. In this work, an environmentally compatible process based on vacuum pyrolysis, oxalate leaching and precipitation is applied to recover cobalt and lithium from spent lithium-ion batteries. Oxalate is introduced as leaching reagent meanwhile as precipitant which leaches and precipitates cobalt from LiCoO(2) and CoO directly as CoC(2)O(4)·2H(2)O with 1.0 M oxalate solution at 80°C and solid/liquid ratio of 50 g L(-1) for 120 min. The reaction efficiency of more than 98% of LiCoO(2) can be achieved and cobalt and lithium can also be separated efficiently during the hydrometallurgical process. The combined process is simple and adequate for the recovery of valuable metals from spent lithium-ion batteries.

  17. Sounding rocket observations of precipitating ions in the morning auroral region

    SciTech Connect

    Clemmons, J.H.

    1992-01-01

    The origin of highly-structured ion fluxes measured by a sounding rocket launched into the morning auroral region on January 23, 1985 is investigated. The energy spectra of the precipitating ions exhibit an energy-time dependence in which particles of higher energies arrived at the rocket before those of lower energies. The spectra are interpreted as being due to the impulsive injection of particles onto high-altitude magnetic field lines, followed by their subsequent drift down the field lines to rocket altitudes. The dispersal to low energies with increasing time is explained as a time-of-flight effect in which the slower particles take longer times to traverse the distance. The ion signatures are used to constrain several possible physical models which characterize the source region. Source locations in the nightside magnetopause boundary layer are deduced through the examination of electron energy spectra and the use of a magnetospheric magnetic field model. The modeling efforts indicate that the data are consistent with sources located in the mid-latitude region of the flank boundary layer on the morning side of the magnetosphere, being in the range of 20-30 earth radii down the geomagnetic tail from the earth. Multiple injections of ions are observed, with a deduced quasi-periodicity of 100-200 s. Several candidate injection mechanisms are examined, with a mechanism related to the propagation of waves on the surface of the boundary layer found to be the most plausible explanation for the observations. Comparison is made to similar analyses by others and suggestions for future work are made.

  18. A sensitive and selective colorimetric method for detection of copper ions based on anti-aggregation of unmodified gold nanoparticles.

    PubMed

    Hormozi-Nezhad, M Reza; Abbasi-Moayed, Samira

    2014-11-01

    A highly sensitive and selective colorimetric method for detection of copper ions, based on anti-aggregation of D-penicillamine (D-PC) induced aggregated gold nanoparticles (AuNPs) was developed. Copper ions can hinder the aggregation of AuNPs induced by D-PC, through formation of mixed-valence complex with D-PC that is a selective copper chelator. In the presence of a fixed amount of D-PC, the aggregation of AuNPs decreases with increasing concentrations of Cu(2+) along with a color change from blue to red in AuNPs solution and an increase in the absorption ratio (A520/A650). Under the optimum experimental conditions (pH 7, [AuNPs] =3.0 nmol L(-1) and [NaCl]=25 mmol L(-1)), a linear calibration curve for Cu(2+) was obtained within the range of 0.05-1.85 µmol L(-1) with a limit of detection (3Sb) of 30 nmol L(-1). Excellent selectivity toward Cu(2+) was observed among various metal ions due to a specific complex formation between Cu(2+) and D-PC. The proposed method has been successfully applied for the detection of Cu(2+) in various real samples.

  19. Wet precipitation of major ions, polonium-210, and organic carbon in a metropolitan city, Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Yan, G.; Kim, G.

    2011-12-01

    An extensive survey of chemical constituents in precipitation including dissolved organic carbon, dissolved nitrogen, major ions, trace elements, and radionuclides was conducted in a representative urban environment of Seoul over one-year period from 2009 to 2010. The sources for these chemical species were apportioned by applying principal component analysis (PCA) in association with commonly acknowledged key tracers, such as Na, K, Ca, and V. The fossil fuel combustion (especially coal) was shown to be the dominant source for most constituents being investigated, with biomass burning being recognized as another significant source. With the aid of air mass backward trajectory analyses, we concluded that the primary fraction of the chemical species in our precipitation samples originated locally in Korea, albeit the frequent long-range transport from the eastern and northeastern China might contribute substantially. Overall, our study suggests the significant role of human activities in altering the atmospheric environment of Seoul and presumably most urban areas around the world, highlighting its profound environmental implications, such as health risks posed by excessive polonium-210, enhanced rainwater acidity from organic acids, and radiative forcing by organic aerosols.

  20. A Self-Consistent Model of the Interacting Ring Current Ions and Electromagnetic Ion Cyclotron Waves, Initial Results: Waves and Precipitating Fluxes

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.; Krivorutsky, E. N.

    2002-01-01

    Initial results from a newly developed model of the interacting ring current ions and ion cyclotron waves are presented. The model is based on the system of two kinetic equations: one equation describes the ring current ion dynamics, and another equation describes wave evolution. The system gives a self-consistent description of the ring current ions and ion cyclotron waves in a quasilinear approach. These equations for the ion phase space distribution function and for the wave power spectral density were solved on aglobal magnetospheric scale undernonsteady state conditions during the 2-5 May 1998 storm. The structure and dynamics of the ring current proton precipitating flux regions and the ion cyclotron wave-active zones during extreme geomagnetic disturbances on 4 May 1998 are presented and discussed in detail.

  1. Copper and Zinc Ions Specifically Promote Nonamyloid Aggregation of the Highly Stable Human γ-D Crystallin.

    PubMed

    Quintanar, Liliana; Domínguez-Calva, José A; Serebryany, Eugene; Rivillas-Acevedo, Lina; Haase-Pettingell, Cameron; Amero, Carlos; King, Jonathan A

    2016-01-15

    Cataract is the leading cause of blindness in the world. It results from aggregation of eye lens proteins into high-molecular-weight complexes, causing light scattering and lens opacity. Copper and zinc concentrations in cataractous lens are increased significantly relative to a healthy lens, and a variety of experimental and epidemiological studies implicate metals as potential etiological agents for cataract. The natively monomeric, β-sheet rich human γD (HγD) crystallin is one of the more abundant proteins in the core of the lens. It is also one of the most thermodynamically stable proteins in the human body. Surprisingly, we found that both Cu(II) and Zn(II) ions induced rapid, nonamyloid aggregation of HγD, forming high-molecular-weight light-scattering aggregates. Unlike Zn(II), Cu(II) also substantially decreased the thermal stability of HγD and promoted the formation of disulfide-bridged dimers, suggesting distinct aggregation mechanisms. In both cases, however, metal-induced aggregation depended strongly on temperature and was suppressed by the human lens chaperone αB-crystallin (HαB), implicating partially folded intermediates in the aggregation process. Consistently, distinct site-specific interactions of Cu(II) and Zn(II) ions with the protein and conformational changes in specific hinge regions were identified by nuclear magnetic resonance. This study provides insights into the mechanisms of metal-induced aggregation of one of the more stable proteins in the human body, and it reveals a novel and unexplored bioinorganic facet of cataract disease.

  2. Dynamical roles of metal ions and the disulfide bond in Cu, Zn superoxide dismutase folding and aggregation.

    PubMed

    Ding, Feng; Dokholyan, Nikolay V

    2008-12-16

    Misfolding and aggregation of Cu, Zn superoxide dismutase (SOD1) is implicated in neuronal death in amyotrophic lateral sclerosis. Each SOD1 monomer binds to 1 copper and 1 zinc ion and maintains its disulfide bond (Cys-57-Cys-146) in the reducing cytoplasm of cell. Mounting experimental evidence suggests that metal loss and/or disulfide reduction are important for initiating misfolding and aggregation of SOD1. To uncover the role of metals and the disulfide bond in the SOD1 folding, we systemically study the folding thermodynamics and structural dynamics of SOD1 monomer and dimer with and without metal binding and under disulfide-intact or disulfide-reduced environments in computational simulations. We use all-atom discrete molecular dynamics for sampling. Our simulation results provide dynamical evidence to the stabilizing role of metal ions in both dimer and monomer SOD1. The disulfide bond anchors a loop (Glu-49 to Asn-53) that contributes to the dimer interface. The reduction of the disulfide bond in SOD1 with metal ions depleted results in a flexible Glu-49-Asn-53 loop, which, in turn, disrupts dimer formation. Interestingly, the disulfide bond reduction does not affect the thermostability of monomer SOD1 as significantly as the metal ions do. We further study the structural dynamics of metal-free SOD1 monomers, the precursor for aggregation, in simulations and find inhomogeneous local unfolding of beta-strands. The strands protected by the metal-binding and electrostatic loops are found to unfold first after metal loss, leading to a partially unfolded beta-sheet prone to aggregation. Our simulation study sheds light on the critical role of metals and disulfide bond in SOD1 folding and aggregation.

  3. Multi-Element Preconcentration/Separation of Some Metal Ions in Environmental Samples by Using Co-precipitation.

    PubMed

    Soylak, Mustafa; Aydin, Ayse; Kizil, Nebiye

    2016-01-01

    A preconcentration/separation system for cadmium(II), nickel(II), copper(II), lead(II), iron(II), cobalt(II), and manganese(II) ions has been established prior to their atomic absorption spectrometric determinations. The procedure is based on the co-precipitation of these ions by the aid of a praseodymium hydroxide (Pr(OH)3) precipitate. The precipitate was dissolved in 0.5 mL of concentrated HNO3, and made up to 10.0 mL with water. The analytes were determined by a flame atomic absorption spectrometer. The effects of analytical parameters including pH, amounts of praseodymium as carrier element, sample volume, etc. on the recoveries of heavy metals were investigated. The effects of matrix ions were also examined. The limits of detection for analyte ions were found in the range between 0.7-5.2 μg/L. The validation of this present procedure was verified by the analysis of certified reference materials, TMDA-54.4 (fortified water) and NIST 1570a (spinach leaves). The proposed co-precipitation procedure was applied for the determination of cadmium(II), nickel(II), copper(II), lead(II), iron(II), cobalt(II), and manganese(II) ions in various environmental water samples.

  4. Ion aggregation in high salt solutions. III. Computational vibrational spectroscopy of HDO in aqueous salt solutions

    SciTech Connect

    Choi, Jun-Ho; Lim, Sohee; Chon, Bonghwan; Cho, Minhaeng; Kim, Heejae; Kim, Seongheun

    2015-05-28

    The vibrational frequency, frequency fluctuation dynamics, and transition dipole moment of the O—D stretch mode of HDO molecule in aqueous solutions are strongly dependent on its local electrostatic environment and hydrogen-bond network structure. Therefore, the time-resolved vibrational spectroscopy the O—D stretch mode has been particularly used to investigate specific ion effects on water structure. Despite prolonged efforts to understand the interplay of O—D vibrational dynamics with local water hydrogen-bond network and ion aggregate structures in high salt solutions, still there exists a gap between theory and experiment due to a lack of quantitative model for accurately describing O—D stretch frequency in high salt solutions. To fill this gap, we have performed numerical simulations of Raman scattering and IR absorption spectra of the O—D stretch mode of HDO in highly concentrated NaCl and KSCN solutions and compared them with experimental results. Carrying out extensive quantum chemistry calculations on not only water clusters but also ion-water clusters, we first developed a distributed vibrational solvatochromic charge model for the O—D stretch mode in aqueous salt solutions. Furthermore, the non-Condon effect on the vibrational transition dipole moment of the O—D stretch mode was fully taken into consideration with the charge response kernel that is non-local polarizability density. From the fluctuating O—D stretch mode frequencies and transition dipole vectors obtained from the molecular dynamics simulations, the O—D stretch Raman scattering and IR absorption spectra of HDO in salt solutions could be calculated. The polarization effect on the transition dipole vector of the O—D stretch mode is shown to be important and the asymmetric line shapes of the O—D stretch Raman scattering and IR absorption spectra of HDO especially in highly concentrated NaCl and KSCN solutions are in quantitative agreement with experimental results. We

  5. End-to-End Study of the Transfer of Energy from Magnetosheath Ion Precipitation to the Cusp

    NASA Technical Reports Server (NTRS)

    Coffey, V. N.; Chandler, M. O.; Singh, Nagendra; Avanov, Levon

    2005-01-01

    This paper describes a study of the effects of unstable magnetosheath distributions on the cusp ionosphere. An end-to-end numerical model was used to study, first, the evolved distributions from precipitation due to reconnection and, secondly, the energy transfer into the high latitude ionosphere based on these solar wind/magnetosheath inputs. Using inputs of several representative examples of magnetosheath injections, waves were generated at the lower hybrid frequency and energy transferred to the ionospheric electrons and ions. The resulting wave spectra and ion and electron particle heating was analyzed. Keywords: Ion heating: Magnetosheath/Ionosphere coupling: Particle/Wave Interactions. Simulations

  6. (Al, Ti) Gamma Prime Precipitates in a Nickel-Based Superalloy Inconel X-750 Under Heavy Ion Irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, He K.; Yao, Zhongwen; Kirk, Marquis A.; Daymond, Mark R.

    2014-07-01

    Phase stability of Ni3(Al, Ti) precipitates in Inconel X-750 under cascade damage was studied using heavy ion irradiation with transmission electron microscope (TEM) in situ observations. From 333 K to 673 K (60 °C to 400 °C), ordered Ni3(Al, Ti) precipitates became completely disordered at low irradiation dose of 0.06 displacement per atom (dpa). At higher dose, a trend of precipitate dissolution occurring under disordered state was observed, which is due to the ballistic mixing effect by irradiation. However, at temperatures greater than 773 K (500 °C), the precipitates stayed ordered up to 5.4 dpa, supporting the view that irradiation-induced disordering/dissolution and thermal recovery reach a balance between 673 K and 773 K (400 °C and 500 °C). Effects of Ti/Al ratio and irradiation dose rate are also discussed.

  7. Contribution of marine and continental aerosols to the content of major ions in the precipitation of the central Mediterranean.

    PubMed

    Mihajlidi-Zelić, Aleksandra; Dersek-Timotić, Ivana; Relić, Dubravka; Popović, Aleksandar; Dordević, Dragana

    2006-11-01

    The region of the investigated receptor is situated in the southern part of the Adriatic Sea in the Mediterranean. The measuring station is located on the seashore, which, being considered as a border area, is representative for the qualitative and quantitative estimation of the influence of marine and continental aerosols on the content of major ions in precipitation. In the sampling period, precipitation in the region of the investigated receptor was more abundant during the summer and autumn than during the winter and spring. The most frequent precipitation heights were up to 20 mm, while high precipitation came exclusively from the continental region. The results of the measurements of ions readily soluble in water were used for the differentiation of marine from continental contributions of primary and secondary aerosols to their content in the precipitation. Using PCA, it was shown that main contribution of Cl(-), Na(+) and Mg(2+) came from primary marine aerosols, while the contribution from continental sources was dominant for the content of SO(4)(2-), NO(3)(-), NH(4)(+) and Ca(2+) in the precipitation. The continental origin of Ca(2+) was from a primary source, while SO(4)(2-), NO(3)(-) and NH(4)(+) were representatives of secondary aerosols produced by reactions between acid oxides and alkaline species in the atmosphere, but SO(4)(2-) and NO(3)(-) also exist in the precipitation as free acids. The origin of the trace elements Cd, Cu, Pb and Zn in the precipitation came from anthropogenic emission sources. The results obtained in this work are based on experimental data from 609 samples collected during the period 1995-2000.

  8. Correlating DMSP and NOAA Ion Precipitation Observations with Low Altitude ENA Emissions During the Declining Phase of Solar Cycle 23

    NASA Astrophysics Data System (ADS)

    Mackler, D. A.; Jahn, J. M.; Perez, J. D.; Pollock, C. J.

    2014-12-01

    Plasma sheet particles with sufficiently low mirror points will interact with thermospheric neutrals through charge exchange. The resulting ENAs are no longer magnetically bound and can therefore be detected by remote platforms outside the ionosphere/lower atmosphere. These ENAs closely associated with ion precipitation are termed Low Altitude Emissions (LAEs). They are non-isotropic in velocity space and mimic the corresponding ion pitch angle distribution. In this study we present a statistical correlation between remote observations of the LAE emission characteristics and ion precipitation maps determined in situ over the declining phase of solar cycle 23 (2000-2005). We discuss the strength and derived location (MLT, iMLAT) of LAEs as a function of geomagnetic activity levels in relation to the simultaneously measured strength, location, and spectral characteristics of in situ ion precipitation. These comparisons may allow us to use ENA images to assess where and how much energy is deposited during any type of enhanced geomagnetic activity. The precipitating ion differential directional flux maps are built up from combining NOAA-14/15/16 TED and DMSP-13/14/15 SSJ4 data. Low altitude ENA source locations are identified algorithmically using IMAGE/MENA images. ENA flux maps are derived by computing the LAE source locations assuming an ENA emission altitude (h) of 650 km, then projecting each image pixel onto a sphere with radius Re+h to determine the local time and latitude extent of the ENA source. The IGRF magnetic field model is used in combination with the Solar Magnetic coordinates of LAE pixels to compute the pitch angle of the escaping neutrals (previously ion before charge exchanging). Pitch angles larger than 90° will have a mirror point further into the atmosphere than the assumed emission altitude.

  9. Ion Exchange Technology Development in Support of the Urine Processor Assembly Precipitation Prevention Project for the International Space Station

    NASA Technical Reports Server (NTRS)

    Mitchell, Julie L.; Broyan, James L.; Pickering, Karen D.; Adam, Niklas; Casteel, Michael; Callahan, Michael; Carrier, Chris

    2012-01-01

    In support of the Urine Processor Assembly Precipitation Prevention Project (UPA PPP), multiple technologies were explored to prevent CaSO4 2H2O (gypsum) precipitation during the on-orbit distillation process. Gypsum precipitation currently limits the water recovery rate onboard the International Space Station (ISS) to 70% versus the planned 85% target water recovery rate. Due to its ability to remove calcium cations in pretreated augmented urine (PTAU), ion exchange was selected as one of the technologies for further development by the PPP team. A total of 13 ion exchange resins were evaluated in various equilibrium and dynamic column tests with solutions of dissolved gypsum, urine ersatz, PTAU, and PTAU brine at 85% water recovery. While initial evaluations indicated that the Purolite SST60 resin had the highest calcium capacity in PTAU (0.30 meq/mL average), later tests showed that the Dowex G26 and Amberlite FPC12H resins had the highest capacity (0.5 meq/mL average). Testing at the Marshall Spaceflight Center (MSFC) integrates the ion exchange technology with a UPA ground article under flight-like pulsed flow conditions with PTAU. To date, no gypsum precipitation has taken place in any of the initial evaluations.

  10. Ion Exchange Technology Development in Support of the Urine Processor Assembly Precipitation Prevention Project for the International Space Station

    NASA Technical Reports Server (NTRS)

    Mitchell, Julie L.; Broyan, James L.; Pickering, Karen D.; Adam, Niklas; Casteel, Michael; Callaham, Michael; Carrier, Chris

    2011-01-01

    In support of the Urine Processor Assembly Precipitation Prevention Project (UPA PPP), multiple technologies were explored to prevent CaSO4 dot 2H2O (gypsum) precipitation during the on-orbit distillation process. Gypsum precipitation currently limits the water recovery rate onboard the International Space Station (ISS) to 70% versus the planned 85% target water recovery rate. Due to its advanced performance in removing calcium cations in pretreated augmented urine (PTAU), ion exchange was selected as one of the technologies for further development by the PPP team. A total of 12 ion exchange resins were evaluated in various equilibrium and dynamic column tests with solutions of dissolved gypsum, urine ersatz, PTAU, and PTAU brine at 85% water recovery. While initial evaluations indicated that the Purolite SST60 resin had the highest calcium capacity in PTAU (0.30 meq/mL average), later tests showed that the Dowex G26 and Amberlite FPC12H resins had the highest capacity (0.5 meq/mL average). Further dynamic column testing proved that G26 performance is +/- 10% of that value at flow rates of 0.45 and 0.79 Lph under continuous flow, and 10.45 Lph under pulsed flow. Testing at the Marshall Spaceflight Center (MSFC) integrates the ion exchange technology with a UPA ground article under flight-like pulsed flow conditions with PTAU. To date, no gypsum precipitation has taken place in any of the initial evaluations.

  11. Low-Altitude Emission of Energetic Neutral Atoms: A New Diagnostic of the Energetics of Ion Precipitation

    NASA Astrophysics Data System (ADS)

    Roelof, E. C.; Nair, H.

    2010-12-01

    We describe a new theoretical understanding of the emission of energetic neutral atoms (ENAs) generated by the precipitation of energetic magnetospheric ions into the Earth’s monatomic oxygen (O) exosphere (200-800 km). This low altitude emission (LAE) is the brightest ENA source in images obtained from Astrid-1/PIPPI, IMAGE/MENA/HENA, and TWINS1/2. The upward ENA “albedo” from the precipitating protons in the energy range 1-100 keV can approach 50% of the incident proton intensity. Unlike FUV imaging, ENA imaging of the LAE allows us to extract the detailed (not integrated) energy spectrum of the precipitating protons. We have verified this claim by comparing ENA images from TWINS 1/2 with in situ ion spectra measured by DMSP spacecraft (~825 km altitude) flying simultaneously under the ENA LAE regions (Bazell et al., J. Geophys. Res., in press 2010, and also this Conference). Quantitative extraction of proton spectra from the ENA images requires a “thick-target” theory that treats properly the multiple atomic collisions (charge exchange of protons, stripping ENA H-atoms) and associated energy losses (including ionization and excitation). Analytic solutions to the coupled proton/H-atom transport equations have been obtained, and they provide quantitative insight into the strong dependence of the ENA LAE upon the pitch angle and the energy of the precipitating protons. Since global ENA images of LAE can be obtained with exposure times of a minute or so during large geomagnetic storms, the distribution in magnetic latitude and local time of their evolving spectra contain critical diagnostics of the physics of not only the precipitation process, but also of the acceleration of the energetic ions themselves. Simulated 24 keV ENA low altitude emission viewed from TWINS-2 generated by precipitating protons below a DMSP pass (Bazell et al., JGR, in press, 2010).

  12. Amyloid-β peptide (1-42) aggregation induced by copper ions under acidic conditions.

    PubMed

    Bin, Yannan; Li, Xia; He, Yonghui; Chen, Shu; Xiang, Juan

    2013-07-01

    It is well known that the aggregation of amyloid-β peptide (Aβ) induced by Cu²⁺ is related to incubation time, solution pH, and temperature. In this work, the aggregation of Aβ₁₋₄₂ in the presence of Cu²⁺ under acidic conditions was studied at different incubation time and temperature (e.g. 25 and 37°C). Incubation temperature, pH, and the presence of Cu²⁺ in Aβ solution were confirmed to alter the morphology of aggregation (fibrils or amorphous aggregates), and the morphology is pivotal for Aβ neurotoxicity and Alzheimer disease (AD) development. The results of atomic force microscopy (AFM) indicated that the formation of Aβ fibrous morphology is preferred at lower pH, but Cu²⁺ induced the formation of amorphous aggregates. The aggregation rate of Aβ was increased with the elevation of temperature. These results were further confirmed by fluorescence spectroscopy and circular dichroism spectroscopy and it was found that the formation of β-sheet structure was inhibited by Cu²⁺ binding to Aβ. The result was consistent with AFM observation and the fibrillation process was restrained. We believe that the local charge state in hydrophilic domain of Aβ may play a dominant role in the aggregate morphology due to the strong steric hindrance. This research will be valuable for understanding of Aβ toxicity in AD.

  13. A Comprehensive Study of the Solubility, Thermochemistry, Ion Exchange and Precipitation Kinetics of NO3 Cancrinite and No3 Sodalite

    SciTech Connect

    Jove-Colon, Carlos; Navrotsky, Alexandra

    2004-12-31

    The precipitation of aluminosilicate phases from caustic nuclear wastes has proven to be problematic in a number of processes including radionuclide separations (cementation of columns by aluminosilicate phases), tank emptying (aluminosilicate tank heels), and condensation of wastes in evaporators (aluminosilicate precipitates in the evaporators, providing nucleation sites for growth of critical masses of radioactive actinide salts). In a collaboration between SNL and UCD, we have investigated why and how these phases form, and which conditions favor the formation of which phases. These studies have involved synthesis and characterization of aluminosilicate phases formed using a variety of synthesis techniques, kinetics of precipitation, structural investigations of aluminosilicate phases, thermodynamic calculations of aluminosilicate solubility, calorimetric studies of aluminosilicate precipitation, and a limited investigation of radionuclide partitioning and ion exchange processes (involving typical tank fluid chemistries and these materials). The predominant phases that are observed in the aluminosilicate precipitates from basic tanks wastes (i.e. Hanford, Savannah River Site ''SRS'' wastes) are the salt enclathrated zeolites: sodium nitrate, sodium carbonate and sodium hydroxide sodalite and cancrinite. These phases precipitate readily from the high ionic strength, highly basic solutions at ambient temperatures as well as at elevated temperatures, with or without the presence of an external Al and Si source (both are contained in the waste solutions), and upon interactions with reactive soil components such as clays. This report focuses on the portion of the work performed at UC Davis by Professor Navrotsky's group.

  14. Comprehensive Study of the Solubility, Thermochemistry, Ion Exchange, and Precipitation Kinetics of NO3 Cancrinite and NO33 Sodalite

    SciTech Connect

    Navrotsky, Alexandra; Liu, Qinyuan

    2004-12-01

    The precipitation of aluminosilicate phases from caustic nuclear wastes has proven to be problematic in a number of processes including radionuclide separations (cementation of columns by aluminosilicate phases), tank emptying (aluminosilicate tank heels), and condensation of wastes in evaporators (aluminosilicate precipitates in the evaporators, providing nucleation sites for growth of critical masses of radioactive actinide salts). In a collaboration between SNL and UCD, we have investigated why and how these phases form, and which conditions favor the formation of which phases. These studies have involved synthesis and characterization of aluminosilicate phases formed using a variety of synthesis techniques, kinetics of precipitation, structural investigations of aluminosilicate phases, thermodynamic calculations of aluminosilicate solubility, calorimetric studies of aluminosilicate precipitation, and a limited investigation of radionuclide partitioning and ion exchange processes (involving typical tank fluid chemistries and these materials). The predominant phases that are observed in the aluminosilicate precipitates from basic tanks wastes (i.e. Hanford, Savannah River Site ''SRS'' wastes) are the salt enclathrated zeolites: sodium nitrate, sodium carbonate and sodium hydroxide sodalite and cancrinite. These phases precipitate readily from the high ionic strength, highly basic solutions at ambient temperatures as well as at elevated temperatures, with or without the presence of an external Al and Si source (both are contained in the waste solutions), and upon interactions with reactive soil components such as clays.

  15. End-to-End Study of the Transfer of Energy from Magnetosheath Ion Precipitation to the Ionospheric Cusp and Resulting Ion Outflow to the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Coffey, Victoria; Chandler, Michael; Singh, Nagendra; Avanov, Levon

    2003-01-01

    We will show results from an end-to-end study of the energy transfer from injected magnetosheath plasmas to the near-Earth magnetospheric and ionospheric plasmas and the resulting ion outflow to the magnetosphere. This study includes modeling of the evolution of the magnetosheath precipitation in the cusp using a kinetic code with a realistic magnetic field configuration. These evolved, highly non-Maxwellian distributions are used as input to a 2D PIC code to analyze the resulting wave generation. The wave analysis is used in the kinetic code as input to the cold ionospheric ions to study the transfer of energy to these ions and their outflow to the magnetosphere. Observations from the Thermal Ion Dynamics Experiment (TIDE) and other instruments on the Polar Spacecraft will be compared to the modeling.

  16. A Comprehensive Study of the Solubility, Thermochemistry, Ion Exchange, and Precipitation Kinetics of NO3 Cancrinite and NO3 Sodalite

    SciTech Connect

    Colon, Carlos F. Joyce; Navrotsky, Alexandra; Krumhansl, James L.; Nyman, May

    2003-06-01

    NO3 cancrinite and NO3 sodalite haves been found as a common sodium alumino-silicate forming in strongly caustic alkaline aqueous solutions associated with radioactive High Level Waste (HLW) stored in many underground tanks and also in nuclear waste treatment facilities such as the Savannah River Site (SRS). The precipitation of alumino-silicate phases from caustic nuclear wastes has proven to be problematic in a number of processes in waste treatment facilities including radionuclide separations (cementation of columns by aluminosilicate phases), tank emptying (aluminosilicate tank heels), and condensation of wastes in evaporators (aluminosilicate precipitates in the evaporators, providing nucleation sites for growth of critical masses of radioactive actinide salts). Therefore, in order to prevent their formation an assessment of the relative stability, formation kinetics, and the ion-exchange characteristics of these two phases in HLW solutions needs to be investigated. The goals of this project are to: (1) Develop a robust equilibrium thermodynamic framework to accurately describe and predict the formation of NO3 cancrinite and NO3 sodalite. (2) Provide a comprehensive characterization of the solid precipitation rates and mechanisms using novel spectroscopic (e.g., NMR) and thermochemical techniques in conditions encountered in HLW waste solutions. (3) Characterize the precipitation kinetics of the aluminosilicates and study the effects of temperature and fluid composition. (4) Investigate the ion exchange capacity of these zeolitic phases with respect to radionuclides and RCRA metal species.

  17. Uneven distribution of metallic ions in deposits precipitated in the Koshijihara DGA CO{sub 2} removal units

    SciTech Connect

    Tomoe, Y.; Sato, K.

    1997-08-01

    304 stainless steel has been suffering from general corrosion in CO{sub 2} removal units using a high concentration DGA solution in a natural gas processing plant. Deposits precipitated in the DGA units were sampled during annual inspections and analyzed for metallic ions and their compounds. It was found that Fe and Cr were rich in the deposits along the lean DGA lines and Ni was rich along the rich DGA lines. Fe and Cr precipitated as oxides and Ni precipitated as sulfides. This uneven distribution of metallic ions in the units was due to the differences in metal chelate stability with DGA and/or DGA carbamate and also due to the trace amount of H{sub 2}S in the raw natural gas. There has not been a direct proof of carbamates playing some roles in an actual amine unit, this uneven distribution of metallic ions is one evidence that DGA carbamate really plays some roles in actual DGA units.

  18. Effects of nanoscale aggregation on mechanical properties and local dynamics of precise acid- and ion-containing polymers

    NASA Astrophysics Data System (ADS)

    Middleton, Luri Robert

    Acid- and ion-containing polymers have interchain interactions that alter polymer behavior at the nano, micro, and bulk length scales. Strong secondary-bonds act as thermo-reversible physical crosslinks between chains which drive self-assembly. Tuning theses interactions can modify bulk polymer properties including stiffness, toughness, melt viscosity, resilience, clarity, abrasion resistance and puncture resistance. Furthermore, understanding and improving the relevant factors that control transport properties would have vast implications on developing solid polymer electrolytes (SPEs) for technologically important applications including water desalination, ion exchange membranes and microelectronics. This thesis explores the structure - processing - morphology - property relationships of acid and ionic functionalized polymers. Improvements in synthetic techniques and advancements in characterization methods have enabled new studies of associating polymer systems. Synthesis of entangled, high molecular weight, linear polyethylene (PE) chains functionalized with interacting pendant groups (acidic or ionic) placed periodically along the polymer backbone represent a new class of associating polymers. These polymers with periodic distributions of acid groups are much more homogenous than the commercially available polymers. Previous studies of these polymers with greater structural homogeneity revealed great variety in morphologies of the nano-aggregated polar groups within the non-polar polymer matrix. This thesis correlated the morphologies with bulk properties through real-time X-ray scattering and tensile deformation at a range of temperatures and sample compositions. New, transient morphologies and hierarchical morphologies were observed which coincided with unusual tensile strain hardening. These results indicate that improvements in synthetic control of polymers can enhance physical properties such as tensile strain-hardening, through cooperative bonding

  19. Rapid assessment of human amylin aggregation and its inhibition by copper(II) ions by laser ablation electrospray ionization mass spectrometry with ion mobility separation

    SciTech Connect

    Li, Hang; Ha, Emmeline; Donaldson, Robert P.; Jeremic, Aleksandar M.; Vertes, Akos

    2015-09-09

    Native electrospray ionization (ESI) mass spectrometry (MS) is often used to monitor noncovalent complex formation between peptides and ligands. The relatively low throughput of this technique, however, is not compatible with extensive screening. Laser ablation electrospray ionization (LAESI) MS combined with ion mobility separation (IMS) can analyze complex formation and provide conformation information within a matter of seconds. Islet amyloid polypeptide (IAPP) or amylin, a 37-amino acid residue peptide, is produced in pancreatic beta-cells through proteolytic cleavage of its prohormone. Both amylin and its precursor can aggregate and produce toxic oligomers and fibrils leading to cell death in the pancreas that can eventually contribute to the development of type 2 diabetes mellitus. The inhibitory effect of the copper(II) ion on amylin aggregation has been recently discovered, but details of the interaction remain unknown. Finding other more physiologically tolerated approaches requires large scale screening of potential inhibitors. In this paper, we demonstrate that LAESI-IMS-MS can reveal the binding stoichiometry, copper oxidation state, and the dissociation constant of human amylin–copper(II) complex. The conformations of hIAPP in the presence of copper(II) ions were also analyzed by IMS, and preferential association between the β-hairpin amylin monomer and the metal ion was found. The copper(II) ion exhibited strong association with the —HSSNN– residues of the amylin. In the absence of copper(II), amylin dimers were detected with collision cross sections consistent with monomers of β-hairpin conformation. When copper(II) was present in the solution, no dimers were detected. Thus, the copper(II) ions disrupt the association pathway to the formation of β-sheet rich amylin fibrils. Using LAESI-IMS-MS for the assessment of amylin–copper(II) interactions demonstrates the utility of this technique for the high-throughput screening of potential

  20. Rapid assessment of human amylin aggregation and its inhibition by copper(II) ions by laser ablation electrospray ionization mass spectrometry with ion mobility separation

    DOE PAGES

    Li, Hang; Ha, Emmeline; Donaldson, Robert P.; ...

    2015-09-09

    Native electrospray ionization (ESI) mass spectrometry (MS) is often used to monitor noncovalent complex formation between peptides and ligands. The relatively low throughput of this technique, however, is not compatible with extensive screening. Laser ablation electrospray ionization (LAESI) MS combined with ion mobility separation (IMS) can analyze complex formation and provide conformation information within a matter of seconds. Islet amyloid polypeptide (IAPP) or amylin, a 37-amino acid residue peptide, is produced in pancreatic beta-cells through proteolytic cleavage of its prohormone. Both amylin and its precursor can aggregate and produce toxic oligomers and fibrils leading to cell death in the pancreasmore » that can eventually contribute to the development of type 2 diabetes mellitus. The inhibitory effect of the copper(II) ion on amylin aggregation has been recently discovered, but details of the interaction remain unknown. Finding other more physiologically tolerated approaches requires large scale screening of potential inhibitors. In this paper, we demonstrate that LAESI-IMS-MS can reveal the binding stoichiometry, copper oxidation state, and the dissociation constant of human amylin–copper(II) complex. The conformations of hIAPP in the presence of copper(II) ions were also analyzed by IMS, and preferential association between the β-hairpin amylin monomer and the metal ion was found. The copper(II) ion exhibited strong association with the —HSSNN– residues of the amylin. In the absence of copper(II), amylin dimers were detected with collision cross sections consistent with monomers of β-hairpin conformation. When copper(II) was present in the solution, no dimers were detected. Thus, the copper(II) ions disrupt the association pathway to the formation of β-sheet rich amylin fibrils. Using LAESI-IMS-MS for the assessment of amylin–copper(II) interactions demonstrates the utility of this technique for the high-throughput screening of

  1. Estimating transition rates in aggregated Markov models of ion channel gating with loops and with nearly equal dwell times

    PubMed Central

    Wagner, M.; Michalek, S.; Timmer, J.

    1999-01-01

    A typical task in the application of aggregated Markov models to ion channel data is the estimation of the transition rates between the states. Realistic models for ion channel data often have one or more loops. We show that the transition rates of a model with loops are not identifiable if the model has either equal open or closed dwell times. This non-identifiability of the transition rates also has an effect on the estimation of the transition rates for models which are not subject to the constraint of either equal open or closed dwell times. If a model with loops has nearly equal dwell times, the Hessian matrix of its likelihood function will be ill-conditioned and the standard deviations of the estimated transition rates become extraordinarily large for a number of data points which are typically recorded in experiments.

  2. Influence of Inorganic Ions and Aggregation and Adsorption Behaviors of Human Adenovirus

    EPA Science Inventory

    In this study, influence of solution chemistries to the transport properties (aggregation and attachment behavior) of human adenovirus (HAdV) was investigated. Results showed isoelectric point (IEP) of HAdV in different salt conditions varied minimally, and it ranged from pH 3.5 ...

  3. Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries

    SciTech Connect

    Sun Liang; Qiu Keqiang

    2012-08-15

    Graphical abstract: Display Omitted Highlights: Black-Right-Pointing-Pointer Vacuum pyrolysis as a pretreatment was used to separate cathode material from aluminum foils. Black-Right-Pointing-Pointer Cobalt and lithium can be leached using oxalate while cobalt can be directly precipitated as cobalt oxalate. Black-Right-Pointing-Pointer Cobalt and lithium can be separated efficiently from each other only in the oxalate leaching process. Black-Right-Pointing-Pointer High reaction efficiency of LiCoO{sub 2} was obtained with oxalate. - Abstract: Spent lithium-ion batteries containing lots of strategic resources such as cobalt and lithium are considered as an attractive secondary resource. In this work, an environmentally compatible process based on vacuum pyrolysis, oxalate leaching and precipitation is applied to recover cobalt and lithium from spent lithium-ion batteries. Oxalate is introduced as leaching reagent meanwhile as precipitant which leaches and precipitates cobalt from LiCoO{sub 2} and CoO directly as CoC{sub 2}O{sub 4}{center_dot}2H{sub 2}O with 1.0 M oxalate solution at 80 Degree-Sign C and solid/liquid ratio of 50 g L{sup -1} for 120 min. The reaction efficiency of more than 98% of LiCoO{sub 2} can be achieved and cobalt and lithium can also be separated efficiently during the hydrometallurgical process. The combined process is simple and adequate for the recovery of valuable metals from spent lithium-ion batteries.

  4. Relativistic electron precipitation events driven by electromagnetic ion-cyclotron waves

    SciTech Connect

    Khazanov, G. Sibeck, D.; Tel'nikhin, A.; Kronberg, T.

    2014-08-15

    We adopt a canonical approach to describe the stochastic motion of relativistic belt electrons and their scattering into the loss cone by nonlinear EMIC waves. The estimated rate of scattering is sufficient to account for the rate and intensity of bursty electron precipitation. This interaction is shown to result in particle scattering into the loss cone, forming ∼10 s microbursts of precipitating electrons. These dynamics can account for the statistical correlations between processes of energization, pitch angle scattering, and relativistic electron precipitation events, that are manifested on large temporal scales of the order of the diffusion time ∼tens of minutes.

  5. A novel method for study of the aggregation of protein induced by metal ion aluminum(III) using resonance Rayleigh scattering technique

    NASA Astrophysics Data System (ADS)

    Long, Xiufen; Zhang, Caihua; Cheng, Jiongjia; Bi, Shuping

    2008-01-01

    We present a novel method for the study of the aggregation of protein induced by metal ion aluminum(III) using resonance Rayleigh scattering (RRS) technique. In neutral Tris-HCl medium, the effect of this aggregation of protein results in the enhancement of RRS intensity and the relationship between the enhancement of the RRS signal and the Al concentration is nonlinear. On this basis, we established a new method for the determination of the critical induced-aggregation concentrations ( CCIAC) of metal ion Al(III) inducing the protein aggregation. Our results show that many factors, such as, pH value, anions, salts, temperature and solvents have obvious effects. We also studied the extent of aggregation and structural changes using ultra-violet spectrometry, protein intrinsic fluorescence and circular dichroism to further understand the exact mechanisms of the aggregation characteristics of proteins induced by metal ion Al(III) at the molecular level, to help us to develop effective methods to investigate the toxicity of metal ion Al, and to provide theoretical and quantitative evidences for the development of appropriate treatments for neurodementia such as Parkinson's disease, Alzheimer's disease and dementia related to dialysis.

  6. A stepwise recovery of metals from hybrid cathodes of spent Li-ion batteries with leaching-flotation-precipitation process

    NASA Astrophysics Data System (ADS)

    Huang, Yanfang; Han, Guihong; Liu, Jiongtian; Chai, Wencui; Wang, Wenjuan; Yang, Shuzhen; Su, Shengpeng

    2016-09-01

    The recovering of valuable metals in spent lithium-ion battery cathodes brings about economic and environmental benefits. A stepwise leaching-flotation-precipitation process is adopted to separate and recover Li/Fe/Mn from the mixed types of cathode materials (hybrid wastes of LiFePO4 and LiMn2O4). The optimal operating conditions for the stepwise recovery process are determined and analyzed by factorial design, thermodynamics calculation, XRD and SEM characterization in this study. First, Li/Fe/Mn ions are released from the cathode using HCl assisted with H2O2 in the acid leaching step. The leachability of metals follows the series Li > Fe > Mn in the acidic environment. Then Fe3+ ions are selectively floated and recovered as FeCl3 from the leachate in the flotation step. Finally, Mn2+/Mn3+ and Li+ ions are sequentially precipitated and separated as MnO2/Mn2O3 and Li3PO4 using saturated KMnO4 solution and hot saturated Na3PO4 solution, respectively. Under the optimized and advisable conditions, the total recovery of Li, Fe and Mn is respectively 80.93 ± 0.16%, 85.40 ± 0.12% and 81.02 ± 0.08%. The purity for lithium, ferrum and manganese compounds is respectively 99.32 ± 0.07%, 97.91 ± 0.05% and 98.73 ± 0.05%. This stepwise process could provide an alternative way for the effective separation and recovery of metal values from spent Li-ion battery cathodes in industry.

  7. Reversible precipitation of bovine serum albumin by metal ions and synthesis, structure and reactivity of new tetrathiometallate chelating agents.

    PubMed

    Lee, Victoria E; Schulman, Joshua M; Stiefel, Edward I; Lee, Catherine Coyle

    2007-11-01

    Independent research is an important component of any undergraduate chemistry program. This article reports the findings of two of many undergraduate research projects directed by Ed Stiefel in the hopes that the results will be inspiring and useful to the scientific community. The neurological disorders associated with insufficient copper in Menkes disease and an excess of copper in Wilson's disease are well established; however, recent evidence suggests that copper may also be involved in other disorders, such as Alzheimer's, angiogenesis, and prion diseases. The exact role of copper, however, is uncertain. This study examines the role of copper and zinc in the formation of protein deposits and the chelation and removal of the metal ions to reverse the process. The bovine serum albumin (BSA) protein forms a precipitate after the addition of approximately 6 copper(II) atoms or 8 zinc(II) atoms. Other metal ions, such as Ca(II), Al(III), Ni(II), and Co(II), did not precipitate the BSA even when the metal ion to BSA ratios were in excess of 1000. The copper and zinc protein precipitates returned to solution after addition of the chelating agents, ethylenediaminetetraacetic acid (EDTA) or tetrathiometallates [(MS(4)(2-)), where M=Mo, W]. Two new choline and acetylcholine tetrathiomolybdate and tetrathiotungstate chelating agents have been synthesized and characterized. The infrared (IR) and X-ray crystal structures of the complexes revealed that the (MS(4)(2-)) cores had approximate T(d) symmetry in the choline (Ch) salts and C(2v) symmetry in the acetylcholine (AcCh) salts. The AcCh salts hydrolyzed more slowly than the ammonium or Ch salts and the tetrathiotungstate salts hydrolyzed approximately two orders of magnitude more slowly than the tetrathiomolybdate salts. The slower hydrolysis of tetrathiotungstate may make it more useful as an inorganic reagent and therapeutic agent.

  8. Preparation of immunoglobulin Y from egg yolk using ammonium sulfate precipitation and ion exchange chromatography.

    PubMed

    Ko, K Y; Ahn, D U

    2007-02-01

    The objective of this study was to develop an economical, simple, and large-scale separation method for IgY from egg yolk. Egg yolk diluted with 9 volumes of cold water was centrifuged after adjusting the pH to 5.0. The supernatant was added with 0.01% charcoal or 0.01% carrageenan and centrifuged at 2,800 x g for 30 min. The supernatant was filtered through a Whatman no. 1 filter paper and then the filtrate was concentrated to 20% original volume using ultrafiltration. The concentrated solution was further purified using either cation exchange chromatography or ammonium sulfate precipitation. For the cation exchange chromatography method, the concentrated sample was loaded onto a column equilibrated with 20 mM citrate-phosphate buffer at pH 4.8 and eluted with 200 mM citrate-phosphate buffer at pH 6.4. For the ammonium sulfate precipitation method, the concentrated sample was twice precipitated with 40% ammonium sulfate solution at pH 9.0. The yield and purity of IgY were determined by ELISA and electrophoresis. The yield of IgY from the cation exchange chromatography method was 30 to 40%, whereas that of the ammonium sulfate precipitation was 70 to 80%. The purity of IgY from the ammonium sulfate method was higher than that of the cation exchange chromatography. The cation exchange chromatography could handle only a small amount of samples, whereas the ammonium sulfate precipitation could handle a large volume of samples. This suggests that ammonium sulfate precipitation was a more efficient and useful purification method than cation exchange chromatography for the large-scale preparation of IgY from egg yolk.

  9. Effect of carbonate ion on precipitation treatment of cadmium, copper, lead and zinc

    SciTech Connect

    Patterson, J.W.

    1982-01-01

    Waste water characteristics and their impact on the susceptibility of the waste to treatment are discussed. Many incidental or added constituents of a wastewater may affect the susceptibility of a metal in that wastewater to precipitation treatment. Among those constituents which may be widely variable with respect to both time and geographical location of an industrial facility, and which can influence precipitation efficiency, is the carbonate alkalinity initially present in the wastewater, or induced into the wastewater as a result of high wastewater treatment pH and consequent uptake of atmospheric CO/sub 2/. Higher carbonate levels may have either an adverse or beneficial effect upon precipitate solubility, depending upon the particular metal and associated pH of precipitation treatment. This effect can be predicted from theoretical calculations, although the actual solubility level may differ from that predicted. With regard to cadmium, both theory and experimental results indicate a reduction in cadmium solubility with increasing carbonate, at treatment pH values below ph 11. on the basis of thermodynamic calculations, added carbonate is predicted to increase copper solubility. Theory predicts a tremendous reduction in lead solubility at trace levels of carbonate at all ph values below pH 12. The effect of carbonate on lead solubility becomes more complex, however, as carbonate level increases. At a treatment pH near 9, increased carbonate is predicted to increase lead solubility, while the reverse patten is predicted at pH near 6. These trends were confirmed by the experimental results.

  10. Effect of irradiation parameters on defect aggregation during thermal annealing of LiF irradiated with swift ions and electrons

    SciTech Connect

    Schwartz, K.; Neumann, R.; Trautmann, C.; Volkov, A. E.; Sorokin, M. V.

    2010-10-01

    Absorption spectroscopy were performed to study the effects of thermal annealing on the aggregation of color centers in LiF crystals irradiated with different ions between carbon and uranium of megaelectron volt-gigaelectron volt energy. The beam parameters such as energy, energy loss, and fluence have a pronounced influence on the initial defect composition and concentration as well as their evolution upon thermal annealing. A distinct phenomenon was observed, viz., the enhancement of F{sub n} centers for annealing temperatures between 500 and 700 K, followed by Li colloid formation above 700 K. The phenomenon requires specific irradiation conditions whereas the formation of Mg colloids from Mg impurities occurs in all irradiated crystals. The mechanisms of annealing and colloid formation are discussed.

  11. Gold coating for a high performance Li4Ti5O12 nanorod aggregates anode in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Guo, Yuanyuan; Liu, Lixiang; Wang, Shixiong; Yang, Xiangjun; Guo, Hong

    2014-01-01

    An effective strategy by combination of alcoholysis, solid-state reaction and coating techniques is employed to prepare Au@Li4Ti5O12 nanorod aggregates as anode materials for Li-ion batteries. The lithium diffusion coefficient of resulting Au@Li4Ti5O12 is 7.32 × 10-10 cm2 s-1, and its stable reversible capacity is 169 mAh g-1 with the retention of 91.1% after 100 cycles at 5 C. Moreover, it also exhibits excellent rate-capability performance. The superior cycling performance can be attributed to the unique nanorod characteristics, structural stability, and the improved ionic and electronic conduction in the electrode due to the uniform nano coating of Au.

  12. Preparation of graphene/TiO{sub 2} anode materials for lithium-ion batteries by a novel precipitation method

    SciTech Connect

    Ding, Yan-Huai; Zhang, Ping; Ren, Hu-Ming; Zhuo, Qin; Yang, Zhong-Mei; Jiang, Yong

    2011-12-15

    Graphical abstract: Large-scale preparation of graphene/TiO{sub 2} composites was carried out by precipitation method using graphene oxide nanosheet, Ti(SO{sub 4}){sub 2} and NH{sub 3}H{sub 2}O as starting materials. Highlights: Black-Right-Pointing-Pointer We use cheap graphene oxides, Ti(SO{sub 4}){sub 2} and NH{sub 3}H{sub 2}O as starting materials for preparation of graphene/TiO{sub 2} composites. Black-Right-Pointing-Pointer The reversible capacity and the cycling stability of the TiO{sub 2} are improved by graphene additive. Black-Right-Pointing-Pointer Shorter diffusion length and a larger contact area of graphene/TiO{sub 2} result in excellent electrochemical performance. -- Abstract: This paper reports a large-scale production route for graphene/TiO{sub 2} nanocomposites using water-based in situ precipitation method. In this method, freshly prepared graphene oxides/TiO{sub 2} obtained by precipitating Ti(SO{sub 4}){sub 2} with NH{sub 3}H{sub 2}O was subjected to heat treatment in the presence of N{sub 2}, which resulted in the formation of graphene/TiO{sub 2} nanocomposites. Graphene/TiO{sub 2} composites prepared by our method were found to be suitable as anode materials for lithium ion batteries because of its stable cycling performance and high capacity.

  13. Global Precipitation Measurement (GPM) Spacecraft Lithium Ion Battery Micro-Cycling Investigation

    NASA Technical Reports Server (NTRS)

    Dakermanji, George; Lee, Leonine; Spitzer, Thomas

    2016-01-01

    The Global Precipitation Measurement (GPM) spacecraft was jointly developed by NASA and JAXA. It is a Low Earth Orbit (LEO) spacecraft launched on February 27, 2014. The power system is a Direct Energy Transfer (DET) system designed to support 1950 watts orbit average power. The batteries use SONY 18650HC cells and consist of three 8s by 84p batteries operated in parallel as a single battery. During instrument integration with the spacecraft, large current transients were observed in the battery. Investigation into the matter traced the cause to the Dual-Frequency Precipitation Radar (DPR) phased array radar which generates cyclical high rate current transients on the spacecraft power bus. The power system electronics interaction with these transients resulted in the current transients in the battery. An accelerated test program was developed to bound the effect, and to assess the impact to the mission.

  14. Effect of calcium oxide on the efficiency of ferrous ion oxidation and total iron precipitation during ferrous ion oxidation in simulated acid mine drainage treatment with inoculation of Acidithiobacillus ferrooxidans.

    PubMed

    Liu, Fenwu; Zhou, Jun; Jin, Tongjun; Zhang, Shasha; Liu, Lanlan

    2016-01-01

    Calcium oxide was added into ferrous ion oxidation system in the presence of Acidithiobacillus ferrooxidans at concentrations of 0-4.00 g/L. The pH, ferrous ion oxidation efficiency, total iron precipitation efficiency, and phase of the solid minerals harvested from different treatments were investigated during the ferrous ion oxidation process. In control check (CK) system, pH of the solution decreased from 2.81 to 2.25 when ferrous ions achieved complete oxidation after 72 h of Acidithiobacillus ferrooxidans incubation without the addition of calcium oxide, and total iron precipitation efficiency reached 20.2%. Efficiency of ferrous ion oxidation and total iron precipitation was significantly improved when the amount of calcium oxide added was ≤1.33 g/L, and the minerals harvested from systems were mainly a mixture of jarosite and schwertmannite. For example, the ferrous ion oxidation efficiency reached 100% at 60 h and total iron precipitation efficiency was increased to 32.1% at 72 h when 1.33 g/L of calcium oxide was added. However, ferrous ion oxidation and total iron precipitation for jarosite and schwertmannite formation were inhibited if the amount of calcium oxide added was above 2.67 g/L, and large amounts of calcium sulfate dihydrate were generated in systems.

  15. Effects of dissolved Ca2+, Mg2+, and Na+ ions on the supramolecular aggregation of natural organic matter in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Ahn, W.; Kalinichev, A. G.; Clark, M. M.

    2008-12-01

    The complexation of natural organic matter (NOM) with metal ions, minerals and organic species in soil and water allows NOM to form water-soluble and water-insoluble aggregates of widely differing chemical and biological stabilities. Metal-NOM interaction induces strong correlations between the concentration of natural organic matter and the speciation, solubility and toxicity of many metals in the environment. In water purification and desalination, NOM is also implicated in fouling of nanofiltration and reverse osmosis membranes, either as the primary foulant or as a conditioning layer for microbial attachment ("biofouling"). In this work we investigated the effects of various metal ions on NOM aggregation in aqueous solutions, by a combination of dynamic light scattering (DLS), small angle neutron scattering (SANS) and large-scale molecular dynamics (MD) computer simulations. This allows a detailed molecular-scale statistical analysis of the size and the structural topology of metal-NOM aggregates. The DLS measurements show that Ca2+ ions present in a Suwannee River NOM (SRNOM) solution lead to the formation of a wide range of supramolecular structures with sizes between 100 and 1,000 nm. In contrast, Mg2+ and Na+ do not affect the aggregation of SRNOM as strongly. SANS data are inconclusive but indicate the presence of quite large (>50 nm) fractal particles formed presumably through a cluster-cluster aggregation. MD simulations confirm these observations and show that NOM can aggregate in aqueous solutions by two different mechanisms. On the one hand, NOM molecules can spontaneously aggregate by hydrogen bonding between their functional groups when only Na+ and Mg2+ are present as background cations. This promotes the formation of uniformly shaped NOM clusters. On the other hand, if Ca2+ ions are present in solution, they can more strongly bind two different NOM molecules by co-complexing the carboxylate groups, thus promoting the formation of longer linear and

  16. Structure of Fe(III) precipitates generated by Fe(0) electrocoagulation in the presence of groundwater ions

    NASA Astrophysics Data System (ADS)

    van Genuchten, C. M.; Pena, J.; Addy, S. E.; Gadgil, A. J.

    2012-12-01

    Electrocoagulation (EC) using Fe(0) electrodes is an inexpensive and efficient technology capable of removing a variety of contaminants from water supplies. Because of its ease of use and modest electricity and Fe(0) requirements, EC has potential as an arsenic-removal technology for rural South Asia, where millions drink groundwater contaminated by arsenic. In EC, a small external voltage applied to a sacrificial Fe(0) anode in contact with an electrolyte (e.g. pumped groundwater containing arsenic) promotes the oxidative dissolution of Fe ions, which polymerize and create reactive hydrous ferric oxides (HFO) in-situ with a high affinity for binding contaminants. The chemical composition of the electrolyte influences EC performance. For example, major inorganic ions present in groundwater (e.g. Ca, Mg, P, As(V), Si) alter the pathway by which FeO6 oligomers polymerize to form crystalline Fe (oxyhydr)oxide minerals. Because the precipitate structure largely determines properties that govern the efficiency of EC systems (e.g. precipitate reactivity and colloidal stability), it is essential to understand the individual and interdependent structural effects of common groundwater ions. In this work, we integrate Fe K-edge EXAFS spectroscopy with the Pair Distribution Function (PDF) technique to create a detailed description of EC precipitate structure as a function of electrolyte chemistry. EC precipitate samples were generated in a range of individual and combined concentrations of Ca, Mg, P, As(V), and Si, encompassing most of the typical levels found in natural groundwater. Combining complementary EXAFS and PDF techniques with batch uptake experiments and general chemical reasoning, we obtain structural representations of EC precipitates that are inaccessible with any single characterization technique. Our results indicate that the presence of As(V), P, and Si oxyanions promote the formation of nanoscale material bearing similar, but not identical, intermediate

  17. Ion-specific colloidal aggregation: population balance equations and potential of mean force.

    PubMed

    Odriozola, Gerardo

    2011-10-07

    Recently reported colloidal aggregation data obtained for different monovalent salts (NaCl, NaNO(3), and NaSCN) and at high electrolyte concentrations are matched with the stochastic solutions of the master equation to obtain bond average lifetimes and bond formation probabilities. This was done for a cationic and an anionic system of similar particle size and absolute charge. Following the series Cl(-), NO(3)(-), SCN(-), the parameters obtained from the fitting procedure to the kinetic data suggest: (i) The existence of a potential of mean force (PMF) barrier and an increasing trend for it for both lattices. (ii) An increasing trend for the PMF at contact, for the cationic system, and a practically constant value for the anionic system. (iii) A decreasing trend for the depth of the secondary minimum. This complex behavior is in general supported by Monte Carlo simulations, which are implemented to obtain the PMF of a pair of colloidal particles immersed in the corresponding electrolyte solution. All these findings contrast the Derjaguin, Landau, Verwey, and Overbeek theory predictions.

  18. Simple Colorimetric Detection of Amyloid β-peptide (1-40) based on Aggregation of Gold Nanoparticles in the Presence of Copper Ions.

    PubMed

    Zhou, Yanli; Dong, Hui; Liu, Lantao; Xu, Maotian

    2015-05-13

    A simple method for specific colorimetric sensing of Alzheimer's disease related amyloid-β peptide (Aβ) is developed based on the aggregation of gold nanoparticles in the presence of copper ion. The detection of limit for Aβ(1-40) is 0.6 nM and the promising results from practical samples (human serum) indicate the great potential for the routine detection.

  19. Tuning of the selectivity of fluorescent peptidyl bioprobe using aggregation induced emission for heavy metal ions by buffering agents in 100% aqueous solutions.

    PubMed

    Neupane, Lok Nath; Hwang, Gi Won; Lee, Keun-Hyeung

    2017-02-03

    Smart fluorescent probes of which the detection of specific target molecules can be controlled are attracting remarkable interest. A fluorescent peptidyl bioprobe (1) was rationally synthesized by conjugating tetraphenylethylene, an aggregation-induced emission (AIE) fluorophore with a peptide receptor (AspHis) that acted as hard and intermediate bases. The selective detection of 1 for specific metal ion in 100% aqueous solutions was controlled by the buffering agents with the chelate effect without the change of pH. In distilled water and phosphate buffered aqueous solution at neutral pH, 1 exhibited a selective Off-On response to a soft metal ion, Hg(2+) among test metal ions by 100-fold enhancement of the emission at 470nm. 1 showed a selective Off-On response (180-fold enhancement) to a hard metal ion, Al(3+) ions among test metal ions in Tris buffered aqueous solution at neutral pH and Hexamine (hexamethylenetetramine) buffered aqueous solution at acidic pH. The detection limit of 0.46 ppb for Hg(2+) and 2.26 ppb for Al(3+) in each condition was lower than the maximum allowable level of the metal ions in drinking water by EPA. This research helps to understand how buffering agents participate in the complex formation and aggregation of fluorescent probes using an AIE process for the selective detection of specific metal ions in aqueous solutions.

  20. Self-Consistent Model of Magnetospheric Ring Current and Propagating Electromagnetic Ion Cyclotron Waves. 2; Waves, Precipitating Ring Current Ions, and Thermal Electron Heating

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.

    2006-01-01

    This paper is dedicated to further presentations and discussions of the results from our new global self-consistent theoretical model of interacting ring current ions and electromagnetic ion cyclotron waves [Khazanov et al., 2006; here referred to as Paper 1]. In order to adequately take into account the wave propagation and refraction in a multi-ion plasmasphere, we explicitly include the ray tracing equations in our previous self-consistent model and use the general form of the wave kinetic equation [for details see Paper 1]. To demonstrate the effects of the EMIC wave propagation and refraction on the RC proton precipitations and heating of the thermal plasmaspheric electrons we simulate the May 1998 storm. The main findings of our simulation can be summarized as follows. Firstly, the wave induced precipitations have a quite fine structure, and are highly organized by location of the plasmapause gradient. The strongest fluxes of about 4 (raised dot) 10(exp 6) [(cm (raised dot) s (raised dot) sr)(sup -l)] are observed during the main and early recovery phases of the storm. The very interesting and probably more important finding is that in a number of cases the most intense precipitating fluxes are not simply connected to the most intense EMIC waves. The character of the EMIC wave power spectral density distribution over the equatorial wave normal angle is an extremely crucial for the effectiveness of the RC ion scattering. Secondly, comparison of the global proton precipitating patterns with the results from other ring current model [Kozyra et al., 1997] reveals that although we observe a qualitative agreement between localizations of the wave induced fluxes in the models, there is no quantitative agreement between the magnitudes of these fluxes. These differences are mainly due to a qualitative difference between the characters of the EMIC wave power spectral density distributions over the equatorial wave normal angle. Finally, the two energy sources to the

  1. Precipitation and groundwater evapotranspiration as hydraulic drivers of nutrient and ion accumulation in Everglades' tree islands, Florida

    NASA Astrophysics Data System (ADS)

    Sullivan, P. L.; Price, R. M.; Miralles-Wilhelm, F. R.; Ross, M. S.; Scinto, L. J.; Cline, E.; Dreschel, T. W.; Sklar, F. H.

    2010-12-01

    Many wetlands around the world contain raised ridges or islands dominated by higher order vegetation with elevated ion and nutrient groundwater concentrations, surrounded by low lying hollows and sloughs with low nutrient and ion concentrations. Similar to these wetlands, the Everglades are characterized by a ridge-slough-tree islands continuum where some of the highest soil and groundwater nutrient concentrations have been detected in tree islands. The goal of this study was to determine the role of precipitation (P) and groundwater evapotranspiration (ETg) as drivers of groundwater-surface water interactions and tree islands biogeochemistry. Groundwater and surface water levels and chemistry were monitored for eight constructed tree islands at Loxahatchee Impoundment Landscape Assessment from 2007-2010 and one natural tree island from 2009-2010. Groundwater and surface chemistry were measured on three additional natural tree islands across the Everglades from 2008-2010. Diurnal groundwater levels were used to determine ETg using the White method. The results suggested that the ratio of ETg/P dictated the groundwater flow patterns and the concentration of ions in the groundwater. When ETg/P was low, the shape of the groundwater table mimicked that of the land surface, and groundwater flowed from the center of the islands toward the edges. When ETg/P was high, a cone of depression formed in the center of the islands and groundwater flowed from the edges of the islands toward the center. The ion concentration in the groundwater in the center of the islands coincided with the dominant process: if ETg/P was low, the ionic concentration of the groundwater decreased, and conversely if the ratio was high, the concentration of ions increased. Concentrations of chloride, groundwater stable isotopes of oxygen-18 and deuterium indicated that the highest rates of transpiration were in the center of the island, which supported the ETg results. Furthermore, modeling results

  2. Alfvénic field-aligned currents, ion upflow and electron precipitation during large geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Hatch, Spencer; LaBelle, James; Chaston, Christopher

    2016-04-01

    We present four years of FAST observations of Alfvénic field-aligned currents (FACs) in the Northern Hemisphere coincident with 40 moderate (Dst < -50 nT) to very large geomagnetic storms. Superposed epoch analysis of Alfvénic activity of storm periods demonstrate a sharp increase in the probability of AlfvÉn wave occurrence just after storm commencement, and analysis based on storm phase shows that the probability of Alfvén wave occurrence increases by more than a factor of 5 on both dayside and nightside. Additionally, recently reported Van Allen Probes measurements in the magnetosphere imply a region (˜60-68 degrees invariant latitude) in the nightside ionosphere where Alfvén waves are statistically likely to be observed during storm main phase; we report statistical observations during main phase showing that this region instead corresponds to both intense electron precipitation (>10 mW m-2) and strong upflowing ion number flux (> 108 cm^{-2 s-1), while observed Alfvénic FAC occurrence rates are diminished relative to Van Allen Probes measurements. FAST observations also indicate that the most intense electron precipitation associated with Alfvénic FACs occurs pre-midnight during storm recovery phase.

  3. Ion Upwelling and Height-Resolved Electrodynamic Response of the Ionosphere to ULF Waves and Precipitation: Comparison Between Simulation and EISCAT Observations

    NASA Astrophysics Data System (ADS)

    Sydorenko, D.; Rankin, R.

    2013-12-01

    We have developed a comprehensive two-dimensional (meridional) model of coupling between the magnetosphere and ionosphere that covers an altitude range from ~100 km to few thousand km at high latitudes [Sydorenko and Rankin, 2013]. The model describes propagation of inertial scale Alfven waves, including ponderomotive forces, and has a parametric model of energetic electron precipitation; it includes vertical ion flows and chemical reactions between ions and neutrals. Model results are presented that reproduce EISCAT radar observations of electron and ion temperatures, height integrated conductivity, ion densities, and ion flows during a period of ULF activity described in [Lester, Davies, and Yeoman, 2000]. We performed simulations where the precipitation and the Alfven wave perturb the ionosphere simultaneously. By adjusting parameters of the wave and the precipitation we have achieved qualitative, and sometimes even reasonable quantitative agreement between the observations and the simulation. The model results are discussed in the context of new results anticipated from the Canadian small satellite mission ePOP "Enhanced Polar Outflow Probe", scheduled for launch on September 9, 2013. Sydorenko D. and R. Rankin, 'Simulation of O+ upflows created by electron precipitation and Alfvén waves in the ionosphere' submitted to Journal of Geophysical Research, 2013. Lester M., J. A. Davies, and T. K. Yeoman, 'The ionospheric response during an interval of PC5 ULF wave activity', Ann. Geophysicae, v.18, p.257-261 (2000).

  4. A Comprehensive Study of the Solubility, Thermochemistry, Ion Exchange, and Precipitation Kinetics of NO3 Cancrinite and NO3 Sodalite

    SciTech Connect

    Colon, Carlos F. Jove; Navrotsky, Alexandra; Krumhansl, James L.; Nyman, May

    2002-06-01

    NO3 cancrinite and NO3 sodalite haves been found as a common sodium alumino-silicate forming in strongly caustic alkaline aqueous solutions associated with radioactive High Level Waste (HLW) stored in many underground tanks and also in nuclear waste treatment facilities such as the Savannah River Site (SRS). The appearance of these phases have created very expensive problems in waste treatment plants by fouling process evaporators in the SRS waste processing facility. Therefore, in order to prevent their formation an assessment of the relative stability, formation kinetics, and the ion-exchange characteristics of these two phases in HLW solutions needs to be investigated. The goals of this project are to: (1) Develop a robust equilibrium thermodynamic framework to accurately describe and predict the formation of NO3 cancrinite and NO3 sodalite. (2) Provide a comprehensive characterization of the solid precipitation rates and mechanisms using novel spectroscopic (e.g., NMR) and thermochemical techniques in conditions encountered in HLW waste solutions. (3) Investigate the ion exchange capacity of these zeolitic phases with respect to radionuclides and RCRA metal species.

  5. Selective and Sensitive Detection of Heavy Metal Ions in 100% Aqueous Solution and Cells with a Fluorescence Chemosensor Based on Peptide Using Aggregation-Induced Emission.

    PubMed

    Neupane, Lok Nath; Oh, Eun-Taex; Park, Heon Joo; Lee, Keun-Hyeung

    2016-03-15

    A fluorescent peptidyl chemosensor for the detection of heavy metal ions in aqueous solution as well as in cells was synthesized on the basis of the peptide receptor for the metal ions using an aggregation-induced emission fluorophore. The peptidyl chemosensor (1) bearing tetraphenylethylene fluorophore showed an exclusively selective turn-on response to Hg(2+) among 16 metal ions in aqueous buffered solution containing NaCl. The peptidyl chemosensor complexed Hg(2+) ions and then aggregated in aqueous buffered solution, resulting in the significant enhancement (OFF-On) of emissions at around 470 nm. The fluorescent sensor showed a highly sensitive response to Hg(2+), and about 1.0 equiv of Hg(2+) was enough for the saturation of the emission intensity change. The detection limit (5.3 nM, R(2) = 0.99) of 1 for Hg(2+) ions was lower than the maximum allowable level of Hg(2+) in drinking water by EPA. Moreover, the peptidyl chemosensor penetrated live cells and detected intracellular Hg(2+) ions by the turn-on response.

  6. A subauroral polarization stream driven by field-aligned currents associated with precipitating energetic ions caused by EMIC waves: A case study

    NASA Astrophysics Data System (ADS)

    Yuan, Zhigang; Xiong, Ying; Qiao, Zheng; Li, Haimeng; Huang, Shiyong; Wang, Dedong; Deng, Xiaohua; Raita, Tero; Wang, Jingfang

    2016-02-01

    During the energetic ion injection event observed by the Los Alamos National Laboratory geosynchronous spacecraft, observations of the NOAA 15 satellite and Finnish network of search coil magnetometers have shown that a sharp enhancement of precipitating ring current (RC) ion flux is contributed to the pitch angle scattering caused by electromagnetic ion cyclotron (EMIC) waves. At subauroral latitudes, lower than the equatorward edge of precipitating electrons from the plasma sheet, the DMSP F13 satellite observed a subauroral polarization stream (SAPS) with a peak velocity of 688 m/s. When passing the region of EMIC waves derived by the Finnish network of search coil magnetometers and NOAA 15 satellite, the DMSP F13 satellite simultaneously observed field-aligned currents (FACs) flowing into the ionosphere and precipitating RC ions in the region of the SAPS. The peak of the SAPS accords to the minimum of the ion density in the region of the SAPS. Our result suggests that loss of RC ions caused by EMIC waves would possibly lead to FACs flowing into the ionosphere and drive the SAPS in the evening sector.

  7. Cusp region particle precipitation and ion convection for northward interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Burch, J. L.; Reiff, P. H.; Spiro, R. W.; Heelis, R. A.; Fields, S. A.

    1981-01-01

    Data from Atmosphere Explorer D for periods of strong northward interplanetary magnetic field are discussed. In the dayside magnetospheric cusp region energy time spectrograms of suprathermal positive ion fluxes exhibit a characteristic 'V' pattern as the spacecraft moves toward higher latitudes; that is, with the peak in the energy spectrum falling in energy and then rising again. Convection velocities follow this pattern closely with strong eastwest flows (with antisunward components) occurring in the equatorward half of the 'V' and significant sunward flows occurring in the poleward half of the 'V'. These patterns can be understood qualitatively in terms of a model of ionospheric electric potential produced by the known dependence of Birkeland current densities on magnetic activity.

  8. Relationship of Topside Ionospheric Ion Outflows to Auroral Forms and Precipitations, Plasma Waves, and Convection Observed by POLAR

    NASA Technical Reports Server (NTRS)

    Hirahara, M.; Horwitz, J. L.; Moore, T. E.; Germany, G. A.; Spann, J. F.; Peterson, W. K.; Shelley, E. G.; Chandler, M. O.; Giles, B. L.; Craven, P. D.; Pollock, C. J.; Gurnett, D. A.; Persoon, A. M.; Scudder, J. D.; Maynard, N. C.; Mozer, F. S.; Brittnacher, M. J.; Nagai, T.

    1997-01-01

    The POLAR satellite often observes upflowing ionospheric ions (UFls) in and near the auroral oval on southern perigee (approximately 5000 km altitude) passes. We present the UFI features observed by the thermal ion dynamics experiment (TIDE) and the toroidal imaging mass-angle spectrograph (TIMAS) in the dusk-dawn sector under two different geomagnetic activity conditions in order to elicit their relationships with auroral forms, wave emissions, and convection pattern from additional POLAR instruments. During the active interval, the ultraviolet imager (UVI) observed a bright discrete aurora on the dusk side after the substorm onset and then observed a small isolated aurora form and diffuse auroras on the dawn side during the recovery phase. The UFls showed clear conic distributions when the plasma wave instrument (PWI) detected strong broadband wave emissions below approximately 10 kHz, while no significant auroral activities were observed by UVI. At higher latitudes, the low-energy UFI conics gradually changed to the polar wind component with decreasing intensity of the broadband emissions. V-shaped auroral kilometric radiation (AKR) signatures observed above approximately 200 kHz by PWI coincided with the region where the discrete aurora and the UFI beams were detected. The latitude of these features was lower than that of the UFI conics. During the observations of the UFI beams and conics, the lower-frequency fluctuations observed by the electric field instrument (EFI) were also enhanced, and the convection directions exhibited large fluctuations. It is evident that large electrostatic potential drops produced the precipitating electrons and discrete auroras, the UFI beams, and the AKR, which is also supported by the energetic plasma data from HYDRA. Since the intense broadband emissions were also observed with the UFIs. the ionospheric ions could be energized transversely before or during the parallel acceleration due to the potential drops.

  9. Relationship of Topside Ionospheric Ion Outflows to Auroral Forms and Precipitation, Plasma Waves, and Convection Observed by Polar

    NASA Technical Reports Server (NTRS)

    Hirahara, M.; Horwitz, J. L.; Moore, T. E.; Germany, G. A.; Spann, J. F.; Peterson, W. K.; Shelley, E. G.; Chandler, M. O.; Giles, B. L.; Craven, P. D.; Pollock, C. J.; Gurnett, D. A.; Pickett, J. S.; Persoon, A. M.; Scudder, J. D.; Maynard, N. C.; Mozer, F. S.; Brittnacher, M. J.; Nagai, T.

    1998-01-01

    The POLAR satellite often observes upflowing ionospheric ions (UFIs) in and near the aurora] oval on southern perigee (approx. 5000 km altitude) passes. We present the UFI features observed by the thermal ion dynamics experiment (TIDE) and the toroidal imaging mass angle spectrograph (TIMAS) in the dusk-dawn sector under two different geomagnetic activity conditions in order to elicit their relationships with auroral forms, wave emissions, and convection pattern from additional POLAR instruments. During the active interval, the ultraviolet imager (UVI) observed a bright discrete aurora on the duskside after the substorm onset and then observed a small isolated aurora form and diffuse auroras on the dawnside during the recovery phase. The UFIs showed clear conic distributions when the plasma wave instrument (PWI) detected strong broadband wave emissions below approx. 10 kHz, while no significant auroral activities were observed by UVI. At higher latitudes, the low-energy UFI conics gradually changed to the polar wind component with decreasing intensity of the broadband emissions. V-shaped auroral kilometric radiation (AKR) signatures observed above -200 kHz by PWI coincided with the region where the discrete aurora and the UFI beams were detected. The latitude of these features was lower than that of the UFI conics. During the observations of the UFI beams and conics, the lower-frequency fluctuations observed by the electric field instrument were also enhanced, and the convection directions exhibited large fluctuations. It is evident that large electrostatic potential drops produced the precipitating electrons and discrete auroras, the UFI beams, and the AKR, which is also supported by the energetic plasma data from HYDRA. Since the intense broadband emissions were also observed with the UFIs, the ionospheric ions could be energized transversely before or during the parallel acceleration due to the potential drops.

  10. Reduced graphene oxide/carbon double-coated 3-D porous ZnO aggregates as high-performance Li-ion anode materials.

    PubMed

    Wi, Sungun; Woo, Hyungsub; Lee, Sangheon; Kang, Joonhyeon; Kim, Jaewon; An, Subin; Kim, Chohui; Nam, Seunghoon; Kim, Chunjoong; Park, Byungwoo

    2015-01-01

    The reduced graphene oxide (RGO)/carbon double-coated 3-D porous ZnO aggregates (RGO/C/ZnO) have been successfully synthesized as anode materials for Li-ion batteries with excellent cyclability and rate capability. The mesoporous ZnO aggregates prepared by a simple solvothermal method are sequentially modified through distinct carbon-based double coating. These novel architectures take unique advantages of mesopores acting as space to accommodate volume expansion during cycling, while the conformal carbon layer on each nanoparticle buffering volume changes, and conductive RGO sheets connect the aggregates to each other. Consequently, the RGO/C/ZnO exhibits superior electrochemical performance, including remarkably prolonged cycle life and excellent rate capability. Such improved performance of RGO/C/ZnO may be attributed to synergistic effects of both the 3-D porous nanostructures and RGO/C double coating.

  11. Reduced graphene oxide/carbon double-coated 3-D porous ZnO aggregates as high-performance Li-ion anode materials

    NASA Astrophysics Data System (ADS)

    Wi, Sungun; Woo, Hyungsub; Lee, Sangheon; Kang, Joonhyeon; Kim, Jaewon; An, Subin; Kim, Chohui; Nam, Seunghoon; Kim, Chunjoong; Park, Byungwoo

    2015-05-01

    The reduced graphene oxide (RGO)/carbon double-coated 3-D porous ZnO aggregates (RGO/C/ZnO) have been successfully synthesized as anode materials for Li-ion batteries with excellent cyclability and rate capability. The mesoporous ZnO aggregates prepared by a simple solvothermal method are sequentially modified through distinct carbon-based double coating. These novel architectures take unique advantages of mesopores acting as space to accommodate volume expansion during cycling, while the conformal carbon layer on each nanoparticle buffering volume changes, and conductive RGO sheets connect the aggregates to each other. Consequently, the RGO/C/ZnO exhibits superior electrochemical performance, including remarkably prolonged cycle life and excellent rate capability. Such improved performance of RGO/C/ZnO may be attributed to synergistic effects of both the 3-D porous nanostructures and RGO/C double coating.

  12. Effects of DPPC/Cholesterol liposomes on the properties of freshly precipitated calcium carbonate.

    PubMed

    Szcześ, A

    2013-01-01

    DPPC/Cholesterol liposomes of average diameter below 100nm were used as a matrix for calcium carbonate precipitation. Adsorption of calcium ions on the vesicles was determined via zeta potential measurement. It was found that with increasing calcium ions concentration the electrokinetic potential of the vesicles varied toward more positive values. The changes became smaller with the cholesterol content increase. Accumulation of calcium ions close to the vesicles membranes lead to attraction of CO(3)(2-) ions and enhances nucleation and growth of small calcium carbonate crystals that aggregates within lipid vesicles forming porous balls aggregates. However, dipalmitoylphosphatidylcholine (DPPC) does not change the CaCO(3) crystal forms and calcite is the only form obtained during precipitation. Moreover, the influence of the phospholipid on the calcium carbonate precipitation is enhanced by the induction of cholesterol to the lipid membranes.

  13. Episodic carbonate precipitation in the CM chondrite ALH 84049: An ion microprobe analysis of O and C isotopes

    NASA Astrophysics Data System (ADS)

    Tyra, Mark; Brearley, Adrian; Guan, Yunbin

    2016-02-01

    We have determined the O and C isotope compositions of dolomite grains and the C isotope compositions of calcite grains in the highly altered CM1 chondrite, ALH 84049, using Secondary Ion Mass Spectrometry (SIMS). Chemically-zoned dolomite constitutes 0.8 volume percent (vol%) of the sample and calcite 0.9 vol%. Thirteen separate dolomite grains have δ13C values that range from 37 to 60 (±2) ‰, δ18O values from 25 to 32 (±3) ‰, and δ17O values from 10 to 16 (±3) ‰ (VSMOW). Intragrain δ13C values in dolomite vary up to 10‰. The δ13C values of three calcite grains are distinct from those of dolomite and range from 10 to 13 (±2) ‰ (PDB). Calcite and dolomite appear to record different precipitation episodes. Carbon isotope values of both dolomite and calcite in this single sample encompass much of the reported range for CM chondrites; our results imply that bulk carbonate C and O isotope analyses may oversimplify the history of carbonate precipitation. Multiple generations of carbonates with variable isotope compositions exist in ALH 84049 and, perhaps, in many CM chondrites. This work shows that one should exercise caution when using a clumped isotope approach to determine the original temperature and the isotopic compositions of water for CM chondrite carbonates. Less altered CM meteorites with more-homogeneous C isotope compositions, however, may be suitable for bulk-carbonate analyses, but detailed carbonate petrologic and isotopic characterization of individual samples is advised.

  14. Effects of ion aggregation on the intervalence transfer band of the mixed-valence biferrocenium cation in solution

    SciTech Connect

    Lowery, M.D.; Hammack, W.S.; Drickamer, H.G.; Hendrickson, D.N.

    1987-12-23

    The concentration dependence of the energy (E/sup op/) of the intervalence transfer (IT) electronic absorption band of mixed-valence biferrocenium triiodide dissolved in either nitrobenzene or dichloromethane is examined. In nitrobenzene, E/sup op/ increases rapidly from approx. 5.57 to approx. 6.05 x 10/sup 3/ cm/sup -1/ in the 0.24-0.4 mM range, whereupon further increases in the concentration of biferrocenium triiodide lead to E/sup op/ increasing more gradually to a value approx. 6.3 x 10/sup 3/ cm/sup -1/ at 24 mM. On the other hand, the full width at half maximum (..delta.. anti v/sub 1/2) and the transition moment of the IT band decrease with increasing concentration for biferrocenium triiodide in nitrobenzene. E/sup op/ increases, ..delta.. anti v/sub 1/2 remains constant, and the transition moment of the IT band increases with increasing concentration for biferrocenium triiodide in dichloromethane in the more limited range of 0.30-0.95 mM. These concentration dependencies of the IT band for biferrocenium triiodide are attributable to variable degrees of ion aggregation in solution. The concentration dependencies of the electrical conductivity of solutions of biferrocenium triiodide in either nitrobenzene or dichloromethane substantiate this proposal. IT band contours obtained at different concentrations are fit to the PKS vibronic model to yield parameters that characterize the electronic and vibronic coupling within the mixed-valence biferrocenium cation.

  15. Use of whey protein soluble aggregates for thermal stability-a hypothesis paper.

    PubMed

    Ryan, Kelsey N; Zhong, Qixin; Foegeding, Edward A

    2013-08-01

    Forming whey proteins into soluble aggregates is a modification shown to improve or expand the applications in foaming, emulsification, gelation, film-formation, and encapsulation. Whey protein soluble aggregates are defined as aggregates that are intermediates between monomer proteins and an insoluble gel network or precipitate. The conditions under which whey proteins denature and aggregate have been extensively studied and can be used as guiding principles of producing soluble aggregates. These conditions are reviewed for pH, ion type and concentration, cosolutes, and protein concentration, along with heating temperature and duration. Combinations of these conditions can be used to design soluble aggregates with desired physicochemical properties including surface charge, surface hydrophobicity, size, and shape. These properties in turn can be used to obtain target macroscopic properties, such as viscosity, clarity, and stability, of the final product. A proposed approach to designing soluble aggregates with improved thermal stability for beverage applications is presented.

  16. Application of linear pH gradients for the modeling of ion exchange chromatography: Separation of monoclonal antibody monomer from aggregates.

    PubMed

    Kluters, Simon; Wittkopp, Felix; Jöhnck, Matthias; Frech, Christian

    2016-02-01

    The mobile phase pH is a key parameter of every ion exchange chromatography process. However, mechanistic insights into the pH influence on the ion exchange chromatography equilibrium are rare. This work describes a mechanistic model capturing salt and pH influence in ion exchange chromatography. The pH dependence of the characteristic protein charge and the equilibrium constant is introduced to the steric mass action model based on a protein net charge model considering the number of amino acids interacting with the stationary phase. This allows the description of the adsorption equilibrium of the chromatographed proteins as a function of pH. The model parameters were determined for a monoclonal antibody monomer, dimer, and a higher aggregated species based on a manageable set of pH gradient experiments. Without further modification of the model parameters the transfer to salt gradient elution at fixed pH is demonstrated. A lumped rate model was used to predict the separation of the monoclonal antibody monomer/aggregate mixture in pH gradient elution and for a pH step elution procedure-also at increased protein loadings up to 48 g/L packed resin. The presented model combines both salt and pH influence and may be useful for the development and deeper understanding of an ion exchange chromatography separation.

  17. Nanometer scale tomographic investigation of fine scale precipitates in a CuFeNi granular system by three-dimensional field ion microscopy.

    PubMed

    Cazottes, Sophie; Vurpillot, François; Fnidiki, Abdeslem; Lemarchand, Dany; Baricco, Marcello; Danoix, Frederic

    2012-10-01

    The microstructure of Cu80Fe10Ni10 (at. %) granular ribbons was investigated by means of three-dimensional field ion microscopy (3D FIM). This ribbon is composed of magnetic precipitates embedded in a nonmagnetic matrix. The magnetic precipitates have a diameter smaller than 5 nm in the as-spun state and are coherent with the matrix. No accurate characterization of such a microstructure has been performed so far. A tomographic characterization of the microstructure of melt spun and annealed Cu80Fe10Ni10 ribbon was achieved with 3D FIM at the atomic scale. A precise determination of the size distribution, number density, and distance between the precipitates was carried out. The mean diameter for the precipitates is 4 nm in the as-spun state. After 2 h at 350°C, there is an increase of the size of the precipitates, while after 2 h at 400°C the mean diameter of the precipitates decreases. Those data were used as inputs in models that describe the magnetic and magnetoresistive properties of this alloy.

  18. Synthesis of high capacity cathodes for lithium-ion batteries by morphology-tailored hydroxide co-precipitation

    NASA Astrophysics Data System (ADS)

    Wang, Dapeng; Belharouak, Ilias; Ortega, Luis H.; Zhang, Xiaofeng; Xu, Rui; Zhou, Dehua; Zhou, Guangwen; Amine, Khalil

    2015-01-01

    Nickel manganese hydroxide co-precipitation inside a continuous stirred tank reactor was studied with sodium hydroxide and ammonium hydroxide as the precipitation agents. The ammonium hydroxide concentration had an effect on the primary and secondary particle evolution. The two-step precipitation mechanism proposed earlier was experimentally confirmed. In cell tests, Li- and Mn-rich composite cathode materials based on the hydroxide precursors demonstrated good electrochemical performance in terms of cycle life over a wide range of lithium content.

  19. Dual role of Cu²⁺ ions on the aggregation and degradation of soluble Aβ oligomers and protofibrils investigated by fluorescence spectroscopy and AFM.

    PubMed

    García, Silvia; Cuscó, Cristina; Brissos, Rosa F; Torrents, Ester; Caubet, Amparo; Gamez, Patrick

    2012-11-01

    The neuropathological character of copper(II) ions (Cu(2+)) upon interaction with soluble human amyloid-β(1-42) that subsequently generates senile plaques and/or reactive oxygen species (ROS) is considered as one of the very important features of Alzheimer's disease. The present study carried out by using fluorescence spectroscopy and atomic-force microscopy (AFM) indeed confirms the dual role played by Cu(2+), namely as mediator of protein aggregation and as generator of ROS leading to irreversible protein alteration, which most likely involve two distinct copper-binding sites. The AFM investigations clearly evidence the copper-induced aggregation of Aβ oligomers and protofibrils, while comparative fluorescence measurements with copper and zinc reveals the crucial involvement of redox-active copper in the generation of Aβ-cross-linked structures.

  20. Receptor-mediated toxicity of human amylin fragment aggregated by short- and long-term incubations with copper ions.

    PubMed

    Caruso, Giuseppe; Distefano, Donatella A; Parlascino, Paolo; Fresta, Claudia G; Lazzarino, Giuseppe; Lunte, Susan M; Nicoletti, Vincenzo G

    2017-01-01

    Human amylin (hA1-37) is a polypeptide hormone secreted in conjunction with insulin from the pancreatic β-cells involved in the pathogenesis of type 2 diabetes mellitus (T2DM). The shorter fragment hA17-29 than full-length peptide is capable to form amyloids "in vitro". Here, we monitored the time course of hA17-29 β-amyloid fibril and oligomer formation [without and with copper(II)], cellular toxicity of different amyloid aggregates, and involvement of specific receptors (receptor for advanced glycation end-products, RAGE; low-affinity nerve growth factor receptor, p75-NGFR) in aggregate toxicity. Fibril and oligomer formation of hA17-29 incubated at 37 °C for 0, 48, and 120 h, without or with copper(II), were measured by the thioflavin T fluorescence assay and ELISA, respectively. Toxicity of hA17-29 aggregates and effects of anti-RAGE and anti-p75-NGFR antibodies were evaluated on neuroblastoma SH-SY5Y viability. Fluorescence assay of hA17-29 indicates an initial slow rate of soluble fibril formation (48 h), followed by a slower rate of insoluble aggregate formation (120 h). The highest quantity of oligomers was recorded when hA17-29 was pre-aggregated for 48 h in the presence of copper(II) showing also the maximal cell toxicity (-44% of cell viability, p < 0.01 compared to controls). Anti-RAGE or anti-p75-NGFR antibodies almost abolished cell toxicity of hA17-29 aggregates. These results indicate that copper(II) influences the aggregation process and hA17-29 toxicities are especially attributable to oligomeric aggregates. hA17-29 aggregate toxicity seems to be mediated by RAGE and p75-NGFR receptors which might be potential targets for new drugs in T2DM treatment.

  1. Energy Deposition and Escape Fluxes Induced by Energetic Solar Wind Ions and ENAs Precipitating into Mars Atmosphere: Accurate Consideration of Energy Transfer Collisions

    NASA Astrophysics Data System (ADS)

    Kharchenko, V. A.; Lewkow, N.; Gacesa, M.

    2014-12-01

    Formation and evolution of neutral fluxes of atoms and molecules escaping from the Mars atmosphere have been investigated for the sputtering and photo-chemical mechanisms. Energy and momentum transfer in collisions between the atmospheric gas and fast atoms and molecules have been considered using our recently obtained angular and energy dependent cross sections[1]. We have showed that accurate angular dependent collision cross sections are critical for the description of the energy relaxation of precipitating keV energetic ions/ENAs and for computations of altitude profiles of the fast atom and molecule production rates in recoil collisions. Upward and escape fluxes of the secondary energetic He and O atoms and H2, N2, CO and CO2 molecules, induced by precipitating ENAs, have been determined and their non-thermal energy distribution functions have been computed at different altitudes for different solar conditions. Precipitation and energy deposition of the energetic H2O molecules and products of their dissociations into the Mars atmosphere in the Comet C/2013 A1 (Siding Spring) - Mars interaction have been modeled using accurate cross sections. Reflection of precipitating ENAs by the Mars atmosphere has been analyzed in detail. [1] N. Lewkow and V. Kharchenko, "Precipitation of Energetic Neutral Atoms and Escape Fluxes induced from the Mars Atmosphere, ApJ, v.790, p.98 (2014).

  2. Effect of curcumin and Cu 2+/Zn 2+ ions on the fibrillar aggregates formed by the amyloid peptide and other peptides at the organic-aqueous interface

    NASA Astrophysics Data System (ADS)

    Sanghamitra, Nusrat J. M.; Varghese, Neenu; Rao, C. N. R.

    2010-08-01

    Characteristic features of a perilous neuro-degenerative disease such as the Alzhiemer's disease is fibrillar plaque formation by the amyloid (Aβ) peptide. We have modelled the formation and disintegration of fibrils by studying the aggregate structures formed by Aβ structural motif diphenylalanine as well as insulin and bovine serum albumin at the organic-aqueous interface. Even small concentrations of curcumin in the organic medium or Cu 2+ and Zn 2+ ions in the aqueous medium are found to break down the fibrillar structures.

  3. Sensitive and selective detection of copper ions based on the aggregation of chitosan-stablized silver nanoparticles.

    PubMed

    Zuo, Ying; Zhao, Hua Wen; Huang, Cheng Zhi; Zhang, Qing

    2011-06-01

    In this contribution, we present a simple and sensitive method for detecting Cu2+ based on the Cu(2+)-induced aggregation of silver nanoparticle (AgNPs) capped with chitosan. Chitosan could be adsorbed on the surface of AgNPs, and keep AgNPs against aggregation. However, in the presence of Cu2+, AgNPs aggregate again, the absorption decreases, and the color changes from yellow to colorless, which is due to the coordination of Cu2+ and chitosan. The depressed intensity (deltaA) is in proportion to the concentration of Cu2+ over the range of 3.33-40.0 microM with the limit of detection (3sigma) of 10.25 nM, the recovery of 92.60-104.20% and R.S.D. of 0.94-4.62%. The advantages of this method are simple, sensitive and low cost.

  4. Ionization of molecular hydrogen and stripping of oxygen atoms and ions in collisions of Oq++H2 (q = 0- 8): Data for secondary electron production from ion precipitation at Jupiter

    NASA Astrophysics Data System (ADS)

    Schultz, D. R.; Ozak, N.; Cravens, T. E.; Gharibnejad, H.

    2017-01-01

    Energetic oxygen and sulfur ion precipitation into the atmosphere of Jupiter is thought to produce an X-ray aurora as well as to contribute to ionization, heating, and dissociation of the molecules of the atmosphere. At high energy, stripping of electrons from these ions by atmospheric gas molecules results in the production of high charge states throughout a portion of this passage through the atmosphere. Therefore, to enable modeling of the effects of secondary electrons produced by this ion precipitation, from either the solar wind or magnetospheric sources such as the Galilean moons, a large range of ionization and stripping data is calculated and tabulated here that otherwise is not available. The present data are for the abundant precipitating species, oxygen, colliding with the dominant upper atmosphere gas, molecular hydrogen, and cover the principal reaction channels leading to secondary electron production (single and double ionization, transfer ionization, and double capture followed by autoionization, and single and double stripping of electrons from the projectile). Since the ions possess initial energies at the upper atmosphere in the keV to MeV range, and are then slowed as they pass through the atmosphere, results are calculated for 1-2000 keV/u Oq++H2 (q =0-8). In addition to the total cross sections for ionization and stripping processes, models require the distribution in energy and angle of the ejected electrons, so cross sections differential in these parameters are also calculated. The data may be used to model the energy deposited by ion precipitation in Jupiter's atmosphere and thereby contribute to the elucidation of the ionosphere-atmosphere coupling.

  5. Multi-layer electrode with nano-Li4Ti5O12 aggregates sandwiched between carbon nanotube and graphene networks for high power Li-ion batteries

    PubMed Central

    Choi, Jin-Hoon; Ryu, Won-Hee; Park, Kyusung; Jo, Jeong-Dai; Jo, Sung-Moo; Lim, Dae-Soon; Kim, Il-Doo

    2014-01-01

    Self-aggregated Li4Ti5O12 particles sandwiched between graphene nanosheets (GNSs) and single-walled carbon nanotubes (SWCNTs) network are reported as new hybrid electrodes for high power Li-ion batteries. The multi-layer electrodes are fabricated by sequential process comprising air-spray coating of GNSs layer and the following electrostatic spray (E-spray) coating of well-dispersed colloidal Li4Ti5O12 nanoparticles, and subsequent air-spray coating of SWCNTs layer once again. In multi-stacked electrodes of GNSs/nanoporous Li4Ti5O12 aggregates/SWCNTs networks, GNSs and SWCNTs serve as conducting bridges, effectively interweaving the nanoporous Li4Ti5O12 aggregates, and help achieve superior rate capability as well as improved mechanical stability of the composite electrode by holding Li4Ti5O12 tightly without a binder. The multi-stacked electrodes deliver a specific capacity that maintains an impressively high capacity of 100 mA h g−1 at a high rate of 100C even after 1000 cycles. PMID:25476980

  6. Spatial distribution of Ion Precipitation into the High Latitude Inner Magnetosphere using Energetic Neutral Atom (ENA) images over the Declining Phase of Solar Cycle 23

    NASA Astrophysics Data System (ADS)

    Mackler, D. A.; Jahn, J.; Pollock, C. J.

    2013-12-01

    Plamasheet particles transported Earthward during times of active magnetic convection can interact with thermospheric neutrals through charge exchange. The resulting ENAs are free to leave the influence of the magnetosphere and can be remotely detected. ENAs associated with low altitude (300-800 km) ion precipitation in the high latitude inner mangetosphere are termed Low Altitude Emissions (LAEs). LAEs are highly non-isotropic in velocity space such that the pitch angle distribution at the time of charge exchange is near 90 degrees. The observed Geomagnetic Emission Cone (GEC) of LAEs can be mapped spatially, showing where energy is deposited during storm/sub-storm times. In this study we present a statistical look at the particulate albedo of LAEs over the declining phase of solar cycle 23. The particulate albedo is defined as the ratio of the emitting energetic neutrals to the precipitating ions. The precipitating ion differential directional flux maps are built up from combining NOAA 14/15/16 TED and DMSP 13/14/15 SSJ4 data. Low altitude ENA signatures are identified manually using IMAGE/MENA images and selected out. The geomagnetic location of each pixel representing a LAE source region in the neutral images is computed assuming an altitude of 650 km. Before taking the ratio of the resulting flux of neutrals and ions, the Magnetic Local Time (MLT) and Invariant Latitude (IL) bin sizes are changed such that each has less than 20% error in counting statistics. The particulate albedo maps are then evaluated over changes in geomagnetic storm activity.

  7. Separation of recombinant apolipoprotein A-I(Milano) modified forms and aggregates in an industrial ion-exchange chromatography unit operation.

    PubMed

    Hunter, Alan K; Suda, Eric J; Herberg, John T; Thomas, Kristin E; Shell, Robert E; Gustafson, Mark E; Ho, Sa V

    2008-09-12

    We have shown how protein self-association impacts the ion-exchange separation of modified forms and aggregates for apolipoprotein A-I(Milano). It is well known that reversible self-association of a protein can lead to chromatographic band broadening, peak splitting, merging, fronting, and tailing. To mitigate these effects, urea or an organic modifier can be added to the chromatography buffers to shift the equilibrium distribution of the target molecule to the dissociated form. A first generation process that did not utilize urea resulted in low yield and low purity as it was not possible to separate protein aggregates. A second generation process run in the presence of 6M urea resulted in high purity and high yield, but throughput was limited due to low resin binding capacity when the protein was completely denatured. A third generation process achieved high purity, high yield, and high throughput by shifting the urea concentration during the process to continually operate in the optimal window for maximum loading and selectivity. Key to these systematic process improvements was the rational understanding of the interplay of urea concentration and ion-exchange chromatographic behavior. Results from pilot and industrial scale operations are presented, demonstrating the suitability of the techniques described in this work for the large scale manufacture of recombinant therapeutic proteins.

  8. Mapping of heavy metal ion sorption to cell-extracellular polymeric substance-mineral aggregates by using metal-selective fluorescent probes and confocal laser scanning microscopy.

    PubMed

    Hao, Likai; Li, Jianli; Kappler, Andreas; Obst, Martin

    2013-11-01

    Biofilms, organic matter, iron/aluminum oxides, and clay minerals bind toxic heavy metal ions and control their fate and bioavailability in the environment. The spatial relationship of metal ions to biomacromolecules such as extracellular polymeric substances (EPS) in biofilms with microbial cells and biogenic minerals is complex and occurs at the micro- and submicrometer scale. Here, we review the application of highly selective and sensitive metal fluorescent probes for confocal laser scanning microscopy (CLSM) that were originally developed for use in life sciences and propose their suitability as a powerful tool for mapping heavy metals in environmental biofilms and cell-EPS-mineral aggregates (CEMAs). The benefit of using metal fluorescent dyes in combination with CLSM imaging over other techniques such as electron microscopy is that environmental samples can be analyzed in their natural hydrated state, avoiding artifacts such as aggregation from drying that is necessary for analytical electron microscopy. In this minireview, we present data for a group of sensitive fluorescent probes highly specific for Fe(3+), Cu(2+), Zn(2+), and Hg(2+), illustrating the potential of their application in environmental science. We evaluate their application in combination with other fluorescent probes that label constituents of CEMAs such as DNA or polysaccharides and provide selection guidelines for potential combinations of fluorescent probes. Correlation analysis of spatially resolved heavy metal distributions with EPS and biogenic minerals in their natural, hydrated state will further our understanding of the behavior of metals in environmental systems since it allows for identifying bonding sites in complex, heterogeneous systems.

  9. Homogeneous Precipitation of Nickel Hydroxide Powders

    SciTech Connect

    Mavis, Bora

    2003-01-01

    Precipitation and characterization of nickel hydroxide powders were investigated. A comprehensive precipitation model incorporating the metal ion hydrolysis, complexation and precipitation reactions was developed for the production of the powders with urea precipitation method. Model predictions on Ni2+ precipitation rate were confirmed with precipitation experiments carried out at 90 C. Experimental data and model predictions were in remarkable agreement. Uncertainty in the solubility product data of nickel hydroxides was found to be the large contributor to the error. There were demonstrable compositional variations across the particle cross-sections and the growth mechanism was determined to be the aggregation of primary crystallites. This implied that there is a change in the intercalate chemistry of the primary crystallites with digestion time. Predicted changes in the concentrations of simple and complex ions in the solution support the proposed mechanism. The comprehensive set of hydrolysis reactions used in the model described above allows the investigation of other systems provided that accurate reaction constants are available. the fact that transition metal ions like Ni2+ form strong complexes with ammonia presents a challenge in the full recovery of the Ni2+. On the other hand, presence of Al3+ facilitates the complete precipitation of Ni2+ in about 3 hours of digestion. A challenge in their predictive modeling studies had been the fact that simultaneous incorporation of more than one metal ion necessitates a different approach than just using the equilibrium constants of hydrolysis, complexation and precipitation reactions. Another limitation of using equilibrium constants is that the nucleation stage of digestion, which is controlled mainly by kinetics, is not fully justified. A new program released by IBM Almaden Research Center (Chemical Kinetics Simulator™, Version 1.01) lets the user change

  10. Binding of heavy metal ions in aggregates of microbial cells, EPS and biogenic iron minerals measured in-situ using metal- and glycoconjugates-specific fluorophores

    NASA Astrophysics Data System (ADS)

    Hao, Likai; Guo, Yuan; Byrne, James M.; Zeitvogel, Fabian; Schmid, Gregor; Ingino, Pablo; Li, Jianli; Neu, Thomas R.; Swanner, Elizabeth D.; Kappler, Andreas; Obst, Martin

    2016-05-01

    Aggregates consisting of bacterial cells, extracellular polymeric substances (EPS) and Fe(III) minerals formed by Fe(II)-oxidizing bacteria are common at bulk or microscale chemical interfaces where Fe cycling occurs. The high sorption capacity and binding capacity of cells, EPS, and minerals controls the mobility and fate of heavy metals. However, it remains unclear to which of these component(s) the metals will bind in complex aggregates. To clarify this question, the present study focuses on 3D mapping of heavy metals sorbed to cells, glycoconjugates that comprise the majority of EPS constituents, and Fe(III) mineral aggregates formed by the phototrophic Fe(II)-oxidizing bacteria Rhodobacter ferrooxidans SW2 using confocal laser scanning microscopy (CLSM) in combination with metal- and glycoconjugates-specific fluorophores. The present study evaluated the influence of glycoconjugates, microbial cell surfaces, and (biogenic) Fe(III) minerals, and the availability of ferrous and ferric iron on heavy metal sorption. Analyses in this study provide detailed knowledge on the spatial distribution of metal ions in the aggregates at the sub-μm scale, which is essential to understand the underlying mechanisms of microbe-mineral-metal interactions. The heavy metals (Au3+, Cd2+, Cr3+, CrO42-, Cu2+, Hg2+, Ni2+, Pd2+, tributyltin (TBT) and Zn2+) were found mainly sorbed to cell surfaces, present within the glycoconjugates matrix, and bound to the mineral surfaces, but not incorporated into the biogenic Fe(III) minerals. Statistical analysis revealed that all ten heavy metals tested showed relatively similar sorption behavior that was affected by the presence of sorbed ferrous and ferric iron. Results in this study showed that in addition to the mineral surfaces, both bacterial cell surfaces and the glycoconjugates provided most of sorption sites for heavy metals. Simultaneously, ferrous and ferric iron ions competed with the heavy metals for sorption sites on the organic

  11. Some aspects of stratospheric chemical response to solar particle precipitations. I - Potential roles of N2/A3Sigma/ and ion-chemistry

    NASA Technical Reports Server (NTRS)

    Prasad, S. S.

    1979-01-01

    Large amounts of long lived N2(A3Sigma) are created by the energy degradation of precipitating solar particles. Laboratory data suggest that in the stratosphere N2(A3Sigma) are efficiently converted into N2O. Through reactions with O(1D), N2O may gradually release NO and thereby influence the long term aspects of stratospheric chemical response. During the daytime, negative ions may transform an active NO(x) into an inactive HNO3. At night both negative and positive ion chemistry generate HO(x). Omission of ionic chemistry results in considerable underestimation of O3 depletion during the initial phases of solar particle events, and thereby introduces significant error in the estimation of the nature of the prompt response.

  12. Convenient purification of gold clusters by co-precipitation for improved sensing of hydrogen peroxide, mercury ions and pesticides.

    PubMed

    Guan, Guijian; Zhang, Shuang-Yuan; Cai, Yongqing; Liu, Shuhua; Bharathi, M S; Low, Michelle; Yu, Yong; Xie, Jianping; Zheng, Yuangang; Zhang, Yong-Wei; Han, Ming-Yong

    2014-06-01

    An effective separation process is developed to remove free protein from the protein-protected gold clusters via co-precipitation with zinc hydroxide on their surface. After dialysis, the purified clusters exhibit an enhanced fluorescence for improved sensitive detection and selective visualization.

  13. Self-consistent Model of Magnetospheric Ring Current and Propagating Electromagnetic Ion Cyclotron Waves. 2. Wave Induced Ring Current Precipitation and Thermal Electron Heating

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.; Liemohn, M. W.

    2007-01-01

    This paper continues presentation and discussion of the results from our new global self-consistent theoretical model of interacting ring current ions and propagating electromagnetic ion cyclotron waves [Khazanov et al., 2006]. To study the effects of electromagnetic ion cyclotron wave propagation and refraction on the wave induced ring current precipitation and heating of the thermal plasmaspheric electrons, we simulate the May 1998 storm. The main findings after a simulation can be summarized as follows. Firstly, the wave induced ring current precipitation exhibits quite a lot of fine structure, and is highly organized by location of the plasmapause gradient. The strongest fluxes of about 4 x 10(exp 6) (cm(raised dot) s(raised dot) sr(raised dot) (sup -1)) are observed during the maill and early recovery phases of the storm. The very interesting and probably more important finding is that in a number of cases the most intense precipitating fluxes are not connected to the most intense waves in simple manner. The characteristics of the wave power spectral density distribution over the wave normal angle are extremely crucial for the effectiveness of the ring current ion scattering. Secondly, comparison of the global proton precipitating patterns with the results from RAM [Kozyra et al., 1997a] reveals that although we observe a qualitative agreement between the localizations of the wave induced precipitations in the models, there is no quantitative agreement between the magnitudes of the fluxes. The quantitative differences are mainly due to a qualitative difference between the characteristics of the wave power spectral density distributions over the wave normal angle in RAM and in our model. Thirdly, the heat fluxes to plasmaspheric electrons caused by Landau resonate energy absorption from electromagnetic ion cyclotron waves are observed in the postnoon-premidnight MLT sector, and can reach the magnitude of 10(exp 11) eV/(cm(sup 2)(raised dot)s). The Coulomb

  14. Formation and Structure of Calcium Carbonate Thin Films and Nanofibers Precipitated in the Presence of Poly(Allylamine Hydrochloride) and Magnesium Ions.

    PubMed

    Cantaert, Bram; Verch, Andreas; Kim, Yi-Yeoun; Ludwig, Henning; Paunov, Vesselin N; Kröger, Roland; Meldrum, Fiona C

    2013-12-23

    That the cationic polyelectrolyte poly(allylamine hydrochloride) (PAH) exerts a significant influence on CaCO3 precipitation challenges the idea that only anionic additives have this effect. Here, we show that in common with anionic polyelectrolytes such as poly(aspartic acid), PAH supports the growth of calcite thin films and abundant nanofibers. While investigating the formation of these structures, we also perform the first detailed structural analysis of the nanofibers by transmission electron microscopy (TEM) and selected area electron diffraction. The nanofibers are shown to be principally single crystal, with isolated domains of polycrystallinity, and the single crystal structure is even preserved in regions where the nanofibers dramatically change direction. The formation mechanism of the fibers, which are often hundreds of micrometers long, has been the subject of intense speculation. Our results suggest that they form by aggregation of amorphous particles, which are incorporated into the fibers uniquely at their tips, before crystallizing. Extrusion of polymer during crystallization may inhibit particle addition at the fiber walls and result in local variations in the fiber nanostructure. Finally, we investigate the influence of Mg(2+) on CaCO3 precipitation in the presence of PAH, which gives thinner and smoother films, together with fibers with more polycrystalline, granular structures.

  15. Aggregation and Charge Behavior of Metallic and Nonmetallic Nanoparticles in the Presence of Competing Similarly-Charged Inorganic Ions

    EPA Science Inventory

    The influence of competing, similarly charged, inorganic ions on the size and charge behavior of suspended titanium-dioxide (nTiO2), silver (nAg) and fullerene (nC60) nanoparticles (NPs) was investigated. Under pH and ionic conditions similar to natural water bodies, Ca2+ induced...

  16. Synthesis of aqueous suspensions of magnetic nanoparticles with the co-precipitation of iron ions in the presence of aspartic acid

    NASA Astrophysics Data System (ADS)

    Pušnik, Klementina; Goršak, Tanja; Drofenik, Miha; Makovec, Darko

    2016-09-01

    There is increasing demand for the production of large quantities of aqueous suspensions of magnetic iron-oxide nanoparticles. Amino acids are one possible type of inexpensive, nontoxic, and biocompatible molecules that can be used as the surfactants for the preparation of stable suspensions. This preparation can be conducted in a simple, one-step process based on the co-precipitation of Fe3+/Fe2+ ions in the presence of the amino acid. However, the presence of this amino acid changes the mechanism of the magnetic nanoparticles' formation. In this investigation we analyzed the influence of aspartic amino acid (Asp) on the formation of magnetic iron-oxide nanoparticles during the co-precipitation. The process of the nanoparticles' formation was followed using a combination of TEM, x-ray diffractometry, magnetic measurements, in-situ FT-IR spectroscopy, and chemical analysis, and compared with the formation of nanoparticles without the Asp. The Asp forms a coordination complex with the Fe3+ ions, which impedes the formation of the intermediate iron oxyhydroxide phase and suppresses the growth of the final magnetic iron-oxide nanoparticles. Slower reaction kinetics can lead to the formation of nonmagnetic secondary phases. The aspartic-acid-absorbed nanoparticles can be dispersed to form relatively concentrated aqueous suspensions displaying a good colloidal stability at an increased pH.

  17. Mapping of Heavy Metal Ion Sorption to Cell-Extracellular Polymeric Substance-Mineral Aggregates by Using Metal-Selective Fluorescent Probes and Confocal Laser Scanning Microscopy

    PubMed Central

    Li, Jianli; Kappler, Andreas; Obst, Martin

    2013-01-01

    Biofilms, organic matter, iron/aluminum oxides, and clay minerals bind toxic heavy metal ions and control their fate and bioavailability in the environment. The spatial relationship of metal ions to biomacromolecules such as extracellular polymeric substances (EPS) in biofilms with microbial cells and biogenic minerals is complex and occurs at the micro- and submicrometer scale. Here, we review the application of highly selective and sensitive metal fluorescent probes for confocal laser scanning microscopy (CLSM) that were originally developed for use in life sciences and propose their suitability as a powerful tool for mapping heavy metals in environmental biofilms and cell-EPS-mineral aggregates (CEMAs). The benefit of using metal fluorescent dyes in combination with CLSM imaging over other techniques such as electron microscopy is that environmental samples can be analyzed in their natural hydrated state, avoiding artifacts such as aggregation from drying that is necessary for analytical electron microscopy. In this minireview, we present data for a group of sensitive fluorescent probes highly specific for Fe3+, Cu2+, Zn2+, and Hg2+, illustrating the potential of their application in environmental science. We evaluate their application in combination with other fluorescent probes that label constituents of CEMAs such as DNA or polysaccharides and provide selection guidelines for potential combinations of fluorescent probes. Correlation analysis of spatially resolved heavy metal distributions with EPS and biogenic minerals in their natural, hydrated state will further our understanding of the behavior of metals in environmental systems since it allows for identifying bonding sites in complex, heterogeneous systems. PMID:23974141

  18. Calculated ionization rates, ion densities, and airglow emission rates due to precipitating electrons in the nightside ionosphere of Mars

    NASA Technical Reports Server (NTRS)

    Haider, S. A.; Kim, J.; Nagy, A. F.; Keller, C. N.; Verigin, M. I.; Gringauz, K. I.; Shutte, N. M.; Szego, K.; Kiraly, P.

    1992-01-01

    The calculations presented in this paper clearly establish that the electron fluxes measured by the HARP instrument, carried on board Phobos 2, could cause significant electron impact ionization and excitation in the nightside atmosphere of Mars, if these electrons actually do precipitate. The calculated peak electron densities were found to be about a factor of 2 larger than the mean observed nightside densities, indicating that if a significant fraction of the measured electrons actually precipitate, they could be the dominant mechanism responsible for maintaining the nightside ionosphere. The calculated zenith column emission rates of the O I 5577-A and 6300-A and CO Cameron band emissions, due to electron impact and dissociative recombination mechanisms, were found to be significant.

  19. FORMATION OF URANIUM PRECIPITATES

    DOEpatents

    Googin, J.M. Jr.

    1959-03-17

    A method is described for precipitation of uranium peroxide from uranium- containing solutions so as to obtain larger aggregates which facilitates washings decantations filtrations centrifugations and the like. The desired larger aggregate form is obtained by maintaining the pH of the solution in the approximate range of 1 to 3 and the temperature at about 25 deg C or below while carrytng out the precipitation. Then prior to removal of the precipitate a surface active sulfonated bicarboxyacids such as di-octyl sodium sulfo-succinates is incorporated in an anount of the order of 0.01 to 0.05 percent by weights and the slurry is allowed to ripen for about one-half hour at a temperatare below 10 deg C.

  20. Tailored Near-Infrared Photoemission in Fluoride Perovskites through Activator Aggregation and Super-Exchange between Divalent Manganese Ions.

    PubMed

    Song, Enhai; Ye, Shi; Liu, Tianhui; Du, Peipei; Si, Rui; Jing, Xiping; Ding, Sha; Peng, Mingying; Zhang, Qinyuan; Wondraczek, Lothar

    2015-07-01

    Biomedical imaging and labeling through luminescence microscopy requires materials that are active in the near-infrared spectral range, i.e., within the transparency window of biological tissue. For this purpose, tailoring of Mn(2+)-Mn(2+) activator aggregation is demonstrated within the ABF3 fluoride perovskites. Such tailoring promotes distinct near-infrared photoluminescence through antiferromagnetic super-exchange across effective dimers. The crossover dopant concentrations for the occurrence of Mn(2+) interaction within the first and second coordination shells comply well with experimental observations of concentration quenching of photoluminescence from isolated Mn(2+) and from Mn(2+)-Mn(2+) effective dimers, respectively. Tailoring of this procedure is achieved via adjusting the Mn-F-Mn angle and the Mn-F distance through substitution of the A(+) and/or the B(2+) species in the ABF3 compound. Computational simulation and X-ray absorption spectroscopy are employed to confirm this. The principle is applied to produce pure anti-Stokes near-infrared emission within the spectral range of ≈760-830 nm from codoped ABF3:Yb(3+),Mn(2+) upon excitation with a 976 nm laser diode, challenging the classical viewpoint where Mn(2+) is used only for visible photoluminescence: in the present case, intense and tunable near-infrared emission is generated. This approach is highly promising for future applications in biomedical imaging and labeling.

  1. Photoluminescent sensing for acidic amino acids based on the disruption of graphene quantum dots/europium ions aggregates.

    PubMed

    Zhang, Qi; Song, Chan; Zhao, Ting; Fu, Hai-Wei; Wang, Hui-Zhen; Wang, Yong-Jian; Kong, De-Ming

    2015-03-15

    A simple mix-and-detect photoluminescence method was developed for the turn-on detection of acidic amino acids. To achieve this, graphene quantum dots (GQDs), which emit both down-conversion and up-conversion photoluminescence were prepared by solvothermal synthesis. The carboxylic acid-rich surface not only increases the water solubility of the prepared GQDs, but also makes Eu(3+)-triggered GQDs aggregation possible, thus causing the photoluminescence quenching of GQDs. The quenched photoluminescence can be recovered by the competition between acidic amino acids and GQDs for Eu(3+). Under optimized conditions, sensitive and specific acidic amino acids quantitation can be achieved by utilizing the changes in either down-conversion or up-conversion photoluminescence. Up-conversion mode gives a little lower detection limit than the down-conversion one. Nearly overlapped calibration curves were obtained for the two acidic amino acids, glutamic acid (Glu) and aspartic acid (Asp), thus suggesting that the proposed method can be used not only for the quantitation of individual acidic amino acids, but also for the detection of total amount of them.

  2. A highly sensitive and selective resonance scattering spectral assay for potassium ion based on aptamer and nanosilver aggregation reactions.

    PubMed

    Cai, Wei; Fan, Yanyan; Jiang, Zhiliang; Yao, Junen

    2010-06-15

    The 5nm nanosilver was prepared by the sodium borohydride procedure, using sodium citrate as a stabilizing reagent. The nanosilver particle was combined with the aptamer for K(+) to form aptamer-nanosilver complex that was stabile in pH 7.0 Na(2)HPO(4)-NaH(2)PO(4) buffer solutions and in the presence of high concentration of NaCl. In 85 degrees C water bath, K(+) interacted with the aptamer to form very stable G-quadruplex that cannot stabilize the nanosilver particle. The uncombined nanosilver particles are aggregated to big particles in high concentration of NaCl, that led to the resonance scattering (RS) intensity at 470nm increased greatly. Under the selected conditions, the increased RS intensity (DeltaI) is linear to K(+) concentration in the range of 0.060-3350micromol/L, with a regression equation of DeltaI=0.177C+0.55, a correlation coefficient of 0.9964, and a detection limit of 0.006micromol/L K(+). The aptamer-nanosilver RS assay has been applied to determination of K(+) in serum and rain water, with satisfactory results.

  3. Multi-instrument Observations from Svalbard of a Traveling Convection Vortex, Electromagnetic Ion Cyclotron Wave Burst, and Proton Precipitation Associated with a Bow Shock Instability

    NASA Astrophysics Data System (ADS)

    Engebretson, M. J.; Posch, J. L.; Lessard, M.; Pilipenko, V.; Oksavik, K.; Soraas, F.; Sigernes, F.; Yeoman, T. K.; Wright, D. M.; Lavraud, B.; Clausen, L.

    2012-12-01

    An isolated burst of electromagnetic ion cyclotron (EMIC) waves with center frequency near 0.35 Hz and peak-to-peak amplitude ~ 1 nT was observed at all four stations in the Augsburg College - University of New Hampshire search coil magnetometer array on Svalbard from 0947 to 0954 UT January 2, 2011, roughly one hour after local noon. The wave burst was associated with one of a series of modest (~ 50 nT) magnetic impulses evident in data from the northernmost stations of the IMAGE magnetometer array. Hankasalmi SuperDARN radar data showed a west-to-east (antisunward) propagating vortical ionospheric flow in a region of high spectral width, confirming that this magnetic impulse was the signature of a traveling convection vortex (TCV). Ground-based observations of the Hα line from a magnetic zenith-pointing optical spectrometer at Longyearbyen indicated proton precipitation beginning at 0947 UT, the same time as the start of the EMIC wave burst. NOAA-19 passed over the west coast of Svalbard between 0951 and 0952, and observed a clear enhancement of protons in the 30-80 and 80-250 keV channels. Electron precipitation from this same satellite indicated that the burst was located on closed field lines, but near to the open/closed polar cap boundary. DMSP F17, which passed westward through the cusp just north of Svalbard near 0955 UT, at the same latitude as the region of high spectral width detected by the SuperDARN radar, detected cusp-energy precipitation (electrons with energies less than 300 eV, ions with energies <1 keV). We believe this is the first report of combined observations of Pc 1 waves and associated precipitating protons so near the outer boundary of the dayside magnetosphere. Although several spacecraft in the solar wind upstream from Earth reported a steady solar wind and predominantly radial IMF orientation, data from Geotail and Cluster, located near the morning and afternoon sector bow shock, respectively, showed large variations that suggest a

  4. A Comprehensive Study of the Solubility, Thermochemistry, Ion Exchange, and Precipitation Kinetics of NO3 Cancrinite and NO3 Sodalite (Project No.: 81959)

    SciTech Connect

    Colon, Carlos F. Jove; Navrotsky, Alexandra; Krumhansl, James L.; Nyman, May; Liu, Qingyuan

    2004-06-01

    NO3 cancrinite and NO3 sodalite haves been found as a common sodium alumino-silicate forming in strongly caustic and alkaline aqueous solutions associated with radioactive High Level Waste (HLW) stored in many underground tanks and also in nuclear waste treatment facilities such as the Savannah River Site (SRS). The appearance of these phases have created very expensive problems in waste treatment plants by fouling process evaporators in the SRS waste processing facility. Therefore, in order to prevent their formation an assessment of the relative stability, formation kinetics, and the ion-exchange characteristics of these two phases in HLW solutions needs to be investigated. The goals of this project are to: (1) Develop a robust equilibrium thermodynamic framework to accurately describe the formation of NO3 cancrinite and NO3 sodalite. (2) Provide quantification and characterization of the solid precipitation rates through long-term batch kinetic experiments and novel analytical techniques. (3) Investigate the partitioning and ion exchange properties of these zeolitic phases with respect to radionuclides and RCRA metal species. This also includes compositional and structural characterization of ion exchanged solids elucidate the exchange properties of these phases.

  5. A single electrochemical biosensor for detecting the activity and inhibition of both protein kinase and alkaline phosphatase based on phosphate ions induced deposition of redox precipitates.

    PubMed

    Shen, Congcong; Li, Xiangzhi; Rasooly, Avraham; Guo, Linyan; Zhang, Kaina; Yang, Minghui

    2016-11-15

    Protein kinase (PKA) and alkaline phosphatase (ALP) are clinically relevant enzymes for a number of diseases. In this work, we developed a new simple electrochemical biosensor for the detection of the activity and inhibition of both PKA and ALP. One common feature of the PKA and ALP catalyzing process is that PKA can hydrolysis adenosine-5'-triphosphate (ATP) and ALP can hydrolysis pyrophosphate, both reactions produce phosphate ions, and the amount of phosphate ion produced is proportional to enzyme activity. Our assay is based on the principle that phosphate ions react with molybdate to form redox molybdophosphate precipitates on the electrode surface, thus generating electrochemical current. The detection limit for PKA and ALP were much lower than existing assays. The biosensor has good specificity and was used to measure drug-stimulated PKA from lysates of HeLa cells. We also evaluated the use of the biosensor as a screening tool for enzyme inhibitors. To the best of our knowledge, this is the first report of a biosensor capable of detecting the activity of both PKA and ALP. This tool has the potential to simplify PKA and ALP clinical measurement, thereby improving diagnostics of relevant diseases. It also may serve as the basis for a simple screening method for new enzyme inhibitors for disease treatment.

  6. Fibronectin Aggregation and Assembly

    PubMed Central

    Ohashi, Tomoo; Erickson, Harold P.

    2011-01-01

    The mechanism of fibronectin (FN) assembly and the self-association sites are still unclear and contradictory, although the N-terminal 70-kDa region (I1–9) is commonly accepted as one of the assembly sites. We previously found that I1–9 binds to superfibronectin, which is an artificial FN aggregate induced by anastellin. In the present study, we found that I1–9 bound to the aggregate formed by anastellin and a small FN fragment, III1–2. An engineered disulfide bond in III2, which stabilizes folding, inhibited aggregation, but a disulfide bond in III1 did not. A gelatin precipitation assay showed that I1–9 did not interact with anastellin, III1, III2, III1–2, or several III1–2 mutants including III1–2KADA. (In contrast to previous studies, we found that the III1–2KADA mutant was identical in conformation to wild-type III1–2.) Because I1–9 only bound to the aggregate and the unfolding of III2 played a role in aggregation, we generated a III2 domain that was destabilized by deletion of the G strand. This mutant bound I1–9 as shown by the gelatin precipitation assay and fluorescence resonance energy transfer analysis, and it inhibited FN matrix assembly when added to cell culture. Next, we introduced disulfide mutations into full-length FN. Three disulfide locks in III2, III3, and III11 were required to dramatically reduce anastellin-induced aggregation. When we tested the disulfide mutants in cell culture, only the disulfide bond in III2 reduced the FN matrix. These results suggest that the unfolding of III2 is one of the key factors for FN aggregation and assembly. PMID:21949131

  7. Enhanced Calcium Phosphate Precipitation on the Surface of Mg-ION-IMPLANTED ZrO2 Bioceramic

    NASA Astrophysics Data System (ADS)

    Liang, H.; Huang, Y.; He, F.; Ding, H. F.; Wan, Y. Z.

    Modification of bioceramics by ion implantation of magnesium (Mg) is of interest as Mg is the fourth abundant cation in the human body. In this work, magnesium was ion-implanted into a ZrO2 based bioceramic stabilized with Y2O3 and Al2O3. Both Mg-implanted and unimplanted samples were soaked in a simulated body fluid (SBF) for a period of time. The deposits on the surface of various samples were characterized with scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). We find that the Mg-implanted ZrO2 shows better bioactivity than the plain bioceramic. These results indicate that Mg-implantation can improve the bioactivity of the ZrO2 based bioceramic. Mechanisms governing the improvement are discussed in this paper.

  8. Theoretical and experimental study of the incorporation of tobramycin and strontium-ions into hydroxyapatite by means of co-precipitation

    NASA Astrophysics Data System (ADS)

    Wang, Baochang; Lilja, Mirjam; Ma, Taoran; Sörensen, Jan; Steckel, Hartwig; Ahuja, Rajeev; Strømme, Maria

    2014-09-01

    Antibiotic incorporation into hydroxyapatite (HA) coatings by co-precipitation and the impact of bone relevant doping elements on the adsorption kinetics are investigated from both theoretical and experimental points of view. Tobramycin interactions with bioactive TiO2 and HA surfaces are analyzed using density functional theory. According to the calculations, the drug molecule has larger adsorption energy than the Ca+ ion on both surfaces under study in Phosphate Buffered Saline (PBS). The results support the experimental observations that HA nucleation and growth are strongly limited on TiO2 surfaces in the presence of clinically relevant antibiotic concentrations in PBS. The drug molecule is more likely to adopt parallel arrangement onto the HA surface, as the adsorption energy of such arrangement is higher compared to a perpendicular one. Strontium substitution of the HA surface is found to results in a weaker drug-surface interaction, and leads also to a decrease in coating thickness. However, the presence of strontium gives rise to a coating morphology with enhanced drug incorporation capacity and slower antibiotic release compared to non-substituted, co-precipitated counterparts. Our theoretical calculation results were found to be in excellent agreement with experimental data and provide a powerful tool to understand the interaction mechanism between drug and different surface chemistries necessary for development of future versatile orthopedic and dental implant surfaces.

  9. Hemin/G-quadruplex-based DNAzyme concatamers for in situ amplified impedimetric sensing of copper(II) ion coupling with DNAzyme-catalyzed precipitation strategy.

    PubMed

    Xu, Mingdi; Gao, Zhuangqiang; Wei, Qiaohua; Chen, Guonan; Tang, Dianping

    2015-12-15

    A new signal-amplification strategy based on copper(II) (Cu(2+))-dependent DNAzyme was developed for sensitive impedimetric biosensing of Cu(2+) in aqueous solution by coupling with target-induced formation of hemin/G-quadruplex-based DNAzyme and enzymatic catalytic precipitation technique. Initially, the target analyte cleaved the Cu(2+)-specific DNAzyme to generate an initiator strand on the sensor. Thereafter, the initiator strand underwent an unbiased strand-displacement reaction between hairpin probes in turn to construct a nicked double-helix, accompanying the formation of hemin/G-quadruplex DNAzyme on the long duplex DNA. The newly formed DNAzyme could oxidize the 4-chloro-1-naphthol (4-CN) to produce an insoluble precipitation on the sensor, thus resulting in a local alteration of the conductivity. Under the optimal conditions, the resistance increased with the increasing Cu(2+) in the sample, and exhibited a wide dynamic working range from 0.1 pM to 5.0 nM with a detection limit of 60 fM. The methodology also displayed a high selectivity for Cu(2+) relative to other potentially interfering ions owing to the highly specific Cu(2+)-dependent DNAzyme, and was applicable for monitoring Cu(2+) in real river samples. Thus, our strategy has a good potential in the environment surveys.

  10. Charged Dust Aggregate Interactions

    NASA Astrophysics Data System (ADS)

    Matthews, Lorin; Hyde, Truell

    2015-11-01

    A proper understanding of the behavior of dust particle aggregates immersed in a complex plasma first requires a knowledge of the basic properties of the system. Among the most important of these are the net electrostatic charge and higher multipole moments on the dust aggregate as well as the manner in which the aggregate interacts with the local electrostatic fields. The formation of elongated, fractal-like aggregates levitating in the sheath electric field of a weakly ionized RF generated plasma discharge has recently been observed experimentally. The resulting data has shown that as aggregates approach one another, they can both accelerate and rotate. At equilibrium, aggregates are observed to levitate with regular spacing, rotating about their long axis aligned parallel to the sheath electric field. Since gas drag tends to slow any such rotation, energy must be constantly fed into the system in order to sustain it. A numerical model designed to analyze this motion provides both the electrostatic charge and higher multipole moments of the aggregate while including the forces due to thermophoresis, neutral gas drag, and the ion wakefield. This model will be used to investigate the ambient conditions leading to the observed interactions. This research is funded by NSF Grant 1414523.

  11. Global distribution of the Energetic Neutral Atom (ENA) / precipitating ion particulate albedo from Low Altitude Emission (LAE) source regions over the last solar maximum

    NASA Astrophysics Data System (ADS)

    Mackler, D. A.; Jahn, J.; Mukherjee, J.; Pollock, C. J.

    2012-12-01

    Charge exchange between ring current ions spiraling into the upper atmosphere and terrestrial neutral constituents produces a non-isotropic distribution of escaping Energetic Neutral Atoms (ENA). These ENA's are no longer tied to the magnetic field, and can therefore be observed remotely from orbiting platforms. Particularly of interest is Low Altitude Emissions (LAE) of ENA's. These ENA emissions occur near the oxygen exobase and constitute the brightest ENA signatures during geomagnetic storms. In this study we build on previous work described in Pollock et al. [2009] in which IMAGE/MENA data was used to compute the Invariant Latitude (IL) and Magnetic Local Time (MLT) distributions of ENA's observed in the 29 October 2003 storm. The algorithms developed in Pollock et al. [2009] are used to compute the IL and MLT of LAE source regions for 76 identified storms at different phases of solar cycle 23. The ENA flux from the source regions are divided by in-situ ion precipitation obtained by DMSP-SSJ4 and NOAA-TED to give a global mapping of the particulate albedo during storm times.

  12. Construction aggregates

    USGS Publications Warehouse

    Tepordei, V.V.

    1995-01-01

    Part of the 1994 Industrial Minerals Review. The production, consumption, and applications of construction aggregates are reviewed. In 1994, the production of construction aggregates, which includes crushed stone and construction sand and gravel combined, increased 7.7 percent to 2.14 Gt compared with the previous year. These record production levels are mostly a result of funding for highway construction work provided by the Intermodal Surface Transportation Efficiency Act of 1991. Demand is expected to increase for construction aggregates in 1995.

  13. PbTe and SnTe quantum dot precipitates in a CdTe matrix fabricated by ion implantation

    SciTech Connect

    Kaufmann, E.; Schwarzl, T.; Groiss, H.; Hesser, G.; Schaeffler, F.; Palmetshofer, L.; Springholz, G.; Heiss, W.

    2009-08-15

    We present rock-salt IV-VI semiconductor quantum dots fabricated by implantation of Pb{sup +}, Te{sup +}, or Sn{sup +} ions into epitaxial zinc-blende CdTe layers. PbTe and SnTe nanoprecipitates of high structural quality are formed after implantation by thermal annealing due to the immiscibility of dot and matrix materials. For samples implanted only with Pb{sup +}, intense continuous-wave photoluminescence peaked at 1.6 mum at 300 K is found. In contrast, for PbTe quantum dots fabricated by coimplantation of Pb{sup +} and Te{sup +}, the 300 K emission peak is observed at 2.9 mum, indicating luminescence from much larger dots.

  14. Alkaline hydrothermal conversion of fly ash precipitates into zeolites 3: the removal of mercury and lead ions from wastewater.

    PubMed

    Somerset, Vernon; Petrik, Leslie; Iwuoha, Emmanuel

    2008-04-01

    In this paper, the utilisation of zeolites synthesised from fly ash (FA) and related co-disposal filtrates as low-cost adsorbent material were investigated. When raw FA and co-disposal filtrates were subjected to alkaline hydrothermal zeolite synthesis, the zeolites faujasite, sodalite and zeolite A were formed. The synthesised zeolites were explored to establish its ability to remove lead and mercury ions from aqueous solution in batch experiments, to which various dosages of the synthesised zeolites were added. The test results indicated that when increasing synthesised zeolite dosages of 5-20 g/L were added to the acid mine drainage (AMD) wastewater, the concentrations of lead and mercury in the wastewater were reduced accordingly. The lead concentrations were reduced from 3.23 to 0.38 and 0.17 microg/kg, respectively, at an average pH of 4.5, after the addition of raw FA zeolite and co-disposal filtrate zeolite to the AMD wastewater. On the other hand, the mercury concentration was reduced from 0.47 to 0.17 microg/kg at pH=4.5 when increasing amounts of co-disposal filtrate zeolite were added to the wastewater. The experimental results had shown that the zeolites synthesised from the co-disposal filtrates were effective in reducing the lead and mercury concentrations in the AMD wastewater by 95% and 30%, respectively.

  15. Enhanced Colloidal Stability of CeO2 Nanoparticles by Ferrous Ions: Adsorption, Redox Reaction, and Surface Precipitation.

    PubMed

    Liu, Xuyang; Ray, Jessica R; Neil, Chelsea W; Li, Qingyun; Jun, Young-Shin

    2015-05-05

    Due to the toxicity of cerium oxide (CeO2) nanoparticles (NPs), a better understanding of the redox reaction-induced surface property changes of CeO2 NPs and their transport in natural and engineered aqueous systems is needed. This study investigates the impact of redox reactions with ferrous ions (Fe2+) on the colloidal stability of CeO2 NPs. We demonstrated that under anaerobic conditions, suspended CeO2 NPs in a 3 mM FeCl2 solution at pH 4.8 were much more stable against sedimentation than those in the absence of Fe2+. Redox reactions between CeO2 NPs and Fe2+ lead to the formation of 6-line ferrihydrite on the CeO2 surfaces, which enhanced the colloidal stability by increasing the zeta potential and hydrophilicity of CeO2 NPs. These redox reactions can affect the toxicity of CeO2 NPs by increasing cerium dissolution, and by creating new Fe(III) (hydr)oxide reactive surface layers. Thus, these findings have significant implications for elucidating the phase transformation and transport of redox reactive NPs in the environment.

  16. LiMn 2O 4 cathode doped with excess lithium and synthesized by co-precipitation for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Chan, H. W.; Duh, J. G.; Sheen, S. R.

    LiMn 2O 4 exhibits lower cost, acceptable environmental characteristics, and better safety properties than other positive-electrode (cathode) materials for lithium-ion batteries. In this study, excess Li doped Li 1+ xMn 2O 4 is synthesized by a well-mixed co-precipitation method with LiOH utilized as both the reactant and co-precipitation agent. The precursor is calcined for various heating times and temperatures to form a fine powder of a single spinel phase with different particle sizes, size distributions, and morphology. The minimum heating temperature is around 400 °C. For short heating periods, Mn 2O 3 impurity is observed, but disappears after longer heating times. The average particle size is in the range 2-8 μm for powders calcined between 700 and 870 °C. The lattice parameter increases with increase in heating temperature. The electrochemical behavior of LiMn 2O 4 powder is examined by using test cells which consist of a cathode, a metallic lithium anode, and an electrolyte of 1 M LiPF 6 in a 1:1 (volume ratio) mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC). Cells with cathodes of LiMn 2O 4, Li 1.08Mn 2O 4 and Li 1.1Mn 2O 4 give a capacity of 85, 109 and 126 mAh g -1, respectively. The introduction of excess Li in LiMn 2O 4 apparently increases the capacity, and decreases significantly the rate of capacity degradation on charge-discharge cycling.

  17. Drug delivery system for an anticancer agent, chlorogenate-Zn/Al-layered double hydroxide nanohybrid synthesised using direct co-precipitation and ion exchange methods

    NASA Astrophysics Data System (ADS)

    Barahuie, Farahnaz; Hussein, Mohd Zobir; Arulselvan, Palanisamy; Fakurazi, Sharida; Zainal, Zulkarnain

    2014-09-01

    A nano-structured drug-inorganic clay hybrid involving an active anticancer compound, which is chlorogenic acid (CA) intercalated into Zn/Al-layered double hydroxide, has been assembled via ion-exchange and co-precipitation methods to form a nanohybrid CZAE (a chlorogenic acid-Zn/Al nanohybrid synthesised using an ion-exchange method) and CZAC (a chlorogenic acid-Zn/Al nanohybrid synthesised using a direct method), respectively. The X-ray diffraction (XRD) results confirmed that the CA-LDH had a hybrid structure in which the anionic chlorogenate is arranged between the interlayers as a horizontal monolayer at 90 and 20° angles from the x axis for CZAE and CZAC, respectively. Both nanohybrids have the properties of mesoporous materials. The high loading percentage of chlorogenic acid (approximately 43.2% for CZAE and 45.3% for CZAC) with basal spacings of 11.7 and 12.6 Å for CZAE and CZAC, respectively, corroborates the successful intercalation of chlorogenic acid into the interlayer gallery of layered double hydroxides. Free chlorogenic acid and the synthesised nanocomposites (CZAE, CZAC) were assessed for their cytotoxicity against various cancer cells. The Fourier transform infrared data supported the formation of both nanohybrids, and a thermal analysis showed that the nanohybrids are more thermally stable than their counterparts. The chlorogenate shows a sustained release, and the release rate of chlorogenate from CZAE and CZAC nanohybrids at pH 7.4 is remarkably lower than that at pH 4.8 due to their different release mechanisms. The release rate of chlorogenate from both nanohybrids can be described as pseudo-second order. The present investigation revealed the potential of the nanohybrids to enhance the in vitro anti-tumour effect of chlorogenic acid in liver and lung cancer cells in vitro.

  18. The magnetic and oxidation behavior of bare and silica-coated iron oxide nanoparticles synthesized by reverse co-precipitation of ferrous ion (Fe2+) in ambient atmosphere

    NASA Astrophysics Data System (ADS)

    Mahmed, N.; Heczko, O.; Lancok, A.; Hannula, S.-P.

    2014-03-01

    The synthesis of iron oxide nanoparticles, i.e., magnetite was attempted by using only ferrous ion (Fe2+) as a magnetite precursor, under an ambient atmosphere. The room temperature reverse co-precipitation method was used, by applying two synthesis protocols. The freshly prepared iron oxide was also immediately coated with Stöber silica (SiO2) layer, forming the coreshell structure. The phase, stoichiometry, crystallite and the particle size of the synthesized powders were determined by using X-ray diffraction (XRD) and transmission electron microscope (TEM), while the magnetic and oxidation behaviors were studied by using the vibrating sample magnetometer (VSM) and Mössbauer spectroscopy. Based on the results, the bare iron oxide nanoparticles are in the stoichiometry between the magnetite and the maghemite stoichiometry, i.e., oxidation occurs. This oxidation is depending on the synthesis protocols used. With the silica coating, the oxidation can be prevented, as suggested by the fits of Mössbauer spectra and low temperature magnetic measurement.

  19. Drug delivery system for an anticancer agent, chlorogenate-Zn/Al-layered double hydroxide nanohybrid synthesised using direct co-precipitation and ion exchange methods

    SciTech Connect

    Barahuie, Farahnaz; Hussein, Mohd Zobir; Arulselvan, Palanisamy; Fakurazi, Sharida; Zainal, Zulkarnain

    2014-09-15

    A nano-structured drug-inorganic clay hybrid involving an active anticancer compound, which is chlorogenic acid (CA) intercalated into Zn/Al-layered double hydroxide, has been assembled via ion-exchange and co-precipitation methods to form a nanohybrid CZAE (a chlorogenic acid-Zn/Al nanohybrid synthesised using an ion-exchange method) and CZAC (a chlorogenic acid-Zn/Al nanohybrid synthesised using a direct method), respectively. The X-ray diffraction (XRD) results confirmed that the CA-LDH had a hybrid structure in which the anionic chlorogenate is arranged between the interlayers as a horizontal monolayer at 90 and 20° angles from the x axis for CZAE and CZAC, respectively. Both nanohybrids have the properties of mesoporous materials. The high loading percentage of chlorogenic acid (approximately 43.2% for CZAE and 45.3% for CZAC) with basal spacings of 11.7 and 12.6 Å for CZAE and CZAC, respectively, corroborates the successful intercalation of chlorogenic acid into the interlayer gallery of layered double hydroxides. Free chlorogenic acid and the synthesised nanocomposites (CZAE, CZAC) were assessed for their cytotoxicity against various cancer cells. The Fourier transform infrared data supported the formation of both nanohybrids, and a thermal analysis showed that the nanohybrids are more thermally stable than their counterparts. The chlorogenate shows a sustained release, and the release rate of chlorogenate from CZAE and CZAC nanohybrids at pH 7.4 is remarkably lower than that at pH 4.8 due to their different release mechanisms. The release rate of chlorogenate from both nanohybrids can be described as pseudo-second order. The present investigation revealed the potential of the nanohybrids to enhance the in vitro anti-tumour effect of chlorogenic acid in liver and lung cancer cells in vitro. - Highlights: • We intercalated chlorogenic into Zn/Al-layered double hydroxide by ion-exchange and coprecipitation methods. • The two methods gave nanocomposites

  20. URANIUM PRECIPITATION PROCESS

    DOEpatents

    Thunaes, A.; Brown, E.A.; Smith, H.W.; Simard, R.

    1957-12-01

    A method for the recovery of uranium from sulfuric acid solutions is described. In the present process, sulfuric acid is added to the uranium bearing solution to bring the pH to between 1 and 1.8, preferably to about 1.4, and aluminum metal is then used as a reducing agent to convert hexavalent uranium to the tetravalent state. As the reaction proceeds, the pH rises amd a selective precipitation of uranium occurs resulting in a high grade precipitate. This process is an improvement over the process using metallic iron, in that metallic aluminum reacts less readily than metallic iron with sulfuric acid, thus avoiding consumption of the reducing agent and a raising of the pH without accomplishing the desired reduction of the hexavalent uranium in the solution. Another disadvantage to the use of iron is that positive ferric ions will precipitate with negative phosphate and arsenate ions at the pH range employed.

  1. A competitive aggregation model for flash nanoprecipitation.

    PubMed

    Cheng, Janine Chungyin; Vigil, R D; Fox, R O

    2010-11-15

    Flash NanoPrecipitation (FNP) is a novel approach for producing functional nanoparticles stabilized by amphiphilic block copolymers. FNP involves the rapid mixing of a hydrophobic active (organic) and an amphiphilic di-block copolymer with a non-solvent (water) and subsequent co-precipitation of nanoparticles composed of both the organic and copolymer. During this process, the particle size distribution (PSD) is frozen and stabilized by the hydrophilic portion of the amphiphilic di-block copolymer residing on the particle surface. That is, the particle growth is kinetically arrested and thus a narrow PSD can be attained. To model the co-precipitation process, a bivariate population balance equation (PBE) has been formulated to account for the competitive aggregation of the organic and copolymer versus pure organic-organic or copolymer-copolymer aggregation. Aggregation rate kernels have been derived to account for the major aggregation events: free coupling, unimer insertion, and aggregate fusion. The resulting PBE is solved both by direct integration and by using the conditional quadrature method of moments (CQMOM). By solving the competitive aggregation model under well-mixed conditions, it is demonstrated that the PSD is controlled primarily by the copolymer-copolymer aggregation process and that the energy barrier to aggregate fusion plays a key role in determining the PSD. It is also shown that the characteristic aggregation times are smaller than the turbulent mixing time so that the FNP process is always mixing limited.

  2. Mechanism of Scrapie Prion Precipitation with Phosphotungstate Anions

    PubMed Central

    2015-01-01

    The phosphotungstate anion (PTA) is widely used to facilitate the precipitation of disease-causing prion protein (PrPSc) from infected tissue for applications in structural studies and diagnostic approaches. However, the mechanism of this precipitation is not understood. In order to elucidate the nature of the PTA interaction with PrPSc under physiological conditions, solutions of PTA were characterized by NMR spectroscopy at varying pH. At neutral pH, the parent [PW12O40]3– ion decomposes to give a lacunary [PW11O39]7– (PW11) complex and a single orthotungstate anion [WO4]2– (WO4). To measure the efficacy of each component of PTA, increasing concentrations of PW11, WO4, and mixtures thereof were used to precipitate PrPSc from brain homogenates of scrapie prion-infected mice. The amount of PrPSc isolated, quantified by ELISA and immunoblotting, revealed that both PW11 and WO4 contribute to PrPSc precipitation. Incubation with sarkosyl, PTA, or individual components of PTA resulted in separation of higher-density PrP aggregates from the neuronal lipid monosialotetrahexosylganglioside (GM1), as observed by sucrose gradient centrifugation. These experiments revealed that yield and purity of PrPSc were greater with polyoxometalates (POMs), which substantially supported the separation of lipids from PrPSc in the samples. Interaction of POMs and sarkosyl with brain homogenates promoted the formation of fibrillar PrPSc aggregates prior to centrifugation, likely through the separation of lipids like GM1 from PrPSc. We propose that this separation of lipids from PrP is a major factor governing the facile precipitation of PrPSc by PTA from tissue and might be optimized further for the detection of prions. PMID:25695325

  3. Construction aggregates

    USGS Publications Warehouse

    Nelson, T.I.; Bolen, W.P.

    2007-01-01

    Construction aggregates, primarily stone, sand and gravel, are recovered from widespread naturally occurring mineral deposits and processed for use primarily in the construction industry. They are mined, crushed, sorted by size and sold loose or combined with portland cement or asphaltic cement to make concrete products to build roads, houses, buildings, and other structures. Much smaller quantities are used in agriculture, cement manufacture, chemical and metallurgical processes, glass production and many other products.

  4. Construction aggregates

    USGS Publications Warehouse

    Tepordei, V.V.

    1996-01-01

    Part of the Annual Commodities Review 1995. Production of construction aggregates such as crushed stone and construction sand and gravel showed a marginal increase in 1995. Most of the 1995 increases were due to funding for highway construction work. The major areas of concern to the industry included issues relating to wetlands classification and the classification of crystalline silica as a probable human carcinogen. Despite this, an increase in demand is anticipated for 1996.

  5. Precipitation Recycling

    NASA Technical Reports Server (NTRS)

    Eltahir, Elfatih A. B.; Bras, Rafael L.

    1996-01-01

    The water cycle regulates and reflects natural variability in climate at the regional and global scales. Large-scale human activities that involve changes in land cover, such as tropical deforestation, are likely to modify climate through changes in the water cycle. In order to understand, and hopefully be able to predict, the extent of these potential global and regional changes, we need first to understand how the water cycle works. In the past, most of the research in hydrology focused on the land branch of the water cycle, with little attention given to the atmospheric branch. The study of precipitation recycling which is defined as the contribution of local evaporation to local precipitation, aims at understanding hydrologic processes in the atmospheric branch of the water cycle. Simply stated, any study on precipitation recycling is about how the atmospheric branch of the water cycle works, namely, what happens to water vapor molecules after they evaporate from the surface, and where will they precipitate?

  6. STRONTIUM PRECIPITATION

    DOEpatents

    McKenzie, T.R.

    1960-09-13

    A process is given for improving the precipitation of strontium from an aqueous phosphoric-acid-containing solution with nickel or cobalt ferrocyanide by simultaneously precipitating strontium or calcium phosphate. This is accomplished by adding to the ferrocyanide-containing solution calcium or strontium nitrate in a quantity to yield a concentration of from 0.004 to 0.03 and adjusting the pH of the solution to a value of above 8.

  7. The probability distribution of intense daily precipitation

    NASA Astrophysics Data System (ADS)

    Cavanaugh, Nicholas R.; Gershunov, Alexander; Panorska, Anna K.; Kozubowski, Tomasz J.

    2015-03-01

    The probability tail structure of over 22,000 weather stations globally is examined in order to identify the physically and mathematically consistent distribution type for modeling the probability of intense daily precipitation and extremes. Results indicate that when aggregating data annually, most locations are to be considered heavy tailed with statistical significance. When aggregating data by season, it becomes evident that the thickness of the probability tail is related to the variability in precipitation causing events and thus that the fundamental cause of precipitation volatility is weather diversity. These results have both theoretical and practical implications for the modeling of high-frequency climate variability worldwide.

  8. Structure of Viral Aggregates

    NASA Astrophysics Data System (ADS)

    Barr, Stephen; Luijten, Erik

    2010-03-01

    The aggregation of virus particles is a particular form of colloidal self-assembly, since viruses of a give type are monodisperse and have identical, anisotropic surface charge distributions. In small-angle X-ray scattering experiments, the Qbeta virus was found to organize in different crystal structures in the presence of divalent salt and non-adsorbing polymer. Since a simple isotropic potential cannot explain the occurrence of all observed phases, we employ computer simulations to investigate how the surface charge distribution affects the virus interactions. Using a detailed model of the virus particle, we find an asymmetric ion distribution around the virus which gives rise to the different phases observed.

  9. Model for amorphous aggregation processes

    NASA Astrophysics Data System (ADS)

    Stranks, Samuel D.; Ecroyd, Heath; van Sluyter, Steven; Waters, Elizabeth J.; Carver, John A.; von Smekal, Lorenz

    2009-11-01

    The amorphous aggregation of proteins is associated with many phenomena, ranging from the formation of protein wine haze to the development of cataract in the eye lens and the precipitation of recombinant proteins during their expression and purification. While much literature exists describing models for linear protein aggregation, such as amyloid fibril formation, there are few reports of models which address amorphous aggregation. Here, we propose a model to describe the amorphous aggregation of proteins which is also more widely applicable to other situations where a similar process occurs, such as in the formation of colloids and nanoclusters. As first applications of the model, we have tested it against experimental turbidimetry data of three proteins relevant to the wine industry and biochemistry, namely, thaumatin, a thaumatinlike protein, and α -lactalbumin. The model is very robust and describes amorphous experimental data to a high degree of accuracy. Details about the aggregation process, such as shape parameters of the aggregates and rate constants, can also be extracted.

  10. The synthesization of Fe3O4 magnetic nanoparticles based on natural iron sand by co-precipitation method for the used of the adsorption of Cu and Pb ions

    NASA Astrophysics Data System (ADS)

    Setiadi, E. A.; Sebayang, P.; Ginting, M.; Sari, A. Y.; Kurniawan, C.; Saragih, C. S.; Simamora, P.

    2016-11-01

    Magnetic nanoparticles of Fe3O4 (magnetite) have been synthesized from natural sand iron by co-precipitation method. The nanoparticles were synthesized using HCl as solvent and NH3 as co-precipitate. The nanoparticles synthesized at 70°C in two different treatments. Sample without Polyethylene Glycol (PEG) 6000 noted by A and sample with PEG 6000 noted by B symbol. The measurement that have been done for both samples were XRD (X-ray diffraction), FTIR (Fourier Transform Infrared) Spectrometry, SEM (Scanning electron microscopy), VSM (Vibrating sample magnetometer) and SAA (Surface area analyzer). The results showed that both samples were having Fe3O4 phases. Particle size, coercivity and magnetic saturation of B samples were smaller than A samples. But the surface area of B sample was larger than A sample. Both samples were then used to adsorb Cu and Pb ions using shaker method. Adsorption analysis from Atomic Adsorption Spectroscopy (AAS) showed that B was more effectivein adsorbing metal ions than A. The adsorption value of Cu and Pb ions were 79 and 91% respectively.

  11. A Comparative High-Resolution Electron Microscope Study of Ag Clusters Produced by a Sputter-Gas Aggregation and Ion Cluster Beam Technique

    NASA Astrophysics Data System (ADS)

    Hohl, Georg-Friedrich; Hihara, Takehiko; Sakurai, Masaki; Oishi, Takashi; Wakoh, Kimio; Sumiyama, Kenji; Suzuki, Kenji

    1994-03-01

    Ag clusters were formed by a sputter-gas-aggregation process [H. Haberland et al..: J. Vac. Sci. Technol. A 10 (1992) 3266] and the ionized cluster beam (ICB) [T. Takagi: Ionized-Cluster Beam Deposition and Epitaxy (Noyes, Park Ridge, 1988)] technique. The Ag clusters deposited on collodion-coated microgrids were investigated by high-resolution transmission electron microscopy. The diameter of those clusters, d, ranges from 1 nm up to about 10 nm for specimens produced by the sputter-gas aggregation technique, depending on the sputter condition and the deposition time. Comparable times of the ICB deposition lead to a broader distribution up to d≈20 nm, suggesting the formation of islands with extremely flat shapes. High percentages of crystalline particles obtained by both techniques are either single crystals or multiple twins with clear lattice images.

  12. Precipitation Matters

    ERIC Educational Resources Information Center

    McDuffie, Thomas

    2007-01-01

    Although weather, including its role in the water cycle, is included in most elementary science programs, any further examination of raindrops and snowflakes is rare. Together rain and snow make up most of the precipitation that replenishes Earth's life-sustaining fresh water supply. When viewed individually, raindrops and snowflakes are quite…

  13. The fractal aggregation of asphaltenes.

    PubMed

    Hoepfner, Michael P; Fávero, Cláudio Vilas Bôas; Haji-Akbari, Nasim; Fogler, H Scott

    2013-07-16

    This paper discusses time-resolved small-angle neutron scattering results that were used to investigate asphaltene structure and stability with and without a precipitant added in both crude oil and model oil. A novel approach was used to isolate the scattering from asphaltenes that are insoluble and in the process of aggregating from those that are soluble. It was found that both soluble and insoluble asphaltenes form fractal clusters in crude oil and the fractal dimension of the insoluble asphaltene clusters is higher than that of the soluble clusters. Adding heptane also increases the size of soluble asphaltene clusters without modifying the fractal dimension. Understanding the process of insoluble asphaltenes forming fractals with higher fractal dimensions will potentially reveal the microscopic asphaltene destabilization mechanism (i.e., how a precipitant modifies asphaltene-asphaltene interactions). It was concluded that because of the polydisperse nature of asphaltenes, no well-defined asphaltene phase stability envelope exists and small amounts of asphaltenes precipitated even at dilute precipitant concentrations. Asphaltenes that are stable in a crude oil-precipitant mixture are dispersed on the nanometer length scale. An asphaltene precipitation mechanism is proposed that is consistent with the experimental findings. Additionally, it was found that the heptane-insoluble asphaltene fraction is the dominant source of small-angle scattering in crude oil and the previously unobtainable asphaltene solubility at low heptane concentrations was measured.

  14. New insights into side effect of solvents on the aggregation of human islet amyloid polypeptide 11-20.

    PubMed

    Mao, Yexuan; Yu, Lanlan; Yang, Ran; Ma, Chuanguo; Qu, Ling-bo; Harrington, Peter de B

    2016-02-01

    The formation of highly ordered fibrils for the human islet amyloid polypeptide (hIAPP) is considered as one of the precipitating factors of type 2 diabetes mellitus. In this study, an emerging new approach microscale thermophoresis and conventional ThT fluorescence assay were utilized to investigate the aggregation behavior of hIAPP(11-20), giving a new insight of the solvent effect on the aggregation of hIAPP(11-20). hIAPP(11-20) displayed different aggregation behaviors in various buffers, revealing that hIAPP(11-20) not only self-aggregates but also binds to solvent components. hIAPP(11-20) had a higher binding affinity for Tris than other selected buffers because multiple hydrogen bonds form, resulting in weaker self-aggregation of hIAPP(11-20) at the early stage of aggregation and prolonging the fibril formation process. hIAPP(11-20) displayed similar self-aggregation in both HEPES and pure water. Negatively charged phosphate ions in the PBS solution 'neutralize' the charges carried by hIAPP(11-20) itself to some extent, causing rapid aggregation of hIAPP(11-20), and leading to a shorter fibrillation process of hIAPP(11-20). These results revealed that solvents contribute to the aggregation of hIAPP(11-20) and demonstrated the affect of solvents on the activity of biomolecules. Additionally, as a new technique, microscale thermophoresis offers a powerful and promising approach to study the early stages of aggregation of peptides or proteins.

  15. Controlled synthesis of crystalline calcium carbonate aggregates with unusual morphologies involving the phase transformation from amorphous calcium carbonate

    SciTech Connect

    Tang Hua; Yu Jiaguo Zhao Xiufeng

    2009-04-02

    Peanut-shaped CaCO{sub 3} aggregates, featured of two dandelion-like heads built up from rod-like subunits, have been synthesized via a facile precipitation reaction between Na{sub 2}CO{sub 3} and CaCl{sub 2} at ambient temperature in the presence of magnesium ions and ethanol solvent. The as-prepared products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and inductively coupled plasma atomic emission spectrometry (ICP-AES). The results show that a high magnesium concentration and ethanol solvent are necessary for the formation of the unusual peanut-like aggregates. In addition, a multistep phase transformation process from amorphous calcium carbonate (ACC) to a mixture of ACC and calcite and ultimately to calcite and aragonite was observed in the formation process of the unusual structures. A possible mechanism for the formation of the unusual peanut-shape aggregates has been proposed and discussed.

  16. PRECIPITATION METHOD OF SEPARATION OF NEPTUNIUM

    DOEpatents

    Magnusson, L.B.

    1958-07-01

    A process is described for the separation of neptunium from plutonium in an aqueous solution containing neptunium ions in a valence state not greater than +4, plutonium ioms in a valence state not greater than +4, and sulfate ions. The Process consists of adding hypochlorite ions to said solution in order to preferentially oxidize the neptunium and then adding lanthanum ions and fluoride ions to form a precipitate of LaF/sub 3/ carrying the plutonium, and thereafter separating the supernatant solution from the precipitate.

  17. Acidic precipitation

    SciTech Connect

    Martin, H.C.

    1987-01-01

    At the International Symposium on Acidic Precipitation, over 400 papers were presented, and nearly 200 of them are included here. They provide an overview of the present state of the art of acid rain research. The Conference focused on atmospheric science (monitoring, source-receptor relationships), aquatic effects (marine eutrophication, lake acidification, impacts on plant and fish populations), and terrestrial effects (forest decline, soil acidification, etc.).

  18. The structure of DNA-DOPC aggregates formed in presence of calcium and magnesium ions: a small-angle synchrotron X-ray diffraction study.

    PubMed

    Uhríková, Daniela; Hanulová, Mária; Funari, Sérgio S; Khusainova, Raylja S; Sersen, Frantisek; Balgavý, Pavol

    2005-07-15

    The structure of aggregates formed due to DNA interaction with dioleoylphosphatidylcholine (DOPC) vesicles in presence of Ca(2+) and Mg(2+) cations was investigated using synchrotron small-angle X-ray diffraction. For DOPC/DNA=1:1 mol/base and in the range of concentration of the cation(2+) 0-76.5 mM, the diffractograms show the coexistence of two lamellar phases: L(x) phase with repeat distance d(Lx) approximately 8.26-7.39 nm identified as a phase where the DNA strands are intercalated in water layers between adjacent lipid bilayers, and L(DOPC) phase with repeat distance d(DOPC) approximately 6.45-5.65 nm identified as a phase of partially dehydrated DOPC bilayers without any divalent cations and DNA strands. The coexistence of these phases was investigated as a function of DOPC/DNA molar ratio, length of DNA fragments and temperature. If the amount of lipid increases, the fraction of partially dehydrated L(DOPC) phase is limited, depends on the portion of DNA in the sample and also on the length of DNA fragments. Thermal behaviour of DOPC+DNA+Ca(2+) aggregates was investigated in the range 20-80 degrees C. The transversal thermal expansivities of both phases were evaluated.

  19. Chemical characteristics of mineral trioxide aggregate and its hydration reaction

    PubMed Central

    2012-01-01

    Mineral trioxide aggregate (MTA) was developed in early 1990s and has been successfully used for root perforation repair, root end filling, and one-visit apexification. MTA is composed mainly of tricalcium silicate and dicalcium silicate. When MTA is hydrated, calcium silicate hydrate (CSH) and calcium hydroxide is formed. Formed calcium hydroxide interacts with the phosphate ion in body fluid and form amorphous calcium phosphate (ACP) which finally transforms into calcium deficient hydroxyapatite (CDHA). These mineral precipitate were reported to form the MTA-dentin interfacial layer which enhances the sealing ability of MTA. Clinically, the use of zinc oxide euginol (ZOE) based materials may retard the setting of MTA. Also, the use of acids or contact with excessive blood should be avoided before complete set of MTA, because these conditions could adversely affect the hydration reaction of MTA. Further studies on the chemical nature of MTA hydration reaction are needed. PMID:23429542

  20. Porous nano-structured Co3O4 anode materials generated from coordination-driven self-assembled aggregates for advanced lithium ion batteries.

    PubMed

    Ge, Danhua; Geng, Hongbo; Wang, Jiaqing; Zheng, Junwei; Pan, Yue; Cao, Xueqin; Gu, Hongwei

    2014-08-21

    A simple and scalable coordination-derived method for the synthesis of porous Co3O4 hollow nanospheres is described here. The initially formed coordination-driven self-assembled aggregates (CDSAAs) could act as the precursor followed by calcination treatment. Then the porous hollow Co3O4 nanospheres are obtained, in which the primary Co3O4 nanoparticles are inter-dispersed. When the nanospheres are used as anode materials for lithium storage, they show excellent coulombic efficiency, high lithium storage capacity and superior cycling performance. In view of the facile synthesis and excellent electrochemical performance obtained, this protocol to fabricate special porous hollow frameworks could be further extended to other metal oxides and is expected to improve the practicality of superior cycle life anode materials with large volume excursions for the development of the next generation of LIBs.

  1. Blood platelet aggregation and personality traits.

    PubMed

    Jenkins, C D; Thomas, G; Olewine, D; Zyzanski, S J; Simpson, M T; Hames, C G

    1975-12-01

    Changes in blood platelet aggregation may precipitate episodes of arterial occlusive diseases. Little is known, however, regarding the influence of psychological traits, emotional states and other behavioral stressors on platelet aggregation phenomena. This study examined 46 healthy college men at rest and after submaximal treadmill exercise. Associations were found between the duration of platelet aggregation and a number of scores from the California Psychological Inventory and self-administered anxiety scales. The more socially adequate, poised and dominant persons--those with more mature ego development and less overt anxiety--had platelets with more prolonged aggregation reactions to the in vitro introduction of noradrenalin. Irreversible aggregation of platelets occurred more regularly to lower in vitro concentrations of noradrenalin in platelet samples drawn from subjects who were less anxious and tended to be more rigidly defensive. It is premature to attempt to derive clinical implications from this exploratory work, but some implications for the design of future research are discussed.

  2. Amphiphile behavior in mixed solvent media I: self-aggregation and ion association of sodium dodecylsulfate in 1,4-dioxane-water and methanol-water media.

    PubMed

    Pan, A; Naskar, B; Prameela, G K S; Kumar, B V N Phani; Mandal, A B; Bhattacharya, S C; Moulik, S P

    2012-10-02

    Mixed aquo-organic solvents are used in chemical, industrial, and pharmaceutical processes along with amphiphilic materials. Their fundamental studies with reference to bulk and interfacial phenomena are thus considered to be important, but such detailed studies are limited. In this work, the interfacial adsorption of sodium dodecylsulfate (SDS, C12H25SO4(-)Na(+)) in dioxane-water (Dn-W) and methanol-water (Ml-W) media in extensive mixing ratios along with its bulk behavior have been investigated. The solvent-composition-dependent properties have been identified, and their quantifications have been attempted. The SDS micellization has been assessed in terms of different solvent parameters, and the possible formation of an ion pair and triple ion of the colloidal electrolyte, C12H25SO4(-)Na(+) in the Dn-W medium has been correlated and quantified. In the Ml-W medium at a high volume percent of Ml, the SDS amphiphile formed special associated species instead of ion association. The formation of self-assembly and the energetics of SDS in the mixed solvent media have been determined and assessed using conductometry, calorimetry, tensiometry, viscometry, NMR, and DLS methods. The detailed study undertaken herein with respect to the behavior of SDS in the mixed aquo-organic solvent media (Dn-W and Ml-W) is a new kind of endeavor.

  3. Aggregate breakdown of nanoparticulate titania

    NASA Astrophysics Data System (ADS)

    Venugopal, Navin

    Six nanosized titanium dioxide powders synthesized from a sulfate process were investigated. The targeted end-use of this powder was for a de-NOx catalyst honeycomb monolith. Alteration of synthesis parameters had resulted principally in differences in soluble ion level and specific surface area of the powders. The goal of this investigation was to understand the role of synthesis parameters in the aggregation behavior of these powders. Investigation via scanning electron microscopy of the powders revealed three different aggregation iterations at specific length scales. Secondary and higher order aggregate strength was investigated via oscillatory stress rheometry as a means of simulating shear conditions encountered during extrusion. G' and G'' were measured as a function of the applied oscillatory stress. Oscillatory rheometry indicated a strong variation as a function of the sulfate level of the particles in the viscoelastic yield strengths. Powder yield stresses ranged from 3.0 Pa to 24.0 Pa of oscillatory stress. Compaction curves to 750 MPa found strong similarities in extrapolated yield point of stage I and II compaction for each of the powders (at approximately 500 MPa) suggesting that the variation in sulfate was greatest above the primary aggregate level. Scanning electron microscopy of samples at different states of shear in oscillatory rheometry confirmed the variation in the linear elastic region and the viscous flow regime. A technique of this investigation was to approach aggregation via a novel perspective: aggregates are distinguished as being loose open structures that are highly disordered and stochastic in nature. The methodology used was to investigate the shear stresses required to rupture the various aggregation stages encountered and investigate the attempt to realign the now free-flowing constituents comprising the aggregate into a denser configuration. Mercury porosimetry was utilized to measure the pore size of the compact resulting from

  4. Aggregate-mediated charge transport in ionomeric electrolytes

    NASA Astrophysics Data System (ADS)

    Lu, Keran; Maranas, Janna; Milner, Scott

    Polymers such PEO can conduct ions, and have been studied as possible replacements for organic liquid electrolytes in rechargeable metal-ion batteries. More generally, fast room-temperature ionic conduction has been reported for a variety of materials, from liquids to crystalline solids. Unfortunately, polymer electrolytes generally have limited conductivity; these polymers are too viscous to have fast ion diffusion like liquids, and too unstructured to promote cooperative transport like crystalline solids. Ionomers are polymer electrolytes in which ionic groups are covalently bound to the polymer backbone, neutralized by free counterions. These materials also conduct ions, and can exhibit strong ionic aggregation. Using coarse-grained molecular dynamics, we explore the forces driving ionic aggregation, and describe the role ion aggregates have in mediating charge transport. The aggregates are string-like such that ions typically have two neighbors. We find ion aggregates self-assemble like worm-like micelles. Excess charge, or free ions, occasionally coordinate with aggregates and are transported along the chain in a Grotthuss-like mechanism. We propose that controlling ionomer aggregate structure through materials design can enhance cooperative ion transport.

  5. Near-infrared room temperature luminescence of few-atom Au aggregates in silica: a path for the energy-transfer to Er³⁺ ions.

    PubMed

    Cesca, Tiziana; Kalinic, Boris; Maurizio, Chiara; Scian, Carlo; Battaglin, Giancarlo; Mazzoldi, Paolo; Mattei, Giovanni

    2014-01-01

    Ultra-small molecule-like AuN nanoclusters made by a number of atoms N less than 30 were produced by ion implantation in silica substrates. Their room temperature photoluminescence properties in the visible and near-infrared range have been investigated and correlated with the Er sensitization effects observed in Er-Au co-implanted samples. The intense photoluminescence emission under 488 nm laser excitation occurs in three different spectral regions around 750 nm (band A), 980 nm (band B) and 1150 nm (band C) as a consequence of the formation of discrete energy levels in the electronic structure of the molecule-like AuN nanoclusters. Indeed, energy maxima of bands A and C scale with N(-1/3) as expected for quantum confined systems. Conversely, the energy maximum of band B appears to be almost independent of size, suggesting a contribution of electronic surface states. A clear correlation between the formation of band B in the samples and Er-related photoemission is demonstrated: the band at 980 nm related to AuN nanoclusters resonant with the corresponding Er(3+) absorption level, is suggested as an effective de-excitation channel through which the Au-related photon energy may be transferred from Au nanoclusters to Er ions (either directly or mediated by photon absorption), eventually producing the Er-related infrared emission at 1540 nm.

  6. Mesoscale Simulation of Asphaltene Aggregation.

    PubMed

    Wang, Jiang; Ferguson, Andrew L

    2016-08-18

    Asphaltenes constitute a heavy aromatic crude oil fraction with a propensity to aggregate and precipitate out of solution during petroleum processing. Aggregation is thought to proceed according to the Yen-Mullins hierarchy, but the molecular mechanisms underlying mesoscopic assembly remain poorly understood. By combining coarse-grained molecular models parametrized using all-atom data with high-performance GPU hardware, we have performed molecular dynamics simulations of the aggregation of hundreds of asphaltenes over microsecond time scales. Our simulations reveal a hierarchical self-assembly mechanism consistent with the Yen-Mullins model, but the details are sensitive and depend on asphaltene chemistry and environment. At low concentrations asphaltenes exist predominantly as dispersed monomers. Upon increasing concentration, we first observe parallel stacking into 1D rod-like nanoaggregates, followed by the formation of clusters of nanoaggregates associated by offset, T-shaped, and edge-edge stacking. Asphaltenes possessing long aliphatic side chains cannot form nanoaggregate clusters due to steric repulsions between their aliphatic coronae. At very high concentrations, we observe a porous percolating network of rod-like nanoaggregates suspended in a sea of interpenetrating aliphatic side chains with a fractal dimension of ∼2. The lifetime of the rod-like aggregates is described by an exponential distribution reflecting a dynamic equilibrium between coagulation and fragmentation.

  7. SEPARATION OF PLUTONYL IONS

    DOEpatents

    Connick, R.E.; McVey, Wm.H.

    1958-07-15

    A process is described for separating plutonyl ions from the acetate ions with which they are associated in certaln carrier precipitation methods of concentrating plutonium. The method consists in adding alkaline earth metal ions and subsequently alkalizing the solution, causing formation of an alkaltne earth plutonate precipitate. Barium hydroxide is used in a preferred embodiment since it provides alkaline earth metal ion and alkalizes the solution in one step forming insoluble barium platonate.

  8. Enhanced germanium precipitation and nanocrystal growth in the Ge+ ion-implanted SiO2 films during high-pressure annealing

    NASA Astrophysics Data System (ADS)

    Tyschenko, Ida E.; Volodin, Vladimir A.; Cherkov, Alexander G.

    2016-12-01

    The effect of pressure employed during subsequent annealing of the Ge+-ion implanted SiO2 layers on the Ge nanocrystal formation was studied. Ge+ ions implanted in the thin SiO2 layers formed Gauss-like profiles with a Ge peak concentration varied from 1 to 12 at%. Subsequent annealing was carried out at temperature 600-1130 °C under pressures 1-1.2×104 bar. Strong effect of the pressure on the Ge atom distribution was obtained. High-temperature annealing under pressure within the range of 1-103 bar resulted in the out-diffusion of germanium from the SiO2 layer to the Si substrate. As the pressure reached 1.2×104 bar, Ge migration to the Si/SiO2 interface was prevented. At that, the Ge nanocrystal growth within the ion-implanted region of the SiO2 film took place. The nanocrystal size was investigated as a function both of the Ge atom concentration and the annealing temperature. The obtained results show a diffusion-controlled nanocrystal growth mechanism. The high-pressure (1.2×104 bar) diffusion coefficient of germanium in silicon dioxide was estimated as a function of the temperature and expressed by D=1.1×10-10 exp(-1.43 eV/kT) cm2/s.

  9. Spatial and temporal distribution of 13C labelled plant residues in soil aggregates and Lumbricus terrestris surface casts: A combination of Transmission Electron Microscopy and Nanoscale Secondary Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Vidal, Alix; Remusat, Laurent; Watteau, Françoise; Derenne, Sylvie; Quenea, Katell

    2016-04-01

    Earthworms play a central role in litter decomposition, soil structuration and carbon cycling. They ingest both organic and mineral compounds which are mixed, complexed with mucus and dejected in form of casts at the soil surface and along burrows. Bulk isotopic or biochemical technics have often been used to study the incorporation of litter in soil and casts, but they could not reflect the complex interaction between soil, plant and microorganisms at the microscale. However, the heterogeneous distribution of organic carbon in soil structures induces contrasted microbial activity areas. Nano-scale secondary ion mass spectrometry (NanoSIMS), which is a high spatial resolution method providing elemental and isotopic maps of organic and mineral materials, has recently been applied in soil science (Herrmann et al., 2007; Vogel et al., 2014). The combination of Nano-scale secondary ion mass spectrometry (NanoSIMS) and Transmission Electron Microscopy (TEM) has proven its potential to investigate labelled residues incorporation in earthworm casts (Vidal et al., 2016). In line of this work, we studied the spatial and temporal distribution of plant residues in soil aggregates and earthworm surface casts. This study aimed to (1) identify the decomposition states of labelled plant residues incorporated at different time steps, in casts and soil, (2) identify the microorganisms implied in this decomposition (3) relate the organic matter states of decomposition with their 13C signature. A one year mesocosm experiment was set up to follow the incorporation of 13C labelled Ryegrass (Lolium multiflorum) litter in a soil in the presence of anecic earthworms (Lumbricus terrestris). Soil and surface cast samples were collected after 8 and 54 weeks, embedded in epoxy resin and cut into ultra-thin sections. Soil was fractionated and all and analyzed with TEM and NanoSIMS, obtaining secondary ion images of 12C, 16O, 12C14N, 13C14N and 28Si. The δ13C maps were obtained using the 13C14

  10. Investigation of the Role of Ce3+ Substituted Ions on Dielectric Properties of Co-Cr Ferrites Prepared by Co-precipitation Method

    NASA Astrophysics Data System (ADS)

    Mustafa, Ghulam; Islam, M. U.; Zhang, Wenli; Arshad, M. I.; Jamil, Yasir; Anwar, Hafeez; Murtaza, G.; Hussain, Mudassar; Ahmad, Mukhtar

    2016-11-01

    A series of a CoCr0.04Ce x Fe1.96- x O4 spinel ferrite system with 0 ≤ x ≤ 0.1 (in steps of 0.02) has been synthesized by the co-precipitation technique. The synthesized samples were characterized using a Fourier transform infrared spectroscope (FT-IR), Raman spectroscopy, a scanning electron microscope (SEM), and dielectric measurements. The typical FT-IR spectrum of the samples annealed at 850°C exhibited two frequency bands due to the formation of octahedral (B-site) and tetrahedral (A-site) clusters of metal oxide, respectively. The SEM images showed the spherical morphology of synthesized material and confirmed the grain size in the range of (0.33-0.44) μm. The decrease of permittivity with the increase of frequency in the range of 1 MHz to 3 GHz follows the Maxwell-Wagner model. Moreover, the Ce3+substituted materials have smaller values of loss tangent and dielectric constant especially for x = 0.10, which is favorable for the applications where low losses are desired. The value of ac (alternating current) conductivity increases with an increase in the frequency and decreases with Ce3+ substitution, which reflects the hopping mechanism at respective sites. Such characteristics of these materials may be suitable for potential applications such as electromagnetic attenuation materials, switching applications, and microwave devices.

  11. The effect of cations on the aggregation of commercial ZnO nanoparticle suspension

    NASA Astrophysics Data System (ADS)

    Liu, Wei-Szu; Peng, Yu-Huei; Shiung, Chia-En; Shih, Yang-hsin

    2012-12-01

    Nanoscale ZnO materials have been largely used in many products due to their distinct properties. However, ZnO nanoparticles (NPs) are hazardous to human health and the ecosystem. The characteristics and the stability of ZnO NPs are relevant to their fate in the environment and their potential toxicities. In this study, a stable commercial ZnO NP suspension was chosen to investigate its aggregation under various salt additions. Different concentrations of NaCl, KCl and CaCl2 were chosen to represent various environmental conditions. Under pH 8-9, the surface charge of commercial ZnO NPs was negative. The behavior of the stabilized ZnO NPs in water was affected by ionic combinations and ionic strength; that is, divalent cations were more effective than monovalent ones in promoting aggregation formation. The attachment efficiencies of ZnO aggregates were calculated based upon the aggregation kinetics. The critical coagulation concentration values for this commercial ZnO NPs were higher than previous reported for ZnO NPs, indicating this ZnO NP could be stable in the aquatic environment and might have increased hazardous potentials. Based upon the Derjaguin-Landau-Verwey-Overbeek theory, interactions between ZnO NPs in the presence of different ions were evaluated to illustrate the aggregation mechanism. Our results indicated that critical ionic type and concentration promote the aggregation of stable ZnO NPs. These understandings also can facilitate the design of the precipitation treatment to remove NPs from water.

  12. Thermodynamics of Protein Aggregation

    NASA Astrophysics Data System (ADS)

    Osborne, Kenneth L.; Barz, Bogdan; Bachmann, Michael; Strodel, Birgit

    Amyloid protein aggregation characterizes many neurodegenerative disorders, including Alzheimer's, Parkinson's, and Creutz- feldt-Jakob disease. Evidence suggests that amyloid aggregates may share similar aggregation pathways, implying simulation of full-length amyloid proteins is not necessary for understanding amyloid formation. In this study we simulate GNNQQNY, the N-terminal prion-determining domain of the yeast protein Sup35 to investigate the thermodynamics of structural transitions during aggregation. We use a coarse-grained model with replica-exchange molecular dynamics to investigate the association of 3-, 6-, and 12-chain GNNQQNY systems and we determine the aggregation pathway by studying aggregation states of GN- NQQNY. We find that the aggregation of the hydrophilic GNNQQNY sequence is mainly driven by H-bond formation, leading to the formation of /3-sheets from the very beginning of the assembly process. Condensation (aggregation) and ordering take place simultaneously, which is underpinned by the occurrence of a single heat capacity peak only.

  13. On mean type aggregation.

    PubMed

    Yager, R R

    1996-01-01

    We introduce and define the concept of mean aggregation of a collection of n numbers. We point out that the lack of associativity of this operation compounds the problem of the extending mean of n numbers to n+1 numbers. The closely related concepts of self identity and the centering property are introduced as one imperative for extending mean aggregation operators. The problem of weighted mean aggregation is studied. A new concept of prioritized mean aggregation is then introduced. We next show that the technique of selecting an element based upon the performance of a random experiment can be considered as a mean aggregation operation.

  14. Seasonal variability of soil aggregate stability

    NASA Astrophysics Data System (ADS)

    Rohoskova, M.; Kodesova, R.; Jirku, V.; Zigova, A.; Kozak, J.

    2009-04-01

    Seasonal variability of soil properties measured in surface horizons of three soil types (Haplic Luvisol, Greyic Phaeozem, Haplic Cambisol) was studied in years 2007 and 2008. Undisturbed and disturbed soil samples were taken every month to evaluate field water content, bulk density, porosity, ration of gravitational and capillary pores, pHKCl and pHH2O, organic matter content and its quality, aggregate stability using WSA index. In addition, micromorphological features of soil aggregates were studied in thin soil sections that were made from undisturbed large soil aggregates. Results showed that soil aggregate stability depended on stage of the root zone development, soil management and climatic conditions. Larger aggregate stabilities and also larger ranges of measure values were obtained in the year 2007 then those measured in 2008. This was probably caused by lower precipitations and consequently lower soil water contents observed in 2007 than those measured in 2008. The highest aggregate stability was measured at the end of April in the years 2007 and 2008 in Haplic Luvisol and Greyic Phaeozem, and at the end of June in the year 2007 and at the beginning of June in 2008 in Haplic Cambisol. In all cases aggregate stability increased during the root growth and then gradually decreased due to summer rainfall events. Aggregate stability reflected aggregate structure and soil pore system development, which was documented on micromorphological images and evaluated using the ration of gravitational and capillary pores measured on the undisturbed sol samples. Acknowledgement: Authors acknowledge the financial support of the Grant Agency of the Czech Republic grant No. 526/08/0434, and the Ministry of Education, Youth and Sports grant No. MSM 6046070901.

  15. Solar wind precipitation on Mars

    NASA Astrophysics Data System (ADS)

    Stenberg, G.; Dieval, C.; Nilsson, H.; Kallio, E.; Barabash, S.; Futaana, Y.; Shematovich, V.; Bisikalo, D.

    2011-10-01

    We have found that solar wind particles frequently precipitate onto the atmosphere of Mars [1,2]. The precipitating particles contribute to the energy and matter flux into the ionosphere. We use ion data from the ASPERA-3 instrument onboard Mars Express to investigate the precipitation patterns, processes and the total transfer of energy and matter from the solar wind to the atmosphere. The main reason for the proton and alpha particle precipitation is likely the large gyroradii of hot particles compared to the size of the induced magnetosphere/magnetic barrier. We find that the particle penetration depends on the direction of the convection electric field in the solar wind but that the crustal magnetic fields have very little influence. The total energy flux is low compared to the solar radiation heating on the dayside, but a significant energy source on the nightside. We also believe that the solar wind alphaparticles precipitating into the atmosphere is an important source of the neutral helium in the Martian atmosphere. We combine our observations with computer modeling [3,4]. We have applied a Direct Simulation Monte Carlo method to solve the kinetic equation for the H/H+ transport in the upper Martian atmosphere including CO2, N2 and O. We conclude that the induced magnetic field around Mars plays the crucial role in the transport of charged particles in the upper atmosphere, and it determines the energy deposition of the solar wind.

  16. Dispersion of ferrofluid aggregates in steady flows

    NASA Astrophysics Data System (ADS)

    Williams, Alicia M.; Vlachos, Pavlos P.

    2011-12-01

    Using focused shadowgraphs, we investigate steady flows of a magnetically non-susceptible fluid interacting with ferrofluid aggregates comprised of superparamagnetic nanoparticles. The ferrofluid aggregate is retained at a specific site within the flow channel using two different applied magnetic fields. The bulk flow induces shear stresses on the aggregate, which give rise to the development of interfacial disturbances, leading to Kelvin-Helmholtz (K-H) instabilities and shedding of ferrofluid structures. Herein, the effects of bulk Reynolds number, ranging from 100 to 1000, and maximum applied magnetic fields of 1.2 × 105 and 2.4 × 105 A/m are investigated in the context of their impact on dispersion or removal of material from the core aggregate. The aggregate interaction with steady bulk flow reveals three regimes of aggregate dynamics over the span of Reynolds numbers studied: stable, transitional, and shedding. The first regime is characterized by slight aggregate stretching for low Reynolds numbers, with full aggregate retention. As the Reynolds number increases, the aggregate is in-transition between stable and shedding states. This second regime is characterized by significant initial stretching that gives way to small amplitude Kelvin-Helmholtz waves. Higher Reynolds numbers result in ferrofluid shedding, with Strouhal numbers initially between 0.2 and 0.3, wherein large vortical structures are shed from the main aggregate accompanied by precipitous decay of the accumulated ferrofluid aggregate. These behaviors are apparent for both magnetic field strengths, although the transitional Reynolds numbers are different between the cases, as are the characteristic shedding frequencies relative to the same Reynolds number. In the final step of this study, relevant parameters were extracted from the time series dispersion data to comprehensively quantify aggregate mechanics. The aggregate half-life is found to decrease as a function of the Reynolds number

  17. Differential Precipitation and Solubilization of Proteins.

    PubMed

    Ryan, Barry J; Kinsella, Gemma K

    2017-01-01

    Differential protein precipitation is a rapid and economical step in protein purification and is based on exploiting the inherent physicochemical properties of the polypeptide. Precipitation of recombinant proteins, lysed from the host cell, is commonly used to concentrate the protein of choice before further polishing steps with more selective purification columns (e.g., His-Tag, Size Exclusion, etc.). Recombinant proteins can also precipitate naturally as inclusion bodies due to various influences during overexpression in the host cell. Although this phenomenon permits easier initial separation from native proteins, these inclusion bodies must carefully be differentially solubilized so as to reform functional, correctly folded proteins. Here, appropriate bioinformatics tools to aid in understanding a protein's propensity to aggregate and solubilize are explored as a backdrop for a typical protein extraction, precipitation, and selective resolubilization procedure, based on a recombinantly expressed protein.

  18. Impact of Particle Aggregation on Nanoparticle Reactivity

    NASA Astrophysics Data System (ADS)

    Jassby, David

    2011-12-01

    decline in hydroxyl radical generation could be attributed to two key parameters. First, increased aggregate size was associated with increased particle shadowing, as determined from the observed decrease in the rate of optically induced transitions. Secondly, aggregate structure was associated both with increased shadowing (denser aggregates exhibited more shadowing than similarly sized loose aggregates), and with an increase in radical quenching on neighboring particle surfaces in an aggregate. Aggregation had a positive impact on hydroxylated fullerene membrane separation, increasing removal efficiency to around 80%, regardless of transmembrane pressure. However, the type of electrolyte used determined whether aggregation was successful at increasing removal. Divalent ions, capable of forming strong covalent bonds with surface oxygen groups, increased removal efficiency and made it pressure insensitive. In contrast, monovalent ions increased removal efficiency slightly, but maintained the pressure dependence of the removal efficiency. Evidence is presented to support the hypothesis that divalently aggregated hydroxylated fullerenes deform under increased pressure and partially penetrate the membrane. Finally, nanoparticle reactive properties depend on the primary particle aggregation state. Both size and structure are key factors when evaluating nanomaterial reactivity under aggregation-inducing conditions. However, the impact of aggregation is not easily predicted. Some materials exhibit a decreased reactivity while others experience an increase. Therefore, the impact of aggregation on nanoparticle reactive properties must be evaluated on a material-by-material basis, while considering all of the particle and aggregate characteristics as well as environmental ones.

  19. Control over the crystal phase, shape, size and aggregation of calcium carbonate via a L-aspartic acid inducing process.

    PubMed

    Tong, Hua; Ma, Wentao; Wang, Leilei; Wan, Peng; Hu, Jiming; Cao, Lianxin

    2004-08-01

    The acidic amino acid, such as aspartic acid (l-Asp), and glutamic acid are the primary active molecules of the glycoprotein on the organic/inorganic interface of biomineralized tissue. In this study, aspartic acid was used as the organic template in inducing the nucleation and growth of calcium carbonate. With the analysis of X-ray diffraction we investigated the relationship between the l-Asp concentration and the precipitation phase crystal structure of calcium carbonate. SEM and TEM were employed in the analysis of the morphological characteristic of the precipitation and the aggregation of the nanoscale porous phase. In order to get the direct evidence of the interaction between Ca2+ and l-Asp, the technique of QCM was used in the investigation of the coordinate interaction of Ca2+/l-Asp. As the results have shown, l-Asp alone is adequate to switch the transformation between calcite and vaterite, and neither soluble organic additions nor metal ions are needed. Meanwhile, the morphology, size and aggregative way of the deposition are also mediated with change of l-Asp concentration. To interpret the cause of the hierarchic structure range from nanoscale to micron-scale and the formation of the porous spheres of vaterite, an assumption of limited-fusion was proposed from the view of the small biomolecules polarity that can control over the growth of the crystals and the aggregation of the micro crystals. The conclusion also provide a new material synthesize strategy.

  20. PRECIPITATION OF PLUTONOUS PEROXIDE

    DOEpatents

    Barrick, J.G.; Manion, J.P.

    1961-08-15

    A precipitation process for recovering plutonium values contained in an aqueous solution is described. In the process for precipitating plutonium as plutonous peroxide, hydroxylamine or hydrazine is added to the plutoniumcontaining solution prior to the addition of peroxide to precipitate plutonium. The addition of hydroxylamine or hydrazine increases the amount of plutonium precipitated as plutonous peroxide. (AEC)

  1. Nanoscale Ionic Aggregate Morphology in Zwitterionic Copolymers

    NASA Astrophysics Data System (ADS)

    Choi, Jae-Hong; Huyck, Rebecca; Salas-de La Cruz, David; Long, Timothy E.; Winey, Karen I.

    2009-03-01

    The morphology of two different zwitterionic copolymers, poly(sulfobetaine methacrylate-ran-butyl acrylate), and poly(sulfobetaine methacrylamide-ran-butyl acrylate) are investigated as a function of the mol % content of SBMA (7 and 9 mol %) and SBMAm (6, 10 and 13 mol %), respectively. In both copolymers, X-ray scattering results show a new structure in the material arising from ionic aggregates. The sizes of the ionic aggregates are obtained through the scattering model. The sizes of the ionic aggregates increase as the ion content increases. The application of scanning transmission electron microscopy to the study of ionomer morphology has enabled direct, model-independent visualization of the ionic aggregates. The correlation between X-ray scattering results and the real space imaging for morphology of these zwitterionic copolymers will be presented.

  2. Self-Aggregation of Cryptococcus neoformans Capsular Glucuronoxylomannan Is Dependent on Divalent Cations▿ ‡

    PubMed Central

    Nimrichter, Leonardo; Frases, Susana; Cinelli, Leonardo P.; Viana, Nathan B.; Nakouzi, Antonio; Travassos, Luiz R.; Casadevall, Arturo; Rodrigues, Marcio L.

    2007-01-01

    The capsular components of the human pathogen Cryptococcus neoformans are transported to the extracellular space and then used for capsule enlargement by distal growth. It is not clear, however, how the glucuronoxylomannan (GXM) fibers are incorporated into the capsule. In the present study, we show that concentration of C. neoformans culture supernatants by ultrafiltration results in the formation of highly viscous films containing pure polysaccharide, providing a novel, nondenaturing, and extremely rapid method to isolate extracellular GXM. The weight-averaged molecular mass of GXM in the film, determined using multiangle laser light scattering, was ninefold smaller than that of GXM purified from culture supernatants by differential precipitation with cetyl trimethyl ammonium bromide (CTAB). Polysaccharides obtained either by ultrafiltration or by CTAB-mediated precipitation showed different reactivities with GXM-specific monoclonal antibodies. Viscosity analysis associated with inductively coupled plasma mass spectrometry and measurements of zeta potential in the presence of different ions implied that polysaccharide aggregation was a consequence of the interaction between the carboxyl groups of glucuronic acid and divalent cations. Consistent with this observation, capsule enlargement in living C. neoformans cells was influenced by Ca2+ in the culture medium. These results suggest that capsular assembly in C. neoformans results from divalent cation-mediated self-aggregation of extracellularly accumulated GXM molecules. PMID:17573547

  3. Imaging the in-plane distribution of helium precipitates at a Cu/V interface

    DOE PAGES

    Chen, Di; Li, Nan; Yuryev, Dina; ...

    2017-02-15

    Here, we describe a transmission electron microscopy investigation of the distribution of helium precipitates within the plane of an interface between Cu and V. Statistical analysis of precipitate locations reveals a weak tendency for interfacial precipitates to align alongmore » $$\\langle$$110$$\\rangle$$-type crystallographic directions within the Cu layer. Comparison of these findings with helium-free Cu/V interfaces suggests that the precipitates may be aggregating preferentially along atomic-size steps in the interface created by threading dislocations in the Cu layer. Our observations also suggest that some precipitates may be aggregating along intersections between interfacial misfit dislocations.« less

  4. IMPROVED PROCESS OF PLUTONIUM CARRIER PRECIPITATION

    DOEpatents

    Faris, B.F.

    1959-06-30

    This patent relates to an improvement in the bismuth phosphate process for separating and recovering plutonium from neutron irradiated uranium, resulting in improved decontamination even without the use of scavenging precipitates in the by-product precipitation step and subsequently more complete recovery of the plutonium in the product precipitation step. This improvement is achieved by addition of fluomolybdic acid, or a water soluble fluomolybdate, such as the ammonium, sodium, or potassium salt thereof, to the aqueous nitric acid solution containing tetravalent plutonium ions and contaminating fission products, so as to establish a fluomolybdate ion concentration of about 0.05 M. The solution is then treated to form the bismuth phosphate plutonium carrying precipitate.

  5. The Skeletal Organic Matrix from Mediterranean Coral Balanophyllia europaea Influences Calcium Carbonate Precipitation

    PubMed Central

    Goffredo, Stefano; Vergni, Patrizia; Reggi, Michela; Caroselli, Erik; Sparla, Francesca; Levy, Oren; Dubinsky, Zvy; Falini, Giuseppe

    2011-01-01

    Scleractinian coral skeletons are made mainly of calcium carbonate in the form of aragonite. The mineral deposition occurs in a biological confined environment, but it is still a theme of discussion to what extent the calcification occurs under biological or environmental control. Hence, the shape, size and organization of skeletal crystals from the cellular level through the colony architecture, were attributed to factors as diverse as mineral supersaturation levels and organic mediation of crystal growth. The skeleton contains an intra-skeletal organic matrix (OM) of which only the water soluble component was chemically and physically characterized. In this work that OM from the skeleton of the Balanophyllia europaea, a solitary scleractinian coral endemic to the Mediterranean Sea, is studied in vitro with the aim of understanding its role in the mineralization of calcium carbonate. Mineralization of calcium carbonate was conducted by overgrowth experiments on coral skeleton and in calcium chloride solutions containing different ratios of water soluble and/or insoluble OM and of magnesium ions. The precipitates were characterized by diffractometric, spectroscopic and microscopic techniques. The results showed that both soluble and insoluble OM components influence calcium carbonate precipitation and that the effect is enhanced by their co-presence. The role of magnesium ions is also affected by the presence of the OM components. Thus, in vitro, OM influences calcium carbonate crystal morphology, aggregation and polymorphism as a function of its composition and of the content of magnesium ions in the precipitation media. This research, although does not resolve the controversy between environmental or biological control on the deposition of calcium carbonate in corals, sheds a light on the role of OM, which appears mediated by the presence of magnesium ions. PMID:21799830

  6. Asphaltene aggregation and impact of alkylphenols.

    PubMed

    Goual, Lamia; Sedghi, Mohammad; Wang, Xiaoxiao; Zhu, Ziming

    2014-05-20

    The main objective of this study was to provide novel insights into the mechanism of asphaltene aggregation in toluene/heptane (Heptol) solutions and the effect of alkylphenols on asphaltene dispersion through the integration of advanced experimental and modeling methods. High-resolution transmission electron microscope (HRTEM) images revealed that the onset of asphaltene flocculation occurs near a toluene/heptane volume ratio of 70:30 and that flocculates are well below 1 μm in size. To assess the impact of alkylphenols on asphaltene aggregation, octylphenol (OP) and dodecylphenol (DP) were evaluated by impedance analysis based on their ability to delay the precipitation onset and to reduce the size of nonflocculated asphaltene aggregates in 80:20 toluene/heptane solutions. Although a longer dispersant chain length did not affect the precipitation onset, it reduced the size of the aggregates. Molecular dynamics simulations were then performed to understand the mechanism of interaction between a model asphaltene and OP in heptane. OP molecules saturated the H-bonding sites of asphaltenes and prevented them from interacting laterally between themselves. This explained why OP favored the formation of flocculates with filamentary rather than globular structures, which were clearly observed by HRTEM. Although OP proved to be an effective dispersant, its effectiveness was hindered by its self-association and the fact that it interacted at the periphery of asphaltenes, leaving their aromatic cores uncovered.

  7. Aggregation of nucleosomes by divalent cations.

    PubMed Central

    de Frutos, M; Raspaud, E; Leforestier, A; Livolant, F

    2001-01-01

    Conditions of precipitation of nucleosome core particles (NCP) by divalent cations (Ca(2+) and Mg(2+)) have been explored over a large range of nucleosome and cation concentrations. Precipitation of NCP occurs for a threshold of divalent cation concentration, and redissolution is observed for further addition of salt. The phase diagram looks similar to those obtained with DNA and synthetic polyelectrolytes in the presence of multivalent cations, which supports the idea that NCP/NCP interactions are driven by cation condensation. In the phase separation domain the effective charge of the aggregates was determined by measurements of their electrophoretic mobility. Aggregates formed in the presence of divalent cations (Mg(2+)) remain negatively charged over the whole concentration range. They turn positively charged when aggregation is induced by trivalent (spermidine) or tetravalent (spermine) cations. The higher the valency of the counterions, the more significant is the reversal of the effective charge of the aggregates. The sign of the effective charge has no influence on the aspect of the phase diagram. We discuss the possible reasons for this charge reversal in the light of actual theoretical approaches. PMID:11463653

  8. Light-scattering study of petroleum asphaltene aggregation.

    PubMed

    Burya, Y G; Yudin, I K; Dechabo, V A; Kosov, V I; Anisimov, M A

    2001-08-20

    Dynamic light scattering with an original optical scheme has been used for the investigation of opaque (strongly light-absorbing) asphaltene colloids in crude oils and hydrocarbon mixtures. Diffusion-limited aggregation and reaction-limited aggregation as well as a crossover between these two regimes have been observed. A simple interpolation for the crossover kinetics is proposed. Asphaltene colloidal structures, originally persisting in crude oils, have been detected. Addition of a precipitant above a threshold induces asphaltene aggregation. Depending on the nature of the precipitant, different crude oils respond differently on its addition: (a) exponential-in-time growth of aggregates to huge flocks or (b) fast formation of stable-in-size particles.

  9. Asphaltene aggregation in organic solvents.

    PubMed

    Oh, Kyeongseok; Ring, Terry A; Deo, Milind D

    2004-03-01

    Asphaltenic solids formed in the Rangely field in the course of a carbon dioxide flood and heptane insolubles in the oil from the same field were used in this study. Four different solvents were used to dissolve the asphaltenes. Near-infrared (NIR) spectroscopy was used to determine the onset of asphaltene precipitation by heptane titration. When the onset values were plotted versus asphaltene concentrations, distinct break points (called critical aggregation concentrations (CAC) in this paper) were observed. CACs for the field asphaltenes dissolved in toluene, trichloroethylene, tetrahydrofuran, and pyridine occurred at concentrations of 3.0, 3.7, 5.0, and 8.2 g/l, respectively. CACs are observed at similar concentrations as critical micelle concentrations (CMC) for the asphaltenes in the solvents employed and can be interpreted to be the points at which rates of asphaltene aggregations change. CMC values of asphaltenes determined from surface tension measurements (in pyridine and TCE) were slightly higher than the CAC values measured by NIR onset measurements. The CAC for heptane-insoluble asphaltenes in toluene was 3.1 g/l. Thermal gravimetric analysis (TGA) and elemental compositions of the two asphaltenes showed that the H/C ratio of the heptane-insoluble asphaltenes was higher and molecular weight (measured by vapor pressure osmometry) was lower.

  10. Role of peach proteins in juice precipitation induced by high pressure CO2.

    PubMed

    Zhao, Feng; Zhou, Linyan; Wang, Yongtao; Liao, Xiaojun

    2016-10-15

    To better understand the role of peach proteins in juice precipitation induced by high pressure CO2 (HPCD), proteins extracted from peach juice were subjected to HPCD and heat, and changes in particle size distribution (PSD) and structure were investigated. PSD analysis showed aggregations of proteins were both induced by HPCD and heat, but HPCD induced a stronger aggregation. The endotherm of HPCD- and heat-treated proteins moved to lower temperature, indicating that higher-order structures were altered after treatments. Furthermore, proteins related to HPCD- and heat-induced precipitation were analyzed by proteomics and bioinformatics. It was found that proteins with low content of α-helix and hydrogen bonds were more inclined to precipitate under HPCD, and HPCD precipitated proteins with more compact structures than heat, which might cause the stronger aggregation of proteins by HPCD. In conclusion, HPCD could induce the aggregation of peach proteins by destroying higher-order structures, which contributes to juice precipitation.

  11. Precipitation Climate Data Records

    NASA Astrophysics Data System (ADS)

    Nelson, B. R.; Prat, O.; Vasquez, L.

    2015-12-01

    Five precipitation CDRs are now or soon will be transitioned to NOAA's CDR program. These include the PERSIANN data set, which is a 30-year record of daily adjusted global precipitation based on retrievals from satellite microwave data using artificial neural networks. The AMSU-A/B/Hydrobundle is an 11-year record of precipitable water, cloud water, ice water, and other variables. CMORPH (the NOAA Climate Prediction Center Morphing Technique) is a 17-year record of daily and sub-daily adjusted global precipitation measured from passive microwave and infrared data at high spatial and temporal resolution. GPCP (the Global Precipitation Climatology Project) is an approximately 30-year record of monthly and pentad adjusted global precipitation and a 17-year record of daily adjusted global precipitation. The NEXRAD Reanalysis is a 10-year record of high resolution NEXRAD radar based adjusted CONUS-wide hourly and daily precipitation. This study provides an assessment of the existing and transitioned long term precipitation CDRs and includes the verification of the five precipitation CDRs using various methods including comparison with in-situ data sets and trend analysis. As all of the precipitation related CDRs are transitioned, long term analyses can be performed. Comparisons at varying scales (hourly, daily and longer) of the precipitation CDRs with in-situ data sets are provided as well as a first look at what could be an ensemble long term precipitation data record.

  12. Aggregations in Flatworms.

    ERIC Educational Resources Information Center

    Liffen, C. L.; Hunter, M.

    1980-01-01

    Described is a school project to investigate aggregations in flatworms which may be influenced by light intensity, temperature, and some form of chemical stimulus released by already aggregating flatworms. Such investigations could be adopted to suit many educational levels of science laboratory activities. (DS)

  13. Unbonded Aggregate Surface Roads

    DTIC Science & Technology

    2006-12-01

    are sufficiently angular and rough in texture, thus ensuring mixture stability. A popular asphalt mixture design method called Superpave Level 1...would not pass either of the Superpave aggregate requirements. Table 18 Additional Characteristics for the Fine Fraction Abbreviated Common Name...CBR values when compacted wet of optimum. This is likely attributable to their relatively high permeabilities . For soaked CBR tests, the aggregates

  14. Erosion of dust aggregates

    NASA Astrophysics Data System (ADS)

    Seizinger, A.; Krijt, S.; Kley, W.

    2013-12-01

    Aims: The aim of this work is to gain a deeper insight into how much different aggregate types are affected by erosion. Especially, it is important to study the influence of the velocity of the impacting projectiles. We also want to provide models for dust growth in protoplanetary disks with simple recipes to account for erosion effects. Methods: To study the erosion of dust aggregates we employed a molecular dynamics approach that features a detailed micro-physical model of the interaction of spherical grains. For the first time, the model has been extended by introducing a new visco-elastic damping force, which requires a proper calibration. Afterwards, different sample generation methods were used to cover a wide range of aggregate types. Results: The visco-elastic damping force introduced in this work turns out to be crucial to reproduce results obtained from laboratory experiments. After proper calibration, we find that erosion occurs for impact velocities of 5 ms-1 and above. Though fractal aggregates as formed during the first growth phase are most susceptible to erosion, we observe erosion of aggregates with rather compact surfaces as well. Conclusions: We find that bombarding a larger target aggregate with small projectiles results in erosion for impact velocities as low as a few ms-1. More compact aggregates suffer less from erosion. With increasing projectile size the transition from accretion to erosion is shifted to higher velocities. This allows larger bodies to grow through high velocity collisions with smaller aggregates.

  15. Aggregation kinetics and structure of cryoimmunoglobulins clusters

    NASA Astrophysics Data System (ADS)

    Spirito, M. De; Chiappini, R.; Bassi, F. Andreasi; Stasio, E. Di; Giardina, B.; Arcovito, G.

    2002-02-01

    Cryoimmunoglobulins are pathological antibodies characterized by a temperature-dependent reversible insolubility. Rheumatoid factors (RF) are immunoglobulins possessing anti-immunoglobulin activity and usually consist of an IgM antibody that recognizes IgG as antigen. These proteins are present in sera of patients affected by a large variety of different pathologies, such as HCV infection, neoplastic and autoimmune diseases. Aggregation and precipitation of cryoimmunoglobulins, leading to vasculiti, are physical phenomena behind such pathologies. A deep knowledge of the physico-chemical mechanisms regulating such phenomena plays a fundamental role in biological and clinical applications. In this work, a preliminary investigation of the aggregation kinetics and of the final macromolecular structure of the aggregates is presented. Through static light scattering techniques, the gyration radius Rg and the fractal dimension Dm of the growing clusters have been determined. However, while the initial aggregation mechanism could be described using the universal reaction-limited cluster-cluster aggregation (RLCCA) theory, at longest times from the beginning of the process, the RLCCA theory fails and a restructuring of clusters is observed together with an increase of the cluster fractal dimension Dm up to a value Dm∼3. The time tn, at which the restructuring takes place, and the final cluster size can be modulated by varying the quenching temperature.

  16. Validation of a Rapid and Sensitive UPLC–MS-MS Method Coupled with Protein Precipitation for the Simultaneous Determination of Seven Pyrethroids in 100 µL of Rat Plasma by Using Ammonium Adduct as Precursor Ion

    PubMed Central

    Singh, Sheelendra Pratap; Dwivedi, Nistha; Raju, Kanumuri Siva Rama; Taneja, Isha; Wahajuddin, Mohammad

    2016-01-01

    United States Environmental Protection Agency has recommended estimating pyrethroids’ risk using cumulative exposure. For cumulative risk assessment, it would be useful to have a bioanalytical method for quantification of one or several pyrethroids simultaneously in a small sample volume to support toxicokinetic studies. Therefore, in the present study, a simple, sensitive and high-throughput ultraperformance liquid chromatography–tandem mass spectrometry method was developed and validated for simultaneous analysis of seven pyrethroids (fenvalerate, fenpropathrin, bifenthrin, lambda-cyhalothrin, cyfluthrin, cypermethrin and deltamethrin) in 100 µL of rat plasma. A simple single-step protein precipitation method was used for the extraction of target compounds. The total chromatographic run time of the method was 5 min. The chromatographic system used a Supelco C18 column and isocratic elution with a mobile phase consisting of methanol and 5 mM ammonium formate in the ratio of 90 : 10 (v/v). Mass spectrometer (API 4000) was operated in multiple reaction monitoring positive-ion mode using the electrospray ionization technique. The calibration curves were linear in the range of 7.8–2,000 ng/mL with correlation coefficients of ≥0.99. All validation parameters such as precision, accuracy, recovery, matrix effect and stability met the acceptance criteria according to the regulatory guidelines. The method was successfully applied to the toxicokinetic study of cypermethrin in rats. To the best of our knowledge, this is the first LC–MS-MS method for the simultaneous analysis of pyrethroids in rat plasma. This validated method with minimal modification can also be utilized for forensic and clinical toxicological applications due to its simplicity, sensitivity and rapidity. PMID:26801239

  17. Validation of a Rapid and Sensitive UPLC-MS-MS Method Coupled with Protein Precipitation for the Simultaneous Determination of Seven Pyrethroids in 100 µL of Rat Plasma by Using Ammonium Adduct as Precursor Ion.

    PubMed

    Singh, Sheelendra Pratap; Dwivedi, Nistha; Raju, Kanumuri Siva Rama; Taneja, Isha; Wahajuddin, Mohammad

    2016-04-01

    United States Environmental Protection Agency has recommended estimating pyrethroids' risk using cumulative exposure. For cumulative risk assessment, it would be useful to have a bioanalytical method for quantification of one or several pyrethroids simultaneously in a small sample volume to support toxicokinetic studies. Therefore, in the present study, a simple, sensitive and high-throughput ultraperformance liquid chromatography-tandem mass spectrometry method was developed and validated for simultaneous analysis of seven pyrethroids (fenvalerate, fenpropathrin, bifenthrin, lambda-cyhalothrin, cyfluthrin, cypermethrin and deltamethrin) in 100 µL of rat plasma. A simple single-step protein precipitation method was used for the extraction of target compounds. The total chromatographic run time of the method was 5 min. The chromatographic system used a Supelco C18 column and isocratic elution with a mobile phase consisting of methanol and 5 mM ammonium formate in the ratio of 90 : 10 (v/v). Mass spectrometer (API 4000) was operated in multiple reaction monitoring positive-ion mode using the electrospray ionization technique. The calibration curves were linear in the range of 7.8-2,000 ng/mL with correlation coefficients of ≥ 0.99. All validation parameters such as precision, accuracy, recovery, matrix effect and stability met the acceptance criteria according to the regulatory guidelines. The method was successfully applied to the toxicokinetic study of cypermethrin in rats. To the best of our knowledge, this is the first LC-MS-MS method for the simultaneous analysis of pyrethroids in rat plasma. This validated method with minimal modification can also be utilized for forensic and clinical toxicological applications due to its simplicity, sensitivity and rapidity.

  18. Investigations on ionic detergents with unusual aggregation behavior

    SciTech Connect

    Hoffman, H.; Platz, G.; Ulbricht, W.

    1981-05-14

    The aggregation behavior of the 2 surfactants dodecylammonium trifluoroacetate (DATFA) and tetradecylammonium trifluoroacetate (TATFA) has been studied at different concentrations and temperatures with several techniques. Rodlike aggregates are present in solutions of DATFA. The length of these anisotropic micelles which was determined by electric birefringence, viscosity, and quasielastic light-scattering measurements varies little with total detergent concentration but decreases rapidly with increasing temperature. The aggregation behavior of TATFA show no electric birefringence but the hydrodynamic radius for the micelles which is determined from the quasielastic light-scattering measurements is too large for normal spherical micelles. Furthermore, the residence times of the detergent ions inside the micelles are too long also. The data are explained on the basis of micellar aggregates that contain solubilized ion pairs of the detergent ion and its counterion in the interior of the micelles. 27 references.

  19. Reply to "Comment on 'A Self-Consistent Model of the Interacting Ring Current Ions and Electromagnetic Ion Cyclotron Waves, Initial Results: Waves and Precipitation Fluxes' and 'Self-Consistent Model of the Magnetospheric Ring Current and Propagating Electromagnetic Ion Cyclotron Waves: Waves in Multi-Ion Magnetosphere' by Khazanov et al. et al."

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Kozyra, J. W.

    2007-01-01

    It is well-known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wavenormal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and[ particles. Such a self-consistent model is being progressively developed by Khazanov et al. [2002, 2006, 2007]. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. Thome and Home [2007] (hereafter referred to as TH2007) call the Khazanov et al. [2002, 2006] results into question in their Comment. The points in contention can be summarized as follows. TH2007 claim that: (1) "the important damping of waves by thermal heavy ions is completely ignored", and Landau damping during resonant interaction with thermal electrons is not included in our model; (2) EMIC wave damping due to RC O + is not included in our simulation; (3) non-linear processes limiting EMIC wave amplitude are not included in our model; (4) growth of the background fluctuations to a physically significantamplitude"must occur during a single transit of the unstable region" with subsequent damping below bi-ion latitudes,and consequently"the bounce averaged wave kinetic equation employed in the code contains a physically erroneous 'assumption". Our reply will address each of these points as well as other criticisms mentioned in the Comment. TH2007 are focused on two of our papers that are separated by four years. Significant progress in the self-consistent treatment of the RC-EMIC wave system has been achieved during those years. The paper by Khazanov et al. [2006] presents the latest version of our model, and in

  20. Aggregate and the environment

    USGS Publications Warehouse

    Langer, William H.; Drew, Lawrence J.; Sachs, J.S.

    2004-01-01

    This book is designed to help you understand our aggregate resources-their importance, where they come from, how they are processed for our use, the environmental concerns related to their mining and processing, how those concerns are addressed, and the policies and regulations designed to safeguard workers, neighbors, and the environment from the negative impacts of aggregate mining. We hope this understanding will help prepare you to be involved in decisions that need to be made-individually and as a society-to be good stewards of our aggregate resources and our living planet.

  1. Stability and precipitation of diverse nanoparticles

    NASA Astrophysics Data System (ADS)

    Desai, Chintal

    Nanotechnology is a rapidly growing industry that is exploiting the novel characteristics of materials manufactured at the nanoscale. Carbon based nanomaterials such as Carbon Nanotubes (CNTs) and Detonation Nanodiamond (DND) possess unique properties and find a wide range of industrial applications. With the advent of mass production of such materials, there is a possibility of contamination of water resources. Depending on the surface properties and structures, they might aggregate and settle down, or be dispersed and transported by the water. Therefore, there is a need to develop an understanding of the fate of such materials in aqueous media. The understanding and effect of solution chemistry is a key to predicting their deposition, transport, reactivity, and bioavailability in aquatic environments. The colloidal behavior of organic dispersed CNTs and water dispersed DNDs is investigated. The aggregation behavior of these two colloidal systems is quite different from that of hydrophilic, water soluble functionalized CNTs (F-CNTs). The values of the Fuchs stability ratio or the critical coagulant concentration are determined experimentally using time-resolved dynamic light scattering and are used to predict the stability of such systems. It is found that the aggregation behavior of the organic dispersed, antisolvent precipitated system does not follow the conventional Derjaguin--Landau--Verwey-- Overbeek (DLVO) theory. But they stabilize in the long term, which is attributed to the supersaturation generated by different solubility of a solute in the solvent/antisolvent. Based on particle size distribution, zeta potential as well as the aggregation kinetics, the water dispersed DNDs are found to be relatively stable in aqueous solutions, but aggregate rapidly in presence of mono and divalent salts. Also, the formation of carboxylic groups on the DND surface does not alter colloidal behavior as dramatically as it does for other nanocarbons especially carbon

  2. Formation of multilayer aggregates of mammalian cells by dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Sebastian, Anil; Buckle, Anne-Marie; Markx, Gerard H.

    2006-09-01

    The formation of aggregates of mammalian cells at interdigitated oppositely castellated electrodes by positive dielectrophoresis was investigated. It is shown that, by using a constant small flow of fresh sorbitol iso-osmotic buffer through the chamber to remove ions leaking from the cells, a high positive DEP force can be maintained throughout the formation of the aggregates. Flow-rate dependent optima were found in the aggregate height as a function of the electrode size. It is shown that at low flow rates the creation of aggregates of mammalian cells with heights over 150 µm is feasible using relatively low voltages (20 Vpk-pk, 1 MHz). The formation of layered aggregates of two specialized cell types—stromal cells and Jurkat T lymphocytes—is demonstrated. The work confirms that dielectrophoresis can be reliably used for the formation of aggregates with three-dimensional architectures, which could be used as artificial microniches for the study of interactions between cells.

  3. Superconductor precursor mixtures made by precipitation method

    DOEpatents

    Bunker, Bruce C.; Lamppa, Diana L.; Voigt, James A.

    1989-01-01

    Method and apparatus for preparing highly pure homogeneous precursor powder mixtures for metal oxide superconductive ceramics. The mixes are prepared by instantaneous precipitation from stoichiometric solutions of metal salts such as nitrates at controlled pH's within the 9 to 12 range, by addition of solutions of non-complexing pyrolyzable cations, such as alkyammonium and carbonate ions.

  4. Marine aggregate dynamics

    NASA Astrophysics Data System (ADS)

    The direction and scope of the Office of Naval Research's Marine Aggregate Dynamics Accelerated Research Initiative will be the topic of an open-house style meeting February 14, 7:30-10:00 P.M. in Ballroom D of the Hyatt Regency New Orleans at the Louisiana Superdome. This meeting is scheduled during the AGU/American Society of Limnology and Oceanography Ocean Sciences Meeting February 12-16 in New Orleans.The critical focus of the ARI is the measurement and modeling of the dynamics of the biological, physical, chemical and molecular processes that drive aggregation and produce aggregates. This new ARI will provide funding in Fiscal Years 1991-1995 to identify and quantify mechanisms that determine the distribution, abundance and size spectrum of aggregated particulate matter in the ocean.

  5. Protein Colloidal Aggregation Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J. (Compiler)

    2014-01-01

    To investigate the pathways and kinetics of protein aggregation to allow accurate predictive modeling of the process and evaluation of potential inhibitors to prevalent diseases including cataract formation, chronic traumatic encephalopathy, Alzheimer's Disease, Parkinson's Disease and others.

  6. Aggregation and Averaging.

    ERIC Educational Resources Information Center

    Siegel, Irving H.

    The arithmetic processes of aggregation and averaging are basic to quantitative investigations of employment, unemployment, and related concepts. In explaining these concepts, this report stresses need for accuracy and consistency in measurements, and describes tools for analyzing alternative measures. (BH)

  7. Control of binder viscosity and hygroscopicity on particle aggregation efficiency

    NASA Astrophysics Data System (ADS)

    Mueller, Sebastian B.; Kueppers, Ulrich; Ayris, Paul M.; Jacob, Michael; Delmelle, Pierre; Dingwell, Donald B.

    2016-04-01

    In the course of explosive volcanic eruptions, large amounts of ash are released into the atmosphere and may subsequently pose a threat to infrastructure, such as aviation industry. Ash plume forecasting is therefore a crucial tool for volcanic hazard mitigation but may be significantly affected by aggregation, altering the aerodynamic properties of particles. Models struggle with the implementation of aggregation since external conditions promoting aggregation have not been completely understood; in a previous study we have shown the rapid generation of ash aggregates through liquid bonding via the use of fluidization bed technology and further defined humidity and temperature ranges necessary to trigger aggregation. Salt (NaCl) was required for the recovery of stable aggregates, acting as a cementation agent and granting aggregate cohesion. A numerical model was used to explain the physics behind particle aggregation mechanisms and further predicted a dependency of aggregation efficiency on liquid binder viscosity. In this study we proof the effect of viscosity on particle aggregation. HCl and H2SO4 solutions were diluted to various concentrations resulting in viscosities between 1 and 2 mPas. Phonolitic and rhyolitic ash samples as well as soda-lime glass beads (serving as analogue material) were fluidized in the ProCell Lab® of Glatt Ingenieurtechnik GmbH and treated with the acids via a bottom-spray technique. Chemically driven interaction between acid liquids and surfaces of the three used materials led to crystal precipitation. Salt crystals (e.g. NaCl) have been confirmed through scanning electron microscopy (SEM) and leachate analysis. Both volcanic ash samples as well as the glass beads showed a clear dependency of aggregation efficiency on viscosity of the sprayed HCl solution. Spraying H2SO4 provoked a collapse of the fluidized bed and no aggregation has been observed. This is accounted by the high hygroscopicity of H2SO4. Dissolving CaCl2 (known to be

  8. An unusual red-to-brown colorimetric sensing method for ultrasensitive silver(I) ion detection based on a non-aggregation of hyperbranched polyethylenimine derivative stabilized gold nanoparticles.

    PubMed

    Liu, Yi; Liu, Yang; Li, Zhongfa; Liu, Junshen; Xu, Li; Liu, Xunyong

    2015-08-07

    Here we have developed a facile and rapid colorimetric method for the sensitive and selective detection of Ag(+) based on the non-aggregation of gold nanoparticles (Au NPs) capped with hyperbranched polyethylenimine derivatives. In the detection process, an unusual colour change from red to brown was observed due to the formation of Au-Ag core-shell nanoparticles, which was more sensitive than that of the usual colorimetric assays (red to blue) based on the aggregation of Au NPs. After the colour changed, the non-aggregation-based Au-Ag core-shell nanomaterials did not aggregate further and could remain stable for a long time, which was convenient to record, detect and observe. The sensing probe exhibited a drastically long observing time for detecting Ag(+) owing to the stability of the Au-Ag core-shell non-aggregates, high sensitivity with a low detection limit of 8.76 nM by the naked eye and 1.09 nM by using a UV-vis spectrophotometer and a good linear relationship within the range from 1.09 to 109 nM. The colour change of the system is very fast, occurring within 1 to 2 minutes. Moreover, the proposed method also showed a remarkably high selectivity toward Ag(+) and was successfully used in tap water and drinking water samples. Therefore, this unusual colorimetric assay based on the non-aggregation of Au NPs has a great potential as a simple, rapid, sensitive and selective detection method for the detection of Ag(+).

  9. Technical bases for precipitate hydrolysis process operating parameters

    SciTech Connect

    Bannochie, C.J.; Lambert, D.P.

    1992-11-09

    This report provides the experimental data and rationale in support of the operating parameters for tetraphenylborate precipitate hydrolysis specified in WSRC-RP-92-737. The report is divided into two sections, the first dealing with lab-scale precipitate hydrolysis experimentation while the second part addresses large-scale runs conducted to demonstrate the revised operating parameters in the Precipitate Hydrolysis Experimental Facility (PHEF). The program was in conjunction with reducing the nitrite ion level in DWPF feed.

  10. Technical bases for precipitate hydrolysis process operating parameters. Revision 1

    SciTech Connect

    Bannochie, C.J.; Lambert, D.P.

    1992-11-09

    This report provides the experimental data and rationale in support of the operating parameters for tetraphenylborate precipitate hydrolysis specified in WSRC-RP-92-737. The report is divided into two sections, the first dealing with lab-scale precipitate hydrolysis experimentation while the second part addresses large-scale runs conducted to demonstrate the revised operating parameters in the Precipitate Hydrolysis Experimental Facility (PHEF). The program was in conjunction with reducing the nitrite ion level in DWPF feed.

  11. Aggregation of MBP in chronic demyelination

    PubMed Central

    Frid, Kati; Einstein, Ofira; Friedman-Levi, Yael; Binyamin, Orli; Ben-Hur, Tamir; Gabizon, Ruth

    2015-01-01

    Objectives Misfolding of key disease proteins to an insoluble state is associated with most neurodegenerative conditions, such as prion, Parkinson, and Alzheimer’s diseases. In this work, and by studying animal models of multiple sclerosis, we asked whether this is also the case for myelin basic protein (MBP) in the late and neurodegenerative phases of demyelinating diseases. Methods To this effect, we tested whether MBP, an essential myelin component, present prion-like properties in animal models of MS, as is the case for Cuprizone-induced chronic demyelination or chronic phases of Experimental Autoimmune Encephalomyelitis (EAE). Results We show here that while total levels of MBP were not reduced following extensive demyelination, part of these molecules accumulated thereafter as aggregates inside oligodendrocytes or around neuronal cells. In chronic EAE, MBP precipitated concomitantly with Tau, a marker of diverse neurodegenerative conditions, including MS. Most important, analysis of fractions from Triton X-100 floatation gradients suggest that the lipid composition of brain membranes in chronic EAE differs significantly from that of naïve mice, an effect which may relate to oxidative insults and subsequently prevent the appropriate insertion and compaction of new MBP in the myelin sheath, thereby causing its misfolding and aggregation. Interpretation Prion-like aggregation of MBP following chronic demyelination may result from an aberrant lipid composition accompanying this pathological status. Such aggregation of MBP may contribute to neuronal damage that occurs in the progressive phase of MS. PMID:26273684

  12. Salt-induced aggregation of lysozyme: Implications for crystal growth

    NASA Astrophysics Data System (ADS)

    Wilson, Lori J.

    1994-10-01

    Crystallization of proteins is a prerequisite for structural analysis by x-ray crystallography. While improvements in protein crystals have been obtained in microgravity onboard the U.S. Space Shuttle, attempts to improve the crystal growth process both on the ground and in space have been limited by our lack of understanding of the mechanisms involved. Almost all proteins are crystallized with the aid of a precipitating agent. Many of the common precipitating agents are inorganic salts. An understanding of the role of salts on the aggregation of protein monomers is the key to the elucidation of the mechanisms involved in protein crystallization. In order for crystallization to occur individual molecules must self-associate into aggregates. Detection and characterization of aggregates in supersaturated protein solutions is the first step in understanding salt-induced crystallization.

  13. Salt-induced aggregation of lysozyme: Implications for crystal growth

    NASA Technical Reports Server (NTRS)

    Wilson, Lori J.

    1994-01-01

    Crystallization of proteins is a prerequisite for structural analysis by x-ray crystallography. While improvements in protein crystals have been obtained in microgravity onboard the U.S. Space Shuttle, attempts to improve the crystal growth process both on the ground and in space have been limited by our lack of understanding of the mechanisms involved. Almost all proteins are crystallized with the aid of a precipitating agent. Many of the common precipitating agents are inorganic salts. An understanding of the role of salts on the aggregation of protein monomers is the key to the elucidation of the mechanisms involved in protein crystallization. In order for crystallization to occur individual molecules must self-associate into aggregates. Detection and characterization of aggregates in supersaturated protein solutions is the first step in understanding salt-induced crystallization.

  14. Global Precipitation Measurement

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Skofronick-Jackson, Gail; Kummerow, Christian D.; Shepherd, James Marshall

    2008-01-01

    This chapter begins with a brief history and background of microwave precipitation sensors, with a discussion of the sensitivity of both passive and active instruments, to trace the evolution of satellite-based rainfall techniques from an era of inference to an era of physical measurement. Next, the highly successful Tropical Rainfall Measuring Mission will be described, followed by the goals and plans for the Global Precipitation Measurement (GPM) Mission and the status of precipitation retrieval algorithm development. The chapter concludes with a summary of the need for space-based precipitation measurement, current technological capabilities, near-term algorithm advancements and anticipated new sciences and societal benefits in the GPM era.

  15. Effect of antiscalants on precipitation of an RO concentrate: metals precipitated and particle characteristics for several water compositions.

    PubMed

    Greenlee, Lauren F; Testa, Fabrice; Lawler, Desmond F; Freeman, Benny D; Moulin, Philippe

    2010-04-01

    Inland brackish water reverse osmosis (RO) is economically and technically limited by the large volume of salty waste (concentrate) produced. The use of a controlled precipitation step, followed by solid/liquid separation (filtration), has emerged as a promising side-stream treatment process to treat reverse osmosis concentrate and increase overall system recovery. The addition of antiscalants to the RO feed prevents precipitation within the membrane system but might have a deleterious effect on a concentrate treatment process that uses precipitation to remove problematic precipitates. The effects of antiscalant type and concentration on salt precipitation and precipitate particle morphology were evaluated for several water compositions. The primary precipitate for the synthetic brackish waters tested was calcium carbonate; the presence of magnesium, sulfate, minor ions, and antiscalant compounds affected the amount of calcium precipitated, as well as the phases of calcium carbonate formed during precipitation. Addition of antiscalant decreased calcium precipitation but increased incorporation of magnesium and sulfate into precipitating calcium carbonate. Antiscalants prevented the growth of nucleated precipitates, resulting in the formation of small (100-200 nm diameter) particles, as well as larger (6-10 microm) particles. Elemental analysis revealed changes in composition and calcium carbonate polymorph with antiscalant addition and antiscalant type. Results indicate that the presence of antiscalants does reduce the extent of calcium precipitation and can worsen subsequent filtration performance.

  16. On the complex conductivity signatures of calcite precipitation

    SciTech Connect

    Wu, Yuxin; Hubbard, Susan; Williams, Kenneth Hurst; Ajo-Franklin, Jonathan

    2009-11-01

    Calcite is a mineral phase that frequently precipitates during subsurface remediation or geotechnical engineering processes. This precipitation can lead to changes in the overall behavior of the system, such as flow alternation and soil strengthening. Because induced calcite precipitation is typically quite variable in space and time, monitoring its distribution in the subsurface is a challenge. In this research, we conducted a laboratory column experiment to investigate the potential of complex conductivity as a mean to remotely monitor calcite precipitation. Calcite precipitation was induced in a glass bead (3 mm) packed column through abiotic mixing of CaCl{sub 2} and Na{sub 2}CO{sub 3} solutions. The experiment continued for 12 days with a constant precipitation rate of {approx}0.6 milimole/d. Visual observations and scanning electron microscopy imaging revealed two distinct phases of precipitation: an earlier phase dominated by well distributed, discrete precipitates and a later phase characterized by localized precipitate aggregation and associated pore clogging. Complex conductivity measurements exhibited polarization signals that were characteristic of both phases of calcite precipitation, with the precipitation volume and crystal size controlling the overall polarization magnitude and relaxation time constant. We attribute the observed responses to polarization at the electrical double layer surrounding calcite crystals. Our experiment illustrates the potential of electrical methods for characterizing the distribution and aggregation state of nonconductive minerals like calcite. Advancing our ability to quantify geochemical transformations using such noninvasive methods is expected to facilitate our understanding of complex processes associated with natural subsurface systems as well as processes induced through engineered treatments (such as environmental remediation and carbon sequestration).

  17. Energy distribution asymmetry of electron precipitation signatures at Mars

    NASA Astrophysics Data System (ADS)

    Soobiah, Y. I. J.; Barabash, S.; Nilsson, H.; Stenberg, G.; Lundin, R.; Coates, A. J.; Winningham, J. D.; Frahm, R. A.

    2013-02-01

    The different types of asymmetry observed in the energy distributions of electrons and heavy-ions (M/Q=16-44) during signatures of electron precipitation in the Martian ionosphere have been classified. This has been achieved using the space plasma instrumentation of MEX ASPERA-3 from peri-centre altitude to 2200 km. ASPERA-3 ELS observes signatures of electron precipitation on 43.0% of MEX orbits. Unaccelerated electrons in the form of sudden electron flux enhancements are the most common type of electron precipitation signature at Mars and account for ∼70% of the events observed in this study. Electrons that form unaccelerated electron precipitation signatures are either local ionospheric electrons with enhanced density, or electrons transported from another region of ionosphere, solar wind or tail, or a combination of local and transported electrons. The heating of electrons has a strong influence on the shape of most electron energy spectra from accelerated precipitation signatures. On most occasions the general flow of heavy-ions away from Mars is unchanged during the precipitation of electrons, which is thought to be the result of the finite gyroradius effect of the heavy-ions on crustal magnetic field lines. Only ∼17% of events show some form of heavy-ion acceleration that is either concurrent or at the periphery of an electron precipitation signature. The most common combination of electron and heavy-ion energy distributions for signatures of electron precipitation involves electrons that visually have very little asymmetry or are isotropic and heavy-ions that have a upward net flux, and suggest the upward current associated with aurora. Due to a lack of reliable measurements of electrons travelling towards Mars, it is likely we miss further evidence of upward currents. The second most common combination of electron and heavy-ion energy distributions for signatures of electron precipitation, are those distributions of electrons that are asymmetric and

  18. Aggregate formation affects ultrasonic disruption of microalgal cells.

    PubMed

    Wang, Wei; Lee, Duu-Jong; Lai, Juin-Yih

    2015-12-01

    Ultrasonication is a cell disruption process of low energy efficiency. This study dosed K(+), Ca(2+) and Al(3+) to Chlorella vulgaris cultured in Bold's Basal Medium at 25°C and measured the degree of cell disruption under ultrasonication. Adding these metal ions yielded less negatively charged surfaces of cells, while with the latter two ions large and compact cell aggregates were formed. The degree of cell disruption followed: control=K(+)>Ca(2+)>Al(3+) samples. Surface charges of cells and microbubbles have minimal effects on the microbubble number in the proximity of the microalgal cells. Conversely, cell aggregates with large size and compact interior resist cell disruption under ultrasonication. Staining tests revealed high diffusional resistance of stains over the aggregate interior. Microbubbles may not be effective generated and collapsed inside the compact aggregates, hence leading to low cell disruption efficiencies. Effective coagulation/flocculation in cell harvesting may lead to adverse effect on subsequent cell disruption efficiency.

  19. PRECIPITATION OF PROTACTINIUM

    DOEpatents

    Moore, R.L.

    1958-07-15

    An lmprovement in the separation of protactinium from aqueous nitric acid solutions is described. 1t covers the use of lead dioxide and tin dioxide as carrier precipitates for the protactinium. In carrying out the process, divalent lead or divalent tin is addcd to the solution and oxidized, causing formation of a carrier precipitate of lead dioxide or stannic oxide, respectively.

  20. Technology meets aggregate

    SciTech Connect

    Wilson, C.; Swan, C.

    2007-07-01

    New technology carried out at Tufts University and the University of Massachusetts on synthetic lightweight aggregate has created material from various qualities of fly ash from coal-fired power plants for use in different engineered applications. In pilot scale manufacturing tests an 'SLA' containing 80% fly ash and 20% mixed plastic waste from packaging was produced by 'dry blending' mixed plastic with high carbon fly ash. A trial run was completed to produce concrete masonry unit (CMU) blocks at a full-scale facility. It has been shown that SLA can be used as a partial substitution of a traditional stone aggregate in hot asphalt mix. 1 fig., 2 photos.

  1. Studies on the interactions of copper and zinc ions with β-amyloid peptides by a surface plasmon resonance biosensor.

    PubMed

    Yao, Fujun; Zhang, Ruiping; Tian, He; Li, Xiangjun

    2012-01-01

    The aggregation of β-amyloid peptide (Aβ) into fibrils plays an important role in the pathogenesis of Alzheimer's disease (AD). Metal ions including copper and zinc are closely connected to the precipitation and toxicity of Aβ. In this study, a surface plasmon resonance (SPR) biosensor was constructed to investigate the interactions between Aβ and metal ions. Aβ peptide was immobilized on the SPR chip surface through a preformed alkanethiol self-assembled monolayer (SAM). Our observations indicate that the immobilized Aβ undergoes a conformational change upon exposure to the metal ions. A difference in metal binding affinity between Aβ(1-28) and Aβ(1-42) was also detected. The results suggest that SPR is an effective method to characterize the interactions between Aβ and metal ions.

  2. Energetic Neutral Atom Precipitation (ENAP)

    NASA Technical Reports Server (NTRS)

    Tinsley, B. A.

    1988-01-01

    The Energetic Neutral Atom Precipitation experiment is scheduled to be flown on the Atmospheric Laboratory for Applications and Science (ATLAS 1) NASA mission. The objective of this experiment is to measure very faint emissions at nighttime arising from fluxes of energetic neutral atoms in the thermosphere. These energetic atoms have energies ranging up to about 50 keV, and arise from ions of hydrogen, helium, and oxygen trapped in the inner magnetosphere. Some of these ions become neutralized in charge exchange reactions with neutral hydrogen in the hydrogen geocorona that extends through the region. The ions are trapped on magnetic field lines which cross the equatorial plane at 2 to 6 earth radii distance, and they mirror at a range of heights on these field lines, extending down to the thermosphere at 500 km altitude. The ATLAS 1 measurements will not be of the neutral atoms themselves but of the optical emission produced by those on trajectories that intersect the thermosphere. The ENAP measurements are to be made using the Imaging Spectrometric Observatory (ISO) which is being flown on the ATLAS mission primarily for daytime spectral observations, and the ENAP measurements will all be nighttime measurements because of the faintness of the emissions and the relatively low level of magnetic activity expected.

  3. Catalyzed precipitation in aluminum

    NASA Astrophysics Data System (ADS)

    Mitlin, David

    The work reported in Chapter 1 concerned the influence of Si on the precipitation of theta' (metastable Al2Cu) during the isothermal aging of Al-2Cu-1Si (wt. %). The binary alloys Al-2Cu and Al-1Si were studied for comparison. Only two precipitate phases were detected: pure Si in Al-Si and Al-Cu-Si, and theta' (metastable Al 2Cu) in Al-Cu and Al-Cu-Si. On aging the ternary, Si precipitates first, and provides heterogeneous sites to nucleate theta'. As a consequence, the density of theta' precipitates in Al-Cu-Si is much higher than in the binary Al-Cu. Also, the theta ' precipitates in the ternary alloy have lower aspect ratio (at given particle size) and lose coherence on their broad faces at a slower rate. The principal focus of Chapter 2 is to explain precipitation in Al-lat.%Si-lat%Ge. The microstructure is characterized using conventional and high resolution transmission electron microscopy, as well as energy dispersive X-ray spectroscopy. The first precipitates to come out of solid solution have a cube-cube orientation relationship with the matrix. High resolution TEM demonstrated that all the precipitates start out, and remain multiply twinned throughout the aging treatment. There is a variation in the stoichiometry of the precipitates, with the mean composition being Si-44.5at%Ge. It is also shown that in Al-Si-Ge it is not possible to achieve satisfactory hardness through a conventional heat treatment. This result is explained in terms of sluggish precipitation of the diamond-cubic Si-Ge phase coupled with particle coarsening. The purpose of Chapters 3 and 4 is to explain these properties in terms of the role that the Si-Ge additions have on modifying the conventional Al-Cu aging sequence. In both AlCu and AlCuSiGe the room temperature microstructure consists of both GP zones and theta″ precipitates. Upon aging at 190°C Al-Cu displays the well known precipitation sequence; the slow dissolution of GP zones and theta″ and the gradual formation of theta

  4. STXM/C 1s-NEXAFS study of Eu(III) and Uranyl humic acid aggregates at different pH

    NASA Astrophysics Data System (ADS)

    Plaschke, M.; Rothe, J.; Denecke, M. A.; Geckeis, H.

    2010-04-01

    Humic acids (HA) are chemically heterogeneous and structurally ill-defined biopolymers which are able to bind traces of actinides or lanthanides. Due to their dimensions in the colloidal size range they may affect transport of these elements in aquatic systems. Eu(III)- and UO22+-HA aggregates have been investigated by Scanning Transmission X-ray Microscopy (STXM) and C 1s-NEXAFS under systematic variation of pH. In the Eu(III)- and UO22+-HA systems aggregate morphologies at near neutral pH were similar to those observed in previous studies: optically dense zones (high absorption at the carbon K-edge) are embedded in a matrix of less dense material. C 1s-NEXAFS signatures observed in the different zones, i.e., the intensity of the characteristic complexation feature previously experimentally described and recently theoretically characterized, strongly depends on sample pH. In the alkaline regime (pH 9) with added carbonate, co-precipitation of Eu(III)-carbonate (or ternary carbonate/(oxo)hydroxide complexes) with the Eu(III)-HA majority fraction is observed but Eu(III) binding to HA over carbonate in the dense zones seems to be favoured. The UO22+-HA system exhibits in alkaline solution more compact morphologies combined with a strong metal ion complexation effect in the NEXAFS. Eu(III) and UO22+ polyacrylic acid (PAA) aggregates used as HA model systems show similar spectral trends; these aggregates exhibit highly branched morphologies without segregation into zones with different NEXAFS signatures. The chemical environment such as pH or the type of metal cation strongly influences both HA aggregate morphologies and NEXAFS spectral signatures. These can, in turn, be used as indicators of the strength of lanthanide or actinide ion bound HA interaction.

  5. Serial coupling of ion-exchange and size-exclusion chromatography to determine aggregation levels in mAbs in the presence of a proteinaceous excipient, recombinant human serum albumin.

    PubMed

    Weisbjerg, Paul Luigi Gargani; Caspersen, Mikael Bjerg; Cook, Ken; Van De Weert, Marco

    2015-02-01

    Aggregation levels of therapeutic proteins may be difficult to determine in mixtures containing other proteinaceous excipients. We performed a feasibility study of using serial coupling of an anion exchange and size exclusion column to determine the aggregation levels of four different model monoclonal antibodies (mAb) mixed with the model proteinaceous excipient recombinant human serum albumin (rHSA). For three of the four mAbs suitable elution conditions could be established. From the limitations imposed by the pI of the rHSA, the pI of the mAb and the nature of the columns used, it was possible to propose a set of general conditions that allows quantification of the aggregation level of a therapeutic protein in the presence of a proteinaceous excipient: The excipient protein and protein of interest should differ in pI by a minimum of 0.5 units, and the pI of the protein of interest should not be higher than ca. 8.5.

  6. Aggregates, broccoli and cauliflower

    NASA Astrophysics Data System (ADS)

    Grey, Francois; Kjems, Jørgen K.

    1989-09-01

    Naturally grown structures with fractal characters like broccoli and cauliflower are discussed and compared with DLA-type aggregates. It is suggested that the branching density can be used to characterize the growth process and an experimental method to determine this parameter is proposed.

  7. Mercury removal during growth of mercury tolerant and self-aggregating Yarrowia spp.

    PubMed

    Oyetibo, Ganiyu Oladunjoye; Miyauchi, Keisuke; Suzuki, Hitoshi; Endo, Ginro

    2016-12-01

    Ecotoxicological implications of mercury (Hg) pollution of hydrosphere require effective Hg-removal strategies as antidote to the environmental problems. Mercury-tolerant yeasts, Yarrowia spp. Idd1 and Idd2 strains, were studied for intracellular accumulation and extracellular micro-precipitation of Hg during growth stage of the yeast strains. In a liquid medium containing 870 (±23.6) µg of bioavailable Hg(2+), 419.0 µg Hg(2+) (approx.) was taken up by the wet biomasses of the yeast strains after 48 h post-inoculation. Large portion of the adsorbed Hg was found in cell wall (approx. 49-83 %) and spheroplast (approx. 62-89 %). Negligible quantities of Hg were present in the mitochondria (0.02-0.02 %), and appreciable amount of Hg was observed in nuclei and cell debris (15.2-65.3 %) as evidence of bioaccumulation. Extracellular polymeric substances (EPS) produced by the growing Yarrowia cells was a complex of protein, carbohydrates and other substances, immobilizing 43.8 (±0.7)-58.7 (±1.0) % of initial Hg in medium as micro-precipitates, while 10.13 ± 0.4-39.2 ± 4.3 % Hg content was volatilized. Transmission electron microscopy coupled with X-ray energy dispersive spectrophotometry confirmed the cellular removal of Hg and formation of EPS-Hg complex colloids in the surrounding bulk solution as micro-precipitates in form of extracellular Hg-nanoparticles. Hg mass balance in the bio-sequestration experiment revealed excellent Hg removal (>97 %) from the medium (containing ≤16 μg ml(-1) Hg(2+)) by the yeast strains via bioaccumulation, volatilization and micro-precipitation. The yeast strains are also effectively applicable in biological purification technology for Hg contaminated water because of their high self-aggregation activity and separatability from the aquatic environments. Graphical abstract Yarrowia species are oligotrophic marine yeasts that exhibited great potentials for mercuric ion remediation technologies, which are classified

  8. Characterization of nanoparticle formation and aggregation on mineral surfaces

    SciTech Connect

    Glenn Waychunas; Young-Shin Jun

    2007-04-19

    The research effort in the Waychunas group is focused on the characterization and measurement of processes at the mineral-water interfaces specifically related to the onset of precipitation. This effort maps into one of the main project groups with the Penn State University EMSI (CEKA) known as PIG (Precipitation Interest Group), and involves collaborations with several members of that group. Both synchrotron experimentation and technique development are objectives, with the goals of allowing precipitation from single molecule attachment to sub-monolayer coverage to be detected and analyzed. The problem being addressed is the change in reactivity of mineral interfaces due to passivation or activation by precipitates or sorbates. In the case of passivation, fewer active sites may be involved in reactions with environmental fluids, while in the activated case the precipitate may be much more reactive than the substrate, or result in the creation of a higher density of active sites. We approach this problem by making direct measurements of several types of precipitation reactions: iron-aluminum oxide formation on quartz and other substrates from both homogeneous (in solution) nucleation, and heterogeneous (on the surface) nucleation; precipitation and sorption of silicate monomers and polymers on Fe oxide surfaces; and development of grazing-incidence small angle x-ray scattering (GISAXS) as a tool for in-situ measurement of precipitate growth, morphology and aggregation. We expect that these projects will produce new fundamental information on reactive interface growth, passivation and activation, and be applicable to a wide range of environmental interfaces.

  9. Measuring and modeling hemoglobin aggregation below the freezing temperature.

    PubMed

    Rosa, Mónica; Lopes, Carlos; Melo, Eduardo P; Singh, Satish K; Geraldes, Vitor; Rodrigues, Miguel A

    2013-08-01

    Freezing of protein solutions is required for many applications such as storage, transport, or lyophilization; however, freezing has inherent risks for protein integrity. It is difficult to study protein stability below the freezing temperature because phase separation constrains solute concentration in solution. In this work, we developed an isochoric method to study protein aggregation in solutions at -5, -10, -15, and -20 °C. Lowering the temperature below the freezing point in a fixed volume prevents the aqueous solution from freezing, as pressure rises until equilibrium (P,T) is reached. Aggregation rates of bovine hemoglobin (BHb) increased at lower temperature (-20 °C) and higher BHb concentration. However, the addition of sucrose substantially decreased the aggregation rate and prevented aggregation when the concentration reached 300 g/L. The unfolding thermodynamics of BHb was studied using fluorescence, and the fraction of unfolded protein as a function of temperature was determined. A mathematical model was applied to describe BHb aggregation below the freezing temperature. This model was able to predict the aggregation curves for various storage temperatures and initial concentrations of BHb. The aggregation mechanism was revealed to be mediated by an unfolded state, followed by a fast growth of aggregates that readily precipitate. The aggregation kinetics increased for lower temperature because of the higher fraction of unfolded BHb closer to the cold denaturation temperature. Overall, the results obtained herein suggest that the isochoric method could provide a relatively simple approach to obtain fundamental thermodynamic information about the protein and the aggregation mechanism, thus providing a new approach to developing accelerated formulation studies below the freezing temperature.

  10. The analysis of the causes of protein precipitate formation in the blanched soymilk.

    PubMed

    Wang, Yahui; Xing, Jiyun; Wang, Ruican; Guo, Shuntang

    2017-03-01

    This paper explored the causes of protein precipitate formation in blanched soymilk prepared by blanching soybeans through studying the changes in composition and amount of protein particles during its thermal processing. Compared with the traditional method of preparing soymilk, blanching changed the thermal aggregation behavior of protein particles. Results showed that when blanching was applied to soybeans, β-conglycinin (7S) was denatured in the blanched soybeans, which resulted in the fixation and aggregation of 7S prior to the grinding processing. Therefore, 7S lost its inhibitory ability on the growth of other protein aggregation, explaining the increased insoluble precipitates in the blanched soymilk.

  11. IMERG Global Precipitation Rates

    NASA Video Gallery

    NASA's Global Precipitation Measurement mission has produced its first global map of rainfall and snowfall. The GPM Core Observatory launched one year ago on Feb. 27, 2014 as a collaboration betwee...

  12. My NASA Data Precipitation

    NASA Video Gallery

    This lesson has two activities that help students develop a basic understanding of the relationship between cloud type and the form of precipitation and the relationship between the amount of water...

  13. Precipitation Estimates for Hydroelectricity

    NASA Technical Reports Server (NTRS)

    Tapiador, Francisco J.; Hou, Arthur Y.; de Castro, Manuel; Checa, Ramiro; Cuartero, Fernando; Barros, Ana P.

    2011-01-01

    Hydroelectric plants require precise and timely estimates of rain, snow and other hydrometeors for operations. However, it is far from being a trivial task to measure and predict precipitation. This paper presents the linkages between precipitation science and hydroelectricity, and in doing so it provides insight into current research directions that are relevant for this renewable energy. Methods described include radars, disdrometers, satellites and numerical models. Two recent advances that have the potential of being highly beneficial for hydropower operations are featured: the Global Precipitation Measuring (GPM) mission, which represents an important leap forward in precipitation observations from space, and high performance computing (HPC) and grid technology, that allows building ensembles of numerical weather and climate models.

  14. Chemisorption And Precipitation Reactions

    EPA Science Inventory

    The transport and bioavailability of chemical components within soils is, in part, controlled by partitioning between solids and solution. General terms used to describe these partitioning reactions include chemisorption and precipitation. Chemisorption is inclusive of the suit...

  15. Characterisation of Suspension Precipitated Nanocrystalline Hydroxyapatite Powders

    NASA Astrophysics Data System (ADS)

    Mallik, P. K.; Swain, P. K.; Patnaik, S. C.

    2016-02-01

    Hydroxyapatite (HA) is a well-known biomaterial for coating on femoral implants, filling of dental cavity and scaffold for tissue replacement. Hydroxyapatite possess limited load bearing capacity due to their brittleness. In this paper, the synthesis of nanocrystalline hydroxyapatite powders was prepared by dissolving calcium oxide in phosphoric acid, followed by addition of ammonia liquor in a beaker. The prepared solution was stirred by using magnetic stirrer operated at temperature of 80°C for an hour. This leads to the formation of hydroxyapatite precipitate. The precipitate was dried in oven for overnight at 100°C. The dried agglomerated precipitate was calcined at 800°C in conventional furnace for an hour. The influence of calcium oxide concentration and pH on the resulting precipitates was studied using BET, XRD and SEM. As result, a well-defined sub-rounded morphology of powders size of ∼41 nm was obtained with a salt concentration of 0.02 M. Finally, it can be concluded that small changes in the reaction conditions led to large changes in final size, shape and degree of aggregation of the hydroxyapatite particles.

  16. Paleo Mars energetic particle precipitation

    NASA Astrophysics Data System (ADS)

    Alho, Markku; McKenna-Lawlor, Susan; Kallio, Esa

    2015-12-01

    A young Mars may well have possessed a global dipolar magnetic field that provided protection for the planet's atmosphere from the space weather environment. Against this background, we study in the present paper the effect of various dipole magnetic fields on particle precipitation (range 10 keV-4.5 MeV) on the upper Martian atmosphere as the magnetosphere gradually declined to become an induced magnetosphere. We utilized a hybrid plasma model to provide, in a self-consistent fashion, simulations (that included ion-kinetic effects) of the interaction between the Martian obstacle (magnetized or otherwise) and the solar wind. Besides the intrinsic dipole, with field strengths of ~100 nT and below, we assume modern solar and atmospheric parameters to examine the effect of the single variable, that is the dipole strength. We thereby investigated the precipitation of solar energetic particles on the upper atmosphere of the planet in circumstances characterized by the evolution of a diminishing Martian dynamo that initially generated an ideal dipolar field. It is demonstrated that an assumed Martian dipole would have provided, in the energy range investigated, significant shielding against proton impingement and that the interaction between the solar wind and the assumed Martian magnetic dipole would have been responsible for generating the shielding effect identified.

  17. PRECIPITATION OF URANIUM PEROXIDE OF LOW FLUORIDE CONTENT FROM SOLUTIONS CONTAINING FLUORIDES

    DOEpatents

    King, E.J.; Clark, H.M.

    1958-08-12

    S>A method is described for the preparation of fluoride free uraniunn peroxide precipitates, even though the solution from which the precipitation is made is contaminated with fluorides. This is accomplished by add ing aluminum ions to the solution, where they complex any fluoride present and prevent its precipitation with the uramum peroxide.

  18. Aggregation kinetics of latex microspheres in alcohol-water media.

    PubMed

    Odriozola, G; Schmitt, A; Callejas-Fernández, J; Hidalgo-Alvarez, R

    2007-06-15

    We report zeta potential and aggregation kinetics data on colloidal latex particles immersed in water-alcohol media. Zeta potential values show absolute maxima for volume fractions of alcohol of 0.10 and 0.05 for ethanol and 1-propanol, respectively. For methanol, no maximum of the absolute value of the zeta potential was found. Aggregation kinetics was studied by means of a single-cluster optical sizing equipment and for alcohol volume fractions ranging from 0 to 0.1. The aggregation processes are induced by adding different potassium bromide concentrations to the samples. We expected to find a slowdown of the overall aggregation kinetics for ethanol and 1-propanol, and no significant effect for methanol, as compared with pure water data. That is, we expected the zeta potential to govern the overall aggregation rate. However, we obtained a general enhancement of the aggregation kinetics for methanol and 1-propanol and a general slowdown of the aggregation rate for ethanol. In addition, aggregation data under ethanol show a slower kinetics for large electrolyte concentration than that obtained for intermediate electrolyte concentration. We think that these anomalous behaviors are linked to layering, changes in hydrophobicity of particle surfaces due to alcohol adsorption, complex ion-water-alcohol-surface structuring, and competition between alcohol-surface adsorption and alcohol-alcohol clustering.

  19. Tracking protein aggregate interactions

    PubMed Central

    Bartz, Jason C; Nilsson, K Peter R

    2011-01-01

    Amyloid fibrils share a structural motif consisting of highly ordered β-sheets aligned perpendicular to the fibril axis.1, 2 At each fibril end, β-sheets provide a template for recruiting and converting monomers.3 Different amyloid fibrils often co-occur in the same individual, yet whether a protein aggregate aids or inhibits the assembly of a heterologous protein is unclear. In prion disease, diverse prion aggregate structures, known as strains, are thought to be the basis of disparate disease phenotypes in the same species expressing identical prion protein sequences.4–7 Here we explore the interactions reported to occur when two distinct prion strains occur together in the central nervous system. PMID:21597336

  20. Zooplankton Aggregations Near Sills

    DTIC Science & Technology

    2003-09-30

    frequency echo-sounder system. This data were supplemented with multi-net (BIONESS) trawls, bongo nets, and otter trawls (operated by D. Mackas and group...side. The general composition of the zooplankton aggregations can be deduced from the relative levels of the three echo-sounder frequencies; krill ...Nov. 20th, 2002. Krill layer is evident at 66 – 90 m, coincident with BIONESS trawl through the region. 3 Figure 2 shows a comparison between

  1. MINERAL-SURFACTANT INTERACTIONS FOR MINIMUM REAGENTS PRECIPITATION AND ADSORPTION FOR IMPROVED OIL RECOVERY

    SciTech Connect

    P. Somasundaran

    2005-04-30

    The aim of this project is to delineate the role of mineralogy of reservoir rocks in determining interactions between reservoir minerals and externally added reagents (surfactants/polymers) and its effect on critical solid-liquid and liquid-liquid interfacial properties such as adsorption, wettability and interfacial tension in systems relevant to reservoir conditions. Previous studies have suggested that significant surfactant loss by precipitation or adsorption on reservoir minerals can cause chemical schemes to be less than satisfactory for enhanced oil recovery. Both macroscopic adsorption, wettability and microscopic orientation and conformation studies for various surfactant/polymer mixtures/reservoir rocks systems were conducted to explore the cause of chemical loss by means of precipitation or adsorption, and the effect of rock mineralogy on the chemical loss. During this period, the adsorption of mixed system of n-dodecyl-{beta}-D-maltoside (DM) and dodecyl sulfonate (C{sub 12}SO{sub 3}Na) has been studied. The effects of solution pH, surfactant mixing ratio and different salts on surfactant adsorption on alumina have been investigated in detail. Along with these adsorption studies, changes in mineral wettability due to the adsorption of the mixtures were determined under relevant conditions to identify the nano-structure of the adsorbed layers. Solution properties of C{sub 12}SO{sub 3}Na/DM mixtures were also studied to identify surfactant interactions that affect the mixed aggregate formation in solution. Adsorption of SDS on gypsum and limestone suggested stronger surfactant/mineral interaction than on alumina, due to the precipitation of surfactant by dissolved calcium ions. The effects of different salts such as sodium nitrate, sodium sulfite and sodium chloride on DM adsorption on alumina have also been determined. As surfactant hemimicelles at interface and micelles in solution have drastic effects on oil recovery processes, their microstructures in

  2. COSMIC DUST AGGREGATION WITH STOCHASTIC CHARGING

    SciTech Connect

    Matthews, Lorin S.; Hyde, Truell W.; Shotorban, Babak

    2013-10-20

    The coagulation of cosmic dust grains is a fundamental process which takes place in astrophysical environments, such as presolar nebulae and circumstellar and protoplanetary disks. Cosmic dust grains can become charged through interaction with their plasma environment or other processes, and the resultant electrostatic force between dust grains can strongly affect their coagulation rate. Since ions and electrons are collected on the surface of the dust grain at random time intervals, the electrical charge of a dust grain experiences stochastic fluctuations. In this study, a set of stochastic differential equations is developed to model these fluctuations over the surface of an irregularly shaped aggregate. Then, employing the data produced, the influence of the charge fluctuations on the coagulation process and the physical characteristics of the aggregates formed is examined. It is shown that dust with small charges (due to the small size of the dust grains or a tenuous plasma environment) is affected most strongly.

  3. Spontaneous precipitation of struvite from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Bouropoulos, Nicolaos Ch; Koutsoukos, Petros G.

    2000-06-01

    The kinetics of the spontaneous precipitation of struvite was investigated in aqueous supersaturated solutions containing stoichiometric concentrations of Mg 2+, NH 4+ and PO 43- ions, ionic strenght 0.15 M NaCl and at 25°C in a batch, stirred reactor at constant supersaturation. The induction times preceding the onset of struvite precipitation and the initial rates of precipitation were measured directly from the traces of titrants added in order to maintain the solution supersaturation. From the measurement of the induction times as a function of the solution supersaturation, the stability diagram of the system was constructed. In all cases the only solid-phase forming was identified as struvite. Kinetic analysis of the rates, which depended strongly on the solution supersaturation yielding a second-order dependence, suggested a surface diffusion mechanism. The precipitated struvite crystals showed a high negative charge which increased as a function of the solution pH while the presence of magnesium ions affected the microelectrophoretic mobility of struvite dispersions yielding an isoelectric point at pMg of 1.75.

  4. Proteins aggregation and human diseases

    NASA Astrophysics Data System (ADS)

    Hu, Chin-Kun

    2015-04-01

    Many human diseases and the death of most supercentenarians are related to protein aggregation. Neurodegenerative diseases include Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), frontotemporallobar degeneration, etc. Such diseases are due to progressive loss of structure or function of neurons caused by protein aggregation. For example, AD is considered to be related to aggregation of Aβ40 (peptide with 40 amino acids) and Aβ42 (peptide with 42 amino acids) and HD is considered to be related to aggregation of polyQ (polyglutamine) peptides. In this paper, we briefly review our recent discovery of key factors for protein aggregation. We used a lattice model to study the aggregation rates of proteins and found that the probability for a protein sequence to appear in the conformation of the aggregated state can be used to determine the temperature at which proteins can aggregate most quickly. We used molecular dynamics and simple models of polymer chains to study relaxation and aggregation of proteins under various conditions and found that when the bending-angle dependent and torsion-angle dependent interactions are zero or very small, then protein chains tend to aggregate at lower temperatures. All atom models were used to identify a key peptide chain for the aggregation of insulin chains and to find that two polyQ chains prefer anti-parallel conformation. It is pointed out that in many cases, protein aggregation does not result from protein mis-folding. A potential drug from Chinese medicine was found for Alzheimer's disease.

  5. Aluminosilicate Precipitation Impact on Uranium

    SciTech Connect

    WILMARTH, WILLIAM

    2006-03-10

    Experiments have been conducted to examine the fate of uranium during the formation of sodium aluminosilicate (NAS) when wastes containing high aluminate concentrations are mixed with wastes of high silicate concentration. Testing was conducted at varying degrees of uranium saturation. Testing examined typical tank conditions, e.g., stagnant, slightly elevated temperature (50 C). The results showed that under sub-saturated conditions uranium is not removed from solution to any large extent in both simulant testing and actual tank waste testing. This aspect was not thoroughly understood prior to this work and was necessary to avoid criticality issues when actual tank wastes were aggregated. There are data supporting a small removal due to sorption of uranium on sites in the NAS. Above the solubility limit the data are clear that a reduction in uranium concentration occurs concomitant with the formation of aluminosilicate. This uranium precipitation is fairly rapid and ceases when uranium reaches its solubility limit. At the solubility limit, it appears that uranium is not affected, but further testing might be warranted.

  6. Precipitation of PEG/Carboxyl-Modified Gold Nanoparticles with Magnesium Pyrophosphate: A New Platform for Real-Time Monitoring of Loop-Mediated Isothermal Amplification.

    PubMed

    Qin, Ailin; Fu, Lok Tin; Wong, Jacky K F; Chau, Li Yin; Yip, Shea Ping; Lee, Thomas M H

    2017-03-29

    Gold nanoparticles have proven to be promising for decentralized nucleic acid testing by virtue of their simple visual readout and absorbance-based quantification. A major challenge toward their practical application is to achieve ultrasensitive detection without compromising simplicity. The conventional strategy of thermocycling amplification is unfavorable (because of both instrumentation and preparation of thermostable oligonucleotide-modified gold nanoparticle probes). Herein, on the basis of a previously unreported co-precipitation phenomenon between thiolated poly(ethylene glycol)/11-mercaptoundecanoic acid co-modified gold nanoparticles and magnesium pyrophosphate crystals (an isothermal DNA amplification reaction byproduct), a new ultrasensitive and simple DNA assay platform is developed. The binding mechanism underlying the co-precipitation phenomenon is found to be caused by the complexation of carboxyl and pyrophosphate with free magnesium ions. Remarkably, poly(ethylene glycol) does not hinder the binding and effectively stabilizes gold nanoparticles against magnesium ion-induced aggregation (without pyrophosphate). In fact, a similar phenomenon is observed in other poly(ethylene glycol)- and carboxyl-containing nanomaterials. When the gold nanoparticle probe is incorporated into a loop-mediated isothermal amplification reaction, it remains as a red dispersion for a negative sample (in the absence of a target DNA sequence) but appears as a red precipitate for a positive sample (in the presence of a target). This results in a first-of-its-kind gold nanoparticle-based DNA assay platform with isothermal amplification and real-time monitoring capabilities.

  7. Contribution of natural and anthropogenic emissions to acid precipitation formation in the Mexico City Metropolitan Area

    SciTech Connect

    Garcia, L.; Barrera, G.; Castellanos, L.; Moreno, D.

    1996-12-31

    The emissions of precursor compounds that contribute significantly the formation of acid precipitation in urban areas are associated with the burning of fossils fuels from mobile, area and point sources. In Mexico City, these include services, institutions and residences aggregated as area sources, as well as industrial point sources, including smelting, refinement of petroleum and power generation. In addition, dusts from soil erosion and lack of vegetation in the urban landscape contribute to modification of natural rain water. It is common knowledge that acid precipitation characterizes a large variety of compounds, as much related to precursor emissions as to prevailing environmental factors. This study attempts to establish the contribution of natural and anthropogenic emissions and meteorological conditions during the rainy season by analysis of spatial and temporal distributions, as of different ions in solution with rain water, as well as the modeling of wind patterns, as represented by using the arc/info software. This study`s results also show the geographic areas impacted by the acid rain phenomenon and the acidification rates in the Mexico City Metropolitan Area during the past 3 years.

  8. The Sensitivity of Orographic Precipitation to Flow Direction

    NASA Astrophysics Data System (ADS)

    Mass, C.; Picard, L.

    2015-12-01

    An area of substantial interest is the sensitivity of orographic precipitation to the characteristics of the incoming flow and to the surrounding environment. Some studies have suggested substantial sensitivity of precipitation within individual river drainages for relatively small directional or stability variations of incoming flow. A characterization of such flow sensitivity would be of great value for hydrometeorological prediction, the determination of Probable Maximum Precipitation statistics, and for quantifying the uncertainty in precipitation and hydrological forecasts. To gain insight into this problem, an idealized version of the Weather Research and Forecasting (WRF) modeling system was created in which simulations are driven by a single vertical sounding, with the assumption of thermal wind balance. The actual terrain is used and the full physics complement of the modeling system. The presentation will show how precipitation over the Olympic Mountains of Washington State varies as flow direction changes. This analysis will include both the aggregate precipitation over the barrier and the precipitation within individual drainages or areas. The role of surrounding terrain and the nearby coastline are also examined by removing these features from simulations. Finally, the impact of varying flow stability and speed on the precipitation over this orographic feature will be described.

  9. Aggregation and disaggregation of radar rainfall rates

    NASA Astrophysics Data System (ADS)

    Krebsbach, K.; Friederichs, P.

    2012-12-01

    advantage of such a latent variable approach is that the occurrence as well as the intensity of rainfall are modeled by a single spatial process. The correlation function is then estimated as a function of the lag distance in space (and time) using the maximum likelihood method. Finally the Gaussian Markov random field is fitted such that its inverse is close to the empirical covariance matrix in some matrix norm. Therefore we use a minimum least squares method and implement a penalty term to assure the positive definiteness of the resulting covariance matrix. Note, that throughout our calculations we assume stationarity. The statistical model then allows for a disaggregation and aggregation of precipitation rates.

  10. Centrifugal precipitation chromatography.

    PubMed

    Ito, Yoichiro; Qi, Lin

    2010-01-15

    Centrifugal precipitation chromatography separates analytes according their solubility in ammonium sulfate (AS) solution and other precipitants. The separation column is made from a pair of long spiral channels partitioned with a semipermeable membrane. In a typical separation, concentrated ammonium sulfate is eluted through one channel while water is eluted through the other channel in the opposite direction. This countercurrent process forms an exponential AS concentration gradient through the water channel. Consequently, protein samples injected into the water channel is subjected to a steadily increasing AS concentration and at the critical AS concentration they are precipitated and deposited in the channel bed by the centrifugal force. Then the chromatographic separation is started by gradually reducing the AS concentration in the AS channel which lowers the AS gradient concentration in the water channel. This results in dissolution of deposited proteins which are again precipitated at an advanced critical point as they move through the channel. Consequently, proteins repeat precipitation and dissolution through a long channel and finally eluted out from the column in the order of their solubility in the AS solution. The present method has been successfully applied to a number of analytes including human serum proteins, recombinant ketosteroid isomerase, carotenoid cleavage enzymes, plasmid DNA, polysaccharide, polymerized pigments, PEG-protein conjugates, etc. The method is capable to single out the target species of proteins by affinity ligand or immunoaffinity separation.

  11. Aggregation, sedimentation, dissolution and bioavailability of ...

    EPA Pesticide Factsheets

    To understand their fate and transport in estuarine systems, the aggregation, sedimentation, and dissolution of CdSe quantum dots (QDs) in seawater were investigated. Hydrodynamic size increased from 40 to 60 nm to >1 mm within 1 h in seawater, and the aggregates were highly polydispersed. Their sedimentation rates in seawater were measured to be 4–10 mm/day. Humic acid (HA), further increased their size and polydispersity, and slowed sedimentation. Light increased their dissolution and release of dissolved Cd. The ZnS shell also slowed release of Cd ions. With sufficient light, HA increased the dissolution of QDs, while with low light, HA alone did not change their dissolution. The benthic zone in estuarine systems is the most probable long-term destination of QDs due to aggregation and sedimentation. The bioavailability of was evaluated using the mysid Americamysis bahia. The 7-day LC50s of particulate and dissolved QDs were 290 and 23 μg (total Cd)/L, respectively. For mysids, the acute toxicity appears to be from Cd ions; however, research on the effects of QDs should be conducted with other organisms where QDs may be lodged in critical tissues such as gills or filtering apparatus and Cd ions may be released and delivered directly to those tissues. Because of their increasing use and value to society, cadmium-based quantum dots (QDs) will inevitably find their way into marine systems. In an effort to understand the fate and transport of CdSe QDs in estuar

  12. Copper Oxide Precipitates in NBS Standard Reference Material 482

    PubMed Central

    Windsor, Eric S.; Carlton, Robert A.; Gillen, Greg; Wight, Scott A.; Bright, David S.

    2002-01-01

    Copper oxide has been detected in the copper containing alloys of NBS Standard Reference Material (SRM) 482. This occurrence is significant because it represents heterogeneity within a standard reference material that was certified to be homogeneous on a micrometer scale. Oxide occurs as elliptically to spherically shaped precipitates whose size differs with alloy composition. The largest precipitates occur in the Au20-Cu80 alloy and range in size from submicrometer up to 2 μm in diameter. Precipitates are observed using light microscopy, electron microscopy, and secondary ion mass spectrometry (SIMS). SIMS has demonstrated that the precipitates are present within all the SRM 482 wires that contain copper. Only the pure gold wire is precipitate free. Initial results from the analysis of the Au20-Cu80 alloy indicate that the percentage of precipitates is less than 1 % by area. Electron probe microanalysis (EPMA) of large (2 μm) precipitates in this same alloy indicates that precipitates are detectable by EPMA and that their composition differs significantly from the certified alloy composition. The small size and low percentage of these oxide precipitates minimizes the impact that they have upon the intended use of this standard for electron probe microanalysis. Heterogeneity caused by these oxide precipitates may however preclude the use of this standard for automated EPMA analyses and other microanalysis techniques. PMID:27446759

  13. Activation of alpha chymotrypsin by three phase partitioning is accompanied by aggregation.

    PubMed

    Rather, Gulam Mohmad; Mukherjee, Joyeeta; Halling, Peter James; Gupta, Munishwar Nath

    2012-01-01

    Precipitation of alpha chymotrypsin in the simultaneous presence of ammonium sulphate and t-butanol (three phase partitioning) resulted in preparations which showed self aggregation of the enzyme molecules. Precipitation with increasing amounts of ammonium sulphate led to increasing size of aggregates. While light scattering estimated the hydrodynamic diameter of these aggregates in the range of 242-1124 nm; Nanoparticle tracking analysis (NTA) gave the value as 130-462 nm. Scanning electron microscopy and gel filtration on Sephadex G-200 showed extensive aggregation in these preparations. Transmission electron microscopy showed that the aggregates had irregular shapes. All the aggregates had about 3× higher catalytic activity than the native enzyme. These aggregates did not differ in λ(max) of fluorescence emission which was around 340 nm. However, all the aggregates showed higher fluorescence emission intensity. Far-UV and near-UV circular dichroism also showed no significant structural changes as compared to the native molecule. Interestingly, HPLC gel filtration (on a hydroxylated silica column) gave 14 nm as the diameter for all preparations. Light scattering of preparations in the presence of 10% ethylene glycol also dissociated the aggregates to monomers of 14 nm. Both these results indicated that hydrophobic interactions were the driving force behind this aggregation. These results indicate: (1) Even without any major structural change, three phase partitioning led to protein molecules becoming highly prone to aggregation. (2) Different methods gave widely different estimates of sizes of aggregates. It was however possible to reconcile the data obtained with various approaches. (3) The nature of the gel filtration column is crucial and use of this technique for refolding and studying aggregation needs a rethink.

  14. Gold Ion-Angiotensin Peptide Interaction by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Lee, Jenny; Jayathilaka, Lasanthi P.; Gupta, Shalini; Huang, Jin-Sheng; Lee, Bao-Shiang

    2012-05-01

    Stimulated by the interest in developing gold compounds for treating cancer, gold ion-angiotensin peptide interactions are investigated by mass spectrometry. Under the experimental conditions used, the majority of gold ion-angiotensin peptide complexes contain gold in the oxidation states I and III. Both ESI-MS and MALDI-TOF MS detect singly/multiply charged ions for mononuclear/multinuclear gold-attached peptides, which are represented as [peptide + a Au(I) + b Au(III) + (e - a -3b) H]e+, where a,b ≥ 0 and e is charge. ESI-MS data shows singly/multiply charged ions of Au(I)-peptide and Au(III)-peptide complexes. This study reveals that MALDI-TOF MS mainly detects singly charged Au(I)-peptide complexes, presumably due to the ionization process. The electrons in the MALDI plume seem to efficiently reduce Au(III) to Au(I). MALDI also tends to enhance the higher polymeric forms of gold-peptide complexes regardless of the laser power used. Collision-induced dissociation experiments of the mononuclear and dinuclear gold-attached peptide ions for angiotensin peptides show that the gold ion (a soft acid) binding sites are in the vicinity of Cys (a soft ligand), His (a major anchor of peptide for metal ion chelation), and the basic residue Arg. Data also suggests that the abundance of gold-attached peptides increases with higher gold concentration until saturation, after which an increase in gold ion concentration leads to the aggregation and/or precipitation of gold-bound peptides.

  15. The influence of erythrocyte aggregation on induced platelet aggregation.

    PubMed

    Ott, C; Lardi, E; Schulzki, T; Reinhart, W H

    2010-01-01

    Red blood cells (RBCs) affect platelet aggregation in flowing blood (primary hemostasis). We tested the hypothesis that RBC aggregation could influence platelet aggregation. RBC aggregation was altered in vitro by: (i) changing plasma aggregatory properties with 3.7 g% dextran 40 (D40), 3.0 g% dextran 70 (D70) or 1.55 g% dextran 500 (D500); (ii) changing RBC aggregatory properties by incubating RBCs in 50 mU/ml neuraminidase for 60 min (reduction of the surface sialic acid content, thus reducing electrostatic repulsion) and subsequent RBC resuspension in platelet rich plasma (PRP) containing 1 g% dextran 70. RBC aggregation was assessed with the sedimentation rate (ESR). Platelet aggregation was measured: (i) in flowing whole blood with a platelet function analyzer PFA-100(R), which simulates in vivo conditions with RBCs flowing in the center and platelets along the wall, where they adhere to collagen and aggregate; and (ii) in a Chrono-log 700 Aggregometer, which measures changes of impedance by platelet aggregation in whole blood or changes in light transmission in PRP. We found that RBC aggregation increased with increasing molecular weight of dextran (ESR: 4 +/- 3 mm/h, 34 +/- 14 mm/h and 89 +/- 23 mm/hfor D40, D70 and D500, respectively, p < 0.0001) and with neuraminidase-treated RBCs (76 +/- 27 mm/h vs 27 +/- 8 mm/h, respectively, p < 0.0001). Platelet aggregation measured in whole blood under flow conditions (PFA-100) and without flow (Chronolog Aggregometer) was not affected by RBC aggregation. Our data suggest that RBC aggregation does not affect platelet aggregation in vitro and plays no role in primary hemostasis.

  16. Precipitation of heterogeneous nanostructures: Metal nanoparticles and dielectric nanocrystallites

    SciTech Connect

    Masai, Hirokazu; Takahashi, Yoshihiro; Fujiwara, Takumi; Tokuda, Yomei; Yoko, Toshinobu

    2010-07-15

    Heterogeneous precipitation of nanocrystallites of metallic Bi and anatase was observed in CaO-Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-TiO{sub 2} glass-ceramics. Addition of AlN reduced the Bi{sub 2}O{sub 3} to Bi metal nanoparticles, which were uniformly dispersed in the glass. After heat-treatment of the Bi-precipitated glass around the glass transition temperature, nanocrystalline anatase precipitated out without aggregation of the Bi metal particles. It was found that the anatase nanocrystal size was affected by the distance between a nanocrystal and a precipitated Bi nanoparticle. The glass-ceramic produced is a functional material containing a random dispersion of different types of nanoparticles with different dielectric constants.

  17. Precipitation-Regulated Feedback

    NASA Astrophysics Data System (ADS)

    Voit, Mark

    2016-07-01

    Star formation in the central galaxies of galaxy clusters appears to be fueled by precipitation of cold clouds out of hot circumgalactic gas via thermal instability. I will present both observational and theoretical support for the precipitation mode in large galaxies and discuss how it can be implemented in cosmological simulations of galaxy evolution. Galaxy cluster cores are unique laboratories for studying the astrophysics of thermal instability and may be teaching us valuable lessons about how feedback works in galaxies spanning the entire mass spectrum.

  18. Copper-triggered aggregation of ubiquitin.

    PubMed

    Arnesano, Fabio; Scintilla, Simone; Calò, Vincenza; Bonfrate, Elena; Ingrosso, Chiara; Losacco, Maurizio; Pellegrino, Teresa; Rizzarelli, Enrico; Natile, Giovanni

    2009-09-16

    Neurodegenerative disorders share common features comprising aggregation of misfolded proteins, failure of the ubiquitin-proteasome system, and increased levels of metal ions in the brain. Protein aggregates within affected cells often contain ubiquitin, however no report has focused on the aggregation propensity of this protein. Recently it was shown that copper, differently from zinc, nickel, aluminum, or cadmium, compromises ubiquitin stability and binds to the N-terminus with 0.1 micromolar affinity. This paper addresses the role of copper upon ubiquitin aggregation. In water, incubation with Cu(II) leads to formation of spherical particles that can progress from dimers to larger conglomerates. These spherical oligomers are SDS-resistant and are destroyed upon Cu(II) chelation or reduction to Cu(I). In water/trifluoroethanol (80:20, v/v), a mimic of the local decrease in dielectric constant experienced in proximity to a membrane surface, ubiquitin incubation with Cu(II) causes time-dependent changes in circular dichroism and Fourier-transform infrared spectra, indicative of increasing beta-sheet content. Analysis by atomic force and transmission electron microscopy reveals, in the given order, formation of spherical particles consistent with the size of early oligomers detected by gel electrophoresis, clustering of these particles in straight and curved chains, formation of ring structures, growth of trigonal branches from the rings, coalescence of the trigonal branched structures in a network. Notably, none of these ubiquitin aggregates was positive to tests for amyloid and Cu(II) chelation or reduction produced aggregate disassembly. The early formed Cu(II)-stabilized spherical oligomers, when reconstituted in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) liposomes and in POPC planar bilayers, form annular and pore-like structures, respectively, which are common to several neurodegenerative disorders including Parkinson's, Alzheimer's, amyotrophic

  19. [Chemical characteristics of atmospheric precipitation in Shenzhen].

    PubMed

    Niu, Yu-wen; He, Ling-yan; Hu, Min

    2008-04-01

    The precipitation chemical components are good indicators of the air pollution. With rapid economic developing, air quality has greatly changed in Shenzhen. To investigate Chemical feature of precipitation and atmospheric pollution characteristics in Shenzhen, two-year precipitation samples in Shenzhen were collected and analyzed. Based on the dataset, chemical characteristics of rainwater in Shenzhen were discussed. Results show that the concentration of the sum of anions and rations in Shenzhen rainwater was lower compared to northern cities like Beijing, whereas the acidification of rainwater was very serious in Shenzhen. Volume-weighted mean pH values of rainwater were 4.48 and 4.68 respectively, and 88% and 91% of rain events were acidic in 2004 and 2005, respectively. The contribution of SO4(2-) to Shenzhen rainwater acidity was smaller than that in northern cities and NO3- and Cl- played an important part to acidification of Shenzhen precipitation. The contribution of Cl- and Na+ to rainwater chemical components was higher, indicating the significant marine influence on Shenzhen precipitation. The secondary components like SO4(2-), NO3- and NH4+ contributed significantly to total ions of rainwater and they accounted for more than 40% of total ions in 2004 and 2005, which indicated the severe secondary pollution in Shenzhen. There was the obvious difference in origins for different rainwater components. Cl-, K+ and Na+ were mainly from marine contribution while SO4(2-), NO3-, Ca2+ and Mg2+ were mainly from non-sea salt fraction. Formic acid, acetic acid and oxalic acid were most abundant low-molecular weight organic acids and the sum of their concentrations accounted for 94% and 99% of total organic acids determined in 2004 and 2005, respectively.

  20. The Global Precipitation Mission

    NASA Technical Reports Server (NTRS)

    Braun, Scott; Kummerow, Christian

    2000-01-01

    The Global Precipitation Mission (GPM), expected to begin around 2006, is a follow-up to the Tropical Rainfall Measuring Mission (TRMM). Unlike TRMM, which primarily samples the tropics, GPM will sample both the tropics and mid-latitudes. The primary, or core, satellite will be a single, enhanced TRMM satellite that can quantify the 3-D spatial distributions of precipitation and its associated latent heat release. The core satellite will be complemented by a constellation of very small and inexpensive drones with passive microwave instruments that will sample the rainfall with sufficient frequency to be not only of climate interest, but also have local, short-term impacts by providing global rainfall coverage at approx. 3 h intervals. The data is expected to have substantial impact upon quantitative precipitation estimation/forecasting and data assimilation into global and mesoscale numerical models. Based upon previous studies of rainfall data assimilation, GPM is expected to lead to significant improvements in forecasts of extratropical and tropical cyclones. For example, GPM rainfall data can provide improved initialization of frontal systems over the Pacific and Atlantic Oceans. The purpose of this talk is to provide information about GPM to the USWRP (U.S. Weather Research Program) community and to discuss impacts on quantitative precipitation estimation/forecasting and data assimilation.

  1. Total Precipitable Water

    SciTech Connect

    2012-01-01

    The simulation was performed on 64K cores of Intrepid, running at 0.25 simulated-years-per-day and taking 25 million core-hours. This is the first simulation using both the CAM5 physics and the highly scalable spectral element dynamical core. The animation of Total Precipitable Water clearly shows hurricanes developing in the Atlantic and Pacific.

  2. Monoclonal antibody aggregation intermediates visualized by atomic force microscopy.

    PubMed

    Lee, Hanjoo; Kirchmeier, Marc; Mach, Henryk

    2011-02-01

    Ubiquitous but highly variable processes of therapeutic protein aggregation remain poorly characterized, especially in the context of common infusion reactions and clinical immunogenicity. Among the numerous challenges is the characterization of intermediate steps that lead to the appearance of precipitates. Although the biophysical methods for elucidation of secondary and tertiary structures as well as overall size distribution are typically well established in the development laboratories, the use of molecular scale imaging techniques is still relatively rare due to low throughput and technical complexity. In this work, we present the use of atomic force microscopy to examine morphology of monoclonal antibody aggregates. Despite varying in primary structure as a result of different complementarity defining regions, most antibodies studied exhibited a similar aggregation intermediate consisting of several monomers. However, the manner of subsequent condensation of these oligomers appeared to differ between the antibodies, suggesting stability-dependent mechanisms.

  3. Predictive approach for protein aggregation: Correlation of protein surface characteristics and conformational flexibility to protein aggregation propensity.

    PubMed

    Galm, Lara; Amrhein, Sven; Hubbuch, Jürgen

    2016-02-08

    The aggregation of proteins became one of the major challenges in the development of biopharmaceu-ticals since the formation of aggregates can affect drug quality and immunogenicity. However, aggregation mechanisms are highly complex and the investigation requires cost, time, and material intensive experi-mental effort. In the present work, the predictive power of protein characteristics for the phase behavior of three different proteins which are very similar in size and structure was studied. In particular, the surface hydrophobicity, zeta potential, and conformational flexibility of human lysozyme, lysozyme from chicken egg white, and α-lactalbumin at pH 3, 5, 7, and 9 were assessed and examined for correlation with experimental stability studies focusing on protein phase behavior induced by sodium chloride and ammonium sulfate. The molecular dynamics (MD) simulation based study of the conformational flexibility without precipitants was able to identify highly flexible protein regions which could be associated to the less regular secondary structure elements and random coiled and terminal regions in particular. Conformational flex-ibility of the entire protein structure and protein surface hydrophobicity could be correlated to differing aggregation propensities among the studied proteins and could be identified to be applicable for predic-tion of protein phase behavior in aqueous solution without precipitants. For prediction of protein phase behavior and aggregation propensity in aqueous solution with precipitants, protein flexibility was further studied in dependency of salt concentration and species by means of human lysozyme. Even though the results of the salt dependent MD simulations could not be shown to be sufficient for prediction of salt depending phase behavior, this study revealed a more pronounced destabilizing effect of ammonium sulfate in comparison to sodium chloride and thus, was found to be in good agreement with theoretical considerations

  4. The Thermal Structural Transition of α-Crystallin Inhibits the Heat Induced Self-Aggregation

    PubMed Central

    Maulucci, Giuseppe; Papi, Massimiliano; Arcovito, Giuseppe; De Spirito, Marco

    2011-01-01

    -crystallin, the major constituent of human lens, is a member of the heat-shock proteins family and it is known to have a quaternary structural transition at . The presence of calcium ions and/or temperature changes induce supramolecular self-aggregation, a process of relevance in the cataractogenesis. Here we investigate the potential effect of the bovine -crystallin's structural transition on the self-aggregation process. Along all the temperatures investigated, aggregation proceeds by forming intermediate molecular assemblies that successively aggregate in clusters. The final morphology of the aggregates, above and below , is similar, but the aggregation kinetics are completely different. The size of the intermediate molecular assemblies, and their repulsive energy barrier show a marked increase while crossing . Our results highlight the key role of heat modified form of -crystallin in protecting from aggregation and preserving the transparency of the lens under hyperthermic conditions. PMID:21573059

  5. Dye-sensitized solar cell employing zinc oxide aggregates grown in the presence of lithium

    DOEpatents

    Zhang, Qifeng; Cao, Guozhong

    2013-10-15

    Provided are a novel ZnO dye-sensitized solar cell and method of fabricating the same. In one embodiment, deliberately added lithium ions are used to mediate the growth of ZnO aggregates. The use of lithium provides ZnO aggregates that have advantageous microstructure, morphology, crystallinity, and operational characteristics. Employing lithium during aggregate synthesis results in a polydisperse collection of ZnO aggregates favorable for porosity and light scattering. The resulting nanocrystallites forming the aggregates have improved crystallinity and more favorable facets for dye molecule absorption. The lithium synthesis improves the surface stability of ZnO in acidic dyes. The procedures developed and disclosed herein also help ensure the formation of an aggregate film that has a high homogeneity of thickness, a high packing density, a high specific surface area, and good electrical contact between the film and the fluorine-doped tin oxide electrode and among the aggregate particles.

  6. Anodic stripping voltammetry of silver nanoparticles: aggregation leads to incomplete stripping.

    PubMed

    Cloake, Samantha J; Toh, Her Shuang; Lee, Patricia T; Salter, Chris; Johnston, Colin; Compton, Richard G

    2015-02-01

    The influence of nanoparticle aggregation on anodic stripping voltammetry is reported. Dopamine-capped silver nanoparticles were chosen as a model system, and melamine was used to induce aggregation in the nanoparticles. Through the anodic stripping of the silver nanoparticles that were aggregated to different extents, it was found that the peak area of the oxidative signal corresponding to the stripping of silver to silver(I) ions decreases with increasing aggregation. Aggregation causes incomplete stripping of the silver nanoparticles. Two possible mechanisms of 'partial oxidation' and 'inactivation' of the nanoparticles are proposed to account for this finding. Aggregation effects must be considered when anodic stripping voltammetry is used for nanoparticle detection and quantification. Hence, drop casting, which is known to lead to aggregation, is not encouraged for preparing electrodes for analytical purposes.

  7. Holographic characterization of protein aggregates

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Zhong, Xiao; Ruffner, David; Stutt, Alexandra; Philips, Laura; Ward, Michael; Grier, David

    Holographic characterization directly measures the size distribution of subvisible protein aggregates in suspension and offers insights into their morphology. Based on holographic video microscopy, this analytical technique records and interprets holograms of individual aggregates in protein solutions as they flow down a microfluidic channel, without requiring labeling or other exceptional sample preparation. The hologram of an individual protein aggregate is analyzed in real time with the Lorenz-Mie theory of light scattering to measure that aggregate's size and optical properties. Detecting, counting and characterizing subvisible aggregates proceeds fast enough for time-resolved studies, and lends itself to tracking trends in protein aggregation arising from changing environmental factors. No other analytical technique provides such a wealth of particle-resolved characterization data in situ. Holographic characterization promises accelerated development of therapeutic protein formulations, improved process control during manufacturing, and streamlined quality assurance during storage and at the point of use. Mrsec and MRI program of the NSF, Spheryx Inc.

  8. The Relationships Between the Trends of Mean and Extreme Precipitation

    NASA Technical Reports Server (NTRS)

    Zhou, Yaping; Lau, William K.-M.

    2017-01-01

    This study provides a better understanding of the relationships between the trends of mean and extreme precipitation in two observed precipitation data sets: the Climate Prediction Center Unified daily precipitation data set and the Global Precipitation Climatology Program (GPCP) pentad data set. The study employs three kinds of definitions of extreme precipitation: (1) percentile, (2) standard deviation and (3) generalize extreme value (GEV) distribution analysis for extreme events based on local statistics. Relationship between trends in the mean and extreme precipitation is identified with a novel metric, i.e. area aggregated matching ratio (AAMR) computed on regional and global scales. Generally, more (less) extreme events are likely to occur in regions with a positive (negative) mean trend. The match between the mean and extreme trends deteriorates for increasingly heavy precipitation events. The AAMR is higher in regions with negative mean trends than in regions with positive mean trends, suggesting a higher likelihood of severe dry events, compared with heavy rain events in a warming climate. AAMR is found to be higher in tropics and oceans than in the extratropics and land regions, reflecting a higher degree of randomness and more important dynamical rather than thermodynamical contributions of extreme events in the latter regions.

  9. The Global Precipitation Measurement (GPM) Project

    NASA Technical Reports Server (NTRS)

    Azarbarazin, Ardeshir Art; Carlisle, Candace C.

    2008-01-01

    The GIobd Precipitation hleasurement (GPM) mission is an international cooperatiee ffort to advance weather, climate, and hydrological predictions through space-based precipitation measurements. The Core Observatory will be a reference standard to uniform11 calibrate data from a constellatism of spacecraft with passive microuave sensors. GP3l mission data will be used for scientific research as well as societal applications. GPM is being developed under a partnership between the United States (US) National .Aeronautics and Space Administration (XASA) and the Japanese Aerospace and Exploration Agency (JAYA). NASA is developing the Core Observatory, a Low-Inclination Constellation Observatory, two GPM Rlicrowave Imager (GXII) instruments. Ground Validation System and Precipitation Processing System for the GPRl mission. JAXA will provide a Dual-frequency Precipitation Radar (DPR) for installation on the Core satellite and launch services for the Core Observatory. Other US agencies and international partners contribute to the GPkf mission by providing precipitation measurements obtained from their own spacecraft and,'or providing ground-based precipitation measurements to support ground validation activities. The GPM Core Observatory will be placed in a low earth orbit (-400 krn) with 65-degree inclination, in order to calibrate partner instruments in a variety of orbits. The Core Observatory accommodates 3 instruments. The GkfI instrument provides measurements of precipitation intensity and distribution. The DPR consists of Ka and Ku band instruments, and provides threedimensional measurements of cloud structure, precipitation particle size distribution and precipitation intensitj and distribution. The instruments are key drivers for GPM Core Observatory overall size (1 1.6m x 6.5m x 5.0m) and mass (3500kg), as well as the significant (-1 950U.3 power requirement. The Core Spacecraft is being built in-house at Goddard Space Flight Center. The spacecraft structure

  10. Fractal structure of asphaltene aggregates.

    PubMed

    Rahmani, Nazmul H G; Dabros, Tadeusz; Masliyah, Jacob H

    2005-05-15

    A photographic technique coupled with image analysis was used to measure the size and fractal dimension of asphaltene aggregates formed in toluene-heptane solvent mixtures. First, asphaltene aggregates were examined in a Couette device and the fractal-like aggregate structures were quantified using boundary fractal dimension. The evolution of the floc structure with time was monitored. The relative rates of shear-induced aggregation and fragmentation/restructuring determine the steady-state floc structure. The average floc structure became more compact or more organized as the floc size distribution attained steady state. Moreover, the higher the shear rate is, the more compact the floc structure is at steady state. Second, the fractal dimensions of asphaltene aggregates were also determined in a free-settling test. The experimentally determined terminal settling velocities and characteristic lengths of the aggregates were utilized to estimate the 2D and 3D fractal dimensions. The size-density fractal dimension (D(3)) of the asphaltene aggregates was estimated to be in the range from 1.06 to 1.41. This relatively low fractal dimension suggests that the asphaltene aggregates are highly porous and very tenuous. The aggregates have a structure with extremely low space-filling capacity.

  11. Aggregation dynamics of rigid polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Tom, Anvy Moly; Rajesh, R.; Vemparala, Satyavani

    2016-01-01

    Similarly charged polyelectrolytes are known to attract each other and aggregate into bundles when the charge density of the polymers exceeds a critical value that depends on the valency of the counterions. The dynamics of aggregation of such rigid polyelectrolytes are studied using large scale molecular dynamics simulations. We find that the morphology of the aggregates depends on the value of the charge density of the polymers. For values close to the critical value, the shape of the aggregates is cylindrical with height equal to the length of a single polyelectrolyte chain. However, for larger values of charge, the linear extent of the aggregates increases as more and more polymers aggregate. In both the cases, we show that the number of aggregates decrease with time as power laws with exponents that are not numerically distinguishable from each other and are independent of charge density of the polymers, valency of the counterions, density, and length of the polyelectrolyte chain. We model the aggregation dynamics using the Smoluchowski coagulation equation with kernels determined from the molecular dynamics simulations and justify the numerically obtained value of the exponent. Our results suggest that once counterions condense, effective interactions between polyelectrolyte chains short-ranged and the aggregation of polyelectrolytes are diffusion-limited.

  12. Selective precipitation and purification of monovalent proteins using oligovalent ligands and ammonium sulfate.

    PubMed

    Mirica, Katherine A; Lockett, Matthew R; Snyder, Phillip W; Shapiro, Nathan D; Mack, Eric T; Nam, Sarah; Whitesides, George M

    2012-02-15

    This paper describes a method for the selective precipitation and purification of a monovalent protein (carbonic anhydrase is used as a demonstration) from cellular lysate using ammonium sulfate and oligovalent ligands. The oligovalent ligands induce the formation of protein-ligand aggregates, and at an appropriate concentration of dissolved ammonium sulfate, these complexes precipitate. The purification involves three steps: (i) the removal of high-molecular-weight impurities through the addition of ammonium sulfate to the crude cell lysate; (ii) the introduction of an oligovalent ligand and the selective precipitation of the target protein-ligand aggregates from solution; and (iii) the removal of the oligovalent ligand from the precipitate by dialysis to release the target protein. The increase of mass and volume of the proteins upon aggregate formation reduces their solubility, and results in the selective precipitation of these aggregates. We recovered human carbonic anhydrase, from crude cellular lysate, in 82% yield and 95% purity with a trivalent benzene sulfonamide ligand. This method provides a chromatography-free strategy of purifying monovalent proteins--for which appropriate oligovalent ligands can be synthesized--and combines the selectivity of affinity-based purification with the convenience of salt-induced precipitation.

  13. Selective Precipitation and Purification of Monovalent Proteins Using Oligovalent Ligands and Ammonium Sulfate

    PubMed Central

    Mirica, Katherine A.; Lockett, Matthew R.; Snyder, Phillip W.; Shapiro, Nathan D.; Mack, Eric T.; Nam, Sarah; Whitesides, George M.

    2012-01-01

    This paper describes a method for the selective precipitation and purification of a monovalent protein (carbonic anhydrase is used as a demonstration) from cellular lysate using ammonium sulfate and oligovalent ligands. The oligovalent ligands induce the formation of protein-ligand aggregates, and at an appropriate concentration of dissolved ammonium sulfate, these complexes precipitate. The purification involves three steps: i) the removal of high-molecular weight impurities through the addition of ammonium sulfate to the crude cell lysate; ii) the introduction of an oligovalent ligand and the selective precipitation of the target protein-ligand aggregates from solution; and iii) the removal of the oligovalent ligand from the precipitate by dialysis to release the target protein. The increase of mass and volume of the proteins upon aggregate formation reduces their solubility, and results in the selective precipitation of these aggregates. We recovered human carbonic anhydrase, from crude cellular lysate, in 82% yield and 95% purity with a trivalent benzene sulfonamide ligand. This method provides a chromatography-free strategy of purifying monovalent proteins—for which appropriate oligovalent ligands can be synthesized—and combines the selectivity of affinity-based purification with the convenience of salt-induced precipitation. PMID:22188202

  14. [Responses of spatial distribution pattern of Artemisia ordosica population to the precipitation gradient on Ordos Plateau].

    PubMed

    Li, Qiu-shuang; Zhang, Chao; Wang, Fei; Lai, Li-ming; Zhang, Li; Li, Wen-ting; Bai, Hua; Zheng, Yuan-run

    2009-09-01

    Five sites along the precipitation gradient (336-249 mm x a(-1)) from east to west in Ordos Plateau were selected to study the spatial distribution pattern of Artemisia ordosica population and its responses to the precipitation gradient by the methods of variance mean ratio, aggregative index, and point pattern analysis. The reduction of precipitation affected the spatial distribution pattern of A. ordosica population significantly. With decreasing precipitation gradient, the spatial pattern of A. ordosica population changed from uniform to random in small scale, and from random to clumpy in large scale, suggesting that in the ecological restoration of Ordos Plateau, a rational arrangement of A. ordosica should be made.

  15. in situ Calcite Precipitation for Contaminant Immobilization

    SciTech Connect

    Yoshiko Fujita; Robert W. Smith

    2009-08-01

    in situ Calcite Precipitation for Contaminant Immobilization Yoshiko Fujita (Yoshiko.fujita@inl.gov) (Idaho National Laboratory, Idaho Falls, Idaho, USA) Robert W. Smith (University of Idaho-Idaho Falls, Idaho Falls, Idaho, USA) Subsurface radionuclide and trace metal contaminants throughout the U.S. Department of Energy (DOE) complex pose one of DOE’s greatest challenges for long-term stewardship. One promising stabilization mechanism for divalent trace ions, such as the short-lived radionuclide strontium-90, is co-precipitation in calcite. Calcite, a common mineral in the arid western U.S., can form solid solutions with trace metals. The rate of trace metal incorporation is susceptible to manipulation using either abiotic or biotic means. We have previously demonstrated that increasing the calcite precipitation rate by stimulating the activity of urea hydrolyzing microorganisms can result in significantly enhanced Sr uptake. Urea hydrolysis causes the acceleration of calcium carbonate precipitation (and trace metal co-precipitation) by increasing pH and alkalinity, and also by liberating the reactive cations from the aquifer matrix via exchange reactions involving the ammonium ion derived from urea: H2NCONH2 + 3H2O ? 2NH4+ + HCO3- + OH- urea hydrolysis >X:2Ca + 2NH4+ ? 2>X:NH4 + Ca2+ ion exchange Ca2+ + HCO3- + OH- ? CaCO3(s) + H2O calcite precipitation where >X: is a cation exchange site on the aquifer matrix. This contaminant immobilization approach has several attractive features. Urea hydrolysis is catalyzed by the urease enzyme, which is produced by many indigenous subsurface microorganisms. Addition of foreign microbes is unnecessary. In turn the involvement of the native microbes and the consequent in situ generation of reactive components in the aqueous phase (e.g., carbonate and Ca or Sr) can allow dissemination of the reaction over a larger volume and/or farther away from an amendment injection point, as compared to direct addition of the reactants at

  16. Quantitative Characterization of Non-Classic Polarization of Cations on Clay Aggregate Stability

    PubMed Central

    Hu, Feinan; Li, Hang; Liu, Xinmin; Li, Song; Ding, Wuquan; Xu, Chenyang; Li, Yue; Zhu, Longhui

    2015-01-01

    Soil particle interactions are strongly influenced by the concentration, valence and ion species and the pH of the bulk solution, which will also affect aggregate stability and particle transport. In this study, we investigated clay aggregate stability in the presence of different alkali ions (Li+, Na+, K+, and Cs+) at concentrations from10−5 to 10−1 mol L−1. Strong specific ion effects on clay aggregate stability were observed, and showed the order Cs+>K+>Na+>Li+. We found that it was not the effects of ion size, hydration, and dispersion forces in the cation–surface interactions but strong non-classic polarization of adsorbed cations that resulted in these specific effects. In this study, the non-classic dipole moments of each cation species resulting from the non-classic polarization were estimated. By comparing non-classic dipole moments with classic values, the observed dipole moments of adsorbed cations were up to 104 times larger than the classic values for the same cation. The observed non-classic dipole moments sharply increased with decreasing electrolyte concentration. We conclude that strong non-classic polarization could significantly suppress the thickness of the diffuse layer, thereby weakening the electric field near the clay surface and resulting in improved clay aggregate stability. Even though we only demonstrated specific ion effects on aggregate stability with several alkali ions, our results indicate that these effects could be universally important in soil aggregate stability. PMID:25874864

  17. Quantitative characterization of non-classic polarization of cations on clay aggregate stability.

    PubMed

    Hu, Feinan; Li, Hang; Liu, Xinmin; Li, Song; Ding, Wuquan; Xu, Chenyang; Li, Yue; Zhu, Longhui

    2015-01-01

    Soil particle interactions are strongly influenced by the concentration, valence and ion species and the pH of the bulk solution, which will also affect aggregate stability and particle transport. In this study, we investigated clay aggregate stability in the presence of different alkali ions (Li+, Na+, K+, and Cs+) at concentrations from10-5 to 10-1 mol L-1. Strong specific ion effects on clay aggregate stability were observed, and showed the order Cs+>K+>Na+>Li+. We found that it was not the effects of ion size, hydration, and dispersion forces in the cation-surface interactions but strong non-classic polarization of adsorbed cations that resulted in these specific effects. In this study, the non-classic dipole moments of each cation species resulting from the non-classic polarization were estimated. By comparing non-classic dipole moments with classic values, the observed dipole moments of adsorbed cations were up to 104 times larger than the classic values for the same cation. The observed non-classic dipole moments sharply increased with decreasing electrolyte concentration. We conclude that strong non-classic polarization could significantly suppress the thickness of the diffuse layer, thereby weakening the electric field near the clay surface and resulting in improved clay aggregate stability. Even though we only demonstrated specific ion effects on aggregate stability with several alkali ions, our results indicate that these effects could be universally important in soil aggregate stability.

  18. Distribution and variability of precipitation chemistry in the conterminous United States, January through December 1983

    USGS Publications Warehouse

    Rinella, J.F.; Miller, T.L.

    1988-01-01

    Analysis of atmospheric precipitation samples, collected during the 1983 calendar year from 109 National Trends Network sites in the United States, are presented in this report. The sites were grouped into six geographical regions based on the chemical composition of the samples. Precipitation chemistry in these regions was influenced by proximity to (1) oceans, (2) major industrial and fossil-fuel consuming areas, and (3) major agricultural and livestock areas. Frequency distributions of ionic composition, determined on 10 chemical constituents and on precipitation quantities for each site, showed wide variations in chemical concentrations and precipitation quantities from site to site. Of the 109 sites, 55 had data coverage for the year sufficient to characterize precipitation quality patterns on a nationwide basis. Except for ammonium and calcium, both of which showed largest concentrations in the agricultural midwest and plains states, the largest concentrations and loads generally were in areas that include the heavily industrialized population center of the eastern United States. Except for hydrogen, all chemical ions are inversely related to the quantity of precipitation depth. Precipitation quantities generally account for less than 30% of chemical variation in precipitation samples. However, precipitation quantities account for 30 to 65% of the variations of calcium concentrations in precipitation. In regions where precipitation has a large ionic proportion of hydrogen-ion equivalents, much of the hydrogen-ion concentration could be balanced by sulfate equivalents and partly balanced by nitrite-plus-nitrate equivalents. In the regions where hydrogen-ion equivalents in precipitation were smaller, ammonion-and calcium-ion equivalents were necessary, along with the hydrogen-ion equivalents, to balance the sulfate plus nitrite-plus-nitrate equivalent. (USGS)

  19. Control of morphology and nanostructure of copper and cobalt oxalates: Effect of complexing ions, polymeric additives and molecular weight

    NASA Astrophysics Data System (ADS)

    Bowen, Paul; Pujol, Ollivier; Jongen, Nathalie; Lemaître, Jacques; Fink, Alke; Stadleman, Pierre; Hofmann, Heinrich

    2010-11-01

    Precipitated oxalates are often nanostructured and can be used as precursors for nanostructured oxides for different applications. The modification of the particle shape and nanostructures of both copper and cobalt oxalates has been demonstrated using polymeric additives or complexing counter-ions. In the case of cobalt oxalate the characteristic elongated rod particle shape (axial ratio of 10) can be modified by using polymethymethacrylate (PMMA) to produce particles with lower axial ratios of 2, through cubes all the way to platelets (axial ratio 0.2). The PMMA inhibits the growth of the particles along the [101] direction more and more strongly as the concentration of the polymer increases. The crystallite size from XRD line broadening is not modified by the PMMA indicating that the PMMA does not influence the nucleation and growth but modifies the aggregation kinetics. Copper oxalates precipitated in the presence of different cellulose derived polymers with different molecular weights and functional groups (methyl and propyl) showed sensitivity to both molecular weight and functional group. Higher molecular weights did not influence the copper oxalate particle shape, whereas methyl cellulose gave elongated particles and propyl celluloses gave platelet like particles. Copper oxalate precipitated in the presence of acetate counter ions gave platelets with an axial ratio of 0.15 compared to the cushion-like morphology (axial ratio 0.5). The primary crystallites were more elongated along the [001] direction in the presence of acetate, modifying the proportion of the hydrophobic and hydrophilic surfaces and hence influencing the aggregation kinetics and particle shape. The copper and cobalt oxalate particle formation seems to be dominated by the primary particle aggregation with the different additives interacting specifically with different crystallographic faces of the primary particles. By tuning this interaction particles with different shapes and substructures

  20. Precipitation hardening austenitic superalloys

    DOEpatents

    Korenko, Michael K.

    1985-01-01

    Precipitation hardening, austenitic type superalloys are described. These alloys contain 0.5 to 1.5 weight percent silicon in combination with about 0.05 to 0.5 weight percent of a post irradiation ductility enhancing agent selected from the group of hafnium, yttrium, lanthanum and scandium, alone or in combination with each other. In addition, when hafnium or yttrium are selected, reductions in irradiation induced swelling have been noted.

  1. Uncertainties in Arctic Precipitation

    NASA Astrophysics Data System (ADS)

    Majhi, I.; Alexeev, V. A.; Cherry, J. E.; Cohen, J. L.; Groisman, P. Y.

    2012-12-01

    Arctic precipitation is riddled with measurement biases; to address the problem is imperative. Our study focuses on comparison of various datasets and analyzing their biases for the region of Siberia and caution that is needed when using them. Five sources of data were used ranging from NOAA's product (RAW, Bogdanova's correction), Yang's correction technique and two reanalysis products (ERA-Interim and NCEP). The reanalysis dataset performed better for some months in comparison to Yang's product, which tends to overestimate precipitation, and the raw dataset, which tends to underestimate. The sources of bias vary from topography, to wind, to missing data .The final three products chosen show higher biases during the winter and spring season. Emphasis on equations which incorporate blizzards, blowing snow and higher wind speed is necessary for regions which are influenced by any or all of these factors; Bogdanova's correction technique is the most robust of all the datasets analyzed and gives the most reasonable results. One of our future goals is to analyze the impact of precipitation uncertainties on water budget analysis for the Siberian Rivers.

  2. [Calcium ions distribution in mixed synapses of the mauthner neurons of goldfish in the norm, fatigue, and adaptation state].

    PubMed

    Moshkov, D A; Bezgina, E N; Pavlik, L L; Mukhtasimova, N F; Mavliutov, T A

    2003-01-01

    The aim of this investigation was to study the structure of giant myelinated club-shaped terminals (afferent mixed synapses) of goldfish Mauthner (M-) cells in different functional states and to demonstrate calcium ion localization in them using modified pyroantimonate method. It was shown that in intact preparations calcium pyroantimonate precipitate was detected neither in gap junctions (GJ) nor in desmosome-like junctions (DLJ). The fibrillar bridges within DLJ cleft were not contrasted. After natural stimulation, which elaborated a long-term adaptation of M-cells, electron dense precipitate was found in GJ, lining all the cleft. Simultaneously fine granules and aggregates of precipitate appeared in DLJ gap and were intensely deposited over the bridges. It is known that the increase of calcium ion concentration up to and above the level demonstrable by pyroantimonate method blocks the electrotonic coupling and that filamentous actin is able to conduct electrotonic signal as a cationic current. Therefore calcium pyroantimonate staining of DLJ bridges, which were earlier shown to contain actin, indicates the association of calcium ions with filamentous actin, i.e. the functioning of bridges as transsynaptic electrotonic shunts at a moment of fixation. The data obtained allow to make a conclusion that DLJ in mixed synapses have not only a known adhesive function, but also a communicative one. The latter is manifested in extreme conditions, thus permitting synapse to maintain or change their conductivity in accordance with environmental demands.

  3. Topics in Probabilistic Judgment Aggregation

    ERIC Educational Resources Information Center

    Wang, Guanchun

    2011-01-01

    This dissertation is a compilation of several studies that are united by their relevance to probabilistic judgment aggregation. In the face of complex and uncertain events, panels of judges are frequently consulted to provide probabilistic forecasts, and aggregation of such estimates in groups often yield better results than could have been made…

  4. Mineral of the month: aggregates

    USGS Publications Warehouse

    Tepordei, Valentin V.

    2005-01-01

    Natural aggregates, consisting of crushed stone, and sand and gravel, are a major contributor to economic health, and have an amazing variety of uses. Aggregates are among the most abundant mineral resources and are major basic raw materials used by construction, agriculture and other industries that employ complex chemical and metallurgical processes.

  5. Caprylic acid precipitation method for impurity reduction: an alternative to conventional chromatography for monoclonal antibody purification.

    PubMed

    Brodsky, Yan; Zhang, Cheng; Yigzaw, Yinges; Vedantham, Ganesh

    2012-10-01

    We report the use of caprylic acid based impurity precipitation as (1) an alternative method to polishing chromatography techniques commonly used for monoclonal antibody purification and (2) an impurity reduction step prior to harvesting the bioreactor. This impurity reduction method was tested with protein A purified antibodies and with cell culture fluid. First, the operational parameters influencing precipitation of host cell proteins and high molecular weight aggregate in protein A pools were investigated. When used as a polishing step, the primary factor affecting purification and yield was determined to be pH. Caprylic acid precipitation was comparable to polishing IEX chromatography in reducing host cell protein and aggregate levels. A virus reduction study showed complete clearance of a model retrovirus during caprylic acid precipitation of protein A purified antibody. Caprylic acid mediated impurity precipitation in cell culture showed that the impurity clearance was generally insensitive to pH and caprylic acid concentration whereas yield was a function of caprylic acid concentration. Protein A purification of caprylic acid precipitated cell culture fluid generated less turbid product pool with reduced levels of host cell proteins and high molecular weight aggregate. The results of this study show caprylic acid precipitation to be an effective purification method that can be incorporated into a production facility with minimal cost as it utilizes existing tanks and process flow. Eliminating flow through chromatography polishing step can provide process intensification by avoiding the process tank volume constraints for high titer processes.

  6. Mechanisms and Kinetics of Tellurium Precipitation in CdTe-based Materials

    NASA Astrophysics Data System (ADS)

    Lordi, Vincenzo

    2012-02-01

    CdTe and related alloys are important materials for solar photovoltaic application as well as for high-resolution room-temperature gamma radiation detectors. However, the performance of devices, particularly in high-energy applications, is limited by various material defects. Among the most important defects are Te precipitates of various sizes caused by non-stoichiometric growth conditions. In this work, we study the kinetics of Te aggregation and precipitation at the atomic scale. Density functional theory is used to compute the energetics, migration rates, and binding energies of point defects involved in Te aggregation, which include various interstitials, vacancies, and anti-site defects. Kinetic Monte Carlo is then used to simulate the aggregation process leading to precipitation nuclei. The mechanisms and kinetics of formation of these Te-rich regions are analyzed for various conditions. Prepared by LLNL under Contract DE-AC52-07NA27344.

  7. Molecular aggregation of humic substances

    USGS Publications Warehouse

    Wershaw, R. L.

    1999-01-01

    Humic substances (HS) form molecular aggregates in solution and on mineral surfaces. Elucidation of the mechanism of formation of these aggregates is important for an understanding of the interactions of HS in soils arid natural waters. The HS are formed mainly by enzymatic depolymerization and oxidation of plant biopolymers. These reactions transform the aromatic and lipid plant components into amphiphilic molecules, that is, molecules that consist of separate hydrophobic (nonpolar) and hydrophilic (polar) parts. The nonpolar parts of the molecules are composed of relatively unaltered segments of plant polymers and the polar parts of carboxylic acid groups. These amphiphiles form membrane-like aggregates on mineral surfaces and micelle-like aggregates in solution. The exterior surfaces of these aggregates are hydrophilic, and the interiors constitute separate hydrophobic liquid-like phases.

  8. Neptunium dioxide precipitation kinetics in aqueous systems

    NASA Astrophysics Data System (ADS)

    Johnsen, Amanda Melia

    The proposed Yucca Mountain nuclear waste repository poses questions about the behavior of nuclear materials stored underground for thousands of years. Chemical and transport behaviors of 237Np in such a repository are of particular interest because of 237Np's 2.14 million year half-life. Previous neptunium solubility studies in Yucca Mountain ground waters supersaturated with NpO+2aq reacted below 100°C for up to a year reported various Np(V) solid phases. However, recent studies with NpO+2aq under similar conditions at 200°C reported precipitation of NpO 2(cr), suggesting Np(IV) solid phases were previously unobserved due to kinetic limitations. The aim of this thesis is to better understand the NpO+2aq -NpO2(cr) reduction-precipitation system by conducting experiments to obtain first-order answers concerning effects of temperature, ionic strength, and O2 and CO2. Unfiltered experiments conducted at 10-4M Np(V), pH 6-6.5, ˜ 10-4-10 -3M ionic strength, and 200°C indicated colloids might effect precipitation kinetics, necessitating solution filtration. Subsequent filtered experiments at 200, 212, and 225°C showed consistent and distinctive temperature dependent behavior at short reaction times. At long times, 200°C experiments showed unexpected dissolution of neptunium solids, but 212°C and 225°C experiments demonstrated quasi steady-state neptunium concentrations of ˜ 3x10-6M and ˜ 6x10-6M, respectively. Steady-state 212°C and 225°C experiments were then "adjusted" to their original neptunium and hydrogen ion concentrations before continuing at temperature, creating additional neptunium precipitates; these experiments showed less consistent neptunium behavior, suggesting kinetic dependence on solids from the initial precipitation. Solids from a 225°C experiment analyzed by X-ray diffraction were NpO2(cr). A 200°C experiment with a NaCl concentration of 0.05 M showed a drastic increase in neptunium loss and hydrogen ion gain rates. Another 200

  9. Effect of dispersant on asphaltene suspension dynamics: aggregation and sedimentation.

    PubMed

    Hashmi, Sara M; Firoozabadi, Abbas

    2010-12-09

    When oil is mixed with light alkanes, asphaltenes can precipitate out of oil solutions in a multistep process that involves the formation of nano and colloidal scale particles, the aggregation of asphaltene colloids, and their eventual sedimentation. Amphiphilic dispersants can greatly affect this process. The mechanism of the dispersant action in colloidal asphaltene suspensions in heptane has been shown through previous work to be due in part to a reduction in the size of the colloidal asphaltene particles with the addition of dispersant. However, previous studies of the sedimentation behavior revealed evidence of aggregation processes in the colloidal asphaltenes in heptane that has yet to be investigated fully. We investigate the effect of dispersants on this aggregation behavior through the use of dynamic light scattering, showing that both the amount of dispersant and the amount of heptane dilution can slow the onset of aggregation in colloidal asphaltene suspensions. An effective dispersant acts by suppressing colloidal aggregation in asphaltene suspensions, as shown by light scattering, and therefore also slows separation from the bulk, as revealed through macroscopic sedimentation experiments.

  10. Premature red blood cells have decreased aggregation and enhanced aggregability.

    PubMed

    Arbell, D; Orkin, B; Bar-Oz, B; Barshtein, G; Yedgar, S

    2008-06-01

    Preterm infants are highly susceptible to ischemic damage. This damage is most obvious in the brain, retina, and gastrointestinal tract. Studies focusing on the rheological properties of premature red blood cells (pRBCs) have consistently shown minimal or no RBC aggregation. Previously, measurements of pRBC aggregation kinetics indicated that specific plasma properties are responsible for the decreased RBC aggregation observed in the neonates, but that their specific RBC properties do not affect it. However, the strength of interaction in the pRBC aggregates as a function of medium composition has not been tested. In our previous research, we described clinically relevant parameters, that is, the aggregate resistance to disaggregation by flow. With the help of a cell flow property analyzer (CFA), we can monitor RBC aggregation by direct visualization of its dynamics during flow. We used the CFA to examine pRBC (from 9 premature babies) in the natural plasma and in PBS buffer supplemented with dextran (500 kDa) to distinguish between RBC intrinsic-cellular and plasma factors. pRBCs suspended in the native plasma showed minimal or no aggregation in comparison to normal adult RBC. When we transferred pRBCs from the same sample to the dextran solution, enhanced resistance to disaggregation by flow was apparent.

  11. Mechanism of Algal Aggregation by Bacillus sp. Strain RP1137

    PubMed Central

    Powell, Ryan J.

    2014-01-01

    Alga-derived biofuels are one of the best alternatives for economically replacing liquid fossil fuels with a fungible renewable energy source. Production of fuel from algae is technically feasible but not yet economically viable. Harvest of dilute algal biomass from the surrounding water remains one of the largest barriers to economic production of algal biofuel. We identified Bacillus sp. strain RP1137 in a previous study and showed that this strain can rapidly aggregate several biofuel-producing algae in a pH- and divalent-cation-dependent manner. In this study, we further characterized the mechanism of algal aggregation by RP1137. We show that aggregation of both algae and bacteria is optimal in the exponential phase of growth and that the density of ionizable residues on the RP1137 cell surface changes with growth stage. Aggregation likely occurs via charge neutralization with calcium ions at the cell surface of both algae and bacteria. We show that charge neutralization occurs at least in part through binding of calcium to negatively charged teichoic acid residues. The addition of calcium also renders both algae and bacteria more able to bind to hydrophobic beads, suggesting that aggregation may occur through hydrophobic interactions. Knowledge of the aggregation mechanism may enable engineering of RP1137 to obtain more efficient algal harvesting. PMID:24771029

  12. Tau Aggregation Propensity Engrained in Its Solution State.

    PubMed

    Eschmann, Neil A; Do, Thanh D; LaPointe, Nichole E; Shea, Joan-Emma; Feinstein, Stuart C; Bowers, Michael T; Han, Songi

    2015-11-12

    A peptide fragment of the human tau protein which stacks to form neat cross β-sheet fibrils, resembling that found in pathological aggregation, (273)GKVQIINKKLDL(284) (here "R2/WT"), was modified with a spin-label at the N-terminus. With the resulting peptide, R2/G273C-SL, we probed events at time scales spanning seconds to hours after aggregation is initiated using transmission electron microscopy (TEM), thioflavin T (THT) fluorescence, ion mobility mass spectrometry (IMMS), electron paramagnetic resonance (EPR), and Overhauser dynamic nuclear polarization (ODNP) to determine if deliberate changes to its conformational states and population in solution influence downstream propensity to form fibrillar aggregates. We find varying solution conditions by adding the osmolyte urea or TMAO, or simply using different buffers (acetate buffer, phosphate buffer, or water), produces significant differences in early monomer/dimer populations and conformations. Crucially, these characteristics of the peptide in solution state before aggregation is initiated dictate the fibril formation propensity after aggregation. We conclude the driving forces that accelerate aggregation, when heparin is added, do not override the subtle intra- or interprotein interactions induced by the initial solvent conditions. In other words, the balance of protein-protein vs protein-solvent interactions present in the initial solution conditions is a critical driving force for fibril formation.

  13. Mechanism of algal aggregation by Bacillus sp. strain RP1137.

    PubMed

    Powell, Ryan J; Hill, Russell T

    2014-07-01

    Alga-derived biofuels are one of the best alternatives for economically replacing liquid fossil fuels with a fungible renewable energy source. Production of fuel from algae is technically feasible but not yet economically viable. Harvest of dilute algal biomass from the surrounding water remains one of the largest barriers to economic production of algal biofuel. We identified Bacillus sp. strain RP1137 in a previous study and showed that this strain can rapidly aggregate several biofuel-producing algae in a pH- and divalent-cation-dependent manner. In this study, we further characterized the mechanism of algal aggregation by RP1137. We show that aggregation of both algae and bacteria is optimal in the exponential phase of growth and that the density of ionizable residues on the RP1137 cell surface changes with growth stage. Aggregation likely occurs via charge neutralization with calcium ions at the cell surface of both algae and bacteria. We show that charge neutralization occurs at least in part through binding of calcium to negatively charged teichoic acid residues. The addition of calcium also renders both algae and bacteria more able to bind to hydrophobic beads, suggesting that aggregation may occur through hydrophobic interactions. Knowledge of the aggregation mechanism may enable engineering of RP1137 to obtain more efficient algal harvesting.

  14. Tau Aggregation Propensity Engrained in Its Solution State

    PubMed Central

    2016-01-01

    A peptide fragment of the human tau protein which stacks to form neat cross β-sheet fibrils, resembling that found in pathological aggregation, 273GKVQIINKKLDL284 (here “R2/WT”), was modified with a spin-label at the N-terminus. With the resulting peptide, R2/G273C-SL, we probed events at time scales spanning seconds to hours after aggregation is initiated using transmission electron microscopy (TEM), thioflavin T (THT) fluorescence, ion mobility mass spectrometry (IMMS), electron paramagnetic resonance (EPR), and Overhauser dynamic nuclear polarization (ODNP) to determine if deliberate changes to its conformational states and population in solution influence downstream propensity to form fibrillar aggregates. We find varying solution conditions by adding the osmolyte urea or TMAO, or simply using different buffers (acetate buffer, phosphate buffer, or water), produces significant differences in early monomer/dimer populations and conformations. Crucially, these characteristics of the peptide in solution state before aggregation is initiated dictate the fibril formation propensity after aggregation. We conclude the driving forces that accelerate aggregation, when heparin is added, do not override the subtle intra- or interprotein interactions induced by the initial solvent conditions. In other words, the balance of protein–protein vs protein–solvent interactions present in the initial solution conditions is a critical driving force for fibril formation. PMID:26484390

  15. Precipitation Indices Low Countries

    NASA Astrophysics Data System (ADS)

    van Engelen, A. F. V.; Ynsen, F.; Buisman, J.; van der Schrier, G.

    2009-09-01

    Since 1995, KNMI published a series of books(1), presenting an annual reconstruction of weather and climate in the Low Countries, covering the period AD 763-present, or roughly, the last millennium. The reconstructions are based on the interpretation of documentary sources predominantly and comparison with other proxies and instrumental observations. The series also comprises a number of classifications. Amongst them annual classifications for winter and summer temperature and for winter and summer dryness-wetness. The classification of temperature have been reworked into peer reviewed (2) series (AD 1000-present) of seasonal temperatures and temperature indices, the so called LCT (Low Countries Temperature) series, now incorporated in the Millennium databases. Recently we started a study to convert the dryness-wetness classifications into a series of precipitation; the so called LCP (Low Countries Precipitation) series. A brief outline is given here of the applied methodology and preliminary results. The WMO definition for meteorological drought has been followed being that a period is called wet respectively dry when the amount of precipitation is considerable more respectively less than usual (normal). To gain a more quantitative insight for four locations, geographically spread over the Low Countries area (De Bilt, Vlissingen, Maastricht and Uccle), we analysed the statistics of daily precipitation series, covering the period 1900-present. This brought us to the following definition, valid for the Low Countries: A period is considered as (very) dry respectively (very) wet if over a continuous period of at least 60 days (~two months) cq 90 days (~three months) on at least two out of the four locations 50% less resp. 50% more than the normal amount for the location (based on the 1961-1990 normal period) has been measured. This results into the following classification into five drought classes hat could be applied to non instrumental observations: Very wet period

  16. Orthogonal flexible Rydberg aggregates

    NASA Astrophysics Data System (ADS)

    Leonhardt, K.; Wüster, S.; Rost, J. M.

    2016-02-01

    We study the link between atomic motion and exciton transport in flexible Rydberg aggregates, assemblies of highly excited light alkali-metal atoms, for which motion due to dipole-dipole interaction becomes relevant. In two one-dimensional atom chains crossing at a right angle adiabatic exciton transport is affected by a conical intersection of excitonic energy surfaces, which induces controllable nonadiabatic effects. A joint exciton-motion pulse that is initially governed by a single energy surface is coherently split into two modes after crossing the intersection. The modes induce strongly different atomic motion, leading to clear signatures of nonadiabatic effects in atomic density profiles. We have shown how this scenario can be exploited as an exciton switch, controlling direction and coherence properties of the joint pulse on the second of the chains [K. Leonhardt et al., Phys. Rev. Lett. 113, 223001 (2014), 10.1103/PhysRevLett.113.223001]. In this article we discuss the underlying complex dynamics in detail, characterize the switch, and derive our isotropic interaction model from a realistic anisotropic one with the addition of a magnetic bias field.

  17. Nano-precipitation in hot-pressed silicon carbide

    SciTech Connect

    Zhang, Xiao Feng; Sixta, Mark E.; Chen, Da; De Jonghe, Lutgard C.

    2000-05-16

    Heat treatments at 1300 degrees C, 1400 degrees C, 1500 degrees C, and 1600 degrees C in Ar were found to produce nanoscale precipitates in hot-pressed silicon carbide containing aluminum, boron, and carbon sintering additives (ABC-SiC). The precipitates were studied by transmission electron microscopy (TEM) and nano-probe energy-dispersive X-ray spectroscopy (nEDS). The precipitates were plate-like in shape, with a thickness, length and separation of only a few nanometers, and their size coarsened with increasing annealing temperature, accompanied by reduced number density. The distribution of the precipitates was uniform inside the SiC grains, but depleted zones were observed in the vicinity of the SiC grain boundaries. A coherent orientation relationship between the precipitates and the SiC matrix was found. Combined high-resolution electron microscopy, computer simulation, and nEDS identified an Al4C3-based structure and composition for the nano-precipitates. Most Al ions in SiC lattice exsolved as precipitates during the annealing at 1400 to 1500 degrees C. Formation mechanism and possible influences of the nanoscale precipitates on mechanical properties are discussed.

  18. Magnetite seeded precipitation of phosphate.

    PubMed

    Karapinar, Nuray; Hoffmann, Erhard; Hahn, Hermann H

    2004-07-01

    Seeded precipitation of Ca phosphate on magnetite mineral (Fe3O4) surfaces was investigated using a Jar Test system in supersaturated solutions at 20 degrees C and ionic strength 0.01 mol l(-1) with relative super saturation, 12.0-20.0 for HAP. pH of the solution, initial phosphorus concentration and molar Ca/P ratio were investigated as the main parameters, which effect the seeded precipitation of Ca phosphate. Results showed that there is no pronounced effect of magnetite seed, neither positive nor negative on the amount of calcium phosphate precipitation. pH was found to be the main parameter that determines the phosphate precipitated onto the seed surface. Increasing of the pH of precipitation reaction was resulted in the decrease in percentage amount of phosphate precipitated onto seed surfaces to total precipitation (magnetite seeded precipitation efficiency). It was concluded that the pH dependence of magnetite-seeded precipitation should be considered in the light of its effect on the supersaturated conditions of solution. Saturation index (SI) of solution with respect to the precipitate phase was considered the driving force for the precipitation. A simulation programme PHREEQC (Version 2) was employed to calculate the Saturation-index with respect to hydroxyapatite (HAP) of the chemically defined precipitation system. It was found a good relationship between SI of solution with respect to HAP and the magnetite seeded precipitation efficiency, a second order polynomial function. Results showed that more favorable solution conditions for precipitation (higher SI values of solution) causes homogenous nucleation whereas heterogeneous nucleation led to a higher magnetite seeded precipitation efficiency.

  19. Periodic Precipitation Patterns during Coalescence of Reacting Sessile Droplets.

    PubMed

    Jehannin, Marie; Charton, Sophie; Karpitschka, Stefan; Zemb, Thomas; Möhwald, Helmuth; Riegler, Hans

    2015-10-27

    The coalescence behavior of two sessile drops that contain different chemical reactants (cerium nitrate and oxalic acid) and its impact on the formation of the solid precipitate (cerium oxalate) are investigated. With different liquids, the surface tension difference in the moment of drop-drop contact can induce a Marangoni flow. This flow can strongly influence the drop-drop coalescence behavior and thus, with reacting liquids, also the reaction and its products (through the liquid mixing). In our study we find three distinctly different coalescence behaviors ("barrier", "intermediate", "noncoalescence"), in contrast to only two behaviors that were observed in the case of nonreacting liquids. The amount of liquid mixing and thus the precipitation rate are very different for the three cases. The "intermediate" case, which exhibits the strongest mixing, has been studied in more detail. For high oxalic acid concentrations, mainly needle-like aggregates, and for low concentrations, mainly flower-like precipitate morphologies are obtained. In a transition range of the oxalic acid concentration, both morphologies can be produced. With the applied coalescence conditions, the different aggregate particles are arranged and fixed in a precipitate raft in a regular, periodic line pattern. This confirms the drop-drop coalescence configuration as a convection-reaction-diffusion system, which can have stationary as well as oscillatory behavior depending on the system parameters.

  20. Measurement of Global Precipitation

    NASA Technical Reports Server (NTRS)

    Flaming, Gilbert Mark

    2004-01-01

    The Global Precipitation Measurement (GPM) Program is an international cooperative effort whose objectives are to (a) obtain increased understanding of rainfall processes, and (b) make frequent rainfall measurements on a global basis. The National Aeronautics and Space Administration (NASA) of the United States and the Japanese Aviation and Exploration Agency (JAXA) have entered into a cooperative agreement for the formulation and development of GPM. This agreement is a continuation of the partnership that developed the highly successful Tropical Rainfall Measuring Mission (TRMM) that was launched in November 1997; this mission continues to provide valuable scientific and meteorological information on rainfall and the associated processes. International collaboration on GPM from other space agencies has been solicited, and discussions regarding their participation are currently in progress. NASA has taken lead responsibility for the planning and formulation of GPM, Key elements of the Program to be provided by NASA include a Core satellite bus instrumented with a multi-channel microwave radiometer, a Ground Validation System and a ground-based Precipitation Processing System (PPS). JAXA will provide a Dual-frequency Precipitation Radar for installation on the Core satellite and launch services. Other United States agencies and international partners may participate in a number of ways, such as providing rainfall measurements obtained from their own national space-borne platforms, providing local rainfall measurements to support the ground validation activities, or providing hardware or launch services for GPM constellation spacecraft. This paper will present an overview of the current planning for the GPM Program, and discuss in more detail the status of the lead author's primary responsibility, development and acquisition of the GPM Microwave Imager.

  1. Projected Changes in Precipitation Extremes over Western Canada

    NASA Astrophysics Data System (ADS)

    Erler, A. R.

    2015-12-01

    The projection of future hydro-climatic extremes due to anthropogenic climate change is a major research focus, as well as a major challenge for regional climate modeling. An analysis of hydro-climatic extremes is presented based upon a small ensemble of dynamically downscaled climate projections. The ensemble is comprised of four independent, identically configured CESM integrations (RCP 8.5), which were downscaled over Western Canada using WRF in two different configurations at 10 km resolution. In the climate projections presented here, changes in precipitation extremes generally follow changes in the (seasonal) mean, even though precipitation changes in general are found to differ strongly between seasons and regions. At the end of the 21st century the highest projected increase in precipitation (extremes) is approximately 30% in fall at the coast and in winter away from the coast. In summer only a small increase in precipitation (extremes) is projected, and the statistical significance of the signal is weak. Nevertheless, cumulus precipitation consistently increases by 20-30%. Furthermore, the total summer precipitation change appears to be sensitive to the choice of the cumulus scheme. In order to detect a robust climate change signal in the Extreme Value Analysis that has been performed, a novel method of aggregating data from climatologically similar stations is introduced and discussed.

  2. Recent precipitation trends, flash floods and landslides in southern Brazil

    NASA Astrophysics Data System (ADS)

    Ávila, Alvaro; Justino, Flavio; Wilson, Aaron; Bromwich, David; Amorim, Marcelo

    2016-11-01

    In order to understand the rising number of flash floods and landslides in the densely populated region of southeastern Brazil, this study analyzes the spatial and temporal changes in precipitation from 1978 to 2014. We focus on the sensitivity of mountainous regions, specifically the Rio de Janeiro (RJMR) and Santa Catarina (SCMR) regions. Daily rainfall observations are aggregated into annual and seasonal indexes, and RClimdex is used to evaluate a suite of precipitation and extreme event indexes. Results show positive annual and seasonal precipitation trends during all seasons except for the winter season in the RJMR. Diverse change points in their time series, spatial differences in the trends at individual stations, and trends associated with elevation suggest that despite the close proximity of these two regions, climate impacts are not uniform across all of southeastern Brazil. The majority of precipitation-related indexes present positive trends, especially in the extreme precipitation indexes (PRCPTOT, RX1day, Rx5day and R30 mm). Statistically significant positive correlations are discovered between landslides/flash floods events and annual maximum 1-day and 5-day consecutive precipitation, and these indexes may be useful indicators of natural hazard events for this region.

  3. Kinetics of Aggregation with Choice

    DOE PAGES

    Ben-Naim, Eli; Krapivsky, Paul

    2016-12-01

    Here we generalize the ordinary aggregation process to allow for choice. In ordinary aggregation, two random clusters merge and form a larger aggregate. In our implementation of choice, a target cluster and two candidate clusters are randomly selected and the target cluster merges with the larger of the two candidate clusters.We study the long-time asymptotic behavior and find that as in ordinary aggregation, the size density adheres to the standard scaling form. However, aggregation with choice exhibits a number of different features. First, the density of the smallest clusters exhibits anomalous scaling. Second, both the small-size and the large-size tailsmore » of the density are overpopulated, at the expense of the density of moderate-size clusters. Finally, we also study the complementary case where the smaller candidate cluster participates in the aggregation process and find an abundance of moderate clusters at the expense of small and large clusters. Additionally, we investigate aggregation processes with choice among multiple candidate clusters and a symmetric implementation where the choice is between two pairs of clusters.« less

  4. Kinetics of Aggregation with Choice

    SciTech Connect

    Ben-Naim, Eli; Krapivsky, Paul

    2016-12-01

    Here we generalize the ordinary aggregation process to allow for choice. In ordinary aggregation, two random clusters merge and form a larger aggregate. In our implementation of choice, a target cluster and two candidate clusters are randomly selected and the target cluster merges with the larger of the two candidate clusters.We study the long-time asymptotic behavior and find that as in ordinary aggregation, the size density adheres to the standard scaling form. However, aggregation with choice exhibits a number of different features. First, the density of the smallest clusters exhibits anomalous scaling. Second, both the small-size and the large-size tails of the density are overpopulated, at the expense of the density of moderate-size clusters. Finally, we also study the complementary case where the smaller candidate cluster participates in the aggregation process and find an abundance of moderate clusters at the expense of small and large clusters. Additionally, we investigate aggregation processes with choice among multiple candidate clusters and a symmetric implementation where the choice is between two pairs of clusters.

  5. Developing precipitation modes for preventing the calcium-oxalate contamination of sugar beet pectins.

    PubMed

    Guo, Xiaoming; Meng, Hecheng; Zhu, Siming; Tang, Qiang; Pan, Runquan; Yu, Shujuan

    2015-09-01

    Effects of precipitation modes on the co-precipitation of insoluble oxalates particles during the purification of sugar beet pectins (SBP) from the extract were investigated. It was observed that soluble oxalate ions formed insoluble oxalate salts with calcium and precipitated with pectins during ethanol precipitation as pH of the medium increased and the solvent changed from water to ethanol-water mixture. Comparison among the employed precipitation methods revealed that both the dialysis-ethanol-precipitation and metal precipitation effectively prevented the calcium-oxalate contamination of SBP. Emulsifying properties of DEPP, EPP and MPP were also studied. It was observed that DEPP performed better than the remainder with respect to emulsifying ability. Based on these results, we concluded that the dialysis-ethanolic-precipitation can be a suitable method for improving the purity as well as emulsifying properties of the resulting pectins.

  6. DISSOLUTION OF LANTHANUM FLUORIDE PRECIPITATES

    DOEpatents

    Fries, B.A.

    1959-11-10

    A plutonium separatory ore concentration procedure involving the use of a fluoride type of carrier is presented. An improvement is given in the derivation step in the process for plutonium recovery by carrier precipitation of plutonium values from solution with a lanthanum fluoride carrier precipitate and subsequent derivation from the resulting plutonium bearing carrier precipitate of an aqueous acidic plutonium-containing solution. The carrier precipitate is contacted with a concentrated aqueous solution of potassium carbonate to effect dissolution therein of at least a part of the precipitate, including the plutonium values. Any remaining precipitate is separated from the resulting solution and dissolves in an aqueous solution containing at least 20% by weight of potassium carbonate. The reacting solutions are combined, and an alkali metal hydroxide added to a concentration of at least 2N to precipitate lanthanum hydroxide concomitantly carrying plutonium values.

  7. Precipitation Extremes Under Climate Change.

    PubMed

    O'Gorman, Paul A

    The response of precipitation extremes to climate change is considered using results from theory, modeling, and observations, with a focus on the physical factors that control the response. Observations and simulations with climate models show that precipitation extremes intensify in response to a warming climate. However, the sensitivity of precipitation extremes to warming remains uncertain when convection is important, and it may be higher in the tropics than the extratropics. Several physical contributions govern the response of precipitation extremes. The thermodynamic contribution is robust and well understood, but theoretical understanding of the microphysical and dynamical contributions is still being developed. Orographic precipitation extremes and snowfall extremes respond differently from other precipitation extremes and require particular attention. Outstanding research challenges include the influence of mesoscale convective organization, the dependence on the duration considered, and the need to better constrain the sensitivity of tropical precipitation extremes to warming.

  8. Fractal aggregates in Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Cabane, M.; Rannou, P.; Chassefiere, E.; Israel, G.

    1993-04-01

    The cluster structure of Titan's atmosphere was modeled by using an Eulerian microphysical model with the specific formulation of microphysical laws applying to fractal particles. The growth of aggregates in the settling phase was treated by introducing the fractal dimension as a parameter of the model. The model was used to obtain a vertical distribution of size and number density of the aggregates for different production altitudes. Results confirm previous estimates of the formation altitude of photochemical aerosols. The vertical profile of the effective radius of aggregates was calculated as a function of the visible optical depth.

  9. Petrography study on altered flint aggregate by alkali-silica reaction

    SciTech Connect

    Bulteel, D. . E-mail: bulteel@ensm-douai.fr; Rafai, N.; Degrugilliers, P.; Garcia-Diaz, E.

    2004-11-15

    The aim of our study is to improve our understanding of an alkali-silica reaction (ASR) via petrography. We used a chemical concrete subsystem: flint aggregate, portlandite and KOH. The altered flint aggregate is followed by optical microscopy and scanning electron microscopy (SEM) before and after acid treatment at different intervals. After acid treatment, the observations showed an increase in aggregate porosity and revealed internal degradation of the aggregate. This degradation created amorphous zones. Before acid treatment, the analyses on polished sections by scanning electron microscopy coupled with energy dispersive spectroscopy (EDS) enabled visualization of K{sup +} and Ca{sup 2+} penetration into the aggregate. The appearance of amorphous zones and penetration of positive ions into the aggregate are correlated with the increase in the molar fraction of silanol sites. This degradation is specific to the alkali-silica reaction.

  10. PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINATING ELEMENTS

    DOEpatents

    Duffield, R.B.

    1959-02-24

    S>A method is described for separating plutonium, in a valence state of less than five, from an aqueous solution in which it is dissolved. The niethod consists in adding potassium and sulfate ions to such a solution while maintaining the solution at a pH of less than 7.1, and isolating the precipitate of potassium plutonium sulfate thus formed.

  11. Evidence for a Structural Requirement for the Aggregation of Platelets by Collagen

    PubMed Central

    Jaffe, Russell; Deykin, Daniel

    1974-01-01

    This study investigates whether soluble collagen can initiate platelet aggregation or whether a higher degree of polymerization is required. Purified rat skin collagen was prepared in four states. Soluble monomeric collagen, containing 2 μM calcium chloride, was maintained at 4°C until use. A previously uncharacterized form of collagen, soluble microfibrillar collagen, was prepared from monomeric collagen containing calcium chloride by allowing it to polymerize at 23°C. Viscometric and electron microscopic characterization of microfibrillar collagen indicated polymerization to ordered native filaments. Particulate native macrofibrillar collagen was prepared from monomeric collagen by allowing it to polymerize at 37°C in the absence of calcium. Particulate collagen, in which the fibers were randomly associated, was prepared by salt precipitation of calcium-free monomeric collagen. Microfibrillar and native macrofibrillar collagen initiated platelet aggregation, with a lag phase of approximately 60 s. Monomeric collagen initiated aggregation with a lag phase of approximately 180 s. The duration of the lag phase for platelet aggregation initiated by monomeric collagen was independent of the dose. Salt-precipitated particulate collagen did not initiate platelet aggregation. Agents which prolong the transition from monomeric collagen to fibrillar collagen (urea, arginine) retarded or prevented the aggregation of platelets by monomeric collagen. Sodium borohydride, which stabilizes the intraand intermolecular cross-links of collagen did not affect platelet aggregation. Penicillamine, which displaces the intermolecular cross-links and binds the intramolecular cross-links of collagen, did not prevent platelet aggregation. The data suggest that an architectural requirement exists for the initiation of self-perpetuating platelet aggregation; that tropocollagen units do not fulfill this requirement; that a soluble collagen preparation, microfibrillar collagen, contains

  12. The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset

    NASA Technical Reports Server (NTRS)

    Huffman, George J.; Adler, Robert F.; Arkin, Philip; Chang, Alfred; Ferraro, Ralph; Gruber, Arnold; Janowiak, John; McNab, Alan; Rudolf, Bruno; Schneider, Udo

    1997-01-01

    The Global Precipitation Climatology Project (GPCP) has released the GPCP Version 1 Combined Precipitation Data Set, a global, monthly precipitation dataset covering the period July 1987 through December 1995. The primary product in the dataset is a merged analysis incorporating precipitation estimates from low-orbit-satellite microwave data, geosynchronous-orbit -satellite infrared data, and rain gauge observations. The dataset also contains the individual input fields, a combination of the microwave and infrared satellite estimates, and error estimates for each field. The data are provided on 2.5 deg x 2.5 deg latitude-longitude global grids. Preliminary analyses show general agreement with prior studies of global precipitation and extends prior studies of El Nino-Southern Oscillation precipitation patterns. At the regional scale there are systematic differences with standard climatologies.

  13. On Time/Space Aggregation of Fine-Scale Error Estimates (Invited)

    NASA Astrophysics Data System (ADS)

    Huffman, G. J.

    2013-12-01

    Estimating errors inherent in fine time/space-scale satellite precipitation data sets is still an on-going problem and a key area of active research. Complicating features of these data sets include the intrinsic intermittency of the precipitation in space and time and the resulting highly skewed distribution of precipitation rates. Additional issues arise from the subsampling errors that satellites introduce, the errors due to retrieval algorithms, and the correlated error that retrieval and merger algorithms sometimes introduce. Several interesting approaches have been developed recently that appear to make progress on these long-standing issues. At the same time, the monthly averages over 2.5°x2.5° grid boxes in the Global Precipitation Climatology Project (GPCP) Satellite-Gauge (SG) precipitation data set follow a very simple sampling-based error model (Huffman 1997) with coefficients that are set using coincident surface and GPCP SG data. This presentation outlines the unsolved problem of how to aggregate the fine-scale errors (discussed above) to an arbitrary time/space averaging volume for practical use in applications, reducing in the limit to simple Gaussian expressions at the monthly 2.5°x2.5° scale. Scatter diagrams with different time/space averaging show that the relationship between the satellite and validation data improves due to the reduction in random error. One of the key, and highly non-linear, issues is that fine-scale estimates tend to have large numbers of cases with points near the axes on the scatter diagram (one of the values is exactly or nearly zero, while the other value is higher). Averaging 'pulls' the points away from the axes and towards the 1:1 line, which usually happens for higher precipitation rates before lower rates. Given this qualitative observation of how aggregation affects error, we observe that existing aggregation rules, such as the Steiner et al. (2003) power law, only depend on the aggregated precipitation rate

  14. Surface fractals in liposome aggregation.

    PubMed

    Roldán-Vargas, Sándalo; Barnadas-Rodríguez, Ramon; Quesada-Pérez, Manuel; Estelrich, Joan; Callejas-Fernández, José

    2009-01-01

    In this work, the aggregation of charged liposomes induced by magnesium is investigated. Static and dynamic light scattering, Fourier-transform infrared spectroscopy, and cryotransmission electron microscopy are used as experimental techniques. In particular, multiple intracluster scattering is reduced to a negligible amount using a cross-correlation light scattering scheme. The analysis of the cluster structure, probed by means of static light scattering, reveals an evolution from surface fractals to mass fractals with increasing magnesium concentration. Cryotransmission electron microscopy micrographs of the aggregates are consistent with this interpretation. In addition, a comparative analysis of these results with those previously reported in the presence of calcium suggests that the different hydration energy between lipid vesicles when these divalent cations are present plays a fundamental role in the cluster morphology. This suggestion is also supported by infrared spectroscopy data. The kinetics of the aggregation processes is also analyzed through the time evolution of the mean diffusion coefficient of the aggregates.

  15. Cell aggregation: Packing soft grains

    NASA Astrophysics Data System (ADS)

    Åström, J. A.; Karttunen, M.

    2006-06-01

    Cellular aggregates may be considered as collections of membrane enclosed units with a pressure difference between the internal and external liquid phases. Cells are kept together by membrane adhesion and/or confined space compression. Pattern formation and, in particular, intercellular spacing have important roles in controlling solvent diffusion within such aggregates. A physical approach is used to study generic aspects of cellular packings in a confined space. Average material properties are derived from the free energy. The appearance of penetrating intercellular void channels is found to be critically governed by the cell wall adhesion mechanisms during the formation of dense aggregates. A fully relaxed aggregate efficiently hinders solvent diffusion at high hydrostatic pressures, while a small fraction (˜0.1) of adhesion related packing frustration is sufficient for breaking such a blockage even at high a pressure.

  16. Characterization Techniques for Aggregated Nanomaterials in Biological and Environmental Systems

    NASA Astrophysics Data System (ADS)

    Jeon, Seongho

    colloidal systems. Aggregation mechanism and behavior of nanoparticles in surrounding were examined as a function of their quantified aggregate morphologies. The first three studies (Chapters 2, 3, and 4) introduced a new gas-phase particle size measurement system, a liquid nebulization-ion mobility spectrometry (LN-IMS) technique, to characterize nanomaterials (down to 5 nm in characteristic size) and nanoparticle-protein conjugates. In other two studies (Chapters 5 and 6), three dimensional structures of homo-aggregates were quantified with the fractal aggregate model, and resulted fractal structures of aggregates were correlated to their transport properties in surroundings.

  17. Auroral helium precipitation.

    NASA Technical Reports Server (NTRS)

    Axford, W. I.; Chivers, H. J. A.; Eberhardt, P.; Geiss, J.; Buehler, F.

    1972-01-01

    Application of the metal foil sampling technique, which has been used to measure helium, neon, and argon fluxes in the solar wind, to the problem of measuring the fluxes of these gases in the auroral primary radiation. Aluminum and platinum foils have been flown into two bright auroras and have been recovered. The foils have been analyzed for helium and neon isotopes with a mass spectrometer; so far only He4 has been detected. In the first flight the precipitating flux of He4 with particle energies above about 1 keV was approximately 1,000,000 per sq cm per sec, and the backscattered flux was smaller by about a factor of 10. In the second flight the aurora was less bright, and the He4 fluxes were lower by a factor of about 2. A rough analysis suggests that the mean energy of the incident particles was greater than 3 keV.

  18. Glycation precedes lens crystallin aggregation

    SciTech Connect

    Swamy, M.S.; Perry, R.E.; Abraham, E.C.

    1987-05-01

    Non-enzymatic glycosylation (glycation) seems to have the potential to alter the structure of crystallins and make them susceptible to thiol oxidation leading to disulfide-linked high molecular weight (HMW) aggregate formation. They used streptozotocin diabetic rats during precataract and cataract stages and long-term cell-free glycation of bovine lens crystallins to study the relationship between glycation and lens crystallin aggregation. HMW aggregates and other protein components of the water-soluble (WS) and urea-soluble (US) fractions were separated by molecular sieve high performance liquid chromatography. Glycation was estimated by both (/sup 3/H)NaBH/sub 4/ reduction and phenylboronate agarose affinity chromatography. Levels of total glycated protein (GP) in the US fractions were about 2-fold higher than in the WS fractions and there was a linear increase in GP in both WS and US fractions. This increase was parallelled by a corresponding increase in HMW aggregates. Total GP extracted by the affinity method from the US fraction showed a predominance of HMW aggregates and vice versa. Cell-free glycation studies with bovine crystallins confirmed the results of the animals studies. Increasing glycation caused a corresponding increase in protein insolubilization and the insoluble fraction thus formed also contained more glycated protein. It appears that lens protein glycation, HMW aggregate formation, and protein insolubilization are interrelated.

  19. Immunoaffinity centrifugal precipitation chromatography.

    PubMed

    Qi, Lin; Ito, Yoichiro

    2007-06-01

    Purification of proteins based on immunoaffinity has been performed using a solid support coated with antibody against the target proteins. The method requires immobilizing the antibody onto the solid support using protein A or G, and has a risk of adsorptive loss of target proteins onto the solid support. Centrifugal precipitation chromatography has been successfully used to purify enzymes, such as ketosteroid isomerase and hyaluronidase without the use of solid support. The purpose of this study is to demonstrate that immunoaffinity centrifugal precipitation chromatography is capable of isolating an antigen by exploiting antigen-antibody binding. The separation was initiated by filling both channels with 40% saturated ammonium sulfate (AS) of pH 4-4.5 followed by loading 20 microl of human plasma (National Institutes of Health blood bank) mixed with 2 mg of rabbit anti-HSA (human serum protein) antibody (Sigma). Then, the sample channel was eluted with water at 0.03 ml/min and AS channel with 40% AS solution of pH 4-4.5 at 1 ml/min until all non-binding components were eluted. Then, the releasing reagent (50% AS solution containing 0.5 M glycine and 10% ammonium hydroxide at pH 10) was introduced through the AS channel to release the target protein (HSA). The retained antibody was recovered by eluting the sample channel with water at 1 ml/min. A hollow fiber membrane device at the outlet (MicroKros, Spectrum, New Brunswick, NJ, USA) was provided on-line dialysis of the eluent before fractions were collected, so that the fractions could be analyzed by SDS-PAGE (sodium dodecyl sulfate - polyacrylamide gel electrophoresis) without further dialysis. The current method does not require immobilizing the antibody onto a matrix, which is used by the conventional immunoaffinity chromatography. This method ensures full recovery of the antigen and antibody, and it may be applied to purification of other proteins.

  20. Aggregation of sulfosuccinate surfactants in water

    SciTech Connect

    Magid, L.J.; Daus, K.A.; Butler, P.D.; Quincy, R.B.

    1983-12-22

    The aggregation of sodium di-n-alkyl sulfosuccinates in water (H/sub 2/O and D/sub 2/O at 45/sup 0/C) has been investigated. A self-consistent picture of the dependence of sodium ion binding on surfactant concentration is obtained from emf measurements, conductimetry, and small-angle neutron scattering (SANS) measurements. The concentration dependence of the micellar agregation number for the sulfosuccinates and related double-tailed surfactants depends markedly on surfactant solubility. A sphere-to-disk transition in micellar shape, which might have been expected as a precursor to formation of a lamellar mesophase, was not observed as the surfactant concentration was increased. 8 figures, 2 tables.

  1. Event based climatology of extreme precipitation in Europe

    NASA Astrophysics Data System (ADS)

    Nissen, Katrin M.; Becker, Nico; Ulbrich, Uwe

    2015-04-01

    An event based detection algorithm to identify extreme precipitation events in gridded data sets is introduced and applied to the observational E-OBS data set. The algorithm identifies all grid boxes in which the rainfall exceeds a threshold, which depends on the location and the aggregation period. The aggregation periods taken into account in this study range from a single time step up to 72 hours. The local 50-year return level is calculated for all aggregation periods and used as a threshold. All identified grid boxes which are located within the same continuous rain area (i.e. which are not separated by rain free grid boxes) are considered as belonging to the same event and form a cluster. The centre of mass is calculated for each cluster. The clusters are then tracked in time using a nearest neighbor approach. Thus, each detected event can consist of several grid boxes and can last for several time steps. A precipitation severity index (PSI) is assigned to the events. The severity index takes the affected area and the amount of precipitation accumulated over the duration of the event into account. It is normalized by the long-term mean annual precipitation sum expected for the grid box. The severity index can be used to compare the strength of the identified events. The detection algorithm also stores additional information for each event, such as the date, location, affected area, duration, severity and maximum precipitation. Comparing all events detected in the E-OBS data set, which exceeded the local 50-year return levels, the highest severity index was calculated for an event affecting Spain, which took place in November 1997. It had a severity index of 49.9 and was also described in the literature. In comparison, the average PSI for the extreme precipitation events over Europe is 2.4. Overall, the most active season for extreme precipitation in Europe is summer. The longest duration of an event in the data set was 11 days. It occurred over Estonia in

  2. Label free and high specific detection of mercury ions based on silver nano-liposome

    NASA Astrophysics Data System (ADS)

    Priyadarshini, Eepsita; Pradhan, Nilotpala; Pradhan, Arun K.; Pradhan, Pallavi

    2016-06-01

    Herein, we report an eco-friendly, mild and one-pot approach for synthesis of silver nanoparticles via a lipopeptide biosurfactant - CHBS. The biosurfactant forms liposome vesicles when dispersed in an aqueous medium. The amino acid groups of the biosurfactant assists in the reduction of Ag+ ions leading to the production of homogeneous silver nanoparticles, encapsulated within the liposome vesicle, as confirmed from TEM analysis. Rate of synthesis and size of particle were greatly dependent on pH and reaction temperature. Kinetic analysis suggests the involvement of an autocatalytic reaction and the observed rate constant (kobs) was found to decrease with temperature, suggesting faster reaction with increasing temperature. Furthermore, the silver nanoparticles served as excellent probes for highly selective and sensitive recognition of Hg2 + ions. Interaction with Hg2 + ions results in an immediate change in colour of nanoparticle solution form brownish red to milky white. With increasing Hg2 + ions concentration, a gradual disappearance of SPR peak was observed. A linear relationship (A420/660) with an R2 value of 0.97 was observed in the range of 20 to 100 ppm Hg2 + concentration. Hg2 + ions are reduced to their elemental forms which thereby interact with the vesicles, leading to aggregation and precipitation of particles. The detection method avoids the need of functionalizing ligands and favours Hg2 + detection in aqueous samples by visible range spectrophotometry and hence can be used for simple and rapid analysis.

  3. Label free and high specific detection of mercury ions based on silver nano-liposome.

    PubMed

    Priyadarshini, Eepsita; Pradhan, Nilotpala; Pradhan, Arun K; Pradhan, Pallavi

    2016-06-15

    Herein, we report an eco-friendly, mild and one-pot approach for synthesis of silver nanoparticles via a lipopeptide biosurfactant - CHBS. The biosurfactant forms liposome vesicles when dispersed in an aqueous medium. The amino acid groups of the biosurfactant assists in the reduction of Ag(+) ions leading to the production of homogeneous silver nanoparticles, encapsulated within the liposome vesicle, as confirmed from TEM analysis. Rate of synthesis and size of particle were greatly dependent on pH and reaction temperature. Kinetic analysis suggests the involvement of an autocatalytic reaction and the observed rate constant (kobs) was found to decrease with temperature, suggesting faster reaction with increasing temperature. Furthermore, the silver nanoparticles served as excellent probes for highly selective and sensitive recognition of Hg(2+) ions. Interaction with Hg(2+) ions results in an immediate change in colour of nanoparticle solution form brownish red to milky white. With increasing Hg(2+) ions concentration, a gradual disappearance of SPR peak was observed. A linear relationship (A420/660) with an R(2) value of 0.97 was observed in the range of 20 to 100ppm Hg(2+) concentration. Hg(2+) ions are reduced to their elemental forms which thereby interact with the vesicles, leading to aggregation and precipitation of particles. The detection method avoids the need of functionalizing ligands and favours Hg(2+) detection in aqueous samples by visible range spectrophotometry and hence can be used for simple and rapid analysis.

  4. [Chemical characteristics of precipitation in South China Sea].

    PubMed

    Xiao, Hong-Wei; Long, Ai-Min; Xie, Lu-Hua; Xiao, Hua-Yun; Liu, Cong-Qiang

    2014-02-01

    Rainwater samples were collected in the summer on "Shiyan 3" during the 2012 South China Sea Sectional Scientific Survey. The concentrations of anion and cation, and pH in precipitation were determined and backward trajectories of air mass were simulated to analyze the chemical characteristics of ions and examine the source of ions. The results indicated that the mean pH value of precipitation was 6.3, with 5.6 of minimal value in summer in South China Sea. The order of anion and cation abundance was Cl(-) > S04(2-) > NO3(-) and Na(+) > Mg(2+) > Ca(2+) > K(+). Cl(-) was the major anion and Na(+) was the major cation, with concentrations of 2 637.5 microeq x L(-1) and 2095.5 microeq x L(-1), respectively, showing that they were the characteristics of marine atmospheric precipitation. There was a good linear relationship between each pair of 7 ions, with correlation coefficient above 0.9, suggesting that they may have a common source. However, the correlation coefficients were lower between NO3(-) and other ions than the others, suggesting that NO3(-) had more complex sources. The concentrations of Ca(2+) and K(+) in precipitation may be related to coral environment in South China Sea. The backward trajectories in 6 stations showed that the air mass was from south and southwest of South China Sea, without passing through above the continent. These results suggested that precipitation affected by human ion source can be ignored in summer in South China Sea.

  5. Chemical quality of precipitation at Greenville, Maine

    USGS Publications Warehouse

    Smath, J.A.; Potter, T.L.

    1987-01-01

    Weekly composite precipitation samples were collected at a rural site located in Greenville, Maine for analysis of trace metals and organic compounds. Samples collected during February 1982, through May 1984, were analyzed for cadmium, chromium, copper, lead, mercury, nickel, and zinc and during February 1982, through March 1983, for chlorinated hydrocarbon pesticides, pthalate ester plasticizers, and polychlorinated biphenyls. Deposition rates were computed. Data reported by the NADP (National Atmospheric Deposition Program) was used to evaluate the general chemical quality of the precipitation. The precipitation had relatively high concentrations of hydrogen ions, sulfate, and nitrate, compared to other constituents. Of the trace metals included for analysis, only copper, lead, and zinc were consistently detected. Lead concentrations exceeded the U.S. EPA recommended limit for domestic water supply in three samples. High deposition rates for some of the metals were episodic. Alpha-hexachlorocyclohexane was the only organic compound that was consistently detected (maximum 120 nanograms/L). None of the other organic compounds were detected in any of the samples. (Author 's abstract)

  6. Ash Aggregates in Proximal Settings

    NASA Astrophysics Data System (ADS)

    Porritt, L. A.; Russell, K.

    2012-12-01

    Ash aggregates are thought to have formed within and been deposited by the eruption column and plume and dilute density currents and their associated ash clouds. Moist, turbulent ash clouds are considered critical to ash aggregate formation by facilitating both collision and adhesion of particles. Consequently, they are most commonly found in distal deposits. Proximal deposits containing ash aggregates are less commonly observed but do occur. Here we describe two occurrences of vent proximal ash aggregate-rich deposits; the first within a kimberlite pipe where coated ash pellets and accretionary lapilli are found within the intra-vent sequence; and the second in a glaciovolcanic setting where cored pellets (armoured lapilli) occur within <1 km of the vent. The deposits within the A418 pipe, Diavik Diamond Mine, Canada, are the residual deposits within the conduit and vent of the volcano and are characterised by an abundance of ash aggregates. Coated ash pellets are dominant but are followed in abundance by ash pellets, accretionary lapilli and rare cored pellets. The coated ash pellets typically range from 1 - 5 mm in diameter and have core to rim ratios of approximately 10:1. The formation and preservation of these aggregates elucidates the style and nature of the explosive phase of kimberlite eruption at A418 (and other pipes?). First, these pyroclasts dictate the intensity of the kimberlite eruption; it must be energetic enough to cause intense fragmentation of the kimberlite to produce a substantial volume of very fine ash (<62 μm). Secondly, the ash aggregates indicate the involvement of moisture coupled with the presence of dilute expanded eruption clouds. The structure and distribution of these deposits throughout the kimberlite conduit demand that aggregation and deposition operate entirely within the confines of the vent; this indicates that aggregation is a rapid process. Ash aggregates within glaciovolcanic sequences are also rarely documented. The

  7. Silver nanoparticle aggregation not triggered by an ionic strength mechanism

    NASA Astrophysics Data System (ADS)

    Botasini, Santiago; Méndez, Eduardo

    2013-04-01

    The synthesis of stable colloidal solutions of silver nanoparticles is a major goal in the industry to control their fate in aqueous solutions. The present work studies 10-20-nm silver nanoparticle aggregation triggered by the presence of chloride ions. The aggregation process was followed by UV-Vis-NIR spectroscopy and transmission electron microscopy. We found that the mechanism involved differs from the classic explanation of nanoparticle aggregation triggered by an increase in the ionic strength. Moreover, our results give evidence that even when nanoparticles are resistant to an increment of the total amount of ions, the formation of insoluble salts in the vicinity of the nanoparticle is enough to induce the aggregation. The presence of silver chloride around the silver nanoparticles was documented by an X-ray diffraction pattern and electrochemical methods because chloride anions are ubiquitous in real media; this alternative process jeopardized the development of many applications with silver nanoparticles that depend on the use of stable colloids.

  8. Using bacterial inclusion bodies to screen for amyloid aggregation inhibitors

    PubMed Central

    2012-01-01

    Background The amyloid-β peptide (Aβ42) is the main component of the inter-neuronal amyloid plaques characteristic of Alzheimer's disease (AD). The mechanism by which Aβ42 and other amyloid peptides assemble into insoluble neurotoxic deposits is still not completely understood and multiple factors have been reported to trigger their formation. In particular, the presence of endogenous metal ions has been linked to the pathogenesis of AD and other neurodegenerative disorders. Results Here we describe a rapid and high-throughput screening method to identify molecules able to modulate amyloid aggregation. The approach exploits the inclusion bodies (IBs) formed by Aβ42 when expressed in bacteria. We have shown previously that these aggregates retain amyloid structural and functional properties. In the present work, we demonstrate that their in vitro refolding is selectively sensitive to the presence of aggregation-promoting metal ions, allowing the detection of inhibitors of metal-promoted amyloid aggregation with potential therapeutic interest. Conclusions Because IBs can be produced at high levels and easily purified, the method overcomes one of the main limitations in screens to detect amyloid modulators: the use of expensive and usually highly insoluble synthetic peptides. PMID:22553999

  9. Hemispherical asymmetry in cusp precipitation near solstices

    SciTech Connect

    Newell, P.T.; Meng, C.

    1988-04-01

    A statistical comparison of the peak flux in electron and ion polar cusp precipitation in the summer and winter hemispheres as observed by the low-altitude DMSP F7 satellite is performed. Data studied encompass four consecutive solstices from December 1983 to June 1985, comprising 77 days of data with a total of 292 individual cusp passes. On each day, observations were restricted to those few hours UT in which the interhemispherical MLT variation of DMSP F7 was smallest. After the remaining local time effect was averaged out, the summer hemisphere ion (electron) precipitating energy flux was larger, on the average, by 61 +- 11% (51 +- 5%) than that in the winter hemisphere. However, the average particle energy was always lower for both species in the summer hemisphere. These effects generally hold true for northward as well as southward interplanetary magnetic fields (IMF). It is argued that the observed asymmetry is very hard to explain if the most intense part of the cusp lies on closed field lines, but it is shown that the standard open field line model of the cusp virtually requires the observed differences to occur. The present results thus suggest that the most intense portion of the cusp lies on open field lines even for northward IMF. copyright American Geophysical Union 1988

  10. Precipitation-Based ENSO Indices

    NASA Technical Reports Server (NTRS)

    Adler, Robert; Curtis, Scott

    1998-01-01

    In this study gridded observed precipitation data sets are used to construct rainfall-based ENSO indices. The monthly El Nino and La Nina Indices (EI and LI) measure the steepest zonal gradient of precipitation anomalies between the equatorial Pacific and the Maritime Continent. This is accomplished by spatially averaging precipitation anomalies using a spatial boxcar filter, finding the maximum and minimum averages within a Pacific and Maritime Continent domain for each month, and taking differences. EI and LI can be examined separately or combined to produce one ENSO Precipitation Index (ESPI). ESPI is well correlated with traditional sea surface temperature and pressure indices, leading Nino 3.4. One advantage precipitation indices have over more conventional indices, is describing the strength and position of the Walker circulation. Examples are given of tracking the impact of ENSO events on the tropical precipitation fields.

  11. Effect of Nitrite/Nitrate concentrations on Corrosivity of Washed Precipitate

    SciTech Connect

    Congdon, J.W.

    2001-03-28

    Cyclic polarization scans were performed using A-537 carbon steel in simulated washed precipitate solutions of various nitrite and nitrate concentrations. The results of this study indicate that nitrate is an aggressive anion in washed precipitate. Furthermore, a quantitative linear log-log relationship between the minimum effective nitrite concentration and the nitrate concentration was established for washed precipitate with other ions at their average compositions.

  12. Structural changes in precipitated silica induced by external forces

    NASA Astrophysics Data System (ADS)

    Schneider, Gerald Johannes; Göritz, Dietmar

    2010-04-01

    The morphology of pure precipitated silica, silica filled in polydimethylsiloxane rubber, and silica filled in styrene butadiene rubber was studied by means of small-angle X-ray scattering experiments. The silica at a length scale of a few nanometers consists of primary particles, which form aggregates, and clusters with aggregates as basic units. It is evidenced that the aggregate branching, represented by the mass fractal dimension, and the aggregate diameter are different if pure silica and silica in rubber are compared. Contrary, the size of the primary particles and their surface are not influenced. It is demonstrated that the change in the aggregate morphology is due to the external mechanical forces appearing during the mixing process. This is achieved by model experiments using a pistil and a mortar and a composite with different silica fractions. By that means, a systematic change in the morphology with grinding time is observed. Then, the experiments on the composite demonstrate that the major contributions to the mass fractal dimensions are due to the external mechanical forces. In order to test reproducibility and universal validity in the case of precipitated silicas, independent experiments on one silica and further silicas are performed. Several important conclusions are obtained from the study. First, it is shown that a comparison of different pure silica samples without knowing their history may be difficult or questionable. Second, it becomes evident that it is not sufficient to provide only a description of the materials, rather than the details of the sample treatment have to be reported. Therefore, solely the characterization of the morphology of the pure silica is not sufficient to be compared to the mechanical properties of the composites.

  13. Relation of precipitation quality to storm type, and deposition of dissolved chemical constituents from precipitation in Massachusetts, 1983-85

    USGS Publications Warehouse

    Gay, F.B.; Melching, C.S.

    1995-01-01

    Precipitation samples were collected for 83 storms at a rural inland site in Princeton, Mass., and 73 storms at a rural coastal site in Truro, Mass., to examine the quality of precipitation from storms and relate quality to three storm types (oceanic cyclone, continental cyclone, and cold front). At the inland site, Princeton, ranked-means of precipitation depth, storm duration, specific conductance, and concentrations and loads of hydrogen, sulfate, aluminum, bromide, and copper ions were affected by storm type. At the coastal site, Truro, ranked means of precipitation depth, storm duration, and concentrations and loads of calcium, chloride, magnesium, potassium, and sodium ions were affected by storm type. Precipitation chemistry at the coastal site was 85 percent oceanic in orgin, whereas precipitation 72 kilometers inland was 60 percent hydrogen, nitrate, and sulfate ions, reflecting fossil-fuel combustion. Concentrations and loads for specific conductance and 9 chemical constituents on an annual and seasonal basis were determined from National Atmospheric Deposition Program data for spring 1983 through winter 1985 at Quabbin (rural, inland), Waltham (suburban, inland) and Truro (rural, coastal), Massachusetts. Concentrations of magnesium, potassium, sodium, and chloride concentrations were highest at the coast and much lower inland, with very little difference between Waltham and Quabbin. Loads of ammonium, nitrate, sulfate, and hydrogen are highest at Quabbin and are about equal at Waltham and Truro. About twice as much nitrate and hydrogen and about 35 percent more sulfate is deposited at Quabbin than at Waltham or Truro; this pattern indicates that the interior of Massachusetts receives more acidic precipitation than do the eastern or the coastal areas of Massachusetts.

  14. Labile aggregation stimulating substance, free fatty acids, and platelet aggregation.

    PubMed

    Gerrard, J M; White, J G; Krivit, W

    1976-01-01

    Labile aggregation stimulating substance (LASS), an intermediate produced during platelet biosynthesis of PGE2 and PGF2alpha, acts as a physiologic intercellular messenger to promote platelet aggregation and the release reaction. The activity is formed by intact cells after physiologic stimulation or can be generated from platelet membrane fractions after combination with arachidonate. In the present investigation, small amounts of polyunsaturated fatty acids added to an incubation mixture of platelet microsomes and arachidonate were found to significantly inhibit subsequent platelet aggregation. Saturated and mono-unsaturated fatty acids in the same concentrations were without effect. However, in higher concentrations mono-unsaturated fatty acids were found to be inhibitory and stearic acid was found to enhance subsequent platelet aggregation. The inhibition caused by the polyunsaturated fatty acid, linoleate, was shown to be the result of an effect on the production of LASS through an interaction with the platelet enzyme responsible for conversion of arachidonate to LASS. In contrast, stearic acid was found to enhance platelet aggregation by acting on the platelets and not directly on LASS production. The results suggest that small changes in the fatty acid composition of platelet phospholipids could significantly influence platelet reactivity.

  15. Synthetic polyphosphate inhibits endogenous coagulation and platelet aggregation in vitro

    PubMed Central

    Yang, Xiaoyang; Wan, Mengjie; Liang, Ting; Peng, Minyuan; Chen, Fangping

    2017-01-01

    Platelet-derived polyphosphate has previously been indicated to induce coagulation. However, industrially synthesized polyphosphate has been found to have different effects from those of the platelet-derived form. The present study investigated whether synthetic sodium polyphosphate inhibits coagulation using routine coagulation tests and thromboelastography. Synthetic polyphosphate was found to inhibit adenosine diphosphate-, epinephrine-, arachidonic acid-, ristocetin-, thrombin-, oxytocin- and pituitrin-induced platelet aggregation. The effects of synthetic polyphosphate in clotting inhibition were revealed by the analysis of clotting factor activity and platelet aggregation tests. Synthetic polyphosphate may inhibit platelet aggregation by reducing platelet calcium levels, as indicated by the results of flow cytometric analysis and high-throughput fluorescent screening. Furthermore, analysis of thromboxane (TX)B2 by ELISA indicated that synthetic polyphosphate reduces platelet aggregation by inhibiting the TXA2 signaling pathway. In conclusion, synthetic polyphosphate inhibits clotting factor activity and endogenous coagulation by reducing the levels of calcium ions and TXA2 to curb platelet aggregation. PMID:28123708

  16. Fractal Aggregates in Tennis Ball Systems

    ERIC Educational Resources Information Center

    Sabin, J.; Bandin, M.; Prieto, G.; Sarmiento, F.

    2009-01-01

    We present a new practical exercise to explain the mechanisms of aggregation of some colloids which are otherwise not easy to understand. We have used tennis balls to simulate, in a visual way, the aggregation of colloids under reaction-limited colloid aggregation (RLCA) and diffusion-limited colloid aggregation (DLCA) regimes. We have used the…

  17. Development of a global historic monthly mean precipitation dataset

    NASA Astrophysics Data System (ADS)

    Yang, Su; Xu, Wenhui; Xu, Yan; Li, Qingxiang

    2016-04-01

    Global historic precipitation dataset is the base for climate and water cycle research. There have been several global historic land surface precipitation datasets developed by international data centers such as the US National Climatic Data Center (NCDC), European Climate Assessment & Dataset project team, Met Office, etc., but so far there are no such datasets developed by any research institute in China. In addition, each dataset has its own focus of study region, and the existing global precipitation datasets only contain sparse observational stations over China, which may result in uncertainties in East Asian precipitation studies. In order to take into account comprehensive historic information, users might need to employ two or more datasets. However, the non-uniform data formats, data units, station IDs, and so on add extra difficulties for users to exploit these datasets. For this reason, a complete historic precipitation dataset that takes advantages of various datasets has been developed and produced in the National Meteorological Information Center of China. Precipitation observations from 12 sources are aggregated, and the data formats, data units, and station IDs are unified. Duplicated stations with the same ID are identified, with duplicated observations removed. Consistency test, correlation coefficient test, significance t-test at the 95% confidence level, and significance F-test at the 95% confidence level are conducted first to ensure the data reliability. Only those datasets that satisfy all the above four criteria are integrated to produce the China Meteorological Administration global precipitation (CGP) historic precipitation dataset version 1.0. It contains observations at 31 thousand stations with 1.87 × 107 data records, among which 4152 time series of precipitation are longer than 100 yr. This dataset plays a critical role in climate research due to its advantages in large data volume and high density of station network, compared to

  18. Thermodynamic modeling of asphaltene aggregation.

    PubMed

    Rogel, E

    2004-02-03

    A new molecular thermodynamic model for the description of the aggregation behavior of asphaltenes in different solvents is presented. This new model is relatively simple and strictly predictive and does not use any experimental information from asphaltene solutions. In this model, asphaltene aggregates are described as composed of an aromatic core formed by stacked aromatic sheets surrounded by aliphatic chains. The proposed model qualitatively predicts the asphaltene aggregation behavior in a series of different solvents. In particular, the experimental trends observed for the variation of aggregate size with (1) asphaltene molecular characteristics (condensation index, aromaticity, and chain length), (2) asphaltene concentration, (3) solvent characteristics, and (4) temperature have been successfully reproduced by the proposed model. The model also provides a plausible explanation for the existence or absence of a critical micelle concentration (cmc) for asphaltene solutions. Specifically, the model predicted that the asphaltenes with low aromaticities and low aromatic condensations do not exhibit cmc behavior. Finally, the obtained results clearly support the classical model for asphaltene aggregates.

  19. Spatial aggregation: Language and applications

    SciTech Connect

    Bailey-Kellogg, C.; Zhao, F.; Yip, K.

    1996-12-31

    Spatial aggregation is a framework for organizing computations around image-like, analogue representations of physical processes in data interpretation and control tasks. It conceptualizes common computational structures in a class of implemented problem solvers for difficult scientific and engineering problems. It comprises a mechanism, a language, and a programming style. The spatial aggregation mechanism transforms a numerical input field to successively higher-level descriptions by applying a small, identical set of operators to each layer given a metric, neighborhood relation and equivalence relation. This paper describes the spatial aggregation language and its applications. The spatial aggregation language provides two abstract data types - neighborhood graph and field - and a set of interface operators for constructing the transformations of the field, together with a library of component implementations from which a user can mix-and-match and specialize for a particular application. The language allows users to isolate and express important computational ideas in different problem domains while hiding low-level details. We illustrate the use of the language with examples ranging from trajectory grouping in dynamics interpretation to region growing in image analysis. Programs for these different task domains can be written in a modular, concise fashion in the spatial aggregation language.

  20. Leaching behaviour of synthetic aggregates.

    PubMed

    van der Sloot, H A; Hoede, D; Cresswell, D J; Barton, J R

    2001-01-01

    In the framework of EU project "Utilising innovative kiln technology to recycle waste into synthetic aggregate" (BRST-CT98-5234), the leaching behaviour of synthetic aggregates has been studied to assess its environmental compatibility in the various stages of its use. Since the conditions are very different for the different uses, the assessment calls for a variety of different leaching conditions. The pH dependence test is used to cover important differences in pH environment to which the materials are exposed to as well as for an assessment of the buffering capacity of the material. Synthetic aggregate features a low buffer capacity, which makes it sensitive to externally imposed pH conditions. Utilisation and storage exposed to acidic conditions needs to be avoided. The results of the pH dependence test and column leaching test are mutually consistent. The CEN TC 154 method appears to provide systematically low values due to the arbitrary selection of test conditions. Synthetic aggregate studied to date will not adversely affect the concrete in its service life. The main issue for aggregate use is the recycling and the "end of life" condition, when the material becomes construction debris. Not metals, but oxyanions, such as Cr VI and Mo are most relevant under these conditions. A concise test has been applied to assess crucial aspects of leaching for different production mixes.

  1. Novel insights into amylin aggregation

    PubMed Central

    Pillay, Karen; Govender, Patrick

    2014-01-01

    Amylin is a peptide that aggregates into species that are toxic to pancreatic beta cells, leading to type II diabetes. This study has for the first time quantified amylin association and dissociation kinetics (association constant (ka) = 28.7 ± 5.1 L mol−1 s−1 and dissociation constant (kd) = 2.8 ± 0.6 ×10−4 s−1) using surface plasmon resonance (SPR). Thus far, techniques used for the sizing of amylin aggregates do not cater for the real-time monitoring of unconstrained amylin in solution. In this regard we evaluated recently innovated nanoparticle tracking analysis (NTA). In addition, both SPR and NTA were used to study the effect of previously synthesized amylin derivatives on amylin aggregation and to evaluate their potential as a cell-free system for screening potential inhibitors of amylin-mediated cytotoxicity. Results obtained from NTA highlighted a predominance of 100–300 nm amylin aggregates and correlation to previously published cytotoxicity results suggests the toxic species of amylin to be 200–300 nm in size. The results seem to indicate that NTA has potential as a new technique to monitor the aggregation potential of amyloid peptides in solution and also to screen potential inhibitors of amylin-mediated cytotoxicity. PMID:26019498

  2. Aggregated Recommendation through Random Forests

    PubMed Central

    2014-01-01

    Aggregated recommendation refers to the process of suggesting one kind of items to a group of users. Compared to user-oriented or item-oriented approaches, it is more general and, therefore, more appropriate for cold-start recommendation. In this paper, we propose a random forest approach to create aggregated recommender systems. The approach is used to predict the rating of a group of users to a kind of items. In the preprocessing stage, we merge user, item, and rating information to construct an aggregated decision table, where rating information serves as the decision attribute. We also model the data conversion process corresponding to the new user, new item, and both new problems. In the training stage, a forest is built for the aggregated training set, where each leaf is assigned a distribution of discrete rating. In the testing stage, we present four predicting approaches to compute evaluation values based on the distribution of each tree. Experiments results on the well-known MovieLens dataset show that the aggregated approach maintains an acceptable level of accuracy. PMID:25180204

  3. In Situ Probing Nucleation, Growth, and Aggregation of Iron Oxides in Geochemical Aquatic Systems

    NASA Astrophysics Data System (ADS)

    Jun, Y.; Hu, Y.; Ray, J. R.

    2012-12-01

    Nucleation, growth, and aggregation of iron oxide nanoparticles can significantly alter the fate of organic and inorganic contaminants in geochemical aquatic systems. This talk will address how we can improve our understanding of nucleation, growth, and aggregation of iron oxide nanoparticles by providing more accurate quantitative and qualitative empirical information. In this study, a novel environmental setup—which allows time-resolved simultaneous measurements of small angle x-ray scattering (SAXS) and grazing incidence small-angle scattering (GISAXS) in the presence of bulk solution—was utilized for real-time monitoring of nanoparticle formation at water-mineral interfaces. This setup enabled us to probe the size, shape, and location of iron oxide nanoparticles on the substrate and in solution without dehydration of samples. Experiments were conducted with 10-4 M ferric ions in the presence of environmentally important and abundant anions (nitrate, chlorite, sulfate) and cations (aluminum) at pH = 3.7 ± 0.1. The substrates used were geologically ubiquitous media such as quartz, mica, and organic polymer-coated surfaces. Once ferric solutions were introduced, the homogeneous and heterogeneous nucleation of iron oxides occurred and the size and volume evolution of nanoparticles were monitored. To complement these observations, atomic force microscopy, high-resolution transmission electron microscopy, high-resolution x-ray diffraction, contact angle analysis, dynamic light scattering, and electrophoretic mobility analysis were utilized. Based on in situ measurements of initial nuclei evolution at aqueous interfaces, this approach provided new, important information for upscaling such as size, volume, surface area, and location (i.e., in solution vs. on mineral surfaces) of iron oxides precipitates formed in the presence of organic matter and different substrate morphological and chemical properties. Using this quantitative information, we identified the

  4. Comparing the relationship between precipitation and river geochemistry

    NASA Astrophysics Data System (ADS)

    Epp, A.; Luymes, R.; Bennett, M.; DaSilva, J.; Marsh, S. J.; Gillies, S. L.; Peucker-Ehrenbrink, B.; Voss, B.

    2013-12-01

    The geochemistry of precipitation affects the geochemistry of river water. Ideally, studies of river biogeochemistry should therefore include collection and analyses of dry and wet deposition. The Global Rivers Observatory has studied the Fraser River near Vancouver since the summer of 2009 at roughly bi-weekly resolution. The interpretation of this temporal record of river biogeochemistry, particularly the various sources of solutes, could be improved with a better understanding of atmospheric contributions. In this study precipitation and river water will be analysed from the Fraser River basin for nutrients as well as major and select trace ion concentrations. The nutrients analyzed will include ammonium (NH4), nitrate and nitrate (NO3-NO2), phosphate (PO4) and silicate (SiO4). Major ions include sodium (Na), potassium (K), calcium (Ca), magnesium (Mg), chloride (Cl), and sulfate (SO4). Trace elements may include molybdenum, strontium, barium, uranium, rubidium, manganese and iron. Samples will be collected using the bulk method which collects both wet and dry deposition . Correlating precipitation chemistry with data on wind direction may help elucidate sources of nutrients and major ions. For instance, westerly sources may transport pollution from the City of Vancouver and agricultural lands in the Fraser delta. Such pollutants may increase the acidity of precipitation and imprint the water chemistry with a unique chemical signature . The results of this study will be helpful in correcting Fraser River water data for contributions from atmospheric deposition.

  5. Precipitation in the Solar System

    ERIC Educational Resources Information Center

    McIntosh, Gordon

    2007-01-01

    As an astronomy instructor, I am always looking for commonly observed Earthly experiences to help my students and me understand and appreciate similar occurrences elsewhere in the solar system. Recently I wrote a short TPT article on frost. This paper is on the related phenomena of precipitation. Precipitation, so common on most of the Earth's…

  6. Resistivity Problems in Electrostatic Precipitation

    ERIC Educational Resources Information Center

    White, Harry J.

    1974-01-01

    The process of electrostatic precipitation has ever-increasing application in more efficient collection of fine particles from industrial air emissions. This article details a large number of new developments in the field. The emphasis is on high resistivity particles which are a common cause of poor precipitator performance. (LS)

  7. Precipitation Process and Apparatus Therefor

    DOEpatents

    Stang, Jr, L C

    1950-12-05

    This invention concerns an apparatus for remotely-controlled precipitation and filtration operations. Liquid within a precipitation chamber is maintained above a porous member by introducing air beneath the member; pressure beneath the porous member is reduced to suck the liquid through the member and effect filtration.

  8. Stabilization through precipitation in a system of colloidal iron(III) pyrophosphate salts.

    PubMed

    van Leeuwen, Y Mikal; Velikov, Krassimir P; Kegel, Willem K

    2012-09-01

    The ionic strength of a solution decreases during the precipitation of an insoluble salt, which can cause an initially unstable colloidal system to stabilize during its formation. We show this effect in the precipitation and aging of colloidal iron(III) pyrophosphate, where we observe two distinct stages in the aggregation process. The first stage is the formation of nanoparticles that immediately aggregate into clusters with sizes on the order of 200 nm. In the second stage these clusters slowly grow in size but remain in dispersion for days, even months for dialyzed systems. Eventually these clusters become macroscopically large and sediment out of dispersion. Noting the clear instability of the nanoparticles, it is interesting to find two stages in their aggregation even without the use of additives such as surface active molecules. This is explained by accounting for the rapid decrease of ionic strength during precipitation, rendering the nanoparticles relatively stable when precipitation is complete. Calculating the interaction potentials for this scenario we find good agreement with the experimental observations. These results indicate that coupling of ionic strength to aggregation state can be significant and should be taken into account when considering colloidal stability of insoluble salts.

  9. Customer Aggregation: An Opportunity for Green Power?

    SciTech Connect

    Holt, E.; Bird, L.

    2001-02-26

    We undertook research into the experience of aggregation groups to determine whether customer aggregation offers an opportunity to bring green power choices to more customers. The objectives of this report, therefore, are to (1) identify the different types of aggregation that are occurring today, (2) learn whether aggregation offers an opportunity to advance sales of green power, and (3) share these concepts and approaches with potential aggregators and green power advocates.

  10. Equilibrium structure of ferrofluid aggregates.

    PubMed

    Yoon, Mina; Tománek, David

    2010-11-17

    We study the equilibrium structure of large but finite aggregates of magnetic dipoles, representing a colloidal suspension of magnetite particles in a ferrofluid. With increasing system size, the structural motif evolves from chains and rings to multi-chain and multi-ring assemblies. Very large systems form single- and multi-wall coils, tubes and scrolls. These structural changes result from a competition between various energy terms, which can be approximated analytically within a continuum model. We also study the effect of external parameters such as magnetic field on the relative stability of these structures. Our results may give insight into experimental data obtained during solidification of ferrofluid aggregates at temperatures where thermal fluctuations become negligible in comparison to inter-particle interactions. These data may also help to experimentally control the aggregation of magnetic particles.

  11. Equilibrium structure of ferrofluid aggregates

    SciTech Connect

    Yoon, Mina; Tomanek, David

    2010-01-01

    We study the equilibrium structure of large but finite aggregates of magnetic dipoles, representing a colloidal suspension of magnetite particles in a ferrofluid. With increasing system size, the structural motif evolves from chains and rings to multi-chain and multi-ring assemblies. Very large systems form single- and multi-wall coils, tubes and scrolls. These structural changes result from a competition between various energy terms, which can be approximated analytically within a continuum model. We also study the effect of external parameters such as magnetic field on the relative stability of these structures. Our results may give insight into experimental data obtained during solidification of ferrofluid aggregates at temperatures where thermal fluctuations become negligible in comparison to inter-particle interactions. These data may also help to experimentally control the aggregation of magnetic particles.

  12. 3-D analysis of bacterial cell-(iron)mineral aggregates formed during Fe(II) oxidation by the nitrate-reducing Acidovorax sp. strain BoFeN1 using complementary microscopy tomography approaches.

    PubMed

    Schmid, G; Zeitvogel, F; Hao, L; Ingino, P; Floetenmeyer, M; Stierhof, Y-D; Schroeppel, B; Burkhardt, C J; Kappler, A; Obst, M

    2014-07-01

    The formation of cell-(iron)mineral aggregates as a consequence of bacterial iron oxidation is an environmentally widespread process with a number of implications for processes such as sorption and coprecipitation of contaminants and nutrients. Whereas the overall appearance of such aggregates is easily accessible using 2-D microscopy techniques, the 3-D and internal structure remain obscure. In this study, we examined the 3-D structure of cell-(iron)mineral aggregates formed during Fe(II) oxidation by the nitrate-reducing Acidovorax sp. strain BoFeN1 using a combination of advanced 3-D microscopy techniques. We obtained 3-D structural and chemical information on different cellular encrustation patterns at high spatial resolution (4-200 nm, depending on the method): more specifically, (1) cells free of iron minerals, (2) periplasm filled with iron minerals, (3) spike- or platelet-shaped iron mineral structures, (4) bulky structures on the cell surface, (5) extracellular iron mineral shell structures, (6) cells with iron mineral filled cytoplasm, and (7) agglomerations of extracellular globular structures. In addition to structural information, chemical nanotomography suggests a dominant role of extracellular polymeric substances (EPS) in controlling the formation of cell-(iron)mineral aggregates. Furthermore, samples in their hydrated state showed cell-(iron)mineral aggregates in pristine conditions free of preparation (i.e., drying/dehydration) artifacts. All these results were obtained using 3-D microscopy techniques such as focused ion beam (FIB)/scanning electron microscopy (SEM) tomography, transmission electron microscopy (TEM) tomography, scanning transmission (soft) X-ray microscopy (STXM) tomography, and confocal laser scanning microscopy (CLSM). It turned out that, due to the various different contrast mechanisms of the individual approaches, and due to the required sample preparation steps, only the combination of these techniques was able to provide a

  13. Encoding information into precipitation structures

    NASA Astrophysics Data System (ADS)

    Martens, Kirsten; Bena, Ioana; Droz, Michel; Rácz, Zoltan

    2008-12-01

    Material design at submicron scales would be profoundly affected if the formation of precipitation patterns could be easily controlled. It would allow the direct building of bulk structures, in contrast to traditional techniques which consist of removing material in order to create patterns. Here, we discuss an extension of our recent proposal of using electrical currents to control precipitation bands which emerge in the wake of reaction fronts in A+ + B- → C reaction-diffusion processes. Our main result, based on simulating the reaction-diffusion-precipitation equations, is that the dynamics of the charged agents can be guided by an appropriately designed time-dependent electric current so that, in addition to the control of the band spacing, the width of the precipitation bands can also be tuned. This makes straightforward the encoding of information into precipitation patterns and, as an amusing example, we demonstrate the feasibility by showing how to encode a musical rhythm.

  14. A specialist's audit of aggregated occurrence records: An 'aggregator's' perspective.

    PubMed

    Belbin, Lee; Daly, Joanne; Hirsch, Tim; Hobern, Donald; Salle, John La

    2013-01-01

    A recent ZooKeys' paper (Mesibov, 2013: http://www.pensoft.net/journal_home_page.php?journal_id=1&page=article&SESID=df7bcb35b02603283dcb83ee0e0af0c9&type=show&article_id=5111) has highlighted data quality issues in aggregated data sets, but did not provide a realistic way to address these issues. This paper provides an aggregator's perspective including ways that the whole community can help to address data quality issues. The establishment of GBIF and national nodes (national aggregators) such as the Atlas of Living Australia (ALA) have integrated and exposed a huge diversity of biological observations along with many associated issues. Much of the admirable work by Mesibov (2013) was enabled by having the data exposed. Data quality, one of the highest priorities for GBIF, the national nodes and other aggregators, depends on both automatic methods and community experts to detect and correct data issues. Not all issues can however be automatically detected or corrected, so community assistance is needed to help improve the quality of exposed biological data. We do need to improve the infrastructure and associated processes to more easily identify data issues and document all changes to ensure a full record is permanently and publicly available.

  15. Environmentalism and natural aggregate mining

    USGS Publications Warehouse

    Drew, L.J.; Langer, W.H.; Sachs, J.S.

    2002-01-01

    Sustaining a developed economy and expanding a developing one require the use of large volumes of natural aggregate. Almost all human activity (commercial, recreational, or leisure) is transacted in or on facilities constructed from natural aggregate. In our urban and suburban worlds, we are almost totally dependent on supplies of water collected behind dams and transported through aqueducts made from concrete. Natural aggregate is essential to the facilities that produce energy-hydroelectric dams and coal-fired powerplants. Ironically, the utility created for mankind by the use of natural aggregate is rarely compared favorably with the environmental impacts of mining it. Instead, the empty quarries and pits are seen as large negative environmental consequences. At the root of this disassociation is the philosophy of environmentalism, which flavors our perceptions of the excavation, processing, and distribution of natural aggregate. The two end-member ideas in this philosophy are ecocentrism and anthropocentrism. Ecocentrism takes the position that the natural world is a organism whose arteries are the rivers-their flow must not be altered. The soil is another vital organ and must not be covered with concrete and asphalt. The motto of the ecocentrist is "man must live more lightly on the land." The anthropocentrist wants clean water and air and an uncluttered landscape for human use. Mining is allowed and even encouraged, but dust and noise from quarry and pit operations must be minimized. The large volume of truck traffic is viewed as a real menace to human life and should be regulated and isolated. The environmental problems that the producers of natural aggregate (crushed stone and sand and gravel) face today are mostly difficult social and political concerns associated with the large holes dug in the ground and the large volume of heavy truck traffic associated with quarry and pit operations. These concerns have increased in recent years as society's demand for

  16. Hydrodynamic behavior of fractal aggregates

    NASA Astrophysics Data System (ADS)

    Wiltzius, Pierre

    1987-02-01

    Measurements of the radius of gyration RG and the hydrodynamic radius RH of colloidal silica aggregates are reported. These aggregates have fractal geometry and RH is proportional to RG for 500 Å<=RH<=7000 Å, with a ratio RH/RG=0.72+/-0.02. The results are compared with predictions for macromolecules of various shapes. The proportionality of the two radii can be understood with use of the pair correlation function of fractal objects and hydrodynamic interactions on the Oseen level. The value of the ratio remains to be explained.

  17. Aggregation work at polydisperse micellization: Ideal solution and ``dressed micelle'' models comparing to molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Burov, S. V.; Shchekin, A. K.

    2010-12-01

    General thermodynamic relations for the work of polydisperse micelle formation in the model of ideal solution of molecular aggregates in nonionic surfactant solution and the model of "dressed micelles" in ionic solution have been considered. In particular, the dependence of the aggregation work on the total concentration of nonionic surfactant has been analyzed. The analogous dependence for the work of formation of ionic aggregates has been examined with regard to existence of two variables of a state of an ionic aggregate, the aggregation numbers of surface active ions and counterions. To verify the thermodynamic models, the molecular dynamics simulations of micellization in nonionic and ionic surfactant solutions at two total surfactant concentrations have been performed. It was shown that for nonionic surfactants, even at relatively high total surfactant concentrations, the shape and behavior of the work of polydisperse micelle formation found within the model of the ideal solution at different total surfactant concentrations agrees fairly well with the numerical experiment. For ionic surfactant solutions, the numerical results indicate a strong screening of ionic aggregates by the bound counterions. This fact as well as independence of the coefficient in the law of mass action for ionic aggregates on total surfactant concentration and predictable behavior of the "waterfall" lines of surfaces of the aggregation work upholds the model of "dressed" ionic aggregates.

  18. Analysis of the operating parameters of a vortex electrostatic precipitator

    NASA Astrophysics Data System (ADS)

    Congxiang, Lu; Chengwu, Yi; Rongjie, Yi; Shiwen, Liu

    2017-02-01

    A vortex electrostatic precipitator (VEP) forms a vortex flow field within a precipitator by means of the vertical staggered layout of the double-vortex collecting plate facing the direction of the gas flow. The ion concentrations within the precipitator can be significantly increased. Correspondingly, the charging and coagulation rates of fine particles and particle migration velocity are significantly improved within the VEP. Since it can effectively collect fine particles and reduce precipitator size, VEPs represent a new type of electrostatic precipitator with great application potential. In this work the change curve of the external voltage, gas velocity, row spacing and effective collecting area influencing the precipitation efficiency were acquired through a single-factor experiment. Using an orthogonal regression design, attempts were made to analyze the major operating parameters influencing the collecting efficiency of fine particles, establish a multiple linear regression model and analyze the weights of factors and then acquire quantitative rules relating experimental indicators and factors. The regression model was optimized by MATLAB programming, and we then obtained the optimal factor combination which can enhance the efficiency of fine particle collection. The final optimized result is that: when gas velocity is 3.4 m s-1, the external voltage is 18 kV, row spacing is 100 mm and the effective collecting area is 1.13 m2, the rate of fine particle collection is 89.8867%. After determining and analyzing the state of the internal flow field within the VEP by particle image velocimetry (PIV), the results show that, for a particular gas velocity, a vortex zone and laminar zone are distinctly formed within the VEP, which increases the ion transport ratio as well as the charging, coagulation and collection rates of fine particles within the precipitator, thus making further improvements in the efficiency of fine particle collection.

  19. Asphalt-aggregate interactions in hot recycling. Final report, April 1985-March 1987

    SciTech Connect

    Kiggundu, B.M.; Newman, J.K.

    1987-07-01

    This report summarizes results of an investigation of asphalt-aggregate interactions in hot recycled systems. Materials used in the research included a severe stripping aggregate and a nonstripping aggregate. Both were evaluated using the Lottman 70% retained tensile-strength criteria. Additional materials included a 40/60 RAP new aggregate system, one virgin asphalt, two RAP recovered binders, one modifier or recycling agent, and two blends. The modifier was selected using a recently developed specification involving physical, composition, and solubility properties. Aggregates were evaluated for surface area, bulk composition, water-soluble ions, cation exchange capacity, gradation, and specific gravities. Binders were tested for physical properties and composition properties using a modified Clay-Gel procedure, and compatibility properties using a modified Heithaus procedure.

  20. Precipitation in 9Ni-12Cr-2Cu maraging steels

    SciTech Connect

    Stiller, K.; Haettestrand, M.; Danoix, F.

    1998-11-02

    Two maraging steels with the compositions 9Ni-12Cr-2Cu-4Mo (wt%) and 9Ni-12Cr-2Cu and with small additions of Al and Ti were investigated using atom probe field ion microscopy. Tomographic atom probe investigations were performed to clarify the spatial distribution of elements in and close to the precipitates. Materials heat treated at 475 C for 5, 25 min, 1, 2, 4 and 400 h were analyzed. Precipitates in the Mo-rich material were observed already after 5 min of aging, while in the material without MO, precipitation started later. In both materials precipitation begins with the formation of Cu-rich particles which work as nucleation sites for a Ni-rich phase of type Ni{sub 3}(Ti,Al). A Mo-rich phase was detected in the Mo-rich steel after 2 h of aging. The distribution of alloying elements in the precipitates, their role in the precipitation process, and the mechanism of hardening in the two materials are discussed.

  1. Studies on effective utilization of precipitates from neutralized mine drainage

    SciTech Connect

    Harada, Taneomi

    1995-12-31

    Mine drainage has high acidity and sometimes contains more than the allowable concentration of ionized iron. In such a case, mine drainage is neutralized with calcium carbonate and calcium hydroxide to separate precipitates, such as the iron hydroxide and gypsum generated. Currently, most of these precipitates are not utilized and are accumulated in tailing dams. As a result, the service life of the tailing dams is reduced. This becomes a matter of concern, since securing sites for such dams is difficult. A most effective means of solving this problem would be to promote utilization of these neutralized precipitates. This paper reports on the results of studies on neutralized precipitates produced at the old Matsuo Mine (Iwate Prefecture), which has the largest neutralization treatment facility in Japan. As a result of the studies, the following was proposed regarding application of neutralized precipitates. Utilization as ferrite: mix ferrous hydroxide and ferric hydroxide in water to synthesize magnetite-like ferrite, to be used in the manufacture of magnetic markers for a mobility support system for blind pedestrians, or in producing magnetic fluids for sink-and-float separation of nonmagnetic metals and nonmetals. Utilization as hematite: bake ferric hydroxide to produce hematite, thereby extracting metallic iron for paint pigment as well as for the manufacture of ironware by local industry. Production of aluminum sulfate: precipitate aluminum ions from water and add sulfuric acid to produce aluminum sulfate.

  2. Precipitation of oppositely charged polyelectrolytes in salt solutions.

    PubMed

    Kudlay, Alexander; Olvera de la Cruz, Monica

    2004-01-01

    We study phase separation in symmetric solutions of weakly charged flexible chains of opposite sign. Precipitation is caused by effective attractions due to charge fluctuations and by short-range attractions between monomers. The contribution from charge fluctuations is computed within the random phase approximation (RPA), which takes into account the connectivity of charges in the polyions. The impenetrability of the ions is accounted for by using a modified Coulomb potential in the RPA. In good solvent conditions the precipitate monotonically swells and eventually dissolves upon addition of salt. However, near the theta-solvent condition, but still in the good solvent, the precipitate can be stable at any salt concentration. Moreover, the density of the precipitate after initial decrease can increase with addition of salt. This effect is a result of redistribution of salt between the precipitate and the supernatant, which is due to an interplay of electrostatic and hardcore interactions. For not too weakly charged polyions the precipitate properties become strongly dependent on temperature even in good solvent conditions.

  3. Estimation of continental precipitation recycling

    NASA Technical Reports Server (NTRS)

    Brubaker, Kaye L.; Entekhabi, Dara; Eagleson, P. S.

    1993-01-01

    The total amount of water that precipitates on large continental regions is supplied by two mechanisms: 1) advection from the surrounding areas external to the region and 2) evaporation and transpiration from the land surface within the region. The latter supply mechanism is tantamount to the recycling of precipitation over the continental area. The degree to which regional precipitation is supplied by recycled moisture is a potentially significant climate feedback mechanism and land surface-atmosphere interaction, which may contribute to the persistence and intensification of droughts. Gridded data on observed wind and humidity in the global atmosphere are used to determine the convergence of atmospheric water vapor over continental regions. A simplified model of the atmospheric moisture over continents and simultaneous estimates of regional precipitation are employed to estimate, for several large continental regions, the fraction of precipitation that is locally derived. The results indicate that the contribution of regional evaporation to regional precipitation varies substantially with location and season. For the regions studied, the ratio of locally contributed to total monthly precipitation generally lies between 0. 10 and 0.30 but is as high as 0.40 in several cases.

  4. Ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.

    1984-01-01

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.

  5. Studies on recycled aggregates-based concrete.

    PubMed

    Rakshvir, Major; Barai, Sudhirkumar V

    2006-06-01

    Reduced extraction of raw materials, reduced transportation cost, improved profits, reduced environmental impact and fast-depleting reserves of conventional natural aggregates has necessitated the use of recycling, in order to be able to conserve conventional natural aggregate. In this study various physical and mechanical properties of recycled concrete aggregates were examined. Recycled concrete aggregates are different from natural aggregates and concrete made from them has specific properties. The percentages of recycled concrete aggregates were varied and it was observed that properties such as compressive strength showed a decrease of up to 10% as the percentage of recycled concrete aggregates increased. Water absorption of recycled aggregates was found to be greater than natural aggregates, and this needs to be compensated during mix design.

  6. RAGG - R EPISODIC AGGREGATION PACKAGE

    EPA Science Inventory

    The RAGG package is an R implementation of the CMAQ episodic model aggregation method developed by Constella Group and the Environmental Protection Agency. RAGG is a tool to provide climatological seasonal and annual deposition of sulphur and nitrogen for multimedia management. ...

  7. Sequence-dependent internalization of aggregating peptides.

    PubMed

    Couceiro, José R; Gallardo, Rodrigo; De Smet, Frederik; De Baets, Greet; Baatsen, Pieter; Annaert, Wim; Roose, Kenny; Saelens, Xavier; Schymkowitz, Joost; Rousseau, Frederic

    2015-01-02

    Recently, a number of aggregation disease polypeptides have been shown to spread from cell to cell, thereby displaying prionoid behavior. Studying aggregate internalization, however, is often hampered by the complex kinetics of the aggregation process, resulting in the concomitant uptake of aggregates of different sizes by competing mechanisms, which makes it difficult to isolate pathway-specific responses to aggregates. We designed synthetic aggregating peptides bearing different aggregation propensities with the aim of producing modes of uptake that are sufficiently distinct to differentially analyze the cellular response to internalization. We found that small acidic aggregates (≤500 nm in diameter) were taken up by nonspecific endocytosis as part of the fluid phase and traveled through the endosomal compartment to lysosomes. By contrast, bigger basic aggregates (>1 μm) were taken up through a mechanism dependent on cytoskeletal reorganization and membrane remodeling with the morphological hallmarks of phagocytosis. Importantly, the properties of these aggregates determined not only the mechanism of internalization but also the involvement of the proteostatic machinery (the assembly of interconnected networks that control the biogenesis, folding, trafficking, and degradation of proteins) in the process; whereas the internalization of small acidic aggregates is HSF1-independent, the uptake of larger basic aggregates was HSF1-dependent, requiring Hsp70. Our results show that the biophysical properties of aggregates determine both their mechanism of internalization and proteostatic response. It remains to be seen whether these differences in cellular response contribute to the particular role of specific aggregated proteins in disease.

  8. Liquid high concentration IgG1 antibody formulations by precipitation.

    PubMed

    Matheus, Susanne; Friess, Wolfgang; Schwartz, Daniel; Mahler, Hanns-Christian

    2009-09-01

    A manufacturing approach for liquid high concentration antibody formulations based on precipitation and subsequent re-dissolution was investigated. IgG1 antibody solutions were concentrated from 20 to 100 mg/mL by intermediate precipitation, with a recovery exceeding 95%, retention of the native secondary structure and binding activity as well as adequate stability. Quantitative, reproducible precipitation was performed using 1.45 M ammonium sulphate (pH 5.5 and 8.0), 0.67 M sodium citrate (pH 8.0) and 9% (w/v) PEG 4000 (pH 5.5 and 8.0). Scalability was confirmed from 1 to 100 mL. The concentrations achievable in the re-dissolution step were less affected by the re-dissolution medium, but limited by the residual precipitant. Both, improved removal of remaining precipitant liquid and larger precipitation scales were successful in increasing the final protein concentration. SEC and turbidity analysis directly after re-dissolution indicated that similar protein qualities were obtained, independent from the precipitant used. However, increased aggregate formation was observed after short term storage of the precipitated protein particles at either 2-8 degrees C or ambient temperature. An accelerated mechanical and thermal stability program verified comparable stability of the re-dissolved liquid 100 mg/mL formulations produced by intermediate precipitation to a control formulation obtained by standard ultrafiltration.

  9. Formation and Growth of Stacking Fault Tetrahedra in Ni via Vacancy Aggregation Mechanism

    DOE PAGES

    Aidhy, Dilpuneet S.; Lu, Chenyang; Jin, Ke; ...

    2015-12-29

    Using molecular dynamics simulations, the formation and growth of stacking fault tetrahedra (SFT) are captured by vacancy cluster diffusion and aggregation mechanisms in Ni. The vacancytetrahedron acts as a nucleation point for SFT formation. Simulations show that perfect SFT can grow to the next size perfect SFT via a vacancy aggregation mechanism. The stopping and range of ions in matter (SRIM) calculations and transmission electron microscopy (TEM) observations reveal that SFT can form farther away from the initial cascade-event locations, indicating the operation of diffusion-based vacancy-aggregation mechanism.

  10. Precipitation Measurements from Space: The Global Precipitation Measurement Mission

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.

    2007-01-01

    Water is fundamental to the life on Earth and its phase transition between the gaseous, liquid, and solid states dominates the behavior of the weather/climate/ecological system. Precipitation, which converts atmospheric water vapor into rain and snow, is central to the global water cycle. It regulates the global energy balance through interactions with clouds and water vapor (the primary greenhouse gas), and also shapes global winds and dynamic transport through latent heat release. Surface precipitation affects soil moisture, ocean salinity, and land hydrology, thus linking fast atmospheric processes to the slower components of the climate system. Precipitation is also the primary source of freshwater in the world, which is facing an emerging freshwater crisis in many regions. Accurate and timely knowledge of global precipitation is essential for understanding the behavior of the global water cycle, improving freshwater management, and advancing predictive capabilities of high-impact weather events such as hurricanes, floods, droughts, and landslides. With limited rainfall networks on land and the impracticality of making extensive rainfall measurements over oceans, a comprehensive description of the space and time variability of global precipitation can only be achieved from the vantage point of space. This presentation will examine current capabilities in space-borne rainfall measurements, highlight scientific and practical benefits derived from these observations to date, and provide an overview of the multi-national Global Precipitation Measurement (GPM) Mission scheduled to bc launched in the early next decade.

  11. Sulfate Anion Delays the Self-Assembly of Human Insulin by Modifying the Aggregation Pathway

    PubMed Central

    Owczarz, Marta; Arosio, Paolo

    2014-01-01

    The understanding of the molecular mechanisms underlying protein self-assembly and of their dependence on solvent composition has implications in a large number of biological and biotechnological systems. In this work, we characterize the aggregation process of human insulin at acidic pH in the presence of sulfate ions using a combination of Thioflavin T fluorescence, dynamic light scattering, size exclusion chromatography, Fourier transform infrared spectroscopy, and transmission electron microscopy. It is found that the increase of sulfate concentration inhibits the conversion of insulin molecules into aggregates by modifying the aggregation pathway. At low sulfate concentrations (0–5 mM) insulin forms amyloid fibrils following the nucleated polymerization mechanism commonly observed under acidic conditions in the presence of monovalent anions. When the sulfate concentration is increased above 5 mM, the sulfate anion induces the salting-out of ∼18–20% of insulin molecules into reversible amorphous aggregates, which retain a large content of α-helix structures. During time these aggregates undergo structure rearrangements into β-sheet structures, which are able to recruit monomers and bind to the Thioflavin T dye. The alternative aggregation mechanism observed at large sulfate concentrations is characterized by a larger activation energy and leads to more polymorphic structures with respect to the self-assembly in the presence of chloride ions. The system shown in this work represents a case where amorphous aggregates on pathway to the formation of structures with amyloid features could be detected and analyzed. PMID:24988354

  12. Precipitation of lamellar gold nanocrystals in molten polymers

    NASA Astrophysics Data System (ADS)

    Palomba, M.; Carotenuto, G.

    2016-05-01

    Non-aggregated lamellar gold crystals with regular shape (triangles, squares, pentagons, etc.) have been produced by thermal decomposition of gold chloride (AuCl) molecules in molten amorphous polymers (polystyrene and poly(methyl methacrylate)). Such covalent inorganic gold salt is high soluble into non-polar polymers and it thermally decomposes at temperatures compatible with the polymer thermal stability, producing gold atoms and chlorine radicals. At the end of the gold precipitation process, the polymer matrix resulted chemically modified because of the partial cross-linking process due to the gold atom formation reaction.

  13. Examination of Ataxin-3 (atx-3) Aggregation by Structural Mass Spectrometry Techniques: A Rationale for Expedited Aggregation upon Polyglutamine (polyQ) Expansion*

    PubMed Central

    Scarff, Charlotte A.; Almeida, Bruno; Fraga, Joana; Macedo-Ribeiro, Sandra; Radford, Sheena E.; Ashcroft, Alison E.

    2015-01-01

    Expansion of polyglutamine stretches leads to the formation of polyglutamine-containing neuronal aggregates and neuronal death in nine diseases for which there currently are no treatments or cures. This is largely due to a lack in understanding of the mechanisms by which expanded polyglutamine regions contribute to aggregation and disease. To complicate matters further, several of the polyglutamine-disease related proteins, including ataxin-3, have a multistage aggregation mechanism in which flanking domain self-assembly precedes polyglutamine aggregation yet is influenced by polyglutamine expansion. How polyglutamine expansion influences flanking domain aggregation is poorly understood. Here, we use a combination of mass spectrometry and biophysical approaches to investigate this issue for ataxin-3. We show that the conformational dynamics of the flanking Josephin domain in ataxin-3 with an expanded polyglutamine tract are altered in comparison to those exhibited by its nonexpanded counterpart, specifically within the aggregation-prone region of the Josephin domain (amino acid residues 73–96). Expansion thus exposes this region more frequently in ataxin-3 containing an expanded polyglutamine tract, providing a molecular explanation of why aggregation is accelerated upon polyglutamine expansion. Here, harnessing the power of ion mobility spectrometry-mass spectrometry, oligomeric species formed during aggregation are characterized and a model for oligomer growth proposed. The results suggest that a conformational change occurs at the dimer level that initiates self-assembly. New insights into ataxin-3 fibril architecture are also described, revealing the region of the Josephin domain involved in protofibril formation and demonstrating that polyglutamine aggregation proceeds as a distinct second step after protofibril formation without requiring structural rearrangement of the protofibril core. Overall, the results enable the effect of polyglutamine expansion on

  14. Measurement of visible and UV emission from Energetic Neutral Atom Precipitation (ENAP), on Spacelab

    NASA Technical Reports Server (NTRS)

    Tinsley, B. A.

    1980-01-01

    The charge exchange of plasmaspheric ions and exospheric H and O and of solar wind ions with exospheric and interplanetary H are sources of precipitating neutrals whose faint emission may be observed by the imaging spectrometric observatory during dark periods of the SL-1 orbit. Measurements of the interactions of these precipitating atoms with the thermosphere are needed to evaluate the heating and ionization effects on the atmosphere as well as the selective loss of i energetic ions from the sources (predominantly the ring current).

  15. Ion exchange technology assessment report

    SciTech Connect

    Duhn, E.F.

    1992-01-01

    In the execution of its charter, the SRS Ion Exchange Technology Assessment Team has determined that ion exchange (IX) technology has evolved to the point where it should now be considered as a viable alternative to the SRS reference ITP/LW/PH process. The ion exchange media available today offer the ability to design ion exchange processing systems tailored to the unique physical and chemical properties of SRS soluble HLW's. The technical assessment of IX technology and its applicability to the processing of SRS soluble HLW has demonstrated that IX is unquestionably a viable technology. A task team was chartered to evaluate the technology of ion exchange and its potential for replacing the present In-Tank Precipitation and proposed Late Wash processes to remove Cs, Sr, and Pu from soluble salt solutions at the Savannah River Site. This report documents the ion exchange technology assessment and conclusions of the task team.

  16. Ion exchange technology assessment report

    SciTech Connect

    Duhn, E.F.

    1992-12-31

    In the execution of its charter, the SRS Ion Exchange Technology Assessment Team has determined that ion exchange (IX) technology has evolved to the point where it should now be considered as a viable alternative to the SRS reference ITP/LW/PH process. The ion exchange media available today offer the ability to design ion exchange processing systems tailored to the unique physical and chemical properties of SRS soluble HLW`s. The technical assessment of IX technology and its applicability to the processing of SRS soluble HLW has demonstrated that IX is unquestionably a viable technology. A task team was chartered to evaluate the technology of ion exchange and its potential for replacing the present In-Tank Precipitation and proposed Late Wash processes to remove Cs, Sr, and Pu from soluble salt solutions at the Savannah River Site. This report documents the ion exchange technology assessment and conclusions of the task team.

  17. Thermodynamics of the hydrophobic effect. II. Calorimetric measurement of enthalpy, entropy, and heat capacity of aggregation of alkylamines and long aliphatic chains.

    PubMed

    Matulis, D; Bloomfield, V A

    2001-10-18

    The thermodynamics of long aliphatic chain alkylamine aggregation in aqueous solution was studied by isothermal titration calorimetry (ITC). Protonated alkylammonium cations with linear aliphatic chains of 10-14 carbon atoms were fully soluble in aqueous solution at the beginning of titration, but practically insoluble after deprotonation by titrating with sodium hydroxide. The alkylamines aggregated and precipitated during the reaction, enabling direct measurement of the enthalpy of aggregation. The enthalpy of aggregation became increasingly exothermic upon increasing the chain length. Hydrophobic aggregation was enthalpy-driven and entropy-opposed for alkylamines with 12-14 carbon atoms at room temperature. Direct observation of hydrophobic aggregation by ITC at constant temperature and pressure provided more accurate thermodynamic parameters than obtainable from van't Hoff analysis. Aggregation into liquid or solid phases could be distinguished by ITC, but not by van't Hoff analysis of alkylamine solubility data.

  18. Identifying Anomality in Precipitation Processes

    NASA Astrophysics Data System (ADS)

    Jiang, P.; Zhang, Y.

    2014-12-01

    Safety, risk and economic analyses of engineering constructions such as storm sewer, street and urban drainage, and channel design are sensitive to precipitation storm properties. Whether the precipitation storm properties exhibit normal or anomalous characteristics remains obscure. In this study, we will decompose a precipitation time series as sequences of average storm intensity, storm duration and interstorm period to examine whether these sequences could be treated as a realization of a continuous time random walk with both "waiting times" (interstorm period) and "jump sizes" (average storm intensity and storm duration). Starting from this viewpoint, we will analyze the statistics of storm duration, interstorm period, and average storm intensity in four regions in southwestern United States. We will examine whether the probability distribution is temporal and spatial dependent. Finally, we will use fractional engine to capture the randomness in precipitation storms.

  19. Evaluation of Coupled Precipitator Two

    SciTech Connect

    Stone, M.E.

    1999-11-08

    The offline testing of the Coupled Precipitator Two (CP-2) has been completed. The tests were conducted and are documented. The tests were conducted at an offline test rack near the Drain Tube Test Stand facility in 672-T.

  20. WEATHER_Layered-Precipitable-Water

    Atmospheric Science Data Center

    2016-06-23

    ... TOVS (HIRS) clear sky radiances Radiosonde GPS (after 1995) AIRS Level 2 TPW and Layered PW Spatial ... Parameters:  Precipitable Water Order Data:  Earthdata Search:  Earthdata Search SCAR-B ...

  1. WEATHER_Total-Precipitable-Water

    Atmospheric Science Data Center

    2016-06-23

    ... TOVS (HIRS) clear sky radiances Radiosonde GPS (after 1995) AIRS Level 2 TPW and Layered PW Spatial ... Parameters:  Precipitable Water Order Data:  Earthdata Search:  Earthdata Search SCAR-B ...

  2. Environmental Radioactivity, Temperature, and Precipitation.

    ERIC Educational Resources Information Center

    Riland, Carson A.

    1996-01-01

    Reports that environmental radioactivity levels vary with temperature and precipitation and these effects are due to radon. Discusses the measurement of this environmental radioactivity and the theory behind it. (JRH)

  3. Silica Precipitation and Lithium Sorption

    SciTech Connect

    Jay Renew

    2015-09-20

    This file contains silica precipitation and lithium sorption data from the project. The silica removal data is corrected from the previous submission. The previous submission did not take into account the limit of detection of the ICP-MS procedure.

  4. Atmospheric science: Energy and precipitation

    NASA Astrophysics Data System (ADS)

    Donohoe, Aaron

    2016-12-01

    The latitude of the tropical rainbelt is constrained by the energy balance between hemispheres. An expansion of this theory that includes longitudinal variations of atmospheric heating can predict regional changes in tropical precipitation.

  5. The 2014 Silba Precipitation Extreme

    NASA Astrophysics Data System (ADS)

    Rasol, Dubravka; Ólafsson, Haraldur

    2015-04-01

    On 30 July 2014 a 24 h precipitation record of 218 mm was set at the island of Silba in the N-Adriatic Sea. The precipitation was of convective nature and significantly less precipitation was recorded only small distances away, at the coast of mainland Croatia. The event is reproduced numerically and discussed in terms of dynamics and predictability. On a large scale, the precipitation extreme was associated with a slow-moving upper tropospheric low that formed over the N-Atlantic several days earlier. At lower levels, there were humid mediterranean airmasses. On a smaller scale, there are indications that the extreme convection may have been triggered by an orographic disturbance.

  6. Combination of radar and daily precipitation data to estimate meaningful sub-daily point precipitation extremes

    NASA Astrophysics Data System (ADS)

    Bárdossy, András; Pegram, Geoffrey

    2017-01-01

    Bethlehem from 1998 to 2003, whose scan at 1.5 km above ground [CAPPI] overlapped a dense (10 km spacing) set of 45 pluviometers recording in the same 6-year period. This valuable set of data was obtained from each of 37 selected radar pixels [1 km square in plan] which contained a pluviometer not masked out by the radar foot-print. The pluviometer data were also aggregated to daily totals, for the same purpose. The extremes obtained using disaggregation methods were compared to the observed extremes in a cross validation procedure. The unusual and novel goal was not to obtain the reproduction of the precipitation matching in space and time, but to obtain frequency distributions of the point extremes, which we found to be stable.

  7. Oceanic Precipitation Measurement - Surface Validation

    NASA Astrophysics Data System (ADS)

    Klepp, Christian

    2013-04-01

    State-of-the-art satellite derived and reanalysis based precipitation climatologies still show remarkably large differences in frequency, amount, intensity, variability and temporal behavior of precipitation over the oceans. Additionally so far appropriate in-situ validation instruments were not available for shipboard use. The uncertainties are largest for light precipitation within the ITCZ and subtropics and for cold season high-latitude precipitation including mix-phase and snowfall. Hence, a long-term issue on which IPWG and GPM-GV is urging more attention is the provision of high quality surface validation data in oceanic areas using innovative ship-based instruments. Precipitation studies would greatly benefit from systematic dataset collection and analysis as such data could also be used to constrain precipitation retrievals. To achieve this goal, the KlimaCampus and Max Planck Institute for Meteorology in Hamburg, Germany funded this project that uses automated shipboard optical disdrometers, called Eigenbrodt ODM470, that are capable of measuring liquid and solid precipitation using drop size distributions in minute intervals on moving ships with high accuracy even under high wind speeds and rough sea states. Since the project start in 2009 the statistical basis for a conclusive validation has significantly improved with comprehensive data collection of more than 3 million minutes of precipitation measurements onboard six ships. Currently, six ODM470 instrument systems are available of which three are long-term mounted onboard the German research icebreaker R/V Polarstern (Alfred Wegner Institut) since June 2010, on R/V Akademik Ioffe (P.P.Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia) since September 2010 and on R/V Maria S. Merian (Brise Research, University of Hamburg) since December 2011. Three instruments are used for additional short-term shipboard campaigns and intercomparison projects. The core regions for these

  8. Leaching and mechanical behaviour of concrete manufactured with recycled aggregates.

    PubMed

    Sani, D; Moriconi, G; Fava, G; Corinaldesi, V

    2005-01-01

    The reuse of debris from building demolition is of increasing public interest because it decreases the volume of material to be disposed to landfill. This research is focused on the evaluation of the possibility of reusing recycled aggregate from construction or demolition waste (C&D) as a substitute for natural aggregate in concrete production. In most applications, cement based materials are used for building construction due to their cost effectiveness and performance; however their impact on the surrounding environment should be monitored. The interstitial pore fluid in contact with hydrated cementitious materials is characterized by persistent alkaline pH values buffered by the presence of hydrate calcium silicate, portlandite and alkaline ions. An experimental plan was carried out to investigate concrete structural properties in relation to alkali release in aqueous solution. Results indicate that the presence of recycled aggregate increases the leachability of unreactive ions (Na, K, Cl), while for calcium the substitution resulted in a lower net leaching. In spite of the lower mechanical resistance (40% less), such a waste concrete may be suggested as more environmentally sustainable.

  9. TRMM .25 deg x .25 deg Gridded Precipitation Text Product

    NASA Technical Reports Server (NTRS)

    Stocker, Erich; Kelley, Owen

    2009-01-01

    Since the launch of the Tropical Rainfall Measuring Mission (TRMM), the Precipitation Measurement Missions science team has endeavored to provide TRMM precipitation retrievals in a variety of formats that are more easily usable by the broad science community than the standard Hierarchical Data Format (HDF) in which TRMM data is produced and archived. At the request of users, the Precipitation Processing System (PPS) has developed a .25 x .25 gridded product in an easily used ASCII text format. The entire TRMM mission data has been made available in this format. The paper provides the details of this new precipitation product that is designated with the TRMM designator 3G68.25. The format is packaged into daily files. It provides hourly precipitation information from the TRMM microwave imager (TMI), precipitation radar (PR), and TMI/PR combined rain retrievals. A major advantage of this approach is the inclusion only of rain data, compression when a particular grid has no rain from the PR or combined, and its direct ASCII text format. For those interested only in rain retrievals and whether rain is convection or stratiform, these products provide a huge reduction in the data volume inherent in the standard TRMM products. This paper provides examples of the 3G68 data products and their uses. It also provides information about C tools that can be used to aggregate daily files into larger time samples. In addition, it describes the possibilities inherent in the spatial sampling which allows resampling into coarser spatial sampling. The paper concludes with information about downloading the gridded text data products.

  10. Precipitation of DNA with Ethanol.

    PubMed

    Green, Michael R; Sambrook, Joseph

    2016-12-01

    DNA can be precipitated out of solution for the removal of salts and/or for resuspension in an alternative buffer. Either ethanol or isopropanol can be used to achieve this purpose; however, the use of ethanol is generally preferred. Cations, provided as salts, are typically included to neutralize the negative charge of the DNA phosphate backbone. This method describes ethanol precipitation of DNA in microcentrifuge tubes.

  11. Role of streams in myxobacteria aggregate formation

    NASA Astrophysics Data System (ADS)

    Kiskowski, Maria A.; Jiang, Yi; Alber, Mark S.

    2004-10-01

    Cell contact, movement and directionality are important factors in biological development (morphogenesis), and myxobacteria are a model system for studying cell-cell interaction and cell organization preceding differentiation. When starved, thousands of myxobacteria cells align, stream and form aggregates which later develop into round, non-motile spores. Canonically, cell aggregation has been attributed to attractive chemotaxis, a long range interaction, but there is growing evidence that myxobacteria organization depends on contact-mediated cell-cell communication. We present a discrete stochastic model based on contact-mediated signaling that suggests an explanation for the initialization of early aggregates, aggregation dynamics and final aggregate distribution. Our model qualitatively reproduces the unique structures of myxobacteria aggregates and detailed stages which occur during myxobacteria aggregation: first, aggregates initialize in random positions and cells join aggregates by random walk; second, cells redistribute by moving within transient streams connecting aggregates. Streams play a critical role in final aggregate size distribution by redistributing cells among fewer, larger aggregates. The mechanism by which streams redistribute cells depends on aggregate sizes and is enhanced by noise. Our model predicts that with increased internal noise, more streams would form and streams would last longer. Simulation results suggest a series of new experiments.

  12. Precipitation of DNA by polyamines: a polyelectrolyte behavior.

    PubMed Central

    Raspaud, E; Olvera de la Cruz, M; Sikorav, J L; Livolant, F

    1998-01-01

    Conditions of double-stranded DNA precipitation by the polyamines spermidine and spermine have been determined experimentally and compared to theoretical predictions. The influence of the concentrations of DNA and added monovalent salt, and of the DNA length has been investigated in a systematic manner. Three regimes of DNA concentrations are observed. We clarify the dependence of these regimes on the monovalent salt concentration and on the DNA length. Our observations make possible a rationalization of the experimental results reported in the literature. A comparison of the precipitation conditions of different kinds of polyelectrolytes suggests a general process. Our experimental data are compared to the "ion-bridging" model based on short-range electrostatic attractions. By starting from the spinodal equation, predicted by this model, and using the limiting form of Manning's fractions of condensed counterions, analytical expressions of the precipitation conditions have been found in the three regimes. Experimental and theoretical results are in good agreement. PMID:9449338

  13. Effect of seeding materials and mixing strength on struvite precipitation.

    PubMed

    Wang, Jun; Burken, Joel G; Zhang, Xiaoqi

    2006-02-01

    Struvite precipitation has increasing interest as a technology for removing and recovering phosphorus from wastewater streams. Many chemical factors have been studied, such as optimum pH values and component-ion molar ratios, yet, understanding of physical aspects is lacking. Two physical parameters were tested: (1) seeding material addition and (2) mixing. Objectives were to evaluate three seeding materials and to optimize mixing conditions for struvite-crystal precipitation, growth, and subsequent sedimentation. Results confirm that mixing strength and proper seeding materials increase crystal size and improve settleability. For unseeded solutions, optimum phosphorus removal was achieved at a mixing strength of G = 76 s(-1). Struvite crystals that were added as the seeding material provided the best performance with respect to phosphorus removal and crystal-size distribution. Overall, this study provided information to improve the practical application of struvite precipitation as a phosphorous-treatment technology for wastewaters, while generating a marketable slow-release fertilizer as a product.

  14. Enrichment of phosphorylated peptides and proteins by selective precipitation methods.

    PubMed

    Rainer, Matthias; Bonn, Günther K

    2015-01-01

    Protein phosphorylation is one of the most prominent post-translational modifications involved in the regulation of cellular processes. Fundamental understanding of biological processes requires appropriate bioanalytical methods for selectively enriching phosphorylated peptides and proteins. Most of the commonly applied enrichment approaches include chromatographic materials including Fe(3+)-immobilized metal-ion affinity chromatography or metal oxides. In the last years, the introduction of several non-chromatographic isolation technologies has increasingly attracted the interest of many scientists. Such approaches are based on the selective precipitation of phosphorylated peptides and proteins by applying various metal cations. The excellent performance of precipitation-based enrichment methods can be explained by the absence of any stationary phase, resin or sorbent, which usually leads to unspecific binding. This review provides an overview of recently published methods for the selective precipitation of phosphorylated peptides and proteins.

  15. Precipitation of radiation belt electrons by EMIC waves, observed from ground and space

    SciTech Connect

    Jordanova, Vania K; Miyoski, Y; Sakaguchi, K; Shiokawa, K; Evans, D S; Albert, Jay; Connors, M

    2008-01-01

    We show evidence that left-hand polarised electromagnetic ion cyclotron (EMIC) plasma waves can cause the loss of relativistic electrons into the atmosphere. Our unique set of ground and satellite observations shows coincident precipitation of ions with energies of tens of keY and of relativistic electrons into an isolated proton aurora. The coincident precipitation was produced by wave-particle interactions with EMIC waves near the plasmapause. The estimation of pitch angle diffusion coefficients supports that the observed EMIC waves caused coincident precipitation ofboth ions and relativistic electrons. This study clarifies that ions with energies of tens of ke V affect the evolution of relativistic electrons in the radiation belts via cyclotron resonance with EMIC waves, an effect that was first theoretically predicted in the early 1970's.

  16. Precipitation of sodium acid urate from electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Füredi-Milhofer, Helga; Babić-Ivaniĉić, Vesna; Milat, Ognjen; Brown, Walter E.; Gregory, Thomas M.

    1987-07-01

    The precipitation of soduim urate from solutions containing uric acid, soduim hydroxide, hydrochloric acid, sodium chloride and water was investigated at constant pH (7.5±0.1) and temperature (308 K). Precipitates were observed by lights and electron microscopy and characterized by electron and X-ray diffraction. The results are presented in the form of "precipitation" and "chemical potential" diagrams, the latter giving the soduim-to-urate molar ratios of the precipitates. Two types of precipitation boundaries were observed, both of which had indicated soduim-to-urate moral ratios of 1:1. The ion activity product, (Na +)(HU -), associated with boundary I was AP I=(4.8±1.1)×10 -5 and with boundary II was with boundary II was AP II=(6.5±0.4)×10 -4. The supersaturation, S, at boundary II was S=AP II/ Ksp=12.3, in which Ksp is the solubility product of soduim acid urate monohydrate. The latter precipitated as well-formed crystals at supersaturations of 12.3 and above. The ion activity product associated with boundary I is approximately equal to the solubility product of soduim acid urate monohydrate. Small amounts of several morphologically different sodium urate crystals formed in the range of supersaturations (1≤ S≤12.3). Crystals formed in this range may include the monohydrate of sodium acid urate and possibly a higher hydrate. The findings have relevance to pathological renal stone formation and gouty arthritis.

  17. Oligomeric baroeffect and gas aggregation states

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1992-01-01

    The baroeffect is analyzed to include a gas that aggregates into higher-order polymers or oligomers. The resulting pressure change is found to vary independently of the molecular weight of the gas components and to depend only on the aggregation or oligomeric order of the gas. With increasing aggregation, diffusive slip velocities are found to increase. The calculations are extended to include general counterdiffusion of two distinct aggregation states (k-, j-mer) for the gas, and the pressure change is derived as a function that is independent of both molecular weight and the absolute aggregation. The only parameter that determines the baroeffect is the ratio of aggregated states, beta = k/j. For gases that reversibly aggregate, possible oscillatory behavior and complex dynamics for pressure are discussed. Gas aggregation may play a role for low-temperature crystal-growth conditions in which vapor concentrations of one (or more) species are high.

  18. Virus-induced aggregates in infected cells.

    PubMed

    Moshe, Adi; Gorovits, Rena

    2012-10-17

    During infection, many viruses induce cellular remodeling, resulting in the formation of insoluble aggregates/inclusions, usually containing viral structural proteins. Identification of aggregates has become a useful diagnostic tool for certain viral infections. There is wide variety of viral aggregates, which differ by their location, size, content and putative function. The role of aggregation in the context of a specific virus is often poorly understood, especially in the case of plant viruses. The aggregates are utilized by viruses to house a large complex of proteins of both viral and host origin to promote virus replication, translation, intra- and intercellular transportation. Aggregated structures may protect viral functional complexes from the cellular degradation machinery. Alternatively, the activation of host defense mechanisms may involve sequestration of virus components in aggregates, followed by their neutralization as toxic for the host cell. The diversity of virus-induced aggregates in mammalian and plant cells is the subject of this review.

  19. NASA Dual Precipitation Radar Arrives at Goddard

    NASA Video Gallery

    The Dual-frequency Precipitation Radar (DPR) built by the Japan Aerospace Exploration Agency (JAXA) for the Global Precipitation Measurement (GPM) mission's Core Observatory arrived on Friday, Marc...

  20. Advanced Microwave Precipitation Radiometer (AMPR) for remote observation of precipitation

    NASA Technical Reports Server (NTRS)

    Galliano, J. A.; Platt, R. H.

    1990-01-01

    The design, development, and tests of the Advanced Microwave Precipitation Radiometer (AMPR) operating in the 10 to 85 GHz range specifically for precipitation retrieval and mesoscale storm system studies from a high altitude aircraft platform (i.e., ER-2) are described. The primary goals of AMPR are the exploitation of the scattering signal of precipitation at frequencies near 10, 19, 37, and 85 GHz together to unambiguously retrieve precipitation and storm structure and intensity information in support of proposed and planned space sensors in geostationary and low earth orbit, as well as storm-related field experiments. The development of AMPR will have an important impact on the interpretation of microwave radiances for rain retrievals over both land and ocean for the following reasons: (1) A scanning instrument, such as AMPR, will allow the unambiguous detection and analysis of features in two dimensional space, allowing an improved interpretation of signals in terms of cloud features, and microphysical and radiative processes; (2) AMPR will offer more accurate comparisons with ground-based radar data by feature matching since the navigation of the ER-2 platform can be expected to drift 3 to 4 km per hour of flight time; and (3) AMPR will allow underflights of the SSM/I satellite instrument with enough spatial coverage at the same frequencies to make meaningful comparisons of the data for precipitation studies.

  1. Plasma precipitation and neutral particle emission at Ganymede

    NASA Astrophysics Data System (ADS)

    Massetti, S.; Milillo, A.; Mura, A.; Orsini, S.; Plainaki, C.; Mangano, V.

    2012-04-01

    Ganymede, the largest moon of Jupiter is characterized by a tiny magnetosphere produced by an intrinsic magnetic moment; it is linked to the Jovian magnetosphere and embedded in its energetic plasma environment. In addition, since the plasma co-rotating with Jupiter impinges on Ganymede trailing side at subsonic speed, there is no bow-shock formation. Here we present preliminary results of Monte Carlo simulations aimed to evaluate the expected ion precipitation onto the polar caps of Ganymede, by means of the magnetic and electric fields derived by a global magnetohydrodynamic (MHD) model that realistically describe Ganymede's magnetospheric environment. We discuss precipitation pattern differences between the simulated ion species (H+, O+ and S+) at different energies in the range 10-100 keV. Plasma precipitating onto the surface of Ganymede modifies it both physically (via ion sputtering) and chemically (via radiolysis). Directly sputtered H2O molecules as well as products of H2O decomposition, that may recombine and produce diverse molecules, such as O2 and H2 are released. The yields of these processes have been estimated by means of accurate function that includes the dependence of the release on impacting ion species and energy as well as on the moon's surface temperature. In this study we attempted to isolate the temperature dependent part of this yield function and to assign it exclusively to the chemical processes taking place on ice and to the subsequent release of new molecules. In this way we make a rough preliminary distinction between the sputtering and radiolysis exospheric contributions. In our estimations we take into account also the energy spectra of precipitating plasma. A MonteCarlo model has been used to simulate the neutral density of escaping particles. Here we present results in terms of density and fluxes.

  2. Cellular Models of Aggregation-dependent Template-directed Proteolysis to Characterize Tau Aggregation Inhibitors for Treatment of Alzheimer Disease.

    PubMed

    Harrington, Charles R; Storey, John M D; Clunas, Scott; Harrington, Kathleen A; Horsley, David; Ishaq, Ahtsham; Kemp, Steven J; Larch, Christopher P; Marshall, Colin; Nicoll, Sarah L; Rickard, Janet E; Simpson, Michael; Sinclair, James P; Storey, Lynda J; Wischik, Claude M

    2015-04-24

    Alzheimer disease (AD) is a degenerative tauopathy characterized by aggregation of Tau protein through the repeat domain to form intraneuronal paired helical filaments (PHFs). We report two cell models in which we control the inherent toxicity of the core Tau fragment. These models demonstrate the properties of prion-like recruitment of full-length Tau into an aggregation pathway in which template-directed, endogenous truncation propagates aggregation through the core Tau binding domain. We use these in combination with dissolution of native PHFs to quantify the activity of Tau aggregation inhibitors (TAIs). We report the synthesis of novel stable crystalline leucomethylthioninium salts (LMTX®), which overcome the pharmacokinetic limitations of methylthioninium chloride. LMTX®, as either a dihydromesylate or a dihydrobromide salt, retains TAI activity in vitro and disrupts PHFs isolated from AD brain tissues at 0.16 μM. The Ki value for intracellular TAI activity, which we have been able to determine for the first time, is 0.12 μM. These values are close to the steady state trough brain concentration of methylthioninium ion (0.18 μM) that is required to arrest progression of AD on clinical and imaging end points and the minimum brain concentration (0.13 μM) required to reverse behavioral deficits and pathology in Tau transgenic mice.

  3. Phase diagram of aggregation of oppositely charged colloids in salty water.

    PubMed

    Zhang, R; Shklovskii, B I

    2004-02-01

    Aggregation of two oppositely charged colloids in salty water is studied. We focus on the role of Coulomb interaction in strongly asymmetric systems in which the charge and size of one colloid is much larger than the other one. In the solution, each large colloid (macroion) attracts a certain number of oppositely charged small colloids (Z-ion) to form a complex. If the concentration ratio of the two colloids is such that complexes are not strongly charged, they condense in a macroscopic aggregate. As a result, the phase diagram in a plane of concentrations of two colloids consists of an aggregation domain sandwiched between two domains of stable solutions of complexes. The aggregation domain has a central part of total aggregation and two wings corresponding to partial aggregation. A quantitative theory of the phase diagram in the presence of monovalent salt is developed. It is shown that as the Debye-Hückel screening radius r(s) decreases, the aggregation domain grows, but the relative size of the partial aggregation domains becomes much smaller. As an important application of the theory, we consider solutions of long double-helix DNA with strongly charged positive spheres (artificial chromatin). We also consider implications of our theory for in vitro experiments with the natural chromatin. Finally, the effect of different shapes of macroions on the phase diagram is discussed.

  4. Protein aggregation in salt solutions

    PubMed Central

    Kastelic, Miha; Kalyuzhnyi, Yurij V.; Hribar-Lee, Barbara; Dill, Ken A.; Vlachy, Vojko

    2015-01-01

    Protein aggregation is broadly important in diseases and in formulations of biological drugs. Here, we develop a theoretical model for reversible protein–protein aggregation in salt solutions. We treat proteins as hard spheres having square-well-energy binding sites, using Wertheim’s thermodynamic perturbation theory. The necessary condition required for such modeling to be realistic is that proteins in solution during the experiment remain in their compact form. Within this limitation our model gives accurate liquid–liquid coexistence curves for lysozyme and γ IIIa-crystallin solutions in respective buffers. It provides good fits to the cloud-point curves of lysozyme in buffer–salt mixtures as a function of the type and concentration of salt. It than predicts full coexistence curves, osmotic compressibilities, and second virial coefficients under such conditions. This treatment may also be relevant to protein crystallization. PMID:25964322

  5. Microbially induced and microbially catalysed precipitation: two different carbonate factories

    NASA Astrophysics Data System (ADS)

    Meister, Patrick

    2016-04-01

    The landmark paper by Schlager (2003) has revealed three types of benthic carbonate production referred to as "carbonate factories", operative at different locations at different times in Earth history. The tropical or T-factory comprises the classical platforms and fringing reefs and is dominated by carbonate precipitation by autotrophic calcifying metazoans ("biotically controlled" precipitation). The cool or C-factory is also biotically controlled but via heterotrophic, calcifying metazoans in cold and deep waters at the continental margins. A further type is the mud-mound or M-factory, where carbonate precipitation is supported by microorganisms but not controlled by a specific enzymatic pathway ("biotically induced" precipitation). How exactly the microbes influence precipitation is still poorly understood. Based on recent experimental and field studies, the microbial influence on modern mud mound and microbialite growth includes two fundamentally different processes: (1) Metabolic activity of microbes may increase the saturation state with respect to a particular mineral phase, thereby indirectly driving the precipitation of the mineral phase: microbially induced precipitation. (2) In a situation, where a solution is already supersaturated but precipitation of the mineral is inhibited by a kinetic barrier, microbes may act as a catalyser, i.e. they lower the kinetic barrier: microbially catalysed precipitation. Such a catalytic effect can occur e.g. via secreted polymeric substances or specific chemical groups on the cell surface, at which the minerals nucleate or which facilitate mechanistically the bonding of new ions to the mineral surface. Based on these latest developments in microbialite formation, I propose to extend the scheme of benthic carbonate factories of Schlager et al. (2003) by introducing an additional branch distinguishing microbially induced from microbially catalysed precipitation. Although both mechanisms could be operative in a M

  6. Asphalts and asphaltenes: Macromolecular structure, precipitation properties, and flow in porous media

    NASA Astrophysics Data System (ADS)

    Rassamdana, Hossein

    Depending on rock and fluid properties, more than 50% of reservoir oil in place is normally produced by enhanced oil recovery (EOR) methods. Among the EOR techniques, miscible flooding is one of the most efficient and widely-used methods. However, this method can suffer from the formation and precipitation of asphalt aggregates. In addition, asphalt deposition is also a major hindrance to heavy oil production, and even primary recovery operations. Asphalt deposition can alter the reservoir rock properties, fluid saturation distribution, fluid flow properties, and eventually the ultimate oil recovery. The shortage of studies on the macromolecular structure and growth mechanisms of asphalt particles is the main reason for the unsuccessful modeling of their precipitation properties. The equivocal behavior of asphalt under some specific conditions could be the other reason. In this research we look at the problem of asphalt formation, flow, and precipitation from three different angles. We analyze extensive small-angle X-ray and neutron scattering data, precipitation data, and molecular weight distribution measurements, and show that they all suggest conclusively that asphalts and asphaltenes are fractal aggregates, and their growth mechanisms are diffusion-limited particle (DLP) and diffusion-limited cluster-cluster (DLCC) aggregation processes. These results lead us to development of a scaling equation of state for predicting asphalt precipitation properties, such as its onset and amount of precipitation. Another result of our study is an analytical equation for modeling the molecular weight distribution of asphalt and asphaltene aggregates. In addition, asphalt phase behavior in miscible and immiscible injections is studied. The effect of the governing thermodynamic factors, such as the pressure, temperature, and composition of the oil and precipitation agents, on the asphalt aggregation and disaggregation processes are investigated. Finally, a model is developed to

  7. Fractal structure and the dynamics of aggregation of synthetic melanin in low pH aqueous solutions

    SciTech Connect

    Huang, J.S.; Sung, J.; Eisner, M.; Moss, S.C.; Gallas, J.

    1989-01-01

    We have used static and dynamic light scattering to study the dynamics of aggregation of synthetic melanin, an amorphous biopolymeric substance, in low pH aqueous solution. We have found that, depending on the final pH value of the solutions, there existed two regimes of the aggregation kinetics, one corresponding to diffusion limited aggregation (DLA), and the other corresponding to reaction limited aggregation (RLA). The precipitates formed in these two regimes can be characterized by fractal structures. We have found fractal dimensions of d/sub f/ = 1.8 for the DLA clusters and d/sub f/ = 2.2 for the RLA clusters. These results agree well with the proposed limits of the fractal dimensions of the gold aggregates formed in aqueous solutions by Weitz et al.

  8. The fractal structure and the dynamics of aggregation of synthetic melanin in low pH aqueous solutions

    NASA Astrophysics Data System (ADS)

    Huang, J. S.; Sung, J.; Eisner, M.; Moss, S. C.; Gallas, J.

    1989-01-01

    We have used static and dynamic light scattering to study the dynamics of aggregation of synthetic melanin, an amorphous biopolymeric substance, in low pH aqueous solution. We have found that, depending on the final pH value of the solutions, there existed two regimes of the aggregation kinetics, one corresponding to diffusion limited aggregation (DLA), and the other corresponding to reaction limited aggregation (RLA). The precipitates formed in these two regimes can be characterized by fractal structures. We have found fractal dimensions of df =1.8 for the DLA clusters and df =2.2 for the RLA clusters. These results agree well with the proposed limits of the fractal dimensions of the gold aggregates formed in aqueous solutions by Weitz et al.

  9. Aggregation of Heterogeneously Charged Colloids.

    PubMed

    Dempster, Joshua M; Olvera de la Cruz, Monica

    2016-06-28

    Patchy colloids are attractive as programmable building blocks for metamaterials. Inverse patchy colloids, in which a charged surface is decorated with patches of the opposite charge, are additionally noteworthy as models for heterogeneously charged biological materials such as proteins. We study the phases and aggregation behavior of a single charged patch in an oppositely charged colloid with a single-site model. This single-patch inverse patchy colloid model shows a large number of phases when varying patch size. For large patch sizes we find ferroelectric crystals, while small patch sizes produce cross-linked gels. Intermediate values produce monodisperse clusters and unusual worm structures that preserve finite ratios of area to volume. The polarization observed at large patch sizes is robust under extreme disorder in patch size and shape. We examine phase-temperature dependence and coexistence curves and find that large patch sizes produce polarized liquids, in contrast to mean-field predictions. Finally, we introduce small numbers of unpatched charged colloids. These can either suppress or encourage aggregation depending on their concentration and the size of the patches on the patched colloids. These effects can be exploited to control aggregation and to measure effective patch size.

  10. Aggregation-induced emission: phenomenon, mechanism and applications.

    PubMed

    Hong, Yuning; Lam, Jacky W Y; Tang, Ben Zhong

    2009-08-07

    It is textbook knowledge that chromophore aggregation generally quenches light emission. In this feature article, we give an account on how we observed an opposite phenomenon termed aggregation-induced emission (AIE) and identified the restriction of intramolecular rotation as a main cause for the AIE effect. Based on the mechanistic understanding, we developed a series of new fluorescent and phosphorescent AIE systems with emission colours covering the entire visible spectral region and luminescence quantum yields up to unity. We explored high-tech applications of the AIE luminogens as, for example, fluorescence sensors (for explosive, ion, pH, temperature, viscosity, pressure, etc.), biological probes (for protein, DNA, RNA, sugar, phospholipid, etc.), immunoassay markers, PAGE visualization agents, polarized light emitters, monitors for layer-by-layer assembly, reporters for micelle formation, multistimuli-responsive nanomaterials, and active layers in the fabrication of organic light-emitting diodes.

  11. Chemical Data for Precipitate Samples

    USGS Publications Warehouse

    Foster, Andrea L.; Koski, Randolph A.

    2008-01-01

    During studies of sulfide oxidation in coastal areas of Prince William Sound in 2005, precipitate samples were collected from onshore and intertidal locations near the Ellamar, Threeman, and Beatson mine sites (chapter A, fig. 1; table 7). The precipitates include jarosite and amorphous Fe oxyhydroxide from Ellamar, amorphous Fe oxyhydroxide from Threeman, and amorphous Fe oxyhydroxide, ferrihydrite, and schwertmannite from Beatson. Precipitates occurring in the form of loose, flocculant coatings were harvested using a syringe and concentrated in the field by repetitive decanting. Thicker accumulations were either scraped gently from rocks using a stainless steel spatula or were scooped directly into receptacles (polyethylene jars or plastic heavy-duty zippered bags). Most precipitate samples contain small amounts of sedimentary detritus. With three jarosite-bearing samples from Ellamar, an attempt was made to separate the precipitate from the heavy-mineral fraction of the sediment. In this procedure, the sample was stirred in a graduated cylinder containing deionized water. The jarosite-rich suspension was decanted onto analytical filter paper and air dried before analysis. Eleven precipitate samples from the three mine sites were analyzed in laboratories of the U.S. Geological Survey (USGS) in Denver, Colorado (table 8). Major and trace elements were determined by inductively coupled plasma-mass spectrometry following multiacid (HCl-HNO3-HClO4-HF) digestion (Briggs and Meier, 2002), except for mercury, which was analyzed by cold-vapor atomic absorption spectroscopy (Brown and others, 2002a). X-ray diffraction (XRD) analyses were performed on powdered samples (<200 mesh) by S. Sutley of the USGS. Additional details regarding sample preparation and detection limits are found in Taggert (2002). Discussions of the precipitate chemistry and associated microbial communities are presented in Koski and others (2008) and Foster and others (2008), respectively.

  12. The effect of experimental conditions on the microstructure of hematite particles precipitated by the forced hydrolysis of FeCl3 solutions

    NASA Astrophysics Data System (ADS)

    Štajdohar, Jasenka; Ristić, Mira; Musić, Svetozar

    2013-07-01

    The effect of experimental conditions on the forced hydrolysis of FeCl3 solutions and specifically the effect of amidosulphonic acid on the microstructure of precipitates were investigated. Precipitates were analyzed by XRD, 57Fe Mössbauer, FT-IR and UV/Vis/NIR spectroscopies, as well as FE-SEM. The phase transformation β-FeOOH → α-Fe2O3 was accelerated with an increase in the hydrolysis temperature, whereas an addition of amidosulphonic acid at the start of the hydrolysis of Fe3+ ions suppressed the phase transformation β-FeOOH → α-Fe2O3 or decreased crystallinity at 120 and 160 °C. The size and shape of hematite particles were strongly dependent on FeCl3 concentration and temperature and the presence of sulfonate/sulfate groups. Preferential adsorption of sulfonate/sulfate groups influenced the hematite crystal growth direction. The aggregation effect was also noticed in the formation of hematite particles.

  13. Formation of bobierrite (magnesium phosphate) crystal aggregates by bacteria from human urine and renal calculi.

    PubMed

    del Moral, A; Rivadeneyra, M A; Roldán, E; Perez-García, I; Ramos-Cormenzana, A; García-Cervigón, A

    1989-01-01

    The formation of extracellular crystal aggregates of bobierrite [Mg3(PO4)2.8H2O] by bacteria isolated from renal calculi and urine of urolithiasic patients is found with the use of B-17 and B-43 media. The crystal aggregates were observed in the colonies as deposits of brown-yellow coloration, and were identified by X-ray powder diffraction, chemical analysis and scanning electron microscopy. The production of bobierrite by bacteria from human urine and renal calculi implies further versatility of crystal formation by microorganisms, and it may be interesting to investigate the possible relationships between calculi precipitation and urinary infection.

  14. 24 CFR 58.32 - Project aggregation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Project aggregation. 58.32 Section... Environmental Review Process: Documentation, Range of Activities, Project Aggregation and Classification § 58.32 Project aggregation. (a) A responsible entity must group together and evaluate as a single project...

  15. 24 CFR 58.32 - Project aggregation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 1 2012-04-01 2012-04-01 false Project aggregation. 58.32 Section... Environmental Review Process: Documentation, Range of Activities, Project Aggregation and Classification § 58.32 Project aggregation. (a) A responsible entity must group together and evaluate as a single project...

  16. 24 CFR 58.32 - Project aggregation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 1 2011-04-01 2011-04-01 false Project aggregation. 58.32 Section... Environmental Review Process: Documentation, Range of Activities, Project Aggregation and Classification § 58.32 Project aggregation. (a) A responsible entity must group together and evaluate as a single project...

  17. 24 CFR 58.32 - Project aggregation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 1 2014-04-01 2014-04-01 false Project aggregation. 58.32 Section... Environmental Review Process: Documentation, Range of Activities, Project Aggregation and Classification § 58.32 Project aggregation. (a) A responsible entity must group together and evaluate as a single project...

  18. Mineral resource of the month: aggregates

    USGS Publications Warehouse

    Willett, Jason C.

    2012-01-01

    Crushed stone and construction sand and gravel, the two major types of natural aggregates, are among the most abundant and accessible natural resources on the planet. The earliest civilizations used aggregates for various purposes, mainly construction. Today aggregates provide the basic raw materials for the foundation of modern society.

  19. 78 FR 68945 - Aggregation of Positions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... the aggregation provisions of part 150 of the Commission's regulations that are substantially similar... modifications proposed here to the aggregation provisions of part 150 would apply to the position limits regimes... position limits because it believes that these proposed amendments regarding aggregation of...

  20. Precipitation of anionic emulsifier with ordinary Portland cement.

    PubMed

    Fang, Xing; Winnefeld, Frank; Lura, Pietro

    2016-10-01

    Cement has traditionally been used to accelerate bitumen emulsion breaking in cold mix asphalt and cold recycling asphalt. For cold emulsion mixtures, the mixing stability of bitumen emulsion is a crucial property, because it determines the distribution of bitumen and eventually affects the microstructure and the strength development of asphalt mixtures. Recent studies have proven that the interaction between cement and emulsifiers causes the destabilization of bitumen emulsions. The objective of this study is to understand the interaction between cement particles and rosin emulsifiers. For this purpose, the Ca(2+) ions and rosin emulsifier concentration after filtration were measured to identify the interaction between cement and rosin emulsifiers. The consumed emulsifier increases linearly with the amount of added cement or CaCl2 concentration in the case of diluted rosin emulsifier solutions in which the rosin emulsifier concentration is below the CMC (critical micelle concentration). In the case of concentrated rosin emulsifier solutions (above the CMC), the rosin emulsifier concentration shows a sharp decrease when a certain amount of cement or CaCl2 is added. This study indicates that cement destabilizes anionic bitumen emulsion due to the precipitation of rosin emulsifiers caused by Ca(2+) ions which are released by early cement hydration. Further studies on precipitation behavior have shown that micelles of rosin emulsifier can complex Ca(2+) ions but do not precipitate. These findings explain why slow-setting bitumen emulsions, which contain a higher concentration of emulsifier, show better mixing stability.

  1. Ion-Ion Neutralization.

    DTIC Science & Technology

    1980-12-31

    plasma were identified using a downstream quadrupole mass spectrometer. In these experimento it is a simple matter to establish H+(H 2 0):f as the...pressure as predicted by the Thomson t2rnary mechanism whicK hzr been suownr to be valid experimentally at hiTh rrsurs (,han and Peron, 1:EI4 hereafter t...of NO , NO2 ions in various gases and the ternary recombination coefficients of these ions in the higher pres:;ure ( Thomson ) re"ie. Equation (5) cr>n

  2. Precipitation estimation using L-band and C-band soil moisture retrievals

    NASA Astrophysics Data System (ADS)

    Koster, Randal D.; Brocca, Luca; Crow, Wade T.; Burgin, Mariko S.; De Lannoy, Gabrielle J. M.

    2016-09-01

    An established methodology for estimating precipitation amounts from satellite-based soil moisture retrievals is applied to L-band products from the Soil Moisture Active Passive (SMAP) and Soil Moisture and Ocean Salinity (SMOS) satellite missions and to a C-band product from the Advanced Scatterometer (ASCAT) mission. The precipitation estimates so obtained are evaluated against in situ (gauge-based) precipitation observations from across the globe. The precipitation estimation skill achieved using the L-band SMAP and SMOS data sets is higher than that obtained with the C-band product, as might be expected given that L-band is sensitive to a thicker layer of soil and thereby provides more information on the response of soil moisture to precipitation. The square of the correlation coefficient between the SMAP-based precipitation estimates and the observations (for aggregations to ˜100 km and 5 days) is on average about 0.6 in areas of high rain gauge density. Satellite missions specifically designed to monitor soil moisture thus do provide significant information on precipitation variability, information that could contribute to efforts in global precipitation estimation.

  3. The elimination of selenium(IV) from aqueous solution by precipitation with sodium sulfide.

    PubMed

    Geoffroy, N; Demopoulos, G P

    2011-01-15

    In this study, the removal/precipitation of selenium with sodium sulfide from initially weakly acidic sulfate solutions containing 300 mg/L of selenium(IV) at 23 °C was studied. The results showed that, below a pH of approximately 7.0, the precipitation reaction was complete at a sulfide to selenium ratio above 1.8 and less than 11 with less than 0.005 mg/L of soluble selenium remaining in solution. When the pH rose between 7.0 and 9.5 the precipitation of selenium was incomplete. Above pH 9.5 the solution turned dark red but no precipitation was apparent. The precipitation reaction started as soon as the sodium sulfide was added in the selenium-bearing solution and was completed in less than 10 min. The orange "selenium sulfide" precipitates, characterized using X-ray diffraction, scanning electron microscopy and chemical analysis, were crystalline in the form of aggregated dense particles with their sulfur/selenium molar ratio varying from 1.7 to 2.3. The precipitate was deduced to be a Se-S solid solution consisting of ring molecules of the following Se(n)S(8-n) formula, where n = 2.5-3. Long term leachability tests (>2 month equilibration) under ambient conditions at pH 7 showed the produced precipitate to be essentially insoluble (<0.005 mg/L).

  4. Dust particles precipitation in AC/DC electrostatic precipitator

    NASA Astrophysics Data System (ADS)

    Jaworek, A.; Marchewicz, A.; Krupa, A.; Sobczyk, A. T.; Czech, T.; Antes, T.; Śliwiński, Ł.; Kurz, M.; Szudyga, M.; Rożnowski, W.

    2015-10-01

    Submicron and nanoparticles removal from flue or exhaust gases remain still a challenge for engineers. The most effective device used for gas cleaning in power plants or industry is electrostatic precipitator, but its collection efficiency steeply decreases for particles smaller than 1 micron. In this paper, fractional collection efficiency of two-stage electrostatic precipitator comprising of alternating electric field charger and DC supplied parallel-plate collection stage has been investigated. The total number collection efficiency for PM2.5 particles was higher than 95% and mass collection efficiency >99%. Fractional collection efficiency for particles between 300 nm and 1 μm was >95%.

  5. Are hourly precipitation extremes increasing faster than daily precipitation extremes?

    NASA Astrophysics Data System (ADS)

    Barbero, Renaud; Fowler, Hayley; Blenkinsop, Stephen; Lenderink, Geert

    2016-04-01

    Extreme precipitation events appear to be increasing with climate change in many regions of the world, including the United States. These extreme events have large societal impacts, as seen during the recent Texas-Oklahoma flooding in May 2015 which caused several billion in damages and left 47 deaths in its path. Better understanding of past changes in the characteristics of extreme rainfall events is thus critical for reliable projections of future changes. Although it has been documented in several studies that daily precipitation extremes are increasing across parts of the contiguous United States, very few studies have looked at hourly extremes. However, this is of primary importance as recent studies on the temperature scaling of extreme precipitation have shown that increases above the Clausius-Clapeyron (~ 7% °C-1) are possible for hourly precipitation. In this study, we used hourly precipitation data (HPD) from the National Climatic Data Center and extracted more than 1,000 stations across the US with more than 40 years of data spanning the period 1950-2010. As hourly measurements are often associated with a range of issues, the data underwent multiple quality control processes to exclude erroneous data. While no significant changes were found in annual maximum precipitation using both hourly and daily resolution datasets, significant increasing trends in terms of frequency of episodes exceeding present-day 95th percentiles of wet hourly/daily precipitation were observed across a significant portion of the US. The fraction of stations with significant increasing trends falls outside the confidence interval range during all seasons but the summer. While less than 12% of stations exhibit significant trends at the daily scale in the wintertime, more than 45% of stations, mostly clustered in central and Northern United States, show significant increasing trends at the hourly scale. This suggests that short-duration storms have increased faster than daily

  6. The Global Precipitation Measurement Mission

    NASA Astrophysics Data System (ADS)

    Jackson, Gail

    2014-05-01

    The Global Precipitation Measurement (GPM) mission's Core satellite, scheduled for launch at the end of February 2014, is well designed estimate precipitation from 0.2 to 110 mm/hr and to detect falling snow. Knowing where and how much rain and snow falls globally is vital to understanding how weather and climate impact both our environment and Earth's water and energy cycles, including effects on agriculture, fresh water availability, and responses to natural disasters. The design of the GPM Core Observatory is an advancement of the Tropical Rainfall Measuring Mission (TRMM)'s highly successful rain-sensing package [3]. The cornerstone of the GPM mission is the deployment of a Core Observatory in a unique 65o non-Sun-synchronous orbit to serve as a physics observatory and a calibration reference to improve precipitation measurements by a constellation of 8 or more dedicated and operational, U.S. and international passive microwave sensors. The Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will provide measurements of 3-D precipitation structures and microphysical properties, which are key to achieving a better understanding of precipitation processes and improving retrieval algorithms for passive microwave radiometers. The combined use of DPR and GMI measurements will place greater constraints on possible solutions to radiometer retrievals to improve the accuracy and consistency of precipitation retrievals from all constellation radiometers. Furthermore, since light rain and falling snow account for a significant fraction of precipitation occurrence in middle and high latitudes, the GPM instruments extend the capabilities of the TRMM sensors to detect falling snow, measure light rain, and provide, for the first time, quantitative estimates of microphysical properties of precipitation particles. The GPM Core Observatory was developed and tested at NASA