Science.gov

Sample records for aggregation fibrinogen binding

  1. Effects of oral contraceptives, or lanosterol, on ADP-induced aggregation and binding of /sup 125/I-fibrinogen to rat platelets

    SciTech Connect

    McGregor, L.; Toor, B.; McGregor, J.L.; Renaud, S.; Clemetson, K.J.

    1984-03-01

    The aggregation to ADP and the binding of /sup 125/I-fibrinogen to platelets from rats treated with oral contraceptives or normal platelets treated in vitro with lanosterol were compared to their respective controls. Both types of platelets showed a significant increase in ADP-induced aggregation and in binding of fibrinogen, indicating that the effect of oral contraceptives could be partly due to increased levels of lanosterol in platelet membrane.

  2. gammaA/gamma' fibrinogen inhibits thrombin-induced platelet aggregation.

    PubMed

    Lovely, Rehana S; Rein, Chantelle M; White, Tara C; Jouihan, Sari A; Boshkov, Lynn K; Bakke, Antony C; McCarty, Owen J; Farrell, David H

    2008-11-01

    The minor gammaA/gamma' fibrinogen isoform contains a high affinity binding site for thrombin exosite II that is lacking in the major gammaA/gammaA fibrinogen isoform. We therefore investigated the biological consequences of the gamma' chain binding to thrombin. Thrombin-induced platelet aggregation was inhibited by gammaA/gamma' fibrinogen. Carboxyl terminal peptide fragment gamma'410-427 from the gamma' chain was also inhibitory, with an IC(50) of approximately 200 microM in whole plasma. Deletion of the peptide from either the amino or carboxyl end significantly decreased inhibition. In contrast to thrombin-induced platelet aggregation, aggregation induced by epinephrine, ADP, arachidonic acid, or SFLLRN peptide showed little inhibition by the gamma' peptide. The inhibition of thrombin-induced platelet aggregation was not due to direct inhibition of the thrombin active site, since cleavage of a small peptidyl substrate was 91% of normal even in the presence of 1 mM gamma'410-427. The gamma'410-427 peptide blocked platelet adhesion to immobilized thrombin under both static and flow conditions, blocked soluble thrombin binding to platelet GPIbalpha, and inhibited PAR1 cleavage by thrombin. These results suggest that the gamma' chain of fibrinogen inhibits thrombin-induced platelet aggregation by binding to thrombin exosite II. Thrombin that is bound to the gamma' chain is thereby prevented from activating platelets, while retaining its amidolytic activity. PMID:18989528

  3. Characterization of the fibrinogen binding domain of bacteriophage lysin from Streptococcus mitis.

    PubMed

    Seo, Ho Seong; Sullam, Paul M

    2011-09-01

    The binding of bacteria to human platelets is a likely central mechanism in the pathogenesis of infective endocarditis. Platelet binding by Streptococcus mitis SF100 is mediated in part by a lysin encoded by the lysogenic bacteriophage SM1. In addition to its role in the phage life cycle, lysin mediates the binding of S. mitis to human platelets via its interaction with fibrinogen on the platelet surface. To better define the region of lysin mediating fibrinogen binding, we tested a series of purified lysin truncation variants for their abilities to bind this protein. These studies revealed that the fibrinogen binding domain of lysin is contained within the region spanned by amino acid residues 102 to 198 (lysin(102-198)). This region has no sequence homology to other known fibrinogen binding proteins. Lysin(102-198) bound fibrinogen comparably to full-length lysin and with the same selectivity for the fibrinogen Aα and Bβ chains. Lysin(102-198) also inhibited the binding in vitro of S. mitis to human fibrinogen and platelets. When assessed by platelet aggregometry, the disruption of the lysin gene in SF100 resulted in a significantly longer time to the onset of aggregation of human platelets than that of the parent strain. The preincubation of platelets with purified lysin(102-198) also delayed the onset of aggregation by SF100. These results indicate that the binding of lysin to fibrinogen is mediated by a specific domain of the phage protein and that this interaction is important for both platelet binding and aggregation by S. mitis. PMID:21690235

  4. Zn2+ Mediates High Affinity Binding of Heparin to the αC Domain of Fibrinogen*

    PubMed Central

    Fredenburgh, James C.; Leslie, Beverly A.; Stafford, Alan R.; Lim, Teresa; Chan, Howard H.; Weitz, Jeffrey I.

    2013-01-01

    The nonspecific binding of heparin to plasma proteins compromises its anticoagulant activity by reducing the amount of heparin available to bind antithrombin. In addition, interaction of heparin with fibrin promotes formation of a ternary heparin-thrombin-fibrin complex that protects fibrin-bound thrombin from inhibition by the heparin-antithrombin complex. Previous studies have shown that heparin binds the E domain of fibrinogen. The current investigation examines the role of Zn2+ in this interaction because Zn2+ is released locally by platelets and both heparin and fibrinogen bind the cation, resulting in greater protection from inhibition by antithrombin. Zn2+ promotes heparin binding to fibrinogen, as determined by chromatography, fluorescence, and surface plasmon resonance. Compared with intact fibrinogen, there is reduced heparin binding to fragment X, a clottable plasmin degradation product of fibrinogen. A monoclonal antibody directed against a portion of the fibrinogen αC domain removed by plasmin attenuates binding of heparin to fibrinogen and a peptide analog of this region binds heparin in a Zn2+-dependent fashion. These results indicate that the αC domain of fibrinogen harbors a Zn2+-dependent heparin binding site. As a consequence, heparin-catalyzed inhibition of factor Xa by antithrombin is compromised by fibrinogen to a greater extent when Zn2+ is present. These results reveal the mechanism by which Zn2+ augments the capacity of fibrinogen to impair the anticoagulant activity of heparin. PMID:23990470

  5. Specific cell components of Bacteroides gingivalis mediate binding and degradation of human fibrinogen

    SciTech Connect

    Lantz, M.S.; Allen, R.D.; Vail, T.A.; Switalski, L.M.; Hook, M. )

    1991-01-01

    Bacteroides (Porphyromonas) gingivalis, which has been implicated as an etiologic agent in human periodontal diseases, has been shown to bind and degrade human fibrinogen. B. gingivalis strains bind fibrinogen reversibly and with high affinity and bind to a specific region of the fibrinogen molecule that appears to be located between the D and E domains. The authors now report that human fibrinogen is bound and then degraded by specific B. gingivalis components that appear to be localized at the cell surface. Fibrinogen binding to bacterial cells occurred at 4, 22, and 37{degree}C. A functional fibrinogen-binding component (M{sub r}, 150 000) was identified when sodium dodecyl sulfate-solubilized bacteria were fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to nitrocellulose membranes, and probed with {sup 125}I-fibrinogen. Fibrinogen degradation did not occur at 4{degree}C but did occur at 22 and 37{degree}C. When bacteria and iodinated fibrinogen were incubated at 37{degree}C, two major fibrinogen fragments (M{sub r}, 97 000 and 50 000) accumulated in incubation mixture supernatant fractions. Two major fibrinogen-degrading components (M{sub r}, 120 000 and 150 000) have been identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in substrate-containing gels. Fibrinogen degradation by the M{sub r}-120 000 and -150 000 proteases was enhanced by reducing agents, completely inhibited by N-{alpha}-p-tosyl-L-lysyl chloromethyl ketone, and partially inhibited by n-ethyl maleimide, suggesting that these enzymes are thiol-dependent proteases with trypsinlike substrate specificity. The fibrinogen-binding component could be separated from the fibrinogen-degrading components by selective solubilization of bacteria in sodium deoxycholate.

  6. Specific cell components of Bacteroides gingivalis mediate binding and degradation of human fibrinogen.

    PubMed Central

    Lantz, M S; Allen, R D; Vail, T A; Switalski, L M; Hook, M

    1991-01-01

    Bacteroides (Porphyromonas) gingivalis, which has been implicated as an etiologic agent in human periodontal diseases, has been shown to bind and degrade human fibrinogen. B. gingivalis strains bind fibrinogen reversibly and with high affinity and bind to a specific region of the fibrinogen molecule that appears to be located between the D and E domains (M. S. Lantz, R. D. Allen, P. Bounelis, L. M. Switalski, and M. Hook, J. Bacteriol. 172:716-726, 1990). We now report that human fibrinogen is bound and then degraded by specific B. gingivalis components that appear to be localized at the cell surface. Fibrinogen binding to bacterial cells occurred at 4, 22, and 37 degrees C. A functional fibrinogen-binding component (Mr, 150,000) was identified when sodium dodecyl sulfate-solubilized bacteria were fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to nitrocellulose membranes, and probed with 125I-fibrinogen. Fibrinogen degradation did not occur at 4 degrees C but did occur at 22 and 37 degrees C. When bacteria and iodinated fibrinogen were incubated at 37 degrees C, two major fibrinogen fragments (Mr, 97,000 and 50,000) accumulated in incubation mixture supernatant fractions. Two major fibrinogen-degrading components (Mr, 120,000 and 150,000) have been identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in substrate-containing gels. Fibrinogen degradation by the Mr-120,000 and -150,000 proteases was enhanced by reducing agents, completely inhibited by N-alpha-p-tosyl-L-lysyl chloromethyl ketone, and partially inhibited by n-ethyl maleimide, suggesting that these enzymes are thiol-dependent proteases with trypsinlike substrate specificity. The fibrinogen-binding component could be separated from the fibrinogen-degrading components by selective solubilization of bacteria in sodium deoxycholate. Images PMID:1987144

  7. Effect of Cordycepin-Enriched WIB801C from Cordyceps militaris Suppressing Fibrinogen Binding to Glycoprotein IIb/IIIa

    PubMed Central

    Lee, Dong-Ha; Kim, Hyun-Hong; Lim, Deok Hwi; Kim, Jong-Lae; Park, Hwa-Jin

    2015-01-01

    In this study, we investigated the effects of cordycepin-enriched (CE)-WIB801C, a n-butanol extract of Cordyceps militaris-hypha on collagen-stimulated platelet aggregation. CE-WIB801C dose dependently inhibited collagen-induced platelet aggregation, and had a synergistic effect together with cordycepin (W-cordycepin) from CE-WIB801C on the inhibition of collagen-induced platelet aggregation. CE-WIB801C and cordycepin stimulated the phosphorylation of VASP (Ser157) and the dephosphorylation of PI3K and Akt, and inhibited the binding of fibrinogen to glycoprotein IIb/IIIa (αIIb/β3) and the release of ATP and serotonin in collagen-induced platelet aggregation. A-kinase inhibitor Rp-8-Br-cAMPS reduced CE-WIB801C-, and cordycepin-increased VASP (Ser157) phosphorylation, and increased CE-WIB801C-, and cordycepin-inhibited the fibrinogen binding to αIIb/β3. Therefore, we demonstrate that CE-WIB801C-, and cordycepin-inhibited fibrinogen binding to αIIb/β3 are due to stimulation of cAMP-dependent phosphorylation of VASP (Ser157), and inhibition of PI3K/Akt phosphorylation. These results strongly indicate that CE-WIB801C and cordycepin may have preventive or therapeutic potential for platelet aggregation-mediated diseases, such as thrombosis, myocardial infarction, atherosclerosis, and ischemic cerebrovascular disease. PMID:25593645

  8. Adenosine diphosphate-induced aggregation of human platelets in flow through tubes: III. Shear and extrinsic fibrinogen-dependent effects.

    PubMed

    Goldsmith, H L; Frojmovic, M M; Braovac, S; McIntosh, F; Wong, T

    1994-01-01

    The effect of shear rate and fibrinogen concentration on adenosine diphosphate-induced aggregation of suspensions of washed human platelets in Poiseuille flow at 23 degrees C was studied using a previously described double infusion technique and resistive particle counter size analysis. Using suspensions of multiple-centrifuged and -washed cells in Tyrodes-albumin [3 x 10(5) microliters-1; (17)] with [fibrinogen] from 0 to 1.2 microM, the rate and extent of aggregation with 0.7 microM ADP in Tyrodes-albumin were measured over a range of mean transit times from 0.2 to 43 s, and at mean tube shear rates, G, = 41.9, 335 and 1,335 s-1. As measured by the decrease in singlet concentration, aggregation at 1.2 microM fibrinogen increased with increasing G up to 1,335 s-1, in contrast to that previously reported in citrated plasma, in which aggregation reached a maximum at G = 335 s-1. Without added fibrinogen, there was no aggregation at G = 41.9 s-1; at G = 335 s-1, there was significant aggregation but with an initial lag time, aggregation increasing further at G = 1,335 s-1. Without added fibrinogen, aggregation was abolished at all G upon incubation with the hexapeptide GRGDSP, but was almost unaffected by addition of an F(ab')2 fragment of an antibody to human fibrinogen. Aggregation in the absence of added fibrinogen was also observed at 37 degrees C. The activation of the multiple-washed platelets was tested using flow cytometry with the fluorescently labelled monoclonal antibodies FITC-PAC1 and FITC-9F9. It was shown that 57% of single cells in unactivated PRT expressed maximal GPIIb-IIIa fibrinogen receptors (MoAb PAC1) and 54% expressed pre-bound fibrinogen (MoAb 9F9), with further increases on ADP activation. However, incubation with GRGDSP and the F(ab')2 fragment did not inhibit the prebound fibrinogen. Moreover, relatively unactivated cells (8% expressing receptor, 14% prebound fibrinogen), prepared from acidified cPRP by single centrifugation with 50 nM of

  9. Bacteriophage lysin mediates the binding of streptococcus mitis to human platelets through interaction with fibrinogen.

    PubMed

    Seo, Ho Seong; Xiong, Yan Q; Mitchell, Jennifer; Seepersaud, Ravin; Bayer, Arnold S; Sullam, Paul M

    2010-01-01

    The binding of bacteria to human platelets is a likely central mechanism in the pathogenesis of infective endocarditis. We have previously found that platelet binding by Streptococcus mitis SF100 is mediated by surface components encoded by a lysogenic bacteriophage, SM1. We now demonstrate that SM1-encoded lysin contributes to platelet binding via its direct interaction with fibrinogen. Far Western blotting of platelets revealed that fibrinogen was the major membrane-associated protein bound by lysin. Analysis of lysin binding with purified fibrinogen in vitro confirmed that these proteins could bind directly, and that this interaction was both saturable and inhibitable. Lysin bound both the Aalpha and Bbeta chains of fibrinogen, but not the gamma subunit. Binding of lysin to the Bbeta chain was further localized to a region within the fibrinogen D fragment. Disruption of the SF100 lysin gene resulted in an 83+/-3.1% reduction (mean +/- SD) in binding to immobilized fibrinogen by this mutant strain (PS1006). Preincubation of this isogenic mutant with purified lysin restored fibrinogen binding to wild type levels. When tested in a co-infection model of endocarditis, loss of lysin expression resulted in a significant reduction in virulence, as measured by achievable bacterial densities (CFU/g) within vegetations, kidneys, and spleens. These results indicate that bacteriophage-encoded lysin is a multifunctional protein, representing a new class of fibrinogen-binding proteins. Lysin appears to be cell wall-associated through its interaction with choline. Once on the bacterial surface, lysin can bind fibrinogen directly, which appears to be an important interaction for the pathogenesis of endocarditis. PMID:20714354

  10. Bacteriophage lysin mediates the binding of streptococcus mitis to human platelets through interaction with fibrinogen.

    PubMed

    Seo, Ho Seong; Xiong, Yan Q; Mitchell, Jennifer; Seepersaud, Ravin; Bayer, Arnold S; Sullam, Paul M

    2010-08-12

    The binding of bacteria to human platelets is a likely central mechanism in the pathogenesis of infective endocarditis. We have previously found that platelet binding by Streptococcus mitis SF100 is mediated by surface components encoded by a lysogenic bacteriophage, SM1. We now demonstrate that SM1-encoded lysin contributes to platelet binding via its direct interaction with fibrinogen. Far Western blotting of platelets revealed that fibrinogen was the major membrane-associated protein bound by lysin. Analysis of lysin binding with purified fibrinogen in vitro confirmed that these proteins could bind directly, and that this interaction was both saturable and inhibitable. Lysin bound both the Aalpha and Bbeta chains of fibrinogen, but not the gamma subunit. Binding of lysin to the Bbeta chain was further localized to a region within the fibrinogen D fragment. Disruption of the SF100 lysin gene resulted in an 83+/-3.1% reduction (mean +/- SD) in binding to immobilized fibrinogen by this mutant strain (PS1006). Preincubation of this isogenic mutant with purified lysin restored fibrinogen binding to wild type levels. When tested in a co-infection model of endocarditis, loss of lysin expression resulted in a significant reduction in virulence, as measured by achievable bacterial densities (CFU/g) within vegetations, kidneys, and spleens. These results indicate that bacteriophage-encoded lysin is a multifunctional protein, representing a new class of fibrinogen-binding proteins. Lysin appears to be cell wall-associated through its interaction with choline. Once on the bacterial surface, lysin can bind fibrinogen directly, which appears to be an important interaction for the pathogenesis of endocarditis.

  11. Bacteriophage Lysin Mediates the Binding of Streptococcus mitis to Human Platelets through Interaction with Fibrinogen

    PubMed Central

    Seo, Ho Seong; Xiong, Yan Q.; Mitchell, Jennifer; Seepersaud, Ravin; Bayer, Arnold S.; Sullam, Paul M.

    2010-01-01

    The binding of bacteria to human platelets is a likely central mechanism in the pathogenesis of infective endocarditis. We have previously found that platelet binding by Streptococcus mitis SF100 is mediated by surface components encoded by a lysogenic bacteriophage, SM1. We now demonstrate that SM1-encoded lysin contributes to platelet binding via its direct interaction with fibrinogen. Far Western blotting of platelets revealed that fibrinogen was the major membrane-associated protein bound by lysin. Analysis of lysin binding with purified fibrinogen in vitro confirmed that these proteins could bind directly, and that this interaction was both saturable and inhibitable. Lysin bound both the Aα and Bβ chains of fibrinogen, but not the γ subunit. Binding of lysin to the Bβ chain was further localized to a region within the fibrinogen D fragment. Disruption of the SF100 lysin gene resulted in an 83±3.1% reduction (mean ± SD) in binding to immobilized fibrinogen by this mutant strain (PS1006). Preincubation of this isogenic mutant with purified lysin restored fibrinogen binding to wild type levels. When tested in a co-infection model of endocarditis, loss of lysin expression resulted in a significant reduction in virulence, as measured by achievable bacterial densities (CFU/g) within vegetations, kidneys, and spleens. These results indicate that bacteriophage-encoded lysin is a multifunctional protein, representing a new class of fibrinogen-binding proteins. Lysin appears to be cell wall-associated through its interaction with choline. Once on the bacterial surface, lysin can bind fibrinogen directly, which appears to be an important interaction for the pathogenesis of endocarditis. PMID:20714354

  12. Binding of Efb from Staphylococcus aureus to fibrinogen blocks neutrophil adherence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In addition to its pivotal role in hemostasis, fibrinogen (Fg) and provisional fibrin matrices play important roles in inflammation and regulate innate immune responses by interacting with leukocytes. Efb (the extracellular fibrinogen-binding protein) is a secreted Staphylococcus aureus protein that...

  13. Fibrinogen residue γAla341 is necessary for calcium binding and 'A-a' interactions.

    PubMed

    Park, Rojin; Ping, Lifang; Song, Jaewoo; Hong, Sung-Yu; Choi, Tae-Youn; Choi, Jong-Rak; Gorkun, Oleg V; Lord, Susan T

    2012-05-01

    The fibrinogen γ-module has several important sites relating to fibrinogen function, which include the high affinity calcium binding site, hole 'a' that binds with knob 'A', and the D:D interface. Residue γAla341, which is located in the vicinity of these sites, is altered in three variant fibrinogens: fibrinogen Seoul (γAla341Asp), Tolaga Bay (γAla341Val), and Lyon III (γAla341Thr). In order to investigate the impaired polymerisation of fibrinogens γAla341Asp and γAla341Val to understand the role of γAla341 in fibrin polymerisation and fibrinogen synthesis, we have expressed γAla341Asp and γAla341Val in Chinese hamster ovary (CHO) cells, purified these fibrinogens from the culture media and performed biochemical tests to elucidate their function. Expression in CHO cells was similar for these variants. For both variants the kinetics of thrombin-catalysed FpA release was not different from normal fibrinogen, while FpB release was slower than that of normal. Thrombin-catalysed polymerisation of both variants was dependent on the calcium concentration. At physiologic calcium (1 mM) the variants showed impaired polymerisation with a longer lag period and a slower Vmax than normal fibrinogen. Scanning electron micrographs showed the clots were less organised than normal, having thicker and more twisted fibers, and larger pores. Analysis by SDS-PAGE showed that factor XIIIa-catalysed γ and α chain cross-linking was delayed, and plasmin-catalysed lysis was not reduced by the presence of 5 mM calcium or 5 mM GPRP (Gly-Pro-Arg-Pro). Our data indicate that fibrinogen residue γAla341 is important for the proper conformation of the γ-module, maintaining calcium-binding site and 'A-a' interactions.

  14. Competitions between fibrinogen with its degradation products for interactions with the platelet-fibrinogen receptor

    SciTech Connect

    Thorsen, L.I.; Brosstad, F.; Gogstad, G.; Sletten, K.; Solum, N.O.

    1986-12-01

    Direct binding of /sup 125/-I-labelled plasmic and CNBr-derived fibrin (ogen) fragments (pre-X, X, Y, D, Degta, Efg, E1, N-DSK, N-dsk) to gel-filtered platelets was compared to their ability to support or inhibit ADP-induced aggregation, and to compete with fibrinogen for binding to ADP-stimulated platelets. Pre-X was the only fragment that supported aggregation. All fragments tested except for E derived from fibrinogen (Efg) and Degta bound specifically to the platelets and inhibited ADP-induced aggregation in the presence of fibrinogen. Competitive binding studies with fibrinogen and fragments labelled with different isotopes of iodine, or inhibition of binding of labelled fibrinogen with unlabelled fragments showed that all of the fragments except Efg and Degta were able to compete with fibrinogen for binding. When simultaneous binding of N-dsk and fibrinogen was studied, an increased binding of both ligands was observed probably due to complex formation. The results fully agree with previous findings of binding to immunoprecipitated glycoprotein IIb-IIIa after crossed immunoelectrophoresis. We conclude that the fibrinogen molecule contains at least six sequences responsible for platelet interaction, two in the E domain and two in each of the C-terminal parts of the fibrinogen molecule.

  15. Fibrinogen-binding properties of the human platelet glycoprotein IIb-IIIa complex: a study using crossed-radioimmunoelectrophoresis

    SciTech Connect

    Gogstad, G.O.; Brosstad, F.; Krutnes, M.B.; Hagen, I.; Solum, N.O.

    1982-09-01

    Fibrinogen-binding platelet proteins have been examined by crossed-immunoelectrophoresis of solubilized, washed platelets followed by the incubation of the immunoplates with /sup 125/I-fibrinogen and exposure to x-ray films. Incubation with 0.1 mg/ml of /sup 125/I-fibrinogen revealed the binding of fibrinogen to the immunoprecipitates representing the glycoprotein IIb-IIIa complex, factor XIIIa chain, a granule membrane protein termed G4, fibrinogen, and albumin. Only the glycoprotein IIb-IIIa precipitate and the fibrinogen precipitate showed significant binding when the concentration of /sup 125/I-fibrinogen was lowered to 0.01 mg/ml. Thi indicates that the binding of fibrinogen is specific. The binding of /sup 125/I-fibrinogen to the precipitates representing the glycoprotein IIb-IIIa complex, the factor XIIIa chain, and G4, but not to the albumin precipitate, was significantly lowered in the presence of EDTA. This effect of EDTA increased with increasing pH, with no binding at pH 8.7. The results indicate that the glycoprotein IIb-IIIa complex, but not the separate glycoproteins IIb and IIIa, can act as Ca/sup 2 +/ or Mg/sup 2 +/-dependent fibrinogen receptor, under proper physiologic conditions.

  16. Identification of a 58-kilodalton cell surface fibrinogen-binding mannoprotein from Candida albicans.

    PubMed Central

    Casanova, M; Lopez-Ribot, J L; Monteagudo, C; Llombart-Bosch, A; Sentandreu, R; Martinez, J P

    1992-01-01

    Treatment of both yeast (blastoconidia) and hyphal (blastoconidia with germ tubes) cells of Candida albicans with beta-mercaptoethanol (beta ME) releases a complex array of cell wall-bound proteins and glycoproteins. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western immunoblotting with fibrinogen-anti-fibrinogen antibody allowed the identification of a 58-kDa mannoprotein (mp58) in both extracts which specifically interacts with human fibrinogen. Treatment of intact cells with low concentrations of beta-glucanase (Zymolyase 20T) for short periods or with beta ME abolished or significantly reduced binding of fibrinogen. A rabbit polyclonal antiserum was raised against the purified mp58 species released by beta ME from germinated blastoconidia (PAb anti-mp58). By Western blotting, the antiserum cross-reacted with the homologous 58-kDa fibrinogen-binding mannoprotein present in beta ME extracts from blastoconidia, and by indirect immunofluorescence, the antiserum labelled both yeast cells and hyphae, yet reactivity was found primarily on the cell surface of filamentous forms. Immunostaining of human infected tissue sections with PAb anti-mp58 showed that the mp58 species is also expressed in vivo; in this case, the species is in the forms of both yeast and hyphal elements similarly labelled by the antiserum. Purified immunoglobulin G fraction from the antiserum did not alter the binding of fibrinogen as determined by a modified enzyme-linked immunosorbent assay and Western blotting. The N- and O-glycosidically linked carbohydrates represent 18 to 20% and 3 to 4%, respectively, of the molecular mass of the mp58. O-linked sugar residues may be involved in the interaction of the molecule with fibrinogen. Images PMID:1398933

  17. Identification of a 58-kilodalton cell surface fibrinogen-binding mannoprotein from Candida albicans.

    PubMed

    Casanova, M; Lopez-Ribot, J L; Monteagudo, C; Llombart-Bosch, A; Sentandreu, R; Martinez, J P

    1992-10-01

    Treatment of both yeast (blastoconidia) and hyphal (blastoconidia with germ tubes) cells of Candida albicans with beta-mercaptoethanol (beta ME) releases a complex array of cell wall-bound proteins and glycoproteins. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western immunoblotting with fibrinogen-anti-fibrinogen antibody allowed the identification of a 58-kDa mannoprotein (mp58) in both extracts which specifically interacts with human fibrinogen. Treatment of intact cells with low concentrations of beta-glucanase (Zymolyase 20T) for short periods or with beta ME abolished or significantly reduced binding of fibrinogen. A rabbit polyclonal antiserum was raised against the purified mp58 species released by beta ME from germinated blastoconidia (PAb anti-mp58). By Western blotting, the antiserum cross-reacted with the homologous 58-kDa fibrinogen-binding mannoprotein present in beta ME extracts from blastoconidia, and by indirect immunofluorescence, the antiserum labelled both yeast cells and hyphae, yet reactivity was found primarily on the cell surface of filamentous forms. Immunostaining of human infected tissue sections with PAb anti-mp58 showed that the mp58 species is also expressed in vivo; in this case, the species is in the forms of both yeast and hyphal elements similarly labelled by the antiserum. Purified immunoglobulin G fraction from the antiserum did not alter the binding of fibrinogen as determined by a modified enzyme-linked immunosorbent assay and Western blotting. The N- and O-glycosidically linked carbohydrates represent 18 to 20% and 3 to 4%, respectively, of the molecular mass of the mp58. O-linked sugar residues may be involved in the interaction of the molecule with fibrinogen.

  18. Spatially selective surface platforms for binding fibrinogen prepared by particle lithography with organosilanes

    PubMed Central

    Englade-Franklin, Lauren E.; Saner, ChaMarra K.; Garno, Jayne C.

    2013-01-01

    We introduce an approach based on particle lithography to prepare spatially selective surface platforms of organosilanes that are suitable for nanoscale studies of protein binding. Particle lithography was applied for patterning fibrinogen, a plasma protein that has a major role in the clotting cascade for blood coagulation and wound healing. Surface nanopatterns of mercaptosilanes were designed as sites for the attachment of fibrinogen within a protein-resistant matrix of 2-[methoxy(polyethyleneoxy)propyl] trichlorosilane (PEG-silane). Preparing site-selective surfaces was problematic in our studies, because of the self-reactive properties of PEG-organosilanes. Certain organosilanes presenting hydroxyl head groups will cross react to form mixed surface multi-layers. We developed a clever strategy with particle lithography using masks of silica mesospheres to protect small, discrete regions of the surface from cross reactions. Images acquired with atomic force microscopy (AFM) disclose that fibrinogen attached primarily to the surface areas presenting thiol head groups, which were surrounded by PEG-silane. The activity for binding anti-fibrinogen was further evaluated using ex situ AFM studies, confirming that after immobilization the fibrinogen nanopatterns retained capacity for binding immunoglobulin G. Studies with AFM provide advantages of achieving nanoscale resolution for detecting surface changes during steps of biochemical surface reactions, without requiring chemical modification of proteins or fluorescent labels. PMID:24427541

  19. Coagulase and Efb of Staphylococcus aureus Have a Common Fibrinogen Binding Motif

    PubMed Central

    Ko, Ya-Ping; Kang, Mingsong; Ganesh, Vannakambadi K.; Ravirajan, Dharmanand; Li, Bin

    2016-01-01

    ABSTRACT Coagulase (Coa) and Efb, secreted Staphylococcus aureus proteins, are important virulence factors in staphylococcal infections. Coa interacts with fibrinogen (Fg) and induces the formation of fibrin(ogen) clots through activation of prothrombin. Efb attracts Fg to the bacterial surface and forms a shield to protect the bacteria from phagocytic clearance. This communication describes the use of an array of synthetic peptides to identify variants of a linear Fg binding motif present in Coa and Efb which are responsible for the Fg binding activities of these proteins. This motif represents the first Fg binding motif identified for any microbial protein. We initially located the Fg binding sites to Coa’s C-terminal disordered segment containing tandem repeats by using recombinant fragments of Coa in enzyme-linked immunosorbent assay-type binding experiments. Sequence analyses revealed that this Coa region contained shorter segments with sequences similar to the Fg binding segments in Efb. An alanine scanning approach allowed us to identify the residues in Coa and Efb that are critical for Fg binding and to define the Fg binding motifs in the two proteins. In these motifs, the residues required for Fg binding are largely conserved, and they therefore constitute variants of a common Fg binding motif which binds to Fg with high affinity. Defining a specific motif also allowed us to identify a functional Fg binding register for the Coa repeats that is different from the repeat unit previously proposed. PMID:26733070

  20. Problems with nonspecific binding in radioimmunoassay for fibrinogen fragment D

    SciTech Connect

    Thornton, R.D.; Kulkarni, P.; Wilson, J.E.

    1982-07-01

    Because of problems associated with non-specific binding in the competetive inhibition radioimmunoassay, the author, in a letter, recommends running a blank (without the first antibody) for each dilution of the antigen. He adds, further, that normal human plasma can be used a diluent when preparing standard curves if non-specific binding is found. (JMT)

  1. Vascular pentraxin 3 controls arterial thrombosis by targeting collagen and fibrinogen induced platelets aggregation

    PubMed Central

    Bonacina, F.; Barbieri, S.S.; Cutuli, L.; Amadio, P.; Doni, A.; Sironi, M.; Tartari, S.; Mantovani, A.; Bottazzi, B.; Garlanda, C.; Tremoli, E.; Catapano, A.L.; Norata, G.D.

    2016-01-01

    Aim The long pentraxin PTX3 plays a non-redundant role during acute myocardial infarction, atherosclerosis and in the orchestration of tissue repair and remodeling during vascular injury, clotting and fibrin deposition. The aim of this work is to investigate the molecular mechanisms underlying the protective role of PTX3 during arterial thrombosis. Methods and results PTX3 KO mice transplanted with bone marrow from WT or PTX3 KO mice presented a significant reduction in carotid artery blood flow following FeCl3 induced arterial thrombosis (− 80.36 ± 11.5% and − 95.53 ± 4.46%), while in WT mice transplanted with bone marrow from either WT or PTX3 KO mice, the reduction was less dramatic (− 45.55 ± 1.37% and − 53.39 ± 9.8%), thus pointing to a protective effect independent of a hematopoietic cell's derived PTX3. By using P-selectin/PTX3 double KO mice, we further excluded a role for P-selectin, a target of PTX3 released by neutrophils, in vascular protection played by PTX3. In agreement with a minor role for hematopoietic cell-derived PTX3, platelet activation (assessed by flow cytometric expression of markers of platelet activation) was similar in PTX3 KO and WT mice as were haemostatic properties. Histological analysis indicated that PTX3 localizes within the thrombus and the vessel wall, and specific experiments with the N-terminal and the C-terminal PTX3 domain showed the ability of PTX3 to selectively dampen either fibrinogen or collagen induced platelet adhesion and aggregation. Conclusion PTX3 interacts with fibrinogen and collagen and, by dampening their pro-thrombotic effects, plays a protective role during arterial thrombosis. PMID:26976330

  2. Biochemical and biological properties of the binding of human fibrinogen to M protein in group A streptococci

    SciTech Connect

    Whitnack, E.; Beachey, E.H.

    1985-10-01

    Fibrinogen is known to bind to group A streptococci and precipitate with extracts containing streptococcal M protein. The authors have previously shown that the binding of fibrinogen to M-positive streptococci prevents opsonization by complement and protects that organism from phagocytosis in nonimmune blood. In the present study, they used TH-labeled fibrinogen, a highly purified peptide fragment of type 24 M protein (pep M24), and anti-pep M sera to show that fibrinogen binds to M-positive streptococci with high affinity; occupation of the high-affinity binding sites suffices to protect the organism from phagocytosis; proteolytic treatments that remove M protein from streptococcal cells abolish binding; binding is competitively inhibited by anti-pep M sera; pep M24 precipitates fibrinogen; and binding to type 24 cells is inhibited by pep M24. They conclude that M protein is the cell surface structure principally responsible for binding fibrinogen on the surface of M-positive streptococci and that this binding contributes to the known antiopsonic property of M proteins.

  3. Regulation of fibrinogen receptor expression on human platelets

    SciTech Connect

    Shattil, S.J.; Motulsky, H.J.; Insel, P.A.; Brass, L.F.

    1986-03-01

    Platelet aggregation requires the binding of fibrinogen to specific receptors on the plasma membrane glycoprotein IIb-IIIa complex. Although the IIb-IIIa complex is identifiable on the surface of resting platelets, the fibrinogen receptor is expressed only after platelet activation. The authors have developed a monoclonal anti-IIb-IIIa antibody (PAC-1) that binds only to stimulated platelets and only in the presence of Ca. In order to better understand the steps leading to platelet aggregation, the authors used radiolabeled PAC-1 and fibrinogen to examine the effect of the ..cap alpha../sub 2/-adrenergic agonist, epinephrine, on the expression and function of the fibrinogen receptor. The addition of epinephrine to unstirred platelets caused and immediate increase in PAC-1 and fibrinogen binding that was associated with platelet aggregation once the platelets were stirred. Even after prolonged incubation of the platelets with epinephrine, fibrinogen receptor expression could be reversed by adding EGTA, PGl/sub 2/, or the ..cap alpha../sub 2/-adrenergic antagonist, phentolamine. When unstirred platelets were exposed to epinephrine for more than 10 min, the extent of aggregation caused by subsequent stirring was decreased by 70%. Surprisingly, these desensitized platelets bound PAC-1 and fibrinogen normally, indicating that the loss of aggregation was not due to a decrease in fibrinogen receptor expression or function. These studies demonstrate that: (1) fibrinogen receptor expression is dependent on extracellular CA; (2) induction of the fibrinogen receptor by epinephrine requires the continued presence of the agonist; and (3) prolonged stimulation of the platelet by epinephrine can lead to a reduced aggregation response by a mechanism that does not involve a loss of either fibrinogen recepor expression or fibrinogen binding.

  4. Binding of 125I-labelled fibrin(ogen) fragments to platelets and to immunoprecipitated glycoprotein IIb-IIIa complex

    SciTech Connect

    Thorsen, L.I.; Brosstad, F.; Gogstad, G.; Sletten, K.; Solum, N.O.

    1986-06-01

    To further investigate which parts of the fibrinogen molecule that are responsible for its binding to the fibrinogen receptor on human platelets, the following approaches were made: The glycoprotein IIb-IIIa complex (the putative fibrinogen receptor) was immunoprecipitated in crossed immunoelectrophoresis of Triton X-100-extracts of platelets against antibodies to whole platelet proteins. Subsequently, the immunoplates were incubated with /sup 125/I-labelled, plasmin- or CNBr-cleaved fibrinogen fragments (pre-X,X,Y,D,Degta,Efg,N-DSK) or fibrin fragments (E1,N-dsk), characterized by partial sequenation. The immunoplates were exposed to X-ray films, and binding of the fragments to the glycoprotein IIb-IIIa complex was examined. The findings were compared to the results obtained from studies on binding of the same fragments to intact gel-filtered platelets after ADP-stimulation. The following conclusions were made: All fragments except Efg and Degta bound to the immunoprecipitated GPIIb-IIIa complex as well as to ADP-stimulated platelets suggesting that at least two sequences in the E domain and one in each of the D domains of fibrinogen are involved in binding to the platelet receptor. The GPIIb-IIIa complex is the only surface-located platelet antigen that binds fibrinogen and the aforementioned fragments. The binding of the fragments to the receptor is dependent on divalent cations.

  5. Identification and molecular characterisation of a fibrinogen binding protein from Streptococcus iniae.

    PubMed Central

    Baiano, Justice CF; Tumbol, Reiny A; Umapathy, Aarti; Barnes, Andrew C

    2008-01-01

    Background Binding of serum components by surface M-related proteins, encoded by the emm genes, in streptococci constitutes a major virulence factor in this important group of organisms. The present study demonstrates fibrinogen binding by S. iniae, a Lancefield non-typeable pathogen causing devastating fish losses in the aquaculture industry and an opportunistic pathogen of humans, and identifies the proteins involved and their encoding genes. Results Fibrinogen binding by S. iniae significantly reduced respiratory burst activity of barramundi peritoneal macrophages in primary cultures compared to BSA-treated or untreated controls, indicating a potentially important role for fibrinogen binding cell-surface proteins in avoiding phagocytic attack in fish. We describe a novel emm-like gene, simA, encoding a 57 kDa fibrinogen binding M-like protein in S. iniae. These SiM proteins and their corresponding tetrameric structures from some sequevar types (~230 kDa) bound fibrinogen in Western blots. simA was most closely related (32% identity) to the demA gene of S. dysgalactiae. Genome walking and sequencing determined the genetic organization of the simA region had similarities to the mgrC regulon in GCS and to S. uberis. Moreover, a putative multigene regulator, mgx was orientated in the opposite direction to the simA gene in common with S. uberis, but contrary to findings in GAS and GCS. In GAS, diversity among emm-genes and consequent diversity of their M-related proteins results in substantial antigenic variation. However, an extensive survey of S. iniae isolates from diverse geographic regions and hosts revealed only three variants of the gene, with one sequevar accounting for all but two of the 50 isolates analysed. Conclusion These proteins play a role in avoiding oxidative attack by phagocytic cells during infection of fish by S. iniae, but genetic diversity amongst these key surface proteins has not yet arisen. This lack of diversity coupled with a functional

  6. Binding of a fibrinogen mimetic stabilizes integrin αIIbβ3's open conformation

    PubMed Central

    Hantgan, Roy R.; Rocco, Mattia; Nagaswami, Chandrasekaran; Weisel, John W.

    2001-01-01

    The platelet integrin αIIbβ3 is representative of a class of heterodimeric receptors that upon activation bind extracellular macromolecular ligands and form signaling clusters. This study examined how occupancy of αIIbβ3's fibrinogen binding site affected the receptor's solution structure and stability. Eptifibatide, an integrin antagonist developed to treat cardiovascular disease, served as a high-affinity, monovalent model ligand with fibrinogen-like selectivity for αIIbβ3. Eptifibatide binding promptly and reversibly perturbed the conformation of the αIIbβ3 complex. Ligand-specific decreases in its diffusion and sedimentation coefficient were observed at near-stoichiometric eptifibatide concentrations, in contrast to the receptor-perturbing effects of RGD ligands that we previously observed only at a 70-fold molar excess. Eptifibatide promoted αIIbβ3 dimerization 10-fold more effectively than less selective RGD ligands, as determined by sedimentation equilibrium. Eptifibatide-bound integrin receptors displayed an ectodomain separation and enhanced assembly of dimers and larger oligomers linked through their stalk regions, as seen by transmission electron microscopy. Ligation with eptifibatide protected αIIbβ3 from SDS-induced subunit dissociation, an effect on electrophoretic mobility not seen with RGD ligands. Despite its distinct cleft, the open conformer resisted guanidine unfolding as effectively as the ligand-free integrin. Thus, we provide the first demonstration that binding a monovalent ligand to αIIbβ3's extracellular fibrinogen-recognition site stabilizes the receptor's open conformation and enhances self-association through its distant transmembrane and/or cytoplasmic domains. By showing how eptifibatide and RGD peptides, ligands with distinct binding sites, each affects αIIbβ3's conformation, our findings provide new mechanistic insights into ligand-linked integrin activation, clustering and signaling. PMID:11468358

  7. Staphylococcus intermedius binding to immobilized fibrinogen, fibronectin and cytokeratin in vitro.

    PubMed

    Schmidt, Vanessa; Nuttall, Tim; Fazakerley, Jennie; McEwan, Neil

    2009-10-01

    Bacterial adhesion is a key step in colonization of the skin. Staphylococcus intermedius adheres strongly to canine and feline corneocytes, and adhesion is greater to corneocytes from dogs affected with atopic dermatitis, but comparatively little is known about adhesion-receptor interaction compared to S. aureus. The aim of this study was to compare the binding of S. intermedius isolates from healthy (n = 21) and atopic dogs (n = 33) to immobilized human fibronectin and epidermal cytokeratin and canine fibrinogen in vitro. Staphylococcus intermedius and the positive control S. aureus P1 exhibited concentration-dependent binding to all three protein layers. The negative control S. aureus Newman strain and S. hominis did not bind. The majority of S. intermedius isolates adhered strongly, and there was no significant difference between isolates from atopic and healthy dogs or from lesional or nonlesional skin of atopic dogs (fibronectin P = 0.971 and 0.837; fibrinogen P = 0.811 and 0.564; cytokeratin P = 0.409 and 0.564). These results suggest that S. intermedius may possess specific microbial components recognizing adhesive matrix molecules, like S. aureus, that bind to the substrates used in this study. Adherence and therefore colonization and infection in canine atopic dermatitis, however, are more likely to be related to host factors rather than the possession of specific virulence factors.

  8. Exposure of fibrinogen receptors in human platelets by surface proteolysis with elastase.

    PubMed Central

    Kornecki, E; Ehrlich, Y H; De Mars, D D; Lenox, R H

    1986-01-01

    Human platelets that were preincubated with porcine elastase aggregated spontaneously upon the addition of fibrinogen. Maximal aggregation to fibrinogen was observed with platelets pretreated with an elastase concentration of 111 micrograms/ml, and half-maximal aggregation occurred after treatment with 11 micrograms/ml elastase. Binding of radiolabeled fibrinogen to elastase-treated platelets was specific, saturable, and showed a single class of 48,400 +/- 9,697 fibrinogen-binding sites per platelet with a dissociation constant of 6.30 +/- 1.48 X 10(-7) M. ATP, apyrase, and the stimulators of platelet adenylate cyclase forskolin, prostaglandin E1, prostacyclin, and N6, 2'-O-dibutyryl cyclic AMP did not inhibit the fibrinogen-induced aggregation of elastase-treated platelets. EDTA completely blocked the initiation of aggregation and reversed the fibrinogen-induced aggregation of elastase-treated platelets. Monoclonal and polyclonal antibodies directed against glycoproteins (GP) IIb and IIIa completely blocked the fibrinogen-induced aggregation of elastase-treated platelets. Immunoprecipitates with these antibodies obtained from detergent extracts of surface-radiolabeled, intact, and elastase-treated platelets contained the glycoproteins IIb and IIIa. We conclude that surface proteolysis by low concentrations of elastase can expose fibrinogen-binding sites associated with GPIIb and GPIIIa on the platelet surface, resulting in spontaneous aggregation upon the addition of fibrinogen. These findings may be relevant to hemostatic changes observed in patients with increased levels of circulating elastase. Images PMID:3005363

  9. Interaction between Fibrinogen and Insulin-Like Growth Factor-Binding Protein-1 in Human Plasma under Physiological Conditions.

    PubMed

    Gligorijević, N; Nedić, O

    2016-02-01

    Fibrinogen is a plasma glycoprotein and one of the principle participants in blood coagulation. It interacts with many proteins during formation of a blood clot, including insulin-like growth factors (IGFs) and their binding proteins (IGFBP). Fibrinogen complexes were found as minor fractions in fibrinogen preparations independently of the coagulation process, and their presence influences the kinetics of polymerization. The idea of this work was to investigate whether fibrinogen in human plasma interacts with IGFBPs independently of the tissue injury or coagulation process. The results have shown that fibrinogen forms complexes with IGFBP-1 under physiological conditions. Several experimental approaches have confirmed that complexes are co-isolated with fibrinogen from plasma, they are relatively stable, and they appear as a general feature of human plasma. Several other experiments excluded the possibility that alpha-2 macroglobulin/IGFBP-1 complexes or IGFBP-1 oligomers contributed to IGFBP-1 immunoreactivity. The role of fibrinogen/IGFBP-1 complexes is still unknown. Further investigation in individuals expressing both impaired glucose control and coagulopathy could contribute to identification and understanding of their possible physiological role. PMID:27260393

  10. Histidine-rich Glycoprotein Binds Fibrin(ogen) with High Affinity and Competes with Thrombin for Binding to the γ′-Chain*

    PubMed Central

    Vu, Trang T.; Stafford, Alan R.; Leslie, Beverly A.; Kim, Paul Y.; Fredenburgh, James C.; Weitz, Jeffrey I.

    2011-01-01

    Histidine-rich glycoprotein (HRG) is an abundant protein that binds fibrinogen and other plasma proteins in a Zn2+-dependent fashion but whose function is unclear. HRG has antimicrobial activity, and its incorporation into fibrin clots facilitates bacterial entrapment and killing and promotes inflammation. Although these findings suggest that HRG contributes to innate immunity and inflammation, little is known about the HRG-fibrin(ogen) interaction. By immunoassay, HRG-fibrinogen complexes were detected in Zn2+-supplemented human plasma, a finding consistent with a high affinity interaction. Surface plasmon resonance determinations support this concept and show that in the presence of Zn2+, HRG binds the predominant γA/γA-fibrinogen and the γ-chain elongated isoform, γA/γ′-fibrinogen, with Kd values of 9 nm. Likewise, 125I-labeled HRG binds γA/γA- or γA/γ′-fibrin clots with similar Kd values when Zn2+ is present. There are multiple HRG binding sites on fibrin(ogen) because HRG binds immobilized fibrinogen fragment D or E and γ′-peptide, an analog of the COOH terminus of the γ′-chain that mediates the high affinity interaction of thrombin with γA/γ′-fibrin. Thrombin competes with HRG for γ′-peptide binding and displaces 125I-HRG from γA/γ′-fibrin clots and vice versa. Taken together, these data suggest that (a) HRG circulates in complex with fibrinogen and that the complex persists upon fibrin formation, and (b) by competing with thrombin for γA/γ′-fibrin binding, HRG may modulate coagulation. Therefore, the HRG-fibrin interaction may provide a novel link between coagulation, innate immunity, and inflammation. PMID:21757718

  11. Histidine-rich glycoprotein binds fibrin(ogen) with high affinity and competes with thrombin for binding to the gamma'-chain.

    PubMed

    Vu, Trang T; Stafford, Alan R; Leslie, Beverly A; Kim, Paul Y; Fredenburgh, James C; Weitz, Jeffrey I

    2011-09-01

    Histidine-rich glycoprotein (HRG) is an abundant protein that binds fibrinogen and other plasma proteins in a Zn(2+)-dependent fashion but whose function is unclear. HRG has antimicrobial activity, and its incorporation into fibrin clots facilitates bacterial entrapment and killing and promotes inflammation. Although these findings suggest that HRG contributes to innate immunity and inflammation, little is known about the HRG-fibrin(ogen) interaction. By immunoassay, HRG-fibrinogen complexes were detected in Zn(2+)-supplemented human plasma, a finding consistent with a high affinity interaction. Surface plasmon resonance determinations support this concept and show that in the presence of Zn(2+), HRG binds the predominant γ(A)/γ(A)-fibrinogen and the γ-chain elongated isoform, γ(A)/γ'-fibrinogen, with K(d) values of 9 nm. Likewise, (125)I-labeled HRG binds γ(A)/γ(A)- or γ(A)/γ'-fibrin clots with similar K(d) values when Zn(2+) is present. There are multiple HRG binding sites on fibrin(ogen) because HRG binds immobilized fibrinogen fragment D or E and γ'-peptide, an analog of the COOH terminus of the γ'-chain that mediates the high affinity interaction of thrombin with γ(A)/γ'-fibrin. Thrombin competes with HRG for γ'-peptide binding and displaces (125)I-HRG from γ(A)/γ'-fibrin clots and vice versa. Taken together, these data suggest that (a) HRG circulates in complex with fibrinogen and that the complex persists upon fibrin formation, and (b) by competing with thrombin for γ(A)/γ'-fibrin binding, HRG may modulate coagulation. Therefore, the HRG-fibrin interaction may provide a novel link between coagulation, innate immunity, and inflammation.

  12. Trimeric autotransporter DsrA is a major mediator of fibrinogen binding in Haemophilus ducreyi.

    PubMed

    Fusco, William G; Elkins, Christopher; Leduc, Isabelle

    2013-12-01

    Haemophilus ducreyi is the etiologic agent of the sexually transmitted genital ulcer disease chancroid. In both natural and experimental chancroid, H. ducreyi colocalizes with fibrin at the base of the ulcer. Fibrin is obtained by cleavage of the serum glycoprotein fibrinogen (Fg) by thrombin to initiate formation of the blood clot. Fg binding proteins are critical virulence factors in medically important Gram-positive bacteria. H. ducreyi has previously been shown to bind Fg in an agglutination assay, and the H. ducreyi Fg binding protein FgbA was identified in ligand blotting with denatured proteins. To better characterize the interaction of H. ducreyi with Fg, we examined Fg binding to intact, viable H. ducreyi bacteria and identified a novel Fg binding protein. H. ducreyi bound unlabeled Fg in a dose-dependent manner, as measured by two different methods. In ligand blotting with total denatured cellular proteins, digoxigenin (DIG)-Fg bound only two H. ducreyi proteins, the trimeric autotransporter DsrA and the lectin DltA; however, only the isogenic dsrA mutant had significantly less cell-associated Fg than parental strains in Fg binding assays with intact bacteria. Furthermore, expression of DsrA, but not DltA or an empty vector, rendered the non-Fg-binding H. influenzae strain Rd capable of binding Fg. A 13-amino-acid sequence in the C-terminal section of the passenger domain of DsrA appears to be involved in Fg binding by H. ducreyi. Taken together, these data suggest that the trimeric autotransporter DsrA is a major determinant of Fg binding at the surface of H. ducreyi. PMID:24042118

  13. Crystal structures of Bbp from Staphylococcus aureus reveal the ligand binding mechanism with Fibrinogen α.

    PubMed

    Zhang, Xinyue; Wu, Meng; Zhuo, Wei; Gu, Jinke; Zhang, Sensen; Ge, Jingpeng; Yang, Maojun

    2015-10-01

    Bone sialoprotein-binding protein (Bbp), a MSCRAMMs (Microbial Surface Components Recognizing Adhesive Matrix Molecules) family protein expressed on the surface of Staphylococcus aureus (S. aureus), mediates adherence to fibrinogen α (Fg α), a component in the extracellular matrix of the host cell and is important for infection and pathogenesis. In this study, we solved the crystal structures of apo-Bbp(273-598) and Bbp(273-598)-Fg α(561-575) complex at a resolution of 2.03 Å and 1.45 Å, respectively. Apo-Bbp(273-598) contained the ligand binding region N2 and N3 domains, both of which followed a DE variant IgG fold characterized by an additional D1 strand in N2 domain and D1' and D2' strands in N3 domain. The peptide mapped to the Fg α(561-575) bond to Bbp(273-598) on the open groove between the N2 and N3 domains. Strikingly, the disordered C-terminus in the apo-form reorganized into a highly-ordered loop and a β-strand G'' covering the ligand upon ligand binding. Bbp(Ala298-Gly301) in the N2 domain of the Bbp(273-598)-Fg α(561-575) complex, which is a loop in the apo-form, formed a short α-helix to interact tightly with the peptide. In addition, Bbp(Ser547-Gln561) in the N3 domain moved toward the binding groove to make contact directly with the peptide, while Bbp(Asp338-Gly355) and Bbp(Thr365-Tyr387) in N2 domain shifted their configurations to stabilize the reorganized C-terminus mainly through strong hydrogen bonds. Altogether, our results revealed the molecular basis for Bbp-ligand interaction and advanced our understanding of S. aureus infection process. PMID:26349459

  14. Time-dependent association between platelet-bound fibrinogen and the Triton X-100 insoluble cytoskeleton

    SciTech Connect

    Peerschke, E.I. )

    1991-02-01

    Previous studies indicated a correlation between the formation of EDTA-resistant (irreversible) platelet-fibrinogen interactions and platelet cytoskeleton formation. The present study explored the direct association of membrane-bound fibrinogen with the Triton X-100 insoluble cytoskeleton of aspirin-treated, gel-filtered platelets, activated but not aggregated with 20 mumol/L adenosine diphosphate (ADP) or 150 mU/mL human thrombin (THR) when bound fibrinogen had become resistant to dissociation by EDTA. Conversion of exogenous 125I-fibrinogen to fibrin was prevented by adding Gly-Pro-Arg and neutralizing THR with hirudin before initiating binding studies. After 60 minutes at 22 degrees C, the cytoskeleton of ADP-treated platelets contained 20% +/- 12% (mean +/- SD, n = 14) of membrane-bound 125I-fibrinogen, representing 10% to 50% of EDTA-resistant fibrinogen binding. The THR-activated cytoskeleton contained 45% +/- 15% of platelet bound fibrinogen, comprising 80% to 100% of EDTA-resistant fibrinogen binding. 125I-fibrinogen was not recovered with platelet cytoskeletons if binding was inhibited by the RGDS peptide, excess unlabeled fibrinogen, or disruption of the glycoprotein (GP) IIb-IIIa complex by EDTA-treatment. Both development of EDTA-resistant fibrinogen binding and fibrinogen association with the cytoskeleton were time dependent and reached maxima 45 to 60 minutes after fibrinogen binding to stimulated platelets. Although a larger cytoskeleton formed after platelet stimulation with thrombin as compared with ADP, no change in cytoskeleton composition was noted with development of EDTA-resistant fibrinogen binding.

  15. Tau binds ATP and induces its aggregation.

    PubMed

    Farid, Mina; Corbo, Christopher P; Alonso, Alejandra Del C

    2014-02-01

    Tau is a microtubule-associated protein mainly found in neurons. The protein is associated with process of microtubule assembly, which plays an important role in intracellular transport and cell structure of the neuron. Tauopathies are a group of neurodegenerative diseases specifically associated with tau abnormalities. While a well-defined mechanism remains unknown, most facts point to tau as a prominent culprit in neurodegeneration. In most cases of Tauopathies, aggregates of hyperphosphorylated tau have been found. Two proposals are present when discussing tau toxicity, one being the aggregation of tau proteins and the other points toward a conformational change within the protein. Previous work we carried out showed tau hyperphosphorylation promotes tau to behave abnormally resulting in microtubule assembly disruption as well as a breakdown in tau self-assembly. We found that tau's N-terminal region has a putative site for ATP/GTP binding. In this paper we demonstrate that tau is able to bind ATP and not GTP, that this binding induces tau self-assembly into filaments. At 1 mM ATP the filaments are 4-7 nm in width, whereas at 10 mM ATP the filaments appeared to establish lateral interaction, bundling and twisting, forming filaments that resembled the Paired Helical Filaments (PHF) isolated from Alzheimer disease brain. ATP-induced self-assembly is not energy dependent because the nonhydrolysable analogue of the ATP induces the same assembly. PMID:24258797

  16. Binding of Human Fibrinogen to MRP Enhances Streptococcus suis Survival in Host Blood in a αXβ2 Integrin-dependent Manner.

    PubMed

    Pian, Yaya; Li, Xueqin; Zheng, Yuling; Wu, Xiaohong; Yuan, Yuan; Jiang, Yongqiang

    2016-01-01

    The Gram-positive bacterium Streptococcus suis serotype 2 (S. suis 2), an important zoonotic pathogen, induces strong systemic infections in humans; sepsis and meningitis are the most common clinical manifestations and are often accompanied by bacteremia. However, the mechanisms of S. suis 2 survival in human blood are not well understood. In our previous study, we identified muramidase-released protein (MRP), a novel human fibrinogen (hFg)-binding protein (FBP) in S. suis 2 that is an important epidemic infection marker with an unknown mechanism in pathogenesis. The present study demonstrates that the N-terminus of MRP (a.a. 283-721) binds to both the Aα and Bβ chains of the D fragment of hFg. Strikingly, the hFg-MRP interaction improved the survival of S. suis 2 in human blood and led to the aggregation and exhaustion of polymorphonuclear neutrophils (PMNs) via an αXβ2 integrin-dependent mechanism. Other Fg-binding proteins, such as M1 (GAS) and FOG (GGS), also induced PMNs aggregation; however, the mechanisms of these FBP-hFg complexes in the evasion of PMN-mediated innate immunity remain unclear. MRP is conserved across highly virulent strains in Europe and Asia, and these data shed new light on the function of MRP in S. suis pathogenesis. PMID:27231021

  17. Binding of Human Fibrinogen to MRP Enhances Streptococcus suis Survival in Host Blood in a αXβ2 Integrin-dependent Manner

    PubMed Central

    Pian, Yaya; Li, Xueqin; Zheng, Yuling; Wu, Xiaohong; Yuan, Yuan; Jiang, Yongqiang

    2016-01-01

    The Gram-positive bacterium Streptococcus suis serotype 2 (S. suis 2), an important zoonotic pathogen, induces strong systemic infections in humans; sepsis and meningitis are the most common clinical manifestations and are often accompanied by bacteremia. However, the mechanisms of S. suis 2 survival in human blood are not well understood. In our previous study, we identified muramidase-released protein (MRP), a novel human fibrinogen (hFg)-binding protein (FBP) in S. suis 2 that is an important epidemic infection marker with an unknown mechanism in pathogenesis. The present study demonstrates that the N-terminus of MRP (a.a. 283–721) binds to both the Aα and Bβ chains of the D fragment of hFg. Strikingly, the hFg-MRP interaction improved the survival of S. suis 2 in human blood and led to the aggregation and exhaustion of polymorphonuclear neutrophils (PMNs) via an αXβ2 integrin-dependent mechanism. Other Fg-binding proteins, such as M1 (GAS) and FOG (GGS), also induced PMNs aggregation; however, the mechanisms of these FBP-hFg complexes in the evasion of PMN-mediated innate immunity remain unclear. MRP is conserved across highly virulent strains in Europe and Asia, and these data shed new light on the function of MRP in S. suis pathogenesis. PMID:27231021

  18. Biofilm formation and fibrinogen and fibronectin binding activities by Corynebacterium pseudodiphtheriticum invasive strains.

    PubMed

    Souza, Monica Cristina; dos Santos, Louisy Sanches; Sousa, Leonardo Paiva; Faria, Yuri Vieira; Ramos, Juliana Nunes; Sabbadini, Priscila Soares; da Santos, Cíntia Silva; Nagao, Prescilla Emy; Vieira, Verônica Viana; Gomes, Débora Leandro Rama; Hirata Júnior, Raphael; Mattos-Guaraldi, Ana Luiza

    2015-06-01

    Biofilm-related infections are considered a major cause of morbidity and mortality in hospital environments. Biofilms allow microorganisms to exchange genetic material and to become persistent colonizers and/or multiresistant to antibiotics. Corynebacterium pseudodiphtheriticum (CPS), a commensal bacterium that colonizes skin and mucosal sites has become progressively multiresistant and responsible for severe nosocomial infections. However, virulence factors of this emergent pathogen remain unclear. Herein, we report the adhesive properties and biofilm formation on hydrophilic (glass) and hydrophobic (plastic) abiotic surfaces by CPS strains isolated from patients with localized (ATCC10700/Pharyngitis) and systemic (HHC1507/Bacteremia) infections. Adherence to polystyrene attributed to hydrophobic interactions between bacterial cells and this negatively charged surface indicated the involvement of cell surface hydrophobicity in the initial stage of biofilm formation. Attached microorganisms multiplied and formed microcolonies that accumulated as multilayered cell clusters, a step that involved intercellular adhesion and synthesis of extracellular matrix molecules. Further growth led to the formation of dense bacterial aggregates embedded in the exopolymeric matrix surrounded by voids, typical of mature biofilms. Data also showed CPS recognizing human fibrinogen (Fbg) and fibronectin (Fn) and involvement of these sera components in formation of "conditioning films". These findings suggested that biofilm formation may be associated with the expression of different adhesins. CPS may form biofilms in vivo possibly by an adherent biofilm mode of growth in vitro currently demonstrated on hydrophilic and hydrophobic abiotic surfaces. The affinity to Fbg and Fn and the biofilm-forming ability may contribute to the establishment and dissemination of infection caused by CPS.

  19. Srr2, a multifaceted adhesin expressed by ST-17 hypervirulent Group B Streptococcus involved in binding to both fibrinogen and plasminogen.

    PubMed

    Six, Anne; Bellais, Samuel; Bouaboud, Abdelouhab; Fouet, Agnès; Gabriel, Christelle; Tazi, Asmaa; Dramsi, Shaynoor; Trieu-Cuot, Patrick; Poyart, Claire

    2015-09-01

    The Group B Streptococcus (GBS) 'hypervirulent' ST-17 clone is strongly associated with invasive neonatal meningitis. Comparative genome analyses revealed that the serine-rich repeat (Srr) glycoprotein Srr2 is a cell wall-anchored protein specific for ST-17 strains, the non-ST-17 isolates expressing Srr1. Here, we unravel the binding capacity of GBS Srr proteins to relevant components of the host fibrinolysis pathway. We demonstrate that: (i) Srr2 binds plasminogen and plasmin whereas Srr1 does not; (ii) the ability of ST-17 strains to bind fibrinogen reflects a high level surface display of Srr2 combined with a higher affinity of Srr2 than Srr1 to bind this ligand; and (iii) Srr2 binding to host plasma proteins results in the formation of bacterial aggregates that are efficiently endocytosed by phagocytes. Importantly, we show that Srr2 increased bacterial survival to phagocytic killing and bacterial persistence in a murine model of meningitis. We conclude that Srr2 is a multifaceted adhesin used by the ST-17 clone to hijack ligands of the host coagulation system, thereby contributing to bacterial dissemination and invasiveness, and ultimately to meningitis. PMID:26094503

  20. Differentiation of Staphylococcus aureus and Staphylococcus epidermidis by PCR for the fibrinogen binding protein gene.

    PubMed

    Sunagar, R; Deore, S N; Deshpande, P V; Rizwan, A; Sannejal, A D; Sundareshan, S; Rawool, D B; Barbuddhe, S B; Jhala, M K; Bannalikar, A S; Mugalikar, D M; Kumari, V J; Dhanalakshmi, K; Reddy, Y N; Rao, P P; Babra, C; Tiwari, J G; Mukkur, T K; Costantino, P; Wetherall, J D; Isloor, S; Hegde, N R

    2013-05-01

    Mastitis is one of the most common and burdensome diseases afflicting dairy animals. Among other causes of mastitis, staphylococci are frequently associated with clinical and subclinical mastitis. Although Staphylococcus aureus is the predominant species involved, Staphylococcus epidermidis and other coagulase-negative staphylococci are increasingly being isolated from cases of bovine mastitis. Although Staph. aureus and Staph. epidermidis can be easily differentiated based on their biochemical properties, such phenotypic identification is time consuming and laborious. This study aimed to rapidly identify Staph. aureus and Staph. epidermidis. Accordingly, a multiplex PCR was developed and we found that a single gene encoding the adhesin fibrinogen binding protein could be used to identify and differentiate the two species. Consequently, a multiplex reaction combining a triplex PCR for Staph. aureus and a duplex PCR for Staph. epidermidis was standardized, first using bacterial cultures and then with pasteurized milk spiked with live organisms or DNA extracted from the organisms. The test could specifically detect Staph. aureus and Staph. epidermidis even in the presence of a dozen other organisms. The limit of detection for detecting Staph. aureus and Staph. epidermidis separately was 10 to 100 cfu/mL for simplex PCR and 10(4)cfu/mL for multiplex PCR. Conversely, the limit was 10(6)cfu/mL by multiplex PCR for simultaneous detection of both the organisms when spiked into culture medium or pasteurized milk. Overnight enrichment enhanced the assay sensitivity 100-fold. The assay had a high diagnostic sensitivity and specificity. The application of the test was verified on 602 field isolates of staphylococci that had been characterized earlier by phenotypic methods. Importantly, 25 coagulase-negative isolates were identified as Staph. aureus by the multiplex PCR. The test could be adapted for use in clinical diagnostic laboratories.

  1. DNA binding and aggregation by carbon nanoparticles

    SciTech Connect

    An, Hongjie; Liu, Qingdai; Ji, Qiaoli; Jin, Bo

    2010-03-19

    Significant environmental and health risks due to the increasing applications of engineered nanoparticles in medical and industrial activities have been concerned by many communities. The interactions between nanomaterials and genomes have been poorly studied so far. This study examined interactions of DNA with carbon nanoparticles (CNP) using atomic force microscopy (AFM). We experimentally assessed how CNP affect DNA molecule and bacterial growth of Escherichia coli. We found that CNP were bound to the DNA molecules during the DNA replication in vivo. The results revealed that the interaction of DNA with CNP resulted in DNA molecule binding and aggregation both in vivo and in vitro in a dose-dependent manner, and consequently inhabiting the E. coli growth. While this was a preliminary study, our results showed that this nanoparticle may have a significant impact on genomic activities.

  2. A novel peptide can mimic extracellular fibrinogen-binding protein to block the activation of complement system.

    PubMed

    Gao, Ya-ping; Dong, Jie; Zhang, Xin; Liu, Yu; Lu, Qiang; Feng, Jian-nan; Tan, Xiao-rong; Yang, Guang

    2013-07-01

    Extracellular fibrinogen-binding protein (Efb) of Staphylococcus aureus (S. aureus) is a bi-functional protein, which can specifically bind fibrinogen with its N terminus and inhibit deposition of C3b on the surface of S. aureus with its C terminus. Here, we screened the epitopes of Efb using phage display. Four peptides with consensus motif were screened. This consensus motif was identical to C terminus (161-164) of Efb. In the further investigation, it was found the synthesized peptide EC1 (154-165aa of Efb) could specifically bind C3/C3b and subsequently to block the activation of complement. Meanwhile, EC1 could inhibit the interaction between Efb and C3/C3b. Moreover, the interaction between the mutant protein of EmC1 (Efb without EC1) and C3 was decreased. And, the effect on the complement system of the mutant protein was dramatically declined compared with Efb. Our finding suggested that the peptide EC1 could mimic Efb to block complement system activation via binding C3.

  3. Comparative study of the C3d receptor and 58-kilodalton fibrinogen-binding mannoproteins of Candida albicans.

    PubMed Central

    López-Ribot, J L; Martínez, J P; Chaffin, W L

    1995-01-01

    Using polyclonal antibodies (PAbs) raised against the Candida albicans C3d receptor (CR2; PAb anti-CR2) and the 58-kDa fibrinogen-binding mannoprotein (mp58; PAb anti-mp58) as well as ligand interactions, we have studied the relationship between these two receptors. In an indirect immunofluorescence assay with germ tubes, greater intensity was observed on the mother blastoconidium when PAb anti-CR2 was used, whereas greater intensity was localized to the hyphal extension when PAb anti-mp58 or binding of soluble fibrinogen was used. No competition or change in the fluorescence pattern was observed in dual-labeling experiments with PAb anti-CR2 and either fibrinogen or PAb anti-mp58. Binding competition also was not observed in an enzyme-linked immunosorbent assay using the components present in a beta-mercaptoethanol extract from the cell wall of germ tubes. In immunoblots, PAb anti-CR2 recognized three different discrete bands with apparent molecular masses of 21, 40, and 66 kDa in the beta-mercaptoethanol extracts from the cell wall, whereas a different, single, broader band with an apparent molecular mass of 58 kDa was detected with PAb anti-mp58. However, when nondenaturing conditions were used to separate the materials present in the cell wall extracts, no reactivity could be detected on Western blots (immunoblots) with PAb anti-mp58. When PAb anti-CR2 was used for analysis, a single band migrating in the area corresponding to approximately 40 kDa was detected. These observations suggest a higher molecular weight for mp58 and one or more of the components detected with PAb anti-CR2 in their native state. PMID:7768591

  4. Molecular Interactions of Human Plasminogen with Fibronectin-binding Protein B (FnBPB), a Fibrinogen/Fibronectin-binding Protein from Staphylococcus aureus.

    PubMed

    Pietrocola, Giampiero; Nobile, Giulia; Gianotti, Valentina; Zapotoczna, Marta; Foster, Timothy J; Geoghegan, Joan A; Speziale, Pietro

    2016-08-26

    Staphylococcus aureus is a commensal bacterium that has the ability to cause superficial and deep-seated infections. Like several other invasive pathogens, S. aureus can capture plasminogen from the human host where it can be converted to plasmin by host plasminogen activators or by endogenously expressed staphylokinase. This study demonstrates that sortase-anchored cell wall-associated proteins are responsible for capturing the bulk of bound plasminogen. Two cell wall-associated proteins, the fibrinogen- and fibronectin-binding proteins A and B, were found to bind plasminogen, and one of them, FnBPB, was studied in detail. Plasminogen captured on the surface of S. aureus- or Lactococcus lactis-expressing FnBPB could be activated to the potent serine protease plasmin by staphylokinase and tissue plasminogen activator. Plasminogen bound to recombinant FnBPB with a KD of 0.532 μm as determined by surface plasmon resonance. Plasminogen binding did not to occur by the same mechanism through which FnBPB binds to fibrinogen. Indeed, FnBPB could bind both ligands simultaneously indicating that their binding sites do not overlap. The N3 subdomain of FnBPB contains the full plasminogen-binding site, and this includes, at least in part, two conserved patches of surface-located lysine residues that were recognized by kringle 4 of the host protein. PMID:27387503

  5. Fibrinogen variant B[beta]D432A has normal polymerization but does not bind knob 'B'

    SciTech Connect

    Bowley, Sheryl R.; Lord, Susan T.

    2009-10-23

    Fibrinogen residue B{beta}432Asp is part of hole 'b' that interacts with knob 'B,' whose sequence starts with Gly-His-Arg-Pro-amide (GHRP). Because previous studies showed B{beta}D432A has normal polymerization, we hypothesized that B{beta}432Asp is not critical for knob 'B' binding and that new knob-hole interactions would compensate for the loss of this Asp residue. To test this hypothesis, we solved the crystal structure of fragment D from B{beta}D432A. Surprisingly, the structure (rfD-B{beta}D432A+GH) showed the peptide GHRP was not bound to hole 'b.' We then re-evaluated the polymerization of this variant by examining clot turbidity, clot structure, and the rate of FXIIIa cross-linking. The turbidity and the rate of - dimer formation for B{beta}D432A were indistinguishable compared with normal fibrinogen. Scanning electron microscopy showed no significant differences between the clots of B{beta}D432A and normal, but the thrombin-derived clots had thicker fibers than clots obtained from batroxobin, suggesting that cleavage of FpB is more important than 'B:b' interactions. We conclude that hole 'b' and 'B:b' knob-hole binding per se have no influence on fibrin polymerization.

  6. ADAP interactions with talin and kindlin promote platelet integrin αIIbβ3 activation and stable fibrinogen binding

    PubMed Central

    Kang, Jian; Kahner, Bryan; Ye, Feng; Ginsberg, Mark H.; Shattil, Sanford J.

    2014-01-01

    ADAP is a hematopoietic-restricted adapter protein that promotes integrin activation and is a carrier for other adapter proteins, Src kinase–associated phosphoprotein 1 (SKAP1) and SKAP2. In T lymphocytes, SKAP1 is the ADAP-associated molecule that activates integrins through direct linkages with Rap1 effectors (regulator of cell adhesion and polarization enriched in lymphoid tissues; Rap1-interacting adapter molecule). ADAP also promotes integrin αIIbβ3 activation in platelets, which lack SKAP1, suggesting an ADAP integrin–regulatory pathway different from those in lymphocytes. Here we characterized a novel association between ADAP and 2 essential integrin-β cytoplasmic tail-binding proteins involved in αIIbβ3 activation, talin and kindlin-3. Glutathione S-transferase pull-downs identified distinct regions in ADAP necessary for association with kindlin or talin. ADAP was physically proximal to talin and kindlin-3 in human platelets, as assessed biochemically, and by immunofluorescence microscopy and proximity ligation. Relative to wild-type mouse platelets, ADAP-deficient platelets exhibited reduced co-localization of talin with αIIbβ3, and reduced irreversible fibrinogen binding in response to a protease activated receptor 4 (PAR4) thrombin receptor agonist. When ADAP was heterologously expressed in Chinese hamster ovary cells co-expressing αIIbβ3, talin, PAR1, and kindlin-3, it associated with an αIIbβ3/talin complex and enabled kindlin-3 to promote agonist-dependent ligand binding to αIIbβ3. Thus, ADAP uniquely promotes activation of and irreversible fibrinogen binding to platelet αIIbβ3 through interactions with talin and kindlin-3. PMID:24523237

  7. A novel variant of the immunoglobulin fold in surface adhesins of Staphylococcus aureus: crystal structure of the fibrinogen-binding MSCRAMM, clumping factor A

    PubMed Central

    Deivanayagam, Champion C.S.; Wann, Elisabeth R.; Chen, Wei; Carson, Mike; Rajashankar, Kanagalaghatta R.; Höök, Magnus; Narayana, Sthanam V.L.

    2002-01-01

    We report here the crystal structure of the minimal ligand-binding segment of the Staphylococcus aureus MSCRAMM, clumping factor A. This fibrinogen-binding segment contains two similarly folded domains. The fold observed is a new variant of the immunoglobulin motif that we have called DE-variant or the DEv-IgG fold. This subgroup includes the ligand-binding domain of the collagen-binding S.aureus MSCRAMM CNA, and many other structures previously classified as jelly rolls. Structure predictions suggest that the four fibrinogen-binding S.aureus MSCRAMMs identified so far would also contain the same DEv-IgG fold. A systematic docking search using the C-terminal region of the fibrinogen γ-chain as a probe suggested that a hydrophobic pocket formed between the two DEv-IgG domains of the clumping factor as the ligand-binding site. Mutagenic substitution of residues Tyr256, Pro336, Tyr338 and Lys389 in the clumping factor, which are proposed to contact the terminal residues 408AGDV411 of the γ-chain, resulted in proteins with no or markedly reduced affinity for fibrinogen. PMID:12485987

  8. Affects of N-terminal variation in the SeM protein of Streptococcus equi on antibody and fibrinogen binding.

    PubMed

    Timoney, John F; DeNegri, Rafaela; Sheoran, Abhineet; Forster, Nathalie

    2010-02-10

    The clonal Streptococcus equi causes equine strangles, a highly contagious suppurative lymphadenopathy and rhinopharyngitis. An important virulence factor and vaccine component, the antiphagocytic fibrinogen binding SeM of S. equi is a surface anchored fibrillar protein. Two recent studies of N. American, Japanese and European isolates have revealed a high frequency of N-terminal amino acid variation in SeM of S. equi CF32 that suggests this region of the protein is subject to immunologic selection pressure. The aims of the present study were firstly to map regions of SeM reactive with convalescent equine IgG and IgA and stimulatory for lymph node cells and secondly to determine effects of N-terminal variation on the functionality of SeM. Variation did not significantly affect fibrinogen binding or susceptibility of S. equi to an opsonic equine serum. Linear epitopes reactive with convalescent IgG and mucosal IgA were concentrated toward the conserved center of SeM. However, IgA but not IgG from every horse reacted with at least one peptide that contained variable sequence. Lymph node cells (CD4+) from horses immunized with SeM were strongly responsive to a peptide (alphaalpha36-138) encoding the entire variable region. SeM (CF32) specific mouse Mab 04D11 which reacted strongly with this larger peptide but not with shorter peptides within that sequence reacted strongly with whole cells of S. equi CF32 but only weakly with cells of any of 14 isolates of S. equi expressing different variants of SeM. These results in combination suggest that N-terminal variation alters a conformational epitope of significance in mucosal IgA and systemic T cell responses but does not affect antibody mediated phagocytosis and killing.

  9. The recombinant LIC10508 is a plasma fibronectin, plasminogen, fibrinogen and C4BP-binding protein of Leptospira interrogans.

    PubMed

    Siqueira, Gabriela H; Teixeira, Aline F; Fernandes, Luis G; de Souza, Gisele O; Kirchgatter, Karin; Romero, Eliete C; Vasconcellos, Silvio A; Vieira, Monica L; Nascimento, Ana Lucia T O

    2016-03-01

    Leptospirosis is a zoonosis caused by pathogenic Leptospira spp. In this study, we report that the recombinant proteins LIC10507, LIC10508 and LIC10509 are recognized by confirmed leptospirosis serum samples at both phases of the disease. The recombinant rLIC10508 and rLIC10507 are plasminogen (PLG)-binding proteins, capable of generating plasmin in the presence of a PLG activator. The proteins bind to PLG in a dose-dependent and saturable manner, fulfilling host-ligand interaction. Furthermore, rLIC10508 interacts with fibrinogen (Fg), plasma fibronectin and C4b binding protein (C4BP). The binding of rLIC10508 to Fg decreases the fibrin clotting in a thrombin-catalyzed reaction. The incubation with 4 μM of protein promoted 40% inhibition upon clotting formation. C4BP bound to rLIC10508 retained its cofactor activity for factor I promoting the cleavage of C4b protein, which may reduce the membrane attack complex formation. Although these proteins have high amino acid sequence similarity, rLIC10508 is the most talented of the three, a behavior that might be explained by its unique putative 3D structure, whereas structures of rLIC10507 and rLIC10509 are very similar. Plasmin generation (rLIC10507 and rLIC10508), together with decreasing fibrin clot formation (rLIC10508) and impairment of the complement system (rLIC10508) may help the bacteria to overcome host defense, facilitating the infection process.

  10. The molecular basis of the antiplatelet action of ajoene: direct interaction with the fibrinogen receptor.

    PubMed

    Apitz-Castro, R; Ledezma, E; Escalante, J; Jain, M K

    1986-11-26

    Ajoene, the major antiplatelet compound derived from garlic inhibits the fibrinogen-supported aggregation of washed human platelets (ID50 = 13 microM) and, inhibits binding of 125I-fibrinogen to ADP-stimulated platelets (ID50 = 0.8 microM). In both cases, the inhibition is of the mixed non-competitive type. Furthermore, fibrinogen-induced aggregation of chymotrypsin-treated platelets is also inhibited by ajoene in a dose-dependent manner (ID50 = 2.3 microM). Other membrane receptors such as ADP or epinephrine receptors are not affected by ajoene. Ajoene strongly quenches the intrinsic fluorescence emission of purified glycoproteins IIb-IIIa (ID50 = 10 microM). These results indicate that the antiaggregatory effect of ajoene is causally related to its direct interaction with the putative fibrinogen receptor.

  11. Lack of correlation between antibody titers to fibrinogen-binding protein of Streptococcus equi and persistent carriers of strangles.

    PubMed

    Davidson, Ann; Traub-Dargatz, Josie L; Magnuson, Roberta; Hill, Ashley; Irwin, Vivienne; Newton, Richard; Waller, Andrew; Smith, Kenneth; Callan, Robert J; Meehan, Mary; Owen, Peter; Salman, Mo

    2008-07-01

    Previously published studies have neither used nor reported the results of an indirect enzyme-linked immunosorbent assay (iELISA) to measure serologic responses in natural outbreaks of strangles. The concept of using serologic responses to identify persistent carriers of Streptococcus equi has been proposed but not scientifically evaluated. The specific aims of the current study were to determine the duration and level of truncated fibrinogen-binding protein-specific (SeM allele 1) antibody production in ponies involved in a natural outbreak of strangles and to determine if test results from this serologic iELISA could predict persistent carrier status. Serologic samples were obtained before and after an outbreak of naturally occurring strangles infection. Persistent carriers of S. equi were identified via culture and polymerase chain reaction (PCR) testing of lavage fluid collected from the guttural pouches and nasopharynx or swabs of the nasopharynx after recovery from acute disease and at postmortem examination. Logistic regression analysis was used to determine if an association existed between serologic response and persistent carrier state. The ELISA reported in the current study definitively confirmed a recent exposure to S. equi. However, the measured serologic response did not predict carrier status in this strangles outbreak. Therefore, a guttural-pouch endoscopy with subsequent culture or PCR testing to detect S. equi remains the most accurate method available for the identification of persistent carriers.

  12. Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation

    NASA Astrophysics Data System (ADS)

    Deng, Zhou J.; Liang, Mingtao; Monteiro, Michael; Toth, Istvan; Minchin, Rodney F.

    2011-01-01

    The chemical composition, size, shape and surface characteristics of nanoparticles affect the way proteins bind to these particles, and this in turn influences the way in which nanoparticles interact with cells and tissues. Nanomaterials bound with proteins can result in physiological and pathological changes, including macrophage uptake, blood coagulation, protein aggregation and complement activation, but the mechanisms that lead to these changes remain poorly understood. Here, we show that negatively charged poly(acrylic acid)-conjugated gold nanoparticles bind to and induce unfolding of fibrinogen, which promotes interaction with the integrin receptor, Mac-1. Activation of this receptor increases the NF-κB signalling pathway, resulting in the release of inflammatory cytokines. However, not all nanoparticles that bind to fibrinogen demonstrated this effect. Our results show that the binding of certain nanoparticles to fibrinogen in plasma offers an alternative mechanism to the more commonly described role of oxidative stress in the inflammatory response to nanomaterials.

  13. UafB is a serine-rich repeat adhesin of Staphylococcus saprophyticus that mediates binding to fibronectin, fibrinogen and human uroepithelial cells.

    PubMed

    King, Nathan P; Beatson, Scott A; Totsika, Makrina; Ulett, Glen C; Alm, Richard A; Manning, Paul A; Schembri, Mark A

    2011-04-01

    Staphylococcus saprophyticus is an important cause of urinary tract infection (UTI), particularly among young women, and is second only to uropathogenic Escherichia coli as the most frequent cause of UTI. The molecular mechanisms of urinary tract colonization by S. saprophyticus remain poorly understood. We have identified a novel 6.84 kb plasmid-located adhesin-encoding gene in S. saprophyticus strain MS1146 which we have termed uro-adherence factor B (uafB). UafB is a glycosylated serine-rich repeat protein that is expressed on the surface of S. saprophyticus MS1146. UafB also functions as a major cell surface hydrophobicity factor. To characterize the role of UafB we generated an isogenic uafB mutant in S. saprophyticus MS1146 by interruption with a group II intron. The uafB mutant had a significantly reduced ability to bind to fibronectin and fibrinogen. Furthermore, we show that a recombinant protein containing the putative binding domain of UafB binds specifically to fibronectin and fibrinogen. UafB was not involved in adhesion in a mouse model of UTI; however, we observed a striking UafB-mediated adhesion phenotype to human uroepithelial cells. We have also identified genes homologous to uafB in other staphylococci which, like uafB, appear to be located on transposable elements. Thus, our data indicate that UafB is a novel adhesin of S. saprophyticus that contributes to cell surface hydrophobicity, mediates adhesion to fibronectin and fibrinogen, and exhibits tropism for human uroepithelial cells.

  14. Manipulation of unfolding-induced protein aggregation by peptides selected for aggregate-binding ability through phage display library screening.

    PubMed

    Kundu, Bishwajit; Shukla, Anshuman; Guptasarma, Purnananda

    2002-03-01

    A phage-displayed library of peptides (12-mer) was screened for the ability to bind to thermally aggregated bovine carbonic anhydrase (BCA), with a view toward examining whether peptides possessing this ability might bind to partially structured intermediates on the protein's unfolding pathway and, therefore, constitute useful tools for manipulation of the kinetic partitioning of molecules between the unfolded and aggregated states. Two peptides [N-HPSTMGLRTMHP-C and N-TPSAWKTALVKA-C] were identified and tested. While neither showed thermal aggregation autonomously, both peptides individually elicited remarkable increases in the levels of thermal aggregation of BCA. A possible explanation is that both peptides bind to surfaces on molten BCA that are not directly involved in aggregation. Such binding could slow down interconversions between folded and unfolded states and stabilize aggregation-prone intermediate(s) to make them more prone to aggregation, while failing to achieve any steric prevention of aggregation. The approach has the potential of yielding useful aggregation-aiding/inhibiting agents, and may provide clues to whether amorphous aggregates are "immobilized" forms of folding intermediates. PMID:11866450

  15. Human immunoglobulin G recognizing fibrinogen-binding surface proteins is protective against both Staphylococcus aureus and Staphylococcus epidermidis infections in vivo.

    PubMed

    Vernachio, John H; Bayer, Arnold S; Ames, Brenda; Bryant, Dawn; Prater, Bradley D; Syribeys, Peter J; Gorovits, Elena L; Patti, Joseph M

    2006-02-01

    A human donor-selected immunoglobulin G for intravenous injection (IGIV) product with elevated titers against the staphylococcal fibrinogen-binding MSCRAMM proteins ClfA and SdrG (INH-A21) was tested in vitro and in vivo. INH-A21 contained a significantly increased ability to inhibit the fibrinogen-binding activity of recombinant forms of both ClfA and SdrG. Evaluation of the opsonizing potential of INH-A21 was evaluated using fluorescently labeled bacteria; this assay indicated an increase in phagocytic activity compared to normal IGIV. The prophylactic efficacy of INH-A21 against an intraperitoneal challenge of methicillin-resistant Staphylococcus epidermidis (MRSE) was evaluated in a neonatal rat model. INH-A21 was also evaluated for prophylactic and therapeutic efficacy in a rabbit model of catheter-induced aortic valve infective endocarditis caused by either MRSE or methicillin-resistant Staphylococcus aureus (MRSA). Results from the in vivo models demonstrated potent prophylactic and therapeutic efficacy against both MRSE and MRSA. These data suggest that INH-A21 may be an important tool for the prevention and treatment of staphylococcal infections, especially in high-risk populations. PMID:16436704

  16. Platelet morphologic changes and fibrinogen receptor localization. Initial responses in ADP-activated human platelets.

    PubMed

    Hensler, M E; Frojmovic, M; Taylor, R G; Hantgan, R R; Lewis, J C

    1992-09-01

    Platelet exposure to agonists results in rapid morphologic changes paralleled by fibrinogen binding and platelet aggregation. The current study used standardized stereology in conjunction with immunogold electron microscopy to correlate the initial morphologic changes with fibrinogen receptor localization on the surfaces of ADP-activated human platelets. A 45% increase in platelet circumference was observed after 3 seconds of activation (P = 0.001). Virtually all of this increase was due to a 13-fold increase in projection membrane, and the projections observed by stereo microscopy at this time were mostly blunt. Both blunt and long projections also accounted for the increase in platelet-platelet contacts at 10 seconds of activation. Immunogold electron microscopy using the monoclonal antibodies P2 and AP-2 against the fibrinogen receptor, glycoprotein IIb/IIIa (GP IIb/IIIa), showed relatively equivalent immunogold densities on projections compared with cell body during 30 seconds of activation. The activation-dependent anti-GP IIb/IIIa monoclonal antibody, 7E3, showed an immunogold density 37% greater on projections compared with cell body (P = 0.0001). Colocalization studies using 7E3 with a polyclonal antifibrinogen antibody showed bound fibrinogen in close proximity to the GP IIb/IIIa localized by 7E3 on projections. These studies support an important role for platelet projections during the earliest stages of fibrinogen binding and ADP-induced aggregation.

  17. Fe(2+) binding on amyloid β-peptide promotes aggregation.

    PubMed

    Boopathi, Subramaniam; Kolandaivel, Ponmalai

    2016-09-01

    The metal ions Zn(2+) , Cu(2+) , and Fe(2+) play a significant role in the aggregation mechanism of Aβ peptides. However, the nature of binding between metal and peptide has remained elusive; the detailed information on this from the experimental study is very difficult. Density functional theory (dft) (M06-2X/6-311++G (2df,2pd) +LANL2DZ) has employed to determine the force field resulting due to metal and histidine interaction. We performed 200 ns molecular dynamics (MD) simulation on Aβ1-42 -Zn(2+) , Aβ1-42 -Cu(2+) , and Aβ1-42 -Fe(2+) systems in explicit water with different combination of coordinating residues including the three Histidine residues in the N-terminal. The present investigation, the Aβ1-42 -Zn(2+) system possess three turn conformations separated by coil structure. Zn(2+) binding caused the loss of the helical structure of N-terminal residues which transformed into the S-shaped conformation. Zn(2+) has reduced the coil and increases the turn content of the peptide compared with experimental study. On the other hand, the Cu(2+) binds with peptide, β sheet formation is observed at the N-terminal residues of the peptide. Fe(2+) binding is to promote the formation of Glu22-Lys28 salt-bridge which stabilized the turn conformation in the Phe19-Gly25 residues, subsequently β sheets were observed at His13-Lys18 and Gly29-Gly37 residues. The turn conformation facilitates the β sheets are arranged in parallel by enhancing the hydrophobic contact between Gly25 and Met35, Lys16 and Met35, Leu17 and Leu34, Val18 and Leu34 residues. The Fe(2+) binding reduced the helix structure and increases the β sheet content in the peptide, which suggested, Fe(2+) promotes the oligomerization by enhancing the peptide-peptide interaction. Proteins 2016; 84:1257-1274. © 2016 Wiley Periodicals, Inc. PMID:27214008

  18. Fe(2+) binding on amyloid β-peptide promotes aggregation.

    PubMed

    Boopathi, Subramaniam; Kolandaivel, Ponmalai

    2016-09-01

    The metal ions Zn(2+) , Cu(2+) , and Fe(2+) play a significant role in the aggregation mechanism of Aβ peptides. However, the nature of binding between metal and peptide has remained elusive; the detailed information on this from the experimental study is very difficult. Density functional theory (dft) (M06-2X/6-311++G (2df,2pd) +LANL2DZ) has employed to determine the force field resulting due to metal and histidine interaction. We performed 200 ns molecular dynamics (MD) simulation on Aβ1-42 -Zn(2+) , Aβ1-42 -Cu(2+) , and Aβ1-42 -Fe(2+) systems in explicit water with different combination of coordinating residues including the three Histidine residues in the N-terminal. The present investigation, the Aβ1-42 -Zn(2+) system possess three turn conformations separated by coil structure. Zn(2+) binding caused the loss of the helical structure of N-terminal residues which transformed into the S-shaped conformation. Zn(2+) has reduced the coil and increases the turn content of the peptide compared with experimental study. On the other hand, the Cu(2+) binds with peptide, β sheet formation is observed at the N-terminal residues of the peptide. Fe(2+) binding is to promote the formation of Glu22-Lys28 salt-bridge which stabilized the turn conformation in the Phe19-Gly25 residues, subsequently β sheets were observed at His13-Lys18 and Gly29-Gly37 residues. The turn conformation facilitates the β sheets are arranged in parallel by enhancing the hydrophobic contact between Gly25 and Met35, Lys16 and Met35, Leu17 and Leu34, Val18 and Leu34 residues. The Fe(2+) binding reduced the helix structure and increases the β sheet content in the peptide, which suggested, Fe(2+) promotes the oligomerization by enhancing the peptide-peptide interaction. Proteins 2016; 84:1257-1274. © 2016 Wiley Periodicals, Inc.

  19. Diagnosis of congenital fibrinogen disorders.

    PubMed

    Lebreton, Aurélien; Casini, Alessandro

    2016-08-01

    Congenital fibrinogen disorders comprise quantitative disorders defined by a complete absence (afibrinogenemia) or by a decreased level (hypofibrinogenemia) of circulating fibrinogen and qualitative disorders characterized by a discrepancy between the activity and the antigenic levels of fibrinogen (dysfibrinogenemia and hypodysfibrinogenemia). The biological diagnosis is based on a standard haemostasis assessment. All the coagulation tests that depend on the formation of fibrin as the end point are affected; although in dysfibrinogenemia the specificity and sensitivity of routine test depend on reagent and techniques. A genetic exploration permits to confirm the diagnosis and may enhance the prediction of the patient's phenotype. Homozygous or composite heterozygous null mutations are most often responsible for afibrinogenemia while hypofibrinogenemic patients are mainly heterozygous carrier of an afibrinogenemic allele. Heterozygous missense mutations are prevalent in dysfibrinogenemia, with two hot spot localized in exon 2 of the FGA and in the exon 8 of the FGG. The correlation between phenotype and genotype has been identified in some fibrinogen variants, including six mutations clustered in exons 8 and 9 of the FGG leading to hypofibrinogenemia with hepatic inclusions of abnormal fibrinogen aggregates as well as a few mutations associated with an increase risk of thrombotic events. A familial screening and additional functional assays should be carried out when possible.

  20. The Internal Dynamics of Fibrinogen and Its Implications for Coagulation and Adsorption

    PubMed Central

    Köhler, Stephan; Schmid, Friederike; Settanni, Giovanni

    2015-01-01

    Fibrinogen is a serum multi-chain protein which, when activated, aggregates to form fibrin, one of the main components of a blood clot. Fibrinolysis controls blood clot dissolution through the action of the enzyme plasmin, which cleaves fibrin at specific locations. Although the main biochemical factors involved in fibrin formation and lysis have been identified, a clear mechanistic picture of how these processes take place is not available yet. This picture would be instrumental, for example, for the design of improved thrombolytic or anti-haemorrhagic strategies, as well as, materials with improved biocompatibility. Here, we present extensive molecular dynamics simulations of fibrinogen which reveal large bending motions centered at a hinge point in the coiled-coil regions of the molecule. This feature, likely conserved across vertebrates according to our analysis, suggests an explanation for the mechanism of exposure to lysis of the plasmin cleavage sites on fibrinogen coiled-coil region. It also explains the conformational variability of fibrinogen observed during its adsorption on inorganic surfaces and it is supposed to play a major role in the determination of the hydrodynamic properties of fibrinogen. In addition the simulations suggest how the dynamics of the D region of fibrinogen may contribute to the allosteric regulation of the blood coagulation cascade through a dynamic coupling between the a- and b-holes, important for fibrin polymerization, and the integrin binding site P1. PMID:26366880

  1. [Interaction of fibrinogen with magnetite nanoparticles].

    PubMed

    Bychkova, A V; Sorokina, O N; Kovarskiĭ, A L; Shapiro, A B; Leonova, V B; Rozenfel'd, M A

    2010-01-01

    The interaction between fibrinogen and magnetite nanoparticles in solution has been studied by the methods of spin labeling, ferromagnetic resonance, dynamic and Rayleigh light scattering. It was shown that protein molecules adsorb on the surface of nanoparticles to form multilayer protein covers. The number of molecules adsorbed on one nanoparticle amounts to approximately 65 and the thickness of the adsorption layer amounts to approximately 27 nm. Separate nanoparticles with fibrinogen covers (clusters) form aggregates due to interactions of the end D-domains of fibrinogen. Under the influence of direct magnetic field, nanoparticles with adsorbed proteins form linear aggregates parallel to force lines. It was shown that the rate of protein coagulation during the formation of fibrin gel under the action of thrombin on fibrinogen decreases approximately 2 times in the presence of magnetite nanoparticles, and the magnitude of the average fiber mass-length ratio grows.

  2. F-actin binding regions on the androgen receptor and huntingtin increase aggregation and alter aggregate characteristics.

    PubMed

    Angeli, Suzanne; Shao, Jieya; Diamond, Marc I

    2010-01-01

    Protein aggregation is associated with neurodegeneration. Polyglutamine expansion diseases such as spinobulbar muscular atrophy and Huntington disease feature proteins that are destabilized by an expanded polyglutamine tract in their N-termini. It has previously been reported that intracellular aggregation of these target proteins, the androgen receptor (AR) and huntingtin (Htt), is modulated by actin-regulatory pathways. Sequences that flank the polyglutamine tract of AR and Htt might influence protein aggregation and toxicity through protein-protein interactions, but this has not been studied in detail. Here we have evaluated an N-terminal 127 amino acid fragment of AR and Htt exon 1. The first 50 amino acids of ARN127 and the first 14 amino acids of Htt exon 1 mediate binding to filamentous actin in vitro. Deletion of these actin-binding regions renders the polyglutamine-expanded forms of ARN127 and Htt exon 1 less aggregation-prone, and increases the SDS-solubility of aggregates that do form. These regions thus appear to alter the aggregation frequency and type of polyglutamine-induced aggregation. These findings highlight the importance of flanking sequences in determining the propensity of unstable proteins to misfold. PMID:20140226

  3. A comparison of the fibrinogen receptor distribution on adherent platelets using both soluble fibrinogen and fibrinogen immobilized on gold beads.

    PubMed

    Estry, D W; Mattson, J C; Mahoney, G J; Oesterle, J R

    1991-04-01

    The distribution of fibrinogen receptors was determined on the surface of adherent platelets using both direct labeling with the ligand fibrinogen which was immobilized on gold particles (Fg-Au) and indirect immunogold (Ig-Au) labeling of bound soluble fibrinogen identified with a rabbit polyclonal anti-fibrinogen antibody. Two distinctly different patterns of labeling were obtained and appeared to depend on whether solid phase fibrinogen (Fg-Au) or soluble phase released fibrinogen were bound to the membrane receptor. The membrane-bound Fg-Au reorganized in patterns that closely mimicked the organization of the underlying cytoskeleton. In approximately 18% of the adherent platelets, Fg-Au was seen in channels or vesicle-like structures lying deep to the platelet surface suggesting internalization into the open canalicular system and/or endocytosis. The labeling pattern obtained when identifying the location of membrane-bound soluble released fibrinogen by Ig-Au was diffuse and lacked the organizational patterns characteristic of Fg-Au. Unlike the Fg-Au probe, early dendritic platelets were heavily labeled by the soluble phase fibrinogen using the Ig-Au technique. Although the label covered the entire exposed platelet membrane in fully spread platelets, labeling over the peripheral web was more dense than that over the intermediate or granulomere zone. The diffuse organization and heavier peripheral distributional pattern of the glycoprotein IIb-IIIa (GP IIb-IIIa) receptor in fixed, adherent platelets, was also seen with the GP IIb-IIIa receptor-specific antibody AP-2. The binding of both the Fg-Au and Ig-Au were inhibited using the tetrapeptide Arg-Gly-Asp-Ser (RGDS) (93% and 98% inhibition, respectively), AP-2 (98% and 97%, respectively) and platelets from patients with Glanzmann's thrombasthenia (GT) (99% and 98%, respectively). The data presented provides the first report that receptor reorganization, following binding of fibrinogen, appears to be related to

  4. Inhibiting platelets aggregation could aggravate the acute infection caused by Staphylococcus aureus.

    PubMed

    Zhang, Xin; Liu, Yu; Gao, Yaping; Dong, Jie; Mu, Chunhua; Lu, Qiang; Shao, Ningsheng; Yang, Guang

    2011-01-01

    Several fibrinogen binding proteins (Fibs) play important roles in the pathogenesis of Staphylococcus aureus (S. aureus). Most Fibs can promote the aggregation of platelets during infection, but the extracellular fibrinogen-binding protein (Efb) is an exception. It is reported that Efb can specifically bind fibrinogen and inhibit the aggregation of platelet with its N terminal. However, the biological significance of platelet aggregation inhibition in the infection caused by S. aureus is unclear until now. Here, we demonstrated that the persistence and aggregation of platelets were important for killing S. aureus in whole blood. It was found that the N terminal of Efb (EfbN) and platelets inhibitors could increase the survival of S. aureus in whole blood. The study in vivo also showed that EfbN and platelets inhibitors could reduce the killing of S. aureus and increase the lethality rate of S. aureus in the acute infection mouse model.

  5. Structural basis for distinctive recognition of fibrinogen [gamma]C peptide by the platelet integrin [alpha][subscript IIb][beta]3

    SciTech Connect

    Springer, Timothy A.; Zhu, Jianghai; Xiao, Tsan

    2009-01-12

    Hemostasis and thrombosis (blood clotting) involve fibrinogen binding to integrin {alpha}{sub IIb}{beta}{sub 3} on platelets, resulting in platelet aggregation. {alpha}{sub v}{beta}{sub 3} binding fibrinogen via an Arg-Asp-Gly (RGD) motif in fibrinogen's {alpha} subunit. {alpha}{sub IIb}{beta}{sub 3} also binds to fibrinogen; however, it does so via an unstructured RGD-lacking C-terminal region of the {gamma} subunit ({gamma}C peptide). These distinct modes of fibrinogen binding enable {alpha}{sub IIb}{beta}{sub 3} and {alpha}{sub v}{beta}{sub 3} to function cooperatively in hemostasis. In this study, crystal structures reveal the integrin {alpha}{sub IIb}{beta}{sub 3}-{gamma}C peptide interface, and, for comparison, integrin {alpha}{sub IIb}{beta}{sub 3} bound to a lamprey {gamma}C primordial RGD motif. Compared with RGD, the GAKQAGDV motif in {gamma}C adopts a different backbone configuration and binds over a more extended region. The integrin metal ion-dependent adhesion site (MIDAS) Mg{sup 2+} ion binds the {gamma}C Asp side chain. The adjacent to MIDAS (ADMIDAS) Ca{sup 2+} ion binds the {gamma}C C terminus, revealing a contribution for ADMIDAS in ligand binding. Structural data from this natively disordered {gamma}C peptide enhances our understanding of the involvement of {gamma}C peptide and integrin {alpha}{sub IIb}{beta}{sub 3} in hemostasis and thrombosis.

  6. Control of Integrin αIIbβ3 Outside-In Signaling and Platelet Adhesion by Sensing the Physical Properties of Fibrin(ogen) Substrates†

    PubMed Central

    Podolnikova, Nataly P.; Yermolenko, Ivan S.; Fuhrmann, Alexander; Lishko, Valeryi K.; Magonov, Sergei; Bowen, Benjamin; Enderlein, Joerg; Podolnikov, Andriy V.; Ros, Robert; Ugarova, Tatiana P.

    2015-01-01

    The physical properties of substrates are known to control cell adhesion via integrin-mediated signaling. Fibrin and fibrinogen, the principal components of hemostatic and pathological thrombi, may represent biologically relevant substrates whose variable physical properties control adhesion of leukocytes and platelets. In our previous work, we have shown that binding of fibrinogen to the surface of fibrin clot prevents cell adhesion by creating an antiadhesive fibrinogen layer. Furthermore, fibrinogen immobilized on various surfaces at high density supports weak cell adhesion whereas at low density it is highly adhesive. To explore the mechanism underlying differential cell adhesion, we examined the structural and physical properties of surfaces prepared by deposition of various concentrations of fibrinogen using atomic force microscopy and force spectroscopy. Fibrinogen deposition at high density resulted in an aggregated multilayered material characterized by low adhesion forces. In contrast, immobilization of fibrinogen at low density produced a single layer in which molecules were directly attached to the solid surface, resulting in higher adhesion forces. Consistent with their distinct physical properties, low- but not high-density fibrinogen induced strong αIIbβ3-mediated outside-in signaling in platelets, resulting in their spreading. Moreover, while intact fibrin gels induced strong signaling in platelets, deposition of fibrinogen on the surface of fibrin resulted in diminished cell signaling. The data suggest that deposition of a multilayered fibrinogen matrix prevents stable cell adhesion by modifying the physical properties of surfaces, which results in reduced force generation and insufficient signaling. The mechanism whereby circulating fibrinogen alters adhesive properties of fibrin clots may have important implications for control of thrombus formation and thrombogenicity of biomaterials. PMID:19929007

  7. Cutting edge: members of the Staphylococcus aureus extracellular fibrinogen-binding protein family inhibit the interaction of C3d with complement receptor 2.

    PubMed

    Ricklin, Daniel; Ricklin-Lichtsteiner, Salome K; Markiewski, Maciej M; Geisbrecht, Brian V; Lambris, John D

    2008-12-01

    Staphylococcus aureus expresses a highly diversified arsenal of immune evasion proteins, many of which target the complement system. The extracellular fibrinogen-binding protein (Efb) and the Efb homologous protein (Ehp) have previously been demonstrated to bind to C3 and inhibit complement activation and amplification. In this study we present the first evidence that Efb and Ehp are also capable of inhibiting the interaction of C3d with complement receptor 2 (CR2), which plays an important role in B cell activation and maturation. The C-terminal domain of Efb efficiently blocked this interaction both in surface plasmon resonance-based competition studies and cellular assays and prevented the CR2-mediated stimulation of B cells. Furthermore, analyses of the available structural data were consistent with a molecular mechanism that reflects both steric and electrostatic effects on the C3d-CR2 interaction. Our study therefore suggests that S. aureus may disrupt both the innate and adaptive immune responses with a single protein module. PMID:19017934

  8. Presence of fibrinogen-binding adhesin gene in Staphylococcus epidermidis isolates from central venous catheters-associated and orthopaedic implant-associated infections.

    PubMed

    Arciola, Carla Renata; Campoccia, Davide; Gamberini, Simonetta; Donati, M Elena; Montanaro, Lucio

    2004-08-01

    Attention has recently been paid to identify and elucidate those pathogenetic mechanisms, which play a significant role in sustaining the early phases of Staphylococcus epidermidis colonisation and infection development. Several analogies with the physiology of Staphylococcus aureus, a more thoroughly investigated pathogen, have lead to carefully consider all bacterial surface components that mediate cell adhesion. This study aimed at investigating the presence of the fbe gene encoding for a fibrinogen-binding protein in a collection of 107 S. epidermidis strains isolated from orthopaedic infections and 67 from central venous catheter-associated infections. The strains isolated from orthopaedic infections were in large part associated to four different classes of orthopaedic devices, respectively: internal fixation devices, external fixation devices, knee arthroprostheses and hip arthroprostheses. The molecular epidemiology analysis performed by PCR enlightened a statistically significant difference in the prevalence of this adhesion mechanism between orthopaedic infections and catheter-related infections, respectively, of 78% and 91%. The prevalence of fbe ranged from 67% to 91%, suggesting that, even though this adhesin is not strictly necessary for the development of infection, nevertheless it represents a rather common characteristic of strains causing clinical infections, this independently on the presence or the absence of implant materials. PMID:15120529

  9. Platelet-collagen adhesion enhances platelet aggregation induced by binding of VWF to platelets

    SciTech Connect

    Laduca, F.M.; Bell, W.R.; Bettigole, R.E. State Univ. of New York, Buffalo )

    1987-11-01

    Ristocetin-induced platelet aggregation (RIPA) was evaluated in the presence of platelet-collagen adhesion. RIPA of normal donor platelet-rich plasma (PRP) demonstrated a primary wave of aggregation mediated by the binding of von Willebrand factor (VWF) to platelets and a secondary aggregation wave, due to a platelet-release reaction, initiated by VWF-platelet binding and inhibitable by acetylsalicylic acid (ASA). An enhanced RIPA was observed in PRP samples to which collagen had been previously added. These subthreshold concentrations of collagen, which by themselves were insufficient to induce aggregation, caused measurable platelet-collagen adhesion. Subthreshold collagen did not cause microplatelet aggregation, platelet release of ({sup 3}H)serotonin, or alter the dose-responsive binding of {sup 125}I-labeled VWF to platelets, which occurred with increasing ristocetin concentrations. However, ASA inhibition of the platelet release reaction prevented collagen-enhanced RIPA. These results demonstrate that platelet-collagen adhesion altered the platelet-release reaction induced by the binding of VWF to platelets causing a platelet-release reaction at a level of VWF-platelet binding not normally initiating a secondary aggregation. These findings suggest that platelet-collagen adhesion enhances platelet function mediated by VWF.

  10. Antimicrobial activity of fibrinogen and fibrinogen-derived peptides--a novel link between coagulation and innate immunity.

    PubMed

    Påhlman, L I; Mörgelin, M; Kasetty, G; Olin, A I; Schmidtchen, A; Herwald, H

    2013-05-01

    Fibrinogen is a key player in the blood coagulation system, and is upon activation with thrombin converted into fibrin that subsequently forms a fibrin clot. In the present study, we investigated the role of fibrinogen in the early innate immune response. Here we show that the viability of fibrinogen-binding bacteria is affected in human plasma activated with thrombin. Moreover, we found that the peptide fragment GHR28 released from the β-chain of fibrinogen has antimicrobial activity against bacteria that bind fibrinogen to their surface, whereas non-binding strains are unaffected. Notably, bacterial killing was detected in Group A Streptococcus bacteria entrapped in a fibrin clot, suggesting that fibrinogen and coagulation is involved in the early innate immune system to quickly wall off and neutralise invading pathogens.

  11. Electrostatic binding and hydrophobic collapse of peptide-nucleic acid aggregates quantified using force spectroscopy.

    PubMed

    Camunas-Soler, Joan; Frutos, Silvia; Bizarro, Cristiano V; de Lorenzo, Sara; Fuentes-Perez, Maria Eugenia; Ramsch, Roland; Vilchez, Susana; Solans, Conxita; Moreno-Herrero, Fernando; Albericio, Fernando; Eritja, Ramón; Giralt, Ernest; Dev, Sukhendu B; Ritort, Felix

    2013-06-25

    Knowledge of the mechanisms of interaction between self-aggregating peptides and nucleic acids or other polyanions is key to the understanding of many aggregation processes underlying several human diseases (e.g., Alzheimer's and Parkinson's diseases). Determining the affinity and kinetic steps of such interactions is challenging due to the competition between hydrophobic self-aggregating forces and electrostatic binding forces. Kahalalide F (KF) is an anticancer hydrophobic peptide that contains a single positive charge that confers strong aggregative properties with polyanions. This makes KF an ideal model to elucidate the mechanisms by which self-aggregation competes with binding to a strongly charged polyelectrolyte such as DNA. We use optical tweezers to apply mechanical forces to single DNA molecules and show that KF and DNA interact in a two-step kinetic process promoted by the electrostatic binding of DNA to the aggregate surface followed by the stabilization of the complex due to hydrophobic interactions. From the measured pulling curves we determine the spectrum of binding affinities, kinetic barriers, and lengths of DNA segments sequestered within the KF-DNA complex. We find there is a capture distance beyond which the complex collapses into compact aggregates stabilized by strong hydrophobic forces and discuss how the bending rigidity of the nucleic acid affects this process. We hypothesize that within an in vivo context, the enhanced electrostatic interaction of KF due to its aggregation might mediate the binding to other polyanions. The proposed methodology should be useful to quantitatively characterize other compounds or proteins in which the formation of aggregates is relevant. PMID:23706043

  12. A novel natural mutation AαPhe98Ile in the fibrinogen coiled-coil affects fibrinogen function.

    PubMed

    Riedelová-Reicheltová, Zuzana; Kotlín, Roman; Suttnar, Jiří; Geierová, Véra; Riedel, Tomáš; Májek, Pavel; Dyr, Jan Evangelista

    2014-01-01

    The aim of this study was to investigate the structure and function of fibrinogen obtained from a patient with normal coagulation times and idiopathic thrombophilia. This was done by SDS-PAGE and DNA sequence analyses, scanning electron microscopy, fibrinopeptide release, fibrin polymerisation initiated by thrombin and reptilase, fibrinolysis, and platelet aggregometry. A novel heterozygous point mutation in the fibrinogen Aα chain, Phe98 to Ile, was found and designated as fibrinogen Vizovice. The mutation, which is located in the RGDF sequence (Aα 95-98) of the fibrinogen coiled-coil region, significantly affected fibrin clot morphology. Namely, the clot formed by fibrinogen Vizovice contained thinner and curled fibrin fibers with reduced length. Lysis of the clots prepared from Vizovice plasma and isolated fibrinogen were found to be impaired. The lysis rate of Vizovice clots was almost four times slower than the lysis rate of control clots. In the presence of platelets agonists the mutant fibrinogen caused increased platelet aggregation. The data obtained show that natural mutation of Phe98 to Ile in the fibrinogen Aα chain influences lateral aggregation of fibrin protofibrils, fibrinolysis, and platelet aggregation. They also suggest that delayed fibrinolysis, together with the abnormal fibrin network morphology and increased platelet aggregation, may be the direct cause of thrombotic complications in the patient associated with pregnancy loss. PMID:24108601

  13. Bacteroides gingivalis and Bacteroides intermedius recognize different sites on human fibrinogen

    SciTech Connect

    Lantz, M.S.; Allen, R.D.; Bounelis, P.; Switalski, L.M.; Hook, M. )

    1990-02-01

    Bacteroides (Porphyromonas) gingivalis and Bacteroides (Porphyromonas) intermedius have been implicated in the etiology of human periodontal diseases. These organisms are able to bind and degrade human fibrinogen, and these interactions may play a role in the pathogenesis of periodontal disease. In attempts to map the bacterial binding sites along the fibrinogen molecule, we have found that strains of B. gingivalis and B. intermedius, respectively, recognize spatially distant and distinct sites on the fibrinogen molecule. Isolated reduced and alkylated alpha-, beta-, and gamma-fibrinogen chains inhibited binding of 125I-fibrinogen to both Bacteroides species in a concentration-dependent manner. Plasmin fragments D and to some extent fragment E, however, produced a concentration-dependent inhibition of 125I-fibrinogen binding to B. intermedius strains but did not affect binding of 125I-fibrinogen to B. gingivalis strains. Radiolabeled fibrinogen chains and fragments were compared with 125I-fibrinogen with respect to specificity and reversibility of binding to bacteria. According to these criteria, gamma chain most closely resembled the native fibrinogen molecule in behavior toward B. gingivalis strains and fragments D most closely resembled fibrinogen in behavior toward B. intermedius strains. The ability of anti-human fibrinogen immunoglobulin G (IgG) to inhibit binding of 125I-fibrinogen to B. intermedius strains was greatly reduced by absorbing the IgG with fragments D. Absorbing the IgG with fragments D had no effect on the ability of the antibody to inhibit binding of 125I-fibrinogen to B. gingivalis strains. A purified staphylococcal fibrinogen-binding protein blocked binding of 125I-fibrinogen to B. intermedius strains but not to B. gingivalis strains.

  14. Bacteroides gingivalis and Bacteroides intermedius recognize different sites on human fibrinogen.

    PubMed Central

    Lantz, M S; Allen, R D; Bounelis, P; Switalski, L M; Hook, M

    1990-01-01

    Bacteroides (Porphyromonas) gingivalis and Bacteroides (Porphyromonas) intermedius have been implicated in the etiology of human periodontal diseases. These organisms are able to bind and degrade human fibrinogen, and these interactions may play a role in the pathogenesis of periodontal disease. In attempts to map the bacterial binding sites along the fibrinogen molecule, we have found that strains of B. gingivalis and B. intermedius, respectively, recognize spatially distant and distinct sites on the fibrinogen molecule. Isolated reduced and alkylated alpha-, beta-, and gamma-fibrinogen chains inhibited binding of 125I-fibrinogen to both Bacteroides species in a concentration-dependent manner. Plasmin fragments D and to some extent fragment E, however, produced a concentration-dependent inhibition of 125I-fibrinogen binding to B. intermedius strains but did not affect binding of 125I-fibrinogen to B. gingivalis strains. Radiolabeled fibrinogen chains and fragments were compared with 125I-fibrinogen with respect to specificity and reversibility of binding to bacteria. According to these criteria, gamma chain most closely resembled the native fibrinogen molecule in behavior toward B. gingivalis strains and fragments D most closely resembled fibrinogen in behavior toward B. intermedius strains. The ability of anti-human fibrinogen immunoglobulin G (IgG) to inhibit binding of 125I-fibrinogen to B. intermedius strains was greatly reduced by absorbing the IgG with fragments D. Absorbing the IgG with fragments D had no effect on the ability of the antibody to inhibit binding of 125I-fibrinogen to B. gingivalis strains. A purified staphylococcal fibrinogen-binding protein blocked binding of 125I-fibrinogen to B. intermedius strains but not to B. gingivalis strains. PMID:2404954

  15. Alpha-galactosidase stimulates acetylcholine receptor aggregation in skeletal muscle cells via PNA-binding carbohydrates.

    PubMed

    Parkhomovskiy, N; Martin, P T

    2000-04-21

    Aggregation of nicotinic acetylcholine receptors (AChRs) in skeletal muscle is an essential step in the formation of the mammalian neuromuscular junction. While proteins that bind to myotube receptors such as agrin and laminin can stimulate AChR aggregation in cultured myotubes, removal of cell surface sialic acids stimulates aggregation in a ligand-independent manner. Here, we show that removal of cell surface alpha-galactosides also stimulates AChR aggregation in the absence of added laminin or agrin. AChR aggregation stimulated by alpha-galactosidase was blocked by peanut agglutinin (PNA), which binds to lactosamine-containing disaccharides, but not by the GalNAc-binding lectin Vicia villosa agglutinin (VVA-B4). AChR aggregation stimulated by alpha-galactosidase potentiated AChR clustering induced by either neural agrin or laminin-1 and could be inhibited by muscle agrin. These data suggest that capping of cell surface lactosamines or N-acetyllactosamines with alpha-galactose affects AChR aggregation much as capping with sialic acids does.

  16. The N-terminal domain of the thermo-regulated surface protein PrpA of Enterococcus faecium binds to fibrinogen, fibronectin and platelets

    PubMed Central

    Guzmán Prieto, Ana M.; Urbanus, Rolf T.; Zhang, Xinglin; Bierschenk, Damien; Koekman, C. Arnold; van Luit-Asbroek, Miranda; Ouwerkerk, Janneke P.; Pape, Marieke; Paganelli, Fernanda L.; Wobser, Dominique; Huebner, Johannes; Hendrickx, Antoni P. A.; Bonten, Marc J. M.; Willems, Rob J. L.; van Schaik, Willem

    2015-01-01

    Enterococcus faecium is a commensal of the mammalian gastrointestinal tract, but is also found in non-enteric environments where it can grow between 10 °C and 45 °C. E. faecium has recently emerged as a multi-drug resistant nosocomial pathogen. We hypothesized that genes involved in the colonization and infection of mammals exhibit temperature-regulated expression control and we therefore performed a transcriptome analysis of the clinical isolate E. faecium E1162, during mid-exponential growth at 25 °C and 37 °C. One of the genes that exhibited differential expression between 25 °C and 37 °C, was predicted to encode a peptidoglycan-anchored surface protein. The N-terminal domain of this protein is unique to E. faecium and closely related enterococci, while the C-terminal domain is homologous to the Streptococcus agalactiae surface protein BibA. This region of the protein contains proline-rich repeats, leading us to name the protein PrpA for proline-rich protein A. We found that PrpA is a surface-exposed protein which is most abundant during exponential growth at 37 °C in E. faecium E1162. The heterologously expressed and purified N-terminal domain of PrpA was able to bind to the extracellular matrix proteins fibrinogen and fibronectin. In addition, the N-terminal domain of PrpA interacted with both non-activated and activated platelets. PMID:26675410

  17. The N-terminal domain of the thermo-regulated surface protein PrpA of Enterococcus faecium binds to fibrinogen, fibronectin and platelets.

    PubMed

    Guzmán Prieto, Ana M; Urbanus, Rolf T; Zhang, Xinglin; Bierschenk, Damien; Koekman, C Arnold; van Luit-Asbroek, Miranda; Ouwerkerk, Janneke P; Pape, Marieke; Paganelli, Fernanda L; Wobser, Dominique; Huebner, Johannes; Hendrickx, Antoni P A; Bonten, Marc J M; Willems, Rob J L; van Schaik, Willem

    2015-12-17

    Enterococcus faecium is a commensal of the mammalian gastrointestinal tract, but is also found in non-enteric environments where it can grow between 10 °C and 45 °C. E. faecium has recently emerged as a multi-drug resistant nosocomial pathogen. We hypothesized that genes involved in the colonization and infection of mammals exhibit temperature-regulated expression control and we therefore performed a transcriptome analysis of the clinical isolate E. faecium E1162, during mid-exponential growth at 25 °C and 37 °C. One of the genes that exhibited differential expression between 25 °C and 37 °C, was predicted to encode a peptidoglycan-anchored surface protein. The N-terminal domain of this protein is unique to E. faecium and closely related enterococci, while the C-terminal domain is homologous to the Streptococcus agalactiae surface protein BibA. This region of the protein contains proline-rich repeats, leading us to name the protein PrpA for proline-rich protein A. We found that PrpA is a surface-exposed protein which is most abundant during exponential growth at 37 °C in E. faecium E1162. The heterologously expressed and purified N-terminal domain of PrpA was able to bind to the extracellular matrix proteins fibrinogen and fibronectin. In addition, the N-terminal domain of PrpA interacted with both non-activated and activated platelets.

  18. Conformational stability and aggregation of therapeutic monoclonal antibodies studied with ANS and Thioflavin T binding.

    PubMed

    Kayser, Veysel; Chennamsetty, Naresh; Voynov, Vladimir; Helk, Bernhard; Trout, Bernhardt L

    2011-01-01

    Characterization of aggregation profiles of monoclonal antibodies (mAb) is gaining importance because an increasing number of mAb-based therapeutics are entering clinical studies and gaining marketing approval. To develop a successful formulation, it is imperative to identify the critical biochemical properties of each potential mAb drug candidate. We investigated the conformational change and aggregation of a human IgG1 using external dye-binding experiments with fluorescence spectroscopy and compared the aggregation profiles obtained to the results of size-exclusion chromatography. We show that using an appropriate dye at selected mAb concentration, unfolding or aggregation can be studied. In addition, dye-binding experiments may be used as conventional assays to study therapeutic mAb stability. PMID:21540645

  19. Effect of protein aggregates on characterization of FcRn binding of Fc-fusion therapeutics.

    PubMed

    Bajardi-Taccioli, Adriana; Blum, Andrew; Xu, Chongfeng; Sosic, Zoran; Bergelson, Svetlana; Feschenko, Marina

    2015-10-01

    Recycling of antibodies and Fc containing therapeutic proteins by the neonatal Fc receptor (FcRn) is known to prolong their persistence in the bloodstream. Fusion of Fc fragment of IgG1 to other proteins is one of the strategies to improve their pharmacokinetic properties. Accurate measurement of Fc-FcRn binding provides information about the strength of this interaction, which in most cases correlates with serum half-life of the protein. It can also offer insight into functional integrity of Fc region. We investigated FcRn binding activity of a large set of Fc-fusion samples after thermal stress by the method based on AlphaScreen technology. An unexpected significant increase in FcR binding was found to correlate with formation of aggregates in these samples. Monomer purified from a thermally-stressed sample had normal FcRn binding, confirming that its Fc portion was intact. Experiments with aggregates spiked into a sample with low initial aggregation level, demonstrated strong correlation between the level of aggregates and FcRn binding. This correlation varied significantly in different methods. By introducing modifications to the assay format we were able to minimize the effects of aggregated species on FcRn binding, which should prevent masking functional changes of Fc-fusion protein. Biolayer interferometry (BLI) was used as an alternative method to measure FcRn binding. Both optimized AlphaScreen- and BLI-based assays were sensitive to structural changes in Fc portion of the molecule, such as oxidation of methionines 252 and 428, and therefore suitable for characterization of FcRn binding.

  20. Effect of sodium chloride on the binding of polyaromatic hydrocarbon guests with sodium cholate aggregates.

    PubMed

    Fuentealba, Denis; Thurber, Katie; Bovero, Enrico; Pace, Tamara C S; Bohne, Cornelia

    2011-09-01

    Sodium cholate aggregates are adaptable host systems. The effect of changing the ionic strength with the addition of NaCl on the properties for guest binding to sodium cholate aggregates was investigated by using pyrene, perylene and 1-ethylnaphthalene as guests. Fluorescence, anisotropy and laser flash photolysis studies provided information on the protection efficiency of the aggregate bound guest, and provided information on the dynamics and correlation times for the host-guest system. Different trends for the protection efficiency of the bound guests were observed when the NaCl concentration was raised depending on the charge of the aqueous solubilized quencher. The increase in ionic strength was also shown to lengthen the correlation time of the aggregate bound guest and led to faster dynamics for the host-guest complex. These results show that the properties of sodium cholate aggregates as a supramolecular host system are significantly altered with changes in the ionic strength of the medium. PMID:21472184

  1. Arf6 arbitrates fibrinogen endocytosis.

    PubMed

    Rondina, Matthew T; Weyrich, Andrew S

    2016-03-17

    In this issue of Blood, in a departure from studies of classic platelet function, Huang et al turn their attention to endocytosis and show that adenosine 5′-diphosphate-ribosylation factor 6 (Arf6) plays a key role in fibrinogen engulfment. Although platelets are known to bind, absorb, and load their granules with plasma proteins, this report is one of the first to explore mechanisms that control endocytosis in this anucleate cell. Huang et al demonstrate that Arf6-dependent endocytosis is restricted to fibrinogen, implying that Arf6 also modulates trafficking of αIIbβ3 integrins in platelets. Consistent with this notion, deletion of Arf6 in platelets enhances spreading on fibrinogen and accelerates clot retraction (see figure). However, activation of surface αIIbβ3 is unaffected, and Arf6 deficiency does not alter thrombosis in vivo. These incongruous results point toward the complexity of anucleate platelets and the need for more detailed studies to understand intracellular trafficking, recycling, and endocytosis in platelets and their precurs

  2. Specific binding of DNA to aggregated forms of Alzheimer's disease amyloid peptides.

    PubMed

    Camero, Sergio; Ayuso, Jose M; Barrantes, Alejandro; Benítez, María J; Jiménez, Juan S

    2013-04-01

    Anomalous protein aggregation is closely associated to age-related mental illness. Extraneuronal plaques, mainly composed of aggregated amyloid peptides, are considered as hallmarks of Alzheimer's disease. According to the amyloid cascade hypothesis, this disease starts as a consequence of an abnormal processing of the amyloid precursor protein resulting in an excess of amyloid peptides. Nuclear localization of amyloid peptide aggregates together with amyloid-DNA interaction, have been repeatedly reported. In this paper we have used surface plasmon resonance and electron microscopy to study the structure and behavior of different peptides and proteins, including β-lactoglobulin, bovine serum albumin, myoglobin, histone, casein and the amyloid-β peptides related to Alzheimer's disease Aβ25-35 and Aβ1-40. The main purpose of this study is to investigate whether proneness to DNA interaction is a general property displayed by aggregated forms of proteins, or it is an interaction specifically related to the aggregated forms of those particular proteins and peptides related to neurodegenerative diseases. Our results reveal that those aggregates formed by amyloid peptides show a particular proneness to interact with DNA. They are the only aggregated structures capable of binding DNA, and show more affinity for DNA than for other polyanions like heparin and polyglutamic acid, therefore strengthening the hypothesis that amyloid peptides may, by means of interaction with nuclear DNA, contribute to the onset of Alzheimer's disease.

  3. Zinc-Mediated Binding of Nucleic Acids to Amyloid-β Aggregates: Role of Histidine Residues.

    PubMed

    Khmeleva, Svetlana A; Radko, Sergey P; Kozin, Sergey A; Kiseleva, Yana Y; Mezentsev, Yuri V; Mitkevich, Vladimir A; Kurbatov, Leonid K; Ivanov, Alexis S; Makarov, Alexander A

    2016-09-01

    Amyloid-β peptide (Aβ) plays a central role in Alzheimer's disease (AD) pathogenesis. Besides extracellular Aβ, intraneuronal Aβ (iAβ) has been suggested to contribute to AD onset and development. Based on reported in vitro Aβ-DNA interactions and nuclear localization of iAβ, the interference of iAβ with the normal DNA expression has recently been proposed as a plausible pathway by which Aβ can exert neurotoxicity. Employing the sedimentation assay, thioflavin T fluorescence, and dynamic light scattering we have studied effects of zinc ions on binding of RNA and single- and double-stranded DNA molecules to Aβ42 aggregates. It has been found that zinc ions significantly enhance the binding of RNA and DNA molecules to pre-formed β-sheet rich Aβ42 aggregates. Another type of Aβ42 aggregates, the zinc-induced amorphous aggregates, was demonstrated to also bind all types of nucleic acids tested. To evaluate the role of the Aβ metal-binding domain's histidine residues in Aβ-nucleic acid interactions mediated by zinc, Aβ16 mutants with substitutions H6R and H6A-H13A and rat Aβ16 lacking histidine residue 13 were used. The zinc-induced interaction of Aβ16 with DNA was shown to critically depend on histidine residues 6 and 13. However, the inclusion of H6R mutation in Aβ42 peptide did not affect DNA binding to Aβ42 aggregates. Since oxidative and/or nitrosative stresses implicated in AD pathogenesis are known to release zinc ions from metallothioneins in cytoplasm and cell nuclei, our findings suggest that intracellular zinc can be an important player in iAβ-nucleic acid interactions. PMID:27567853

  4. Aggregation analysis of Con A binding proteins of human seminal plasma: a dynamic light scattering study.

    PubMed

    Tomar, Anil Kumar; Sooch, Balwinder Singh; Singh, Sarman; Yadav, Savita

    2013-02-01

    Concanavalin A (Con A) binding fraction of human seminal plasma is vital as it shows decapacitating activity and contains proteins which have critical roles in fertility related processes. Con A binding proteins were isolated by lectin affinity chromatography. These proteins form high molecular weight aggregates at near physiological pH (7.0) as inferred by gel filtration. Aggregation analysis was performed by dynamic light scattering (DLS). DLS analysis was also performed at different pH values and in presence of various additives including NaCl, EDTA, cholesterol and sugars, such as d-glucose, d-fructose and d-mannose to identify their effect on aggregation size. The results indicate that degree of aggregation was highly reduced in presence of d-fructose, EDTA and at lower and higher pH values as depicted by lowering of hydrodynamic radii. This aggregation behaviour might be decisive for fertility related events with a suggestive role towards inhibition of premature capacitation.

  5. Evaluation of Fibrinogen Self-assembly: Role of its alphaC Region

    SciTech Connect

    J Koo; M Rafailovich; L Medved; G Tsurupa; B Kudryk; y Liu; D Galanakis

    2011-12-31

    Background: Exposure of cryptic, functional sites on fibrinogen upon its adsorption to hydrophobic surfaces of biomaterials has been linked to an inflammatory response and fibrosis. Such adsorption also induces ordered fibrinogen aggregation which is poorly understood. Objective: To investigate hydrophobic surface-induced fibrinogen aggregation. Methods: Contact and lateral force scanning probe microscopy, yielding topography, image dimensions and fiber elastic modulus measurements were used along with transmission and scanning electron microscopy. Fibrinogen aggregation was induced under non-enzymatic conditions by adsorption on a trioctyl-surface monolayer (trioctylmethylamine) grafted onto silica clay plates. Results: A more than one molecule thick coating was generated by adsorption on the plate from 100 to 200 {mu}g mL{sup -1} fibrinogen solutions, and three-dimensional networks formed from 4 mg mL{sup -1} fibrinogen incubated with uncoated or fibrinogen-coated plates. Fibrils appeared laterally assembled into branching and overlapping fibers whose heights from the surface ranged from approximately 3 to 740 nm. The elastic modulus of fibrinogen fibers was 1.55 MPa. No fibrils formed when fibrinogen lacking {alpha}C-domains was used as a coating or was incubated with intact fibrinogen-coated plates, or when the latter plates were sequentially incubated with anti-A{alpha}529-539 mAb and intact fibrinogen. When an anti-A{alpha}241-476 mAb was used instead, fine, long fibers formed. Similarly, sequential incubations of fibrinogen-coated plates with recombinant {alpha}C-domain (A{alpha}392-610 fragment) or {alpha}C-connector (A{alpha}221-372 fragment) and fibrinogen resulted in distinctly fine fiber networks. Conclusions: Adsorption-induced fibrinogen self-assembly is initiated by a more than one molecule-thick surface layer and eventuates in three-dimensional networks whose formation requires fibrinogen with intact {alpha}C-domains.

  6. Evaluation of Fibrinogen Self-assembly: Role of its αC Region

    PubMed Central

    Koo, Jaseung; Rafailovich, Miriam H.; Medved, Leonid; Tsurupa, Galina; Kudryk, Bohdan J.; Liu, Ying; Galanakis, Dennis K.

    2010-01-01

    SUMMARY Background Exposure of cryptic, functional sites on fibrinogen upon its adsorption to hydrophobic surfaces of biomaterials have been linked to inflammatory response and fibrosis. Such adsorption also induces ordered fibrinogen aggregation which is poorly understood. Objective To investigate hydrophobic surface-induced fibrinogen aggregation. Methods: Contact and lateral force scanning probe microscopy, yielding topography, image dimensions, and fiber elastic modulus measurements were used along with transmission and scanning electron microscopy. Fibrinogen aggregation was induced under non-enzymatic conditions by adsorption on a trioctyl-surface monolayer (trioctylmethylamine) grafted onto silica clay plates. Results A more than one molecule thick coating was generated by adsorption on the plate from 100–200 μg/ml fibrinogen solutions, and three-dimensional networks formed from 4 mg/ml fibrinogen incubated with uncoated or fibrinogen-coated plates. Fibrils appeared laterally assembled into branching and overlapping fibers whose heights from surface ranged from ~3 to 740 nm. The elastic modulus of fibrinogen fibers was 1.55 MPa. No fibrils formed when fibrinogen lacking αC-domains was used as coating or was incubated with intact fibrinogen-coated plates, or when the latter plates were sequentially incubated with anti-Aα529–539 mAb and intact fibrinogen. When an anti-Aα241–476 mAb was used instead, fine, long fibers formed. Similarly, sequential incubations of fibrinogen-coated plates with recombinant αC-domain (Aα392–610 fragment) or αC-connector (Aα221–372 fragment) and fibrinogen resulted in distinctly fine fiber networks. Conclusions Adsorption-induced fibrinogen self-assembly is initiated by a more than one molecule-thick surface layer and eventuates in three-dimensional networks whose formation requires fibrinogen with intact αC-domains. PMID:20880206

  7. Aggregation of ALS-linked FUS mutant sequesters RNA binding proteins and impairs RNA granules formation

    SciTech Connect

    Takanashi, Keisuke; Yamaguchi, Atsushi

    2014-09-26

    Highlights: • Aggregation of ALS-linked FUS mutant sequesters ALS-associated RNA-binding proteins (FUS wt, hnRNP A1, and hnRNP A2). • Aggregation of ALS-linked FUS mutant sequesters SMN1 in the detergent-insoluble fraction. • Aggregation of ALS-linked FUS mutant reduced the number of speckles in the nucleus. • Overproduced ALS-linked FUS mutant reduced the number of processing-bodies (PBs). - Abstract: Protein aggregate/inclusion is one of hallmarks for neurodegenerative disorders including amyotrophic lateral sclerosis (ALS). FUS/TLS, one of causative genes for familial ALS, encodes a multifunctional DNA/RNA binding protein predominantly localized in the nucleus. C-terminal mutations in FUS/TLS cause the retention and the inclusion of FUS/TLS mutants in the cytoplasm. In the present study, we examined the effects of ALS-linked FUS mutants on ALS-associated RNA binding proteins and RNA granules. FUS C-terminal mutants were diffusely mislocalized in the cytoplasm as small granules in transiently transfected SH-SY5Y cells, whereas large aggregates were spontaneously formed in ∼10% of those cells. hnRNP A1, hnRNP A2, and SMN1 as well as FUS wild type were assembled into stress granules under stress conditions, and these were also recruited to FUS mutant-derived spontaneous aggregates in the cytoplasm. These aggregates stalled poly(A) mRNAs and sequestered SMN1 in the detergent insoluble fraction, which also reduced the number of nuclear oligo(dT)-positive foci (speckles) in FISH (fluorescence in situ hybridization) assay. In addition, the number of P-bodies was decreased in cells harboring cytoplasmic granules of FUS P525L. These findings raise the possibility that ALS-linked C-terminal FUS mutants could sequester a variety of RNA binding proteins and mRNAs in the cytoplasmic aggregates, which could disrupt various aspects of RNA equilibrium and biogenesis.

  8. Binding kinetics of monomeric and aggregated IgG to Kupffer cells and hepatocytes of mice.

    PubMed Central

    Sancho, J; González, E; Escanero, J F; Egido, J

    1984-01-01

    The binding kinetics of human monomeric IgG and stable heat-aggregated IgG (A-IgG) to Fc receptors of hepatocytes and Kupffer cells isolated from mice was studied. After injection of radiolabelled proteins the 60-70% of hepatic uptake was recovered in parenchymal cells (hepatocytes). In experiments in vitro the A-IgG bound in larger amounts to hepatocytes and Kupffer cells than monomeric IgG. The association rate constants of aggregates were somewhat higher for Kupffer cells than for hepatocytes whereas the percentage uptake of aggregates by Kupffer cells was only 5-15% of that of hepatocytes. The equilibrium constants of aggregates binding to both cells amounted to 0.4-1 X 10(8) M-1 for A-IgG compared with an equilibrium constant for monomeric IgG of 1-2 X 10(7)M-1. The maximum number of IgG and A-IgG molecules bound per cell was higher on hepatocytes (mean 14 X 10(6)) than on Kupffer cells (mean 2 X 10(5)) which is in agreement with the higher binding capacity of hepatocytes for these proteins observed in vivo and in vitro experiments. The ability to compete for receptor binding seemed to reside exclusively in the Fc portion of IgG since F(ab')2 fragments of IgG failed to inhibit labelled monomeric IgG or A-IgG. The receptor seems to be specific for IgG since unlabelled monomeric IgA demonstrated no binding inhibition of labelled IgG or A-IgG on hepatocytes and Kupffer cells. The overall results further suggest that hepatocytes might through Fc receptors play a collaborative role with the mononuclear phagocytic system in the clearance of circulating immune complexes. PMID:6237982

  9. Ultrastructural and biochemical analysis of fibrinogen receptors on activated thrombocytes

    SciTech Connect

    O'Toole, E.T.

    1989-01-01

    The present studies have been concerned with the role of fibrinogen and its receptor, GP IIb/IIIa, during the activation and early aggregation of pigeon thrombocytes. Thrombocytes were surface labeled with {sup 125}I then separated on SDS-PAGE. Analysis by gel autoradiography revealed major bands at MW 145 kd and 98 kd, which corresponded to human GPIIb and GPIIIa. Immunologic similarity of the pigeon and human receptor components was established by dot blot analysis using polyclonal antibodies directed against human GPIIb and GPIIIa. Pigeon fibrinogen, isolated by plasma precipitation with PEG-1000 and purified over Sepharose 4B, was used to study receptor-ligand interaction. Separation of pigeon fibrinogen on SDS-PAGE resulted in three peptides having apparent MW of 62kd, 55kd, and 47kd which are comparable to human fibrinogen. Further similarity of human and pigeon fibrinogen was verified by immonodiffusion against an antibody specific for the human protein. The role of fibrinogen and its receptor in thrombocyte function was established by turbidimetric aggregation using thrombin as an agonist under conditions requiring Ca++ and fibrinogen.

  10. Genetic variation in the fibrinogen gamma gene increases the risk for deep venous thrombosis by reducing plasma fibrinogen gamma' levels.

    PubMed

    Uitte de Willige, Shirley; de Visser, Marieke C H; Houwing-Duistermaat, Jeanine J; Rosendaal, Frits R; Vos, Hans L; Bertina, Rogier M

    2005-12-15

    We investigated the association between haplotypes of fibrinogen alpha (FGA), beta (FGB), and gamma (FGG), total fibrinogen levels, fibrinogen gamma' (gammaA/gamma' plus gamma'/gamma') levels, and risk for deep venous thrombosis. In a population-based case-control study, the Leiden Thrombophilia Study, we typed 15 haplotype-tagging single nucleotide polymorphisms (htSNPs) in this gene cluster. None of these haplotypes was associated with total fibrinogen levels. In each gene, one haplotype increased the thrombosis risk approximately 2-fold. After adjustment for linkage disequilibrium between the genes, only FGG-H2 homozygosity remained associated with risk (odds ratio [OR], 2.4; 95% confidence interval [95% CI], 1.5-3.9). FGG-H2 was also associated with reduced fibrinogen gamma' levels and reduced ratios of fibrinogen gamma' to total fibrinogen. Multivariate analysis showed that reduced fibrinogen gamma' levels and elevated total fibrinogen levels were both associated with an increased risk for thrombosis, even after adjustment for FGG-H2. A reduced fibrinogen gamma' to total fibrinogen ratio (less than 0.69) also increased the risk (OR, 2.4; 95% CI, 1.7-3.5). We propose that FGG-H2 influences thrombosis risk through htSNP 10034C/T [rs2066865] by strengthening the consensus of a CstF site and thus favoring the formation of gammaA chain above that of gamma' chain. Fibrinogen gamma' contains a unique high-affinity, nonsubstrate binding site for thrombin, which seems critical for the expression of the antithrombin activity that develops during fibrin formation (antithrombin 1).

  11. Studies on chemically modified fibrinogen.

    PubMed

    Kloczewiak, M; Wegrzynowicz, Z; Matthias, F R; Heene, D L; Zajdel, M

    1976-04-30

    Treatment of fibrinogen with maleic acid anhydride renders fibrinogen unclottable depending on the degree of modification of the molecule. According to radioactive studies the release of fibrinopeptides by thrombin or reptilase is undisturbed. The incoagulability is due to inhibition of the polymerization process of fibrinmonomers derived from modified fibronogen, mainly caused by the increase of electronegative charges upon the fibrogen molecule. According to discelectrophoretic analysis modified fibrinogen fails to produce fragments D and E following plasmic digestion, however, may be degraded to high molecular weight products. Modified fibrinogen reveals some similarities to abnormal fibrinogens in congenital dysfibrinogenemia with regard to its functional properties.

  12. Binding of Folic Acid Induces Specific Self-Aggregation of Lactoferrin: Thermodynamic Characterization.

    PubMed

    Tavares, Guilherme M; Croguennec, Thomas; Lê, Sébastien; Lerideau, Olivia; Hamon, Pascaline; Carvalho, Antônio F; Bouhallab, Saïd

    2015-11-17

    In the study presented here, we investigated the interaction at pH 5.5 between folic acid (FA) and lactoferrin (LF), a positively charged protein. We found a binding constant Ka of 10(5) M(-1) and a high stoichiometry of 10 mol of FA/mol of LF. The size and charge of the complexes formed evolved during titration experiments. Increasing the ionic strength to 50 mM completely abolished the isothermal titration calorimetry (ITC) signal, suggesting the predominance of electrostatic interactions in the exothermic binding obtained. We developed a theoretical model that explains the complex triphasic ITC profile. Our results revealed a two-step mechanism: FA/LF interaction followed by self-association of the complexes thus formed. We suggest that 10 FA molecules bind to LF to form saturated reactive complexes (FA10/LF) that further self-associate into aggregates with a finite size of around 15 nm. There is thus a critical saturation degree of the protein, above which the self-association can take place. We present here the first results that provide comprehensive details of the thermodynamics of FA/LF complexation-association. Given the high stoichiometry, allowing a load of 55 mg of FA/g of LF, we suggest that FA/LF aggregates would be an effective vehicle for FA in fortified drinks. PMID:26488446

  13. Binding mechanism of inositol stereoisomers to monomers and aggregates of Aβ(16-22).

    PubMed

    Li, Grace; Pomès, Régis

    2013-06-01

    Alzheimer's disease (AD) is a severe neurodegenerative disease with no cure. A potential therapeutic approach is to prevent or reverse the amyloid formation of Aβ42, a key pathological hallmark of AD. We examine the molecular basis for stereochemistry-dependent inhibition of the formation of Aβ fibrils in vitro by a polyol, scyllo-inositol. We present molecular dynamics simulations of the monomeric, disordered aggregate, and protofibrillar states of Aβ(16-22), an amyloid-forming peptide fragment of full-length Aβ, successively with and without scyllo-inositol and its inactive stereoisomer chiro-inositol. Both stereoisomers bind monomers and disordered aggregates with similar affinities of 10-120 mM, whereas binding to β-sheet-containing protofibrils yields affinities of 0.2-0.5 mM commensurate with in vitro inhibitory concentrations of scyllo-inositol. Moreover, scyllo-inositol displays a higher binding specificity for phenylalanine-lined grooves on the protofibril surface, suggesting that scyllo-inositol coats the surface of Aβ protofibrils and disrupts their lateral stacking into amyloid fibrils.

  14. Cholesterol Modifies Huntingtin Binding to, Disruption of, and Aggregation on Lipid Membranes.

    PubMed

    Gao, Xiang; Campbell, Warren A; Chaibva, Maxmore; Jain, Pranav; Leslie, Ashley E; Frey, Shelli L; Legleiter, Justin

    2016-01-12

    Huntington's disease (HD) is an inherited neurodegenerative disease caused by abnormally long CAG-repeats in the huntingtin gene that encode an expanded polyglutamine (polyQ) domain near the N-terminus of the huntingtin (htt) protein. Expanded polyQ domains are directly correlated to disease-related htt aggregation. Htt is found highly associated with a variety of cellular and subcellular membranes that are predominantly comprised of lipids. Since cholesterol homeostasis is altered in HD, we investigated how varying cholesterol content modifies the interactions between htt and lipid membranes. A combination of Langmuir trough monolayer techniques, vesicle permeability and binding assays, and in situ atomic force microscopy were used to directly monitor the interaction of a model, synthetic htt peptide and a full-length htt-exon1 recombinant protein with model membranes comprised of total brain lipid extract (TBLE) and varying amounts of exogenously added cholesterol. As the cholesterol content of the membrane increased, the extent of htt insertion decreased. Vesicles containing extra cholesterol were resistant to htt-induced permeabilization. Morphological and mechanical changes in the bilayer associated with exposure to htt were also drastically altered by the presence of cholesterol. Disrupted regions of pure TBLE bilayers were grainy in appearance and associated with a large number of globular aggregates. In contrast, morphological changes induced by htt in bilayers enriched in cholesterol were plateau-like with a smooth appearance. Collectively, these observations suggest that the presence and amount of cholesterol in lipid membranes play a critical role in htt binding and aggregation on lipid membranes.

  15. Pyocyanin facilitates extracellular DNA binding to Pseudomonas aeruginosa influencing cell surface properties and aggregation.

    PubMed

    Das, Theerthankar; Kutty, Samuel K; Kumar, Naresh; Manefield, Mike

    2013-01-01

    Pyocyanin is an electrochemically active metabolite produced by the human pathogen Pseudomonas aeruginosa. It is a recognized virulence factor and is involved in a variety of significant biological activities including gene expression, maintaining fitness of bacterial cells and biofilm formation. It is also recognized as an electron shuttle for bacterial respiration and as an antibacterial and antifungal agent. eDNA has also been demonstrated to be a major component in establishing P. aeruginosa biofilms. In this study we discovered that production of pyocyanin influences the binding of eDNA to P. aeruginosa PA14 cells, mediated through intercalation of pyocyanin with eDNA. P. aeruginosa cell surface properties including cell size (hydrodynamic diameter), hydrophobicity and attractive surface energies were influenced by eDNA in the presence of pyocyanin, affecting physico-chemical interactions and promoting aggregation. A ΔphzA-G PA14 mutant, deficient in pyocynain production, could not bind with eDNA resulting in a reduction in hydrodynamic diameter, a decrease in hydrophobicity, repulsive physico-chemical interactions and reduction in aggregation in comparison to the wildtype strain. Removal of eDNA by DNase I treatment on the PA14 wildtype strain resulted in significant reduction in aggregation, cell surface hydrophobicity and size and an increase in repulsive physico-chemical interactions, similar to the level of the ΔphzA-G mutant. The cell surface properties of the ΔphzA-G mutant were not affected by DNase I treatment. Based on these findings we propose that pyocyanin intercalation with eDNA promotes cell-to-cell interactions in P. aeruginosa cells by influencing their cell surface properties and physico-chemical interactions. PMID:23505483

  16. Cholesterol Modifies Huntingtin Binding to, Disruption of, and Aggregation on Lipid Membranes.

    PubMed

    Gao, Xiang; Campbell, Warren A; Chaibva, Maxmore; Jain, Pranav; Leslie, Ashley E; Frey, Shelli L; Legleiter, Justin

    2016-01-12

    Huntington's disease (HD) is an inherited neurodegenerative disease caused by abnormally long CAG-repeats in the huntingtin gene that encode an expanded polyglutamine (polyQ) domain near the N-terminus of the huntingtin (htt) protein. Expanded polyQ domains are directly correlated to disease-related htt aggregation. Htt is found highly associated with a variety of cellular and subcellular membranes that are predominantly comprised of lipids. Since cholesterol homeostasis is altered in HD, we investigated how varying cholesterol content modifies the interactions between htt and lipid membranes. A combination of Langmuir trough monolayer techniques, vesicle permeability and binding assays, and in situ atomic force microscopy were used to directly monitor the interaction of a model, synthetic htt peptide and a full-length htt-exon1 recombinant protein with model membranes comprised of total brain lipid extract (TBLE) and varying amounts of exogenously added cholesterol. As the cholesterol content of the membrane increased, the extent of htt insertion decreased. Vesicles containing extra cholesterol were resistant to htt-induced permeabilization. Morphological and mechanical changes in the bilayer associated with exposure to htt were also drastically altered by the presence of cholesterol. Disrupted regions of pure TBLE bilayers were grainy in appearance and associated with a large number of globular aggregates. In contrast, morphological changes induced by htt in bilayers enriched in cholesterol were plateau-like with a smooth appearance. Collectively, these observations suggest that the presence and amount of cholesterol in lipid membranes play a critical role in htt binding and aggregation on lipid membranes. PMID:26652744

  17. Leptospira Immunoglobulin-Like Protein B (LigB) Binds to Both the C-Terminal 23 Amino Acids of Fibrinogen αC Domain and Factor XIII: Insight into the Mechanism of LigB-Mediated Blockage of Fibrinogen α Chain Cross-Linking

    PubMed Central

    Hsieh, Ching-Lin; Chang, Eric; Tseng, Andrew; Ptak, Christopher; Wu, Li-Chen; Su, Chun-Li; McDonough, Sean P.; Lin, Yi-Pin; Chang, Yung-Fu

    2016-01-01

    The coagulation system provides a primitive but effective defense against hemorrhage. Soluble fibrinogen (Fg) monomers, composed of α, β and γ chains, are recruited to provide structural support for the formation of a hemostatic plug. Fg binds to platelets and is processed into a cross-linked fibrin polymer by the enzymatic clotting factors, thrombin and Factor XIII (FXIII). The newly formed fibrin-platelet clot can act as barrier to protect against pathogens from entering the bloodstream. Further, injuries caused by bacterial infections can be confined to the initial wound site. Many pathogenic bacteria have Fg-binding adhesins that can circumvent the coagulation pathway and allow the bacteria to sidestep containment. Fg expression is upregulated during lung infection providing an attachment surface for bacteria with the ability to produce Fg-binding adhesins. Fg binding by leptospira might play a crucial factor in Leptospira-associated pulmonary hemorrhage, the main factor contributing to lethality in severe cases of leptospirosis. The 12th domain of Leptospira immunoglobulin-like protein B (LigB12), a leptospiral adhesin, interacts with the C-terminus of FgαC (FgαCC). In this study, the binding site for LigB12 was mapped to the final 23 amino acids at the C-terminal end of FgαCC (FgαCC8). The association of FgαCC8 with LigB12 (ELISA, KD = 0.76 μM; SPR, KD = 0.96 μM) was reduced by mutations of both charged residues (R608, R611 and H614 from FgαCC8; D1061 from LigB12) and hydrophobic residues (I613 from FgαCC8; F1054 and A1065 from LigB12). Additionally, LigB12 bound strongly to FXIII and also inhibited fibrin formation, suggesting that LigB can disrupt coagulation by suppressing FXIII activity. Here, the detailed binding mechanism of a leptospiral adhesin to a host hemostatic factor is characterized for the first time and should provide better insight into the pathogenesis of leptospirosis. PMID:27622634

  18. Leptospira Immunoglobulin-Like Protein B (LigB) Binds to Both the C-Terminal 23 Amino Acids of Fibrinogen αC Domain and Factor XIII: Insight into the Mechanism of LigB-Mediated Blockage of Fibrinogen α Chain Cross-Linking.

    PubMed

    Hsieh, Ching-Lin; Chang, Eric; Tseng, Andrew; Ptak, Christopher; Wu, Li-Chen; Su, Chun-Li; McDonough, Sean P; Lin, Yi-Pin; Chang, Yung-Fu

    2016-09-01

    The coagulation system provides a primitive but effective defense against hemorrhage. Soluble fibrinogen (Fg) monomers, composed of α, β and γ chains, are recruited to provide structural support for the formation of a hemostatic plug. Fg binds to platelets and is processed into a cross-linked fibrin polymer by the enzymatic clotting factors, thrombin and Factor XIII (FXIII). The newly formed fibrin-platelet clot can act as barrier to protect against pathogens from entering the bloodstream. Further, injuries caused by bacterial infections can be confined to the initial wound site. Many pathogenic bacteria have Fg-binding adhesins that can circumvent the coagulation pathway and allow the bacteria to sidestep containment. Fg expression is upregulated during lung infection providing an attachment surface for bacteria with the ability to produce Fg-binding adhesins. Fg binding by leptospira might play a crucial factor in Leptospira-associated pulmonary hemorrhage, the main factor contributing to lethality in severe cases of leptospirosis. The 12th domain of Leptospira immunoglobulin-like protein B (LigB12), a leptospiral adhesin, interacts with the C-terminus of FgαC (FgαCC). In this study, the binding site for LigB12 was mapped to the final 23 amino acids at the C-terminal end of FgαCC (FgαCC8). The association of FgαCC8 with LigB12 (ELISA, KD = 0.76 μM; SPR, KD = 0.96 μM) was reduced by mutations of both charged residues (R608, R611 and H614 from FgαCC8; D1061 from LigB12) and hydrophobic residues (I613 from FgαCC8; F1054 and A1065 from LigB12). Additionally, LigB12 bound strongly to FXIII and also inhibited fibrin formation, suggesting that LigB can disrupt coagulation by suppressing FXIII activity. Here, the detailed binding mechanism of a leptospiral adhesin to a host hemostatic factor is characterized for the first time and should provide better insight into the pathogenesis of leptospirosis. PMID:27622634

  19. Blood viscosity: influence of erythrocyte aggregation.

    PubMed

    Chien, S; Usami, S; Dellenback, R J; Gregersen, M I; Nanninga, L B; Guest, M M

    1967-08-18

    The addition of purified canine or bovine fibrinogen to suspensions of canine erythocytes in Ringer solution caused an increase in viscosity and the formation of aggregates of erythocytes. Both of these effects became increasingly pronounced as the fibrinogen concentration was raised, and they approached plateaus with 1 gram of fibrinogen per 100 milliliters. An increase in shear rate (or shear stress) reduced both the effect on viscosity and the aggregate size. The data suggest that fibrinogen causes an increase in blood viscosity and a departure from Newtonian behavior by interacting with erythrocytes to form cell aggregates which can be dispersed by shear stress. PMID:17842794

  20. Contribution of the interaction of Streptococcus mutans serotype k strains with fibrinogen to the pathogenicity of infective endocarditis.

    PubMed

    Nomura, Ryota; Otsugu, Masatoshi; Naka, Shuhei; Teramoto, Noboru; Kojima, Ayuchi; Muranaka, Yoshinori; Matsumoto-Nakano, Michiyo; Ooshima, Takashi; Nakano, Kazuhiko

    2014-12-01

    Streptococcus mutans, a pathogen responsible for dental caries, is occasionally isolated from the blood of patients with bacteremia and infective endocarditis (IE). Our previous study demonstrated that serotype k-specific bacterial DNA is frequently detected in S. mutans-positive heart valve specimens extirpated from IE patients. However, the reason for this frequent detection remains unknown. In the present study, we analyzed the virulence of IE from S. mutans strains, focusing on the characterization of serotype k strains, most of which are positive for the 120-kDa cell surface collagen-binding protein Cbm and negative for the 190-kDa protein antigen (PA) known as SpaP, P1, antigen I/II, and other designations. Fibrinogen-binding assays were performed with 85 clinical strains classified by Cbm and PA expression levels. The Cbm(+)/PA(-) group strains had significantly higher fibrinogen-binding rates than the other groups. Analysis of platelet aggregation revealed that SA31, a Cbm(+)/PA(-) strain, induced an increased level of aggregation in the presence of fibrinogen, while negligible aggregation was induced by the Cbm-defective isogenic mutant SA31CBD. A rat IE model with an artificial impairment of the aortic valve created using a catheter showed that extirpated heart valves in the SA31 group displayed a prominent vegetation mass not seen in those in the SA31CBD group. These findings could explain why Cbm(+)/PA(-) strains are highly virulent and are related to the development of IE, and the findings could also explain the frequent detection of serotype k DNA in S. mutans-positive heart valve clinical specimens. PMID:25287921

  1. [Mechanism of cooked blanched garlic leaves against platelet aggregation].

    PubMed

    Wang, Xin-Hua; Di, Yan-Hui

    2014-06-01

    This study was purposed to explore the mechanism of cooked blanched garlic leave juice against platelet aggregation. The juice of blanched garlic leaves was mixed with platelet rich plasma (PRP), the human platelet aggregation, the activation of human platelets induced by adenosine diphosphate (ADP) and collagen were observed; the expression levels of the activated platelets (Fib-R) and P-selectin (CD62P), and the amount of platelet fibrinogen binding were detected by flow cytometry; 10 rabbits were randomly divided into two groups, in addition to the normal diet, they were fed with physiologic saline and cooked blanched garlic leave juice respectively. After 1, 3, 5 , 8 weeks, the maximum ratio of rabbit platelet aggregation induced by ADP and collagen were observed . The results showed that the cooked blanched garlic leave juice could significantly inhibit human platelet aggregation induced by ADP and collagen (P < 0.05), the inhibitory ratio were 87.37% and 86.24% respectively; the juice could not inhibit activated platelets Fib-R and CD62P expression levels (P > 0.05), but was able to inhibit platelet fibrinogen binding capacity (P < 0.05); the rabbit platelet aggregation rate in the group given cooked blanched garlic leave juice was significantly lower than that in control group (P < 0.05). It is concluded that the cooked blanched garlic leave juice can inhibit platelet aggregation in vitro and in vivo, the inhibition of aggregation pathway mainly is blocking the combination of fibrinogen with Fib-R, which finally results in the inhibition of platelet aggregation. Therefore, regular consumption of cooked blanched garlic leaves may prevent cardiovascular thrombotic diseases. PMID:24989289

  2. [Mechanism of cooked blanched garlic leaves against platelet aggregation].

    PubMed

    Wang, Xin-Hua; Di, Yan-Hui

    2014-06-01

    This study was purposed to explore the mechanism of cooked blanched garlic leave juice against platelet aggregation. The juice of blanched garlic leaves was mixed with platelet rich plasma (PRP), the human platelet aggregation, the activation of human platelets induced by adenosine diphosphate (ADP) and collagen were observed; the expression levels of the activated platelets (Fib-R) and P-selectin (CD62P), and the amount of platelet fibrinogen binding were detected by flow cytometry; 10 rabbits were randomly divided into two groups, in addition to the normal diet, they were fed with physiologic saline and cooked blanched garlic leave juice respectively. After 1, 3, 5 , 8 weeks, the maximum ratio of rabbit platelet aggregation induced by ADP and collagen were observed . The results showed that the cooked blanched garlic leave juice could significantly inhibit human platelet aggregation induced by ADP and collagen (P < 0.05), the inhibitory ratio were 87.37% and 86.24% respectively; the juice could not inhibit activated platelets Fib-R and CD62P expression levels (P > 0.05), but was able to inhibit platelet fibrinogen binding capacity (P < 0.05); the rabbit platelet aggregation rate in the group given cooked blanched garlic leave juice was significantly lower than that in control group (P < 0.05). It is concluded that the cooked blanched garlic leave juice can inhibit platelet aggregation in vitro and in vivo, the inhibition of aggregation pathway mainly is blocking the combination of fibrinogen with Fib-R, which finally results in the inhibition of platelet aggregation. Therefore, regular consumption of cooked blanched garlic leaves may prevent cardiovascular thrombotic diseases.

  3. Biochemical and structural analysis of the interaction between β-amyloid and fibrinogen.

    PubMed

    Zamolodchikov, Daria; Berk-Rauch, Hanna E; Oren, Deena A; Stor, Daniel S; Singh, Pradeep K; Kawasaki, Masanori; Aso, Kazuyoshi; Strickland, Sidney; Ahn, Hyung Jin

    2016-08-25

    The majority of patients with Alzheimer disease (AD) suffer from impaired cerebral circulation. Accumulating evidence suggests that fibrinogen, the main protein component of blood clots, plays an important role in this circulatory dysfunction in AD. Fibrinogen interacts with β-amyloid (Aβ), forming plasmin-resistant abnormal blood clots, and increased fibrin deposition is found in the brains of AD patients and mouse models. In this study, we investigated the biochemical and structural details of the Aβ-fibrinogen interaction. We identified the central region of Aβ42 as the most critical region for the interaction, which can be inhibited by specific antibodies against the central region of Aβ and by naturally occurring p3 peptides, Aβ17-40 and Aβ17-42. X-ray crystallographic analysis revealed that Aβ42 binding to fragment D of fibrinogen induced a structural change in the C-terminal region of the fibrinogen β-chain (β384-393). Furthermore, we identified an additional Aβ-binding site within the αC region of fibrinogen. Aβ binding to this αC region blocked plasmin-mediated fibrin cleavage at this site, resulting in the generation of increased levels of a plasmin-resistant fibrin degradation fragment. Overall, our study elucidates the Aβ-fibrinogen interaction and clarifies the mechanism by which Aβ-fibrinogen binding delays fibrinolysis by plasmin. These results may facilitate the development of effective therapeutics against the Aβ-fibrinogen interaction to treat cerebrovascular abnormalities in AD. PMID:27389717

  4. Effect of the structure of bile salt aggregates on the binding of aromatic guests and the accessibility of anions.

    PubMed

    Li, Rui; Carpentier, Eric; Newell, Edward D; Olague, Lana M; Heafey, Eve; Yihwa, Chang; Bohne, Cornelia

    2009-12-15

    The binding of naphthalene (Np), 1-ethylnaphthalene (EtNp), acenaphthene (AcN), and 1-naphthyl-1-ethanol (NpOH) as guests to the aggregates of sodium cholate (NaCh), taurocholate (NaTC), deoxycholate (NaDC), and deoxytaurocholate (NaTDC) was studied with the objective of determining how the structure of the bile salts affects the binding dynamics of guests and quenchers with the bile salt aggregates. Time-resolved and steady-state fluorescence experiments were used to determine the binding efficiency of the guests with the aggregates and were also employed to investigate the quenching of the singlet excited state of the guests by iodide anions. Quenching studies of the triplet excited states using laser flash photolysis were employed to determine the accessibility to the aggregate of nitrite anions, used as quenchers, and the dissociation rate constants of the guests from the bile salt aggregates. The binding efficiency of the guests to NaDC and NaTDC is higher than for NaCh and NaTC, and the protection efficiency is also higher for NaDC and NaTDC, in line with the larger aggregates formed for the latter bile salts. The formation of aggregates is in part driven by the structure of the guest, where an increased protection efficiency and residence time can be achieved by the introduction of short alkyl substituents (AcN or EtNp vs Np). NpOH was shown to be located in a very different environment in all four bile salts when compared to AcN, EtNp, and Np, suggesting that hydrogen bonding plays an important role in the formation of the aggregate around NpOH. PMID:19606836

  5. von Willebrand factor binds to platelets and induces aggregation in platelet-type but not type IIB von Willebrand disease.

    PubMed Central

    Miller, J L; Kupinski, J M; Castella, A; Ruggeri, Z M

    1983-01-01

    Platelet-type von Willebrand disease (vWD) and pseudo-vWD are two recently described intrinsic platelet defects characterized by enhanced ristocetin-induced agglutination in platelet-rich plasma. A similar finding is also typical of type IIB vWD, where it has been related to a von Willebrand factor (vWF) rather than a platelet abnormality. Platelet aggregation induced by unmodified human vWF in the absence of other stimuli has been reported in pseudo-vWD. In this study we demonstrate that vWF induces aggregation in platelet-type but not type IIB vWD. Aggregation is observed when normal plasma cryoprecipitate or purified vWF are added to platelet-rich plasma. Cryoprecipitate also aggregates washed platelets, although at higher concentrations than required for platelet-rich plasma. Purified vWF, however, induces significant aggregation of washed platelets only when plasma is added. EDTA inhibits vWF-induced aggregation. Its effect can be overcome by calcium but much less effectively by magnesium ions. Unstimulated platelets in platelet-rich plasma from patients with platelet-type but not type IIB vWD bind 125I-vWF in a specific and saturable manner. All different sized multimers of vWF become associated with platelets. Both aggregation and binding exhibit a similar vWF concentration dependence, suggesting that a correlation exists between these two events. Removal of ADP by appropriate consuming systems is without effect upon such binding or upon vWF-induced aggregation. Thrombin-induced 125I-vWF binding to washed platelets is normal in platelet-type as well as type IIB vWD. These results demonstrate that a specific binding site for unmodified human vWF is exposed on unstimulated platelets in platelet-type vWD. The relatively high vWF concentrations required for aggregation and binding may explain the lack of significant in vivo aggregation and thrombocytopenia in these patients. Moreover, these studies provide additional evidence that platelet-type and type IIB v

  6. Nucleobases bind to and stabilize aggregates of a prebiotic amphiphile, providing a viable mechanism for the emergence of protocells

    PubMed Central

    Black, Roy A.; Blosser, Matthew C.; Stottrup, Benjamin L.; Tavakley, Ravi; Deamer, David W.; Keller, Sarah L.

    2013-01-01

    Primordial cells presumably combined RNAs, which functioned as catalysts and carriers of genetic information, with an encapsulating membrane of aggregated amphiphilic molecules. Major questions regarding this hypothesis include how the four bases and the sugar in RNA were selected from a mixture of prebiotic compounds and colocalized with such membranes, and how the membranes were stabilized against flocculation in salt water. To address these questions, we explored the possibility that aggregates of decanoic acid, a prebiotic amphiphile, interact with the bases and sugar found in RNA. We found that these bases, as well as some but not all related bases, bind to decanoic acid aggregates. Moreover, both the bases and ribose inhibit flocculation of decanoic acid by salt. The extent of inhibition by the bases correlates with the extent of their binding, and ribose inhibits to a greater extent than three similar sugars. Finally, the stabilizing effects of a base and ribose are additive. Thus, aggregates of a prebiotic amphiphile bind certain heterocyclic bases and sugars, including those found in RNA, and this binding stabilizes the aggregates against salt. These mutually reinforcing mechanisms might have driven the emergence of protocells. PMID:23901105

  7. FbsA-Driven Fibrinogen Polymerization: A Bacterial ``Deceiving Strategy''

    NASA Astrophysics Data System (ADS)

    Pierno, Matteo; Maravigna, Laura; Piazza, Roberto; Visai, Livia; Speziale, Pietro

    2006-01-01

    We show that FbsA, a cell wall protein of the bacterium Streptococcus agalactiae, promotes large-scale aggregation of human plasma fibrinogen, leading to the formation of a semiflexible polymerlike network. This extensive aggregation process takes place not only in solution, but also on FbsA-functionalized colloidal particles, and leads to the formation of a thick layer on the bacterial cell wall itself, which becomes an efficient mask against phagocytosis.

  8. The inhibitory effects of Escherichia coli maltose binding protein on β-amyloid aggregation and cytotoxicity.

    PubMed

    Sharoar, Md Golam; Shahnawaz, Md; Islam, Md Imamul; Ramasamy, Vijay Sankar; Shin, Song Yub; Park, Il-Seon

    2013-10-01

    The aggregation of β-amyloid (Aβ) peptide from its monomeric to its fibrillar form importantly contributes to the development of Alzheimer's disease. Here, we investigated the effects of Escherichia coli maltose binding protein (MBP), which has been previously used as a fusion protein, on Aβ42 fibrillization, in order to improve understanding of the self-assembly process and the cytotoxic mechanism of Aβ42. MBP, at a sub-stoichiometric ratio with respect to Aβ42, was found to have chaperone-like inhibitory effects on β-sheet fibril formation, due to the accumulation of Aβ42 aggregates by sequestration of active Aβ42 species as Aβ42-MBP complexes. Furthermore, MBP increased the lag time of Aβ42 polymerization, decreased the growth rate of fibril extension, and suppressed Aβ42 mediated toxicity in human neuroblastoma SH-SY5Y cells. It appears that MBP decreases the active concentration of Aβ42 by sequestering it as Aβ42-MBP complex, and that this sequestration suppresses ongoing nucleation and retards the growth rate of Aβ42 species required for fibril formation. We speculate that inhibition of the growth rate of potent Aβ42 species by MBP suppresses Aβ42-mediated toxicity in SH-SY5Y cells. PMID:23948569

  9. Interfacial binding and aggregation of lamin A tail domains associated with Hutchinson-Gilford progeria syndrome.

    PubMed

    Kalinowski, Agnieszka; Yaron, Peter N; Qin, Zhao; Shenoy, Siddharth; Buehler, Markus J; Lösche, Mathias; Dahl, Kris Noel

    2014-12-01

    Hutchinson-Gilford progeria syndrome is a premature aging disorder associated with the expression of ∆50 lamin A (∆50LA), a mutant form of the nuclear structural protein lamin A (LA). ∆50LA is missing 50 amino acids from the tail domain and retains a C-terminal farnesyl group that is cleaved from the wild-type LA. Many of the cellular pathologies of HGPS are thought to be a consequence of protein-membrane association mediated by the retained farnesyl group. To better characterize the protein-membrane interface, we quantified binding of purified recombinant ∆50LA tail domain (∆50LA-TD) to tethered bilayer membranes composed of phosphatidylserine and phosphocholine using surface plasmon resonance. Farnesylated ∆50LA-TD binds to the membrane interface only in the presence of Ca(2+) or Mg(2+) at physiological ionic strength. At extremely low ionic strength, both the farnesylated and non-farnesylated forms of ∆50LA-TD bind to the membrane surface in amounts that exceed those expected for a densely packed protein monolayer. Interestingly, the wild-type LA-TD with no farnesylation also associates with membranes at low ionic strength but forms only a single layer. We suggest that electrostatic interactions are mediated by charge clusters with a net positive charge that we calculate on the surface of the LA-TDs. These studies suggest that the accumulation of ∆50LA at the inner nuclear membrane observed in cells is due to a combination of aggregation and membrane association rather than simple membrane binding; electrostatics plays an important role in mediating this association.

  10. Interfacial binding and aggregation of lamin A tail domains associated with Hutchinson-Gilford progeria syndrome

    PubMed Central

    Kalinowski, Agnieszka; Yaron, Peter N.; Qin, Zhao; Shenoy, Siddharth; Buehler, Markus J.; Lösche, Mathias; Dahl, Kris Noel

    2014-01-01

    Hutchinson-Gilford progeria syndrome is a premature aging disorder associated with the expression of Δ50 lamin A (Δ50LA), a mutant form of the nuclear structural protein lamin A (LA). Δ50LA is missing 50 amino acids from the tail domain and retains a C-terminal farnesyl group that is cleaved from the wild-type LA. Many of the cellular pathologies of HGPS are thought to be a consequence of protein-membrane association mediated by the retained farnesyl group. To better characterize the protein-membrane interface, we quantified binding of purified recombinant Δ50LA tail domain (Δ50LA-TD) to tethered bilayer membranes composed of phosphatidylserine and phosphocholine using surface plasmon resonance. Farnesylated Δ50LATD binds to the membrane interface only in the presence of Ca2+ or Mg2+ at physiological ionic strength. At extremely low ionic strength, both the farnesylated and non-farnesylated forms of Δ50LA-TD bind to the membrane surface in amounts that exceed those expected for a densely packed protein monolayer. Interestingly, the wild-type LA-TD with no farnesylation also associates with membranes at low ionic strength but forms only a single layer. We suggest that electrostatic interactions are mediated by charge clusters with a net positive charge that we calculate on the surface of the LA-TDs. These studies suggest that the accumulation of Δ50LA at the inner nuclear membrane observed in cells is due to a combination of aggregation and membrane association rather than simple membrane binding; electrostatics plays an important role in mediating this association. PMID:25194277

  11. Fibrinogen up-regulates the expression of monocyte chemoattractant protein 1 in human saphenous vein endothelial cells.

    PubMed Central

    Harley, S L; Powell, J T

    1999-01-01

    High concentrations of fibrinogen in plasma have been associated with an increased risk of saphenous vein graft pathology. We have investigated the ability of fibrinogen to up-regulate the expression of monocyte chemoattractant protein 1 (MCP-1) in cultured human saphenous vein endothelial cells (HSVEC) isolated from saphenous vein. Increasing concentrations of fibrinogen (0-4 microM) stimulated a 20-fold increase in MCP-1 secretion within 4 h. Incubation of HSVEC with 2 microM fibrinogen for 4 h also caused a 2-fold increase in the MCP-1-to-glyceraldehyde-3-phosphate dehydrogenase mRNA ratio. The fibrinogen-mediated MCP-1 secretion fell to basal levels after preincubation of HSVEC with the complex of fibrinogen fragments D and E but remained unchanged after preincubation of HSVEC with either fibrinogen fragment E, s-ICAM-1 or the pentapeptide GRGDV. In contrast, fibrinogen fragment D acted as a potent inhibitor of fibrinogen-mediated MCP-1 secretion. Labelled fibrinogen fragment D bound to HSVEC with a K(d) of 6.5 microM. These findings indicate that fibrinogen, at physiological concentrations, uses an epitope on the fibrinogen D domain to bind to a receptor on HSVEC to up-regulate MCP-1 expression and secretion. This receptor seems to be distinct from intercellular adhesion molecule 1 and the integrins previously recognized as fibrinogen receptors. PMID:10417339

  12. The effect of fibrin(ogen) on thrombin generation and decay.

    PubMed

    Kremers, R M W; Wagenvoord, R J; Hemker, H C

    2014-09-01

    Defibrination causes a ~30% decrease of thrombin generation (TG) which can be restored by adding native fibrinogen in its original concentration (3 mg/ml). The fibrinogen variant γA/γ', which binds thrombin with high affinity, is over four times more efficient in this respect than the more common γA/γA form. By using high tissue factor concentrations we accelerated prothrombin conversion so as to obtain a descending part of the TG curve that was governed by thrombin decay only. From that part we calculated the antithrombin (AT)- and α2-macroglobulin-dependent decay constants at a series of concentrations of native, γA/γA and γA/γ' fibrinogen. We found that the increase of TG in the presence of fibrinogen is primarily due to a dose-dependent decrease of thrombin inactivation by α2-macroglobulin, where the γA/γ' form is much more active than the γA/γA form. AT-dependent decay is somewhat decreased by γA/γ' fibrinogen but hardly by the γA/γA form. We assume that binding of thrombin to fibrin(ogen) interferes with its binding to inhibitors. Attenuation of decay only in part explains the stimulating effect of fibrinogen on TG, as fibrinogen stimulates prothrombin conversion, regardless of the fibrinogen variant.

  13. The Assembly of Nonadhesive Fibrinogen Matrices Depends on the αC Regions of the Fibrinogen Molecule*

    PubMed Central

    Yermolenko, Ivan S.; Gorkun, Oleg V.; Fuhrmann, Alexander; Podolnikova, Nataly P.; Lishko, Valeryi K.; Oshkadyerov, Stanislav P.; Lord, Susan T.; Ros, Robert; Ugarova, Tatiana P.

    2012-01-01

    Adsorption of fibrinogen on fibrin clots and other surfaces strongly reduces integrin-mediated adhesion of platelets and leukocytes with implications for the surface-mediated control of thrombus growth and blood compatibility of biomaterials. The underlying mechanism of this process is surface-induced aggregation of fibrinogen, resulting in the assembly of a nanoscale multilayered matrix. The matrix is extensible, which makes it incapable of transducing strong mechanical forces via cellular integrins, resulting in insufficient intracellular signaling and weak cell adhesion. To determine the mechanism of the multilayer formation, the physical and adhesive properties of fibrinogen matrices prepared from human plasma fibrinogen (hFg), recombinant normal (rFg), and fibrinogen with the truncated αC regions (FgAα251) were compared. Using atomic force microscopy and force spectroscopy, we show that whereas hFg and rFg generated the matrices with a thickness of ∼8 nm consisting of 7–8 molecular layers, the deposition of FgAα251 was terminated at two layers, indicating that the αC regions are essential for the multilayer formation. The extensibility of the matrix prepared from FgAα251 was 2-fold lower than that formed from hFg and rFg. In agreement with previous findings that cell adhesion inversely correlates with the extensibility of the fibrinogen matrix, the less extensible FgAα251 matrix and matrices generated from human fibrinogen variants lacking the αC regions supported sustained adhesion of leukocytes and platelets. The persistent adhesiveness of matrices formed from fibrinogen derivatives without the αC regions may have implications for conditions in which elevated levels of these molecules are found, including vascular pathologies, diabetes, thrombolytic therapy, and dysfibrinogenemia. PMID:23086938

  14. Smoking, fibrinogen and cancer mortality.

    PubMed Central

    Everett, Charles J.; Wells, Brian J.; Frithsen, Ivar L.; Koopman, Richelle J.

    2007-01-01

    Associations of race, smoking history and fibrinogen levels with cancer mortality were investigated prospectively using the ARIC study. Our cohort consisted of 14,320 participants aged 45-64 at baseline. In an adjusted Cox regression, black current heavy smokers (> or = 15 cigarettes per day) demonstrated higher risk of respiratory/intrathoracic organ cancer mortality than nonblack current heavy smokers. Black former heavy smokers were also found to be at an increased risk of respiratory/intrathoracic organ cancer mortality when compared to nonblack former heavy smokers. Elevated fibrinogen levels were associated with an increased risk of respiratory/intrathoracic organ cancer mortality. Compared to fibrinogen < 259 mg/dl, fibrinogen 294-335 mg/dl had an adjusted hazard ratio of 3.68 (95% CI: 1.80-7.55), and fibrinogen > or = 336 mg/dl had an adjusted hazard ratio of 3.78 (95% CI: 1.84-7.75). Fibrinogen was also a predictor of other types of cancer mortality among black participants, but not among nonblack participants. For 10 race/smoking history categories, fibrinogen levels ranged from a mean of 287 mg/dl for nonblack former light smokers to a mean of 338 mg/dl for black current heavy smokers. Smokers had higher fibrinogen levels than nonsmokers, and black smokers had higher fibrinogen levels than nonblack smokers. Smoking carries high risks of cancer mortality for African Americans. A factor that needs to be considered in the overall assessment of risk is fibrinogen level, which has been linked to angiogenesis and metastases of tumors. PMID:17444421

  15. Fibrinogen stability under surfactant interaction.

    PubMed

    Hassan, Natalia; Barbosa, Leandro R S; Itri, Rosangela; Ruso, Juan M

    2011-10-01

    Differential scanning calorimetry (DSC), circular dichroism (CD), difference spectroscopy (UV-vis), Raman spectroscopy, and small-angle X-ray scattering (SAXS) measurements have been performed in the present work to provide a quantitatively comprehensive physicochemical description of the complexation between bovine fibrinogen and the sodium perfluorooctanoate, sodium octanoate, and sodium dodecanoate in glycine buffer (pH 8.5). It has been found that sodium octanoate and dodecanoate act as fibrinogen destabilizer. Meanwhile, sodium perfluorooctanoate acts as a structure stabilizer at low molar concentration and as a destabilizer at high molar concentration. Fibrinogen's secondary structure is affected by all three studied surfactants (decrease in α-helix and an increase in β-sheet content) to a different extent. DSC and UV-vis revealed the existence of intermediate states in the thermal unfolding process of fibrinogen. In addition, SAXS data analysis showed that pure fibrinogen adopts a paired-dimer structure in solution. Such a structure is unaltered by sodium octanoate and perfluoroctanoate. However, interaction of sodium dodecanoate with the fibrinogen affects the protein conformation leading to a complex formation. Taken together, all results evidence that both surfactant hydrophobicity and tail length mediate the fibrinogen stability upon interaction.

  16. O-GlcNAcylation modulates the self-aggregation ability of the fourth microtubule-binding repeat of tau

    SciTech Connect

    Yu, C.-H.; Si Tong; Wu Weihui; Hu Jia; Du Jintang; Zhao Yufen; Li Yanmei

    2008-10-10

    In Alzheimer's disease (AD), tau protein is abnormally hyperphosphorylated and aggregated into paired helical filaments (PHFs). It was discovered recently that tau is also O-GlcNAcylated in human brains. And O-GlcNAcylation may regulate phosphorylation of tau in a site-specific manner. In this work, we focused on the fourth microtubule-binding repeat (R4) of tau, which has an O-GlcNAcylation site-Ser356. The aggregation behavior of this repeat and its O-GlcNAcylated form was investigated by turbidity, precipitation assay and electron microscopy. In addition, conformations of these two peptides were analyzed with circular dichroism (CD). Our results revealed that O-GlcNAcylation at Ser356 could greatly slow down the aggregation speed of R4 peptide. This modulation of O-GlcNAcylation on tau aggregation implies a new perspective of tau pathology.

  17. Surface properties of fibrinogen and fibrin.

    PubMed

    van Oss, C J

    1990-08-01

    By contact angle measurements on layers of fibrinogen and fibrin, it can be shown that the transformation from fibrinogen to fibrin is accompanied by a change in surface properties from very hydrophilic (fibrinogen) to moderately but definitely hydrophobic (fibrin). It is also shown that, contrary to serum albumin and gamma globulin, fibrinogen does not become more hydrophobic upon drying.

  18. Aronia melanocarpa as a protector against nitration of fibrinogen.

    PubMed

    Bijak, Michał; Saluk, Joanna; Antosik, Adam; Ponczek, Michał B; Żbikowska, Halina M; Borowiecka, Marta; Nowak, Paweł

    2013-04-01

    Fibrinogen (Fg) also known as coagulation factor I represents about 4% of the total human plasma proteins. The main function of Fg is its involvement in last phase of blood coagulation cascade, when thrombin-induced conversion of dissolved plasma fibrinogen into an insoluble fibrin clot occurs. The reaction of fibrinogen with peroxynitrite causes both structural modifications and changes of the biological properties of this plasma glycoprotein. Recently, there is an increased interest in the screening of natural products present in fruits, vegetables and herbs for their possible antioxidative activities. Therefore, the aim of our study was to estimate the effect of extract from berries of Aronia melanocarpa against nitrative and oxidative damage induced by peroxynitrite. The extract from A. melanocarpa (0.5-50 μg/ml) added to Fg 10 min before peroxynitrite (100 μM) significantly inhibited both the formation of the high molecular weight protein aggregates and nitration of Fg molecule. The extract also abolished peroxynitrite-induced inhibition of fibrinogen polymerization (by 95% at 50 μg/ml). The obtained results indicate that natural extract from berries of A. melanocarpa has protective effects against peroxynitrite-induced nitrative damage of plasma fibrinogen, and therefore may contribute in the prevention of peroxynitrite-related cardiovascular or inflammatory diseases.

  19. Tracer diffusion inside fibrinogen layers.

    PubMed

    Cieśla, Michał; Gudowska-Nowak, Ewa; Sagués, Francesc; Sokolov, Igor M

    2014-01-28

    We investigate the obstructed motion of tracer (test) particles in crowded environments by carrying simulations of two-dimensional Gaussian random walk in model fibrinogen monolayers of different orientational ordering. The fibrinogen molecules are significantly anisotropic and therefore they can form structures where orientational ordering, similar to the one observed in nematic liquid crystals, appears. The work focuses on the dependence between level of the orientational order (degree of environmental crowding) of fibrinogen molecules inside a layer and non-Fickian character of the diffusion process of spherical tracer particles moving within the domain. It is shown that in general particles motion is subdiffusive and strongly anisotropic, and its characteristic features significantly change with the orientational order parameter, concentration of fibrinogens, and radius of a diffusing probe. PMID:25669566

  20. Hepatic fibrinogen storage disease due to the fibrinogen γ375 Arg → Trp mutation "fibrinogen Aguadilla" is present in Arabs.

    PubMed

    Al-Hussaini, Abdulrahman; Altalhi, Abdulhadi; El Hag, Imad; AlHussaini, Hussa; Francalanci, Paola; Giovannoni, Isabella; Callea, Francesco

    2014-01-01

    The mutation γ375Arg → Trp (fibrinogen Aguadilla) is one of four mutations (Brescia, Aguadilla, Angers, and AI duPont) capable of causing hepatic storage of fibrinogen. It has been observed in four children from the Caribbean, Europe, and Japan, suffering from cryptogenic liver disease. We report the first case of hepatic fibrinogen storage disease in Arabs due to a mutation in the fibrinogen γ-chain gene in a 3-year-old Syrian girl presenting with elevated liver enzymes. The finding of an impressive accumulation of fibrinogen in liver cells raised the suspicion of endoplasmic reticulum storage disease. Sequencing of the fibrinogen genes revealed a γ375Arg → Trp mutation (fibrinogen Aguadilla) in the child and in her father. In conclusion, when confronted with chronic hepatitis of unknown origin, one should check the plasma fibrinogen level and look carefully for the presence of hepatocellular intracytoplasmic globular inclusions to exclude hepatic fibrinogen storage disease.

  1. Ca(2+)-induced folding and aggregation of skeletal muscle sarcoplasmic reticulum calsequestrin. The involvement of the trifluoperazine-binding site.

    PubMed

    He, Z; Dunker, A K; Wesson, C R; Trumble, W R

    1993-11-25

    Calsequestrin is an intermediate affinity, high capacity Ca(2+)-binding protein found in the lumen of the sarcoplasmic reticulum of both skeletal and cardiac muscle cells. Previous sequence analysis suggested that calsequestrin may contain a hydrophobic binding site for the drug trifluoperazine, a site shared by the calmodulin family and shown to play a role in calmodulin/calmodulin receptor interaction. Previous studies showed that, upon Ca2+ binding, calsequestrin undergoes a conformational change, burying the trifluoperazine-binding site, folding into a more compact structure that is trypsin-resistant, and increasing the negative ellipticity of the circular dichroism spectrum. In this study, the structural and functional roles of the trifluoperazine-binding site in the Ca(2+)-induced conformational change of calsequestrin are further studied using the calmodulin antagonists trifluoperazine and melittin. If trifluoperazine or melittin is added to calsequestrin prior to Ca2+ addition, then Ca(2+)-induced folding is inhibited as determined by the changes in circular dichroism spectra and protein sensitivity to trypsin digestion. If, however, Ca2+ is added prior to trifluoperazine or melittin, calsequestrin remains resistant to trypsin digestion, just as if the calmodulin antagonists are not present, suggesting that the conformational change is not affected. Aggregates of calsequestrin that exhibit high Ca2+ binding capacity have previously been shown to occur at high Ca2+ and calsequestrin concentrations. By preventing a prerequisite folding step, trifluoperazine or melittin also prevents the Ca(2+)-induced aggregation of calsequestrin, thus decreasing the maximal Ca2+ binding by calsequestrin. These data suggest that the trifluoperazine-binding site is critically involved in the Ca(2+)-induced intramolecular folding step required for the intermolecular interactions leading to high capacity Ca(2+)-binding by calsequestrin.

  2. Fibrinopeptide A binds Gly-Pro-Arg-Pro.

    PubMed Central

    Root-Bernstein, R S; Westall, F C

    1984-01-01

    The tetrapeptide Gly-Pro-Arg-Pro inhibits fibrinogen aggregation, probably by binding to the same sites used during initiation of fibrin formation. The Gly-Pro-Arg-Pro binding sites have not yet been identified. However, their possible sequence and locations have been predicted on the basis of the amino acid pairing hypothesis. One of these predicted sites is on fibrinopeptide A. We report here that nuclear magnetic resonance studies indicate that Gly-Pro-Arg-Pro binds to fibrinopeptide A with a binding constant, K, of ca. 10(4) per mol. We also report results of 19 related peptide combinations used as controls. PMID:6589598

  3. Fibrinogen drives dystrophic muscle fibrosis via a TGFβ/alternative macrophage activation pathway

    PubMed Central

    Vidal, Berta; Serrano, Antonio L.; Tjwa, Marc; Suelves, Mònica; Ardite, Esther; De Mori, Roberta; Baeza-Raja, Bernat; Martínez de Lagrán, María; Lafuste, Peggy; Ruiz-Bonilla, Vanessa; Jardí, Mercè; Gherardi, Romain; Christov, Christo; Dierssen, Mara; Carmeliet, Peter; Degen, Jay L.; Dewerchin, Mieke; Muñoz-Cánoves, Pura

    2008-01-01

    In the fatal degenerative Duchenne muscular dystrophy (DMD), skeletal muscle is progressively replaced by fibrotic tissue. Here, we show that fibrinogen accumulates in dystrophic muscles of DMD patients and mdx mice. Genetic loss or pharmacological depletion of fibrinogen in these mice reduced fibrosis and dystrophy progression. Our results demonstrate that fibrinogen–Mac-1 receptor binding, through induction of IL-1β, drives the synthesis of transforming growth factor-β (TGFβ) by mdx macrophages, which in turn induces collagen production in mdx fibroblasts. Fibrinogen-produced TGFβ further amplifies collagen accumulation through activation of profibrotic alternatively activated macrophages. Fibrinogen, by engaging its αvβ3 receptor on fibroblasts, also directly promotes collagen synthesis. These data unveil a profibrotic role of fibrinogen deposition in muscle dystrophy. PMID:18593877

  4. Venous ulceration, fibrinogen and fibrinolysis.

    PubMed Central

    Leach, R. D.

    1984-01-01

    The effect of long and short-term venous hypertension upon lymph fibrinogen concentrations was studied in an attempt to explain the peri-capillary deposition of fibrin reported in patients with post-phlebitic syndromes. The clearance of radioactive fibrinogen/thrombin clots from the subcutaneous tissues of rats and human volunteers was also studied. Both long- and short-term venous hypertension were found to increase fibrinogen transport across the interstitial space by more than 600%. Not only was there evidence of fibrinolytic activity in the lymph but after long-term venous hypertension alpha 2 antiplasmin activity was also detectable. Skin biopsies from the venous hypertensive ankles showed deposition of interstitial fibrin. The clearance of radioactive fibrinogen/thrombin clots from the subcutaneous tissues of the rat was found to be delayed if the rats were given epsilon amino caproic acid but it could not be increased with stanozolol. In human subjects it was found that patients with lipodermatosclerosis had delayed clot clearance and retarded blood fibrinolytic activity when compared with normal volunteers and patients with uncomplicated varicose veins. The principle cause why tall men are more subject to ulcers than short men, Dr Young conceived to be then length of the column of blood in their veins; which by its pressure, renders the legs less able to recover when hurt by any violence. Images Fig. 1 Fig. 2 Fig. 5 PMID:6742738

  5. Tom40 protein import channel binds to non-native proteins and prevents their aggregation.

    PubMed

    Esaki, Masatoshi; Kanamori, Takashi; Nishikawa, Shuh-ichi; Shin, Injae; Schultz, Peter G; Endo, Toshiya

    2003-12-01

    Mitochondria contain the translocator of the outer mitochondrial membrane (TOM) for protein entry into the organelle, and its subunit Tom40 forms a protein-conducting channel. Here we report the role of Tom40 in protein translocation across the membrane. The site-specific photocrosslinking experiment revealed that translocating unfolded or loosely folded precursor segments of up to 90 residues can be associated with Tom40. Purified Tom40 bound to non-native proteins and suppressed their aggregation when they are prone to aggregate. A denatured protein bound to the Tom40 channel blocked the protein import into mitochondria. These results indicate that, in contrast to the nonstick tunnel of the ribosome for polypeptide exit, the Tom40 channel offers an optimized environment to translocating non-native precursor proteins by preventing their aggregation.

  6. Purification and amino acid sequence of halystase from snake venom of Agkistrodon halys blomhoffii, a serine protease that cleaves specifically fibrinogen and kininogen.

    PubMed

    Matsui, T; Sakurai, Y; Fujimura, Y; Hayashi, I; Oh-Ishi, S; Suzuki, M; Hamako, J; Yamamoto, Y; Yamazaki, J; Kinoshita, M; Titani, K

    1998-03-15

    We have isolated a serine protease, halystase, from Agkistrodon halys blomhoffii venom by chromatography on DEAE-Sepharose, heparin-Sepharose and Q-Sepharose columns, and have determined the complete amino acid sequence by Edman degradation and by mass spectral analysis of peptides generated by enzymatic and chemical cleavage. The 238-residue sequence of halystase, containing N-linked carbohydrates (about 13%) at two sites showed significant similarity to other thrombin-like snake venom serine proteases (66-72%), mammalian tissue kallikrein (42%) and thrombin (26%). Halystase contained the tentative catalytic triad of His43, Asp88 and Ser184 common to all serine proteases and Asp178 in the primary substrate-binding site. Although halystase contained an RGD sequence at residues 181-183, it did not inhibit platelet aggregation induced by ADP or collagen. It hydrolyzed most efficiently a tissue-kallikrein substrate, prolylphenylalanylarginyl-4-methyl-coumaryl-7-amide, and released bradykinin from bovine kininogen. Halystase did not coagulate human plasma, but it cleaved the fibrinogen B beta chain at the carboxyl side of Arg42 and cleaved slowly the fibrogen A alpha chain. Fibrinogen thus treated gradually became insensitive to thrombin. The proteolytic activity was inhibited with diisopropyl fluorophosphate, phenylmethylsulfonyl fluoride or leupeptin. These results indicate that halystase is a serine protease structurally similar to coagulating thrombin-like snake venom proteases, but it specifically cleaves fibrinogen at sites different from thrombin without inducing fibrin clotting, and hydrolyzes kininogen to produce bradykinin, resulting in the reduction of blood pressure.

  7. Mechanistic aspects of thioflavin-T self-aggregation and DNA binding: evidence for dimer attack on DNA grooves.

    PubMed

    Biancardi, A; Biver, T; Burgalassi, A; Mattonai, M; Secco, F; Venturini, M

    2014-10-01

    Thioflavin-T (TFT) is a fluorescent marker widely employed in biomedical research but the mechanism of its binding to polynucleotides has been poorly understood. This paper presents a study of the mechanisms of TFT self-aggregation and binding to DNA. Relaxation kinetics of TFT solutions show that the cyanine undergoes dimerization followed by dimer isomerisation. The interaction of TFT with DNA has been investigated using static methods, such as spectrophotometric and spectrofluorometric titrations under different conditions (salt content, temperature), fluorescence quenching, viscometric experiments and the T-jump relaxation method. The combined use of these techniques enabled us to show that the TFT monomer undergoes intercalation between the DNA base pairs and external binding according to a branched mechanism. Moreover, it has also been observed that, under dye excess conditions, the TFT dimer binds to the DNA grooves. The molecular structures of intercalated TFT and the groove-bound TFT dimer are obtained by performing QM/MM MD simulations. PMID:25130260

  8. Human α-Defensins Inhibit BK Virus Infection by Aggregating Virions and Blocking Binding to Host Cells*

    PubMed Central

    Dugan, Aisling S.; Maginnis, Melissa S.; Jordan, Joslynn A.; Gasparovic, Megan L.; Manley, Kate; Page, Rebecca; Williams, Geoffrey; Porter, Edith; O'Hara, Bethany A.; Atwood, Walter J.

    2008-01-01

    BK virus (BKV) is a polyomavirus that establishes a lifelong persistence in most humans and is a major impediment to success of kidney grafts. The function of the innate immune system in BKV infection and pathology has not been investigated. Here we examine the role of antimicrobial defensins in BKV infection of Vero cells. Our data show that α-defensin human neutrophil protein 1 (HNP1) and human α-defensin 5 (HD5) inhibit BKV infection by targeting an early event in the viral lifecycle. HD5 treatment of BKV reduced viral attachment to cells, whereas cellular treatment with HD5 did not. Colocalization studies indicated that HD5 interacts directly with BKV. Ultrastructural analysis revealed HD5-induced aggregation of virions. HD5 also inhibited infection of cells by other related polyomaviruses. This is the first study to demonstrate polyomavirus sensitivity to defensins. We also show a novel mechanism whereby HD5 binds to BKV leading to aggregation of virion particles preventing normal virus binding to the cell surface and uptake into cells. PMID:18782756

  9. Electrolyte Cations Binding with Extracellular Polymeric Substances Enhanced Microcystis Aggregation: Implication for Microcystis Bloom Formation in Eutrophic Freshwater Lakes.

    PubMed

    Xu, Huacheng; Lv, Hua; Liu, Xin; Wang, Peifang; Jiang, Helong

    2016-09-01

    The hydrodynamic and structural properties of Microcystis extracellular polymeric substances (EPS) in electrolytes with different valences and ionic strengths were investigated via using dynamic light scattering, the fluorescence excitation emission matrix coupled with parallel factor (EEM-PARAFAC) analysis, two-dimensional correlation spectroscopy (2D-COS), and cryogenic transmission electron microscopy (Cryo-TEM). The hydrodynamic diameters of EPS colloids exhibited no variation for monovalent NaCl but a substantial increase for divalent CaCl2 and MgCl2. However, the negative electrophoretic mobilities for all complexes indicated that charge neutralization would not be the main mechanism for EPS aggregation. Application of EEM-PARAFAC and 2D-Fourier transform infrared (FTIR)-COS revealed obvious electrolyte binding potential with both fluorescent phenolic and aromatic compounds and nonfluorescent polysaccharides. The complexation model showed that divalent Ca(2+) and Mg(2+) exhibited a strong binding capability with phenolic -OH, aromatic C═C, and polysaccharide C-O groups, while the monovalent electrolyte exhibited negligible association with these groups. Such a strong complexation can bridge each individual biomolecule together to form EPS aggregates and Microcystis colonies, as supported by in situ Cryo-TEM and light microscope observation, respectively. Given the increased concentration in natural ecosystems, electrolyte cations, especially divalent cations, would play increased roles in Microcystis bloom formation and thus should be considered. PMID:27502019

  10. Effect of protein thermo aggregation on the binding of BSA to gelatin type A.

    PubMed

    Antonov, Y A; Zhuravleva, I L

    2013-02-01

    We study the effect of limited heat-induced aggregation of BSA on structure development in the water-gelatin-thermally aggregated BSA (BSA(TA)) system. The pH is set at 5.4 and the temperature is higher than the conformation transition temperature of gelatin, but lower than the denaturation temperature of BSA. Dynamic light scattering, circular dichroism, and fluorescence measurements are used to monitor structure changes. Interaction of gelatin with BSA(TA) leads to formation of large complex particles with an average radius ∼1500 nm. BSA-gelatin complex formation accompanies partial destabilization of the secondary and tertiary structures of BSA and an additional exposure of hydrophobic tryptophan residues on the surface of the globule. It is shown that electrostatic interaction of the oppositely charged groups of BSA(TA) and gelatin is responsible for formation of such complex particles, whereas the secondary forces (hydrophobic interaction and hydrogen bonds) play an important role in stabilization of the complex particles. The zeta potentials of the native and the thermally aggregated BSA samples were determined, and the solvent quality has been quantified by determining the activity of the protein samples in their saturated solutions. It was shown that steric reasons (large size of the thermally aggregated BSA(TA) particles), and uncomplete charge compensation of the positively charged gelatin molecules by the negatively charged BSA(TA) particles are the main factors in determining structure formation, while the levels of the activity of the native BSA and BSA(TA) have a smaller effect on the structure of complex.

  11. A critical role for the regulation of Syk from agglutination to aggregation in human platelets.

    PubMed

    Shih, Chun-Ho; Chiang, Tin-Bin; Wang, Wen-Jeng

    2014-01-10

    Agglucetin, a tetrameric glycoprotein (GP) Ibα agonist from Formosan Agkistrodon acutus venom, has been characterized as an agglutination inducer in human washed platelets (WPs). In platelet-rich plasma (PRP), agglucetin dramatically elicits a biphasic response of agglutination and subsequent aggregation. For clarifying the intracellular signaling events from agglutination to aggregation in human platelets, we examined the essential signaling molecules involved through the detection of protein tyrosine phosphorylation (PTP). In WPs, an anti-GPIbα monoclonal antibody (mAb) AP1, but not a Src kinase inhibitor PP1, completely inhibited agglucetin-induced agglutination. However, PP1 but not AP1 had a potent suppression on platelet aggregation by a GPVI activator convulxin. The PTP analyses showed agglucetin alone can cause a weak pattern involving sequential phosphorylation of Lyn/Fyn, Syk, SLP-76 and phospholipase Cγ2 (PLCγ2). Furthermore, a Syk-selective kinase inhibitor, piceatannol, significantly suppressed the aggregating response in agglucetin-activated PRP. Analyzed by flow cytometry, the binding capacity of fluorophore-conjugated PAC-1, a mAb recognizing activated integrin αIIbβ3, was shown to increase in agglucetin-stimulated platelets. Again, piceatannol but not PP1 had a concentration-dependent suppression on agglucetin-induced αIIbβ3 exposure. Moreover, the formation of signalosome, including Syk, SLP-76, VAV, adhesion and degranulation promoting adapter protein (ADAP) and PLCγ2, are required for platelet aggregation in agglucetin/fibrinogen-activated platelets. In addition, GPIbα-ligation via agglucetin can substantially promote the interactions between αIIbβ3 and fibrinogen. Therefore, the signal pathway of Lyn/Fyn/Syk/SLP-76/ADAP/VAV/PLCγ2/PKC is sufficient to trigger platelet aggregation in agglucetin/fibrinogen-pretreated platelets. Importantly, Syk may function as a major regulator for the response from GPIbα-initiated agglutination to

  12. A critical role for the regulation of Syk from agglutination to aggregation in human platelets.

    PubMed

    Shih, Chun-Ho; Chiang, Tin-Bin; Wang, Wen-Jeng

    2014-01-10

    Agglucetin, a tetrameric glycoprotein (GP) Ibα agonist from Formosan Agkistrodon acutus venom, has been characterized as an agglutination inducer in human washed platelets (WPs). In platelet-rich plasma (PRP), agglucetin dramatically elicits a biphasic response of agglutination and subsequent aggregation. For clarifying the intracellular signaling events from agglutination to aggregation in human platelets, we examined the essential signaling molecules involved through the detection of protein tyrosine phosphorylation (PTP). In WPs, an anti-GPIbα monoclonal antibody (mAb) AP1, but not a Src kinase inhibitor PP1, completely inhibited agglucetin-induced agglutination. However, PP1 but not AP1 had a potent suppression on platelet aggregation by a GPVI activator convulxin. The PTP analyses showed agglucetin alone can cause a weak pattern involving sequential phosphorylation of Lyn/Fyn, Syk, SLP-76 and phospholipase Cγ2 (PLCγ2). Furthermore, a Syk-selective kinase inhibitor, piceatannol, significantly suppressed the aggregating response in agglucetin-activated PRP. Analyzed by flow cytometry, the binding capacity of fluorophore-conjugated PAC-1, a mAb recognizing activated integrin αIIbβ3, was shown to increase in agglucetin-stimulated platelets. Again, piceatannol but not PP1 had a concentration-dependent suppression on agglucetin-induced αIIbβ3 exposure. Moreover, the formation of signalosome, including Syk, SLP-76, VAV, adhesion and degranulation promoting adapter protein (ADAP) and PLCγ2, are required for platelet aggregation in agglucetin/fibrinogen-activated platelets. In addition, GPIbα-ligation via agglucetin can substantially promote the interactions between αIIbβ3 and fibrinogen. Therefore, the signal pathway of Lyn/Fyn/Syk/SLP-76/ADAP/VAV/PLCγ2/PKC is sufficient to trigger platelet aggregation in agglucetin/fibrinogen-pretreated platelets. Importantly, Syk may function as a major regulator for the response from GPIbα-initiated agglutination to

  13. Fibrinogen Is at the Interface of Host Defense and Pathogen Virulence in Staphylococcus aureus Infection.

    PubMed

    Ko, Ya-Ping; Flick, Matthew J

    2016-06-01

    Fibrinogen not only plays a pivotal role in hemostasis but also serves key roles in antimicrobial host defense. As a rapidly assembled provisional matrix protein, fibrin(ogen) can function as an early line of host protection by limiting bacterial growth, suppressing dissemination of microbes to distant sites, and mediating host bacterial killing. Fibrinogen-mediated host antimicrobial activity occurs predominantly through two general mechanisms, namely, fibrin matrices functioning as a protective barrier and fibrin(ogen) directly or indirectly driving host protective immune function. The potential of fibrin to limit bacterial infection and disease has been countered by numerous bacterial species evolving and maintaining virulence factors that engage hemostatic system components within vertebrate hosts. Bacterial factors have been isolated that simply bind fibrinogen or fibrin, promote fibrin polymer formation, or promote fibrin dissolution. Staphylococcus aureus is an opportunistic gram-positive bacterium, the causative agent of a wide range of human infectious diseases, and a prime example of a pathogen exquisitely sensitive to host fibrinogen. Indeed, current data suggest fibrinogen serves as a context-dependent determinant of host defense or pathogen virulence in Staphylococcus infection whose ultimate contribution is dictated by the expression of S. aureus virulence factors, the path of infection, and the tissue microenvironment. PMID:27056151

  14. Fibrinogen-Related Proteins (FREPs) in Mollusks.

    PubMed

    Adema, Coen M

    2015-01-01

    Anti-parasite responses of the snail Biomphalaria glabrata involve antigen-reactive plasma lectins termed fibrinogen-related proteins (FREPs) comprising a C-terminal fibrinogen (FBG) domain and one or two upstream immunoglobulin domains. FREPs are highly polymorphic; they derive from several gene families with multiple loci and alleles that are diversified by exon loss, alternative splicing, and random somatic mutation (gene conversion and point mutations). Individual B. glabrata snails have dynamically distinct FREP sequence repertoires. The immune relevance of B. glabrata FREPs is indicated by FREP binding to polymorphic antigens of (snail-specific) digenean parasites and altered resistance of B. glabrata to digeneans following RNAi knockdown of FREPs. The compatibility polymorphism hypothesis proposes that FREP mutation increases the range of germline-encoded immune recognition in B. glabrata to counter antigenically-varied parasites. Somatic mutation may result from sequence exchange among tandemly arranged FREP genes in the genome, and analysis of sequence variants also suggests involvement of cytidine deaminase-like activity or epigenetic regulation. Without current indications of selection or retention of effective sequence variants toward immunological memory, FREP diversification is thought to afford B. glabrata immunity that is anticipatory but not adaptive. More remains to be learned about this system; other mollusks elaborate diversified lectins consisting of single FBG domains, and bona fide FREPs were reported from additional gastropod species, but these may not be diversified. Future comparative immunological studies and gene discovery driven by next-generation sequencing will further clarify taxonomic distribution of FREP diversification and the underlying mutator mechanisms as a component of immune function in mollusks. PMID:26537379

  15. [Micromethod for the determination of heat fibrinogen].

    PubMed

    Rogner, G

    1976-01-01

    Description of a micromethod for determining heat fibrinogen where 0.06 to 0.08 ml of citrate plasma are only required. The results are similar to those of the heat fibrinogen method according to SCHULZ, yet they are by 15% below the average values of the Biuret test. The method is particularly suited as a quick orientating determination of fibrinogen for paediatrics and neonatology. A time of 30 minutes approximately is required for it.

  16. Endocannabinoids Control Platelet Activation and Limit Aggregate Formation under Flow

    PubMed Central

    De Angelis, Valentina; Koekman, Arnold C.; Weeterings, Cees; Roest, Mark; de Groot, Philip G.; Herczenik, Eszter; Maas, Coen

    2014-01-01

    Background The endocannabinoid system has previously been implicated in the regulation of neurons and inflammatory cells. Additionally, it has been reported that endocannabinoid receptors are present on circulating platelets, but there has been conflicting evidence on their contribution to platelet function. Objectives Our aim was to examine the role of endocannabinoids in platelet function in vitro and in vivo. Methods and Results We studied the effects of the well-characterized endogenous endocannabinoid anandamide on platelet aggregation in suspension, α-granule release, calcium mobilization, Syk phosphorylation, as well as platelet spreading and aggregate formation under flow. Anandamide inhibits platelet aggregation and α-granule release by collagen, collagen-derived peptide CRP-XL, ADP, arachidonic acid and thromboxane A2 analogue U46619. However, activation via thrombin receptor PAR-1 stays largely unaffected. Calcium mobilization is significantly impaired when platelets are stimulated with collagen or CRP-XL, but remains normal in the presence of the other agonists. In line with this finding, we found that anandamide prevents collagen-induced Syk phosphorylation. Furthermore, anandamide-treated platelets exhibit reduced spreading on immobilized fibrinogen, have a decreased capacity for binding fibrinogen in solution and show perturbed platelet aggregate formation under flow over collagen. Finally, we investigated the influence of Cannabis sativa consumption by human volunteers on platelet activation. Similar to our in vitro findings with anandamide, ex vivo collagen-induced platelet aggregation and aggregate formation on immobilized collagen under flow were impaired in whole blood of donors that had consumed Cannabis sativa. Conclusions Endocannabinoid receptor agonists reduce platelet activation and aggregate formation both in vitro and ex vivo after Cannabis sativa consumption. Further elucidation of this novel regulatory mechanism for platelet function

  17. Mice expressing a mutant form of fibrinogen that cannot support fibrin formation exhibit compromised antimicrobial host defense

    PubMed Central

    Prasad, Joni M.; Gorkun, Oleg V.; Raghu, Harini; Thornton, Sherry; Mullins, Eric S.; Palumbo, Joseph S.; Ko, Ya-Ping; Höök, Magnus; David, Tovo; Coughlin, Shaun R.; Degen, Jay L.

    2015-01-01

    Fibrin(ogen) is central to hemostasis and thrombosis and also contributes to multiple physiologic and pathologic processes beyond coagulation. However, the precise contribution of soluble fibrinogen vs insoluble fibrin matrices to vascular integrity, tissue repair, inflammation, and disease has been undefined and unapproachable. To establish the means to distinguish fibrinogen- and fibrin-dependent processes in vivo, FibAEK mice were generated that carry normal levels of circulating fibrinogen but lack the capacity for fibrin polymer formation due to a germ-line mutation in the Aα chain thrombin cleavage site. Homozygous FibAEK mice developed to term and exhibited postnatal survival superior to that of fibrinogen-deficient mice. Unlike fibrinogen-deficient mice, platelet-rich plasma from FibAEK mice supported normal platelet aggregation in vitro, highlighting that fibrinogenAEK retains the functional capacity to support interactions with platelets. Thrombin failed to release fibrinopeptide-A from fibrinogenAEK and failed to induce polymer formation with FibAEK plasma or purified fibrinogenAEK in 37°C mixtures regardless of incubation time. FibAEK mice displayed both an absence of fibrin polymer formation following liver injury, as assessed by electron microscopy, and a failure to generate stable occlusive thrombi following FeCl3 injury of carotid arteries. FibAEK mice exhibited a profound impediment in Staphylococcus aureus clearance following intraperitoneal infection similar to fibrinogen-deficient mice, yet FibAEK mice displayed a significant infection dose-dependent survival advantage over fibrinogen-deficient mice following peritonitis challenge. Collectively, these findings establish for the first time that fibrin polymer is the molecular form critical for antimicrobial mechanisms while simultaneously highlighting biologically meaningful contributions and functions of the soluble molecule. PMID:26228483

  18. Mice expressing a mutant form of fibrinogen that cannot support fibrin formation exhibit compromised antimicrobial host defense.

    PubMed

    Prasad, Joni M; Gorkun, Oleg V; Raghu, Harini; Thornton, Sherry; Mullins, Eric S; Palumbo, Joseph S; Ko, Ya-Ping; Höök, Magnus; David, Tovo; Coughlin, Shaun R; Degen, Jay L; Flick, Matthew J

    2015-10-22

    Fibrin(ogen) is central to hemostasis and thrombosis and also contributes to multiple physiologic and pathologic processes beyond coagulation. However, the precise contribution of soluble fibrinogen vs insoluble fibrin matrices to vascular integrity, tissue repair, inflammation, and disease has been undefined and unapproachable. To establish the means to distinguish fibrinogen- and fibrin-dependent processes in vivo, Fib(AEK) mice were generated that carry normal levels of circulating fibrinogen but lack the capacity for fibrin polymer formation due to a germ-line mutation in the Aα chain thrombin cleavage site. Homozygous Fib(AEK) mice developed to term and exhibited postnatal survival superior to that of fibrinogen-deficient mice. Unlike fibrinogen-deficient mice, platelet-rich plasma from Fib(AEK) mice supported normal platelet aggregation in vitro, highlighting that fibrinogen(AEK) retains the functional capacity to support interactions with platelets. Thrombin failed to release fibrinopeptide-A from fibrinogen(AEK) and failed to induce polymer formation with Fib(AEK) plasma or purified fibrinogen(AEK) in 37°C mixtures regardless of incubation time. Fib(AEK) mice displayed both an absence of fibrin polymer formation following liver injury, as assessed by electron microscopy, and a failure to generate stable occlusive thrombi following FeCl3 injury of carotid arteries. Fib(AEK) mice exhibited a profound impediment in Staphylococcus aureus clearance following intraperitoneal infection similar to fibrinogen-deficient mice, yet Fib(AEK) mice displayed a significant infection dose-dependent survival advantage over fibrinogen-deficient mice following peritonitis challenge. Collectively, these findings establish for the first time that fibrin polymer is the molecular form critical for antimicrobial mechanisms while simultaneously highlighting biologically meaningful contributions and functions of the soluble molecule. PMID:26228483

  19. Urinary fibrinogen and renal tubulointerstitial fibrinogen deposition: Discriminating between primary FSGS and minimal change disease.

    PubMed

    Wang, Yu; Zheng, Chunxia; Xu, Feng; Liu, Zhihong

    2016-09-23

    Primary focal segmental glomerulosclerosis (FSGS) and minimal change disease (MCD) are common types of primary glomerular disease; they share numerous clinical and pathological similarities but have different treatment regimens and prognoses. It is therefore necessary to distinguish between them and to explore the mechanism underlying their differences. Fibrinogen is reportedly involved in podocyte damage and in renal fibrosis in vitro and in animal models of kidney disease. We thus tested urinary fibrinogen, serum fibrinogen, and renal fibrinogen deposition levels in a cohort comprising 50 patients with FSGS and 40 patients with MCD. Our results suggested that urinary fibrinogen and renal interstitial fibrinogen deposition levels were significantly higher in the FSGS patients than in the MCD patients, while serum fibrinogen levels did not differ between the groups. Receiver operating characteristic (ROC) curve analysis showed an excellent diagnostic ability for urinary fibrinogen and a fair diagnostic ability for tubulointerstitial fibrinogen deposition in differentiating FSGS from MCD. Additionally, we found that urinary fibrinogen levels were positively correlated with the 24-h urine protein levels in patients with FSGS but not in patients with MCD. In conclusion, urinary fibrinogen and renal interstitial fibrinogen deposition is elevated in primary FSGS compared to MCD, which may be relevant to both diagnosis and pathogenesis.

  20. Discrimination between Fibrin and Fibrinogen by a Monoclonal Antibody against a Synthetic Peptide

    NASA Astrophysics Data System (ADS)

    Scheefers-Borchel, Ursula; Muller-Berghaus, Gert; Fuhge, Peter; Eberle, Reinhard; Heimburger, Nobert

    1985-10-01

    Circulating soluble fibrin, observed in the blood of patients with ongoing intravascular coagulation, is generated from the plasma protein fibrinogen by the limited proteolytic action of thrombin. We report the production of a monoclonal antibody that discriminates between fibrin and fibrinogen in blood. The synthetic hexapeptide Gly-Pro-Arg-Val-Val-Glu, representing the amino terminus of the α chain of human fibrin, was used as immunogen. This hexapeptide is located within the Aα chain of fibrinogen but becomes the amino terminus of the fibrin α chain, after fibrinopeptide A is removed by the action of thrombin, and thus becomes accessible for antibody binding. The monoclonal antibody we have prepared can discriminate between fibrin and fibrinogen and thus can be used in assay systems to quantitate soluble fibrin or, potentially, to image fibrin-rich thrombi.

  1. Molecular interactions of different size AuNP-COOH nanoparticles with human fibrinogen.

    PubMed

    Deng, Jun; Sun, Mingcong; Zhu, Jiyu; Gao, Changyou

    2013-09-01

    Protein adsorption influences greatly the performance of materials used in biotechnology and biomedicine. The binding of fibrinogen (Fg) to nanoparticles (NPs) can result in protein unfolding and exposure of cryptic epitopes that subsequently interact with cell surface receptors. The response and its degree are dependent on the size, charge, and concentration of the NPs. In this study the binding kinetics of human Fg to negatively charged 11-mercaptoundecanoic acid-functionalized gold nanoparticles (AuNPs-COOH) ranging from 5.6 to 64.5 nm were examined. The larger NPs bound Fg with a larger number of proteins per square unit and a higher dissociation rate (Kd'), but with decreased affinity. By contrast, the 5.6 nm AuNPs-COOH behaved in a cooperative manner for Fg adsorption. In the presence of excess Fg, only the 64.5 nm AuNPs-COOH showed severe aggregation, whose degree was alleviated in a dilute Fg solution. The Fg is adsorbed through a side-on configuration and both side-on and end-on configurations on the smaller (5.6 and 14.2 nm) and 31.5 nm AuNPs-COOH, respectively. It also retains the native conformation. By contrast, on the 64.5 nm AuNPs-COOH the Fg adopts the end-on configuration and loses most of the secondary structure.

  2. Selection of DNA nanoparticles with preferential binding to aggregated protein target

    PubMed Central

    Ruff, Laura E.; Sapre, Ajay A.; Plaut, Justin S.; De Maere, Elisabeth; Mortier, Charlotte; Nguyen, Valerie; Separa, Kevin; Vandenbogaerde, Sofie; Vandewalle, Laura; Esener, Sadik C.; Messmer, Bradley T.

    2016-01-01

    High affinity and specificity are considered essential for affinity reagents and molecularly-targeted therapeutics, such as monoclonal antibodies. However, life's own molecular and cellular machinery consists of lower affinity, highly multivalent interactions that are metastable, but easily reversible or displaceable. With this inspiration, we have developed a DNA-based reagent platform that uses massive avidity to achieve stable, but reversible specific recognition of polyvalent targets. We have previously selected these DNA reagents, termed DeNAno, against various cells and now we demonstrate that DeNAno specific for protein targets can also be selected. DeNAno were selected against streptavidin-, rituximab- and bevacizumab-coated beads. Binding was stable for weeks and unaffected by the presence of soluble target proteins, yet readily competed by natural or synthetic ligands of the target proteins. Thus DeNAno particles are a novel biomolecular recognition agent whose orthogonal use of avidity over affinity results in uniquely stable yet reversible binding interactions. PMID:26969734

  3. Over 50 Years of Fibrinogen Concentrate

    PubMed Central

    Hochleitner, Gerald; Wendt, Michael; Teruya, Alexandre; Spahn, Donat R.

    2015-01-01

    March 2013 represented the 50th anniversary of the first license granted for a fibrinogen concentrate. In this review, we look at the history of bleeding management that led to the development of fibrinogen concentrate, discuss its current use, and consider future developments for this product. PMID:26294722

  4. Templated Aggregation of TAR DNA-binding Protein of 43 kDa (TDP-43) by Seeding with TDP-43 Peptide Fibrils.

    PubMed

    Shimonaka, Shotaro; Nonaka, Takashi; Suzuki, Genjiro; Hisanaga, Shin-Ichi; Hasegawa, Masato

    2016-04-22

    TAR DNA-binding protein of 43 kDa (TDP-43) has been identified as the major component of ubiquitin-positive neuronal and glial inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Aggregation of TDP-43 to amyloid-like fibrils and spreading of the aggregates are suggested to account for the pathogenesis and progression of these diseases. To investigate the molecular mechanisms of TDP-43 aggregation, we attempted to identify the amino acid sequence required for the aggregation. By expressing a series of deletion mutants lacking 20 amino acid residues in the C-terminal region in SH-SY5Y cells, we established that residues 274-313 in the glycine-rich region are essential for aggregation. In vitro aggregation experiments using synthetic peptides of 40 amino acids from this sequence and adjacent regions showed that peptides 274-313 and 314-353 formed amyloid-like fibrils. Transduction of these fibrils induced seed-dependent aggregation of TDP-43 in cells expressing wild-type TDP-43 or TDP-43 lacking nuclear localization signal. These cells showed different phosphorylated C-terminal fragments of TDP-43 and different trypsin-resistant bands. These results suggest that residues 274-353 are responsible for the conversion of TDP-43 to amyloid-like fibrils and that templated aggregation of TDP-43 by seeding with different peptides induces various types of TDP-43 pathologies, i.e. the peptides appear to act like prion strains. PMID:26887947

  5. Templated Aggregation of TAR DNA-binding Protein of 43 kDa (TDP-43) by Seeding with TDP-43 Peptide Fibrils.

    PubMed

    Shimonaka, Shotaro; Nonaka, Takashi; Suzuki, Genjiro; Hisanaga, Shin-Ichi; Hasegawa, Masato

    2016-04-22

    TAR DNA-binding protein of 43 kDa (TDP-43) has been identified as the major component of ubiquitin-positive neuronal and glial inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Aggregation of TDP-43 to amyloid-like fibrils and spreading of the aggregates are suggested to account for the pathogenesis and progression of these diseases. To investigate the molecular mechanisms of TDP-43 aggregation, we attempted to identify the amino acid sequence required for the aggregation. By expressing a series of deletion mutants lacking 20 amino acid residues in the C-terminal region in SH-SY5Y cells, we established that residues 274-313 in the glycine-rich region are essential for aggregation. In vitro aggregation experiments using synthetic peptides of 40 amino acids from this sequence and adjacent regions showed that peptides 274-313 and 314-353 formed amyloid-like fibrils. Transduction of these fibrils induced seed-dependent aggregation of TDP-43 in cells expressing wild-type TDP-43 or TDP-43 lacking nuclear localization signal. These cells showed different phosphorylated C-terminal fragments of TDP-43 and different trypsin-resistant bands. These results suggest that residues 274-353 are responsible for the conversion of TDP-43 to amyloid-like fibrils and that templated aggregation of TDP-43 by seeding with different peptides induces various types of TDP-43 pathologies, i.e. the peptides appear to act like prion strains.

  6. Analysis of aggregation of platelets in thrombosis

    NASA Astrophysics Data System (ADS)

    Ahuja, Suresh

    Platelets are key players in thrombus formation by first rolling over collagen bound von Willebrand factor followed by formation of a stable interaction with collagen. The first adhered platelets bind additional platelets until the whole injury is sealed off by a platelet aggregate. The coagulation system stabilizes the formed platelet plug by creating a tight fibrin network, and then wound contraction takes place because of morphological changes in platelets. Coagulation takes place by platelet activation and aggregation mainly through fibrinogen polymerization into fibrin fibers. The process includes multiple factors, such as thrombin, plasmin, and local shear-rate which regulate and control the process. Coagulation can be divided into two pathways: the intrinsic pathway and the extrinsic pathway. The intrinsic pathway is initiated by the exposure of a negatively charged. It is able to activate factor XII, using a complex reaction that includes prekallikrein and high-molecular-weight kininogen as cofactors.. Thrombin is the final enzyme that is needed to convert fibrinogen into fibrin. The extrinsic pathway starts with the exposure of tissue factor to the circulating blood, which is the major initiator of coagulation. There are several feedback loops that reinforce the coagulation cascade, resulting in large amounts of thrombin. It is dependent on the presence of pro-coagulant surfaces of cells expressing negatively charged phospholipids--which include phosphatidylserine (PS)--on their outer membrane. PS-bearing surfaces are able to increase the efficiency of the reactions by concentrating and co-localizing coagulation factors.. Aggregation of platelets are analyzed and compared to adhesion of platelet to erythrocyte and to endothelial cells. This abstract is replacing MAR16-2015-020003.

  7. Attachment of staphylococci and streptococci on fibronectin, fibronectin fragments, and fibrinogen bound to a solid phase.

    PubMed Central

    Kuusela, P; Vartio, T; Vuento, M; Myhre, E B

    1985-01-01

    The attachment of Staphylococcus aureus (Cowan I) and two strains of group A and G streptococci on glass cover slips coated with fibronectin, fibronectin fragments, or fibrinogen was studied. The attachment was quantitated by counting the attached bacteria on glass surfaces coated with a similar molarity of the proteins. Fibronectin was a more effective attachment factor than fibrinogen for staphylococci, while group G streptococci attached better on fibrinogen- than on fibronectin-coated cover slips. In this system, group A streptococci bound almost exclusively to substrate-bound fibrinogen. Attachment experiments involving the use of staphylococci pretreated with soluble fibronectin or fibrinogen revealed that bacterium-bound fibronectin and fibrinogen were able to enhance the adherence on cover slips coated with fibronectin. The 30-kilodalton NH2-terminal and the 120- to 140-kilodalton COOH-terminal fragments of fibronectin, both of which contain bacterial binding sites, mediated the staphylococcal attachment, suggesting that both parts of the molecule are involved in the attachment mediated by fibronectin. PMID:3899940

  8. CD23 molecule acts as a galactose-binding lectin in the cell aggregation of EBV-transformed human B-cell lines.

    PubMed

    Kijimoto-Ochiai, S; Uede, T

    1995-06-01

    Epstein-Barr virus (EBV)-transformed human B-cell lines, L-KT9 and DH3 cells express CD23 antigen, and grow in a mixture of single and aggregated cells. The CD23 molecule has high amino acid sequence homology with C-type lectin and recently we have shown that the solubilized CD23 molecule can really interact with galactose residues on glycoproteins. In this study, therefore, we tested whether CD23 antigen on the cell surface really acts as a galactose-binding lectin in the aggregation of these cells. The EBV-transformed cells (L-KT9) were separated into an aggregated-cell-rich fraction and a single-cell-rich fraction. Aggregated cells disaggregated after removal of galactose by beta-galactosidase treatment, whereas single cells made large aggregation on sialidase treatment, and this aggregation was inhibited in the presence of asialo-fetuin. On the other hand, naturally aggregated cells become single cells with anti-CD23 monoclonal antibody (mAB) as well as the soluble form of CD23, but not with anti-CD21 mAB. In addition, L-KT9 and DH3 cells bound to asialo-fetuin-coupled Sepharose (ASF-Sepharose) and this binding was significantly inhibited by pre-treatment of cells with anti-CD23, but not with anti-CD21 or other anti-adhesion molecules. From these results, we conclude that the naturally aggregated state of EBV-transformed cells occurs mainly through the interaction of CD23 as a lectin molecule and galactose residues as its ligand.

  9. Mechanisms of fibrinogen-acebutolol interactions: Insights from DSC, CD and LS.

    PubMed

    Hassan, Natalia; Ruso, Juan M; Somasundaran, P

    2011-02-01

    The complex formed due to the interaction of the amphiphilic betablocker acebutolol with fibrinogen in a buffer solution (50mN glycine, pH of 8.5) has been investigated using a multipronged physicochemical approach. Differential scanning calorimetry measurements of the complexes have shown no reversibility of thermal denaturation as indicated by the three observed peaks and the opposite role that acebutolol plays in the folding different domains of the fibrinogen molecule and the stability of such domains. While circular dichroism measurements have revealed that interaction of acebutolol with fibrinogen affects the protein secondary structure to a different extent depending on the temperature and drug concentration, dynamic light scattering analysis showed evidence for protein aggregation mainly to tetramers and dimers.

  10. Elevated Copper Binding Strength of Amyloid-β Aggregates Enables Their Copper Sequestration from Albumin: a Pathway to Accumulation of Copper in Senile Plaques

    PubMed Central

    Jiang, Dianlu; Zhang, Lin; Grant, Gian Paola G.; Dudzik, Christopher G.; Chen, Shu; Patel, Sveti; Hao, Yuanqiang; Millhauser, Glenn L.; Zhou, Feimeng

    2012-01-01

    Copper coexists with amyloid-β (Aβ) peptides at a high concentration in the senile plaques of Alzheimer’s disease (AD) patients and has been linked to oxidative damage associated with AD pathology. However, the origin of copper and the driving force behind its accumulation are unknown. We designed a sensitive fluorescent probe, Aβ(1–16)(Y10W), by substituting the tyrosine residue at position 10 in the hydrophilic domain of Aβ(1–42) with tryptophan. Upon mixing Cu(II), Aβ(1–16)(Y10W), and aliquots of Aβ(1–42) taken from samples incubated for different lengths of time, we found that the Cu(II) binding strength of aggregated Aβ(1–42) has been elevated by more than two orders of magnitude with respect to that of monomeric Aβ(1–42). Electron paramagnetic spectroscopic measurements revealed that the Aβ(1–42) aggregates, unlike their monomeric form, can seize copper from human serum albumin (HSA), an abundant copper-containing protein in brain and cerebrospinal fluid. The significantly elevated binding strength of the Aβ(1–42) aggregates can be rationalized by a Cu(II) coordination sphere constituted by three histidines from two adjacent Aβ(1–42) molecules. Our work demonstrates that the copper binding affinity by Aβ(1–42) is dependent on its aggregation state and provides new insight into how and why senile plaques accumulate copper in vivo. PMID:23237523

  11. Echistatin. A potent platelet aggregation inhibitor from the venom of the viper, Echis carinatus.

    PubMed

    Gan, Z R; Gould, R J; Jacobs, J W; Friedman, P A; Polokoff, M A

    1988-12-25

    A 49-residue protein, echistatin, which inhibits platelet aggregation, was purified from the venom of the saw-scaled viper Echis carinatus. The purification procedure included gel filtration on Sephadex G-50, cation-exchange chromatography on Mono S, and C18 reverse-phase high pressure liquid chromatography. The purified protein was homogeneous as judged by polyacrylamide gel electrophoresis, isoelectric focusing, reverse-phase high pressure liquid chromatography, and NH2-terminal sequence analysis. Echistatin is a single-chain polypeptide with a molecular weight of 5400 and a native isoelectric point of 8.3. The most abundant amino acid, cysteine, accounts for 8 of the 49 residues in the protein. A 10-residue segment of echistatin shows 90% identity to a portion of the sequence of trigramin, a platelet aggregation inhibitor from the green tree viper Trimereserus gramineus (Huang, T.-F., Holt, J. C., Lukasiewicz, H., and Niewiarowski, S. (1987) J. Biol. Chem. 262, 16157-16163). Echistatin contains the sequence arginine-glycine-aspartic acid, which is common to proteins which bind to the glycoprotein IIb/IIIa complex. It also contains the sequence proline-arginine-asparagine-proline, which is found in the A alpha chain of human fibrinogen at position 267-270. The purified protein inhibits fibrinogen-dependent platelet aggregation initiated by ADP with an IC50 of 3 x 10(-8) M and also prevents aggregation initiated by thrombin, epinephrine, collagen, or platelet-activating factor. Reduction of echistatin abolished its inhibitory activity. PMID:3198653

  12. Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation

    PubMed Central

    Davalos, Dimitrios; Kyu Ryu, Jae; Merlini, Mario; Baeten, Kim M.; Le Moan, Natacha; Petersen, Mark A.; Deerinck, Thomas J.; Smirnoff, Dimitri S.; Bedard, Catherine; Hakozaki, Hiroyuki; Gonias Murray, Sara; Ling, Jennie B.; Lassmann, Hans; Degen, Jay L.; Ellisman, Mark H.; Akassoglou, Katerina

    2012-01-01

    Blood-brain barrier disruption, microglial activation and neurodegeneration are hallmarks of multiple sclerosis. However, the initial triggers that activate innate immune responses and their role in axonal damage remain unknown. Here we show that the blood protein fibrinogen induces rapid microglial responses toward the vasculature and is required for axonal damage in neuroinflammation. Using in vivo two-photon microscopy, we demonstrate that microglia form perivascular clusters before myelin loss or paralysis onset and that, of the plasma proteins, fibrinogen specifically induces rapid and sustained microglial responses in vivo. Fibrinogen leakage correlates with areas of axonal damage and induces reactive oxygen species release in microglia. Blocking fibrin formation with anticoagulant treatment or genetically eliminating the fibrinogen binding motif recognized by the microglial integrin receptor CD11b/CD18 inhibits perivascular microglial clustering and axonal damage. Thus, early and progressive perivascular microglial clustering triggered by fibrinogen leakage upon blood-brain barrier disruption contributes to axonal damage in neuroinflammatory disease. PMID:23187627

  13. Nitric oxide releasing material adsorbs more fibrinogen.

    PubMed

    Lantvit, Sarah M; Barrett, Brittany J; Reynolds, Melissa M

    2013-11-01

    One mechanism of the failure of blood-contacting devices is clotting. Nitric oxide (NO) releasing materials are seen as a viable solution to the mediation of surface clotting by preventing platelet activation; however, NO's involvement in preventing clot formation extends beyond controlling platelet function. In this study, we evaluate NO's effect on factor XII (fibrinogen) adsorption and activation, which causes the initiation of the intrinsic arm of the coagulation cascade. This is done by utilizing a model plasticized poly(vinyl) chloride (PVC), N-diazeniumdiolate system and looking at the adsorption of fibrinogen, an important clotting protein, to these surfaces. The materials have been prepared in such a way to eliminate changes in surface properties between the control (plasticized PVC) and composite (NO-releasing) materials. This allows us to isolate NO release and determine the effect on the adsorption of fibrinogen, to the material surface. Surprisingly, it was found that an NO releasing material with a surface flux of 17.4 ± 0.5 × 10(-10) mol NO cm(-2) min(-1) showed a significant increase in the amount of fibrinogen adsorbed to the material surface compared to one with a flux of 13.0 ± 1.6 × 10(-10) mol NO cm(-2) min(-1) and the control (2334 ± 496, 226 ± 99, and 103 ±31% fibrinogen adsorbed of control, respectively). This study suggests that NO's role in controlling clotting is extended beyond platelet activation. PMID:23554300

  14. Directed evolution of Her2/neu-binding IgG1-Fc for improved stability and resistance to aggregation by using yeast surface display.

    PubMed

    Traxlmayr, Michael W; Lobner, Elisabeth; Antes, Bernhard; Kainer, Manuela; Wiederkum, Susanne; Hasenhindl, Christoph; Stadlmayr, Gerhard; Rüker, Florian; Woisetschläger, Max; Moulder, Kevin; Obinger, Christian

    2013-04-01

    An Fcab (Fc antigen binding) is a crystallizable fragment of IgG having C-terminal structural loops of CH3 domains engineered for antigen binding. Since introduction of novel binding sites might impair the immunoglobulin fold, repairing strategies are needed for improving the biophysical properties of promising binders without decreasing affinity to the antigen. Here, a directed evolution protocol was developed and applied for stabilization of a Her2/neu-binding Fcab. Distinct loop regions of the parental binder were softly randomized by parsimonious mutagenesis, followed by heat incubation of the yeast displayed protein library and selection for retained antigen binding. Selected Fcabs were expressed solubly in Pichia pastoris and human embryonic kidney 293 cells and characterized. Fcab clones that retained their affinity to Her2/neu but exhibited a significantly increased conformational stability and resistance to aggregation could be evolved. Moreover, we demonstrate that simultaneous selection for binding to the antigen and to structurally specific ligands (FcγRI and an antibody directed against the CH2 domain) yields even more stable Fcabs. To sum up, this study presents a very potent and generally applicable method for improving the fold and stability of antibodies, antibody fragments and alternative binding scaffolds. PMID:23267121

  15. Calcium binding to gatekeeper residues flanking aggregation-prone segments underlies non-fibrillar amyloid traits in superoxide dismutase 1 (SOD1).

    PubMed

    Estácio, Sílvia G; Leal, Sónia S; Cristóvão, Joana S; Faísca, Patrícia F N; Gomes, Cláudio M

    2015-02-01

    Calcium deregulation is a central feature among neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Calcium accumulates in the spinal and brain stem motor neurons of ALS patients triggering multiple pathophysiological processes which have been recently shown to include direct effects on the aggregation cascade of superoxide dismutase 1 (SOD1). SOD1 is a Cu/Zn enzyme whose demetallated form is implicated in ALS protein deposits, contributing to toxic gain of function phenotypes. Here we undertake a combined experimental and computational study aimed at establishing the molecular details underlying the regulatory effects of Ca(2+) over SOD1 aggregation potential. Isothermal titration calorimetry indicates entropy driven low affinity association of Ca(2+) ions to apo SOD1, at pH7.5 and 37°C. Molecular dynamics simulations denote a noticeable loss of native structure upon Ca(2+) association that is especially prominent at the zinc-binding and electrostatic loops, whose decoupling is known to expose the central SOD1 β-barrel triggering aggregation. Structural mapping of the preferential apo SOD1 Ca(2+) binding locations reveals that among the most frequent ligands for Ca(2+) are negatively-charged gatekeeper residues located in boundary positions with respect to segments highly prone to edge-to-edge aggregation. Calcium interactions thus diminish gatekeeping roles of these residues, by shielding repulsive interactions via stacking between aggregating β-sheets, partly blocking fibril formation and promoting amyloidogenic oligomers such as those found in ALS inclusions. Interestingly, many fALS mutations occur at these positions, disclosing how Ca(2+) interactions recreate effects similar to those of genetic defects, a finding with relevance to understand sporadic ALS pathomechanisms. PMID:25463043

  16. Plasma Fibrinogen Is a Natural Deterrent to Amyloid β–Induced Platelet Activation and Neuronal Toxicity

    PubMed Central

    Sonkar, Vijay K; Kulkarni, Paresh P; Chaurasia, Susheel N; Dash, Ayusman; Jauhari, Abhishek; Parmar, Devendra; Yadav, Sanjay; Dash, Debabrata

    2016-01-01

    Alzheimer’s disease (AD) is a devastating neurodegenerative disorder, characterized by extensive loss of neurons and deposition of amyloid β (Aβ) in the form of extracellular plaques. Aβ is considered to have a critical role in synaptic loss and neuronal death underlying cognitive decline. Platelets contribute to 95% of circulating amyloid precursor protein that releases Aβ into circulation. We have recently demonstrated that the Aβ active fragment containing amino acid sequence 25–35 (Aβ25–35) is highly thrombogenic in nature and elicits strong aggregation of washed human platelets in a RhoA-dependent manner. In this study, we evaluated the influence of fibrinogen on Aβ-induced platelet activation. Intriguingly, Aβ failed to induce aggregation of platelets suspended in plasma but not in buffer. Fibrinogen brought about dose-dependent decline in aggregatory response of washed human platelets elicited by Aβ25–35, which could be reversed by increasing doses of Aβ. Fibrinogen also attenuated Aβ-induced platelet responses such as secretion, clot retraction, rise in cytosolic Ca+2 and reactive oxygen species. Fibrinogen prevented intracellular accumulation of full-length Aβ peptide (Aβ42) in platelets as well as neuronal cells. We conclude that fibrinogen serves as a physiological check against the adverse effects of Aβ by preventing its interaction with cells. PMID:27262026

  17. Total saponin from Korean Red Ginseng inhibits binding of adhesive proteins to glycoprotein IIb/IIIa via phosphorylation of VASP (Ser157) and dephosphorylation of PI3K and Akt

    PubMed Central

    Kwon, Hyuk-Woo; Shin, Jung-Hae; Cho, Hyun-Jeong; Rhee, Man Hee; Park, Hwa-Jin

    2015-01-01

    Background Binding of adhesive proteins (i.e., fibrinogen, fibronectin, vitronectin) to platelet integrin glycoprotein IIb/IIIa (αIIb/β3) by various agonists (thrombin, collagen, adenosine diphosphate) involve in strength of thrombus. This study was carried out to evaluate the antiplatelet effect of total saponin from Korean Red Ginseng (KRG-TS) by investigating whether KRG-TS inhibits thrombin-induced binding of fibrinogen and fibronectin to αIIb/β3. Methods We investigated the effect of KRG-TS on phosphorylation of vasodilator-stimulated phosphoprotein (VASP) and dephosphorylation of phosphatidylinositol 3-kinase (PI3K) and Akt, affecting binding of fibrinogen and fibronectin to αIIb/β3, and clot retraction. Results KRG-TS had an antiplatelet effect by inhibiting the binding of fibrinogen and fibronectin to αIIb/β3 via phosphorylation of VASP (Ser157), and dephosphorylation of PI3K and Akt on thrombin-induced platelet aggregation. Moreover, A-kinase inhibitor Rp-8-Br-cyclic adenosine monophosphates (cAMPs) reduced KRG-TS-increased VASP (Ser157) phosphorylation, and increased KRG-TS-inhibited fibrinogen-, and fibronectin-binding to αIIb/β3. These findings indicate that KRG-TS interferes with the binding of fibrinogen and fibronectin to αIIb/β3 via cAMP-dependent phosphorylation of VASP (Ser157). In addition, KRG-TS decreased the rate of clot retraction, reflecting inhibition of αIIb/β3 activation. In this study, we clarified ginsenoside Ro (G-Ro) in KRG-TS inhibited thrombin-induced platelet aggregation via both inhibition of [Ca2+]i mobilization and increase of cAMP production. Conclusion These results strongly indicate that KRG-TS is a beneficial herbal substance inhibiting fibrinogen-, and fibronectin-binding to αIIb/β3, and clot retraction, and may prevent platelet αIIb/β3-mediated thrombotic disease. In addition, we demonstrate that G-Ro is a novel compound with antiplatelet characteristics of KRG-TS. PMID:26843825

  18. The plasma protein fibrinogen stabilizes clusters of red blood cells in microcapillary flows

    NASA Astrophysics Data System (ADS)

    Brust, M.; Aouane, O.; Thiébaud, M.; Flormann, D.; Verdier, C.; Kaestner, L.; Laschke, M. W.; Selmi, H.; Benyoussef, A.; Podgorski, T.; Coupier, G.; Misbah, C.; Wagner, C.

    2014-03-01

    The supply of oxygen and nutrients and the disposal of metabolic waste in the organs depend strongly on how blood, especially red blood cells, flow through the microvascular network. Macromolecular plasma proteins such as fibrinogen cause red blood cells to form large aggregates, called rouleaux, which are usually assumed to be disaggregated in the circulation due to the shear forces present in bulk flow. This leads to the assumption that rouleaux formation is only relevant in the venule network and in arterioles at low shear rates or stasis. Thanks to an excellent agreement between combined experimental and numerical approaches, we show that despite the large shear rates present in microcapillaries, the presence of either fibrinogen or the synthetic polymer dextran leads to an enhanced formation of robust clusters of red blood cells, even at haematocrits as low as 1%. Robust aggregates are shown to exist in microcapillaries even for fibrinogen concentrations within the healthy physiological range. These persistent aggregates should strongly affect cell distribution and blood perfusion in the microvasculature, with putative implications for blood disorders even within apparently asymptomatic subjects.

  19. Parnaparin, a low-molecular-weight heparin, prevents P-selectin-dependent formation of platelet-leukocyte aggregates in human whole blood.

    PubMed

    Maugeri, Norma; Di Fabio, Giovannina; Barbanti, Miriam; de Gaetano, Giovanni; Donati, Maria Benedetta; Cerletti, Chiara

    2007-06-01

    Parnaparin, a low-molecular-weight heparin (LMWH), prevents platelet activation and interaction with polymorphonuclear leukocyte (PMN) in a washed cell system. The in-vitro effect of parnaparin was studied here on platelet-PMN aggregates formed with more physiologic approaches in whole blood, in parallel with unfractionated heparin and enoxaparin, another LMWH. Citrated blood from healthy subjects was stimulated: i) from passage through the "Platelet Function Analyzer" (PFA-100), a device that exposes blood to standardized high shear flow through collagen/ADP cartridges; ii) by collagen and ADP (2 and 50 mug/ml, respectively) added in combination under stirring in an aggregometer cuvette; iii) with recombinant Tissue Factor, to generate thrombin concentrations able to activate platelets without inducing blood clotting, or iv) the Thrombin Receptor Activating Peptide-6 (TRAP-6). Platelet P-selectin and platelet-PMN aggregates were measured by flow cytometry upon stimulation of blood. Fibrinogen binding to platelets and markers of PMN activation were also detected. Platelet P-selectin expression and platelet-PMN aggregate formation were induced in all four activation conditions tested. Parnaparin prevented in a concentration-dependent manner (0.3-0.8 IUaXa/ml) the expression of P-selectin and the formation of mixed aggregates, while the two reference heparin preparations had a much weaker effect. Platelet fibrinogen binding and PMN activation markers (fibrinogen binding, CD11b and CD40) were also prevented by parnaparin. These data extend in more physiological systems of platelet activation, the anti-inflammatory profile of parnaparin, previously reported in washed cells. The greater effect of parnaparin, as compared to the reference heparins, could be due to chemico-physical differences possibly unrelated to their anticoagulant effect. PMID:17549299

  20. Staphylococcus aureus Aggregation and Coagulation Mechanisms, and Their Function in Host-Pathogen Interactions.

    PubMed

    Crosby, H A; Kwiecinski, J; Horswill, A R

    2016-01-01

    The human commensal bacterium Staphylococcus aureus can cause a wide range of infections ranging from skin and soft tissue infections to invasive diseases like septicemia, endocarditis, and pneumonia. Muticellular organization almost certainly contributes to S. aureus pathogenesis mechanisms. While there has been considerable focus on biofilm formation and its role in colonizing prosthetic joints and indwelling devices, less attention has been paid to nonsurface-attached group behavior like aggregation and clumping. S. aureus is unique in its ability to coagulate blood, and it also produces multiple fibrinogen-binding proteins that facilitate clumping. Formation of clumps, which are large, tightly packed groups of cells held together by fibrin(ogen), has been demonstrated to be important for S. aureus virulence and immune evasion. Clumps of cells are able to avoid detection by the host's immune system due to a fibrin(ogen) coat that acts as a shield, and the size of the clumps facilitates evasion of phagocytosis. In addition, clumping could be an important early step in establishing infections that involve tight clusters of cells embedded in host matrix proteins, such as soft tissue abscesses and endocarditis. In this review, we discuss clumping mechanisms and regulation, as well as what is known about how clumping contributes to immune evasion. PMID:27565579

  1. Roles of Mac-1 and glycoprotein IIb/IIIa integrins in leukocyte-platelet aggregate formation: stabilization by Mac-1 and inhibition by GpIIb/IIIa blockers.

    PubMed

    Patko, Zsofia; Csaszar, Albert; Acsady, Gyorgy; Peter, Karlheinz; Schwarz, Meike

    2012-01-01

    Circulating platelet-leukocyte hetero-aggregates play an important role in acute cardiovascular events and hypersensitivity reactions. The association involves the receptor families of selectins and integrin. The objective of this study was to investigate the role of CD11b/CD18 integrin (Mac-1) in hetero-aggregate formation and search for a counter-receptor on platelets ready to interact with Mac-1. As a model of leukocytes, Mac-1 presenting Chinese hamster ovary (CHO) cells were used to evaluate the role of Mac-1 in hetero-aggregate formation. The amount of CHO cell-bound active and inactive platelets was measured by flow cytometry, while the counter-receptors on platelets were identified via using blocking antibodies. We observed significant platelet adhesion on Mac-1-bearing cells when platelet-rich plasma or activated platelets were present. Inactive platelets did not adhere to Mac-1-bearing cells. Addition of fibrinogen, a ligand of Mac-1 significantly increased platelet binding. CD40L was demonstrated to act similarly on Mac-1. Inhibition of platelet GpIIb/IIIa completely abolished CHO cell-platelet aggregation. In our study, we have shown for the first time that Mac-1 mediates the formation of hetero-aggregates without selectin tethering when Mac-1 ligands such as fibrinogen or CD40L are present and blockers of platelet GpIIb/IIIa are able to diminish this interaction.

  2. Protein binding-induced surfactant aggregation variation: a new strategy of developing fluorescent aqueous sensor for proteins.

    PubMed

    Hu, Wenting; Ding, Liping; Cao, Jianhua; Liu, Lili; Wei, Yuting; Fang, Yu

    2015-03-01

    Novel strategies of developing fluorescent sensors for proteins are highly demanded. In this work, we particularly synthesized a cholesterol-derivatized pyrene probe. Its fluorescence emission is effectively tuned by the aggregation state of a cationic surfactant dodecyltrimethylammonium bromide (DTAB). The used probe/DTAB assemblies exhibit highly sensitive ratiometric responses to pepsin and ovalbumin egg (o-egg) with detection limits of 4.8 and 18.9 nM, respectively. The fluorescence changes indicate the protein-surfactant interaction leads to further aggregation of DTAB assemblies. The results from Tyndall effect and dynamic light scattering verify this assumption. The responses to pepsin and o-egg are due to their strong electrostatic or hydrophobic interaction with DTAB assemblies at pH 7.4. The present noncovalent supramolecular sensor represents a novel and simple strategy for sensing proteins, which is based on the encapsulated fluorophore probing the aggregation variation of the surfactant assemblies.

  3. Cyclic 3'-5'-adenosine monophosphate binds to annexin I and regulates calcium-dependent membrane aggregation and ion channel activity.

    PubMed

    Cohen, B E; Lee, G; Arispe, N; Pollard, H B

    1995-12-27

    The annexin (Anx) gene family comprises a set of calcium-dependent membrane binding proteins, which have been implicated in a wide variety of cellular processes including membrane fusion and calcium channel activity. We report here that cAMP activates Ca(2+)-dependent aggregation of both phosphatidylserine (PS) liposomes and bovine chromaffin granules driven by [des 1-12]annexin I (lipocortin I, Anx1). The mechanism of cAMP action involves an increase in AnxI-dependent cooperativity on the rate of such a reaction without affecting the corresponding k1/2 values. Cyclic AMP causes the values of the Hill coefficient (nH) for AnxI to change from 3 to 6 in both PS liposomes and chromaffin granules. By contrast, ATP inhibits the rate of aggregation activity without affecting the cooperativity or the extent of aggregation process. We were also able to photolabel Anx1 specifically with an 8-azido analogue of cAMP by a calcium-independent process. Such a process is saturable, yielding a Kd = 0.8 microM by Scatchard analysis. Specific displacement occurs in the presence of cAMP and ATP. Finally, we found that cAMP alters the conductance of calcium channels formed by AnxI in planar lipid bilayers. We interpret these data to indicate that AnxI binds both calcium and cAMP independently, and that both actions have functional consequences. This is the first report of a nucleotide binding function for a member of the annexin gene family.

  4. The Non-native Helical Intermediate State May Accumulate at Low pH in the Folding and Aggregation Landscape of the Intestinal Fatty Acid Binding Protein.

    PubMed

    Sarkar-Banerjee, Suparna; Chowdhury, Sourav; Paul, Simanta Sarani; Dutta, Debashis; Ghosh, Anisa; Chattopadhyay, Krishnananda

    2016-08-16

    There has been widespread interest in studying early intermediate states and their roles in protein folding. The interest in intermediate states has been further emphasized in the recent literature because of their implications for protein aggregation. Unfortunately, direct kinetic characterization of intermediates has been difficult because of the limited time resolutions offered by the kinetic techniques and the heterogeneity of the folding and aggregation landscape. Even in equilibrium experiments, the characterization of intermediate states could be difficult because (a) their populations in equilibrium could be low and/or (b) they lack any specific biochemical or biophysical signatures for their identification. In this paper, we have used fluorescence correlation spectroscopy to study the nature of a low-pH intermediate state of the intestinal fatty acid binding protein, a small protein with predominantly β-sheet structure. Our results have shown that the pH 3 intermediate diffuses faster than the folded protein and has strong helix forming propensity. These behaviors support Lim's hypothesis according to which even an entirely β-sheet protein would form helical bundles at the early stage. Using dynamic light scattering and thioflavin T binding measurements, we have observed that the pH 3 intermediate is prone to aggregation. We believe that early helix formation is the result of a local effect, which originates from the interaction of the neighboring amino acids around the hydrophobic core residues. This early intermediate reorganizes subsequently, and this structural reorganization is initiated by the destabilizing interactions induced by the distant residues, unfavorable entropic costs, and steric constraints of the hydrophobic side chains. Mutational analyses show further that the increase in the hydrophobicity in the hydrophobic core region increases the population of the α-helical intermediate, enhancing the aggregation propensity of the protein

  5. Effects of Fibrinogen Concentrate on Thrombin Generation, Thromboelastometry Parameters, and Laboratory Coagulation Testing in a 24-Hour Porcine Trauma Model

    PubMed Central

    Zentai, Christian; Solomon, Cristina; van der Meijden, Paola E. J.; Spronk, Henri M. H.; Schnabel, Jonas; Rossaint, Rolf

    2015-01-01

    Introduction: In a 24-hour porcine model of liver injury, we showed that fibrinogen supplementation does not downregulate endogenous fibrinogen synthesis. Here we report data from the same study showing the impact of fibrinogen on coagulation variables. Materials and Methods: Coagulopathy was induced in 20 German land race pigs by hemodilution and blunt liver injury. Animals randomly received fibrinogen concentrate (100 mg/kg) or saline. Coagulation parameters were assessed and thromboelastometry (ROTEM) was performed. Results: Fibrinogen concentrate significantly reduced the prolongations of EXTEM clotting time, EXTEM clot formation time, and prothrombin time induced by hemodilution and liver injury. A decrease in clot strength was also ameliorated. Endogenous thrombin potential was significantly higher in the fibrinogen group than in the control group, 20 minutes (353 ± 24 vs 289 ± 22 nmol/L·min; P < .05) and 100 minutes (315 ± 40 vs 263 ± 38 nmol/L·min; P < .05) after the start of infusion. However, no significant between-group differences were seen in other thrombin generation parameters or in d-dimer or thrombin–antithrombin levels. Fibrinogen–platelet binding was reduced following liver injury, with no significant differences between groups. No significant between-group differences were observed in any parameter at ∼12 and ∼24 hours. Conclusion: This study suggests that, in trauma, fibrinogen supplementation may shorten some measurements of the speed of coagulation initiation and produce a short-lived increase in endogenous thrombin potential, potentially through increased clotting substrate availability. Approximately 12 and 24 hours after starting fibrinogen concentrate/saline infusion, all parameters measured in this study were comparable in the 2 study groups. PMID:25948634

  6. Using self-assembled aptamers and fibrinogen-conjugated gold nanoparticles to detect DNA based on controlled thrombin activity.

    PubMed

    Chen, Chuan-Kuo; Shiang, Yen-Chun; Huang, Chih-Ching; Chang, Huan-Tsung

    2011-04-15

    We have developed a colorimetric probe, based on the aggregation of gold nanoparticles (Au NPs), for the detection of DNA and for the analysis of single-nucleotide polymorphism (SNP); this probe functions through the modulation of the activity of thrombin (Thr) in the presence of bivalent thrombin-binding aptamers (TBAs). The bivalent TBAs were formed from TBA(27') (comprising a 27-base sequence providing TBA(27) functionality, a T(5) linker, and an 11-base sequence for hybridization) and TBA(15') (comprising a 15-base sequence providing TBA(15) functionality, a T(5) linker, and a 12-base sequence for hybridization) through their hybridization with perfectly matched DNA (DNA(pm)). The bivalent TBAs interacted specifically with thrombin, suppressing its activity toward fibrinogen-modified Au NPs (Fib-Au NPs). The potency of the inhibitory effect of TBA(15')-TBA(27')/DNA(pm) toward thrombin - and, thus, the degree of aggregation of the Fib-Au NPs - was highly dependent on the concentration of DNA(pm). Under the optimal conditions (50 pM thrombin, 2 nM TBA(15'), 2 nM TBA(27'), and 38 pM Fib-Au NPs), the linear relationship of the response of the probe toward DNA(pm) extended from 0.1 to 2 nM, with a correlation coefficient of 0.97. The limit of detection (LOD) for DNA(pm) was 20 pM, based on a signal-to-noise ratio of 3. We also applied a corresponding TBA(15″)-TBA(27″)/Thr/Fib-Au NP probe to the detection of the SNP of the Arg249Ser unit in the TP53 gene, with an LOD of 32 pM. Relative to conventional molecular beacon-based and crosslinking aggregation-based Au NP probes, our new approach offers higher sensitivity and higher selectivity toward DNA.

  7. Correlation of amyloid PET ligand florbetapir F 18 (18F-AV-45) binding with β-amyloid aggregation and neuritic plaque deposition in postmortem brain tissue

    PubMed Central

    Choi, Seok Rye; Schneider, Julie A.; Bennett, David A.; Beach, Thomas G.; Bedell, Barry J.; Zehntner, Simone P.; Krautkramer, Michael; Kung, Hank F.; Skovronsky, Daniel M.; Hefti, Franz; Clark, Christopher M.

    2011-01-01

    Background Florbetapir F 18 (18F-AV-45) is a positron emission tomography (PET) imaging ligand for the detection of amyloid aggregation associated with Alzheimer’s disease. Earlier data showed that florbetapir F 18 binds with high affinity to β-amyloid plaques in human brain homogenates (Kd = 3.7 nM) and has favorable imaging pharmacokinetic properties, including rapid brain penetration and washout. The present study used human autopsy brain tissue to evaluate the correlation between in vitro florbetapir F 18 binding and β-amyloid density measured by established neuropathological methods. Methods The localization and density of florbetapir F 18 binding in frozen and formalin-fixed paraffin-embedded sections of postmortem brain tissue from 40 subjects with a varying degree of neurodegenerative pathology was assessed by standard florbetapir F 18 autoradiography and correlated with the localization and density of β-amyloid identified by silver staining, thioflavin S staining, and immunohistochemistry. Results There were strong quantitative correlations between florbetapir F 18 tissue binding and both β-amyloid plaques identified by light microscopy (sliver staining and thioflavin S fluorescence) and by immunohistochemical measurements of β-amyloid using three antibodies recognizing different epitopes of the β-amyloid peptide (Aβ). Florbetapir F 18 did not bind to neurofibrillary tangles. Conclusion Florbetapir F 18 selectively binds β-amyloid in human brain tissue. The binding intensity was quantitatively correlated with the density of β-amyloid plaques identified by standard neuropathological techniques and correlated with the density of Aβ measured by immunohistochemistry. Since β-amyloid plaques are a defining neuropathological feature for Alzheimer’s disease, these results support the use of florbetapir F 18 as an amyloid PET ligand to identify the presence of AD pathology in patients with signs and symptoms of progressive late-life cognitive

  8. Measurement of interaction forces between fibrinogen coated probes and mica surface with the atomic force microscope: The pH and ionic strength effect.

    PubMed

    Tsapikouni, Theodora S; Allen, Stephanie; Missirlis, Yannis F

    2008-01-01

    The study of protein-surface interactions is of great significance in the design of biomaterials and the evaluation of molecular processes in tissue engineering. The authors have used atomic force microscopy (AFM) to directly measure the force of attraction/adhesion of fibrinogen coated tips to mica surfaces and reveal the effect of the surrounding solution pH and ionic strength on this interaction. Silica colloid spheres were attached to the AFM cantilevers and, after plasma deposition of poly(acrylic acid), fibrinogen molecules were covalently bound on them with the help of the cross-linker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) in the presence of N-hydroxysulfosuccinimide (sulfo-NHS). The measurements suggest that fibrinogen adsorption is controlled by the screening of electrostatic repulsion as the salt concentration increases from 15 to 150 mM, whereas at higher ionic strength (500 mM) the hydration forces and the compact molecular conformation become crucial, restricting adsorption. The protein attraction to the surface increases at the isoelectric point of fibrinogen (pH 5.8), compared with the physiological pH. At pH 3.5, apart from fibrinogen attraction to the surface, evidence of fibrinogen conformational changes is observed, as the pH and the ionic strength are set back and forth, and these changes may account for fibrinogen aggregation in the protein solution at this pH.

  9. Fibrinogen reduction and coagulation in cardiac surgery: an investigational study.

    PubMed

    Gielen, Chantal L I; Grimbergen, Jos; Klautz, Robert J M; Koopman, Jaap; Quax, Paul H A

    2015-09-01

    Fibrinogen as precursor of fibrin plays an essential role in clot formation. There are three main mechanisms associated with a reduction in fibrinogen concentration during cardiac surgery: hemodilution, consumption, and degradation. Moreover, early fibrinogen degradation products (FgDPs) can interfere with normal fibrin formation of intact fibrinogen. The aim of this study was to determine the relative contributions of hemodilution, consumption, and degradation to fibrinogen loss in cardiac surgery and to evaluate the effects fibrinogen degradation products on blood clot formation in vitro. First, fibrin and fibrinogen concentrations, their degradation products, hematocrit, and albumin concentrations were compared in 10 patients before and after isolated coronary artery bypass graft (CABG) surgery with cardiopulmonary bypass. Second, ex-vivo fibrinogen supplementation experiments were performed. Finally, the effects of purified FgDPs on clotting time and clot firmness were established in vitro in whole blood by ROTEM. Fibrinogen plasma concentration decreased 30% during surgery. This drop appears to be mainly caused by hemodilution, as both hematocrit and albumin levels decreased and no relevant increase in D-dimer levels and FgDPs was observed. Furthermore, the coagulation profile normalized after addition of purified fibrinogen. Early FgDPs demonstrated a significant impact on in-vitro whole blood clotting. Although early FgDPs have a pronounced effect on blood clot formation in vitro and therefore may induce or enhance in vivo coagulopathy, the drop of fibrinogen concentration seen after CABG surgery (using tranexamic acid) is primarily caused by hemodilution. PMID:26083991

  10. The role of fibrinogen glycation in ATTR: evidence for chaperone activity loss in disease.

    PubMed

    Fonseca, Daniel; Gilberto, Samuel; Ribeiro-Silva, Cristina; Ribeiro, Raquel; Guinote, Inês Batista; Saraiva, Susana; Gomes, Ricardo A; Mateus, Élia; Viana, Ana; Barroso, Eduardo; Freire, Ana Ponces; Freire, Patrick; Cordeiro, Carlos; da Costa, Gonçalo

    2016-07-15

    Transthyretin amyloidosis (ATTR) belongs to a class of disorders caused by protein misfolding and aggregation. ATTR is a disabling disorder of autosomal dominant trait, where transthyretin (TTR) forms amyloid deposits in different organs, causing dysfunction of the peripheral nervous system. We previously discovered that amyloid fibrils from ATTR patients are glycated by methylglyoxal. Even though no consensus has been reached about the actual role of methylglyoxal-derived advanced glycation end-products in amyloid diseases, evidence collected so far points to a role for protein glycation in conformational abnormalities, being ubiquitously found in amyloid deposits in Alzheimer's disease, dialysis-related amyloidosis and Parkinson's diseases. Human fibrinogen, an extracellular chaperone, was reported to specifically interact with a wide spectrum of stressed proteins and suppress their aggregation, being an interacting protein with TTR. Fibrinogen is differentially glycated in ATTR, leading to its chaperone activity loss. Here we show the existence of a proteostasis imbalance in ATTR linked to fibrinogen glycation by methylglyoxal. PMID:27208169

  11. Signal transduction pathways in erythrocyte nitric oxide metabolism under high fibrinogen levels

    NASA Astrophysics Data System (ADS)

    Saldanha, Carlota; Freitas, T.; Lopez de Almeida, J. P.; Silva-Herdade, A.

    2014-05-01

    Previous studies show that the fibrinogen molecule modulates the metabolism of nitric oxide (NO) in erythrocyte. The in vitro induced hiperfibrinogenemia interferes in the metabolism of the NO in the erythrocyte in dependence of the phosphorylation degree of the band 3. The soluble form of fibrinogen binds into CD47 protein present in the erythrocyte membrane. The soluble thrombomodulin is an inflammatory marker that binds to the erythrocyte CD47 in a site with a sequence peptide known as 4N1K. A study done in vitro shows that when hiperfibrinogenemia was induced in the presence of the peptide 4N1K agonist of CD47 it were observed variations in the efflux of NO from erythrocyte and an increase in the concentrations of GSNO, peroxinitrite, nitrite and nitrate of the erythrocytes. The aim of this work was to study the influence of the peptide 4N1K, on the metabolism of NO in the erythrocyte under high fibrinogen concentration and in the presence of inhibitors of the status of phosphorylation of protein band 3. In this in vitro study, whole blood samples were harvested from healthy subjects and NO, peroxynitrite, nitrite, nitrate and S-nitro-glutathione (GSNO) were determined in presence of 4N1K, calpeptine, Syk inhibitor and under high fibrinogen concentrations. The results obtained in erythrocytes under high fibrinogen levels when 4N1K is present with the Syk inhibitor or with calpeptine, showed in relation to the control samples increased significant concentrations of efflux of NO and of peroxynitrite, nitrite, nitrate and GSNO. In conclusion it was verified that in the in vitro model of hiperfibrinogenemia the peptide 4N1K, agonist of CD47, induces mobilization of NO in the erythrocyte in dependence of the status of phosphorylation of protein band 3.

  12. Interaction of fibrinogen and albumin with titanium dioxide nanoparticles of different crystalline phases

    NASA Astrophysics Data System (ADS)

    Marucco, Arianna; Fenoglio, Ivana; Turci, Francesco; Fubini, Bice

    2013-04-01

    TiO2 nanoparticles (NPs) are contained in different kinds of industrial products including paints, self-cleaning glasses, sunscreens. TiO2 is also employed in photocatalysis and it has been proposed for waste water treatment. Micrometric TiO2 is generally considered a safe material, while there is concern on the possible health effects of nanometric titania. Due to their small size NPs may migrate within the human body possibly entering in the blood stream. Therefore studies on the interaction of NPs with plasma proteins are needed. In fact, the interaction with proteins is believed to ultimately influences the NPs biological fate. Fibrinogen and albumin are two of the most abundant plasma proteins. They are involved in several important physiological functions. Furthermore, fibrinogen is known to trigger platelet adhesion and inflammation. For these reasons the study of the interaction between these protein and nanoparticles is an important step toward the understanding of the behavior of NPs in the body. In this study we investigated the interaction of albumin and fibrinogen with TiO2 nanoparticles of different crystal phases (rutile and anatase) using an integrated set of techniques. The amount of adsorbed fibrinogen and albumin for each TiO2 surface was investigated by using the bicinchoninic acid assay (BCA). The variation of the surface charge of the NP-protein conjugates respect to the naked NPs was used to indirectly estimate both surface coverage and reversibility of the adsorption upon dilution. Surface charge was monitored by measuring the ζ potential with a conventional electrophoretic light scattering (ELS) system. The extent of protein deformation was evaluated by Raman Spectroscopy. We found that both proteins adsorb irreversibly against electrostatic repulsion, likely undergoing conformational changes or selective orientation upon adsorption. The size of primary particles and the particles aggregation rather than the crystal phase modulate the

  13. Interaction of Fe(III)- and Zn(II)-tetra(4-sulfonatophenyl) porphyrins with ionic and nonionic surfactants: aggregation and binding.

    PubMed

    Gandini, S C; Yushmanov, V E; Tabak, M

    2001-07-01

    Interactions of the water soluble Fe(III)- and Zn(II)-tetra(4-sulfonatophenyl) porphyrins, FeTPPS(4) and ZnTPPS(4), with ionic and nonionic micelles in aqueous solutions have been studied by optical absorption, fluorescence, resonance light-scattering (RLS), and 1H NMR spectroscopies. The presence of three different species of both Fe(III)- and Zn(II)TPPS(4) in cationic cetyltrimethylammonium chloride (CTAC) solution has been unequivocally demonstrated: free metalloporphyrin monomers or dimers (pH 9), metalloporphyrin monomers or aggregates (possibly micro-oxo dimers) bound to the micelles, and nonmicellar metalloporphyrin/surfactant aggregates. The surfactant:metalloporphyrin ratio for the maximum nonmicellar aggregate formation is around 5-8 for Fe(III)TPPS(4) both at pH 4.0 and 9.0; for Zn(II)TPPS(4) this ratio is 8, and the spectral changes are practically independent of pH. In the case of zwitterionic N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS) and non-ionic polyoxyethylene lauryl ether (Brij-35) and t-octylphenoxypolyethoxyetanol (Triton X-100), the nonmicellar aggregates were not observed in the pH range from 2.0 to 12.0. Binding constants were calculated from optical absorption data and are of the order of 10(4) M(-1) for both CTAC and HPS, values which are similar to those previously obtained for the porphyrin in the free base form. For Brij-35 and Triton X-100 the binding constant for ZnTPPS(4) at pH 4.0 is a factor of 3-5 lower than those for CTAC and HPS, while in the case of FeTPPS(4) they are two orders of magnitude lower. Our data show that solubilization of ZnTPPS(4) within nonpolar regions of micelles is determined, in general, by nonspecific hydrophobic interactions, yet it is modulated by electrostatic factors. In the case of FeTPPS(4), the electrostatic factor seems to be more relevant. NMR data indicated that Fe(III)TPPS(4) is bound to the micelles predominantly as a monomer at pH 4.0, and at pH 9.0 the bound aggregated form

  14. Identification of a novel platelet antagonist that binds to CLEC-2 and suppresses podoplanin-induced platelet aggregation and cancer metastasis.

    PubMed

    Chang, Yao-Wen; Hsieh, Pei-Wen; Chang, Yu-Tsui; Lu, Meng-Hong; Huang, Tur-Fu; Chong, Kowit-Yu; Liao, Hsiang-Ruei; Cheng, Ju-Chien; Tseng, Ching-Ping

    2015-12-15

    Podoplanin (PDPN) enhances tumor metastases by eliciting tumor cell-induced platelet aggregation (TCIPA) through activation of platelet C-type lectin-like receptor 2 (CLEC-2). A novel and non-cytotoxic 5-nitrobenzoate compound 2CP was synthesized that specifically inhibited the PDPN/CLEC-2 interaction and TCIPA with no effect on platelet aggregation stimulated by other platelet agonists. 2CP possessed anti-cancer metastatic activity in vivo and augmented the therapeutic efficacy of cisplatin in the experimental animal model without causing a bleeding risk. Analysis of the molecular action of 2CP further revealed that Akt1/PDK1 and PKCμ were two alternative CLEC-2 signaling pathways mediating PDPN-induced platelet activation. 2CP directly bound to CLEC-2 and, by competing with the same binding pocket of PDPN in CLEC-2, inhibited PDPN-mediated platelet activation. This study provides evidence that 2CP is the first defined platelet antagonist with CLEC-2 binding activity. The augmentation in the therapeutic efficacy of cisplatin by 2CP suggests that a combination of a chemotherapeutic agent and a drug with anti-TCIPA activity such as 2CP may prove clinically effective. PMID:26528756

  15. Identification of a novel platelet antagonist that binds to CLEC-2 and suppresses podoplanin-induced platelet aggregation and cancer metastasis

    PubMed Central

    Chang, Yu-Tsui; Lu, Meng-Hong; Huang, Tur-Fu; Chong, Kowit-Yu; Liao, Hsiang-Ruei; Cheng, Ju-Chien; Tseng, Ching-Ping

    2015-01-01

    Podoplanin (PDPN) enhances tumor metastases by eliciting tumor cell-induced platelet aggregation (TCIPA) through activation of platelet C-type lectin-like receptor 2 (CLEC-2). A novel and non-cytotoxic 5-nitrobenzoate compound 2CP was synthesized that specifically inhibited the PDPN/CLEC-2 interaction and TCIPA with no effect on platelet aggregation stimulated by other platelet agonists. 2CP possessed anti-cancer metastatic activity in vivo and augmented the therapeutic efficacy of cisplatin in the experimental animal model without causing a bleeding risk. Analysis of the molecular action of 2CP further revealed that Akt1/PDK1 and PKCμ were two alternative CLEC-2 signaling pathways mediating PDPN-induced platelet activation. 2CP directly bound to CLEC-2 and, by competing with the same binding pocket of PDPN in CLEC-2, inhibited PDPN-mediated platelet activation. This study provides evidence that 2CP is the first defined platelet antagonist with CLEC-2 binding activity. The augmentation in the therapeutic efficacy of cisplatin by 2CP suggests that a combination of a chemotherapeutic agent and a drug with anti-TCIPA activity such as 2CP may prove clinically effective. PMID:26528756

  16. Disease causing mutants of TDP-43 nucleic acid binding domains are resistant to aggregation and have increased stability and half-life

    PubMed Central

    Austin, James A.; Wright, Gareth S. A.; Watanabe, Seiji; Grossmann, J. Günter; Antonyuk, Svetlana V.; Yamanaka, Koji; Hasnain, S. Samar

    2014-01-01

    Over the last two decades many secrets of the age-related human neural proteinopathies have been revealed. A common feature of these diseases is abnormal, and possibly pathogenic, aggregation of specific proteins in the effected tissue often resulting from inherent or decreased structural stability. An archetype example of this is superoxide dismutase-1, the first genetic factor to be linked with amyotrophic lateral sclerosis (ALS). Mutant or posttranslationally modified TAR DNA binding protein-32 (TDP-43) is also strongly associated with ALS and an increasingly large number of other neurodegenerative diseases, including frontotemporal lobar degeneration (FTLD). Cytoplasmic mislocalization and elevated half-life is a characteristic of mutant TDP-43. Furthermore, patient age at the onset of disease symptoms shows a good inverse correlation with mutant TDP-43 half-life. Here we show that ALS and FTLD-associated TDP-43 mutations in the central nucleic acid binding domains lead to elevated half-life and this is commensurate with increased thermal stability and inhibition of aggregation. It is achieved without impact on secondary, tertiary, or quaternary structure. We propose that tighter structural cohesion contributes to reduced protein turnover, increasingly abnormal proteostasis and, ultimately, faster onset of disease symptoms. These results contrast our perception of neurodegenerative diseases as misfolded proteinopathies and delineate a novel path from the molecular characteristics of mutant TDP-43 to aberrant cellular effects and patient phenotype. PMID:24591609

  17. Studies of activated GPIIb/IIIa receptors on the luminal surface of adherent platelets. Paradoxical loss of luminal receptors when platelets adhere to high density fibrinogen.

    PubMed Central

    Coller, B S; Kutok, J L; Scudder, L E; Galanakis, D K; West, S M; Rudomen, G S; Springer, K T

    1993-01-01

    The accessibility of activated GPIIb/IIIa receptors on the luminal surface of platelets adherent to damaged blood vessels or atherosclerotic plaques is likely to play a crucial role in subsequent platelet recruitment. To define better the factors involved in this process, we developed a functional assay to assess the presence of activated, luminal GPIIb/IIIa receptors, based on their ability to bind erythrocytes containing a high density of covalently coupled RGD-containing peptides (thromboerythrocytes). Platelets readily adhered to wells coated with purified type I rat skin collagen and the adherent platelets bound a dense lawn of thromboerythrocytes. With fibrinogen-coated wells, platelet adhesion increased as the fibrinogen-coating concentration increased, reaching a plateau at about 11 micrograms/ml. Thromboerythrocyte binding to the platelets adherent to fibrinogen showed a paradoxical response, increasing at fibrinogen coating concentrations up to approximately 4-6 micrograms/ml and then dramatically decreasing at higher fibrinogen-coating concentrations. Scanning electron microscopy demonstrated that the morphology of platelets adherent to collagen was similar to that of platelets adherent to low density fibrinogen, with extensive filopodia formation and ruffling. In contrast, platelets adherent to high density fibrinogen showed a bland, flattened appearance. Immunogold staining of GPIIb/IIIa receptors demonstrated concentration of the receptors on the filopodia, and depletion of receptors on the flattened portion of the platelets. Thus, there is a paradoxical loss of accessible, activated GPIIb/IIIa receptors on the luminal surface of platelets adherent to high density fibrinogen. Two factors may contribute to this result: engagement of GPIIb/IIIa receptors with fibrinogen on the abluminal surface leading to the loss of luminal receptors, and loss of luminal filopodia that interact with thromboerythrocytes. These data provide insight into the differences

  18. Antiadhesive effect of fibrinogen: a safeguard for thrombus stability

    PubMed Central

    Lishko, Valeryi K.; Burke, Timothy; Ugarova, Tatiana

    2007-01-01

    The recruitment of phagocytic leukocytes to sites of vessel wall injury plays an important role in thrombus dissolution by proteases elaborated on their adhesion. However, leukocyte adhesion to the fibrin clot can be detrimental at the early stages of wound healing when hemostatic plug integrity is critical for preventing blood loss. Adhesion of circulating leukocytes to the insoluble fibrin(ogen) matrix is mediated by integrins and occurs in the presence of a high concentration of plasma fibrinogen. In this study, the possibility that soluble fibrinogen could protect fibrin from excessive adhesion of leukocytes was examined. Fibrinogen was a potent inhibitor of adhesion of U937 monocytoid cells and neutrophils to fibrin gel and immobilized fibrin(ogen). An investigation of the mechanism by which soluble fibrinogen exerts its influence on leukocyte adhesion indicated that it did not block integrins but rather associated with the fibrin(ogen) substrate. Consequently, leukocytes that engage fibrinogen molecules loosely bound to the surface of fibrin(ogen) matrix are not able to consolidate their grip on the substrate; subsequently, cells detach. This conclusion is based on the evidence obtained in adhesion studies using various cells and performed under static and flow conditions. These findings reveal a new role of fibrinogen in integrin-mediated leukocyte adhesion and suggest that this mechanism may protect the thrombus from premature dissolution. PMID:16849640

  19. Phosphorylation regulates fibrillation of an aggregation core peptide in the second repeat of microtubule-binding domain of human tau.

    PubMed

    Inoue, Masafumi; Kaida, Shinji; Nakano, Shun; Annoni, Chiara; Nakata, Eiji; Konno, Takashi; Morii, Takashi

    2014-11-15

    Hyperphosphorylation of the microtubule-associated protein tau is believed to play a crucial role in the neurofibrillary tangles formation in Alzheimer’s disease brain. In this study, fibril formation of peptides containing the critical sequences for tau aggregation VQIINK and a plausible serine phosphorylation site of tau at its C-terminal was investigated. All the peptides formed fibrils with the typical cross-b structural core. However, stability of the fibrils was highly sensitive to the pH conditions for the phosphorylated VQIINK peptide, suggesting a regulatory role of phosphorylation for the amyloid-formation of tau.

  20. Fibrinogen monolayer characterization by colloid deposition.

    PubMed

    Nattich-Rak, Małgorzata; Adamczyk, Zbigniew; Wasilewska, Monika; Sadowska, Marta

    2013-09-24

    Colloid particle deposition was applied to characterize bovine and human fibrinogen (Fb) monolayers on mica produced by controlled adsorption under diffusion transport at pH 3.5. The surface concentration of Fb was determined by AFM enumeration of single molecules adsorbed over the substrate surface. The electrokinetic properties of Fb monolayers for various ionic strength were studied using the in situ streaming potential measurements. It was shown that Fb adsorbs irreversibly on mica for a broad range of ionic strength of 4 × 10(-4) to 0.15 M, NaCl. The overcharging of initially negative mica surface occurred for fibrinogen surface concentrations higher than 1400 μm(-2). The orientation of fibrinogen molecules in the monolayers was evaluated by the colloid deposition method involving negatively charged polystyrene latex microspheres, 820 nm in diameter. An anomalous deposition of negative latex particles on substrates exhibiting a negative zeta potential was observed, which contradicts the mean-field DLVO predictions. Measurable deposition was observed even at low ionic strength where the minimum approach distance of latex particles to the interface exceeds 70 nm (for 6 × 10(-4) M NaCl). This confirms that, at this pH, fibrinogen molecules adsorb end-on on mica assuming extended conformations with the positive charge located mostly in the end part of the αA chains. This agrees with previous experimental and theoretical results discussed in the literature (Santore, M. M.; Wertz Ch. F. Protein spreading kinetics at liquid-solid interfaces via an adsorption probe method. Langmuir 2005, 21, 10172-10178 (experimental); Adamczyk, Z.; Barbasz, J.; Cieśla, M.; Mechanisms of fibrinogen adsorption at solid substrates. Langmuir, 2011, 25, 6868-6878 (theoretical)). This unusual latex deposition on Fb monolayers was quantitatively interpreted in terms of the model developed in ref 55 (Jin, X.; Wang, N. H. L.; Tarjus, G.; Talbot, J. Irreversible adsorption on nonuniform

  1. Calcium-dependent properties of CIB binding to the integrin alphaIIb cytoplasmic domain and translocation to the platelet cytoskeleton.

    PubMed Central

    Shock, D D; Naik, U P; Brittain, J E; Alahari, S K; Sondek, J; Parise, L V

    1999-01-01

    The alphaIIbbeta3 integrin receives signals in agonist-activated platelets, resulting in its conversion to an active conformation that binds fibrinogen, thereby mediating platelet aggregation. Fibrinogen binding to alphaIIbbeta3 subsequently induces a cascade of intracellular signalling events. The molecular mechanisms of this bi-directional alphaIIbbeta3-mediated signalling are unknown but may involve the binding of proteins to the integrin cytoplasmic domains. We reported previously the sequence of a novel 22-kDa, EF-hand-containing, protein termed CIB (calcium- and integrin-binding protein) that interacts specifically with the alphaIIb cytoplasmic domain in the yeast two-hybrid system. Further analysis of numerous tissues and cell lines indicated that CIB mRNA and protein are widely expressed. In addition, isothermal titration calorimetry indicated that CIB binds to an alphaIIb cytoplasmic-domain peptide in a Ca(2+)-dependent manner, with moderate affinity (K(d), 700 nM) and 1:1 stoichiometry. In aggregated platelets, endogenous CIB and alphaIIbbeta3 translocate to the Triton X-100-insoluble cytoskeleton in a parallel manner, demonstrating that the cellular localization of CIB is regulated, potentially by alphaIIbbeta3. Thus CIB may contribute to integrin-related functions by mechanisms involving Ca(2+)-modulated binding to the alphaIIb cytoplasmic domain and changes in intracellular distribution. PMID:10477286

  2. Binding of heavy metal ions in aggregates of microbial cells, EPS and biogenic iron minerals measured in-situ using metal- and glycoconjugates-specific fluorophores

    NASA Astrophysics Data System (ADS)

    Hao, Likai; Guo, Yuan; Byrne, James M.; Zeitvogel, Fabian; Schmid, Gregor; Ingino, Pablo; Li, Jianli; Neu, Thomas R.; Swanner, Elizabeth D.; Kappler, Andreas; Obst, Martin

    2016-05-01

    Aggregates consisting of bacterial cells, extracellular polymeric substances (EPS) and Fe(III) minerals formed by Fe(II)-oxidizing bacteria are common at bulk or microscale chemical interfaces where Fe cycling occurs. The high sorption capacity and binding capacity of cells, EPS, and minerals controls the mobility and fate of heavy metals. However, it remains unclear to which of these component(s) the metals will bind in complex aggregates. To clarify this question, the present study focuses on 3D mapping of heavy metals sorbed to cells, glycoconjugates that comprise the majority of EPS constituents, and Fe(III) mineral aggregates formed by the phototrophic Fe(II)-oxidizing bacteria Rhodobacter ferrooxidans SW2 using confocal laser scanning microscopy (CLSM) in combination with metal- and glycoconjugates-specific fluorophores. The present study evaluated the influence of glycoconjugates, microbial cell surfaces, and (biogenic) Fe(III) minerals, and the availability of ferrous and ferric iron on heavy metal sorption. Analyses in this study provide detailed knowledge on the spatial distribution of metal ions in the aggregates at the sub-μm scale, which is essential to understand the underlying mechanisms of microbe-mineral-metal interactions. The heavy metals (Au3+, Cd2+, Cr3+, CrO42-, Cu2+, Hg2+, Ni2+, Pd2+, tributyltin (TBT) and Zn2+) were found mainly sorbed to cell surfaces, present within the glycoconjugates matrix, and bound to the mineral surfaces, but not incorporated into the biogenic Fe(III) minerals. Statistical analysis revealed that all ten heavy metals tested showed relatively similar sorption behavior that was affected by the presence of sorbed ferrous and ferric iron. Results in this study showed that in addition to the mineral surfaces, both bacterial cell surfaces and the glycoconjugates provided most of sorption sites for heavy metals. Simultaneously, ferrous and ferric iron ions competed with the heavy metals for sorption sites on the organic

  3. DNA binding and adduct formation of 7,12-dimethylbenz(a)-anthracene by rat mammary epithelial cell aggregates in vitro

    SciTech Connect

    Singletary, K.W.; Milner, J.A.

    1986-01-01

    Freshly isolated mammary epithelial cell aggregates from female Sprague-Dawley rats metabolized 7,12-dimethylbenz-(a)anthracene (DMBA) to bay-region anti- and syn-dihydrodiolepoxides that bound to deoxyguanosine and deoxyadenosine residues in cellular DNA. After 24 h of incubation 68% of the DMBA (0.4 micrograms/ml) was metabolized and 58% of the extracellular metabolites were water-soluble. DMBA-DNA binding increased rapidly during the initial 24 h of incubation. Formation of the bay-region syn-dihydrodiolepoxide:deoxyadenosine adduct increased linearly throughout the 24 h, whereas formation of deoxyadenosine and deoxyguanosine adducts with the bay-region anti-dihydrodiolepoxide increased rapidly following a delay of 12 h.

  4. Fibrin formation by staphylothrombin facilitates Staphylococcus aureus-induced platelet aggregation.

    PubMed

    Vanassche, Thomas; Kauskot, Alexandre; Verhaegen, Jan; Peetermans, Willy E; van Ryn, Joanne; Schneewind, Olaf; Hoylaerts, Marc F; Verhamme, Peter

    2012-06-01

    Interactions of Staphylococcus aureus (S. aureus) and platelets play an important role in the pathogenesis of intravascular infections such as infective endocarditis (IE). A typical feature of S. aureus is the ability to generate thrombin activity through the secretion of two prothrombin activating molecules, staphylocoagulase and von Willebrand factor-binding protein (vWbp), which bind to human prothrombin to form the enzymatically active staphylothrombin complex. The role of staphylothrombin in the interaction between S. aureus and platelets has not yet been studied. We found that in contrast with thrombin, staphylothrombin did not directly activate human platelets. However, the staphylothrombin-mediated conversion of fibrinogen to fibrin initiated platelet aggregation and secondary activation and facilitated S. aureus-platelet interactions. Both the genetic absence of staphylocoagulase and vWbp and pharmacological inhibition of staphylothrombin increased the lag time to aggregation, and reduced platelet trapping by S. aureus in high shear stress conditions. The combined inhibition of staphylothrombin and immunoglobulin binding to platelets completely abolished the ability of S. aureus to aggregate platelets in vitro. In conclusion, although staphylothrombin did not directly activate platelets, the formation of a fibrin scaffold facilitated bacteria-platelet interaction, and the inhibition of staphylothrombin resulted in a reduced activation of platelets by S. aureus. PMID:22437005

  5. Cloning and molecular analysis of genes affecting expression of binding substance, the recipient-encoded receptor(s) mediating mating aggregate formation in Enterococcus faecalis.

    PubMed

    Bensing, B A; Dunny, G M

    1993-11-01

    Transfer of the conjugative plasmid pCF10 in Enterococcus faecalis strains involves production of a plasmid-encoded aggregation substance on the surface of donor cells in response to stimulation by a pheromone secreted by recipient cells. Aggregation substance then facilitates attachment to recipient cells via a chromosomally encoded receptor, termed binding substance (BS). A BS mutant, strain INY3000, generated by random Tn916 insertions, was previously found to carry copies of the transposon at four unique sites (K. M. Trotter and G. M. Dunny, Plasmid 24:57-67, 1990). In the present study, DNA flanking the Tn916 insertions was used to complement the BS mutation of INY3000 following Tn916 excision from cloned chromosomal fragments. Complementation results showed that three of the four regions mutated in INY3000 play some role in BS expression. Tn5 mutagenesis and DNA sequence analysis of the complementing fragment from one of these regions indicated the presence of three genes (ebsA, ebsB, and ebsC) that affect BS expression. The ebsA and ebsB genes encode peptides likely to function in cell wall metabolism, whereas ebsC may encode a product that suppresses the function or expression of EbsB.

  6. Cloning and molecular analysis of genes affecting expression of binding substance, the recipient-encoded receptor(s) mediating mating aggregate formation in Enterococcus faecalis.

    PubMed Central

    Bensing, B A; Dunny, G M

    1993-01-01

    Transfer of the conjugative plasmid pCF10 in Enterococcus faecalis strains involves production of a plasmid-encoded aggregation substance on the surface of donor cells in response to stimulation by a pheromone secreted by recipient cells. Aggregation substance then facilitates attachment to recipient cells via a chromosomally encoded receptor, termed binding substance (BS). A BS mutant, strain INY3000, generated by random Tn916 insertions, was previously found to carry copies of the transposon at four unique sites (K. M. Trotter and G. M. Dunny, Plasmid 24:57-67, 1990). In the present study, DNA flanking the Tn916 insertions was used to complement the BS mutation of INY3000 following Tn916 excision from cloned chromosomal fragments. Complementation results showed that three of the four regions mutated in INY3000 play some role in BS expression. Tn5 mutagenesis and DNA sequence analysis of the complementing fragment from one of these regions indicated the presence of three genes (ebsA, ebsB, and ebsC) that affect BS expression. The ebsA and ebsB genes encode peptides likely to function in cell wall metabolism, whereas ebsC may encode a product that suppresses the function or expression of EbsB. Images PMID:8226689

  7. Modification of fibrin network ultrastructure by Fab fragments specific for different domain of fibrinogen.

    PubMed

    Cierniewski, C S; Janiak, A; Wyroba, E

    1986-01-01

    Kinetics of inhibition of fibrin monomer polymerization produced by Fab fragments prepared from immunochemically purified monospecific antibodies to the surface epitopes of different domains of fibrinogen molecule has been correlated with electron microscopic observations of resulting specimens. Fab fragments prepared from anti FgD antisera were the most efficient inhibitors of thrombin-catalysed conversion of fibrinogen to fibrin; polymerization of fibrin monomers as detected spectrophotometrically was abolished at 2:1 molar ratio of anti FgD Fab fragments to fibra monomer. These Fab fragments acting as a steric hindrance of polymerization sites inhibited the first stage of fibrin monomer aggregation. Interaction of Fab fragments derived from antibodies specific for alpha 239-476 with corresponding segment of fibrinogen molecule resulted in a weak inhibition of fibrin monomer polymerization. However, fibrin obtained in the presence of these Fab fragments was significantly modified and showed no periodicity. This observation may suggest that anti alpha 239-476 Fab impaired the course of the second stage of fibrin monomer polymerization, i.e. lateral association of fibrin fibrils.

  8. Metal-free phthalocyanine aggregation and binding with amines: Specific and general solvent effects on absorption and fluorescence properties

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Zhang, Xian-Fu; Lu, Xulin

    2015-03-01

    The fluorescence and absorption properties of a metal-free phthalocyanine (Pc) H2PcR4 and its zinc-centered complex ZnPcR4 (R is the isopropyloxy at the β-position of a Pc ring) were measured and compared in protic and aprotic solvents. H2PcR4 shows strong bonding interaction with amines and aggregation in alcohols in addition to the general solvent effect in aprotic solvents due to polarity change. The specific solvent effect leads to substantial changes in its spectra, fluorescence quantum yield (Φf) and fluorescence lifetime (τf) values. In contrast, ZnPcR4 does not show the specific effects due to the presence of a central element in a Pc cavity. For H2PcR4 the change of solvents caused a large variation of Φf (0.050-0.48) and τf (3.45-6.88 ns), in contrast to the slight changes for ZnPcR4. On the other hand, the general solvent effect of H2PcR4 due to polarity is also more significant than that of ZnPcR4. The increase of solvent polarity decreases both Φf and τf, but increases the Stoke's shift.

  9. MMPBSA decomposition of the binding energy throughout a molecular dynamics simulation of amyloid-beta (Abeta(10-35)) aggregation.

    PubMed

    Campanera, Josep M; Pouplana, Ramon

    2010-04-15

    Recent experiments with amyloid-beta (Abeta) peptides indicate that the formation of toxic oligomers may be an important contribution to the onset of Alzheimer's disease. The toxicity of Abeta oligomers depend on their structure, which is governed by assembly dynamics. However, a detailed knowledge of the structure of at the atomic level has not been achieved yet due to limitations of current experimental techniques. In this study, replica exchange molecular dynamics simulations are used to identify the expected diversity of dimer conformations of Abeta(10-35) monomers. The most representative dimer conformation has been used to track the dimer formation process between both monomers. The process has been characterized by means of the evolution of the decomposition of the binding free energy, which provides an energetic profile of the interaction. Dimers undergo a process of reorganization driven basically by inter-chain hydrophobic and hydrophilic interactions and also solvation/desolvation processes.

  10. Chemical synthesis of echistatin, a potent inhibitor of platelet aggregation from Echis carinatus: synthesis and biological activity of selected analogs.

    PubMed

    Garsky, V M; Lumma, P K; Freidinger, R M; Pitzenberger, S M; Randall, W C; Veber, D F; Gould, R J; Friedman, P A

    1989-06-01

    Echistatin, a polypeptide from the venom of the saw-scaled viper, Echis carinatus, containing 49 amino acids and 4 cystine bridges was synthesized by solid-phase methodology in 4% yield. In the final step, air oxidation of the octahydroderivative was found to be optimal at pH 8. The synthetic product was shown to be physically and biologically indistinguishable from native material. It inhibits fibrinogen-dependent platelet aggregation stimulated by ADP with IC50 = 3.3 x 10(-8) M and also prevents aggregation initiated by thrombin, epinephrine, collagen, or platelet-activating factor. Reduction of purified synthetic echistatin to octahydroechistatin with dithiothreitol followed by air oxidation regenerated homogeneous echistatin in quantitative yield. This highly specific refolding strongly suggests that the linear sequence of octahydroechistatin contains all of the information that is required for the proper folding of the peptide. The sequence Arg24-Gly-Asp of echistatin occurs also in adhesive glycoproteins that bind to the platelet fibrinogen receptor--a heterodimeric complex composed of glycoproteins IIb and IIIa. In an effort to evaluate the role of this putative binding site we have synthesized analogs of echistatin with substitution of Arg-24. Replacement with ornithine-24 (Orn-24) resulted in an analog having a platelet aggregation inhibitory activity with IC50 = 1.05 x 10(-7) M. Substitution with Ala-24 gave IC50 = 6.1 x 10(-7) M. The inhibitory activity of the corresponding short sequence analogs Arg-Gly-Asp-Phe (IC50 = 6 x 10(-6) M), Orn-Gly-Asp-Phe (IC50 = 1.3 x 10(-4) M), and Ala-Gly-Asp-Phe (IC50 = 5.0 x 10(-4) M) was also determined. These results suggest that arginine plays a more important role in the binding of the tetrapeptide than in that of echistatin. PMID:2726764

  11. Plasmic degradation of fibrinogen Paris I.

    PubMed

    Budzynski, A Z; Marder, V J

    1976-11-01

    Fibrin obtained from the plasma of a patient having abnormal fibrogen Paris I contains normal alpha, beta, and gamma polypeptide chains as well as an abnormal gamma-chain (gammaParis I) of approximately 51,000 daltons molecular weight. Plasmic digestion of Paris I fibrogen and noncrosslinked fibrin yields both normal and abnormal Fragment D molecules, the latter having a higher negative charge and molecular weight than that liberated from normal fibrinogen and noncorsslinked fibrin. After disulfide bond reduction, an abnormal polypeptide chain of approximately 40,500 +/- 2,000 daltons molecular weight was demonstrated in the Paris I digests by dodecyl sulfate (SDS) polyacrylamide gel electrophoresis. Comparison with the electrophoretic pattern for reduced digests of normal substrates indicates that it is a gamma-chain remnant in the normal Fragment D. Although the carbohydrate content in the gamma-Paris I-chain is slightly higher than that in the normal gamma-chain, as measured by periodic acid-Schiff reagent (PAS) staining intensity, it is concluded that extra carbohydrate does not account for the high molecular weight of the gamma-Paris I-chain since the 40,500 dalton chain does not stain with PAS. Plasma digestion of Paris I crosslinked fibrin yields a large amount of Fragment D in addition to Fragment D-D ("D-dimer") and E molecules, in contrast to a digest of normal crosslinked fibrin, from which only the latter two fragments are formed. This finding suggests that the defect in fibrinogen Paris I derives from an abnormality in the carboxy-terminal region of the gammaParis I-chain, so that in the presence of Factor XIII, these chains are not crosslinked and Fragment D-D molecules are not liberated upon subsequent plasmic degradation. The data provide support for the previous conclusion that a longer than normal polypeptide chain sequence at the carboxy-terminal portion of the gammaParis I-chains accounts for the increased size of these chains relative to the

  12. The fibrinogen antigenic turbidimetric assay (FIATA): the X2x test--the corrected chi-square comparison against the control-mean.

    PubMed

    Stief, Thomas W

    2007-01-01

    Vancomycin precipitates fibrinogen. The turbidity induced by this vancomycin-fibrinogen interaction is used to establish a simple standardized antigenic assay for plasmatic fibrinogen, the FIATA. 1 mM vancomycin or 2 mM chloramine-T inactivates 50% of fibrinogen in human plasma. In contrast to chloramine-T, vancomycin does not react in NaJ-based photometric assay for chloramines,vancomycin does not inactivate the singlet oxygen-sensible antithrombin III, and the vancomycin action against fibrinogen is not changed in spite of the presence of the 1O2 quenchers methionine or ascorbic acid. The FIATA is performed as follows: to 25 microL plasma 50 microL PBS are added and the absorbance (A) at 405 nm is read. Then 50 microL FIATA-reagent, consisting of 4.4 mM vancomycin in PBS, are added. After 2 minutes (RT) DeltaA is determined and standardized against a plasma pool of 100% of norm (2.8 g/L) fibrinogen. The FIATA is nearly linear up to a fibrinogen concentration of about 150% of norm (4.2 g/L), resulting in a DeltaA of about 600 mA. The lower detection limit is 4% of norm (0.1 g/L). The intra-assay and interessay CV values are < 4%. The normal range of FIATA is 100% +/-20% (x- +/- 1 SD). In = 321 or 344 unselected patient plasmas the FIATA (x- = 130%; SD = 52% or 43%) correlated with the functional fibrinogen assays a) modified Clauss-Method (x- = 4.1 g/L; SD =1.7 g/L) with r = 0.755 and b) FIFTA (x- = 124%; SD = 40%) with r = 0.813. The vancomycin/fibrinogen interaction (binding of about 16 molecules of vancomycin/molecule of fibrinogen) can be used to purify fibrinogen out of plasma. Vancomycin also clouds dysfunctional fibrinogen (fibrinogen in presence of EDTA or chloramine-T)or soluble fibrin. Vancomycin-reacted fibrinogen stimulates tissue type plasminogen activator (t-PA) up to about 20-fold. The experimental data are analyzed by a new significance test: the two foldYates-corrected chi-square comparison against the mean value ofthe control-collective, called

  13. Overexpression, purification and preliminary crystallographic analysis of human M-ficolin fibrinogen-like domain

    SciTech Connect

    Tanio, Michikazu; Kondo, Shin; Sugio, Shigetoshi; Kohno, Toshiyuki

    2006-07-01

    Human M-ficolin fibrinogen-like domain has been overexpressed in P. pastoris, purified and crystallized. Diffraction data have been collected to 1.9 Å. Ficolins, which are comprised of a collagen-like domain and a fibrinogen-like domain, are a kind of pattern-recognition molecule for pathogens in the innate immunity system. To investigate the molecular mechanism of the discrimination between self and non-self by ficolins, human M-ficolin fibrinogen-like domain (FD1), which contains the ligand-binding site, was overexpressed in Pichia pastoris, purified and crystallized using the vapour-diffusion method at 293 K. The crystals belong to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 55.16, b = 117.45, c = 55.19 Å, β = 99.88°, and contain three molecules per asymmetric unit. An X-ray data set was collected to 1.9 Å resolution using synchrotron radiation at beamline BL24XU at the SPring-8 facility in Japan.

  14. Decreased snake venom metalloproteinase effects via inhibition of enzyme and modification of fibrinogen.

    PubMed

    Nielsen, Vance G; Cerruti, Marc A; Valencia, Olivia M; Amos, Quinlan

    2016-10-01

    Since the introduction of antivenom administration 120 years ago to treat venomous snake bit, it has been the gold standard for saving life and limb. However, this therapeutic approach is not always effective and not without potential life-threatening side effects. We tested a new paradigm to abrogate the plasmatic anticoagulant effects of fibrinogenolytic snake venom metalloproteinases by modification of fibrinogen with iron and carbon monoxide and by inhibiting these Zn(2+) dependent metalloproteinases directly with carbon monoxide exposure. Assessment of the fibrinogenolytic effects of venoms collected from Puff adder, Gaboon viper and Indian cobra snakes on plasmatic coagulation kinetics was performed with thrombelastography. Pretreatment of plasma with iron and carbon monoxide exposure markedly attenuated the effects of all three venoms, and direct pretreatment of each venom with carbon monoxide also significantly decreased the ability to compromise coagulation. These results demonstrated that the introduction of a transition metal (e.g., modulation of the α-chain of fibrinogen with iron), modulation of transition metal in heme (e.g., carbon monoxide modulation of fibrinogen-bound heme iron), and direct inhibition of transition metal containing venom enzymes (e.g., CO binding to Zn(2+) or displacing Zn(2+) from the catalytic site) significantly decreased fibrinogenolytic activity. This biometal modulation strategy to attenuate the anticoagulant effects of snake venom metalloproteinases could potentially diminish hemostatic injury in envenomed patients until antivenom can be administered. PMID:27492573

  15. Platelet adhesiveness and aggregation in congenital afibrinogenemia. An investigation of three patients with post-transfusion, cross-correction studies between two of them.

    PubMed

    Girolami, A; De Marco, L; Virgolini, L; Peruffo, R; Fabris, F

    1975-02-01

    Platelet adhesiveness and aggregation were studied in three patients with congenital afibrinogenemia. The results obtained may be summarized as follows: The retention of platelets to a glass-bead filter determined with the Salzman method was significantly decreased; it was normal after fibrinogen infusion. With a modification of the Hellem test the values obtained were slightly decreased. Adrenalin-induced aggregation was absent whereas ADP-and collagen-induced aggregation was near normal or slightly decreased. Thrombofax aggregation was absent in citrated plasma. The abnormalities of platelet aggregation were corrected after fibrinogen infusion or after addition in vitro of fibrinogen, hemofilia A plasma and PPP obtained from an afibrinogenemic patient after fibrinogen infusion. The abnormalities of platelet aggregation were corrected well by ADP, collagen and Thrombofax in heparinized blood, but only a slight correction of adrenalin-induced aggregation was noted. Thrombin aggregation proved to be normal with the higher concentrations, whereas it was defective with the lower ones. Ristocetin aggregation was normal in citrated plasma at the concentration of 1.5 mg per ml but it was absent at the lower concentration (1.0 mg per ml). Ristocetin aggregation was, on the other hand absent in heparinized blood regardless of the concentration. These findings are in agreement with the presence of a prolonged bleeding time in congenital afibrinogenemia and suggest that fibrinogen plays an important role in platelet aggregation and adhesiveness.

  16. Developmental expression and organisation of fibrinogen genes in the zebrafish.

    PubMed

    Fish, Richard J; Vorjohann, Silja; Béna, Frédérique; Fort, Alexandre; Neerman-Arbez, Marguerite

    2012-01-01

    The zebrafish is a model organism for studying vertebrate development and many human diseases. Orthologues of the majority of human coagulation factors are present in zebrafish, including fibrinogen. As a first step towards using zebrafish to model human fibrinogen disorders, we cloned the zebrafish fibrinogen cDNAs and made in situ hybridisations and quantitative reverse transcription-polymerase chain reactions (qRT-PCR) to detect zebrafish fibrinogen mRNAs. Prior to liver development or blood flow we detected zebrafish fibrinogen expression in the embryonic yolk syncytial layer and then in the early cells of the developing liver. While human fibrinogen is encoded by a three-gene, 50 kilobase (kb) cluster on chromosome 4 ( FGB-FGA-FGG ), recent genome assemblies showed that the zebrafish fgg gene appears distanced from fga and fgb , which we confirmed by in situ hybridisation. The zebrafish fibrinogen Bβ and γ protein chains are conserved at over 50% of amino acid positions, compared to the human polypeptides. The zebrafish Aα chain is less conserved and its C-terminal region is nearly 200 amino acids shorter than human Aα. We generated transgenic zebrafish which express a green fluorescent protein reporter gene under the control of a 1.6 kb regulatory region from zebrafish fgg . Transgenic embryos showed strong fluorescence in the developing liver, mimicking endogenous fibrinogen expression. This regulatory sequence can now be used for overexpression of transgenes in zebrafish hepatocytes. Our study is a proof-of-concept step towards using zebrafish to model human disease linked to fibrinogen gene mutations.

  17. Optical tweezers study of red blood cell aggregation and disaggregation in plasma and protein solutions

    NASA Astrophysics Data System (ADS)

    Lee, Kisung; Kinnunen, Matti; Khokhlova, Maria D.; Lyubin, Evgeny V.; Priezzhev, Alexander V.; Meglinski, Igor; Fedyanin, Andrey A.

    2016-03-01

    Kinetics of optical tweezers (OT)-induced spontaneous aggregation and disaggregation of red blood cells (RBCs) were studied at the level of cell doublets to assess RBC interaction mechanics. Measurements were performed under in vitro conditions in plasma and fibrinogen and fibrinogen + albumin solutions. The RBC spontaneous aggregation kinetics was found to exhibit different behavior depending on the cell environment. In contrast, the RBC disaggregation kinetics was similar in all solutions qualitatively and quantitatively, demonstrating a significant contribution of the studied proteins to the process. The impact of the study on assessing RBC interaction mechanics and the protein contribution to the reversible RBC aggregation process is discussed.

  18. Acetylation and glycation of fibrinogen in vitro occur at specific lysine residues in a concentration dependent manner: A mass spectrometric and isotope labeling study

    SciTech Connect

    Svensson, Jan; Bergman, Ann-Charlotte; Adamson, Ulf; Blombaeck, Margareta; Wallen, Hakan; Joerneskog, Gun

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Fibrinogen was incubated in vitro with glucose or aspirin. Black-Right-Pointing-Pointer Acetylations and glycations were found at twelve lysine sites by mass spectrometry. Black-Right-Pointing-Pointer The labeling by aspirin and glucose occurred dose-dependently. Black-Right-Pointing-Pointer No competition between glucose and aspirin for binding to fibrinogen was found. -- Abstract: Aspirin may exert part of its antithrombotic effects through platelet-independent mechanisms. Diabetes is a condition in which the beneficial effects of aspirin are less prominent or absent - a phenomenon called 'aspirin resistance'. We investigated whether acetylation and glycation occur at specific sites in fibrinogen and if competition between glucose and aspirin in binding to fibrinogen occurs. Our hypothesis was that such competition might be one explanation to 'aspirin resistance' in diabetes. After incubation of fibrinogen in vitro with aspirin (0.8 mM, 24 h) or glucose (100 mM, 5-10 days), we found 12 modified sites with mass spectrometric techniques. Acetylations in the {alpha}-chain: {alpha}K191, {alpha}K208, {alpha}K224, {alpha}K429, {alpha}K457, {alpha}K539, {alpha}K562, in the {beta}-chain: {beta}K233, and in the {gamma}-chain: {gamma}K170 and {gamma}K273. Glycations were found at {beta}K133 and {gamma}K75, alternatively {gamma}K85. Notably, the lysine 539 is a site involved in FXIII-mediated cross-linking of fibrin. With isotope labeling in vitro, using [{sup 14}C-acetyl]salicylic acid and [{sup 14}C]glucose, a labeling of 0.013-0.084 and 0.12-0.5 mol of acetylated and glycated adduct/mol fibrinogen, respectively, was found for clinically (12.9-100 {mu}M aspirin) and physiologically (2-8 mM glucose) relevant plasma concentrations. No competition between acetylation and glycation could be demonstrated. Thus, fibrinogen is acetylated at several lysine residues, some of which are involved in the cross-linking of fibrinogen. This may

  19. Platelet-Monocyte Aggregates and C-Reactive Protein are Associated with VTE in Older Surgical Patients.

    PubMed

    Shih, Lauren; Kaplan, David; Kraiss, Larry W; Casper, T Charles; Pendleton, Robert C; Peters, Christopher L; Supiano, Mark A; Zimmerman, Guy A; Weyrich, Andrew S; Rondina, Matthew T

    2016-06-07

    Emerging evidence implicates platelets as key mediators of venous thromboembolism (VTE). Nevertheless, the pathways by which platelets and circulating procoagulant proteins synergistically orchestrate VTE remain incompletely understood. We prospectively determined whether activated platelets and systemic procoagulant factors were associated with VTE in 32 older orthopedic surgery patients. Circulating platelet-monocyte aggregates (PMAs), p-selectin expression (P-SEL), and integrin αIIbβ3 activation (PAC-1 binding) were assessed pre-operatively and 24 hours post-operatively. The proinflammatory and procoagulant molecule C-reactive protein (CRP), which induces PMA formation in vitro, along with plasma d-dimer and fibrinogen levels were also measured. The primary outcome was VTE occurring within 30 days post-operatively. Overall, 40.6% of patients developed VTE. Patients with VTE had a significant increase in circulating PMAs and CRP post-operatively, compared to those without VTE. Changes in PMA and CRP in VTE patients were significantly correlated (r(2) = 0.536, p = 0.004). In contrast, P-SEL expression and PAC-1 binding, fibrinogen levels, and d-dimers were not associated with VTE. This is the first study to identify that increased circulating PMAs and CRP levels are early markers associated with post-surgical VTE. Our findings also provide new clinical evidence supporting the interplay between PMAs and CRP in patients with VTE.

  20. Fibrinogen Induces Alterations of Endothelial Cell Tight Junction Proteins

    PubMed Central

    PATIBANDLA, PHANI K.; TYAGI, NEETU; DEAN, WILLIAM L.; TYAGI, SURESH C.; ROBERTS, ANDREW M.; LOMINADZE, DAVID

    2009-01-01

    We previously showed that an elevated content of fibrinogen (Fg) increased formation of filamentous actin and enhanced endothelial layer permeability. In the present work we tested the hypothesis that Fg binding to endothelial cells (ECs) alters expression of actin-associated endothelial tight junction proteins (TJP). Rat cardiac microvascular ECs were grown in gold plated chambers of an electrical cell-substrate impedance system, 8-well chambered, or in 12-well plates. Confluent ECs were treated with Fg (2 or 4 mg/ml), Fg (4 mg/ml) with mitogen-activated protein kinase (MEK) kinase inhibitors (PD98059 or U0126), Fg (4 mg/ml) with anti-ICAM-1 antibody or BQ788 (endothelin type B receptor blocker), endothelin-1, endothelin-1 with BQ788, or medium alone for 24 h. Fg induced a dose-dependent decrease in EC junction integrity as determined by transendothelial electrical resistance (TEER). Western blot analysis and RT-PCR data showed that the higher dose of Fg decreased the contents of TJPs, occludin, zona occluden-1 (ZO-1), and zona occluden-2 (ZO-2) in ECs. Fg-induced decreases in contents of the TJPs were blocked by PD98059, U0126, or anti-ICAM-1 antibody. While BQ788 inhibited endothelin-1-induced decrease in TEER, it did not affect Fg-induced decrease in TEER. These data suggest that Fg increases EC layer permeability via the MEK kinase signaling pathway by affecting occludin, ZO-1, and ZO-2, TJPs, which are bound to actin filaments. Therefore, increased binding of Fg to its major EC receptor, ICAM-1, during cardiovascular diseases may increase microvascular permeability by altering the content and possibly subcellular localization of endothelial TJPs. PMID:19507189

  1. High-performance scaffolds on titanium surfaces: osteoblast differentiation and mineralization promoted by a globular fibrinogen layer through cell-autonomous BMP signaling.

    PubMed

    Horasawa, Noriko; Yamashita, Teruhito; Uehara, Shunsuke; Udagawa, Nobuyuki

    2015-01-01

    Titanium has been widely used as a dental implant material. However, it takes several months for the implant body to bind with the jawbone. To develop new bioactive modification on titanium surfaces to achieve full osseointegration expeditiously, we used fibrinogen and fibronectin as bioactive scaffolds on the titanium plate, which are common extracellular matrix (ECM) proteins. We analyzed the features of the surface of ECM-modified titanium plates by atomic force microscopy and Fourier transform infrared spectrophotometry. We also evaluated the effect of ECM modification on promoting the differentiation and mineralization of osteoblasts on these surfaces. Fibrinogen had excellent adsorption on titanium surfaces even at low concentrations, due to the binding ability of fibrinogen via its RGD motif. The surface was composed of a fibrinogen monolayer, in which the ratio of β-sheets was decreased. Osteoblast proliferation on ECM-modified titanium surface was significantly promoted compared with titanium alone. Calcification on the modified surface was also accelerated. These ECM-promoting effects correlated with increased expression of bone morphogenetic proteins (BMPs) by the osteoblasts themselves and were inhibited by Noggin, a BMP inhibitor. These results suggest that the fibrinogen monolayer-modified titanium surface is recognized as bioactive scaffolds and promotes bone formation, resulting in the acceleration of osseointegration.

  2. Human fibrinogen adsorption on positively charged latex particles.

    PubMed

    Zeliszewska, Paulina; Bratek-Skicki, Anna; Adamczyk, Zbigniew; Cieśla, Michał

    2014-09-23

    Fibrinogen (Fb) adsorption on positively charged latex particles (average diameter of 800 nm) was studied using the microelectrophoretic and the concentration depletion methods based on AFM imaging. Monolayers on latex were adsorbed from diluted bulk solutions at pH 7.4 and an ionic strength in the range of 10(-3) to 0.15 M where fibrinogen molecules exhibited an average negative charge. The electrophoretic mobility of the latex after controlled fibrinogen adsorption was systematically measured. A monotonic decrease in the electrophoretic mobility of fibrinogen-covered latex was observed for all ionic strengths. The results of these experiments were interpreted according to the three-dimensional electrokinetic model. It was also determined using the concentration depletion method that fibrinogen adsorption was irreversible and the maximum coverage was equal to 0.6 mg m(-2) for ionic strength 10(-3) M and 1.3 mg m(-2) for ionic strength 0.15 M. The increase of the maximum coverage was confirmed by theoretical modeling based on the random sequential adsorption approach. Paradoxically, the maximum coverage of fibrinogen on positively charged latex particles was more than two times lower than the maximum coverage obtained for negative latex particles (3.2 mg m(-2)) at pH 7.4 and ionic strength of 0.15 M. This was interpreted as a result of the side-on adsorption of fibrinogen molecules with their negatively charged core attached to the positively charged latex surface. The stability and acid base properties of fibrinogen monolayers on latex were also determined in pH cycling experiments where it was observed that there were no irreversible conformational changes in the fibrinogen monolayers. Additionally, the zeta potential of monolayers was more positive than the zeta potential of fibrinogen in the bulk, which proves a heterogeneous charge distribution. These experimental data reveal a new, side-on adsorption mechanism of fibrinogen on positively charged surfaces and

  3. Generation of Soluble Advanced Glycation End Products Receptor (sRAGE)-Binding Ligands during Extensive Heat Treatment of Whey Protein/Lactose Mixtures Is Dependent on Glycation and Aggregation.

    PubMed

    Liu, Fahui; Teodorowicz, Małgorzata; Wichers, Harry J; van Boekel, Martinus A J S; Hettinga, Kasper A

    2016-08-24

    Heating of protein- and sugar-containing materials is considered the primary factor affecting the formation of advanced glycation end products (AGEs). This study aimed to investigate the influence of heating conditions, digestion, and aggregation on the binding capacity of AGEs to the soluble AGE receptor (sRAGE). Samples consisting of mixtures of whey protein and lactose were heated at 130 °C. An in vitro infant digestion model was used to study the influence of heat treatment on the digestibility of whey proteins. The amount of sRAGE-binding ligands before and after digestion was measured by an ELISA-based sRAGE-binding assay. Water activity did not significantly affect the extent of digestibility of whey proteins dry heated at pH 5 (ranging from 3.3 ± 0.2 to 3.6 ± 0.1% for gastric digestion and from 53.5 ± 1.5 to 64.7 ± 1.1% for duodenal digestion), but there were differences in cleavage patterns of peptides among the samples heated at different pH values. Formation of sRAGE-binding ligands depended on the formation of aggregates and was limited in the samples heated at pH 5. Moreover, the sRAGE-binding activity of digested sample was changed by protease degradation and correlated with the digestibility of samples. In conclusion, generation of sRAGE-binding ligands during extensive heat treatment of whey protein/lactose mixtures is limited in acidic heating condition and dependent on glycation and aggregation. PMID:27460534

  4. A fibrinogen-related protein identified from hepatopancreas of crayfish is a potential pattern recognition receptor.

    PubMed

    Chen, Qiming; Bai, Suhua; Dong, Chaohua

    2016-09-01

    Fibrinogen-related protein (FREP) family is a large group of proteins containing fibrinogen-like (FBG) domain and plays multiple physiological roles in animals. However, their immune functions in crayfish are not fully explored. In the present study, a novel fibrinogen-like protein (designated as PcFBN1) was identified and characterized from hepatopancreas of red swamp crayfish Procambarus clarkii. The cDNA sequence of PcFBN1 contains an open reading frame (ORF) of 1353 bp encoding a protein of 450 amino acids. Sequence and structural analysis indicated that PcFBN1 contains an FBG domain in C-terminal and a putative signal peptide of 19 amino acids in N-terminal. Semi-quantitative PCR revealed that the main expression of PcFBN1 was observed in hepatopancreas and hemocyte. Temporal expression analysis exhibited that PcFBN1 expression could be significantly induced by heat-killed Aeromonas hydrophila. Tissue distribution and temporal change of PcFBN1 suggested that PcFBN1 may be involved in immune responses of red swamp crayfish. Recombinant PcFBN1 protein binds and agglutinates both gram-negative bacteria Escherichia coli and gram-positive bacteria Micrococcus lysodeikticus. Moreover, binding and agglutination is Ca(2+) dependent. Further analysis indicated that PcFBN1 recognizes some acetyl group-containing substance LPS and PGN. RNAi experiment revealed that PcFBN1 is required for bacterial clearance and survival from A. hydrophila infection. Reduction of PcFBN1 expression significantly decreased the survival and enhanced the number of A. hydrophila in the hemolymph. These results indicated that PcFBN1 plays an important role in the innate immunity of red swamp crayfish as a potential pattern recognition receptor. PMID:27417229

  5. Modulation of Dental Pulp Stem Cell Odontogenesis in a Tunable PEG-Fibrinogen Hydrogel System.

    PubMed

    Lu, Qiqi; Pandya, Mirali; Rufaihah, Abdul Jalil; Rosa, Vinicius; Tong, Huei Jinn; Seliktar, Dror; Toh, Wei Seong

    2015-01-01

    Injectable hydrogels have the great potential for clinical translation of dental pulp regeneration. A recently developed PEG-fibrinogen (PF) hydrogel, which comprises a bioactive fibrinogen backbone conjugated to polyethylene glycol (PEG) side chains, can be cross-linked after injection by photopolymerization. The objective of this study was to investigate the use of this hydrogel, which allows tuning of its mechanical properties, as a scaffold for dental pulp tissue engineering. The cross-linking degree of PF hydrogels could be controlled by varying the amounts of PEG-diacrylate (PEG-DA) cross-linker. PF hydrogels are generally cytocompatible with the encapsulated dental pulp stem cells (DPSCs), yielding >85% cell viability in all hydrogels. It was found that the cell morphology of encapsulated DPSCs, odontogenic gene expression, and mineralization were strongly modulated by the hydrogel cross-linking degree and matrix stiffness. Notably, DPSCs cultured within the highest cross-linked hydrogel remained mostly rounded in aggregates and demonstrated the greatest enhancement in odontogenic gene expression. Consistently, the highest degree of mineralization was observed in the highest cross-linked hydrogel. Collectively, our results indicate that PF hydrogels can be used as a scaffold for DPSCs and offers the possibility of influencing DPSCs in ways that may be beneficial for applications in regenerative endodontics.

  6. The pyrrolidinoindoline alkaloid Psm2 inhibits platelet aggregation and thrombus formation by affecting PI3K/Akt signaling

    PubMed Central

    Su, Xing-li; Su, Wen; Wang, Ying; Wang, Yue-hu; Ming, Xin; Kong, Yi

    2016-01-01

    Aim: Psm2, one of the pyrrolidinoindoline alkaloids isolated from whole Selaginella moellendorffii plants, has shown a potent antiplatelet activity. In this study, we further evaluated the antiplatelet effects of Psm2, and elucidated the underlying mechanisms. Methods: Human platelet aggregation in vitro and rat platelet aggregation ex vivo were investigated. Agonist-induced platelet aggregation was measured using a light transmission aggregometer. The antithrombotic effects of Psm2 were evaluated in arteriovenous shunt thrombosis model in rats. To elucidate the mechanisms underlying the antiplatelet activity of Psm2, ELISAs, Western blotting and molecular docking were performed. The bleeding risk of Psm2 administration was assessed in a mouse tail cutting model, and the cytotoxicity of Psm2 was measured with MTT assay in EA.hy926 cells. Results: Psm2 dose-dependently inhibited human platelet aggregation induced by ADP, U4619, thrombin and collagen with IC50 values of 0.64, 0.37, 0.35 and 0.87 mg/mL, respectively. Psm2 (1, 3, 10 mg/kg) administered to rats significantly inhibited platelet aggregation ex vivo induced by ADP. Psm2 (1, 3, 10 mg/mL, iv) administered to rats with the A–V shunt dose-dependently decreased the thrombus formation. Psm2 inhibited platelet adhesion to fibrinogen and collagen with IC50 values of 84.5 and 96.5 mg/mL, respectively, but did not affect the binding of fibrinogen to GPIIb/IIIa. Furthermore, Psm2 inhibited AktSer473 phosphorylation, but did not affect MAPK signaling and Src kinase activation. Molecular docking showed that Psm2 bound to phosphatidylinositol 3-kinase β (PI3Kβ) with a binding free energy of −13.265 kcal/mol. In addition, Psm2 did not cause toxicity in EA.hy926 cells and produced only slight bleeding in a mouse tail cutting model. Conclusion: Psm2 inhibits platelet aggregation and thrombus formation by affecting PI3K/Akt signaling. Psm2 may be a lead compound or drug candidate that could be developed for the

  7. Improved treatment of sudden hearing loss by specific fibrinogen aphaeresis.

    PubMed

    Ullrich, Heidrun; Kleinjung, Tobias; Steffens, Thomas; Jacob, Peter; Schmitz, Gerd; Strutz, Jürgen

    2004-01-01

    The etiology of sudden sensorineural hearing loss is still unclear and is thought to result from disturbances of microcirculation, infectious causes, or autoimmune disorders. So far standard therapy did not show clear improvement over spontaneous remission rate, which is assumed to be about 50% [Nakashima et al., Acta. Otolaryngol. Stockh. 514:14-16, 1994; Schuknecht and Donovan, Arch. Otorhinolaryngol. 243:1-15, 1986; Harris and Sharp, Laryngoscope 100:516-524, 1990; Mayot et al., Clin. Immunol. Immunopath. 68:41-45, 1993; Gussen, Ann. Otol. Rhinol. Laryngol. 85:94-100, 1976]. Elevated blood viscosity due to high fibrinogen levels is supposed to cause decreased cochlear blood flow and thus initiate sudden hearing loss. The specific lowering of fibrinogen immediately decreases plasma viscosity exactly to the desired extent and should lead to improved cochlear blood flow [Suckfüll et al., Acta. Otolaryngol 119:763-766, 1999; Suckfüll, Lancet 360:1811-1817, 2002; Walch et al., Laryngol. Rhino. Otol. 75:641-645, 1996; Suckfüll et al., Otol. Neurotol. 23:309-311, 2002]. In a prospective uncontrolled pilot study on 36 patients with unilateral sudden onset sensorineural hearing loss (SHL) we tried to establish that 1-3 specific fibrinogen aphaereses alone improve recovery of hearing and that it is possible to lower fibrinogen to the target of 80-100 mg/dl without important side effects. Pure tone audiometry was carried out immediately before and after each aphaeresis as well as at 2 and 4 weeks and 6 months after treatment. Sixteen patients recovered spontaneously before undergoing fibrinogen adsorption. All 20 aphaeresis patients improved during immunoadsorption; in 60% of patients auditory thresholds returned to normal after the first immunoadsorption and treatment could be discontinued, in another 20% of patients complete recovery was reached after 4 weeks. The mean plasma fibrinogen concentration of the 20 patients before the first aphaeresis session was 308

  8. Fibrinogen Yecheon: congenital dysfibrinogenemia with gamma methionine-310 to threonine substitution.

    PubMed

    Park, Eunkyung; Park, Geumbore; Park, Rojin; Kim, Hee-Jin; Lee, Sang Jae; Cha, Young Joo

    2009-12-01

    This case study reports a rare fibrinogen variant, gamma Met310Thr mutation, for the first time in Korea. The case shows a point mutation from T to C in the 1,007th nucleotide of the FGG gene. This report describes a variant fibrinogen, hereinafter called "fibrinogen Yecheon", using the name after the town where the patient was living at the time of diagnosis. Fibrinogen Yecheon has a de novo heterozygous point mutation of FGG resulting in gamma Met310Thr and subsequent extra N-glycosylation at gamma Asn308. Extra N-glycosylated fibrinogen is considered a main inhibitor of normal fibrinogen activity.

  9. Recombinant human fibrinogen and sulfation of the. gamma. prime chain

    SciTech Connect

    Farrell, D.H.; Huang, S.; Chung, D.W.; Davie, E.W. ); Mulvihill, E.R. )

    1991-10-01

    Human fibrinogen and the homodimeric {gamma}{prime}-chain-containing variant have been expressed in BHK cells using cDNAs coding for the {alpha},{beta}, and {gamma} (or {gamma}{prime}) chains. The fibrinogens were secreted at levels greater than 4 {mu}g (mg of total cell protein){sup {minus}1}day{sup {minus}1} and were biologically active in clotting assays. Recombinant fibrinogen containing the {gamma}' chain incorporated {sup 35}SO{sub 4} into its chains during biosynthesis, while no incorporation occurred in the protein containing the {gamma} chain. The identity of the sulfated {gamma}{prime} chain was verified by its ability to form dimers during clotting. In addition, carboxypeptidase {Upsilon} digestion of the recombinant fibrinogen containing the {gamma}{prime} chain released 96% of the {sup 35}S label from the sulfated chain, and the radioactive material was identified as tyrosine O-sulfate. These results clarify previous findings of the sulfation of tyrosine in human fibrinogen.

  10. Fibrin(ogen) mediates acute inflammatory responses to biomaterials

    PubMed Central

    1993-01-01

    Although "biocompatible" polymeric elastomers are generally nontoxic, nonimmunogenic, and chemically inert, implants made of these materials may trigger acute and chronic inflammatory responses. Early interactions between implants and inflammatory cells are probably mediated by a layer of host proteins on the material surface. To evaluate the importance of this protein layer, we studied acute inflammatory responses of mice to samples of polyester terephthalate film (PET) that were implanted intraperitoneally for short periods. Material preincubated with albumin is "passivated," accumulating very few adherent neutrophils or macrophages, whereas uncoated or plasma- coated PET attracts large numbers of phagocytes. Neither IgG adsorption nor surface complement activation is necessary for this acute inflammation; phagocyte accumulation on uncoated implants is normal in hypogammaglobulinemic mice and in severely hypocomplementemic mice. Rather, spontaneous adsorption of fibrinogen appears to be critical: (a) PET coated with serum or hypofibrinogenemic plasma attracts as few phagocytes as does albumin-coated material; (b) in contrast, PET preincubated with serum or hypofibrinogenemic plasma containing physiologic amounts of fibrinogen elicits "normal" phagocyte recruitment; (c) most importantly, hypofibrinogenemic mice do not mount an inflammatory response to implanted PET unless the material is coated with fibrinogen or the animals are injected with fibrinogen before implantation. Thus, spontaneous adsorption of fibrinogen appears to initiate the acute inflammatory response to an implanted polymer, suggesting an interesting nexus between two major iatrogenic effects of biomaterials: clotting and inflammation. PMID:8245787

  11. The S. aureus polysaccharide capsule and Efb-dependent fibrinogen shield act in concert to protect against phagocytosis

    PubMed Central

    Kuipers, Annemarie; Stapels, Daphne A. C.; Weerwind, Lleroy T.; Ko, Ya-Ping; Ruyken, Maartje; Lee, Jean C.; van Kessel, Kok P.M.; Rooijakkers, Suzan H. M.

    2016-01-01

    Staphylococcus aureus has developed many mechanisms to escape from human immune responses. In order to resist phagocytic clearance, S. aureus expresses a polysaccharide capsule, which effectively masks the bacterial surface and surface-associated proteins, such as opsonins, from recognition by phagocytic cells. Additionally, secretion of the Extracellular fibrinogen binding protein (Efb) potently blocks phagocytic uptake of the pathogen. Efb creates a fibrinogen shield surrounding the bacteria by simultaneously binding complement C3b and fibrinogen at the bacterial surface. By means of neutrophil phagocytosis assays with fluorescently labeled encapsulated serotype 5 (CP5) and serotype 8 (CP8) strains we now compare the immune-modulating function of these shielding mechanisms. Our data indicate that, in highly encapsulated S. aureus strains, the polysaccharide capsule is able to prevent phagocytic uptake at plasma concentrations <10%, but loses its protective ability at higher concentrations of plasma. Interestingly, Efb shows a strong inhibitory effect on both capsule-negative as well as encapsulated strains at all tested plasma concentrations. Furthermore our results suggest that both shielding mechanisms can exist simultaneously and collaborate to provide optimal protection against phagocytosis at a broad range of plasma concentrations. Since opsonizing antibodies will be shielded from recognition by either mechanism, incorporating both capsular polysaccharides and Efb in future vaccines could be of great importance. PMID:27112346

  12. Deendothelialization in vivo initiates a thrombogenic reaction at the rabbit aorta surface. Correlation of uptake of fibrinogen and antithrombin III with thrombin generation by the exposed subendothelium.

    PubMed Central

    Hatton, M. W.; Moar, S. L.; Richardson, M.

    1989-01-01

    Purified radiolabeled fibrinogen and antithrombin III (ATIII) were injected intravenously into rabbits before a deendothelializing injury to the aorta, and allowed to circulate for 0.1 to 6 hours before exsanguination, excision of the aorta, and quantification of each protein/unit area of subendothelium (intima-media). Uptake of fibrinogen was rapid (saturation 10 minutes after injury was approximately 13.0 pmol/cm2) compared with that of ATIII (45 to 60 minutes; 3.5 to 4.3 pmol/cm2). Both proteins associated primarily (greater than 90%) with the subendothelium rather than the platelet monolayer. The avidity of the deendothelialized vessel of these proteins was measured after a 20-minute circulation time at various intervals after injury. Whereas turnover of fibrinogen was fairly constant (approximately 100% per hour), that of ATIII was maximal (approximately 200% per hour) at 1 hour, decreasing to approximately 105% per hour at 5 hours after injury. The profile of ATIII turnover mirrored that of thrombin released in vitro from the deendothelialized aorta up to 10 days after injury, whereas the uninjured aorta and the aorta deendothelialized ex vivo adsorbed fibrinogen poorly and released negligible thrombin. Pretreatment of the aorta, deendothelialized ex vivo with thrombin in vitro increased fibrinogen uptake significantly. It is possible that, after deendothelialization in vivo, fibrinogen adsorption is determined largely by thrombin generation at the vessel wall. ATIII binding is limited by the availability of binding sites in the subendothelium, although the rate of thrombin generation influences ATIII turnover. Images Figure 1 PMID:2782381

  13. The interactions of fibrinogen and dextrans with erythrocytes

    PubMed Central

    Rampling, M.; Sirs, John A.

    1972-01-01

    1. The rate of packing of erythrocytes in whole blood, under a centrifugal field of 200 g, has been studied using an automatic recording centrifuge. 2. Reduction of the supernatant fibrinogen concentration, by repeatedly washing the cells, lowers the rate of packing and reduces the cell flexibility. 3. Resuspending the cells in their own plasma or in isotonic solutions containing fibrinogen restores their flexibility. 4. Rouleaux formation has been shown to have no effect on the rate of packing by comparison of blood diluted with plasma, isotonic NaCl or Ringer—Locke solutions. While the degree of rouleaux formation varied with the diluent used, the rate of packing and packed cell haematocrit were the same, for the same dilution. 5. Both formalin and dextran altered the degree of rouleaux formation and reduced erythrocyte flexibility. Dextran was found to act indirectly on the erythrocyte flexibility by reducing the plasma fibrinogen concentration. PMID:5046146

  14. Extraction, radioiodination, and in vivo catabolism of equine fibrinogen

    SciTech Connect

    Coyne, C.P.; Hornof, W.J.; Kelly, A.B.; O'Brien, T.R.; DeNardo, S.J.

    1985-12-01

    Equine fibrinogen was isolated and aliquots were stored frozen at -70 C before radiolabeling with 125I (half-life = 60.2 days; gamma = 35 keV, using monochloroiodine reagent. Radioiodination efficiencies were 49% to 53%, resulting in a labeled product with 98% protein-bound activity and 91% clottable radioactivity. In 6 equine in vivo investigations, plasma half-lives of 125I-labeled fibrinogen were from 4.1 to 5.2 days, corresponding to a mean daily plasma elimination rate of approximately 15%.

  15. Construction aggregates

    USGS Publications Warehouse

    Tepordei, V.V.

    1995-01-01

    Part of the 1994 Industrial Minerals Review. The production, consumption, and applications of construction aggregates are reviewed. In 1994, the production of construction aggregates, which includes crushed stone and construction sand and gravel combined, increased 7.7 percent to 2.14 Gt compared with the previous year. These record production levels are mostly a result of funding for highway construction work provided by the Intermodal Surface Transportation Efficiency Act of 1991. Demand is expected to increase for construction aggregates in 1995.

  16. Extraction, radiolabeling, and in vivo catabolism of autologous-origin equine fibrinogen and platelets in the healthy and exercise-stressed horse

    SciTech Connect

    Coyne, C.P.

    1986-01-01

    Three separate techniques were evaluated for the extraction of autologous-origin fibrinogen from whole equine plasma. Rapid extraction of equine fibrinogen with ammonium sulfate-sodium phosphate buffer, in combination with saturated glycine buffer, provided the most practical means of obtaining a protein extract with the highest degree of biological activity and sufficiently high iodine-125 (/sup 125/I) radiolabeling efficiencies using monochloroiodine reagent (ICI). A technique was developed for the in vitro radiolabeling of equine platelets suspended in plasma. This entailed the use of the isotope, indium-111 (/sup 111/In), together with the lipophilic ligand, 2-(mercaptopyridine-N-oxide). This labeling technique achieved labeling efficiencies between 75% and 96%, and in vitro aggregability of /sup 111/In-merc radiolabeled platelets was comparable to that of unlabeled cell isolates. In the final phase of the investigation, autologous-origin /sup 125/I-labeled fibrinogen and /sup 111/In-labeled platelets were applied in a series of equine exercise physiology studies. Elimination of these two radiobiologicals was evaluated in the resting and exercise-stressed horse. Results from these investigations revealed no long-term influence of exercise conditioning on the in vivo kinetics of radiolabeled fibrinogen or platelets.

  17. Influence of a constant magnetic field on the fibrinogen-fibrin system. [in blood coagulation process

    NASA Technical Reports Server (NTRS)

    Matskevichene, V. B.; Platonova, A. T.

    1974-01-01

    The effect of a constant magnetic field with a strength of 2500 oersteds on the fibrinogen-fibrin system was studied in the organism of healthy rabbits with exposure times of 1 and 5 hours. The results obtained indicate disruptions in the stage of conversion of fibrinogen to fibrin and an increase in the amount of fibrinogen.

  18. 21 CFR 864.7340 - Fibrinogen determination system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Fibrinogen determination system. 864.7340 Section 864.7340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages §...

  19. 21 CFR 864.7340 - Fibrinogen determination system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Fibrinogen determination system. 864.7340 Section 864.7340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages §...

  20. 21 CFR 864.7340 - Fibrinogen determination system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Fibrinogen determination system. 864.7340 Section 864.7340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages §...

  1. 21 CFR 864.7340 - Fibrinogen determination system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Fibrinogen determination system. 864.7340 Section 864.7340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages §...

  2. 21 CFR 864.7340 - Fibrinogen determination system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... consists of the instruments, reagents, standards, and controls used to determine the fibrinogen levels in disseminated intravascular coagulation (nonlocalized clotting within the blood vessels) and primary fibrinolysis (the dissolution of fibrin in a blood clot). (b) Classification. Class II (performance standards)....

  3. The Tomato yellow leaf curl virus V2 protein forms aggregates depending on the cytoskeleton integrity and binds viral genomic DNA

    PubMed Central

    Moshe, Adi; Belausov, Eduard; Niehl, Annette; Heinlein, Manfred; Czosnek, Henryk; Gorovits, Rena

    2015-01-01

    The spread of Tomato yellow leaf curl virus (TYLCV) was accompanied by the formation of coat protein (CP) aggregates of increasing size in the cytoplasm and nucleus of infected tomato (Solanum lycopersicum) cells. In order to better understand the TYLCV-host interaction, we investigated the properties and the subcellular accumulation pattern of the non-structural viral protein V2. CP and V2 are the only sense-oriented genes on the virus circular single-stranded DNA genome. Similar to CP, V2 localized to cytoplasmic aggregates of increasing size and as infection progressed was also found in nuclei, where it co-localized with CP. V2 was associated with viral genomic DNA molecules, suggesting that V2 functions as a DNA shuttling protein. The formation and the 26S proteasome-mediated degradation of V2 aggregates were dependent on the integrity of the actin and microtubule cytoskeleton. We propose that the cytoskeleton-dependent formation and growth of V2 aggregates play an important role during TYLCV infection, and that microtubules and actin filaments are important for the delivery of V2 to the 26S proteasome. PMID:25940862

  4. The Tomato yellow leaf curl virus V2 protein forms aggregates depending on the cytoskeleton integrity and binds viral genomic DNA.

    PubMed

    Moshe, Adi; Belausov, Eduard; Niehl, Annette; Heinlein, Manfred; Czosnek, Henryk; Gorovits, Rena

    2015-01-01

    The spread of Tomato yellow leaf curl virus (TYLCV) was accompanied by the formation of coat protein (CP) aggregates of increasing size in the cytoplasm and nucleus of infected tomato (Solanum lycopersicum) cells. In order to better understand the TYLCV-host interaction, we investigated the properties and the subcellular accumulation pattern of the non-structural viral protein V2. CP and V2 are the only sense-oriented genes on the virus circular single-stranded DNA genome. Similar to CP, V2 localized to cytoplasmic aggregates of increasing size and as infection progressed was also found in nuclei, where it co-localized with CP. V2 was associated with viral genomic DNA molecules, suggesting that V2 functions as a DNA shuttling protein. The formation and the 26S proteasome-mediated degradation of V2 aggregates were dependent on the integrity of the actin and microtubule cytoskeleton. We propose that the cytoskeleton-dependent formation and growth of V2 aggregates play an important role during TYLCV infection, and that microtubules and actin filaments are important for the delivery of V2 to the 26S proteasome. PMID:25940862

  5. Fibrinogen-related protein from amphioxus Branchiostoma belcheri is a multivalent pattern recognition receptor with a bacteriolytic activity.

    PubMed

    Fan, Chunxin; Zhang, Shicui; Li, Lei; Chao, Yeqing

    2008-07-01

    Fibrinogen-related proteins (FREPs) containing fibrinogen-like (FBG) domain have been shown to be involved in immune responses in both invertebrates and vertebrates, but the underlying mechanisms remain ill-defined. In this study we isolated a cDNA encoding amphioxus (Branchiostoma belcheri) FREP homolog, BbFREP. BbFREP encoded a protein of 286 amino acids, which included a C-terminal FBG domain and clustered together with human fibrinogen beta and gamma chains. Quantitative real time PCR revealed that the expression of BbFREP was significantly up-regulated following challenge with lipopolysaccharides (LPS) or lipoteichoic acid (LTA). The recombinant BbFREP expressed in Pichia pastoris was able to specifically recognize the pathogen-associated molecular patterns (PAMPs) on the bacterial surfaces including LPS, peptidoglycan (PGN) and LTA, and displayed strong bacteriolytic activities against both Gram-negative bacterium Escherichia coli and Gram-positive bacterium Staphylococcus aureus. BbFREP was also able to bind to both E. coli and S. aureus. In situ hybridization indicated that BbFREP was mainly expressed in the hepatic caecum and hind-gut, agreeing basically with the primary expression of vertebrate FREP genes in the liver. All these suggest that BbFREP can function as a pattern recognition receptor with a bacteriolytic activity via interaction with LPS, LTA and PGN. It also bolsters the notion that the hepatic caecum of amphioxus is equivalent to the vertebrate liver, acting as a major tissue in acute phase response. PMID:18533266

  6. CD44-related chondroitin sulfate proteoglycan, a cell surface receptor implicated with tumor cell invasion, mediates endothelial cell migration on fibrinogen and invasion into a fibrin matrix.

    PubMed Central

    Henke, C A; Roongta, U; Mickelson, D J; Knutson, J R; McCarthy, J B

    1996-01-01

    Microvascular endothelial cell invasion into the fibrin provisional matrix is an integral component of angiogenesis during wound repair. Cell surface receptors which interact with extracellular matrix proteins participate in cell migration and invasion. Malignant cells use CD44-related chondroitin sulfate proteoglycan (CSPG) as a matrix receptor to mediate migration and invasion. In this study, we examine whether cell surface CSPG can mediate similar events in nonmalignant wound microvascular endothelial cells or whether use of CSPG for migration and invasion is a property largely restricted to malignant cells. After inhibiting CSPG synthesis with p-nitrophenyl beta-d xylopyranoside (beta-d xyloside), wound microvascular endothelial cells were capable of attaching and spreading on the surface of a fibrin gel; however, their ability to invade the fibrin matrix was virtually eliminated. To begin to examine the mechanism by which endothelial cells use CSPG to invade fibrin matrices, cell adhesion and migration on fibrinogen was examined. Endothelial cell adhesion and migration on fibrinogen were inhibited by both beta-d xyloside and after cleavage of chondroitin sulfate from the core protein by chondroitinase ABC. We have determined that wound microvascular endothelial cells express the majority of their proteoglycan as CSPG and that the CSPG core protein is immunologically related to CD44. PCR studies show that these cells express both the "standard" (CD44H) isoform and an isoform containing the variably spliced exon V3. In addition, anti-CD44 antibody blocks endothelial cell migration on fibrinogen. Affinity chromatography studies reveal that partially purified microvascular endothelial cell CSPG binds fibrinogen. These findings suggest that CD44-related CSPG, a molecule implicated in the invasive behavior of tumor cells, is capable of binding fibrinogen/fibrin, thereby mediating endothelial cell migration and invasion into the fibrin provisional matrix during wound

  7. Characterization of the 5'-flanking region of the gene for the alpha chain of human fibrinogen.

    PubMed

    Hu, C H; Harris, J E; Davie, E W; Chung, D W

    1995-11-24

    The 5'-flanking region of the gene coding for the alpha chain of human fibrinogen was isolated, sequenced, and characterized. The principal site of transcription initiation was determined by primer extension analysis and the RNase protection assay and shown to be at an adenine residue located 55 nucleotides upstream from the initiator methionine codon, or 13,399 nucleotides down-stream from the polyadenylation site of the gene coding for the gamma chain. Transient expression of constructs containing sequentially deleted 5'-flanking sequences of the alpha chain gene fused to the chloramphenicol acetyltransferase reporter gene showed that the promoter was liver-specific and inducible by interleukin 6 (IL-6). The shortest DNA fragment with significant promoter activity and full response to IL-6 stimulation encompassed the region from -217 to +1 base pairs (bp). Although six potential IL-6 responsive sequences homologous to the type II IL-6 responsive element were present, a single sequence of CTGGGA localized from -122 to -127 bp was shown to be a functional element in IL-6 induction. A hepatocyte nuclear factor 1 (HNF-1) binding site, present from -47 to -59 bp, in combination with other upstream elements, was essential for liver-specific expression of the gene. A functional CCAAT/enhancer binding protein site (C/EBP, -134 to -142 bp) was also identified within 217 bp from the transcription initiation site. An additional positive element (-1393 to -1133 bp) and a negative element (-1133 to -749 bp) were also found in the upstream region of the alpha-fibrinogen gene. PMID:7499335

  8. Construction aggregates

    USGS Publications Warehouse

    Langer, W.H.; Tepordei, V.V.; Bolen, W.P.

    2000-01-01

    Construction aggregates consist primarily of crushed stone and construction sand and gravel. Total estimated production of construction aggregates increased in 1999 by about 2% to 2.39 Gt (2.64 billion st) compared with 1998. This record production level continued an expansion that began in 1992. By commodities, crushed stone production increased 3.3%, while sand and gravel production increased by about 0.5%.

  9. Construction aggregates

    USGS Publications Warehouse

    Tepordei, V.V.

    1994-01-01

    Part of a special section on industrial minerals in 1993. The 1993 production of construction aggregates increased 6.3 percent over the 1992 figure, to reach 2.01 Gt. This represents the highest estimated annual production of combined crushed stone and construction sand and gravel ever recorded in the U.S. The outlook for construction aggregates and the issues facing the industry are discussed.

  10. Heat shock protein 70 regulates platelet integrin activation, granule secretion and aggregation.

    PubMed

    Rigg, Rachel A; Healy, Laura D; Nowak, Marie S; Mallet, Jérémy; Thierheimer, Marisa L D; Pang, Jiaqing; McCarty, Owen J T; Aslan, Joseph E

    2016-04-01

    Molecular chaperones that support protein quality control, including heat shock protein 70 (Hsp70), participate in diverse aspects of cellular and physiological function. Recent studies have reported roles for specific chaperone activities in blood platelets in maintaining hemostasis; however, the functions of Hsp70 in platelet physiology remain uninvestigated. Here we characterize roles for Hsp70 activity in platelet activation and function. In vitro biochemical, microscopy, flow cytometry, and aggregometry assays of platelet function, as well as ex vivo analyses of platelet aggregate formation in whole blood under shear, were carried out under Hsp70-inhibited conditions. Inhibition of platelet Hsp70 blocked platelet aggregation and granule secretion in response to collagen-related peptide (CRP), which engages the immunoreceptor tyrosine-based activation motif-bearing collagen receptor glycoprotein VI (GPVI)-Fc receptor-γ chain complex. Hsp70 inhibition also reduced platelet integrin-αIIbβ3 activation downstream of GPVI, as Hsp70-inhibited platelets showed reduced PAC-1 and fibrinogen binding. Ex vivo, pharmacological inhibition of Hsp70 in human whole blood prevented the formation of platelet aggregates on collagen under shear. Biochemical studies supported a role for Hsp70 in maintaining the assembly of the linker for activation of T cells signalosome, which couples GPVI-initiated signaling to integrin activation, secretion, and platelet function. Together, our results suggest that Hsp70 regulates platelet activation and function by supporting linker for activation of T cells-associated signaling events downstream of platelet GPVI engagement, suggesting a role for Hsp70 in the intracellular organization of signaling systems that mediate platelet secretion, "inside-out" activation of platelet integrin-αIIbβ3, platelet-platelet aggregation, and, ultimately, hemostatic plug and thrombus formation.

  11. A factor VIII-derived peptide enables von Willebrand factor (VWF)-binding of artificial platelet nanoconstructs without interfering with VWF-adhesion of natural platelets

    NASA Astrophysics Data System (ADS)

    Haji-Valizadeh, Hassan; Modery-Pawlowski, Christa L.; Sen Gupta, Anirban

    2014-04-01

    There is substantial clinical interest in synthetic platelet analogs for potential application in transfusion medicine. To this end, our research is focused on self-assembled peptide-lipid nanoconstructs that can undergo injury site-selective adhesion and subsequently promote site-directed active platelet aggregation, thus mimicking platelet's primary hemostatic actions. For injury site-selective adhesion, we have utilized a coagulation factor FVIII-derived VWF-binding peptide (VBP). FVIII binds to VWF's D'-D3 domain while natural platelet GPIbα binds to VWF's A1 domain. Therefore, we hypothesized that the VBP-decorated nanoconstructs will adhere to VWF without mutual competition with natural platelets. We further hypothesized that the adherent VBP-decorated constructs can enhance platelet aggregation when co-decorated with a fibrinogen-mimetic peptide (FMP). To test these hypotheses, we used glycocalicin to selectively block VWF's A1 domain and, using fluorescence microscopy, studied the binding of fluorescently labeled VBP-decorated nanoconstructs versus platelets to ristocetin-treated VWF. Subsequently, we co-decorated the nanoconstructs with VBP and FMP and incubated them with human platelets to study construct-mediated enhancement of platelet aggregation. Decoration with VBP resulted in substantial construct adhesion to ristocetin-treated VWF even if the A1-domain was blocked by glycocalicin. In comparison, such A1-blocking resulted in significant reduction of platelet adhesion. Without A1-blocking, the VBP-decorated constructs and natural platelets could adhere to VWF concomitantly. Furthermore, the constructs co-decorated with VBP and FMP enhanced active platelet aggregation. The results indicate significant promise in utilizing the FVIII-derived VBP in developing synthetic platelet analogs that do not interfere with VWF-binding of natural platelets but allow site-directed enhancement of platelet aggregation when combined with FMP.There is substantial

  12. A Bovine Fibrinogen-Enriched Fraction as a Source of Peptides with in Vitro Renin and Angiotensin-I-Converting Enzyme Inhibitory Activities.

    PubMed

    Lafarga, Tomas; Rai, Dilip K; O'Connor, Paula; Hayes, Maria

    2015-10-01

    Bovine fibrinogen is currently used in the food industry as a binding agent in restructured meat products. However, this protein is underused as a source of bioactive peptides. In this study, a number of novel angiotensin-I-converting enzyme (ACE-I) and renin inhibitory peptides were identified and enriched from a bovine fibrinogen fraction. Fibrinogen was isolated and enriched from bovine blood and hydrolyzed with the food-grade enzyme papain, which was selected for use using in silico analysis. The generated hydrolysate was subjected to ultrafiltration and its peptide profile characterized by liquid chromatography-tandem mass spectrometry. A number of peptides were identified and chemically synthesized to confirm their bioactivity in vitro. Identified peptides included the multifunctional tripeptide SLR, corresponding to f(35-37) of the β-chain of bovine fibrinogen with ACE-I and renin IC50 values of 0.17 and 7.2 mM, respectively. Moreover, the resistance of identified peptides to gastrointestinal degradation and their bitterness were predicted using in silico methods. PMID:26373334

  13. Fibronectin Aggregation and Assembly

    PubMed Central

    Ohashi, Tomoo; Erickson, Harold P.

    2011-01-01

    The mechanism of fibronectin (FN) assembly and the self-association sites are still unclear and contradictory, although the N-terminal 70-kDa region (I1–9) is commonly accepted as one of the assembly sites. We previously found that I1–9 binds to superfibronectin, which is an artificial FN aggregate induced by anastellin. In the present study, we found that I1–9 bound to the aggregate formed by anastellin and a small FN fragment, III1–2. An engineered disulfide bond in III2, which stabilizes folding, inhibited aggregation, but a disulfide bond in III1 did not. A gelatin precipitation assay showed that I1–9 did not interact with anastellin, III1, III2, III1–2, or several III1–2 mutants including III1–2KADA. (In contrast to previous studies, we found that the III1–2KADA mutant was identical in conformation to wild-type III1–2.) Because I1–9 only bound to the aggregate and the unfolding of III2 played a role in aggregation, we generated a III2 domain that was destabilized by deletion of the G strand. This mutant bound I1–9 as shown by the gelatin precipitation assay and fluorescence resonance energy transfer analysis, and it inhibited FN matrix assembly when added to cell culture. Next, we introduced disulfide mutations into full-length FN. Three disulfide locks in III2, III3, and III11 were required to dramatically reduce anastellin-induced aggregation. When we tested the disulfide mutants in cell culture, only the disulfide bond in III2 reduced the FN matrix. These results suggest that the unfolding of III2 is one of the key factors for FN aggregation and assembly. PMID:21949131

  14. New method for determining thrombin-clottable fibrinogen.

    PubMed

    Frigola, A; Angeloni, S; Cerqueti, A R

    1977-11-01

    We describe a new method for determination of thrombin-clottable fibrinogen, which eliminates the systematic error caused by occlusion of other serum proteins in the fibrin clot and reduces the sensitivity to high concentrations of fibrin degradation products. Essentially, the method consists of densitometric quantitation of the fibrin band after a standard electrophoresis run of plasma, thrombin fixation of the fibrinogen, and removal of the non-clotted proteins by washing in saline. The procedure shows good precision and gives results that are accurate, significantly correlate with results for the classical thrombin clotting method (r = 0.92, P less than .001), and are not affected by fibrin degradation product concentrations up to 900 mg/liter. These characteristics make the method especially valuable in establishing fibrogen concentration in patients who are undergoing thrombolytic therapy.

  15. Neprilysin Inhibits Coagulation through Proteolytic Inactivation of Fibrinogen

    PubMed Central

    Burrell, Matthew; Henderson, Simon J.; Ravnefjord, Anna; Schweikart, Fritz; Fowler, Susan B.; Witt, Susanne; Hansson, Kenny M.; Webster, Carl I.

    2016-01-01

    Neprilysin (NEP) is an endogenous protease that degrades a wide range of peptides including amyloid beta (Aβ), the main pathological component of Alzheimer’s disease (AD). We have engineered NEP as a potential therapeutic for AD but found in pre-clinical safety testing that this variant increased prothrombin time (PT) and activated partial thromboplastin time (APTT). The objective of the current study was to investigate the effect of wild type NEP and the engineered variant on coagulation and define the mechanism by which this effect is mediated. PT and APTT were measured in cynomolgus monkeys and rats dosed with a human serum albumin fusion with an engineered variant of NEP (HSA-NEPv) as well as in control plasma spiked with wild type or variant enzyme. The coagulation factor targeted by NEP was determined using in vitro prothrombinase, calibrated automated thrombogram (CAT) and fibrin formation assays as well as N-terminal sequencing of fibrinogen treated with the enzyme. We demonstrate that HSA-NEP wild type and HSA-NEPv unexpectedly impaired coagulation, increasing PT and APTT in plasma samples and abolishing fibrin formation from fibrinogen. This effect was mediated through cleavage of the N-termini of the Aα- and Bβ-chains of fibrinogen thereby significantly impairing initiation of fibrin formation by thrombin. Fibrinogen has therefore been identified for the first time as a substrate for NEP wild type suggesting that the enzyme may have a role in regulating fibrin formation. Reductions in NEP levels observed in AD and cerebral amyloid angiopathy may contribute to neurovascular degeneration observed in these conditions. PMID:27437944

  16. A factor VIII-derived peptide enables von Willebrand factor (VWF)-binding of artificial platelet nanoconstructs without interfering with VWF-adhesion of natural platelets†

    PubMed Central

    Haji-Valizadeh, Hassa n; Modery-Pawlowski, Christa L.

    2015-01-01

    There is substantial clinical interest in synthetic platelet analogs for potential application in transfusion medicine. To this end, our research is focused on self-assembled peptide–lipid nanoconstructs that can undergo injury site-selective adhesion and subsequently promote site-directed active platelet aggregation, thus mimicking platelet’s primary hemostatic actions. For injury site-selective adhesion, we have utilized a coagulation factor FVIII-derived VWF-binding peptide (VBP). FVIII binds to VWF’s D′–D3 domain while natural platelet GPIbα binds to VWF’s A1 domain. Therefore, we hypothesized that the VBP-decorated nanoconstructs will adhere to VWF without mutual competition with natural platelets. We further hypothesized that the adherent VBP-decorated constructs can enhance platelet aggregation when co-decorated with a fibrinogen-mimetic peptide (FMP). To test these hypotheses, we used glycocalicin to selectively block VWF’s A1 domain and, using fluorescence microscopy, studied the binding of fluorescently labeled VBP-decorated nanoconstructs versus platelets to ristocetin-treated VWF. Subsequently, we co-decorated the nanoconstructs with VBP and FMP and incubated them with human platelets to study construct-mediated enhancement of platelet aggregation. Decoration with VBP resulted in substantial construct adhesion to ristocetin-treated VWF even if the A1-domain was blocked by glycocalicin. In comparison, such A1-blocking resulted in significant reduction of platelet adhesion. Without A1-blocking, the VBP-decorated constructs and natural platelets could adhere to VWF concomitantly. Furthermore, the constructs co-decorated with VBP and FMP enhanced active platelet aggregation. The results indicate significant promise in utilizing the FVIII-derived VBP in developing synthetic platelet analogs that do not interfere with VWF-binding of natural platelets but allow site-directed enhancement of platelet aggregation when combined with FMP. PMID

  17. A factor VIII-derived peptide enables von Willebrand factor (VWF)-binding of artificial platelet nanoconstructs without interfering with VWF-adhesion of natural platelets.

    PubMed

    Haji-Valizadeh, Hassan; Modery-Pawlowski, Christa L; Sen Gupta, Anirban

    2014-05-01

    There is substantial clinical interest in synthetic platelet analogs for potential application in transfusion medicine. To this end, our research is focused on self-assembled peptide-lipid nanoconstructs that can undergo injury site-selective adhesion and subsequently promote site-directed active platelet aggregation, thus mimicking platelet's primary hemostatic actions. For injury site-selective adhesion, we have utilized a coagulation factor FVIII-derived VWF-binding peptide (VBP). FVIII binds to VWF's D'-D3 domain while natural platelet GPIbα binds to VWF's A1 domain. Therefore, we hypothesized that the VBP-decorated nanoconstructs will adhere to VWF without mutual competition with natural platelets. We further hypothesized that the adherent VBP-decorated constructs can enhance platelet aggregation when co-decorated with a fibrinogen-mimetic peptide (FMP). To test these hypotheses, we used glycocalicin to selectively block VWF's A1 domain and, using fluorescence microscopy, studied the binding of fluorescently labeled VBP-decorated nanoconstructs versus platelets to ristocetin-treated VWF. Subsequently, we co-decorated the nanoconstructs with VBP and FMP and incubated them with human platelets to study construct-mediated enhancement of platelet aggregation. Decoration with VBP resulted in substantial construct adhesion to ristocetin-treated VWF even if the A1-domain was blocked by glycocalicin. In comparison, such A1-blocking resulted in significant reduction of platelet adhesion. Without A1-blocking, the VBP-decorated constructs and natural platelets could adhere to VWF concomitantly. Furthermore, the constructs co-decorated with VBP and FMP enhanced active platelet aggregation. The results indicate significant promise in utilizing the FVIII-derived VBP in developing synthetic platelet analogs that do not interfere with VWF-binding of natural platelets but allow site-directed enhancement of platelet aggregation when combined with FMP.

  18. Surface characterization and AFM imaging of mixed fibrinogen-surfactant films.

    PubMed

    Hassan, Natalia; Maldonado-Valderrama, Julia; Gunning, A Patrick; Morris, Victor J; Ruso, Juan M

    2011-05-19

    This study describes the adsorption behavior of mixed protein/surfactant systems at the air-water interface: specifically fibrinogen and the fluorinated and hydrogenated surfactants (C(8)FONa, C(8)HONa, and C(12)HONa). Surface tension techniques and atomic force microscopy (AFM) have been combined to investigate the adsorption behavior of these mixed systems. Interfacial rheology showed that fibrinogen has a low dilatational modulus at the air-water interface when compared to other proteins, suggesting the formation of a weak surface network. Fluorinated and hydrogenated surfactants severely decreased the dilatational modulus of the adsorbed fibrinogen film at the air-water interface. These measurements suggest the progressive displacement of fibrinogen from the air-water interface by both types of surfactants. However, in the case of fibrinogen/fluorinated surfactant systems, surface tension and dilatational rheology measurements suggest the formation of complexes with improved surface activity. AFM imaging of fibrinogen in the presence and absence of surfactants provided new information on the structure of mixed surface films, and revealed new features of the interaction of fibrinogen with hydrogenated and fluorinated surfactants. These studies suggest complexes formed between fibrinogen and fluorinated surfactants which are more surface active than fibrinogen, while the absence of interaction between fibrinogen and hydrogenated surfactants (C(8)HONa and C(12)HONa) results in compaction of the surface layer.

  19. Prognostic Impact of Pretreatment Plasma Fibrinogen in Patients with Locally Advanced Oral and Oropharyngeal Cancer

    PubMed Central

    Holzinger, Daniel; Danilovic, Ivan; Seemann, Rudolf; Kornek, Gabriela; Engelmann, Johannes; Pillerstorff, Robert; Holawe, Simone; Psyrri, Amanda; Erovic, Boban M.; Farwell, Gregory; Perisanidis, Christos

    2016-01-01

    Background We aimed to determine the prognostic significance of pretreatment plasma fibrinigen in patients with oral and oropharyngeal squamous cell carcinoma (OOSCC). Methods A cohort of 183 patients with locally advanced OOSCC receiving preoperative chemoradiotherapy was retrospectively examined. Using ROC curve analysis, a pretreatment plasma fibrinogen cutoff value of 447mg/dL was determined. The primary endpoints were overall survival and recurrence-free survival. A secondary endpoint was to determine whether pretreatment plasma fibrinogen could predict treatment response to neoadjuvant chemoradiotherapy. Cox regression models and Kaplan–Meier curves were used for survival analyses. Results Seventy-one patients had an elevated pretreatment plasma fibrinogen (fibrinogen >447mg/dL). Patients with high fibrinogen showed significantly higher pathologic stages after neoadjuvant treatment than those with low fibrinogen (p = 0.037). In univariate analysis, elevated fibrinogen was associated with poor overall survival (p = 0.005) and recurrence-free survival (p = 0.008) Multivariate analysis revealed that elevated fibrinogen remained an independent risk factor for death (hazard ratio 1.78, 95% CI 1.09–2.90, p = 0.021) and relapse (hazard ratio 1.78, 95% CI 1.11–2.86, p = 0.016). Conclusion Elevated pretreatment plasma fibrinogen is associated with lack of response to neoadjuvant chemoradiotherapy and reduced OS and RFS in patients with OOSCC. Thus, plasma fibrinogen may emerge as a novel prognostic indicator and a potential therapeutic target in OOSCC. PMID:27362659

  20. Cross-linking of fibrinogen and fibrin by fibrin-stablizing factor (factor XIIIa).

    PubMed

    Kanaide, H; Shainoff, J R

    1975-04-01

    Factor XIIIa catalyzed intermolecular cross-linking of fibrinogen at initial rates that varied in direct (first order) proportion to the fibrinogen concentration, which differed from the well known zero order relationship in fibrin cross-linking. Preferential cross-linking of gamma-chains occurred with both substrates. The differences in rates and order of reaction were attributed mainly to effect of self-alignment of the gamma-chains in fibrin which enabled the cross-linking enzyme to interact with paired chains as a single rather than two independent entities. Studies on mixtures of fibrinogen and fibrin indicated factor XIIIa had near equal affinities for the two substrates. At low concentrations with which cross-linking of fibrinogen proceeded sluggishly compared to fibrin, fibrinogen inhibited stabilization of fibrin clots by competitively partitioning factor XIIIa away from the fribin. Additional inhibition arose from cross-linking of fibrin in soluble combination with fibrinogen in mixtures containing fibrinogen in large excess over fibrin. The observations demonstrate ways in which fibrinogen normally helps to suppress both polymerization and cross-linking of small amounts of fibrin produced within the circulation. At very high concentrations above 30 mg. per milliliter, fibrinogen underwent cross-linking at faster initial rates than the cross-linking of fibrin. Rapid cross-linking of concentrated fibrogen raises the possibility that filtration enrichment may be a factor contributing to abnormal formation of the highly insoluble fibrinogen deposits occurring in atheromatous tissue.

  1. High-level expression and preparation of recombinant human fibrinogen as biopharmaceuticals.

    PubMed

    Hirashima, Masaki; Imamura, Takayuki; Yano, Kentaro; Kawamura, Ryoichi; Meta, Akihiro; Tokieda, Yoshiyuki; Nakashima, Toshihiro

    2016-02-01

    Fibrinogen is a large and complex glycoprotein containing two sets of each of three different chains (α, β and γ). There have been no reports of high-level expression of fibrinogen at commercial levels using mammalian cultured cells such as CHO cells because of the difficulty in highly expressing a protein with such a complex structure. We achieved high-level (1.3 g/l or higher) expression of recombinant human fibrinogen using CHO DG44 cells by optimizing the expression system and culture conditions. We also succeeded in establishing a high-recovery preparation method for recombinant fibrinogen that rarely yields degraded products. To characterize the properties of the recombinant human fibrinogen, we performed SDS-PAGE; western blotting of the α, β and γ chains using specific antibodies and scanning electron microscopy observations of fibrin fibres. We also evaluated the functional equivalence between recombinant fibrinogen and plasma fibrinogen with respect to the release of fibrinopeptides initiated by thrombin and its cross-linking properties. The basic properties of recombinant fibrinogen showed no apparent differences from those of plasma fibrinogen. Here, we report the development of methods for the culture and preparation of recombinant human fibrinogen of satisfactory quality that can be scaled up to the commercial level.

  2. Laboratory and Genetic Investigation of Mutations Accounting for Congenital Fibrinogen Disorders.

    PubMed

    Neerman-Arbez, Marguerite; de Moerloose, Philippe; Casini, Alessandro

    2016-06-01

    Congenital fibrinogen disorders are classified into two types of plasma fibrinogen defects: type I (quantitative fibrinogen deficiencies), that is, hypofibrinogenemia or afibrinogenemia, in which there are low or absent plasma fibrinogen antigen levels, respectively, and type II (qualitative fibrinogen deficiencies), that is, dysfibrinogenemia or hypodysfibrinogenemia, in which there are normal or reduced antigen levels associated with disproportionately low functional activity. These disorders are caused by mutations in the three fibrinogen-encoding genes FGA, FGB, and FGG. Afibrinogenemia is associated with mild to severe bleeding, whereas hypofibrinogenemia is often asymptomatic. For these quantitative disorders, the majority of mutations prevent protein production. However, in some cases, missense or late-truncating nonsense mutations allow synthesis of the mutant fibrinogen chain, but intracellular fibrinogen assembly and/or secretion are impaired. Qualitative fibrinogen disorders are associated with bleeding, thrombosis, or both thrombosis and bleeding, but many dysfibrinogenemias are asymptomatic. The majority of cases are caused by heterozygous missense mutations. Here, we review the laboratory and genetic diagnosis of fibrinogen gene anomalies with an updated discussion of causative mutations identified.

  3. Fibrinogen Degradation Products and Periodontitis: Deciphering the Connection

    PubMed Central

    2015-01-01

    Introduction Fibrinogen degradation products (e.g. D-dimer) arise from digested fibrin clots and fibrinogen. Elevated concentrations accompany activation of coagulation and fibrinolysis and indicate chronic inflammatory diseases. D-Dimer tests are a quick, noninvasive method to rule out abnormal clotting. Periodontitis strongly affects the haemostatic system and evokes a procoagulant state. Correlation of chronic periodontitis with early indicators of disease (biomarkers) might be useful. Aim The aim of the study was to examine whether the plasma D-dimer concentration reflects the progression of chronic periodontitis and the beneficial effect of periodontal therapy. Materials and Methods Forty randomly selected subjects were divided into four groups, Group I: 10 healthy subjects, Group II: 10 with mild periodontitis, Group III: 10 with moderate periodontitis, Group IV: 10 with severe periodontitis. After thorough dental and periodontal examination, 3 mL of venous blood was collected for measurement of fibrinogen degradation products. Results The patients with moderate and chronic periodontitis exhibited high concentrations of D-dimer (mean value 434.98–535.52 mcg/mL), whereas subjects with mild or no periodontitis exhibited values of 329.78–211.29 mcg/mL. Concentrations of D-dimer were significantly reduced after therapy of all classes of periodontitis. Conclusion Periodontal treatment can reduce amount of D-dimer in the plasma. A higher than normal concentration is observed in chronic periodontitis. PMID:26816985

  4. Analysis of the safety and pharmacodynamics of human fibrinogen concentrate in animals

    SciTech Connect

    Beyerle, Andrea; Nolte, Marc W.; Solomon, Cristina; Herzog, Eva; Dickneite, Gerhard

    2014-10-01

    Fibrinogen, a soluble 340 kDa plasma glycoprotein, is critical in achieving and maintaining hemostasis. Reduced fibrinogen levels are associated with an increased risk of bleeding and recent research has investigated the efficacy of fibrinogen concentrate for controlling perioperative bleeding. European guidelines on the management of perioperative bleeding recommend the use of fibrinogen concentrate if significant bleeding is accompanied by plasma fibrinogen levels less than 1.5–2.0 g/l. Plasma-derived human fibrinogen concentrate has been available for therapeutic use since 1956. The overall aim of the comprehensive series of non-clinical investigations presented was to evaluate i) the pharmacodynamic and pharmacokinetic characteristics and ii) the safety and tolerability profile of human fibrinogen concentrate Haemocomplettan P® (RiaSTAP®). Pharmacodynamic characteristics were assessed in rabbits, pharmacokinetic parameters were determined in rabbits and rats and a safety pharmacology study was performed in beagle dogs. Additional toxicology tests included: single-dose toxicity tests in mice and rats; local tolerance tests in rabbits; and neoantigenicity tests in rabbits and guinea pigs following the introduction of pasteurization in the manufacturing process. Human fibrinogen concentrate was shown to be pharmacodynamically active in rabbits and dogs and well tolerated, with no adverse events and no influence on circulation, respiration or hematological parameters in rabbits, mice, rats and dogs. In these non-clinical investigations, human fibrinogen concentrate showed a good safety profile. This data adds to the safety information available to date, strengthening the current body of knowledge regarding this hemostatic agent. - Highlights: • A comprehensive series of pre-clinical investigations of human fibrinogen concentrate. • Human fibrinogen concentrate was shown to be pharmacodynamically active. • Human fibrinogen concentrate was well tolerated

  5. Identification of gene-gene and gene-environment interactions within the fibrinogen gene cluster for fibrinogen levels in three ethnically diverse populations.

    PubMed

    Jeff, Janina M; Brown-Gentry, Kristin; Crawford, Dana C

    2015-01-01

    Elevated levels of plasma fibrinogen are associated with clot formation in the absence of inflammation or injury and is a biomarker for arterial clotting, the leading cause of cardiovascular disease. Fibrinogen levels are heritable with >50% attributed to genetic factors, however little is known about possible genetic modifiers that might explain the missing heritability. The fibrinogen gene cluster is comprised of three genes (FGA, FGB, and FGG) that make up the fibrinogen polypeptide essential for fibrinogen production in the blood. Given the known interaction with these genes, we tested 25 variants in the fibrinogen gene cluster for gene x gene and gene x environment interactions in 620 non-Hispanic blacks, 1,385 non-Hispanic whites, and 664 Mexican Americans from a cross-sectional dataset enriched with environmental data, the Third National Health and Nutrition Examination Survey (NHANES III). Using a multiplicative approach, we added cross product terms (gene x gene or gene x environment) to a linear regression model and declared significance at p < 0.05. We identified 19 unique gene x gene and 13 unique gene x environment interactions that impact fibrinogen levels in at least one population at p < 0.05. Over 90% of the gene x gene interactions identified include a variant in the rate-limiting gene, FGB that is essential for the formation of the fibrinogen polypeptide. We also detected gene x environment interactions with fibrinogen variants and sex, smoking, and body mass index. These findings highlight the potential for the discovery of genetic modifiers for complex phenotypes in multiple populations and give a better understanding of the interaction between genes and/or the environment for fibrinogen levels. The need for more powerful and robust methods to identify genetic modifiers is still warranted. PMID:25592583

  6. IDENTIFICATION OF GENE-GENE AND GENE-ENVIRONMENT INTERACTIONS WITHIN THE FIBRINOGEN GENE CLUSTER FOR FIBRINOGEN LEVELS IN THREE ETHNICALLY DIVERSE POPULATIONS

    PubMed Central

    Jeff, Janina M.; Brown-Gentry, Kristin; Crawford, Dana C.

    2014-01-01

    Elevated levels of plasma fibrinogen are associated with clot formation in the absence of inflammation or injury and is a biomarker for arterial clotting, the leading cause of cardiovascular disease. Fibrinogen levels are heritable with >50% attributed to genetic factors, however little is known about possible genetic modifiers that might explain the missing heritability. The fibrinogen gene cluster is comprised of three genes (FGA, FGB, and FGG) that make up the fibrinogen polypeptide essential for fibrinogen production in the blood. Given the known interaction with these genes, we tested 25 variants in the fibrinogen gene cluster for gene × gene and gene × environment interactions in 620 non-Hispanic blacks, 1,385 non-Hispanic whites, and 664 Mexican Americans from a cross-sectional dataset enriched with environmental data, the Third National Health and Nutrition Examination Survey (NHANES III). Using a multiplicative approach, we added cross product terms (gene × gene or gene × environment) to a linear regression model and declared significance at p < 0.05. We identified 19 unique gene × gene and 13 unique gene × environment interactions that impact fibrinogen levels in at least one population at p <0.05. Over 90% of the gene × gene interactions identified include a variant in the rate-limiting gene, FGB that is essential for the formation of the fibrinogen polypeptide. We also detected gene × environment interactions with fibrinogen variants and sex, smoking, and body mass index. These findings highlight the potential for the discovery of genetic modifiers for complex phenotypes in multiple populations and give a better understanding of the interaction between genes and/or the environment for fibrinogen levels. The need for more powerful and robust methods to identify genetic modifiers is still warranted. PMID:25592583

  7. Identification of gene-gene and gene-environment interactions within the fibrinogen gene cluster for fibrinogen levels in three ethnically diverse populations.

    PubMed

    Jeff, Janina M; Brown-Gentry, Kristin; Crawford, Dana C

    2015-01-01

    Elevated levels of plasma fibrinogen are associated with clot formation in the absence of inflammation or injury and is a biomarker for arterial clotting, the leading cause of cardiovascular disease. Fibrinogen levels are heritable with >50% attributed to genetic factors, however little is known about possible genetic modifiers that might explain the missing heritability. The fibrinogen gene cluster is comprised of three genes (FGA, FGB, and FGG) that make up the fibrinogen polypeptide essential for fibrinogen production in the blood. Given the known interaction with these genes, we tested 25 variants in the fibrinogen gene cluster for gene x gene and gene x environment interactions in 620 non-Hispanic blacks, 1,385 non-Hispanic whites, and 664 Mexican Americans from a cross-sectional dataset enriched with environmental data, the Third National Health and Nutrition Examination Survey (NHANES III). Using a multiplicative approach, we added cross product terms (gene x gene or gene x environment) to a linear regression model and declared significance at p < 0.05. We identified 19 unique gene x gene and 13 unique gene x environment interactions that impact fibrinogen levels in at least one population at p < 0.05. Over 90% of the gene x gene interactions identified include a variant in the rate-limiting gene, FGB that is essential for the formation of the fibrinogen polypeptide. We also detected gene x environment interactions with fibrinogen variants and sex, smoking, and body mass index. These findings highlight the potential for the discovery of genetic modifiers for complex phenotypes in multiple populations and give a better understanding of the interaction between genes and/or the environment for fibrinogen levels. The need for more powerful and robust methods to identify genetic modifiers is still warranted.

  8. Clusterin Binds to Aβ1-42 Oligomers with High Affinity and Interferes with Peptide Aggregation by Inhibiting Primary and Secondary Nucleation.

    PubMed

    Beeg, Marten; Stravalaci, Matteo; Romeo, Margherita; Carrá, Arianna Dorotea; Cagnotto, Alfredo; Rossi, Alessandro; Diomede, Luisa; Salmona, Mario; Gobbi, Marco

    2016-03-25

    The aggregation of amyloid β protein (Aβ) is a fundamental pathogenic mechanism leading to the neuronal damage present in Alzheimer disease, and soluble Aβ oligomers are thought to be a major toxic culprit. Thus, better knowledge and specific targeting of the pathways that lead to these noxious species may result in valuable therapeutic strategies. We characterized some effects of the molecular chaperone clusterin, providing new and more detailed evidence of its potential neuroprotective effects. Using a classical thioflavin T assay, we observed a dose-dependent inhibition of the aggregation process. The global analysis of time courses under different conditions demonstrated that clusterin has no effect on the elongation rate but mainly interferes with the nucleation processes (both primary and secondary), reducing the number of nuclei available for further fibril growth. Then, using a recently developed immunoassay based on surface plasmon resonance, we obtained direct evidence of a high-affinity (KD= 1 nm) interaction of clusterin with biologically relevant Aβ1-42oligomers, selectively captured on the sensor chip. Moreover, with the same technology, we observed that substoichiometric concentrations of clusterin prevent oligomer interaction with the antibody 4G8, suggesting that the chaperone shields hydrophobic residues exposed on the oligomeric assemblies. Finally, we found that preincubation with clusterin antagonizes the toxic effects of Aβ1-42oligomers, as evaluated in a recently developedin vivomodel inCaenorhabditis elegans.These data substantiate the interaction of clusterin with biologically active regions exposed on nuclei/oligomers of Aβ1-42, providing a molecular basis for the neuroprotective effects of the chaperone. PMID:26884339

  9. [Platelet aggregation upon acetylsalicylic acid and clopidogrel treatment and glycoprotein IIb/IIIa content in patients with acute coronary syndrome].

    PubMed

    Khaspekova, S G; Ziuriaev, I T; Iakushkin, V V; Golubeva, N V; Ruda, M Ia; Mazurov, A V

    2011-01-01

    Interaction between aggregating activity of platelets and glycoprotein (GP) IIb/IIIa (fibrinogen receptor) content on their surface was investigated in patients with acute coronary syndrome (ACS). Eighty nine ACS patients were included into the study - 69 with and 20 without elevation of ST segment. Blood was collected within the first hour of admission to the clinic (1 day), and then at 3-5 and 8-12 days. All patients received standard antiaggregant therapy - acetylsalicylic acid - ASA (thromboxane A2 synthesis inhibitor) and clopidogrel (ADP receptor antagonist). Platelet aggregation was analyzed at the first time point when patients had already taken ASA but not clopidogrel, and then (3-5 and 8- 12 days) upon combined therapy with both preparations. Aggregation was induced by 5 and 20 uM ADP and measured by turbidimetric method. In comparison with the initial level (1 day, ASA) at days 3-5, i.e. after development of clopidogrel effect, platelet aggregation was decreased by 54 and 40% upon its stimulation with 5 and 20 uM ADP, and was not further changed at days 8-12. GP IIb/IIIa content on platelet surface was determined by binding of 125I-labelled monoclonal antibody CRC64. GP IIb/IIIa number varied from 31100 to 73000 per platelet with the mean level of 48500 +/- 8400 (mean +/- standard deviation). No differences were detected between mean GP IIb/IIIa number at 1, 3-5 and 8-12 days after ACS onset. Upon repeat GP IIb/IIIa measurement coefficient of variation was 6.1% demonstrating the stability of this parameter in each patient. Positive correlation between platelet aggregation and GP IIb/IIIa content was detected at the first day - correlation coefficients (r) 0.425 and 0.470 for 5 and 20 uM ADP (n=57, p<0.001). However positive association between these parameters was not revealed at 3-5 and 8-12 days, when patients received not only ASA but clopidogrel as well (r from -0.054 to -0.237, p>0.05). These results indicates that variations of GP IIb/IIIa content

  10. Nutritional status influences plasma fibrinogen concentration: evidence from the THUSA survey.

    PubMed

    James, S; Vorster, H H; Venter, C S; Kruger, H S; Nell, T A; Veldman, F J; Ubbink, J B

    2000-06-01

    Nutritional status and risk factors for chronic diseases, including plasma fibrinogen and its determinants, of Africans in the Northwest Province of South Africa, have been studied in a cross-sectional survey. A representative sample of 1854 "apparently healthy" African men and women volunteers aged 15 years and older was recruited from 37 randomly selected sites throughout the Province and stratified for level of urbanisation. Information was collected using validated and culture-sensitive questionnaires. Fasting blood samples were drawn, and all measurements were done with standardised methodology using appropriate equipment, procedures, and controls. Fibrinogen concentration was measured in citrated plasma with the method of Clauss, using the ACL200 automated system and the international fibrinogen standard. The results revealed a population with a high mean plasma fibrinogen (3.17+/-1.10 g/L for HIV-negative men and 3. 64+/-1.12 g/L for HIV-negative women). Factors known to influence plasma fibrinogen, such as age, gender, smoking habit, and physical activity, were also observed in this population. Young rural men and women had the lowest fibrinogen level. Nasal snuff taking and HIV infection did not influence fibrinogen concentration. Multivariate analyses revealed that lower plasma fibrinogen was associated with low to normal body mass index in women, and with dietary intakes compatible with prudent dietary guidelines in men and women (low intakes of animal protein; trans fatty acids and higher intakes of plant protein; dietary fibre, vitamin E, and iron, and a high dietary P/S ratio). Subjects in the higher quartiles of plasma fibrinogen had significantly lower iron, vitamin E, and vitamin B6 (women) status. Increases in fibrinogen were associated with significant increases in serum lipids. Both under- and overnutrition seem to be associated with high plasma fibrinogen. It is concluded that overall nutritional status, possibly in addition to specific

  11. Analysis of the safety and pharmacodynamics of human fibrinogen concentrate in animals.

    PubMed

    Beyerle, Andrea; Nolte, Marc W; Solomon, Cristina; Herzog, Eva; Dickneite, Gerhard

    2014-10-01

    Fibrinogen, a soluble 340kDa plasma glycoprotein, is critical in achieving and maintaining hemostasis. Reduced fibrinogen levels are associated with an increased risk of bleeding and recent research has investigated the efficacy of fibrinogen concentrate for controlling perioperative bleeding. European guidelines on the management of perioperative bleeding recommend the use of fibrinogen concentrate if significant bleeding is accompanied by plasma fibrinogen levels less than 1.5-2.0g/l. Plasma-derived human fibrinogen concentrate has been available for therapeutic use since 1956. The overall aim of the comprehensive series of non-clinical investigations presented was to evaluate i) the pharmacodynamic and pharmacokinetic characteristics and ii) the safety and tolerability profile of human fibrinogen concentrate Haemocomplettan P® (RiaSTAP®). Pharmacodynamic characteristics were assessed in rabbits, pharmacokinetic parameters were determined in rabbits and rats and a safety pharmacology study was performed in beagle dogs. Additional toxicology tests included: single-dose toxicity tests in mice and rats; local tolerance tests in rabbits; and neoantigenicity tests in rabbits and guinea pigs following the introduction of pasteurization in the manufacturing process. Human fibrinogen concentrate was shown to be pharmacodynamically active in rabbits and dogs and well tolerated, with no adverse events and no influence on circulation, respiration or hematological parameters in rabbits, mice, rats and dogs. In these non-clinical investigations, human fibrinogen concentrate showed a good safety profile. This data adds to the safety information available to date, strengthening the current body of knowledge regarding this hemostatic agent.

  12. N-DSK gamma-chain binds to immunoprecipitated GP IIb-IIIa

    SciTech Connect

    Thorsen, L.I.; Hessel, B.; Brosstad, F.; Gogstad, G.; Solum, N.O.

    1987-08-01

    The CNBr-split N-terminal disulphide knot of the fibrinogen molecule (N-DSK) binds to ADP-stimulated gel-filtered platelets and immunoprecipitated fibrinogen receptor. To investigate which part of the N-DSK molecule that is involved in this binding, the glycoprotein IIb-IIIa complex (the fibrinogen receptor) was immunoprecipitated in crossed immunoelectrophoresis of Triton X-100 extracts of platelets against rabbit antibodies to whole platelet proteins. The immunoelectrophoresis plates were incubated with solubilized, carboxymethylated /sup 125/I-labelled A alpha -, B beta - or gamma-chains of N-DSK, and investigated for binding by autoradiography. The N-DSK gamma-chain, but not the A alpha - or B beta -chains demonstrated binding to the GP IIb-IIIa complex. These results show that the fibrinogen molecule contains a third sequence of amino acids, in addition to the two previously reported ones that can be involved in binding of fibrinogen to the fibrinogen receptor on the platelets.

  13. Batroxobin binds fibrin with higher affinity and promotes clot expansion to a greater extent than thrombin.

    PubMed

    Vu, Trang T; Stafford, Alan R; Leslie, Beverly A; Kim, Paul Y; Fredenburgh, James C; Weitz, Jeffrey I

    2013-06-01

    Batroxobin is a thrombin-like serine protease from the venom of Bothrops atrox moojeni that clots fibrinogen. In contrast to thrombin, which releases fibrinopeptide A and B from the NH2-terminal domains of the Aα- and Bβ-chains of fibrinogen, respectively, batroxobin only releases fibrinopeptide A. Because the mechanism responsible for these differences is unknown, we compared the interactions of batroxobin and thrombin with the predominant γA/γA isoform of fibrin(ogen) and the γA/γ' variant with an extended γ-chain. Thrombin binds to the γ'-chain and forms a higher affinity interaction with γA/γ'-fibrin(ogen) than γA/γA-fibrin(ogen). In contrast, batroxobin binds both fibrin(ogen) isoforms with similar high affinity (Kd values of about 0.5 μM) even though it does not interact with the γ'-chain. The batroxobin-binding sites on fibrin(ogen) only partially overlap with those of thrombin because thrombin attenuates, but does not abrogate, the interaction of γA/γA-fibrinogen with batroxobin. Furthermore, although both thrombin and batroxobin bind to the central E-region of fibrinogen with a Kd value of 2-5 μM, the α(17-51) and Bβ(1-42) regions bind thrombin but not batroxobin. Once bound to fibrin, the capacity of batroxobin to promote fibrin accretion is 18-fold greater than that of thrombin, a finding that may explain the microvascular thrombosis that complicates envenomation by B. atrox moojeni. Therefore, batroxobin binds fibrin(ogen) in a manner distinct from thrombin, which may contribute to its higher affinity interaction, selective fibrinopeptide A release, and prothrombotic properties. PMID:23612970

  14. Interactions between Eph kinases and ephrins provide a mechanism to support platelet aggregation once cell-to-cell contact has occurred

    PubMed Central

    Prevost, Nicolas; Woulfe, Donna; Tanaka, Takako; Brass, Lawrence F.

    2002-01-01

    Eph kinases are receptor tyrosine kinases whose ligands, the ephrins, are also expressed on the surface of cells. Interactions between Eph kinases and ephrins on adjacent cells play a central role in neuronal patterning and vasculogenesis. Here we examine the expression of ephrins and Eph kinases on human blood platelets and explore their role in the formation of the hemostatic plug. The results show that human platelets express EphA4 and EphB1, and the ligand, ephrinB1. Forced clustering of EphA4 or ephrinB1 led to cytoskeletal reorganization, adhesion to fibrinogen, and α-granule secretion. Clustering of ephrinB1 also caused activation of the Ras family member, Rap1B. In platelets that had been activated by ADP and allowed to aggregate, EphA4 formed complexes with two tyrosine kinases, Fyn and Lyn, and the cell adhesion molecule, L1. Blockade of Eph/ephrin interactions prevented the formation of these complexes and caused platelet aggregation at low ADP concentrations to become more readily reversible. We propose that when sustained contacts between platelets have occurred in response to agonists such as collagen, ADP, and thrombin, the binding of ephrins to Eph kinases on adjacent platelets provides a mechanism to perpetuate signaling and promote stable platelet aggregation. PMID:12084815

  15. Construction aggregates

    USGS Publications Warehouse

    Nelson, T.I.; Bolen, W.P.

    2007-01-01

    Construction aggregates, primarily stone, sand and gravel, are recovered from widespread naturally occurring mineral deposits and processed for use primarily in the construction industry. They are mined, crushed, sorted by size and sold loose or combined with portland cement or asphaltic cement to make concrete products to build roads, houses, buildings, and other structures. Much smaller quantities are used in agriculture, cement manufacture, chemical and metallurgical processes, glass production and many other products.

  16. Construction aggregates

    USGS Publications Warehouse

    Tepordei, V.V.

    1996-01-01

    Part of the Annual Commodities Review 1995. Production of construction aggregates such as crushed stone and construction sand and gravel showed a marginal increase in 1995. Most of the 1995 increases were due to funding for highway construction work. The major areas of concern to the industry included issues relating to wetlands classification and the classification of crystalline silica as a probable human carcinogen. Despite this, an increase in demand is anticipated for 1996.

  17. Construction aggregates

    USGS Publications Warehouse

    Tepordei, V.V.

    1993-01-01

    Part of a special section on the market performance of industrial minerals in 1992. Production of construction aggregates increased by 4.6 percent in 1992. This increase was due, in part, to the increased funding for transportation and infrastructure projects. The U.S. produced about 1.05 Gt of crushed stone and an estimated 734 Mt of construction sand and gravel in 1992. Demand is expected to increase by about 5 percent in 1993.

  18. Combined single cell AFM manipulation and TIRFM for probing the molecular stability of multilayer fibrinogen matrices

    PubMed Central

    Christenson, W.; Yermolenko, I.; Plochberger, B.; Camacho-Alanis, F.; Ros, A.; Ugarova, T.P.; Ros, R.

    2014-01-01

    Adsorption of fibrinogen on various surfaces produces a nanoscale multilayer matrix, which strongly reduces the adhesion of platelets and leukocytes with implications for hemostasis and blood compatibility of biomaterials. The nonadhesive properties of fibrinogen matrices are based on their extensibility, ensuing the inability to transduce strong mechanical forces via cellular integrins and resulting in weak intracellular signaling. In addition, reduced cell adhesion may arise from the weaker associations between fibrinogen molecules in the superficial layers of the matrix. Such reduced stability would allow integrins to pull fibrinogen molecules out of the matrix with comparable or smaller forces than required to break integrin–fibrinogen bonds. To examine this possibility, we developed a method based on the combination of total internal reflection fluorescence microscopy, single cell manipulation with an atomic force microscope and microcontact printing to study the transfer of fibrinogen molecules out of a matrix onto cells. We calculated the average fluorescence intensities per pixel for wild-type HEK 293 (HEK WT) and HEK 293 cells expressing leukocyte integrin Mac-1 (HEK Mac-1) before and after contact with multilayered matrices of fluorescently labeled fibrinogen. For contact times of 500 s, HEK Mac-1 cells show a median increase of 57% of the fluorescence intensity compared to 6% for HEKWT cells. The results suggest that the integrin Mac-1-fibrinogen interactions are stronger than the intermolecular fibrinogen interactions in the superficial layer of the matrix. The low mechanical stability of the multilayer fibrinogen surface may contribute to the reduced cell adhesive properties of fibrinogen-coated substrates. We anticipate that the described method can be applied to various cell types to examine their integrin-mediated adhesion to the extracellular matrices with a variable protein composition. PMID:24239757

  19. Rapid measurement of fibrinogen concentration in whole blood using a steel ball coagulometer

    PubMed Central

    Schlimp, Christoph J.; Khadem, Anna; Klotz, Anton; Solomon, Cristina; Hochleitner, Gerald; Ponschab, Martin; Redl, Heinz; Schöchl, Herbert

    2015-01-01

    BACKGROUND Fibrinogen plays a key role in hemostasis and is the first coagulation factor to reach critical levels in bleeding patients. Current European guidelines on the management of traumatic or perioperative bleeding recommend fibrinogen supplementation at specific threshold levels. Whole blood viscoelastic tests provide fast evaluation of fibrin deficits. Fast measurement of plasma fibrinogen concentration is not yet available. We investigated a method to rapidly determine whole blood fibrinogen concentration using standard Clauss assays and a steel ball coagulometer and provide an estimate of the “plasma-equivalent” fibrinogen concentration within minutes by adjustment of the measured whole blood fibrinogen concentration with a quickly measureable hemoglobin-derived hematocrit. METHODS The feasibility of this approach was tested with a Clauss assay using multiple porcine fresh blood samples obtained during in vivo bleeding, hemodilution, and after treatment with hemostatic therapy. Two different Clauss assays were then tested using multiple human volunteers’ blood samples diluted in vitro and supplemented with fibrinogen concentrate. Comparative measurements with fibrin-based thromboelastometry tests were performed. RESULTS Regression and Bland-Altman analyses of derived “plasma-equivalent” fibrinogen and measured plasma fibrinogen concentration was excellent in porcine and human blood samples, especially in the ranges relevant to traumatic or perioperative bleeding. CONCLUSION Fast whole blood fibrinogen measurements could be considered as an alternative to plasma fibrinogen measurement for acute bleeding management in trauma and perioperative care settings. Further studies are needed to prove this concept and determine the turnaround times for its clinical application in emergency departments and operating theaters. PMID:25742256

  20. Forces driving the attachment of Staphylococcus epidermidis to fibrinogen-coated surfaces.

    PubMed

    Herman, Philippe; El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Geoghegan, Joan A; Vanzieleghem, Thomas; Foster, Timothy J; Hols, Pascal; Mahillon, Jacques; Dufrêne, Yves F

    2013-10-22

    Cell surface proteins of bacteria play essential roles in mediating the attachment of pathogens to host tissues and, therefore, represent key targets for anti-adhesion therapy. In the opportunistic pathogen Staphylococcus epidermidis , the adhesion protein SdrG mediates attachment of bacteria to the blood plasma protein fibrinogen (Fg) through a binding mechanism that is not yet fully understood. We report the direct measurement of the forces driving the adhesion of S. epidermidis to Fg-coated substrates using single-cell force spectroscopy. We found that the S. epidermidis -Fg adhesion force is of ~150 pN magnitude and that the adhesion strength and adhesion probability strongly increase with the interaction time, suggesting that the adhesion process involves time-dependent conformational changes. Control experiments with mutant bacteria lacking SdrG and substrates coated with the Fg β(6-20) peptide, instead of the full Fg protein, demonstrate that these force signatures originate from the rupture of specific bonds between SdrG and its peptide ligand. Collectively, our results are consistent with a dynamic, multi-step ligand-binding mechanism called "dock, lock, and latch".

  1. Blood fluidity, fibrinogen, and cardiovascular risk factors of occlusive arterial disease: results of the Aachen study.

    PubMed

    Koscielny, J; Jung, E M; Mrowietz, C; Kiesewetter, H; Latza, R

    2004-01-01

    In the Aachen study the prevalence of arterial disease was established in 346 out of a cohort of 2821 subjects between 45 and 65 years of age. Rheological variables and risk factor profile for patients with peripheral occlusive arterial disease (POAD), coronary heart disease (CHD) and cerebrovascular insufficiency (CI) in comparison to a control group are given. Significantly elevated are hematocrit in males, plasma viscosity, erythrocyte aggregation and fibrinogen. It is evident that plasma viscosity is the rheological parameter most often elevated in patients with arterial disease (70.8%). In patients with CI (80.6%) plasma viscosity is elevated about four times more often than in healthy subjects. While 85.8% of healthy volunteers show no or only one elevated rheological parameter only 44.5% of the patients have this constellation. Risk factors are bundled in patients compared to healthy volunteers. 84.2% of the healthy volunteers have no or only one risk factor whereas patients with OAD show this constellation in only 30.9% (32.4% in POAD, 16.1% in CI and 32.4% in CHD).

  2. Fibrinogen surface distribution correlates to platelet adhesion pattern on fluorinated surface-modified polyetherurethane.

    PubMed

    Massa, T M; Yang, M L; Ho, J Y C; Brash, J L; Santerre, J P

    2005-12-01

    In previous work, it had been shown that platelet adhesion could be reduced by fluorinating surfaces with oligomeric fluoropolymers, referred to as surface-modifying macromolecules (SMMs). In the current study, two in vitro blood-contacting experiments were carried out on a polyetherurethane modified with three different SMMs in order to determine if altered platelet adhesion levels could be related to the pattern of adsorbed protein and more specifically to the manner in which fibrinogen (Fg) distribution occurs at the surface. In the first experiment, the materials were placed in whole human blood and the adherent platelets were viewed with high-resolution scanning electron microscopy (SEM). In a second experiment, the materials were incubated with human plasma with the absence of platelets. The plasma contained 5% fluorescent-Fg. The materials were then viewed with a fluorescence microscope and images were collected to define the distribution of high-density fluorescent-Fg areas. The SEM and fluorescent-Fg images were imported to Image Pro Plus imaging software to measure the area, length and circularity and a bivariate correlation test was conducted between the two sets of data. For area and length morphology parameters, there were high and significant correlations (r > 0.9, p < 0.05) between the platelets and Fg aggregates. The data suggest that the Fg distribution may serve as a predictor of platelet morphology/activation and provides insight into the non-thrombogenic character of biomaterials containing the fluorinated SMMs. PMID:16026826

  3. Specific Effects of Fibrinogen and the γA and γ′-Chain Fibrinogen Variants on Angiogenesis and Wound Healing

    PubMed Central

    Cheung, Elim Y.L.; Weijers, Ester M.; Tuk, Bastiaan; Scheffer, Reinilde; Leebeek, Frank W.; van Neck, Johan W.; Koolwijk, Pieter

    2015-01-01

    In a newly formed wound, the natural fibrin network provides the first temporary matrix for tissue repair. Topical application of fibrin to a new wound may improve wound healing. A matrix of the common natural γ′ fibrin variant may further improve wound healing because it is expected to have a different architecture and this will influence angiogenesis, because it possesses increased thrombin and factor XIII binding and decreased platelet binding, when compared with the common γA fibrin matrix. Our objective was to determine the effect of fibrinogen and its γA and γ′ variants on angiogenesis and wound healing. We used in vitro angiogenesis models and an in vivo rat full-thickness excisional wound healing model. When comparing γA and γ′ fibrin in vitro, more tube-like structures were formed on day 7 in γA fibrin than in γ′ fibrin (13.83±6.12 AU vs. 6.1±1.46 AU). Wounds treated with fibrin demonstrated improved healing in vivo with more perfusion (47%±3% vs. 26%±4%, p<0.01 in placebo) and higher CD34 density score (2.0±0.4 vs. 2.8±0.1, p<0.01) on day 21 with fibrin matrices when compared with placebo-treated wounds. Increased perfusion was observed in γA fibrin-treated wounds on day 21 (53%±10% vs. 41%±7% for γ′ fibrin). The other parameters showed slightly improved (not significant) wound healing with γA fibrin compared with γ′ fibrin matrices. In conclusion, the use of fibrin and fibrin variant matrices offers an interesting methodology to stimulate the wound healing process. PMID:24974891

  4. Conformational transitions linked to active site ligation in human thrombin: effect on the interaction with fibrinogen and the cleavable platelet receptor.

    PubMed

    De Cristofaro, R; De Candia, E; Picozzi, M; Landolfi, R

    1995-01-27

    An experimental strategy based on solution viscosity perturbation allowed us to study the energetics of amide-substrates, p-aminobenzamidine (p-ABZ) and proflavin binding to the catalytic site of two proteolyzed forms of alpha-thrombin, i.e. zeta- and gamma T-thrombin. These thrombin derivatives are cleaved at the Leu144-Gly150 loop and at the fibrinogen recognition exosite (FRS), respectively. A phenomenological analysis of thermodynamic data showed that the amide substrates and p-ABZ interactions with zeta-thrombin were respectively, associated with a chemical compensation (i.e. the linear relationship between entropy and enthalpy of binding) and a hydrophobic phenomenon (i.e. a change in the standard heat capacity). The latter was slightly lower than that previously observed for a alpha-thrombin (0.78 +/- 0.25 versus 1.01 +/- 0.17 kcal/mol K). Both phenomenon were absent in gamma T-thrombin. The interaction of a alpha-, zeta- and gamma T-thrombin with macromolecular substrates that "bridge-bind" to both the catalytic site (CS) and fibrinogen recognition exosite (FRS), such as fibrinogen and the cleavable platelet receptor (CPR), was also evaluated. These interactions were studied by following fibrinopeptide A (FpA) release and by measuring intraplatelet Ca2+ changes induced by thrombin-CPR interaction. It was found that the free energy of activation (RT ln Kcat/Km) for both fibrinogen and CPR hydrolysis followed the same hierarchy, i.e. alpha > zeta > gamma. Moreover, the values of delta Cp for alpha-, zeta- and gamma T-thrombin interaction with p-ABZ were found to be linearly correlated to the free energy of activation for both fibrinogen and CPR cleavage. In conclusion, these data demonstrate that: (1) the Leu144-Gly150 loop and the FRS are both involved in the conformational transition linked to the binding of p-aminobenzamidine to the thrombin active site; (2) the extent of thrombin's capacity to undergo conformational transitions in alpha-, zeta- and gamma

  5. Sensitive Immunoassays of Nitrated Fibrinogen in Human Biofluids

    SciTech Connect

    Tang, Zhiwen; Wu, Hong; Du, Dan; Wang, Jun; Wang, Hua; Qian, Weijun; Bigelow, Diana J.; Pounds, Joel G.; Smith, Richard D.; Lin, Yuehe

    2010-05-05

    Three new sandwich immunoassays for detection of nitrated biomarker have been established with potential applications in biomedical studies and clinical practice. In this study, nitrated human fibrinogen, a potential oxidative stress biomarker for several pathologies, was chosen as the target. To improve the sensitivity and overcome the interference caused by the complexity of human biofluids, we developed three sandwich strategies using various combinations of primary antibody and secondary antibody. All three strategies demonstrated high sensitivity and selectivity towards nitrated forms of fibrinogen in buffer, but their performances were dramatically reduced when tested with human plasma and serum samples. Systematically optimizations were carried out to investigate the effects of numerous factors, including sampling, coating, blocking, and immunoreactions. Our final optimization results indicate that two of these strategies retain sufficient sensitivity and selectivity for use as assays in human physiological samples. Specifically, detection limits reached the pM level and the linear response ranges were up to nM level with a correlation coefficient > 0.99. To our best knowledge, this is the first example of using an electrochemical immunoassay for a nitrated biomarker in a physiological fluid. This novel approach provides a rapid, sensitive, selective, cost efficient and robust bioassay for detection of oxidative stress in pathology and for clinical applications. Moreover, the sandwich strategies developed in this paper can be readily used to establish effective methods targeting other nitration biomarkers.

  6. Enhanced bacterial adhesion on surfaces pretreated with fibrinogen and fibronectin

    SciTech Connect

    Mohammad, S.F.; Topham, N.S.; Burns, G.L.; Olsen, D.B.

    1988-07-01

    The effect of certain plasma proteins on the adhesion of Pseudomonas aeruginosa and Staphylococcus epidermidis on polyurethane, polyvinylchloride, or glass was investigated. Test surfaces were treated with serum, plasma, albumin, immunoglobulin G, fibrinogen, or fibronectin. Using a specially designed test chamber, surfaces previously treated with test proteins were incubated with bacterial suspension. During the experiment, the test chamber was placed on a rotator to prevent settling of bacteria. At the end of the experiment, each test well was rinsed repeatedly to remove non-adherent bacteria. The number of bacteria adherent to the test surfaces was quantitated by a combination of methods including microscopic counting of cells, scintillation counting and autoradiography. It was noted that a greater number of bacteria adhered to surfaces coated with fibrinogen or fibronectin whereas surfaces treated with serum showed reduced bacterial adhesion. The inhibitory effect of serum appeared more pronounced with S. epidermidis when compared with P. aeruginosa under identical experimental conditions. Scanning electron microscopy revealed that adherent bacteria were randomly distributed on the test surfaces and appeared to replicate while still adherent. These observations suggested that bacterial adhesion to biomaterials can be significantly influenced by the composition of the adsorbed proteins at the interface.

  7. A study on human serum albumin influence on glycation of fibrinogen

    SciTech Connect

    Kielmas, Martyna; Szewczuk, Zbigniew; Stefanowicz, Piotr

    2013-09-13

    Highlights: •The glycation of fibrinogen was investigated by isotopic labeling method. •The potential glycation sites in fibrinogen were identified. •Human serum albumin (HSA) inhibits the glycation of fibrinogen. •The effect of HSA on fibrinogen glycation is sequence-dependent. -- Abstract: Although in vivo glycation proceeds in complex mixture of proteins, previous studies did not take in consideration the influence of protein–protein interaction on Maillard reaction. The aim of our study was to test the influence of human serum albumin (HSA) on glycation of fibrinogen. The isotopic labeling using [{sup 13}C{sub 6}] glucose combined with LC-MS were applied as tool for identification possible glycation sites in fibrinogen and for evaluation the effect of HSA on the glycation level of selected amino acids in fibrinogen. The obtained data indicate that the addition of HSA protects the fibrinogen from glycation. The level of glycation in presence of HSA is reduced by 30–60% and depends on the location of glycated residue in sequence of protein.

  8. Fibrinogen adsorption mechanisms at the gold substrate revealed by QCM-D measurements and RSA modeling.

    PubMed

    Kubiak, Katarzyna; Adamczyk, Zbigniew; Cieśla, Michał

    2016-03-01

    Adsorption kinetics of fibrinogen at a gold substrate at various pHs was thoroughly studied using the QCM-D method. The experimental were interpreted in terms of theoretical calculations performed according to the random sequential adsorption model (RSA). In this way, the hydration functions and water factors of fibrinogen monolayers were quantitatively evaluated at various pHs. It was revealed that for the lower range of fibrinogen coverage the hydration function were considerably lower than previously obtained for the silica sensor [33]. The lower hydration of fibrinogen monolayers on the gold sensor was attributed to its higher roughness. However, for higher fibrinogen coverage the hydration functions for both sensors became identical exhibiting an universal behavior. By using the hydration functions, the fibrinogen adsorption/desorption runs derived from QCM-D measurements were converted to the Γd vs. the time relationships. This allowed to precisely determine the maximum coverage that varied between 1.6mgm(-2) at pH 3.5 and 4.5mgm(-2) at pH 7.4 (for ionic strength of 0.15M). These results agree with theoretical eRSA modeling and previous experimental data derived by using ellipsometry, OWLS and TIRF. Various fibrinogen adsorption mechanisms were revealed by exploiting the maximum coverage data. These results allow one to develop a method for preparing fibrinogen monolayers of well-controlled coverage and molecule orientation.

  9. Construction aggregates

    USGS Publications Warehouse

    Bolen, W.P.; Tepordei, V.V.

    2001-01-01

    The estimated production during 2000 of construction aggregates, crushed stone, and construction sand and gravel increased by about 2.6% to 2.7 Gt (3 billion st), compared with 1999. The expansion that started in 1992 continued with record production levels for the ninth consecutive year. By commodity, construction sand and gravel production increased by 4.5% to 1.16 Gt (1.28 billion st), while crushed stone production increased by 1.3% to 1.56 Gt (1.72 billion st).

  10. A novel fibrinogen B beta chain frameshift mutation causes congenital afibrinogenaemia.

    PubMed

    Zhang, Jian; Zhao, Xiaojuan; Wang, Zhaoyue; Yu, Ziqiang; Cao, Lijuan; Zhang, Wei; Bai, Xia; Ruan, Changgeng

    2013-07-01

    Congenital afibrinogenaemia is a rare autosomal recessive disorder caused by various mutations within the fibrinogen genes FGA, FGB and FGG. Ins/del mutations in FGB are extremely rare. We report a patient with afibrinogenaemia who suffered from umbilical cord bleeding and repeated bleeding episodes. His plasma fibrinogen levels could not be detected using the Clauss method and immunological methods. Molecular analyses revealed homozygosity in a novel four bases insertion in codon 40 of FGB exon 2 (g. 2833_2834 ins GTTT), which resulted in a truncated 50-residue polypeptide that contained 11 exceptional abnormal residues. In the transient expression experiments, mutant fibrinogen could be detected at higher level than wild-type fibrinogen in COS-7 cell lysates but not in culture media. These results suggest that the homozygous mutation in FGB could be responsible for congenital afibrinogenaemia in this patient. This frameshift mutation could impair fibrinogen assembly and secretion without influencing the protein synthesis.

  11. Multiple Novel Loci, Including Those Related to Crohn’s Disease, Psoriasis and Inflammation, Identified in a Genome-Wide Association Study of Fibrinogen in 17,686 Women: the Women’s Genome Health Study

    PubMed Central

    Danik, Jacqueline S.; Pare, Guillaume; Chasman, Daniel I.; Zee, Robert Y.L.; Kwiatkowski, David J.; Parker, Alex; Miletich, Joseph P.; Ridker, Paul M

    2009-01-01

    Background Fibrinogen is a multifunctional circulating glycoprotein involved in wound-healing, thrombosis, platelet aggregation and inflammation, and elevated levels predict vascular disease. Despite evidence of such crucial biological functions and moderate heritability, comprehensive analysis of the influence of genetic variation on fibrinogen is not available. Methods and Results To address this issue, we undertook a genome-wide association study evaluating the potential relationships between 337,343 single nucleotide polymorphisms (SNPs) and plasma fibrinogen levels among 17,686 apparently healthy women participating in the Women’s Genome Health Study (WGHS). As C-reactive protein is also an inflammatory marker known to predict cardiovascular diseases, we compared the determinants of fibrinogen levels with those of C-reactive protein. Four novel loci were identified, in addition to the fibrinogen gene cluster, which were associated with fibrinogen levels at genome-wide levels of significance (range of P-values from 8.82×10-09 to 8.04×10-39). Two of the loci related to common chronic inflammatory diseases: the first, at locus 5q31.1 (SLC22A5, SLC22A4, IRF1) lies immediately adjacent to a locus linked to Crohn’s disease (P-value for lead SNP 1.24 × 10-12) and the second, at locus 17q25.1 (CD300LF, SLC9A3R1, NAT9) has been associated with psoriasis (P-value for lead SNP 7.72×10-11). A third locus at 1q21.3 (IL6R) lies within the interleukin 6 receptor gene, a critical component of the inflammatory cascade (P-value for lead SNP 1.80×10-11). A novel locus at 2q34 (CPS1) participates in the urea cycle (P-value 8.82×10-09). The majority of implicated SNPs showed little evidence of dual association with C-reactive protein levels. Conclusions An agnostic survey of the human genome identifies novel loci related to common chronic inflammatory diseases as genetic determinants of fibrinogen levels, in addition to loci that relate to the inflammatory cascade, the

  12. Crystal structure of the central region of bovine fibrinogen (E5 fragment) at 1.4-Å resolution

    PubMed Central

    Madrazo, Joel; Brown, Jerry H.; Litvinovich, Sergei; Dominguez, Roberto; Yakovlev, Sergei; Medved, Leonid; Cohen, Carolyn

    2001-01-01

    The high-resolution crystal structure of the N-terminal central region of bovine fibrinogen (a 35-kDa E5 fragment) reveals a remarkable dimeric design. The two halves of the molecule bond together at the center in an extensive molecular “handshake” by using both disulfide linkages and noncovalent contacts. On one face of the fragment, the Aα and Bβ chains from the two monomers form a funnel-shaped domain with an unusual hydrophobic cavity; here, on each of the two outer sides there appears to be a binding site for thrombin. On the opposite face, the N-terminal γ chains fold into a separate domain. Despite the chemical identity of the two halves of fibrinogen, an unusual pair of adjacent disulfide bonds locally constrain the two γ chains to adopt different conformations. The striking asymmetry of this domain may promote the known supercoiling of the protofibrils in fibrin. This information on the detailed topology of the E5 fragment permits the construction of a more detailed model than previously possible for the critical trimolecular junction of the protofibril in fibrin. PMID:11593005

  13. Stoichiometry and Physical Chemistry of Promiscuous Aggregate-Based Inhibitors

    PubMed Central

    Coan, Kristin E. D.

    2009-01-01

    Many false positives in early drug discovery owe to nonspecific inhibition by colloid-like aggregates of organic molecules. Despite their prevalence, little is known about aggregate concentration, structure, or dynamic equilibrium; the binding mechanism, stoichiometry with, and affinity for enzymes remain uncertain. To investigate the elementary question of concentration, we counted aggregate particles using flow cytometry. For seven aggregate-forming molecules, aggregates were not observed until the concentration of monomer crossed a threshold, indicating a “critical aggregation concentration” (CAC). Above the CAC, aggregate count increased linearly with added organic material, while the particles dispersed when diluted below the CAC. The concentration of monomeric organic molecule is constant above the CAC, as is the size of the aggregate particles. For two compounds that form large aggregates, nicardipine and miconazole, we measured particle numbers directly by flow cytometry, determining that the aggregate concentration just above the CAC ranged from 5 to 30 fM. By correlating inhibition of an enzyme with aggregate count for these two drugs, we determined that the stoichiometry of binding is about 10 000 enzyme molecules per aggregate particle. Using measured volumes for nicardipine and miconazole aggregate particles (2.1 × 1011 and 4.7 × 1010 Å3, respectively), computed monomer volumes, and the observation that past the CAC all additional monomer forms aggregate particles, we find that aggregates are densely packed particles. Finally, given their size and enzyme stoichiometry, all sequestered enzyme can be comfortably accommodated on the surface of the aggregate. PMID:18588298

  14. Effects of tau domain-specific antibodies and intravenous immunoglobulin on tau aggregation and aggregate degradation.

    PubMed

    Esteves-Villanueva, Jose O; Trzeciakiewicz, Hanna; Loeffler, David A; Martić, Sanela

    2015-01-20

    Tau pathology, including neurofibrillary tangles, develops in Alzheimer's disease (AD). The aggregation and hyperphosphorylation of tau are potential therapeutic targets for AD. Administration of anti-tau antibodies reduces tau pathology in transgenic "tauopathy" mice; however, the optimal tau epitopes and conformations to target are unclear. Also unknown is whether intravenous immunoglobulin (IVIG) products, currently being evaluated in AD trials, exert effects on pathological tau. This study examined the effects of anti-tau antibodies targeting different tau epitopes and the IVIG Gammagard on tau aggregation and preformed tau aggregates. Tau aggregation was assessed by transmission electron microscopy and fluorescence spectroscopy, and the binding affinity of the anti-tau antibodies for tau was evaluated by enzyme-linked immunosorbent assays. Antibodies used were anti-tau 1-150 ("D-8"), anti-tau 259-266 ("Paired-262"), anti-tau 341-360 ("A-10"), and anti-tau 404-441 ("Tau-46"), which bind to tau's N-terminus, microtubule binding domain (MBD) repeat sequences R1 and R4, and the C-terminus, respectively. The antibodies Paired-262 and A-10, but not D-8 and Tau-46, reduced tau fibrillization and degraded preformed tau aggregates, whereas the IVIG reduced tau aggregation but did not alter preformed aggregates. The binding affinities of the antibodies for the epitope for which they were specific did not appear to be related to their effects on tau aggregation. These results confirm that antibody binding to tau's MBD repeat sequences may inhibit tau aggregation and indicate that such antibodies may also degrade preformed tau aggregates. In the presence of anti-tau antibodies, the resulting tau morphologies were antigen-dependent. The results also suggested the possibility of different pathways regulating antibody-mediated inhibition of tau aggregation and antibody-mediated degradation of preformed tau aggregates. PMID:25545358

  15. Fibrinogen patterns and activity on substrates with tailored hydroxy density.

    PubMed

    Rodríguez Hernández, José Carlos; Rico, Patricia; Moratal, David; Monleón Pradas, Manuel; Salmerón-Sánchez, Manuel

    2009-08-11

    The influence of the surface fraction of OH groups on fibrinogen (FG) adsorption is investigated in copolymers of ethyl acrylate and hydroxy ethylacrylate. The amount of adsorbed FG, quantified by western-blotting combined with image analysis of the corresponding bands, decreases as the hydrophilicity of the substrate increases. The influence of substrate wettability on FG conformation and distribution is observed by atomic force microscopy (AFM). The most hydrophobic substrate promotes FG fibrillogenesis, which leads to a fibrin-like appearance in the absence of any thrombin. The degree of FG interconnection was quantified by calculating the fractal dimension of the adsorbed protein from image analysis of the AFM results. The biological activity of the adsorbed FG is correlated to cell adhesion on FG-coated substrates.

  16. Fibrinogen-fibrin conversion and inhibition of fibrinolysis.

    PubMed

    Stemberger, A; Blümel, G

    1982-08-01

    The fibrin adhesion technique is the imitation of the last step of the coagulation system. Fibrinogen is converted by thrombin into fibrin and stabilized by factor XIII. Fibrin sticks to the tissue and the tissue is adapted by syneresis. Local application of aprotinin to the thrombin solution is necessary in order to inhibit premature lysis of the fibrin film. This technique is now used in some selected cases in man such as fixation of cartilage, tendon, sealing of colonic anastomoses and preclotting of vessel grafts. An excellent hemostyptic effect of the fibrin glue in combination with absorbable collagen tampons was found. This combination technique is now used to seal parenchymatous organs and to stop hemorrhage in patients with defective hemostasis particularly those undergoing open heart surgery.

  17. Influence of Ficoll on urea induced denaturation of fibrinogen

    NASA Astrophysics Data System (ADS)

    Sankaranarayanan, Kamatchi; Meenakshisundaram, N.

    2016-03-01

    Ficoll is a neutral, highly branched polymer used as a molecular crowder in the study of proteins. Ficoll is also part of Ficoll-Paque used in biology laboratories to separate blood to its components (erythrocytes, leukocytes etc.,). Role of Ficoll in the urea induced denaturation of protein Fibrinogen (Fg) has been analyzed using fluorescence, circular dichroism, molecular docking and interfacial studies. Fluorescence studies show that Ficoll prevents quenching of Fg in the presence of urea. From the circular dichroism spectra, Fg shows conformational transition to random coil with urea of 6 M concentration. Ficoll helps to shift this denaturation concentration to 8 M and thus constraints by shielding Fg during the process. Molecular docking studies indicate that Ficoll interacts favorably with the protein than urea. The surface tension and shear viscosity analysis shows clearly that the protein is shielded by Ficoll.

  18. 5-fluorouracil loaded fibrinogen nanoparticles for cancer drug delivery applications.

    PubMed

    Rejinold, N Sanoj; Muthunarayanan, M; Chennazhi, K P; Nair, S V; Jayakumar, R

    2011-01-01

    In this study, 5-flurouracil loaded fibrinogen nanoparticles (5-FU-FNPs) were prepared by two step coacervation method using calcium chloride as cross-linker. The prepared nanoparticles were characterized using DLS, SEM, AFM, FT-IR, TG/DTA and XRD studies. Particle size of 5-FU-FNPs was found to be 150-200 nm. The loading efficiency (LE) and in vitro drug release was studied using UV spectrophotometer. The LE of FNPs was found to be ∼90%. The cytotoxicity studies showed 5-FU-FNPs were toxic to MCF7, PC3 and KB cells while they are comparatively non toxic to L929 cells. Cellular uptake of Rhodamine 123 conjugated 5-FU-FNPs was also studied. Cell uptake studies demonstrated that the nanoparticles are inside the cells. These results indicated that FNPs could be useful for cancer drug delivery. PMID:20951162

  19. Evidence that plasma fibrinogen and platelet membrane GPIIb-IIIa are involved in the adhesion of platelets to an artificial surface exposed to plasma.

    PubMed

    Nagai, H; Handa, M; Kawai, Y; Watanabe, K; Ikeda, Y

    1993-09-15

    We investigated the molecular mechanism(s) by which platelets adhere to an artificial surface exposed to plasma, using polystyrene microtiter plates pretreated with plasma. Washed platelets labelled with 51Cr were incubated with the plates under static conditions. Prostaglandin E1(PGE1) was added to the platelets to prevent platelet-platelet interactions. Adhesion required the presence of a divalent cation such as Mg++ or Ca++. Polyclonal anti-fibrinogen antibody inhibited adhesion by 70%. Polyclonal antibodies against fibronectin, vitronectin, von Willebrand's Factor, and the Fc portion of human IgG, had no effect on adhesion. Platelets adhered normally to a surface pretreated with plasma from a patient with severe von Willebrand's disease. No platelet adhesion occurred when the surface was pretreated with an afibrinogenemic plasma. Monoclonal antibodies against platelet membrane GPIIb-IIIa, potent inhibitors of ADP-induced fibrinogen binding to platelets, completely inhibited adhesion. Monoclonal antibodies against the GPIb alpha subunit and GPIc(VLA alpha 5) showed no inhibitory effects on adhesion. Platelets from a patient with Glanzmann's thrombasthenia (type I) did not adhere to the surface pretreated with normal plasma. These results suggest that plasma fibrinogen adsorbed onto the surface and that platelet membrane glycoprotein(GP)IIb-IIIa were responsible for adhesion in an activation-independent manner.

  20. Epistatic and pleiotropic effects of polymorphisms in the fibrinogen and coagulation factor XIII genes on plasma fibrinogen concentration, fibrin gel structure and risk of myocardial infarction.

    PubMed

    Mannila, Maria Nastase; Eriksson, Per; Ericsson, Carl-Göran; Hamsten, Anders; Silveira, Angela

    2006-03-01

    An intricate interplay between the genes encoding fibrinogen gamma (FGG), alpha (FGA) and beta (FGB), coagulation factor XIII (F13A1) and interleukin 6 (IL6) and environmental factors is likely to influence plasma fibrinogen concentration, fibrin clot structure and risk of myocardial infarction (MI). In the present study, the potential contribution of SNPs harboured in the fibrinogen, IL6 and F13A1 genes to these biochemical and clinical phenotypes was examined. A database and biobank based on 387 survivors of a first MI and population-based controls were used. Sixty controls were selected according to FGG 9340T > C [rs1049636] genotype for studies on fibrin clot structure using the liquid permeation method. The multifactor dimensionality reduction method was used for interaction analyses. We here report that the FGA 2224G > A [rs2070011] SNP (9.2%), plasma fibrinogen concentration (13.1%) and age (8.1%) appeared as independent determinants of fibrin gel porosity. The FGA 2224G > A SNP modulated the relation between plasma fibrinogen concentration and fibrin clot porosity. The FGG-FGA*4 haplotype, composed of the minor FGG 9340C and FGA 2224A alleles, had similar effects, supporting its reported protective role in relation to MI. Significant epistasis on plasma fibrinogen concentration was detected between the FGA 2224G > A and F13A1 Val34Leu [rs5985] SNPs (p < 0.001). The FGG 9340T > C and FGB 1038G > A [rs1800791] SNPs appeared to interact on MI risk, explaining the association of FGG-FGB haplotypes with MI in the absence of effects of individual SNPs. Thus, epistatic and pleiotropic effects of polymorphisms contribute to the variation in plasma fibrinogen concentration, fibrin clot structure and risk of MI.

  1. Stabilized sulfur binding using activated fillers

    DOEpatents

    Kalb, Paul D.; Vagin, Vyacheslav P.; Vagin, Sergey P.

    2015-07-21

    A method of making a stable, sulfur binding composite comprising impregnating a solid aggregate with an organic modifier comprising unsaturated hydrocarbons with at least one double or triple covalent bond between adjacent carbon atoms to create a modifier-impregnated aggregate; heating and drying the modifier-impregnated aggregate to activate the surface of the modifier-impregnated aggregate for reaction with sulfur.

  2. Fibrinogen modulates leukocyte recruitment in vivo during the acute inflammatory response.

    PubMed

    Vitorino de Almeida, V; Silva-Herdade, A; Calado, A; Rosário, H S; Saldanha, C

    2015-01-01

    Besides playing an important role in blood hemostases, fibrinogen also regulates leukocyte function in inflammation. Our previous in vitro studies showed that the adhesive behaviour of the neutrophil is modulated by soluble fibrinogen when present at a physiological concentration. This led us to propose that this plasma glycoprotein might further influence leukocyte recruitment in vivo and thus contribute to the inflammatory response. To address this in vivo, leukocyte recruitment was here investigated under acute inflammatory conditions in the absence of soluble fibrinogen in the blood circulation. For such, intravital microscopy on mesentery post-capillary venules was performed on homozygous fibrinogen α chain-deficient mice ((α-/-) mice). Acute inflammatory states were induced by perfusing platelet activating factor (PAF) over the exposed tissue. As control animals, two groups of mice expressing soluble fibrinogen in circulation were used, namely, C57BL/6 wild type animals and heterozygous fibrinogen α chain-deficient mice ((α+/-) mice). Under acute inflammatory conditions, an abnormal pattern of recruitment was observed for leukocytes in homozygous (α-/-) mice in comparison to both control groups. In fact, the former exhibited a significantly decreased number of rolling leukocytes that nevertheless, migrated with increased rolling velocities when compared to leukocytes from control animals. Consistently, homozygous mice further displayed a diminished number of adherent leukocytes than the other groups. Altogether our observations led us to conclude that leukocyte recruitment in homozygous (α-/-) mice is compromised what strongly suggests a role for soluble fibrinogen in leukocyte recruitment in inflammation.

  3. Deletion of the fibrinogen [correction of fibrogen] alpha-chain gene (FGA) causes congenital afibrogenemia.

    PubMed

    Neerman-Arbez, M; Honsberger, A; Antonarakis, S E; Morris, M A

    1999-01-01

    Congenital afibrinogenemia is a rare autosomal recessive disorder characterized by the complete absence of detectable fibrinogen. Uncontrolled bleeding after birth from the umbilical cord is common, and spontaneous intracerebral bleeding and splenic rupture can occur throughout life. Patients respond well to fibrinogen replacement therapy, either prophylactically or on demand. Because the half-life of infused fibrinogen is essentially normal, the genetic defect is assumed to be at the level of synthesis, but no responsible locus has been identified. Preliminary studies using Southern blotting suggested that no gross structural changes of the fibrinogen genes were present in patients. We report the identification of causative mutations in a nonconsanguineous Swiss family with congenital afibrinogenemia. The four affected male individuals (two brothers and their two first cousins) have homozygous deletions of approximately 11 kb of the fibrinogen alpha-chain gene (FGA). Haplotype data suggest that these deletions occurred separately, on three distinct ancestral chromosomes, implying that the FGA region of the fibrinogen locus is susceptible to deletion by a common mechanism. Furthermore, our results demonstrate that humans, like mice, may be born without the capacity to synthesize functional fibrinogen.

  4. Adsorption Studies with AFM of Human Plasma Fibrinogen on Silicon Surfaces

    NASA Astrophysics Data System (ADS)

    Gause, Sheena; Kong, Wendy; Rowe

    2007-11-01

    Fibrinogen (FGN) plays an important role in the clotting of blood. Human plasma fibrinogen (HPF) is a protein that readily adsorbs on biomaterial surfaces. The purpose of this experiment was to use the Atomic Force Microscope to study the adsorption of HPF molecules or FGN onto several silicon surfaces with different orientations and resistivities. The size of the FGN molecules found to be somewhat different of Si(111), (100) and (110) were compared to the size of the FGN molecules in solution (45 nm in length, the end dynodes measures to be 6.5 nm in diameter, and the middle dynode measures to be 5 nm in diameter. For this study, the CPR (Thermo-microscope) Atomic Force Microscope (AFM) was used to observe the amount of fibrinogen molecules adsorbed by Si (111) with a resistance of .0281-.0261 φ cm, Si (111) with a resistance of 1 φ cm, Si (100), and Si (110) surfaces. In finding any single fibrinogen molecules, the appropriate image scans and measurements were taken. After collection and analysis of the data, it was found from AFM that the fibrinogen molecules found on Si (110) mostly resembled fibrinogen molecules found in solution. The other images showed that the fibrinogen molecules adsorbed on Silicon substrates is significantly greater (˜10-20 %) than those in solution.

  5. A novel fibrinogen mutation (γ Thr277Arg) causes hereditary hypofibrinogenemia in a Chinese family.

    PubMed

    Zhu, Liqing; Wang, Mingshan; Xie, Haixiao; Jin, Yanhui; Yang, Lihong; Xu, Pengfei

    2013-09-01

    Congenital hypofibrinogenemia is a rare disorder caused by heterozygous mutations in one of the three fibrinogen genes--fibrinogen α-chain (FGA), fibrinogen β-chain (FGB) and fibrinogen γ-chain (FGG)--which code for the Aα, Bβ and γ chains, respectively. In this study, we identified a genetic defect in the FGG underlying the hypofibrinogenemia. The proposita had a prolonged blood clotting time (thrombin time 24.5 s, prothrombin time 16.8 s) and a low level of plasma fibrinogen (0.71 g/l by Clauss method and 0.79 g/l by immunoturbidimetry). DNA screening of the whole fibrinogen gene revealed a heterozygous GC mutation at nucleotide 7482 in her FGG gene. Her father and her half-brother are also heterozygous for this mutation. This mutation contributes to Thr277 → Arg in the γ chain of fibrinogen. To the best of our knowledge, this is the first report of such a mutation that is associated with hypofibrinogenemia.

  6. Contribution of haplotypes across the fibrinogen gene cluster to variation in risk of myocardial infarction.

    PubMed

    Mannila, Maria Nastase; Eriksson, Per; Lundman, Pia; Samnegård, Ann; Boquist, Susanna; Ericsson, Carl-Göran; Tornvall, Per; Hamsten, Anders; Silveira, Angela

    2005-03-01

    Fibrinogen has consistently been recognized as an independent predictor of myocardial infarction (MI). Multiple mechanisms link fibrinogen to MI; therefore disentangling the factors underlying variation in plasma fibrinogen concentration is essential. Candidate regions in the fibrinogen gamma (FGG), alpha (FGA) and beta (FGB) genes were screened for single nucleotide polymorphisms (SNPs). Several novel SNPs were detected in the FGG and FGA genes in addition to the previously known SNPs in the fibrinogen genes. Tight linkage disequilibrium extending over various physical distances was observed between most SNPs. Consequently, eight SNPs were chosen and determined in 377 postinfarction patients and 387 healthy individuals. None of the SNPs were associated with plasma fibrinogen concentration or MI. Haplotype analyses revealed a consistent pattern of haplotypes associated with variation in risk of MI. Of the four haplotypes inferred using the FGA -58G>A and FGG 1299 +79T>C SNPs, the most frequent haplotype, FGG-FGA*1 (prevalence 46.6%), was associated with increased risk of MI (OR 1.51; 95%CI 1.18, 1.93), whereas the least frequent haplotype, FGG-FGA*4 (11.8%), was associated with lower risk of MI (OR 0.79 95%CI 0.64, 0.98). In conclusion, fibrinogen haplotypes, but not SNPs in isolation, are associated with variation in risk of MI.

  7. Thrombin and fibrinogen γ' impact clot structure by marked effects on intrafibrillar structure and protofibril packing.

    PubMed

    Domingues, Marco M; Macrae, Fraser L; Duval, Cédric; McPherson, Helen R; Bridge, Katherine I; Ajjan, Ramzi A; Ridger, Victoria C; Connell, Simon D; Philippou, Helen; Ariëns, Robert A S

    2016-01-28

    Previous studies have shown effects of thrombin and fibrinogen γ' on clot structure. However, structural information was obtained using electron microscopy, which requires sample dehydration. Our aim was to investigate the role of thrombin and fibrinogen γ' in modulating fibrin structure under fully hydrated conditions. Fibrin fibers were studied using turbidimetry, atomic force microscopy, electron microscopy, and magnetic tweezers in purified and plasma solutions. Increased thrombin induced a pronounced decrease in average protofibril content per fiber, with a relatively minor decrease in fiber size, leading to the formation of less compact fiber structures. Atomic force microscopy under fully hydrated conditions confirmed that fiber diameter was only marginally decreased. Decreased protofibril content of the fibers produced by high thrombin resulted in weakened clot architecture as analyzed by magnetic tweezers in purified systems and by thromboelastometry in plasma and whole blood. Fibers produced with fibrinogen γ' showed reduced protofibril packing over a range of thrombin concentrations. High-magnification electron microscopy demonstrated reduced protofibril packing in γ' fibers and unraveling of fibers into separate protofibrils. Decreased protofibril packing was confirmed in plasma for high thrombin concentrations and fibrinogen-deficient plasma reconstituted with γ' fibrinogen. These findings demonstrate that, in fully hydrated conditions, thrombin and fibrinogen γ' have dramatic effects on protofibril content and that protein density within fibers correlates with strength of the fibrin network. We conclude that regulation of protofibril content of fibers is an important mechanism by which thrombin and fibrinogen γ' modulate fibrin clot structure and strength. PMID:26608329

  8. αVβ3 Integrin Regulation of Respiratory Burst in Fibrinogen Adherent Human Neutrophils

    PubMed Central

    Kim, Hye-Yeong; Skokos, Eleni A.; Myer, Deborah J.; Agaba, Perez; Gonzalez, Anjelica L.

    2015-01-01

    In response to inflammatory stimuli, microvascular endothelial cells become activated, initiating the capture and exit of neutrophils from the blood vessel and into the extravascular extracellular matrix (ECM). In the extravascular space, neutrophils bind to ECM proteins, regulating cellular functions via signaling through adhesion molecules known as integrins. The αVβ3 integrin is an important mediator of neutrophil adhesion to ECM proteins containing the Arg-Gly-Asp (RGD) peptide sequence, including fibrinogen and fibronectin. Despite the abundance of RGD sequence in the ECM, adhesion molecule-mediated neutrophil activity has been focused on the β2 (Mac-1, CD11b/CD18) and β1 integrin response to matrix proteins. Here we investigated αVβ3 integrin-mediated reactive oxidant suppression as a consequence of human neutrophil adhesion to RGD containing proteins. Using integrin ligand-modified (poly)ethylene glycol hydrogels and reactive oxygen species (ROS) sensitive fluorescent probes (dihydrotetramethylrhosamine, H2TMRos), we evaluated integrin–peptide interactions that effectively regulate ROS generation. This study demonstrates that neutrophil adhesion suppresses ROS production in an αVβ3-dependent manner. Additionally, we determine that p38 mitogen-activated protein kinase in the respiratory burst signaling pathway is interrupted by integrin-mediated adhesion. These data indicate that ECM/integrin interactions can induce αVβ3-mediated adhesion dependent downstream signaling of ROS regulation via a Mac-1 independent mechanism. PMID:25632307

  9. Rapid extraction, radioiodination, and in vivo catabolism of 125I-labeled fibrinogen in the horse

    SciTech Connect

    Coyne, C.P.; Hornof, W.J.; Kelly, A.B.; O'Brien, T.R.; DeNardo, S.J.

    1985-12-01

    Two methods were analyzed for the rapid extraction of equine fibrinogen from fresh plasma, using ammonium sulfate-sodium phosphate buffer. Fibrinogen from each of these 2 methods was then radiolabeled with 125I (half-life = 60.2 days, gamma = 35 keV), using monochloroiodine reagent. Mean protein-bound activity was 98.5% and mean clottable radioactivity was 94.1%. Radiolabeled fibrinogen administered IV to 15 horses had an overall mean (+/- SD) plasma half-life of 4.95 +/- 0.44 days.

  10. The human beta fibrinogen promoter contains a hepatocyte nuclear factor 1-dependent interleukin-6-responsive element.

    PubMed Central

    Dalmon, J; Laurent, M; Courtois, G

    1993-01-01

    Acute-phase reactants are liver proteins whose synthesis is positively or negatively regulated during inflammation. The main mediators of this phenomenon are glucocorticoids and interleukin-6 (IL-6), a pleiotropic cytokine that also controls hematopoiesis. Functional analysis of several acute-phase reactant promoter regions has identified two major DNA motifs used by IL-6-regulated genes. The first one corresponds to a CTGG(G/A)AA sequence, and the other is a binding site for members of the C/EBP family of nuclear proteins. We have previously shown that the human beta fibrinogen (beta Fg) promoter contains an IL-6-responsive region, located between bp -150 and -67 (P. Huber, M. Laurent, and J. Dalmon, J. Biol. Chem. 265:5695-5701, 1990). In this study, using DNase I footprinting, mobility shift assays, and mutagenesis, we demonstrate that at least three subdomains of this region are necessary to observe a full response to IL-6. The most distal contains a CTGGGAA motif, and its mutation inhibits IL-6 stimulation. Another, which is able to interact with several distinct nuclear proteins, among them members of the C/EBP family, is dispensable for IL-6 induction but plays an important role in the constitutive expression of beta Fg. Finally, a proximal hepatocyte nuclear factor 1 binding site, already described as the major determinant of beta Fg tissue-specific expression, is also required for IL-6 stimulation. These results indicate a complex interplay between nuclear proteins within the beta Fg IL-6-responsive region and suggest a tight functional coupling between the tissue-specific and inducible elements. Images PMID:8423785

  11. Fibrinogen, Riboflavin, and UVA to Immobilize a Corneal Flap – Molecular Mechanisms

    PubMed Central

    Littlechild, Stacy L.; Zhang, Yuntao; Tomich, John M.; Conrad, Gary W.

    2012-01-01

    Purpose. Tissue glue containing fibrinogen (FIB) and riboflavin (RF), upon exposure to long wavelength ultraviolet light (UVA, 365 nM) has been proposed potentially to solve long-standing problems presented by corneal wound and epithelial ingrowth side-effects from laser-assisted in situ keratomileuis (LASIK). Data presented in a previous study demonstrated an ability of FIB + RF + UVA to adhere two stromal surfaces; however, to our knowledge no molecular mechanisms have been proposed to account for interactions occurring between corneal extracellular matrix (ECM) and tissue glue molecules. Here, we document several covalent and noncovalent interactions between these classes of macromolecules. Methods. SDS-PAGE and Western blot techniques were used to identify covalent interactions between tissue glue molecules and corneal ECM molecules in either the presence or absence of RF and UVA, in vitro and ex vivo. Surface plasmon resonance (SPR) was used to characterize noncovalent interactions, and obtain ka, kd, and KD binding affinity values. Results. SDS-PAGE and Western blot analyses indicated that covalent interactions occurred between neighboring FIB molecules, as well as between FIB and collagen type I (Coll-I) proteins (in vitro and ex vivo). These interactions occurred only in the presence of RF and UVA. SPR data demonstrated the ability of FIB to bind noncovalently to corneal stroma molecules, Coll-I, decorin, dermatan sulfate, and corneal basement membrane molecules, laminin and heparan sulfate – only in the presence of Zn2+. Conclusions. Covalent and (zinc-mediated) noncovalent mechanisms involving FIB and stromal ECM molecules contribute to the adhesion created by FIB + RF + UVA. PMID:22879413

  12. Using competitive protein adsorption to measure fibrinogen in undiluted human serum

    NASA Astrophysics Data System (ADS)

    Choi, Seokheun; Wang, Ran; Lajevardi-Khosh, Arad; Chae, Junseok

    2010-12-01

    We report a unique sensing mechanism based on competitive protein adsorption to measure fibrinogen, a cardiovascular biomarker, in undiluted human serum. The method uses physical adsorption of proteins to a surface rather than complex and time-consuming immobilization procedures. Two fibrinogen concentrations were differentiated in spiked in human serum [3.0 mg/ml (normal concentration) versus 3.2 mg/ml (abnormal concentration with heart disease)]. Real-time surface plasmon resonance signals were monitored as fibrinogen displaced a preadsorbed protein, IgM, on a hydrophobic gold surface. The relatively strong-affinity protein, IgM, was displaced primarily by fibrinogen and much less by other proteins in human serum.

  13. Higher Fibrinogen Levels Predict Progression of Coronary Artery Calcification in Adults with Type 1 Diabetes

    PubMed Central

    Rodrigues, T.C.; Snell-Bergeon, J.K.; Maahs, D.M; Kinney, G.L.; Rewers, M.

    2010-01-01

    Aim To determine whether fibrinogen levels predict independently progression of coronary artery calcification (CAC) in adults with type 1 diabetes. Methods Data from a prospective cohort - the Coronary Artery Calcification in Type 1 Diabetes Study - were evaluated. Fibrinogen levels at baseline were separated into quartiles. CAC was measured twice and averaged at baseline and at follow-up 2.4 ± 0.4 years later. CAC progressors were defined as participants whose square-root transformed CAC volume increased by ≥ 2.53 or development mm of clinical coronary artery disease during the follow-up period. Results Fibrinogen levels were higher in progressors than in non-progressors (276 ± 61 mg/dl versus 259 ± 61 mg/dl, p = 0.0003). CAC progression, adjusted for known cardiovascular risk factors, increased in the highest quartile. Conclusions Higher fibrinogen levels predict CAC progression in type 1 diabetes subjects, independent of standard cardiovascular risk factors. PMID:20079495

  14. Gallium nitrate induces fibrinogen flocculation: an explanation for its hemostatic effect?

    PubMed

    Bauters, A; Holt, D J; Zerbib, P; Rogosnitzky, M

    2013-12-01

    A novel hemostatic effect of gallium nitrate has recently been discovered. Our aim was to perform a preliminary investigation into its mode of action. Thromboelastography® showed no effect on coagulation but pointed instead to changes in fibrinogen concentration. We measured functional fibrinogen in whole blood after addition of gallium nitrate and nitric acid. We found that gallium nitrate induces fibrinogen precipitation in whole blood to a significantly higher degree than solutions of nitric acid alone. This precipitate is not primarily pH driven, and appears to occur via flocculation. This behavior is in line with the generally observed ability of metals to induce fibrinogen precipitation. Further investigation is required into this novel phenomenon.

  15. Characterization of a cDNA clone coding for the beta chain of bovine fibrinogen.

    PubMed Central

    Chung, D W; Rixon, M W; MacGillivray, R T; Davie, E W

    1981-01-01

    Recombinant plasmids containing bovine cDNA have been screened with a radiolabeled cDNA enriched for bovine fibrinogen. A number of plasmids containing cDNAs for fibrinogen were identified by this assay. One plasmid, designated pBI beta 1, was found to contain a cDNA insert of 1372 base pairs. The sequence of the cDNA insert for this plasmid was then determined. It was shown to code for 424 amino acids of the beta chain of fibrinogen, starting with residue 44. This and other data made it possible to construct the complete amino acid sequence of the beta chain of the protein. Comparison of the amino acid sequence of the beta chain of bovine fibrinogen with the corresponding chain of the human molecule indicated that the two chains are greater than 80% homologous. PMID:6262803

  16. [Fibrinogen. An old hemostatic protein with a new function: non-invasive marker of subclinical atherosclerosis].

    PubMed

    Páramo, José A; Rodríguez, José A; Orbe, Josune

    2005-05-28

    The formation of a fibrin clot is one of the key events in atherothrombotic vascular diseases, such as myocardial infarction, ischemic stroke and peripheral arterial disease. Fibrin is formed from a circulating precursor, fibrinogen, by the action of thrombin. Both genetic and environmental factors are important determinants of the circulating fibrinogen levels. Epidemiologic studies have demonstrated a role for this hemostatic protein in the prediction of cardiovascular disease. As an acute-phase reactant, fibrinogen is also a marker of inflammation. Likewise, recent studies from our group have shown that increased fibrinogen levels represent a marker of subclinical atherosclerosis, likely to be useful in the identification of asymptomatic subjects at risk for cardiovascular disease.

  17. Crystal aggregation in kidney stones; a polymer aggregation problem?

    NASA Astrophysics Data System (ADS)

    Wesson, J.; Beshensky, A.; Viswanathan, P.; Zachowicz, W.; Kleinman, J.

    2008-03-01

    Kidney stones most frequently form as aggregates of calcium oxalate monohydrate (COM) crystals with organic layers between them, and the organic layers contain principally proteins. The pathway leading to the formation of these crystal aggregates in affected people has not been identified, but stone forming patients are thought to have a defect in the structure or distribution of urinary proteins, which normally protect against stone formation. We have developed two polyelectrolyte models that will induce COM crystal aggregation in vitro, and both are consistent with possible urinary protein compositions. The first model was based on mixing polyanionic and polycationic proteins, in portions such that the combined protein charge is near zero. The second model was based on reducing the charge density on partially charged polyanionic proteins, specifically Tamm-Horsfall protein, the second most abundant protein in urine. Both models demonstrated polymer phase separation at solution conditions where COM crystal aggregation was observed. Correlation with data from other bulk crystallization measurements suggest that the anionic side chains form critical binding interactions with COM surfaces that are necessary along with the phase separation process to induce COM crystal aggregation.

  18. LIMITATIONS OF FIBRINOGEN-POLYMYXIN MEDIUM IN DETECTING COAGULASE-POSITIVE STAPHYLOCOCCI IN RAW MILK.

    PubMed

    MCDIVITT, M E; JEROME, N W

    1965-03-01

    A fibrinogen-polymyxin medium and Staphylococcus Medium 110 were used in the isolation of coagulase-positive staphylococci in raw milk. Results indicated that both media allow the growth of some rods and of many coagulase-negative cocci. A significantly greater number of coagulase-positive staphylococci were identified by the tube test than were revealed by halo formation on fibrinogen-polymyxin medium.

  19. Evaluation of the viability of /sup 111/In-abeled DTPA coupled to fibrinogen

    SciTech Connect

    Layne, W.W.; Hnatowich, D.J.; Doherty, P.W.; Childs, R.L.; Lanteigne, D.; Ansell, J.

    1982-07-01

    In earlier work, DTPA has been covalently coupled to albumin via the cyclic anhydride of DTPA. Using fibrinogen, we have studied the effect of such coupling on protein viability by both an in vitro and an in vivo assay. Clotting time remained identical to that of the native protein whether the anhydride-to-protein molar ratio was 1:1 or 5:1. In vivo studies were done in dogs, with human fibrinogen labeled with /sup 125/I and /sup 111/In. Throughout 130 hr, blood clearances for the two tracers agreed whether with 1:1 or 5:1 coupling. In a dog model with a thrombogenic catheter, the clot-to-blood ratios for the two radiotracers agreed within experimental error. Finally, 1:1-coupled canine fibrinogen, labeled with /sup 111/In, was administered to dogs with a catheter in a jugular vein, and scintigrams at 24 hr clearly showed clotting along the length of the catheter. We conclude that fibrinogen, coupled to DTPA, retains its viability, behaving like radioiodinated fibrinogen in vivo, and /sup 111/In labeled fibrinogen looks promising as a clinical diagnostic agent.

  20. Plasma fibrinogen lever and risk of coronary heart disease among Chinese population: a systematic review and meta-analysis.

    PubMed

    Song, Bin; Shu, Ying; Xu, Yuan Ning; Fu, Ping

    2015-01-01

    Coronary heart disease (CHD) remains the leading causes of death and disability for men and women in most developed countries. It may soon become the leading cause of death in developing countries. Several studies have examined the role of fibrinogen levels in the prediction of atherosclerosis and CHD events. The aim of this study was to explore the effects of plasma fibrinogen levels in Chinese patients with CHD and to examine the relationship of fibrinogen. We performed this meta-analysis of prospective studies of plasma fibrinogen level in relation to CHD risk in electronic database of Medline, EMBase, the Cochrane Library and CNKI (China National Knowledge Infrastructure). Plasma fibrinogen levels were calculated by mean difference with 95% confidence intervals (CI) in patients with CHD and related controls without CHD. The selected 23 studies included 2984 CHD cases and 2279 controls. Our results found that plasma fibrinogen levels of patients were significantly higher than control group (P<0.0001). The predicted odds ratio (OR) for a 1 g/L higher plasma fibrinogen level was 0.94 (95% CI=0.78-1.10). Furthermore, fibrinogen levels were slightly related to age-related CHD patients. The plasma fibrinogen lever was correlated with CHD in the Chinese population, and may be a risk factor and predictor of CHD. Further studies assessing any causal relevance of fibrinogen levels to disease are required.

  1. Control of Fibrinogen Assembly by Changing a Polarity of Surfaces

    NASA Astrophysics Data System (ADS)

    Koo, Jaseung; Liu, Ying; Snow, Sara; Rambhia, Pooja; Koga, Tadanori; Rafailovich, Miriam; Galanakis, Dennis

    2009-03-01

    Thrombogenesis causes various problems associated with an interruption in the blood flow (e.g., myocardial and cerebral infarction), and a hindrance to use of blood-contact vascular biomaterials (e.g., hemodialysis and cardiopulmonary bypass) with long-term patency since undesired adsorption of blood components occurs on vessels or biomaterials, such as surface-induced thrombosis. we showed that this clotting procedure can be occurred on hydrophobic polymeric surfaces without thrombin cleavage. However, the fibrinogen fibers were not formed on the polar surface such as spun-cast polymer film with pyridine and phenol groups. We also found that αC domains play an important role in initiation of polymerization on surface. Therefore, molecular association was inhibited on the polar surfaces due to confinement of αC chains on the surfaces. These findings were directly applied to stent surface modification. The commercial stent consist of Co-Cr alloy forms undesired fiber formation. However, PS-r-PVPh (13% phenol) coated stent surfaces completely prevent fiber formation.

  2. Fibrinogen species as resolved by HPLC-SAXS data processing within the UltraScan Solution Modeler (US-SOMO) enhanced SAS module.

    PubMed

    Brookes, Emre; Pérez, Javier; Cardinali, Barbara; Profumo, Aldo; Vachette, Patrice; Rocco, Mattia

    2013-12-01

    Fibrinogen is a large heterogeneous aggregation/degradation-prone protein playing a central role in blood coagulation and associated pathologies, whose structure is not completely resolved. When a high-molecular-weight fraction was analyzed by size-exclusion high-performance liquid chromatography/small-angle X-ray scattering (HPLC-SAXS), several composite peaks were apparent and because of the stickiness of fibrinogen the analysis was complicated by severe capillary fouling. Novel SAS analysis tools developed as a part of the UltraScan Solution Modeler (US-SOMO; http://somo.uthscsa.edu/), an open-source suite of utilities with advanced graphical user interfaces whose initial goal was the hydrodynamic modeling of biomacromolecules, were implemented and applied to this problem. They include the correction of baseline drift due to the accumulation of material on the SAXS capillary walls, and the Gaussian decomposition of non-baseline-resolved HPLC-SAXS elution peaks. It was thus possible to resolve at least two species co-eluting under the fibrinogen main monomer peak, probably resulting from in-column degradation, and two others under an oligomers peak. The overall and cross-sectional radii of gyration, molecular mass and mass/length ratio of all species were determined using the manual or semi-automated procedures available within the US-SOMO SAS module. Differences between monomeric species and linear and sideways oligomers were thus identified and rationalized. This new US-SOMO version additionally contains several computational and graphical tools, implementing functionalities such as the mapping of residues contributing to particular regions of P(r), and an advanced module for the comparison of primary I(q) versus q data with model curves computed from atomic level structures or bead models. It should be of great help in multi-resolution studies involving hydrodynamics, solution scattering and crystallographic/NMR data.

  3. Platelet Glycoproteins and Fibrinogen in Recovery from Idiopathic Sudden Hearing Loss

    PubMed Central

    Gorzelniak, Kerstin; Bremer, Alexis; Rudack, Claudia; Walter, Michael

    2014-01-01

    Background The pathomechanism and location of idiopathic sudden sensorineural hearing loss (ISSHL) is unclear. In a previous case-control study, we found elevated fibrinogen concentrations and a higher prevalence of T allele carriers of the glycoprotein (Gp) Ia C807T polymorphism in ISSHL patients. Methodology 127 patients with ISSHL (mean age 53.3 years, 48.8% females), who underwent a standard therapy with high dose steroids, pentoxifyllin and sterofundine over 8 days were included. We examined the influence of GpIa genotype and fibrinogen (BclI-, A312-, HaeIII-) genotype and fibrinogen plasma levels on hearing recovery after 8 weeks (change from baseline: 0 dB  =  no recovery, >0 to 10 dB = moderate recovery, >10 dB = good recovery). In a subsample of 59 patients with ISSHL, we further studied the association of platelet glycoprotein GpIa, Ib and IIIa densities on hearing recovery as well as the possible effect-modification of platelet glycoproteins on hearing recovery by plasma fibrinogen. Results In univariate analysis, neither the GpIa genotype nor fibrinogen genotype (all p>0.1) but lower fibrinogen levels (p = 0.029), less vertigo (p = 0.002) and lower GpIIIa receptor density (p = 0.037, n = 59) were associated with hearing recovery. In multivariate analysis, fibrinogen significantly modified the effect of GPIa receptor density on good hearing recovery (effect-modification on multiplicative scale OR = 0.45 (95% confidence interval (0.21–0.94)), p = 0.03). GPIb receptor density below the mean was associated with a 2-fold increase in good hearing recovery both in patients with fibrinogen levels above (p = 0.04) as well as in patients with fibrinogen levels below the mean (p = 0.06). There was no indication for an effect-modification (p = 0.97). Conclusions The findings suggest a vascular/rheological origin of ISSHL with unique features of thrombosis in the inner ear artery that may include complex

  4. Zinc significantly changes the aggregation pathway and the conformation of aggregates of human prion protein.

    PubMed

    Pan, Kai; Yi, Chuan-Wei; Chen, Jie; Liang, Yi

    2015-08-01

    Prion diseases are caused by the conformational change of cellular prion protein PrP(C) into pathological prion protein PrP(Sc). Here we study the effect of zinc on the aggregation and conformational change of human prion protein (PrP). As revealed by thioflavin T binding assays, Sarkosyl-soluble SDS-PAGE, and transmission electron microscopy, aggregation of wild-type PrP in the absence of Zn(2+) undergoes four steps: amorphous aggregates, profibrils, mature fibrils, and fragmented fibrils. When the molar ratio of Zn(2+) to PrP was 9:1, however, aggregation of wild-type PrP undergoes another pathway in which wild-type PrP forms oligomers quickly and then forms short-rod aggregates. Unlike wild-type PrP, the octarepeats deletion mutant PrPΔocta forms typical mature fibrils either with or without zinc. As evidenced by isothermal titration calorimetry, Fourier transform infrared spectroscopy, and proteinase K digestion assays, Zn(2+) strongly binds to wild-type PrP monomers with the first binding constant exceeding 10(7)M(-1) under denaturing conditions, and changes the conformation of wild-type PrP aggregates remarkably, but weakly binds to PrPΔocta with binding affinity around 10(4)M(-1) and has no obvious effects on the conformation of PrPΔocta aggregates. Our data demonstrate that zinc significantly changes the aggregation pathway and the conformation of wild-type PrP aggregates mainly via interaction with its octarepeat region. Our findings could explain how zinc modifies pathological PrP conformation associated with prion diseases.

  5. Three cases of congenital dysfibrinogenemia in unrelated Chinese families: heterozygous missense mutation in fibrinogen alpha chain Argl6His.

    PubMed

    Luo, Meiling; Deng, Donghong; Xiang, Liqun; Cheng, Peng; Liao, Lin; Deng, Xuelian; Yan, Jie; Lin, Faquan

    2016-09-01

    Congenital dysfibrinogenemia (CD) is a qualitative fibrinogen disorder caused by an abnormal fibrinogen molecule structure, leading to dysfunctional blood coagulation. This study describes 3 cases of dysfibrinogenemia identified in the unrelated Chinese pedigrees.Routine coagulation screening tests were performed on the probands and their families. The antigens and functionality of fibrinogen was measured using an immunoturbidimetry assay and the Clauss method, respectively. To identify the genetic mutation responsible for these dysfibrinogens, genomic DNA extracted from the blood was analyzed using PCR amplification and direct sequencing. The presence of the mutant chains was determined using matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectroscopy. Purified plasma fibrinogen of 3 probands was analyzed using SDS-PAGE, fibrinogen clottability, fibrin polymerization, fibrinopeptide release, and scanning electron microscopy (SEM).The 3 probands had a long thrombin time. Levels of functional fibrinogen were found to be very low, while the fibrinogen antigen was within the normal range. DNA sequencing revealed a heterozygous Arg16His substitution in the fibrinogen Aα chain (FGA). The mutant chains were found to be expressed using MALDI-TOF mass spectroscopy. SDS-PAGE did not reveal any difference in the molecular weights of 3 polypeptide chains between normal and abnormal fibrinogens. Fibrinogen clottability showed a slower fibrin clot formation than the healthy control. Fibrin polymerization, after addition of thrombin, showed a prolonged lag phase and decreased final turbidity. The kinetics of fibrinopeptides release revealed a decreased amount of the released fibrinopeptide A. SEM of the patient's fibrin clot was found to be abnormal.Results indicate that the 3 probands with dysfibrinogenemia were caused by mutations of Aα chain Arg16His. Mutation of this fibrinogen induced dysfunction of plasma fibrinogen. PMID:27684817

  6. Association of serum calcium concentrations with fibrinogen and homocysteine in nondiabetic Korean subjects

    PubMed Central

    Cho, Hyun Sun; Lee, Sung Won; Shin, Juyoung; Moon, Sung Dae; Han, Je Ho; Cha, Bong Yun; Kim, Eun Sook

    2016-01-01

    Abstract Considerable evidence shows that increased serum calcium levels are associated with metabolic disorders, cardiovascular disease, and increased mortality. This study investigated whether serum calcium, within a normal range, is significantly associated with serum fibrinogen and homocysteine, markers of increased cardiovascular disease risk in nondiabetic Korean subjects. A cross-sectional analysis was performed on 1096 subjects (mean age, 55.1 ± 11.1 years; 36.1% women) undergoing a general health checkup. Serum biochemistry was analyzed including serum albumin-corrected calcium (Cac), insulin resistance (IR, using homeostasis model assessment [HOMA]), fibrinogen, and homocysteine. Compared with patients within the lowest Cac quartile, those with higher Cac levels had increased fibrinogen and homocysteine levels as well as an increased proportion of smoking, dyslipidemia, and HOMA-IR. Correlation analyses revealed linear relationships for Cac with fibrinogen and homocysteine in both genders. After adjustment for confounding factors, serum Cac was significantly associated with high fibrinogen (odds ratio [OR] for the highest vs the lowest quartile = 1.76, 95% confidence interval [CI] = 1.09–2.83, P = 0.02) and homocysteine (OR = 1.83, 95% CI = 1.07–3.11, P = 0.027). Multivariate regression models showed that Cac was linearly associated with fibrinogen (standardized β = 0.14, P < 0.001) and homocysteine (standardized β = 0.07, P = 0.009). High normal calcium concentrations were independently associated with increased levels of fibrinogen and homocysteine. Further investigation is needed to validate whether slightly increased calcium levels within the normal range indicate a higher risk of cardiovascular disease. PMID:27310988

  7. Reduced Transfusion During OLT by POC Coagulation Management and TEG Functional Fibrinogen: A Retrospective Observational Study

    PubMed Central

    De Pietri, Lesley; Ragusa, Francesca; Deleuterio, Annalisa; Begliomini, Bruno; Serra, Valentina

    2016-01-01

    Background Patients undergoing orthotopic liver transplantation are at high risk of bleeding complications. Several Authors have shown that thromboelastography (TEG)-based coagulation management and the administration of fibrinogen concentrate reduce the need for blood transfusion. Methods We conducted a single-center, retrospective cohort observational study (Modena Polyclinic, Italy) on 386 consecutive patients undergoing liver transplantation. We assessed the impact on resource consumption and patient survival after the introduction of a new TEG-based transfusion algorithm, requiring also the introduction of the fibrinogen functional thromboelastography test and a maximum amplitude of functional fibrinogen thromboelastography transfusion cutoff (7 mm) to direct in administering fibrinogen (2012-2014, n = 118) compared with a purely TEG-based algorithm previously used (2005-2011, n = 268). Results After 2012, there was a significant decrease in the use of homologous blood (1502 ± 1376 vs 794 ± 717 mL, P < 0.001), fresh frozen plasma (537 ± 798 vs 98 ± 375 mL, P < 0.001), and platelets (158 ± 280 vs 75 ± 148 mL, P < 0.005), whereas the use of fibrinogen increased (0.1 ± 0.5 vs 1.4 ± 1.8 g, P < 0.001). There were no significant differences in 30-day and 6-month survival between the 2 groups. Conclusions The implementation of a new coagulation management method featuring the addition of the fibrinogen functional thromboelastography test to the TEG test according to an algorithm which provides for the administration of fibrinogen has helped in reducing the need for transfusion in patients undergoing liver transplantation with no impact on their survival. PMID:27500243

  8. Fibrinogen {alpha} genes: Conservation of bipartite transcripts and carboxy-terminal-extended {alpha} subunits in vertebrates

    SciTech Connect

    Fu, Y.; Cao, Y.; Hertzberg, K.M.; Grieninger, G.

    1995-11-01

    All three well-studied subunits of the clotting protein fibrinogen ({alpha}, {beta}, {gamma}) share N-terminal structural homologies, but until recently only the {beta} and {gamma} chains were recognized as having similar globular C-termini. With the discovery of an extra exon in the human fibrinogen {alpha} gene (exon VI), a minor form of the {alpha} subunit ({alpha}{sub E}) with an extended {beta}- and {gamma}-like C-terminus has been identified. In the present study, the polymerase chain reaction has been used to identify sequences that encode counterparts to {alpha}{sub E} in chicken, rabbit, rat, and baboon. The basic six-exon structure of the fibrinogen {alpha} genes is shown to be conserved among mammals and birds, as are the intron positions. Bipartite transcripts - still bearing an intron prior to the last exon - are found among the products of the various vertebrate fibrinogen {alpha} genes. The last exon represents the largest conserved segment of the gene and, in each species examined, encodes exactly 236 amino acids. The C-termini of these {alpha}{sub E} chains align without a single gap and are between 76 and 99% identical. Since the exon VI-encoded domain of {alpha}{sub E} is as well conserved as the corresponding regions of the {beta} and {gamma} chains, it follows that it is equally important and that {alpha}{sub E}-fibrinogen plays a vital, if as-yet unrecognized physiological role. 21 refs., 7 figs., 1 tab.

  9. Rapid evaluation of fibrinogen levels using the CG02N whole blood coagulation analyzer.

    PubMed

    Hayakawa, Mineji; Gando, Satoshi; Ono, Yuichi; Mizugaki, Asumi; Katabami, Kenichi; Maekawa, Kunihiko; Miyamoto, Daisuke; Wada, Takeshi; Yanagida, Yuichiro; Sawamura, Atsushi

    2015-04-01

    Rapid evaluation of fibrinogen (Fbg) levels is essential for maintaining homeostasis in patients with massive bleeding during severe trauma and major surgery. This study evaluated the accuracy of fibrinogen levels measured by the CG02N whole blood coagulation analyzer (A&T Corporation, Kanagawa, Japan) using heparinized blood drawn for blood gas analysis (whole blood-Fbg). A total of 100 matched pairs of heparinized blood samples and citrated blood samples were simultaneously collected from patients in the intensive care unit. Whole blood-Fbg results were compared with those of citrated plasma (standard-Fbg). The whole blood coagulation analyzer measured fibrinogen levels within 2 minutes. Strong correlations between standard-Fbg and whole blood-Fbg were observed (ρ = 0.91, p < 0.001). Error grid analysis showed that 88% of the values were clinically acceptable, and 12% were in a range with possible effects on clinical decision-making; none were in a clinically dangerous range without appropriate treatment. Using a fibrinogen cutoff value of 1.5 g/L for standard-Fbg, the area under the receiver operating characteristic curve of whole blood-Fbg was 0.980 (95% confidence interval 0.951-1.000, p < 0.001). The whole blood coagulation analyzer can rapidly measure fibrinogen levels in heparinized blood and could be useful in critical care settings where excessive bleeding is a concern.

  10. Plasma fibrinogen in women: relationships with oral contraception, the menopause and hormone replacement therapy.

    PubMed

    Lee, A J; Lowe, G D; Smith, W C; Tunstall-Pedoe, H

    1993-04-01

    Plasma fibrinogen was measured in 4837 women aged 25-64 years as part of the Scottish Heart Health Study and Scottish MONICA population surveys. The relationships of oral contraceptive use, the menopause and hormone replacement therapy were examined. Univariate analyses found that women with a history of oral contraceptive use, premenopausal women and those on hormone replacement therapy all had significantly lower fibrinogen levels than women who had never used oral contraceptives, postmenopausal women and non-hormone replacement users respectively. These differences persisted after age standardization. On multivariate analysis, menopausal status and hormone replacement therapy had independent effects on fibrinogen levels. Together with the common risk factors, 9.9% of the total variation in plasma fibrinogen levels was explained. However, less than 1% of this was from the combined menopausal and hormonal factors. These results confirm a postmenopausal rise in fibrinogen level which may be relevant to an increased risk of coronary heart disease. In addition, a protective effect with hormone replacement therapy is noted, although this was probably due to selection bias.

  11. ATR-FTIR measurements of albumin and fibrinogen adsorption: Inert versus calcium phosphate ceramics.

    PubMed

    Boix, Marcel; Eslava, Salvador; Costa Machado, Gil; Gosselin, Emmanuel; Ni, Na; Saiz, Eduardo; De Coninck, Joël

    2015-11-01

    Arthritis, bone fracture, bone tumors and other musculoskeletal diseases affect millions of people across the world. Nowadays, inert and bioactive ceramics are used as bone substitutes or for bone regeneration. Their bioactivity is very much dictated by the way proteins adsorb on their surface. In this work, we compared the adsorption of albumin and fibrinogen on inert and calcium phosphates ceramics (CaPs) using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) to follow in situ protein adsorption on these materials. To this effect, we developed a sol-gel technique to control the surface chemistry of an ATR-FTIR detector. Hydroxyapatite adsorbed more albumin and β-tricalcium phosphate adsorbed more fibrinogen. Biphasic calcium phosphate presented the lowest adsorption among CaP for both proteins, illustrating the effect of surface heterogeneities. Inert ceramics adsorbed a lower amount of both proteins compared with bioactive ceramics. A significant change was observed in the conformation of the adsorbed protein versus the surface chemistry. Hydroxyapatite produced a larger loss of α-helix structure on albumin and biphasic calcium phosphate reduced β-sheet percentage on fibrinogen. Inert ceramics produced large α-helix loss on albumin and presented weak interaction with fibrinogen. Zirconia did not adsorb albumin and titanium dioxide promoted huge denaturalization of fibrinogen.

  12. Fibrinogen: a possible link between social class and coronary heart disease.

    PubMed Central

    Markowe, H L; Marmot, M G; Shipley, M J; Bulpitt, C J; Meade, T W; Stirling, Y; Vickers, M V; Semmence, A

    1985-01-01

    Mortality from coronary heart disease in civil servants in the lowest grade of employment has been found to be about three times that of men in the highest grade of employment. As part of an investigation of this finding several haemostatic variables were measured in a sample of 29 men in lower grades of employment and 45 men in higher grades. There was a significant difference in plasma fibrinogen concentrations between men in lower grades of employment and those in higher grades (mean 3.39 g/l v 2.95 g/l, respectively; p less than 0.01) but not in other haemostatic variables. Multiple regression analyses showed significant independent associations of fibrinogen concentration with smoking (p less than 0.05) and grade of employment (p less than 0.05). The size of the observed difference between the grades of employment was similar to that between those dying of coronary heart disease or surviving during longitudinal study; it may therefore be an important part of the mechanism underlying social class differences in coronary heart disease. The statistical relation between fibrinogen concentrations and other characteristics that may be concerned in the aetiology of coronary heart disease was examined. A summary measure of job stress was significantly related to fibrinogen concentration (p less than 0.01) and made a substantial contribution to explaining the differences between grades of employment. Behaviour type and a score of physical activity were not significantly related to fibrinogen concentration. PMID:3933646

  13. Blood coagulation protein fibrinogen promotes autoimmunity and demyelination via chemokine release and antigen presentation

    PubMed Central

    Ryu, Jae Kyu; Petersen, Mark A.; Murray, Sara G.; Baeten, Kim M.; Meyer-Franke, Anke; Chan, Justin P.; Vagena, Eirini; Bedard, Catherine; Machado, Michael R.; Coronado, Pamela E. Rios; Prod'homme, Thomas; Charo, Israel F.; Lassmann, Hans; Degen, Jay L.; Zamvil, Scott S.; Akassoglou, Katerina

    2015-01-01

    Autoimmunity and macrophage recruitment into the central nervous system (CNS) are critical determinants of neuroinflammatory diseases. However, the mechanisms that drive immunological responses targeted to the CNS remain largely unknown. Here we show that fibrinogen, a central blood coagulation protein deposited in the CNS after blood–brain barrier disruption, induces encephalitogenic adaptive immune responses and peripheral macrophage recruitment into the CNS leading to demyelination. Fibrinogen stimulates a unique transcriptional signature in CD11b+ antigen-presenting cells inducing the recruitment and local CNS activation of myelin antigen-specific Th1 cells. Fibrinogen depletion reduces Th1 cells in the multiple sclerosis model, experimental autoimmune encephalomyelitis. Major histocompatibility complex (MHC) II-dependent antigen presentation, CXCL10- and CCL2-mediated recruitment of T cells and macrophages, respectively, are required for fibrinogen-induced encephalomyelitis. Inhibition of the fibrinogen receptor CD11b/CD18 protects from all immune and neuropathologic effects. Our results show that the final product of the coagulation cascade is a key determinant of CNS autoimmunity. PMID:26353940

  14. The fibrinogen gamma 10034C>T polymorphism is not associated with Peripheral Arterial Disease.

    PubMed

    Bahadori, Babak; Uitz, Elisabeth; Dehchamani, Dadbeh; Pilger, Ernst; Renner, Wilfried

    2010-10-01

    Conversion of fibrinogen to fibrin plays an essential role in hemostasis and results in stabilization of the fibrin clot. Fibrinogen consists of three pairs of non-identical polypeptide chains, encoded by different genes (fibrinogen alpha [FGA], fibrinogen beta [FGB] and fibrinogen gamma [FGG]). A functional single nucleotide polymorphism (SNP) in the 3' untranslated region of the FGG gene (FGG 10034C>T, rs2066865) has been associated with deep venous thrombosis and myocardial infarction. Aim of the present study was to analyze the role of this polymorphism in peripheral arterial disease (PAD). The study was designed as case-control study including 891 patients with documented PAD and 777 control subjects. FGG genotypes were determined by exonuclease (TaqMan) assays. FGG genotype frequencies were not significantly different between PAD patients (CC: 57.3%, CT: 36.7%, TT: 5.8%) and control subjects (CC: 60.9%, CT: 33.5%, TT 5.6%; p=0.35). In a multivariate logistic regression analysis including age, sex, smoking, diabetes, arterial hypertension and hypercholesterolemia, the FGG 10034 T variant was not significantly associated with the presence of PAD (Odds ratio 1.07, 95% confidence interval 0.84 - 1.37; p = 0.60). The FGG 10034C>T polymorphism was furthermore not associated with age at onset of PAD. We conclude that the thrombophilic FGG 10034 T gene variant does not contribute to the genetic susceptibility to PAD.

  15. Fibrinogen Seoul (FGG Ala341Asp): a novel mutation associated with hypodysfibrinogenemia.

    PubMed

    Song, Kyung Soon; Park, Noh Jin; Choi, Jong Rak; Doh, Hyun Joo; Chung, Kwang Hoe

    2006-07-01

    Dysfibrinogenemia is a coagulation disorder caused by a variety of structural abnormalities in the fibrinogen molecule that result in fibrinogen function. The molecular basis of hypodysfibrinogenemia was investigated in a 66-year-old woman with peripheral artery obstructive disease and in her family members. Plasma level of functional fibrinogen determined using the Clauss method was lower (75 mg/dL; normal, 140-460 mg/dL) than that measured with immunologic nephelometric assay (137 mg/dL; normal, 180-400 mg/dL). Similar results were also observed in two family members through two generations. DNA was extracted from whole blood, and the coding regions and intron/exon boundaries of gamma chain gene (FGG) were amplified. A novel (Fibrinogen Seoul) heterozygous FGG mutation (GCT->GAT, Ala341Asp) was identified in all three affected family members. Thrombin-catalyzed polymerization was found to be defective on the analysis of purified fibinogen from the propositus. Molecular modeling also showed a conformational change of fibrinogen structure.

  16. Role of phosphoinositide 3-kinase in adhesion of platelets to fibrinogen stimulated by cancer procoagulant.

    PubMed

    Olas, B; Wachowicz, B; Mielicki, W P

    2001-11-01

    Cancer procoagulant, cysteine proteinase (CP; EC 3.4.22.26) activates factor X and functions in the absence of factor VII. CP may also change the platelet function. It induces an increase of platelet adhesion to collagen and fibrinogen. Using wortmannin--the inhibitor of phosphoinositide 3-kinase (PI 3-K)--we studied the role of this enzyme in the action of cancer procoagulant on blood platelet adhesion in vitro. Wortmannin (25, 50 and 100 nM, 30 min, 37 degrees C) caused a reduction of platelet adhesion to fibrinogen (P<0.01) when blood platelets were stimulated by both 0.2 U/ml thrombin (IC(50)approximately 75 nM) and by 1 microM ADP (IC(50)approximately 60 nM). We observed that after CP treatment the adhesion of thrombin-activated and ADP-stimulated platelets to fibrinogen was augmented. The potentiated by CP adhesion of activated platelets to fibrinogen was reduced after preincubation of platelets with wortmannin (50 nM, 30 min, 37 degrees C). We conclude that in adhesion of platelets to fibrinogen stimulated by CP PI 3-K take place.

  17. High-resolution visualization of fibrinogen molecules and fibrin fibers with atomic force microscopy.

    PubMed

    Yermolenko, Ivan S; Lishko, Valeryi K; Ugarova, Tatiana P; Magonov, Sergei N

    2011-02-14

    We report an atomic force microscopy (AFM) study of fibrinogen molecules and fibrin fibers with resolution previously achieved only in few electron microscopy images. Not only are all objects triads, but the peripheral D regions are resolved into the two subdomains, apparently corresponding to the βC and γC domains. The conformational analysis of a large population of fibrinogen molecules on mica revealed the two most energetically favorable conformations characterized by bending angles of ∼100 and 160 degrees. Computer modeling of the experimental images of fibrinogen molecules showed that the AFM patterns are in good agreement with the molecular dimensions and shapes detected by other methods. Imaging in different environments supports the expected hydration of the fibrinogen molecules in buffer, whereas imaging in humid air suggests the 2D spreading of fibrinogen on mica induced by an adsorbed water layer. Visualization of intact hydrated fibrin fibers showed cross-striations with an axial period of 24.0 ± 1.6 nm, in agreement with a pattern detected earlier with electron microscopy and small-angle X-ray diffraction. However, this order is clearly detected on the surface of thin fibers and becomes less discernible with the fiber's growth. This structural change is consistent with the proposal that thinner fibers are denser than thicker ones, that is, that the molecule packing decreases with the increasing of the fibers' diameter.

  18. Importance of fibrinogen in dilutional coagulopathy after neurosurgical procedures: A descriptive study

    PubMed Central

    Nair, Shalini; Nair, Bijesh Ravindran; Vidyasagar, Ajay; Joseph, Mathew

    2016-01-01

    Background and Aims: The routine management of coagulopathy during surgery involves assessing haemoglobin, prothrombin time (PT), activated partial thromboplastin time (aPTT) and platelets. Correction of these parameters involves administration of blood, fresh frozen plasma and platelet concentrates. The study was aimed at identifying the most common coagulation abnormality during neurosurgical procedures and the treatment of dilutional coagulopathy with blood components. Methods: During 2 years period, all adult patients undergoing neurosurgical procedures who were transfused two or more units of red cells were prospectively evaluated for the presence of a coagulopathy. PT, aPTT, platelet count and fibrinogen levels were estimated before starting a component therapy. Results: After assessing PT, aPTT, platelet count and fibrinogen levels following two or more blood transfusions, thirty patients were found to have at least one abnormal parameter that required administration of a blood product. The most common abnormality was a low fibrinogen level, seen in 26 patients; this was the only abnormality in three patients. No patient was found to have an abnormal PT or aPTT without either the fibrinogen concentration or platelet count or both being low. Conclusion: Low fibrinogen concentration was the most common coagulation abnormality found after blood transfusions for neurosurgical procedures. PMID:27601735

  19. Protein aggregation in salt solutions

    PubMed Central

    Kastelic, Miha; Kalyuzhnyi, Yurij V.; Hribar-Lee, Barbara; Dill, Ken A.; Vlachy, Vojko

    2015-01-01

    Protein aggregation is broadly important in diseases and in formulations of biological drugs. Here, we develop a theoretical model for reversible protein–protein aggregation in salt solutions. We treat proteins as hard spheres having square-well-energy binding sites, using Wertheim’s thermodynamic perturbation theory. The necessary condition required for such modeling to be realistic is that proteins in solution during the experiment remain in their compact form. Within this limitation our model gives accurate liquid–liquid coexistence curves for lysozyme and γ IIIa-crystallin solutions in respective buffers. It provides good fits to the cloud-point curves of lysozyme in buffer–salt mixtures as a function of the type and concentration of salt. It than predicts full coexistence curves, osmotic compressibilities, and second virial coefficients under such conditions. This treatment may also be relevant to protein crystallization. PMID:25964322

  20. Protein aggregation in salt solutions.

    PubMed

    Kastelic, Miha; Kalyuzhnyi, Yurij V; Hribar-Lee, Barbara; Dill, Ken A; Vlachy, Vojko

    2015-05-26

    Protein aggregation is broadly important in diseases and in formulations of biological drugs. Here, we develop a theoretical model for reversible protein-protein aggregation in salt solutions. We treat proteins as hard spheres having square-well-energy binding sites, using Wertheim's thermodynamic perturbation theory. The necessary condition required for such modeling to be realistic is that proteins in solution during the experiment remain in their compact form. Within this limitation our model gives accurate liquid-liquid coexistence curves for lysozyme and γ IIIa-crystallin solutions in respective buffers. It provides good fits to the cloud-point curves of lysozyme in buffer-salt mixtures as a function of the type and concentration of salt. It than predicts full coexistence curves, osmotic compressibilities, and second virial coefficients under such conditions. This treatment may also be relevant to protein crystallization.

  1. The inhibitory mechanism of crude saponin fraction from Korean Red Ginseng in collagen-induced platelet aggregation

    PubMed Central

    Jeon, Bo Ra; Kim, Su Jung; Hong, Seung Bok; Park, Hwa-Jin; Cho, Jae Youl; Rhee, Man Hee

    2015-01-01

    Background Korean Red Ginseng has been used as a traditional oriental medicine to treat illness and to promote health for several thousand years in Eastern Asia. It is widely accepted that ginseng saponins, ginsenosides, are the major active ingredients responsible for Korean Red Ginseng’s therapeutic activity against many kinds of illness. Although the crude saponin fraction (CSF) displayed antiplatelet activity, the molecular mechanism of its action remains to be elucidated. Methods The platelet aggregation was induced by collagen, the ligand of integrin αIIβI and glycoprotein VI. The crude saponin’s effects on granule secretion [e.g., calcium ion mobilization and adenosine triphosphate (ATP) release] were determined. The activation of mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated protein kinase 1/2 (ERK1/2), c-Jun N-terminal kinases (JNKs), and p38 MAPK, and phosphoinositide 3-kinase (PI3K)/Akt was analyzed by immunoblotting. In addition, the activation of integrin αIIbβIII was examined by fluorocytometry. Results CSF strongly inhibited collagen-induced platelet aggregation and ATP release in a concentration-dependent manner. It also markedly suppressed [Ca2+]i mobilization in collagen-stimulated platelets. Immunoblotting assay revealed that CSF significantly suppressed ERK1/2, p38, JNK, PI3K, Akt, and mitogen-activated protein kinase kinase 1/2 phosphorylation. In addition, our fraction strongly inhibited the fibrinogen binding to integrin αIIbβ3. Conclusion Our present data suggest that CSF may have a strong antiplatelet property and it can be considered as a candidate with therapeutic potential for the treatment of cardiovascular disorders involving abnormal platelet function. PMID:26199561

  2. Social connectedness is associated with fibrinogen level in a human social network.

    PubMed

    Kim, David A; Benjamin, Emelia J; Fowler, James H; Christakis, Nicholas A

    2016-08-31

    Socially isolated individuals face elevated rates of illness and death. Conventional measures of social connectedness reflect an individual's perceived network and can be subject to bias and variation in reporting. In this study of a large human social network, we find that greater indegree, a sociocentric measure of friendship and familial ties identified by a subject's social connections rather than by the subject, predicts significantly lower concentrations of fibrinogen (a biomarker of inflammation and cardiac risk), after adjusting for demographics, education, medical history and known predictors of cardiac risk. The association between fibrinogen and social isolation, as measured by low indegree, is comparable to the effect of smoking, and greater than that of low education, a conventional measure of socioeconomic disadvantage. By contrast, outdegree, which reflects an individual's perceived connectedness, displays a significantly weaker association with fibrinogen concentrations. PMID:27559060

  3. Leg scanning with radioisotope-labeled fibrinogen in patients undergoing hip surgery

    SciTech Connect

    LeMoine, J.R.; Moser, K.M.

    1980-05-01

    To establish whether radioisotope-labeled fibrinogen leg scanning is of value in the context of hip surgery, we propsectively studied 21 consectuvie patients undergoing either total hip replacement (14) or open repair of a hip fracture (seven) with leg scans, contrast phlebography, and ventilation and perfusion lung scans. We found that in eight patients (38%), venous thromboembolism developed postoperatively. Agreement between phlebographic and leg scanning results was excellent. In no patient as venous thrombosis limited to the thigh on the operated-on side, a vital consideration in application of fibrinogen leg scanning to this patient population. Two patients had lung scan changes indicative of embolism; both had thrombi extending into thigh veins. Leg scanning with radioisotope-labeled fibrinogen appears to be a useful method for monitoring patients undergoing hip surgery, if the upper three counting points on the operated-on side are excluded.

  4. Thermodynamics of Protein Aggregation

    NASA Astrophysics Data System (ADS)

    Osborne, Kenneth L.; Barz, Bogdan; Bachmann, Michael; Strodel, Birgit

    Amyloid protein aggregation characterizes many neurodegenerative disorders, including Alzheimer's, Parkinson's, and Creutz- feldt-Jakob disease. Evidence suggests that amyloid aggregates may share similar aggregation pathways, implying simulation of full-length amyloid proteins is not necessary for understanding amyloid formation. In this study we simulate GNNQQNY, the N-terminal prion-determining domain of the yeast protein Sup35 to investigate the thermodynamics of structural transitions during aggregation. We use a coarse-grained model with replica-exchange molecular dynamics to investigate the association of 3-, 6-, and 12-chain GNNQQNY systems and we determine the aggregation pathway by studying aggregation states of GN- NQQNY. We find that the aggregation of the hydrophilic GNNQQNY sequence is mainly driven by H-bond formation, leading to the formation of /3-sheets from the very beginning of the assembly process. Condensation (aggregation) and ordering take place simultaneously, which is underpinned by the occurrence of a single heat capacity peak only.

  5. Histamine release and fibrinogen adsorption mediate acute inflammatory responses to biomaterial implants in humans

    PubMed Central

    Zdolsek, Johann; Eaton, John W; Tang, Liping

    2007-01-01

    Background Medical implants often fail as a result of so-called foreign body reactions during which inflammatory cells are recruited to implant surfaces. Despite the clinical importance of this phenomenon, the mechanisms involved in these reactions to biomedical implants in humans are not well understood. The results from animal studies suggest that both fibrinogen adsorption to the implant surface and histamine release by local mast cells are involved in biomaterial-mediated acute inflammatory responses. The purpose of this study was to test this hypothesis in humans. Methods Thirteen male medical student volunteers (Caucasian, 21–30 years of age) were employed for this study. To assess the importance of fibrinogen adsorption, six volunteers were implanted with polyethylene teraphthalate disks pre-coated with their own (fibrinogen-containing) plasma or (fibrinogen-free) serum. To evaluate the importance of histamine, seven volunteers were implanted with uncoated disks with or without prior oral administration of histamine receptor antagonists. The acute inflammatory response was estimated 24 hours later by measuring the activities of implant-associated phagocyte-specific enzymes. Results Plasma coated implants accumulated significantly more phagocytes than did serum coated implants and the recruited cells were predominantly macrophage/monocytes. Administration of both H1 and H2 histamine receptor antagonists greatly reduced the recruitment of macrophages/monocytes and neutrophils on implant surfaces. Conclusion In humans – as in rodents – biomaterial-mediated inflammatory responses involve at least two crucial events: histamine-mediated phagocyte recruitment and phagocyte accumulation on implant surfaces engendered by spontaneously adsorbed host fibrinogen. Based on these results, we conclude that reducing fibrinogen:surface interactions should enhance biocompatibility and that administration of histamine receptor antagonists prior to, and shortly after

  6. Plasma Fibrinogen as a Biomarker for Mortality and Hospitalized Exacerbations in People with COPD

    PubMed Central

    Mannino, David M; Tal-Singer, Ruth; Lomas, David A.; Vestbo, Jorgen; Graham Barr, R.; Tetzlaff, Kay; Lowings, Michael; Rennard, Stephen I.; Snyder, Jeffrey; Goldman, Mitchell; Martin, Ubaldo J.; Merrill, Deborah; Martin, Amber L.; Simeone, Jason C.; Fahrbach, Kyle; Murphy, Brian; Leidy, Nancy; Miller, Bruce

    2014-01-01

    Background In 2010 the COPD Foundation established the COPD Biomarkers Qualification Consortium (CBQC) as a partnership between the Foundation, the Food and Drug Administration (FDA), and the pharmaceutical industry to pool publicly-funded and industry data to develop innovative tools to facilitate the development and approval of new therapies for COPD. We present data from the initial project seeking regulatory qualification of fibrinogen as a biomarker for the stratification of COPD patients into clinical trials. Methods This analysis pooled data from 4 publicly-funded studies and 1 industry study into a common database resulting in 6376 individuals with spirometric evidence of COPD. We used a threshold of 350 mg/dL to determine high vs. low fibrinogen, and determined the subsequent risk of hospitalizations from exacerbations and death using Cox proportional hazards models. Results High fibrinogen levels at baseline were present in 2853 (44.7%) of individuals with COPD. High fibrinogen was associated with an increased risk of hospitalized COPD exacerbations within 12 months (hazard ratio [HR]: 1.64; 95% confidence interval [CI]: 1.39–1.93) among participants in the Atherosclerosis Risk in Communities Study (ARIC), the Cardiovascular Health Study (CHS), and the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) study. High fibrinogen was associated with an increased risk of death within 36 months (HR: 1.94; 95% CI: 1.62–2.31) among all participants. Conclusions Fibrinogen levels ≥ 350 mg/dL identify COPD individuals at an increased risk of exacerbations and death and could be a useful biomarker for enriching clinical trials in the COPD population. PMID:25685850

  7. Fabrication of fibrinogen/P(LLA-CL) hybrid nanofibrous scaffold for potential soft tissue engineering applications.

    PubMed

    He, Chuanglong; Xu, Xiaohong; Zhang, Fan; Cao, Lijun; Feng, Wei; Wang, Hongsheng; Mo, Xiumei

    2011-06-01

    Coelectrospinning of native proteins and elastic synthetic polymers is an attractive technique to fabricate hybrid fibrous scaffolds that combine the bioactivity and mechanical features of each material component. In this study, hybrid fibrous scaffolds composed of synthetic P(LLA-CL) elastomeric and naturally derived fibrinogen protein were fabricated and characterized for their bioactive and physiochemical properties. Fiber diameters of hybrid scaffolds increased with increasing P(LLA-CL) content, and the shape of fibers changed from cylindrical shape on pure polymer scaffolds to flat structure on hybrid scaffolds. Characterizations of ATR-FTIR, XRD, and thermal properties indicated that the hybrid scaffolds contain two different phases, one composed of pure fibrinogen and the other corresponding to a mixture of fibrinogen and P(LLA-CL), and no obvious chemical reaction takes place between two components. The hybrid fibrous scaffolds showed tailorable degradation rates than pure P(LLA-CL) and higher mechanical properties than pure fibrinogen, and both tensile strength and breaking strain increased with increasing P(LLA-CL) content. In Vitro studies revealed that L929 cells on hybrid scaffolds achieved relatively higher level of cell attachment after 12 h of culture and significant increased cell proliferation rate after 7 days of culture, when compared with pure fibrinogen and P(LLA-CL) scaffolds, and the cells exhibited a spreading polygonal shape on the hybrid fibrous surfaces compared to a round shape on surfaces of pure polymer scaffolds. Therefore, the fibrinogen/P(LLA-CL) hybrid fibrous scaffolds possess the combined benefits of each individual component, which make it capable as scaffolds for soft tissue reconstruction.

  8. Gelation of fibrinogen in plasma. A kinetic study by turbidity measurement.

    PubMed

    Regañon, E; Vila, V; Aznar, J

    1984-01-01

    Studies of the turbidity profiles of diluted (1/55, v/v) normal plasma, thrombin activity free serum plus commercial fibrinogen, and 0.15 M NaCl, pH 7.4, plus commercial fibrinogen, activated by thrombin or reptilase and measured at 350 nm, have shown that the latency time (LT) hardly varies for the fibrinogen concentration within limits of 0.03-0.15 mg/ml; however, it does vary for the thrombin concentration. The rate of gelation (RG) varies linearly with the fibrinogen (FG) concentration, conforming to the equation RG = 0.027 (FG)1.8; it hardly varies for thrombin concentrations greater than 0.50 NIH U/ml. On the other hand, RG values obtained for 0.46 NIH U/ml of thrombin or 0.92 BU/ml of reptilase show no significant differences. The variation in LT for the thrombin or reptilase concentration allows the rate of activation to be estimated, giving values of 5.9 X 10(-12) and 3.2 X 10(-12) mol/U/s, respectively, for a fibrinogen concentration in plasma of 1.1 X 10(-10) mol/ml. The mean value estimated for the ratio LT/FG in normal plasma is 35.76 +/- 18.3 and 85.62 +/- 18.3 s mg-1 ml for activation by thrombin and reptilase, respectively. We have studied in normal plasma the parameters that define the gelation of fibrin as measured by turbidity curves and their variation according to the fibrinogen concentration. This permits us to establish the kinetics of fibrin gel formation and normal range values.

  9. Changes in the fibrinogen-fibrin system following a 20-hour exposure of rabbits to a magnetic field

    NASA Technical Reports Server (NTRS)

    Matskevichene, V. B.; Vitenson, T. M.

    1974-01-01

    Prolonged exposure of animals to a constant magnetic field resulted in a sharp increase in the amount of fibrinogen. The addition of EACA to the plasma of experimental rabbits as well as protamine sulfate caused an additional increase in the amount of fibrinogen. A 20-hour exposure was accompanied by phenomena of paralysis of the pelvic limbs and death of some of the animals.

  10. The production and testing of staphylococci with clumping factor activity for use in the assay of fibrinogen degradation products

    PubMed Central

    Richardson, G.

    1973-01-01

    A method for the large-scale production of a staphylococcal preparation for use in the assay of fibrinogen degradation products is described. The material is assayed against a fibrinogen standard and is shown to be stable over long periods and of high sensitivity. The possibility of production on an occasional basis in a routine laboratory is discussed. PMID:4577031

  11. Recovery of fibrinogen concentrate after intraosseous application is equivalent to the intravenous route in a porcine model of hemodilution

    PubMed Central

    Schlimp, Christoph J.; Solomon, Cristina; Keibl, Claudia; Zipperle, Johannes; Nürnberger, Sylvia; Öhlinger, Wolfgang; Redl, Heinz; Schöchl, Herbert

    2014-01-01

    BACKGROUND Fibrinogen concentrate is increasingly considered as a hemostatic agent for trauma patients experiencing bleeding. Placing a venous access is sometimes challenging during severe hemorrhage. Intraosseous access may be considered instead. Studies of intraosseous infusion of coagulation factor concentrates are limited. We investigated in vivo recovery following intraosseous administration of fibrinogen concentrate and compared the results with intravenous administration. METHODS This study was performed on 12 pigs (mean [SD] body weight, 34.1 [2.8] kg). Following controlled blood loss (35 mL/kg) and fluid replacement with balanced crystalloid solution, intraosseous (n = 6) administration of fibrinogen concentrate (80 mg per kilogram of bodyweight) in the proximal tibia was compared with intravenous (n = 6) administration of the same dose (fibrinogen infusion time approximately 5 minutes in both groups). The following laboratory parameters were assessed: blood cell count, prothrombin time index, activated partial thromboplastin time, and plasma fibrinogen concentration (Clauss assay). Coagulation status was also assessed by thromboelastometry. RESULTS All tested laboratory parameters were comparable between the intraosseous and intravenous groups at baseline, hemodilution, and 30 minutes after fibrinogen concentrate administration. In vivo recovery of fibrinogen was also similar in the two groups (89% [23%] and 91% [22%], respectively). There were no significant between-group differences in any of the thromboelastometric parameters. Histologic examination indicated no adverse effects on the tissue surrounding the intraosseous administration site. CONCLUSION This study suggests that intraosseous administration of fibrinogen concentrate results in a recovery of fibrinogen similar to that of intravenous administration. The intraosseous route of fibrinogen concentrate could be a valuable alternative in situations where intravenous access is not feasible or would

  12. Silt-clay aggregates on Mars

    NASA Technical Reports Server (NTRS)

    Greeley, R.

    1979-01-01

    Viking observations suggest abundant silt and clay particles on Mars. It is proposed that some of these particles agglomerate to form sand size aggregates that are redeposited as sandlike features such as drifts and dunes. Although the binding for the aggregates could include salt cementation or other mechanisms, electrostatic bonding is considered to be a primary force holding the aggregates together. Various laboratory experiments conducted since the 19th century, and as reported here for simulated Martian conditions, show that both the magnitude and sign of electrical charges on windblown particles are functions of particle velocity, shape and composition, atmospheric pressure, atmospheric composition and other factors. Electrical charges have been measured for saltating particles in the wind tunnel and in the field, on the surfaces of sand dunes, and within dust clouds on earth. Similar, and perhaps even greater, charges are proposed to occur on Mars, which could form aggregates of silt and clay size particles

  13. Detection and characterization of red blood cell (RBC) aggregation with photoacoustics

    NASA Astrophysics Data System (ADS)

    Hysi, Eno; Saha, Ratan K.; Rui, Min; Kolios, Michael C.

    2012-02-01

    Red blood cells (RBCs) aggregate in the presence of increased plasma fibrinogen and low shear forces during blood flow. RBC aggregation has been observed in deep vein thrombosis, sepsis and diabetes. We propose using photoacoustics (PA) as a non-invasive imaging modality to detect RBC aggregation. The theoretical and experimental feasibility of PA for detecting and characterizing aggregation was assessed. A simulation study was performed to generate PA signals from non-aggregated and aggregated RBCs using a frequency domain approach and to study the PA signals' dependence on hematocrit and aggregate size. The effect of the finite bandwidth nature of transducers on the PA power spectra was also investigated. Experimental confirmation of theoretical results was conducted using porcine RBC samples exposed to 1064 nm optical wavelength using the Imagio Small Animal PA imaging system (Seno Medical Instruments, Inc., San Antonio, TX). Aggregation was induced with Dextran-70 (Sigma-Aldrich, St. Louis, MO) and the effect of hematocrit and aggregation level was investigated. The theoretical and experimental PA signal amplitude increased linearly with increasing hematocrit. The theoretical dominant frequency content of PA signals shifted towards lower frequencies (<30 MHz) and 9 dB enhancements in spectral power were observed as the size of aggregates increased compared to non-aggregating RBCs. Calibration of the PA spectra with the transducer response obtained from a 200 nm gold film was performed to remove system dependencies. Analysis of the spectral parameters from the calibrated spectra suggested that PA can assess the degree of aggregation at multiple hematocrit and aggregation levels.

  14. Inhibition of αIIbβ3 Ligand Binding by an αIIb Peptide that Clasps the Hybrid Domain to the βI Domain of β3

    PubMed Central

    Lee, Wen Hwa; Schaffner-Reckinger, Elisabeth; Tsoukatos, Demokritos C.; Aylward, Kelly; Moussis, Vassilios; Tsikaris, Vassilios; Trypou, Paraskevi; Egot, Marion; Baruch, Dominique; Kieffer, Nelly; Bachelot-Loza, Christilla

    2015-01-01

    Agonist-stimulated platelet activation triggers conformational changes of integrin αIIbβ3, allowing fibrinogen binding and platelet aggregation. We have previously shown that an octapeptide, p1YMESRADR8, corresponding to amino acids 313–320 of the β-ribbon extending from the β-propeller domain of αIIb, acts as a potent inhibitor of platelet aggregation. Here we have performed in silico modelling analysis of the interaction of this peptide with αIIbβ3 in its bent and closed (not swing-out) conformation and show that the peptide is able to act as a substitute for the β-ribbon by forming a clasp restraining the β3 hybrid and βI domains in a closed conformation. The involvement of species-specific residues of the β3 hybrid domain (E356 and K384) and the β1 domain (E297) as well as an intrapeptide bond (pE315-pR317) were confirmed as important for this interaction by mutagenesis studies of αIIbβ3 expressed in CHO cells and native or substituted peptide inhibitory studies on platelet functions. Furthermore, NMR data corroborate the above results. Our findings provide insight into the important functional role of the αIIb β-ribbon in preventing integrin αIIbβ3 head piece opening, and highlight a potential new therapeutic approach to prevent integrin ligand binding. PMID:26332040

  15. Structural changes in plasma circulating fibrinogen after moderate beer consumption as determined by electrophoresis and spectroscopy.

    PubMed

    Gorinstein, Shela; Caspi, Abraham; Goshev, Ivan; Aksu, Sevil; Salnikow, Johann; Scheler, Christian; Delgado-Licon, Efren; Rosen, Anda; Weisz, Moshe; Libman, Imanuel; Trakhtenberg, Simon

    2003-01-29

    The effects of short-term moderate beer consumption (MBC) on plasma circulating fibrinogen (PCF) in patients suffering from coronary atherosclerosis were investigated by use of 2-dimensional electrophoresis (2-DE), circular dichroism (CD), and Fourier transform infrared spectroscopy (FT-IR). Forty-eight volunteers after coronary bypass surgery were divided into experimental (EG) and control (CG) groups, each of 24. Patients of the EG group consumed 330 mL of beer/day (about 20 g of alcohol) for 30 consecutive days, and CG volunteers drank mineral water instead of beer. Blood samples were collected before and after the experiment. In 21 out of 24 patients after beer consumption the plasma circulating fibrinogen was compromised: changes in its secondary structure were found. These changes were expressed in relatively low electrophoretic mobility and charge heterogeneity, decrease in alpha-helix and increase in beta-sheet, and in slight shift of amide I and II bands. Our findings indicate that one of the positive benefits of moderate beer consumption is to diminish the production of fibrinogen and its stability, which reduces the potential risk exerted by this protein. Thus, in most of beer-consuming patients some qualitative structural changes in plasma circulating fibrinogen were detected. PMID:12537464

  16. In vitro formation and i vivo clearance of fibrinogen: fibrin complexes.

    PubMed

    Sherman, L A; Harwig, S; Lee, J

    1975-07-01

    Fbrinogen:fibrin complexes have been previously described in various thrombotic disorders. To evaluate further the properties of fibrinogen:fibrin complexes, and theirin vitro and in vivo behavior, soluable fibrinogen:fibrin complexes have been formed invitro using mixtures of '131l-fibrinogen ('131l-F) and '125l-fibrin ('125l-fb). By means of Sepharose 4B chromatography, a macromolecular complex (peak one) containing both moieties could be separated from a lower molecular weight peak two containg noncomplexed material. The latter eluted at the same position as did intact fibrogen. Both the '131l-F and '125l-fb components of peak one were rapidly catabolized when injected into rabbits with residual blood activity at 24 hours of 8 per cent and 4 per cent, respectively. Peak two behavedas a simple mixture with corresponding 24-hour levels at 31 per cent and 3 per cent. Gel filtration of postinjuection plasma samples demonstrated that peak one remained as macromolecular complex. Preinjection crosslinking of the F:fb complex with factor xiii did not substantially change the blood clearance. Prior blockage of the reticuloendotheial system with Thorotrast or carbon resulted in impaired clearance of peak one. The data provide evidence that fibrinogen and fibrin can form a macromolecular complex which is stable both in vitro and vivo. Further, the reticuloendotheialsystem was shown to mediate the the in vivo clearance of this complex. This latterfinding may be of pathophysiologic significance.

  17. Preoperative serum fibrinogen is an independent prognostic factor in operable esophageal cancer

    PubMed Central

    Zhang, Shui-Shen; Lei, Yi-Yan; Cai, Xiao-Li; Yang, Hong; Xia, Xin; Luo, Kong-Jia; Su, Chun-Hua; Zou, Jian-Yong; Zeng, Bo; Hu, Yi; Luo, Hong-He

    2016-01-01

    In order to fully elucidate the association between serum fibrinogen and prognosis of esophageal cancer, we examined serum fibrinogen concentrations in 1512 patients who underwent esophagectomy by the Clauss method. The impact of fibrinogen on overall survival and disease-free survival was analyzed using the Kaplan-Meier method and Cox proportional hazard models. Hyperfibrinogenemia was significantly associated with older age, male gender, smoking, alcohol consumption, weight loss, advanced pathological T stage and lymph node metastasis. Patients with hyperfibrinogenemia exhibited poor OS (HR=1.20, 95%CI: 1.04-1.38, P=0.012) and DFS (HR=1.18, 95%CI: 1.03-1.35, P=0.019). Subgroup analysis further exhibited an significant association between hyperfibrinogenemia and poor OS (P<0.001), DFS (P<0.001) in esophageal squamous cell carcinoma (P<0.001) and early pathological stage (I-II) (P=0.001). Collectively, this study indicates that preoperative serum fibrinogen is an independent prognostic factor for survival in esophageal cancer. PMID:27009857

  18. Forced Unfolding of the Coiled-Coils of Fibrinogen by Single-Molecule AFM

    NASA Astrophysics Data System (ADS)

    Brown, Andre; Litvinov, Rustem; Discher, Dennis; Weisel, John

    2007-03-01

    A blood clot needs to have the right degree of stiffness and plasticity for hemostasis, but the origin of these mechanical properties is unknown. Here we report the first measurements using single molecule atomic force microscopy (AFM) to study the forced unfolding of fibrinogen to begin addressing this problem. To generate longer reproducible curves than are possible using monomer, factor XIIIa cross-linked, single chain fibrinogen oligomers were used. When extended under force, these oligomers showed sawtooth shaped force-extension patterns characteristic of unfolding proteins with a peak-to-peak separation of approximately 26 nm, consistent with the independent unfolding of the coiled-coils. These results were then reproduced using a Monte Carlo simulation with parameters in the same range as those previously used for unfolding globular domains. In particular, we found that the refolding time was negligible on experimental time and force scales in contrast to previous work on simpler coiled-coils. We suggest that this difference may be due to fibrinogen's structurally and topologically more complex coiled-coils and that an interaction between the alpha C and central domains may be involved. These results suggest a new functional property of fibrinogen and that the coiled-coil is more than a passive structural element of this molecule.

  19. I-fibrinogen as an oncophilic radiodiagnostic agent: distribution kinetics in tumour-bearing mice.

    PubMed Central

    Krohn, K. A.; DeNardo, S. J.; Wheeler, D. W.; DeNardo, G. L.

    1977-01-01

    Fibrinogen radioiodinated by the iodine monochloride method was tested as a tumour radiodiagnostic agent in mice. The I-fibrinogen cleared from the blood of tumour-bearing mice more rapidly than from that of normal mice, but it cleared from the whole body more slowly, suggesting it accumulated in a substantial tumour-related compartment in the abnormal mice. The tumour concentration steadily increased for 4 h after injection, at which time it reached a peak concentration of 11-4% of the injected dose/g. This concentration was higher than the peak concentration for Ga-citrate (not reached until 24 h) or any other oncophilic radiopharmaceutical tested in this tumour model. The early accumulation is consistent with the use of 123I as a tracer label for fibrinogen. A combination of the large tumour concentration of I-fibrinogen, an increased catabolic rate induced by chemical modification, and the exceptional nuclear properties of 123I for scintigraphic imaging, could lead to a very useful radiodiagnostic procedure for cancer. Images Fig. 2 PMID:911661

  20. Single-molecule surface studies of fibrinogen and DNA on semiconductors

    NASA Astrophysics Data System (ADS)

    Kong, Xianhua

    Understanding of protein adsorption onto non-biological substrates is of fundamental interest in science, but also has great potential technological applications in medical devices and biosensors. This study explores the non-specific interaction, at the single molecule level, of a blood protein and DNA with semiconductor surfaces through the use of a custom built, non rastering electron emission microscope and a scanning probe microscope. The specifics and history of electron emission are described as well as the equipment used in this study. The protein examined in this study is human plasma fibrinogen, which plays an important role in haemostatis and thrombosis, and deoxyribonucleic acid (DNA) is also studied. A novel technique for determining the photothreshold of biomolecules on single molecule level is developed and applied to fibrinogen molecules adsorbed on oxidized silicon surfaces, using photo-electron emission microscopy (PEEM). Three theoretical models are employed and compared to analyze the experimental photothreshold data. The non-specific adsorption of human plasma fibrinogen on oxidized p- and n- type silicon (100) surfaces is investigated to characterize both hydrophobic interactions and electrostatic forces. The experimental results indicate that hydrophobic interactions are one of the driving forces for protein adsorption and the electrostatic interactions also play a role in the height of the fibrinogen molecules adsorbed on the surface. PEEM images establish a photo threshold of 5.0 +/- 0.2 eV for fibrinogen on both n-type and p-type Si (100) surfaces. We suggest that the photothreshold results from surface state associated Fermi level (EF) pinning and there exists negative charge transfer from the adsorbed fibrinogen onto the p-type silicon substrates, while on n-type silicon substrates negative charge is transferred in the opposite direction. The adsorption of deoxyribonucleic acid (DNA) on mica and silicon is studied in liquid and ambient

  1. Adsorbed Fibrinogen Enhances Production of Bone- and Angiogenic-Related Factors by Monocytes/Macrophages

    PubMed Central

    Maciel, Joana; Oliveira, Marta I.; Colton, Erica; McNally, Amy K.; Oliveira, Carla; Anderson, James M.

    2014-01-01

    Macrophages are phagocytic cells with great importance in guiding multiple stages of inflammation and tissue repair. By producing a large number of biologically active molecules, they can affect the behavior of other cells and events, such as the foreign body response and angiogenesis. Since protein adsorption to biomaterials is crucial for the inflammatory process, we addressed the ability of the pro-inflammatory molecule fibrinogen (Fg) to modulate macrophage behavior toward tissue repair/regeneration. For this purpose, we used chitosan (Ch) as a substrate for Fg adsorption. Freshly isolated human monocytes were seeded on Ch substrates alone or previously adsorbed with Fg, and allowed to differentiate into macrophages for 10 days. Cell adhesion and morphology, formation of foreign body giant cells (FBGC), and secretion of a total of 80 cytokines and growth factors were evaluated. Both substrates showed similar numbers of adherent macrophages along differentiation as compared with RGD-coated surfaces, which were used as positive controls. Fg did not potentiate FBGC formation. In addition, actin cytoskeleton staining revealed the presence of punctuate F-actin with more elongated and interconnecting cells on Ch substrates. Antibody array screening and quantification of inflammation- and wound-healing-related factors indicated an overall reduction in Ch-based substrates versus RGD-coated surfaces. At late times, most inflammatory agents were down-regulated in the presence of Fg, in contrast to growth factor production, which was stimulated by Fg. Importantly, on Ch+Fg substrates, fully differentiated macrophages produced significant amounts of macrophage inflammatory protein-1delta (MIP-1δ), platelet-derived growth factor-BB, bone morphogenetic protein (BMP)-5, and BMP-7 compared with Ch alone. In addition, other important factors involved in bone homeostasis and wound healing, such as growth hormone, transforming growth factor-β3, and insulin-like growth factor-binding

  2. Revealing fibrinogen monolayer conformations at different pHs: electrokinetic and colloid deposition studies.

    PubMed

    Nattich-Rak, Małgorzata; Adamczyk, Zbigniew; Wasilewska, Monika; Sadowska, Marta

    2015-07-01

    Adsorption mechanism of human fibrinogen on mica at different pHs is studied using the streaming potential and colloid deposition measurements. The fibrinogen monolayers are produced by a controlled adsorption under diffusion transport at pH of 3.5 and 7.4. Initially, the electrokinetic properties of these monolayers and their stability for various ionic strength are determined. It is shown that at pH 3.5 fibrinogen adsorbs irreversibly on mica for ionic strength range of 4×10(-4) to 0.15 M. At pH 7.4, a partial desorption is observed for ionic strength below 10(-2) M. This is attributed to the desorption of the end-on oriented molecules whereas the side-on adsorbed molecules remain irreversibly bound at all ionic strengths. The orientation of molecules and monolayer structure is evaluated by the colloid deposition measurements involving negatively charged polystyrene latex microspheres, 820 nm in diameter. An anomalous deposition of negative latex particles on substrates exhibiting a negative zeta potential is observed. At pH 3.5 measurable deposition of latex is observed even at low ionic strength where the approach distance of latex particles exceeded 70 nm. At pH 7.4 this critical distance is 23 nm. This confirms that fibrinogen monolayers formed at both pHs are characterized by the presence of the side-on and end-on oriented molecules that prevail at higher coverage range. It is also shown that positive charge is located at the end parts of the αA chains of the adsorbed fibrinogen molecules. Therefore, it is concluded that the colloid deposition method is an efficient tool for revealing protein adsorption mechanisms at solid/electrolyte interfaces.

  3. Relationship between Physical Activity and Plasma Fibrinogen Concentrations in Adults without Chronic Diseases

    PubMed Central

    Gomez-Marcos, Manuel A.; Recio-Rodríguez, José I.; Patino-Alonso, Maria C.; Martinez-Vizcaino, Vicente; Martin-Borras, Carme; de-la-Cal-dela-Fuente, Aventina; Sauras-Llera, Ines; Sanchez-Perez, Alvaro; Agudo-Conde, Cristina; García-Ortiz, Luis

    2014-01-01

    Objective To analyze the relationship between regular physical activity, as assessed by accelerometer and 7-day physical activity recall (PAR), and plasma fibrinogen concentrations. Methods A cross-sectional study in a previously established cohort of healthy subjects was performed. This study analyzed 1284 subjects who were included in the EVIDENT study (mean age 55.0±13.6 years; 60.90% women). Fibrinogen concentrations were measured in blood plasma. Physical activity was assessed with a 7-day PAR (metabolic equivalents (METs)/hour/week) and GT3X ActiGraph accelerometer (counts/minute) for 7 days. Results Physical exercise, which was evaluated with both an accelerometer (Median: 237.28 counts/minute) and 7-day PAR (Median: 8 METs/hour/week). Physical activity was negatively correlated with plasma fibrinogen concentrations, which was evaluated by counts/min (r = −0.100; p<0.001) and METs/hour/week (r = −0.162; p<0.001). In a multiple linear regression analysis, fibrinogen concentrations of the subjects who performed more physical activity (third tertile of count/minute and METs/hour/week) respect to subjects who performed less (first tertile), maintained statistical significance after adjustments for age and others confounders (β = −0.03; p = 0.046 and β = −0.06; p<0.001, respectively). Conclusions Physical activity, as assessed by accelerometer and 7-day PAR, was negatively associated with plasma fibrinogen concentrations. This relation is maintained in subjects who performed more exercise even after adjusting for age and other confounders. PMID:24498413

  4. Changes in fibrinogen availability and utilization in an animal model of traumatic coagulopathy

    PubMed Central

    2013-01-01

    Background Impaired haemostasis following shock and tissue trauma is frequently detected in the trauma setting. These changes occur early, and are associated with increased mortality. The mechanism behind trauma-induced coagulopathy (TIC) is not clear. Several studies highlight the crucial role of fibrinogen in posttraumatic haemorrhage. This study explores the coagulation changes in a swine model of early TIC, with emphasis on fibrinogen levels and utilization of fibrinogen. Methods A total of 18 landrace pigs were anaesthetized and divided into four groups. The Trauma-Shock group (TS) were inflicted bilateral blast femoral fractures with concomitant soft tissue injury by a high-energy rifle shot to both hind legs, followed by controlled exsanguination. The Shock group (S) was exposed to shock by exsanguination, whereas a third group was exposed to trauma only (T). A fourth group (C) served as control. Physiological data, haematological measurements, blood gas analyses and conventional coagulation assays were recorded at baseline and repeatedly over 60 minutes. Thrombelastometry were performed by means of the tissue factor activated ExTEM assay and the platelet inhibiting FibTEM assay. Data were statistically analysed by repeated measurements analyses method. Results A significant reduction of fibrinogen concentration was observed in both the TS and S groups. INR increased significantly in the S group and differed significantly from the TS group. Maximum clot firmness (MCF) of the ExTEM assay was significantly reduced over time in both TS and S groups. In the FibTEM assay a significant shortening of the clotting time and an increase in MCF was observed in the TS group compared to the S group. Conclusion Despite a reduction in clotting capability measured by ExTEM MCF and a reduced fibrinogen concentration, extensive tissue trauma may induce an increased fibrin based clotting activity that attenuates the hypocoagulable tendency in exsanguinated animals. PMID

  5. Fibrinogen and thrombin concentrations are critical for fibrin glue adherence in rat high-risk colon anastomoses

    PubMed Central

    Buen, Eliseo Portilla-de; Orozco-Mosqueda, Abel; Leal-Cortés, Caridad; Vázquez-Camacho, Gonzalo; Fuentes-Orozco, Clotilde; Alvarez-Villaseñor, Andrea Socorro; Macías-Amezcua, Michel Dassaejv; González-Ojeda, Alejandro

    2014-01-01

    OBJECTIVE: Fibrin glues have not been consistently successful in preventing the dehiscence of high-risk colonic anastomoses. Fibrinogen and thrombin concentrations in glues determine their ability to function as sealants, healers, and/or adhesives. The objective of the current study was to compare the effects of different concentrations of fibrinogen and thrombin on bursting pressure, leaks, dehiscence, and morphology of high-risk ischemic colonic anastomoses using fibrin glue in rats. METHODS: Colonic anastomoses in adult female Sprague-Dawley rats (weight, 250-350 g) treated with fibrin glue containing different concentrations of fibrinogen and thrombin were evaluated at post-operative day 5. The interventions were low-risk (normal) or high-risk (ischemic) end-to-end colonic anastomoses using polypropylene sutures and topical application of fibrinogen at high (120 mg/mL) or low (40 mg/mL) concentrations and thrombin at high (1000 IU/mL) or low (500 IU/mL) concentrations. RESULTS: Ischemia alone, anastomosis alone, or both together reduced the bursting pressure. Glues containing a low fibrinogen concentration improved this parameter in all cases. High thrombin in combination with low fibrinogen also improved adherence exclusively in low-risk anastomoses. No differences were detected with respect to macroscopic parameters, histopathology, or hydroxyproline content at 5 days post-anastomosis. CONCLUSIONS: Fibrin glue with a low fibrinogen content normalizes the bursting pressure of high-risk ischemic left-colon anastomoses in rats at day 5 after surgery. PMID:24714834

  6. Mechanisms of carbon nanotube aggregation and the reversion of carbon nanotube aggregates in aqueous medium.

    PubMed

    Koh, Byumseok; Cheng, Wei

    2014-09-16

    Single-walled carbon nanotubes (SWCNTs) dispersed in aqueous medium have many potential applications in chemistry, biology, and medicine. Reversible aggregation of SWCNTs dispersed in water has been frequently reported, but the mechanisms behind are not well understood. Here we show that SWCNTs dispersed into aqueous medium assisted by various charged molecules can be reversibly aggregated by a variety of electrolytes with two distinct mechanisms. Direct binding of counterions to SWCNTs leads to aggregation when the surface charge is neutralized from 74 to 86%. This aggregation is driven by electrostatic instead of van der Waals interactions, thus showing similarity to that of DNA condensation induced by multivalent cations. Sequestration of counterions by chelating reagents leads to the redispersion of SWCNT aggregates. In contrast to various metal ions, polyelectrolytes have the unique ability to induce SWCNT aggregation by bridging between individual SWCNTs. Aggregation through the latter mechanism can be engineered to be reversible by exploiting various mechanisms of chain breaking, including reduction of disulfide bond in the polymer chain, and the cleavage action of proteolytic enzymes. These findings clarify the mechanisms of SWCNT aggregation, and have broad implications in various applications of SWCNTs in water. PMID:25144606

  7. The use of fibrinogen uptake test in screening for deep vein thrombosis in patients with hip fracture

    SciTech Connect

    Fauno, P.; Suomalainen, O.; Bergqvist, D.; Fredin, H.; Kettunen, K.; Soimakallio, S.; Cederholm, C.; Karjalainen, P.; Vissinger, H.; Justesen, T. )

    1990-11-01

    255 hip fracture patients were studied by {sup 125}I-fibrinogen uptake test and bilateral phlebography. We found the sensitivity of fibrinogen scanning to be 44% for the non-operated limb and 50% for the calves. The predictive value of a negative result was found to be 92% and 93% respectively. We conclude that the use of fibrinogen uptake test as single diagnosticum is not valid and can only be recommended in combination with phlebography when studying patient where the frequency of DVT is expected to be low.

  8. Fibrinogen Vicenza and Genova II: two new cases of congenital dysfibrinogenemia with isolated defect of fibrin monomer polymerization and inhibitory activity on normal coagulation.

    PubMed

    Rodeghiero, F; Castaman, G C; Dal Belin Peruffo, A; Dini, E; Galletti, A; Barone, E; Gastaldi, G

    1987-06-01

    Two new cases of congenital dysfibrinogenemia are presented in which defective fibrin monomer polymerization and inhibitory activity on normal coagulation were observed. They have been tentatively called fibrinogen Vicenza and Genova II. The first was discovered in a family with mild bleeding diathesis, the second in an asymptomatic family. In almost all reported cases of fibrinogens with defective fibrin monomer polymerization, additional functional or structural defects have been detected. In our cases, on the contrary, detailed investigations failed to show any other abnormality. Fibrinogen Genova II is apparently identical to fibrinogen Baltimore IV, whereas fibrinogen Vicenza is similar to fibrinogen Troyes and Genova I, but also exerts an evident inhibitory activity on normal coagulation and differs from fibrinogen Genova II and Baltimore IV showing a different kinetic pattern of fibrin monomer polymerization.

  9. Structural determinants of Tau aggregation inhibitor potency.

    PubMed

    Schafer, Kelsey N; Cisek, Katryna; Huseby, Carol J; Chang, Edward; Kuret, Jeff

    2013-11-01

    Small-molecule Tau aggregation inhibitors are under investigation as potential therapeutic agents against Alzheimer disease. Many such inhibitors have been identified in vitro, but their potency-driving features, and their molecular targets in the Tau aggregation pathway, have resisted identification. Previously we proposed ligand polarizability, a measure of electron delocalization, as a candidate descriptor of inhibitor potency. Here we tested this hypothesis by correlating the ground state polarizabilities of cyanine, phenothiazine, and arylmethine derivatives calculated using ab initio quantum methods with inhibitory potency values determined in the presence of octadecyl sulfate inducer under reducing conditions. A series of rhodanine analogs was analyzed as well using potency values disclosed in the literature. Results showed that polarizability and inhibitory potency directly correlated within all four series. To identify putative binding targets, representative members of the four chemotypes were added to aggregation reactions, where they were found to stabilize soluble, but SDS-resistant Tau species at the expense of filamentous aggregates. Using SDS resistance as a secondary assay, and a library of Tau deletion and missense mutants as targets, interaction with cyanine was localized to the microtubule binding repeat region. Moreover, the SDS-resistant phenotype was completely dependent on the presence of octadecyl sulfate inducer, but not intact PHF6/PH6* hexapeptide motifs, indicating that cyanine interacted with a species in the aggregation pathway prior to nucleus formation. Together the data suggest that flat, highly polarizable ligands inhibit Tau aggregation by interacting with folded species in the aggregation pathway and driving their assembly into soluble but highly stable Tau oligomers.

  10. Structural Determinants of Tau Aggregation Inhibitor Potency*

    PubMed Central

    Schafer, Kelsey N.; Cisek, Katryna; Huseby, Carol J.; Chang, Edward; Kuret, Jeff

    2013-01-01

    Small-molecule Tau aggregation inhibitors are under investigation as potential therapeutic agents against Alzheimer disease. Many such inhibitors have been identified in vitro, but their potency-driving features, and their molecular targets in the Tau aggregation pathway, have resisted identification. Previously we proposed ligand polarizability, a measure of electron delocalization, as a candidate descriptor of inhibitor potency. Here we tested this hypothesis by correlating the ground state polarizabilities of cyanine, phenothiazine, and arylmethine derivatives calculated using ab initio quantum methods with inhibitory potency values determined in the presence of octadecyl sulfate inducer under reducing conditions. A series of rhodanine analogs was analyzed as well using potency values disclosed in the literature. Results showed that polarizability and inhibitory potency directly correlated within all four series. To identify putative binding targets, representative members of the four chemotypes were added to aggregation reactions, where they were found to stabilize soluble, but SDS-resistant Tau species at the expense of filamentous aggregates. Using SDS resistance as a secondary assay, and a library of Tau deletion and missense mutants as targets, interaction with cyanine was localized to the microtubule binding repeat region. Moreover, the SDS-resistant phenotype was completely dependent on the presence of octadecyl sulfate inducer, but not intact PHF6/PH6* hexapeptide motifs, indicating that cyanine interacted with a species in the aggregation pathway prior to nucleus formation. Together the data suggest that flat, highly polarizable ligands inhibit Tau aggregation by interacting with folded species in the aggregation pathway and driving their assembly into soluble but highly stable Tau oligomers. PMID:24072703

  11. Aggregations in Flatworms.

    ERIC Educational Resources Information Center

    Liffen, C. L.; Hunter, M.

    1980-01-01

    Described is a school project to investigate aggregations in flatworms which may be influenced by light intensity, temperature, and some form of chemical stimulus released by already aggregating flatworms. Such investigations could be adopted to suit many educational levels of science laboratory activities. (DS)

  12. Sequence of Fibrinogen Proteolysis and Platelet Release after Intrauterine Infusion of Hypertonic Saline

    PubMed Central

    Nossel, H. L.; Wasser, J.; Kaplan, K. L.; Lagamma, K. S.; Yudelman, I.; Canfield, R. E.

    1979-01-01

    Plasma fibrinopeptide B (Bβ1-14 or FPB) immunoreactivity was studied by radioimmunoassay in patients who received intrauterine infusion of hypertonic saline to terminate pregnancy. FPB immunoreactivity increased with thrombin treatment (TIFPB) suggesting the presence of a larger FPB-containing peptide, since purified FPB is not altered by thrombin, whereas thrombin increases the immunoreactivity of Bβ1-42 (which includes FPB) 10-fold. TIFPB immunoreactivity in plasma, drawn 4 h after hypertonic saline infusion eluted from Sephadex G-50 similarly to isolated Bβ1-42. Streptokinase, incubated with normal plasma progressively generated TIFPB immunoreactivity, which showed a major component which eluted from Sephadex G-50 similarly to Bβ1-42. Streptokinase generated TIFPB much more rapidly in reptilase-treated plasma that contains fibrin I, (which still includes FPB), indicating that fibrin I is preferred over fibrinogen as a substrate for plasmin cleavage of arginine (Bβ42)-alanine (Bβ43). Serial studies were then made in 10 patients receiving intrauterine hypertonic saline. Fibrinopeptide A (FPA) levels rose immediately, reached a peak between 1 and 2 h, were declining at 4 h, and were normal at 24 and 48 h. TIFPB levels rose slightly in the 1st h, reached a peak at 4 h, and had returned to base-line values at 24 h. Serum fibrinogen degradation product levels were unchanged at 1 h, reached their highest level at 4 h, and were still markedly elevated at 24 and 48 h. Fibrinogen levels dropped slightly being lowest at 4 and 24 h. Platelet counts declined in parallel with the fibrinogen levels over the first 4 h, but continued to decrease through 48 h. Beta thromboglobulin (βTG) levels generally paralleled FPA levels whereas platelet factor 4 (PF4) levels showed only slight changes. The data indicate that immediately after intrauterine hypertonic saline infusion thrombin is formed that cleaves FPA from fibrinogen to produce fibrin I and releases βTG and PF4 from

  13. Proline inhibits aggregation during protein refolding.

    PubMed Central

    Samuel, D.; Kumar, T. K.; Ganesh, G.; Jayaraman, G.; Yang, P. W.; Chang, M. M.; Trivedi, V. D.; Wang, S. L.; Hwang, K. C.; Chang, D. K.; Yu, C.

    2000-01-01

    The in vitro refolding of hen egg-white lysozyme is studied in the presence of various osmolytes. Proline is found to prevent aggregation during protein refolding. However, other osmolytes used in this study fail to exhibit a similar property. Experimental evidence suggests that proline inhibits protein aggregation by binding to folding intermediate(s) and trapping the folding intermediate(s) into enzymatically inactive, "aggregation-insensitive" state(s). However, elimination of proline from the refolded protein mixture results in significant recovery of the bacteriolytic activity. At higher concentrations (>1.5 M), proline is shown to form loose, higher-order molecular aggregate(s). The supramolecular assembly of proline is found to possess an amphipathic character. Formation of higher-order aggregates is believed to be crucial for proline to function as a protein folding aid. In addition to its role in osmoregulation under water stress conditions, the results of this study hint at the possibility of proline behaving as a protein folding chaperone. PMID:10716186

  14. Study of platelet aggregation in acute coronary syndrome with special reference to metabolic syndrome

    PubMed Central

    Paul, Rudrajit; Banerjee, Amit K; Guha, Shantanu; Chaudhuri, Utpal; Ghosh, Srabani; Mondal, Jayati; Bandyopadhyay, Ramtanu

    2013-01-01

    Background/Context: Antiplatelet drug resistance increases the risk of adverse events like stent thrombosis in acute coronary syndrome (ACS). Metabolic syndrome (MS) is a prothrombotic state and presence of MS further increases the risk of antiplatelet drug resistance. Aims and Objectives: We studied platelet aggregation characteristics in patients of ACS for aspirin or clopidogrel resistance. We studied the relation of drug resistance with blood markers like high sensitivity C-reactive protein (hsCRP). We also studied for any relation of drug resistance with presence of MS. Materials and Methods: We studied platelet aggregation characteristics by optical aggregometry using platelet-rich plasma (PRP) of patients. Collagen (2 μg/mL) and adenosine diphosphate (ADP; 10 μmol) were used. Greater than 50% aggregation in PRP of patients was taken as an evidence of drug resistance. Suitable blood tests were done including newer risk markers like hsCRP, apolipoprotein B, and fibrinogen. Statistical test: Statistical tests included Student's t-test and Kendall's rank correlation coefficient. Results: We had a total of 94 patients of ACS with 47 (50%) having MS. MS patients showed higher blood levels of hsCRP and fibrinogen. Twenty-eight (59.5%) patients with MS showed antiplatelet drug resistance compared to 12 patients without MS. Serum fibrinogen showed strongest correlation with drug resistance. HsCRP levels showed correlation with aspirin resistance (r = 0.53) only in the MS group. Discussion and Conclusion: We found significantly high prevalence of antiplatelet drug resistance. Aspirin and clopidogrel resistance was comparable. MS was a significant risk factor for drug resistance. The prothrombotic and proinflammatory markers showed strong correlation with drug resistance. A larger randomized trial is needed to better characterize this clinical problem. PMID:24083147

  15. A Multi-Ethnic Meta-Analysis of Genome-Wide Association Studies in Over 100,000 Subjects Identifies 23 Fibrinogen-Associated Loci but no Strong Evidence of a Causal Association between Circulating Fibrinogen and Cardiovascular Disease

    PubMed Central

    Sabater-Lleal, Maria; Huang, Jie; Chasman, Daniel; Naitza, Silvia; Dehghan, Abbas; Johnson, Andrew D; Teumer, Alexander; Reiner, Alex P; Folkersen, Lasse; Basu, Saonli; Rudnicka, Alicja R; Trompet, Stella; Mälarstig, Anders; Baumert, Jens; Bis, Joshua C.; Guo, Xiuqing; Hottenga, Jouke J; Shin, So-Youn; Lopez, Lorna M; Lahti, Jari; Tanaka, Toshiko; Yanek, Lisa R; Oudot-Mellakh, Tiphaine; Wilson, James F; Navarro, Pau; Huffman, Jennifer E; Zemunik, Tatijana; Redline, Susan; Mehra, Reena; Pulanic, Drazen; Rudan, Igor; Wright, Alan F; Kolcic, Ivana; Polasek, Ozren; Wild, Sarah H; Campbell, Harry; Curb, J David; Wallace, Robert; Liu, Simin; Eaton, Charles B.; Becker, Diane M.; Becker, Lewis C.; Bandinelli, Stefania; Räikkönen, Katri; Widen, Elisabeth; Palotie, Aarno; Fornage, Myriam; Green, David; Gross, Myron; Davies, Gail; Harris, Sarah E; Liewald, David C; Starr, John M; Williams, Frances M.K.; Grant, P.J.; Spector, Timothy D.; Strawbridge, Rona J; Silveira, Angela; Sennblad, Bengt; Rivadeneira, Fernando; Uitterlinden, Andre G; Franco, Oscar H; Hofman, Albert; van Dongen, Jenny; Willemsen, G; Boomsma, Dorret I; Yao, Jie; Jenny, Nancy Swords; Haritunians, Talin; McKnight, Barbara; Lumley, Thomas; Taylor, Kent D; Rotter, Jerome I; Psaty, Bruce M; Peters, Annette; Gieger, Christian; Illig, Thomas; Grotevendt, Anne; Homuth, Georg; Völzke, Henry; Kocher, Thomas; Goel, Anuj; Franzosi, Maria Grazia; Seedorf, Udo; Clarke, Robert; Steri, Maristella; Tarasov, Kirill V; Sanna, Serena; Schlessinger, David; Stott, David J; Sattar, Naveed; Buckley, Brendan M; Rumley, Ann; Lowe, Gordon D; McArdle, Wendy L; Chen, Ming-Huei; Tofler, Geoffrey H; Song, Jaejoon; Boerwinkle, Eric; Folsom, Aaron R.; Rose, Lynda M.; Franco-Cereceda, Anders; Teichert, Martina; Ikram, M Arfan; Mosley, Thomas H; Bevan, Steve; Dichgans, Martin; Rothwell, Peter M.; Sudlow, Cathie L M; Hopewell, Jemma C.; Chambers, John C.; Saleheen, Danish; Kooner, Jaspal S.; Danesh, John; Nelson, Christopher P; Erdmann, Jeanette; Reilly, Muredach P.; Kathiresan, Sekar; Schunkert, Heribert; Morange, Pierre-Emmanuel; Ferrucci, Luigi; Eriksson, Johan G; Jacobs, David; Deary, Ian J; Soranzo, Nicole; Witteman, Jacqueline CM; de Geus, Eco JC; Tracy, Russell P.; Hayward, Caroline; Koenig, Wolfgang; Cucca, Francesco; Jukema, J Wouter; Eriksson, Per; Seshadri, Sudha; Markus, Hugh S.; Watkins, Hugh; Samani, Nilesh J; Wallaschofski, Henri; Smith, Nicholas L.; Tregouet, David; Ridker, Paul M.; Tang, Weihong; Strachan, David P.; Hamsten, Anders; O’Donnell, Christopher J.

    2013-01-01

    Background Estimates of the heritability of plasma fibrinogen concentration, an established predictor of cardiovascular disease (CVD), range from 34 to 50%. Genetic variants so far identified by genome-wide association (GWA) studies only explain a small proportion (< 2%) of its variation. Methods and Results We conducted a meta-analysis of 28 GWA studies, including more than 90,000 subjects of European ancestry, the first GWA meta-analysis of fibrinogen levels in 7 African Americans studies totaling 8,289 samples, and a GWA study in Hispanic-Americans totaling 1,366 samples. Evaluation for association of SNPs with clinical outcomes included a total of 40,695 cases and 85,582 controls for coronary artery disease (CAD), 4,752 cases and 24,030 controls for stroke, and 3,208 cases and 46,167 controls for venous thromboembolism (VTE). Overall, we identified 24 genome-wide significant (P<5×10−8) independent signals in 23 loci, including 15 novel associations, together accounting for 3.7% of plasma fibrinogen variation. Gene-set enrichment analysis highlighted key roles in fibrinogen regulation for the three structural fibrinogen genes and pathways related to inflammation, adipocytokines and thyrotrophin-releasing hormone signaling. Whereas lead SNPs in a few loci were significantly associated with CAD, the combined effect of all 24 fibrinogen-associated lead SNPs was not significant for CAD, stroke or VTE. Conclusion We identify 23 robustly associated fibrinogen loci, 15 of which are new. Clinical outcome analysis of these loci does not support a causal relationship between circulating levels of fibrinogen and CAD, stroke or VTE. PMID:23969696

  16. Design and development of in situ albumin binding surfaces: Evaluation in the paradigm of blood-biomaterial compatibility

    NASA Astrophysics Data System (ADS)

    Guha Thakurta, Sanjukta

    Biocompatibility of natural and synthetic implant materials as blood contacting devices is crucial to host response. Implantation often raises complications from thrombotic and thromboembolic events. The aspect of hemocompatibility concentrates on minimizing thrombotic and thromboembolic response of foreign materials in contact with blood. The initial layer of surface adsorbed proteins plays a pivotal role in the adhesion and subsequent aggregation of platelets and in the activation of the coagulation cascade. Therefore, an improved surface architecture is required to gain control over the initial protein adsorption events, thereby extending the sustainability of an implantable device. In general, surfaces with an ability to bind endogenous albumin has been known to minimize platelet adhesion and activation. While the scope of applicability is broad, in this study silicon-based surfaces were selected as model surfaces. A densely packed uniformly distributed silane monolayer was achieved on silicon based surfaces with -- NH2 functionality, upon a careful optimization of hydroxylation and the subsequent silanization with 2 vol% of 3-Aminopropyltriethoxy Silane (APTES). Two linear peptides with affinity for albumin over other serum proteins were selected to create affinity surfaces. Silanized surfaces covalently immobilized with albumin binding peptides were evaluated in the paradigm of blood-biomaterial compatibility. When compared to control surfaces, albumin binding surfaces prepared in this study: (a) possessed 2.0 to 3.0 mug/cm2 of surface bound albumin with minimal surface adsorbed fibrinogen, (b) depicted low levels of adhered platelets and supported a rounded platelet morphology, (c) displayed delayed clotting, (d) showed reduced platelet adhesion and activation under shearing, and (f) exhibited faster adsorption kinetics. Conclusively, in-situ albumin binding surfaces selectively and specifically interacted with albumin without being severely displaced by

  17. Development of a method to quantify platelet adhesion and aggregation under static conditions

    PubMed Central

    Baker-Groberg, Sandra M.; Cianchetti, Flor A.; Phillips, Kevin G.; McCarty, Owen J.T.

    2014-01-01

    Platelets are important players in hemostasis and thrombosis. Thus, accurate assessment of platelet function is crucial for identifying platelet function disorders and measuring the efficacy of antiplatelet therapies. We have developed a novel platelet aggregation technique that utilizes the physical parameter of platelet concentration in conjunction with volume and mass measurements to evaluate platelet adhesion and aggregation. Platelet aggregates were formed by incubating purified platelets on fibrinogen- or fibrillar collagen-coated surfaces at platelet concentrations ranging from 20,000 to 500,000 platelets/ L. Platelets formed aggregates under static conditions in a platelet concentration-dependent manner, with significantly greater mean volume and mass at higher platelet concentrations ( 400,000 platelets/ L). We show that a platelet glycoprotein IIb/IIIa inhibitor abrogated platelet-platelet aggregation, which significantly reduced the volume and mass of the platelets on the collagen surface. This static platelet aggregation technique is amenable to standardization and represents a useful tool to investigate the mechanism of platelet activation and aggregation under static conditions. PMID:24883127

  18. [Fibrinogen/fibrin-specific enzymes from copperhead (Agkistrodon halys halys) and cobra (Naja oxiana eichwald) snake venoms].

    PubMed

    Yunusova, E S; Sadykov, E S; Sultanalieva, N M; Shkinev, A V

    2016-03-01

    Ability of fractions of cobra's (Naja oxiana Eichwald) and copperhead snake's (Agkistrodon halys halys) venoms to hydrolyze fibrinogen/fibrin was studied. In cobra's snake a component with molecular mass of nearly 60 kDa was found to hydrolyze a-chain of fibrinogen but failed to hydrolyze casein/azocasein and fibrin. A fibrinogen-specific metalloproteinase, the enzyme was inhibited by EDTA. Cobra's venom reduced the mass of donor's fresh blood clots. The copperhead snake's venom and the fractions obtained by gel-filtration (HW-50) and ion exchange chromatography (DEAE-650) were found to hydrolyze casein/azocasein, a- and b-chains of fibrinogen/fibrin and donor's blood clots. The results from the study of the venom and proteolytically active fractions are the evidence for a thrombolytic potential in a copperhead snake's venom. PMID:27420616

  19. Molecular Dynamics Simulations of the Initial Adsorption Stages of Fibrinogen on Mica and Graphite Surfaces.

    PubMed

    Köhler, Stephan; Schmid, Friederike; Settanni, Giovanni

    2015-12-01

    Fibrinogen, a blood glycoprotein of vertebrates, plays an essential role in blood clotting by polymerizing into fibrin when activated. Upon adsorption on material surfaces, it also contributes to determine their biocompatibility and has been implicated in the onset of thrombosis and inflammation at medical implants. Here we present the first fully atomistic simulations of the initial stages of the adsorption process of fibrinogen on mica and graphite surfaces. The simulations reveal a weak adsorption on mica that allows frequent desorption and reorientation events. This adsorption is driven by electrostatic interactions between the protein and the silicate surface as well as the counterion layer. Preferred adsorption orientations for the globular regions of the protein are identified. The adsorption on graphite is found to be stronger with fewer reorientation and desorption events and shows the onset of denaturation of the protein.

  20. The gamma fibrinogen gene (FGG) maps to chromosome 17 in both cattle and sheep.

    PubMed

    Johnson, S E; Barendse, W; Hetzel, D J

    1993-01-01

    The gamma fibrinogen gene (FGG) was localised in both cattle and sheep using in situ hybridisation. The probe employed was a 1-kb bovine cDNA fragment. Based on observations of QFQ-banded chromosome preparations, this locus is on bovine chromosome 17q12-->q13 and on the homologous sheep chromosome 17. This localisation is, to our knowledge, the first assignment to chromosome 17 in either the bovine or ovine genome. In addition to localising FGG to this chromosome, the assignment provisionally maps the previously unassigned syntenic group U23, containing (besides FGG) the genes for mitochondrial aldehyde dehydrogenase 2 (ALDH2), interleukin 2 (IL2), immunoglobulin lambda (IGL), and beta fibrinogen (FGB), to chromosome 17 in cattle and probably to the same chromosome in sheep.

  1. Vascular smooth muscle cell spreading onto fibrinogen is regulated by calpains and phospholipase C.

    PubMed

    Paulhe, F; Bogyo, A; Chap, H; Perret, B; Racaud-Sultan, C

    2001-11-01

    Fibrinogen deposition and smooth muscle cell migration are important causes of atherosclerosis and angiogenesis. Involvement of calpains in vascular smooth muscle cell adhesion onto fibrinogen was investigated. Using calpain inhibitors, we showed that activation of calpains was required for smooth muscle cell spreading. An increase of (32)P-labeled phosphatidic acid and phosphatidylinositol-3,4-bisphosphate, respective products of phospholipase C and phosphoinositide 3-kinase activities, was measured in adherent cells. Addition of the calpain inhibitor calpeptin strongly decreased phosphatidic acid and phosphatidylinositol-3,4-bisphosphate. However, smooth muscle cell spreading was prevented by the phospholipase C inhibitor U-73122, but poorly modified by phosphoinositide 3-kinase inhibitors wortmannin and LY-294002. Moreover, PLC was found to act upstream of the PI 3-kinase IA isoform. Thus, our data provide the first evidence that calpains are required for smooth muscle cell spreading. Further, phospholipase C activation is pointed as a key step of cell-spreading regulation by calpains.

  2. Fibrinogen concentrate improves survival during limited resuscitation of uncontrolled hemorrhagic shock in a Swine model.

    PubMed

    White, Nathan J; Wang, Xu; Liles, Conrad; Stern, Susan

    2014-11-01

    The purpose of this study was to evaluate the effect of fibrinogen concentrate, as a hemostatic agent, on limited resuscitation of uncontrolled hemorrhagic shock. We use a swine model of hemorrhagic shock with free bleeding from a 4-mm aortic tear to test the effect of adding a one-time dose of fibrinogen concentrate given at the onset of limited fluid resuscitation. Immature female swine were anesthetized and subjected to catheter hemorrhage and aortic tear to induce uniform hemorrhagic shock. Animals (n = 7 per group) were then randomized to receive (i) no fluid resuscitation (neg control) or (ii) limited resuscitation in the form of two boluses of 10 mL/kg of 6% hydroxyethyl starch solution given 30 min apart (HEX group), or (iii) the same fluid regimen with one dose of 120-mg/kg fibrinogen concentrate given with the first hydroxyethyl starch bolus (FBG). Animals were then observed for a total of 6 h with aortic repair and aggressive resuscitation with shed blood taking place at 3 h. Survival to 6 h was significantly increased with FBG (7/8, 86%) versus HEX (2/7, 29%) and neg control (0/7, 0%) (FBG vs. HEX, Kaplan-Meier log-rank P = 0.035). Intraperitoneal blood loss adjusted for survival time was increased in HEX (0.4 mL/kg per minute) when compared with FBG (0.1 mg/kg per minute, P = 0.047) and neg control (0.1 mL/kg per minute, P = 0.041). Systemic and cerebral hemodynamics also showed improvement with FBG versus HEX. Fibrinogen concentrate may be a useful adjunct to decrease blood loss, improve hemodynamics, and prolong survival during limited resuscitation of uncontrolled hemorrhagic shock.

  3. Aggregate and the environment

    USGS Publications Warehouse

    Langer, William H.; Drew, Lawrence J.; Sachs, J.S.

    2004-01-01

    This book is designed to help you understand our aggregate resources-their importance, where they come from, how they are processed for our use, the environmental concerns related to their mining and processing, how those concerns are addressed, and the policies and regulations designed to safeguard workers, neighbors, and the environment from the negative impacts of aggregate mining. We hope this understanding will help prepare you to be involved in decisions that need to be made-individually and as a society-to be good stewards of our aggregate resources and our living planet.

  4. Fibrinogen triggers astrocyte scar formation by promoting the availability of active TGF-β after vascular damage

    PubMed Central

    Schachtrup, Christian; Ryu, Jae K.; Helmrick, Matthew; Vagena, Eirini; Galanakis, Dennis K.; Degen, Jay L.; Margolis, Richard U.; Akassoglou, Katerina

    2010-01-01

    Scar formation in the nervous system begins within hours after traumatic injury and is characterized primarily by reactive astrocytes depositing proteoglycans that inhibit regeneration. A fundamental question in CNS repair has been the identity of the initial molecular mediator that triggers glial scar formation. Here we show that the blood protein fibrinogen, which leaks into the CNS immediately after blood-brain barrier (BBB) disruption or vascular damage, serves as an early signal for the induction of glial scar formation via the TGF-β/Smad signaling pathway. Our studies revealed that fibrinogen is a carrier of latent TGF-β and induces phosphorylation of Smad2 in astrocytes that leads to inhibition of neurite outgrowth. Consistent with these findings, genetic or pharmacologic depletion of fibrinogen in mice reduces active TGF-β, Smad2 phosphorylation, glial cell activation and neurocan deposition following cortical injury. Furthermore, stereotactic injection of fibrinogen into the mouse cortex is sufficient to induce astrogliosis. Inhibition of the TGF-β receptor pathway abolishes the fibrinogen-induced effects on glial scar formation in vivo and in vitro. These results identify fibrinogen as a primary astrocyte activation signal, provide evidence that deposition of inhibitory proteoglycans is induced by a blood protein that leaks in the CNS after vasculature rupture, and point to TGF-β as a molecular link between vascular permeability and scar formation. PMID:20427645

  5. Fibrinogen gene haplotypes in relation to risk of coronary events and coronary and extracoronary atherosclerosis: the Rotterdam Study.

    PubMed

    Kardys, Isabella; Uitterlinden, André G; Hofman, Albert; Witteman, Jacqueline C M; de Maat, Moniek P M

    2007-02-01

    Fibrin network structure has been correlated with coronary disease. Fibrinogen gamma and alpha (FGG and FGA) gene haplotypes (chromosome 4q28) may be associated with fibrin network structure, and thereby with rigidity of the fibrin clot and sensitivity of the fibrin clot to the fibrinolytic system. Through these mechanisms they may influence risk of cardiovascular disease. We set out to investigate the relation between combined fibrinogen FGG and FGA gene haplotypes, representing the common variation of the fibrinogen FGG and FGA genes, coronary events and measures of coronary and extracoronary atherosclerosis. The study was embedded in the Rotterdam Study, a prospective population-based study among men and women aged >or=55 years. Common haplotypes were studied using seven tagging SNPs across a 30-kb region with the FGG and FGA genes. Incident coronary events were registered, and carotid intima-media thickness, carotid plaques, ankle-arm index, aortic calcification and coronary calcification were assessed. Seven haplotypes with frequencies >1% covered 97.5% of the genetic variation. In 5,667 participants without history of coronary heart disease (CHD), 733 CHD cases occurred during a median follow-up time of 11.9 years. Fibrinogen gene haplotypes were not associated with coronary events. Fibrinogen gene haplotypes did not show a consistent association with measures of coronary and extracoronary atherosclerosis. In conclusion, fibrinogen FGG and FGA gene haplotypes are not associated with coronary events, coronary atherosclerosis or extracoronary atherosclerosis. Confirmation of these findings by future population-based studies is warranted.

  6. Label-Free Quantitative Immunoassay of Fibrinogen in Alzheimer Disease Patient Plasma Using Fiber Optical Surface Plasmon Resonance

    NASA Astrophysics Data System (ADS)

    Kim, Jisoo; Kim, SeJin; Nguyen, Tan Tai; Lee, Renee; Li, Tiehua; Yun, Changhyun; Ham, Youngeun; An, Seong Soo A.; Ju, Heongkyu

    2016-05-01

    We present a real-time quantitative immunoassay to detect fibrinogen in the blood plasma of Alzheimer's disease patients using multimode fiber optical sensors in which surface plasmon resonance (SPR) was employed. Nanometer-thick bimetals including silver and aluminum were coated onto the core surface of the clad-free part (5 cm long) of the fiber for SPR excitation at the He-Ne laser wavelength of 632.8 nm. The histidine-tagged peptide was then coated on the metal surface to immobilize the fibrinogen antibody for the selective capture of fibrinogen among the proteins in the patient blood plasma. The SPR fiber optical sensor enabled quantitative detection of concentrations of fibrinogen from the different human patient blood at a detection limit of ˜20 ng/ml. We also observed a correlation in the fibrinogen concentration measurement between enzyme-linked immunosorbent assay and our SPR fiber-based sensors. This suggests that the presented SPR fiber-based sensors that do not rely on the use of labels such as fluorophores can be used for a real-time quantitative assay of a specific protein such as fibrinogen in a human blood that is known to contain many other kinds of proteins together.

  7. A meta-analysis of 120 246 individuals identifies 18 new loci for fibrinogen concentration.

    PubMed

    de Vries, Paul S; Chasman, Daniel I; Sabater-Lleal, Maria; Chen, Ming-Huei; Huffman, Jennifer E; Steri, Maristella; Tang, Weihong; Teumer, Alexander; Marioni, Riccardo E; Grossmann, Vera; Hottenga, Jouke J; Trompet, Stella; Müller-Nurasyid, Martina; Zhao, Jing Hua; Brody, Jennifer A; Kleber, Marcus E; Guo, Xiuqing; Wang, Jie Jin; Auer, Paul L; Attia, John R; Yanek, Lisa R; Ahluwalia, Tarunveer S; Lahti, Jari; Venturini, Cristina; Tanaka, Toshiko; Bielak, Lawrence F; Joshi, Peter K; Rocanin-Arjo, Ares; Kolcic, Ivana; Navarro, Pau; Rose, Lynda M; Oldmeadow, Christopher; Riess, Helene; Mazur, Johanna; Basu, Saonli; Goel, Anuj; Yang, Qiong; Ghanbari, Mohsen; Willemsen, Gonneke; Rumley, Ann; Fiorillo, Edoardo; de Craen, Anton J M; Grotevendt, Anne; Scott, Robert; Taylor, Kent D; Delgado, Graciela E; Yao, Jie; Kifley, Annette; Kooperberg, Charles; Qayyum, Rehan; Lopez, Lorna M; Berentzen, Tina L; Räikkönen, Katri; Mangino, Massimo; Bandinelli, Stefania; Peyser, Patricia A; Wild, Sarah; Trégouët, David-Alexandre; Wright, Alan F; Marten, Jonathan; Zemunik, Tatijana; Morrison, Alanna C; Sennblad, Bengt; Tofler, Geoffrey; de Maat, Moniek P M; de Geus, Eco J C; Lowe, Gordon D; Zoledziewska, Magdalena; Sattar, Naveed; Binder, Harald; Völker, Uwe; Waldenberger, Melanie; Khaw, Kay-Tee; Mcknight, Barbara; Huang, Jie; Jenny, Nancy S; Holliday, Elizabeth G; Qi, Lihong; Mcevoy, Mark G; Becker, Diane M; Starr, John M; Sarin, Antti-Pekka; Hysi, Pirro G; Hernandez, Dena G; Jhun, Min A; Campbell, Harry; Hamsten, Anders; Rivadeneira, Fernando; Mcardle, Wendy L; Slagboom, P Eline; Zeller, Tanja; Koenig, Wolfgang; Psaty, Bruce M; Haritunians, Talin; Liu, Jingmin; Palotie, Aarno; Uitterlinden, André G; Stott, David J; Hofman, Albert; Franco, Oscar H; Polasek, Ozren; Rudan, Igor; Morange, Pierre-Emmanuel; Wilson, James F; Kardia, Sharon L R; Ferrucci, Luigi; Spector, Tim D; Eriksson, Johan G; Hansen, Torben; Deary, Ian J; Becker, Lewis C; Scott, Rodney J; Mitchell, Paul; März, Winfried; Wareham, Nick J; Peters, Annette; Greinacher, Andreas; Wild, Philipp S; Jukema, J Wouter; Boomsma, Dorret I; Hayward, Caroline; Cucca, Francesco; Tracy, Russell; Watkins, Hugh; Reiner, Alex P; Folsom, Aaron R; Ridker, Paul M; O'Donnell, Christopher J; Smith, Nicholas L; Strachan, David P; Dehghan, Abbas

    2016-01-15

    Genome-wide association studies have previously identified 23 genetic loci associated with circulating fibrinogen concentration. These studies used HapMap imputation and did not examine the X-chromosome. 1000 Genomes imputation provides better coverage of uncommon variants, and includes indels. We conducted a genome-wide association analysis of 34 studies imputed to the 1000 Genomes Project reference panel and including ∼120 000 participants of European ancestry (95 806 participants with data on the X-chromosome). Approximately 10.7 million single-nucleotide polymorphisms and 1.2 million indels were examined. We identified 41 genome-wide significant fibrinogen loci; of which, 18 were newly identified. There were no genome-wide significant signals on the X-chromosome. The lead variants of five significant loci were indels. We further identified six additional independent signals, including three rare variants, at two previously characterized loci: FGB and IRF1. Together the 41 loci explain 3% of the variance in plasma fibrinogen concentration.

  8. [Fibrinogen/LDL apheresis for treatment of sudden hearing loss: an observational study on 152 patients].

    PubMed

    Canis, M; Heigl, F; Hettich, R; Osterkorn, D; Osterkorn, K; Suckfuell, M

    2008-09-01

    Disturbances of cochlear microcirculation are among the most discussed causes of sudden sensorineural hearing loss. Increased levels of cholesterol and fibrinogen seem to act as risk factors for inner ear disorders. Fibrinogen/LDL apheresis greatly reduces the concentration of plasma fibrinogen thus leading to improved cochlear blood flow. In a retrospective case series remission rates of 152 patients suffering from sudden sensorineural hearing loss and resistant to former treatment were investigated after treatment with a single apheresis. Complete remission was reported in 11% of patients, partial remission in 43%. 37% had no change of hearing threshold and 2% reported a decrease in hearing. Rates of complete remissions decreased from 22% within the first 2 weeks after onset of hearing loss to 14% after 6 weeks. In the same period of time rates of partial remissions decreased from 33% to 13%. The present study shows that apheresis achieved complete or partial remission in 54% of patients even after unsuccessful treatment with another therapy and the therapeutic window lies by approximately 6 weeks.

  9. Protein Colloidal Aggregation Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J. (Compiler)

    2014-01-01

    To investigate the pathways and kinetics of protein aggregation to allow accurate predictive modeling of the process and evaluation of potential inhibitors to prevalent diseases including cataract formation, chronic traumatic encephalopathy, Alzheimer's Disease, Parkinson's Disease and others.

  10. Cell aggregation and sedimentation.

    PubMed

    Davis, R H

    1995-01-01

    The aggregation of cells into clumps or flocs has been exploited for decades in such applications as biological wastewater treatment, beer brewing, antibiotic fermentation, and enhanced sedimentation to aid in cell recovery or retention. More recent research has included the use of cell aggregation and sedimentation to selectively separate subpopulations of cells. Potential biotechnological applications include overcoming contamination, maintaining plasmid-bearing cells in continuous fermentors, and selectively removing nonviable hybridoma cells from perfusion cultures.

  11. The multifunctional LigB adhesin binds homeostatic proteins with potential roles in cutaneous infection by pathogenic Leptospira interrogans.

    PubMed

    Choy, Henry A; Kelley, Melissa M; Croda, Julio; Matsunaga, James; Babbitt, Jane T; Ko, Albert I; Picardeau, Mathieu; Haake, David A

    2011-01-01

    Leptospirosis is a potentially fatal zoonotic disease in humans and animals caused by pathogenic spirochetes, such as Leptospira interrogans. The mode of transmission is commonly limited to the exposure of mucous membrane or damaged skin to water contaminated by leptospires shed in the urine of carriers, such as rats. Infection occurs during seasonal flooding of impoverished tropical urban habitats with large rat populations, but also during recreational activity in open water, suggesting it is very efficient. LigA and LigB are surface localized proteins in pathogenic Leptospira strains with properties that could facilitate the infection of damaged skin. Their expression is rapidly induced by the increase in osmolarity encountered by leptospires upon transition from water to host. In addition, the immunoglobulin-like repeats of the Lig proteins bind proteins that mediate attachment to host tissue, such as fibronectin, fibrinogen, collagens, laminin, and elastin, some of which are important in cutaneous wound healing and repair. Hemostasis is critical in a fresh injury, where fibrinogen from damaged vasculature mediates coagulation. We show that fibrinogen binding by recombinant LigB inhibits fibrin formation, which could aid leptospiral entry into the circulation, dissemination, and further infection by impairing healing. LigB also binds fibroblast fibronectin and type III collagen, two proteins prevalent in wound repair, thus potentially enhancing leptospiral adhesion to skin openings. LigA or LigB expression by transformation of a nonpathogenic saprophyte, L. biflexa, enhances bacterial adhesion to fibrinogen. Our results suggest that by binding homeostatic proteins found in cutaneous wounds, LigB could facilitate leptospirosis transmission. Both fibronectin and fibrinogen binding have been mapped to an overlapping domain in LigB comprising repeats 9-11, with repeat 11 possibly enhancing binding by a conformational effect. Leptospirosis patient antibodies react

  12. Substrate profiling of Finegoldia magna SufA protease, inhibitor screening and application to prevent human fibrinogen degradation and bacteria growth in vitro.

    PubMed

    Burchacka, Ewa; Sieńczyk, Marcin; Frick, Inga-Maria; Wysocka, Magdalena; Lesner, Adam; Oleksyszyn, Józef

    2014-08-01

    SufA, which belongs to the subtilisin-like serine protease family, contains a non-canonical Asp-His-Ser catalytic triad. Under in vitro conditions, SufA is capable of human fibrinogen hydrolysis leading to inhibition of fibrin network formation, thus suggesting its important role in the development and progression of Finegoldia magna infections. In addition, it has been demonstrated that SufA can hydrolyze antibacterial peptides such as LL-37 and the chemokine MIG/CXCL 9, hence evading host defence mechanisms. Although the SufA protease from F. magna was discovered several years ago, its optimal substrate preference has not yet been identified. Considering the role of SufA, we have focused on the profiling of its substrate sequence preference spanning S1-S3 binding pockets using the FRET (fluorescence resonance energy transfer) approach. Next, based on the structure of the P1 residue of the developed substrate, we narrowed the inhibitor screening to the phosphonic analogues of amino acids containing an arginine-like side chain. Among all the compounds tested, only Cbz-6-AmNphth(P)(OPh)2 showed any inhibitory activity against SufA displaying k2/Ki value of 10,800 M(-1) s(-1). In addition, it prevented SufA-mediated human fibrinogen hydrolysis in vitro and exhibited potent antibacterial activity against F. magna, Staphylococcus aureus and Escherichia coli. Herein, we report on the substrate specificity, synthesis and kinetic evaluation of phosphonic inhibitors of SufA protease from F. magna which could help to establish its function in pathogenesis development and may lead to the elaboration of new antibacterial drugs.

  13. Platelet aggregation monitoring with a newly developed quartz crystal microbalance system as an alternative to optical platelet aggregometry.

    PubMed

    Sinn, Stefan; Müller, Lothar; Drechsel, Hartmut; Wandel, Michael; Northoff, Hinnak; Ziemer, Gerhard; Wendel, Hans P; Gehring, Frank K

    2010-11-01

    The objective of this study was to establish a new test system for the monitoring of platelet aggregation during extracorporeal circulation (ECC) procedures. Even though extensive progress has been made in improving the haemocompatibility of extracorporeal circulation devices, activation of blood coagulation, blood platelets and inflammatory responses are still undesired outcomes of cardiopulmonary bypass. This study deals with an approach towards a platelet aggregation measuring system using a newly developed quartz crystal microbalance (QCM) system. Since QCM is a rarely used technique in the field of blood analytics, the challenge was to transfer the well established methods of aggregometry to the new test system. In a QCM system, either bare gold or fibrinogen-coated sensors were incubated with ADP or arachidonic acid (AA) stimulated platelet rich plasma. For negative controls the GPIIb/IIIa inhibitory antibody abciximab (Reopro®) was used as an inhibitor of platelet aggregation. During incubation, the frequency shifts of the sensors were recorded. The results gained from the QCM system were compared to results gained by optical platelet aggregometry (born aggregometry). For additional visualization of platelet adhesion to the sensor surfaces, fluorescent microscopy and scanning electron microscopy were used. The QCM sensor was able to detect platelet aggregation in both uncoated and fibrinogen coated sensors. The measuring curves of aggregation measurements and controls were clearly distinguishable from each other in terms of frequency shifts and kinetics. For aggregation measurements and inhibited controls the therapeutic diagnosis of platelet function is identical between aggregometer and QCM data. In future, QCM based measuring devices may become an alternative to established point of care methods for rapid bedside testing of platelet aggregation.

  14. Differentiating Alzheimer disease-associated aggregates with small molecules.

    PubMed

    Honson, Nicolette S; Johnson, Ronald L; Huang, Wenwei; Inglese, James; Austin, Christopher P; Kuret, Jeff

    2007-12-01

    Alzheimer disease is diagnosed postmortem by the density and spatial distribution of beta-amyloid plaques and tau-bearing neurofibrillary tangles. The major protein component of each lesion adopts cross-beta-sheet conformation capable of binding small molecules with submicromolar affinity. In many cases, however, Alzheimer pathology overlaps with Lewy body disease, characterized by the accumulation of a third cross-beta-sheet forming protein, alpha-synuclein. To determine the feasibility of distinguishing tau aggregates from beta-amyloid and alpha-synuclein aggregates with small molecule probes, a library containing 72,455 small molecules was screened for antagonists of tau-aggregate-mediated changes in Thioflavin S fluorescence, followed by secondary screens to distinguish the relative affinity for each substrate protein. Results showed that >10-fold binding selectivity among substrates could be achieved, with molecules selective for tau aggregates containing at least three aromatic or rigid moieties connected by two rotatable bonds.

  15. Differentiating Alzheimer Disease-Associated Aggregates with Small Molecules

    PubMed Central

    Honson, Nicolette S.; Johnson, Ronald L.; Huang, Wenwei; Inglese, James; Austin, Christopher P.; Kuret, Jeff

    2008-01-01

    Alzheimer disease is diagnosed postmortem by the density and spatial distribution of β-amyloid plaques and tau-bearing neurofibrillary tangles. The major protein component of each lesion adopts cross-β-sheet conformation capable of binding small molecules with submicromolar affinity. In many cases, however, Alzheimer pathology overlaps with Lewy body disease, characterized by the accumulation of a third cross-β-sheet forming protein, α-synuclein. To determine the feasibility of distinguishing tau aggregates from β-amyloid and α-synuclein aggregates with small molecule probes, a library containing 71,975 small molecules was screened for antagonists of tau-aggregate mediated changes in Thioflavin S fluorescence, followed by secondary screens to distinguish the relative affinity for each substrate protein. Results showed that >10-fold binding selectivity among substrates could be achieved, with molecules selective for tau aggregates containing at least three aromatic or rigid moieties connected by two rotatable bonds. PMID:17761424

  16. Technology meets aggregate

    SciTech Connect

    Wilson, C.; Swan, C.

    2007-07-01

    New technology carried out at Tufts University and the University of Massachusetts on synthetic lightweight aggregate has created material from various qualities of fly ash from coal-fired power plants for use in different engineered applications. In pilot scale manufacturing tests an 'SLA' containing 80% fly ash and 20% mixed plastic waste from packaging was produced by 'dry blending' mixed plastic with high carbon fly ash. A trial run was completed to produce concrete masonry unit (CMU) blocks at a full-scale facility. It has been shown that SLA can be used as a partial substitution of a traditional stone aggregate in hot asphalt mix. 1 fig., 2 photos.

  17. Evolution and organization of the fibrinogen locus on chromosome 4: gene duplication accompanied by transposition and inversion.

    PubMed Central

    Kant, J A; Fornace, A J; Saxe, D; Simon, M I; McBride, O W; Crabtree, G R

    1985-01-01

    Human fibrinogen cDNA probes for the alpha-, beta-, and gamma-polypeptide chains have been used to isolate the corresponding genes from human genomic libraries. There is a single copy of each gene. Restriction endonuclease analysis of isolated genomic clones and human genomic DNA indicates that the human alpha-, beta-, and gamma-fibrinogen genes are closely linked in a 50-kilobase region of a single human chromosome: the alpha-gene in the middle flanked by the beta-gene on one side and the gamma-gene on the other. The alpha- and gamma-chain genes are oriented in tandem and transcribed toward the beta-chain gene. The beta-chain gene is transcribed from the opposite DNA strand toward the gamma- and alpha-chain genes. The three genes have been localized to the distal third of the long arm of chromosome 4, bands q23-q32, by in situ hybridization with fibrinogen cDNAs and by examination of DNA from multiple rodent-human somatic cell hybrids. Alternative explanations for the present arrangement of the three fibrinogen genes involve either a three-step mechanism with inversion of the alpha/gamma-region or a two-step mechanism involving remote transposition and inversion. The second more simple mechanism has a precedent in the origin of repeated regions of the fibrinogen and immunoglobulin genes. Images PMID:2986113

  18. Air Pollution and Inflammation (Interleukin-6, C-Reactive Protein, Fibrinogen) in Myocardial Infarction Survivors

    PubMed Central

    Rückerl, Regina; Greven, Sonja; Ljungman, Petter; Aalto, Pasi; Antoniades, Charalambos; Bellander, Tom; Berglind, Niklas; Chrysohoou, Christina; Forastiere, Francesco; Jacquemin, Bénédicte; von Klot, Stephanie; Koenig, Wolfgang; Küchenhoff, Helmut; Lanki, Timo; Pekkanen, Juha; Perucci, Carlo A.; Schneider, Alexandra; Sunyer, Jordi; Peters, Annette

    2007-01-01

    Background Numerous studies have found that ambient air pollution has been associated with cardiovascular disease exacerbation. Objectives Given previous findings, we hypothesized that particulate air pollution might induce systemic inflammation in myocardial infarction (MI) survivors, contributing to an increased vulnerability to elevated concentrations of ambient particles. Methods A prospective longitudinal study of 1,003 MI survivors was performed in six European cities between May 2003 and July 2004. We compared repeated measurements of interleukin 6 (IL-6), fibrinogen, and C-reactive protein (CRP) with concurrent levels of air pollution. We collected hourly data on particle number concentrations (PNC), mass concentrations of particulate matter (PM) < 10 μm (PM10) and < 2.5 μm (PM2.5), gaseous pollutants, and meteorologic data at central monitoring sites in each city. City-specific confounder models were built for each blood marker separately, adjusting for meteorology and time-varying and time-invariant covariates. Data were analyzed with mixed-effects models. Results Pooled results show an increase in IL-6 when concentrations of PNC were elevated 12–17 hr before blood withdrawal [percent change of geometric mean, 2.7; 95% confidence interval (CI), 1.0–4.6]. Five day cumulative exposure to PM10 was associated with increased fibrinogen concentrations (percent change of arithmetic mean, 0.6; 95% CI, 0.1–1.1). Results remained stable for smokers, diabetics, and patients with heart failure. No consistent associations were found for CRP. Conclusions Results indicate an immediate response to PNC on the IL-6 level, possibly leading to the production of acute-phase proteins, as seen in increased fibrinogen levels. This might provide a link between air pollution and adverse cardiac events. PMID:17637925

  19. A family of cell-adhering peptides homologous to fibrinogen C-termini

    SciTech Connect

    Levy-Beladev, Liron; Levdansky, Lilia; Gaberman, Elena; Friedler, Assaf; Gorodetsky, Raphael

    2010-10-08

    Research highlights: {yields} Cell-adhesive sequences homologous to fibrinogen C-termini exist in other proteins. {yields} The extended homologous cell-adhesive C-termini peptides family is termed Haptides. {yields} In membrane-like environment random coiled Haptides adopt a helical conformation. {yields} Replacing positively charged residues with alanine reduces Haptides activity. -- Abstract: A family of cell-adhesive peptides homologous to sequences on different chains of fibrinogen was investigated. These homologous peptides, termed Haptides, include the peptides C{beta}, preC{gamma}, and C{alpha}E, corresponding to sequences on the C-termini of fibrinogen chains {beta}, {gamma}, and {alpha}E, respectively. Haptides do not affect cell survival and rate of proliferation of the normal cell types tested. The use of new sensitive assays of cell adhesion clearly demonstrated the ability of Haptides, bound to inert matrices, to mediate attachment of different matrix-dependent cell types including normal fibroblasts, endothelial, and smooth muscle cells. Here we present new active Haptides bearing homologous sequences derived from the C-termini of other proteins, such as angiopoietin 1 and 2, tenascins C and X, and microfibril-associated glycoprotein-4. The cell adhesion properties of all the Haptides were found to be associated mainly with their 11 N-terminal residues. Mutated preC{gamma} peptides revealed that positively charged residues account for their attachment effect. These results suggest a mechanism of direct electrostatic interaction of Haptides with the cell membrane. The extended Haptides family may be applied in modulating adhesion of cells to scaffolds for tissue regeneration and for enhancement of nanoparticulate transfection into cells.

  20. Nattokinase decreases plasma levels of fibrinogen, factor VII, and factor VIII in human subjects.

    PubMed

    Hsia, Chien-Hsun; Shen, Ming-Ching; Lin, Jen-Shiou; Wen, Yao-Ke; Hwang, Kai-Lin; Cham, Thau-Ming; Yang, Nae-Cherng

    2009-03-01

    Nattokinase, a serine proteinase from Bacillus subtilis, is considered to be one of the most active functional ingredients found in natto. In this study, we hypothesized that nattokinase could reduce certain factors of blood clotting and lipids that are associated with an increase risk for cardiovascular disease (CVD). Thus, an open-label, self-controlled clinical trial was conducted on subjects of the following groups: healthy volunteers (Healthy Group), patients with cardiovascular risk factors (Cardiovascular Group), and patients undergoing dialysis (Dialysis Group). All subjects ingested 2 capsules of nattokinase (2000 fibrinolysis units per capsule) daily orally for 2 months. The laboratory measurements were performed on the screening visit and, subsequently, regularly after the initiation of the study. The intent-to-treat analysis was performed on all 45 enrolled subjects. By use of mixed model analysis, a significant time effect, but not group effect, was observed in the change from baseline of fibrinogen (P = .003), factor VII (P < .001), and factor VIII (P < .001), suggesting that the plasma levels of the 3 coagulation factors continuously declined during intake; also, the extents of decrease were similar between groups. After 2 months of administration, fibrinogen, factor VII, and factor VIII decreased 9%, 14%, and 17%, respectively, for the Healthy Group; 7%, 13%, and 19%, respectively, for the Cardiovascular Group; and 10%, 7%, and 19%, respectively, for the Dialysis Group, whereas blood lipids were unaffected by nattokinase. No significant changes of uric acid or notable adverse events were observed in any of the subjects. In summary, this study showed that oral administration of nattokinase could be considered as a CVD nutraceutical by decreasing plasma levels of fibrinogen, factor VII, and factor VIII.

  1. Comparison of laser-assisted fibrinogen-bonded and sutured canine arteriovenous anastomoses.

    PubMed

    Oz, M C; Libutti, S K; Ashton, R C; Lontz, J F; Lemole, G M; Nowygrod, R

    1992-07-01

    The effect of laser-assisted fibrinogen bonding (LAFB) on the development of intimal hyperplasia was studied with stress-strain profiles and histologic evaluation of canine arteriovenous fistulas (AVFs). In 19 animals femoral AVFs were created with an 808 nm diode laser after topical application of fibrinogen mixed with indocyanine green dye; in the contralateral limb a sutured AVF was created. The animals were divided into three groups. Group 1 dogs (n = 6) were killed serially up to 4 weeks after surgery to examine the healing of the anastomoses created with LAFB. Group 2 dogs (n = 6) were killed 1 month after surgery, and the fresh specimens were strained axially to produce a stress-strain profile graph. Group 3 dogs (n = 7) were killed 7 months after surgery, and the AVFs were infused with formalin under pressure and histologically prepared to allow comparison of the ratio of maximum to minimum intimal hypertrophy. Fibrinogen used for LAFB was resorbed during the first month after operation without evidence of foreign body reaction or inflammation. Tensile break force was not significantly different in the laser-bonded group (4.6 +/- 2.4 pounds) and the sutured group (4.3 +/- 1.7 pounds). The modulus (tensile break force per square inch), a measure of elasticity, identified the laser-bonded AVF (149 +/- 44 pounds per square inch) to be less rigid than the sutured AVF (203 +/- 35 pounds per square inch) (p less than 0.05). No significant differences in the degree of intimal hyperplasia were noted in any area of the anastomoses. Use of LAFB neither accelerates nor prevents intimal hyperplasia in a canine AVF model.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Mechanisms of fibrinogen adsorption at the silica substrate determined by QCM-D measurements.

    PubMed

    Kubiak, Katarzyna; Adamczyk, Zbigniew; Wasilewska, Monika

    2015-11-01

    Adsorption kinetics of fibrinogen at a silica substrate was thoroughly studied in situ using the QCM-D method. Because of low dissipation, the Sauerbrey's equation was used for calculating the wet mass per unit area (wet coverage of the protein). Measurements were done for various bulk suspension concentrations, flow rates and pHs. These experimental data were compared with the theoretical dry coverage data derived from the solution of the mass transfer equation. In this way, the hydration functions and water factors of fibrinogen monolayers were quantitatively evaluated for various pHs. In the case of pH 7.4 and ionic strength of 0.15 M, the hydration function changed from 0.75 to 0.6 for the dry coverage Γ(d) equal to 0 and 4 mg m(-2), respectively. Interestingly, for pH 7.4 and 4.5 (ionic strength of 10(-2) M) a minimum of the hydration function appeared at Γ(d) ca. 2 mg m(-2). Analytical polynomial expressions were formulated for the interpolation of the experimental results. By using the hydration functions, the fibrinogen adsorption/desorption runs derived from QCM-D measurements were converted to the Γ(d) vs. the time relationships. This allowed to precisely determine the maximum coverage that varied between 1.2 mg m(-2) at pH 3.5 and 4.2 mg m(-2) at pH 7.4 for ionic strength of 0.15 M. These results agree with theoretical modeling and previous experimental data derived by using ellipsometry, OWLS and TIRF. Various fibrinogen adsorption mechanisms were revealed by exploiting the maximum coverage data whose validity was also confirmed by the dissipation vs. the dry mass relationships. Beside significance to basic science, these results enable to develop a robust technique, based on the QCM-D measurements, suitable for precisely determining the dry mass of protein monolayers adsorbed under various physicochemical conditions.

  3. Impaired Protofibril Formation in Fibrinogen γN308K Is Due to Altered D:D and "A:a" Interactions

    SciTech Connect

    Bowley, S.; Okumura, N; Lord, S

    2009-01-01

    'A:a' knob-hole interactions and D:D interfacial interactions are important for fibrin polymerization. Previous studies with recombinant ?N308K fibrinogen, a substitution at the D:D interface, showed impaired polymerization. We examined the molecular basis for this loss of function by solving the crystal structure of ?N308K fragment D. In contrast to previous fragment D crystals, the ?N308K crystals belonged to a tetragonal space group with an unusually long unit cell (a = b = 95 Angstroms, c = 448.3 Angstroms). Alignment of the normal and ?N308K structures showed the global structure of the variant was not changed and the knob 'A' peptide GPRP was bound as usual to hole 'a'. The substitution introduced an elongated positively charged patch in the D:D region. The structure showed novel, symmetric D:D crystal contacts between ?N308K molecules, indicating the normal asymmetric D:D interface in fibrin would be unstable in this variant. We examined GPRP binding to ?N308K in solution by plasmin protection assay. The results showed weaker peptide binding, suggesting that 'A:a' interactions were altered. We examined fibrin network structures by scanning electron microscopy and found the variant fibers were thicker and more heterogeneous than normal fibers. Considered together, our structural and biochemical studies indicate both 'A:a' and D:D interactions are weaker. We conclude that stable protofibrils cannot assemble from ?N308K monomers, leading to impaired polymerization.

  4. Staphylococcus epidermidis Affinity for Fibrinogen-Coated Surfaces Correlates with the Abundance of the SdrG Adhesin on the Cell Surface.

    PubMed

    Vanzieleghem, Thomas; Herman-Bausier, Philippe; Dufrene, Yves F; Mahillon, Jacques

    2015-04-28

    Staphylococcus epidermidis is a world-leading pathogen in healthcare facilities, mainly causing medical device-associated infections. These nosocomial diseases often result in complications such as bacteremia, fibrosis, or peritonitis. The virulence of S. epidermidis relies on its ability to colonize surfaces and develop thereupon in the form of biofilms. Bacterial adherence on biomaterials, usually covered with plasma proteins after implantation, is a critical step leading to biofilm infections. The cell surface protein SdrG mediates adhesion of S. epidermidis to fibrinogen (Fg) through a specific "dock, lock, and latch" mechanism, which results in greatly stabilized protein-ligand complexes. Here, we combine single-molecule, single-cell, and whole population assays to investigate the extent to which the surface density of SdrG determines the ability of S. epidermidis clinical strains HB, ATCC 35984, and ATCC 12228 to bind to Fg-coated surfaces. Strains that showed enhanced adhesion on Fg-coated polydimethylsiloxane (PDMS) were characterized by increased amounts of SdrG proteins on the cell surface, as observed by single-molecule analysis. Consistent with previous reports showing increased expression of SdrG following in vivo exposure, this work provides direct evidence that abundance of SdrG on the cell surface of S. epidermidis strains dramatically improves their ability to bind to Fg-coated implanted medical devices.

  5. Staphylococcus epidermidis Affinity for Fibrinogen-Coated Surfaces Correlates with the Abundance of the SdrG Adhesin on the Cell Surface.

    PubMed

    Vanzieleghem, Thomas; Herman-Bausier, Philippe; Dufrene, Yves F; Mahillon, Jacques

    2015-04-28

    Staphylococcus epidermidis is a world-leading pathogen in healthcare facilities, mainly causing medical device-associated infections. These nosocomial diseases often result in complications such as bacteremia, fibrosis, or peritonitis. The virulence of S. epidermidis relies on its ability to colonize surfaces and develop thereupon in the form of biofilms. Bacterial adherence on biomaterials, usually covered with plasma proteins after implantation, is a critical step leading to biofilm infections. The cell surface protein SdrG mediates adhesion of S. epidermidis to fibrinogen (Fg) through a specific "dock, lock, and latch" mechanism, which results in greatly stabilized protein-ligand complexes. Here, we combine single-molecule, single-cell, and whole population assays to investigate the extent to which the surface density of SdrG determines the ability of S. epidermidis clinical strains HB, ATCC 35984, and ATCC 12228 to bind to Fg-coated surfaces. Strains that showed enhanced adhesion on Fg-coated polydimethylsiloxane (PDMS) were characterized by increased amounts of SdrG proteins on the cell surface, as observed by single-molecule analysis. Consistent with previous reports showing increased expression of SdrG following in vivo exposure, this work provides direct evidence that abundance of SdrG on the cell surface of S. epidermidis strains dramatically improves their ability to bind to Fg-coated implanted medical devices. PMID:25821995

  6. Aggregates, broccoli and cauliflower

    NASA Astrophysics Data System (ADS)

    Grey, Francois; Kjems, Jørgen K.

    1989-09-01

    Naturally grown structures with fractal characters like broccoli and cauliflower are discussed and compared with DLA-type aggregates. It is suggested that the branching density can be used to characterize the growth process and an experimental method to determine this parameter is proposed.

  7. Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins.

    PubMed

    Halper, Jaroslava; Kjaer, Michael

    2014-01-01

    Collagens are the most abundant components of the extracellular matrix and many types of soft tissues. Elastin is another major component of certain soft tissues, such as arterial walls and ligaments. Many other molecules, though lower in quantity, function as essential components of the extracellular matrix in soft tissues. Some of these are reviewed in this chapter. Besides their basic structure, biochemistry and physiology, their roles in disorders of soft tissues are discussed only briefly as most chapters in this volume deal with relevant individual compounds. Fibronectin with its muldomain structure plays a role of "master organizer" in matrix assembly as it forms a bridge between cell surface receptors, e.g., integrins, and compounds such collagen, proteoglycans and other focal adhesion molecules. It also plays an essential role in the assembly of fibrillin-1 into a structured network. Laminins contribute to the structure of the extracellular matrix (ECM) and modulate cellular functions such as adhesion, differentiation, migration, stability of phenotype, and resistance towards apoptosis. Though the primary role of fibrinogen is in clot formation, after conversion to fibrin by thrombin, it also binds to a variety of compounds, particularly to various growth factors, and as such fibrinogen is a player in cardiovascular and extracellular matrix physiology. Elastin, an insoluble polymer of the monomeric soluble precursor tropoelastin, is the main component of elastic fibers in matrix tissue where it provides elastic recoil and resilience to a variety of connective tissues, e.g., aorta and ligaments. Elastic fibers regulate activity of TGFβs through their association with fibrillin microfibrils. Elastin also plays a role in cell adhesion, cell migration, and has the ability to participate in cell signaling. Mutations in the elastin gene lead to cutis laxa. Fibrillins represent the predominant core of the microfibrils in elastic as well as non

  8. Association of CD2 with fibrinogen in human plasma: depletion of the soluble E-receptor in blood clotting.

    PubMed

    Smorodin, Eugeniy P; Kurtenkov, O A; Shevchuk, I N

    2007-01-01

    The soluble E-receptor (SER) of lymphocytes that is related to CD2 was detected in human plasma and serum using immunoelectrophoresis with sheep antiserum. All plasma samples (n=18) demonstrated reactivity with antiserum, whereas the reactivity of the corresponding sera remained low or undetectable. The depletion of SER in clotting is associated with fibrinogen, as shown by crossed-affinity immunoelectrophoresis with antisera to plasma proteins. The SER-associated fibrinogen was purified and analysed by the SDS-polyacrylamide gel electrophoresis and immunoblotting. A band close to 66 kDa was detected with monoclonal antibodies to CD2. The association of CD2 and other soluble receptors with fibrinogen via domains is suggested. It is recommended that the fresh plasma, not serum, should be used to study circulating receptors because coagulation may appreciably diminish their physiological level in blood samples.

  9. Surveillance of deep vein thrombosis in asymptomatic total hip replacement patients. Impedance phlebography and fibrinogen scanning versus roentgenographic phlebography

    SciTech Connect

    Paiement, G.; Wessinger, S.J.; Waltman, A.C.; Harris, W.H.

    1988-03-01

    Nine hundred thirty-seven limbs in 537 patients over the age of 39 years who underwent total hip replacement were studied by roentgenographic phlebography, cuff-impedance phlebography, and iodine-125 fibrinogen scanning. Cuff-impedance phlebography had a sensitivity of only 12.3 percent for thigh thrombi. Fibrinogen scanning had a sensitivity of only 59.1 percent for calf thrombi and 13.7 percent for thigh thrombi. The combined use of the two methods resulted in only a 23.2 percent sensitivity for thigh thrombi and an overall sensitivity of 47.4 percent. We have concluded that in asymptomatic patients, in contrast with symptomatic patients, the combination of cuff-impedance phlebography and fibrinogen scanning is not an effective screening method.

  10. /sup 111/In-platelet and /sup 125/I-fibrinogen deposition in the lungs in experimental acute pancreatitis

    SciTech Connect

    Goulbourne, I.A.; Watson, H.; Davies, G.C.

    1987-12-01

    An experimental model of acute pancreatitis in rats has been used to study intrapulmonary /sup 125/I-fibrinogen and /sup 111/In-platelet deposition. Pancreatitis caused a significant increase in wet lung weight compared to normal, and this could be abolished by heparin or aspirin pretreatment. /sup 125/I-fibrinogen was deposited in the lungs of animals to a significantly greater degree than in controls (P less than 0.01). /sup 125/I-fibrinogen deposition was reduced to control levels by pretreatment with aspirin or heparin (P less than 0.05). The uptake of radiolabeled platelets was greater in pancreatitis than in controls (P less than 0.001). Pancreatitis appears to be responsible for platelet entrapment in the lungs. Platelet uptake was reduced by heparin treatment but unaffected by aspirin therapy.

  11. The role of platelet aggregation and release in fragment D-induced pulmonary dysfunction.

    PubMed Central

    Manwaring, D; Curreri, P W

    1980-01-01

    The plasma concentration of fibrinogen degradation product D (fragmentt D) is markedly incrased following major burn or traumatic injury. Purified human fragment D infused into awake, restrained, nontraumatized rabbits (100 micrograms/ml blood) causes progressive thrombocytopenia, pulmonary dysfunction, vascular leak, and interstitial neutrophilia. Rabbits treated with the antihistamine diphenhydramine (Benadryl) prior to fragment D infusion fail to develop these symptoms. This study examined platelet aggregation, platelet ATP secretion, and platelet malondialdehyde release in rabbits which received fragmen D alone or fragment D following diphenhydramine pretreatment. Platelet-rich plasma was prepared from citrated blood drawn from femoral arterial catheters at 0, 2 1/2, and 4 hours postinfusion. Platelet aggregation was stimulated with either collagen or ADP. Malondialdehyde, a byproduct of thromboxane synthesis, was measured by colorimetry. Platelet aggregation and function (stimulated with collagen) were enhanced in fragment D platelet-rich plasma, since all response times decreased. Total ATP and MDA release incresed. Diphenhydramine pretreatment inhibited fragment D-enhanced aggregation, ATP release and prostaglandin (thromboxane) synthesis. No animal pretreated with diphenhydramine exhibited thrombocytopenia or respiratory dysfunction. Stimulation of platelet aggregation and release may represent one mechanism by which fragment D induces pulmonary dysfunction. Diphenhydramine inhibits these responses and may prove therapeutic in posttraumtic pulmonary complications. PMID:7406554

  12. Distinct Adsorption Configurations and Self-Assembly Characteristics of Fibrinogen on Chemically Uniform and Alternating Surfaces including Block Copolymer Nanodomains

    PubMed Central

    2015-01-01

    Understanding protein–surface interactions is crucial to solid-state biomedical applications whose functionality is directly correlated with the precise control of the adsorption configuration, surface packing, loading density, and bioactivity of protein molecules. Because of the small dimensions and highly amphiphilic nature of proteins, investigation of protein adsorption performed on nanoscale topology can shed light on subprotein-level interaction preferences. In this study, we examine the adsorption and assembly behavior of a highly elongated protein, fibrinogen, on both chemically uniform (as-is and buffered HF-treated SiO2/Si, and homopolymers of polystyrene and poly(methyl methacrylate)) and varying (polystyrene-block-poly(methyl methacrylate)) surfaces. By focusing on high-resolution imaging of individual protein molecules whose configurations are influenced by protein–surface rather than protein–protein interactions, fibrinogen conformations characteristic to each surface are identified and statistically analyzed for structural similarities/differences in key protein domains. By exploiting block copolymer nanodomains whose repeat distance is commensurate with the length of the individual protein, we determine that fibrinogen exhibits a more neutral tendency for interaction with both polystyrene and poly(methyl methacrylate) blocks relative to the case of common globular proteins. Factors affecting fibrinogen–polymer interactions are discussed in terms of hydrophobic and electrostatic interactions. In addition, assembly and packing attributes of fibrinogen are determined at different loading conditions. Primary orientations of fibrinogen and its rearrangements with respect to the underlying diblock nanodomains associated with different surface coverage are explained by pertinent protein interaction mechanisms. On the basis of two-dimensional stacking behavior, a protein assembly model is proposed for the formation of an extended fibrinogen network

  13. Fibrinogen Test

    MedlinePlus

    ... Related tests: PT and INR , PTT , D-dimer , Coagulation Factors , Thrombin Time , hs-CRP At a Glance ... and D-dimer to help diagnose disseminated intravascular coagulation (DIC) or abnormal fibrinolysis Occasionally to help monitor ...

  14. Combined fibrinogen concentration and neutrophil-lymphocyte ratio as a prognostic marker of gastric cancer

    PubMed Central

    ARIGAMI, TAKAAKI; UENOSONO, YOSHIKAZU; MATSUSHITA, DAISUKE; YANAGITA, SHIGEHIRO; UCHIKADO, YASUTO; KITA, YOSHIAKI; MORI, SHINICHIRO; KIJIMA, YUKO; OKUMURA, HIROSHI; MAEMURA, KOSEI; ISHIGAMI, SUMIYA; NATSUGOE, SHOJI

    2016-01-01

    Certain patients with early gastric cancer succumb to recurrent disease and cancer-associated complications. The key cause of recurrence is challenging to determine, since clinical blood markers that are able to predict the tumor properties of gastric cancer are limited. The present study investigated the fibrinogen concentration and neutrophil-lymphocyte ratio (NLR) in blood specimens from patients with gastric cancer, and assessed the clinical applicability of combining the fibrinogen concentration with the NLR (CFS-NLR) as a prognostic marker of gastric cancer. The present study consisted of 275 patients with gastric cancer, who were divided into three groups: Those possessing hyperfibrinogenemia (≥305 mg/dl) and a high NLR (≥2.34; CFS-NLR 2 group); those possessing either hyperfibrinogenemia or a high NLR (CFS-NLR 1 group); or those that possessed neither abnormality (CFS-NLR 0 group). The CFS-NLR was significantly associated with the depth of tumor invasion, lymph node metastasis, lymphovascular invasion and tumor stage (P<0.0001). The prognostic differences among the three groups were significant (P=0.0016). Therefore, the CFS-NLR may be a potentially useful blood marker for predicting tumor progression and the prognosis of patients with gastric cancer. PMID:26893776

  15. Tracheal anastomosis using indocyanine green dye enhanced fibrinogen with a near-infrared diode laser

    NASA Astrophysics Data System (ADS)

    Auteri, Joseph S.; Jeevanandam, Valluvan; Oz, Mehmet C.; Libutti, Steven K.; Kirby, Thomas J.; Smith, Craig R.; Treat, Michael R.

    1990-06-01

    A major obstacle to lung transplantation and combined heart- lung transplantation is dehiscence of the tracheobronchial anastomosis. We explored the possibility of laser welded anastomoses in canine tracheas in vivo. Laser anastomoses were performed on three-quarter circumferential anterior tracheotomies. A continous wave diode laser (808 +1 nm) at a power density of 9.6 watts/cm was used. Human fibrinogen was mixed with indocyanine green dye (ICG, max absorbance 805 nm) and applied to the anastomosis site prior to laser exposure. Animals were sacrificed at 0, 21 and 28 days post-operatively. At sacrifice weld bursting pressures were measured by raising intratracheal pressure using forced ventilation via an endotracheal tube. Sutured and laser welded anastomoses had similar bursting pressures, and exhibited satisfactory histologic evidence of healing. However, compared to polypropylene sutured controls, the laser welded anastomoses exhibited less peritracheal inflammatory reaction and showed visibly smoother luminal surfaces at 21 and 28 days post- operatively. Tracheal anastomosis using ICG dye enhanced fibrinogen combined with the near-infrared diode laser is a promising extension of the technology of laser tissue fusion and deserves further study.

  16. Novel locus for fibrinogen in 3' region of LEPR gene in island population of Vis (Croatia).

    PubMed

    Tomas, Željka; Petranović, Matea Zajc; Škarić-Jurić, Tatjana; Barešić, Ana; Salihović, Marijana Peričić; Narančić, Nina Smolej

    2014-11-01

    Leptin, a possible mediator between energy homeostasis, inflammation and cardiovascular disease (CVD), acts via leptin receptors. We investigated association of single-nucleotide polymorphisms (SNPs) and haplotypes of the leptin receptor gene (LEPR) with several CVD risk factors: body mass index, waist circumference (WC), serum lipids, fibrinogen and C-reactive protein levels. Thirty-one SNPs in and near LEPR gene were analyzed in 986 inhabitants of the island of Vis, Croatia and 29 SNPs in the inland sample (N=499). We assessed linkage disequilibrium (LD), SNP and haplotype associations with the selected phenotypes. rs4291477 significantly associated with fibrinogen (P=0.003) and rs7539471 marginally significantly with high-density lipoprotein (P=0.004), but only in the Vis sample, while rs10493384 marginally significantly associated with triglyceride levels (P=0.006) in the inland sample. SNPs were grouped into eight LD blocks in Vis and in seven blocks in the inland population. Haplotype A-C-A-A-G-A in block 5 in Vis (rs1782754, rs1171269, rs1022981, rs6673324, rs3790426, rs10493380) and haplotype A-A-A-A in block 4 in the inland data (rs1782754, rs1022981, rs6673324, rs1137100) were nominally associated with WC, P=7.085 × 10(-22) (adjusted P=0.0979) and P=5.496 × 10(-144) (adjusted P=0.1062), respectively. PMID:25296580

  17. Novel locus for fibrinogen in 3' region of LEPR gene in island population of Vis (Croatia).

    PubMed

    Tomas, Željka; Petranović, Matea Zajc; Škarić-Jurić, Tatjana; Barešić, Ana; Salihović, Marijana Peričić; Narančić, Nina Smolej

    2014-11-01

    Leptin, a possible mediator between energy homeostasis, inflammation and cardiovascular disease (CVD), acts via leptin receptors. We investigated association of single-nucleotide polymorphisms (SNPs) and haplotypes of the leptin receptor gene (LEPR) with several CVD risk factors: body mass index, waist circumference (WC), serum lipids, fibrinogen and C-reactive protein levels. Thirty-one SNPs in and near LEPR gene were analyzed in 986 inhabitants of the island of Vis, Croatia and 29 SNPs in the inland sample (N=499). We assessed linkage disequilibrium (LD), SNP and haplotype associations with the selected phenotypes. rs4291477 significantly associated with fibrinogen (P=0.003) and rs7539471 marginally significantly with high-density lipoprotein (P=0.004), but only in the Vis sample, while rs10493384 marginally significantly associated with triglyceride levels (P=0.006) in the inland sample. SNPs were grouped into eight LD blocks in Vis and in seven blocks in the inland population. Haplotype A-C-A-A-G-A in block 5 in Vis (rs1782754, rs1171269, rs1022981, rs6673324, rs3790426, rs10493380) and haplotype A-A-A-A in block 4 in the inland data (rs1782754, rs1022981, rs6673324, rs1137100) were nominally associated with WC, P=7.085 × 10(-22) (adjusted P=0.0979) and P=5.496 × 10(-144) (adjusted P=0.1062), respectively.

  18. The estimation of fibrinogen levels in animal plasmas by a simple refractometric method. A comparison with a biuret method.

    PubMed

    Sutton, R H

    1977-05-01

    A comparison was made between a biuret (reference) method and a simple refractometric (test) method for measuring fibrinogen levels in 84 animal plasmas. Although the correlation between the two methods was high (4=0.90 P less than 0-001) there was considerable random variation in the refractometric results in relation to the biuret results. This was thought to be due in part to the fact that refractometric results could only be expressed in multiples of 2.4 g/litre. In spite of this limitation, the refractometric method, on the grounds of speen and simplicity, is considered to have worthwhile application for fibrinogen determinations in practice laboratory.

  19. Regenerative Surface Plasmon Resonance (SPR) biosensor: real-time measurement of fibrinogen in undiluted human serum using the competitive adsorption of proteins.

    PubMed

    Wang, Ran; Lajevardi-Khosh, Arad; Choi, Seokheun; Chae, Junseok

    2011-10-15

    Epidemiological studies suggest that elevated plasma fibrinogen levels are associated with an increased risk of cardiovascular disorders. Normal fibrinogen level is in the range of 1.5-4.5mg/mL, depending upon both genetic (intrinsic) and environmental (extrinsic) factors. An increase of 0.25mg/mL from the normal level can often be correlated with a high risk of cardiovascular disease. Thus, it is useful to monitor fibrinogen level in serum of a patient for clinical diagnosis. We report a regenerative biosensor that measures real-time fibrinogen levels in undiluted serum. The biosensor uses Surface Plasmon Resonance (SPR), highly sensitive optical technique. The biosensor does not use bio-receptors (i.e., antibodies, enzymes, DNA, etc.) unlike conventional biosensors, and deploys the nature of competitive adsorption of proteins to achieve selective detection of fibrinogen. We measured fibrinogen-spiked serum samples with a concentration of 1.5-4.5 mg/mL, and repeated six measurement trials to obtain statistical distribution of the measurements using the regeneration method of the sensing surface. The SPR biosensor has a sensitivity of 42 mDeg/(mg/mL) for a fibrinogen concentration in the range of 0.5-2.5 mg/mL, whereas it was hard to correlate the measurements to the spiked-fibrinogen samples of above 2.5 mg/mL.

  20. Functional interactions as a survival strategy against abnormal aggregation

    PubMed Central

    Laura, Masino; Giuseppe, Nicastro; Lesley, Calder; Michele, Vendruscolo; Annalisa, Pastore

    2011-01-01

    Protein aggregation is under intense scrutiny because of its role in human disease. Although increasing evidence indicates that protein native states are highly protected against aggregation, the specific protection mechanisms are poorly understood. Insight into such mechanisms can be gained through study of the relatively few proteins that aggregate under native conditions. Ataxin-3, the protein responsible for Spinocerebellar ataxia type 3, a polyglutamine expansion disease, represents one of such examples. Polyglutamine expansion is central for determining solubility and aggregation rates of ataxin-3, but these properties are profoundly modulated by its N-terminal Josephin domain. This work aims at identifying the regions that promote Josephin fibrillogenesis and rationalizing the mechanisms that protect Josephin and nonexpanded ataxin-3 from aberrant aggregation. Using different biophysical techniques, aggregation propensity predictions and rational design of amino acid substitutions, we show that Josephin has an intrinsic tendency to fibrillize under native conditions and that fibrillization is promoted by two solvent-exposed patches, which are also involved in recognition of natural substrates, such as ubiquitin. Indeed, designed mutations at these patches or substrate binding significantly reduce Josephin aggregation kinetics. Our results provide evidence that protein nonpathologic function can play an active role in preventing aberrant fibrillization and suggest the molecular mechanism whereby this occurs in ataxin-3.—Masino, L., Nicastro, G., Calder, L., Vendruscolo, M., Pastore, A. Functional interactions as a survival strategy against abnormal aggregation. PMID:20810784

  1. Proteins aggregation and human diseases

    NASA Astrophysics Data System (ADS)

    Hu, Chin-Kun

    2015-04-01

    Many human diseases and the death of most supercentenarians are related to protein aggregation. Neurodegenerative diseases include Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), frontotemporallobar degeneration, etc. Such diseases are due to progressive loss of structure or function of neurons caused by protein aggregation. For example, AD is considered to be related to aggregation of Aβ40 (peptide with 40 amino acids) and Aβ42 (peptide with 42 amino acids) and HD is considered to be related to aggregation of polyQ (polyglutamine) peptides. In this paper, we briefly review our recent discovery of key factors for protein aggregation. We used a lattice model to study the aggregation rates of proteins and found that the probability for a protein sequence to appear in the conformation of the aggregated state can be used to determine the temperature at which proteins can aggregate most quickly. We used molecular dynamics and simple models of polymer chains to study relaxation and aggregation of proteins under various conditions and found that when the bending-angle dependent and torsion-angle dependent interactions are zero or very small, then protein chains tend to aggregate at lower temperatures. All atom models were used to identify a key peptide chain for the aggregation of insulin chains and to find that two polyQ chains prefer anti-parallel conformation. It is pointed out that in many cases, protein aggregation does not result from protein mis-folding. A potential drug from Chinese medicine was found for Alzheimer's disease.

  2. High molecular weight kininogen binds to unstimulated platelets.

    PubMed Central

    Gustafson, E J; Schutsky, D; Knight, L C; Schmaier, A H

    1986-01-01

    Studies were performed to determine if the unstimulated platelet membrane has a site for high molecular weight kininogen (HMWK) binding. 125I-HMWK bound to unstimulated platelets. Zn++ was required for 125I-HMWK binding to unstimulated platelets and binding was maximal at 50 microM Zn++. Neither Mg++ nor Ca++ substituted for Zn++ in supporting 125I-HMWK binding to unstimulated platelets, and neither ion potentiated binding in the presence of 50 microM zinc. 125I-HMWK competed with equal affinity with HMWK for binding, and excess HMWK inhibited 125I-HMWK-platelet binding. Only HMWK, not prekallikrein, Factor XII, Factor XI, Factor V, fibrinogen, or fibronectin inhibited 125I-HMWK-platelet binding. 125I-HMWK binding to unstimulated platelets was 89% reversible within 10 min with a 50-fold molar excess of HMWK. Unstimulated platelets contained a single set of saturable, high affinity binding sites for 125I-HMWK with an apparent dissociation constant of 0.99 nM +/- 0.35 and 3,313 molecules/platelet +/- 843. These studies indicate that the unstimulated external platelet membrane has a binding site for HMWK that could serve as a surface to modulate contact phase activation. Images PMID:3722381

  3. Mechanism of Algal Aggregation by Bacillus sp. Strain RP1137

    PubMed Central

    Powell, Ryan J.

    2014-01-01

    Alga-derived biofuels are one of the best alternatives for economically replacing liquid fossil fuels with a fungible renewable energy source. Production of fuel from algae is technically feasible but not yet economically viable. Harvest of dilute algal biomass from the surrounding water remains one of the largest barriers to economic production of algal biofuel. We identified Bacillus sp. strain RP1137 in a previous study and showed that this strain can rapidly aggregate several biofuel-producing algae in a pH- and divalent-cation-dependent manner. In this study, we further characterized the mechanism of algal aggregation by RP1137. We show that aggregation of both algae and bacteria is optimal in the exponential phase of growth and that the density of ionizable residues on the RP1137 cell surface changes with growth stage. Aggregation likely occurs via charge neutralization with calcium ions at the cell surface of both algae and bacteria. We show that charge neutralization occurs at least in part through binding of calcium to negatively charged teichoic acid residues. The addition of calcium also renders both algae and bacteria more able to bind to hydrophobic beads, suggesting that aggregation may occur through hydrophobic interactions. Knowledge of the aggregation mechanism may enable engineering of RP1137 to obtain more efficient algal harvesting. PMID:24771029

  4. Aggregating tags for column-free protein purification.

    PubMed

    Lin, Zhanglin; Zhao, Qing; Xing, Lei; Zhou, Bihong; Wang, Xu

    2015-12-01

    Protein purification remains a central need for biotechnology. In recent years, a class of aggregating tags has emerged, which offers a quick, cost-effective and column-free alternative for producing recombinant proteins (and also peptides) with yield and purity comparable to that of the popular His-tag. These column-free tags induce the formation of aggregates (during or after expression) when fused to a target protein or peptide, and upon separation from soluble impurities, the target protein or peptide is subsequently released via a cleavage site. In this review, we categorize these tags as follows: (i) tags that induce inactive protein aggregates in vivo; (ii) tags that induce active protein aggregates in vivo; and (iii) tags that induce soluble expression in vivo, but aggregates in vitro. The respective advantages and disadvantages of these tags are discussed, and compared to the three conventional tags (His-tag, maltose-binding protein [MBP] tag, and intein-mediated purification with a chitin-binding tag [IMPACT-CN]). While this new class of aggregating tags is promising, more systematic tests are required to further the use. It is conceivable, however, that the combination of these tags and the more traditional columns may significantly reduce the costs for resins and columns, particularly for the industrial scale.

  5. NADH fluorescence lifetime is an endogenous reporter of α-synuclein aggregation in live cells

    PubMed Central

    Plotegher, Nicoletta; Stringari, Chiara; Jahid, Sohail; Veronesi, Marina; Girotto, Stefania; Gratton, Enrico; Bubacco, Luigi

    2015-01-01

    α-Synuclein (aS) aggregation has been amply investigated for its involvement in Parkinson’s disease because its amyloid fibrils are the main constituent of Lewy bodies, one of the hallmarks of the disease. aS aggregation was studied here in vitro and in cellular models to correlate aggregation products with toxicity mechanisms. Independent results published elsewhere suggested that aS overexpression and/or aggregation may impair cellular metabolism and cause mitochondrial damage. In this context, we report the characterization of changes in NADH fluorescence properties in vitro and in human embryonic kidney 293 cells upon aS aggregation. The application of the phasor approach to study NADH fluorescence lifetime and emission allowed us to identify changes that correlate with aS aggregation. In particular, the fraction of bound NADH, characterized by longer lifetimes in comparison to free NADH, is increased, and the maximum of the NADH emission is shifted toward shorter wavelengths in the presence of aggregating aS both in vitro and in cells. These data suggest that NADH binds to aggregated aS. NMR experiments in vitro substantiate such binding, which occurs during aggregation. NADH fluorescence is thus useful to detect aS aggregation and by extension the associated oxidative stress.—Plotegher, N., Stringari, C., Jahid, S., Veronesi, M., Girotto, S., Gratton, E., Bubacco, L. NADH fluorescence lifetime is an endogenous reporter of α-synuclein aggregation in live cells. PMID:25713058

  6. Dynamics of fire ant aggregations

    NASA Astrophysics Data System (ADS)

    Tennenbaum, Michael; Hu, David; Fernandez-Nieves, Alberto

    Fire ant aggregations are an inherently active system. Each ant harvests its own energy and can convert it into motion. The motion of individual ants contributes non-trivially to the bulk material properties of the aggregation. We have measured some of these properties using plate-plate rheology, where the response to an applied external force or deformation is measured. In this talk, we will present data pertaining to the aggregation behavior in the absence of any external force. We quantify the aggregation dynamics by monitoring the rotation of the top plate and by measuring the normal force. We then compare the results with visualizations of 2D aggregations.

  7. Dual role of G-runs and hnRNP F in the regulation of a mutation-activated pseudoexon in the fibrinogen gamma-chain transcript.

    PubMed

    Rimoldi, Valeria; Soldà, Giulia; Asselta, Rosanna; Spena, Silvia; Stuani, Cristiana; Buratti, Emanuele; Duga, Stefano

    2013-01-01

    Most pathological pseudoexon inclusion events originate from single activating mutations, suggesting that many intronic sequences are on the verge of becoming exons. However, the precise mechanisms controlling pseudoexon definition are still largely unexplored. Here, we investigated the cis-acting elements and trans-acting regulatory factors contributing to the regulation of a previously described fibrinogen gamma-chain (FGG) pseudoexon, which is activated by a deep-intronic mutation (IVS6-320A>T). This pseudoexon contains several G-run elements, which may be bound by heterogeneous nuclear ribonucleoproteins (hnRNPs) F and H. To explore the effect of these proteins on FGG pseudoexon inclusion, both silencing and overexpression experiments were performed in eukaryotic cells. While hnRNP H did not significantly affect pseudoexon splicing, hnRNP F promoted pseudoexon inclusion, indicating that these two proteins have only partially redundant functions. To verify the binding of hnRNP F and the possible involvement of other trans-acting splicing modulators, pulldown experiments were performed on the region of the pseudoexon characterized by both a G-run and enrichment for exonic splicing enhancers. This 25-bp-long region strongly binds hnRNP F/H and weakly interacts with Serine/Arginine-rich protein 40, which however was demonstrated to be dispensable for FGG pseudoexon inclusion in overexpression experiments. Deletion analysis, besides confirming the splicing-promoting role of the G-run within this 25-bp region, demonstrated that two additional hnRNP F binding sites might instead function as silencer elements. Taken together, our results indicate a major role of hnRNP F in regulating FGG pseudoexon inclusion, and strengthen the notion that G-runs may function either as splicing enhancers or silencers of the same exon.

  8. Expression of four mutant fibrinogen gammaC domains in Pichia pastoris confirms them as causes of hypofibrinogenaemia.

    PubMed

    Sheen, Campbell R; Dear, Amy; Brennan, Stephen O

    2010-10-01

    Mutations in the fibrinogen gene cluster can cause low plasma fibrinogen concentrations, known as hypofibrinogenaemia. It is important to verify whether a detected sequence variant in this cluster is deleterious or benign and this can be accomplished using protein expression systems. In this study, four mutations in the fibrinogen gammaC domain that had previously been described in patients with hypofibrinogenaemia were introduced into a gammaC construct and expressed in a Pichia pastoris yeast system to investigate their effects on protein stability and secretion. These experiments showed that the fibrinogen Middlemore (N230D), Dorfen (A289V), Mannheim II (H307Y), and Muncie (T371I) mutations were not secreted, supporting their causative role in hypofibrinogenaemia. Overexpression of the N230D, A289V and H307Y mutants revealed that the majority of the synthesised protein was retained in the endoplasmic reticulum, with only a minor proportion reaching the trans-Golgi network. Regardless, none of this protein was secreted which confirms that the four mutations investigated are indeed responsible for hypofibrinogenaemia. PMID:20580674

  9. Monitoring the effects of fibrinogen concentration on blood coagulation using quartz crystal microbalance (QCM) and its comparison with thromboelastography

    NASA Astrophysics Data System (ADS)

    Lakshmanan, Ramji S.; Efremov, Vitaly; Cullen, Sinéad; Byrne, Barry; Killard, Anthony J.

    2013-05-01

    Fibrinogen has been identified as a major risk factor in cardiovascular disorders. Fibrinogen (340 kDa) is a soluble dimeric glycoprotein found in plasma and is a major component of the coagulation cascade. It has been identified as a major risk factor in cardiovascular disorders. The time taken for its conversion to fibrin is usually used as an "endpoint" in most clot-based assays, without any information on dynamic changes in physical properties or kinetics of a forming clot. A global coagulation profile as measured by Thromboelastography® (TEG®) provides information on both the time and kinetics of changes in physical property of the forming clot. In this work, Quartz crystal microbalance (QCM), which is a piezoelectric resonator has been used to study coagulation of plasma and compared with TEG. The changes in resonant frequency (Δf) and half width at half maximum (HWHM or ΔΓ) were used to evaluate effect of fibrinogen concentration. It has been shown that TEG is less sensitive to low concentrations of fibrinogen and dilution while QCM is able to monitor clot formation in both the circumstances.

  10. Insulin counter-regulatory factors, fibrinogen and C-reactive protein during olanzapine administration: effects of the antidiabetic metformin.

    PubMed

    Baptista, Trino; Sandia, Ignacio; Lacruz, Anny; Rangel, Nairy; de Mendoza, Soaira; Beaulieu, Serge; Contreras, Quilianio; Galeazzi, Tatiana; Vargas, Doritza

    2007-03-01

    In this study, the Authors assessed some insulin counter-regulatory factors, fibrinogen and C-reactive protein after olanzapine administration, and the effect of metformin on these variables, 37 patients with chronic schizophrenia were given olanzapine (10 mg/day for 14 weeks). Nineteen patients received metformin (850-2550 mg/day) and 18 received placebo in a randomized, double-blind protocol. The following variables were quantified before and after olanzapine: cortisol, leptin, tumor necrosis factor-alpha, glucagon, growth hormone, fibrinogen and C-reactive protein. Results were correlated with the changes in body weight and the insulin resistance index. We have reported elsewhere that metformin did not prevent olanzapine-induced weight gain, and the insulin resistance index significantly decreased after metformin and placebo; Baptista T, et al. Can J Psychiatry 2006; 51: 192-196. Cortisol, tumor necrosis factor-alpha and fibrinogen levels significantly decreased in both groups. Glucagon significantly increased after metformin (P=0.03). Leptin tended to increase after placebo (P=0.1) and displayed a small nonsignificant reduction after metformin. The C-reactive protein did not change significantly in any group. Contrarily to most published studies, olanzapine was associated with decreased insulin resistance. Decrements in cortisol, fibrinogen and tumor necrosis factor-alpha levels point to an improvement in the metabolic profile. The trend for leptin to increase after placebo, but not after metformin in spite of similar weight gain suggests a beneficial effect of this antidiabetic agent. PMID:17293706

  11. Macrophage-derived IL-18 and increased fibrinogen deposition are age-related inflammatory signatures of vascular remodeling

    PubMed Central

    Rodriguez-Menocal, Luis; Faridi, Mohd Hafeez; Martinez, Laisel; Shehadeh, Lina A.; Duque, Juan C.; Wei, Yuntao; Mesa, Annia; Pena, Angela; Gupta, Vineet; Pham, Si M.

    2014-01-01

    Aging has been associated with pathological vascular remodeling and increased neointimal hyperplasia. The understanding of how aging exacerbates this process is fundamental to prevent cardiovascular complications in the elderly. This study proposes a mechanism by which aging sustains leukocyte adhesion, vascular inflammation, and increased neointimal thickness after injury. The effect of aging on vascular remodeling was assessed in the rat balloon injury model using microarray analysis, immunohistochemistry, and LINCOplex assays. The injured arteries in aging rats developed thicker neointimas than those in younger animals, and this significantly correlated with a higher number of tissue macrophages and increased vascular IL-18. Indeed, IL-18 was 23-fold more abundant in the injured vasculature of aged animals compared with young rats, while circulating levels were similar in both groups of animals. The depletion of macrophages in aged rats with clodronate liposomes ameliorated vascular accumulation of IL-18 and significantly decreased neointimal formation. IL-18 was found to inhibit apoptosis of vascular smooth muscle cells (VSMC) and macrophages, thus favoring both the formation and inflammation of the neointima. In addition, injured arteries of aged rats accumulated 18-fold more fibrinogen-γ than those of young animals. Incubation of rat peritoneal macrophages with immobilized IL-18 increased leukocyte adhesion to fibrinogen and suggested a proinflammatory positive feedback loop among macrophages, VSMC, and the deposition of fibrinogen during neointimal hyperplasia. In conclusion, our data reveal that concentration changes in vascular cytokine and fibrinogen following injury in aging rats contribute to local inflammation and postinjury neointima formation. PMID:24414074

  12. A rapidly produced 125I labelled autologous fibrinogen: in vitro properties and preliminary metabolic studies in man.

    PubMed Central

    Hawker, R J; Hawker, L M

    1976-01-01

    The properties of fibrinogen extracted by a precipitation method using glycine at ambient temperatures near neutral pH are described. The simple and reproducible method gives a 73% yield of high purity plasminogen-free fibrinogen in 45 minutes from small volumes of plasma. The protein extract was labelled with 125I using chloramine-T under conditions optimal for fibrinogen stability. The extraction procedure, radio-iodination, desalting, and sterilization take only 70 minutes for completion from the time donor blood is received in the laboratory. The methods, using a specially developed extraction vessel and desalting/sterilizing column, can be used in a small hospital laboratory. Autologous fibrinogen can thus be extracted from patients' blood, eliminating the risk of transmitting hepatitis when it is re-administered. The autologous material, which is 97% clottable and contains less than 0-05% free iodide, is being routinely used as a diagnostic tool in the detection of deep vein thrombosis. The high purity of the preparation facilitates metabolic studies and in vitro experimental work. In vivo results show a mean half-life in three normal volunteers of 3-95 days and a catabolic rate of 25-23% per day with the extravascular space estimated as 24-86%. In 30 surgical patients an expected reduced half-life in plasma was determined with a mean of 3-1 days. PMID:939805

  13. Interaction of platelets, fibrinogen and endothelial cells with plasma deposited PEO-like films

    NASA Astrophysics Data System (ADS)

    Yang, Zhilu; Wang, Jin; Li, Xin; Tu, Qiufen; Sun, Hong; Huang, Nan

    2012-02-01

    For blood-contacting biomedical implants like retrievable vena cava filters, surface-based diagnostic devices or in vivo sensors, limiting thrombosis and cell adhesion is paramount, due to a decrease even failure in performance. Plasma deposited PEO-like films were investigated as surface modifications. In this work, mixed gas composed of tetraethylene glycol dimethyl ether (tetraglyme) vapor and oxygen was used as precursor. It was revealed that plasma polymerization under high ratio of oxygen/tetraglyme led to deposition of the films that had high content of ether groups. This kind of PEO-like films had good stability in phosphate buffer solution. In vitro hemocompatibility and endothelial cell (EC) adhesion revealed low platelet adhesion, platelet activation, fibrinogen adhesion, EC adhesion and proliferation on such plasma deposited PEO-like films. This made it a potential candidate for the applications in anti-fouling surfaces of blood-contacting biomedical devices.

  14. The reduced soluble fibrinogen-like protein 2 and regulatory T cells in acute coronary syndrome

    PubMed Central

    Liu, Kun; Li, Ting; Huang, Shiyuan; Long, Rui; You, Ya; Liu, Jinping

    2016-01-01

    Soluble fibrinogen-like protein 2, sfgl2, is the new effector of CD4+CD25+FOXP3+ regulatory T cell (Treg) and exerts immunosuppressive activity. We design this study to investigate the possible role of sfgl2 in atherosclerosis. A total of 58 acute coronary syndrome (ACS) patients, together with 22 stable angina (SA) patients and 31 normal coronary artery (NCA) people were enrolled in our study. Serum level of sfgl2 and plasma level of Treg were respectively measured. In line with the change of Treg, serum level of sfgl2 in ACS (8.70 ng/mL) was significantly decreased (P = 0.003), compared with that in SA (11.86 ng/mL) and NCA (17.55 ng/mL). Both sfgl2 and Treg level were obviously decreased in ACS; Sfgl2 may play a protective role in atherosclerosis. PMID:26515143

  15. Characterization of the gene encoding a fibrinogen-related protein expressed in Crassostrea gigas hemocytes.

    PubMed

    Skazina, M A; Gorbushin, A M

    2016-07-01

    Four exons of the CgFrep1 gene (3333 bp long) encode a putative fibrinogen-related protein (324 aa) bearing a single C-terminal FBG domain. Transcripts of the gene obtained from hemocytes of different Pacific oysters show prominent individual variation based on SNP and indels of tandem repeats resulted in polymorphism of N-terminus of the putative CgFrep1 polypeptide. The polypeptide chain bears N-terminal coiled-coil region potentially acting as inter-subunit interface in the protein oligomerization. It is suggested that CgFrep1 gene encodes the oligomeric lectin composed of at least two subunits. PMID:27189918

  16. The influence of residual water on the solid-state properties of freeze-dried fibrinogen.

    PubMed

    Wahl, Verena; Leitgeb, Stefan; Laggner, Peter; Pichler, Harald; Liebminger, Andreas; Khinast, Johannes

    2015-04-01

    The purpose of this work was to investigate the influence of residual water in freeze-dried protein powders on the dissolution behavior of the solid-state proteins. To that end, six freeze-dried fibrinogen powder lots were stored at four levels of relative humidity and analyzed with regard to the particle size and shape, the specific surface area, the solid state of protein and the inner surface. Furthermore, the dissolution behavior of the powders was investigated. We clearly identified differences in the specific surface area, specific inner surface area, crystallinity, particle size and shape, which we were able to correlate to the dissolution behavior. These differences were triggered due to the different levels of residual moisture during two weeks of storage. Thus, we were able to show that the storage conditions have significant impact on the processing of pharmaceutical protein materials.

  17. Kinetics of protein aggregation

    NASA Astrophysics Data System (ADS)

    Knowles, Tuomas

    2015-03-01

    Aggregation into linear nanostructures, notably amyloid and amyloid-like fibrils, is a common form of behaviour exhibited by a range of peptides and proteins. This process was initially discovered in the context of the aetiology of a range of neurodegenerative diseases, but has recently been recognised to of general significance and has been found at the origin of a number of beneficial functional roles in nature, including as catalytic scaffolds and functional components in biofilms. This talk discusses our ongoing efforts to study the kinetics of linear protein self-assembly by using master equation approaches combined with global analysis of experimental data.

  18. Structure of Viral Aggregates

    NASA Astrophysics Data System (ADS)

    Barr, Stephen; Luijten, Erik

    2010-03-01

    The aggregation of virus particles is a particular form of colloidal self-assembly, since viruses of a give type are monodisperse and have identical, anisotropic surface charge distributions. In small-angle X-ray scattering experiments, the Qbeta virus was found to organize in different crystal structures in the presence of divalent salt and non-adsorbing polymer. Since a simple isotropic potential cannot explain the occurrence of all observed phases, we employ computer simulations to investigate how the surface charge distribution affects the virus interactions. Using a detailed model of the virus particle, we find an asymmetric ion distribution around the virus which gives rise to the different phases observed.

  19. Phytochelatins inhibit the metal-induced aggregation of alpha-crystallin.

    PubMed

    Hori, Yasuhisa; Yoshikawa, Tomoaki; Tsuji, Naoki; Bamba, Takeshi; Aso, Yoshikazu; Kudou, Motonori; Uchida, Yoshiki; Takagi, Masahiro; Harada, Kazuo; Hirata, Kazumasa

    2009-02-01

    Phytochelatins (PCs) are heavy-metal-binding peptides found in some eukaryotes. This study investigates the use of plant-derived PCs for the inhibition of metal-induced protein aggregation. The results of this study show that PCs inhibit zinc-induced alpha-crystallin aggregation, and suggest that PCs might be useful as anti-cataract agents.

  20. Hypodysfibrinogenaemia due to production of mutant fibrinogen alpha-chains lacking fibrinopeptide A and polymerisation knob ‘A’

    PubMed Central

    Vorjohann, Silja; Fish, Richard J.; Biron-Andreani, Christine; Nagaswami, Chandrasekaran; Weisel, John W.; Boulot, Pierre; Reyftmann, Lionel; de Moerloose, Philippe; Neerman-Arbez, Marguerite

    2011-01-01

    Summary Inherited disorders of fibrinogen are rare and affect either the quantity (hypofibrinogenaemia and afibrinogenaemia) or the quality of the circulating fibrinogen (dysfibrinogenaemia) or both (hypodysfibrinogenaemia). Extensive allelic heterogeneity has been found for all these disorders: in congenital afibrinogenaemia for example more than 40 mutations, the majority in FGA, have been identified in homozygosity or in compound heterozygosity. Numerous mutations have also been identified in patients with hypofibrinogenaemia, many of these patients are in fact heterozygous carriers of afibrinogenaemia mutations. Despite the number of genetic analyses performed, the study of additional patients still allows the identification of novel mutations. Here we describe the characterization of a novel FGA intron 2 donor splice-site mutation (Fibrinogen Montpellier II) identified in three siblings with hypodysfibrinogenaemia. Functional analysis of RNA produced by the mutant minigene in COS-7 cells revealed that the mutation led to the in-frame skipping of exon 2. Western blot analysis of COS-7 cells expressing an exon 2 deleted FGA cDNA revealed that an alpha-chain lacking exon 2, which codes in particular for fibrinopeptide A and polymerisation knob ‘A’, has the potential to be assembled into a hexamer and secreted. Analysis of precipitated fibrinogen from patient plasma showed that the defect leads to the presence in the circulation of alpha-chains lacking knob ‘A’ which is essential for the early stages of fibrin polymerisation. Fibrin made from purified patient fibrinogen clotted with thrombin displayed thinner fibers with frequent ends and large pores. PMID:20806111

  1. Fibrinogen blocks the autoactivation and thrombin-mediated activation of factor XI on dextran sulfate.

    PubMed Central

    Scott, C F; Colman, R W

    1992-01-01

    The intrinsic pathway of blood coagulation is activated when factor XIa, one of the three contact-system enzymes, is generated and then activates factor IX. Factor XI has been shown to be efficiently activated in vitro by surface-bound factor XIIa after factor XI is transported to the surface by its cofactor, high molecular weight kininogen (HK). However, individuals lacking any of the three contact-system proteins--namely, factor XII, prekallikrein, and HK--do not suffer from bleeding abnormalities. This mystery has led several investigators to search for an "alternate" activation pathway for factor XI. Recently, factor XI has been reported to be autoactivated on the soluble "surface" dextran sulfate, and thrombin was shown to accelerate the autoactivation. However, it was also reported that HK, the cofactor for factor XIIa-mediated activation of factor XI, actually diminishes the thrombin-catalyzed activation rate of factor XI. Nonetheless, it was suggested that thrombin was a more efficient activator than factor XIIa. In this report we investigated the effect of fibrinogen, the major coagulation protein in plasma, on the activation rate of factor XI. Fibrinogen, the preferred substrate for thrombin in plasma, virtually prevented autoactivation of factor XI as well as the thrombin-mediated activation of factor XI, while having no effect on factor XIIa-catalyzed activation. HK dramatically curtailed the autoactivation of factor XI in addition to the thrombin-mediated activation. These data indicate that factor XI would not be autoactivated in a plasma environment, and thrombin would, therefore, be unlikely to potentiate the activation. We believe that the "missing pathway" for factor XI activation remains an enigma that warrants further investigation. PMID:1454798

  2. The lantibiotic nisin induces lipid II aggregation, causing membrane instability and vesicle budding.

    PubMed

    Scherer, Katharina M; Spille, Jan-Hendrik; Sahl, Hans-Georg; Grein, Fabian; Kubitscheck, Ulrich

    2015-03-10

    The antimicrobial peptide nisin exerts its activity by a unique dual mechanism. It permeates the cell membranes of Gram-positive bacteria by binding to the cell wall precursor Lipid II and inhibits cell wall synthesis. Binding of nisin to Lipid II induces the formation of large nisin-Lipid II aggregates in the membrane of bacteria as well as in Lipid II-doped model membranes. Mechanistic details of the aggregation process and its impact on membrane permeation are still unresolved. In our experiments, we found that fluorescently labeled nisin bound very inhomogeneously to bacterial membranes as a consequence of the strong aggregation due to Lipid II binding. A correlation between cell membrane damage and nisin aggregation was observed in vivo. To further investigate the aggregation process of Lipid II and nisin, we assessed its dynamics by single-molecule microscopy of fluorescently labeled Lipid II molecules in giant unilamellar vesicles using light-sheet illumination. We observed a continuous reduction of Lipid II mobility due to a steady growth of nisin-Lipid II aggregates as a function of time and nisin concentration. From the measured diffusion constants of Lipid II, we estimated that the largest aggregates contained tens of thousands of Lipid II molecules. Furthermore, we observed that the formation of large nisin-Lipid II aggregates induced vesicle budding in giant unilamellar vesicles. Thus, we propose a membrane permeation mechanism that is dependent on the continuous growth of nisin-Lipid II aggregation and probably involves curvature effects on the membrane.

  3. Measurement of blood coagulation with considering RBC aggregation through a microchip-based light transmission aggregometer.

    PubMed

    Lim, Hyunjung; Nam, Jeonghun; Xue, Shubin; Shin, Sehyun

    2011-01-01

    Even though blood coagulation can be tested by various methods and techniques, the effect of RBC aggregation on blood coagulation is not fully understood. The present study monitored clot formation in a microchip-based light transmission aggregometer. Citrated blood samples with and without the addition of calcium ion solution were initially disaggregated by rotating a stirrer in the microchip. After abrupt stop of the rotating stirrer, the transmitted light intensity over time was recorded. The syllectogram (light intensity vs. time graph) manifested a rapid increase that is associated with RBC aggregation followed by a decrease that is associated with blood coagulation. The time to reach the peak point was used as a new index of coagulation time (CT) and ranged from 200 to 500 seconds in the present measurements. The CT was inversely proportional to the concentration of fibrinogen, which enhances RBC aggregation. In addition, the CT was inversely proportional to the hematocrit, which is similar to the case of the prothrombin time (PT), as measured by a commercial coagulometer. Thus, we carefully concluded that RBC aggregation should be considered in tests of blood coagulation.

  4. Taurine and platelet aggregation

    SciTech Connect

    Nauss-Karol, C.; VanderWende, C.; Gaut, Z.N.

    1986-03-01

    Taurine is a putative neurotransmitter or neuromodulator. The endogenous taurine concentration in human platelets, determined by amino acid analysis, is 15 ..mu..M/g. In spite of this high level, taurine is actively accumulated. Uptake is saturable, Na/sup +/ and temperature dependent, and suppressed by metabolic inhibitors, structural analogues, and several classes of centrally active substances. High, medium and low affinity transport processes have been characterized, and the platelet may represent a model system for taurine transport in the CNS. When platelets were incubated with /sup 14/C-taurine for 30 minutes, then resuspended in fresh medium and reincubated for one hour, essentially all of the taurine was retained within the cells. Taurine, at concentrations ranging from 10-1000 ..mu..M, had no effect on platelet aggregation induced by ADP or epinephrine. However, taurine may have a role in platelet aggregation since 35-39% of the taurine taken up by human platelets appears to be secreted during the release reaction induced by low concentrations of either epinephrine or ADP, respectively. This release phenomenon would imply that part of the taurine taken up is stored directly in the dense bodies of the platelet.

  5. Collagen fibril aggregation-inhibitor from sea cucumber dermis.

    PubMed

    Trotter, J A; Lyons-Levy, G; Chino, K; Koob, T J; Keene, D R; Atkinson, M A

    1999-12-01

    Collagen fibrils from the dermis of the sea cucumber Cucumaria frondosa are aggregated in vitro by the dermal glycoprotein stiparin (Trotter et al., 1996). Under physiological ionic conditions stiparin appears to be both necessary and sufficient to cause fibrils to aggregate (Trotter et al., 1997). We report here the initial biochemical and biophysical characterization of a sulfated glycoprotein from C. frondosa dermis that binds stiparin and inhibits its fibril-aggregating activity. This inhibitory glycoprotein, which has been named 'stiparin-inhibitor,' has the highest negative charge density of all the macromolecules extracted from the dermis. SDS-PAGE reveals three approximately 31-kDa bands that stain with alcian blue but not with Coomassie blue. Analytical ultracentrifugation indicates a native molecular weight of 62 kDa. Transmission electron microscopy of rotary-shadowed molecules shows curved rods about 22 nm long. The glycoprotein does not bind collagen fibrils, but does bind stiparin with a 1:1 stoichiometry. The binding of stiparin-inhibitor to stiparin prevents the binding of stiparin to collagen fibrils. The carbohydrate moiety produced by papain-digestion of the glycoprotein retains all of its inhibitory activity. The carbohydrate moiety of the inhibitor is dominated by galactose and sulfate.

  6. Holographic characterization of protein aggregates

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Zhong, Xiao; Ruffner, David; Stutt, Alexandra; Philips, Laura; Ward, Michael; Grier, David

    Holographic characterization directly measures the size distribution of subvisible protein aggregates in suspension and offers insights into their morphology. Based on holographic video microscopy, this analytical technique records and interprets holograms of individual aggregates in protein solutions as they flow down a microfluidic channel, without requiring labeling or other exceptional sample preparation. The hologram of an individual protein aggregate is analyzed in real time with the Lorenz-Mie theory of light scattering to measure that aggregate's size and optical properties. Detecting, counting and characterizing subvisible aggregates proceeds fast enough for time-resolved studies, and lends itself to tracking trends in protein aggregation arising from changing environmental factors. No other analytical technique provides such a wealth of particle-resolved characterization data in situ. Holographic characterization promises accelerated development of therapeutic protein formulations, improved process control during manufacturing, and streamlined quality assurance during storage and at the point of use. Mrsec and MRI program of the NSF, Spheryx Inc.

  7. Reversible NaCl-induced aggregation of a monoclonal antibody at low pH: Characterization of aggregates and factors affecting aggregation.

    PubMed

    Bickel, Fabian; Herold, Eva Maria; Signes, Alba; Romeijn, Stefan; Jiskoot, Wim; Kiefer, Hans

    2016-10-01

    We investigated the influence of pH and sodium chloride concentration on aggregation kinetics of a monoclonal antibody. Aggregation was induced by sodium chloride addition at low pH. Protein conformation before and after salt addition was determined as well as the reversibility of aggregation. Aggregation was monitored at pH values between 2 and 7 with NaCl up to 1.5M by turbidity measurement and size-exclusion chromatography. Particle size distribution was assessed by using size-exclusion chromatography as well as nanoparticle tracking analysis and flow imaging microscopy. Structural changes were monitored by circular dichroism, Fourier transform infrared and fluorescence spectroscopy. Thermal stability was measured by differential scanning fluorimetry. Aggregation propensity was maximal at low pH and high ionic strength. While thermal stability decreased with pH, the secondary structure remained unchanged down to pH 3.5 and up to 1.5M NaCl. Precipitated protein could be largely reverted to monomers by dilution into salt-free buffer. The re-solubilized antibody was indistinguishable in structure, solubility and monodispersity from the unstressed protein. Also, binding to Protein A was steady. Aggregation could be reduced in the presence of trehalose. The results suggest a reversible aggregation mechanism characterized by a limited change in tertiary structure at low pH and a subsequent loss of colloidal stability resulting from electrostatic repulsion once salt is added to the sample. The experimental setup is robust and allows high-throughput quantification of the effect of additives on aggregation kinetics. PMID:27449627

  8. Reversible NaCl-induced aggregation of a monoclonal antibody at low pH: Characterization of aggregates and factors affecting aggregation.

    PubMed

    Bickel, Fabian; Herold, Eva Maria; Signes, Alba; Romeijn, Stefan; Jiskoot, Wim; Kiefer, Hans

    2016-10-01

    We investigated the influence of pH and sodium chloride concentration on aggregation kinetics of a monoclonal antibody. Aggregation was induced by sodium chloride addition at low pH. Protein conformation before and after salt addition was determined as well as the reversibility of aggregation. Aggregation was monitored at pH values between 2 and 7 with NaCl up to 1.5M by turbidity measurement and size-exclusion chromatography. Particle size distribution was assessed by using size-exclusion chromatography as well as nanoparticle tracking analysis and flow imaging microscopy. Structural changes were monitored by circular dichroism, Fourier transform infrared and fluorescence spectroscopy. Thermal stability was measured by differential scanning fluorimetry. Aggregation propensity was maximal at low pH and high ionic strength. While thermal stability decreased with pH, the secondary structure remained unchanged down to pH 3.5 and up to 1.5M NaCl. Precipitated protein could be largely reverted to monomers by dilution into salt-free buffer. The re-solubilized antibody was indistinguishable in structure, solubility and monodispersity from the unstressed protein. Also, binding to Protein A was steady. Aggregation could be reduced in the presence of trehalose. The results suggest a reversible aggregation mechanism characterized by a limited change in tertiary structure at low pH and a subsequent loss of colloidal stability resulting from electrostatic repulsion once salt is added to the sample. The experimental setup is robust and allows high-throughput quantification of the effect of additives on aggregation kinetics.

  9. Identification of an aggregation-prone structure of tau

    PubMed Central

    Elbaum-Garfinkle, Shana; Rhoades, Elizabeth

    2012-01-01

    The aggregation and deposition of normally soluble proteins is the hallmark of several devastating neurodegenerative disorders. For proteins such as tau in Alzheimer’s disease and α-synuclein in Parkinson’s disease, aggregation involves a transition from an intrinsically disordered monomer to a highly structured fiber. While understanding the role of these proteins in neurodegeneration requires elucidation of the structural basis of self-association, the conformational heterogeneity of disordered proteins makes their structural characterization inherently challenging. Here we use single molecule Förster resonance energy transfer to measure the conformational ensemble of tau in the absence and presence of heparin to identify critical conformational changes relevant to the initiation of aggregation. We find that different domains of tau display distinct conformational properties that are strongly correlated with their degree of disorder and which may relate to their roles in aggregation. Moreover, we observe that heparin binding induces a distinct two-state structural transition in tau described by a loss of long-range contacts and a concomitant compaction of the microtubule binding domain. Our results describe a conformational intermediate of tau that precedes the formation of aggregates and could serve as a target for tau-focused therapeutics. PMID:22998648

  10. Proteins with Intrinsically Disordered Domains Are Preferentially Recruited to Polyglutamine Aggregates

    PubMed Central

    O’Meally, Robert; Sonnenberg, Jason L.; Cole, Robert N.; Shewmaker, Frank P.

    2015-01-01

    Intracellular protein aggregation is the hallmark of several neurodegenerative diseases. Aggregates formed by polyglutamine (polyQ)-expanded proteins, such as Huntingtin, adopt amyloid-like structures that are resistant to denaturation. We used a novel purification strategy to isolate aggregates formed by human Huntingtin N-terminal fragments with expanded polyQ tracts from both yeast and mammalian (PC-12) cells. Using mass spectrometry we identified the protein species that are trapped within these polyQ aggregates. We found that proteins with very long intrinsically-disordered (ID) domains (≥100 amino acids) and RNA-binding proteins were disproportionately recruited into aggregates. The removal of the ID domains from selected proteins was sufficient to eliminate their recruitment into polyQ aggregates. We also observed that several neurodegenerative disease-linked proteins were reproducibly trapped within the polyQ aggregates purified from mammalian cells. Many of these proteins have large ID domains and are found in neuronal inclusions in their respective diseases. Our study indicates that neurodegenerative disease-associated proteins are particularly vulnerable to recruitment into polyQ aggregates via their ID domains. Also, the high frequency of ID domains in RNA-binding proteins may explain why RNA-binding proteins are frequently found in pathological inclusions in various neurodegenerative diseases. PMID:26317359

  11. The molecular cloning and characteristics of a fibrinogen-related protein (TfFREP1) gene from roughskin sculpin (Trachidermus fasciatus).

    PubMed

    Chai, Yingmei; Yu, Shanshan; Zhu, Qian

    2012-09-01

    Fibrinogen-related proteins are a family of glycoproteins containing fibrinogen-like domains. Many members of these proteins play important roles in innate immune responses. We isolated a fibrinogen-related protein gene (TfFREP1) from roughskin sculpin (Trachidermus fasciatus). The TfFREP1 encoded a protein of 264 amino acids, including 231 amino acids with fibrinogen-like domains. Both quantitative real-time polymerase chain reaction and western blot analysis showed that TfFREP1 was mainly expressed in skin and gill tissues of T. fasciatus. The expression level of TfFREP1 was upregulated at both mRNA and protein levels after stimulation of lipopolysaccharide. These results suggest that TfFREP1 may be involved in T. fasciatus immune reaction.

  12. Preoperative neutrophil–lymphocyte ratio and fibrinogen level in patients distinguish between muscle-invasive bladder cancer and non-muscle-invasive bladder cancer

    PubMed Central

    Ma, Chengquan; Lu, Bingxin; Diao, Chengwen; Zhao, Kun; Wang, Xinpeng; Ma, Baojing; Lu, Baojian; Sun, Erlin

    2016-01-01

    Introduction The aim of this study was to explore if the preoperative neutrophil–lymphocyte ratio (NLR) and fibrinogen level can help in distinguishing between muscle-invasive bladder cancer (MIBC) and non-muscle-invasive bladder cancer (NMIBC). Methods We identified 669 patients who underwent surgery at our institution, and evaluated their preoperative NLRs and fibrinogen levels. Patients were divided into two groups, NMIBC (group-I) and MIBC (group-II), according to the postoperative pathology. For the intergroup comparison, data obtained from the two groups were evaluated using independent samples t-test. The cutoff value of the NLR, fibrinogen level, and integrated NLR and fibrinogen level was determined with receiver operating characteristic (ROC) curve. Results The mean NLRs of group-I and group-II were found as 2.71±2.46 and 4.66±8.00, respectively (P<0.001). The fibrinogen levels of the two groups were ~3.13±0.70 g/L and 3.41±0.84 g/L, respectively (P=0.001). Whether the NLR, fibrinogen level, and integrated NLR and fibrinogen level can help in distinguishing between MIBC and NMIBC was evaluated with ROC curve. The cutoff value of NLR was estimated as 2.01 according to the Youden index. With this value, sensitivity was found as 67.1%, specificity was 52.7%, and area under receiver operating characteristic (ROC) curve (AUC) was 0.601 (P=0.031). The cutoff value of fibrinogen level was estimated as 3.17 g/L according to the Youden index. Accordingly, sensitivity was found as 58%, specificity was 58%, and AUC was 0.60 (P=0.001). The cutoff value of integrated NLR and fibrinogen level was found as 0.166; the sensitivity was found as 86%, specificity was 42%, and AUC was 0.801 (P=0.01). Conclusion The data obtained in this study suggested that 67.1% of Ta-T1 tumors were likely to be invasive if the NLR was >2.01 and 58% were likely to be invasive if the fibrinogen level was >3.17 g/L. When we used both the NLR and fibrinogen level to distinguish between

  13. Higher Fibrinogen Level is Independently Linked with the Presence and Severity of New-Onset Coronary Atherosclerosis among Han Chinese Population

    PubMed Central

    Zhang, Yan; Zhu, Cheng-Gang; Guo, Yuan-Lin; Xu, Rui-Xia; Li, Sha; Dong, Qian; Li, Jian-Jun

    2014-01-01

    Background Fibrinogen is a coagulation/inflammatory biomarker strongly associated with atherogenesis. However, no data is currently available regarding the association of fibrinogen level with the presence and severity of new-onset coronary atherosclerosis assessed by Gensini score (GS), particularly in Han Chinese with a large sample size. Methods and Results We studied 2288 consecutive, new-onset subjects undergoing coronary angiography with angina-like chest pain. Clinical and laboratory data were collected. Coronary stenotic lesions were considered to be the incidence of coronary atherosclerosis. The severity of coronary stenosis was determined by the GS system. Data indicated that patients with high GS had significantly elevated fibrinogen level (p<0.001). The prevalence and severity of coronary atherosclerosis were dramatically increased according to fibrinogen tertiles. Spearman correlation analysis revealed a positive association between fibrinogen level and GS (r = 0.138, p<0.001). Multivariate logistic regression analysis demonstrated that plasma fibrinogen level was independently associated with high GS (OR = 1.275, 95% CI 1.082–1.502, p = 0.004) after adjusting for potential confounders. Moreover, fibrinogen level was also independently related to the presence of coronary atherosclerosis (fibrinogen tertile 2: OR = 1.192, 95% CI 0.889–1.598, p = 0.241; tertile 3: OR = 2.003, 95% CI 1.383–2.903, p <0.001) and high GS (fibrinogen tertile 2: OR = 1.079, 95% CI 0.833–1.397, p = 0.565; tertile 3: OR = 1.524, 95% CI 1.155–2.011, p = 0.003) in a dose-dependent manner. Receiver-operating characteristic curve analysis showed that the best fibrinogen cut-off value for predicting the severity of coronary stenosis was 3.21 g/L. Conclusions Higher fibrinogen level is independently linked with the presence and severity of new-onset coronary atherosclerosis in Han Chinese population. PMID:25426943

  14. Peptide aggregation in neurodegenerative disease.

    PubMed

    Murphy, Regina M

    2002-01-01

    In the not-so-distant past, insoluble aggregated protein was considered as uninteresting and bothersome as yesterday's trash. More recently, protein aggregates have enjoyed considerable scientific interest, as it has become clear that these aggregates play key roles in many diseases. In this review, we focus attention on three polypeptides: beta-amyloid, prion, and huntingtin, which are linked to three feared neurodegenerative diseases: Alzheimer's, "mad cow," and Huntington's disease, respectively. These proteins lack any significant primary sequence homology, yet their aggregates possess very similar features, specifically, high beta-sheet content, fibrillar morphology, relative insolubility, and protease resistance. Because the aggregates are noncrystalline, secrets of their structure at nanometer resolution are only slowly yielding to X-ray diffraction, solid-state NMR, and other techniques. Besides structure, the aggregates may possess similar pathways of assembly. Two alternative assembly pathways have been proposed: the nucleation-elongation and the template-assisted mode. These two modes may be complementary, not mutually exclusive. Strategies for interfering with aggregation, which may provide novel therapeutic approaches, are under development. The structural similarities between protein aggregates of dissimilar origin suggest that therapeutic strategies successful against one disease may have broad utility in others. PMID:12117755

  15. Topics in Probabilistic Judgment Aggregation

    ERIC Educational Resources Information Center

    Wang, Guanchun

    2011-01-01

    This dissertation is a compilation of several studies that are united by their relevance to probabilistic judgment aggregation. In the face of complex and uncertain events, panels of judges are frequently consulted to provide probabilistic forecasts, and aggregation of such estimates in groups often yield better results than could have been made…

  16. Mineral of the month: aggregates

    USGS Publications Warehouse

    Tepordei, Valentin V.

    2005-01-01

    Natural aggregates, consisting of crushed stone, and sand and gravel, are a major contributor to economic health, and have an amazing variety of uses. Aggregates are among the most abundant mineral resources and are major basic raw materials used by construction, agriculture and other industries that employ complex chemical and metallurgical processes.

  17. Testing synthetic amyloid-β aggregation inhibitor using single molecule atomic force spectroscopy.

    PubMed

    Hane, Francis T; Lee, Brenda Y; Petoyan, Anahit; Rauk, Arvi; Leonenko, Zoya

    2014-04-15

    Alzheimer's disease is a neurodegenerative disease with no known cure and few effective treatment options. The principal neurotoxic agent is an oligomeric form of the amyloid-β peptide and one of the treatment options currently being studied is the inhibition of amyloid aggregation. In this work, we test a novel pseudopeptidic aggregation inhibitor designated as SG1. SG1 has been designed to bind at the amyloid-β self-recognition site and prevent amyloid-β from misfolding into β sheet. We used atomic force spectroscopy, a nanoscale measurement technique, to quantify the binding forces between two single amyloid peptide molecules. For the first time, we demonstrate that single molecule atomic force spectroscopy can be used to assess the effectiveness of amyloid aggregation inhibitors by measuring the experimental yield of binding and can potentially be used as a screening technique for quick testing of efficacy of inhibitor drugs for amyloid aggregation.

  18. Assessment of conventional criteria for the early diagnosis of thrombophlebitis with the 125I-fibrinogen uptake test.

    PubMed

    DeNardo, G L; DeNardo, S J; Barnett, C A; Newcomer, K A; Jansholt, A L; Carretta, R F; Rose, A W

    1977-12-01

    Analysis of 55 positive tests of a total of 300 tests by conventional criteria revealed that 125I-fibrinogen provides useful information early enough for clinical management. Of the tests which were ultimately interpreted as positive by conventional criteria, at least one was positive at 3-4 hours in 67% of the tests and 98% of the tests were positive at 24 hours after the administration of 125I-fibrinogen. A 20% difference between contralateral identical locations of the legs and a 20% difference between adjacent locations of the ipsilateral leg were found with almost equal frequency in the positive tests, whereas a 20% increase at the same location was less sensitive. The 125I-fibrogen uptake test is a simple and accurate technique for early diagnosis of active thrombophlebitis.

  19. Structural basis for cyclodextrins' suppression of human growth hormone aggregation

    PubMed Central

    Otzen, Daniel Erik; Knudsen, Benjamin Raerup; Aachmann, Finn; Larsen, Kim Lambertsen; Wimmer, Reinhard

    2002-01-01

    Many therapeutic proteins require storage at room temperature for extended periods of time. This can lead to aggregation and loss of function. Cyclodextrins (CDs) have been shown to function as aggregation suppressors for a wide range of proteins. Their potency is often ascribed to their affinity for aromatic amino acids, whose surface exposure would otherwise lead to protein association. However, no detailed structural studies are available. Here we investigate the interactions between human growth hormone (hGH) and different CDs at low pH. Although hGH aggregates readily at pH 2.5 in 1 M NaCl to form amorphous aggregates, the presence of 25 to 50 mM of various β-CD derivatives is sufficient to completely avoid this. α- and γ-CD are considerably less effective. Stopped-flow data on the aggregation reaction in the presence of β-CD are analyzed according to a minimalist association model to yield an apparent hGH-β-CD dissociation constant of ∼6 mM. This value is very similar to that obtained by simple fluorescence-based titration of hGH with β-CD. Nuclear magnetic resonance studies indicate that β-CD leads to a more unfolded conformation of hGH at low pH and predominantly binds to the aromatic side-chains. This indicates that aromatic amino acids are important components of regions of residual structure that may form nuclei for aggregation. PMID:12070330

  20. Maize beta-glucosidase-aggregating factor is a polyspecific jacalin-related chimeric lectin, and its lectin domain is responsible for beta-glucosidase aggregation.

    PubMed

    Kittur, Farooqahmed S; Lalgondar, Mallikarjun; Yu, Hyun Young; Bevan, David R; Esen, Asim

    2007-03-01

    In certain maize genotypes, called "null," beta-glucosidase does not enter gels and therefore cannot be detected on zymograms after electrophoresis. Such genotypes were originally thought to be homozygous for a null allele at the glu1 gene and thus devoid of enzyme. We have shown that a beta-glucosidase-aggregating factor (BGAF) is responsible for the "null" phenotype. BGAF is a chimeric protein consisting of two distinct domains: the disease response or "dirigent" domain and the jacalin-related lectin (JRL) domain. First, it was not known whether the lectin domain in BGAF is functional. Second, it was not known which of the two BGAF domains is involved in beta-glucosidase binding and aggregation. To this end, we purified BGAF to homogeneity from a maize null inbred line called H95. The purified protein gave a single band on SDS-PAGE, and the native protein was a homodimer of 32-kDa monomers. Native and recombinant BGAF (produced in Escherichia coli) agglutinated rabbit erythrocytes, and various carbohydrates and glycoproteins inhibited their hemagglutination activity. Sugars did not have any effect on the binding of BGAF to the beta-glucosidase isozyme 1 (Glu1), and the BGAF-Glu1 complex could still bind lactosyl-agarose, indicating that the sugar-binding site of BGAF is distinct from the beta-glucosidase-binding site. Neither the dirigent nor the JRL domains alone (produced separately in E. coli) produced aggregates of Glu1 based on results from pull-down assays. However, gel shift and competitive binding assays indicated that the JRL domain binds beta-glucosidase without causing it to aggregate. These results with those from deletion mutagenesis and replacement of the JRL domain of a BGAF homolog from sorghum, which does not bind Glu1, with that from maize allowed us to conclude that the JRL domain of BGAF is responsible for its lectin and beta-glucosidase binding and aggregating activities. PMID:17210577

  1. Molecular aggregation of humic substances

    USGS Publications Warehouse

    Wershaw, R. L.

    1999-01-01

    Humic substances (HS) form molecular aggregates in solution and on mineral surfaces. Elucidation of the mechanism of formation of these aggregates is important for an understanding of the interactions of HS in soils arid natural waters. The HS are formed mainly by enzymatic depolymerization and oxidation of plant biopolymers. These reactions transform the aromatic and lipid plant components into amphiphilic molecules, that is, molecules that consist of separate hydrophobic (nonpolar) and hydrophilic (polar) parts. The nonpolar parts of the molecules are composed of relatively unaltered segments of plant polymers and the polar parts of carboxylic acid groups. These amphiphiles form membrane-like aggregates on mineral surfaces and micelle-like aggregates in solution. The exterior surfaces of these aggregates are hydrophilic, and the interiors constitute separate hydrophobic liquid-like phases.

  2. Nanoparticle aggregation: principles and modeling.

    PubMed

    Zhang, Wen

    2014-01-01

    The high surface area to volume ratio of nanoparticles usually results in highly reactive and colloidal instability compared to their bulk counterparts. Aggregation as well as many other transformations (e.g., dissolution) in the environment may alter the physiochemical properties, reactivity, fate, transport, and biological interactions (e.g., bioavailability and uptake) of nanoparticles. The unique properties pertinent to nanoparticles, such as shape, size, surface characteristics, composition, and electronic structures, greatly challenge the ability of colloid science to understand nanoparticle aggregation and its environmental impacts. This review briefly introduces fundamentals about aggregation, fractal dimensions, classic and extended Derjaguin-Landau-Verwey-Overbeak (DLVO) theories, aggregation kinetic modeling, experimental measurements, followed by detailed discussions on the major factors on aggregation and subsequent effects on nanomaterial transport and reactivity.

  3. Immunogenicity of Therapeutic Protein Aggregates.

    PubMed

    Moussa, Ehab M; Panchal, Jainik P; Moorthy, Balakrishnan S; Blum, Janice S; Joubert, Marisa K; Narhi, Linda O; Topp, Elizabeth M

    2016-02-01

    Therapeutic proteins have a propensity for aggregation during manufacturing, shipping, and storage. The presence of aggregates in protein drug products can induce adverse immune responses in patients that may affect safety and efficacy, and so it is of concern to both manufacturers and regulatory agencies. In this vein, there is a lack of understanding of the physicochemical determinants of immunological responses and a lack of standardized analytical methods to survey the molecular properties of aggregates associated with immune activation. In this review, we provide an overview of the basic immune mechanisms in the context of interactions with protein aggregates. We then critically examine the literature with emphasis on the underlying immune mechanisms as they relate to aggregate properties. Finally, we highlight the gaps in our current understanding of this issue and offer recommendations for future research. PMID:26869409

  4. Mechanics of fire ant aggregations

    NASA Astrophysics Data System (ADS)

    Tennenbaum, Michael; Liu, Zhongyang; Hu, David; Fernandez-Nieves, Alberto

    2016-01-01

    Fire ants link their bodies to form aggregations; these can adopt a variety of structures, they can drip and spread, or withstand applied loads. Here, by using oscillatory rheology, we show that fire ant aggregations are viscoelastic. We find that, at the lowest ant densities probed and in the linear regime, the elastic and viscous moduli are essentially identical over the spanned frequency range, which highlights the absence of a dominant mode of structural relaxation. As ant density increases, the elastic modulus rises, which we interpret by alluding to ant crowding and subsequent jamming. When deformed beyond the linear regime, the aggregation flows, exhibiting shear-thinning behaviour with a stress load that is comparable to the maximum load the aggregation can withstand before individual ants are torn apart. Our findings illustrate the rich, collective mechanical behaviour that can arise in aggregations of active, interacting building blocks.

  5. Mechanics of fire ant aggregations.

    PubMed

    Tennenbaum, Michael; Liu, Zhongyang; Hu, David; Fernandez-Nieves, Alberto

    2016-01-01

    Fire ants link their bodies to form aggregations; these can adopt a variety of structures, they can drip and spread, or withstand applied loads. Here, by using oscillatory rheology, we show that fire ant aggregations are viscoelastic. We find that, at the lowest ant densities probed and in the linear regime, the elastic and viscous moduli are essentially identical over the spanned frequency range, which highlights the absence of a dominant mode of structural relaxation. As ant density increases, the elastic modulus rises, which we interpret by alluding to ant crowding and subsequent jamming. When deformed beyond the linear regime, the aggregation flows, exhibiting shear-thinning behaviour with a stress load that is comparable to the maximum load the aggregation can withstand before individual ants are torn apart. Our findings illustrate the rich, collective mechanical behaviour that can arise in aggregations of active, interacting building blocks. PMID:26501413

  6. Adsorption-induced colloidal aggregation

    NASA Astrophysics Data System (ADS)

    Law, B. M.; Petit, J.-M.; Beysens, D.

    1998-03-01

    Reversible colloidal aggregation in binary liquid mixtures has been studied for a number of years. As the phase separation temperature of the liquid mixture is approached the thickness of an adsorption layer around the colloidal particles increases. Beysens and coworkers have demonstrated experimentally that this adsorption layer is intimately connected with the aggregation of the colloidal particles, however, no definitive theory has been available which can explain all of the experimental observations. In this contribution we describe an extension of the Derjaguin, Landau, Verwey, and Overbeek theory of colloidal aggregation which takes into account the presence of the adsorption layer and which more realistically models the attractive dispersion interactions. This modified theory can quantitatively account for many of the observed experimental features such as the characteristics of the aggregated state, the general shape of the aggregation line, and the temperature dependence of the second virial coefficient for a lutidine-water mixture containing a small volume fraction of silica colloidal particles.

  7. Plasma Fibrinogen in Type 2 Diabetic Patients with Metabolic Syndrome and its Relation with Ischemic Heart Disease (IHD) and Retinopathy

    PubMed Central

    Mahendra, J.V.; Anuradha, T.S.; Talikoti, Prashanth; Nagaraj, R.S.; Vishali, V.

    2015-01-01

    Introduction: Metabolic syndrome or Syndrome X is characterized by hyperlipidemia, increased blood pressure, abdominal obesity and hyperglycemia, which increases the risk of cardiovascular complications. In addition to these, it is also associated with nontraditional risk factor like C- reactive protein, Plasminogen activator and fibrinogen. Various studies have documented association of these nontraditional risk factor, in Type 2 diabetes mellitus. Thus patients with diabetes mellitus are higher risk of developing micro and macro vascular complications like ischemic heart disease (IHD) and diabetic retinopathy. Diabetic retinopathy is the leading cause of decreased visual acuity, which is associated with maculopathy and profierative complications of it. Chronic hyperglycemia and its associated nonenzymatic glycation play an important role in the development of microangiopathy. Aims and Objectives: To study the prevalence of the metabolic syndrome in type 2 diabetes mellitus. To study the plasma fibrinogen and its relationship with IHD and retinopathy in type 2 Diabetes mellitus patients with metabolic syndrome. Materials and Methods: Patients of type 2 diabetes Mellitus were recruited based on the inclusion and exclusion criteria. History of IHD and ECG evidence of ischemia was obtained. Retinopathy was diagnosed by direct opthalmoscopy. Fasting glucose, lipid profile and plasma fibrinogen were analyzed. Stastical analysis was carried by Chi square test and student‘t’ test. Results: The prevalence of metabolic syndrome in study population of 100 type 2 diabetic patients is 58% and is significantly associated with duration of the disease (p<0.001). Fifty eight patients have hyperfibrinogenemia and mean fibrinogen level is significantly high in diabetic patients with metabolic syndrome when compared to diabetic patients without metabolic syndrome (p<0.001). Diabetic patient with metabolic syndrome and hyperfibrinogenemia have higher prevalence of IHD and

  8. Preliminary report: Laser welding and fibrinogen soldering are superior to sutured cholecyctostomy closure in a canine model

    NASA Astrophysics Data System (ADS)

    Oz, Mehmet C.; Treat, Michael R.; Libutti, Steven K.; Popp, Howard W.; Bass, Lawrence S.; Popilskis, Sulli

    1990-06-01

    Percutaneous endoscopic techniques for biliary surgery would be facilitated by methods of welding biliary tissue. To further investigate laser methods for fusing biliary tissue, we compared the time 0 bursting strength of two variations of near-infrared laser closure against polyglycolic acid suture controls. These time 0 studies were performed with a gallium-aluminum-arsenide semiconductor diode laser with a major ,iavelength output of 808 -F 1 nm and an energy density of 4.8 J/cm'. Using the 808 nm laser and indocyanine green dye to enhance laser energy uptake, closure of gallbladder incisions was accomplished with and without addition of fibrinogen to the target site prior to laser exposure. Without fibrinogen, the laser welds burst at 77 mm Hg, while fibrinogen soldering yielded a bursting pressure of 194 mm Hg. Sutured welds leaked at 215 mm Hg. Survival studies were performed with a mid-infrared 2.15 micron thulium-holmium--chromium:YAG laser producing 200 microsecond 300 millijoule pulses at 3 Hz (peak power .75 megawatts/sq cm, fluence 150 joules per square centimeter). The healing of midinfrared and polyglycolic suture closures of gallbladder incisions were compared at 1,2,3, and 4 weeks. All closures healed without evidence of leakage or infection. Laser welded cholecystostomy sites were completely ingrown with fibrous tissue by 2 weeks post- operatively and re-epithelialized by 3 weeks after operation. Suture closed wounds were still without complete epithelization 4 weeks after the procedure. Laser welding, particularly with fibrinogen reinforcement, may be a useful technique in future developments in percutaneous endoscopic biliary surgery.

  9. The aerobic fitness (VO2 peak) and alpha-fibrinogen genetic polymorphism in obese and non-obese Chinese boys.

    PubMed

    He, Z-H; Ma, L-H

    2005-05-01

    The purpose of the study was to compare the aerobic fitness (VO (2) peak) between obese and non-obese boys at pre-puberty and examine the effect of body composition on VO (2) peak in this cohort with reference to TaqI polymorphism at alpha-fibrinogen gene locus. Seventy-seven Chinese boys with similar lifestyle participated in the study. Among them, 47 were diagnosed as obese. VO (2) peak was measured by a treadmill test and body composition was assessed via a combined anthropometrical and bioelectrical impedance analysis method. The alpha-fibrinogen genetic polymorphism was detected through PCR-based digestion with TaqI restriction enzyme. The results indicated that VO (2) peak was significantly lower in obese boys compared with normal weight counterparts when the data were expressed either in conventional ratio unit (ml (-1) . min (-1) . lean body weight [LBW] (-1)) or in allometric unit (ml (-1) . min (-1) . body weight [BW] (-2/3)). LBW, fat mass (FM), and body fat content (BF %) all were correlated with VO (2) peak, while LBW was the strongest predictor. The relationship between body composition and VO (2) peak seemed quite comparable across different alpha-fibrinogen genotypes. Significant difference was observed between obese and non-obese boys in terms of the proportion of genotypes and frequency of alleles. T1T1 homozygotes had higher risk for obesity. We came to the conclusion that prepubertal obese boys exhibited impaired aerobic fitness compared with their normal weight peers. VO (2) peak is closely related to LBW and independent of FM. This relationship remains constant irrespective of the TaqI alpha-fibrinogen genotypes that may be associated with fatness in boys.

  10. Binding Procurement

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Vaidyanathan, Hari

    2007-01-01

    This viewgraph presentation reviews the use of the binding procurement process in purchasing Aerospace Flight Battery Systems. NASA Engineering and Safety Center (NESC) requested NASA Aerospace Flight Battery Systems Working Group to develop a set of guideline requirements document for Binding Procurement Contracts.

  11. Molecular characterization of 7 patients affected by dys- or hypo-dysfibrinogenemia: Identification of a novel mutation in the fibrinogen Bbeta chain causing a gain of glycosylation.

    PubMed

    Asselta, Rosanna; Robusto, Michela; Platé, Manuela; Santoro, Cristina; Peyvandi, Flora; Duga, Stefano

    2015-07-01

    Fibrinogen is a hexameric glycoprotein consisting of two sets of three polypeptides (the Aα, Bβ, and γ chains, encoded by the three genes FGA, FGB, and FGG). It is involved in the final phase of the coagulation process, being the precursor of the fibrin monomers necessary for the formation of the hemostatic plug. Rare inherited fibrinogen disorders can manifest as quantitative deficiencies, qualitative defects, or both. In particular, dysfibrinogenemia and hypo-dysfibrinogenemia are characterized by reduced functional activity associated with normal or reduced antigen levels, and are usually determined by heterozygous mutations affecting any of the three fibrinogen genes. In this study, we investigated the genetic basis of dys- and hypo-dysfibrinogenemia in seven unrelated patients. Mutational screening disclosed six different variants, two of which novel (FGB-p.Asp185Asn and FGG-p.Asn230Lys). The molecular characterization of the FGG-p.Asn230Lys mutation, performed by transient expression experiments of the recombinant mutant protein, demonstrated that it induces an almost complete impairment in fibrinogen secretion, according to a molecular mechanism often associated with quantitative fibrinogen disorders. Conversely, the FGB-p.Asp185Asn variant was demonstrated to be a gain-of-glycosylation mutation leading to a hyperglycosylation of the Bβ chain, not affecting fibrinogen assembly and secretion. To our knowledge, this is the second gain-of-glycosylation mutation involving the FGB gene.

  12. Specific identification of fibrin polymers, fibrinogen degradation products, and crosslinked fibrin degradation products in plasma and serum with a new sensitive technique.

    PubMed

    Connaghan, D G; Francis, C W; Lane, D A; Marder, V J

    1985-03-01

    A new method is described for identifying low concentrations of circulating derivatives of fibrinogen and fibrin, even when present in heterogeneous mixtures. This technique is applicable to plasma and serum and uses electrophoresis in 2% agarose in the presence of sodium dodecyl sulfate (SDS) followed by immunological identification of separated derivatives, using radiolabeled antifibrinogen antiserum and autoradiography. Unique electrophoretic patterns distinguish plasmic derivatives of crosslinked fibrin from those of fibrinogen and also identify crosslinked fibrin polymers produced by the combined action of thrombin and factor XIII on fibrinogen. The assay is sensitive to a concentration of 0.1 micrograms/mL of fibrinogen in serum or plasma. Fibrin polymers, plasmic degradation products of fibrinogen, and plasmic degradation products of crosslinked fibrin were detected in the plasma or serum of a patient with disseminated intravascular coagulation. Plasmic derivatives of both fibrinogen and crosslinked fibrin appeared in serum in the course of fibrinolytic therapy for pulmonary embolism, whereas during acute myocardial infarction a marked increase in the proportion of fibrin polymers in plasma was found in comparison with normal controls. Thus, the procedure can distinguish between the simultaneous processes of fibrin polymer formation, fibrinogenolysis, and fibrinolysis, and is sufficiently sensitive to detect relevant quantities of derivatives in pathologic conditions.

  13. Effect of storage conditions on prothrombin time, activated partial thromboplastin time and fibrinogen concentration on canine plasma samples

    PubMed Central

    Casella, Stefania; Giannetto, Claudia; Giudice, Elisabetta

    2010-01-01

    The present study was to assess the effect of storage conditions on prothrombin time (PT), activated partial thromboplastin time (aPTT) and fibrinogen concentration in blood samples of healthy dogs. Thirty-five dogs of various breeds were included in the study. Citrated blood samples were obtained and plasma was divided into four aliquots to assess selected clotting parameters by means of a coagulometer. The first aliquot was analysed within 1 h after collection, while the remaining 3 were stored at 8℃ for 4, 8 and 24 h, respectively. One-way repeated measures analysis of variance documented a significant decreasing effect on PT at 24 h compared to 8 h and on fibrinogen concentration after 8 and 24 h compared to sampling time and at 4 and 24 h compared to 8 h post sampling. In conclusion, the results of this study indicate that only fibrinogen appears prone to significant decrease. In fact, aPTT is not substantially affected by refrigeration for at least 24 h post sampling and PT showed a statistical difference that does not necessary indicate biological significance as the results obtained were within reference intervals for the dog. PMID:20458152

  14. Molecular perspective of antibody aggregates and their adsorption on Protein A resin.

    PubMed

    Yu, Deqiang; Song, Yuanli; Huang, Richard Y-C; Swanson, Ryan K; Tan, Zhijun; Schutsky, Elizabeth; Lewandowski, Angela; Chen, Guodong; Li, Zheng Jian

    2016-07-29

    Antibody aggregate is a common issue in therapeutic antibodies, which may compromise product efficacy and cause adverse effects. Antibody aggregate level is normally controlled in bioprocessing by polishing steps after Protein A capture. This paper studied the Higher Order Structures (HOS) of antibody aggregates (dimer H1 and H2) and their adsorption on Protein A resin and thus elucidated the mechanism using Protein A capture for enhanced aggregate removal. The HOS of antibody aggregates and their complex with Protein A were characterized using HDX-MS combined with SEC-MALS, Protein Conformational Array (PCA), and molecular modeling. The aggregate size and Protein A binding ratio suggested that H2 has much more compact structure than H1. HDX-MS and PCA further revealed that H1 was formed by single Fab-Fab interaction while H2 formed by Fab-Fab and likely Fc-Fc interaction. On Protein A resin, both the molar binding ratio and the correlation between protein size and ligand distance support that each monomer can only bind one Protein A ligand, while each dimer can bind two ligands, thus resulting in stronger resin binding. Furthermore, dimer H2 binds stronger than dimer H1 due to its compact structure. By integrating biophysical analysis and molecular modeling with process development, this study revealed the antibody aggregate structures and the mechanism of aggregate removal using Protein A chromatography. It also provided a general strategy for in-depth product and process understanding in antibody and other biologics development. PMID:27344283

  15. Propeptide of aminopeptidase 1 protein mediates aggregation and vesicle formation in cytoplasm-to-vacuole targeting pathway.

    PubMed

    Morales Quinones, Mariana; Winston, Jared T; Stromhaug, Per E

    2012-03-23

    Misfolded protein aggregation causes disease and aging; autophagy counteracts this by eliminating damaged components, enabling cells to survive starvation. The cytoplasm-to-vacuole targeting pathway in yeast encompasses the aggregation of the premature form of aminopeptidase 1 (prApe1) in cytosol and its sequestration by autophagic proteins into a vesicle for vacuolar transport. We show that the propeptide of Ape1 is important for aggregation and vesicle formation and that it is sufficient for binding to prApe1 and Atg19. Defective aggregation disrupts vacuolar transport, suggesting that aggregate shape is important in vesicle formation, whereas Atg19 binding is not sufficient for vacuolar transport. Aggregation involves hydrophobicity, whereas Atg19 binding requires additional electrostatic interactions. Ape1 dodecamerization may cluster propeptides into trimeric structures, with sufficient affinity to form propeptide hexamers by binding to other dodecamers, causing aggregation. We show that Ape1 aggregates bind Atg19 and Atg8 in vitro; this could be used as a scaffold for an in vitro assay of autophagosome formation to elucidate the mechanisms of autophagy.

  16. 14-3-3ζ Mediates Tau Aggregation in Human Neuroblastoma M17 Cells.

    PubMed

    Li, Tong; Paudel, Hemant K

    2016-01-01

    Microtubule-associated protein tau is the major component of paired helical filaments (PHFs) associated with the neuropathology of Alzheimer's disease (AD). Tau in the normal brain binds and stabilizes microtubules. Tau isolated from PHFs is hyperphosphorylated, which prevents it from binding to microtubules. Tau phosphorylation has been suggested to be involved in the development of NFT pathology in the AD brain. Recently, we showed that 14-3-3ζ is bound to tau in the PHFs and when incubated in vitro with 14-3-3ζ, tau formed amorphous aggregates, single-stranded straight filaments, double stranded ribbon-like filaments and PHF-like filaments that displayed close resemblance with corresponding ultrastructures of AD brain. Surprisingly however, phosphorylated and non-phosphorylated tau aggregated in a similar manner, indicating that tau phosphorylation does not affect in vitro tau aggregation (Qureshi et al (2013) Biochemistry 52, 6445-6455). In this study, we have examined the role of tau phosphorylation in tau aggregation in cellular level. We have found that in human M17 neuroblastoma cells, tau phosphorylation by GSK3β or PKA does not cause tau aggregation, but promotes 14-3-3ζ-induced tau aggregation by destabilizing microtubules. Microtubule disrupting drugs also promoted 14-3-3ζ-induced tau aggregation without changing tau phosphorylation in M17 cell. In vitro, when incubated with 14-3-3ζ and microtubules, nonphosphorylated tau bound to microtubules and did not aggregate. Phosphorylated tau on the other hand did not bind to microtubules and aggregated. Our data indicate that microtubule-bound tau is resistant to 14-3-3ζ-induced tau aggregation and suggest that tau phosphorylation promotes tau aggregation in the brain by detaching tau from microtubules and thus making it accessible to 14-3-3ζ. PMID:27548710

  17. 14-3-3ζ Mediates Tau Aggregation in Human Neuroblastoma M17 Cells

    PubMed Central

    Li, Tong; Paudel, Hemant K.

    2016-01-01

    Microtubule-associated protein tau is the major component of paired helical filaments (PHFs) associated with the neuropathology of Alzheimer’s disease (AD). Tau in the normal brain binds and stabilizes microtubules. Tau isolated from PHFs is hyperphosphorylated, which prevents it from binding to microtubules. Tau phosphorylation has been suggested to be involved in the development of NFT pathology in the AD brain. Recently, we showed that 14-3-3ζ is bound to tau in the PHFs and when incubated in vitro with 14-3-3ζ, tau formed amorphous aggregates, single-stranded straight filaments, double stranded ribbon-like filaments and PHF-like filaments that displayed close resemblance with corresponding ultrastructures of AD brain. Surprisingly however, phosphorylated and non-phosphorylated tau aggregated in a similar manner, indicating that tau phosphorylation does not affect in vitro tau aggregation (Qureshi et al (2013) Biochemistry 52, 6445–6455). In this study, we have examined the role of tau phosphorylation in tau aggregation in cellular level. We have found that in human M17 neuroblastoma cells, tau phosphorylation by GSK3β or PKA does not cause tau aggregation, but promotes 14-3-3ζ-induced tau aggregation by destabilizing microtubules. Microtubule disrupting drugs also promoted 14-3-3ζ-induced tau aggregation without changing tau phosphorylation in M17 cell. In vitro, when incubated with 14-3-3ζ and microtubules, nonphosphorylated tau bound to microtubules and did not aggregate. Phosphorylated tau on the other hand did not bind to microtubules and aggregated. Our data indicate that microtubule-bound tau is resistant to 14-3-3ζ-induced tau aggregation and suggest that tau phosphorylation promotes tau aggregation in the brain by detaching tau from microtubules and thus making it accessible to 14-3-3ζ. PMID:27548710

  18. Relation between admission plasma fibrinogen levels and mortality in Chinese patients with coronary artery disease

    PubMed Central

    Peng, Yong; Wang, Hua; Li, Yi-ming; Huang, Bao-tao; Huang, Fang-yang; Xia, Tian-li; Chai, Hua; Wang, Peng-ju; Liu, Wei; Zhang, Chen; Chen, Mao; Huang, De-jia

    2016-01-01

    Fibrinogen (Fib) was considered to be a potential risk factor for the prognosis of patients with coronary artery disease (CAD), but there was lack of the eviden