Science.gov

Sample records for aggregation induced emission

  1. Gelation process visualized by aggregation-induced emission fluorogens.

    PubMed

    Wang, Zhengke; Nie, Jingyi; Qin, Wei; Hu, Qiaoling; Tang, Ben Zhong

    2016-01-01

    Alkaline-urea aqueous solvent system provides a novel and important approach for the utilization of polysaccharide. As one of the most important polysaccharide, chitosan can be well dissolved in this solvent system, and the resultant hydrogel material possesses unique and excellent properties. Thus the sound understanding of the gelation process is fundamentally important. However, current study of the gelation process is still limited due to the absence of direct observation and the lack of attention on the entire process. Here we show the entire gelation process of chitosan LiOH-urea aqueous system by aggregation-induced emission fluorescent imaging. Accompanied by other pseudo in situ investigations, we propose the mechanism of gelation process, focusing on the formation of junction points including hydrogen bonds and crystalline.

  2. Gelation process visualized by aggregation-induced emission fluorogens

    NASA Astrophysics Data System (ADS)

    Wang, Zhengke; Nie, Jingyi; Qin, Wei; Hu, Qiaoling; Tang, Ben Zhong

    2016-06-01

    Alkaline-urea aqueous solvent system provides a novel and important approach for the utilization of polysaccharide. As one of the most important polysaccharide, chitosan can be well dissolved in this solvent system, and the resultant hydrogel material possesses unique and excellent properties. Thus the sound understanding of the gelation process is fundamentally important. However, current study of the gelation process is still limited due to the absence of direct observation and the lack of attention on the entire process. Here we show the entire gelation process of chitosan LiOH-urea aqueous system by aggregation-induced emission fluorescent imaging. Accompanied by other pseudo in situ investigations, we propose the mechanism of gelation process, focusing on the formation of junction points including hydrogen bonds and crystalline.

  3. Gelation process visualized by aggregation-induced emission fluorogens

    PubMed Central

    Wang, Zhengke; Nie, Jingyi; Qin, Wei; Hu, Qiaoling; Tang, Ben Zhong

    2016-01-01

    Alkaline-urea aqueous solvent system provides a novel and important approach for the utilization of polysaccharide. As one of the most important polysaccharide, chitosan can be well dissolved in this solvent system, and the resultant hydrogel material possesses unique and excellent properties. Thus the sound understanding of the gelation process is fundamentally important. However, current study of the gelation process is still limited due to the absence of direct observation and the lack of attention on the entire process. Here we show the entire gelation process of chitosan LiOH-urea aqueous system by aggregation-induced emission fluorescent imaging. Accompanied by other pseudo in situ investigations, we propose the mechanism of gelation process, focusing on the formation of junction points including hydrogen bonds and crystalline. PMID:27337500

  4. Fluorescence Aggregation-Caused Quenching versus Aggregation-Induced Emission: A Visual Teaching Technology for Undergraduate Chemistry Students

    ERIC Educational Resources Information Center

    Ma, Xiaofeng; Sun, Rui; Cheng, Jinghui; Liu, Jiaoyan; Gou, Fei; Xiang, Haifeng; Zhou, Xiangge

    2016-01-01

    A laboratory experiment visually exploring two opposite basic principles of fluorescence of aggregation-caused quenching (ACQ) and aggregation-induced emission (AIE) is demonstrated. The students would prepared two salicylaldehyde-based Schiff bases through a simple one-pot condensation reaction of one equiv of 1,2-diamine with 2 equiv of…

  5. Dendritic copper phthalocyanine with aggregation induced blue emission and solid-state fluorescence

    NASA Astrophysics Data System (ADS)

    Wang, Jiayi; Pan, Lin; Zhou, Xuefei; Jia, Kun; Liu, Xiaobo

    2016-09-01

    In this work, dendritic copper phthalocyanine (CuPc) showing obvious aggregation induced emission (AIE) and strong solid-state fluorescence was synthesized. It was found that synthesized CuPc can be easily solubilized in polar aprotic solvent, where no fluorescence signal was detected. Interestingly, both the CuPc aggregates in solution and solid-state powder exhibited strong fluorescence emission around 480 nm, which should be attributed to the restriction of intramolecular rotation as rationalized in aggregation induced emission framework. Meanwhile the obvious crystalline enhanced solid-state fluorescent emission is observed for CuPc powder.

  6. A turn-on fluorogenic Zn(II) chemoprobe based on a terpyridine derivative with aggregation-induced emission (AIE) effects through nanofiber aggregation into spherical aggregates.

    PubMed

    Jung, Sung Ho; Kwon, Ki-Young; Jung, Jong Hwa

    2015-01-18

    The self-assembly of a terpyridine-based ligand in a DMSO/water solvent mixture (1 : 99 v/v) with a high content of water formed a nanofibrillar structure and showed a non-emissive process. On the other hand, the self-assembly of the terpyridine-based ligand exhibited strong emission in the presence of Zn(2+) due to the formation of coordination bonds between the terpyridine moieties and the Zn(2+) by the aggregation-induced emission effect. The morphology of this aggregate represented a spherical structure.

  7. Aggregation induced enhanced emission of 2-(2'-hydroxyphenyl)benzimidazole.

    PubMed

    Malakar, Ashim; Kumar, Manishekhar; Reddy, Anki; Biswal, Himadree T; Mandal, Biman B; Krishnamoorthy, G

    2016-07-01

    In this study, the aggregation induced emission enhancement (AIEE) of 2-(2'-hydroxyphenyl)benzimidazole (HPBI) is reported. To investigate the AIEE process of HPBI, absorption/fluorescence spectroscopy, fluorescence imaging and field emission scanning electron microscopy were employed. A comparative study with 2-phenylbenzimidazole (PBI) divulges the significance of the hydroxyl group in the AIEE process. Further, molecular dynamics simulations have been carried out with explicit solvent molecules to follow the aggregation process of HPBI with time. The obtained molecular dynamics simulation results not only predicted the formation of aggregates but also provided detailed insight and information on the molecular interactions. The cellular studies showed aggregates yield higher fluorescence in the visible region inside HeLa cells in comparison to monomeric compounds which failed to exhibit any visible fluorescence inside the cell. The obtained aggregates were further found to be biocompatible and therefore can be used for bio-imaging applications. PMID:27334264

  8. Aggregation-induced emission fluorogens as biomarkers to assess the viability of microalgae in aquatic ecosystems.

    PubMed

    Guo, Feng; Gai, Wei-Ping; Hong, Yuning; Tang, Ben Zhong; Qin, Jianguang; Tang, Youhong

    2015-12-18

    Microalgae can be a valuable indicator for monitoring water pollution due to their sensitivity to the changes induced by pollutants in the environment. In this study, an aggregation-induced emission fluorogen was used as a novel tool to differentiate dead and live microalgae and quantify the link between live algal concentration and fluorogen intensity. Protein in the cell protoplasm is the key component contributing to fluorescence emission in algae. PMID:26461849

  9. Aggregation-induced emission: a simple strategy to improve chemiluminescence resonance energy transfer.

    PubMed

    Zhang, Lijuan; He, Nan; Lu, Chao

    2015-01-20

    The emergence of aggregation-induced emission (AIE) has opened up a new avenue for scientists. There is a great demand for the development of a new generation chemiluminescence resonance energy transfer (CRET) acceptors with AIE characteristics due to the aggregation-caused chemiluminescence (CL) quenching effect commonly observed in the conventional fluorophore CL acceptors at high concentrations. However, the systematical studies involving in AIE-amplified CL are still scarce. Herein, it is the first report that the gold nanocluster aggregates (a type of well-defined AIE molecules) are used to study their influence on the bis(2,4,6-trichlorophenyl) oxalate (TCPO)-H2O2 CL reaction. Interestingly, the AIE molecules in the diluted solution are unable to boost the CL signal of the TCPO-H2O2 system, but their aggregates display a strongly enhanced CL emission compared to their counterparts of fluorophore molecules, thanks to the unique AIE effect of gold nanoclusters. In comparison to rhodamine B with the aid of an imidazole catalyst, the detection limit of the gold nanocluster aggregate-amplified CL probe for H2O2 (S/N = 3) is low in the absence of any catalyst. Finally, the other two typical AIE molecules, Au(I)-thiolate complexes and 9,10-bis[4-(3-sulfonatopropoxyl)-styryl]anthracene (BSPSA), are investigated to verify the generality of the AIE molecule-amplified CL emissions. These results demonstrate effective access to highly fluorescent AIE molecules with practical applications in avoiding the aggregation-induced CL quenching at high concentrations, which can be expected to provide a novel and sensitive platform for the CL amplified detection.

  10. Piezoflurochromism and Aggregation Induced Emission Properties of 9, 10-bis (trisalkoxystyryl) Anthracene Derivatives.

    PubMed

    Duraimurugan, Kumaraguru; Sivamani, Jayaraman; Sathiyaraj, Munusamy; Thiagarajan, Viruthachalam; Siva, Ayyanar

    2016-07-01

    We report the synthesis of trisalkoxy substituted 9, 10-bis styrylanthracene derivatives (C8-ant and C12-ant) by Heck coupling with very good yield and their photophysical properties. Both C8-ant and C12-ant exhibit aggregation induced emission (AIE), mechnoflurochromism and thermochromism. Trisubstituted 9, 10-distyrylanthracene molecules having all the luminescent properties in a single molecule are first of its kind.

  11. Aggregation-induced emission active tetraphenylethene-based sensor for uranyl ion detection.

    PubMed

    Wen, Jun; Huang, Zeng; Hu, Sheng; Li, Shuo; Li, Weiyi; Wang, Xiaolin

    2016-11-15

    A novel tetraphenylethene-based fluorescent sensor, TPE-T, was developed for the detection of uranyl ions. The selective binding of TPE-T to uranyl ions resulted in a detectable signal owing to the quenching of its aggregation-induced emission. The developed sensor could be used to visually distinguish UO2(2+) from lanthanides, transition metals, and alkali metals under UV light; the presence of other metal ions did not interfere with the detection of uranyl ions. In addition, TPE-T was successfully used for the detection of uranyl ions in river water, illustrating its potential applications in environmental systems. PMID:27439180

  12. Aggregation-Induced Emission Mechanism of Dimethoxy-Tetraphenylethylene in Water Solution: Molecular Dynamics and QM/MM Investigations.

    PubMed

    Sun, Guangxu; Zhao, Yi; Liang, WanZhen

    2015-05-12

    Molecular dynamics simulations and combined quantum mechanics and molecular mechanics calculations are employed to investigate dimethoxy-tetraphenylethylene (DMO-TPE) molecules in water solution for their detailed aggregation process and the mechanism of aggregation-induced emission. The molecular dynamics simulations show that the aggregates start to appear in the nanosecond time scale, and small molecular aggregates appear at low concentration; whereas the large aggregates with a chain-type structure appear at high concentration, and the intramolecular rotation is largely restricted by a molecular aggregated environment. The average radical distribution demonstrates that the waters join the aggregation process and that two types of hydrogen bonds between DMO-TPE and water molecules are built with the peaks at about 0.5 and 0.7 nm, respectively. The spectral features further reveal that the aggregates dominantly present J-type aggregation although they fluctuate between J-type and H-type at a given temperature. The statistical absorption, emission spectra, and the aggregation-induced emission enhancement with respect to the solution concentration agree well with the experimental measurements, indicating the significant effect of molecular environments on the molecular properties. PMID:26574424

  13. Aggregation-Induced Emission Luminogen-Embedded Silica Nanoparticles Containing DNA Aptamers for Targeted Cell Imaging.

    PubMed

    Wang, Xiaoyan; Song, Panshu; Peng, Lu; Tong, Aijun; Xiang, Yu

    2016-01-13

    Conventional fluorophores usually undergo aggregation-caused quenching (ACQ), which limits the loading amount of these fluorophores in nanoparticles for bright fluorescence imaging. On the contrary, fluorophores with aggregation-induced emission (AIE) characteristics are strongly fluorescent in their aggregate states and have been an ideal platform for developing highly fluorescent nanomaterials, such as fluorescent silica nanoparticles (FSNPs). In this work, AIE luminogens based on salicylaldehyde hydrazones were embedded in silica nanoparticles through a facile noncovalent approach, which afforded AIE-FSNPs emitting much brighter fluorescence than that of some commercial fluorescein-doped silica and polystyrene nanoparticles. These AIE-FSNPs displaying multiple fluorescence colors were fabricated by a general method, and they underwent much less fluorescence variation due to environmental pH changes compared with fluorescein-hybridized FSNPs. In addition, a DNA aptamer specific to nucleolin was functionalized on the surface of AIE-FSNPs for targeted cell imaging. Fluorescent microscopy and flow cytometry studies both revealed highly selective fluorescence staining of MCF-7 (a cancer cell line with nucleolin overexpression) over MCF-10A (normal) cells by the aptamer-functionalized AIE-FSNPs. The fluorescence imaging in different color channels was achieved using AIE-FSNPs containing each of the AIE luminogens, as well as photoactivatable fluorescent imaging of target cells by the caged AIE fluorophore. PMID:26653325

  14. Ratiometric Biosensor for Aggregation-Induced Emission-Guided Precise Photodynamic Therapy.

    PubMed

    Han, Kai; Wang, Shi-Bo; Lei, Qi; Zhu, Jing-Yi; Zhang, Xian-Zheng

    2015-10-27

    Photodynamic therapy faces the barrier of choosing the appropriate irradiation region and time. In this paper, a matrix metalloproteinase-2 (MMP-2) responsive ratiometric biosensor was designed and synthesized for aggregation-induced emission (AIE)-guided precise photodynamic therapy. It was found that the biosensor presented the MMP-2 responsive AIE behavior. Most importantly, it could accurately differentiate the tumor cells from the healthy cells by the fluorescence ratio between freed tetraphenylethylene and protoporphyrin IX (PpIX, internal reference). In vivo study demonstrated that the biosensor could preferentially accumulate in the tumor tissue with a relative long blood retention time. Note that the intrinsic fluorescence of PpIX and MMP-2-triggered AIE fluorescence provided a real-time feedback which guided precise photodynamic therapy in vivo efficiently. This strategy demonstrated here opens a window in the precise medicine, especially for phototherapy.

  15. A Robust Damage-Reporting Strategy for Polymeric Materials Enabled by Aggregation-Induced Emission

    PubMed Central

    2016-01-01

    Microscopic damage inevitably leads to failure in polymers and composite materials, but it is difficult to detect without the aid of specialized equipment. The ability to enhance the detection of small-scale damage prior to catastrophic material failure is important for improving the safety and reliability of critical engineering components, while simultaneously reducing life cycle costs associated with regular maintenance and inspection. Here, we demonstrate a simple, robust, and sensitive fluorescence-based approach for autonomous detection of damage in polymeric materials and composites enabled by aggregation-induced emission (AIE). This simple, yet powerful system relies on a single active component, and the general mechanism delivers outstanding performance in a wide variety of materials with diverse chemical and mechanical properties. PMID:27725956

  16. Aggregation-induced emission rotors: rational design and tunable stimuli response.

    PubMed

    Li, Jie; Zhang, Yang; Mei, Ju; Lam, Jacky W Y; Hao, Jianhua; Tang, Ben Zhong

    2015-01-01

    A novel molecular design strategy is provided to rationally tune the stimuli response of luminescent materials with aggregation-induced emission (AIE) characteristics. A series of new AIE-active molecules (AIE rotors) are prepared by covalently linking different numbers of tetraphenylethene moieties together. Upon gradually increasing the number of rotatable phenyl rings, the sensitivity of the response of the AIE rotors to viscosity and temperature is significantly enhanced. Although the molecular size is further enlarged, the performance is only slightly improved due to slightly increased effective rotors, but with largely increased rotational barriers. Such molecular engineering and experimental results offer more in-depth insight into the AIE mechanism, namely, restriction of intramolecular rotations. Notably, through this rational design, the AIE rotor with the largest molecular size turns out to be the most viscosensitive luminogen with a viscosity factor of up to 0.98.

  17. An aggregation-induced-emission platform for direct visualization of interfacial dynamic self-assembly.

    PubMed

    Li, Junwei; Li, Yuan; Chan, Carrie Y K; Kwok, Ryan T K; Li, Hongkun; Zrazhevskiy, Pavel; Gao, Xiaohu; Sun, Jing Zhi; Qin, Anjun; Tang, Ben Zhong

    2014-12-01

    An in-depth understanding of dynamic interfacial self-assembly processes is essential for a wide range of topics in theoretical physics, materials design, and biomedical research. However, direct monitoring of such processes is hampered by the poor imaging contrast of a thin interfacial layer. We report in situ imaging technology capable of selectively highlighting self-assembly at the phase boundary in real time by employing the unique photophysical properties of aggregation-induced emission. Its application to the study of breath-figure formation, an immensely useful yet poorly understood phenomenon, provided a mechanistic model supported by direct visualization of all main steps and fully corroborated by simulation and theoretical analysis. This platform is expected to advance the understanding of the dynamic phase-transition phenomena, offer insights into interfacial biological processes, and guide development of novel self-assembly technologies. PMID:25363745

  18. An Aggregation-Induced-Emission Platform for Direct Visualization of Interfacial Dynamic Self-Assembly**

    PubMed Central

    Chan, Carrie Y.K.; Kwok, Ryan T.K.; Li, Hongkun; Zrazhevskiy, Pavel; Gao, Xiaohu; Sun, Jing Zhi; Qin, Anjun; Tang, Ben Zhong

    2015-01-01

    An in-depth understanding of dynamic interfacial self-assembly processes is essential for a wide range of topics in theoretical physics, materials design, and biomedical research. However, direct monitoring of such processes is hampered by the poor imaging contrast of a thin interfacial layer. We report in situ imaging technology capable of selectively highlighting self-assembly at the phase boundary in real time by employing the unique photophysical properties of aggregation-induced emission. Its application to the study of breath-figure formation, an immensely useful yet poorly understood phenomenon, provided a mechanistic model supported by direct visualization of all main steps and fully corroborated by simulation and theoretical analysis. This platform is expected to advance the understanding of the dynamic phase-transition phenomena, offer insights into interfacial biological processes, and guide development of novel self-assembly technologies. PMID:25363745

  19. Aggregation-Induced-Emission-Active Macrocycle Exhibiting Analogous Triply and Singly Twisted Möbius Topologies.

    PubMed

    Wang, Erjing; He, Zikai; Zhao, Engui; Meng, Luming; Schütt, Christian; Lam, Jacky W Y; Sung, Herman H Y; Williams, Ian D; Huang, Xuhui; Herges, Rainer; Tang, Ben Zhong

    2015-08-10

    Molecules with Möbius topology have drawn increasing attention from scientists in a variety of fields, such as organic chemistry, inorganic chemistry, and material science. However, synthetic difficulties and the lack of functionality impede their fundamental understanding and practical applications. Here, we report the facile synthesis of an aggregation-induced-emission (AIE)-active macrocycle (TPE-ET) and investigate its analogous triply and singly twisted Möbius topologies. Because of the twisted and flexible nature of the tetraphenylethene units, the macrocycle adjusts its conformations so as to accommodate different guest molecules in its crystals. Moreover, theoretical studies including topological and electronic calculations reveal the energetically favorable interconversion process between triply and singly twisted topologies. PMID:26177730

  20. Liquid-Crystalline Star-Shaped Supergelator Exhibiting Aggregation-Induced Blue Light Emission.

    PubMed

    Pathak, Suraj Kumar; Pradhan, Balaram; Gupta, Monika; Pal, Santanu Kumar; Sudhakar, Achalkumar Ammathnadu

    2016-09-13

    A family of closely related star-shaped stilbene-based molecules containing an amide linkage are synthesized, and their self-assembly in liquid-crystalline and gel states was investigated. The number and position of the peripheral alkyl tails were systematically varied to understand the structure-property relation. Interestingly, one of the molecules with seven peripheral chains was bimesomorphic, exhibiting columnar hexagonal and columnar rectangular phases, whereas the rest of them stabilized the room-temperature columnar hexagonal phase. The self-assembly of these molecules in liquid-crystalline and organogel states is extremely sensitive to the position and number of alkoxy tails in the periphery. Two of the compounds with six and seven peripheral tails exhibited supergelation behavior in long-chain hydrocarbon solvents. One of these compounds with seven alkyl chains was investigated further, and it has shown higher stability and moldability in the gel state. The xerogel of the same compound was characterized with the help of extensive microscopic and X-ray diffraction studies. The nanofibers in the xerogel are found to consist of molecules arranged in a lamellar fashion. Furthermore, this compound shows very weak emission in solution but an aggregation-induced emission property in the gel state. Considering the dearth of solid-state blue-light-emitting organic materials, this molecular design is promising where the self-assembly and emission in the aggregated state can be preserved. The nonsymmetric design lowers the phase-transition temperatures.The presence of an amide bond helps to stabilize columnar packing over a long range because of its polarity and intermolecular hydrogen bonding in addition to promoting organogelation. PMID:27529734

  1. Liquid-Crystalline Star-Shaped Supergelator Exhibiting Aggregation-Induced Blue Light Emission.

    PubMed

    Pathak, Suraj Kumar; Pradhan, Balaram; Gupta, Monika; Pal, Santanu Kumar; Sudhakar, Achalkumar Ammathnadu

    2016-09-13

    A family of closely related star-shaped stilbene-based molecules containing an amide linkage are synthesized, and their self-assembly in liquid-crystalline and gel states was investigated. The number and position of the peripheral alkyl tails were systematically varied to understand the structure-property relation. Interestingly, one of the molecules with seven peripheral chains was bimesomorphic, exhibiting columnar hexagonal and columnar rectangular phases, whereas the rest of them stabilized the room-temperature columnar hexagonal phase. The self-assembly of these molecules in liquid-crystalline and organogel states is extremely sensitive to the position and number of alkoxy tails in the periphery. Two of the compounds with six and seven peripheral tails exhibited supergelation behavior in long-chain hydrocarbon solvents. One of these compounds with seven alkyl chains was investigated further, and it has shown higher stability and moldability in the gel state. The xerogel of the same compound was characterized with the help of extensive microscopic and X-ray diffraction studies. The nanofibers in the xerogel are found to consist of molecules arranged in a lamellar fashion. Furthermore, this compound shows very weak emission in solution but an aggregation-induced emission property in the gel state. Considering the dearth of solid-state blue-light-emitting organic materials, this molecular design is promising where the self-assembly and emission in the aggregated state can be preserved. The nonsymmetric design lowers the phase-transition temperatures.The presence of an amide bond helps to stabilize columnar packing over a long range because of its polarity and intermolecular hydrogen bonding in addition to promoting organogelation.

  2. Aggregation-induced emissive nanoparticles for fluorescence signaling in a low cost paper-based immunoassay.

    PubMed

    Engels, Jan F; Roose, Jesse; Zhai, Demi Shuang; Yip, Ka Man; Lee, Mei Suet; Tang, Ben Zhong; Renneberg, Reinhard

    2016-07-01

    Low cost paper based immunoassays are receiving interest due to their fast performance and small amounts of biomolecules needed for developing an immunoassay complex. In this work aggregation-induced emissive (AIE) nanoparticles, obtained from a diastereoisomeric mixture of 1,2-di-(4-hydroxyphenyl)-1,2-diphenylethene (TPEDH) in a one-step top-down method, are characterized through Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), and Zeta potential. By measuring the Zeta potential before and after labeling the nanoparticles with antibodies we demonstrate that the colloidal system is stable in a wide pH-range. The AIE-active nanoparticles are deposited on chitosan and glutaraldehyde modified paper pads overcoming the common aggregation-caused quenching (ACQ) effect. Analyte concentrations from 1000ng and below are applied in a model immunocomplex using Goat anti-Rabbit IgG and Rabbit IgG. In the range of 7.81ng-250ng, linear trends with a high R(2) are observed, which leads to a strong increase of the blue fluorescence from the TPEDH nanoparticles. PMID:27037781

  3. Time-dependent aggregation-induced enhanced emission, absorption spectral broadening, and aggregation morphology of a novel perylene derivative with a large D-π-A structure.

    PubMed

    Yang, Long; Yu, Yuyan; Zhang, Jin; Ge, Feijie; Zhang, Jianling; Jiang, Long; Gao, Fang; Dan, Yi

    2015-05-01

    Strong aggregation-caused quenching of perylene diimides (PDI) is changed successfully by simple chemical modification with two quinoline moieties through C=C at the bay positions to obtain aggregation-induced enhanced emission (AIEE) of a perylene derivative (Cya-PDI) with a large π-conjugation system. Cya-PDI is weakly luminescent in the well-dispersed CH(3)CN or THF solutions and exhibits an evident time-dependent AIEE and absorption spectra broadening in the aggregated state. In addition, morphological inspection demonstrates that the morphology of the aggregated form of Cya-PDI molecules changed from plate-shaped to rod-like aggregates under the co-effects of time and water. An edge-to-face arrangement of aggregation was proposed and discussed. The fact that the Cya-PDI aggregates show a broad absorption covering the whole visible-light range and strong intermolecular interaction through π-π stacking in the solid state makes them promising materials for optoelectric applications.

  4. Turn-on fluorescence in tetraphenylethylene-based metal-organic frameworks: an alternative to aggregation-induced emission.

    PubMed

    Shustova, Natalia B; McCarthy, Brian D; Dincă, Mircea

    2011-12-21

    Coordinative immobilization of functionalized tetraphenylethylene within rigid porous metal-organic frameworks (MOFs) turns on fluorescence in the typically non-emissive tetraphenylethylene core. The matrix coordination-induced emission effect (MCIE) is complementary to aggregation-induced emission. Despite the large interchromophore distances imposed by coordination to metal ions, a carboxylate analogue of tetraphenylethylene anchored by Zn(2+) and Cd(2+) ions inside MOFs shows fluorescence lifetimes in line with those of close-packed molecular aggregates. Turn-on fluorescence by coordinative ligation in a porous matrix is a powerful approach that may lead to new materials made from chromophores with molecular rotors. The potential utility of MCIE toward building new sensing materials is demonstrated by tuning the fluorescence response of the porous MOFs as a function of adsorbed small analytes.

  5. Ultrasmall Organic Nanoparticles with Aggregation-Induced Emission and Enhanced Quantum Yield for Fluorescence Cell Imaging.

    PubMed

    Xu, Suying; Bai, Xilin; Ma, Jingwen; Xu, Minmin; Hu, Gaofei; James, Tony D; Wang, Leyu

    2016-08-01

    The use of fluorescence probes for biomedical imaging has attracted significant attention over recent years owing to their high resolution at cellular level. The probes are available in many formats including small particle size based imaging agents which are considered to be promising candidates, due to their excellent stabilities. Yet, concerns over the potential cytotoxicity effects of inorganic luminescent particles have led to questions about their suitability for imaging applications. Exploration of alternatives inspired us to use organic fluorophores with aggregation-induced emission (AIE), prepared by functionalizing the amine group on tetraphenylethene with 3,5-bis(trifluoromethyl)phenyl isocyanate. The as-synthesized novel AIE fluorophore (TPE-F) display enhanced quantum yield and longer lifetime as compared with its counterparts (4,4',4″,4‴-(ethene-1,1,2,2-tetrayl)tetraaniline, TPE-AM). Furthermore, the TPE-F was encapsulated into small-size organic nanoparticles (NPs; dynamic light scattering size, ∼10 nm) with polysuccinimide (PSI). The biocompatibility, excellent stability, bright fluorescence, and selective cell targeting of these NPs enable the as-prepared TPE-F NPs to be suitable for specific fluorescence cell imaging. PMID:27349933

  6. Ultrabright organic dots with aggregation-induced emission characteristics for cell tracking.

    PubMed

    Feng, Guangxue; Tay, Chor Yong; Chui, Qi Xiang; Liu, Rongrong; Tomczak, Nikodem; Liu, Jie; Tang, Ben Zhong; Leong, David Tai; Liu, Bin

    2014-10-01

    Noninvasive fluorescence cell tracking provides critical information on the physiological displacement and translocation of actively migrating cells, which deepens our understanding of biomedical engineering, oncological research, stem cell transplantation and therapies. Non-viral fluorescent protein transfection based cell tracing has been widely used but with issues related to cell type-dependent expression, lagged readout, immunogenicity and mutagenesis. Alternative cell tracking methods are therefore desired to attain reliable, stable, and efficient labeling over a long time. In this work, we have successfully developed ultra-bright organic dots with aggregation-induced emission (AIE dots) and demonstrated their capabilities for cellular imaging and cell tracking. The AIE dots possess high fluorescence, super photostability, and excellent cellular retention and biocompatibility. As compared to commonly used pMAX-GFP plasmid labeling approach, the organic AIE dots showed excellent cell labeling on all tested human cell lines and superior tracing performance, which opens up new opportunities in the cell-based immunotherapies and other related biological researches. PMID:25002264

  7. Ultrabright organic dots with aggregation-induced emission characteristics for real-time two-photon intravital vasculature imaging.

    PubMed

    Ding, Dan; Goh, Chi Ching; Feng, Guangxue; Zhao, Zujin; Liu, Jie; Liu, Rongrong; Tomczak, Nikodem; Geng, Junlong; Tang, Ben Zhong; Ng, Lai Guan; Liu, Bin

    2013-11-13

    Ultrabright organic dots with aggregation-induced emission characteristics (AIE dots) are prepared and shown to exhibit a high quantum yield, a, large two-photon absorption cross-section, and low in vivo toxicity. Real-time two-photon intravital blood vascular imaging in various tissues substantiates that the AIE dots are effective probes for in vivo vasculature imaging in a deep and high-contrast manner.

  8. Quantum chemical insights into the aggregation induced emission phenomena: a QM/MM study for pyrazine derivatives.

    PubMed

    Wu, Qunyan; Deng, Chunmei; Peng, Qian; Niu, Yingli; Shuai, Zhigang

    2012-09-01

    There have been intensive studies on the newly discovered phenomena called aggregation induced emission (AIE), in contrast to the conventional aggregation quenching. Through combined quantum mechanics and molecular mechanics computations, we have investigated the aggregation effects on the excited state decays, both via radiative and nonradiative routes, for pyrazine derivatives 2,3-dicyano-5,6-diphenylpyrazine (DCDPP) and 2,3-dicyanopyrazino phenanthrene (DCPP) in condensed phase. We show that for DCDPP there appear AIE for all the temperature, because the phenyl ring torsional motions in gas phase can efficiently dissipate the electronic excited state energy, and get hindered in aggregate; while for its "locked"-phenyl counterpart, DCPP, theoretical calculation can only give the normal aggregation quenching. These first-principles based findings are consistent with recent experiment. The primary origin of the exotic AIE phenomena is due to the nonradiative decay effects. This is the first time that AIE is understood based on theoretical chemistry calculations for aggregates, which helps to resolve the present disputes over the mechanism.

  9. A pyrene-benzthiazolium conjugate portraying aggregation induced emission, a ratiometric detection and live cell visualization of HSO3(.).

    PubMed

    Diwan, Uzra; Kumar, Virendra; Mishra, Rakesh K; Rana, Nishant Kumar; Koch, Biplob; Singh, Manish Kumar; Upadhyay, K K

    2016-07-27

    The present study deals with the photophysical property of a pyrene-benzthiazolium conjugate R1, as a strong intramolecular charge transfer (ICT) probe exhibiting long wavelength emission in the red region. Unlike traditional planar polyaromatic hydrocarbons whose aggregation generally quenches the light emission, the pyrene based R1 was found to display aggregation-induced emission (AIE) property along with simultaneous increase in its quantum yield upon increasing the water content of the medium. The R1 exhibits high specificity towards HSO3(-)/SO3(2-) by interrupting its own ICT producing there upon a large ratiometric blue shift of ∼220 nm in its emission spectrum. The lowest detection limit for the above measurement was found to be 8.90 × 10(-8) M. The fluorescent detection of HSO3(-) was also demonstrated excellently by test paper strip and silica coated TLC plate incorporating R1. The live cell imaging of HSO3(─) through R1 in HeLa cells was studied using fluorescence microscopic studies. The particle size and morphological features of R1 and R1-HSO3(-) aggregates in aqueous solution were characterized by DLS along with SEM analysis. PMID:27251947

  10. Far-red/near-infrared fluorescent bioprobes based on biocompatible nanoparticles with aggregation-induced emission characteristics for bioimaging applications

    NASA Astrophysics Data System (ADS)

    Qin, Wei; Ding, Dan; Liu, Bin; Tang, Ben Zhong

    2013-09-01

    Light emission of 2-(2,6-bis((E)-4-(diphenylamino)styryl]-4H-pyran-4-ylidene}malononitrile (TPA-DCM) is weakened by aggregate formation. Attaching tetraphenylethene (TPE) units as terminals to TPA-DCM dramatically changes its emission behavior: the resulting fluorogen 2-(2,6-bis((E)-4-(phenyl(4'-(1,2,2-triphenylvinyl)-[1,1'-biphenyl]-4- yl)amino)styryl)-4H-pyran-4-ylidene)malononitrile (TPE-TPA-DCM) is more emissive in the aggregate state, showing a novel phenomenon of aggregation-induced emission (AIE). Formulation of TPE-TPA-DCM using bovine serum albumin (BSA) as the polymer matrix yields uniformly sized protein nanoparticles (NPs) with high brightness and low cytotoxicity. Applications of the fluorogen-loaded BSA NPs for in vitro and in vivo far-red/near-infrared (FR/NIR) bioimaging are successfully demonstrated using MCF-7 breast cancer cells and a murine hepatoma-22 (H22) tumorbearing mice model, respectively. The AIE-active fluorogen-loaded BSA NPs show excellent cancer cell uptake and prominent tumor targeting ability in vivo due to the enhanced permeability and retention effect.

  11. Aggregation-Induced Emission of Organogels Based on Self-Assembled 5-(4-Nonylphenyl)-7-azaindoles.

    PubMed

    López, Daniel; García-Frutos, Eva M

    2015-08-11

    A new self-assembled organogel based on 5-(4-nonylphenyl)-7-azaindole (1), possessing an aggregation-induced emission phenomenon (AIE), is described. The incorporation of phenyl alkyl chains improves processability of the platform to form a new class of gelator. The fluorescence spectrum of 1 suffers changes in the gelation process, and an AIE phenomenon is observed during the phase transition from sol to gel state. The fluorescence is decreased slowly by heating the gel, and no emission is detected in concentrated solutions of 1. The AIE effect is due to the formation of the supramolecular organogel, where a self-association of the 7-azaindole moieties by dual hydrogen-bonded dimers is present. Regarding the solid-state emission properties, the xerogel 1 exhibits blue emission as well as in its organogel form. Therefore, it could be considered as a promising blue emitter in the solid state. PMID:26192402

  12. Highly Efficient Far Red/Near-Infrared Solid Fluorophores: Aggregation-Induced Emission, Intramolecular Charge Transfer, Twisted Molecular Conformation, and Bioimaging Applications.

    PubMed

    Lu, Hongguang; Zheng, Yadan; Zhao, Xiaowei; Wang, Lijuan; Ma, Suqian; Han, Xiongqi; Xu, Bin; Tian, Wenjing; Gao, Hui

    2016-01-01

    The development of organic fluorophores with efficient solid-state emissions or aggregated-state emissions in the red to near-infrared region is still challenging. Reported herein are fluorophores having aggregation-induced emission ranging from the orange to far red/near-infrared (FR/NIR) region. The bioimaging performance of the designed fluorophore is shown to have potential as FR/NIR fluorescent probes for biological applications. PMID:26576818

  13. Aggregation-induced emission of diarylamino-π-carborane triads: effects of charge transfer and π-conjugation.

    PubMed

    Cho, Yang-Jin; Kim, So-Yoen; Cho, Minji; Han, Won-Sik; Son, Ho-Jin; Cho, Dae Won; Kang, Sang Ook

    2016-04-14

    Carborane-based donor-π-acceptor triads (D-π-A-π-D) bearing triarylamine moieties were synthesised. All the monomeric triads showed a blue-green emission in a dilute solution, which was assigned as an intramolecular charge-transfer (CT) emission. The intramolecular CT emission showed large Stokes shifts at a higher solvent polarity. The intramolecular CT emission further shifted to a longer wavelength with the increase in π-conjugation. Interestingly, a strong red emission was observed in highly concentrated solutions or in the solid state, which was assigned as an aggregation-induced emission (AIE). Moreover, the AIE strongly depended on solvent polarity. A large Stokes shift in AIE was attributed to the strong CT character. The changes in the dipole moment for the AIE state and monomer emission were evaluated using the Lippert-Mataga relationship. The density functional theory calculations showed that the change in electron distribution between the aryl amino group (highest occupied molecular orbital, HOMO) and the carborane moiety (lowest unoccupied molecular orbital, LUMO) indicates the intramolecular CT character, and the emission colour changes were attributed to the HOMO-LUMO energy gap controlled by the π-extension of the phenylene linker. The electrochemical properties such as oxidation and reduction potentials were consistent with theoretical calculation results. The emission properties were affected by two main factors: solvent polarity and solubility. PMID:26996491

  14. Aggregation induced emission enhancement from Bathophenanthroline microstructures and its potential use as sensor of mercury ions in water.

    PubMed

    Mazumdar, Prativa; Das, Debasish; Sahoo, Gobinda Prasad; Salgado-Morán, Guillermo; Misra, Ajay

    2014-04-01

    Bathophenanthroline (BA) microstructures of various morphologies have been synthesized using a reprecipitation method. The morphologies of the particles are characterized using optical and scanning electron microscopy (SEM) methods. An aqueous dispersion of BA microstructures shows aggregation induced emission enhancement (AIEE) compared to BA in a good solvent, THF. This luminescent property of aggregated BA hydrosol is used for the selective detection of trace amounts of mercury ion (Hg(2+)) in water. It is observed that Hg(2+) ions can quench the photoluminescence (PL) intensity of BA aggregates even at very low concentrations, compared to other heavy metal ions e.g. nickel (Ni(2+)), manganese (Mn(2+)), cadmium (Cd(2+)), cobalt (Co(2+)), copper (Cu(2+)), ferrous (Fe(2+)) and zinc (Zn(2+)). This strong fluorescence quenching of aggregated BA in the presence of Hg(2+) ions has been explained as a complex interplay between the ground state complexation between BA and Hg(2+) ions and external heavy atom induced perturbation by Hg(2+) ions on the excited states of the fluorophore BA.

  15. Aggregation induced emission enhancement from Bathophenanthroline microstructures and its potential use as sensor of mercury ions in water.

    PubMed

    Mazumdar, Prativa; Das, Debasish; Sahoo, Gobinda Prasad; Salgado-Morán, Guillermo; Misra, Ajay

    2014-04-01

    Bathophenanthroline (BA) microstructures of various morphologies have been synthesized using a reprecipitation method. The morphologies of the particles are characterized using optical and scanning electron microscopy (SEM) methods. An aqueous dispersion of BA microstructures shows aggregation induced emission enhancement (AIEE) compared to BA in a good solvent, THF. This luminescent property of aggregated BA hydrosol is used for the selective detection of trace amounts of mercury ion (Hg(2+)) in water. It is observed that Hg(2+) ions can quench the photoluminescence (PL) intensity of BA aggregates even at very low concentrations, compared to other heavy metal ions e.g. nickel (Ni(2+)), manganese (Mn(2+)), cadmium (Cd(2+)), cobalt (Co(2+)), copper (Cu(2+)), ferrous (Fe(2+)) and zinc (Zn(2+)). This strong fluorescence quenching of aggregated BA in the presence of Hg(2+) ions has been explained as a complex interplay between the ground state complexation between BA and Hg(2+) ions and external heavy atom induced perturbation by Hg(2+) ions on the excited states of the fluorophore BA. PMID:24569390

  16. Aggregation-induced emission behavior of a pH-controlled molecular shuttle based on a tetraphenylethene moiety.

    PubMed

    Han, Xie; Cao, Meijiao; Xu, Zhiqiang; Wu, Di; Chen, Zhao; Wu, Anxin; Liu, Sheng Hua; Yin, Jun

    2015-10-14

    Tetraphenylethene (TPE) with aggregation-induced emission (AIE) behavior as a popular backbone is applied widely in the construction of functional supramolecular systems. In this work, a TPE-based linear molecule having amide and amine units is synthesized. Its ammonium template is used to construct the N-hetero crown ether-based [2]rotaxane by the template-directed clipping approach. Their structures are well-characterized by NMR, MALDI-TOF-MS and elemental analysis. Owing to the existence of the amide unit, [2]rotaxane possesses the function of a molecular shuttle. The shuttling motion of the macrocycle component between the ammonium station and the amide station can be driven by external acid-base stimuli in solution, accompanied by changes in visual behavior. Investigation on their AIE behavior shows that (1) ammonium reaches the aggregation state almost in the presence of same water with the deprotonated form of ammonium; (2) the [2]rotaxane that the macrocycle component locates at the site of ammonium forms the aggregation state in the presence of less water than the deprotonated [2]rotaxane that the macrocycle component locates at the site of the amide, attributed to stronger interaction between the crown ether component and the TPE unit of the template component when the distance between the two is shorter. The result indicates that the shuttling motion of the macrocycle component can adjust the aggregation state of AIE molecules.

  17. Aggregation-induced emission behavior of a pH-controlled molecular shuttle based on a tetraphenylethene moiety.

    PubMed

    Han, Xie; Cao, Meijiao; Xu, Zhiqiang; Wu, Di; Chen, Zhao; Wu, Anxin; Liu, Sheng Hua; Yin, Jun

    2015-10-14

    Tetraphenylethene (TPE) with aggregation-induced emission (AIE) behavior as a popular backbone is applied widely in the construction of functional supramolecular systems. In this work, a TPE-based linear molecule having amide and amine units is synthesized. Its ammonium template is used to construct the N-hetero crown ether-based [2]rotaxane by the template-directed clipping approach. Their structures are well-characterized by NMR, MALDI-TOF-MS and elemental analysis. Owing to the existence of the amide unit, [2]rotaxane possesses the function of a molecular shuttle. The shuttling motion of the macrocycle component between the ammonium station and the amide station can be driven by external acid-base stimuli in solution, accompanied by changes in visual behavior. Investigation on their AIE behavior shows that (1) ammonium reaches the aggregation state almost in the presence of same water with the deprotonated form of ammonium; (2) the [2]rotaxane that the macrocycle component locates at the site of ammonium forms the aggregation state in the presence of less water than the deprotonated [2]rotaxane that the macrocycle component locates at the site of the amide, attributed to stronger interaction between the crown ether component and the TPE unit of the template component when the distance between the two is shorter. The result indicates that the shuttling motion of the macrocycle component can adjust the aggregation state of AIE molecules. PMID:26284316

  18. Study on photophysical and aggregation induced emission recognition of 1,8-naphthalimide probe for casein by spectroscopic method

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Liu, Zhen; Liang, Xuhua; Fan, Jun; Han, Quan

    2013-05-01

    A novel water-soluble 1,8-naphthalimide derivative 1, bearing two acetic carboxylic groups, exhibited fluorescent turn-on recognition for casein based on the aggregation induced emission (AIE) character. The photophysical properties of 1 consisting of donor and acceptor units were investigated in different solutions. The fluorescence intensity decreased through taking advantage of twisted intramolecular charge transfer (TICT) and self-association emission with increasing solvent polarity. Moreover, the spectral red-shift and intensity quench in protic solvents were caused by the excited-state hydrogen bond strengthening effect. Density Functional Theory (DFT) calculations revealed that 1 exhibited a strong TICT character. The AIE mechanism of 1 with casein was due to 1 docked in the hydrophobic cavity between sub-micelles and bound with Tyr and Trp residues, resulting in the aggregation of 1 on the casein surface and emission enhancement. Based on this, a novel casein assay method was developed. The proposed exhibited a good linear range from 0.1 to 22 μg mL-1, with the detection limit of 2.8 ng mL-1. Satisfactory reproducibility, reversibility and a short response time were realized. This method was applied to the determination of casein in milk powder samples and the results were in good agreement with the result of Biuret method.

  19. Near-infrared fluorescence amplified organic nanoparticles with aggregation-induced emission characteristics for in vivo imaging

    NASA Astrophysics Data System (ADS)

    Geng, Junlong; Zhu, Zhenshu; Qin, Wei; Ma, Lin; Hu, Yong; Gurzadyan, Gagik G.; Tang, Ben Zhong; Liu, Bin

    2013-12-01

    Near-infrared (NIR) fluorescence signals are highly desirable to achieve high resolution in biological imaging. To obtain NIR emission with high brightness, fluorescent nanoparticles (NPs) are synthesized by co-encapsulation of 2,3-bis(4-(phenyl(4-(1,2,2-triphenylvinyl)phenylamino)phenyl)fumaronitrile (TPETPAFN), a luminogen with aggregation-induced emission (AIE) characteristics, and a NIR fluorogen of silicon 2,3-naphthalocyanine bis(trihexylsilyloxide) (NIR775) using 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] as the encapsulation matrix. The good spectral overlap between the emission of TPETPAFN and the absorption of NIR775 leads to efficient energy transfer, resulting in a 47-fold enhancement of the NIR775 emission intensity upon excitation of TPETPAFN at 510 nm as compared to that upon direct excitation of NIR775 at 760 nm. The obtained fluorescent NPs show sharp NIR emission with a band width of 20 nm, a large Stokes shift of 275 nm, good photostability and low cytotoxicity. In vivo imaging study reveals that the synthesized NPs are able to provide high fluorescence contrast in live animals. The Förster resonance energy transfer strategy overcomes the intrinsic limitation of broad emission spectra for AIE NPs, which opens new opportunities to synthesize organic NPs with high brightness and narrow emission for potential applications in multiplex sensing and imaging.Near-infrared (NIR) fluorescence signals are highly desirable to achieve high resolution in biological imaging. To obtain NIR emission with high brightness, fluorescent nanoparticles (NPs) are synthesized by co-encapsulation of 2,3-bis(4-(phenyl(4-(1,2,2-triphenylvinyl)phenylamino)phenyl)fumaronitrile (TPETPAFN), a luminogen with aggregation-induced emission (AIE) characteristics, and a NIR fluorogen of silicon 2,3-naphthalocyanine bis(trihexylsilyloxide) (NIR775) using 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000

  20. A highly selective fluorescent probe for sulfide ions based on aggregation of Cu nanocluster induced emission enhancement.

    PubMed

    Li, Zenghe; Guo, Song; Lu, Chao

    2015-04-21

    In this study, S(2-) ions were found to enhance the fluorescence of cysteine-capped Cu nanoclusters (Cu NCs). High resolution transmission electron microscopy (HRTEM), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy-energy dispersive X-ray (SEM-EDX) measurements, zeta potential and X-ray photoelectron spectroscopy (XPS) measurements demonstrated that the S(2-) ion-induced aggregation of the Cu NCs contributed to the fluorescence enhancement of the dispersed Cu NCs. Based on these findings, a highly selective fluorescent probe was developed for the determination of H2S using the S(2-) ion-enhanced fluorescence of the as-prepared Cu NCs. The relative fluorescence intensity was proportional to the concentration of S(2-) in the range from 0.2 to 50 μM. The detection limit (S/N = 3) was 42 nM. The proposed method has been successfully applied to determine H2S produced from toys called "Fart Bomb" with recoveries of 97.6-101.8%. The results of the proposed method were in good agreement with those determined by a standard methylene blue method. This work is not only of importance for a better understanding of the aggregation induced emission (AIE) properties of the Cu NCs but also of great potential to find extensive biological applications for H2S. PMID:25697240

  1. Probe Intracellular Trafficking of a Polymeric DNA Delivery Vehicle by Functionalization with an Aggregation-Induced Emissive Tetraphenylethene Derivative.

    PubMed

    Han, Xiongqi; Chen, Qixian; Lu, Hongguang; Ma, Jianbiao; Gao, Hui

    2015-12-30

    Characteristic aggregation-induced quenching of π-fluorophores imposed substantial hindrance to their utilization in nanomedicine for insight into microscopic intracellular trafficking of therapeutic payload. To address this obstacle, we attempted to introduce a novel aggregation-induced emission (AIE) fluorophore into the cationic polymer, which was further used for formulation of a gene delivery carrier. Note that the selective restriction of the intramolecular rotation of the AIE fluorophore through its covalent bond to the polymer conduced to immense AIE. Furthermore, DNA payload labeled with the appropriate fluorophore as the Förster resonance energy transfer (FRET) acceptor verified a facile strategy to trace intracellular DNA releasing activity relying on the distance limitation requested by FRET (AIE fluorophore as FRET donor). Moreover, the hydrophobic nature of the AIE fluorophore appeared to promote colloidal stability of the constructed formulation. Together with other chemistry functionalization strategies (including endosome escape), the ultimate formulation exerted dramatic gene transfection efficiency. Hence, this report manifested a first nanomedicine platform combining AIE and FRET for microscopic insight into DNA intracellular trafficking activity. PMID:26634294

  2. Mapping live cell viscosity with an aggregation-induced emission fluorogen by means of two-photon fluorescence lifetime imaging.

    PubMed

    Chen, Sijie; Hong, Yuning; Zeng, Yan; Sun, Qiqi; Liu, Yang; Zhao, Engui; Bai, Gongxun; Qu, Jianan; Hao, Jianhua; Tang, Ben Zhong

    2015-03-01

    Intracellular viscosity is a crucial parameter that indicates the functioning of cells. In this work, we demonstrate the utility of TPE-Cy, a cell-permeable dye with aggregation-induced emission (AIE) property, in mapping the viscosity inside live cells. Owing to the AIE characteristics, both the fluorescence intensity and lifetime of this dye are increased along with an increase in viscosity. Fluorescence lifetime imaging of live cells stained with TPE-Cy reveals that the lifetime in lipid droplets is much shorter than that from the general cytoplasmic region. The loose packing of the lipids in a lipid droplet results in low viscosity and thus shorter lifetime of TPE-Cy in this region. It demonstrates that the AIE dye could provide good resolution in intracellular viscosity sensing. This is also the first work in which AIE molecules are applied in fluorescence lifetime imaging and intracellular viscosity sensing.

  3. Fluorogenic Thorium Sensors Based on 2,6-Pyridinedicarboxylic Acid-Substituted Tetraphenylethenes with Aggregation-Induced Emission Characteristics.

    PubMed

    Wen, Jun; Dong, Liang; Hu, Sheng; Li, Weiyi; Li, Shuo; Wang, Xiaolin

    2016-01-01

    A novel fluorescent sensor based on tetraphenylethene (TPE) modified with 2,6-pyridinedicarboxylic acid (PDA) that shows aggregation-induced emission (AIE) characteristics for thorium recognition with remarkable fluoresence enhancement response has been synthesized. This sensor is capable of visually distinguishing Th(4+) among lanthanides, transition metals, and alkali metals under UV light. Th(4+) can be detected by the naked eye at ppb levels owing to the AIE phenomenon. The sensor showed high selectivity for Th(4+) compared to all other metals tested, and this recognition displayed good anti-interference qualities. This study represents the first application of a AIE fluorescence sensor in actinide metal recognition and it has potential applications in environmental systems for thorium ion detection. PMID:26419754

  4. Hexaphenylbenzene-Based, π-Conjugated Snowflake-Shaped Luminophores: Tunable Aggregation-Induced Emission Effect and Piezofluorochromism.

    PubMed

    Chang, Zheng-Feng; Jing, Ling-Min; Wei, Cong; Dong, Yu-Ping; Ye, Yan-Chun; Zhao, Yong Sheng; Wang, Jin-Liang

    2015-06-01

    In this work, two rigid, multiple tetraphenylethene (TPE)-substituted, π-conjugated, snowflake-shaped luminophores BT and BPT were facilely synthesized by using a 6-fold Suzuki coupling reaction. These molecules are constructed based on the nonplanar structure of propeller-shaped hexaphenylbenzene (HPB) or benzene as core groups and TPE as end groups. As a result, they reserve the intrinsic aggregation-induced emission (AIE) property of the TPE moiety. Meanwhile, both fluorescence quantum yield and piezochromic behavior in the solid state can be tuned or switched by inserting the phenyl bridges through changing the twisting conformation. The more extended structure BPT showed a much stronger AIE effect and higher ΦF,f in the solid state in comparison with that of BT. Furthermore, an excellent optical waveguide application of these molecules was achieved. However, the revisable piezofluorochromic behavior has only appeared when BT was ground using a pestle and treated with solvent.

  5. A new series of C-6 unsubstituted tetrahydropyrimidines: convenient one-pot chemoselective synthesis, aggregation-induced and size-independent emission characteristics.

    PubMed

    Zhu, Qiuhua; Huang, Lan; Chen, Zhipeng; Zheng, Sichao; Lv, Longyun; Zhu, Zhibo; Cao, Derong; Jiang, Huanfeng; Liu, Shuwen

    2013-01-21

    A new series of C-6 unsubstituted tetrahydropyrimidines 6 have been directly synthesized via a convenient urea-catalyzed chemoselective five-component reaction (5CR) under mild conditions. Compounds 6 show typical aggregation-induced emission enhancement (AIEE) characteristics because they are practically no emissive in solution but emit blue or green fluorescence in aggregates with fluorescence yield up to 93%. One of the 5CR products, 6aa, exhibits blue- and green-fluorescence aggregates (bf- and gf-aggregates). The bf- and gf-aggregates are prepared under different conditions and proved to result from different J-aggregations by single-crystal X-ray analysis. In addition, the bf- and gf-aggregates of 6aa show unusual size-independent emission (SIE) characteristics because their maximum emission wavelengths in different sizes (suspension particles, film, powder and crystals) are the same, 434 and 484 nm, respectively. Based on the obtained experimental results, the 5CR mechanism, the origins of AIEE and SIE characteristics are discussed.

  6. Incorporation of an aggregation-induced-emissive tetraphenylethene derivative into cationic gene delivery vehicles manifested the nuclear translocation of uncomplexed DNA.

    PubMed

    Han, Xiongqi; Chen, Qixian; Lu, Hongguang; Guo, Pan; Li, Wei; Wu, Guolin; Ma, Jianbiao; Gao, Hui

    2016-03-11

    A fluorophore displaying aggregation-induced emission was introduced at the terminus of branched polyethylenimine (PEI). The formulated polyplex not only demonstrated an improved safety profile and preserved transfection activity but also importantly indicated that the uncomplexed naked DNA rather than the polyplexes translocated into the nucleus.

  7. Live Cell MicroRNA Imaging Using Exonuclease III-Aided Recycling Amplification Based on Aggregation-Induced Emission Luminogens.

    PubMed

    Min, Xuehong; Zhang, Mengshi; Huang, Fujian; Lou, Xiaoding; Xia, Fan

    2016-04-13

    Enzyme-assisted detection strategies of microRNAs (miRNAs) in vitro have accomplished both great sensitivity and specificity. However, low expression of miRNAs and a complex environment in cells induces big challenges for monitoring and tracking miRNAs in vivo. The work reports the attempt to carry miRNA imaging into live cells, by enzyme-aided recycling amplification. We utilize facile probes based yellow aggregation-induced emission luminogens (AIEgens) with super photostable property but without quencher, which are applied to monitor miRNAs not only from urine sample extracts (in vitro) but also in live cells (in vivo). The assay could distinguish the cancer patients' urine samples from the healthy urine due to the good specificity. Moreover, the probe showed much higher fluorescence intensity in breast cancer cells (MCF-7) (miR-21 in high expression) than that in cervical cancer cells (HeLa) and human lung fibroblast cells (HLF) (miR-21 in low expression) in more than 60 min, which showed the good performance and super photostability for the probe in vivo. As controls, another two probes with FAM/Cy3 and corresponding quenchers, respectively, could perform miRNAs detections in vitro and parts of in vivo tests but were not suitable for the long-term cell tracking due to the photobleach phenomena, which also demonstrates that the probe with AIEgens is a potential candidate for the accurate identification of cancer biomarkers. PMID:27011025

  8. Live Cell MicroRNA Imaging Using Exonuclease III-Aided Recycling Amplification Based on Aggregation-Induced Emission Luminogens.

    PubMed

    Min, Xuehong; Zhang, Mengshi; Huang, Fujian; Lou, Xiaoding; Xia, Fan

    2016-04-13

    Enzyme-assisted detection strategies of microRNAs (miRNAs) in vitro have accomplished both great sensitivity and specificity. However, low expression of miRNAs and a complex environment in cells induces big challenges for monitoring and tracking miRNAs in vivo. The work reports the attempt to carry miRNA imaging into live cells, by enzyme-aided recycling amplification. We utilize facile probes based yellow aggregation-induced emission luminogens (AIEgens) with super photostable property but without quencher, which are applied to monitor miRNAs not only from urine sample extracts (in vitro) but also in live cells (in vivo). The assay could distinguish the cancer patients' urine samples from the healthy urine due to the good specificity. Moreover, the probe showed much higher fluorescence intensity in breast cancer cells (MCF-7) (miR-21 in high expression) than that in cervical cancer cells (HeLa) and human lung fibroblast cells (HLF) (miR-21 in low expression) in more than 60 min, which showed the good performance and super photostability for the probe in vivo. As controls, another two probes with FAM/Cy3 and corresponding quenchers, respectively, could perform miRNAs detections in vitro and parts of in vivo tests but were not suitable for the long-term cell tracking due to the photobleach phenomena, which also demonstrates that the probe with AIEgens is a potential candidate for the accurate identification of cancer biomarkers.

  9. Selective detection of NADPH among four pyridine-nucleotide cofactors by a fluorescent probe based on aggregation-induced emission.

    PubMed

    Noguchi, Takao; Dawn, Arnab; Yoshihara, Daisuke; Tsuchiya, Youichi; Yamamoto, Tatsuhiro; Shinkai, Seiji

    2013-05-14

    A fluorescent sensor based on guanidinium-tethered tetraphenylethene (TPE) has been investigated toward the differentiation of pyridine nucleotide cofactors (NAD(+) , NADH, NADP(+) , and NADPH). TPE selectively recognizes NADPH possessing the higher tetra-anionic net-charge, resulting in the steep "turn-on" fluorescence increase. The comparative aggregation behaviors and fluorescence response studies of TPE on the four cofactors reveal that the critical aggregate concentration of TPE against NADPH correlates directly with the concentration threshold for the fluorescence response. These results establish that TPE can selectively differentiate NADPH over the other three cofactors by the steep aggregation-induced fluorescence response accompanied by the high signal-to-background contrast.

  10. One-pot preparation of cross-linked amphiphilic fluorescent polymer based on aggregation induced emission dyes.

    PubMed

    Wang, Ke; Zhang, Xiaoyong; Zhang, Xiqi; Yang, Bin; Li, Zhen; Zhang, Qingsong; Huang, Zengfang; Wei, Yen

    2015-02-01

    Facile one-pot preparation of cross-linked amphiphilic fluorescent polymer based on aggregation induced emission (AIE) dyes and 2-isocyanatoethyl methacrylate (IM) has been developed. This was carried out first by free radical polymerization between AIE monomer (PhE) and IM, and then polyethyleneimine (PEI) was introduced to obtain the cross-linked fluorescent polymer. The resulted cross-linked amphiphilic polymer was prone to self-assemble into stable nanoparticles in aqueous solution with surplus amino groups on the surface which made them highly water dispersible and can be further functionalized. The as-prepared fluorescent polymer nanoparticles (PhE-IM-PEI FPNs) were fully characterized by a series of techniques including (1)H NMR spectrum, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, dynamic light scattering, UV-vis absorption spectrum, and fluorescence spectra. Such FPNs demonstrated intense orange fluorescence with a high quantum yield of about 40%. Biocompatibility evaluation and cell uptake behavior of the nanoparticles were further investigated to explore their potential biomedical applications; the demonstrated excellent biocompatibility made them promising for cell imaging.

  11. Effect of Amide Hydrogen Bonding Interaction on Supramolecular Self-Assembly of Naphthalene Diimide Amphiphiles with Aggregation Induced Emission.

    PubMed

    Ghule, Namdev V; La, Duong Duc; Bhosale, Rajesh S; Al Kobaisi, Mohammad; Raynor, Aaron M; Bhosale, Sheshanath V; Bhosale, Sidhanath V

    2016-04-01

    In the present work, two new naphthalene diimide (NDI) amphiphiles, NDI-N and NDI-NA, were successfully synthesized and employed to investigate their self-assembly and optical properties. For NDI-NA, which contains an amide group, aggregation-induced emission enhancement (AIEE) was demonstrated in the presence of various ratios of methylcyclohexane (MCH) in chloroform, which led to the visual color changes. This new amide-containing NDI-NA amphiphile formed nanobelt structures in chloroform/MCH (10:90, v/v) and microcup-like morphologies in chloroform/MCH (5:95, v/v). The closure of these microcups led to the formation of vesicles and microcapsules. The structural morphologies gained from the solvophobic control of NDI-NA were confirmed by various complementary techniques such as infrared spectroscopy, X-ray diffraction, and scanning and transmission electron microscopy. In the absence of the amide moiety in NDI-N, no self-assembly was observed, indicating the fundamental role of H-bonding in the self-association process. PMID:27308233

  12. Gadolinium-functionalized aggregation-induced emission dots as dual-modality probes for cancer metastasis study.

    PubMed

    Li, Kai; Ding, Dan; Prashant, Chandrasekharan; Qin, Wei; Yang, Chang-Tong; Tang, Ben Zhong; Liu, Bin

    2013-12-01

    Understanding the localization and engraftment of tumor cells at postintravasation stage of metastasis is of high importance in cancer diagnosis and treatment. Advanced fluorescent probes and facile methodologies for cell tracing play a key role in metastasis studies. In this work, we design and synthesize a dual-modality imaging dots with both optical and magnetic contrast through integration of a magnetic resonance imaging reagent, gadolinium(III), into a novel long-term cell tracing probe with aggregation-induced emission (AIE) in far-red/near-infrared region. The obtained fluorescent-magnetic AIE dots have both high fluorescence quantum yield (25%) and T1 relaxivity (7.91 mM(-1) s(-1) ) in aqueous suspension. After further conjugation with a cell membrane penetrating peptide, the dual-modality dots can be efficiently internalized into living cells. The gadolinium(III) allows accurate quantification of biodistribution of cancer cells via intraveneous injection, while the high fluorescence provides engraftment information of cells at single cellular level. The dual-modality AIE dots show obvious synergistic advantages over either single imaging modality and hold great promises in advanced biomedical studies.

  13. Facile preparation and biological imaging of luminescent polymeric nanoprobes with aggregation-induced emission characteristics through Michael addition reaction.

    PubMed

    Lv, Qiulan; Wang, Ke; Xu, Dazhuang; Liu, Meiying; Wan, Qing; Huang, Hongye; Liang, Shangdong; Zhang, Xiaoyong; Wei, Yen

    2016-09-01

    Water dispersion aggregation-induced emission (AIE) dyes based nanomaterials have recently attracted increasing attention in the biomedical fields because of their unique optical properties, outstanding performance as imaging and therapeutic agents. The methods to conjugate hydrophilic polymers with AIE dyes to solve the hydrophobic nature of AIE dyes and makeS them widely used in biomedicine, which have been extensively explored and paid great effort previously. Although great advance has been made in the fabrication and biomedical applications of AIE-active polymeric nanoprobes, facile and efficient strategies for fabrication of biodegradable AIE-active nanoprobes are still high desirable. In this work, amphiphilic biodegradable fluorescent organic nanoparticles (PLL-TPE-O-E FONs) have been fabricated for the first time by conjugation of AIE dye tetraphenylethene acrylate (TPE-O-E) with Poly-l-Lysine (PLL) through a facile one-step Michael addition reaction, which was carried out under rather mild conditions, included air atmosphere, near room temperature and absent of metal catalysts or hazardous reagents. Due to the unique AIE properties, these amphiphilic copolymers tend to self-assemble into high luminescent water dispersible nanoparticles with size range from 400 to 600nm. Laser scanning microscope and cytotoxicity results revealed that PLL-TPE-O-E FONs can be internalized into cytoplasm with negative cytotoxicity, which implied that PLL-TPE-O-E FONs are promising for biological applications. PMID:27311129

  14. The effects of side-chain-induced disorder on the emission spectra and quantum yields of oligothiophene nano-aggregates. A combined experimental and MD-TDDFT study

    SciTech Connect

    Hong, Jiyun; Jeon, SuKyung; Kim, Janice J.; Devi, Diane; Chacon-Madrid, Kelly; Lee, Wynee; Koo, Seung Moh; Wildeman, Jurjen; Sfeir, Matthew Y.; Peteanu, Linda A.; Wen, Jin; Ma, Jing

    2014-07-24

    Oligomeric thiophenes are commonly-used components in organic electronics and solar cells. These molecules stack and/or aggregate readily under the processing conditions used to form thin films for these applications, significantly altering their optical and charge-transport properties. To determine how these effects depend on the substitution pattern of the thiophene main chains, nano-aggregates of three sexi-thiophene (6T) oligomers having different alkyl substitution patterns were formed using solvent poisoning techniques and studied using steady-state and time-resolved emission spectroscopy. The results indicate the substantial role played by the side-chain substituents in determining the emissive properties of these species. Both the measured spectral changes and their dependence on substitution are well modeled by combined quantum chemistry and molecular dynamics simulations. The simulations connect the side-chain-induced disorder, which determines the favorable chain packing configurations within the aggregates, with their measured electronic spectra.

  15. The effects of side-chain-induced disorder on the emission spectra and quantum yields of oligothiophene nano-aggregates. A combined experimental and MD-TDDFT study

    DOE PAGES

    Hong, Jiyun; Jeon, SuKyung; Kim, Janice J.; Devi, Diane; Chacon-Madrid, Kelly; Lee, Wynee; Koo, Seung Moh; Wildeman, Jurjen; Sfeir, Matthew Y.; Peteanu, Linda A.; et al

    2014-07-24

    Oligomeric thiophenes are commonly-used components in organic electronics and solar cells. These molecules stack and/or aggregate readily under the processing conditions used to form thin films for these applications, significantly altering their optical and charge-transport properties. To determine how these effects depend on the substitution pattern of the thiophene main chains, nano-aggregates of three sexi-thiophene (6T) oligomers having different alkyl substitution patterns were formed using solvent poisoning techniques and studied using steady-state and time-resolved emission spectroscopy. The results indicate the substantial role played by the side-chain substituents in determining the emissive properties of these species. Both the measured spectral changesmore » and their dependence on substitution are well modeled by combined quantum chemistry and molecular dynamics simulations. The simulations connect the side-chain-induced disorder, which determines the favorable chain packing configurations within the aggregates, with their measured electronic spectra.« less

  16. Stable and Size-Tunable Aggregation-Induced Emission Nanoparticles Encapsulated with Nanographene Oxide and Applications in Three-Photon Fluorescence Bioimaging.

    PubMed

    Zhu, Zhenfeng; Qian, Jun; Zhao, Xinyuan; Qin, Wei; Hu, Rongrong; Zhang, Hequn; Li, Dongyu; Xu, Zhengping; Tang, Ben Zhong; He, Sailing

    2016-01-26

    Organic fluorescent dyes with high quantum yield are widely applied in bioimaging and biosensing. However, most of them suffer from a severe effect called aggregation-caused quenching (ACQ), which means that their fluorescence is quenched at high molecular concentrations or in the aggregation state. Aggregation-induced emission (AIE) is a diametrically opposite phenomenon to ACQ, and luminogens with this feature can effectively solve this problem. Graphene oxide has been utilized as a quencher for many fluorescent dyes, based on which biosensing can be achieved. However, using graphene oxide as a surface modification agent of fluorescent nanoparticles is seldom reported. In this article, we used nanographene oxide (NGO) to encapsulate fluorescent nanoparticles, which consisted of a type of AIE dye named TPE-TPA-FN (TTF). NGO significantly improved the stability of nanoparticles in aqueous dispersion. In addition, this method could control the size of nanoparticles' flexibly as well as increase their emission efficiency. We then used the NGO-modified TTF nanoparticles to achieve three-photon fluorescence bioimaging. The architecture of ear blood vessels in mice and the distribution of nanoparticles in zebrafish could be observed clearly. Furthermore, we extended this method to other AIE luminogens and showed it was widely feasible.

  17. Selective and Sensitive Detection of Heavy Metal Ions in 100% Aqueous Solution and Cells with a Fluorescence Chemosensor Based on Peptide Using Aggregation-Induced Emission.

    PubMed

    Neupane, Lok Nath; Oh, Eun-Taex; Park, Heon Joo; Lee, Keun-Hyeung

    2016-03-15

    A fluorescent peptidyl chemosensor for the detection of heavy metal ions in aqueous solution as well as in cells was synthesized on the basis of the peptide receptor for the metal ions using an aggregation-induced emission fluorophore. The peptidyl chemosensor (1) bearing tetraphenylethylene fluorophore showed an exclusively selective turn-on response to Hg(2+) among 16 metal ions in aqueous buffered solution containing NaCl. The peptidyl chemosensor complexed Hg(2+) ions and then aggregated in aqueous buffered solution, resulting in the significant enhancement (OFF-On) of emissions at around 470 nm. The fluorescent sensor showed a highly sensitive response to Hg(2+), and about 1.0 equiv of Hg(2+) was enough for the saturation of the emission intensity change. The detection limit (5.3 nM, R(2) = 0.99) of 1 for Hg(2+) ions was lower than the maximum allowable level of Hg(2+) in drinking water by EPA. Moreover, the peptidyl chemosensor penetrated live cells and detected intracellular Hg(2+) ions by the turn-on response.

  18. Selective and Sensitive Detection of Heavy Metal Ions in 100% Aqueous Solution and Cells with a Fluorescence Chemosensor Based on Peptide Using Aggregation-Induced Emission.

    PubMed

    Neupane, Lok Nath; Oh, Eun-Taex; Park, Heon Joo; Lee, Keun-Hyeung

    2016-03-15

    A fluorescent peptidyl chemosensor for the detection of heavy metal ions in aqueous solution as well as in cells was synthesized on the basis of the peptide receptor for the metal ions using an aggregation-induced emission fluorophore. The peptidyl chemosensor (1) bearing tetraphenylethylene fluorophore showed an exclusively selective turn-on response to Hg(2+) among 16 metal ions in aqueous buffered solution containing NaCl. The peptidyl chemosensor complexed Hg(2+) ions and then aggregated in aqueous buffered solution, resulting in the significant enhancement (OFF-On) of emissions at around 470 nm. The fluorescent sensor showed a highly sensitive response to Hg(2+), and about 1.0 equiv of Hg(2+) was enough for the saturation of the emission intensity change. The detection limit (5.3 nM, R(2) = 0.99) of 1 for Hg(2+) ions was lower than the maximum allowable level of Hg(2+) in drinking water by EPA. Moreover, the peptidyl chemosensor penetrated live cells and detected intracellular Hg(2+) ions by the turn-on response. PMID:26872241

  19. Aggregation-induced emission enhancement in alkoxy-bridged binuclear rhenium(I) complexes: application as sensor for explosives and interaction with microheterogeneous media.

    PubMed

    Sathish, Veerasamy; Ramdass, Arumugam; Lu, Zong-Zhan; Velayudham, Murugesan; Thanasekaran, Pounraj; Lu, Kuang-Lieh; Rajagopal, Seenivasan

    2013-11-21

    The aggregation-induced emission enhancement (AIEE) characteristics of the two alkoxy-bridged binuclear Re(I) complexes [{Re(CO)3(1,4-NVP)}2(μ2-OR)2] (1, R = C4H9; 2, C10H21) bearing a long alkyl chain with 4-(1-naphthylvinyl)pyridine (1,4-NVP) ligand are illustrated. These complexes in CH2Cl2 (good solvent) are weakly luminescent, but their intensity increased enormously by almost 500 times by the addition of poor solvent (CH3CN) due to aggregation. By tracking this process via UV-vis absorption and emission spectral and TEM techniques, the enhanced emission is attributed to the formation of nanoaggregates. The nanoaggregate of complex 2 is used as a sensor for nitroaromatic compounds. Furthermore, the study of the photophysical properties of these binuclear Re(I) complexes in cationic, cetyltrimethylammonium bromide (CTAB), anionic, sodium dodecyl sulfate (SDS), and nonionic, p-tert-octylphenoxypolyoxyethanol (TritonX-100, TX-100), micelles as well as in CTAB-hexane-water and AOT-isooctane-water reverse micelles using steady-state and time-resolved spectroscopy and TEM analysis reveals that the nanoaggregates became small and compact size.

  20. A Suite of Tetraphenylethylene-Based Discrete Organoplatinum(II) Metallacycles: Controllable Structure and Stoichiometry, Aggregation-Induced Emission, and Nitroaromatics Sensing.

    PubMed

    Yan, Xuzhou; Wang, Haoze; Hauke, Cory E; Cook, Timothy R; Wang, Ming; Saha, Manik Lal; Zhou, Zhixuan; Zhang, Mingming; Li, Xiaopeng; Huang, Feihe; Stang, Peter J

    2015-12-01

    Materials that organize multiple functionally active sites, especially those with aggregation-induced emission (AIE) properties, are of growing interest due to their widespread applications. Despite promising early architectures, the fabrication and preparation of multiple AIEgens, such as multiple tetraphenylethylene (multi-TPE) units, in a single entity remain a big challenge due to the tedious covalent synthetic procedures often accompanying such preparations. Coordination-driven self-assembly is an alternative synthetic methodology with the potential to deliver multi-TPE architectures with light-emitting characteristics. Herein, we report the preparation of a new family of discrete multi-TPE metallacycles in which two pendant phenyl rings of the TPE units remain unused as a structural element, representing novel AIE-active metal-organic materials based on supramolecular coordination complex platforms. These metallacycles possess relatively high molar absorption coefficients but weak fluorescent emission under dilute conditions because of the ability of the untethered phenyl rings to undergo torsional motion as a non-radiative decay pathway. Upon molecular aggregation, the multi-TPE metallacycles show AIE-activity with markedly enhanced quantum yields. Moreover, on account of their AIE characteristics in the condensed state and ability to interact with electron-deficient substrates, the photophysics of these metallacycles is sensitive to the presence of nitroaromatics, motivating their use as sensors. This work represents a unification of themes including molecular self-assembly, AIE, and fluorescence sensing and establishes structure-property-application relationships of multi-TPE scaffolds. The fundamental knowledge obtained from the current research facilitates progress in the field of metal-organic materials, metal-coordination-induced emission, and fluorescent sensing. PMID:26550682

  1. A Red to Near-IR Fluorogen: Aggregation-Induced Emission, Large Stokes Shift, High Solid Efficiency and Application in Cell-Imaging.

    PubMed

    Wang, Yi Jia; Shi, Yang; Wang, Zhaoyang; Zhu, Zhenfeng; Zhao, Xinyuan; Nie, Han; Qian, Jun; Qin, Anjun; Sun, Jing Zhi; Tang, Ben Zhong

    2016-07-01

    A tetraphenylethene (TPE) derivative modified with the strong electron acceptor 2-dicyano-methylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran (TCF) was obtained in high yield by a simple two-step reaction. The resultant TPE-TCF showed evident aggregation-induced emission (AIE) features and pronounced solvatochromic behavior. Changing the solvent from apolar cyclohexane to highly polar acetonitrile, the emission peak shifted from 560 to 680 nm (120 nm redshift). In an acetonitrile solution and in the solid powder, the Stokes shifts are as large as 230 and 190 nm, respectively. The solid film emits red to near-IR (red-NIR) fluorescence with an emission peak at 670 nm and a quantum efficiency of 24.8 %. Taking the advantages of red-NIR emission and high efficiency, nanoparticles (NPs) of TPE-TCF were fabricated by using tat-modified 1,2-distearoylsn-glycero-3-phosphor-ethanol-amine-N-[methoxy-(polyethyl-eneglycol)-2000] as the encapsulation matrix. The obtained NPs showed perfect membrane penetrability and high fluorescent imaging quality of cell cytoplasm. Upon co-incubation with 4,6-diamidino-2-phenylindole (DAPI) in the presence of tritons, the capsulated TPE-TCF nanoparticles could enter into the nucleus and displayed similar staining properties to those of DAPI.

  2. A Red to Near-IR Fluorogen: Aggregation-Induced Emission, Large Stokes Shift, High Solid Efficiency and Application in Cell-Imaging.

    PubMed

    Wang, Yi Jia; Shi, Yang; Wang, Zhaoyang; Zhu, Zhenfeng; Zhao, Xinyuan; Nie, Han; Qian, Jun; Qin, Anjun; Sun, Jing Zhi; Tang, Ben Zhong

    2016-07-01

    A tetraphenylethene (TPE) derivative modified with the strong electron acceptor 2-dicyano-methylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran (TCF) was obtained in high yield by a simple two-step reaction. The resultant TPE-TCF showed evident aggregation-induced emission (AIE) features and pronounced solvatochromic behavior. Changing the solvent from apolar cyclohexane to highly polar acetonitrile, the emission peak shifted from 560 to 680 nm (120 nm redshift). In an acetonitrile solution and in the solid powder, the Stokes shifts are as large as 230 and 190 nm, respectively. The solid film emits red to near-IR (red-NIR) fluorescence with an emission peak at 670 nm and a quantum efficiency of 24.8 %. Taking the advantages of red-NIR emission and high efficiency, nanoparticles (NPs) of TPE-TCF were fabricated by using tat-modified 1,2-distearoylsn-glycero-3-phosphor-ethanol-amine-N-[methoxy-(polyethyl-eneglycol)-2000] as the encapsulation matrix. The obtained NPs showed perfect membrane penetrability and high fluorescent imaging quality of cell cytoplasm. Upon co-incubation with 4,6-diamidino-2-phenylindole (DAPI) in the presence of tritons, the capsulated TPE-TCF nanoparticles could enter into the nucleus and displayed similar staining properties to those of DAPI. PMID:27265326

  3. The Fixed Propeller-Like Conformation of Tetraphenylethylene that Reveals Aggregation-Induced Emission Effect, Chiral Recognition, and Enhanced Chiroptical Property.

    PubMed

    Xiong, Jia-Bin; Feng, Hai-Tao; Sun, Jian-Ping; Xie, Wen-Zhao; Yang, Dong; Liu, Minghua; Zheng, Yan-Song

    2016-09-14

    The propeller-like conformation of tetraphenylethylene (TPE) with aggregation-induced emission (AIE) effect was partially and completely fixed by intramolecular cyclization for the first time. The immobilization of propeller-like conformation was found to show great advantages in determining the enantiomer purity, identifying the chiral amines. The completely fixed conformers are resolved into M- and P-enantiomer, which showed mirror imaged CD and almost quantitative fluorescence quantum yield. Furthermore, it also showed a mirror and large circularly polarized luminescence dissymmetric factor, depending on the helicity of the enantiomer. The result provides the most direct and persuasive evidence for AIE via the restriction of intramolecular rotation and finds the new insight of the compounds in chiroptical property.

  4. Aggregation-Induced Emission Active Metal-Free Chemosensing Platform for Highly Selective Turn-On Sensing and Bioimaging of Pyrophosphate Anion.

    PubMed

    Gogoi, Abhijit; Mukherjee, Sandipan; Ramesh, Aiyagari; Das, Gopal

    2015-07-01

    We report the synthesis of a metal-free chemosensor for highly selective sensing of pyrophosphate (PPi) anion in physiological medium. The novel phenylbenzimidazole functionalized imine containing chemosensor (L; [2,6-bis(((4-(1H-benzo[d]imidazol-2-yl)phenyl)imino) methyl)-4 methyl phenol]) could sense PPi anion through "turn-on" colorimetric and fluorimetric responses in a very competitive environment. The overall sensing mechanism is based on the aggregation-induced emission (AIE) phenomenon. Moreover, a real time in-field device application was demonstrated by sensing PPi in paper strips coated with L. Interestingly, detection of intracellular PPi ions in model human cells could also be possible by fluorescence microscopic studies without any toxicity to these cells. PMID:26059015

  5. The Fixed Propeller-Like Conformation of Tetraphenylethylene that Reveals Aggregation-Induced Emission Effect, Chiral Recognition, and Enhanced Chiroptical Property.

    PubMed

    Xiong, Jia-Bin; Feng, Hai-Tao; Sun, Jian-Ping; Xie, Wen-Zhao; Yang, Dong; Liu, Minghua; Zheng, Yan-Song

    2016-09-14

    The propeller-like conformation of tetraphenylethylene (TPE) with aggregation-induced emission (AIE) effect was partially and completely fixed by intramolecular cyclization for the first time. The immobilization of propeller-like conformation was found to show great advantages in determining the enantiomer purity, identifying the chiral amines. The completely fixed conformers are resolved into M- and P-enantiomer, which showed mirror imaged CD and almost quantitative fluorescence quantum yield. Furthermore, it also showed a mirror and large circularly polarized luminescence dissymmetric factor, depending on the helicity of the enantiomer. The result provides the most direct and persuasive evidence for AIE via the restriction of intramolecular rotation and finds the new insight of the compounds in chiroptical property. PMID:27564514

  6. Exquisite 1D Assemblies Arising from Rationally Designed Asymmetric Donor-Acceptor Architectures Exhibiting Aggregation-Induced Emission as a Function of Auxiliary Acceptor Strength.

    PubMed

    Singh, Roop Shikha; Mukhopadhyay, Sujay; Biswas, Arnab; Pandey, Daya Shankar

    2016-01-11

    One-dimensional nanostructures with aggregation-induced emission (AIE) properties have been fabricated to keep the pace with growing demand from optoelectronics applications. The compounds 2-[4-(4-methylpiperazin-1-yl)benzylidene]malononitrile (PM1), 2-{4-[4-(pyridin-2-yl)piperazin-1-yl]-benzylidene}malononitrile (PM2), and 2-{4-[4-(pyrimidin-2-yl)piperazin-1-yl]benzylidene}malononitrile (PM3) have been designed and synthesized by melding piperazine and dicyanovinylene to investigate AIE in an asymmetric donor-acceptor (D-A) construct of A'-D-π-A- topology. The synthetic route has been simplified by using phenylpiperazine as a weak donor (D), dicyanovinylene as an acceptor (A), and pyridyl/pyrimidyl groups (PM2/PM3) as auxiliary acceptors (A'). It has been established that A' plays a vital role in triggering AIE in these compounds because the same D-A construct led to aggregation-caused quenching upon replacing A' with an electron-donating ethyl group (PM1). Moreover, the effect of restricted intramolecular rotation and twisted intramolecular charge transfer on the mechanism of AIE has also been investigated. Furthermore, it has been clearly shown that the optical disparities of these A'-D-π-A architectures are a direct consequence of comparative A' strength. Single-crystal X-ray analyses provided justification for role of intermolecular interactions in aggregate morphology. Electrochemical and theoretical studies affirmed the effect of the A' strength on the overall properties of the A'-D-π-A system.

  7. The Control of Conjugation Lengths and Steric Hindrance to Modulate Aggregation-Induced Emission with High Electroluminescence Properties and Interesting Optical Properties.

    PubMed

    Xue, Miao-Miao; Xie, Yue-Min; Cui, Lin-Song; Liu, Xiang-Yang; Yuan, Xiao-Dong; Li, Yong-Xi; Jiang, Zuo-Quan; Liao, Liang-Sheng

    2016-01-18

    A series of novel AIE-active (aggregation-induced emission) molecules, named SAF-2-TriPE, SAF-3-TriPE, and SAF-4-TriPE, were designed and synthesized through facile reaction procedures. We found that incorporation of the spiro-acridine-fluorene (SAF) group, which is famous for its excellent hole-transporting ability and rigid structure, at different substitution positions on the phenyl ring affected the conjugation lengths of these compounds. Consequently, we have obtained molecules with different emission colors and properties without sacrificing good EL (electroluminescence) characteristics. Accordingly, a device that was based on compound SAF-2-TriPE displayed superior EL characteristics: it emitted green light with ηc, max =10.5 cd A(-1) and ηext, max =4.22 %, whereas a device that was based on compound SAF-3-TriPE emitted blue-green light with ηc, max =3.9 cd A(-1) and ηext, max = 1.71 %. These compounds also displayed different AIE performances: when the fraction of water in the THF solutions of these compounds was increased, we observed a significant improvement in the ΦF of compounds SAF-2-TriPE and SAF-3-TriPE; in contrast, compound SAF-4-TriPE showed an abnormal phenomenon, in that it emitted a strong fluorescence in both pure THF solution and in the aggregated state without a significant change in ΦF . Overall, this systematic study confirmed a relationship between the regioisomerism of the luminophore structure and its AIE activity and the resulting electroluminescent performance in non-doped devices.

  8. Phenyl Ring Dynamics in a Tetraphenylethylene-Bridged Metal-Organic Framework: Implications for the Mechanism of Aggregation-Induced Emission

    PubMed Central

    Shustova, Natalia B.; Ong, Ta-Chung; Cozzolino, Anthony F.; Michaelis, Vladimir K.; Griffin, Robert G.; Dincã, Mircea

    2012-01-01

    Molecules that exhibit emission in the solid state, especially those known as aggregation-induced emission (AIE) chromophores, have found applications in areas as varied as light-emitting diodes and biological sensors. Despite numerous studies, the mechanism of fluorescence quenching in AIE chromophores is still not completely understood. To this end, much interest has focused on understanding the low frequency vibrational dynamics of prototypical systems such as tetraphenylethylene (TPE), in the hope that such studies would provide more general principles towards the design of new sensors and electronic materials. We hereby show that a perdeuterated TPE-based metal-organic framework (MOF) serves as an excellent platform for studying the low energy vibrational modes of AIE-type chromophores. In particular, we use solid-state 2H and 13C NMR experiments to investigate the phenyl ring dynamics of TPE cores that are coordinatively trapped inside a MOF and find a phenyl ring flipping energy barrier of 43(6) kJ/mol. DFT calculations are then used to deconvolute the electronic and steric contributions to this flipping barrier. Finally, we couple the NMR and DFT studies with variable temperature X-ray diffraction experiments to propose that both the ethylenic C=C bond twist and the torsion of the phenyl rings are important for quenching emission in TPE, but that the former may gate the latter. To conclude, we use these findings to propose a set of design criteria for the development of tunable turn-on porous sensors constructed from AIE-type molecules, particularly as applied to the design of new multifunctional MOFs. PMID:22889020

  9. Phenyl ring dynamics in a tetraphenylethylene-bridged metal-organic framework: implications for the mechanism of aggregation-induced emission.

    PubMed

    Shustova, Natalia B; Ong, Ta-Chung; Cozzolino, Anthony F; Michaelis, Vladimir K; Griffin, Robert G; Dincă, Mircea

    2012-09-12

    Molecules that exhibit emission in the solid state, especially those known as aggregation-induced emission (AIE) chromophores, have found applications in areas as varied as light-emitting diodes and biological sensors. Despite numerous studies, the mechanism of fluorescence quenching in AIE chromophores is still not completely understood. To this end, much interest has focused on understanding the low-frequency vibrational dynamics of prototypical systems, such as tetraphenylethylene (TPE), in the hope that such studies would provide more general principles toward the design of new sensors and electronic materials. We hereby show that a perdeuterated TPE-based metal-organic framework (MOF) serves as an excellent platform for studying the low-energy vibrational modes of AIE-type chromophores. In particular, we use solid-state (2)H and (13)C NMR experiments to investigate the phenyl ring dynamics of TPE cores that are coordinatively trapped inside a MOF and find a phenyl ring flipping energy barrier of 43(6) kJ/mol. DFT calculations are then used to deconvolute the electronic and steric contributions to this flipping barrier. Finally, we couple the NMR and DFT studies with variable-temperature X-ray diffraction experiments to propose that both the ethylenic C═C bond twist and the torsion of the phenyl rings are important for quenching emission in TPE, but that the former may gate the latter. To conclude, we use these findings to propose a set of design criteria for the development of tunable turn-on porous sensors constructed from AIE-type molecules, particularly as applied to the design of new multifunctional MOFs.

  10. T-shaped monopyridazinotetrathiafulvalene-amino acid diad based chiral organogels with aggregation-induced fluorescence emission.

    PubMed

    Wang, Yuan; Liu, Yucun; Jin, Longyi; Yin, Bingzhu

    2016-08-14

    A series of pyridazine coupled tetrathiafulvalene T-shaped derivatives with varying amino acid moieties have been synthesized and their gelation properties were studied in various organic solvents. Among these derivatives, two gelators bearing glycine or phenylalanine units display efficient gelation in aromatic and polar solvents. Interestingly, these gelators, except for the gelator containing two tryptophan units, are able to gel DMF via a solution-to-gel transformation when triggered with sonication for less than 20 s or cooled below zero. A number of experiments revealed that these gelator molecules self-assembled into elastically interpenetrating three-dimensional chiral fibrillar aggregates. Importantly, all of the resulting gels result in a dramatic enhancement of the fluorescence intensity compared with their hot solution in spite of the absence of a conventional fluorophore unit and the fluorescence was effectively quenched by the introduction of C60. Moreover, the gelators can be utilized for the removal of different types of toxic molecules, such as aromatic solvents and cationic dyes, from wastewater. PMID:27418524

  11. In vivo tumor-targeted dual-modal fluorescence/CT imaging using a nanoprobe co-loaded with an aggregation-induced emission dye and gold nanoparticles.

    PubMed

    Zhang, Jimei; Li, Chan; Zhang, Xu; Huo, Shuaidong; Jin, Shubin; An, Fei-Fei; Wang, Xiaodan; Xue, Xiangdong; Okeke, C I; Duan, Guiyun; Guo, Fengguang; Zhang, Xiaohong; Hao, Jifu; Wang, Paul C; Zhang, Jinchao; Liang, Xing-Jie

    2015-02-01

    As an intensely studied computed tomography (CT) contrast agent, gold nanoparticle has been suggested to be combined with fluorescence imaging modality to offset the low sensitivity of CT. However, the strong quenching of gold nanoparticle on fluorescent dyes requires complicated design and shielding to overcome. Herein, we report a unique nanoprobe (M-NPAPF-Au) co-loading an aggregation-induced emission (AIE) red dye and gold nanoparticles into DSPE-PEG(2000) micelles for dual-modal fluorescence/CT imaging. The nanoprobe was prepared based on a facile method of "one-pot ultrasonic emulsification". Surprisingly, in the micelles system, fluorescence dye (NPAPF) efficiently overcame the strong fluorescence quenching of shielding-free gold nanoparticles and retained the crucial AIE feature. In vivo studies demonstrated the nanoprobe had superior tumor-targeting ability, excellent fluorescence and CT imaging effects. The totality of present studies clearly indicates the significant potential application of M-NPAPF-Au as a dual-modal non-invasive fluorescence/X-ray CT nanoprobe for in vivo tumor-targeted imaging and diagnosis.

  12. Light-Up Probes Based on Fluorogens with Aggregation-Induced Emission Characteristics for Monoamine Oxidase-A Activity Study in Solution and in Living Cells.

    PubMed

    Shen, Wei; Yu, Jiajun; Ge, Jingyan; Zhang, Ruoyu; Cheng, Feng; Li, Xuefeng; Fan, Yong; Yu, Shian; Liu, Bin; Zhu, Qing

    2016-01-13

    Fluorogens with aggregation-induced emission (AIEgens) have emerged as a powerful and versatile platform for the development of novel biosensors. In this study, a series of water-soluble fluorescent probes based on tetraphenylethylene (TPE) were designed and synthesized for the detection of monoamine oxidases (MAOs) based on specific interactions between the probes and the proteins. Among the six probes developed, t-TPEM displays a significant fluorescence increase upon introduction of MAOs. Of particular significance is that the fluorescence of t-TPEM in the presence of MAO-A is 21-fold higher than other proteins including MAO-B. Lineweaver-Burk plots reveal that t-TPEM acts as an uncompetitive inhibitor of MAO-A with Ki = 17.1 μM, which confirms its good binding affinity toward MAO-A. Furthermore, a cell imaging experiment reveals that t-TPEM is able to selectively monitor the activity of MAO-A which is localized in mitochondria of MCF-7 cells. PMID:26666866

  13. Adsorption-induced colloidal aggregation

    NASA Astrophysics Data System (ADS)

    Law, B. M.; Petit, J.-M.; Beysens, D.

    1998-03-01

    Reversible colloidal aggregation in binary liquid mixtures has been studied for a number of years. As the phase separation temperature of the liquid mixture is approached the thickness of an adsorption layer around the colloidal particles increases. Beysens and coworkers have demonstrated experimentally that this adsorption layer is intimately connected with the aggregation of the colloidal particles, however, no definitive theory has been available which can explain all of the experimental observations. In this contribution we describe an extension of the Derjaguin, Landau, Verwey, and Overbeek theory of colloidal aggregation which takes into account the presence of the adsorption layer and which more realistically models the attractive dispersion interactions. This modified theory can quantitatively account for many of the observed experimental features such as the characteristics of the aggregated state, the general shape of the aggregation line, and the temperature dependence of the second virial coefficient for a lutidine-water mixture containing a small volume fraction of silica colloidal particles.

  14. Value of the Debris of Reduction Sculpture: Thiol Etching of Au Nanoclusters for Preparing Water-Soluble and Aggregation-Induced Emission-Active Au(I) Complexes as Phosphorescent Copper Ion Sensor.

    PubMed

    Shu, Tong; Su, Lei; Wang, Jianxing; Lu, Xin; Liang, Feng; Li, Chenzhong; Zhang, Xueji

    2016-06-01

    Chemical etching of gold by thiols has been known to be capable of generating nonluminescent gold(I) complexes, e.g., in size-focusing synthesis of atomically precise gold nanoclusters (GNCs). These nonluminescent gold(I) complexes have usually been considered as useless or worthless byproducts. This study shows a promising potential of thiol etching of GNCs to prepare novel water-soluble and phosphorescent gold(I) materials for sensing application. First, cysteamine-induced etching of GNCs is used to produce nonluminescent oligomeric gold(I)-thiolate complexes. Then, cadmium ion induces the aggregation of these oligomeric complexes to produce highly water-soluble ultrasmall intra-aggregates. These intra-aggregates can phosphoresce both in dilute aqueous solutions and in the solid phase. Studies on the effect of pH on their phosphorescent emission reveal the importance of the interaction between the amino groups of the ligands and cadmium ion for their phosphorescent emission property. Furthermore, Cu(2+) ion is found to quickly quench the phosphorescent emission of the intra-aggregates and simultaneously cause a Cu(2+)-concentration-dependent peak wavelength shift, enabling the establishment of a novel colorimetric sensor for sensitive and selective visual sensing of Cu(2+). PMID:27175974

  15. pH-Regulated Reversible Transition Between Polyion Complexes (PIC) and Hydrogen-Bonding Complexes (HBC) with Tunable Aggregation-Induced Emission.

    PubMed

    Tian, Sidan; Liu, Guhuan; Wang, Xiaorui; Wu, Tao; Yang, Jinxian; Ye, Xiaodong; Zhang, Guoying; Hu, Jinming; Liu, Shiyong

    2016-02-17

    The mimicking of biological supramolecular interactions and their mutual transitions to fabricate intelligent artificial systems has been of increasing interest. Herein, we report the fabrication of supramolecular micellar nanoparticles consisting of quaternized poly(ethylene oxide)-b-poly(2-dimethylaminoethyl methacrylate) (PEO-b-PQDMA) and tetrakis(4-carboxylmethoxyphenyl)ethene (TPE-4COOH), which was capable of reversible transition between polyion complexes (PIC) and hydrogen bonding complexes (HBC) with tunable aggregation-induced emission (AIE) mediated by solution pH. At pH 8, TPE-4COOH chromophores can be directly dissolved in aqueous milieu without evident fluorescence emission. However, upon mixing with PEO-b-PQDMA, polyion complexes were formed by taking advantage of electrostatic interaction between carboxylate anions and quaternary ammonium cations and the most compact PIC micelles were achieved at the isoelectric point (i.e., [QDMA(+)]/[COO(-)] = 1), as confirmed by dynamic light scattering (DLS) measurement. Simultaneously, fluorescence spectroscopy revealed an evident emission turn-on and the maximum fluorescence intensity was observed near the isoelectric point due to the restriction of intramolecular rotation of TPE moieties within the PIC cores. The kinetic study supported a micelle fusion/fission mechanism on the formation of PIC micelles at varying charge ratios, exhibiting a quick time constant (τ1) relating to the formation of quasi-equilibrium micelles and a slow time constant (τ2) corresponding to the formation of final equilibrium micelles. Upon deceasing the pH of PIC micelles from 8 to 2 at the [QDMA(+)]/[COO(-)] molar ratio of 1, TPE-4COOH chromophores became gradually protonated and hydrophobic. The size of micellar nanoparticles underwent a remarkable decrease, whereas the fluorescence intensity exhibited a further increase by approximately 7.35-fold, presumably because of the formation of HBC micelles comprising cationic PQDMA

  16. Reduction in soil aggregation in response to dust emission processes

    NASA Astrophysics Data System (ADS)

    Swet, Nitzan; Katra, Itzhak

    2016-09-01

    Dust emission by aeolian (wind) soil erosion depends on the topsoil properties of the source area, especially on the nature of the aggregates where most dust particles are held. Although the key role of soil aggregates in dust emission, the response of soil aggregation to aeolian processes and its implications for dust emission remain unknown. This study focuses on aggregate size distribution (ASD) analyses before and after in-situ aeolian experiments in semiarid loess soils that are associated with dust emission. Wind tunnel simulations show that particulate matter (PM) emission and saltation rates depend on the initial ASD and shear velocity. Under all initial ASD conditions, the content of saltator-sized aggregates (63-250 μm) increased by 10-34% due to erosion of macro-aggregates (> 500 μm), resulting in a higher size ratio (SR) between the saltators and macro-aggregates following the aeolian erosion. The results revealed that the saltator production increases significantly for soils that are subjected to short-term (anthropogenic) disturbance of the topsoil. The findings highlight a decrease in soil aggregation for all initial ASD's in response to aeolian erosion, and consequently its influence on the dust emission potential. Changes in ASD should be considered as a key parameter in dust emission models of complex surfaces.

  17. Analysis of topsoil aggregation with linkage to dust emission potential

    NASA Astrophysics Data System (ADS)

    Swet, Nitzan; Katra, Itzhak

    2015-04-01

    Dust emission by soil erosion has environmental and socioeconomic significances due to loss of a natural resource and air pollution. Topsoil resistance to erosion depends on its physicochemical properties, especially on the soil aggregation. Aggregate size distribution of soil samples is commonly used for the assessment of soil stability and fertility. It is suggested that aggregates larger than 840 µm in their effective diameter are stable to aeolian (wind) soil erosion. However the physicochemical properties of aggregates should be considered in determining the dust emission potential from soils. This study focuses on quantitative analyses of physical and chemical properties of aggregates in order to develop a soil stability index for dust emission. The study integrates laboratory analyses of soil samples and aeolian experiments of dust emission. Soil samples were taken from different land uses in a semi-arid loess soil that is subjected to aeolian erosion and dust emission. Laboratory tests include particle size distribution (PSD), soil organic carbon (SOC), inorganic carbon (CaCO3), water content (WC), and elemental composition by XRF technique. The size analysis shows significant differences in aggregation between natural-soil plots (N) and grazing-soil plots (G). The MWD index was higher in N (1204 µm) than that of G (400 µm). Basic aeolain experiments with a boundary layer wind tunnel showed dust emission of particulate matter (PM10) from both soils, although the concentrations were significantly lower in N plots. Aggregates at specific size fractions are characterized by different content of cementing agents. The content of fine particles (< 20 µm) and SOM were higher in macro-aggregates (500-2000 µm), while the CaCO3 content was higher in aggregate fraction of 63-250 µm. WC values were highest in micro-aggregates (< 63 µm). However the lowest content of these cementing agents were mostly found in the aggregate size fraction of 1000 µm. Differences

  18. Aggregation-induced emission—fluorophores and applications

    NASA Astrophysics Data System (ADS)

    Hong, Yuning

    2016-06-01

    Aggregation-induced emission (AIE) is a novel photophysical phenomenon found in a group of luminogens that are not fluorescent in solution but are highly emissive in the aggregate or solid state. Since the first publication of AIE luminogens in 2001, AIE has become a hot research area in which the number of research papers regarding new AIE molecules and their applications has been increasing in an exponential manner. Thomson Reuters Essential Science Indicators ranked AIE no.3 among the Top 100 Research Frontiers in the field of Chemistry and Materials Science in 2013. In this review, I will give a general introduction of the AIE phenomenon, discuss the structure-property relationship of the AIE lumingens and summarize the recent progress in the applications including as light-emitting materials in optoelectronics, as chemosensors and bioprobes, and for bioimaging (total 69 references cited).

  19. Spontaneous formation of fluorescent nanofibers and reticulated solid from berberine palmitate: a new example of aggregation-induced emission enhancement in organic ion pairs.

    PubMed

    Chahine, Joe; Saffon, Nathalie; Cantuel, Martine; Fery-Forgues, Suzanne

    2011-03-15

    The salt formed between the large aromatic berberine cation and the long-chain palmitate anion was synthesized and used to prepare aqueous suspensions of particles owing to a solvent-exchange method. Under these conditions, elongated particles were readily obtained. They were studied by transmission microscopy with polarized light, as well as by fluorescence and electron microscopy. They were shown to be probably crystallized nanofibers, which were stable in suspension. Unexpectedly, upon filtration and drying, these fibers evolved to give a reticulated solid. The fluorescence properties of the compound were analyzed in solution, in aqueous suspension and in the powder crystalline state. Interestingly, berberine palmitate is virtually not fluorescent in aqueous solution because of the quenching effect of water, but transition to the solid state was accompanied by a strong increase in fluorescence intensity. This phenomenon was explained by the original molecular arrangement in the solid state. Actually, in the crystal, the anions form a distinct layer, which limits parallel-stacking of the fluorescent cations. Moreover, the berberine cations are protected from the access of water molecules, and so no quenching effect can take place. This example confirms that the newly introduced concept of ion-pair aggregation-induced fluorescence enhancement can be extended to a variety of structures. It also shows the interest of ion pairs for preparing fluorescent nanofibers and reticulated solids using a solvent-exchange method that is particularly easy to implement.

  20. Acoustic emission monitoring of recycled aggregate concrete under bending

    NASA Astrophysics Data System (ADS)

    Tsoumani, A. A.; Barkoula, N.-M.; Matikas, T. E.

    2015-03-01

    The amount of construction and demolition waste has increased considerably over the last few years, making desirable the reuse of this waste in the concrete industry. In the present study concrete specimens are subjected at the age of 28 days to four-point bending with concurrent monitoring of their acoustic emission (AE) activity. Several concrete mixtures prepared using recycled aggregates at various percentages of the total coarse aggregate and also a reference mix using natural aggregates, were included to investigate their influence of the recycled aggregates on the load bearing capacity, as well as on the fracture mechanisms. The results reveal that for low levels of substitution the influence of using recycled aggregates on the flexural strength is negligible while higher levels of substitution lead into its deterioration. The total AE activity, as well as the AE signals emitted during failure, was related to flexural strength. The results obtained during test processing were found to be in agreement with visual observation.

  1. Tau binds ATP and induces its aggregation.

    PubMed

    Farid, Mina; Corbo, Christopher P; Alonso, Alejandra Del C

    2014-02-01

    Tau is a microtubule-associated protein mainly found in neurons. The protein is associated with process of microtubule assembly, which plays an important role in intracellular transport and cell structure of the neuron. Tauopathies are a group of neurodegenerative diseases specifically associated with tau abnormalities. While a well-defined mechanism remains unknown, most facts point to tau as a prominent culprit in neurodegeneration. In most cases of Tauopathies, aggregates of hyperphosphorylated tau have been found. Two proposals are present when discussing tau toxicity, one being the aggregation of tau proteins and the other points toward a conformational change within the protein. Previous work we carried out showed tau hyperphosphorylation promotes tau to behave abnormally resulting in microtubule assembly disruption as well as a breakdown in tau self-assembly. We found that tau's N-terminal region has a putative site for ATP/GTP binding. In this paper we demonstrate that tau is able to bind ATP and not GTP, that this binding induces tau self-assembly into filaments. At 1 mM ATP the filaments are 4-7 nm in width, whereas at 10 mM ATP the filaments appeared to establish lateral interaction, bundling and twisting, forming filaments that resembled the Paired Helical Filaments (PHF) isolated from Alzheimer disease brain. ATP-induced self-assembly is not energy dependent because the nonhydrolysable analogue of the ATP induces the same assembly. PMID:24258797

  2. Flow-induced aggregation of colloidal particles in viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    Xie, Donglin; Qiao, Greg G.; Dunstan, Dave E.

    2016-08-01

    The flow-induced aggregation of dilute colloidal polystyrene nanoparticles suspended in Newtonian and viscoelastic solutions is reported. A rheo-optical method has been used to detect real-time aggregation processes via measuring optical absorption or scattering in a quartz Couette cell. The observed absorbance decreases over time are attributed to the flow-induced coagulation. Numerical simulations show that the aggregation processes still follow the Smoluchowski coagulation equation in a revised version. Suspensions in a series of media are studied to evaluate the effect of the media rheological properties on the particle aggregation. The data shows that elasticity reduces the aggregation while the solution viscosity enhances the aggregation processes.

  3. Intraspecific Signals Inducing Aggregation in Periplaneta americana (Insecta: Dictyoptera).

    PubMed

    Imen, Saïd; Christian, Malosse; Virginie, Durier; Colette, Rivault

    2015-06-01

    Chemical communication is necessary to induce aggregation and to maintain the cohesion of aggregates in Periplaneta americana (L.) cockroaches. We aimed to identify the chemical message inducing aggregation in this species. Two types of bioassays were used-binary choice tests in Petri dishes and tests in Y-olfactometer. Papers conditioned by direct contact of conspecifics induce aggregation when proposed in binary choice tests and were attractive in a Y-olfactometer. The identification of the molecules present on these conditioned papers indicated that dichloromethane extracts contained mainly cuticular hydrocarbons whereas methanol extracts contained more volatile molecules. Only a mixture of extracts in both solvents induced aggregation. High concentrations of cuticular hydrocarbons are necessary to induce aggregation when presented alone. When presented with volatile molecules present in methanol extracts, low concentrations of cuticular hydrocarbons are sufficient to induce aggregation if they are presented in contact. Among volatile molecules collected on filter paper, a mixture of three compounds-hexadecanoic acid, pentadecanoic acid, and pentaethylene glycol-induced aggregation. Our results provide evidence that aggregation processes in P. americana relies on a dual mechanism: attraction over long distances by three volatile molecules and maintenance on site by contact with cuticular hydrocarbons. PMID:26313978

  4. Flow-induced aggregation of colloidal particles in viscoelastic fluids.

    PubMed

    Xie, Donglin; Qiao, Greg G; Dunstan, Dave E

    2016-08-01

    The flow-induced aggregation of dilute colloidal polystyrene nanoparticles suspended in Newtonian and viscoelastic solutions is reported. A rheo-optical method has been used to detect real-time aggregation processes via measuring optical absorption or scattering in a quartz Couette cell. The observed absorbance decreases over time are attributed to the flow-induced coagulation. Numerical simulations show that the aggregation processes still follow the Smoluchowski coagulation equation in a revised version. Suspensions in a series of media are studied to evaluate the effect of the media rheological properties on the particle aggregation. The data shows that elasticity reduces the aggregation while the solution viscosity enhances the aggregation processes. PMID:27627363

  5. Optics of metal nanoparticle aggregates with light induced motion.

    PubMed

    Drachev, Vladimir P; Perminov, Sergey V; Rautian, Sergey G

    2007-07-01

    Light-induced forces between metal nanoparticles change the geometry of the aggregates and affect their optical properties. Light absorption, scattering and scattering of a probe beam are numerically studied with Newton's equations and the coupled dipole equations for penta-particle aggregates. The relative changes in optical responses are large compared with the linear, low-intensity limit and relatively fast with nanosecond characteristic times. Time and intensity dependencies are shown to be sensitive to the initial potential of the aggregation forces.

  6. Lipid vesicle aggregation induced by cooling.

    PubMed

    Howard, Frank B; Levin, Ira W

    2010-01-01

    Lipid bilayer fusion is a complex process requiring several intermediate steps. Initially, the two bilayers are brought into close contact following removal of intervening water layers and overcoming electrostatic repulsions between opposing bilayer head groups. In this study we monitor by light scattering the reversible aggregation of phosphatidylcholine single shell vesicles during which adhesion occurs but stops prior to a fusion process. Light scattering measurements of dimyristoyl-sn-glycero-3-phosphocholine (DMPC), dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) in water show that lowering the temperature of about 0.14 micron single shell vesicles of DPPC (from 20 degrees C to 5 degrees C) and about 2 micron vesicles of DSPC (from 20 degrees C to 15 degrees C), but not of 1 micron vesicles of DMPC, results in extensive aggregation within 24 hours that is reversible by an increase in temperature. Aggregation of DSPC vesicles was confirmed by direct visual observation. Orientation of lipid head groups parallel to the plane of the bilayer and consequent reduction of the negative surface charge can account for the ability of DPPC and DSPC vesicles to aggregate. Retention of negatively charged phosphates on the surface and the burial of positively charged cholines within the bilayer offer an explanation for the failure of DMPC vesicles to aggregate. Lowering the temperature of 1,2-dipalmitoyl-sn-glycero-3-phosphoserine (DPPS) vesicles from 20 degrees C to 5 degrees C failed to increase aggregation within 24 hours at Mg(++)/DPPS ratios that begin to initiate aggregation and fusion.

  7. Adsorption-induced reversible colloidal aggregation

    NASA Astrophysics Data System (ADS)

    Law, B. M.; Petit, J.-M.; Beysens, D.

    1998-05-01

    Reversible colloidal aggregation in binary liquid mixtures has been studied for a number of years. As the phase separation temperature of the liquid mixture is approached the thickness of an adsorption layer around the colloidal particles increases. Beysens et al. [Phys. Rev. Lett. 54, 2123 (1985); Ber. Bunsenges. Phys. Chem. 98, 382 (1994)] have demonstrated experimentally that this adsorption layer is intimately connected with the aggregation of the colloidal particles; however, no definitive theory has been available that can explain all of the experimental observations. In a recent work [J.-M. Petit, B. M. Law, and D. Beysens, J. Colloid Interface Sci. (to be published)] we have extended and improved the Derjaguin-Landau-Verwey-Overbeek theory of colloidal aggregation [E. J. W. Verwey and J. Th. G. Overbeek, Theory of the Stability of Lyophobic Colloids (Elsevier, New York, 1948)] by taking into account the presence of an adsorption layer and by more realistically modeling the attractive dispersion interactions using the Dzyaloshinskii-Lifshitz-Pitaevskii theory [Adv. Phys. 10, 165 (1961)]. In the present paper we apply this theory to a lutidine-water mixture containing a small volume fraction of silica colloidal particles. We demonstrate that the theory can quantitatively account for many of the experimentally observed features such as the characteristics of the aggregated state, the general shape of the aggregation line, and the temperature dependence of the second virial coefficient.

  8. Comparison of heat-induced aggregation of globular proteins.

    PubMed

    Delahaije, Roy J B M; Wierenga, Peter A; Giuseppin, Marco L F; Gruppen, Harry

    2015-06-01

    Typically, heat-induced aggregation of proteins is studied using a single protein under various conditions (e.g., temperature). Because different studies use different conditions and methods, a mechanistic relationship between molecular properties and the aggregation behavior of proteins has not been identified. Therefore, this study investigates the kinetics of heat-induced aggregation and the size/density of formed aggregates for three different proteins (ovalbumin, β-lactoglobulin, and patatin) under various conditions (pH, ionic strength, concentration, and temperature). The aggregation rate of β-lactoglobulin was slower (>10 times) than that of ovalbumin and patatin. Moreover, the conditions (pH, ionic strength, and concentration) affected the aggregation kinetics of β-lactoglobulin more strongly than for ovalbumin and patatin. In contrast to the kinetics, for all proteins the aggregate size/density increased with decreasing electrostatic repulsion. By comparing these proteins under these conditions, it became clear that the aggregation behavior cannot easily be correlated to the molecular properties (e.g., charge and exposed hydrophobicity). PMID:25965109

  9. Surfactant-induced aggregation patterns of thiazole orange: a photophysical study.

    PubMed

    Choudhury, Sharmistha Dutta; Bhasikuttan, Achikanath C; Pal, Haridas; Mohanty, Jyotirmayee

    2011-10-18

    The aggregation behavior of the DNA marker dye thiazole orange (TO), has been investigated in two types of surfactant assemblies, namely, premicelles/micelles of sodium dodecyl sulfate (SDS) and pre reverse micelles/reverse micelles of sodium bis(2-ethylhexyl) sulfosuccinate (AOT). In the case of an SDS/water system, absorption spectral changes of TO signify the formation of H-aggregates and H-dimers of the dye at premicellar concentrations, which subsequently convert to the monomeric form beyond the critical micellar concentration (cmc). Interestingly, the observed changes in the absorption and emission characteristics due to the surfactant-induced formation of H-aggregates/dimers of TO are found to be useful to estimate the surfactant concentration parameters for premicellar aggregation of SDS. In the case of an AOT/n-heptane system, similarly, H-aggregates/dimers are observed at low AOT concentrations, below the cmc. However, in this case, the H-dimers persist even beyond the cmc. This is attributed to the strong tendency of TO for self-aggregation and its favorable electrostatic interactions with the AOT head groups. With increasing water content in the AOT reverse micelles, the hydration of the dye leads to the conversion of H-dimers to the monomeric form. The steady-state fluorescence results are nicely corroborated with those from time-resolved fluorescence studies and demonstrate the interesting behavior of the surfactant-induced aggregation of TO dye.

  10. Evaluation of Fracture in Concrete with Recycled Aggregate by Acoustic Emission

    NASA Astrophysics Data System (ADS)

    Nishibata, Sayaka; Watanabe, Takeshi; Hashimoro, Chikanori; Kohno, Kiyoshi

    This research revealed fracture behavior of concrete in using recycled aggregates by Acoustic Emission as one of the Non-destructive Inspection. The phenomenon of acoustic emission (AE) is the propagation of elastic waves generated from a source, known as a micro-crack in an elastic material. There were taken to use low-treated recycled aggregate, crushed returned ready mixed concrete for aggregate and normal aggregate. Examination measured AE under the uniaxial compression test. The condition of load is repeated loading. As a result, fracture behavior due to low treated recycled aggregate was detected by AE. It is clarified that AE of concrete with low treated recycled aggregate appeared in low stress level. It has been understood that difference of aggregates becomes clear from Kaiser effect in repeated loading. In relation between RA value and average frequency, it has been understood the adhesion properties of the cement paste in recycled aggregate are appreciable.

  11. Changes in soil aggregation and dust emission potential in response to aeolian processes

    NASA Astrophysics Data System (ADS)

    swet, Nitzan; Katra, Itzhak

    2016-04-01

    Aeolian (wind) dust emission has high environmental and socioeconomic significances due to loss of natural soil and air pollution. Dust emission involves complex interactions between the airflow and the soil surface. The soil aggregates were dust particles are held determine the topsoil erodibility in aeolian erosion. Although the key role of soil aggregation in dust emission mechanisms, information on changes in soil aggregate size distribution (ASD) due to aeolian erosion is lucking. This study is focused on quantitative ASD analyses before and after aeolian processes (saltation). Aeolian experiments and soil analyses were conducted on semiarid loess topsoils with different initial conditions of aggregation. The results show that saltation rates and PM emissions depend on the initial ASD and shear velocity. In all initial soil conditions, the content of aggregates at saltator-sized 63-250 μm was increased by 10-34 % following erosion of macro-aggregates > 500 μm. It revealed that the aggregate-saltator production increases with the shear velocity (up to 0.61 m s-1) for soils with available macro-aggregates. The findings highlight the dynamics in soil aggregation in response to aeolian transport and therefore its significance for determining the mechanisms of dust emission from soil aggregates.

  12. Effects of Suilysin on Streptococcus suis-Induced Platelet Aggregation

    PubMed Central

    Zhang, Shengwei; Wang, Junping; Chen, Shaolong; Yin, Jiye; Pan, Zhiyuan; Liu, Keke; Li, Lin; Zheng, Yuling; Yuan, Yuan; Jiang, Yongqiang

    2016-01-01

    Blood platelets play important roles during pathological thrombocytopenia in streptococcal toxic shock syndrome (STSS). Streptococcus suis (S. suis) an emerging human pathogen, can cause STSS similarly to S. pyogenes. However, S. suis interactions with platelets are poorly understood. Here, we found that suilysin (SLY), different from other bacterial cholesterol-dependent cytolysins (CDCs), was the sole stimulus that induced platelet aggregation. Furthermore, the inside-out activation of GPIIb/IIIa of platelets mediated SLY-induced platelet aggregation. This process was triggered by Ca2+ influx that depend on the pore forming on platelets by SLY. Additionally, although SLY induced α-granule release occurred via the MLCK-dependent pathway, PLC-β-IP3/DAG-MLCK and Rho-ROCK-MLCK signaling were not involved in SLY-induced platelet aggregation. Interestingly, the pore dependent Ca2+ influx was also found to participate in the induction of platelet aggregation with pneumolysin (PLY) and streptolysin O (SLO), two other CDCs. It is possible that the CDC-mediated platelet aggregation we observed in S. suis is a similar response mechanism to that used by a wide range of bacteria. These findings might lead to the discovery of potential therapeutic targets for S. suis-associated STSS. PMID:27800304

  13. Aggregation in charged nanoparticles solutions induced by different interactions

    NASA Astrophysics Data System (ADS)

    Abbas, S.; Kumar, Sugam; Aswal, V. K.; Kohlbrecher, J.

    2016-05-01

    Small-angle neutron scattering (SANS) has been used to study the aggregation of anionic silica nanoparticles as induced through different interactions. The nanoparticle aggregation is induced by addition of salt (NaCl), cationic protein (lysozyme) and non-ionic surfactant (C12E10) employing different kind of interactions. The results show that the interaction in presence of salt can be explained using DLVO theory whereas non-DLVO forces play important role for interaction of nanoparticles with protein and surfactant. The presence of salt screens the repulsion between charged nanoparticles giving rise to a net attraction in the DLVO potential. On the other hand, strong electrostatic attraction between nanoparticle and oppositely charged protein leads to protein-mediated nanoparticle aggregation. In case of non-ionic surfactant, the relatively long-range attractive depletion interaction is found to be responsible for the particle aggregation. Interestingly, the completely different interactions lead to similar kind of aggregate morphology. The nanoparticle aggregates formed are found to have mass fractal nature having a fractal dimension (~2.5) consistent with diffusion limited type of fractal morphology in all three cases.

  14. Lonomia obliqua venomous secretion induces human platelet adhesion and aggregation.

    PubMed

    Berger, Markus; Reck, José; Terra, Renata M S; Beys da Silva, Walter O; Santi, Lucélia; Pinto, Antônio F M; Vainstein, Marilene H; Termignoni, Carlos; Guimarães, Jorge A

    2010-10-01

    The caterpillar Lonomia obliqua is a venomous animal that causes numerous accidents, especially in southern Brazil, where it is considered a public health problem. The clinical manifestations include several haemostatic disturbances that lead to a hemorrhagic syndrome. Considering that platelets play a central role in hemostasis, in this work we investigate the effects of L. obliqua venomous secretion upon blood platelets responses in vitro. Results obtained shows that L. obliqua venom directly induces aggregation and ATP secretion in human washed platelets in a dose-dependent manner. Electron microscopy studies clearly showed that the venomous bristle extract was also able to produce direct platelets shape change and adhesion as well as activation and formation of platelet aggregates. Differently from other enzyme inhibitors, the venom-induced platelet aggregation was significatively inhibited by p-bromophenacyl bromide, a specific inhibitor of phospholipases A2. Additional experiments with different pharmacological antagonists indicate that the aggregation response triggered by the venom active components occurs through a calcium-dependent mechanism involving arachidonic acid metabolite(s) of the cyclooxygenase pathway and activation of phosphodiesterase 3A, an enzyme that leads to the consumption of intracellular cAMP content. It was additionally found that L. obliqua-induced platelet aggregation was independent of ADP release. Altogether, these findings are in line with the need for a better understanding of the complex hemorrhagic syndrome resulting from the envenomation caused by L. obliqua caterpillars, and can also give new insights into the management of its clinical profile.

  15. Assembly of naphthalenediimide conjugated peptides: aggregation induced changes in fluorescence.

    PubMed

    Basak, Shibaji; Nanda, Jayanta; Banerjee, Arindam

    2013-08-01

    Naphthalenediimide appended peptide based self-assembly was studied. Interestingly, an aggregation induced drastic change in the fluorescence property and gel formation were observed depending on the solvent composition (chloroform : methylcyclohexane) at a fixed concentration of 1.6 mM at room temperature. PMID:23799544

  16. Salt-induced aggregation of lysozyme: Implications for crystal growth

    NASA Technical Reports Server (NTRS)

    Wilson, Lori J.

    1994-01-01

    Crystallization of proteins is a prerequisite for structural analysis by x-ray crystallography. While improvements in protein crystals have been obtained in microgravity onboard the U.S. Space Shuttle, attempts to improve the crystal growth process both on the ground and in space have been limited by our lack of understanding of the mechanisms involved. Almost all proteins are crystallized with the aid of a precipitating agent. Many of the common precipitating agents are inorganic salts. An understanding of the role of salts on the aggregation of protein monomers is the key to the elucidation of the mechanisms involved in protein crystallization. In order for crystallization to occur individual molecules must self-associate into aggregates. Detection and characterization of aggregates in supersaturated protein solutions is the first step in understanding salt-induced crystallization.

  17. Rab7 induces clearance of α-synuclein aggregates.

    PubMed

    Dinter, Elisabeth; Saridaki, Theodora; Nippold, Markus; Plum, Sarah; Diederichs, Leonie; Komnig, Daniel; Fensky, Luisa; May, Caroline; Marcus, Katrin; Voigt, Aaron; Schulz, Jörg B; Falkenburger, Björn H

    2016-09-01

    Parkinson's disease can be caused by mutations in the α-synuclein gene and is characterized by aggregates of α-synuclein protein. Aggregates are degraded by the autophago-lysosomal pathway. Since Rab7 has been shown to regulate trafficking of late endosomes and autophagosomes, we hypothesized that over-expressing Rab7 might be beneficial in Parkinson's disease. To test this hypothesis, we expressed the pathogenic A53T mutant of α-synuclein in HEK293 cells and Drosophila melanogaster. In HEK293 cells, EGFP-Rab7-decorated vesicles contain α-synuclein. Rab7 over-expression reduced the percentage of cells with α-synuclein particles and the amount of α-synuclein protein. Time-lapse microscopy confirmed that particles frequently disappeared with Rab7 over-expression. Clearance of α-synuclein is explained by the increased occurrence of acidified α-synuclein vesicles with Rab7 over-expression, presumably representing autolysosomes. Rab7 over-expression reduced apoptosis and the percentage of dead cells in trypan blue staining. In the fly model, Rab7 rescued the locomotor deficit induced by neuronal expression of A53T-α-synuclein. These beneficial effects were not produced by Rab7 missense mutations causing Charcot Marie Tooth neuropathy, or by the related GTPases Rab5, Rab9, or Rab23. Using mass spectrometry, we identified Rab7 in neuromelanin granules purified from human substantia nigra, indicating that Rab7 might be involved in the biogenesis of these possibly protective, autophagosome-like organelles in dopaminergic neurons. Taken together, Rab7 increased the clearance of α-synuclein aggregates, reduced cell death, and rescued the phenotype in a fly model of Parkinson's disease. These findings indicate that Rab7 is rate-limiting for aggregate clearance, and that Rab7 activation may offer a therapeutic strategy for Parkinson's disease. Cells over-expressing aggregation-prone A53T alpha-synuclein develop cytoplasmic aggregates mimicking changes observed in

  18. Aggregation-induced fabrication of fluorescent organic nanorings: selective biosensing of cysteine and application to molecular logic gate.

    PubMed

    Mati, Soumya Sundar; Chall, Sayantani; Bhattacharya, Subhash Chandra

    2015-05-12

    Self-aggregation behavior in aqueous medium of four naphthalimide derivatives has exhibited substitution-dependent, unusual, aggregation induced emission enhancement (AIEE) phenomena. Absorption, emission, and time-resolved study initially indicated the formation of J-type fluorescent organic nanoaggregates (FONs). Simultaneous applications of infrared spectroscopy, theoretical studies, and dynamic light scattering (DLS) measurements explored the underlying mechanism of such substitution-selective aggregation of a chloro-naphthalimide organic molecule. Furthermore, transmission electron microscopy (TEM) visually confirmed the formation of ring like FONs with average size of 7.5-9.5 nm. Additionally, naphthalimide FONs also exhibited selective and specific cysteine amino acid sensing property. The specific behavior of NPCl aggregation toward amino acids was also employed as a molecular logic gate in information technology (IT). PMID:25893428

  19. Aluminum induces tau aggregation in vitro but not in vivo.

    PubMed

    Mizoroki, Tatsuya; Meshitsuka, Shunsuke; Maeda, Sumihiro; Murayama, Miyuki; Sahara, Naruhiko; Takashima, Akihiko

    2007-07-01

    Etiological studies suggest that aluminum (Al) intake might increase an individual's risk of developing Alzheimer's disease (AD). Biochemical analysis data on the effects of Al, however, are inconsistent. Hence, the pathological involvement of Al in AD remains unclear. If Al is involved in AD, then it is reasonable to hypothesize that Al might be involved in the formation of either amyloid plaques or neurofibrillary tangles (NFTs). Here, we investigated whether Al might be involved in NFT formation by using an in vitro tau aggregation paradigm, a tau-overexpressing neuronal cell line (N2a), and a tau-overexpressing mouse model. Although Al induced tau aggregation in a heparin-induced tau assembly assay, these aggregates were neither thioflavin T positive nor did they resemble tau fibrils seen in human AD brains. With cell lysates from stable cell lines overexpressing tau, the accumulation of SDS-insoluble tau increased when the lysates were treated with at least 100 muM Al-maltolate. Yet Al-maltolate caused illness or death in transgenic mice overexpressing human tau and in non-transgenic littermates well before the Al concentration in the brain reached 100 muM. These results indicate that Al has no direct link to AD pathology.

  20. Membrane Permeation Induced by Aggregates of Human Islet Amyloid Polypeptides

    PubMed Central

    Poojari, Chetan; Xiao, Dequan; Batista, Victor S.; Strodel, Birgit

    2013-01-01

    Several neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases as well as nonneuropathic diseases such as type II diabetes and atrial amyloidosis are associated with aggregation of amyloid polypeptides into fibrillar structures, or plaques. In this study, we use molecular dynamics simulations to test the stability and orientation of membrane-embedded aggregates of the human islet amyloid polypeptide (hIAPP) implicated in type II diabetes. We find that in both monolayers and bilayers of dipalmitoylphosphatidylglycerol (DPPG) hIAPP trimers and tetramers remain inside the membranes and preserve their β-sheet secondary structure. Lipid bilayer-inserted hIAPP trimers and tetramers orient inside DPPG at 60° relative to the membrane/water interface and lead to water permeation and Na+ intrusion, consistent with ion-toxicity in islet β-cells. In particular, hIAPP trimers form a water-filled β-sandwich that induce water permeability comparable with channel-forming proteins, such as aquaporins and gramicidin-A. The predicted disruptive orientation is consistent with the amphiphilic properties of the hIAPP aggregates and could be probed by chiral sum frequency generation (SFG) spectroscopy, as predicted by the simulated SFG spectra. PMID:24268144

  1. Beam-induced graphitic carbon cage transformation from sumanene aggregates

    SciTech Connect

    Fujita, Jun-ichi Tachi, Masashi; Murakami, Katsuhisa; Sakurai, Hidehiro; Morita, Yuki; Higashibayashi, Shuhei; Takeguchi, Masaki

    2014-01-27

    We found that electron-beam irradiation of sumanene aggregates strongly enhanced their transformation into a graphitic carbon cage, having a diameter of about 20 nm. The threshold electron dose was about 32 mC/cm{sup 2} at 200 keV, but the transformation is still induced at 20 keV. The transformation sequence suggested that the cage was constructed accompanied by the dynamical movement of the transiently linked sumanene molecules in order to pile up inside the shell. Thus, bond excitation in the sumanene molecules rather than a knock-on of carbon atoms seems to be the main cause of the cage transformation.

  2. Surface Plasmon-Coupled Emission of Rhodamine 110 Aggregates in a Silica Nanolayer.

    PubMed

    Rangełowa-Jankowska, Simeonika; Jankowski, Dawid; Bogdanowicz, Robert; Grobelna, Beata; Bojarski, Piotr

    2012-12-01

    First analysis of strong directional surface plasmon-coupled emission (SPCE) of ground-state formed intermolecular aggregates of Rhodamine 110 (R110) in silica nanofilms deposited on silver nanolayers is reported. Until now, the processes of energy transport and its trapping due to aggregate formation have not been studied in the presence of SPCE. A new approach to multicomponent systems with weakly and strongly fluorescent centers making use of fluorophore-surface plasmon interaction is presented. The analysis is based on comparison of experimental free-space emission spectra (F-SE), experimental SPCE with theoretical surface plasmon resonance spectra (SPR). It is shown that, due to the dispersion of SPCE, the detection of weak aggregate emission is straightforward if only the monomers and aggregates fluorescence spectra are somewhat spectrally shifted. SPCE studies confirmed the formation of weakly fluorescent higher order aggregates of R110 in silica films. The results indicate that the increase of energy transfer from monomers to aggregates is due to fluorophore-plasmon interaction.

  3. Detection of Gold Nanoparticles Aggregation Growth Induced by Nucleic Acid through Laser Scanning Confocal Microscopy.

    PubMed

    Gary, Ramla; Carbone, Giovani; Petriashvili, Gia; De Santo, Maria Penelope; Barberi, Riccardo

    2016-01-01

    The gold nanoparticle (GNP) aggregation growth induced by deoxyribonucleic acid (DNA) is studied by laser scanning confocal and environmental scanning electron microscopies. As in the investigated case the direct light scattering analysis is not suitable, we observe the behavior of the fluorescence produced by a dye and we detect the aggregation by the shift and the broadening of the fluorescence peak. Results of laser scanning confocal microscopy images and the fluorescence emission spectra from lambda scan mode suggest, in fact, that the intruding of the hydrophobic moiety of the probe within the cationic surfactants bilayer film coating GNPs results in a Förster resonance energy transfer. The environmental scanning electron microscopy images show that DNA molecules act as template to assemble GNPs into three-dimensional structures which are reminiscent of the DNA helix. This study is useful to design better nanobiotechnological devices using GNPs and DNA. PMID:26907286

  4. Detection of Gold Nanoparticles Aggregation Growth Induced by Nucleic Acid through Laser Scanning Confocal Microscopy

    PubMed Central

    Gary, Ramla; Carbone, Giovani; Petriashvili, Gia; De Santo, Maria Penelope; Barberi, Riccardo

    2016-01-01

    The gold nanoparticle (GNP) aggregation growth induced by deoxyribonucleic acid (DNA) is studied by laser scanning confocal and environmental scanning electron microscopies. As in the investigated case the direct light scattering analysis is not suitable, we observe the behavior of the fluorescence produced by a dye and we detect the aggregation by the shift and the broadening of the fluorescence peak. Results of laser scanning confocal microscopy images and the fluorescence emission spectra from lambda scan mode suggest, in fact, that the intruding of the hydrophobic moiety of the probe within the cationic surfactants bilayer film coating GNPs results in a Förster resonance energy transfer. The environmental scanning electron microscopy images show that DNA molecules act as template to assemble GNPs into three-dimensional structures which are reminiscent of the DNA helix. This study is useful to design better nanobiotechnological devices using GNPs and DNA. PMID:26907286

  5. Methylglyoxal-induced modification causes aggregation of myoglobin

    NASA Astrophysics Data System (ADS)

    Banerjee, Sauradipta; Maity, Subhajit; Chakraborti, Abhay Sankar

    2016-02-01

    Post-translational modification of proteins by Maillard reaction, known as glycation, is thought to be the root cause of different complications, particularly in diabetes mellitus and age-related disorders. Methylglyoxal (MG), a reactive α-oxoaldehyde, increases in diabetic condition and reacts with proteins to form advanced glycation end products (AGEs) following Maillard-like reaction. We have investigated the in vitro effect of MG (200 μM) on the monomeric heme protein myoglobin (Mb) (100 μM) in a time-dependent manner (7 to 18 days incubation at 25 °C). MG induces significant structural alterations of the heme protein, including heme loss, changes in tryptophan fluorescence, decrease of α-helicity with increased β-sheet content etc. These changes occur gradually with increased period of incubation. Incubation of Mb with MG for 7 days results in formation of the AGE adducts: carboxyethyllysine at Lys-16, carboxymethyllysine at Lys-87 and carboxyethyllysine or pyrraline-carboxymethyllysine at Lys-133. On increasing the period of incubation up to 14 days, additional AGEs namely, carboxyethyllysine at Lys-42 and hydroimidazolone or argpyrimidine at Arg-31 and Arg-139 have been detected. MG also induces aggregation of Mb, which is clearly evident with longer period of incubation (18 days), and appears to have amyloid nature. MG-derived AGEs may thus have an important role as the precursors of protein aggregation, which, in turn, may be associated with physiological complications.

  6. Mechanisms of large Stokes shift and aggregation-enhanced emission of osmapentalyne cations in solution: combined MD simulations and QM/MM calculations.

    PubMed

    Sun, Guang-Xu; Ju, Ming-Gang; Zang, Hang; Zhao, Yi; Liang, WanZhen

    2015-10-01

    Osmapentalyne cations synthesized recently show remarkable optical properties, such as near-infrared emission, unusual large Stokes shift and aggregation-enhanced emission. Here, the mechanisms behind those novel optical behaviors are revealed from the combined molecular dynamics simulations and hybrid quantum mechanics/molecular mechanics calculations. The results demonstrate that the large Stokes shift in the gas phase comes from a photoexcitation-induced deformation of the osmium plane, whereas in solution it corresponds to the variation of osmium ring symmetry. Although the central chromophore ring dominates the absorption and emission processes, the protecting groups PPh3 join the emission. As osmapentalyne cations are aggregated together in solution, the radical distribution functions of their mass-central distances display several peaks immersed in a broad envelope due to different aggregation pathways. However, the chromophore centers are protected by the PPh3 groups, the aggregation structures do not affect the Stokes shift too much, and the calculated aggregate-enhanced emission is consistent with experimental measurements. PMID:26339695

  7. Misfolded Proteins Induce Aggregation of the Lectin Yos9*

    PubMed Central

    Smith, Melanie H.; Rodriguez, Edwin H.; Weissman, Jonathan S.

    2014-01-01

    A substantial fraction of nascent proteins delivered into the endoplasmic reticulum (ER) never reach their native conformations. Eukaryotes use a series of complementary pathways to efficiently recognize and dispose of these terminally misfolded proteins. In this process, collectively termed ER-associated degradation (ERAD), misfolded proteins are retrotranslocated to the cytosol, polyubiquitinated, and degraded by the proteasome. Although there has been great progress in identifying ERAD components, how these factors accurately identify substrates remains poorly understood. The targeting of misfolded glycoproteins in the ER lumen for ERAD requires the lectin Yos9, which recognizes the glycan species found on terminally misfolded proteins. In a role that remains poorly characterized, Yos9 also binds the protein component of ERAD substrates. Here, we identified a 45-kDa domain of Yos9, consisting of residues 22–421, that is proteolytically stable, highly structured, and able to fully support ERAD in vivo. In vitro binding studies show that Yos9(22–421) exhibits sequence-specific recognition of linear peptides from the ERAD substrate, carboxypeptidase Y G255R (CPY*), and binds a model unfolded peptide ΔEspP and protein Δ131Δ in solution. Binding of Yos9 to these substrates results in their cooperative aggregation. Although the physiological consequences of this substrate-induced aggregation remain to be seen, it has the potential to play a role in the regulation of ERAD. PMID:25086047

  8. Chaotic dynamics in cardiac aggregates induced by potassium channel block

    NASA Astrophysics Data System (ADS)

    Quail, Thomas; McVicar, Nevin; Aguilar, Martin; Kim, Min-Young; Hodge, Alex; Glass, Leon; Shrier, Alvin

    2012-09-01

    Chaotic rhythms in deterministic models can arise as a consequence of changes in model parameters. We carried out experimental studies in which we induced a variety of complex rhythms in aggregates of embryonic chick cardiac cells using E-4031 (1.0-2.5 μM), a drug that blocks the hERG potassium channel. Following the addition of the drug, the regular rhythm evolved to display a spectrum of complex dynamics: irregular rhythms, bursting oscillations, doublets, and accelerated rhythms. The interbeat intervals of the irregular rhythms can be described by one-dimensional return maps consistent with chaotic dynamics. A Hodgkin-Huxley-style cardiac ionic model captured the different types of complex dynamics following blockage of the hERG mediated potassium current.

  9. Fluorescence spectroscopy in probing spontaneous and induced aggregation amongst size-selective gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Rahman, Dewan S.; Ghosh, Sujit Kumar

    2014-06-01

    Gold nanoparticles have been synthesized by borohydride reduction using poly(N-vinyl 2-pyrrolidone) as the stabilizing agent in aqueous medium in the size regime of 1-5 nm. Aggregation amongst these polymer-stabilized gold nanoparticles has been accomplished by the controlled addition of hydrazine or aggregation may occur spontaneously (devoid of any chemicals) that is ubiquitous to nanoparticulate systems. Now, fluorescencein isothiocyanate (FITC), a prototype molecular probe has been employed in understanding the physical principles of aggregation phenomenon of the size-selective gold nanoparticles undergoing spontaneous and induced-aggregation under stipulated conditions. It is seen that there is enhancement of fluorescence intensity of FITC in the presence of both spontaneously and induced-aggregated gold nanoclusters as compared to free FITC. Interestingly, it is observed that the fluorescence sensitivity is able to distinguish seven different sizes of the gold nanoparticles in the aggregates and maximum enhancement of intensity arises at higher concentration with increase in size of gold particles within the aggregates. With increase in concentration of gold nanoparticle aggregates, the intensity increases, initially, reaches a maximum at a threshold concentration and then, gradually decreases in the presence of both spontaneously and induced-aggregated gold particles. However, the salient feature of physical significance is that the maximum enhancement of intensity with time has remained almost same for induced-aggregated gold while decreases exponentially with spontaneously aggregated gold particles.

  10. Reversible NaCl-induced aggregation of a monoclonal antibody at low pH: Characterization of aggregates and factors affecting aggregation.

    PubMed

    Bickel, Fabian; Herold, Eva Maria; Signes, Alba; Romeijn, Stefan; Jiskoot, Wim; Kiefer, Hans

    2016-10-01

    We investigated the influence of pH and sodium chloride concentration on aggregation kinetics of a monoclonal antibody. Aggregation was induced by sodium chloride addition at low pH. Protein conformation before and after salt addition was determined as well as the reversibility of aggregation. Aggregation was monitored at pH values between 2 and 7 with NaCl up to 1.5M by turbidity measurement and size-exclusion chromatography. Particle size distribution was assessed by using size-exclusion chromatography as well as nanoparticle tracking analysis and flow imaging microscopy. Structural changes were monitored by circular dichroism, Fourier transform infrared and fluorescence spectroscopy. Thermal stability was measured by differential scanning fluorimetry. Aggregation propensity was maximal at low pH and high ionic strength. While thermal stability decreased with pH, the secondary structure remained unchanged down to pH 3.5 and up to 1.5M NaCl. Precipitated protein could be largely reverted to monomers by dilution into salt-free buffer. The re-solubilized antibody was indistinguishable in structure, solubility and monodispersity from the unstressed protein. Also, binding to Protein A was steady. Aggregation could be reduced in the presence of trehalose. The results suggest a reversible aggregation mechanism characterized by a limited change in tertiary structure at low pH and a subsequent loss of colloidal stability resulting from electrostatic repulsion once salt is added to the sample. The experimental setup is robust and allows high-throughput quantification of the effect of additives on aggregation kinetics. PMID:27449627

  11. Reversible NaCl-induced aggregation of a monoclonal antibody at low pH: Characterization of aggregates and factors affecting aggregation.

    PubMed

    Bickel, Fabian; Herold, Eva Maria; Signes, Alba; Romeijn, Stefan; Jiskoot, Wim; Kiefer, Hans

    2016-10-01

    We investigated the influence of pH and sodium chloride concentration on aggregation kinetics of a monoclonal antibody. Aggregation was induced by sodium chloride addition at low pH. Protein conformation before and after salt addition was determined as well as the reversibility of aggregation. Aggregation was monitored at pH values between 2 and 7 with NaCl up to 1.5M by turbidity measurement and size-exclusion chromatography. Particle size distribution was assessed by using size-exclusion chromatography as well as nanoparticle tracking analysis and flow imaging microscopy. Structural changes were monitored by circular dichroism, Fourier transform infrared and fluorescence spectroscopy. Thermal stability was measured by differential scanning fluorimetry. Aggregation propensity was maximal at low pH and high ionic strength. While thermal stability decreased with pH, the secondary structure remained unchanged down to pH 3.5 and up to 1.5M NaCl. Precipitated protein could be largely reverted to monomers by dilution into salt-free buffer. The re-solubilized antibody was indistinguishable in structure, solubility and monodispersity from the unstressed protein. Also, binding to Protein A was steady. Aggregation could be reduced in the presence of trehalose. The results suggest a reversible aggregation mechanism characterized by a limited change in tertiary structure at low pH and a subsequent loss of colloidal stability resulting from electrostatic repulsion once salt is added to the sample. The experimental setup is robust and allows high-throughput quantification of the effect of additives on aggregation kinetics.

  12. Proton triggered emission and selective sensing of picric acid by the fluorescent aggregates of 6,7-dimethyl-2,3-bis-(2-pyridyl)-quinoxaline.

    PubMed

    Mazumdar, Prativa; Maity, Samir; Shyamal, Milan; Das, Debasish; Sahoo, Gobinda Prasad; Misra, Ajay

    2016-03-14

    A heteroatom containing organic fluorophore 6,7-dimethyl-2,3-bis-(2-pyridyl)-quinoxaline (BPQ) is weakly emissive in solution but its emission properties are highly enhanced in the aggregated state due to the restriction of intramolecular rotation (RIR) and large amplitude vibrational modes, demonstrating the phenomenon, aggregation induced emission enhancement (AIEE). It has strong proton capture capability, allowing reversible fluorescence switching in basic and acidic medium and the emission color changes from blue to green in the aggregated state through protonation. It has been explained as a competition between intramolecular charge transfers (ICTs) and the AIEE phenomena at a lower pH range (pH ∼1-4). Such behavior enables it as a fluorescent pH sensor for detection in acidic and basic medium. Morphologies of the particles are characterized using optical and field emission scanning electron microscopic (FESEM) studies. The turn off fluorescence properties of aggregated BPQ have been utilized for the selective detection of picric acid and the fluorescence quenching is explained due to ground state complexation with a strong quenching constant, 7.81 × 10(4) M(-1).

  13. Proton triggered emission and selective sensing of picric acid by the fluorescent aggregates of 6,7-dimethyl-2,3-bis-(2-pyridyl)-quinoxaline.

    PubMed

    Mazumdar, Prativa; Maity, Samir; Shyamal, Milan; Das, Debasish; Sahoo, Gobinda Prasad; Misra, Ajay

    2016-03-14

    A heteroatom containing organic fluorophore 6,7-dimethyl-2,3-bis-(2-pyridyl)-quinoxaline (BPQ) is weakly emissive in solution but its emission properties are highly enhanced in the aggregated state due to the restriction of intramolecular rotation (RIR) and large amplitude vibrational modes, demonstrating the phenomenon, aggregation induced emission enhancement (AIEE). It has strong proton capture capability, allowing reversible fluorescence switching in basic and acidic medium and the emission color changes from blue to green in the aggregated state through protonation. It has been explained as a competition between intramolecular charge transfers (ICTs) and the AIEE phenomena at a lower pH range (pH ∼1-4). Such behavior enables it as a fluorescent pH sensor for detection in acidic and basic medium. Morphologies of the particles are characterized using optical and field emission scanning electron microscopic (FESEM) studies. The turn off fluorescence properties of aggregated BPQ have been utilized for the selective detection of picric acid and the fluorescence quenching is explained due to ground state complexation with a strong quenching constant, 7.81 × 10(4) M(-1). PMID:26608816

  14. Phytochelatins inhibit the metal-induced aggregation of alpha-crystallin.

    PubMed

    Hori, Yasuhisa; Yoshikawa, Tomoaki; Tsuji, Naoki; Bamba, Takeshi; Aso, Yoshikazu; Kudou, Motonori; Uchida, Yoshiki; Takagi, Masahiro; Harada, Kazuo; Hirata, Kazumasa

    2009-02-01

    Phytochelatins (PCs) are heavy-metal-binding peptides found in some eukaryotes. This study investigates the use of plant-derived PCs for the inhibition of metal-induced protein aggregation. The results of this study show that PCs inhibit zinc-induced alpha-crystallin aggregation, and suggest that PCs might be useful as anti-cataract agents.

  15. Paradoxical Acceleration of Dithiothreitol-Induced Aggregation of Insulin in the Presence of a Chaperone

    PubMed Central

    Bumagina, Zoya; Gurvits, Bella; Artemova, Natalya; Muranov, Konstantin; Kurganov, Boris

    2010-01-01

    The kinetics of dithiothreitol (DTT)-induced aggregation of human recombinant insulin and the effect of α-crystallin, a representative of the family of small heat shock proteins, on the aggregation process have been studied using dynamic light scattering technique. Analysis of the distribution of the particles by size measured in the course of aggregation showed that the initial stage of the aggregation process was the stage of formation of the start aggregates with a hydrodynamic radius (Rh) of about 90 nm. When studying the effect of α-crystallin on the rate of DTT-induced aggregation of insulin, it was demonstrated that low concentrations of α-crystallin dramatically accelerated the aggregation process, whereas high concentrations of α-crystallin suppressed insulin aggregation. In the present study, at the molar stoichiometric ratio (insulin:α-crystallin) less than 1:0.5, a pronounced accelerating effect of α-crystallin was observed; whereas a ratio exceeding the value of 1:0.6 caused suppression of insulin aggregation. The mechanisms underlying the dual effect of α-crystallin have been proposed. It is assumed that heterogeneous nucleation occurring on the surface of the α-crystallin particle plays the key role in the paradoxical acceleration of insulin aggregation by α-crystallin that may provide an alternative biologically significant pathway of the aggregation process. PMID:21151456

  16. Cation-induced aggregation of membrane vesicles isolated from vascular smooth muscle

    SciTech Connect

    Kwan, C.Y.

    1986-12-01

    Cations stimulated aortic muscle membrane aggregation with increasing potency according to their effective charge, e.g., K+ less than Mg2+ less than La3+, and the stimulation is reciprocally related to the apparent affinity for these cations. Divalent metal ion-induced membrane aggregation showed a dependence on the ionic radius, being optimal for Cd2+. Polyvalent cation-induced membrane aggregation was reversibly suppressed by high ionic strength as well as by metal ion chelators, irreversibly inhibited by the cross-linking agent glutaraldehyde, and enhanced by increasing concentrations of ethanol and increased temperature of the medium. When the pH is lowered below 6.0, membrane aggregation progressively increased with a concomitant decrease in cation-induced aggregation. The patterns of aggregation of microsomal membranes and further purified plasma membranes were almost identical whereas the aggregation of the heterogeneous mitochondrial membrane-enriched fraction was distinctly different in the initial rate of aggregation, its pH dependence, and metal ion concentration dependence. Our results indicate that cation-induced membrane aggregation can also be used to isolate a plasma membrane-enriched fraction from vascular smooth muscle.

  17. Concentrating Aggregation-Induced Fluorescence in Planar Waveguides: A Proof-of-Principle

    NASA Astrophysics Data System (ADS)

    Banal, James L.; White, Jonathan M.; Ghiggino, Kenneth P.; Wong, Wallace W. H.

    2014-04-01

    The photophysical properties of fluorescent dyes are key determinants in the performance of luminescent solar concentrators (LSCs). First-generation dyes - coumarin, perylenes, and rhodamines - used in LSCs suffer from both concentration quenching in the solid-state and small Stokes shifts which limit the current LSC efficiencies to below theoretical limits. Here we show that fluorophores that exhibit aggregation-induced emission (AIE) are promising materials for LSC applications. Experiments and Monte Carlo simulations show that the optical quantum efficiencies of LSCs with AIE fluorophores are at least comparable to those of LSCs with first-generation dyes as the active materials even without the use of any optical accessories to enhance the trapping efficiency of the LSCs. Our results demonstrate that AIE fluorophores can potentially solve some key limiting properties of first-generation LSC dyes.

  18. Ralstonia insidiosa induces cell aggregation by Listeria monocytogenes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofilm formation is an important strategy for foodborne bacterial pathogens to survive in stressful environments such as fresh produce processing facilities. Bacterial cell aggregation strongly promotes the initiation of microcolonies and the formation of biofilms on abiological surfaces. We previ...

  19. Silicone Oil- and Agitation-Induced Aggregation of a Monoclonal Antibody in Aqueous Solution

    PubMed Central

    Thirumangalathu, Renuka; Krishnan, Sampathkumar; Ricci, Margaret Speed; Brems, David N.; Randolph, Theodore W.; Carpenter, John F.

    2009-01-01

    Silicone oil, which is used as a lubricant or coating in devices such as syringes, needles and pharmaceutical containers, has been implicated in aggregation and particulation of proteins and antibodies. Aggregation of therapeutic protein products induced by silicone oil can pose a challenge to their development and commercialization. To systematically characterize the role of silicone oil on protein aggregation, the effects of agitation, temperature, pH and ionic strength on silicone oil-induced loss of monomeric anti-streptavidin IgG 1 antibody were examined. Additionally, the influences of excipients polysorbate20 and sucrose on protein aggregation were investigated. In the absence of agitation, protein absorbed to silicone oil with approximately monolayer coverage, however silicone oil did not stimulate aggregation during isothermal incubation unless samples were also agitated. A synergistic stimulation of aggregation by a combination of agitation and silicone oil was observed. Solution conditions which reduced colloidal stability of the antibody, as assessed by determination of osmotic second virial coefficients, accelerated aggregation during agitation with silicone oil. Polysorbate20 completely inhibited silicone oil-induced monomer loss during agitation. A formulation strategy optimizing colloidal stability of the antibody as well as incorporation of surfactants such as polysorbate20 is proposed to reduce silicone oil-induced aggregation of therapeutic protein products. PMID:19360857

  20. Apolipoprotein A-I mimetic peptide 4F blocks sphingomyelinase-induced LDL aggregation.

    PubMed

    Nguyen, Su Duy; Javanainen, Matti; Rissanen, Sami; Zhao, Hongxia; Huusko, Jenni; Kivelä, Annukka M; Ylä-Herttuala, Seppo; Navab, Mohamad; Fogelman, Alan M; Vattulainen, Ilpo; Kovanen, Petri T; Öörni, Katariina

    2015-06-01

    Lipolytic modification of LDL particles by SMase generates LDL aggregates with a strong affinity for human arterial proteoglycans and may so enhance LDL retention in the arterial wall. Here, we evaluated the effects of apoA-I mimetic peptide 4F on structural and functional properties of the SMase-modified LDL particles. LDL particles with and without 4F were incubated with SMase, after which their aggregation, structure, and proteoglycan binding were analyzed. At a molar ratio of L-4F to apoB-100 of 2.5 to 20:1, 4F dose-dependently inhibited SMase-induced LDL aggregation. At a molar ratio of 20:1, SMase-induced aggregation was fully blocked. Binding of 4F to LDL particles inhibited SMase-induced hydrolysis of LDL by 10% and prevented SMase-induced LDL aggregation. In addition, the binding of the SMase-modified LDL particles to human aortic proteoglycans was dose-dependently inhibited by pretreating LDL with 4F. The 4F stabilized apoB-100 conformation and inhibited SMase-induced conformational changes of apoB-100. Molecular dynamic simulations showed that upon binding to protein-free LDL surface, 4F locally alters membrane order and fluidity and induces structural changes to the lipid layer. Collectively, 4F stabilizes LDL particles by preventing the SMase-induced conformational changes in apoB-100 and so blocks SMase-induced LDL aggregation and the resulting increase in LDL retention.

  1. Epicuticular lipids induce aggregation in Chagas disease vectors

    PubMed Central

    Figueiras, Alicia N Lorenzo; Girotti, Juan R; Mijailovsky, Sergio J; Juárez, M Patricia

    2009-01-01

    Background The triatomine bugs are vectors of the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. Aggregation behavior plays an important role in their survival by facilitating the location of refuges and cohesion of aggregates, helping to keep them safely assembled into shelters during daylight time, when they are vulnerable to predators. There are evidences that aggregation is mediated by thigmotaxis, by volatile cues from their faeces, and by hexane-extractable contact chemoreceptive signals from their cuticle surface. The epicuticular lipids of Triatoma infestans include a complex mixture of hydrocarbons, free and esterified fatty acids, alcohols, and sterols. Results We analyzed the response of T. infestans fifth instar nymphs after exposure to different amounts either of total epicuticular lipid extracts or individual lipid fractions. Assays were performed in a circular arena, employing a binary choice test with filter papers acting as aggregation attractive sites; papers were either impregnated with a hexane-extract of the total lipids, or lipid fraction; or with the solvent. Insects were significantly aggregated around papers impregnated with the epicuticular lipid extracts. Among the lipid fractions separately tested, only the free fatty acid fraction promoted significant bug aggregation. We also investigated the response to different amounts of selected fatty acid components of this fraction; receptiveness varied with the fatty acid chain length. No response was elicited by hexadecanoic acid (C16:0), the major fatty acid component. Octadecanoic acid (C18:0) showed a significant assembling effect in the concentration range tested (0.1 to 2 insect equivalents). The very long chain hexacosanoic acid (C26:0) was significantly attractant at low doses (≤ 1 equivalent), although a repellent effect was observed at higher doses. Conclusion The detection of contact aggregation pheromones has practical application in Chagas disease

  2. Antimicrobial preservatives induce aggregation of interferon alpha-2a: the order in which preservatives induce protein aggregation is independent of the protein.

    PubMed

    Bis, Regina L; Mallela, Krishna M G

    2014-09-10

    Antimicrobial preservatives (APs) are included in liquid multi-dose protein formulations to combat the growth of microbes and bacteria. These compounds have been shown to cause protein aggregation, which leads to serious immunogenic and toxic side-effects in patients. Our earlier work on a model protein cytochrome c (Cyt c) demonstrated that APs cause protein aggregation in a specific manner. The aim of this study is to validate the conclusions obtained from our model protein studies on a pharmaceutical protein. Interferon α-2a (IFNA2) is available as a therapeutic treatment for numerous immune-compromised disorders including leukemia and hepatitis C, and APs have been used in its multi-dose formulation. Similar to Cyt c, APs induced IFNA2 aggregation, demonstrated by the loss of soluble monomer and increase in solution turbidity. The extent of IFNA2 aggregation increased with the increase in AP concentration. IFNA2 aggregation also depended on the nature of AP, and followed the order m-cresol>phenol>benzyl alcohol>phenoxyethanol. This specific order exactly matched with that observed for the model protein Cyt c. These and previously published results on antibodies and other recombinant proteins suggest that the general mechanism by which APs induce protein aggregation may be independent of the protein.

  3. Aggregates-induced dynamic negative differential resistance in conducting organic films

    NASA Astrophysics Data System (ADS)

    Xie, Xian Ning; Wang, Junzhong; Loh, Kian Ping; Wee, Andrew Thye Shen

    2009-11-01

    This letter reports the negative differential resistance (NDR) behavior of perylene-3,4,9,10-tetracarboxylic-3,4,9,10-dianhydride films induced by aggregate formation in the film. It is observed that aggregate-states in the energy gap can by-pass the common charge conduction mode, and electron injection, trapping, and conduction through these states lead to the NDR characteristic. The rate-dependence of NDR is discussed in terms of the transit time and lifetime of the aggregates-states electrons. The quenching of NDR by photoillumination is also observed, and is attributed to the saturation of aggregates-states by photoelectrons.

  4. Fluorinated counterion-enhanced emission of rhodamine aggregates: ultrabright nanoparticles for bioimaging and light-harvesting

    NASA Astrophysics Data System (ADS)

    Shulov, Ievgen; Oncul, Sule; Reisch, Andreas; Arntz, Youri; Collot, Mayeul; Mely, Yves; Klymchenko, Andrey S.

    2015-10-01

    The key to ultrabright fluorescent nanomaterials is the control of dye emission in the aggregated state. Here, lipophilic rhodamine B derivatives are assembled into nanoparticles (NPs) using tetraphenylborate counterions with varied fluorination levels that should tune the short-range dye ordering. Counterion fluorination is found to drastically enhance the emission characteristics of these NPs. Highly fluorinated counterions produce 10-20 nm NPs containing >300 rhodamine dyes with a fluorescence quantum yield of 40-60% and a remarkably narrow emission band (34 nm), whereas, for other counterions, aggregation caused quenching with a weak broad-band emission is observed. NPs with the most fluorinated counterion (48 fluorines) are ~40-fold brighter than quantum dots (QD585 at 532 nm excitation) in single-molecule microscopy, showing improved photostability and suppressed blinking. Due to exciton diffusion, revealed by fluorescence anisotropy, these NPs are efficient FRET donors to single cyanine-5 acceptors with a light-harvesting antenna effect reaching 200. Finally, NPs with the most fluorinated counterion are rather stable after entry into living cells, in contrast to their less fluorinated analogue. Thus, the present work shows the crucial role of counterion fluorination in achieving high fluorescence brightness and photostability, narrow-band emission, efficient energy transfer and high intracellular stability of nanomaterials for light harvesting and bioimaging applications.The key to ultrabright fluorescent nanomaterials is the control of dye emission in the aggregated state. Here, lipophilic rhodamine B derivatives are assembled into nanoparticles (NPs) using tetraphenylborate counterions with varied fluorination levels that should tune the short-range dye ordering. Counterion fluorination is found to drastically enhance the emission characteristics of these NPs. Highly fluorinated counterions produce 10-20 nm NPs containing >300 rhodamine dyes with a

  5. The lantibiotic nisin induces lipid II aggregation, causing membrane instability and vesicle budding.

    PubMed

    Scherer, Katharina M; Spille, Jan-Hendrik; Sahl, Hans-Georg; Grein, Fabian; Kubitscheck, Ulrich

    2015-03-10

    The antimicrobial peptide nisin exerts its activity by a unique dual mechanism. It permeates the cell membranes of Gram-positive bacteria by binding to the cell wall precursor Lipid II and inhibits cell wall synthesis. Binding of nisin to Lipid II induces the formation of large nisin-Lipid II aggregates in the membrane of bacteria as well as in Lipid II-doped model membranes. Mechanistic details of the aggregation process and its impact on membrane permeation are still unresolved. In our experiments, we found that fluorescently labeled nisin bound very inhomogeneously to bacterial membranes as a consequence of the strong aggregation due to Lipid II binding. A correlation between cell membrane damage and nisin aggregation was observed in vivo. To further investigate the aggregation process of Lipid II and nisin, we assessed its dynamics by single-molecule microscopy of fluorescently labeled Lipid II molecules in giant unilamellar vesicles using light-sheet illumination. We observed a continuous reduction of Lipid II mobility due to a steady growth of nisin-Lipid II aggregates as a function of time and nisin concentration. From the measured diffusion constants of Lipid II, we estimated that the largest aggregates contained tens of thousands of Lipid II molecules. Furthermore, we observed that the formation of large nisin-Lipid II aggregates induced vesicle budding in giant unilamellar vesicles. Thus, we propose a membrane permeation mechanism that is dependent on the continuous growth of nisin-Lipid II aggregation and probably involves curvature effects on the membrane.

  6. Remediating agitation-induced antibody aggregation by eradicating exposed hydrophobic motifs

    PubMed Central

    Clark, Rutilio H; Latypov, Ramil F; De Imus, Cyr; Carter, Jane; Wilson, Zien; Manchulenko, Kathy; Brown, Michael E; Ketchem, Randal R

    2014-01-01

    Therapeutic antibodies must encompass drug product suitable attributes to be commercially marketed. An undesirable antibody characteristic is the propensity to aggregate. Although there are computational algorithms that predict the propensity of a protein to aggregate from sequence information alone, few consider the relevance of the native structure. The Spatial Aggregation Propensity (SAP) algorithm developed by Chennamsetty et. al. incorporates structural and sequence information to identify motifs that contribute to protein aggregation. We have utilized the algorithm to design variants of a highly aggregation prone IgG2. All variants were tested in a variety of high-throughput, small-scale assays to assess the utility of the method described herein. Many variants exhibited improved aggregation stability whether induced by agitation or thermal stress while still retaining bioactivity. PMID:25484048

  7. Kinetic regime of dithiothreitol-induced aggregation of bovine serum albumin.

    PubMed

    Borzova, Vera A; Markossian, Kira A; Kara, Dmitriy A; Kurganov, Boris

    2015-09-01

    A search for agents, which are capable of effectively suppressing protein aggregation, and elaboration of the appropriate test systems, are among important problems of modern biochemistry and biotechnology. One such test system is based on dithiothreitol (DTT)-induced aggregation of bovine serum albumin (BSA). Study of the kinetics of DTT-induced aggregation of BSA by asymmetric flow field flow fractionation showed that a decrease in the portion of the non-aggregated protein in time followed the exponential law, the rate constant of the first order remaining unchanged at varying protein concentration (0.1M Na-phosphate buffer, pH 7.0; 45 °C). The obtained results indicate that the rate-limiting stage of the general aggregation process is that of unfolding of the protein molecule. When studying the kinetics of DTT-induced aggregation of BSA by dynamic light scattering, we proposed to use parameter K(LS) as a measure of the initial rate of aggregation. Parameter K(LS) corresponds to the initial slope of the dependence of (I-I0)(0.5) on time (I0 and I are the initial and current values of the light scattering intensity, respectively). The K(LS) value has been applied to estimate anti-aggregation activity of chemical chaperones (arginine, its derivatives and proline). PMID:26116389

  8. Inhibitors of ex vivo aggregation of human platelets induced by decompression, during reduced barometric pressure.

    PubMed

    Murayama, M; Kumaroo, K K

    1986-05-15

    It has been shown experimentally ex vivo that human platelet aggregation is induced by decompression (reduced pressure) produced by various means, i.e., reduced barometric pressure, reduced hydrostatic pressure, and reduced hydrodynamic pressure due to Bernoulli's principle. We report here that the spontaneous platelet aggregation induced by reduced barometric pressure (253 torr for three hours) is inhibited by 1:10(7) diluted Japanese herbal plant oil (JHP) and also by two of its major constituents, menthone and menthol with the median inhibitory concentration (IC50) in the millimolar range. These drugs gave essentially similar results when collagen and ADP were used as aggregating agents. Inhibitor concentrations were determined by microscopic examination of platelets in wet preparations when the aggregating stimulus was reduced pressure and by optical aggregometry when collagen and ADP were the aggregating agents. Potential usefulness of these compounds in the prevention of decompression syndrome (DCS) and acute mountain sickness (AMS) are discussed.

  9. Tunneling electron induced molecular electroluminescence from individual porphyrin J-aggregates

    SciTech Connect

    Meng, Qiushi; Zhang, Chao; Zhang, Yang E-mail: zcdong@ustc.edu.cn; Zhang, Yao; Liao, Yuan; Dong, Zhenchao E-mail: zcdong@ustc.edu.cn

    2015-07-27

    We investigate molecular electroluminescence from individual tubular porphyrin J-aggregates on Au(111) by tunneling electron excitations in an ultrahigh-vacuum scanning tunneling microscope (STM). High-resolution STM images suggest a spiral tubular structure for the porphyrin J-aggregate with highly ordered “brickwork”-like arrangements. Such aggregated nanotube is found to behave like a self-decoupled molecular architecture and shows red-shifted electroluminescence characteristics of J-aggregates originated from the delocalized excitons. The positions of the emission peaks are found to shift slightly depending on the excitation sites, which, together with the changes in the observed spectral profiles with vibronic progressions, suggest a limited exciton coherence number within several molecules. The J-aggregate electroluminescence is also found unipolar, occurring only at negative sample voltages, which is presumably related to the junction asymmetry in the context of molecular excitations via the carrier injection mechanism.

  10. Stabilization of insulin against agitation-induced aggregation by the GMO cubic phase gel.

    PubMed

    Sadhale, Y; Shah, J C

    1999-11-25

    The main objective of the study was to evaluate if the liquid crystalline cubic phase gel of glyceryl monooleate (GMO) protects insulin from agitation induced aggregation. The aggregation of Humulin(R), Regular Iletin I(R) and Regular Iletin II(R), in cubic phase GMO gels at 30 U/g of gel was compared with that in PBS at 100 oscillations/min at 37 degrees C using optical density at 600 nm. The effect of agitation on the secondary structure of insulin in solution and in the gels was determined with circular dichroism (CD) spectroscopy, and the time course of aggregation was also followed by HPLC. A sigmoidal increase in optical density of solution with time indicated formation of increasing amounts of insoluble insulin aggregates. However, in the gels, optical density values stayed at, or around, the initial optical density value, comparable with that of a blank gel suggesting that insulin had not aggregated in the gel. CD spectroscopy of the soluble insulin showed a total loss of native conformation upon aggregation of insulin in solution. In contrast, CD spectra of insulin in the gel were unaltered suggesting protection from aggregation during agitation. Furthermore, agitation of insulin in gels for a duration as long as 2 months at 37 degrees C, had very little adverse effect on the native conformation of insulin, as indicated by the lack of a significant change in its CD spectrum. Therefore, the cubic phase gel was indeed able to protect insulin from agitation-induced aggregation and subsequent precipitation. Although the majority of insulin in solution appeared to have aggregated and precipitated after 8 days by UV and CD spectroscopy, RP-HPLC results indicated the presence of some soluble aggregates of insulin. In summary, the liquid crystalline cubic phase gel of GMO protects peptides, like insulin, from agitation-induced aggregation.

  11. The Thioredoxin System Protects Ribosomes against Stress-induced Aggregation

    PubMed Central

    Rand, Jonathan D.; Grant, Chris M.

    2006-01-01

    We previously showed that thioredoxins are required for dithiothreitol (DTT) tolerance, suggesting they maintain redox homeostasis in response to both oxidative and reductive stress conditions. In this present study, we screened the complete set of viable deletion strains in Saccharomyces cerevisiae for sensitivity to DTT to identify cell functions involved in resistance to reductive stress. We identified 195 mutants, whose gene products are localized throughout the cell. DTT-sensitive mutants were distributed among most major biological processes, but they particularly affected gene expression, metabolism, and the secretory pathway. Strikingly, a mutant lacking TSA1, encoding a peroxiredoxin, showed a similar sensitivity to DTT as a thioredoxin mutant. Epistasis analysis indicated that thioredoxins function upstream of Tsa1 in providing tolerance to DTT. Our data show that the chaperone function of Tsa1, rather than its peroxidase function, is required for this activity. Cells lacking TSA1 were found to accumulate aggregated proteins, and this was exacerbated by exposure to DTT. Analysis of the protein aggregates revealed that they are predominantly composed of ribosomal proteins. Furthermore, aggregation was found to correlate with an inhibition of translation initiation. We propose that Tsa1 normally functions to chaperone misassembled ribosomal proteins, preventing the toxicity that arises from their aggregation. PMID:16251355

  12. The Effect of Surface Charge Saturation on Heat-induced Aggregation of Firefly Luciferase.

    PubMed

    Gharanlar, Jamileh; Hosseinkhani, Saman; Sajedi, Reza H; Yaghmaei, Parichehr

    2015-01-01

    We present here the effect of firefly luciferase surface charge saturation and the presence of some additives on its thermal-induced aggregation. Three mutants of firefly luciferase prepared by introduction of surface Arg residues named as 2R, 3R and 5R have two, three and five additional arginine residues substituted at their surface compared to native luciferase; respectively. Turbidimetric study of heat-induced aggregation indicates that all three mutants were reproducibly aggregated at higher rates relative to wild type in spite of their higher thermostability. Among them, 2R had most evaluated propensity to heat-induced aggregation. Therefore, the hydrophilization followed by appearing of more substituted arginine residues with positive charge on the firefly luciferase surface was not reduced its thermal aggregation. Nevertheless, at the same condition in the presence of charged amino acids, e.g. Arg, Lys and Glu, as well as a hydrophobic amino acid, e.g. Val, the heat-induced aggregation of wild type and mutants of firefly luciferases was markedly decelerated than those in the absence of additives. On the basis of obtained results it seems, relinquishment of variety in charge of amino acid side chains, they via local interactions with proteins cause to decrease rate and extent of their thermal aggregation.

  13. Temperature induced structural transitions from native to unfolded aggregated states of tobacco etch virus protease

    NASA Astrophysics Data System (ADS)

    Zhu, Guo-Fei; Ren, Si-Yan; Xi, Lei; Du, Lin-Fang; Zhu, Xiao-Feng

    2015-02-01

    Tobacco etch virus protease (TEVp) is widely used to remove fusion tags from recombinant proteins because of its high and unique specificity. This work describes the conformational and the thermodynamic properties in the unfolding/refolding process of TEVp3M (three-point mutant: L56V/S135G/S219V) induced by temperature. With temperature increasing from 20 to 100 °C, the CD spectra showed a transition trend from α-helix to β-sheet, and the fluorescence emission, synchronous fluorescence, ANS and RLS spectroscopy consistently revealed that the temperature-induced unfolding process behaved in a three-state manner, for there was a relatively stable intermediate state observed around 50 °C. The reversibility of thermal unfolding of TEVp3M further showed that the transition from the native to the intermediate state was reversible (below 50 °C), however the transition from the intermediate to the unfolded state was irreversible (above 60 °C). Moreover, aggregates were observed above 60 °C as revealed by SDS-PAGE, Thioflavin-T fluorescence and Congo red absorbance.

  14. Hyperthermia restores apoptosis induced by death receptors through aggregation-induced c-FLIP cytosolic depletion

    PubMed Central

    Morlé, A; Garrido, C; Micheau, O

    2015-01-01

    TRAIL is involved in immune tumor surveillance and is considered a promising anti-cancer agent owing to its limited side effects on healthy cells. However, some cancer cells display resistance, or become resistant to TRAIL-induced cell death. Hyperthermia can enhance sensitivity to TRAIL-induced cell death in various resistant cancer cell lines, including lung, breast, colon or prostate carcinomas. Mild heat shock treatment has been proposed to restore Fas ligand or TRAIL-induced apoptosis through c-FLIP degradation or the mitochondrial pathway. We demonstrate here that neither the mitochondria nor c-FLIP degradation are required for TRAIL-induced cell death restoration during hyperthermia. Our data provide evidence that insolubilization of c-FLIP, alone, is sufficient to enhance apoptosis induced by death receptors. Hyperthermia induced c-FLIP depletion from the cytosolic fraction, without apparent degradation, thereby preventing c-FLIP recruitment to the TRAIL DISC and allowing efficient caspase-8 cleavage and apoptosis. Hyperthermia-induced c-FLIP depletion was independent of c-FLIP DED2 FL chain assembly motif or ubiquitination-mediated c-FLIP degradation, as assessed using c-FLIP point mutants on lysine 167 and 195 or threonine 166, a phosphorylation site known to regulate ubiquitination of c-FLIP. Rather, c-FLIP depletion was associated with aggregation, because addition of glycerol not only prevented the loss of c-FLIP from the cytosol but also enabled c-FLIP recruitment within the TRAIL DISC, thus inhibiting TRAIL-induced apoptosis during hyperthermia. Altogether our results demonstrate that c-FLIP is a thermosensitive protein whose targeting by hyperthermia allows restoration of apoptosis induced by TNF ligands, including TRAIL. Our findings suggest that combining TRAIL agonists with whole-body or localized hyperthermia may be an interesting approach in cancer therapy. PMID:25675293

  15. Hyperthermia restores apoptosis induced by death receptors through aggregation-induced c-FLIP cytosolic depletion.

    PubMed

    Morlé, A; Garrido, C; Micheau, O

    2015-01-01

    TRAIL is involved in immune tumor surveillance and is considered a promising anti-cancer agent owing to its limited side effects on healthy cells. However, some cancer cells display resistance, or become resistant to TRAIL-induced cell death. Hyperthermia can enhance sensitivity to TRAIL-induced cell death in various resistant cancer cell lines, including lung, breast, colon or prostate carcinomas. Mild heat shock treatment has been proposed to restore Fas ligand or TRAIL-induced apoptosis through c-FLIP degradation or the mitochondrial pathway. We demonstrate here that neither the mitochondria nor c-FLIP degradation are required for TRAIL-induced cell death restoration during hyperthermia. Our data provide evidence that insolubilization of c-FLIP, alone, is sufficient to enhance apoptosis induced by death receptors. Hyperthermia induced c-FLIP depletion from the cytosolic fraction, without apparent degradation, thereby preventing c-FLIP recruitment to the TRAIL DISC and allowing efficient caspase-8 cleavage and apoptosis. Hyperthermia-induced c-FLIP depletion was independent of c-FLIP DED2 FL chain assembly motif or ubiquitination-mediated c-FLIP degradation, as assessed using c-FLIP point mutants on lysine 167 and 195 or threonine 166, a phosphorylation site known to regulate ubiquitination of c-FLIP. Rather, c-FLIP depletion was associated with aggregation, because addition of glycerol not only prevented the loss of c-FLIP from the cytosol but also enabled c-FLIP recruitment within the TRAIL DISC, thus inhibiting TRAIL-induced apoptosis during hyperthermia. Altogether our results demonstrate that c-FLIP is a thermosensitive protein whose targeting by hyperthermia allows restoration of apoptosis induced by TNF ligands, including TRAIL. Our findings suggest that combining TRAIL agonists with whole-body or localized hyperthermia may be an interesting approach in cancer therapy. PMID:25675293

  16. Two nitrogen-containing ligands as inhibitors of metal-induced amyloid β-peptide aggregation.

    PubMed

    Chen, Tingting; Zhu, Shajun; Liu, Siyuan; Lu, Yapeng; Zhu, Li

    2014-02-01

    Abnormal interactions of Zn(2+) and Cu(2+) with the amyloid β-peptide (Aβ) are proposed to play an important role in the neuropathogenesis of Alzheimer's disease (AD). Metal chelators are potential therapeutic agents for AD because they could sequester metals ions from Aβ aggregates and reverse the aggregation. In this study, two nitrogencontaining ligands, TACN and BPA, have been investigated as possible metal chelators in the therapy of Alzheimer's disease. The interactions between the chelators and Aβ40 aggregates are studied by turbidometry, thioflavin T (ThT) fluorescence spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS), BCA protein assay, circular dichroism spectroscopy (CD), and atomic force microscopy (AFM). The results demonstrates that TACN and BPA are capable of both disrupting and preventing Zn(2+) or Cu(2+)-induced Aβ40 aggregation. Moreover, they can also suppress the production of H2O2 induced by Cu-Aβ40, associated with toxic oxidative stress in AD. PMID:23844690

  17. Aspirin-mediated acetylation induces structural alteration and aggregation of bovine pancreatic insulin.

    PubMed

    Yousefi, Reza; Taheri, Behnaz; Alavi, Parnian; Shahsavani, Mohammad Bagher; Asadi, Zahra; Ghahramani, Maryam; Niazi, Ali; Alavianmehr, Mohammad Mehdi; Moosavi-Movahedi, Ali Akbar

    2016-01-01

    The simple aggregation of insulin under various chemical and physical stresses is still an important challenge for both pharmaceutical production and clinical formulation. In the storage form, this protein is subjected to various chemical modifications which alter its physicochemical and aggregation properties. Aspirin (acetylsalicylic acid) which is the most widely used medicine worldwide has been indicated to acetylate a large number of proteins both in vitro and in vivo. In this study, as insulin treated with aspirin at 37°C, a significant level of acetylation was observed by flourescamine and o-phthalaldehyde assay. Also, different spectroscopic techniques, gel electrophoresis, and microscopic assessment were applied to compare the structural variation and aggregation/fibrillation propensity among acetylated and non-acetylated insulin samples. The results of spectroscopic assessments elucidate that acetylation induces insulin unfolding which is accompanied with the exposure of protein hydrophobic patches, a transition from alpha-helix to beta-sheet and increased propensity of the protein for aggregation. The kinetic studies propose that acetylation increases aggregation rate of insulin under both thermal and chemical stresses. Also, gel electrophoresis and dynamic light scattering experiments suggest that acetylation induces insulin oligomerization. Additionally, the results of Thioflavin T fluorescence study, Congo red absorption assessment, and microscopic analysis suggest that acetylation with aspirin enhances the process of insulin fibrillation. Overall, the increased susceptibility of acetylated insulin for aggregation may reflect the fact that this type of modification has significant structural destabilizing effect which finally makes the protein more vulnerable for pathogenic aggregation/fibrillation.

  18. Sulfur mustard induces the formation of keratin aggregates in human epidermal keratinocytes.

    PubMed

    Dillman, James F; McGary, Kriston L; Schlager, John J

    2003-12-01

    The vesicant sulfur mustard is an alkylating agent that has the capacity to cross-link biological molecules. We are interested in identifying specific proteins that are altered upon sulfur mustard exposure. Keratins are particularly important for the structural integrity of skin, and several genetically inherited blistering diseases have been linked to mutations in keratin 5 and keratin 14. We examined whether sulfur mustard exposure alters keratin biochemistry in cultured human epidermal keratinocytes. Western blotting with specific monoclonal antibodies revealed the formation of stable high-molecular-weight "aggregates" containing keratin 14 and/or keratin 5. These aggregates begin to form within 15 min after sulfur mustard exposure. These aggregates display a complex gel electrophoresis pattern between approximately 100 and approximately 200 kDa. Purification and analysis of these aggregates by one- and two-dimensional gel electrophoresis and mass spectrometry confirmed the presence of keratin 14 and keratin 5 and indicate that at least some of the aggregates are composed of keratin 14-keratin 14, keratin 14-keratin 5, or keratin 5-keratin 5 dimers. These studies demonstrate that sulfur mustard induces keratin aggregation in keratinocytes and support further investigation into the role of keratin aggregation in sulfur mustard-induced vesication. PMID:14644625

  19. UV-induced self-aggregation of E. coli after low and medium pressure ultraviolet irradiation.

    PubMed

    Kollu, Kerim; Örmeci, Banu

    2015-07-01

    Presence of aggregated bacteria has been shown to decrease the efficacy of ultraviolet (UV) disinfection and there is some indication that UV irradiation may promote aggregation of bacteria among themselves. This study aims to provide an in-depth understanding of the effect of UV light on inducing self-aggregation of Escherichia coli bacteria by using microscopy and particle counter analysis techniques. The bacteria were observed and quantified before and after UV irradiation by employing size and concentration parameters. Four doses of low-pressure (LP) UV irradiation, 20, 40, 60 and 80 mJ/cm(2), and two doses of medium-pressure (MP) UV irradiation, 40 and 80 mJ/cm(2), were tested. At all LP UV doses tested, a significant increase in particle size was observed following UV exposure, indicating UV-induced self-aggregation. However, the magnitude of UV dose did not seem to have an impact. In the MP UV experiments, only a dose of 80 mJ/cm(2) had a significant impact on the formation of aggregates upon UV exposure. Changing the light intensity and exposure time to deliver the same LP UV dose resulted in different levels of aggregation. The results indicated that UV light intensity and wavelength may play a role in aggregation of bacteria. PMID:26002538

  20. The yeast peroxiredoxin Tsa1 protects against protein-aggregate-induced oxidative stress

    PubMed Central

    Weids, Alan J.; Grant, Chris M.

    2014-01-01

    ABSTRACT Peroxiredoxins are ubiquitous thiol-specific proteins that have multiple functions in stress protection, including protection against oxidative stress. Tsa1 is the major yeast peroxiredoxin and we show that it functions as a specific antioxidant to protect the cell against the oxidative stress caused by nascent-protein misfolding and aggregation. Yeast mutants lacking TSA1 are sensitive to misfolding caused by exposure to the proline analogue azetidine-2-carboxylic acid (AZC). AZC promotes protein aggregation, and its toxicity to a tsa1 mutant is caused by the production of reactive oxygen species (ROS). The generation of [rho0] cells, which lack mitochondrial DNA, rescues the tsa1 mutant AZC sensitivity, indicating that mitochondria are the source of ROS. Inhibition of nascent-protein synthesis with cycloheximide prevents AZC-induced protein aggregation and abrogates ROS generation, confirming that the formation of aggregates causes ROS production. Protein aggregation is accompanied by mitochondrial fragmentation, and we show that Tsa1 localises to the sites of protein aggregation. Protein aggregates are formed adjacent to mitochondria, and our data indicate that active mitochondria generate ROS. These data indicate a new role for peroxiredoxins in protecting against ROS that are generated as a result of protein misfolding and aggregate formation. PMID:24424024

  1. Heterogeneity in (2-butoxyethanol + water) mixtures: Hydrophobicity-induced aggregation or criticality-driven concentration fluctuations?

    NASA Astrophysics Data System (ADS)

    Indra, Sandipa; Biswas, Ranjit

    2015-05-01

    Micro-heterogeneity in aqueous solutions of 2-butoxyethanol (BE), a system with closed loop miscibility gap, has been explored via absorption and time-resolved fluorescence measurements of a dissolved dipolar solute, coumarin 153 (C153), in the water-rich region at various BE mole fractions (0 ≤ XBE ≤ 0.25) in the temperature range, 278 ≤ T/K ≤ 320. Evidences for both alcohol-induced H-bond strengthening and subsequent structural transition of H-bond network have been observed. Analyses of steady state and time-resolved spectroscopic data for these aqueous mixtures and comparisons with the results for aqueous solutions of ethanol and tertiary butanol indicate that alcohol aggregation in BE/water mixtures is driven by hydrophobic interaction with no or insignificant role for criticality-driven concentration fluctuations preceding phase separation. Excitation energy dependence of fluorescence emission of C153 confirms formation of aggregated structures at very low BE mole fractions. No asymptotic critical power law dependence for relaxation rates of the type, k ∝ (|T - Tc|/Tc)γ, with γ denoting universal critical constant, has been observed for both solute's rotational relaxation and population relaxation rates in these mixtures upon either approaching to critical concentration or critical temperature. Estimated activation energies for rotational relaxation rate of C153 and solution viscosity have been found to follow each other with no abrupt changes in either of them at any mixture composition. In addition, measured C153 rotation times at various compositions and temperatures reflect near-hydrodynamic viscosity coupling through the dependence, <τr> ∝ (η/T)p, with p = 0.8-1.0, suggesting solute's orientational relaxation dynamics being, on an average, temporally homogeneous.

  2. Laser light scattering measurement of dextran-induced Streptococcus mutans aggregation.

    PubMed Central

    Ryan, V; Hart, T R; Schiller, R

    1980-01-01

    Intensity fluctuation spectroscopy was used to study dextran-induced aggregation of Streptococcus mutans bacteria. Smoluchowski's theory of colloidal flocculation provided a consistent model of the agglutination process. Our experiments indicated that aggregation was inhibited by the negatively charged surfaces of the cells, while dextran polymers effectively bound organisms together. Our experimental data were consistent with the quantitative predictions of a polymer bridge model of agglutination. PMID:6168309

  3. Platelet–cancer interactions: mechanisms and pharmacology of tumour cell-induced platelet aggregation

    PubMed Central

    Jurasz, Paul; Alonso-Escolano, David; Radomski, Marek W

    2004-01-01

    During haematogenous metastasis, cancer cells migrate to the vasculature and interact with platelets resulting in tumour cell-induced platelet aggregation (TCIPA). We review: The biological and clinical significance of TCIPA; Molecular mechanisms involved in platelet aggregation by cancer cells; Strategies for pharmacological regulation of these interactions. We conclude that pharmacological regulation of platelet–cancer cell interactions may reduce the impact of TCIPA on cancer biology. PMID:15492016

  4. gammaA/gamma' fibrinogen inhibits thrombin-induced platelet aggregation.

    PubMed

    Lovely, Rehana S; Rein, Chantelle M; White, Tara C; Jouihan, Sari A; Boshkov, Lynn K; Bakke, Antony C; McCarty, Owen J; Farrell, David H

    2008-11-01

    The minor gammaA/gamma' fibrinogen isoform contains a high affinity binding site for thrombin exosite II that is lacking in the major gammaA/gammaA fibrinogen isoform. We therefore investigated the biological consequences of the gamma' chain binding to thrombin. Thrombin-induced platelet aggregation was inhibited by gammaA/gamma' fibrinogen. Carboxyl terminal peptide fragment gamma'410-427 from the gamma' chain was also inhibitory, with an IC(50) of approximately 200 microM in whole plasma. Deletion of the peptide from either the amino or carboxyl end significantly decreased inhibition. In contrast to thrombin-induced platelet aggregation, aggregation induced by epinephrine, ADP, arachidonic acid, or SFLLRN peptide showed little inhibition by the gamma' peptide. The inhibition of thrombin-induced platelet aggregation was not due to direct inhibition of the thrombin active site, since cleavage of a small peptidyl substrate was 91% of normal even in the presence of 1 mM gamma'410-427. The gamma'410-427 peptide blocked platelet adhesion to immobilized thrombin under both static and flow conditions, blocked soluble thrombin binding to platelet GPIbalpha, and inhibited PAR1 cleavage by thrombin. These results suggest that the gamma' chain of fibrinogen inhibits thrombin-induced platelet aggregation by binding to thrombin exosite II. Thrombin that is bound to the gamma' chain is thereby prevented from activating platelets, while retaining its amidolytic activity. PMID:18989528

  5. Platelet-collagen adhesion enhances platelet aggregation induced by binding of VWF to platelets

    SciTech Connect

    Laduca, F.M.; Bell, W.R.; Bettigole, R.E. State Univ. of New York, Buffalo )

    1987-11-01

    Ristocetin-induced platelet aggregation (RIPA) was evaluated in the presence of platelet-collagen adhesion. RIPA of normal donor platelet-rich plasma (PRP) demonstrated a primary wave of aggregation mediated by the binding of von Willebrand factor (VWF) to platelets and a secondary aggregation wave, due to a platelet-release reaction, initiated by VWF-platelet binding and inhibitable by acetylsalicylic acid (ASA). An enhanced RIPA was observed in PRP samples to which collagen had been previously added. These subthreshold concentrations of collagen, which by themselves were insufficient to induce aggregation, caused measurable platelet-collagen adhesion. Subthreshold collagen did not cause microplatelet aggregation, platelet release of ({sup 3}H)serotonin, or alter the dose-responsive binding of {sup 125}I-labeled VWF to platelets, which occurred with increasing ristocetin concentrations. However, ASA inhibition of the platelet release reaction prevented collagen-enhanced RIPA. These results demonstrate that platelet-collagen adhesion altered the platelet-release reaction induced by the binding of VWF to platelets causing a platelet-release reaction at a level of VWF-platelet binding not normally initiating a secondary aggregation. These findings suggest that platelet-collagen adhesion enhances platelet function mediated by VWF.

  6. Ultrasensitive detection of target analyte-induced aggregation of gold nanoparticles using laser-induced nanoparticle Rayleigh scattering.

    PubMed

    Lin, Jia-Hui; Tseng, Wei-Lung

    2015-01-01

    Detection of salt- and analyte-induced aggregation of gold nanoparticles (AuNPs) mostly relies on costly and bulky analytical instruments. To response this drawback, a portable, miniaturized, sensitive, and cost-effective detection technique is urgently required for rapid field detection and monitoring of target analyte via the use of AuNP-based sensor. This study combined a miniaturized spectrometer with a 532-nm laser to develop a laser-induced Rayleigh scattering technique, allowing the sensitive and selective detection of Rayleigh scattering from the aggregated AuNPs. Three AuNP-based sensing systems, including salt-, thiol- and metal ion-induced aggregation of the AuNPs, were performed to examine the sensitivity of laser-induced Rayleigh scattering technique. Salt-, thiol-, and metal ion-promoted NP aggregation were exemplified by the use of aptamer-adsorbed, fluorosurfactant-stabilized, and gallic acid-capped AuNPs for probing K(+), S-adenosylhomocysteine hydrolase-induced hydrolysis of S-adenosylhomocysteine, and Pb(2+), in sequence. Compared to the reported methods for monitoring the aggregated AuNPs, the proposed system provided distinct advantages of sensitivity. Laser-induced Rayleigh scattering technique was improved to be convenient, cheap, and portable by replacing a diode laser and a miniaturized spectrometer with a laser pointer and a smart-phone. Using this smart-phone-based detection platform, we can determine whether or not the Pb(2+) concentration exceed the maximum allowable level of Pb(2+) in drinking water.

  7. The Lantibiotic Nisin Induces Lipid II Aggregation, Causing Membrane Instability and Vesicle Budding

    PubMed Central

    Scherer, Katharina M.; Spille, Jan-Hendrik; Sahl, Hans-Georg; Grein, Fabian; Kubitscheck, Ulrich

    2015-01-01

    The antimicrobial peptide nisin exerts its activity by a unique dual mechanism. It permeates the cell membranes of Gram-positive bacteria by binding to the cell wall precursor Lipid II and inhibits cell wall synthesis. Binding of nisin to Lipid II induces the formation of large nisin-Lipid II aggregates in the membrane of bacteria as well as in Lipid II-doped model membranes. Mechanistic details of the aggregation process and its impact on membrane permeation are still unresolved. In our experiments, we found that fluorescently labeled nisin bound very inhomogeneously to bacterial membranes as a consequence of the strong aggregation due to Lipid II binding. A correlation between cell membrane damage and nisin aggregation was observed in vivo. To further investigate the aggregation process of Lipid II and nisin, we assessed its dynamics by single-molecule microscopy of fluorescently labeled Lipid II molecules in giant unilamellar vesicles using light-sheet illumination. We observed a continuous reduction of Lipid II mobility due to a steady growth of nisin-Lipid II aggregates as a function of time and nisin concentration. From the measured diffusion constants of Lipid II, we estimated that the largest aggregates contained tens of thousands of Lipid II molecules. Furthermore, we observed that the formation of large nisin-Lipid II aggregates induced vesicle budding in giant unilamellar vesicles. Thus, we propose a membrane permeation mechanism that is dependent on the continuous growth of nisin-Lipid II aggregation and probably involves curvature effects on the membrane. PMID:25762323

  8. The lantibiotic nisin induces lipid II aggregation, causing membrane instability and vesicle budding.

    PubMed

    Scherer, Katharina M; Spille, Jan-Hendrik; Sahl, Hans-Georg; Grein, Fabian; Kubitscheck, Ulrich

    2015-03-10

    The antimicrobial peptide nisin exerts its activity by a unique dual mechanism. It permeates the cell membranes of Gram-positive bacteria by binding to the cell wall precursor Lipid II and inhibits cell wall synthesis. Binding of nisin to Lipid II induces the formation of large nisin-Lipid II aggregates in the membrane of bacteria as well as in Lipid II-doped model membranes. Mechanistic details of the aggregation process and its impact on membrane permeation are still unresolved. In our experiments, we found that fluorescently labeled nisin bound very inhomogeneously to bacterial membranes as a consequence of the strong aggregation due to Lipid II binding. A correlation between cell membrane damage and nisin aggregation was observed in vivo. To further investigate the aggregation process of Lipid II and nisin, we assessed its dynamics by single-molecule microscopy of fluorescently labeled Lipid II molecules in giant unilamellar vesicles using light-sheet illumination. We observed a continuous reduction of Lipid II mobility due to a steady growth of nisin-Lipid II aggregates as a function of time and nisin concentration. From the measured diffusion constants of Lipid II, we estimated that the largest aggregates contained tens of thousands of Lipid II molecules. Furthermore, we observed that the formation of large nisin-Lipid II aggregates induced vesicle budding in giant unilamellar vesicles. Thus, we propose a membrane permeation mechanism that is dependent on the continuous growth of nisin-Lipid II aggregation and probably involves curvature effects on the membrane. PMID:25762323

  9. A note on the use of Quin2 in studying shear-induced platelet aggregation.

    PubMed

    Giorgio, T D; Hellums, J D

    1986-02-01

    Quin2, a calcium ion chelator which can penetrate plasma membranes, was used to study the role of intracellular calcium ion concentration in mediating shear-induced platelet activation. Washed platelet suspensions were subjected to various levels of uniform, known shear stress in a cone and plate viscometer in the absence of added agonists. Additional samples were aggregated in response to chemical platelet agonists in a conventional aggregometer. The aggregometer response of Quin2-containing platelets to collagen, thrombin and ADP exhibited increased lag time and reduced maximum rate of aggregation in comparison to controls. However, the extent of aggregation of the Quin2-containing platelets eventually reached the same level as that of the controls. Very different results were obtained for aggregation by shear stress in the viscometer. Shear-induced aggregation was significantly suppressed by Quin2 treatment at both short (30 seconds) and long (300 seconds) times of exposure to the shear field. Shear-induced dense granular release and cellular lysis were unaltered by Quin2 treatment at 30 second exposure times, but both were significantly increased by Quin2 treatment at 300 second exposure times. These results suggest that intracellular calcium ion mobilization is an important early step in shear-induced platelet activation. Additionally, Quin2 appears to have effects resulting in increased platelet fragility. Thus, the findings raise questions on the suitability of Quin2 as an intracellular calcium ion probe in studies in shear fields. PMID:3705013

  10. Acid-induced aggregation propensity of nivolumab is dependent on the Fc.

    PubMed

    Liu, Boning; Guo, Huaizu; Xu, Jin; Qin, Ting; Xu, Lu; Zhang, Junjie; Guo, Qingcheng; Zhang, Dapeng; Qian, Weizhu; Li, Bohua; Dai, Jianxin; Hou, Sheng; Guo, Yajun; Wang, Hao

    2016-01-01

    Nivolumab, an anti-programmed death (PD)1 IgG4 antibody, has shown notable success as a cancer treatment. Here, we report that nivolumab was susceptible to aggregation during manufacturing, particularly in routine purification steps. Our experimental results showed that exposure to low pH caused aggregation of nivolumab, and the Fc was primarily responsible for an acid-induced unfolding phenomenon. To compare the intrinsic propensity of acid-induced aggregation for other IgGs subclasses, tocilizumab (IgG1), panitumumab (IgG2) and atezolizumab (aglyco-IgG1) were also investigated. The accurate pH threshold of acid-induced aggregation for individual IgG Fc subclasses was identified and ranked as: IgG1 < aglyco-IgG1 < IgG2 < IgG4. This result was cross-validated by thermostability and conformation analysis. We also assessed the effect of several protein stabilizers on nivolumab, and found mannitol ameliorated the acid-induced aggregation of the molecule. Our results provide valuable insight into downstream manufacturing process development, especially for immune checkpoint modulating molecules with a human IgG4 backbone. PMID:27310175

  11. Small molecule- and amino acid-induced aggregation of gold nanoparticles.

    PubMed

    Zakaria, Hesham M; Shah, Akash; Konieczny, Michael; Hoffmann, Joan A; Nijdam, A Jasper; Reeves, M E

    2013-06-25

    To understand which organic molecules are capable of binding to gold nanoparticles and/or inducing nanoparticle aggregation, we investigate the interaction of gold nanoparticles with small molecules and amino acids at variable pH. Dynamic Light Scattering (DLS) and ultraviolet-visible (UV-vis) spectra were measured on mixtures of colloidal gold with small molecules to track the progression of the aggregation of gold nanoparticles. We introduce the 522 to 435 nm UV-vis absorbance ratio as a sensitive method for the detection of colloidal gold aggregation, whereby we delineate the ability of thiol, amine, and carboxylic acid functional groups to bind to the surfaces of gold nanoparticles and investigate how combinations of these functional groups affect colloidal stability. We present models for mechanisms of aggregation of colloidal gold, including surface charge reduction and bridging linkers. For all molecules whose addition leads to the aggregation of gold nanoparticles, the aggregation kinetics were accelerated at acidic pH values. Colloidal gold is maintained only in the presence of anionic carboxyl groups, which are neutralized by protonation at lower pH. The overall reduced charge on the stabilizing carboxyl groups accounts for the accelerated aggregation at lower pH values. PMID:23718319

  12. Inhibitory effect of copper nanoparticles on rosin modified surfactant induced aggregation of lysozyme.

    PubMed

    Ishtikhar, Mohd; Usmani, Salman Sadullah; Gull, Nuzhat; Badr, Gamal; Mahmoud, Mohamed H; Khan, Rizwan Hasan

    2015-01-01

    Protein aggregation is associated with many serious diseases including Parkinson's and Alzheimer's. Protein aggregation is a primary problem related with the health of industrial workers who work with the surfactants, metal ions, and cosolvents. We have synthesized rosin-based surfactants, i.e., quaternary amines of rosin diethylaminoethyl esters (QRMAE), which is an ester of rosin acid with polyethylene glycol monomethyl ether. Here, we report the thermal aggregation of lysozyme induced by QRMAE at 65 °C and pH 7.4 for a given time period in which amorphous aggregates are formed and confirm that copper-nanoparticles have the ability to inhibit QRMAE-induced aggregation compared with zinc and silver-nanoparticles. Aggregation experiments was evaluated using several spectroscopic methods and dye binding assay, such as turbidity, Rayleigh light scattering, 1-anilino-8-naphthalene sulfonate (ANS), Thioflavin T (Th T), congo red (CR) and circular dichroism (CD), that was further supported by scanning electron microscopy (SEM) and SEM with EDX. The therapeutic use of nanoparticles and the fact that rosin possesses excellent film-forming properties, and that its derivatives have pharmaceuticals application such as micro encapsulation, coating and film forming, it's matrix materials are used for sustained and controlled release tablets, renders importance and application to the present study.

  13. Unusual sintering behavior of porous chromatographic zirconia produced by polymerization-induced colloid aggregation

    SciTech Connect

    Lorenzano-Porras, C.F.; Reeder, D.H.; Annen, M.J.; Carr, P.W.; McCormick, A.V.

    1995-08-01

    The effects of sintering temperature and duration on the pore structure of chromatographic zirconia particles produced by the controlled polymerization-induced aggregation of 1,000 {angstrom} colloids are studied with an eye toward optimally strengthening the aggregates and eliminating small pores while preserving large pores. Nitrogen adsorption and mercury porosimetry are used to estimate the surface area, pore volume, and pore size distribution. Pulsed field gradient NMR measurements of solvent diffusion are used to estimate the diffusion tortuosity of the pore space. Initially of course, the pore volume and surface area decrease significantly, the decrease being more pronounced at higher temperatures. With prolonged sintering, the pore size, pore volume, and surface area change much more slowly, but the diffusion tortuosity seems to be minimized at a sintering temperature and time at which pores are allowed to redistribute so as to optimize large pores. The aggregates synthesized by this aggregation method apparently produce metastable large pores which are not easily collapsed.

  14. Raman studies of gluten proteins aggregation induced by dietary fibres.

    PubMed

    Nawrocka, Agnieszka; Szymańska-Chargot, Monika; Miś, Antoni; Kowalski, Radosław; Gruszecki, Wiesław I

    2016-03-01

    Interactions between gluten proteins and dietary fibre preparations are crucial in the baking industry. The addition of dietary fibre to bread causes significant reduction in its quality which is influenced by changes in the structure of gluten proteins. Fourier transform Raman spectroscopy was applied to determine changes in the structure of gluten proteins modified by seven dietary fibres. The commercially available gluten proteins without starch were mixed with the fibres in three concentrations: 3%, 6% and 9%. The obtained results showed that all fibres, regardless of their origin, caused the same kind of changes i.e. decrease in the α-helix content with a simultaneous increase in the content of antiparallel-β-sheet. The results indicated that presence of cellulose was the probable cause of these changes, and lead to aggregation or abnormal folding of the gluten proteins. Other changes observed in the gluten structure concerning β-structures, conformation of disulphide bridges, and aromatic amino acid environment, depended on the fibres chemical composition.

  15. The Aminopeptidase CD13 Induces Homotypic Aggregation in Neutrophils and Impairs Collagen Invasion

    PubMed Central

    Fiddler, Christine A.; Parfrey, Helen; Cowburn, Andrew S.; Luo, Ding; Nash, Gerard B.; Murphy, Gillian; Chilvers, Edwin R.

    2016-01-01

    Aminopeptidase N (CD13) is a widely expressed cell surface metallopeptidase involved in the migration of cancer and endothelial cells. Apart from our demonstration that CD13 modulates the efficacy of tumor necrosis factor-α-induced apoptosis in neutrophils, no other function for CD13 has been ascribed in this cell. We hypothesized that CD13 may be involved in neutrophil migration and/or homotypic aggregation. Using purified human blood neutrophils we confirmed the expression of CD13 on neutrophils and its up-regulation by pro-inflammatory agonists. However, using the anti-CD13 monoclonal antibody WM-15 and the aminopeptidase enzymatic inhibitor bestatin we were unable to demonstrate any direct involvement of CD13 in neutrophil polarisation or chemotaxis. In contrast, IL-8-mediated neutrophil migration in type I collagen gels was significantly impaired by the anti-CD13 monoclonal antibodies WM-15 and MY7. Notably, these antibodies also induced significant homotypic aggregation of neutrophils, which was dependent on CD13 cross-linking and was attenuated by phosphoinositide 3-kinase and extracellular signal-related kinase 1/2 inhibition. Live imaging demonstrated that in WM-15-treated neutrophils, where homotypic aggregation was evident, the number of cells entering IL-8 impregnated collagen I gels was significantly reduced. These data reveal a novel role for CD13 in inducing homotypic aggregation in neutrophils, which results in a transmigration deficiency; this mechanism may be relevant to neutrophil micro-aggregation in vivo. PMID:27467268

  16. Effect of polymer aggregation on the open circuit voltage in organic photovoltaic cells: aggregation-induced conjugated polymer gel and its application for preventing open circuit voltage drop.

    PubMed

    Kim, Bong-Gi; Jeong, Eun Jeong; Park, Hui Joon; Bilby, David; Guo, L Jay; Kim, Jinsang

    2011-03-01

    To investigate the structure-dependent aggregation behavior of conjugated polymers and the effect of aggregation on the device performance of conjugated polymer photovoltaic cells, new conjugated polymers (PVTT and CN-PVTT) having the same regioregularity but different intermolecular packing were prepared and characterized by means of UV-vis spectroscopy and atomic force microscopy (AFM). Photovoltaic devices were prepared with these polymers under different polymer-aggregate conditions. Polymer aggregation induced by thermal annealing increases the short circuit current but provides no advantage in the overall power conversion efficiency because of a decrease in the open circuit voltage. The device fabricated from a pre-aggregated polymer suspension, acquired from ultrasonic agitation of a conjugated polymer gel, showed enhanced performance because of better phase separation and reduced recombination between polymer/PCBM.

  17. Patterns of gravity induced aggregate migration during casting of fluid concretes

    SciTech Connect

    Spangenberg, J.; Roussel, N.; Hattel, J.H.; Sarmiento, E.V.; Zirgulis, G.; Geiker, M.R.

    2012-12-15

    In this paper, aggregate migration patterns during fluid concrete castings are studied through experiments, dimensionless approach and numerical modeling. The experimental results obtained on two beams show that gravity induced migration is primarily affecting the coarsest aggregates resulting in a decrease of coarse aggregates volume fraction with the horizontal distance from the pouring point and in a puzzling vertical multi-layer structure. The origin of this multi layer structure is discussed and analyzed with the help of numerical simulations of free surface flow. Our results suggest that it finds its origin in the non Newtonian nature of fresh concrete and that increasing casting rate shall decrease the magnitude of gravity induced particle migration.

  18. [Cyclooxygenase inhibitors in some dietary vegetables inhibit platelet aggregation function induced by arachidonic acid].

    PubMed

    Wang, Xin-Hua; Shao, Dong-Hua; Liang, Guo-Wei; Zhang, Ru; Xin, Qin; Zhang, Tao; Cao, Qing-Yun

    2011-10-01

    The study was purposed to investigate whether the cyclooxygenase inhibitors from some dietary vegetables can inhibit platelet aggregation function by the arachidonic acid (AA). The vegetable juice was mixed with platelet rich plasma (PRP), and asprin was used as positive control. The maximum ratio of platelet aggregation induced by AA was measured on the aggregometer; heme and cyclooxygenase-1 (COX(1)) or cyclooxygenase-2 (COX(2)) were added to test tubes containing COX reaction buffer, the mixture was vortex-mixed and exposed to aspirin or vegetable juice, followed by addition of AA and then hydrochloric acid (1 mol/L) was added to stop the COX reaction, followed by chemical reduction with stannous chloride solution. The concentration of COX inhibitors was detected by the enzyme immunoassay kit; vegetable juice (aspirin as positive control) was mixed with whole blood, which was followed by the addition of AA, and then the reaction was stopped by adding indomethacin, centrifuged, then the supernatant was collected, and the plasma thromboxane B(2) (TXB(2)) was measured by radioimmunoassay. The results showed that spinach juice, garlic bolt juice, blanched garlic leave juice and Chinese leek juice could inhibit by 80% human platelet aggregation induced by AA. 4 kinds of vegetables were all found a certain amount of cyclooxygenase inhibitors, which COX(1) and COX(2) inhibitor concentrations of spinach were higher than that of aspirin; 4 vegetable juice could significantly reduce the human plasma concentrations of TXB(2) induced by AA (p < 0.05). It is concluded that 4 kinds of raw vegetables containing cyclooxygenase inhibitors inhibit the production of TXA(2) and thus hinder platelet aggregation. Raw spinach, garlic bolt, blanched garlic and chinese leek inhibit significantly AA-induced human platelet aggregation in vitro. 4 kinds of vegetables may have a good potential perspective of anti-platelet aggregation therapy or prevention of thrombosis.

  19. Fractal aggregates induced by liposome-liposome interaction in the presence of Ca2+.

    PubMed

    Sabín, J; Prieto, G; Ruso, J M; Sarmiento, F

    2007-10-01

    We present a study of the fractal dimension of clusters of large unilamellar vesicles (LUVs) formed by egg yolk phosphatidylcholine (EYPC), dimyristoylphosphocholine (DMPC) and dipalmitoylphosphocholine (DPPC) induced by Ca2+ . Fractal dimensions were calculated by application of two methods, measuring the angular dependency of the light scattered by the clusters and following the evolution of the cluster size. In all cases, the fractal dimensions fell in the range from 2.1 to 1.8, corresponding to two regimes: diffusion-limited cluster aggregation (DLCA) and reaction-limited cluster aggregation (RLCA). Whereas DMPC clusters showed a typical transition from the RLCA to the DLCA aggregation, EYPC exhibited an unusual behaviour, since the aggregation was limited for a higher concentration than the critical aggregation concentration. The behaviour of DPPC was intermediate, with a transition from the RLCA to the DLCA regimes with cluster sizes depending on Ca2+ concentration. Studies on the reversibility of the aggregates show that EYPC and DPPC clusters can be re-dispersed by dilution with water. DMPC does not present reversibility. Reversibility is evidence of the existence of secondary minima in the DLVO potential between two liposomes. To predict these secondary minima, a correction of the DLVO model was necessary taking into account a repulsive force of hydration.

  20. Field-induced self-assembled ferrofluid aggregation in pulsatile flow

    NASA Astrophysics Data System (ADS)

    Ganguly, Ranjan; Zellmer, Brian; Puri, Ishwar K.

    2005-09-01

    Ferrofluid aggregation and dispersion occurs at several length scales in pulsatile flow applications, e.g., in ferrofluidic pumps, valves, and biomedical applications such as magnetic drug targeting. Because of a yet limited understanding, ferrohydrodynamic investigations involving laboratory-scale studies in idealized geometries are of considerable use. We have injected a ferrofluid into a pulsatile host flow and produced field-induced dissolution (aggregation) using external magnets. A comparison is made with ferrofluid aggregation in a steady flow. Subsequently, the accumulation and dispersion of the ferrofluid aggregates in pulsatile flow are characterized by analyzing their size, mean position, and the flow frequency spectrum. The maximum aggregate size Amax, time to form it tmax, and the aggregate half-life thalf are found to scale according to the relations Amax∝Re-0.71, tmax∝Re-2.1, and thalf∝Re-2.2. While the experiments are conducted at a macroscopic length scale for useful experimental resolution, the results also enable an understanding of the micro- and mesoscale field-assisted self-assembly of magnetic nanoparticles.

  1. [THE INFLUENCE OF HYDROGEN SULFIDE ON COLLAGEN-INDUCED AGGREGATION OF HUMAN PLATELETS].

    PubMed

    Petrova, I V; Trubacheva, O A; Mangataeva, O S; Suslova, T E; Kovalev, I V; Gusakova, S V

    2015-10-01

    Study the impact of hydrogen sulfide on collagen-induced platelet aggregation from healthy donors and patients with type 2 diabetes. In healthy individuals, in contrast to patients with type 2 diabetes, NaHS significantly inhibited platelet aggregation. Activators of cAMP signaling (forskolin and phosphodiesterase inhibitor) significantly reduced platelet aggregation in both groups of examinees. NO-synthase inhibitors increased platelet aggregation in healthy volunteers, but not in patients with type 2 diabetes. The presence of H2S donor did not alter the extent of platelet aggregation at high concentrations of cAMP or decreased production of nitric oxide. It is assumed that the antiplatelet effect of H2S is not associated with the effect on the signal system, mediated cAMP or nitric oxide. Change H2S-dependent regulation of platelet aggregation in patients with type 2 diabetes is caused by disorders have been reported with this disease: the increase of intracellular calcium ion concentration, oxidative damage to proteins, hyperhomocysteinemia, glycosylation of key proteins involved in this process.

  2. A desolvation model for trifluoroethanol-induced aggregation of enhanced green fluorescent protein.

    PubMed

    Anderson, Valerie L; Webb, Watt W

    2012-02-22

    Studies of amyloid disease-associated proteins in aqueous solutions containing 2,2,2-trifluoroethanol (TFE) have shown that the formation of structural intermediates is often correlated with enhanced protein aggregation. Here, enhanced green fluorescent protein (EGFP) is used as a model protein system to investigate the causal relationship between TFE-induced structural transitions and aggregation. Using circular dichroism spectroscopy, light scattering measurements, and transmission electron microscopy imaging, we demonstrate that population of a partially α-helical, monomeric intermediate is roughly correlated with the growth of β-sheet-rich, flexible fibrils for acid-denatured EGFP. By fitting our circular dichroism data to a model in which TFE-water mixtures are assumed to be ideal solutions, we show that increasing entropic costs of protein solvation in TFE-water mixtures may both cause the population of the intermediate state and increase aggregate production. Tertiary structure and electrostatic repulsion also impede aggregation. We conclude that initiation of EGFP aggregation in TFE likely involves overcoming of multiple protective factors, rather than stabilization of aggregation-prone structural elements.

  3. EFFECTS OF ALUMINUM-INDUCED AGGREGATION ON THE FLUORESCENCE OF HUMIC SUBSTANCES. (R822251)

    EPA Science Inventory

    Aluminum-induced aggregates of terrestrial and aquatic humic acid standards from the International Humic Substances Society are shown to be fluorescent by means of a multiwavelength fluorescence anisotropy experiment in which the data was treated with a model for nonspherical ...

  4. Surfactant induced aggregation behavior of Merocyanine-540 adsorbed on polymer coated positively charged gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Das, K.; Uppal, A.; Saini, R. K.

    2016-01-01

    Surfactant induced aggregation behavior of Merocyanine 540 adsorbed on polymer (PDD) coated gold nanoparticles (AuNP) is reported. The absorption band of the dye shifts to higher energy in the presence of free polymer and polymer coated AuNP implying aggregation. Addition of a negatively charged surfactant (SDS) induces multiple bands in the extinction spectrum of the dye adsorbed on nanoparticle surface. The highest (460 nm) and lowest (564 nm) energy bands of the dye become prominent at 10 and >50 μM SDS concentrations respectively (dye: 10 μM; AuNP: 100-200 pM). Based on earlier results the high energy band is likely to originate from dye aggregates and the low energy band is likely to originate from dye monomers. This is attributed to the interplay between polymer-surfactant and polymer-dye interactions at the AuNP surface. The extinction spectra of dye adsorbed at AuNP surface remain unaffected in the presence of a positively charged (CTAB) or a neutral surfactant (Tx-100), at low surfactant concentrations. However at higher surfactant concentrations (>60 μM) dye aggregation takes place which is attributed to dye-surfactant interactions. The fluorescence intensity of the dye quenched significantly but its lifetime increased in the presence of polymer coated AuNP. This is attributed to aggregation and reduction in the photoisomerization rate of the dye adsorbed on AuNP surface.

  5. Manipulation of unfolding-induced protein aggregation by peptides selected for aggregate-binding ability through phage display library screening.

    PubMed

    Kundu, Bishwajit; Shukla, Anshuman; Guptasarma, Purnananda

    2002-03-01

    A phage-displayed library of peptides (12-mer) was screened for the ability to bind to thermally aggregated bovine carbonic anhydrase (BCA), with a view toward examining whether peptides possessing this ability might bind to partially structured intermediates on the protein's unfolding pathway and, therefore, constitute useful tools for manipulation of the kinetic partitioning of molecules between the unfolded and aggregated states. Two peptides [N-HPSTMGLRTMHP-C and N-TPSAWKTALVKA-C] were identified and tested. While neither showed thermal aggregation autonomously, both peptides individually elicited remarkable increases in the levels of thermal aggregation of BCA. A possible explanation is that both peptides bind to surfaces on molten BCA that are not directly involved in aggregation. Such binding could slow down interconversions between folded and unfolded states and stabilize aggregation-prone intermediate(s) to make them more prone to aggregation, while failing to achieve any steric prevention of aggregation. The approach has the potential of yielding useful aggregation-aiding/inhibiting agents, and may provide clues to whether amorphous aggregates are "immobilized" forms of folding intermediates. PMID:11866450

  6. Kinetics of Hydrothermally Induced Reorganization of J-Aggregate

    NASA Astrophysics Data System (ADS)

    Moshino, Hiroko; Hasegawa, Soukaku; Mouri, Syuji; Miura, Yasuhiro F.; Sugi, Michio

    2008-02-01

    We have investigated the kinetics of the J-band reorganization process in merocyanine (MS)-Cd arachidate mixed Langmuir-Blodgett (LB) films induced by heat treatments at 100% humidity (HTTs). The as-deposited J-band is reorganized by HTT to form a new phase associated with a narrowing and a slight redshift of the peak. The change in the UV-visible absorption spectrum A is found to involve two different stages: an increase in the absorbance A at wavelengths shorter than ˜540 nm at the expense of the as-deposited J-component and a decrease in A for the shorter wavelengths compensated by the growth of the new phase of the J-band. By introducing a three-component model, each spectrum is deconvoluted into three bands, Bands I, II, and III, which are presumably assigned as the blueshifted dimer, monomer and redshifted J-bands, respectively. The Band II fraction remains almost unchanged throughout the HTT process, indicating that the first and second stages of the spectral change can be interpreted as the dissociation of the as-deposited J-band into the dimers and as the reorganization of the J-band out of the dimers, respectively. The second-stage kinetics is found to obey a simple first-order law. The HTT-induced superstructures have been quantitatively examined referring to the average size of the domains observed in the microscopic images. It has been suggested that the domain growth is a phenomenon occurring subsequent to the J-band reorganization process rather than being an aspect of the process, since a superlinear increase in with heating time is observed with a long delay after the saturation of J-band growth.

  7. Theoretical study on electromagnetically induced transparency in molecular aggregate models using quantum Liouville equation method

    SciTech Connect

    Minami, Takuya; Nakano, Masayoshi

    2015-01-22

    Electromagnetically induced transparency (EIT), which is known as an efficient control method of optical absorption property, is investigated using the polarizability spectra and population dynamics obtained by solving the quantum Liouville equation. In order to clarify the intermolecular interaction effect on EIT, we examine several molecular aggregate models composed of three-state monomers with the dipole-dipole coupling. On the basis of the present results, we discuss the applicability of EIT in molecular aggregate systems to a new type of optical switch.

  8. Silicification-induced cell aggregation for the sustainable production of H2 under aerobic conditions.

    PubMed

    Xiong, Wei; Zhao, Xiaohong; Zhu, Genxing; Shao, Changyu; Li, Yaling; Ma, Weimin; Xu, Xurong; Tang, Ruikang

    2015-10-01

    Photobiological hydrogen production is of great importance because of its promise for generating clean renewable energy. In nature, green algae cannot produce hydrogen as a result of the extreme sensitivity of hydrogenase to oxygen. However, we find that silicification-induced green algae aggregates can achieve sustainable photobiological hydrogen production even under natural aerobic conditions. The core-shell structure of the green algae aggregates creates a balance between photosynthetic electron generation and hydrogenase activity, thus allowing the production of hydrogen. This finding provides a viable pathway for the solar-driven splitting of water into hydrogen and oxygen to develop green energy alternatives by using rationally designed cell-material complexes.

  9. Tunable emission properties by ferromagnetic coupling Mn(II) aggregates in Mn-doped CdS microbelts/nanowires

    NASA Astrophysics Data System (ADS)

    Arshad Kamran, Muhammad; Liu, Ruibin; Shi, Li-Jie; Li, Zi-An; Marzi, Thomas; Schöppner, Christian; Farle, Michael; Zou, Bingsuo

    2014-09-01

    Tunable optical emission properties from ferromagnetic semiconductors have not been well identified yet. In this work, high-quality Mn(II)-doped CdS nanowires and micrometer belts were prepared using a controlled chemical vapor deposition technique. The Mn doping could be controlled with time, precursor concentration and temperature. These wires or belts can produce both tunable redshifted emissions and ferromagnetic responses simultaneously upon doping. The strong emission bands at 572, 651, 693, 712, 745, 768, 787 and 803 nm, due to the Mn(II) 4T1(4G) → 6A1(6s) d-d transition, can be detected and accounted for by the aggregation of Mn ions at Cd sites in the CdS lattice at high temperature. These aggregates with ferromagnetism and shifted luminescence are related to the excitonic magnetic polaron (EMP) and localized EMP formations; this is verified by ab initio calculations. The correlation between aggregation-dependent optical emissions and ferromagnetic responses not only presents a new size effect for diluted magnetic semiconductors (DMSs), but also supplies a possible way to study or modulate the ferromagnetic properties of a DMS and to fabricate spin-related photonic devices in the future.

  10. Platelet Aggregation and Mental Stress Induced Myocardial Ischemia: Results from the REMIT Study

    PubMed Central

    Jiang, Wei; Boyle, Stephen H.; Ortel, Thomas L.; Samad, Zainab; Velazquez, Eric J.; Harrison, Robert W.; Wilson, Jennifer; Kuhn, Cynthia; Williams, Redford B.; O’Connor, Christopher M.; Becker, Richard C.

    2015-01-01

    BACKGROUND Mental stress-induced myocardial ischemia (MSIMI) is common in patients with ischemic heart disease (IHD) and associated with a poorer cardiovascular prognosis. Platelet hyperactivity is an important factor in acute coronary syndrome. This study examined associations between MSIMI and resting and mental stress-induced platelet activity. METHODS Eligible patients with clinically stable IHD underwent a battery of 3 mental stress tests during the recruitment phase of REMIT (Responses of Myocardial Ischemia to Escitalopram Treatment) study. MSIMI was assessed by echocardiography and electrocardiography. Ex vivo platelet aggregation in response to ADP, epinephrine, collagen, serotonin, and combinations of serotonin plus ADP, epinephrine, and collagen were evaluated as was platelet serotonin transporter expression. RESULTS Of the 270 participants who completed mental stress testing, and had both resting and post-stress platelet aggregation evaluation, 43.33% (N=117) met criteria for MSIMI and 18.15% (N=49) had normal left ventricular response to stress (NLVR). The MSIMI group, relative to the NLVR groups, demonstrated heightened mental stress-induced aggregation responses, as measured by area under the curve, to collagen 10 μM (6.95[5.54] vs. −14.23[8.75].; p=0.045), epinephrine 10 μM (12.84[4.84] vs. −6.40[7.61].; p=0.037) and to serotonin 10 μM plus ADP 1 μM (6.64[5.29] vs. −27.34[8.34]; p < .001). The resting platelet aggregation and serotonin transporter expression, however, were not different between the two groups. CONCLUSIONS These findings suggest that the dynamic change of platelet aggregation caused by mental stress may underlie MSIMI. While the importance of these findings requires additional investigation, they raise concern given the recognized relationship between mental stress-induced platelet hyperactivity and cardiovascular events in patients with IHD. PMID:25819856

  11. Micelle depletion-induced vs. micelle-mediated aggregation in nanoparticles

    SciTech Connect

    Ray, D. Aswal, V. K.

    2015-06-24

    The phase behavior anionic silica nanoparticle (Ludox LS30) with non-ionic surfactants decaethylene glycol monododecylether (C12E10) and cationic dodecyltrimethyl ammonium bromide (DTAB) in aqueous electrolyte solution has been studied by small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations of nanoparticle (1 wt%), surfactants (1 wt%) and electrolyte (0.1 M NaCl). Each of these nanoparticle–surfactant systems has been examined for different contrast conditions where individual components (nanoparticle or surfactant) are made visible. It is observed that the nanoparticle-micelle system in both the cases lead to the aggregation of nanoparticles. The aggregation is found to be micelle depletion-induced for C12E10 whereas micelle-mediated aggregation for DTAB. Interestingly, it is also found that phase behavior of mixed surfactant (C12E10 + DTAB) system is similar to that of C12E10 (unlike DTAB) micelles with nanoparticles.

  12. Micelle depletion-induced vs. micelle-mediated aggregation in nanoparticles

    NASA Astrophysics Data System (ADS)

    Ray, D.; Aswal, V. K.

    2015-06-01

    The phase behavior anionic silica nanoparticle (Ludox LS30) with non-ionic surfactants decaethylene glycol monododecylether (C12E10) and cationic dodecyltrimethyl ammonium bromide (DTAB) in aqueous electrolyte solution has been studied by small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations of nanoparticle (1 wt%), surfactants (1 wt%) and electrolyte (0.1 M NaCl). Each of these nanoparticle-surfactant systems has been examined for different contrast conditions where individual components (nanoparticle or surfactant) are made visible. It is observed that the nanoparticle-micelle system in both the cases lead to the aggregation of nanoparticles. The aggregation is found to be micelle depletion-induced for C12E10 whereas micelle-mediated aggregation for DTAB. Interestingly, it is also found that phase behavior of mixed surfactant (C12E10 + DTAB) system is similar to that of C12E10 (unlike DTAB) micelles with nanoparticles.

  13. Aggregate-Depleted Brain Fails to Induce Aβ Deposition in a Mouse Model of Alzheimer's Disease

    PubMed Central

    Duran-Aniotz, Claudia; Morales, Rodrigo; Moreno-Gonzalez, Ines; Hu, Ping Ping; Fedynyshyn, Joseph; Soto, Claudio

    2014-01-01

    Recent studies in animal models of Alzheimer's disease (AD) show that amyloid-beta (Aβ) misfolding can be transmissible; however, the mechanisms by which this process occurs have not been fully explored. The goal of this study was to analyze whether depletion of aggregates from an AD brain suppresses its in vivo “seeding” capability. Removal of aggregates was performed by using the Aggregate Specific Reagent 1 (ASR1) compound which has been previously described to specifically bind misfolded species. Our results show that pre-treatment with ASR1-coupled magnetic beads reduces the in vivo misfolding inducing capability of an AD brain extract. These findings shed light respect to the active principle responsible for the prion-like spreading of Alzheimer's amyloid pathology and open the possibility of using seeds-capturing reagents as a promising target for AD treatment. PMID:24533166

  14. Rapid Formation of Cell Aggregates and Spheroids Induced by a "Smart" Boronic Acid Copolymer.

    PubMed

    Amaral, Adérito J R; Pasparakis, George

    2016-09-01

    Cell surface engineering has emerged as a powerful approach to forming cell aggregates/spheroids and cell-biomaterial ensembles with significant uses in tissue engineering and cell therapeutics. Herein, we demonstrate that cell membrane remodeling with a thermoresponsive boronic acid copolymer induces the rapid formation of spheroids using either cancer or cardiac cell lines under conventional cell culture conditions at minute concentrations. It is shown that the formation of well-defined spheroids is accelerated by at least 24 h compared to non-polymer-treated controls, and, more importantly, the polymer allows for fine control of the aggregation kinetics owing to its stimulus response to temperature and glucose content. On the basis of its simplicity and effectiveness to promote cellular aggregation, this platform holds promise in three-dimensional tissue/tumor modeling and tissue engineering applications. PMID:27571512

  15. Exercise-induced cramp, myoglobinuria, and tubular aggregates in phosphoglycerate mutase deficiency.

    PubMed

    Oh, Shin J; Park, Kyung-Seok; Ryan, Hewitt F; Danon, Moris J; Lu, Jiesheng; Naini, Ali B; DiMauro, Salvatore

    2006-11-01

    We report two patients in whom phosphoglycerate mutase (PGAM) deficiency was associated with the triad of exercise-induced cramps, recurrent myoglobinuria, and tubular aggregates in the muscle biopsy. Serum creatine kinase (CK) levels were elevated between attacks of myoglobinuria. Forearm ischemic exercise tests produced subnormal increases of venous lactate. Muscle biopsies showed subsarcolemmal tubular aggregates in type 2 fibers. Muscle PGAM activities were markedly decreased (3% of the normal mean) and molecular genetic studies showed that both patients were homozygous for a described missense mutation (W78X). A review of 15 cases with tubular aggregates in the muscle biopsies from our laboratory and 15 cases with PGAM deficiency described in the literature showed that this clinicopathological triad is highly suggestive of PGAM deficiency. PMID:16881065

  16. Pulsed Laser-Driven Molecular Self-assembly of Cephalexin: Aggregation-Induced Fluorescence and Its Utility as a Mercury Ion Sensor.

    PubMed

    Singh, Pradeep Kumar; Prabhune, Asmita; Ogale, Satishchandra

    2015-11-01

    A fluorescent self-assembly of cephalexin is obtained by pulsed laser irradiation process. An intense fluorescence emission is found in the self-assembled form due to occurrence of a typical aggregation-induced emission in cephalexin molecules. It is observed that fluorescence quenching of the self-assembled fluorescent nanostructures occurs in the presence of extremely low Hg(++) ions concentrations (10(-7) m) as compared to other heavy metal ions e.g. Ferrous (Fe(++) ), Manganese (Mn(++) ), Magnesium (Mg(++) ), Cobalt (Co(++) ), Nickel (Ni(++) ) and Zinc (Zn(++) ) at the same concentrations.

  17. Pulsed Laser-Driven Molecular Self-assembly of Cephalexin: Aggregation-Induced Fluorescence and Its Utility as a Mercury Ion Sensor.

    PubMed

    Singh, Pradeep Kumar; Prabhune, Asmita; Ogale, Satishchandra

    2015-11-01

    A fluorescent self-assembly of cephalexin is obtained by pulsed laser irradiation process. An intense fluorescence emission is found in the self-assembled form due to occurrence of a typical aggregation-induced emission in cephalexin molecules. It is observed that fluorescence quenching of the self-assembled fluorescent nanostructures occurs in the presence of extremely low Hg(++) ions concentrations (10(-7) m) as compared to other heavy metal ions e.g. Ferrous (Fe(++) ), Manganese (Mn(++) ), Magnesium (Mg(++) ), Cobalt (Co(++) ), Nickel (Ni(++) ) and Zinc (Zn(++) ) at the same concentrations. PMID:26333412

  18. Solution structure of copper ion-induced molecular aggregates of tyrosine melanin.

    PubMed

    Gallas, J M; Littrell, K C; Seifert, S; Zajac, G W; Thiyagarajan, P

    1999-08-01

    Melanin, the ubiquitous biological pigment, provides photoprotection by efficient filtration of light and also by its antioxidant behavior. In solutions of synthetic melanin, both optical and antioxidant behavior are affected by the aggregation states of melanin. We have utilized small-angle x-ray and neutron scattering to determine the molecular dimensions of synthetic tyrosine melanin in its unaggregated state in D(2)O and H(2)O to study the structure of melanin aggregates formed in the presence of copper ions at various copper-to-melanin molar ratios. In the absence of copper ions, or at low copper ion concentrations, tyrosine melanin is present in solution as a sheet-like particle with a mean thickness of 12.5 A and a lateral extent of approximately 54 A. At a copper-to-melanin molar ratio of 0.6, melanin aggregates to form long, rod-like structures with a radius of 32 A. At a higher copper ion concentration, with a copper-to-melanin ratio of 1.0, these rod-like structures further aggregate, forming sheet-like structures with a mean thickness of 51 A. A change in the charge of the ionizable groups induced by the addition of copper ions is proposed to account for part of the aggregation. The data also support a model for the copper-induced aggregation of melanin driven by pi stacking assisted by peripheral Cu(2+) complexation. The relationship between our results and a previous hypothesis for reduced cellular damage from bound-to-melanin redox metal ions is also discussed.

  19. Sorbitol crystallization-induced aggregation in frozen mAb formulations.

    PubMed

    Piedmonte, Deirdre Murphy; Hair, Alison; Baker, Priti; Brych, Lejla; Nagapudi, Karthik; Lin, Hong; Cao, Wenjin; Hershenson, Susan; Ratnaswamy, Gayathri

    2015-02-01

    Sorbitol crystallization-induced aggregation of mAbs in the frozen state was evaluated. The effect of protein aggregation resulting from sorbitol crystallization was measured as a function of formulation variables such as protein concentration and pH. Long-term studies were performed on both IgG1 and IgG2 mAbs over the protein concentration range of 0.1-120 mg/mL. Protein aggregation was measured by size-exclusion HPLC (SE-HPLC) and further characterized by capillary-electrophoresis SDS. Sorbitol crystallization was monitored and characterized by subambient differential scanning calorimetry and X-ray diffraction. Aggregation due to sorbitol crystallization is inversely proportional to both protein concentration and formulation pH. At high protein concentrations, sorbitol crystallization was suppressed, and minimal aggregation by SE-HPLC resulted, presumably because of self-stabilization of the mAbs. The glass transition temperature (Tg ') and fragility index measurements were made to assess the influence of molecular mobility on the crystallization of sorbitol. Tg ' increased with increasing protein concentration for both mAbs. The fragility index decreased with increasing protein concentration, suggesting that it is increasingly difficult for sorbitol to crystallize at high protein concentrations.

  20. The role of platelet aggregation and release in fragment D-induced pulmonary dysfunction.

    PubMed Central

    Manwaring, D; Curreri, P W

    1980-01-01

    The plasma concentration of fibrinogen degradation product D (fragmentt D) is markedly incrased following major burn or traumatic injury. Purified human fragment D infused into awake, restrained, nontraumatized rabbits (100 micrograms/ml blood) causes progressive thrombocytopenia, pulmonary dysfunction, vascular leak, and interstitial neutrophilia. Rabbits treated with the antihistamine diphenhydramine (Benadryl) prior to fragment D infusion fail to develop these symptoms. This study examined platelet aggregation, platelet ATP secretion, and platelet malondialdehyde release in rabbits which received fragmen D alone or fragment D following diphenhydramine pretreatment. Platelet-rich plasma was prepared from citrated blood drawn from femoral arterial catheters at 0, 2 1/2, and 4 hours postinfusion. Platelet aggregation was stimulated with either collagen or ADP. Malondialdehyde, a byproduct of thromboxane synthesis, was measured by colorimetry. Platelet aggregation and function (stimulated with collagen) were enhanced in fragment D platelet-rich plasma, since all response times decreased. Total ATP and MDA release incresed. Diphenhydramine pretreatment inhibited fragment D-enhanced aggregation, ATP release and prostaglandin (thromboxane) synthesis. No animal pretreated with diphenhydramine exhibited thrombocytopenia or respiratory dysfunction. Stimulation of platelet aggregation and release may represent one mechanism by which fragment D induces pulmonary dysfunction. Diphenhydramine inhibits these responses and may prove therapeutic in posttraumtic pulmonary complications. PMID:7406554

  1. Physical basis for the ofloxacin-induced acceleration of lysozyme aggregation and polymorphism in amyloid fibrils.

    PubMed

    Muthu, Shivani A; Mothi, Nivin; Shiriskar, Sonali M; Pissurlenkar, Raghuvir R S; Kumar, Anil; Ahmad, Basir

    2016-02-15

    Aggregation of globular proteins is an intractable problem which generally originates from partially folded structures. The partially folded structures first collapse non-specifically and then reorganize into amyloid-like fibrils via one or more oligomeric intermediates. The fibrils and their on/off pathway intermediates may be toxic to cells and form toxic deposits in different human organs. To understand the basis of origins of the aggregation diseases, it is vital to study in details the conformational properties of the amyloidogenic partially folded structures of the protein. In this work, we examined the effects of ofloxacin, a synthetic fluoroquinolone compound on the fibrillar aggregation of hen egg-white lysozyme. Using two aggregation conditions (4M GuHCl at pH 7.0 and 37 °C; and pH 1.7 at 65 °C) and a number of biophysical techniques, we illustrate that ofloxacin accelerates fibril formation of lysozyme by binding to partially folded structures and modulating their secondary, tertiary structures and surface hydrophobicity. We also demonstrate that Ofloxacin-induced fibrils show polymorphism of morphology, tinctorial properties and hydrophobic surface exposure. This study will assist in understanding the determinant of fibril formation and it also indicates that caution should be exercised in the use of ofloxacin in patients susceptible to various aggregation diseases.

  2. Effect of diabetic duration on hemorheological properties and platelet aggregation in streptozotocin-induced diabetic rats

    PubMed Central

    Yeom, Eunseop; Byeon, Hyeokjun; Lee, Sang Joon

    2016-01-01

    Diabetes mellitus with abnormal glucose concentration is associated with changes in hemorheological properties, endothelial function, and platelets hyperactivity. Disturbances may significantly be responsible for diabetes-related vascular complications. In this study, hemorheological and hemodynamic properties were measured according to diabetic duration after streptozotocin treatment in rats. For ex vivo measurements, an extracorporeal model was adopted. Flow rate and blood viscosity were measured using a microfluidic device. Erythrocyte aggregation and morphological parameters of erythrocytes were measured by modified erythrocyte sedimentation rate and the phase-contrast holography under in vitro conditions. The platelet aggregation and mean pressure in the femoral artery were estimated under ex vivo conditions. Hemorheological properties including blood viscosity, erythrocyte aggregation and shape parameters for the control group are significantly different with those for diabetic groups. The changes with respect to diabetic duration were relatively unnoticeable. However, the platelet aggregation is strongly dependent on the diabetic duration. Based on these results, hyperglycemia exposure may induce hemorheological variations in early stages of diabetes mellitus. High platelet aggregation may become more pronounced according to the diabetic duration caused by variations in hemorheological properties resulting in endothelial dysfunction. This study would be helpful in understanding the effects of diabetic duration on biophysical properties. PMID:26898237

  3. Effect of phenolic compounds against Aβ aggregation and Aβ-induced toxicity in transgenic C. elegans.

    PubMed

    Jagota, Seema; Rajadas, Jayakumar

    2012-01-01

    Substantial evidence suggests that the aggregation of amyloid-β (Aβ) peptide into fibrillar structures that is rich in β-sheets is implicated as the cause of Alzheimer's disease. Therefore, an attractive therapeutic strategy is to prevent or alter Aβ aggregation. Phenolic compounds are natural substances that are composed of one or more aromatic phenolic rings and present in wine, tea, fruits, vegetables and a wide variety of plants. In this work, we investigated the effects of ferulic acid, morin, quercetin and gossypol against Aβ aggregation. From the ThT and turbidity assays, it is observed that in addition to the fibril aggregate, another type of aggregate is formed in the presence of morin, quercetin, and gossypol. On the other hand, ferulic acid did not prevent fibril formation, but it did appear to reduce the average length of fibrils compared to Aβ alone. To study the protective effects of phenolic compounds on Aβ-induced toxicity, we utilized the nematode Caenorhabditis elegans (C. elegans) as an in vivo model organism, human Aβ is expressed intracellularly in the body wall muscle. We found that exposure of Caenorhabditis elegans to ferulic acid give more protection against Aβ toxicity than morin, quercetin and gossypol. PMID:21858698

  4. Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer

    NASA Astrophysics Data System (ADS)

    Sun, Mengmeng; Liu, Fei; Zhu, Yukun; Wang, Wansheng; Hu, Jin; Liu, Jing; Dai, Zhifei; Wang, Kun; Wei, Yen; Bai, Jing; Gao, Weiping

    2016-02-01

    The challenge in photothermal therapy (PTT) is to develop biocompatible photothermal transducers that can absorb and convert near-infrared (NIR) light into heat with high efficiency. Herein, we report salt-induced aggregation of gold nanoparticles (GNPs) in biological media to form highly efficient and biocompatible NIR photothermal transducers for PTT and photothermal/photoacoustic (PT/PA) imaging of cancer. The GNP depots in situ formed by salt-induced aggregation of GNPs show strong NIR absorption induced by plasmonic coupling between adjacent GNPs and very high photothermal conversion efficiency (52%), enabling photothermal destruction of tumor cells. More interestingly, GNPs in situ aggregate in tumors to form GNP depots, enabling simultaneous PT/PA imaging and PTT of the tumors. These findings may provide a simple and effective way to develop a new class of intelligent and biocompatible NIR photothermal transducers with high efficiency for PT/PA imaging and PTT.The challenge in photothermal therapy (PTT) is to develop biocompatible photothermal transducers that can absorb and convert near-infrared (NIR) light into heat with high efficiency. Herein, we report salt-induced aggregation of gold nanoparticles (GNPs) in biological media to form highly efficient and biocompatible NIR photothermal transducers for PTT and photothermal/photoacoustic (PT/PA) imaging of cancer. The GNP depots in situ formed by salt-induced aggregation of GNPs show strong NIR absorption induced by plasmonic coupling between adjacent GNPs and very high photothermal conversion efficiency (52%), enabling photothermal destruction of tumor cells. More interestingly, GNPs in situ aggregate in tumors to form GNP depots, enabling simultaneous PT/PA imaging and PTT of the tumors. These findings may provide a simple and effective way to develop a new class of intelligent and biocompatible NIR photothermal transducers with high efficiency for PT/PA imaging and PTT. Electronic supplementary

  5. Propionibacterium-Produced Coproporphyrin III Induces Staphylococcus aureus Aggregation and Biofilm Formation

    PubMed Central

    Wollenberg, Michael S.; Claesen, Jan; Escapa, Isabel F.; Aldridge, Kelly L.; Fischbach, Michael A.

    2014-01-01

    ABSTRACT The majority of bacteria detected in the nostril microbiota of most healthy adults belong to three genera: Propionibacterium, Corynebacterium, and Staphylococcus. Among these staphylococci is the medically important bacterium Staphylococcus aureus. Almost nothing is known about interspecies interactions among bacteria in the nostrils. We observed that crude extracts of cell-free conditioned medium from Propionibacterium spp. induce S. aureus aggregation in culture. Bioassay-guided fractionation implicated coproporphyrin III (CIII), the most abundant extracellular porphyrin produced by human-associated Propionibacterium spp., as a cause of S. aureus aggregation. This aggregation response depended on the CIII dose and occurred during early stationary-phase growth, and a low pH (~4 to 6) was necessary but was not sufficient for its induction. Additionally, CIII induced plasma-independent S. aureus biofilm development on an abiotic surface in multiple S. aureus strains. In strain UAMS-1, CIII stimulation of biofilm depended on sarA, a key biofilm regulator. This study is one of the first demonstrations of a small-molecule-mediated interaction among medically relevant members of the nostril microbiota and the first description of a role for CIII in bacterial interspecies interactions. Our results indicate that CIII may be an important mediator of S. aureus aggregation and/or biofilm formation in the nostril or other sites inhabited by Propionibacterium spp. and S. aureus. PMID:25053784

  6. Heat induced aggregation of gold nanorods for rapid visual detection of lysozyme.

    PubMed

    Tohidi Moghadam, Tahereh; Ranjbar, Bijan

    2015-11-01

    Gold nanorods have been nominated as propitious candidates for nanobiodiagnostic applications. Herein, a technique has been introduced for rapid visual detection of lysozyme, as its high level of excretion in biological fluids is a characteristic sign of leukemia and kidney disorders. Gold nanorods were biofunctionalized with lysozyme aptamer and characterized with UV-Visible and FTIR spectroscopy, zeta potential analyzer and transmission electron microscopy. Exposure of the nanoprobe to nano molar levels of lysozyme (20 nmol l(-1)) lead to dictated aggregation of the nanostructures at ambient temperature; which was significantly improved by heat induced morphological perturbations and rapid detection by the naked eye (down to pico molar level). Qualitative analysis of Acute myeloid leukemia, Acute lymphocytic leukemia and Lymphoma blood serums showed sensitivity and specificity of the fabricated aptasensor under both temperature conditions. This report encourages utilization of heat-induced aggregation of gold nanorods as a promising nanodiagnostic technique for the emerging nanotechnologies.

  7. Analysis of six heavy metals in Ortho mineral trioxide aggregate and ProRoot mineral trioxide aggregate by inductively coupled plasma-optical emission spectrometry.

    PubMed

    Kum, Kee-Yeon; Zhu, Qiang; Safavi, Kamran; Gu, Yu; Bae, Kwang-Shik; Chang, Seok Woo

    2013-12-01

    Ortho mineral trioxide aggregate (MTA) is a mineral aggregate newly developed for perforation repair, root end filling and pulp capping. The aim of this study was to investigate the levels of cadmium (Cd), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni) and zinc (Zn) in Ortho MTA and ProRoot MTA. A total of 0.2 g of each MTA was digested using a mixture of hydrochloric and nitric acids and filtered. Six heavy metals in the resulting filtrates were analyzed by inductively coupled plasma-optical emission spectrometry (n = 5). The results were statistically analyzed using the Mann-Whitney U-test. The concentrations of Cd, Cu, Fe, Mn, Ni and Zn in Ortho MTA were 0.10, 7.73, 49.51, 2.58, 0.82 and 10.09 p.p.m., respectively. The concentrations of Cd, Cu, Fe, Mn, Ni and Zn in ProRoot MTA were 0.16, 9.38, 1438.11, 74.51, 18.98 and 4.05 p.p.m., respectively. In conclusion, Ortho MTA had lower levels of Cd, Cu, Fe, Mn and Ni than ProRoot MTA. PMID:24279659

  8. Ubiquilin overexpression reduces GFP-polyalanine-induced protein aggregates and toxicity

    SciTech Connect

    Wang Hongmin; Monteiro, Mervyn J. . E-mail: monteiro@umbi.umd.edu

    2007-08-01

    Several human disorders are associated with an increase in a continuous stretch of alanine amino acids in proteins. These so-called polyalanine expansion diseases share many similarities with polyglutamine-related disorders, including a length-dependent reiteration of amino acid induction of protein aggregation and cytotoxicity. We previously reported that overexpression of ubiquilin reduces protein aggregates and toxicity of expanded polyglutamine proteins. Here, we demonstrate a similar role for ubiquilin toward expanded polyalanine proteins. Overexpression of ubiquilin-1 in HeLa cells reduced protein aggregates and the cytotoxicity associated with expression of a transfected nuclear-targeted GFP-fusion protein containing 37-alanine repeats (GFP-A37), in a dose dependent manner. Ubiquilin coimmunoprecipitated more with GFP proteins containing a 37-polyalanine tract compared to either 7 (GFP-A7), or no alanine tract (GFP). Moreover, overexpression of ubiquilin suppressed the increased vulnerability of HeLa cell lines stably expressing the GFP-A37 fusion protein to oxidative stress-induced cell death compared to cell lines expressing GFP or GFP-A7 proteins. By contrast, siRNA knockdown of ubiquilin expression in the GFP-A37 cell line was associated with decreased cellular proliferation, and increases in GFP protein aggregates, nuclear fragmentation, and cell death. Our results suggest that boosting ubiquilin levels in cells might provide a universal and attractive strategy to prevent toxicity of proteins containing reiterative expansions of amino acids involved in many human diseases.

  9. Bimetallic Au2 Cu6 Nanoclusters: Strong Luminescence Induced by the Aggregation of Copper(I) Complexes with Gold(0) Species.

    PubMed

    Kang, Xi; Wang, Shuxin; Song, Yongbo; Jin, Shan; Sun, Guodong; Yu, Haizhu; Zhu, Manzhou

    2016-03-01

    The concept of aggregation-induced emission (AIE) has been exploited to render non-luminescent Cu(I) SR complexes strongly luminescent. The Cu(I) SR complexes underwent controlled aggregation with Au(0) . Unlike previous AIE methods, our strategy does not require insoluble solutions or cations. X-ray crystallography validated the structure of this highly fluorescent nanocluster: Six thiolated Cu atoms are aggregated by two Au atoms (Au2 Cu6 nanoclusters). The quantum yield of this nanocluster is 11.7 %. DFT calculations imply that the fluorescence originates from ligand (aryl groups on the phosphine) to metal (Cu(I) ) charge transfer (LMCT). Furthermore, the aggregation is affected by the restriction of intramolecular rotation (RIR), and the high rigidity of the outer ligands enhances the fluorescence of the Au2 Cu6 nanoclusters. This study thus presents a novel strategy for enhancing the luminescence of metal nanoclusters (by the aggregation of active metal complexes with inert metal atoms), and also provides fundamental insights into the controllable synthesis of highly luminescent metal nanoclusters. PMID:26890334

  10. Bimetallic Au2 Cu6 Nanoclusters: Strong Luminescence Induced by the Aggregation of Copper(I) Complexes with Gold(0) Species.

    PubMed

    Kang, Xi; Wang, Shuxin; Song, Yongbo; Jin, Shan; Sun, Guodong; Yu, Haizhu; Zhu, Manzhou

    2016-03-01

    The concept of aggregation-induced emission (AIE) has been exploited to render non-luminescent Cu(I) SR complexes strongly luminescent. The Cu(I) SR complexes underwent controlled aggregation with Au(0) . Unlike previous AIE methods, our strategy does not require insoluble solutions or cations. X-ray crystallography validated the structure of this highly fluorescent nanocluster: Six thiolated Cu atoms are aggregated by two Au atoms (Au2 Cu6 nanoclusters). The quantum yield of this nanocluster is 11.7 %. DFT calculations imply that the fluorescence originates from ligand (aryl groups on the phosphine) to metal (Cu(I) ) charge transfer (LMCT). Furthermore, the aggregation is affected by the restriction of intramolecular rotation (RIR), and the high rigidity of the outer ligands enhances the fluorescence of the Au2 Cu6 nanoclusters. This study thus presents a novel strategy for enhancing the luminescence of metal nanoclusters (by the aggregation of active metal complexes with inert metal atoms), and also provides fundamental insights into the controllable synthesis of highly luminescent metal nanoclusters.

  11. Rapid KRAS Mutation Detection via Hybridization-Induced Aggregation of Microbeads.

    PubMed

    Sloane, Hillary S; Kelly, Kimberly A; Landers, James P

    2015-10-20

    Using hybridization-induced aggregation (HIA), a unique bead-based DNA detection technology scalable for a microchip platform, we describe a simplistic, low-cost method for rapid mutation testing. HIA utilizes a pair of sequence-specific oligonucleotide probes bound to magnetic microbeads. Hybridization to a target DNA strand tethers the beads together, inducing bead aggregation. By simply using the extent of bead aggregation as a measure of the hybridization efficiency, we avoid the need for additional labels and sophisticated analytical equipment. Through strategic manipulation of the assay design and experimental parameters, we use HIA to facilitate, for the first time, the detection of single base mutations in a gene segment and, specifically, the detection of activating KRAS mutations. Following the development and optimization of the assay, we apply it for KRAS mutation analysis of four human cancer cell lines. Ultimately, we present a proof-of-principle method for detecting any of the common KRAS mutations in a single-step, 2 min assay, using only one set of oligonucleotide probes, for a total analysis time of less than 10 min post-PCR. The assay is performed at room temperature and uses simple, inexpensive instrumentation that permits multiplexed analysis. PMID:26339780

  12. Serotonin-induced platelet aggregation predicts the antihypertensive response to serotonin receptor antagonists.

    PubMed

    Gleerup, G; Persson, B; Hedner, T; Winther, K

    1993-01-01

    The 5-HT2-receptor antagonist ketanserin (20-40 mg b.i.d.) was administered to 62 patients of both sexes with uncomplicated primary hypertension. After 4 weeks of treatment about 50% of the patients had reached the target diastolic blood pressure of 90 mm Hg or below. Interindividual variability was large. In a retrospective analysis the variability could not be explained by sex or the dose of ketanserin. There was a weak association between age and systolic blood pressure response (r = 0.24; P = 0.06), which could be entirely accounted for by the higher base line blood pressure in the elderly patients. In one group of patients (n = 12), the ex vivo aggregation to serotonin (10(-6) M) was studied during treatment with placebo and ketanserin. Ketanserin completely inhibited 5-HT-induced aggregation in all patients. There was a close correlation between the area under the 5-HT-induced platelet aggregation curve during placebo and the subsequent reduction in diastolic blood pressure after 4 weeks of treatment with ketanserin. The present data suggest that the blood pressure response to ketanserin can be predicted from the ex vivo sensitivity of platelets to serotonin. By implication, they also support a role for serotonergic mechanisms in hypertension.

  13. Osmolyte Induced Changes in Peptide Conformational Ensemble Correlate with Slower Amyloid Aggregation: A Coarse-Grained Simulation Study.

    PubMed

    Sukenik, Shahar; Sapir, Liel; Harries, Daniel

    2015-12-01

    Stabilizing osmolytes are known to impact the process of amyloid aggregation, often altering aggregation kinetics. Recent evidence further suggests that osmolytes modify the peptide conformational dynamics, as well as change the physical characteristics of assembling amyloid fibrils. To resolve how these variations emerge on the molecular level, we simulated the initial aggregation steps of an amyloid-forming peptide in the presence and absence of the osmolyte sorbitol, a naturally occurring polyol. To this end, a coarse-grained force field was extended and implemented to access larger aggregate sizes and longer time scales. The force field optimization procedure placed emphasis on calibrating the solution thermodynamics of sorbitol, the aggregating peptide in its monomeric form, and the interaction of both of these components with each other and with water. Our simulations show a difference in aggregation kinetics and structural parameters in the presence of sorbitol compared to water, which qualitatively agree well with our experimentally resolved aggregation kinetics of the same peptide. The kinetic changes induced by sorbitol can be traced in our simulations to changes in monomer conformations resulting from osmolyte presence. These translate into changes in peptide conformations within the aggregated clusters and into differences in rates of monomer nucleation and of association to formed fibrils. We find that, compared to pure water as solvent, the presence of sorbitol induces formation of more aggregates each containing fewer peptides, with an increased tendency toward parallel interpeptide contacts. PMID:26587669

  14. A unifying framework for metrics for aggregating the climate effect of different emissions

    NASA Astrophysics Data System (ADS)

    Tol, Richard S. J.; Berntsen, Terje K.; O'Neill, Brian C.; Fuglestvedt, Jan S.; Shine, Keith P.

    2012-12-01

    Multi-gas approaches to climate change policies require a metric establishing ‘equivalences’ among emissions of various species. Climate scientists and economists have proposed four kinds of such metrics and debated their relative merits. We present a unifying framework that clarifies the relationships among them. We show, as have previous authors, that the global warming potential (GWP), used in international law to compare emissions of greenhouse gases, is a special case of the global damage potential (GDP), assuming (1) a finite time horizon, (2) a zero discount rate, (3) constant atmospheric concentrations, and (4) impacts that are proportional to radiative forcing. Both the GWP and GDP follow naturally from a cost-benefit framing of the climate change issue. We show that the global temperature change potential (GTP) is a special case of the global cost potential (GCP), assuming a (slight) fall in the global temperature after the target is reached. We show how the four metrics should be generalized if there are intertemporal spillovers in abatement costs, distinguishing between private (e.g., capital stock turnover) and public (e.g., induced technological change) spillovers. Both the GTP and GCP follow naturally from a cost-effectiveness framing of the climate change issue. We also argue that if (1) damages are zero below a threshold and (2) infinitely large above a threshold, then cost-effectiveness analysis and cost-benefit analysis lead to identical results. Therefore, the GCP is a special case of the GDP. The UN Framework Convention on Climate Change uses the GWP, a simplified cost-benefit concept. The UNFCCC is framed around the ultimate goal of stabilizing greenhouse gas concentrations. Once a stabilization target has been agreed under the convention, implementation is clearly a cost-effectiveness problem. It would therefore be more consistent to use the GCP or its simplification, the GTP.

  15. Silicification-induced cell aggregation for the sustainable production of H2 under aerobic conditions.

    PubMed

    Xiong, Wei; Zhao, Xiaohong; Zhu, Genxing; Shao, Changyu; Li, Yaling; Ma, Weimin; Xu, Xurong; Tang, Ruikang

    2015-10-01

    Photobiological hydrogen production is of great importance because of its promise for generating clean renewable energy. In nature, green algae cannot produce hydrogen as a result of the extreme sensitivity of hydrogenase to oxygen. However, we find that silicification-induced green algae aggregates can achieve sustainable photobiological hydrogen production even under natural aerobic conditions. The core-shell structure of the green algae aggregates creates a balance between photosynthetic electron generation and hydrogenase activity, thus allowing the production of hydrogen. This finding provides a viable pathway for the solar-driven splitting of water into hydrogen and oxygen to develop green energy alternatives by using rationally designed cell-material complexes. PMID:26302695

  16. Induced nanoparticle aggregation for short nucleic acid quantification by depletion isotachophoresis.

    PubMed

    Marczak, Steven; Senapati, Satyajyoti; Slouka, Zdenek; Chang, Hsueh-Chia

    2016-12-15

    A rapid (<20min) gel-membrane biochip platform for the detection and quantification of short nucleic acids is presented based on a sandwich assay with probe-functionalized gold nanoparticles and their separation into concentrated bands by depletion-generated gel isotachophoresis. The platform sequentially exploits the enrichment and depletion phenomena of an ion-selective cation-exchange membrane created under an applied electric field. Enrichment is used to concentrate the nanoparticles and targets at a localized position at the gel-membrane interface for rapid hybridization. The depletion generates an isotachophoretic zone without the need for different conductivity buffers, and is used to separate linked nanoparticles from isolated ones in the gel medium and then by field-enhanced aggregation of only the linked particles at the depletion front. The selective field-induced aggregation of the linked nanoparticles during the subsequent depletion step produces two lateral-flow like bands within 1cm for easy visualization and quantification as the aggregates have negligible electrophoretic mobility in the gel and the isolated nanoparticles are isotachophoretically packed against the migrating depletion front. The detection limit for 69-base single-stranded DNA targets is 10 pM (about 10 million copies for our sample volume) with high selectivity against nontargets and a three decade linear range for quantification. The selectivity and signal intensity are maintained in heterogeneous mixtures where the nontargets outnumber the targets 10,000 to 1. The selective field-induced aggregation of DNA-linked nanoparticles at the ion depletion front is attributed to their trailing position at the isotachophoretic front with a large field gradient. PMID:27494807

  17. Ellagic acid mitigates SNO-PDI induced aggregation of Parkinsonian biomarkers.

    PubMed

    Kabiraj, Parijat; Marin, Jose Eduardo; Varela-Ramirez, Armando; Zubia, Emmanuel; Narayan, Mahesh

    2014-12-17

    Nitrosative stress mediated S-nitrosylation (SNO) of protein disulfide isomerase (PDI), a housekeeping oxidoreductase, has been implicated in the pathogenesis of sporadic Parkinson's (PD) and Alzheimer's (AD) diseases. Previous cell line studies have indicated that SNO-PDI formation provokes synphilin-1 aggregation, the minor Parkinsonian biomarker protein. Yet no work exists investigating whether SNO-PDI induces α-synuclein aggregation, the major Lewy body constituent associated with Parkinson's pathogenesis. Here, we report that SNO-PDI formation is linked to the aggregation of α-synuclein and also provokes α-synuclein:synphilin-1 deposits (Lewy-body-like debris) normally found in the PD brain. Furthermore, we have examined the ability of a small molecule, 2,3,7,8-tetrahydroxy-chromeno[5,4,3-cde]chromene-5,10-dione (ellagic acid; EA) to scavenge NOx radicals and to protect cells from SNO-PDI formation via rotenone insult both, cell-based and cell-independent in vitro experiments. Furthermore, EA not only mitigates nitrosative-stress-induced aggregation of synphilin-1 but also α-synuclein and α-synuclein:synphilin-1 composites (Lewy-like neurites) in PC12 cells. Mechanistic analyses of the neuroprotective phenomena revealed that EA lowered rotenone-instigated reactive oxygen species (ROS) and reactive nitrogen species (RNS) in PC12 cells, imparted antiapoptotic tributes, and directly interfered with SNO-PDI formation. Lastly, we demonstrate that EA can bind human serum albumin (HSA). These results collectively indicate that small molecules can provide a therapeutic foothold for overcoming Parkinson's through a prophylactic approach.

  18. Sequence-dependent abnormal aggregation of human Tau fragment in an inducible cell model.

    PubMed

    Liu, Xiao-Ling; Hu, Ji-Ying; Hu, Meng-Yun; Zhang, Yi; Hong, Zheng-Yuan; Cheng, Xiao-Qing; Chen, Jie; Pang, Dai-Wen; Liang, Yi

    2015-08-01

    A pathological hallmark of Alzheimer disease (AD) is the accumulation of misfolded hyperphosphorylated microtubule-associated protein Tau within neurons, forming neurofibrillary tangles and leading to synaptic dysfunction and neuronal death. Here we study sequence-dependent abnormal aggregation of human fragment Tau244-372 in an inducible cell model. As evidenced by confocal laser scanning microscopy, Western blot, and immunogold electron microscopy, fibril-forming motifs are essential and sufficient for abnormal aggregation of Tau244-372 in SH-SY5Y neuroblastoma cells induced by Congo red: when its two fibril-forming segments PHF6 and PHF6* are deleted, Tau244-372 does lose its ability to form fibrils in SH-SY5Y cells, and the replacement of PHF6 and PHF6* with an unrelated amyloidogenic sequence IFQINS from human lysozyme does rescue the fibril-forming ability of Tau244-372 in SH-SY5Y cells. By contrast, insertion of a non-fibril forming peptide GGGGGG does not drive the disabled Tau244-372 to misfold in SH-SY5Y cells. Furthermore, as revealed by quantum dots based probes combined with annexin V staining, annexin V-FITC apoptosis detection assay, and immunofluorescence, fibril-forming motifs are essential and sufficient for early apoptosis of living SH-SY5Y cells induced by abnormal aggregation of Tau244-372. Our results suggest that fibril-forming motifs could be the determinants of Tau protein tending to misfold in living cells, thereby inducing neuronal apoptosis and causing the initiation and development of AD.

  19. A Bayesian inversion estimate of N2O emissions for western and central Europe and the assessment of aggregation errors

    NASA Astrophysics Data System (ADS)

    Thompson, R. L.; Gerbig, C.; Rödenbeck, C.

    2011-04-01

    A Bayesian inversion approach was used to retrieve temporally and spatially resolved N2O fluxes for western and central Europe using in-situ atmospheric observations from the tall tower site at Ochsenkopf, Germany (50°01' N, 11°48' E). For atmospheric transport, the STILT (Stochastic Time-Inverted Lagrangian Transport) model was employed, which was driven with ECMWF analysis and short term forecast fields. The influence of temporal aggregation error, as well as the choice of spatial and temporal correlation scale length, on the retrieval was investigated using a synthetic dataset consisting of mixing ratios generated for the Ochsenkopf site. We found that if the aggregation error is ignored, then a significant bias error in the retrieved fluxes ensues. However, by estimating this error and projecting it into the observation space, it was possible to avoid bias errors in the retrieved fluxes. Using the real observations from the Ochsenkopf site, N2O fluxes were retrieved every 7 days for 2007 at 2 by 2 degrees spatial resolution. Emissions of N2O were strongest during the summer and autumn months, with peak emissions in August and September, while the regions of Benelux and northern United Kingdom had strongest annual mean emissions.

  20. A Bayesian inversion estimate of N2O emissions for western and central Europe and the assessment of aggregation errors

    NASA Astrophysics Data System (ADS)

    Thompson, R. L.; Gerbig, C.; Rödenbeck, C.

    2010-11-01

    A Bayesian inversion approach was used to retrieve temporally and spatially resolved N2O fluxes for western and central Europe using in-situ atmospheric observations from the tall tower site at Ochsenkopf, Germany (50°01´ N, 11°48´ E). For atmospheric transport, the STILT (Stochastic Time-Inverted Lagrangian Transport) model was employed, which was driven with ECMWF analysis and short term forecast fields. The influence of temporal aggregation error, as well as the choice of spatial and temporal correlation scale length, on the retrieval was investigated using a synthetic dataset consisting of mixing ratios generated for the Ochsenkopf site. We found that if the aggregation error is ignored, then a significant bias error in the retrieved fluxes ensues. However, by estimating this error and projecting it into the observation space, it was possible to avoid bias errors in the retrieved fluxes. Using the real observations from the Ochsenkopf site, N2O fluxes were retrieved every 7 days for 2007 at 2 by 2 degrees spatial resolution. Emissions of N2O were strongest during the summer and autumn months, with peak emissions in August and September, while the regions of Benelux and northern United Kingdom had the strongest annual mean emissions.

  1. Metal ion-induced lateral aggregation of filamentous viruses fd and M13.

    PubMed Central

    Tang, Jay X; Janmey, Paul A; Lyubartsev, Alexander; Nordenskiöld, Lars

    2002-01-01

    We report a detailed comparison between calculations of inter-filament interactions based on Monte-Carlo simulations and experimental features of lateral aggregation of bacteriophages fd and M13 induced by a number of divalent metal ions. The general findings are consistent with the polyelectrolyte nature of the virus filaments and confirm that the solution electrostatics account for most of the experimental features observed. One particularly interesting discovery is resolubilization for bundles of either fd or M13 viruses when the concentration of the bundle-inducing metal ion Mg(2+) or Ca(2+) is increased to large (>100 mM) values. In the range of Mg(2+) or Ca(2+) concentrations where large bundles of the virus filaments are formed, the optimal attractive interaction energy between the virus filaments is estimated to be on the order of 0.01 kT per net charge on the virus surface when a recent analytical prediction to the experimentally defined conditions of resolubilization is applied. We also observed qualitatively distinct behavior between the alkali-earth metal ions and the divalent transition metal ions in their action on the charged viruses. The understanding of metal ions-induced reversible aggregation based on solution electrostatics may lead to potential applications in molecular biology and medicine. PMID:12080143

  2. Characterization of 2D colloid aggregations created by optically induced electrohydrodynamics.

    PubMed

    Work, Andrew H; Williams, Stuart J

    2015-08-01

    Rapid electrokinetic patterning (REP) is a technique for creating self-assembled monolayers (SAMs) of spherical particles in a liquid medium, and dynamically controlling them though the simultaneous application of an electric field and optically induced temperature gradients. Previous work has investigated and characterized REP axisymmetric aggregations generated from a focus laser within a uniform electric field; work herein characterizes line-shaped particle assemblies derived from the application of a linearly scanned laser. The resulting aggregations of spherical polystyrene particles (1 μm) suspended in low-conductivity aqueous potassium chloride solution (KCl, 2.5 mS/m) resembled elliptical-shaped crystalline geometries. The mean particle-to-particle spacing within the aggregation remained greater than 1.5 diameters for experiments herein (6.5 Vrms , 30 kHz) due to dipole-dipole repulsive forces. Interparticle spacing demonstrated a linear relationship (1.6-2.1 μm) with increasing scanning lengths (up to 83 μm), decreased from 1.9 to 1.7 μm with increasing scanning frequency (0.38-16 Hz) for a 53 μm scan length, and decreased from 2.0 to 1.6 μm with increasing laser power (11.9-18.8 mW) for a 59 μm, 16 Hz laser scan.

  3. Vitamin C Prevents Cigarette Smoke-Induced Leukocyte Aggregation and Adhesion to Endothelium in vivo

    NASA Astrophysics Data System (ADS)

    Lehr, Hans-Anton; Frei, Balz; Arfors, Karl-E.

    1994-08-01

    A common feature of cigarette-smoke (CS)-associated diseases such as atherosclerosis and pulmonary emphysema is the activation, aggregation, and adhesion of leukocytes to micro- and macrovascular endothelium. A previous study, using a skinfold chamber model for intravital fluorescence microscopy in awake hamsters, has shown that exposure of hamsters to the smoke generated by one research cigarette elicits the adhesion of fluorescently labeled leukocytes to the endothelium of arterioles and small venules. By the combined use of intravital microscopy and scanning electron microscopy, we now demonstrate in the same animal model that (i) CS-induced leukocyte adhesion is not confined to the microcirculation, but that leukocytes also adhere singly and in clusters to the aortic endothelium; (ii) CS induces the formation in the bloodstream of aggregates between leukocytes and platelets; and (iii) CS-induced leukocyte adhesion to micro- and macrovascular endothelium and leukocyte-platelet aggregate formation are almost entirely prevented by dietary or intravenous pretreatment with the water-soluble antioxidant vitamin C (venules, 21.4 ± 11.0 vs. 149.6 ± 38.7 leukocytes per mm^2, P < 0.01; arterioles, 8.5 ± 4.2 vs. 54.3 ± 21.6 leukocytes per mm^2, P < 0.01; aortas, 0.8 ± 0.4 vs. 12.4 ± 5.6 leukocytes per mm^2, P < 0.01; means ± SD of n = 7 animals, 15 min after CS exposure). No inhibitory effect was observed by pretreatment of the animals with the lipid-soluble antioxidants vitamin E or probucol. The protective effects of vitamin C on CS-induced leukocyte adhesion and aggregation were seen at vitamin C plasma levels (55.6 ± 22.2 μM, n = 7) that can easily be reached in humans by dietary means or supplementation, suggesting that vitamin C effectively contributes to protection from CS-associated cardiovascular and pulmonary diseases in humans.

  4. Expression of FSHD-related DUX4-FL alters proteostasis and induces TDP-43 aggregation

    PubMed Central

    Homma, Sachiko; Beermann, Mary Lou; Boyce, Frederick M; Miller, Jeffrey Boone

    2015-01-01

    Objective Pathogenesis in facioscapulohumeral muscular dystrophy (FSHD) appears to be due to aberrant expression, particularly in skeletal muscle nuclei, of the full-length isoform of DUX4 (DUX4-FL). Expression of DUX4-FL is known to alter gene expression and to be cytotoxic, but cell responses to DUX4-FL are not fully understood. Our study was designed to identify cellular mechanisms of pathogenesis caused by DUX4-FL expression. Methods We used human myogenic cell cultures to analyze the effects of DUX4-FL when it was expressed either from its endogenous promoter in FSHD cells or by exogenous expression using BacMam vectors. We focused on determining the effects of DUX4-FL on protein ubiquitination and turnover and on aggregation of TDP-43. Results Human FSHD myotubes with endogenous DUX4-FL expression showed both altered nuclear and cytoplasmic distributions of ubiquitinated proteins and aggregation of TDP-43 in DUX4-FL-expressing nuclei. Similar changes were found upon exogenous expression of DUX4-FL, but were not seen upon expression of the non-toxic short isoform DUX4-S. DUX4-FL expression also inhibited protein turnover in a model system and increased the amounts of insoluble ubiquitinated proteins and insoluble TDP-43. Finally, inhibition of the ubiquitin–proteasome system with MG132 produced TDP-43 aggregation similar to DUX4-FL expression. Interpretations Our results identify DUX4-FL-induced inhibition of protein turnover and aggregation of TDP-43, which are pathological changes also found in diseases such as amyotrophic lateral sclerosis and inclusion body myopathy, as potential pathological mechanisms in FSHD. PMID:25750920

  5. Composite alginate hydrogel microparticulate delivery system of zidovudine hydrochloride based on counter ion induced aggregation

    PubMed Central

    Roy, Harekrishna; Rao, P. Venkateswar; Panda, Sanjay Kumar; Biswal, Asim Kumar; Parida, Kirti Ranjan; Dash, Jharana

    2014-01-01

    Aim: The present study deals with preparation of zidovudine loaded microparticle by counter ion induced aggregation method. During this study effect of polyacrylates and hypromellose polymers on release study were investigated. Materials and Methods: The ion induced aggregated alginate based microparticles were characterized for surface morphology, particle size analysis, drug entrapment study, in-vitro study, Fourier-transform infrared (FTIR) spectroscopy, and differential scanning calorimetry (DSC) study. Results and Discussion: The result showed Eudragit RL-100 (ERL) based formulations had smoother surface as well as their mean particle sizes were found greater compared with Eudragit RS-100 (ERS) microparticles. Furthermore, drug entrapments were found to be more in ERL formulae as compared with ERS. RL3 released 101.05% drug over a period of 8th h and followed Higuchi profile and Fickian diffusion. Moreover, data obtained illustrated that, higher amount of quaternary ammonium group, alkali value, and glass transition temperature may be possible reason for improving permeability of ERL based formulations. It was also noticed, hyroxypropyl methylcellulose (HPMC) K4M premium grade polymer sustained drug release more than HPMC K15M. In addition, drug-excipient interaction study was carried out by FTIR and DSC study. PMID:25298940

  6. von Willebrand factor binds to platelets and induces aggregation in platelet-type but not type IIB von Willebrand disease.

    PubMed Central

    Miller, J L; Kupinski, J M; Castella, A; Ruggeri, Z M

    1983-01-01

    Platelet-type von Willebrand disease (vWD) and pseudo-vWD are two recently described intrinsic platelet defects characterized by enhanced ristocetin-induced agglutination in platelet-rich plasma. A similar finding is also typical of type IIB vWD, where it has been related to a von Willebrand factor (vWF) rather than a platelet abnormality. Platelet aggregation induced by unmodified human vWF in the absence of other stimuli has been reported in pseudo-vWD. In this study we demonstrate that vWF induces aggregation in platelet-type but not type IIB vWD. Aggregation is observed when normal plasma cryoprecipitate or purified vWF are added to platelet-rich plasma. Cryoprecipitate also aggregates washed platelets, although at higher concentrations than required for platelet-rich plasma. Purified vWF, however, induces significant aggregation of washed platelets only when plasma is added. EDTA inhibits vWF-induced aggregation. Its effect can be overcome by calcium but much less effectively by magnesium ions. Unstimulated platelets in platelet-rich plasma from patients with platelet-type but not type IIB vWD bind 125I-vWF in a specific and saturable manner. All different sized multimers of vWF become associated with platelets. Both aggregation and binding exhibit a similar vWF concentration dependence, suggesting that a correlation exists between these two events. Removal of ADP by appropriate consuming systems is without effect upon such binding or upon vWF-induced aggregation. Thrombin-induced 125I-vWF binding to washed platelets is normal in platelet-type as well as type IIB vWD. These results demonstrate that a specific binding site for unmodified human vWF is exposed on unstimulated platelets in platelet-type vWD. The relatively high vWF concentrations required for aggregation and binding may explain the lack of significant in vivo aggregation and thrombocytopenia in these patients. Moreover, these studies provide additional evidence that platelet-type and type IIB v

  7. Inverting microwell array chip for the cultivation of human induced pluripotent stem cells with controlled aggregate size and geometrical arrangement

    PubMed Central

    Satoh, Taku; Sugiura, Shinji; Sumaru, Kimio; Ozaki, Shigenori; Gomi, Shinichi; Kurakazu, Tomoaki; Oshima, Yasuhiro; Kanamori, Toshiyuki

    2014-01-01

    We present a novel cell culture chip, namely, “inverting microwell array chip,” for cultivation of human induced pluripotent stem cells. The chip comprises a lower hydrogel microwell array and an upper polystyrene culture surface. We demonstrate the formation of uniform cellular aggregates in the microwell array, and after inversion, a culture with controlled aggregate size and geometrical arrangement on the polystyrene surface. Here, we report effects of cell concentrations on a cultivation sequence in the chip. PMID:24803961

  8. Differential ERK activation during autophagy induced by europium hydroxide nanorods and trehalose: Maximum clearance of huntingtin aggregates through combined treatment.

    PubMed

    Wei, Peng-Fei; Jin, Pei-Pei; Barui, Ayan Kumar; Hu, Yi; Zhang, Li; Zhang, Ji-Qian; Shi, Shan-Shan; Zhang, Hou-Rui; Lin, Jun; Zhou, Wei; Zhang, Yun-Jiao; Ruan, Ren-Quan; Patra, Chitta Ranjan; Wen, Long-Ping

    2015-12-01

    Accelerating the clearance of intracellular protein aggregates through elevation of autophagy represents a viable approach for the treatment of neurodegenerative diseases. In our earlier report, we have demonstrated the enhanced degradation of mutant huntingtin protein aggregates through autophagy process induced by europium hydroxide nanorods [EHNs: Eu(III)(OH)3], but the underlying molecular mechanism of EHNs mediated autophagy was unclear. The present report reveals that EHNs induced autophagy does not follow the classical AKT-mTOR and AMPK signaling pathways. The inhibition of ERK1/2 phosphorylation using the specific MEK inhibitor U0126 partially abrogates the autophagy as well as the clearance of mutant huntingtin protein aggregates mediated by EHNs suggesting that nanorods stimulate the activation of MEK/ERK1/2 signaling pathway during autophagy process. In contrast, another mTOR-independent autophagy inducer trehalose has been found to induce autophagy without activating ERK1/2 signaling pathway. Interestingly, the combined treatment of EHNs and trehalose leads to more degradation of mutant huntingtin protein aggregates than that obtained with single treatment of either nanorods or trehalose. Our results demonstrate the rational that further enhanced clearance of intracellular protein aggregates, needed for diverse neurodegenerative diseases, may be achieved through the combined treatment of two or more autophagy inducers, which stimulate autophagy through different signaling pathways.

  9. A novel, smart microsphere with K(+)-induced shrinking and aggregating properties based on a responsive host-guest system.

    PubMed

    Jiang, Ming-Yue; Ju, Xiao-Jie; Fang, Lu; Liu, Zhuang; Yu, Hai-Rong; Jiang, Lu; Wang, Wei; Xie, Rui; Chen, Qianming; Chu, Liang-Yin

    2014-01-01

    A novel type of smart microspheres with K(+)-induced shrinking and aggregating properties is designed and developed on the basis of a K(+)-recognition host-guest system. The microspheres are composed of cross-linked poly(N-isopropylacrylamide-co-acryloylamidobenzo-15-crown-5) (P(NIPAM-co-AAB15C5)) networks. Due to the formation of stable 2:1 "sandwich-type" host-guest complexes between 15-crown-5 units and K(+) ions, the P(NIPAM-co-AAB15C5) microspheres significantly exhibit isothermally and synchronously K(+)-induced shrinking and aggregating properties at a low K(+) concentration, while other cations (e.g., Na(+), H(+), NH4(+), Mg(2+), or Ca(2+)) cannot trigger such response behaviors. Effects of chemical compositions of microspheres on the K(+)-induced shrinking and aggregating behaviors are investigated systematically. The K(+)-induced aggregating sensitivity of the P(NIPAM-co-AAB15C5) microspheres can be enhanced by increasing the content of crown ether units in the polymeric networks; however, it is nearly not influenced by varying the monomer and cross-linker concentrations in the microsphere preparation. State diagrams of the dispersed-to-aggregated transformation of P(NIPAM-co-AAB15C5) microspheres in aqueous solutions as a function of temperature and K(+) concentration are constructed, which provide valuable information for tuning the dispersed/aggregated states of microspheres by varying environmental K(+) concentration and temperature. The microspheres with synchronously K(+)-induced shrinking and aggregating properties proposed in this study provide a brand-new model for designing novel targeted drug delivery systems.

  10. Ruby laser induced emission from NO2

    NASA Technical Reports Server (NTRS)

    Hakala, D. F.; Reeves, R. R.

    1976-01-01

    Two different types of emission from excited NO2 were observed using pulsed ruby laser light at 6943 A. The first type of fluorescence was seen in the near IR and results from the single photon excitation of NO2 from the ground 2-A1 state. By observing the emission as a function of time an unexpected behavior was observed in the near IR and could be explained by a consecutive deactivation mechanism, wherein a secondary species is preferentially detected. A second type of emission recently observed in the blue spectral region is weaker and is due to a multiphoton process. The intensity of the blue emission is a function of the cube of the laser intensity at low pressures and approaches the square at high pressures. This variation is attributed to simultaneous deactivation of the excited NO2 intermediate by collision (square) and by anti-Stokes Raman scattering off of the excited NO2 (cube).

  11. Can inducible resistance in plants cause herbivore aggregations? Spatial patterns in an inducible plant/herbivore model.

    PubMed

    Anderson, Kurt E; Inouye, Brian D; Underwood, Nora

    2015-10-01

    Many theories regarding the evolution of inducible resistance in plants have an implicit spatial component, but most relevant population dynamic studies ignore spatial dynamics. We examined a spatially explicit model of plant inducible resistance and herbivore population dynamics to explore how realistic features of resistance and herbivore responses influence spatial patterning. Both transient and persistent spatial patterns developed in all models examined, where patterns manifested as wave-like aggregations of herbivores and variation in induction levels. Patterns arose when herbivores moved away from highly induced plants, there was a lag between damage and deployment of induced resistance, and the relationship between herbivore density and strength of the induction response had a sigmoid shape. These mechanisms influenced pattern formation regardless of the assumed functional relationship between resistance and herbivore recruitment and mortality. However, in models where induction affected herbivore mortality, large-scale herbivore population cycles driven by the mortality response often co-occurred with smaller scale spatial patterns driven by herbivore movement. When the mortality effect dominated, however, spatial pattern formation was completely replaced by spatially synchronized herbivore population cycles. Our results present a new type of ecological pattern formation driven by induced trait variation, consumer behavior, and time delays that has broad implications for the community and evolutionary ecology of plant defenses.

  12. Interplay between desolvation and secondary structure in mediating cosolvent and temperature induced alpha-synuclein aggregation

    NASA Astrophysics Data System (ADS)

    Anderson, V. L.; Webb, W. W.; Eliezer, D.

    2012-10-01

    Both increased temperature and moderate concentrations of fluorinated alcohols enhance aggregation of the Parkinson's disease-associated protein α-synuclein (αS). Here, we investigate the secondary structural rearrangements induced by heating and trifluoroethanol [TFE]. At low TFE concentrations, CD spectra feature a negative peak characteristic of disordered polypeptides near 200 nm and a slight shoulder around 220 nm suggesting some polyproline-II content. Upon heating, these peaks weaken, while a weak negative signal develops at 222 nm. At high TFE concentrations, the spectra show distinct minima at 208 and 222 nm, indicative of considerable α-helical structure, which diminish upon heating. We observe a crossover between the low-TFE and high-TFE behavior near 15% TFE, where we previously showed that a partially helical intermediate is populated. We postulate that the protein is well solvated by water at low TFE concentrations and by TFE at high TFE concentrations, but may become desolvated at the crossover point. We discuss the potential roles and interplay of desolvation and helical secondary structure in driving αS aggregation.

  13. Cyanobacteriochrome SesA Is a Diguanylate Cyclase That Induces Cell Aggregation in Thermosynechococcus*♦

    PubMed Central

    Enomoto, Gen; Nomura, Ryouhei; Shimada, Takashi; Ni-Ni-Win; Narikawa, Rei; Ikeuchi, Masahiko

    2014-01-01

    Cyanobacteria have unique photoreceptors, cyanobacteriochromes, that show diverse spectral properties to sense near-UV/visible lights. Certain cyanobacteriochromes have been shown to regulate cellular phototaxis or chromatic acclimation of photosynthetic pigments. Some cyanobacteriochromes have output domains involved in bacterial signaling using a second messenger cyclic dimeric GMP (c-di-GMP), but its role in cyanobacteria remains elusive. Here, we characterize the recombinant Tlr0924 from a thermophilic cyanobacterium Thermosynechococcus elongatus, which was expressed in a cyanobacterial system. The protein reversibly photoconverts between blue- and green-absorbing forms, which is consistent with the protein prepared from Escherichia coli, and has diguanylate cyclase activity, which is enhanced 38-fold by blue light compared with green light. Therefore, Tlr0924 is a blue light-activated diguanylate cyclase. The protein's relatively low affinity (10.5 mm) for Mg2+, which is essential for diguanylate cyclase activity, suggests that Mg2+ might also regulate c-di-GMP signaling. Finally, we show that blue light irradiation under low temperature is responsible for Thermosynechococcus vulcanus cell aggregation, which is abolished when tlr0924 is disrupted, suggesting that Tlr0924 mediates blue light-induced cell aggregation by producing c-di-GMP. Given our results, we propose the name “sesA (sessility-A)” for tlr0924. This is the first report for cyanobacteriochrome-dependent regulation of a sessile/planktonic lifestyle in cyanobacteria via c-di-GMP. PMID:25059661

  14. Photonic band-edge-induced enhancement in absorption and emission

    NASA Astrophysics Data System (ADS)

    Ummer, Karikkuzhi Variyath; Vijaya, Ramarao

    2015-01-01

    An enhancement in photonic band-edge-induced absorption and emission from rhodamine-B dye doped polystyrene pseudo gap photonic crystals is studied. The band-edge-induced enhancement in absorption is achieved by selecting the incident angle of the excitation beam so that the absorption spectrum of the emitter overlaps the photonic band edge. The band-edge-induced enhancement in emission, on the other hand, is possible with and without an enhancement in band-edge-induced absorption, depending on the collection angle of emission. Through a simple set of measurements with suitably chosen angles for excitation and emission, we achieve a maximum enhancement of 70% in emission intensity with band-edge-induced effects over and above the intrinsic emission in the case of self-assembled opals. This is a comprehensive effort to interpret tunable lasing in opals as well as to predict the wavelength of lasing arising as a result of band-edge-induced distributed feedback effects.

  15. An analytical continuation approach for evaluating emission lineshapes of molecular aggregates and the adequacy of multichromophoric Förster theory

    NASA Astrophysics Data System (ADS)

    Banchi, Leonardo; Costagliola, Gianluca; Ishizaki, Akihito; Giorda, Paolo

    2013-05-01

    In large photosynthetic chromophore-protein complexes not all chromophores are coupled strongly, and thus the situation is well described by formation of delocalized states in certain domains of strongly coupled chromophores. In order to describe excitation energy transfer among different domains without performing extensive numerical calculations, one of the most popular techniques is a generalization of Förster theory to multichromophoric aggregates (generalized Förster theory) proposed by Sumi [J. Phys. Chem. B 103, 252 (1999), 10.1021/jp983477u] and Scholes and Fleming [J. Phys. Chem. B 104, 1854 (2000), 10.1021/jp993435l]. The aim of this paper is twofold. In the first place, by means of analytic continuation and a time convolutionless quantum master equation approach, a theory of emission lineshape of multichromophoric systems or molecular aggregates is proposed. In the second place, a comprehensive framework that allows for a clear, compact, and effective study of the multichromophoric approach in the full general version proposed by Jang, Newton, and Silbey [Phys. Rev. Lett. 92, 218301 (2004), 10.1103/PhysRevLett.92.218301] is developed. We apply the present theory to simple paradigmatic systems and we show on one hand the effectiveness of time-convolutionless techniques in deriving lineshape operators and on the other hand we show how the multichromophoric approach can give significant improvements in the determination of energy transfer rates in particular when the systems under study are not the purely Förster regime. The presented scheme allows for an effective implementation of the multichromophoric Förster approach which may be of use for simulating energy transfer dynamics in large photosynthetic aggregates, for which massive computational resources are usually required. Furthermore, our method allows for a systematic comparison of multichromophoric Föster and generalized Förster theories and for a clear understanding of their respective limits

  16. Polyamines induce aggregation of LHC II and quenching of fluorescence in vitro.

    PubMed

    Tsiavos, Theodoros; Ioannidis, Nikolaos E; Kotzabasis, Kiriakos

    2012-05-01

    Dissipation of excess excitation energy within the light-harvesting complex of Photosystem II (LHC II) is a main process in plants, which is measured as the non-photochemical quenching of chlorophyll fluorescence or qE. We showed in previous works that polyamines stimulate qE in higher plants in vivo and in eukaryotic algae in vitro. In the present contribution we have tested whether polyamines can stimulate quenching in trimeric LHC II and monomeric light-harvesting complex b proteins from higher plants. The tetramine spermine was the most potent quencher and induced aggregation of LHC II trimers, due to its highly cationic character. Two transients are evident at 100 μM and 350 μM for the fluorescence and absorbance signals of LHC II respectively. On the basis of observations within this work, some links between polyamines and the activation of qE in vivo is discussed.

  17. The influence of the crystal structure on aggregation-induced luminescence of derivatives of aminobenzoic acid

    NASA Astrophysics Data System (ADS)

    Nosova, D. A.; Zarochentseva, E. P.; Vysotskaya, S. O.; Klemesheva, N. A.; Korotkov, V. I.

    2014-12-01

    The luminescence of three derivatives of 2-(phenylamino)-benzoic acid (N-phenylanthranilic, mefenamic, and niflumic acids) in benzene solution, in the polycrystalline state, and in the hexamethylbenzene matrix is studied. In the crystalline state, these compounds exhibit intense aggregation-induced luminescence. An increase in luminescence is also observed in the impurity crystal. The hexamethylbenzene crystal lattice restricts the mobility of molecules, thus ensuring the rigidity of the molecular structure of acids, which decreases the efficiency of nonradiative electron energy degradation. The main reason for the increase in the luminescence intensity in the case of fixation in a crystalline matrix is the formation of intramolecular hydrogen bonds and dimers of acid molecules.

  18. “Exchanges of Aggregate Air Nitrogen Emissions and Watershed Nitrogen Loads”

    EPA Science Inventory

    An approach has been developed to define transfer coefficients that can be used to convert changes in air emissions to changes in air deposition and subsequently to changes in loads delivered to the Bay. This approach uses a special CMAQ version that quantitatively attributes wa...

  19. Measles virus-induced changes in leukocyte function antigen 1 expression and leukocyte aggregation: possible role in measles virus pathogenesis.

    PubMed

    Attibele, N; Wyde, P R; Trial, J; Smole, S C; Smith, C W; Rossen, R D

    1993-02-01

    Measles virus (MV) infection of U937 cell or peripheral blood leukocyte cultures was shown to induce changes in the expression of leukocyte function antigen 1 (LFA-1) and cause marked aggregation of these cells. Addition of selected monoclonal antibodies specific for LFA-1 epitopes that did not neutralize MV in standard neutralization assays were found to block both virus-induced leukocyte aggregation and virus dissemination. These data suggest that MV modulation of LFA-1 expression on leukocytes may be an important step in MV pathogenesis.

  20. H- and J-aggregation of fluorene-based chromophores.

    PubMed

    Deng, Yonghong; Yuan, Wen; Jia, Zhe; Liu, Gao

    2014-12-11

    Understanding of H- and J-aggregation behaviors in fluorene-based polymers is significant both for determining the origin of various red-shifted emissions occurring in blue-emitting polyfluorenes and for developing polyfluorene-based device performance. In this contribution, we demonstrate a new theory of the H- and J-aggregation of polyfluorenes and oligofluorenes, and understand the influence of chromosphere aggregation on their photoluminescent properties. H- and J-aggregates are induced by a continuous increasing concentration of the oligofluorene or polyfluorene solution. A relaxed molecular configuration is simulated to illustrate the spatial arrangement of the bonding of fluorenes. It is indicated that the relaxed state adopts a 21 helical backbone conformation with a torsion angle of 18° between two connected repeat units. This configuration makes the formation of H- and J-aggregates through the strong π-π interaction between the backbone rings. A critical aggregation concentration is observed to form H- and J-aggregates for both polyfluorenes and oligofluorenes. These aggregates show large spectral shifts and distinct shape changes in photoluminescent excitation (PLE) and emission (PL) spectroscopy. Compared with "isolated" chromophores, H-aggregates induce absorption spectral blue-shift and fluorescence spectral red-shift but largely reduce fluorescence efficiency. "Isolated" chromophores not only refer to "isolated molecules" but also include those associated molecules if their conjugated backbones are not compact enough to exhibit perturbed absorption and emission. J-aggregates induce absorption spectral red-shift and fluorescence spectral red-shift but largely enhance fluorescence efficiency. The PLE and PL spectra also show that J-aggregates dominate in concentrated solutions. Different from the excimers, the H- and J-aggregate formation changes the ground-state absorption of fluorene-based chromophores. H- and J-aggregates show changeable

  1. H- and J-aggregation of fluorene-based chromophores.

    PubMed

    Deng, Yonghong; Yuan, Wen; Jia, Zhe; Liu, Gao

    2014-12-11

    Understanding of H- and J-aggregation behaviors in fluorene-based polymers is significant both for determining the origin of various red-shifted emissions occurring in blue-emitting polyfluorenes and for developing polyfluorene-based device performance. In this contribution, we demonstrate a new theory of the H- and J-aggregation of polyfluorenes and oligofluorenes, and understand the influence of chromosphere aggregation on their photoluminescent properties. H- and J-aggregates are induced by a continuous increasing concentration of the oligofluorene or polyfluorene solution. A relaxed molecular configuration is simulated to illustrate the spatial arrangement of the bonding of fluorenes. It is indicated that the relaxed state adopts a 21 helical backbone conformation with a torsion angle of 18° between two connected repeat units. This configuration makes the formation of H- and J-aggregates through the strong π-π interaction between the backbone rings. A critical aggregation concentration is observed to form H- and J-aggregates for both polyfluorenes and oligofluorenes. These aggregates show large spectral shifts and distinct shape changes in photoluminescent excitation (PLE) and emission (PL) spectroscopy. Compared with "isolated" chromophores, H-aggregates induce absorption spectral blue-shift and fluorescence spectral red-shift but largely reduce fluorescence efficiency. "Isolated" chromophores not only refer to "isolated molecules" but also include those associated molecules if their conjugated backbones are not compact enough to exhibit perturbed absorption and emission. J-aggregates induce absorption spectral red-shift and fluorescence spectral red-shift but largely enhance fluorescence efficiency. The PLE and PL spectra also show that J-aggregates dominate in concentrated solutions. Different from the excimers, the H- and J-aggregate formation changes the ground-state absorption of fluorene-based chromophores. H- and J-aggregates show changeable

  2. Ultraweak and induced photon emission after wounding of plants.

    PubMed

    Winkler, R; Guttenberger, H; Klima, H

    2009-01-01

    The ultraweak and induced photon emission were measured by a single photon counting equipment (Photomultiplier Hamamatsu R562) on Cucurbita pepo variaca styriacae after wounding. Wounding significantly changes the emission from a stationary to a nonstationary state and the shape of the decay curve obtained after light illumination. The rise in the ultraweak photon emission depends on the kind of wounding and its localization on the plant. The decay curves obtained after wounding could be better fit by an exponential function than by a hyperbolic one. So the biophoton emission correlates with physiological and bioelectrical changes like membrane depolarizations as they also depend on the kind of injury. PMID:19254235

  3. Enhanced two-photon emission in coupled metal nanoparticles induced by conjugated polymers.

    PubMed

    Guan, Zhenping; Polavarapu, Lakshminarayana; Xu, Qing-Hua

    2010-12-01

    Interactions between noble metal (Ag and Au) nanoparticles and conjugated polymers as well as their one- and two-photon emission have been investigated. Ag and Au nanoparticles exhibited extraordinary quenching effects on the fluorescence of cationic poly(fluorinephenylene). The quenching efficiency by 37-nm Ag nanoparticles is ∼19 times more efficient than that by 13-nm Au nanoparticles, and 9-10 orders of magnitude more efficient than typical small molecule dye-quencher pairs. On the other hand, the cationic conjugated polymers induce the aggregate formation and plasmonic coupling of the metal nanoparticles, as evidenced by transmission electron microscopy images and appearance of a new longitudinal plasmon band in the near-infrared region. The two-photon emissions of Ag and Au nanoparticles were found to be significantly enhanced upon addition of conjugated polymers, by a factor of 51-times and 9-times compared to the isolated nanoparticles for Ag and Au, respectively. These studies could be further extended to the applications of two-photon imaging and sensing of the analytes that can induce formation of metal nanoparticle aggregates, which have many advantages over the conventional one-photon counterparts.

  4. Protein binding-induced surfactant aggregation variation: a new strategy of developing fluorescent aqueous sensor for proteins.

    PubMed

    Hu, Wenting; Ding, Liping; Cao, Jianhua; Liu, Lili; Wei, Yuting; Fang, Yu

    2015-03-01

    Novel strategies of developing fluorescent sensors for proteins are highly demanded. In this work, we particularly synthesized a cholesterol-derivatized pyrene probe. Its fluorescence emission is effectively tuned by the aggregation state of a cationic surfactant dodecyltrimethylammonium bromide (DTAB). The used probe/DTAB assemblies exhibit highly sensitive ratiometric responses to pepsin and ovalbumin egg (o-egg) with detection limits of 4.8 and 18.9 nM, respectively. The fluorescence changes indicate the protein-surfactant interaction leads to further aggregation of DTAB assemblies. The results from Tyndall effect and dynamic light scattering verify this assumption. The responses to pepsin and o-egg are due to their strong electrostatic or hydrophobic interaction with DTAB assemblies at pH 7.4. The present noncovalent supramolecular sensor represents a novel and simple strategy for sensing proteins, which is based on the encapsulated fluorophore probing the aggregation variation of the surfactant assemblies.

  5. Pressure effects on the structure, kinetic, and thermodynamic properties of heat-induced aggregation of protein studied by FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Taniguchi, Y.; Okuno, A.; Kato, M.

    2010-03-01

    Pressure can retrain the heat-induced aggregation and dissociate the heat-induced aggregates. We observed the aggregation-preventing pressure effect and the aggregates-dissociating pressure effect to characterize the heat-induced aggregation of equine serum albumin (ESA) by FT-IR spectroscopy. The results suggest the α-helical structure collapses at the beginning of heat-induced aggregation through the swollen structure, and then the rearrangement of structure to the intermolecular β-sheet takes place through partially unfolded structure. We determined the activation volume for the heat-induced aggregation (ΔV# = +93 ml/mol) and the partial molar volume difference between native state and heat-induced aggregates (ΔV=+32 ml/mol). This positive partial molar volume difference suggests that the heat-induced aggregates have larger internal voids than the native structure. Moreover, the positive volume change implies that the formation of the intermolecular β-sheet is unfavorable under high pressure.

  6. Experimental models for identifying modifiers of polyglutamine-induced aggregation and neurodegeneration.

    PubMed

    Calamini, Barbara; Lo, Donald C; Kaltenbach, Linda S

    2013-07-01

    Huntington's disease (HD) typifies a class of inherited neurodegenerative disorders in which a CAG expansion in a single gene leads to an extended polyglutamine tract and misfolding of the expressed protein, driving cumulative neural dysfunction and degeneration. HD is invariably fatal with symptoms that include progressive neuropsychiatric and cognitive impairments, and eventual motor disability. No curative therapies yet exist for HD and related polyglutamine diseases; therefore, substantial efforts have been made in the drug discovery field to identify potential drug and drug target candidates for disease-modifying treatment. In this context, we review here a range of early-stage screening approaches based in in vitro, cellular, and invertebrate models to identify pharmacological and genetic modifiers of polyglutamine aggregation and induced neurodegeneration. In addition, emerging technologies, including high-content analysis, three-dimensional culture models, and induced pluripotent stem cells are increasingly being incorporated into drug discovery screening pipelines for protein misfolding disorders. Together, these diverse screening strategies are generating novel and exciting new probes for understanding the disease process and for furthering development of therapeutic candidates for eventual testing in the clinical setting. PMID:23700210

  7. Rapid Myoglobin Aggregation through Glucosamine-Induced α-Dicarbonyl Formation

    PubMed Central

    2015-01-01

    The extent of glycation and conformational changes of horse myoglobin (Mb) upon glycation with N-acetyl-glucosamine (GlcNAc), glucose (Glc) and glucosamine (GlcN) were investigated. Among tested sugars, the rate of glycation with GlcN was the most rapid as shown by MALDI and ESI mass spectrometries. Protein oxidation, as evaluated by the amount of carbonyl groups present on Mb, was found to increase exponentially in Mb-Glc conjugates over time, whereas in Mb-GlcN mixtures the carbonyl groups decreased significantly after maximum at 3 days of the reaction. The reaction between GlcN and Mb resulted in a significantly higher amount of α-dicarbonyl compounds, mostly glucosone and 3-deoxyglucosone, ranging from and 27 to 332 mg/L and from 14 to 304 mg/L, respectively. Already at 0.5 days, tertiary structural changes of Mb-GlcN conjugate were observed by altered tryptophan fluorescence. A reduction of metmyoglobin to deoxy-and oxymyoglobin forms was observed on the first day of reaction, coinciding with the greatest amount of glucosone produced. In contrast to native α-helical myoglobin, 41% of the glycated protein sequence was transformed into a β-sheet conformation, as determined by circular dichroism spectropolarimetry. Transmission electron microscopy demonstrated that Mb glycation with GlcN causes the formation of amorphous or fibrous aggregates, started already at 3 reaction days. These aggregates bind to an amyloid-specific dye thioflavin T. With the aid of α-dicarbonyl compounds and advanced products of reaction, this study suggests that the Mb glycation with GlcN induces the unfolding of an initially globular protein structure into amyloid fibrils comprised of a β-sheet structure. PMID:26406447

  8. Influence of soot aggregate structure on particle sizing using laser-induced incandescence: importance of bridging between primary particles

    NASA Astrophysics Data System (ADS)

    Johnsson, J.; Bladh, H.; Olofsson, N.-E.; Bengtsson, P.-E.

    2013-09-01

    Soot aggregates formed in combustion processes are often described as clusters of carbonaceous particles in random fractal structures. For theoretical studies of the physical properties of such aggregates, they have often been modelled as spherical primary particles in point contact. However, transmission electron microscopy (TEM) images show that the primary particles are more connected than in a single point; there is a certain amount of bridging between the primary particles. Particle sizing using the diagnostic technique laser-induced incandescence (LII) is crucially dependent on the heat conduction rate from the aggregate to the ambient gas, which depends on the amount of bridging. In this work, aggregates with bridging are modelled using overlapping spheres, and it is shown how such aggregates can be built to fulfil specific fractal parameters. Aggregates with and without bridging are constructed numerically, and it is investigated how the bridging influences the heat conduction rate in the free-molecular regime. The calculated heat conduction rates are then used in an LII model to show how LII particle sizing is influenced by different amounts of bridging. For realistic amounts of bridging (), the primary particle diameters were overestimated by up to 9 % if bridging was not taken into account.

  9. Mild and moderate hypothermia increases platelet aggregation induced by various agonists: a whole blood in vitro study.

    PubMed

    Scharbert, G; Kalb, M L; Essmeister, R; Kozek-Langenecker, S A

    2010-01-01

    The mechanisms causing temperature-dependent bleeding, especially in hypothermic patients, warrant clarification. Therefore the aim of this study was to investigate platelet aggregation at the clinically important temperature range of 30-34 degrees C. After obtaining informed consent citrated whole blood was drawn from 12 healthy adult male volunteers, who had not taken any medication in the previous 14 days. After venipuncture blood samples were incubated at 37 degrees C until platelet testing. Platelet aggregation was performed in whole blood using the impedance aggregometer Multiplate at five different test temperatures between 30 degrees C and 34 degrees C. Aggregation responses at 37 degrees C served as controls. At temperatures of mild and moderate hypothermia (30-34 degrees C), overall platelet aggregation was increased compared to 37 degrees C. Increases were recorded in response to collagen, thrombin receptor activating peptide and ristocetin between 31 degrees C and 34 degrees C and in response to adenosine diphosphate between 30 degrees C and 34 degrees C. Overall platelet aggregation is increased at mild and moderate hypothermia down to 30 degrees C. These results indicate that bleeding complications reported in mildly hypothermic patients are not due to hypothermia-induced platelet inhibition. The pathomechanism of the overall increased platelet aggregation between 30 degrees C and 34 degrees C requires further detailed study. PMID:19954411

  10. Orally given gastroprotective capsaicin does not modify aspirin-induced platelet aggregation in healthy male volunteers (human phase I examination).

    PubMed

    Sandor, B; Papp, J; Mozsik, Gy; Szolcsanyi, J; Keszthelyi, Zs; Juricskay, I; Toth, K; Habon, Tamas

    2014-12-01

    Capsaicin is a well-known component of red pepper. Recent studies have shown that capsaicin could prevent gastric ulcer provoked by various NSAID-s like acetylsalicylic acid (ASA). Primary objective of this human clinical phase I trial was to investigate whether two different doses of capsaicin co-administered with ASA could alter the inhibitory effect of ASA on platelet aggregation. 15 healthy male subjects were involved in the study and treated orally with 400 μg capsaicin, 800 μg capsaicin, 500 mg ASA, 400 μg capsaicin+500 mg ASA and 800 μg capsaicin+500 mg ASA. Blood was drawn before and 1, 2, 6 and 24 hours after the drug administration. After that epinephrine induced platelet aggregation was measured by optical aggregometry. Between treatments, volunteers had a 6-day wash-out period. Our results showed that capsaicin had no effect on platelet aggregation, while as expected, ASA monotherapy resulted in a significant and clinically effective platelet aggregation inhibition (p ≤ 0.001). The combined ASA-capsaicin therapies reached equivalent effectiveness in platelet aggregation inhibition as ASA monotherapy. Our investigation proved that capsaicin did not influence the inhibitory effect of ASA on platelet aggregation, thus the capsaicin-ASA treatment would combine the antiplatelet effect of ASA with the possible gastroprotection of capsaicin.

  11. The Heparin-Induced Thrombocytopenia and Thrombosis Syndrome: Treatment with Intraarterial Urokinase and Systemic Platelet Aggregation Inhibitors

    SciTech Connect

    Murphy, Kenneth D.; McCrohan, Gerard; DeMarta, Deborah A.; Shirodkar, Nitin B.; Kwon, Oun J.; Chopra, Paramjit S.

    1996-03-15

    We report a case of the heparin-induced thrombocytopenia and thrombosis syndrome presenting with acute ischemia of a lower limb. The patient was successfully treated by withdrawal of heparin products, intraarterial urokinase, and platelet anti-aggregation therapy consisting of Dextran and aspirin.

  12. EGCG in Green Tea Induces Aggregation of HMGB1 Protein through Large Conformational Changes with Polarized Charge Redistribution.

    PubMed

    Meng, Xuan-Yu; Li, Baoyu; Liu, Shengtang; Kang, Hongsuk; Zhao, Lin; Zhou, Ruhong

    2016-01-01

    As a major effective component in green tea, (-)-epigallocatechin-3-gallate (EGCG)'s potential benefits to human health have been widely investigated. Recent experimental evidences indicate that EGCG can induce the aggregation of HMGB1 protein, a late mediator of inflammation, which subsequently stimulates the autophagic degradation and thus provides protection from lethal endotoxemia and sepsis. In this study, we use molecular dynamics (MD) simulations to explore the underlying molecular mechanism of this aggregation of HMGB1 facilitated by EGCG. Our simulation results reveal that EGCG firmly binds to HMGB1 near Cys106, which supports previous preliminary experimental evidence. A large HMGB1 conformational change is observed, where Box A and Box B, two homogenous domains of HMGB1, are repositioned and packed together by EGCG. This new HMGB1 conformation has large molecular polarity and distinctive electrostatic potential surface. We suggest that the highly polarized charge distribution leads to the aggregation of HMGB1, which differs from the previous hypothesis that two HMGB1 monomers are linked by the dimer of EGCG. Possible aggregating modes have also been investigated with potential of mean force (PMF) calculations. Finally, we conclude that the conformation induced by EGCG is more aggregation-prone with higher binding free energies as compared to those without EGCG. PMID:26899177

  13. EGCG in Green Tea Induces Aggregation of HMGB1 Protein through Large Conformational Changes with Polarized Charge Redistribution

    PubMed Central

    Meng, Xuan-Yu; Li, Baoyu; Liu, Shengtang; Kang, Hongsuk; Zhao, Lin; Zhou, Ruhong

    2016-01-01

    As a major effective component in green tea, (−)-epigallocatechin-3-gallate (EGCG)’s potential benefits to human health have been widely investigated. Recent experimental evidences indicate that EGCG can induce the aggregation of HMGB1 protein, a late mediator of inflammation, which subsequently stimulates the autophagic degradation and thus provides protection from lethal endotoxemia and sepsis. In this study, we use molecular dynamics (MD) simulations to explore the underlying molecular mechanism of this aggregation of HMGB1 facilitated by EGCG. Our simulation results reveal that EGCG firmly binds to HMGB1 near Cys106, which supports previous preliminary experimental evidence. A large HMGB1 conformational change is observed, where Box A and Box B, two homogenous domains of HMGB1, are repositioned and packed together by EGCG. This new HMGB1 conformation has large molecular polarity and distinctive electrostatic potential surface. We suggest that the highly polarized charge distribution leads to the aggregation of HMGB1, which differs from the previous hypothesis that two HMGB1 monomers are linked by the dimer of EGCG. Possible aggregating modes have also been investigated with potential of mean force (PMF) calculations. Finally, we conclude that the conformation induced by EGCG is more aggregation-prone with higher binding free energies as compared to those without EGCG. PMID:26899177

  14. Different ataxin-3 amyloid aggregates induce intracellular Ca(2+) deregulation by different mechanisms in cerebellar granule cells.

    PubMed

    Pellistri, Francesca; Bucciantini, Monica; Invernizzi, Gaetano; Gatta, Elena; Penco, Amanda; Frana, Anna Maria; Nosi, Daniele; Relini, Annalisa; Regonesi, Maria Elena; Gliozzi, Alessandra; Tortora, Paolo; Robello, Mauro; Stefani, Massimo

    2013-12-01

    This work aims at elucidating the relation between morphological and physicochemical properties of different ataxin-3 (ATX3) aggregates and their cytotoxicity. We investigated a non-pathological ATX3 form (ATX3Q24), a pathological expanded form (ATX3Q55), and an ATX3 variant truncated at residue 291 lacking the polyQ expansion (ATX3/291Δ). Solubility, morphology and hydrophobic exposure of oligomeric aggregates were characterized. Then we monitored the changes in the intracellular Ca(2+) levels and the abnormal Ca(2+) signaling resulting from aggregate interaction with cultured rat cerebellar granule cells. ATX3Q55, ATX3/291Δ and, to a lesser extent, ATX3Q24 oligomers displayed similar morphological and physicochemical features and induced qualitatively comparable time-dependent intracellular Ca(2+) responses. However, only the pre-fibrillar aggregates of expanded ATX3 (the only variant which forms bundles of mature fibrils) triggered a characteristic Ca(2+) response at a later stage that correlated with a larger hydrophobic exposure relative to the two other variants. Cell interaction with early oligomers involved glutamatergic receptors, voltage-gated channels and monosialotetrahexosylganglioside (GM1)-rich membrane domains, whereas cell interaction with more aged ATX3Q55 pre-fibrillar aggregates resulted in membrane disassembly by a mechanism involving only GM1-rich areas. Exposure to ATX3Q55 and ATX3/291Δ aggregates resulted in cell apoptosis, while ATX3Q24 was substantially innocuous. Our findings provide insight into the mechanisms of ATX3 aggregation, aggregate cytotoxicity and calcium level modifications in exposed cerebellar cells.

  15. UV-induced carbon monoxide emission from living vegetation

    NASA Astrophysics Data System (ADS)

    Bruhn, D.; Albert, K. R.; Mikkelsen, T. N.; Ambus, P.

    2013-12-01

    The global burden of carbon monoxide (CO) is rather uncertain. In this paper we address the potential for UV-induced CO emission by living terrestrial vegetation surfaces. Real-time measurements of CO concentrations were made with a cavity-enhanced laser spectrometer connected in closed loop to either a chamber on a field of grass or a plant-leaf scale chamber. Leaves of all plant species that were examined exhibited emission of CO in response to artificial UV radiation as well as the UV component of natural solar radiation. The UV-induced rate of CO emission exhibited a low dependence on temperature, indicating an abiotic process. The emission of CO in response to the UV component of natural solar radiation was also evident at the natural grassland scale.

  16. Adenosine diphosphate-induced aggregation of human platelets in flow through tubes: III. Shear and extrinsic fibrinogen-dependent effects.

    PubMed

    Goldsmith, H L; Frojmovic, M M; Braovac, S; McIntosh, F; Wong, T

    1994-01-01

    The effect of shear rate and fibrinogen concentration on adenosine diphosphate-induced aggregation of suspensions of washed human platelets in Poiseuille flow at 23 degrees C was studied using a previously described double infusion technique and resistive particle counter size analysis. Using suspensions of multiple-centrifuged and -washed cells in Tyrodes-albumin [3 x 10(5) microliters-1; (17)] with [fibrinogen] from 0 to 1.2 microM, the rate and extent of aggregation with 0.7 microM ADP in Tyrodes-albumin were measured over a range of mean transit times from 0.2 to 43 s, and at mean tube shear rates, G, = 41.9, 335 and 1,335 s-1. As measured by the decrease in singlet concentration, aggregation at 1.2 microM fibrinogen increased with increasing G up to 1,335 s-1, in contrast to that previously reported in citrated plasma, in which aggregation reached a maximum at G = 335 s-1. Without added fibrinogen, there was no aggregation at G = 41.9 s-1; at G = 335 s-1, there was significant aggregation but with an initial lag time, aggregation increasing further at G = 1,335 s-1. Without added fibrinogen, aggregation was abolished at all G upon incubation with the hexapeptide GRGDSP, but was almost unaffected by addition of an F(ab')2 fragment of an antibody to human fibrinogen. Aggregation in the absence of added fibrinogen was also observed at 37 degrees C. The activation of the multiple-washed platelets was tested using flow cytometry with the fluorescently labelled monoclonal antibodies FITC-PAC1 and FITC-9F9. It was shown that 57% of single cells in unactivated PRT expressed maximal GPIIb-IIIa fibrinogen receptors (MoAb PAC1) and 54% expressed pre-bound fibrinogen (MoAb 9F9), with further increases on ADP activation. However, incubation with GRGDSP and the F(ab')2 fragment did not inhibit the prebound fibrinogen. Moreover, relatively unactivated cells (8% expressing receptor, 14% prebound fibrinogen), prepared from acidified cPRP by single centrifugation with 50 nM of

  17. Cerenkov emission induced by external beam radiation stimulates molecular fluorescence

    SciTech Connect

    Axelsson, Johan; Davis, Scott C.; Gladstone, David J.; Pogue, Brian W.

    2011-07-15

    Purpose: Cerenkov emission is induced when a charged particle moves faster than the speed of light in a given medium. Both x-ray photons and electrons produce optical Cerenkov photons in everyday radiation therapy of tissue; yet, this phenomenon has never been fully documented. This study quantifies the emissions and also demonstrates that the Cerenkov emission can excite a fluorophore, protoporphyrin IX (PpIX), embedded in biological phantoms. Methods: In this study, Cerenkov emission induced by radiation from a clinical linear accelerator is investigated. Biological mimicking phantoms were irradiated with x-ray photons, with energies of 6 or 18 MV, or electrons at energies 6, 9, 12, 15, or 18 MeV. The Cerenkov emission and the induced molecular fluorescence were detected by a camera or a spectrometer equipped with a fiber optic cable. Results: It is shown that both x-ray photons and electrons, at MeV energies, produce optical Cerenkov photons in tissue mimicking media. Furthermore, we demonstrate that the Cerenkov emission can excite a fluorophore, protoporphyrin IX (PpIX), embedded in biological phantoms. Conclusions: The results here indicate that molecular fluorescence monitoring during external beam radiotherapy is possible.

  18. Inhibitory effects and mechanisms of high molecular-weight phlorotannins from Sargassum thunbergii on ADP-induced platelet aggregation

    NASA Astrophysics Data System (ADS)

    Wei, Yuxi; Wang, Changyun; Li, Jing; Guo, Qi; Qi, Hongtao

    2009-09-01

    We evaluated the effects of high molecular-weight phlorotannins from Sargassum thunbergii (STP) on ADP-induced platelet aggregation and arachidonic acid (AA) metabolism in New Zealand white rabbits and Wistar rats. The inhibition of STP on platelet aggregation was investigated using a turbidimetric method, and the levels of the terminal products of AA metabolism were measured using the corresponding kits for maleic dialdehyde (MDA), thromboxane B2 (TXB2) and 6-keto-prostaglandin F1α (6-keto-PGF1α) by colorimetry and radioimmunoassay, as appropriate. We found that STP could inhibit ADP-induced platelet aggregation, and the inhibitory ratio was 91.50% at the STP concentration of 4.0 mg/mL. Furthermore, STP markedly affected AA metabolism by decreasing the synthesis of MDA ( P<0.01) and increasing the synthesis of 6-keto-PGF1α, thus changing the plasma TXB2/6-keto-PGF1α balance when the platelets were activated ( P<0.01). Therefore, STP altered AA metabolism and these findings partly revealed the molecular mechanism by which STP inhibits ADP-induced platelet aggregation.

  19. Ion-induced electron emission microscopy

    DOEpatents

    Doyle, Barney L.; Vizkelethy, Gyorgy; Weller, Robert A.

    2001-01-01

    An ion beam analysis system that creates multidimensional maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the secondary electrons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted secondary electrons are collected in a strong electric field perpendicular to the sample surface and (optionally) projected and refocused by the electron lenses found in a photon emission electron microscope, amplified by microchannel plates and then their exact position is sensed by a very sensitive X Y position detector. Position signals from this secondary electron detector are then correlated in time with nuclear, atomic or electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these secondary electrons in the fit place.

  20. Induced growth of dendrite gold nanostructure by controlling self-assembly aggregation dynamics.

    PubMed

    Abdellatif, M H; Abdelrasoul, G N; Scarpellini, A; Marras, S; Diaspro, A

    2015-11-15

    Self-assembly of gold nanoparticles (AuNPs) is an important growth mode for fabricating functional materials. In this work we report a dendrite structure formed by slowing down the aggregation dynamics of AuNPs self-assembly. The obtained results show that the aggregation dynamics is dominated by the Reaction Limited Aggregation Model (RLA) more than the Diffusion Limited Aggregation Model (DLA). In which the repulsion due to electrostatic forces is dominant by the Van Der Walls attraction forces, and low sticking probability of nanoparticles. The aggregation dynamics of AuNPs can be slowed down if the water evaporation of the drop casted colloidal AuNPs on a quartz substrate is slowed. Slowing down the evaporation allows electrostatic repulsion forces to decrease gradually. At certain point, the attraction forces become higher than the electrostatic repulsion and hence cluster aggregation take place slowly. The slow aggregation dynamics allows the nanoparticles to sample all possible orientation in the sticking site, searching for the lowest energy configuration. The size distribution of the nanoparticles in liquid is confirmed using dynamic light scattering based on Stokes-Einstein equation for diffusion coefficient in water. X-ray and photoluminescence (PL) spectra of the sample after aggregation showed a shift which is related to the aggregation compared with non-aggregated colloidal nanoparticles in the solution. The study shows that dendrite self similar structure can be formed by slowing down the aggregation dynamics of nanoparticles as a result of minimizing the Helmholtz free surface energy of the system. PMID:26233557

  1. Self-organization and photo-induced formation of cyanine dye aggregates on the plasmonic Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Starovoytov, Anton A.; Nabiullina, Rezida D.; Toropov, Nikita A.

    2016-04-01

    The optical properties of hybrid film based on plasmon Ag nanoparticles of different size and cyanine dyes with different length of conjugation chain depending on the relative position of the plasmon resonance and the absorption of organic molecules were studied. The absorption spectra of the films revealed several molecular forms, such as all-trans- and cisisomers, dimers and J-aggregate, which also exist in pure organic films without Ag nanoparticles. It's shown that the absorption of aggregate bands increased after exposure by nanosecond laser on the hybrid films due to photo-induced additional self-organization of aggregates. In the presence of Ag nanoparticles, laser radiation leads to the change of molecular forms at a comparatively low threshold.

  2. Membrane aggregation and perturbation induced by antimicrobial peptide of S-thanatin

    SciTech Connect

    Wu, Guoqiu; Wu, Hongbin; Li, Linxian; Fan, Xiaobo; Ding, Jiaxuan; Li, Xiaofang; Xi, Tao; Shen, Zilong

    2010-04-23

    Thanatin, a 21-residue peptide, is an inducible insect peptide. In our previous study, we have identified a novel thanatin analog of S-thanatin, which exhibited a broad antimicrobial activity against bacteria and fungi with low hemolytic activity. This study was aimed to delineate the antimicrobial mechanism of S-thanatin and identify its interaction with bacterial membranes. In this study, membrane phospholipid was found to be the target for S-thanatin. In the presence of vesicles, S-thanatin interestingly led to the aggregation of anionic vesicles and sonicated bacteria. Adding S-thanatin to Escherichia coli suspension would result in the collapse of membrane and kill bacteria. The sensitivity assay of protoplast elucidated the importance of outer membrane (OM) for S-thanatin's antimicrobial activity. Compared with other antimicrobial peptide, S-thanatin produced chaotic membrane morphology and cell debris in electron microscopic appearance. These results supported our hypothesis that S-thanatin bound to negatively charged LPS and anionic lipid, impeded membrane respiration, exhausted the intracellular potential, and released periplasmic material, which led to cell death.

  3. Synthetic Quorum Sensing and Induced Aggregation in Model Microcapsule Colonies with Repressilator Feedback

    NASA Astrophysics Data System (ADS)

    Shum, Henry; Yashin, Victor; Balazs, Anna

    We model a system of synthetic microcapsules that communicate chemically by releasing nanoparticles or signaling molecules. These signaling species bind to receptors on the shells of capsules and modulate the target shell's permeability, thereby controlling nanoparticle release from the target capsule. Using the repressilator regulatory network motif, whereby three species suppress the production of the next in a cyclic fashion, we show that large amplitude oscillations in nanoparticle release can emerge when many capsules are close together. This exemplifies quorum sensing, which is the ability of cells to gauge their population density and collectively initiate a new behavior once a critical density is reached. We present a physically realizable model in which the oscillations exhibited in crowded populations induce aggregation of the microcapsules, mimicking complex biological behavior of the slime mold Dictyostelium discoideum with only simple, synthetic components. We also show that the clusters can be dispersed and reformed repeatedly and controllably by addition of chemical stimuli, demonstrating possible applications in creating reconfigurable or programmable materials.

  4. The Effect of Surface Induced Flows on Bubble and Particle Aggregation

    NASA Technical Reports Server (NTRS)

    Guelcher, Scott A.; Solomentsev, Yuri E.; Anderson, John L.; Boehmer, Marcel; Sides, Paul J.

    1999-01-01

    Almost 20 years have elapsed since a phenomenon called "radial specific coalescence" was identified. During studies of electrolytic oxygen evolution from the back side of a vertically oriented, transparent tin oxide electrode in alkaline electrolyte, one of the authors (Sides) observed that large "collector" bubbles appeared to attract smaller bubbles. The bubbles moved parallel to the surface of the electrode, while the electric field was normal to the electrode surface. The phenomenon was reported but not explained. More recently self ordering of latex particles was observed during electrophoretic deposition at low DC voltages likewise on a transparent tin oxide electrode. As in the bubble work, the field was normal to the electrode while the particles moved parallel to it. Fluid convection caused by surface induced flows (SIF) can explain these two apparently different experimental observations: the aggregation of particles on an electrode during electrophoretic deposition, and a radial bubble coalescence pattern on an electrode during electrolytic gas evolution. An externally imposed driving force (the gradient of electrical potential or temperature), interacting with the surface of particles or bubbles very near a planar conducting surface, drives the convection of fluid that causes particles and bubbles to approach each other on the electrode.

  5. Thermally-induced aggregation and fusion of protein-free lipid vesicles.

    PubMed

    Ibarguren, Maitane; Bomans, Paul H H; Ruiz-Mirazo, Kepa; Frederik, Peter M; Alonso, Alicia; Goñi, Félix M

    2015-12-01

    Membrane fusion is an important phenomenon in cell biology and pathology. This phenomenon can be modeled using vesicles of defined size and lipid composition. Up to now fusion models typically required the use of chemical (polyethyleneglycol, cations) or enzymatic catalysts (phospholipases). We present here a model of lipid vesicle fusion induced by heat. Large unilamellar vesicles consisting of a phospholipid (dioleoylphosphatidylcholine), cholesterol and diacylglycerol in a 43:57:3 mol ratio were employed. In this simple system, fusion was the result of thermal fluctuations, above 60 °C. A similar system containing phospholipid and cholesterol but no diacylglycerol was observed to aggregate at and above 60 °C, in the absence of fusion. Vesicle fusion occurred under our experimental conditions only when (31)P NMR and cryo-transmission electron microscopy of the lipid mixtures used in vesicle preparation showed non-lamellar lipid phase formation (hexagonal and cubic). Non-lamellar structures are probably the result of lipid reassembly of the products of individual fusion events, or of fusion intermediates. A temperature-triggered mechanism of lipid reassembly might have occurred at various stages of protocellular evolution.

  6. Enhanced hydrophobicity of polyurethane via non-solvent induced surface aggregation of silica nanoparticles.

    PubMed

    Seyfi, Javad; Hejazi, Iman; Jafari, Seyed Hassan; Khonakdar, Hossein Ali; Simon, Frank

    2016-09-15

    Fabrication of superhydrophobic surfaces from hydrophilic polymers has always been regarded as a challenge. In this study, to achieve superhydrophobic polyurethane (PU) surfaces, silica nanoparticles and ethanol as non-solvent were simultaneously utilized during a solution casting-based process. Such modified version of phase separation process was found to be highly efficient, and also it required much lower concentration of nanoparticles to achieve superhydrophobicity as compared to the previously reported methods in the literature. According to the proposed mechanism, non-solvent induces a more profound aggregation of silica nanoparticles at the surface's top layer causing the surface energy to be highly diminished, and thus, the water repellency is improved. Morphology and topography results showed that a unique "triple-sized" structure was formed on the surface of superhydrophobic samples. X-ray photoelectron spectroscopy results proved that both PU macromolecules and silica nanoparticles were concurrently present at the surface layer of the superhydrophobic sample. It was concluded that surface composition and roughness could be regarded as competing factors in achieving superhydrophobicity. Based on the obtained results, the proposed method exhibits a promising potential in large-scale fabrication of surface layers with superhydrophobic property. Moreover, a mechanism was also presented to further explicate the physics behind the suggested method. PMID:27288577

  7. Small heat shock proteins protect against {alpha}-synuclein-induced toxicity and aggregation

    SciTech Connect

    Outeiro, Tiago Fleming; Klucken, Jochen; Strathearn, Katherine E.; Liu Fang; Nguyen, Paul; Rochet, Jean-Christophe; Hyman, Bradley T.; McLean, Pamela J. . E-mail: touteiro@partners.org

    2006-12-22

    Protein misfolding and inclusion formation are common events in neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD) or Huntington's disease (HD). {alpha}-Synuclein (aSyn) is the main protein component of inclusions called Lewy bodies (LB) which are pathognomic of PD, Dementia with Lewy bodies (DLB), and other diseases collectively known as LB diseases. Heat shock proteins (HSPs) are one class of the cellular quality control system that mediate protein folding, remodeling, and even disaggregation. Here, we investigated the role of the small heat shock proteins Hsp27 and {alpha}B-crystallin, in LB diseases. We demonstrate, via quantitative PCR, that Hsp27 messenger RNA levels are {approx}2-3-fold higher in DLB cases compared to control. We also show a corresponding increase in Hsp27 protein levels. Furthermore, we found that Hsp27 reduces aSyn-induced toxicity by {approx}80% in a culture model while {alpha}B-crystallin reduces toxicity by {approx}20%. In addition, intracellular inclusions were immunopositive for endogenous Hsp27, and overexpression of this protein reduced aSyn aggregation in a cell culture model.

  8. Vascular pentraxin 3 controls arterial thrombosis by targeting collagen and fibrinogen induced platelets aggregation

    PubMed Central

    Bonacina, F.; Barbieri, S.S.; Cutuli, L.; Amadio, P.; Doni, A.; Sironi, M.; Tartari, S.; Mantovani, A.; Bottazzi, B.; Garlanda, C.; Tremoli, E.; Catapano, A.L.; Norata, G.D.

    2016-01-01

    Aim The long pentraxin PTX3 plays a non-redundant role during acute myocardial infarction, atherosclerosis and in the orchestration of tissue repair and remodeling during vascular injury, clotting and fibrin deposition. The aim of this work is to investigate the molecular mechanisms underlying the protective role of PTX3 during arterial thrombosis. Methods and results PTX3 KO mice transplanted with bone marrow from WT or PTX3 KO mice presented a significant reduction in carotid artery blood flow following FeCl3 induced arterial thrombosis (− 80.36 ± 11.5% and − 95.53 ± 4.46%), while in WT mice transplanted with bone marrow from either WT or PTX3 KO mice, the reduction was less dramatic (− 45.55 ± 1.37% and − 53.39 ± 9.8%), thus pointing to a protective effect independent of a hematopoietic cell's derived PTX3. By using P-selectin/PTX3 double KO mice, we further excluded a role for P-selectin, a target of PTX3 released by neutrophils, in vascular protection played by PTX3. In agreement with a minor role for hematopoietic cell-derived PTX3, platelet activation (assessed by flow cytometric expression of markers of platelet activation) was similar in PTX3 KO and WT mice as were haemostatic properties. Histological analysis indicated that PTX3 localizes within the thrombus and the vessel wall, and specific experiments with the N-terminal and the C-terminal PTX3 domain showed the ability of PTX3 to selectively dampen either fibrinogen or collagen induced platelet adhesion and aggregation. Conclusion PTX3 interacts with fibrinogen and collagen and, by dampening their pro-thrombotic effects, plays a protective role during arterial thrombosis. PMID:26976330

  9. Comparison of Tooth Discoloration Induced by Calcium-Enriched Mixture and Mineral Trioxide Aggregate

    PubMed Central

    Rouhani, Armita; Akbari, Majid; Farhadi-faz, Aida

    2016-01-01

    Introduction: The aim of this in vitro study was to evaluate the tooth discoloration induced by calcium-enriched mixture (CEM) cement and mineral trioxide aggregate (MTA). Methods and Materials: Forty five endodontically treated human maxillary central incisors were selected and divided into three groups (n=15) after removing the coronal 3 mm of the obturating materials. In the MTA group, white MTA plug was placed in pulp chamber and coronal zone of the root canal. In CEM cement group, CEM plug was placed in the tooth in the same manner. In both groups, a wet cotton pellet was placed in the access cavity and the teeth were temporarily sealed. After 24 h the teeth were restored with resin composite. In the negative control group the teeth were also restored with resin composite. The color change in the cervical third of teeth was measured with a colorimeter and was repeated 3 times for each specimen. The teeth were kept in artificial saliva for 6 months. After this period, the color change was measured again. Data were collected by Commission International de I'Eclairage's L*a*b color values, and corresponding ΔE values were calculated. The results were analyzed using the one-way ANOVA and post-hoc Tukey’s test with the significance level defined as 0.05. Results: There was no significant differences between CEM group and control group in mean discoloration. The mean tooth discoloration in MTA group was significantly greater than CEM and control groups (P<0.05). Conclusion: According to the result of the present study CEM cement did not induce tooth discoloration after six months. Therefore it can be used in vital pulp therapy of esthetically sensitive teeth. PMID:27471526

  10. Rosin Surfactant QRMAE Can Be Utilized as an Amorphous Aggregate Inducer: A Case Study of Mammalian Serum Albumin.

    PubMed

    Ishtikhar, Mohd; Chandel, Tajjali Ilm; Ahmad, Aamir; Ali, Mohd Sajid; Al-Lohadan, Hamad A; Atta, Ayman M; Khan, Rizwan Hasan

    2015-01-01

    Quaternary amine of diethylaminoethyl rosin ester (QRMAE), chemically synthesized biocompatible rosin based cationic surfactant, has various biological applications including its use as a food product additive. In this study, we examined the amorphous aggregation behavior of mammalian serum albumins at pH 7.5, i.e., two units above their isoelectric points (pI ~5.5), and the roles played by positive charge and hydrophobicity of exogenously added rosin surfactant QRMAE. The study was carried out on five mammalian serum albumins, using various spectroscopic methods, dye binding assay, circular dichroism and electron microscopy. The thermodynamics of the binding of mammalian serum albumins to cationic rosin modified surfactant were established using isothermal titration calorimetry (ITC). It was observed that a suitable molar ratio of protein to QRMAE surfactant enthusiastically induces amorphous aggregate formation at a pH above two units of pI. Rosin surfactant QRMAE-albumins interactions revealed a unique interplay between the initial electrostatic and the subsequent hydrophobic interactions that play an important role towards the formation of hydrophobic interactions-driven amorphous aggregate. Amorphous aggregation of proteins is associated with varying diseases, from the formation of protein wine haze to the expansion of the eye lenses in cataract, during the expression and purification of recombinant proteins. This study can be used for the design of novel biomolecules or drugs with the ability to neutralize factor(s) responsible for the aggregate formation, in addition to various other industrial applications.

  11. Rosin Surfactant QRMAE Can Be Utilized as an Amorphous Aggregate Inducer: A Case Study of Mammalian Serum Albumin

    PubMed Central

    Ishtikhar, Mohd; Chandel, Tajjali Ilm; Ahmad, Aamir; Ali, Mohd Sajid; Al-lohadan, Hamad A.; Atta, Ayman M.; Khan, Rizwan Hasan

    2015-01-01

    Quaternary amine of diethylaminoethyl rosin ester (QRMAE), chemically synthesized biocompatible rosin based cationic surfactant, has various biological applications including its use as a food product additive. In this study, we examined the amorphous aggregation behavior of mammalian serum albumins at pH 7.5, i.e., two units above their isoelectric points (pI ~5.5), and the roles played by positive charge and hydrophobicity of exogenously added rosin surfactant QRMAE. The study was carried out on five mammalian serum albumins, using various spectroscopic methods, dye binding assay, circular dichroism and electron microscopy. The thermodynamics of the binding of mammalian serum albumins to cationic rosin modified surfactant were established using isothermal titration calorimetry (ITC). It was observed that a suitable molar ratio of protein to QRMAE surfactant enthusiastically induces amorphous aggregate formation at a pH above two units of pI. Rosin surfactant QRMAE-albumins interactions revealed a unique interplay between the initial electrostatic and the subsequent hydrophobic interactions that play an important role towards the formation of hydrophobic interactions-driven amorphous aggregate. Amorphous aggregation of proteins is associated with varying diseases, from the formation of protein wine haze to the expansion of the eye lenses in cataract, during the expression and purification of recombinant proteins. This study can be used for the design of novel biomolecules or drugs with the ability to neutralize factor(s) responsible for the aggregate formation, in addition to various other industrial applications. PMID:26418451

  12. Thiosemicarbazone modification of 3-acetyl coumarin inhibits Aβ peptide aggregation and protect against Aβ-induced cytotoxicity.

    PubMed

    Ranade, Dnyanesh S; Bapat, Archika M; Ramteke, Shefali N; Joshi, Bimba N; Roussel, Pascal; Tomas, Alain; Deschamps, Patrick; Kulkarni, Prasad P

    2016-10-01

    Aggregation of amyloid β peptide (Aβ) is an important event in the progression of Alzheimer's disease. Therefore, among the available therapeutic approaches to fight with disease, inhibition of Aβ aggregation is widely studied and one of the promising approach for the development of treatments for Alzheimer's disease. Thiosemicarbazone compounds are known for their variety of biological activities. However, the potential of thiosemicarbazone compounds towards inhibition of Aβ peptide aggregation and the subsequent toxicity is little explored. Herein, we report synthesis and x-ray crystal structure of novel compound 3-acetyl coumarin thiosemicarbazone and its efficacy toward inhibition of Aβ(1-42) peptide aggregation. Our results indicate that 3-acetyl coumarin thiosemicarbazone inhibits Aβ(1-42) peptide aggregation up to 80% compared to the parent 3-acetyl coumarin which inhibits 52%. Further, 3-acetyl coumarin thiosemicarbazone provides neuroprotection against Aβ-induced cytotoxicity in SH-SY5Y cell line. These findings indicate that thiosemicarbazone modification renders 3-acetyl coumarin neuroprotective properties.

  13. Milk protein suspensions enriched with three essential minerals: Physicochemical characterization and aggregation induced by a novel enzymatic pool.

    PubMed

    Lombardi, Julia; Spelzini, Darío; Corrêa, Ana Paula Folmer; Brandelli, Adriano; Risso, Patricia; Boeris, Valeria

    2016-04-01

    Structural changes of casein micelles and their aggregation induced by a novel enzymatic pool isolated from Bacillus spp. in the presence of calcium, magnesium or zinc were investigated. The effect of cations on milk protein structure was studied using fluorescence and dynamic light scattering. In the presence of cations, milk protein structure rearrangements and larger casein micelle size were observed. The interaction of milk proteins with zinc appears to be of a different nature than that with calcium or magnesium. Under the experimental conditions assayed, the affinity of each cation for some groups present in milk proteins seems to play an important role, besides electrostatic interaction. On the other hand, the lowest aggregation times were achieved at the highest calcium and zinc concentrations (15 mM and 0.25 mM, respectively). The study found that the faster the aggregation of casein micelles, the less compact the gel matrix obtained. Cation concentrations affected milk protein aggregation kinetics and the structure of the aggregates formed.

  14. The role of thiol oxidative stress response in heat-induced protein aggregate formation during thermotolerance in Bacillus subtilis.

    PubMed

    Runde, Stephanie; Molière, Noël; Heinz, Anja; Maisonneuve, Etienne; Janczikowski, Armgard; Elsholz, Alexander K W; Gerth, Ulf; Hecker, Michael; Turgay, Kürşad

    2014-03-01

    Using Bacillus subtilis as a model organism, we investigated thermotolerance development by analysing cell survival and in vivo protein aggregate formation in severely heat-shocked cells primed by a mild heat shock. We observed an increased survival during severe heat stress, accompanied by a strong reduction of heat-induced cellular protein aggregates in cells lacking the ClpXP protease. We could demonstrate that the transcription factor Spx, a regulatory substrate of ClpXP, is critical for the prevention of protein aggregate formation because its regulon encodes redox chaperones, such as thioredoxin, required for protection against thiol-specific oxidative stress. Consequently B. subtilis cells grown in the absence of oxygen were more protected against severe heat shock and much less protein aggregates were detected compared to aerobically grown cells. The presented results indicate that in B. subtilis Spx and its regulon plays not only an important role for oxidative but also for heat stress response and thermotolerance development. In addition, our experiments suggest that the protection of misfolded proteins from thiol oxidation during heat shock can be critical for the prevention of cellular protein aggregation in vivo.

  15. Rosin Surfactant QRMAE Can Be Utilized as an Amorphous Aggregate Inducer: A Case Study of Mammalian Serum Albumin.

    PubMed

    Ishtikhar, Mohd; Chandel, Tajjali Ilm; Ahmad, Aamir; Ali, Mohd Sajid; Al-Lohadan, Hamad A; Atta, Ayman M; Khan, Rizwan Hasan

    2015-01-01

    Quaternary amine of diethylaminoethyl rosin ester (QRMAE), chemically synthesized biocompatible rosin based cationic surfactant, has various biological applications including its use as a food product additive. In this study, we examined the amorphous aggregation behavior of mammalian serum albumins at pH 7.5, i.e., two units above their isoelectric points (pI ~5.5), and the roles played by positive charge and hydrophobicity of exogenously added rosin surfactant QRMAE. The study was carried out on five mammalian serum albumins, using various spectroscopic methods, dye binding assay, circular dichroism and electron microscopy. The thermodynamics of the binding of mammalian serum albumins to cationic rosin modified surfactant were established using isothermal titration calorimetry (ITC). It was observed that a suitable molar ratio of protein to QRMAE surfactant enthusiastically induces amorphous aggregate formation at a pH above two units of pI. Rosin surfactant QRMAE-albumins interactions revealed a unique interplay between the initial electrostatic and the subsequent hydrophobic interactions that play an important role towards the formation of hydrophobic interactions-driven amorphous aggregate. Amorphous aggregation of proteins is associated with varying diseases, from the formation of protein wine haze to the expansion of the eye lenses in cataract, during the expression and purification of recombinant proteins. This study can be used for the design of novel biomolecules or drugs with the ability to neutralize factor(s) responsible for the aggregate formation, in addition to various other industrial applications. PMID:26418451

  16. Thiosemicarbazone modification of 3-acetyl coumarin inhibits Aβ peptide aggregation and protect against Aβ-induced cytotoxicity.

    PubMed

    Ranade, Dnyanesh S; Bapat, Archika M; Ramteke, Shefali N; Joshi, Bimba N; Roussel, Pascal; Tomas, Alain; Deschamps, Patrick; Kulkarni, Prasad P

    2016-10-01

    Aggregation of amyloid β peptide (Aβ) is an important event in the progression of Alzheimer's disease. Therefore, among the available therapeutic approaches to fight with disease, inhibition of Aβ aggregation is widely studied and one of the promising approach for the development of treatments for Alzheimer's disease. Thiosemicarbazone compounds are known for their variety of biological activities. However, the potential of thiosemicarbazone compounds towards inhibition of Aβ peptide aggregation and the subsequent toxicity is little explored. Herein, we report synthesis and x-ray crystal structure of novel compound 3-acetyl coumarin thiosemicarbazone and its efficacy toward inhibition of Aβ(1-42) peptide aggregation. Our results indicate that 3-acetyl coumarin thiosemicarbazone inhibits Aβ(1-42) peptide aggregation up to 80% compared to the parent 3-acetyl coumarin which inhibits 52%. Further, 3-acetyl coumarin thiosemicarbazone provides neuroprotection against Aβ-induced cytotoxicity in SH-SY5Y cell line. These findings indicate that thiosemicarbazone modification renders 3-acetyl coumarin neuroprotective properties. PMID:26232353

  17. Cyclosporine A and MnTMPyP Alleviate α-Synuclein Expression and Aggregation in Cypermethrin-Induced Parkinsonism.

    PubMed

    Agrawal, Sonal; Dixit, Anubhuti; Singh, Ashish; Tripathi, Pratibha; Singh, Dhirendra; Patel, Devendra Kumar; Singh, Mahendra Pratap

    2015-12-01

    Cypermethrin induces the mitochondrial dysfunction and oxidative damage to the nigrostriatal dopaminergic neurons leading to Parkinsonism in rats. Despite α-synuclein aggregation is reported to be critical in Parkinson's disease, its role and alliance with the mitochondrial dysfunction and oxidative damage leading to cypermethrin-induced Parkinsonism have not yet been deciphered. The present study aimed to examine the effect of cypermethrin on the expression and aggregation of α-synuclein and its subsequent connection with oxidative damage and mitochondrial dysfunction leading to the nigrostriatal dopaminergic neurodegeneration in the presence or absence of a mitochondrial membrane transition pore opening inhibitor, cyclosporine A and a superoxide dismutase/catalase mimetic, manganese (III) tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride (MnTMPyP). The expression of α-synuclein, 3-nitrotyrosine (3-NT), 4-hydroxynonenal (4-HNE)-modified proteins, mitochondrial dysfunction-dependent apoptotic proteins, nitrite content, lipid peroxidation (LPO) and number of tyrosine hydroxylase (TH)-positive neurons were estimated in the substantia nigra and dopamine content in the striatum of control and treated rats employing standard procedures. Cypermethrin augmented the expression of α-synuclein, 3-NT, 4-HNE-modified proteins, caspase-3, mitochondrial Bax and cytosolic cytochrome-c along with nitrite and LPO and reduced the expression of cytosolic Bax, mitochondrial cytochrome-c, dopamine and number of TH-positive neurons. Cyclosporine A or MnTMPyP alleviated the expression and aggregation of α-synuclein along with indicators of the mitochondrial dysfunction, oxidative damage and dopaminergic neurodegeneration. The results demonstrate that cypermethrin induces α-synuclein expression and aggregation while cyclosporine A or MnTMPyP rescues from α-synuclein over-expression and aggregation along with the mitochondrial dysfunction and oxidative damage leading to

  18. Staphylococcal enterotoxin B initiates protein kinase C translocation and eicosanoid metabolism while inhibiting thrombin-induced aggregation in human platelets.

    PubMed

    Tran, Uyen; Boyle, Thomas; Shupp, Jeffrey W; Hammamieh, Rasha; Jett, Marti

    2006-08-01

    Staphylococcal enterotoxin (SE) B, a heat-stable toxin secreted by Staphylococcus aureus, has been implicated in the pathogenesis and exacerbation of several critical illnesses. It has been hypothesized that enterotoxins may interact with blood products such as platelets, in addition to T-lymphocytes and renal proximal tubule cells. The aim of this present study was to elucidate whether SEB directly alters human platelet function. Human platelet rich plasma (PRP) was pre-incubated with SEA, SEB, SEC or TSST-1, (at various concentrations and incubation times). After incubation, PRP was exposed to thrombin and aggregation was assessed. Incubation with all toxins tested resulted in decreased aggregation, specifically; exposure to 10mu g/ml of SEB for 30 min caused a 20% decrease and a 49% decrease at 90 min. A similar reduction in aggregation was seen in samples incubated with phorbol myristate acetate, a known stimulator of protein kinase C (PKC). Further, platelets exposed to SEB exhibited an increased plasma membrane PKC activity. Sphingosine, an inhibitor of PKC proved to block the SEB-induced reduction in aggregation. SEB effects on platelet metabolism were investigated using high performance liquid chromatography showing up to a 2-fold increase of active metabolites lipoxin A4 and 12-HETE, as compared to control. These data indicate that SEB is able to induce platelet dysfunction, and these effects may be mediated through activation of PKC.

  19. Differential inhibition of tumour cell-induced platelet aggregation by the nicotinate aspirin prodrug (ST0702) and aspirin

    PubMed Central

    Medina, Carlos; Harmon, Shona; Inkielewicz, Iwona; Santos-Martinez, Maria Jose; Jones, Michael; Cantwell, Paula; Bazou, Despina; Ledwidge, Mark; Radomski, Marek W; Gilmer, John F

    2012-01-01

    BACKGROUND AND PURPOSE Tumour cell-induced platelet aggregation (TCIPA) facilitates cancer cell invasion, angiogenesis and the formation of metastatic foci. TCIPA can be modulated by pharmacological inhibitors of MMP-2 and ADP; however, the COX inhibitor aspirin did not prevent TCIPA. In this study, we have tested the pharmacological effects of a new group of isosorbide-based aspirin prodrugs on TCIPA. EXPERIMENTAL APPROACH TCIPA was induced in human platelets by mixing with human adenocarcinoma or fibrosarcoma cells under no flow and flow conditions. The release of gelatinases and P-selectin expression during TCIPA were studied by zymography and flow cytometry respectively. KEY RESULTS Tumour cells caused platelet aggregation. This aggregation resulted in the release of MMP-2 and a significant up-regulation of P-selectin on platelets, indicative of platelet activation. Pharmacological modulation of TCIPA revealed that ST0702, one of the aspirin prodrugs, down-regulated TCIPA while aspirin was ineffective. The deacetylated metabolite of ST0702, 5-nicotinate salicylate (ST0702 salicylate), down-regulated both ADP-stimulated platelet aggregation and TCIPA. CONCLUSIONS AND IMPLICATIONS Our results show that ST0702 was an effective inhibitor of TCIPA in vitro. Its deacetylated metabolite may contribute to the effects of ST0702 by inhibiting ADP-mediated TCIPA. PMID:22122360

  20. Staphylococcal enterotoxin B initiates protein kinase C translocation and eicosanoid metabolism while inhibiting thrombin-induced aggregation in human platelets.

    PubMed

    Tran, Uyen; Boyle, Thomas; Shupp, Jeffrey W; Hammamieh, Rasha; Jett, Marti

    2006-08-01

    Staphylococcal enterotoxin (SE) B, a heat-stable toxin secreted by Staphylococcus aureus, has been implicated in the pathogenesis and exacerbation of several critical illnesses. It has been hypothesized that enterotoxins may interact with blood products such as platelets, in addition to T-lymphocytes and renal proximal tubule cells. The aim of this present study was to elucidate whether SEB directly alters human platelet function. Human platelet rich plasma (PRP) was pre-incubated with SEA, SEB, SEC or TSST-1, (at various concentrations and incubation times). After incubation, PRP was exposed to thrombin and aggregation was assessed. Incubation with all toxins tested resulted in decreased aggregation, specifically; exposure to 10mu g/ml of SEB for 30 min caused a 20% decrease and a 49% decrease at 90 min. A similar reduction in aggregation was seen in samples incubated with phorbol myristate acetate, a known stimulator of protein kinase C (PKC). Further, platelets exposed to SEB exhibited an increased plasma membrane PKC activity. Sphingosine, an inhibitor of PKC proved to block the SEB-induced reduction in aggregation. SEB effects on platelet metabolism were investigated using high performance liquid chromatography showing up to a 2-fold increase of active metabolites lipoxin A4 and 12-HETE, as compared to control. These data indicate that SEB is able to induce platelet dysfunction, and these effects may be mediated through activation of PKC. PMID:16550298

  1. Ionizing Radiation Induces Macrophage Foam Cell Formation and Aggregation Through JNK-Dependent Activation of CD36 Scavenger Receptors

    SciTech Connect

    Katayama, Ikuo; Hotokezaka, Yuka; Matsuyama, Toshifumi; Sumi, Tadateru; Nakamura, Takashi

    2008-03-01

    Purpose: Irradiated arteries of cancer patients can be associated with atherosclerosis-like lesions containing cholesterol-laden macrophages (foam cells). Endothelial cell damage by irradiation does not completely explain the foam cell formation. We investigated the possible underlying mechanisms for ionizing radiation (IR)-induced foam cell formation. Methods and Materials: Human peripheral blood monocytes were activated by macrophage colony-stimulating factor and then treated with varying doses of IR in vitro in the absence of endothelial cells. Scavenger receptor expression and foam cell formation of IR-treated macrophages were investigated in the presence or absence of oxidized low-density lipoprotein. We also assessed the importance of mitogen-activated protein kinase activity in the macrophage colony-stimulating factor-activated human monocytes (macrophages) for the foam cell formation. Results: We found that IR treatment of macrophage colony-stimulating factor-activated human peripheral blood monocytes resulted in the enhanced expression of CD36 scavenger receptors and that cholesterol accumulated in the irradiated macrophages with resultant foam cell formation in the presence of oxidized low-density lipoprotein. Furthermore, when cultured on collagen gels, human macrophages formed large foam cell aggregates in response to IR. Antibodies against CD36 inhibited the IR-induced foam cell formation and aggregation, indicating that the IR-induced foam cell formation and the subsequent aggregation are dependent on functional CD36. In addition, we found that IR of human macrophages resulted in c-Jun N-terminal kinase activation and that c-Jun N-terminal kinase inhibition suppressed IR-induced CD36 expression and the subsequent foam cell formation and aggregation. Conclusion: Taken together, these results suggest that IR-induced foam cell formation is mediated by c-Jun N-terminal kinase-dependent CD36 activation.

  2. The effect of negative pressure aging on the aggregation of Cu2O nanoparticles and its application to laser induced copper electrode fabrication.

    PubMed

    Lee, H S; Yang, M Y

    2015-02-14

    The aggregation and dispersion of nanoparticles are critical problems in selective laser sintering. In this study, negative pressure aging was applied to resolve the aggregation of nanoparticles and a metal oxide reduction method used to make a well-dispersed nanoparticles in solvent. As a result, metal oxide nanoparticles were synthesized according to a grade of the aggregation and aging conditions found to provide well-dispersed nanoparticles in solvent with less re-dissolution of the nanoparticles. Furthermore, a coating quality and characteristics of laser induced sintering were analyzed according to the grade of the aggregation. The coating quality was affected by the aggregation and the statistical dispersion of nanoparticles. The coating deposited by particles with a wide statistical dispersion has a better quality when compared with the coating prepared from particles with a narrow dispersion. The quality of laser sintered electrode depends on the aggregation but the dependency of the aggregation diminishes as the irradiation of the laser power is decreased.

  3. Lamin aggregation is an early sensor of porphyria-induced liver injury.

    PubMed

    Singla, Amika; Griggs, Nicholas W; Kwan, Raymond; Snider, Natasha T; Maitra, Dhiman; Ernst, Stephen A; Herrmann, Harald; Omary, M Bishr

    2013-07-15

    Oxidative liver injury during steatohepatitis results in aggregation and transglutaminase-2 (TG2)-mediated crosslinking of the keratin cytoplasmic intermediate filament proteins (IFs) to form Mallory-Denk body (MDB) inclusions. The effect of liver injury on lamin nuclear IFs is unknown, though lamin mutations in several human diseases result in lamin disorganization and nuclear shape changes. We tested the hypothesis that lamins undergo aggregation during oxidative liver injury using two MDB mouse models: (i) mice fed the porphyrinogenic drug 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) and (ii) mice that harbor a mutation in ferrochelatase (fch), which converts protoporphyrin IX to heme. Dramatic aggregation of lamin A/C and B1 was noted in the livers of both models in association with changes in lamin organization and nuclear shape, as determined by immunostaining and electron microscopy. The lamin aggregates sequester other nuclear proteins including transcription factors and ribosomal and nuclear pore components into high molecular weight complexes, as determined by mass-spectrometry and confirmed biochemically. Lamin aggregate formation is rapid and precedes keratin aggregation in fch livers, and is seen in liver explants of patients with alcoholic cirrhosis. Exposure of cultured cells to DDC, protoporphyrin IX or N-methyl-protoporphyrin, or incubation of purified lamins with protoporphyrin IX, also results in lamin aggregation. In contrast, lamin aggregation is ameliorated by TG2 inhibition. Therefore, lamin aggregation is an early sensor of porphyria-associated liver injury and might serve to buffer oxidative stress. The nuclear shape and lamin defects associated with porphyria phenocopy the changes seen in laminopathies and could result in transcriptional alterations due to sequestration of nuclear proteins.

  4. N114S mutation causes loss of ATP-induced aggregation of human phosphoribosylpyrophosphate synthetase 1

    SciTech Connect

    Liu Honglin; Peng, Xiaohui; Zhao Fang; Zhang Guobin; Tao Ye; Luo Zhaofeng; Li Yang; Teng Maikun; Li Xu Wei Shiqiang

    2009-02-20

    This study examined recombinant wild-type human phosphoribosylpyrophosphate synthetase 1 (wt-PRS1, EC 2.7.6.1) and the point mutant Asn114Ser PRS1 (N114S-Mutant) in cells of a patient with primary gout. Dynamic light-scattering and sedimentation velocity experiments indicated that the monomeric wt-PRS1 in solution was assembled into hexamers after adding the substrate ATP. However, this ATP-induced aggregation effect was not observed with N114S-Mutant, which has a 50% higher enzymatic activity than that of wt-PRS1. Synchrotron radiation circular dichroism spectroscopy revealed that the point mutation causes an increase of {alpha}-helix content and a decrease of turn content. Examination of the crystal structure of wt-PRS1 indicated that 12 hydrogen bonds formed by 6 pairs of N114 and D139 have an important role in stabilizing the hexamer. We suggest that the substitution of S114 for N114 in N114S-Mutant leads to the rupture of 12 hydrogen bonds and breakage of the PO{sub 4}{sup 3-} allosteric site where PO{sub 4}{sup 3-} functions as a fixer of the ATP-binding loop. Therefore, we consider that formation of the hexamer as the structural basis of the ADP allosteric inhibition is greatly weakened by the N114S mutation, and that alteration of the ATP-binding loop conformation is the key factor in the increased activity of N114S-Mutant. These two factors could be responsible for the high level of activity of N114S-Mutant in this patient.

  5. Heat-induced aggregation of thylakoid membranes affect their interfacial properties.

    PubMed

    Östbring, Karolina; Rayner, Marilyn; Albertsson, Per-Åke; Erlanson-Albertsson, Charlotte

    2015-04-01

    Many of our most popular lipid containing foods are in emulsion form. These foods are often highly palatable with high caloric density, that subsequently increases the risk of overconsumption and possibly lead to obesity. Regulating the lipid bioavailability of high-fat foods is one approach to prevent overconsumption. Thylakoids, the chloroplast membrane, creates a barrier around lipid droplets, which prolong lipolysis and increase satiety as demonstrated both in animal and human studies. However, a reduced lipase inhibiting capacity has been reported after heat treatment but the mechanism has not yet been fully established. The aim of this study was to investigate thylakoids' emulsifying properties post heat-treatment and possible links to alterations in lipase inhibiting capacity and chlorophyll degradation. Heat-treatment of thylakoids at either 60 °C, 75 °C or 90 °C for time interval ranging from 15 s to 4 min reduced ability to stabilise emulsions, having increased lipid droplets sizes, reduced emulsification capacity, and elevated surface load as consequence. Emulsifying properties were also found to display a linear relationship to both chlorophyll and lipase inhibiting capacity. The correlations support the hypothesis that heat-treatment induce chlorophyll degradation which promote aggregation within proteins inside the thylakoid membrane known to play a decisive role in interfacial processes. Therefore, heat-treatment of thylakoids affects both chlorophyll content, lipase inhibiting capacity and ability to stabilise the oil-water interface. Since the thylakoid's appetite reducing properties are a surface-related phenomenon, the results are useful to optimize the effect of thylakoids as an appetite reducing agent.

  6. Prompt Emission in Fission Induced with Fast Neutrons

    NASA Astrophysics Data System (ADS)

    Wilson, J. N.; Lebois, M.; Halipré, P.; Oberstedt, S.; Oberstedt, A.

    Prompt gamma-ray and neutron emission data in fission integrates a large amount of information on the fission process and can shed light on the partition of energy. Measured emission spectra, average energies and multiplicities also provide important information for energy applications. While current reactors mostly use thermal neutron spectra, the future reactors of Generation IV will use fast neutron spectra for which little experimental prompt emission data exist. Initial investigations on prompt emission in fast neutron induced fission have recently been carried out at the LICORNE facility at the IPN Orsay, which exploits inverse reactions to produce naturally collimated, intense beams of neutrons. We report on first results with LICORNE to measure prompt fission gamma-ray spectra, average energies and multiplicities for 235U and 238U. Current improvements and upgrades being carried out on the LICORNE facility will also be described, including the development of a H2 gas target to reduce parasitic backgrounds and increase intensities, and the deployment of 11B beams to extend the effective LICORNE neutron energy range up to 12 MeV. Prospects for future experimental studies of prompt gamma-ray and neutron emission in fast neutron induced fission will be presented.

  7. Identification and characterization of a collagen-induced platelet aggregation inhibitor, triplatin, from salivary glands of the assassin bug, Triatoma infestans.

    PubMed

    Morita, Akihiro; Isawa, Haruhiko; Orito, Yuki; Iwanaga, Shiroh; Chinzei, Yasuo; Yuda, Masao

    2006-07-01

    To facilitate feeding, certain hematophagous invertebrates possess inhibitors of collagen-induced platelet aggregation in their saliva. However, their mechanisms of action have not been fully elucidated. Here, we describe two major salivary proteins, triplatin-1 and -2, from the assassin bug, Triatoma infestans, which inhibited platelet aggregation induced by collagen but not by other agents including ADP, arachidonic acid, U46619 and thrombin. Furthermore, these triplatins also inhibited platelet aggregation induced by collagen-related peptide, a specific agonist of the major collagen-signaling receptor glycoprotein (GP)VI. Moreover, triplatin-1 inhibited Fc receptor gamma-chain phosphorylation induced by collagen, which is the first step of GPVI-mediated signaling. These results strongly suggest that triplatins target GPVI and inhibit signal transduction necessary for platelet activation by collagen. This is the first report on the mechanism of action of collagen-induced platelet aggregation inhibitors from hematophagus invertebrates. PMID:16759235

  8. Size-Resolved Density Measurements of Particulate Emissions from an Advanced Combustion Diesel Engine: Effect of Aggregate Morphology

    SciTech Connect

    Barone, Teresa L; Storey, John Morse; Prikhodko, Vitaly Y; Parks, II, James E

    2011-01-01

    We report the first in situ size-resolved density measurements of particles produced by premixed charge compression ignition (PCCI) and compare these with conventional diesel particles. The densities of size-classified particles were determined by measurements with a differential mobility analyzer (DMA) and an aerosol particle mass analyzer (APM). Particle masses of the different size classes were evaluated with a proposed DMA-APM response function for aggregates. Our results indicate that the effective densities of PCCI and conventional diesel particles were approximately the same for 50 and 100 nm electrical mobility diameters (0.9 and 0.6 g/cc, respectively), but the PCCI particle effective density (0.4 g/cc) was less than the conventional (0.5 g/cc) for 150 nm. The lowest effective particle densities were observed for exhaust gas recirculation (EGR) levels somewhat less than that required for PCCI operation. The inherent densities of conventional particles in the 50 and 100 nm size classes were 1.22 and 1.77 g/cc, which is in good agreement with Park et al. (2004). PCCI inherent particle densities for these same size classes were higher (1.27 and 2.10 g/cc), suggesting that there may have been additional adsorbed liquid hydrocarbons. For 150 nm particles, the inherent densities were nearly the same for PCCI and conventional particles at 2.20 g/cc. We expect that the lower effective density of PCCI particles may improve particulate emissions control with diesel particulate filters (DPFs). The presence of liquid hydrocarbons may also promote oxidation in DPFs.

  9. Chemical properties of lipids strongly affect the kinetics of the membrane-induced aggregation of α-synuclein

    PubMed Central

    Brown, James W. P.; Ouberai, Myriam M.; Flagmeier, Patrick; Vendruscolo, Michele; Buell, Alexander K.; Sparr, Emma; Dobson, Christopher M.

    2016-01-01

    Intracellular α-synuclein deposits, known as Lewy bodies, have been linked to a range of neurodegenerative disorders, including Parkinson’s disease. α-Synuclein binds to synthetic and biological lipids, and this interaction has been shown to play a crucial role for both α-synuclein’s native function, including synaptic plasticity, and the initiation of its aggregation. Here, we describe the interplay between the lipid properties and the lipid binding and aggregation propensity of α-synuclein. In particular, we have observed that the binding of α-synuclein to model membranes is much stronger when the latter is in the fluid rather than the gel phase, and that this binding induces a segregation of the lipids into protein-poor and protein-rich populations. In addition, α-synuclein was found to aggregate at detectable rates only when interacting with membranes composed of the most soluble lipids investigated here. Overall, our results show that the chemical properties of lipids determine whether or not the lipids can trigger the aggregation of α-synuclein, thus affecting the balance between functional and aberrant behavior of the protein. PMID:27298346

  10. Adherent-Invasive Escherichia coli Production of Cellulose Influences Iron-Induced Bacterial Aggregation, Phagocytosis, and Induction of Colitis.

    PubMed

    Ellermann, Melissa; Huh, Eun Young; Liu, Bo; Carroll, Ian M; Tamayo, Rita; Sartor, R Balfour

    2015-10-01

    Adherent-invasive Escherichia coli (AIEC), a functionally distinct subset of resident intestinal E. coli associated with Crohn's disease, is characterized by enhanced epithelial adhesion and invasion, survival within macrophages, and biofilm formation. Environmental factors, such as iron, modulate E. coli production of extracellular structures, which in turn influence the formation of multicellular communities, such as biofilms, and bacterial interactions with host cells. However, the physiological and functional responses of AIEC to variable iron availability have not been thoroughly investigated. We therefore characterized the impact of iron on the physiology of AIEC strain NC101 and subsequent interactions with macrophages. Iron promoted the cellulose-dependent aggregation of NC101. Bacterial cells recovered from the aggregates were more susceptible to phagocytosis than planktonic cells, which corresponded with the decreased macrophage production of the proinflammatory cytokine interleukin-12 (IL-12) p40. Prevention of aggregate formation through the disruption of cellulose production reduced the phagocytosis of iron-exposed NC101. In contrast, under iron-limiting conditions, where NC101 aggregation is not induced, the disruption of cellulose production enhanced NC101 phagocytosis and decreased macrophage secretion of IL-12 p40. Finally, abrogation of cellulose production reduced NC101 induction of colitis when NC101 was monoassociated in inflammation-prone Il10(-/-) mice. Taken together, our results introduce cellulose as a novel physiological factor that impacts host-microbe-environment interactions and alters the proinflammatory potential of AIEC.

  11. Aggregation-induced reversal of transport distances of soil organic matter: are our balances correct?

    NASA Astrophysics Data System (ADS)

    Hu, Yaxian; Kuhn, Nikolaus

    2014-05-01

    The effect of soil erosion on global carbon cycling, especially as a source or sink of green-house gases (GHGs), is the subject of intense debate. The controversy arises mostly from the lack of information on the fate of eroded soil organic carbon (SOC) as it moves from the site of erosion to the site of longer-term deposition. This requires improved understanding the transport distances of eroded SOC, which is principally related to the settling velocities of sediment fractions that carry the eroded SOC. For aggregated soils, settling velocities are affected by their actual aggregate size rather than the mineral grain size distribution. Aggregate stability is, in turn, strongly influenced by soil organic matter. This study aims at identifying the effect of aggregation on the transport distances of eroded SOC and its susceptibility to mineralization after transport and deposition. A rainfall simulation was carried out on a silty loam soil. The eroded sediments were fractionated by a settling tube apparatus into six different size classes according to their settling velocities and likely transport distances. Weight, SOC concentration and instantaneous respiration rates of the fractions of the six classes were measured. Our results show that: 1) 41% of the eroded SOC was transported with coarse aggregates that would be likely re-distributed across landscapes; 2) erosion was prone to accelerate the mineralization of eroded organic carbon immediately after erosion, compared to undisturbed aggregates; 3) erosion might make a higher contribution to atmospheric CO2 than the estimation made without considering the effects of aggregation and extra SOC mineralization during transport.

  12. Thermal Stress Induced Aggregation of Aquaporin 0 (AQP0) and Protection by α-Crystallin via Its Chaperone Function

    PubMed Central

    Swamy-Mruthinti, Satyanarayana; Srinivas, Volety; Hansen, John E.; Rao, Ch Mohan

    2013-01-01

    Aquaporin 0 (AQP0) formerly known as membrane intrinsic protein (MIP), is expressed exclusively in the lens during terminal differentiation of fiber cells. AQP0 plays an important role not only in the regulation of water content but also in cell-to-cell adhesion of the lens fiber cells. We have investigated the thermal stress-induced structural alterations of detergent (octyl glucoside)-solubilized calf lens AQP0. The results show an increase in the amount of AQP0 that aggregated as the temperature increased from 40°C to 65°C. α-Crystallin, molecular chaperone abundantly present in the eye lens, completely prevented the AQP0 aggregation at a 1∶1 (weight/weight) ratio. Since α-crystallin consists of two gene products namely αA- and αB-crystallins, we have tested the recombinant proteins on their ability to prevent thermal-stress induced AQP0 aggregation. In contrast to the general observation made with other target proteins, αA-crystallin exhibited better chaperone-like activity towards AQP0 compared to αB-crystallin. Neither post-translational modifications (glycation) nor C-terminus truncation of AQP0 have any appreciable effect on its thermal aggregation properties. α-Crystallin offers similar protection against thermal aggregation as in the case of the unmodified AQP0, suggesting that αcrystallin may bind to either intracellular loops or other residues of AQP0 that become exposed during thermal stress. Far-UV circular dichroism studies indicated a loss of αhelical structures when AQP0 was subjected to temperatures above 45°C, and the presence of α-crystallin stabilized these secondary structures. We report here, for the first time, that α-crystallin protects AQP0 from thermal aggregation. Since stress-induced structural perturbations of AQP0 may affect the integrity of the lens, presence of the molecular chaperone, α-crystallin (particularly αA-crystallin) in close proximity to the lens membrane is physiologically relevant. PMID:24312215

  13. Dynamic light scattering investigations of nanoparticle aggregation following a light-induced pH jump.

    PubMed

    Murphy, Ryan J; Pristinski, Denis; Migler, Kalman; Douglas, Jack F; Prabhu, Vivek M

    2010-05-21

    There are many important processes where the stability of nanoparticles can change due to changes in solution environment. These processes are often difficult to study under controlled changes to the solution conditions. Dynamic light scattering was used to measure the initial kinetics of aggregation of carboxylated polystyrene nanoparticles after well-defined pH jumps using aqueous solutions of photoacid generator (PAG). With this approach, the pH of the solution was controlled by exposure to ultraviolet (UV) light without the delays from mixing or stirring. The aggregation kinetics of the nanoparticles was extremely sensitive to the solution pH. The UV exposure dose is inversely correlated with the resulting surface charge of the nanoparticles. Decreasing pH decreases the electrostatic repulsion force between particles and leads to aggregation. The reaction-limited or diffusion-limited aggregation kinetics was sensitive to the pH quench depth, relative to the acid-equilibrium constant (pK(a)) of the surface carboxylic acid groups on the nanoparticles. Since numerous PAGs are commercially available, this approach provides a flexible method to study the aggregation of a variety of solvent-dispersed nanoparticle systems. PMID:20499988

  14. Role of benzyl alcohol in the prevention of heat-induced aggregation and inactivation of hen egg white lysozyme.

    PubMed

    Goyal, Monu Kumari; Roy, Ipsita; Banerjee, Uttam Chand; Sharma, Vikas Kumar; Bansal, Arvind Kumar

    2009-02-01

    The aim of the study was to investigate the stability of a model protein, lysozyme, in the presence of the commonly used preservative benzyl alcohol. Techniques including lytic assay, size exclusion chromatography, circular dichroism, differential scanning calorimetry, native polyacrylamide gel electrophoresis and dynamic light scattering were used to study the overall stability of lysozyme in the presence of benzyl alcohol. The stability of lysozyme against thermal stress was higher in the presence of benzyl alcohol. In the presence of 0.5%, 0.9% and 2% v/v benzyl alcohol, the enzyme showed 33%, 42% and 75% residual activity, respectively, when exposed to 75 degrees C for 2 h, as compared to the 22% activity of control sample. A gradual increase in the size of aggregates was observed for the control sample relative to the samples containing benzyl alcohol, as a result of loss of monomer concentration. The effect was found to be concentration-dependent with 2% benzyl alcohol showing maximum prevention of heat-induced unfolding and aggregation. This effect is remarkable since the thermal transition temperature of the enzyme decreases in the presence of benzyl alcohol. Benzyl alcohol favours the thermal denaturation of lysozyme but stabilizes the lysozyme against the heat-induced aggregation.

  15. Aggregation of soy protein-isoflavone complexes and gel formation induced by glucono-δ-lactone in soymilk

    PubMed Central

    Hsia, Sheng-Yang; Hsiao, Yu-Hsuan; Li, Wen-Tai; Hsieh, Jung-Feng

    2016-01-01

    This study investigated the glucono-δ-lactone (GDL)-induced aggregation of isoflavones and soy proteins in soymilk. High-performance liquid chromatography (HPLC) analysis indicated that isoflavones mixed with β-conglycinin (7S) and glycinin (11S) proteins formed 7S-isoflavone and 11S-isoflavone complexes in soymilk supernatant fraction (SSF). Most of the soy protein-isoflavone complexes then precipitated into the soymilk pellet fraction (SPF) following the addition of 4 mM GDL, whereupon the pH value of the soymilk dropped from 6.6 to 5.9. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and HPLC analysis suggest that the addition of 4 mM GDL induced the aggregation of most 7S (α’, α and β subunits), 11S acidic and 11S basic proteins as well as isoflavones, including most aglycones, including daidzein, glycitein, genistein and a portion of glucosides, including daidzin, glycitin, genistin, malonyldaidzin and malonylgenistin. These results provide an important reference pertaining to the effects of GDL on the aggregation of soy protein-isoflavone complexes and could benefit future research regarding the production of tofu from soymilk. PMID:27760990

  16. Obsidian hydration profiles measured by sputter-induced optical emission.

    PubMed

    Tsong, I S; Houser, C A; Yusef, N A; Messier, R F; White, W B; Michels, J W

    1978-07-28

    The variation of concentrations of hydrogen, sodium, potassium, lithium, calcium, magnesium, silicon, and aluminum as a function of depth in the hydration layer of obsidian artifacts has been determined by sputter-induced optical emission. The surface hydration is accompanied by dealkalization, and there is a buildup of alkaline earths, calcium and magnesium in the outermost layers. These results have clarified the phenomena underlying the obsidian hydration dating technique. PMID:17793728

  17. Obsidian hydration profiles measured by sputter-induced optical emission.

    PubMed

    Tsong, I S; Houser, C A; Yusef, N A; Messier, R F; White, W B; Michels, J W

    1978-07-28

    The variation of concentrations of hydrogen, sodium, potassium, lithium, calcium, magnesium, silicon, and aluminum as a function of depth in the hydration layer of obsidian artifacts has been determined by sputter-induced optical emission. The surface hydration is accompanied by dealkalization, and there is a buildup of alkaline earths, calcium and magnesium in the outermost layers. These results have clarified the phenomena underlying the obsidian hydration dating technique.

  18. Role of amorphous and aggregate phases on field-induced exciton dissociation in a conjugated polymer

    NASA Astrophysics Data System (ADS)

    Mróz, Marta M.; Lüer, Larry; Houarner-Rassin, Coralie; Anderson, Harry L.; Cabanillas-Gonzalez, Juan

    2013-01-01

    We have applied electric field assisted pump-probe spectroscopy in order to unravel the interplay of amorphous and aggregate phases on the polaron-pair photogeneration process in a conjugated porphyrin polymer. We find that excitons photogenerated in both phases are precursors for polaron pairs with different yields. Kinetic modeling indicates a substantially larger barrier for exciton dissociation in aggregates compared to amorphous areas. The majority of polaron pairs are however formed in aggregate phases due to efficient energy transfer from the amorphous phase. Based on the change in the Stark shift associated with the photogenerated polaron density, we provide a picture of the motion of polaron pairs under the external electric field.

  19. Direct observation of electric field induced pattern formation and particle aggregation in ferrofluids

    SciTech Connect

    Rajnak, Michal; Kopcansky, Peter; Timko, Milan; Petrenko, Viktor I.; Avdeev, Mikhail V.; Ivankov, Olexandr I.; Feoktystov, Artem; Dolnik, Bystrik; Kurimsky, Juraj

    2015-08-17

    Ferrofluids typically respond to magnetic fields and can be manipulated by external magnetic fields. Here, we report on formation of visually observable patterns in a diluted low-polarity ferrofluid exposed to external electric fields. This presents a specific type of ferrofluid structure driven by a combined effect of electrohydrodynamics and electrical body forces. The free charge and permittivity variation are considered to play a key role in the observed phenomenon. The corresponding changes in the ferrofluid structure have been found at nanoscale as well. By small-angle neutron scattering (SANS), we show that the magnetic nanoparticles aggregate in direct current (dc) electric field with a strong dependence on the field intensity. The anisotropic aggregates preferably orient in the direction of the applied electric field. Conducting SANS experiments with alternating current (ac) electric fields of various frequencies, we found a critical frequency triggering the aggregation process. Our experimental study could open future applications of ferrofluids based on insulating liquids.

  20. Direct observation of electric field induced pattern formation and particle aggregation in ferrofluids

    NASA Astrophysics Data System (ADS)

    Rajnak, Michal; Petrenko, Viktor I.; Avdeev, Mikhail V.; Ivankov, Olexandr I.; Feoktystov, Artem; Dolnik, Bystrik; Kurimsky, Juraj; Kopcansky, Peter; Timko, Milan

    2015-08-01

    Ferrofluids typically respond to magnetic fields and can be manipulated by external magnetic fields. Here, we report on formation of visually observable patterns in a diluted low-polarity ferrofluid exposed to external electric fields. This presents a specific type of ferrofluid structure driven by a combined effect of electrohydrodynamics and electrical body forces. The free charge and permittivity variation are considered to play a key role in the observed phenomenon. The corresponding changes in the ferrofluid structure have been found at nanoscale as well. By small-angle neutron scattering (SANS), we show that the magnetic nanoparticles aggregate in direct current (dc) electric field with a strong dependence on the field intensity. The anisotropic aggregates preferably orient in the direction of the applied electric field. Conducting SANS experiments with alternating current (ac) electric fields of various frequencies, we found a critical frequency triggering the aggregation process. Our experimental study could open future applications of ferrofluids based on insulating liquids.

  1. Nitric oxide inhibited the melanophore aggregation induced by extracellular calcium concentration in snakehead fish, Channa punctatus.

    PubMed

    Biswas, Saikat P; Palande, Nikhil V; Jadhao, Arun G

    2011-12-01

    We studied the role of nitric oxide (NO) and extra-cellular Ca(2+) on the melanophores in Indian snakehead teleost, Channa punctatus. Increase of Ca(2+) level in the external medium causes pigment aggregation in melanophores. This pigment-aggregating effect was found to be inhibited when the external medium contained spontaneous NO donor, sodium nitro prusside (SNP) at all the levels of concentration tested. Furthermore, it has been observed that SNP keeps the pigment in dispersed state even after increasing the amount of Ca(2+). In order to test whether NO donor SNP causes dispersion of pigments or not is checked by adding the inhibitor of nitric oxide synthase, N-omega-Nitro-L-arginine (L-NNA) in the medium. It has been noted that the inhibitor L-NNA blocked the effect of NO donor SNP causing aggregation of pigments. In that way NO is inhibiting the effect of extracellular Ca(2+), keeping the pigment dispersed.

  2. Elucidation of flow-mediated tumour cell-induced platelet aggregation using an ultrasound standing wave trap

    PubMed Central

    Bazou, D; Santos-Martinez, MJ; Medina, C; Radomski, MW

    2011-01-01

    BACKGROUND AND PURPOSE Tumour cells activate and aggregate platelets [tumour cell-induced platelet aggregation (TCIPA)] and this process plays an important role in the successful metastasis of cancer cells. To date, most studies on TCIPA have been conducted under no-flow conditions. In this study, we have investigated TCIPA in real time under flow conditions, using an ultrasound standing wave trap that allows formation and levitation of cancer cell clusters in suspension, thus mimicking the conditions generated by flowing blood. EXPERIMENTAL APPROACH Using 59M adenocarcinoma and HT1080 fibrosarcoma cells and human platelets, cancer cell cluster–platelet aggregates were imaged in real time using epi-fluorescence microscopy (F-actin) and investigated in detail using confocal microscopy (matrix metalloproteinase-2-GPIIb/IIIa co-localization) and scanning electron and helium-ion microscopy (<1 nm resolution). The release of gelatinases from aggregates was studied using zymography. KEY RESULTS We found that platelet activation and aggregation takes place on the surface of cancer cells (TCIPA), leading to time-dependent disruption of cancer cell clusters. Pharmacological modulation of TCIPA revealed that EDTA, prostacyclin, o-phenanthroline and apyrase significantly down-regulated TCIPA and, in turn, delayed cell cluster disruption, However, EGTA and aspirin were ineffective. Pharmacological inhibition of TCIPA correlated with the down-regulation of platelet activation as shown by flow-cytometry assay of platelet P-selectin. CONCLUSION AND IMPLICATIONS Our results show for the first time, that during TCIPA, platelet activation disrupts cancer cell clusters and this can contribute to metastasis. Thus, selective targeting of platelet aggregate–cancer cell clusters may be an important strategy to control metastasis. PMID:21182493

  3. Inhibition of collagen-induced platelet aggregation by antibodies to distinct types of collagens.

    PubMed Central

    Balleisen, L; Nowack, H; Gay, S; Timpl, R

    1979-01-01

    Aggregation of platelets by fibrils formed from collagens type I, II and III could be inhibited by coating the fibrils with anti-collagen antibodies or Fab fragments. Similar results were obtained in a clot-retraction assay. Inhibition was achieved with stoichiometric amounts of antibodies and was specific for each type of collagen. Aggregation caused by a mixture of type-I and -III collagens could only be inhibited by a mixture of antibodies against both collagens. The data show that each interstitial collagen is capable of interacting with platelets and do not support the concept of an outstanding activity of type-III collagen. Images PLATE 1 PMID:395952

  4. UV-light-induced hydrogen transfer in guanosine-guanosine aggregates.

    PubMed

    Hunger, Katharina; Buschhaus, Laura; Biemann, Lars; Braun, Michaela; Kovalenko, Sergey; Improta, Roberto; Kleinermanns, Karl

    2013-04-22

    Aggregates of a lipophilic guanine (G) derivative have been studied in n-hexane by femtosecond-to-microsecond UV-visible broadband transient absorption, stationary infrared and UV-visible spectroscopy and by quantum chemical calculations. We report the first time-resolved spectroscopic detection of hydrogen transfer in GG aggregates, which leads to (G-H)(·) radicals by means of G(+)G(-) charge transfer followed by proton transfer. These radicals show a characteristic electronic spectrum in the range 300-550 nm. The calculated superimposed spectrum of the species that result from NH⋅⋅⋅N proton transfer agrees best with the experimental spectrum.

  5. Direct Observation of Aggregation-Induced Backbone Conformational Changes in Tau Peptides.

    PubMed

    Jiji, A C; Shine, A; Vijayan, Vinesh

    2016-09-12

    In tau proteins, the hexapeptides in the R2 and R3 repeats are known to initiate tau fibril formation, which causes a class of neurodegenerative diseases called the taupathies. We show that in R3, in addition to the presence of the hexapeptides, the correct turn conformation upstream to it is also essential for producing prion-like fibrils that are capable of propagation. A time-dependent NMR aggregation assay of a slow fibril forming R3-S316P peptide revealed a trans to cis equilibrium shift in the peptide-bond conformation preceding P316 during the growth phase of the aggregation process. S316 was identified as the key residue in the turn that confers templating capacity on R3 fibrils to accelerate the aggregation of the R3-S316P peptide. These results on the specific interactions and conformational changes responsible for tau aggregation could prove useful for developing an efficient therapeutic intervention in Alzheimer's disease. PMID:27513615

  6. UV-induced N2O emission from plants

    NASA Astrophysics Data System (ADS)

    Bruhn, Dan; Albert, Kristian R.; Mikkelsen, Teis N.; Ambus, Per

    2014-12-01

    Nitrous oxide (N2O) is an important long-lived greenhouse gas and precursor of stratospheric ozone-depleting mono-nitrogen oxides. The atmospheric concentration of N2O is persistently increasing; however, large uncertainties are associated with the distinct source strengths. Here we investigate for the first time N2O emission from terrestrial vegetation in response to natural solar ultra violet radiation. We conducted field site measurements to investigate N2O atmosphere exchange from grass vegetation exposed to solar irradiance with and without UV-screening. Further laboratory tests were conducted with a range of species to study the controls and possible loci of UV-induced N2O emission from plants. Plants released N2O in response to natural sunlight at rates of c. 20-50 nmol m-2h-1, mostly due to the UV component. The emission response to UV-A is of the same magnitude as that to UV-B. Therefore, UV-A is more important than UV-B given the natural UV-spectrum at Earth's surface. Plants also emitted N2O in darkness, although at reduced rates. The emission rate is temperature dependent with a rather high activation energy indicative for an abiotic process. The prevailing zone for the N2O formation appears to be at the very surface of leaves. However, only c. 26% of the UV-induced N2O appears to originate from plant-N. Further, the process is dependent on atmospheric oxygen concentration. Our work demonstrates that ecosystem emission of the important greenhouse gas, N2O, may be up to c. 30% higher than hitherto assumed.

  7. Ionic Liquid-Induced Unprecedented Size Enhancement of Aggregates within Aqueous Sodium Dodecylbenzene Sulfonate

    SciTech Connect

    Rai, Rewa; Baker, Gary A; Behera, Kamalakanta; Mohanty, Pravakar; Kurur, Narayanan; Pandey, Siddharth

    2010-01-01

    Physicochemical properties of aqueous micellar solutions may change in the presence of ionic liquids (ILs). Micelles help to increase the aqueous solubility of ILs. The average size of the micellar aggregates within aqueous sodium dodecylbenzene sulfonate (SDBS) is observed by dynamic light scattering (DLS) and transmission electron microscopy (TEM) to increase in a sudden and drastic fashion as the IL 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) is added. Similar addition of [bmim][PF6] to aqueous sodium dodecyl sulfate (SDS) results in only a slow gradual increase in average aggregate size. While addition of the IL [bmim][BF4] also gives rise to sudden aggregate size enhancement within aqueous SDBS, the IL 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF4]), and inorganic salts NaPF6 and NaBF4, only gradually increase the assembly size upon their addition. Bulk dynamic viscosity, microviscosity, dipolarity (indicated by the fluorescent reporter pyrene), zeta potential, and electrical conductance measurements were taken to gain insight into this unusual size enhancement. It is proposed that bmim cations of the IL undergo Coulombic attractive interactions with anionic headgroups at the micellar surface at all [bmim][PF6] concentrations in aqueous SDS; in aqueous SDBS, beyond a critical IL concentration, bmim becomes involved in cation- interaction with the phenyl moiety of SDBS within micellar aggregates with the butyl group aligned along the alkyl chain of the surfactant. This relocation of bmim results in an unprecedented size increase in micellar aggregates. Aromaticity of the IL cation alongside the presence of sufficiently aliphatic (butyl or longer) alkyl chains on the IL appear to be essential for this dramatic critical expansion in self-assembly dimensions within aqueous SDBS.

  8. Emission factors for organic fertilizer-induced N2O emissions from Japanese agricultural soils

    NASA Astrophysics Data System (ADS)

    Sano, T.; Nishina, K.; Sudo, S.

    2013-12-01

    1. Introduction Agricultural fields are significant sources of nitrous oxide (N2O), which is one of the important greenhouse gases with a contribution of 7.9% to the anthropogenic global warming (IPCC, 2007). Direct fertilizer-induced N2O emission from agricultural soil is estimated using the emission factor (EF). National greenhouse gas inventory of Japan defines direct EF for N2O associated with the application of chemical and organic fertilizers as the same value (0.62%) in Japanese agricultural fields. However, it is necessary to estimate EF for organic fertilizers separately, because there are some differences in factors controlling N2O emissions (e.g. nutrient content) between chemical and organic fertilizers. The purpose of this study is to estimate N2O emissions and EF for applied organic fertilizers in Japanese agricultural fields. 2. Materials and Methods We conducted the experiments at 10 prefectural agricultural experimental stations in Japan (Yamagata, Fukushima, Niigata, Ibaraki, Aichi, Shiga, Tokushima, Nagasaki, Kumamoto, and Kagoshima) to consider the variations of cultivation and environmental conditions among regions. Field measurements had been conducted for 2-2.5 years during August 2010-April 2013. Each site set experimental plots with the applications of composted manure (cattle, swine, and poultry), chemical fertilizer, and non-nitrogen fertilizer as a control. The annual amount of applied nitrogen ranged from 16 g-N m-2 y-1 to 60 g-N m-2 y-1 depending on cropping system and cultivated crops (e.g. cabbage, potato) at each site. N2O fluxes were measured using a closed-chamber method. N2O concentrations of gas samples were measured with gas chromatography. The EF value of each fertilizer was calculated as the N2O emission from fertilizer plots minus the background N2O emission (emission from a control plot), and was expressed as a percentage of the applied nitrogen. The soil NH4+ and NO3-, soil temperature, precipitation, and WFPS (water

  9. L X-ray emission induced by heavy ions

    NASA Astrophysics Data System (ADS)

    Pajek, M.; Banaś, D.; Braziewicz, J.; Majewska, U.; Semaniak, J.; Fijał-Kirejczyk, I.; Jaskóła, M.; Czarnacki, W.; Korman, A.; Kretschmer, W.; Mukoyama, T.; Trautmann, D.

    2015-11-01

    Particle-induced X-ray emission (PIXE) technique is usually applied using typically 1 MeV to 3 MeV protons or helium ions, for which the ion-atom interaction is dominated by the single ionization process. For heavier ions the multiple ionization plays an increasingly important role and this process can influence substantially both the X-ray spectra and atomic decay rates. Additionally, the subshell coupling effects are important for the L- and M-shells ionized by heavy ions. Here we discuss the main features of the X-ray emission induced by heavy ions which are important for PIXE applications, namely, the effects of X-ray line shifts and broadening, vacancy rearrangement and change of the fluorescence and Coster-Kronig yields in multiple ionized atoms. These effects are illustrated here by the results of the measurements of L X-ray emission from heavy atoms bombarded by 6 MeV to 36 MeV Si ions, which were reported earlier. The strong L-subshell coupling effects are observed, in particular L2-subshell, which can be accounted for within the coupling subshell model (CSM) developed within the semiclassical approximation. Finally, the prospects to use heavy ions in PIXE analysis are discussed.

  10. Dermcidin isoform-2 induced nullification of the effect of acetyl salicylic acid in platelet aggregation in acute myocardial infarction.

    PubMed

    Bank, Sarbashri; Jana, Pradipta; Maiti, Smarajit; Guha, Santanu; Sinha, A K

    2014-07-24

    The aggregation of platelets on the plaque rupture site on the coronary artery is reported to cause both acute coronary syndromes (ACS) and acute myocardial infarction (AMI). While the inhibition of platelet aggregation by acetyl salicylic acid was reported to produce beneficial effects in ACS, it failed to do in AMI. The concentration of a stress induced protein (dermcidin isoform-2) was much higher in AMI than that in ACS. Incubation of normal platelet rich plasma (PRP) with dermcidin showed one high affinity (Kd = 40 nM) and one low affinity binding sites (Kd = 333 nM). When normal PRP was incubated with 0.4 μM dermcidin, the platelets became resistant to the inhibitory effect of aspirin similar to that in the case of AMI. Incubation of PRP from AMI with dermcidin antibody restored the sensitivity of the platelets to the aspirin effect. Incubation of AMI PRP pretreated with 15 μM aspirin, a stimulator of the NO synthesis, resulted in the increased production of NO in the platelets that removed the bound dermcidin by 40% from the high affinity binding sites of AMI platelets. When the same AMI PRP was retreated with 10 μM aspirin, the aggregation of platelets was completely inhibited by NO synthesis.

  11. ADP-induced platelet aggregation after addition of tramadol in vitro in fed and fasted horses plasma.

    PubMed

    Casella, S; Giannetto, C; Giudice, E; Marafioti, S; Fazio, F; Assenza, A; Piccione, G

    2013-04-01

    Adenosine diphosphate (ADP)-induced platelet aggregation in fed and fasted horses after addition of tramadol hydrochloride was evaluated in vitro. On 10 horses citrated blood samples were collected 2h after feeding (fed animals) and 21 h after feeding (fasted animals). Final concentrations of ADP 1 and 0.5 μM, and tramadol hydrochloride (1, 15, 30, 45 and 60 min after the addition of tramadol) were used to determine the maximum degree and initial velocity of platelet aggregation. Repeated measures multifactor analysis of variance (MANOVA) was used to evaluate the effect of feeding/fasting condition, ADP concentration and addition of tramadol. Findings showed statistical differences (P≤0.05) on studied parameters after addition of tramadol to different ADP concentrations in fed and fasted horses. The clinical relevance of these results is that tramadol provides many advantages as a therapeutic option; in fact, it is an inexpensive and a relatively new analgesic in equine veterinary medicine. Further investigations would be appropriate to compare the effects of different opioids but also using different concentrations of tramadol associated with other drugs in order to have substances which can regulate the functional activity of the platelets and to extend the knowledges on equine platelet aggregation. PMID:23031839

  12. The Kinetics of Dislocation Loop Formation in Ferritic Alloys Through the Aggregation of Irradiation Induced Defects

    NASA Astrophysics Data System (ADS)

    Kohnert, Aaron Anthony

    The mechanical properties of materials are often degraded over time by exposure to irradiation environments, a phenomenon that has hindered the development of multiple nuclear reactor design concepts. Such property changes are the result of microstructural changes induced by the collision of high energy particles with the atoms in a material. The lattice defects generated in these recoil events migrate and interact to form extended damage structures. This study has used theoretical models based on the mean field chemical reaction rate theory to analyze the aggregation of isolated lattice defects into larger microstructural features that are responsible for long term property changes, focusing on the development of black dot damage in ferritic iron based alloys. The purpose of such endeavors is two-fold. Primarily, such models explain and quantify the processes through which these microstructures form. Additionally, models provide insight into the behavior and properties of the point defects and defect clusters which drive general microstructural evolution processes. The modeling effort presented in this work has focused on physical fidelity, drawing from a variety of sources of information to characterize the unobservable defect generation and agglomeration processes that give rise to the observable features reported in experimental data. As such, the models are based not solely on isolated point defect creation, as is the case with many older rate theory approaches, but instead on realistic estimates of the defect cluster population produced in high energy cascade damage events. Experimental assessments of the microstructural changes evident in transmission electron microscopy studies provide a means to measure the efficacy of the kinetic models. Using common assumptions of the mobility of defect clusters generated in cascade damage conditions, an unphysically high density of damage features develops at the temperatures of interest with a temperature dependence

  13. Ethanol and Acetaminophen Synergistically Induce Hepatic Aggregation and TCH346-Insensitive Nuclear Translocation of GAPDH.

    PubMed

    Snider, Natasha T; Portney, Daniel A; Willcockson, Helen H; Maitra, Dhiman; Martin, Hope C; Greenson, Joel K; Omary, M Bishr

    2016-01-01

    The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) signals during cellular stress via several post-translational modifications that change its folding properties, protein-protein interactions and sub-cellular localization. We examined GAPDH properties in acute mouse liver injury due to ethanol and/or acetaminophen (APAP) treatment. Synergistic robust and time-dependent nuclear accumulation and aggregation of GAPDH were observed only in combined, but not individual, ethanol/APAP treatments. The small molecule GAPDH-targeting compound TCH346 partially attenuated liver damage possibly via mitochondrial mechanisms, and independent of nuclear accumulation and aggregation of GAPDH. These findings provide a novel potential mechanism for hepatotoxicity caused by combined alcohol and acetaminophen exposure. PMID:27513663

  14. Bivalent Copper Ions Promote Fibrillar Aggregation of KCTD1 and Induce Cytotoxicity

    PubMed Central

    Liu, Zhepeng; Song, Feifei; Ma, Zhi-li; Xiong, Qiushuang; Wang, Jingwen; Guo, Deyin; Sun, Guihong

    2016-01-01

    Potassium channel tetramerization domain containing 1 (KCTD1) family members have a BTB/POZ domain, which can facilitate protein-protein interactions involved in the regulation of different signaling pathways. KCTD proteins have potential Zn2+/Cu2+ binding sites with currently unknown structural and functional roles. We investigated potential Cu2+-specific effects on KCTD1 using circular dichroism, turbidity measurement, fluorescent dye binding, proteinase K (PK) digestion, cell proliferation and apoptosis assays. These experiments indicate that the KCTD1 secondary structure assumes greater β-sheet content and the proteins aggregate into a PK-resistant form under 20 μM Cu2+, and this β-sheet-rich aggregation with Cu2+ promotes fibril formation, which results in increased cell toxicity by apoptosis. Our results reveal a novel role for Cu2+ in determining the structure and function of KCTD1. PMID:27596723

  15. Bivalent Copper Ions Promote Fibrillar Aggregation of KCTD1 and Induce Cytotoxicity.

    PubMed

    Liu, Zhepeng; Song, Feifei; Ma, Zhi-Li; Xiong, Qiushuang; Wang, Jingwen; Guo, Deyin; Sun, Guihong

    2016-01-01

    Potassium channel tetramerization domain containing 1 (KCTD1) family members have a BTB/POZ domain, which can facilitate protein-protein interactions involved in the regulation of different signaling pathways. KCTD proteins have potential Zn(2+)/Cu(2+) binding sites with currently unknown structural and functional roles. We investigated potential Cu(2+)-specific effects on KCTD1 using circular dichroism, turbidity measurement, fluorescent dye binding, proteinase K (PK) digestion, cell proliferation and apoptosis assays. These experiments indicate that the KCTD1 secondary structure assumes greater β-sheet content and the proteins aggregate into a PK-resistant form under 20 μM Cu(2+), and this β-sheet-rich aggregation with Cu(2+) promotes fibril formation, which results in increased cell toxicity by apoptosis. Our results reveal a novel role for Cu(2+) in determining the structure and function of KCTD1. PMID:27596723

  16. Zinc induces unfolding and aggregation of dimeric arginine kinase by trapping reversible unfolding intermediate.

    PubMed

    Liu, Taotao; Wang, Xicheng

    2010-11-01

    Arginine kinase plays an important role in the cellular energy metabolism of invertebrates. Dimeric arginine kinase (dAK) is unique in some marine invertebrates. The effects of Zn²(+) on the unfolding and aggregation of dAK from the sea cucumber Stichopus japonicus were investigated. Our results indicated that Zn²(+) caused dAK inactivation accompanied by conformational unfolding, the exposure of hydrophobic surface, and aggregation. Kinetic studies showed the inactivation and unfolding of dAK followed biphasic kinetic courses. Zn²(+) can affect unfolding and refolding of dAK by trapping the reversible intermediate. Our study provides important information regarding the effect of Zn²(+) on metabolic enzymes in marine invertebrates.

  17. Ethanol and Acetaminophen Synergistically Induce Hepatic Aggregation and TCH346-Insensitive Nuclear Translocation of GAPDH

    PubMed Central

    Snider, Natasha T.; Portney, Daniel A.; Willcockson, Helen H.; Maitra, Dhiman; Martin, Hope C.; Greenson, Joel K.; Omary, M. Bishr

    2016-01-01

    The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) signals during cellular stress via several post-translational modifications that change its folding properties, protein-protein interactions and sub-cellular localization. We examined GAPDH properties in acute mouse liver injury due to ethanol and/or acetaminophen (APAP) treatment. Synergistic robust and time-dependent nuclear accumulation and aggregation of GAPDH were observed only in combined, but not individual, ethanol/APAP treatments. The small molecule GAPDH-targeting compound TCH346 partially attenuated liver damage possibly via mitochondrial mechanisms, and independent of nuclear accumulation and aggregation of GAPDH. These findings provide a novel potential mechanism for hepatotoxicity caused by combined alcohol and acetaminophen exposure. PMID:27513663

  18. Bivalent Copper Ions Promote Fibrillar Aggregation of KCTD1 and Induce Cytotoxicity.

    PubMed

    Liu, Zhepeng; Song, Feifei; Ma, Zhi-Li; Xiong, Qiushuang; Wang, Jingwen; Guo, Deyin; Sun, Guihong

    2016-01-01

    Potassium channel tetramerization domain containing 1 (KCTD1) family members have a BTB/POZ domain, which can facilitate protein-protein interactions involved in the regulation of different signaling pathways. KCTD proteins have potential Zn(2+)/Cu(2+) binding sites with currently unknown structural and functional roles. We investigated potential Cu(2+)-specific effects on KCTD1 using circular dichroism, turbidity measurement, fluorescent dye binding, proteinase K (PK) digestion, cell proliferation and apoptosis assays. These experiments indicate that the KCTD1 secondary structure assumes greater β-sheet content and the proteins aggregate into a PK-resistant form under 20 μM Cu(2+), and this β-sheet-rich aggregation with Cu(2+) promotes fibril formation, which results in increased cell toxicity by apoptosis. Our results reveal a novel role for Cu(2+) in determining the structure and function of KCTD1.

  19. Electrically induced spontaneous emission in open electronic system

    NASA Astrophysics Data System (ADS)

    Wang, Rulin; Zhang, Yu; Yam, Chiyung; Computation Algorithms Division (CSRC) Team; Theoretical; Computational Chemistry (HKU) Collaboration

    A quantum mechanical approach is formulated for simulation of electroluminescence process in open electronic system. Based on nonequilibrium Green's function quantum transport equations and combining with photon-electron interaction, this method is used to describe electrically induced spontaneous emission caused by electron-hole recombination. The accuracy and reliability of simulation depends critically on correct description of the electronic band structure and the electron occupancy in the system. In this work, instead of considering electron-hole recombination in discrete states in the previous work, we take continuous states into account to simulate the spontaneous emission in open electronic system, and discover that the polarization of emitted photon is closely related to its propagation direction. Numerical studies have been performed to silicon nanowire-based P-N junction with different bias voltage.

  20. Multipion correlations induced by isospin conservation of coherent emission

    NASA Astrophysics Data System (ADS)

    Gangadharan, Dhevan

    2016-11-01

    Recent measurements have revealed a significant suppression of multipion Bose-Einstein correlations in heavy-ion collisions at the LHC. The suppression may be explained by postulating coherent pion emission. Typically, the suppression of Bose-Einstein correlations due to coherence is taken into account with the coherent state formalism in quantum optics. However, since charged pion correlations are most often measured, the additional constraint of isospin conservation, which is absent in quantum optics, needs to be taken into account. As a consequence, correlations emerge between pions of opposite charge. A calculation of the correlations induced by isospin conservation of coherent emission is made for two, three- and four-pion correlation functions and compared to the data from the LHC.

  1. Tertiary nitrogen heterocyclic material to reduce moisture-induced damage in asphalt-aggregate mixtures

    DOEpatents

    Plancher, Henry; Petersen, Joseph C.

    1982-01-01

    Asphalt-aggregate roads crack when subjected to freezing and thawing cycles. Herein, the useful life of asphalts are substantially improved by a minor amount of a moisture damage inhibiting agent selected from compounds having a pyridine moiety, including acid salts of such compounds. A shale oil fraction may serve as the source of the improving agent and may simply be blended with conventional petroleum asphalts.

  2. Glutathione-induced aggregation of gold nanoparticles: electromagnetic interactions in a closely packed assembly.

    PubMed

    Basu, Soumen; Pal, Tarasankar

    2007-06-01

    Gold nanoparticles of variable sizes have been prepared by reducing HAuCl4 with trisodium citrate by Frens' method. The synthesized gold particles show intense surface plasmon band in the visible region. The optical resonances in the visible are due to the surface plasmon oscillation, which is a function of geometry of the particles. The work reported here describes the interaction between nanoscale gold particles and a biomolecule, glutathione at low pH. Glutathione, which is a major cellular antioxidant and consists of amino acids glutamic acid, cysteine, and glycine, has been used as a molecular linker between the gold nanoparticles. In glutathione, the reactivity of the a-amines (adjacent to -COOH) is found to be pH-dependent. Linking via the a-amines are activated at low pH but suppressed at high pH due to electrostatic repulsive forces between the gold surfaces and the charged carboxylate groups. In colloidal solutions, the colour of gold nanoparticles may range from red to purple to blue, depending on the degree of aggregation as well as orientation of the individual particles within the aggregates. The citrate-functionalized gold nanoparticles with glutathione in variable acidic pH condition produce different but well-ordered aggregates. It is observed that a new peak appearing at a longer wavelength intensifies and shifts further to the red from the original peak position depending on the particle size, concentration of glutathione, and pH of the solution. The aggregates have been characterized by UV/Vis, FTIR, XRD, and TEM. On the basis of the first appearance of a clearly defined new peak at longer wavelength, a higher sensitivity of glutathione detection has been achieved with gold nanoparticles of larger dimension.

  3. TOPICAL REVIEW: Polyelectrolyte-induced aggregation of liposomes: a new cluster phase with interesting applications

    NASA Astrophysics Data System (ADS)

    Bordi, F.; Sennato, S.; Truzzolillo, D.

    2009-05-01

    Different charged colloidal particles have been shown to be able to self-assemble, when mixed in an aqueous solvent with oppositely charged linear polyelectrolytes, forming long-lived finite-size mesoscopic aggregates. On increasing the polyelectrolyte content, with the progressive reduction of the net charge of the primary polyelectrolyte-decorated particles, larger and larger clusters are observed. Close to the isoelectric point, where the charge of the adsorbed polyelectrolytes neutralizes the original charge of the particles' surface, the aggregates reach their maximum size, while beyond this point any further increase of the polyelectrolyte-particle charge ratio causes the formation of aggregates whose size is progressively reduced. This re-entrant condensation behavior is accompanied by a significant overcharging. Overcharging, or charge inversion, occurs when more polyelectrolyte chains adsorb on a particle than are needed to neutralize its original charge so that, eventually, the sign of the net charge of the polymer-decorated particle is inverted. The stability of the finite-size long-lived clusters that this aggregation process yields results from a fine balance between long-range repulsive and short-range attractive interactions, both of electrostatic nature. For the latter, besides the ubiquitous dispersion forces, whose supply becomes relevant only at high ionic strength, the main contribution appears due to the non-uniform correlated distribution of the charge on the surface of the polyelectrolyte-decorated particles ('charge-patch' attraction). The interesting phenomenology shown by these system has a high potential for biotechnological applications, particularly when the primary colloidal particles are bio-compatible lipid vesicles. Possible applications of these systems as multi-compartment vectors for the simultaneous intra-cellular delivery of different pharmacologically active substances will be briefly discussed.

  4. Tertiary nitrogen heterocyclic material to reduce moisture-induced damage in asphalt-aggregate mixtures

    SciTech Connect

    Petersen, J.C.; Plancher, H.

    1982-04-20

    Asphalt-aggregate roads crack when subjected to freezing and thawing cycles. Herein, the useful life of asphalts are substantially improved by a minor amount of a moisture damage inhibiting agent selected from compounds having a pyridine moiety , including acid salts of such compounds. A shale oil fraction may serve as the source of the improving agent and may simply be blended with conventional petroleum asphalts.

  5. Insights into Kinetics of Agitation-Induced Aggregation of Hen Lysozyme under Heat and Acidic Conditions from Various Spectroscopic Methods.

    PubMed

    Chaari, Ali; Fahy, Christine; Chevillot-Biraud, Alexandre; Rholam, Mohamed

    2015-01-01

    Protein misfolding and amyloid formation are an underlying pathological hallmark in a number of prevalent diseases of protein aggregation ranging from Alzheimer's and Parkinson's diseases to systemic lysozyme amyloidosis. In this context, we have used complementary spectroscopic methods to undertake a systematic study of the self-assembly of hen egg-white lysozyme under agitation during a prolonged heating in acidic pH. The kinetics of lysozyme aggregation, monitored by Thioflavin T fluorescence, dynamic light scattering and the quenching of tryptophan fluorescence by acrylamide, is described by a sigmoid curve typical of a nucleation-dependent polymerization process. Nevertheless, we observe significant differences between the values deduced for the kinetic parameters (lag time and aggregation rate). The fibrillation process of lysozyme, as assessed by the attenuated total reflection-Fourier transform infrared spectroscopy, is accompanied by an increase in the β-sheet conformation at the expense of the α-helical conformation but the time-dependent variation of the content of these secondary structures does not evolve as a gradual transition. Moreover, the tryptophan fluorescence-monitored kinetics of lysozyme aggregation is described by three phases in which the temporal decrease of the tryptophan fluorescence quantum yield is of quasilinear nature. Finally, the generated lysozyme fibrils exhibit a typical amyloid morphology with various lengths (observed by atomic force microscopy) and contain exclusively the full-length protein (analyzed by highly performance liquid chromatography). Compared to the data obtained by other groups for the formation of lysozyme fibrils in acidic pH without agitation, this work provides new insights into the structural changes (local, secondary, oligomeric/fibrillar structures) undergone by the lysozyme during the agitation-induced formation of fibrils. PMID:26571264

  6. Insights into Kinetics of Agitation-Induced Aggregation of Hen Lysozyme under Heat and Acidic Conditions from Various Spectroscopic Methods

    PubMed Central

    Chaari, Ali; Fahy, Christine; Chevillot-Biraud, Alexandre; Rholam, Mohamed

    2015-01-01

    Protein misfolding and amyloid formation are an underlying pathological hallmark in a number of prevalent diseases of protein aggregation ranging from Alzheimer’s and Parkinson’s diseases to systemic lysozyme amyloidosis. In this context, we have used complementary spectroscopic methods to undertake a systematic study of the self-assembly of hen egg-white lysozyme under agitation during a prolonged heating in acidic pH. The kinetics of lysozyme aggregation, monitored by Thioflavin T fluorescence, dynamic light scattering and the quenching of tryptophan fluorescence by acrylamide, is described by a sigmoid curve typical of a nucleation-dependent polymerization process. Nevertheless, we observe significant differences between the values deduced for the kinetic parameters (lag time and aggregation rate). The fibrillation process of lysozyme, as assessed by the attenuated total reflection-Fourier transform infrared spectroscopy, is accompanied by an increase in the β-sheet conformation at the expense of the α-helical conformation but the time-dependent variation of the content of these secondary structures does not evolve as a gradual transition. Moreover, the tryptophan fluorescence-monitored kinetics of lysozyme aggregation is described by three phases in which the temporal decrease of the tryptophan fluorescence quantum yield is of quasilinear nature. Finally, the generated lysozyme fibrils exhibit a typical amyloid morphology with various lengths (observed by atomic force microscopy) and contain exclusively the full-length protein (analyzed by highly performance liquid chromatography). Compared to the data obtained by other groups for the formation of lysozyme fibrils in acidic pH without agitation, this work provides new insights into the structural changes (local, secondary, oligomeric/fibrillar structures) undergone by the lysozyme during the agitation-induced formation of fibrils. PMID:26571264

  7. Fibrin formation by staphylothrombin facilitates Staphylococcus aureus-induced platelet aggregation.

    PubMed

    Vanassche, Thomas; Kauskot, Alexandre; Verhaegen, Jan; Peetermans, Willy E; van Ryn, Joanne; Schneewind, Olaf; Hoylaerts, Marc F; Verhamme, Peter

    2012-06-01

    Interactions of Staphylococcus aureus (S. aureus) and platelets play an important role in the pathogenesis of intravascular infections such as infective endocarditis (IE). A typical feature of S. aureus is the ability to generate thrombin activity through the secretion of two prothrombin activating molecules, staphylocoagulase and von Willebrand factor-binding protein (vWbp), which bind to human prothrombin to form the enzymatically active staphylothrombin complex. The role of staphylothrombin in the interaction between S. aureus and platelets has not yet been studied. We found that in contrast with thrombin, staphylothrombin did not directly activate human platelets. However, the staphylothrombin-mediated conversion of fibrinogen to fibrin initiated platelet aggregation and secondary activation and facilitated S. aureus-platelet interactions. Both the genetic absence of staphylocoagulase and vWbp and pharmacological inhibition of staphylothrombin increased the lag time to aggregation, and reduced platelet trapping by S. aureus in high shear stress conditions. The combined inhibition of staphylothrombin and immunoglobulin binding to platelets completely abolished the ability of S. aureus to aggregate platelets in vitro. In conclusion, although staphylothrombin did not directly activate platelets, the formation of a fibrin scaffold facilitated bacteria-platelet interaction, and the inhibition of staphylothrombin resulted in a reduced activation of platelets by S. aureus. PMID:22437005

  8. A serotonin-induced N-glycan switch regulates platelet aggregation

    PubMed Central

    Mercado, Charles P.; Quintero, Maritza V.; Li, Yicong; Singh, Preeti; Byrd, Alicia K.; Talabnin, Krajang; Ishihara, Mayumi; Azadi, Parastoo; Rusch, Nancy J.; Kuberan, Balagurunathan; Maroteaux, Luc; Kilic, Fusun

    2013-01-01

    Serotonin (5-HT) is a multifunctional signaling molecule that plays different roles in a concentration-dependent manner. We demonstrated that elevated levels of plasma 5-HT accelerate platelet aggregation resulting in a hypercoagulable state in which the platelet surface becomes occupied by several glycoproteins. Here we study the novel hypothesis that an elevated level of plasma 5-HT results in modification of the content of N-glycans on the platelet surface and this abnormality is associated with platelet aggregation. Mass spectrometry of total surface glycoproteins on platelets isolated from wild-type mice infused for 24 hours with saline or 5-HT revealed that the content of glycoproteins on platelets from 5-HT-infused mice switched from predominantly N-acetyl-neuraminic acid (Neu5Ac) to N-glycolyl-neuraminic acid (Neu5Gc). Cytidine monophosphate-N-acetylneuraminate hydroxylase (CMAH) synthesizes Neu5Gc from Neu5Ac. Up-regulation of Neu5Gc content on the platelet surface resulted from an increase in the catalytic function, not expression, of CMAH in platelets of 5-HT-infused mice. The highest level of Neu5Gc was observed in platelets of 5-HT-infused, 5-HT transporter-knock out mice, suggesting that the surface delineated 5-HT receptor on platelets may promote CMAH catalytic activity. These new findings link elevated levels of plasma 5-HT to altered platelet N-glycan content, a previously unrecognized abnormality that may favor platelet aggregation. PMID:24077408

  9. Predictive response surface model for heat-induced rheological changes and aggregation of whey protein concentrate.

    PubMed

    Alvarez, Pedro A; Emond, Charles; Gomaa, Ahmed; Remondetto, Gabriel E; Subirade, Muriel

    2015-02-01

    Whey proteins are now far more than a by-product of cheese processing. In the last 2 decades, food manufacturers have developed them as ingredients, with the dairy industry remaining as a major user. For many applications, whey proteins are modified (denatured) to alter their structure and functional properties. The objective of this research was to study the influence of 85 to 100 °C, with protein concentration of 8% to 12%, and treatment times of 5 to 30 min, while measuring rheological properties (storage modulus, loss modulus, and complex viscosity) and aggregation (intermolecular beta-sheet formation) in dispersions of whey protein concentrate (WPC). A Box-Behnken Response Surface Methodology modeled the heat denaturation of liquid sweet WPC at 3 variables and 3 levels. The model revealed a very significant fit for viscoelastic properties, and a lesser fit for protein aggregation, at temperatures not previously studied. An exponential increase of rheological parameters was governed by protein concentration and temperature, while a modest linear relationship of aggregation was governed by temperature. Models such as these can serve as valuable guides to the ingredient and dairy industries to develop target products, as whey is a major ingredient in many functional foods.

  10. Solvents induced ZnO nanoparticles aggregation associated with their interfacial effect on organic solar cells.

    PubMed

    Li, Pandeng; Jiu, Tonggang; Tang, Gang; Wang, Guojie; Li, Jun; Li, Xiaofang; Fang, Junfeng

    2014-10-22

    ZnO nanofilm as a cathode buffer layer has surface defects due to the aggregations of ZnO nanoparticles, leading to poor device performance of organic solar cells. In this paper, we report the ZnO nanoparticles aggregations in solution can be controlled by adjusting the solvents ratios (chloroform vs methanol). These aggregations could influence the morphology of ZnO film. Therefore, compact and homogeneous ZnO film can be obtained to help achieve a preferable power conversion efficiency of 8.54% in inverted organic solar cells. This improvement is attributed to the decreased leakage current and the increased electron-collecting efficiency as well as the improved interface contact with the active layer. In addition, we find the enhanced maximum exciton generation rate and exciton dissociation probability lead to the improvement of device performance due to the preferable ZnO dispersion. Compared to other methods of ZnO nanofilm fabrication, it is the more convenient, moderate, and effective to get a preferable ZnO buffer layer for high-efficiency organic solar cells.

  11. Additive-induced morphological tuning of self-assembled silica-barium carbonate crystal aggregates

    NASA Astrophysics Data System (ADS)

    Kellermeier, Matthias; Glaab, Fabian; Carnerup, Anna M.; Drechsler, Markus; Gossler, Benjamin; Hyde, Stephen T.; Kunz, Werner

    2009-04-01

    Crystallisation of barium carbonate from alkaline silica solutions results in the formation of extraordinary micron-scale architectures exhibiting non-crystallographic curved shapes, such as helical filaments and worm-like braids. These so-called "silica biomorphs" consist of a textured assembly of uniform elongated witherite nanocrystallites, which is occasionally sheathed by a skin of amorphous silica. Although great efforts have been devoted to clarifying the physical origin of these fascinating materials, to date little is known about the processes underlying the observed self-organisation. Herein, we describe the effect of two selected additives, a cationic surfactant and a cationic polymer, on the morphology of the forming crystal aggregates, and relate changes to experiments conducted in the absence of additives. Minor amounts of both substances are shown to exert a significant influence on the growth process, leading to the formation of predominantly flower-like spherulitic aggregates. The observed effects are discussed in terms of feasible morphogenesis pathways. Based on the assumption of a template membrane steering biomorph formation, it is proposed that the two additives are capable of performing specific bridging functions promoting the aggregation of colloidal silica which constitutes the membrane. Morphological changes are tentatively ascribed to varying colloid coordination effecting distinct membrane curvatures.

  12. Varicella-zoster virus induces the formation of dynamic nuclear capsid aggregates

    SciTech Connect

    Lebrun, Marielle; Thelen, Nicolas; Thiry, Marc; Riva, Laura; Ote, Isabelle; Condé, Claude; Vandevenne, Patricia; Di Valentin, Emmanuel; Bontems, Sébastien; Sadzot-Delvaux, Catherine

    2014-04-15

    The first step of herpesviruses virion assembly occurs in the nucleus. However, the exact site where nucleocapsids are assembled, where the genome and the inner tegument are acquired, remains controversial. We created a recombinant VZV expressing ORF23 (homologous to HSV-1 VP26) fused to the eGFP and dually fluorescent viruses with a tegument protein additionally fused to a red tag (ORF9, ORF21 and ORF22 corresponding to HSV-1 UL49, UL37 and UL36). We identified nuclear dense structures containing the major capsid protein, the scaffold protein and maturing protease, as well as ORF21 and ORF22. Correlative microscopy demonstrated that the structures correspond to capsid aggregates and time-lapse video imaging showed that they appear prior to the accumulation of cytoplasmic capsids, presumably undergoing the secondary egress, and are highly dynamic. Our observations suggest that these structures might represent a nuclear area important for capsid assembly and/or maturation before the budding at the inner nuclear membrane. - Highlights: • We created a recombinant VZV expressing the small capsid protein fused to the eGFP. • We identified nuclear dense structures containing capsid and procapsid proteins. • Correlative microscopy showed that the structures correspond to capsid aggregates. • Procapsids and partial capsids are found within the aggregates of WT and eGFP-23 VZV. • FRAP and FLIP experiments demonstrated that they are dynamic structures.

  13. Amino acid induced fractal aggregation of gold nanoparticles: Why and how.

    PubMed

    Doyen, Matthieu; Goole, Jonathan; Bartik, Kristin; Bruylants, Gilles

    2016-02-15

    Gold colloids are the object of many studies as they are reported to have potential biological sensing, imaging and drug delivery applications. In the presence of certain amino acids the aggregation of the gold nanoparticles into linear structures is observed, as highlighted by the appearance of a second plasmon band in the UV-Vis spectra of the colloid. The mechanism behind this phenomenon is still under debate. In order to help elucidate this issue, the interaction between gold colloids and different amino acids, modified amino acids and molecules mimicking their side-chain was monitored by UV-Vis absorption, DLS and TEM. The results show that phenomenon can be rationalized in terms of the Diffusion Limited Colloid Aggregation (DLCA) model which gives rise to the fractal aggregation colloids. The global charge of the compound, which influences the ionic strength of the solution, and the ease with which the compound can interact with the GNPs and affect their surface potential, are, the two parameters which control the DLCA regime. Calculations based on the Derjaguin, Landau, Verwey and Overbeek (DLVO) theory confirm all the experimental observations. PMID:26613335

  14. Amino acid induced fractal aggregation of gold nanoparticles: Why and how.

    PubMed

    Doyen, Matthieu; Goole, Jonathan; Bartik, Kristin; Bruylants, Gilles

    2016-02-15

    Gold colloids are the object of many studies as they are reported to have potential biological sensing, imaging and drug delivery applications. In the presence of certain amino acids the aggregation of the gold nanoparticles into linear structures is observed, as highlighted by the appearance of a second plasmon band in the UV-Vis spectra of the colloid. The mechanism behind this phenomenon is still under debate. In order to help elucidate this issue, the interaction between gold colloids and different amino acids, modified amino acids and molecules mimicking their side-chain was monitored by UV-Vis absorption, DLS and TEM. The results show that phenomenon can be rationalized in terms of the Diffusion Limited Colloid Aggregation (DLCA) model which gives rise to the fractal aggregation colloids. The global charge of the compound, which influences the ionic strength of the solution, and the ease with which the compound can interact with the GNPs and affect their surface potential, are, the two parameters which control the DLCA regime. Calculations based on the Derjaguin, Landau, Verwey and Overbeek (DLVO) theory confirm all the experimental observations.

  15. Expression of Tight Junction Molecule In The Human Serum-Induced Aggregation of Human Abdominal Adipose-Derived Stem Cells In Vitro

    PubMed Central

    Yoon, A Young; Yun, Sujin; Yang, HyeJin; Lim, Yoon Hwa; Kim, Haekwon

    2014-01-01

    Previously we have shown that human abdominal adipose derived-stem cells (ADSCs) could aggregate during the high-density culture in the presence of human serum (HS). In the present study, we observed that human cord blood serum (CBS) and follicular fluid (HFF) also induced aggregation. Similarly, porcine serum could induce aggregation whereas bovine and sheep sera induced little aggregation. qRT-PCR analyses demonstrated that, compared to FBS-cultured ADSCs, HScultured cells exhibited higher level of mRNA expression of CLDN3, -6, -7, -15, and -16 genes among the tight junction proteins. ADSCs examined at the time of aggregation by culture with HS, BSA, HFF, CBS, or porcine serum showed significantly higher level of mRNA expression of JAM2 among JAM family members. In contrast, cells cultured in FBS, bovine serum or sheep serum, showed lower level of JAM2 expression. Immunocytochemical analyses demonstrated that the aggregates of HS-cultured cells (HS-Agg) showed intense staining against the anti-JAM2 antibody whereas neither non-aggregated cells (HS-Ex) nor FBS-cultured cells exhibited weak staining. Western blot results showed that HS-Agg expressed JAM2 protein more prominently than HS-Ex and FBS-cultured cells, both of latter reveled weaker intensity. These results suggest that the aggregation property of ADSCs during high-density culture would be dependent on the specific components of serum, and that JAM2 molecule could play a role in the animal sera-induced aggregation in vitro. PMID:25949191

  16. Sunlight-induced carbon dioxide emissions from inland waters

    NASA Astrophysics Data System (ADS)

    Koehler, Birgit; Landelius, Tomas; Weyhenmeyer, Gesa A.; Machida, Nanako; Tranvik, Lars J.

    2014-07-01

    The emissions of carbon dioxide (CO2) from inland waters are substantial on a global scale. Yet the fundamental question remains open which proportion of these CO2 emissions is induced by sunlight via photochemical mineralization of dissolved organic carbon (DOC), rather than by microbial respiration during DOC decomposition. Also, it is unknown on larger spatial and temporal scales how photochemical mineralization compares to other C fluxes in the inland water C cycle. We combined field and laboratory data with atmospheric radiative transfer modeling to parameterize a photochemical rate model for each day of the year 2009, for 1086 lakes situated between latitudes from 55°N to 69°N in Sweden. The sunlight-induced production of dissolved inorganic carbon (DIC) averaged 3.8 ± 0.04 g C m-2 yr-1, which is a flux comparable in size to the organic carbon burial in the lake sediments. Countrywide, 151 ± 1 kt C yr-1 was produced by photochemical mineralization, corresponding to about 12% of total annual mean CO2 emissions from Swedish lakes. With a median depth of 3.2 m, the lakes were generally deep enough that incoming, photochemically active photons were absorbed in the water column. This resulted in a linear positive relationship between DIC photoproduction and the incoming photon flux, which corresponds to the absorbed photons. Therefore, the slope of the regression line represents the wavelength- and depth-integrated apparent quantum yield of DIC photoproduction. We used this relationship to obtain a first estimate of DIC photoproduction in lakes and reservoirs worldwide. Global DIC photoproduction amounted to 13 and 35 Mt C yr-1 under overcast and clear sky, respectively. Consequently, these directly sunlight-induced CO2 emissions contribute up to about one tenth to the global CO2 emissions from lakes and reservoirs, corroborating that microbial respiration contributes a substantially larger share than formerly thought, and generate annual C fluxes similar in

  17. A novel method for study of the aggregation of protein induced by metal ion aluminum(III) using resonance Rayleigh scattering technique

    NASA Astrophysics Data System (ADS)

    Long, Xiufen; Zhang, Caihua; Cheng, Jiongjia; Bi, Shuping

    2008-01-01

    We present a novel method for the study of the aggregation of protein induced by metal ion aluminum(III) using resonance Rayleigh scattering (RRS) technique. In neutral Tris-HCl medium, the effect of this aggregation of protein results in the enhancement of RRS intensity and the relationship between the enhancement of the RRS signal and the Al concentration is nonlinear. On this basis, we established a new method for the determination of the critical induced-aggregation concentrations ( CCIAC) of metal ion Al(III) inducing the protein aggregation. Our results show that many factors, such as, pH value, anions, salts, temperature and solvents have obvious effects. We also studied the extent of aggregation and structural changes using ultra-violet spectrometry, protein intrinsic fluorescence and circular dichroism to further understand the exact mechanisms of the aggregation characteristics of proteins induced by metal ion Al(III) at the molecular level, to help us to develop effective methods to investigate the toxicity of metal ion Al, and to provide theoretical and quantitative evidences for the development of appropriate treatments for neurodementia such as Parkinson's disease, Alzheimer's disease and dementia related to dialysis.

  18. Effect of alginate on the aggregation kinetics of copper oxide nanoparticles (CuO NPs): bridging interaction and hetero-aggregation induced by Ca(2.).

    PubMed

    Miao, Lingzhan; Wang, Chao; Hou, Jun; Wang, Peifang; Ao, Yanhui; Li, Yi; Lv, Bowen; Yang, Yangyang; You, Guoxiang; Xu, Yi

    2016-06-01

    The stability of CuO nanoparticles (NPs) is expected to play a key role in the environmental risk assessment of nanotoxicity in aquatic systems. In this study, the effect of alginate (model polysaccharides) on the stability of CuO NPs in various environmentally relevant ionic strength conditions was investigated by using time-resolved dynamic light scattering. Significant aggregation of CuO NPs was observed in the presence of both monovalent and divalent cations. The critical coagulation concentrations (CCC) were 54.5 and 2.9 mM for NaNO3 and Ca(NO3)2, respectively. The presence of alginate slowed nano-CuO aggregation rates over the entire NaNO3 concentration range due to the combined electrostatic and steric effect. High concentrations of Ca(2+) (>6 mM) resulted in stronger adsorption of alginate onto CuO NPs; however, enhanced aggregation of CuO NPs occurred simultaneously under the same conditions. Spectroscopic analysis revealed that the bridging interaction of alginate with Ca(2+) might be an important mechanism for the enhanced aggregation. Furthermore, significant coagulation of the alginate molecules was observed in solutions of high Ca(2+) concentrations, indicating a hetero-aggregation mechanism between the alginate-covered CuO NPs and the unabsorbed alginate. These results suggested a different aggregation mechanism of NPs might co-exist in aqueous systems enriched with natural organic matter, which should be taken into consideration in future studies. Graphical abstract Hetero-aggregation mechanism of CuO nanoparticles and alginate under high concentration of Ca(2.) PMID:26931664

  19. In vitro platelet activation, aggregation and platelet-granulocyte complex formation induced by surface modified single-walled carbon nanotubes.

    PubMed

    Fent, János; Bihari, Péter; Vippola, Minnamari; Sarlin, Essi; Lakatos, Susan

    2015-08-01

    Surface modification of single-walled carbon nanotubes (SWCNTs) such as carboxylation, amidation, hydroxylation and pegylation is used to reduce the nanotube toxicity and render them more suitable for biomedical applications than their pristine counterparts. Toxicity can be manifested in platelet activation as it has been shown for SWCNTs. However, the effect of various surface modifications on the platelet activating potential of SWCNTs has not been tested yet. In vitro platelet activation (CD62P) as well as the platelet-granulocyte complex formation (CD15/CD41 double positivity) in human whole blood were measured by flow cytometry in the presence of 0.1mg/ml of pristine or various surface modified SWCNTs. The effect of various SWCNTs was tested by whole blood impedance aggregometry, too. All tested SWCNTs but the hydroxylated ones activate platelets and promote platelet-granulocyte complex formation in vitro. Carboxylated, pegylated and pristine SWCNTs induce whole blood aggregation as well. Although pegylation is preferred from biomedical point of view, among the samples tested by us pegylated SWCNTs induced far the most prominent activation and a well detectable aggregation of platelets in whole blood.

  20. Creation of reduced fat foods: influence of calcium-induced droplet aggregation on microstructure and rheology of mixed food dispersions.

    PubMed

    Wu, Bi-cheng; Degner, Brian; McClements, David Julian

    2013-12-15

    The impact of calcium-induced fat droplet aggregation on the microstructure and physicochemical properties of model mixed colloidal dispersions was investigated. These systems consisted of 2 wt% whey protein-coated fat droplets and 4 wt% modified starch granules heated to induce starch swelling (pH 7). Optical and confocal microscopy showed that the fat droplets were dispersed within the interstitial region between the swollen starch granules. The structural organisation of the fat droplets within these interstitial regions could be modulated by controlling the calcium concentration: (i) at a low calcium concentration the droplets were evenly distributed; (ii) at an intermediate calcium concentration they formed a layer around the starch granules; (iii) at a high calcium concentration they formed a network of aggregated droplets. Paste-like materials were produced when the fat droplets formed a three-dimensional network in the interstitial region. The properties of fat droplet-starch granule suspensions can be modulated by altering the electrostatic interactions to alter microstructure.

  1. Salt- and pH-induced desorption: Comparison between non-aggregated and aggregated mussel adhesive protein, Mefp-1, and a synthetic cationic polyelectrolyte.

    PubMed

    Krivosheeva, Olga; Dedinaite, Andra; Claesson, Per M

    2013-10-15

    Mussel adhesive proteins are of great interest in many applications due to their ability to bind strongly to many types of surfaces under water. Effective use such proteins, for instance the Mytilus edulis foot protein - Mefp-1, for surface modification requires achievement of a large adsorbed amount and formation of a layer that is resistant towards desorption under changing conditions. In this work we compare the adsorbed amount and layer properties obtained by using a sample containing small Mefp-1 aggregates with that obtained by using a non-aggregated sample. We find that the use of the sample containing small aggregates leads to higher adsorbed amount, larger layer thickness and similar water content compared to what can be achieved with a non-aggregated sample. The layer formed by the aggregated Mefp-1 was, after removal of the protein from bulk solution, exposed to aqueous solutions with high ionic strength (up to 1M NaCl) and to solutions with low pH in order to reduce the electrostatic surface affinity. It was found that the preadsorbed Mefp-1 layer under all conditions explored was significantly more resistant towards desorption than a layer built by a synthetic cationic polyelectrolyte with similar charge density. These results suggest that the non-electrostatic surface affinity for Mefp-1 is larger than for the cationic polyelectrolyte.

  2. Laser-induced acoustic emissions in experimental dental composites.

    PubMed

    Lee, S Y; Lin, C T; Keh, E S; Pan, L C; Huang, H M; Shih, Y H; Cheng, H C

    2000-07-01

    A laser thermoacoustic technique was innovated to evaluate laser-induced acoustic emissions (AEs) in experimental dental composites aged with 75% ethanol solution. Experimental composite systems of 75/25 BisGMA/TEGDMA resin filled with 0, 12.6, 30.0, and 56.5 vol% of 8-microm silanized and unsilanized BaSiO6 were analyzed. The sample size was 4.65 mm (diameter) x 0.5 mm (thick). Aging effects of immersing in 75% ethanol for up to 14 h on AEs were then evaluated. A continuous-wave CO2 laser was used to heat the samples. Acoustic emissions were collected as a function of filler fraction, laser power, silanization, and immersion time. Onset of burst-pattern acoustic signals characteristic of fracturing occurred at different laser powers for different tested groups. Acoustic emissions generally increased with laser power, in which lower laser powers produced low-amplitude (45-50 dB) signals; the amplitude distribution (50-85 dB) became more extensive as laser powers increased. After immersion, the lower laser powers could produce the same phenomenon. The higher the filler fraction, the fewer AEs generated. A large percentage AE reduction due to silanization was noted as a function of filler fraction. Unsilanized specimens showed more thermal damages than did silanized ones.

  3. Ca(2+)-induced folding and aggregation of skeletal muscle sarcoplasmic reticulum calsequestrin. The involvement of the trifluoperazine-binding site.

    PubMed

    He, Z; Dunker, A K; Wesson, C R; Trumble, W R

    1993-11-25

    Calsequestrin is an intermediate affinity, high capacity Ca(2+)-binding protein found in the lumen of the sarcoplasmic reticulum of both skeletal and cardiac muscle cells. Previous sequence analysis suggested that calsequestrin may contain a hydrophobic binding site for the drug trifluoperazine, a site shared by the calmodulin family and shown to play a role in calmodulin/calmodulin receptor interaction. Previous studies showed that, upon Ca2+ binding, calsequestrin undergoes a conformational change, burying the trifluoperazine-binding site, folding into a more compact structure that is trypsin-resistant, and increasing the negative ellipticity of the circular dichroism spectrum. In this study, the structural and functional roles of the trifluoperazine-binding site in the Ca(2+)-induced conformational change of calsequestrin are further studied using the calmodulin antagonists trifluoperazine and melittin. If trifluoperazine or melittin is added to calsequestrin prior to Ca2+ addition, then Ca(2+)-induced folding is inhibited as determined by the changes in circular dichroism spectra and protein sensitivity to trypsin digestion. If, however, Ca2+ is added prior to trifluoperazine or melittin, calsequestrin remains resistant to trypsin digestion, just as if the calmodulin antagonists are not present, suggesting that the conformational change is not affected. Aggregates of calsequestrin that exhibit high Ca2+ binding capacity have previously been shown to occur at high Ca2+ and calsequestrin concentrations. By preventing a prerequisite folding step, trifluoperazine or melittin also prevents the Ca(2+)-induced aggregation of calsequestrin, thus decreasing the maximal Ca2+ binding by calsequestrin. These data suggest that the trifluoperazine-binding site is critically involved in the Ca(2+)-induced intramolecular folding step required for the intermolecular interactions leading to high capacity Ca(2+)-binding by calsequestrin.

  4. Specific Light-Up Probe with Aggregation-Induced Emission for Facile Detection of Chymase.

    PubMed

    Zhang, Ruoyu; Zhang, Chong-Jing; Feng, Guangxue; Hu, Fang; Wang, Jigang; Liu, Bin

    2016-09-20

    Human chymases are important proteases abundant in mast cell granules. The elevated level of chymases and other serine proteases is closely related to inflammatory and immunoregulatory functions. Monitoring of the chymase level is very important, however, the existing methods remain limited and insufficient. In this work, a light-up probe of TPETH-2(CFTERD3) (where CFTERD is Cys-Phe-Thr-Glu-Arg-Asp) was developed for chymase detection. The probe has low fluorescent signal in aqueous media, but its solubility can be changed after hydrolysis by chymase, giving significant fluorescence turn-on with a high signal-to-noise (S/N) ratio. The probe has excellent selectivity to chymase compared to other proteins and can effectively differentiate chymase from other enzymes (e.g., chymotrypsin and trypsin) in the same family (E.C. 3.4.21). The detection limit is calculated to be 0.1 ng/mL in PBS buffer with a linear range of 0-9.0 ng/mL. A comparison study using TPETH-2(CFTERD2) as the probe reveals the importance of molecular design in realizing the high S/N ratio. TPETH-2(CFTERD3) thus represents a simple turn-on probe for chymase detection, with real-time and direct readout and also excellent sensitivity and selectivity. PMID:27541711

  5. Effects of oral contraceptives, or lanosterol, on ADP-induced aggregation and binding of /sup 125/I-fibrinogen to rat platelets

    SciTech Connect

    McGregor, L.; Toor, B.; McGregor, J.L.; Renaud, S.; Clemetson, K.J.

    1984-03-01

    The aggregation to ADP and the binding of /sup 125/I-fibrinogen to platelets from rats treated with oral contraceptives or normal platelets treated in vitro with lanosterol were compared to their respective controls. Both types of platelets showed a significant increase in ADP-induced aggregation and in binding of fibrinogen, indicating that the effect of oral contraceptives could be partly due to increased levels of lanosterol in platelet membrane.

  6. Binding of Folic Acid Induces Specific Self-Aggregation of Lactoferrin: Thermodynamic Characterization.

    PubMed

    Tavares, Guilherme M; Croguennec, Thomas; Lê, Sébastien; Lerideau, Olivia; Hamon, Pascaline; Carvalho, Antônio F; Bouhallab, Saïd

    2015-11-17

    In the study presented here, we investigated the interaction at pH 5.5 between folic acid (FA) and lactoferrin (LF), a positively charged protein. We found a binding constant Ka of 10(5) M(-1) and a high stoichiometry of 10 mol of FA/mol of LF. The size and charge of the complexes formed evolved during titration experiments. Increasing the ionic strength to 50 mM completely abolished the isothermal titration calorimetry (ITC) signal, suggesting the predominance of electrostatic interactions in the exothermic binding obtained. We developed a theoretical model that explains the complex triphasic ITC profile. Our results revealed a two-step mechanism: FA/LF interaction followed by self-association of the complexes thus formed. We suggest that 10 FA molecules bind to LF to form saturated reactive complexes (FA10/LF) that further self-associate into aggregates with a finite size of around 15 nm. There is thus a critical saturation degree of the protein, above which the self-association can take place. We present here the first results that provide comprehensive details of the thermodynamics of FA/LF complexation-association. Given the high stoichiometry, allowing a load of 55 mg of FA/g of LF, we suggest that FA/LF aggregates would be an effective vehicle for FA in fortified drinks. PMID:26488446

  7. Ice-induced partial unfolding and aggregation of an integral membrane protein.

    PubMed

    Garber Cohen, Iona P; Castello, Pablo R; González Flecha, F Luis

    2010-11-01

    Although the deleterious effects of ice on water-soluble proteins are well established, little is known about the freeze stability of membrane proteins. Here we explore this issue through a combined kinetic and spectroscopic approach using micellar-purified plasma membrane calcium pump as a model. The ATPase activity of this protein significantly diminished after freezing using a slow-cooling procedure, with the decrease in the activity being an exponential function of the storage time at 253K, with t(½)=3.9±0.6h. On the contrary, no significant changes on enzyme activity were detected when a fast cooling procedure was performed. Regardless of the cooling rate, successive freeze-thaw cycles produced an exponential decrease in the Ca(2+)-ATPase activity, with the number of cycles at which the activity was reduced to half being 9.2±0.3 (fast cooling) and 3.7±0.2 (slow cooling). PAGE analysis showed that neither degradation nor formation of SDS-stable aggregates of the protein takes place during protein inactivation. Instead, the inactivation process was found to be associated with the irreversible partial unfolding of the polypeptide chain, as assessed by Trp fluorescence, far UV circular dichroism, and 1-anilino-naphtalene-8-sulfonate binding. This inactive protein undergoes, in a later stage, a further irreversible transformation leading to large aggregates.

  8. Standoff laser-induced thermal emission of explosives

    NASA Astrophysics Data System (ADS)

    Galán-Freyle, Nataly Y.; Pacheco-Londoño, Leonardo C.; Figueroa-Navedo, Amanda; Hernandez-Rivera, Samuel P.

    2013-05-01

    A laser mediated methodology for remote thermal excitation of analytes followed by standoff IR detection is proposed. The goal of this study was to determine the feasibility of using laser induced thermal emission (LITE) from vibrationally excited explosives residues deposited on surfaces to detect explosives remotely. Telescope based FT-IR spectral measurements were carried out to examine substrates containing trace amounts of threat compounds used in explosive devices. The highly energetic materials (HEM) used were PETN, TATP, RDX, TNT, DNT and ammonium nitrate with concentrations from 5 to 200 μg/cm2. Target substrates of various thicknesses were remotely heated using a high power CO2 laser, and their mid-infrared (MIR) thermally stimulated emission spectra were recorded. The telescope was configured from reflective optical elements in order to minimize emission losses in the MIR frequencies and to provide optimum overall performance. Spectral replicas were acquired at a distance of 4 m with an FT-IR interferometer at 4 cm- 1 resolution and 10 scans. Laser power was varied from 4-36 W at radiation exposure times of 10, 20, 30 and 60 s. CO2 laser powers were adjusted to improve the detection and identification of the HEM samples. The advantages of increasing the thermal emission were easily observed in the results. Signal intensities were proportional to the thickness of the coated surface (a function of the surface concentration), as well as the laser power and laser exposure time. For samples of RDX and PETN, varying the power and time of induction of the laser, the calculated low limit of detections were 2 and 1 μg/cm2, respectively.

  9. Intermediate conformation between native β-sheet and non-native α-helix is a precursor of trifluoroethanol-induced aggregation of Human Carbonic Anhydrase-II

    SciTech Connect

    Gupta, Preeti; Deep, Shashank

    2014-06-20

    Highlights: • HCAII forms amyloid-like aggregates at moderate concentration of trifluoroethanol. • Protein adopts a state between β-sheet and α-helix at moderate % of TFE. • Hydrophobic surface(s) of partially structured conformation forms amyloid. • High % of TFE induces stable α-helical state preventing aggregation. - Abstract: In the present work, we examined the correlation between 2,2,2-trifluoroethanol (TFE)-induced conformational transitions of human carbonic anhydrase II (HCAII) and its aggregation propensity. Circular dichroism data indicates that protein undergoes a transition from β-sheet to α-helix on addition of TFE. The protein was found to aggregate maximally at moderate concentration of TFE at which it exists somewhere between β-sheet and α-helix, probably in extended non-native β-sheet conformation. Thioflavin-T (ThT) and Congo-Red (CR) assays along with fluorescence microscopy and transmission electron microscopy (TEM) data suggest that the protein aggregates induced by TFE possess amyloid-like features. Anilino-8-naphthalene sulfonate (ANS) binding studies reveal that the exposure of hydrophobic surface(s) was maximum in intermediate conformation. Our study suggests that the exposed hydrophobic surface and/or the disruption of the structural features protecting a β-sheet protein might be the major reason(s) for the high aggregation propensity of non-native intermediate conformation of HCAII.

  10. An atypical IgM class platelet cold agglutinin induces GPVI-dependent aggregation of human platelets.

    PubMed

    Sánchez Guiu, I M; Martínez-Martinez, I; Martínez, C; Navarro-Fernandez, J; García-Candel, F; Ferrer-Marín, F; Vicente, V; Watson, S P; Andrews, R K; Gardiner, E E; Lozano, M L; Rivera, J

    2015-08-01

    Platelet cold agglutinins (PCA) cause pseudothrombocytopenia, spurious thrombocytopenia due to ex vivo platelet clumping, complicating clinical diagnosis, but mechanisms and consequences of PCA are not well defined. Here, we characterised an atypical immunoglobulin (Ig)M PCA in a 37-year-old woman with lifelong bleeding and chronic moderate thrombocytopenia, that induces activation and aggregation of autologous or allogeneic platelets via interaction with platelet glycoprotein (GP)VI. Patient temperature-dependent pseudothrombocytopenia was EDTA-independent, but was prevented by integrin αIIbβ3 blockade. Unstimulated patient platelets revealed elevated levels of bound IgM, increased expression of activation markers (P-selectin and CD63), low GPVI levels and abnormally high thromboxane (TX)A2 production. Patient serum induced temperature- and αIIbβ3-dependent decrease of platelet count in allogeneic donor citrated platelet-rich plasma (PRP), but not in PRP from Glanzmann's thrombasthenia or afibrinogenaemia patients. In allogeneic platelets, patient plasma induced shape change, P-selectin and CD63 expression, (14)C-serotonin release, and TXA2 production. Activation was not inhibited by aspirin, cangrelor or blocking anti-Fc receptor (FcγRIIA) antibody, but was abrogated by inhibitors of Src and Syk, and by a soluble GPVI-Fc fusion protein. GPVI-deficient platelets were not activated by patient plasma. These data provide the first evidence for an IgM PCA causing platelet activation/aggregation via GPVI. The PCA activity persisted over a five-year follow-up period, supporting a causative role in patient chronic thrombocytopenia and bleeding. PMID:25994029

  11. An atypical IgM class platelet cold agglutinin induces GPVI-dependent aggregation of human platelets.

    PubMed

    Sánchez Guiu, I M; Martínez-Martinez, I; Martínez, C; Navarro-Fernandez, J; García-Candel, F; Ferrer-Marín, F; Vicente, V; Watson, S P; Andrews, R K; Gardiner, E E; Lozano, M L; Rivera, J

    2015-08-01

    Platelet cold agglutinins (PCA) cause pseudothrombocytopenia, spurious thrombocytopenia due to ex vivo platelet clumping, complicating clinical diagnosis, but mechanisms and consequences of PCA are not well defined. Here, we characterised an atypical immunoglobulin (Ig)M PCA in a 37-year-old woman with lifelong bleeding and chronic moderate thrombocytopenia, that induces activation and aggregation of autologous or allogeneic platelets via interaction with platelet glycoprotein (GP)VI. Patient temperature-dependent pseudothrombocytopenia was EDTA-independent, but was prevented by integrin αIIbβ3 blockade. Unstimulated patient platelets revealed elevated levels of bound IgM, increased expression of activation markers (P-selectin and CD63), low GPVI levels and abnormally high thromboxane (TX)A2 production. Patient serum induced temperature- and αIIbβ3-dependent decrease of platelet count in allogeneic donor citrated platelet-rich plasma (PRP), but not in PRP from Glanzmann's thrombasthenia or afibrinogenaemia patients. In allogeneic platelets, patient plasma induced shape change, P-selectin and CD63 expression, (14)C-serotonin release, and TXA2 production. Activation was not inhibited by aspirin, cangrelor or blocking anti-Fc receptor (FcγRIIA) antibody, but was abrogated by inhibitors of Src and Syk, and by a soluble GPVI-Fc fusion protein. GPVI-deficient platelets were not activated by patient plasma. These data provide the first evidence for an IgM PCA causing platelet activation/aggregation via GPVI. The PCA activity persisted over a five-year follow-up period, supporting a causative role in patient chronic thrombocytopenia and bleeding.

  12. pH-Induced aggregated melanin nanoparticles for photoacoustic signal amplification

    NASA Astrophysics Data System (ADS)

    Ju, Kuk-Youn; Kang, Jeeun; Pyo, Jung; Lim, Joohyun; Chang, Jin Ho; Lee, Jin-Kyu

    2016-07-01

    We present a new melanin-like nanoparticle (MelNP) and its performance evaluation results. This particle is proposed as an exogenous contrast agent for photoacoustic (PA) imaging. Conventional PA contrast agents are based on non-biological materials. In contrast, the MelNPs are organic nanoparticles inspired by natural melanin. Melanin is an endogenous chromophore that has the ability to produce a PA signal in vivo. The developed MelNPs are capable of aggregating with one another under mildly acidic conditions after introducing hydrolysis-susceptible citraconic amide on the surface of bare MelNPs. We ascertained that the physical aggregation of the MelNPs resulted in an increased PA signal strength in the near-infrared window of biological tissue (i.e., 700 nm) without absorption tuning. This phenomenon is likely because of the overlapping thermal fields of the developed MelNPs. The PA signal produced from the developed MelNPs, after exposure to mildly acidic conditions (i.e., pH 6), is 8.1 times stronger than under neutral conditions. This unique characteristic found in this study can be utilized in a practical strategy for highly sensitive in vivo cancer target imaging in response to its acidic microenvironment. This approach to amplify the PA response of MelNPs in clusters could accelerate the use of MelNPs as an alternative to non-biological nanoprobes, so that MelNPs may be applicable in PA imaging and functional PA imaging such as stimuli sensitive, multimodal, and theranostic imaging.We present a new melanin-like nanoparticle (MelNP) and its performance evaluation results. This particle is proposed as an exogenous contrast agent for photoacoustic (PA) imaging. Conventional PA contrast agents are based on non-biological materials. In contrast, the MelNPs are organic nanoparticles inspired by natural melanin. Melanin is an endogenous chromophore that has the ability to produce a PA signal in vivo. The developed MelNPs are capable of aggregating with one

  13. Latent heat induced rotation limited aggregation in 2D ice nanocrystals.

    PubMed

    Bampoulis, Pantelis; Siekman, Martin H; Kooij, E Stefan; Lohse, Detlef; Zandvliet, Harold J W; Poelsema, Bene

    2015-07-21

    The basic science responsible for the fascinating shapes of ice crystals and snowflakes is still not understood. Insufficient knowledge of the interaction potentials and the lack of relevant experimental access to the growth process are to blame for this failure. Here, we study the growth of fractal nanostructures in a two-dimensional (2D) system, intercalated between mica and graphene. Based on our scanning tunneling spectroscopy data, we provide compelling evidence that these fractals are 2D ice. They grow while they are in material contact with the atmosphere at 20 °C and without significant thermal contact to the ambient. The growth is studied in situ, in real time and space at the nanoscale. We find that the growing 2D ice nanocrystals assume a fractal shape, which is conventionally attributed to Diffusion Limited Aggregation (DLA). However, DLA requires a low mass density mother phase, in contrast to the actual currently present high mass density mother phase. Latent heat effects and consequent transport of heat and molecules are found to be key ingredients for understanding the evolution of the snow (ice) flakes. We conclude that not the local availability of water molecules (DLA), but rather them having the locally required orientation is the key factor for incorporation into the 2D ice nanocrystal. In combination with the transport of latent heat, we attribute the evolution of fractal 2D ice nanocrystals to local temperature dependent rotation limited aggregation. The ice growth occurs under extreme supersaturation, i.e., the conditions closely resemble the natural ones for the growth of complex 2D snow (ice) flakes and we consider our findings crucial for solving the "perennial" snow (ice) flake enigma. PMID:26203037

  14. Latent heat induced rotation limited aggregation in 2D ice nanocrystals

    NASA Astrophysics Data System (ADS)

    Bampoulis, Pantelis; Siekman, Martin H.; Kooij, E. Stefan; Lohse, Detlef; Zandvliet, Harold J. W.; Poelsema, Bene

    2015-07-01

    The basic science responsible for the fascinating shapes of ice crystals and snowflakes is still not understood. Insufficient knowledge of the interaction potentials and the lack of relevant experimental access to the growth process are to blame for this failure. Here, we study the growth of fractal nanostructures in a two-dimensional (2D) system, intercalated between mica and graphene. Based on our scanning tunneling spectroscopy data, we provide compelling evidence that these fractals are 2D ice. They grow while they are in material contact with the atmosphere at 20 °C and without significant thermal contact to the ambient. The growth is studied in situ, in real time and space at the nanoscale. We find that the growing 2D ice nanocrystals assume a fractal shape, which is conventionally attributed to Diffusion Limited Aggregation (DLA). However, DLA requires a low mass density mother phase, in contrast to the actual currently present high mass density mother phase. Latent heat effects and consequent transport of heat and molecules are found to be key ingredients for understanding the evolution of the snow (ice) flakes. We conclude that not the local availability of water molecules (DLA), but rather them having the locally required orientation is the key factor for incorporation into the 2D ice nanocrystal. In combination with the transport of latent heat, we attribute the evolution of fractal 2D ice nanocrystals to local temperature dependent rotation limited aggregation. The ice growth occurs under extreme supersaturation, i.e., the conditions closely resemble the natural ones for the growth of complex 2D snow (ice) flakes and we consider our findings crucial for solving the "perennial" snow (ice) flake enigma.

  15. Phototransformation-Induced Aggregation of Functionalized Single-Walled Carbon Nanotubes: The Importance of Amorphous Carbon.

    PubMed

    Hou, Wen-Che; He, Chen-Jing; Wang, Yi-Sheng; Wang, David K; Zepp, Richard G

    2016-04-01

    Single-walled carbon nanotubes (SWCNTs) with proper functionalization are desirable for applications that require dispersion in aqueous and biological environments, and functionalized SWCNTs also serve as building blocks for conjugation with specific molecules in these applications. In this study, we examined the phototransformation of carboxylated SWCNTs and associated amorphous carbon impurities in the presence or absence of H2O2 under simulated sunlight conditions. We found that while carboxylated SWCNTs were rather unreactive with respect to direct solar photolysis, they photoreacted in the presence of H2O2, forming CO2 and strongly aggregated SWCNT products that precipitated. Photoreaction caused SWCNTs to lose oxygen-containing functionalities, and interestingly, the resulting photoproducts had spectral characteristics similar to those of parent carboxylated SWCNTs whose amorphous carbon was removed by base washing. These results indicated that photoreaction of the amorphous carbon was likely involved. The removal of amorphous carbon after indirect photoreaction was confirmed with thermogravimetric analysis (TGA). Further studies using carboxylated SWCNTs with and without base washing indicate that amorphous carbon reduced the extent of aggregation caused by photoreaction. The second-order rate constant for carboxylated SWCNTs reacting with (•)OH was estimated to be in the range of 1.7-3.8 × 10(9) MC(-1) s(-1). The modeled phototransformation half-lives fall in the range of 2.8-280 days in typical sunlit freshwaters. Our study indicates that photosensitized reactions involving (•)OH may be a transformation and removal pathway of functionalized SWCNTs in the aquatic environment, and that the residual amorphous carbon associated with SWCNTs plays a role in SWCNT stabilization.

  16. Melatonin attenuates MPTP-induced neurotoxicity via preventing CDK5-mediated autophagy and SNCA/α-synuclein aggregation

    PubMed Central

    Su, Ling-Yan; Li, Hao; Lv, Li; Feng, Yue-Mei; Li, Guo-Dong; Luo, Rongcan; Zhou, He-Jiang; Lei, Xiao-Guang; Ma, Liang; Li, Jia-Li; Xu, Lin; Hu, Xin-Tian; Yao, Yong-Gang

    2015-01-01

    Autophagy is involved in the pathogenesis of neurodegenerative diseases including Parkinson disease (PD). However, little is known about the regulation of autophagy in neurodegenerative process. In this study, we characterized aberrant activation of autophagy induced by neurotoxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) and demonstrated that melatonin has a protective effect on neurotoxicity. We found an excessive activation of autophagy in monkey brain tissues and C6 cells, induced by MPTP, which is mediated by CDK5 (cyclin-dependent kinase 5). MPTP treatment significantly reduced total dendritic length and dendritic complexity of cultured primary cortical neurons and melatonin could reverse this effect. Decreased TH (tyrosine hydroxylase)-positive cells and dendrites of dopaminergic neurons in the substantia nigra pars compacta (SNc) were observed in MPTP-treated monkeys and mice. Along with decreased TH protein level, we observed an upregulation of CDK5 and enhanced autophagic activity in the striatum of mice with MPTP injection. These changes could be salvaged by melatonin treatment or knockdown of CDK5. Importantly, melatonin or knockdown of CDK5 reduced MPTP-induced SNCA/α-synuclein aggregation in mice, which is widely thought to trigger the pathogenesis of PD. Finally, melatonin or knockdown of CDK5 counteracted the PD phenotype in mice induced by MPTP. Our findings uncover a potent role of CDK5-mediated autophagy in the pathogenesis of PD, and suggest that control of autophagic pathways may provide an important clue for exploring potential target for novel therapeutics of PD. PMID:26292069

  17. Melatonin attenuates MPTP-induced neurotoxicity via preventing CDK5-mediated autophagy and SNCA/α-synuclein aggregation.

    PubMed

    Su, Ling-Yan; Li, Hao; Lv, Li; Feng, Yue-Mei; Li, Guo-Dong; Luo, Rongcan; Zhou, He-Jiang; Lei, Xiao-Guang; Ma, Liang; Li, Jia-Li; Xu, Lin; Hu, Xin-Tian; Yao, Yong-Gang

    2015-01-01

    Autophagy is involved in the pathogenesis of neurodegenerative diseases including Parkinson disease (PD). However, little is known about the regulation of autophagy in neurodegenerative process. In this study, we characterized aberrant activation of autophagy induced by neurotoxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) and demonstrated that melatonin has a protective effect on neurotoxicity. We found an excessive activation of autophagy in monkey brain tissues and C6 cells, induced by MPTP, which is mediated by CDK5 (cyclin-dependent kinase 5). MPTP treatment significantly reduced total dendritic length and dendritic complexity of cultured primary cortical neurons and melatonin could reverse this effect. Decreased TH (tyrosine hydroxylase)-positive cells and dendrites of dopaminergic neurons in the substantia nigra pars compacta (SNc) were observed in MPTP-treated monkeys and mice. Along with decreased TH protein level, we observed an upregulation of CDK5 and enhanced autophagic activity in the striatum of mice with MPTP injection. These changes could be salvaged by melatonin treatment or knockdown of CDK5. Importantly, melatonin or knockdown of CDK5 reduced MPTP-induced SNCA/α-synuclein aggregation in mice, which is widely thought to trigger the pathogenesis of PD. Finally, melatonin or knockdown of CDK5 counteracted the PD phenotype in mice induced by MPTP. Our findings uncover a potent role of CDK5-mediated autophagy in the pathogenesis of PD, and suggest that control of autophagic pathways may provide an important clue for exploring potential target for novel therapeutics of PD.

  18. Drosophila UNC-45 prevents heat-induced aggregation of skeletal muscle myosin and facilitates refolding of citrate synthase

    SciTech Connect

    Melkani, Girish C.; Lee, Chi F.; Cammarato, Anthony; Bernstein, Sanford I.

    2010-05-28

    UNC-45 belongs to the UCS (UNC-45, CRO1, She4p) domain protein family, whose members interact with various classes of myosin. Here we provide structural and biochemical evidence that Escherichia coli-expressed Drosophila UNC-45 (DUNC-45) maintains the integrity of several substrates during heat-induced stress in vitro. DUNC-45 displays chaperone function in suppressing aggregation of the muscle myosin heavy meromyosin fragment, the myosin S-1 motor domain, {alpha}-lactalbumin and citrate synthase. Biochemical evidence is supported by electron microscopy, which reveals the first structural evidence that DUNC-45 prevents inter- or intra-molecular aggregates of skeletal muscle heavy meromyosin caused by elevated temperatures. We also demonstrate for the first time that UNC-45 is able to refold a denatured substrate, urea-unfolded citrate synthase. Overall, this in vitro study provides insight into the fate of muscle myosin under stress conditions and suggests that UNC-45 protects and maintains the contractile machinery during in vivo stress.

  19. Single chain variable fragment antibodies block aggregation and toxicity induced by familial ALS-linked mutant forms of SOD1

    PubMed Central

    Ghadge, Ghanashyam D.; Pavlovic, John; Koduvayur, Sujatha P.; Kay, Brian K.; Roos, Raymond P.

    2013-01-01

    Approximately 10% of amyotrophic lateral sclerosis (ALS) cases are familial (known as FALS) with an autosomal dominant inheritance pattern, and ~25% of FALS cases are caused by mutations in Cu/Zn superoxide dismutase (SOD1). There is convincing evidence that mutant SOD1 (mtSOD1) kills motor neurons (MNs) because of a gain-of-function toxicity, most likely related to aggregation of mtSOD1. A number of recent reports have suggested that antibodies can be used to treat mtSOD1-induced FALS. To follow up on the use of antibodies as potential therapeutics, we generated single chain fragments of variable region antibodies (scFvs) against SOD1, and then expressed them as ‘intrabodies’ within a motor neuron cell line. In the present study, we describe isolation of human scFvs that interfere with mtSOD1 in vitro aggregation and toxicity. These scFvs may have therapeutic potential in sporadic ALS, as well as FALS, given that sporadic ALS may also involve abnormalities in the SOD1 protein or activity. PMID:23607939

  20. The use of quartz crystal microbalance with dissipation (QCM-D) for studying nanoparticle-induced platelet aggregation

    PubMed Central

    Santos-Martinez, Maria Jose; Inkielewicz-Stepniak, Iwona; Medina, Carlos; Rahme, Kamil; D’Arcy, Deirdre M; Fox, Daniel; Holmes, Justin D; Zhang, Hongzhou; Radomski, Marek Witold

    2012-01-01

    Interactions between blood platelets and nanoparticles have both pharmacological and toxicological significance and may lead to platelet activation and aggregation. Platelet aggregation is usually studied using light aggregometer that neither mimics the conditions found in human microvasculature nor detects microaggregates. A new method for the measurement of platelet microaggregation under flow conditions using a commercially available quartz crystal microbalance with dissipation (QCM-D) has recently been developed. The aim of the current study was to investigate if QCM-D could be used for the measurement of nanoparticle-platelet interactions. Silica, polystyrene, and gold nanoparticles were tested. The interactions were also studied using light aggregometry and flow cytometry, which measured surface abundance of platelet receptors. Platelet activation was imaged using phase contrast and scanning helium ion microscopy. QCM-D was able to measure nanoparticle-induced platelet microaggregation for all nanoparticles tested at concentrations that were undetectable by light aggregometry and flow cytometry. Microaggregates were measured by changes in frequency and dissipation, and the presence of platelets on the sensor surface was confirmed and imaged by phase contrast and scanning helium ion microscopy. PMID:22275839

  1. Effect of Vitamin C Supplementation on Platelet Aggregation and Serum Electrolytes Levels in Streptozotocin-Induced Diabetes Mellitus in Rats.

    PubMed

    Owu, Daniel U; Nwokocha, Chukwuemeka R; Ikpi, Daniel E; Ogar, Emmanuel I

    2016-01-01

    Diabetes mellitus (DM) is a disease condition characterised by hyperglycemia; free radical and abnormalhaematological indices. Vitamin C can reduce free radical generation and ameliorate adverse conditions of diabetes mellitus.The aim of the present study is to investigate the effect of vitamin C on platelet aggregation and electrolyte levels in Type 1DM. Male Wistar rats were divided into four groups namely control, DM, DM +Vitamin C and Vitamin C groups. Rats weremade diabetic with a single dose of streptozotocin (65 mg/kg) intraperitoneally. Vitamin C was administered orally todiabetic and normal rats at 200 mg/kg body weight for 28 days. Blood samples were analyzed for hematological parameters,platelet aggregation, and serum electrolyte levels. Blood glucose in DM+ Vitamin C group (9.9 ± 1.8 mmol/L) wassignificantly reduced (p<0.01) compared to DM group (32.2 ± 2.1 mmol/L) and significantly higher (p<0.05) than control(4.4 ± 0.8 mmol/L). Haemoglobin (Hb) concentration in DM group (12 ± 0.1 g/dL) was significantly reduced (p<0.01) whencompared with control groups (14 ± 0.24 g/dL) and significantly increased (p<0.05) in the DM+vitamin C group (13.5 ± 0.5g/dL) compared with the diabetic group. The mean corpuscular volume values in DM (68.66 ± 0.5 fL) and DM+vitamin Cgroups (68.11 ± 0.4 fL) were significantly higher (p<0.01) than the control (59.49 ± 0.5fL). Platelet count in DM group (523± 8.5 x109/L) was significantly raised (p<0.01) when compared to control (356 ± 6.2 x109/L) and significantly reduced(p<0.01) in DM+ vitamin C-treated group (385 ± 7.8 x109/L) compared with DM group. Platelet aggregation and serumsodium/potassium ratios was significantly reduced (p<0.01) in DM+vitamin C compared with DM group. These resultssuggest that oral vitamin C administration increases haemoglobin, reduced plasma glucose level, platelet count, serumsodium/potassium ion ratio and inhibits platelet aggregation in streptozotocin-induced DM in rats. PMID:27574765

  2. Stimulated emission and lasing in laser-induced plasma plume

    NASA Astrophysics Data System (ADS)

    Nagli, Lev; Gaft, Michael; Gornushkin, Igor; Glaus, Reto

    2016-11-01

    The lasing effect is demonstrated in laser plasmas induced on various metal targets and pumped by a laser tuned in resonance with a strong optical transition of a metal. The intense, polarized and low-divergent radiation is emitted from a longitudinally pumped plasma plume in forward and backward directions with respect to the pump beam. Lasing occurs only within duration of the pumping pulse. The effect is found for elements of 13th and 14th groups and for Ca, Ti, Zr, Fe and Ni. The Einstein coefficients for spontaneous emission of all lasing transitions are higher than 107 s-1. For some elements like Al and In, a three-level lasing scheme is realized. For others, like Tl, both three- and four-level lasing schemes are realized. It is found that the longitudinal pump geometry is more efficient than the transversal one.

  3. Proton-Induced X-Ray Emission Analysis of Crematorium Emissions

    NASA Astrophysics Data System (ADS)

    Ali, Salina; Nadareski, Benjamin; Yoskowitz, Joshua; Labrake, Scott; Vineyard, Michael

    2014-09-01

    There has been considerable debate in recent years about possible mercury emissions from crematoria due to amalgam tooth restorations. We have performed a proton-induced X-ray emission (PIXE) analysis of aerosol and soil samples taken near the Vale Cemetery Crematorium in Schenectady, NY, to address this concern. The aerosol samples were collected on the roof of the crematorium using a nine-stage, cascade impactor that separates the particulate matter by aerodynamic diameter and deposits it onto thin Kapton foils. The soil samples were collected at several different distances from the crematorium and compressed into pellets with a hydraulic press. The Kapton foils containing the aerosol samples and the soil pellets were bombarded with 2.2-MeV protons from the 1.1-MV tandem Pelletron accelerator in the Union College Ion-Beam Analysis Laboratory. We measured significant concentrations of sulfur, phosphorus, potassium, calcium, and iron, but essentially no mercury in the aerosol samples. The lower limit of detection for airborne mercury in this experiment was approximately 0.2 ng / m3. The PIXE analysis of the soil samples showed the presence of elements commonly found in soil (Si, K, Ca, Ti, Mn, Fe), but no trace of mercury. There has been considerable debate in recent years about possible mercury emissions from crematoria due to amalgam tooth restorations. We have performed a proton-induced X-ray emission (PIXE) analysis of aerosol and soil samples taken near the Vale Cemetery Crematorium in Schenectady, NY, to address this concern. The aerosol samples were collected on the roof of the crematorium using a nine-stage, cascade impactor that separates the particulate matter by aerodynamic diameter and deposits it onto thin Kapton foils. The soil samples were collected at several different distances from the crematorium and compressed into pellets with a hydraulic press. The Kapton foils containing the aerosol samples and the soil pellets were bombarded with 2.2-Me

  4. Detection of adenosine triphosphate through polymerization-induced aggregation of actin-conjugated gold/silver nanorods

    NASA Astrophysics Data System (ADS)

    Liao, Yu-Ju; Shiang, Yen-Chun; Chen, Li-Yi; Hsu, Chia-Lun; Huang, Chih-Ching; Chang, Huan-Tsung

    2013-11-01

    We have developed a simple and selective nanosensor for the optical detection of adenosine triphosphate (ATP) using globular actin-conjugated gold/silver nanorods (G-actin-Au/Ag NRs). By simply mixing G-actin and Au/Ag NRs (length ˜56 nm and diameter ˜12 nm), G-actin-Au/Ag NRs were prepared which were stable in physiological solutions (25 mM Tris-HCl, 150 mM NaCl, 5.0 mM KCl, 3.0 mM MgCl2 and 1.0 mM CaCl2; pH 7.4). Introduction of ATP into the G-actin-Au/Ag NR solutions in the presence of excess G-actin induced the formation of filamentous actin-conjugated Au/Ag NR aggregates through ATP-induced polymerization of G-actin. When compared to G-actin-modified spherical Au nanoparticles having a size of 13 nm or 56 nm, G-actin-Au/Ag NRs provided better sensitivity for ATP, mainly because the longitudinal surface plasmon absorbance of the Au/Ag NR has a more sensitive response to aggregation. This G-actin-Au/Ag NR probe provided high sensitivity (limit of detection 25 nM) for ATP with remarkable selectivity (>10-fold) over other adenine nucleotides (adenosine, adenosine monophosphate and adenosine diphosphate) and nucleoside triphosphates (guanosine triphosphate, cytidine triphosphate and uridine triphosphate). It also allowed the determination of ATP concentrations in plasma samples without conducting tedious sample pretreatments; the only necessary step was simple dilution. Our experimental results are in good agreement with those obtained from a commercial luciferin-luciferase bioluminescence assay. Our simple, sensitive and selective approach appears to have a practical potential for the clinical diagnosis of diseases (e.g. cystic fibrosis) associated with changes in ATP concentrations.

  5. The inhibitory mechanism of crude saponin fraction from Korean Red Ginseng in collagen-induced platelet aggregation

    PubMed Central

    Jeon, Bo Ra; Kim, Su Jung; Hong, Seung Bok; Park, Hwa-Jin; Cho, Jae Youl; Rhee, Man Hee

    2015-01-01

    Background Korean Red Ginseng has been used as a traditional oriental medicine to treat illness and to promote health for several thousand years in Eastern Asia. It is widely accepted that ginseng saponins, ginsenosides, are the major active ingredients responsible for Korean Red Ginseng’s therapeutic activity against many kinds of illness. Although the crude saponin fraction (CSF) displayed antiplatelet activity, the molecular mechanism of its action remains to be elucidated. Methods The platelet aggregation was induced by collagen, the ligand of integrin αIIβI and glycoprotein VI. The crude saponin’s effects on granule secretion [e.g., calcium ion mobilization and adenosine triphosphate (ATP) release] were determined. The activation of mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated protein kinase 1/2 (ERK1/2), c-Jun N-terminal kinases (JNKs), and p38 MAPK, and phosphoinositide 3-kinase (PI3K)/Akt was analyzed by immunoblotting. In addition, the activation of integrin αIIbβIII was examined by fluorocytometry. Results CSF strongly inhibited collagen-induced platelet aggregation and ATP release in a concentration-dependent manner. It also markedly suppressed [Ca2+]i mobilization in collagen-stimulated platelets. Immunoblotting assay revealed that CSF significantly suppressed ERK1/2, p38, JNK, PI3K, Akt, and mitogen-activated protein kinase kinase 1/2 phosphorylation. In addition, our fraction strongly inhibited the fibrinogen binding to integrin αIIbβ3. Conclusion Our present data suggest that CSF may have a strong antiplatelet property and it can be considered as a candidate with therapeutic potential for the treatment of cardiovascular disorders involving abnormal platelet function. PMID:26199561

  6. Alpha-synuclein-induced aggregation of cytoplasmic vesicles in Saccharomyces cerevisiae.

    PubMed

    Soper, James H; Roy, Subhojit; Stieber, Anna; Lee, Eliza; Wilson, Robert B; Trojanowski, John Q; Burd, Christopher G; Lee, Virginia M-Y

    2008-03-01

    Aggregated alpha-synuclein (alpha-syn) fibrils form Lewy bodies (LBs), the signature lesions of Parkinson's disease (PD) and related synucleinopathies, but the pathogenesis and neurodegenerative effects of LBs remain enigmatic. Recent studies have shown that when overexpressed in Saccharomyces cerevisiae, alpha-syn localizes to plasma membranes and forms cytoplasmic accumulations similar to human alpha-syn inclusions. However, the exact nature, composition, temporal evolution, and underlying mechanisms of yeast alpha-syn accumulations and their relevance to human synucleinopathies are unknown. Here we provide ultrastructural evidence that alpha-syn accumulations are not comprised of LB-like fibrils, but are associated with clusters of vesicles. Live-cell imaging showed alpha-syn initially localized to the plasma membrane and subsequently formed accumulations in association with vesicles. Imaging of truncated and mutant forms of alpha-syn revealed the molecular determinants and vesicular trafficking pathways underlying this pathological process. Because vesicular clustering is also found in LB-containing neurons of PD brains, alpha-syn-mediated vesicular accumulation in yeast represents a model system to study specific aspects of neurodegeneration in PD and related synucleinopathies.

  7. Tooth discoloration induced by a novel mineral trioxide aggregate-based root canal sealer

    PubMed Central

    Lee, Dae-Sung; Lim, Myung-Jin; Choi, Yoorina; Rosa, Vinicius; Hong, Chan-Ui; Min, Kyung-San

    2016-01-01

    Objectives: The aim of this study was to evaluate tooth discoloration caused by contact with a novel injectable mineral trioxide aggregate (MTA)-based root canal sealer (Endoseal; Maruchi, Wonju, Korea) compared with a widely used resin-based root canal sealer (AHplus; Dentsply De Trey, Konstanz, Germany) and conventional MTA (ProRoot; Dentsply, Tulsa, OK, USA). Materials and Methods: Forty standardized bovine tooth samples were instrumented and divided into three experimental groups and one control group (n = 10/group). Each material was inserted into the cavity, and all specimens were sealed with a self-adhesive resin. Based on CIE Lab system, brightness change (ΔL) and total color change (ΔE) of each specimen between baseline and 1, 2, 4, and 8 weeks were obtained. Results: At all time points, Endoseal showed no significant difference in ΔL and ΔE compared to AHplus and control group (P > 0.05), whereas the ProRoot group showed significantly higher ΔL and ΔE values than the Endoseal group at 2, 4, and 8 weeks (P < 0.05). Therefore, Endoseal showed less discoloration than conventional MTA and a similar color change to AHplus. Conclusions: Within the limitations of this study, our data indicate that the MTA-based sealer produces a similar amount of tooth discoloration as AHplus which is considered to be acceptable. PMID:27403062

  8. Specific ion effects induced by mono-valent salts in like charged aggregates in water.

    PubMed

    Huang, Ningdong; Tao, Jiaojiao; Liu, Jun; Wei, Shenghui; Li, Liangbin; Wu, Ziyu

    2014-06-28

    While salt mediated association between similarly charged poly-electrolytes occurs in a broad range of biological and colloidal systems, the effects of mono-valent salts remains little known experimentally. In this communication we systematically study influences of assorted mono-valent salts on structures of and interactions in two dimensional ordered bundles of charged fibrils assembled in water using Small Angle X-ray Scattering (SAXS). By quantitatively analyzing the scattering peak features, we discern two competing effects with opposite influences due to partitioning of salts in the aqueous complex. While electrostatic effects from salts residing between the fibrils suppress attraction between fibrils and expand the bundles, it is compensated by external osmotic pressure from peripheral salts in the aqueous media. The balance between the two effects varies for different salts and gives rise to ion-specific equilibrium behavior as well as structure of ordered bundles in salty water. The specific ions effects in like charged aggregates can be attributed to preferential distribution of ions inside or outside the bundles, correlated to the ranking of ions in Hofmeister series for macromolecules. Unlike conventional studies on Hofmeister effects by thermodynamic measurements relying on modeling for data interpretation, our study is based directly on structural analysis and is model-insensitive. PMID:24828119

  9. Organic solvents induce the formation of oil-in-ionic liquid microemulsion aggregations.

    PubMed

    Gao, Yanan; Li, Na; Zhang, Shaohua; Zheng, Liqiang; Li, Xinwei; Dong, Bin; Yu, Li

    2009-02-01

    The role of four organic solvents in the formation process of 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF4) based ionic liquid (IL) microemulsions is investigated. The results showed that the addition of Triton X-100 remarkably decreased the conductivity of bmimBF4. The added organic solvents provided a strong apolar environment for the hydrophobic tails of Triton X-100 and caused the surfactant molecules to aggregate into the interfacial film of oil-in-bmimBF4 (O/IL) microemulsions. As a result, the conductivities of the solutions were initially increased because the insulative Triton X-100 molecules were assembled, which corresponded to increasing the concentration of continuous bmimBF4 solutions. The hydrophobic interaction between the dispersed organic solvents and the hydrophobic tails of Triton X-100 may be the driving force for the formation of O/IL microemulsions. The droplets of O/IL microemulsions were successively swollen by organic solvents, and a bicontinuous IL-containing microemulsion was observed by freeze-fracture transmission electron microscopy for the first time. The current study can help in further understanding the ILs-containing microemulsions and thereby improve microemulsion theory. PMID:19138136

  10. Reparative Dentinogenesis Induced by Mineral Trioxide Aggregate: A Review from the Biological and Physicochemical Points of View

    PubMed Central

    Okiji, Takashi; Yoshiba, Kunihiko

    2009-01-01

    This paper aims to review the biological and physicochemical properties of mineral trioxide aggregate (MTA) with respect to its ability to induce reparative dentinogenesis, which involves complex cellular and molecular events leading to hard-tissue repair by newly differentiated odontoblast-like cells. Compared with that of calcium hydroxide-based materials, MTA is more efficient at inducing reparative dentinogenesis in vivo. The available literature suggests that the action of MTA is attributable to the natural wound healing process of exposed pulps, although MTA can stimulate hard-tissue-forming cells to induce matrix formation and mineralization in vitro. Physicochemical analyses have revealed that MTA not only acts as a “calcium hydroxide-releasing” material, but also interacts with phosphate-containing fluids to form apatite precipitates. MTA also shows better sealing ability and structural stability, but less potent antimicrobial activity compared with that of calcium hydroxide. The clinical outcome of direct pulp capping and pulpotomy with MTA appears quite favorable, although the number of controled prospective studies is still limited. Attempts are being conducted to improve the properties of MTA by the addition of setting accelerators and the development of new calcium silicate-based materials. PMID:20339574

  11. Active inclusion bodies of acid phosphatase PhoC: aggregation induced by GFP fusion and activities modulated by linker flexibility

    PubMed Central

    2013-01-01

    Background Biologically active inclusion bodies (IBs) have gained much attention in recent years. Fusion with IB-inducing partner has been shown to be an efficient strategy for generating active IBs. To make full use of the advantages of active IBs, one of the key issues will be to improve the activity yield of IBs when expressed in cells, which would need more choices on IB-inducing fusion partners and approaches for engineering IBs. Green fluorescent protein (GFP) has been reported to aggregate when overexpressed, but GFP fusion has not been considered as an IB-inducing approach for these fusion proteins so far. In addition, the role of linker in fusion proteins has been shown to be important for protein characteristics, yet impact of linker on active IBs has never been reported. Results Here we report that by fusing GFP and acid phosphatase PhoC via a linker region, the resultant PhoC-GFPs were expressed largely as IBs. These IBs show high levels of specific fluorescence and specific PhoC activities (phosphatase and phosphotransferase), and can account for up to over 80% of the total PhoC activities in the cells. We further demonstrated that the aggregation of GFP moiety in the fusion protein plays an essential role in the formation of PhoC-GFP IBs. In addition, PhoC-GFP IBs with linkers of different flexibility were found to exhibit different levels of activities and ratios in the cells, suggesting that the linker region can be utilized to manipulate the characteristics of active IBs. Conclusions Our results show that active IBs of PhoC can be generated by GFP fusion, demonstrating for the first time the potential of GFP fusion to induce active IB formation of another soluble protein. We also show that the linker sequence in PhoC-GFP fusion proteins plays an important role on the regulation of IB characteristics, providing an alternative and important approach for engineering of active IBs with the goal of obtaining high activity yield of IBs. PMID:23497261

  12. Ultraviolet radiation decreases expression and induces aggregation of corneal ALDH3A1.

    PubMed

    Manzer, Rizwan; Pappa, Aglaia; Estey, Tia; Sladek, Norman; Carpenter, John F; Vasiliou, Vasilis

    2003-02-01

    Substantial reduction in corneal ALDH3A1 enzymatic activity associated with eye pathology was previously reported in C57BL/6J mice subjected to ultraviolet radiation (UVR). The aim of this study was to examine whether UVR diminishes corneal ALDH3A1 expression through modifications at the transcriptional, translational, or post-translational level. Adult C57BL/6J mice were subjected to UVR exposure (302 nm peak wavelength) for various periods of time, and corneal ALDH3A1 mRNA and protein levels were monitored by Northern and Western blot analysis, respectively. In addition, ALDH3A1 enzymatic activity was determined as a measure of post-translational modification. Mice exposed to 0.2 J/cm(2) UVB radiation demonstrated an extensive decrease, approximately 80%, in mRNA and protein levels, as well as enzymatic activity of corneal ALDH3A1. Significant reductions in corneal ALDH3A1 enzymatic activity were detected in mice 96 h after exposure to 0.05 and 0.1 J/cm(2) UVB radiation; no significant changes were observed in mRNA and protein levels. These data suggest that UVB down-regulates corneal ALDH3A1 expression at the transcriptional and/or post-translational level depending on the dose of UVB. Reduction in gene transcription requires UVB doses greater than or equal to 0.2 J/cm(2). In vitro experiments with human corneal epithelial cell lines stably transfected with human ALDH3A1 cDNA, and with purified recombinant human ALDH3A1 protein, indicated that ALDH3A1 undergoes post-translational modifications after UVR exposure. These modifications result in both covalent and non-covalent aggregation of the protein with no detectable precipitation. Such conformational changes may be associated with the function of ALDH3A1 as a chaperone-like molecule in the cornea. PMID:12604188

  13. Laser-induced breakdown emission in hydrocarbon fuel mixtures

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kazunobu; Bak, Moon Soo; Tanaka, Hiroki; Carter, Campbell; Do, Hyungrok

    2016-04-01

    Time-resolved emission measurements of laser-induced breakdown plasmas have been carried out to investigate the effect that gas species might have on the kinetics, particularly in excited states, and the resulting plasma properties. For this purpose, fuel-oxygen (O2)-carbon dioxide (CO2) mixtures with either helium (He) or nitrogen (N2) balance are prepared while maintaining their atomic compositions. The fuels tested in this study are methane (CH4), ethylene (C2H4), propane (C3H8), and butane (C4H10). The breakdown is produced in the mixtures (CH4/CO2/O2/He, C2H4/O2/He, C3H8/CO2/O2/He and C4H10/CO2/O2/He or CH4/CO2/O2/N2, C2H4/O2/N2, C3H8/CO2/O2/N2 and C4H10/CO2/O2/N2) at room conditions using the second harmonic of a Q-switched Nd:YAG laser (with pulse duration of 10 ns). The temporal evolution of plasma temperature is deduced from the ratio of two oxygen lines (777 nm and 823 nm) through Boltzmann analysis, while the evolution of electron number density is estimated based on Stark broadening of the Balmer-alpha (H α ) line at 656 nm and the measured plasma temperature. From the results, the temporal evolution of emission spectra and decay rates of atomic line-intensities are found to be almost identical between the breakdown plasma in the different mixtures given balancing gases. Furthermore, the temporal evolution of plasma temperature and electron number density are also found to be independent of the species compositions. Therefore, this behavior—of the breakdown emissions and plasma properties in the different mixtures with identical atomic composition—may be because the breakdown gases reach similar thermodynamic and physiochemical states immediately after the breakdown.

  14. Interactions of Divalent and Trivalent Metal Counterions with Anionic Sulfonate Gemini Surfactant and Induced Aggregate Transitions in Aqueous Solution.

    PubMed

    Liu, Zhang; Cao, Meiwen; Chen, Yao; Fan, Yaxun; Wang, Dong; Xu, Hai; Wang, Yilin

    2016-05-01

    Interactions of multivalent metal counterions with anionic sulfonate gemini surfactant 1,3-bis(N-dodecyl-N-propanesulfonate sodium)-propane (C12C3C12(SO3)2) and the induced aggregate transitions in aqueous solution have been studied. Divalent metal ions Ca(2+), Mg(2+), Cu(2+), Zn(2+), Mn(2+), Co(2+), and Ni(2+) and trivalent metal ions Al(3+), Fe(3+), and Cr(3+) were chosen. The results indicate that the critical micelle concentration (CMC) of C12C3C12(SO3)2 is greatly reduced by the ions, and the aggregate morphologies of C12C3C12(SO3)2 are adjusted by changing the nature and molar ratio of the metal ions. These metal ions can be classified into four groups because the ions in each group have very similar interaction mechanisms with C12C3C12(SO3)2: (I) Cu(2+) and Zn(2+); (II) Ca(2+), Mn(2+) and Mg(2+); (III) Ni(2+) and Co(2+); and (IV) Cr(3+), Al(3+) and Fe(3+). Cu(2+), Mg(2+), Ni(2+), and Al(3+) then were selected as representatives for each group to further study their interaction with C12C3C12(SO3)2. C12C3C12(SO3)2 interacts with the multivalent metal ions by electrostatic interaction and coordination interaction. C12C3C12(SO3)2 forms prolate micelles and plate-like micelles with Cu(2+), vesicles and wormlike micelles with Al(3+) or Ni(2+), and viscous three-dimensional network structure with Mg(2+). Moreover, precipitation does not take place in aqueous solution even at a high ion/surfactant ratio. The related mechanisms have been discussed. The present work provides guidance on how to apply the anionic surfactant into the solutions containing the multivalent metal ions, and those aggregates may have potential usage in separating heavy metal ions from aqueous solutions.

  15. Aggregation of maternal pigment granules is induced by the cytosolic discoidin domain of the Xenopus Del1 protein.

    PubMed

    Tsabar, Nir; Gefen, Aharon; Elias, Sarah; Frank, Dale

    2005-05-01

    Xenopus oocytes generate pigment granules (melanosomes) that predominantly localize to the animal hemisphere cortex. During embryonic development, these granules are located near the membranes of outer layer ectoderm cells. We report a novel phenotype found during an expression cloning screen in Xenopus laevis embryos. The phenotype is characterized by dissociation of pigment granules from the cell membrane to form large central aggregates. This phenomenon was induced by a truncated form of the Xenopus Del1 (XDel1) protein that contains only the C-terminal discoidin (D2) domain. This truncated form of XDel1 localized to membranes as shown by a chimeric enhanced green fluorescent protein construct. Although a similar localization occurred in immature oocytes, dissociation of pigment granules was limited to the oocyte vegetal hemisphere. The full-length XDel1 cDNA was cloned, and XDel1 mRNA expression was found to be ubiquitous and continuous from early oocyte to tail bud stages, with a transient enrichment in the cement gland. Ectopic expression of various deletion or full-length constructs or antisense morpholino oligonucleotides did not induce any significant developmental phenotypes.

  16. Enhanced aggregation of androgen receptor in induced pluripotent stem cell-derived neurons from spinal and bulbar muscular atrophy.

    PubMed

    Nihei, Yoshihiro; Ito, Daisuke; Okada, Yohei; Akamatsu, Wado; Yagi, Takuya; Yoshizaki, Takahito; Okano, Hideyuki; Suzuki, Norihiro

    2013-03-22

    Spinal and bulbar muscular atrophy (SBMA) is an X-linked motor neuron disease caused by a CAG repeat expansion in the androgen receptor (AR) gene. Ligand-dependent nuclear accumulation of mutant AR protein is a critical characteristic of the pathogenesis of SBMA. SBMA has been modeled in AR-overexpressing animals, but precisely how the polyglutamine (polyQ) expansion leads to neurodegeneration is unclear. Induced pluripotent stem cells (iPSCs) are a new technology that can be used to model human diseases, study pathogenic mechanisms, and develop novel drugs. We established SBMA patient-derived iPSCs, investigated their cellular biochemical characteristics, and found that SBMA-iPSCs can differentiate into motor neurons. The CAG repeat numbers in the AR gene of SBMA-iPSCs and also in the atrophin-1 gene of iPSCs derived from another polyQ disease, dentato-rubro-pallido-luysian atrophy (DRPLA), remain unchanged during reprogramming, long term passage, and differentiation, indicating that polyQ disease-associated CAG repeats are stable during maintenance of iPSCs. The level of AR expression is up-regulated by neuronal differentiation and treatment with the AR ligand dihydrotestosterone. Filter retardation assays indicated that aggregation of ARs following dihydrotestosterone treatment in neurons derived from SBMA-iPSCs increases significantly compared with neurological control iPSCs, easily recapitulating the pathological feature of mutant ARs in SBMA-iPSCs. This phenomenon was not observed in iPSCs and fibroblasts, thereby showing the neuron-dominant phenotype of this disease. Furthermore, the HSP90 inhibitor 17-allylaminogeldanamycin sharply decreased the level of aggregated AR in neurons derived from SBMA-iPSCs, indicating a potential for discovery and validation of candidate drugs. We found that SBMA-iPSCs possess disease-specific biochemical features and could thus open new avenues of research into not only SBMA, but also other polyglutamine diseases.

  17. [Analysis of meteorological factors of forming feculent and anaerobic water aggregation induced by algal bloom in Taihu Lake].

    PubMed

    Wang, Cheng-Lin; Zhang, Yong; Zhang, Ning-Hong; Qian, Xin; Kong, Fan-Xiang

    2011-02-01

    The water quality pollution problem about feculent and anaerobic water aggregation (FAWA) induced by algal bloom in Taihu Lake, which is often called 'hufan' in Chinese, was studied. Its forming process is divided into 3 phases, i. e., material elements forming of FAWA, anaerobic products to be brought to the water surface and the maintaining of FAWA in the water surface. The conventional observational data from Wuxi meteorological station was analyzed. The result shows that there are similar meteorological characteristics of two FAWA phenomena in Taihu Lake in May, 2007 and May, 2008. A numerical simulation was performed to prove the analysis results. It indicates that propitious meteorological condition is one of the necessary forming factors of FAWA, which provides thermal and dynamical environment for FAWA. During the first phase, the weather conditions, such as high air temperature, gentle breeze and nearly invariable wind direction, maintain for more than 3 days and cause algal bloom to aggregate, then die, sink and anaerobic decay near lake bank. All these provide the precondition for FAWA. During the second phase, when the cold air mass passes across the Taihu basin, almost counter-direction wind, which maintains for more than 1 day with higher speed and lower air temperature, makes anaerobic products to be brought to the water surface by uplifted current. This is the trigger mechanism of FAWA. During the last phase, continual high air temperature and gentle breeze is favorable for FAWA in the water surface. Because meteorological factors are predictable, this research provides a way and basis for the further study of warning and controlling approaches of FAWA.

  18. Effect of methylglyoxal modification on stress-induced aggregation of client proteins and their chaperoning by human alphaA-crystallin.

    PubMed

    Biswas, Ashis; Wang, Benlian; Miyagi, Masaru; Nagaraj, Ram H

    2008-02-01

    alpha-Crystallin prevents protein aggregation under various stress conditions through its chaperone-like properties. Previously, we demonstrated that MGO (methylglyoxal) modification of alphaA-crystallin enhances its chaperone function and thus may affect transparency of the lens. During aging of the lens, not only alphaA-crystallin, but its client proteins are also likely to be modified by MGO. We have investigated the role of MGO modification of four model client proteins (insulin, alpha-lactalbumin, alcohol dehydrogenase and gamma-crystallin) in their aggregation and structure and the ability of human alphaA-crystallin to chaperone them. We found that MGO modification (10-1000 microM) decreased the chemical aggregation of insulin and alpha-lactalbumin and thermal aggregation of alcohol dehydrogenase and gamma-crystallin. Surface hydrophobicity in MGO-modified proteins decreased slightly relative to unmodified proteins. HPLC and MS analyses revealed argpyrimidine and hydroimidazolone in MGO-modified client proteins. The degree of chaperoning by alphaA-crystallin towards MGO-modified and unmodified client proteins was similar. Co-modification of client proteins and alphaA-crystallin by MGO completely inhibited stress-induced aggregation of client proteins. Our results indicate that minor modifications of client proteins and alphaA-crystallin by MGO might prevent protein aggregation and thus help maintain transparency of the aging lens. PMID:17941823

  19. Elucidation of Acid-induced Unfolding and Aggregation of Human Immunoglobulin IgG1 and IgG2 Fc

    PubMed Central

    Latypov, Ramil F.; Hogan, Sabine; Lau, Hollis; Gadgil, Himanshu; Liu, Dingjiang

    2012-01-01

    Understanding the underlying mechanisms of Fc aggregation is an important prerequisite for developing stable and efficacious antibody-based therapeutics. In our study, high resolution two-dimensional nuclear magnetic resonance (NMR) was employed to probe structural changes in the IgG1 Fc. A series of 1H-15N heteronuclear single-quantum correlation NMR spectra were collected between pH 2.5 and 4.7 to assess whether unfolding of CH2 domains precedes that of CH3 domains. The same pH range was subsequently screened in Fc aggregation experiments that utilized molecules of IgG1 and IgG2 subclasses with varying levels of CH2 glycosylation. In addition, differential scanning calorimetry data were collected over a pH range of 3–7 to assess changes in CH2 and CH3 thermostability. As a result, compelling evidence was gathered that emphasizes the importance of CH2 stability in determining the rate and extent of Fc aggregation. In particular, we found that Fc domains of the IgG1 subclass have a lower propensity to aggregate compared with those of the IgG2 subclass. Our data for glycosylated, partially deglycosylated, and fully deglycosylated molecules further revealed the criticality of CH2 glycans in modulating Fc aggregation. These findings provide important insights into the stability of Fc-based therapeutics and promote better understanding of their acid-induced aggregation process. PMID:22084250

  20. Membrane Curvature Induced by Aggregates of LH2s and Monomeric LH1s

    PubMed Central

    Chandler, Danielle E.; Gumbart, James; Stack, John D.; Chipot, Christophe; Schulten, Klaus

    2009-01-01

    Abstract The photosynthetic apparatus of purple bacteria is contained within organelles called chromatophores, which form as extensions of the cytoplasmic membrane. The shape of these chromatophores can be spherical (as in Rhodobacter sphaeroides), lamellar (as in Rhodopseudomonas acidophila and Phaeospirillum molischianum), or tubular (as in certain Rb. sphaeroides mutants). Chromatophore shape is thought to be influenced by the integral membrane proteins Light Harvesting Complexes I and II (LH1 and LH2), which pack tightly together in the chromatophore. It has been suggested that the shape of LH2, together with its close packing in the membrane, induces membrane curvature. The mechanism of LH2-induced curvature is explored via molecular dynamics simulations of multiple LH2 complexes in a membrane patch. LH2s from three species—Rb. sphaeroides, Rps. acidophila, and Phsp. molischianum—were simulated in different packing arrangements. In each case, the LH2s pack together and tilt with respect to neighboring LH2s in a way that produces an overall curvature. This curvature appears to be driven by a combination of LH2's shape and electrostatic forces that are modulated by the presence of well-conserved cytoplasmic charged residues, the removal of which inhibits LH2 curvature. The interaction of LH2s and an LH1 monomer is also explored, and it suggests that curvature is diminished by the presence of LH1 monomers. The implications of our results for chromatophore shape are discussed. PMID:19948127

  1. Ion-induced electron emission ERDA with a nuclear microprobe

    NASA Astrophysics Data System (ADS)

    Bogdanović Radović, I.; Medunić, Z.; Jakšić, M.; Siketić, Z.; Skukan, N.

    2005-04-01

    With intention to be used for the 3D analysis of hydrogen, a new ion-induced electron emission (IEE) ERDA system has been installed on the nuclear microprobe. A better depth resolution has been obtained with IEE particle identification system when compared to conventional ERDA systems that use stopping foil. Spectra of the forward scattered ions as well as the recoiled atoms are collected using the same particle detector. This simplifies normalization needed for quantitative analysis without the use of an additional detector. However, well defined but rather small solid angle of the IEE detector requires higher ion beam currents if sufficient sensitivity for H detection needs to be achieved. High beam currents focused to several micrometer spot size lead to rather high current densities and increased probability of H loss from the sample, which may limit the achievable sensitivity. By positioning IEE ERDA system at 45° instead of 30°, as well as by using heavier ions (O ions instead of He), two orders of magnitude better sensitivity can be obtained without a significant deterioration of depth resolution due to the increased recoil cross-section. In this work, several different sample types containing H have been studied. The capabilities of system for 3D imaging of H in samples have been demonstrated.

  2. Individual aggregates of amyloid beta induce temporary calcium influx through the cell membrane of neuronal cells

    PubMed Central

    Drews, Anna; Flint, Jennie; Shivji, Nadia; Jönsson, Peter; Wirthensohn, David; De Genst, Erwin; Vincke, Cécile; Muyldermans, Serge; Dobson, Chris; Klenerman, David

    2016-01-01

    Local delivery of amyloid beta oligomers from the tip of a nanopipette, controlled over the cell surface, has been used to deliver physiological picomolar oligomer concentrations to primary astrocytes or neurons. Calcium influx was observed when as few as 2000 oligomers were delivered to the cell surface. When the dosing of oligomers was stopped the intracellular calcium returned to basal levels or below. Calcium influx was prevented by the presence in the pipette of the extracellular chaperone clusterin, which is known to selectively bind oligomers, and by the presence a specific nanobody to amyloid beta. These data are consistent with individual oligomers larger than trimers inducing calcium entry as they cross the cell membrane, a result supported by imaging experiments in bilayers, and suggest that the initial molecular event that leads to neuronal damage does not involve any cellular receptors, in contrast to work performed at much higher oligomer concentrations. PMID:27553885

  3. Multifunctional 8-hydroxyquinoline-appended cyclodextrins as new inhibitors of metal-induced protein aggregation.

    PubMed

    Oliveri, Valentina; Attanasio, Francesco; Puglisi, Antonino; Spencer, John; Sgarlata, Carmelo; Vecchio, Graziella

    2014-07-14

    Mounting evidence suggests a pivotal role of metal imbalances in protein misfolding and amyloid diseases. As such, metal ions represent a promising therapeutic target. In this context, the synthesis of chelators that also contain complementary functionalities to combat the multifactorial nature of neurodegenerative diseases is a highly topical issue. We report two new 8-hydroxyquinoline-appended cyclodextrins and highlight their multifunctional properties, including their Cu(II) and Zn(II) binding abilities, and capacity to act as antioxidants and metal-induced antiaggregants. In particular, the latter property has been applied in the development of an effective assay that exploits the formation of amyloid fibrils when β-lactoglobulin A is heated in the presence of metal ions.

  4. Individual aggregates of amyloid beta induce temporary calcium influx through the cell membrane of neuronal cells.

    PubMed

    Drews, Anna; Flint, Jennie; Shivji, Nadia; Jönsson, Peter; Wirthensohn, David; De Genst, Erwin; Vincke, Cécile; Muyldermans, Serge; Dobson, Chris; Klenerman, David

    2016-01-01

    Local delivery of amyloid beta oligomers from the tip of a nanopipette, controlled over the cell surface, has been used to deliver physiological picomolar oligomer concentrations to primary astrocytes or neurons. Calcium influx was observed when as few as 2000 oligomers were delivered to the cell surface. When the dosing of oligomers was stopped the intracellular calcium returned to basal levels or below. Calcium influx was prevented by the presence in the pipette of the extracellular chaperone clusterin, which is known to selectively bind oligomers, and by the presence a specific nanobody to amyloid beta. These data are consistent with individual oligomers larger than trimers inducing calcium entry as they cross the cell membrane, a result supported by imaging experiments in bilayers, and suggest that the initial molecular event that leads to neuronal damage does not involve any cellular receptors, in contrast to work performed at much higher oligomer concentrations. PMID:27553885

  5. Ex vivo human platelet aggregation induced by decompression during reduced barometric pressure, hydrostatic, and hydrodynamic (Bernoulli) effect.

    PubMed

    Murayama, M

    1984-03-01

    Decompression of human platelet-rich plasma (PRP) in siliconized glass or plastic to 380 mm Hg for 3 hours at 38 degrees C produced platelet aggregation independent of pO2. Aggregation also took place when PRP was compressed to 8,000 PSI and then decompressed slowly to one atmosphere (14.7 PSI) without gas bubble formation. Platelets also aggregated when plasma was decompressed hydrodynamically (Bernoulli effect) at room temperature. It was also found that the drugs piracetam (2-oxypyrolidine acetamide) and pentoxifylline (1-(5-oxohexyl)-theobromine) at 0.5 and 1.0 mM prevent thrombocyte aggregation. Implications for mountain sickness are discussed.

  6. Amyloid-β-induced action potential desynchronization and degradation of hippocampal gamma oscillations is prevented by interference with peptide conformation change and aggregation.

    PubMed

    Kurudenkandy, Firoz Roshan; Zilberter, Misha; Biverstål, Henrik; Presto, Jenny; Honcharenko, Dmytro; Strömberg, Roger; Johansson, Jan; Winblad, Bengt; Fisahn, André

    2014-08-20

    The amyloid-β hypothesis of Alzheimer's Disease (AD) focuses on accumulation of amyloid-β peptide (Aβ) as the main culprit for the myriad physiological changes seen during development and progression of AD including desynchronization of neuronal action potentials, consequent development of aberrant brain rhythms relevant for cognition, and final emergence of cognitive deficits. The aim of this study was to elucidate the cellular and synaptic mechanisms underlying the Aβ-induced degradation of gamma oscillations in AD, to identify aggregation state(s) of Aβ that mediate the peptides neurotoxicity, and to test ways to prevent the neurotoxic Aβ effect. We show that Aβ(1-42) in physiological concentrations acutely degrades mouse hippocampal gamma oscillations in a concentration- and time-dependent manner. The underlying cause is an Aβ-induced desynchronization of action potential generation in pyramidal cells and a shift of the excitatory/inhibitory equilibrium in the hippocampal network. Using purified preparations containing different aggregation states of Aβ, as well as a designed ligand and a BRICHOS chaperone domain, we provide evidence that the severity of Aβ neurotoxicity increases with increasing concentration of fibrillar over monomeric Aβ forms, and that Aβ-induced degradation of gamma oscillations and excitatory/inhibitory equilibrium is prevented by compounds that interfere with Aβ aggregation. Our study provides correlative evidence for a link between Aβ-induced effects on synaptic currents and AD-relevant neuronal network oscillations, identifies the responsible aggregation state of Aβ and proofs that strategies preventing peptide aggregation are able to prevent the deleterious action of Aβ on the excitatory/inhibitory equilibrium and on the gamma rhythm. PMID:25143621

  7. Colour-tunable fluorescence of single molecules based on the vibration induced emission of phenazine.

    PubMed

    Huang, Wei; Sun, Lu; Zheng, Zhiwen; Su, Jianhua; Tian, He

    2015-03-14

    Due to the vibration of the phenazine unit, compound S1 exhibits dual fluorescence in solution but one peak in the solid state. Based on this novel phenomenon and combined with the intramolecular energy transfer (IET) effect, a colour-tunable luminescence, even near white emission from a single molecule could be achieved in two different ways: controlling the polarity of the solvent and the aggregation index. PMID:25679456

  8. Aggregation-Induced FRET via Polymer-Surfactant Complexation: A New Strategy for the Detection of Spermine.

    PubMed

    Malik, Akhtar Hussain; Hussain, Sameer; Iyer, Parameswar Krishnan

    2016-07-19

    A new water-soluble cationic conjugated polymer [9,9-bis(6'-methyl imidazolium bromide)hexyl)fluorene-co-4,7-(2,1,3-benzothiadiazole)] (PFBT-MI) was designed and synthesized via Suzuki cross-coupling polymerization in good yields without any tedious purification steps. PFBT-MI showed excellent photophysical responses toward SDS and SDBS with a detection limit of 0.12 μM/(34 ppb) and 0.13 μM/(45 ppb), respectively. Furthermore, occurrence of FRET from the donor (fluorene) to acceptor (BT units), via surfactant-induced aggregation, results in naked-eye detection of these common anionic surfactants (SDS/SDBS) as the color changes from blue to yellowish green in aqueous solution. The polymer-surfactant nanoaggregates thus formed via electrostatic as well as hydrophobic interactions have been explored for the sensitive detection of spermine (considered as an excellent biomarker for early cancer diagnosis) with a detection limit of 66 ppb (0.33 μM), which is much below the range 1-10 μM pertinent for the early diagnosis of cancer in urinary samples. This highly sensitive technique would facilitate the direct and noninvasive detection of spermine from urine rapidly and is likely to have great significance in early cancer diagnosis. PMID:27322621

  9. Degradation and aggregation of delta sleep-inducing peptide (DSIP) and two analogs in plasma and serum

    SciTech Connect

    Graf, M.V.; Saegesser, B.; Schoenenberger, G.A.

    1987-07-01

    The biostability of DSIP (delta sleep-inducing peptide) and two analogs in blood was investigated in order to determine if rates of inactivation contribute to variable effects in vivo. Incubation of DSIP in human or rat blood led to release of products having retention times on a gel filtration column equivalent to Trp. Formation of products was dependent on temperature, time, and species. Incubation of /sup 125/I-N-Tyr-DSIP and /sup 125/I-N-Tyr-P-DSIP, a phosphorylated analog, revealed slower degradation and, in contrast to DSIP, produced complex formation. An excess of unlabeled material did not displace the radioactivity supporting the assumption of non-specific binding/aggregation. It was concluded that the rapid disappearance of injected DSIP in blood was due to degradation, whereas complex formation together with slower degradation resulted in longer persistence of apparently intact analogs. Whether this could explain the sometimes stronger and more consistent effects of DSIP-analogs remains to be examined.

  10. Hybridization-Induced Aggregation Technology for Practical Clinical Testing: KRAS Mutation Detection in Lung and Colorectal Tumors.

    PubMed

    Sloane, Hillary S; Landers, James P; Kelly, Kimberly A

    2016-07-01

    KRAS mutations have emerged as powerful predictors of response to targeted therapies in the treatment of lung and colorectal cancers; thus, prospective KRAS genotyping is essential for appropriate treatment stratification. Conventional mutation testing technologies are not ideal for routine clinical screening, as they often involve complex, time-consuming processes and/or costly instrumentation. In response, we recently introduced a unique analytical strategy for revealing KRAS mutations, based on the allele-specific hybridization-induced aggregation (HIA) of oligonucleotide probe-conjugated microbeads. Using simple, inexpensive instrumentation, this approach allows for the detection of any common KRAS mutation in <10 minutes after PCR. Here, we evaluate the clinical utility of the HIA method for mutation detection (HIAMD). In the analysis of 20 lung and colon tumor pathology specimens, we observed a 100% correlation between the KRAS mutation statuses determined by HIAMD and sequencing. In addition, we were able to detect KRAS mutations in a background of 75% wild-type DNA-a finding consistent with that reported for sequencing. With this, we show that HIAMD allows for the rapid and cost-effective detection of KRAS mutations, without compromising analytical performance. These results indicate the validity of HIAMD as a mutation-testing technology suitable for practical clinical testing. Further expansion of this platform may involve the detection of mutations in other key oncogenic pathways. PMID:27289420

  11. Aggregation of Trp > Glu point mutants of human gamma-D crystallin provides a model for hereditary or UV-induced cataract.

    PubMed

    Serebryany, Eugene; Takata, Takumi; Erickson, Erika; Schafheimer, Nathaniel; Wang, Yongting; King, Jonathan A

    2016-06-01

    Numerous mutations and covalent modifications of the highly abundant, long-lived crystallins of the eye lens cause their aggregation leading to progressive opacification of the lens, cataract. The nature and biochemical mechanisms of the aggregation process are poorly understood, as neither amyloid nor native-state polymers are commonly found in opaque lenses. The βγ-crystallin fold contains four highly conserved buried tryptophans, which can be oxidized to more hydrophilic products, such as kynurenine, upon UV-B irradiation. We mimicked this class of oxidative damage using Trp→Glu point mutants of human γD-crystallin. Such substitutions may represent a model of UV-induced photodamage-introduction of a charged group into the hydrophobic core generating "denaturation from within." The effects of Trp→Glu substitutions were highly position dependent. While each was destabilizing, only the two located in the bottom of the double Greek key fold-W42E and W130E-yielded robust aggregation of partially unfolded intermediates at 37°C and pH 7. The αB-crystallin chaperone suppressed aggregation of W130E, but not W42E, indicating distinct aggregation pathways from damage in the N-terminal vs C-terminal domain. The W130E aggregates had loosely fibrillar morphology, yet were nonamyloid, noncovalent, showed little surface hydrophobicity, and formed at least 20°C below the melting temperature of the native β-sheets. These features are most consistent with domain-swapped polymerization. Aggregation of partially destabilized crystallins under physiological conditions, as occurs in this class of point mutants, could provide a simple in vitro model system for drug discovery and optimization. PMID:26991007

  12. αA-Crystallin Peptide 66SDRDKFVIFLDVKHF80 Accumulating in Aging Lens Impairs the Function of α-Crystallin and Induces Lens Protein Aggregation

    PubMed Central

    Santhoshkumar, Puttur; Raju, Murugesan; Sharma, K. Krishna

    2011-01-01

    Background The eye lens is composed of fiber cells that are filled with α-, β- and γ-crystallins. The primary function of crystallins is to maintain the clarity of the lens through ordered interactions as well as through the chaperone-like function of α-crystallin. With aging, the chaperone function of α-crystallin decreases, with the concomitant accumulation of water-insoluble, light-scattering oligomers and crystallin-derived peptides. The role of crystallin-derived peptides in age-related lens protein aggregation and insolubilization is not understood. Methodology/Principal Findings We found that αA-crystallin-derived peptide, 66SDRDKFVIFLDVKHF80, which accumulates in the aging lens, can inhibit the chaperone activity of α-crystallin and cause aggregation and precipitation of lens crystallins. Age-related change in the concentration of αA-(66-80) peptide was estimated by mass spectrometry. The interaction of the peptide with native crystallin was studied by multi-angle light scattering and fluorescence methods. High molar ratios of peptide-to-crystallin were favourable for aggregation and precipitation. Time-lapse recordings showed that, in the presence of αA-(66-80) peptide, α-crystallin aggregates and functions as a nucleus for protein aggregation, attracting aggregation of additional α-, β- and γ-crystallins. Additionally, the αA-(66-80) peptide shares the principal properties of amyloid peptides, such as β-sheet structure and fibril formation. Conclusions/Significance These results suggest that crystallin-derived peptides such as αA-(66-80), generated in vivo, can induce age-related lens changes by disrupting the structure and organization of crystallins, leading to their insolubilization. The accumulation of such peptides in aging lenses may explain a novel mechanism for age-related crystallin aggregation and cataractogenesis. PMID:21552534

  13. Sleep inducing effect of low energy emission therapy.

    PubMed

    Reite, M; Higgs, L; Lebet, J P; Barbault, A; Rossel, C; Kuster, N; Dafni, U; Amato, D; Pasche, B

    1994-01-01

    The sleep inducing effect of a 15 min treatment with either an active or an inactive Low Energy Emission Therapy (LEET) device emitting amplitude-modulated electromagnetic (EM) fields was investigated in a double-blind cross-over study performed on 52 healthy subjects. All subjects were exposed to both active and inactive LEET treatment sessions, with an interval of at least 1 week between the two sessions. LEET consists of 27.12 MHz amplitude-modulated (sine wave) EM fields emitted intrabuccally by means of an electrically conducting mouthpiece in direct contact with the oral mucosa. The estimated local peak SAR is less than 10 W/kg in the oral mucosa and 0.1 to 100 mW/kg in brain tissue. No appreciable sensation is experienced during treatment, and subjects are therefore unable to tell whether they are receiving an active or an inactive treatment. In this study the active treatment consisted of EM fields intermittently amplitude-modulated (sine wave) at 42.7 Hz for 3 s followed by a pause of 1 s during which no EM fields were emitted. During the inactive treatment no EM fields were emitted. Baseline EEGs were obtained and 15 min post-treatment EEGs were recorded and analyzed according to the Loomis classification. A significant decrease (paired t test) in sleep latency to stage B2 (-1.78 +/- 5.57 min, P = 0.013), and an increase in the total duration of stage B2 (1.15 +/- 2.47 min, P = 0.0008) were observed on active treatment as compared with inactive treatment.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8155071

  14. Aggregated GPS tracking of vehicles and its use as a proxy of traffic-related air pollution emissions

    NASA Astrophysics Data System (ADS)

    Chen, Shimon; Bekhor, Shlomo; Yuval; Broday, David M.

    2016-10-01

    Most air quality models use traffic-related variables as an input. Previous studies estimated nearby vehicular activity through sporadic traffic counts or via traffic assignment models. Both methods have previously produced poor or no data for nights, weekends and holidays. Emerging technologies allow the estimation of traffic through passive monitoring of location-aware devices. Examples of such devices are GPS transceivers installed in vehicles. In this work, we studied traffic volumes that were derived from such data. Additionally, we used these data for estimating ambient nitrogen dioxide concentrations, using a non-linear optimisation model that includes basic dispersion properties. The GPS-derived data show great potential for use as a proxy for pollutant emissions from motor-vehicles.

  15. Molecular Level Insights into Thermally Induced [alpha]-Chymotrypsinogen A Amyloid Aggregation Mechanism and Semiflexible Protofibril Morphology

    SciTech Connect

    Zhang, Aming; Jordan, Jacob L.; Ivanova, Magdalena I.; Weiss, IV., William F.; Roberts, Christopher J.; Fernandez, Erik J.

    2010-12-07

    Understanding nonnative protein aggregation is critical not only to a number of amyloidosis disorders but also for the development of effective and safe biopharmaceuticals. In a series of previous studies [Weiss et al. (2007) Biophys. J. 93, 4392-4403; Andrews et al. (2007) Biochemistry 46, 7558-7571; Andrews et al. (2008) Biochemistry 47, 2397-2403], {alpha}-chymotrypsinogen A (aCgn) and bovine granulocyte colony stimulating factor (bG-CSF) have been shown to exhibit the kinetic and morphological features of other nonnative aggregating proteins at low pH and ionic strength. In this study, we investigated the structural mechanism of aCgn aggregation. The resultant aCgn aggregates were found to be soluble and exhibited semiflexible filamentous aggregate morphology under transmission electron microscopy. In addition, the filamentous aggregates were demonstrated to possess amyloid characteristics by both Congo red binding and X-ray diffraction. Peptide level hydrogen exchange (HX) analysis suggested that a buried native {beta}-sheet comprised of three peptide segments (39-46, 51-64, and 106-114) reorganizes into the cross-{beta} amyloid core of aCgn aggregates and that at least 50% of the sequence adopts a disordered structure in the aggregates. Furthermore, the equimolar, bimodal HX labeling distribution observed for three reported peptides (65-102, 160-180, and 229-245) suggested a heterogeneous assembly of two molecular conformations in aCgn aggregates. This demonstrates that extended {beta}-sheet interactions typical of the amyloid are sufficiently strong that a relatively small fraction of polypeptide sequence can drive formation of filamentous aggregates even under conditions favoring colloidal stability.

  16. Construction aggregates

    USGS Publications Warehouse

    Tepordei, V.V.

    1995-01-01

    Part of the 1994 Industrial Minerals Review. The production, consumption, and applications of construction aggregates are reviewed. In 1994, the production of construction aggregates, which includes crushed stone and construction sand and gravel combined, increased 7.7 percent to 2.14 Gt compared with the previous year. These record production levels are mostly a result of funding for highway construction work provided by the Intermodal Surface Transportation Efficiency Act of 1991. Demand is expected to increase for construction aggregates in 1995.

  17. 1,4-Benzenediboronic-Acid-Induced Aggregation of Gold Nanoparticles: Application to Hydrogen Peroxide Detection and Biotin-Avidin-Mediated Immunoassay with Naked-Eye Detection.

    PubMed

    Yang, Ya-Chun; Tseng, Wei-Lung

    2016-05-17

    Hydrogen-peroxide (H2O2)-induced growth of small-sized gold nanoparticles (AuNPs) is often implemented for H2O2 sensing and plasmonic immunoassay. In contrast, there is little-to-no information in the literature regarding the application of H2O2-inhibited aggregation of citrate-capped AuNPs. This study discloses that benzene-1,4-diboronic acid (BDBA) was effective in driving the aggregation of citrate-capped AuNPs through an interaction between α-hydroxycarboxylate of citrate and boronic acids of BDBA. The H2O2-mediated oxidation of BDBA resulted in the conversion of boronic acid groups to phenol groups. The oxidized BDBA was incapable of triggering the aggregation of citrate-capped AuNPs. Thus, the presence of H2O2 prohibited BDBA-induced aggregation of citrate-capped AuNPs. The BDBA-induced aggregation of citrate-capped AuNPs can be paired with the glucose oxidase (GOx)-glucose system to design a colorimetric probe for glucose. Moreover, a H2O2·BDBA·AuNP probe was integrated with sandwich immunoassay, biotinylated antibody, and avidin-conjugated GOx for the selective naked-eye detection of rabbit immunoglobulin G (IgG) and human-prostate-specific antigen (PSA). The lowest detectable concentrations of rabbit IgG and human PSA by the naked eye were down to 0.1 and 4 ng/mL, respectively. More importantly, the proposed plasmonic immunoassay allowed the naked-eye quantification of 0-10 ng/mL PSA at an interval of 2 ng/mL in plasma samples.

  18. 1,4-Benzenediboronic-Acid-Induced Aggregation of Gold Nanoparticles: Application to Hydrogen Peroxide Detection and Biotin-Avidin-Mediated Immunoassay with Naked-Eye Detection.

    PubMed

    Yang, Ya-Chun; Tseng, Wei-Lung

    2016-05-17

    Hydrogen-peroxide (H2O2)-induced growth of small-sized gold nanoparticles (AuNPs) is often implemented for H2O2 sensing and plasmonic immunoassay. In contrast, there is little-to-no information in the literature regarding the application of H2O2-inhibited aggregation of citrate-capped AuNPs. This study discloses that benzene-1,4-diboronic acid (BDBA) was effective in driving the aggregation of citrate-capped AuNPs through an interaction between α-hydroxycarboxylate of citrate and boronic acids of BDBA. The H2O2-mediated oxidation of BDBA resulted in the conversion of boronic acid groups to phenol groups. The oxidized BDBA was incapable of triggering the aggregation of citrate-capped AuNPs. Thus, the presence of H2O2 prohibited BDBA-induced aggregation of citrate-capped AuNPs. The BDBA-induced aggregation of citrate-capped AuNPs can be paired with the glucose oxidase (GOx)-glucose system to design a colorimetric probe for glucose. Moreover, a H2O2·BDBA·AuNP probe was integrated with sandwich immunoassay, biotinylated antibody, and avidin-conjugated GOx for the selective naked-eye detection of rabbit immunoglobulin G (IgG) and human-prostate-specific antigen (PSA). The lowest detectable concentrations of rabbit IgG and human PSA by the naked eye were down to 0.1 and 4 ng/mL, respectively. More importantly, the proposed plasmonic immunoassay allowed the naked-eye quantification of 0-10 ng/mL PSA at an interval of 2 ng/mL in plasma samples. PMID:27091002

  19. Potassium 2-(1-hydroxypentyl)-benzoate inhibits ADP-induced rat platelet aggregation through P2Y1-PLC signaling pathways.

    PubMed

    Yang, Hongyan; Xu, Shaofeng; Li, Jiang; Wang, Ling; Wang, Xiaoliang

    2015-09-01

    Potassium 2-(1-hydroxypenty1)-benzoate (dl-PHPB) is a new drug candidate for treatment of ischemic stroke with antiplatelet effect. In this study, we investigated the mechanisms of dl-PHPB in inhibiting platelet aggregation. The ADP-activated P2Y1-Gq-PLC and P2Y12-Gi-AC pathways were observed, respectively. Intravenous injection of dl-PHPB (1.3, 3.9, 12.9 mg/kg) significantly inhibited ADP-, collagen-, and arachidonic acid-induced rat platelet aggregation in a dose-dependent manner, and dl-PHPB had a relatively more potent inhibitory effect on ADP-induced rat platelet aggregation than other agonists. Dl-PHPB also showed a decreased expression of CD62P (a marker for platelet activation) mediated by ADP. Both dl-PHPB and ticlopidine (P2Y12 receptor antagonist) decreased cytoplasmic Ca(2+) concentration. But, dl-PHPB did not reverse the inhibition of PGE1-induced platelet cAMP formation by ADP, which was different from ticlopidine. Further, dl-PHPB instead of ticlopidine showed increasing phospholipase C-β phosphorylation (ser(1105)). The m-3M3FBS, a phospholipase C activator, attenuated the inhibitory effect of dl-PHPB on ADP-induced platelet aggregation and enhanced IP1 accumulation in rat platelets. Dl-PHPB decreased IP1 accumulation induced by ADP but had no effect on IP1 level enhanced by m-3M3FBS. Our results suggest that dl-PHPB has a potent antiplatelet effect, which is mainly through blockade of P2Y1 receptor-PLC-IP3 pathway and decreasing cytoplasmic calcium.

  20. Synchrotron-Radiation Induced X-Ray Emission (SRIXE)

    SciTech Connect

    Jones, Keith W.

    1999-09-01

    and increase in scientific use can be maintained for the synchrotron x-ray source. A short summary of the present state of the synchrotron radiation-induced x-ray emission (SRIXE) method is presented here. Basically, SRIXE experiments can include any that depend on the detection. of characteristic x-rays produced by the incident x-ray beam born the synchrotron source as they interact with a sample. Thus, experiments done to measure elemental composition, chemical state, crystal, structure, and other sample parameters can be considered in a discussion of SRIXE. It is also clear that the experimentalist may well wish to use a variety of complementary techniques for study of a given sample. For this reason, discussion of computed microtomography (CMT) and x-ray diffraction is included here. It is hoped that this present discussion will serve as a succinct introduction to the basic ideas of SRIXE for those not working in the field and possibly help to stimulate new types of work by those starting in the field as well as by experienced practitioners of the art. The topics covered include short descriptions of (1) the properties of synchrotron radiation, (2) a description of facilities used for its production, (3) collimated microprobe, (4) focused microprobes, (5) continuum and monoenergetic excitation, (6) detection limits, (7) quantitation, (8) applications of SRIXE, (9) computed microtomography (CMT), and (10)chemical speciation using x-ray absorption near-edge structure (XANES) and extended x-ray absorption fine structure (EXAFS). An effort has been made to cite a wide variety of work from different laboratories to show the vital nature of the field.

  1. Biophoton Emission Induced by Osmotic Stress in Adzuki Bean Root

    NASA Astrophysics Data System (ADS)

    Ohya, Tomoyuki; Oikawa, Noriko; Kawabata, Ryuzou; Okabe, Hirotaka; Kai, Shoichi

    2003-12-01

    In order to evaluate the physiological damage to plants caused by osmotic stress, we have investigated the relationship between the inhibition of root elongation and spontaneous photon emission from the root. Adzuki bean roots were soaked in polyethylene glycol (PEG) solutions for short periods in their early growth stage, and their root length and photon emission were measured afterwards. Consequently, it became clear that the root elongation decreased with the increase of PEG concentration. Moreover, there was a clear correlation between the emission intensity of the cell division area in the root and the inhibition of elongation, though the elongation of individual roots varied to some degree.

  2. Surface sensitivity of ion-induced Auger electron emission (IAE) spectroscopy

    NASA Astrophysics Data System (ADS)

    Verucchi, R.; Altieri, S.; Valeri, S.

    1995-07-01

    We investigated the electron emission induced by energetic sputter-deposited Si particles during ion beam sputter deposition of Si on Ge substrate. Electron emission is strictly similar to the ion-induced Auger (IAE) Si spectra and originates in SiSi collisions. Monitoring this "IAE-like" Si yield during the Si layer-by-layer growth, we measured the surface sensitivity of particle-induced electron emission for different energies of the involved particles and for different experimental geometries. We found that the depth sampled by IAE spectroscopy critically depends on the experimental parameters. The surface sensitivity of IAE is, in several cases, larger than that of the corresponding, conventional electron-induced Auger electron emission.

  3. Inhaled Diesel Emissions Generated with Cerium Oxide Nanoparticle Fuel Additive Induce Adverse Pulmonary and Systemic Effects

    EPA Science Inventory

    Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Cerium oxide nanoparticles added to diesel fuel (DECe) increases fuel burning efficiency but leads to altered emission characteristics and potentially altered health effects. Here, we evaluated whether DECe res...

  4. In Vitro Spectrophotometry of Tooth Discoloration Induced by Tooth-Colored Mineral Trioxide Aggregate and Calcium-Enriched Mixture Cement

    PubMed Central

    Arman, Marjan; Khalilak, Zohreh; Rajabi, Moones; Esnaashari, Ehsan; Saati, Keyvan

    2015-01-01

    Introduction: There are numerous factors that can lead to tooth discoloration after endodontic treatment, such as penetration of endodontic materials into the dentinal tubules during root canal treatment. The aim of this in vitro study was to compare discoloration induced by tooth colored mineral trioxide aggregate (MTA) and calcium-enriched mixture (CEM) cement in extracted human teeth. Methods and Materials: Thirty two dentin-enamel cuboid blocks (7×7×2 mm) were prepared from extracted maxillary central incisors. Standardized cavities were prepared in the middle of each cube, leaving 1 mm of enamel and dentin on the labial surface. The specimens were randomly divided into two study groups (n=12) and two positive and negative control groups (n=4). In either study groups the cavities were filled with MTA or CEM cement. The positive and negative control groups were filled with blood or left empty, respectively. The cavities were sealed with composite resin and stored in normal saline. Color measurement was carried out by spectrophotometry at different time intervals including before (T0), and 1 week (T1), 1 month (T2) and 6 months (T3) after placement of materials. Repeated-measures ANOVA was used to compare the discoloration between the groups; the material type was considered as the inter-subject factor. The level of significance was set at 0.05. Results: No significant differences were detected between the groups in all time intervals (P>0.05). Conclusion: Tooth discoloration was similarly detectable with both of the two experimental materials. PMID:26576163

  5. Coronal Discoloration Induced by Calcium-Enriched Mixture, Mineral Trioxide Aggregate and Calcium Hydroxide: A Spectrophotometric Analysis

    PubMed Central

    Esmaeili, Behnaz; Alaghehmand, Homayoun; Kordafshari, Tavoos; Daryakenari, Ghazaleh; Ehsani, Maryam; Bijani, Ali

    2016-01-01

    Introduction: The aim of this study was to compare the discoloration potential of calcium-enriched mixture (CEM) cement, white mineral trioxide aggregate (WMTA) and calcium hydroxide (CH), after placement in pulp chamber. Methods and Materials: Access cavities were prepared in 40 intact maxillary central incisors. Then, a 2×2 mm box was prepared on the middle third of the inner surface on the buccal wall of the access cavity. The specimens were randomly assigned into four groups; the boxes in the control group were left empty, in groups 1 to 3, the boxes were filled with CH, WMTA and CEM cement, respectively. The access cavities and the apical openings were sealed using resin modified glass ionomer (RMGI). The color measurement was performed with a spectrophotometer at the following intervals: before (T0), immediately after placement of the filling material (T1), one week (T2), 1 month (T3), 3 months (T4) and 5 months (T5) after filling of the box and finally immediately after removing the material from the boxes (T6). Color change (ΔE) values were calculated using the sample Kolmogorov-Smirnov test to determine the normal distribution of data, followed by ANOVA, repeated measured ANOVA and post-hoc Tukey’s tests. Results: All materials led to clinically perceptible crown discoloration after 1 week. The highest ΔE value belonged to WMTA group. Discoloration induced by CEM cement was not significantly different from CH or the control group (P>0.05). Conclusion: CEM cement may be the material of choice in the esthetic region, specifically pertaining to its lower color changing potential compared to WMTA. PMID:26843873

  6. Influence of heat and shear induced protein aggregation on the in vitro digestion rate of whey proteins.

    PubMed

    Singh, Tanoj K; Øiseth, Sofia K; Lundin, Leif; Day, Li

    2014-11-01

    Protein intake is essential for growth and repair of body cells, the normal functioning of muscles, and health related immune functions. Most food proteins are consumed after undergoing various degrees of processing. Changes in protein structure and assembly as a result of processing impact the digestibility of proteins. Research in understanding to what extent the protein structure impacts the rate of proteolysis under human physiological conditions has gained considerable interest. In this work, four whey protein gels were prepared using heat processing at two different pH values, 6.8 and 4.6, with and without applied shear. The gels showed different protein network microstructures due to heat induced unfolding (at pH 6.8) or lack of unfolding, thus resulting in fine stranded protein networks. When shear was applied during heating, particulate protein networks were formed. The differences in the gel microstructures resulted in considerable differences in their rheological properties. An in vitro gastric and intestinal model was used to investigate the resulting effects of these different gel structures on whey protein digestion. In addition, the rate of digestion was monitored by taking samples at various time points throughout the in vitro digestion process. The peptides in the digesta were profiled using SDS-polyacrylamide gel electrophoresis, reversed-phase-HPLC and LC-MS. Under simulated gastric conditions, whey proteins in structured gels were hydrolysed faster than native proteins in solution. The rate of peptides released during in vitro digestion differed depending on the structure of the gels and extent of protein aggregation. The outcomes of this work highlighted that changes in the network structure of the protein can influence the rate and pattern of its proteolysis under gastrointestinal conditions. Such knowledge could assist the food industry in designing novel food formulations to control the digestion kinetics and the release of biologically

  7. The Nature of Emission from Optical Breakdown Induced by Pulses of fs and ns Duration

    SciTech Connect

    Carr, C W; Feit, M D; Rubenchik, A M; Demange, P; Kucheyev, S; Shirk, M D; Radousky, H B; Demos, S G

    2004-11-09

    Spectral emission from optical breakdown in the bulk of a transparent dielectric contains information about the nature of the breakdown medium. We have made time resolved measurements of the breakdown induced emission caused by nanosecond and femtosecond infrared laser pulses. We previously demonstrated that the emission due to ns pulses is blackbody in nature allowing determination of the fireball temperature and pressure during and after the damage event. The emission due to femtosecond pulse breakdown is not blackbody in nature; two different spectral distributions being noted. In one case, the peak spectral distribution occurs at the second harmonic of the incident radiation, in the other the distribution is broader and flatter and presumably due to continuum generation. The differences between ns and fs breakdown emission can be explained by the differing breakdown region geometries for the two pulse durations. The possibility to use spectral emission as a diagnostic of the emission region morphology will be discussed.

  8. Fluorescence characterization of co-immobilization-induced multi-enzyme aggregation in a polymer matrix using Förster resonance energy transfer (FRET): toward the metabolon biomimic.

    PubMed

    Wu, Fei; Minteer, Shelley D

    2013-08-12

    Sequential metabolic enzymes can form supramolecular complexes named metabolons in vivo through enzyme-enzyme association or aggregation to facilitate efficient substrate channeling. By separately labeling enzymes with lysine-targeting carboxylic acid succinimidyl ester fluorophores of distinct excitation wavelengths, this research presents a quantitative study of polymer-entrapment-induced in vitro multi-enzyme aggregation from three Krebs cycle enzymes using Förster resonance energy transfer (FRET) to find potential polymer materials for immobilizing enzyme cascades and inducing the metabolon biomimic formation on electrodes. The effect of hydrophobic modification of linear polyethylenimine, Nafion, and chitosan polymers on metabolon formation has been investigated through photobleaching FRET imaging in addition to traditional steady-state fluorescence spectroscopy. By partially destroying FRET acceptors of longer excitation wavelength, increased fluorescence from dequenched donors of shorter excitation wavelength was measured and enzyme interactions in terms of energy-transfer efficiencies were mapped point by point. Results show that trimethyloctadecylammonium-modified Nafion works best in inducing multi-enzyme aggregation and exhibits a promising future in immobilized metabolon biomimics with the most uniform enzyme organization, as indicated by the protein distance distribution.

  9. Hydrocarbon Emission Rings in Protoplanetary Disks Induced by Dust Evolution

    NASA Astrophysics Data System (ADS)

    Bergin, Edwin A.; Du, Fujun; Cleeves, L. Ilsedore; Blake, G. A.; Schwarz, K.; Visser, R.; Zhang, K.

    2016-11-01

    We report observations of resolved C2H emission rings within the gas-rich protoplanetary disks of TW Hya and DM Tau using the Atacama Large Millimeter Array. In each case the emission ring is found to arise at the edge of the observable disk of millimeter-sized grains (pebbles) traced by submillimeter-wave continuum emission. In addition, we detect a C3H2 emission ring with an identical spatial distribution to C2H in the TW Hya disk. This suggests that these are hydrocarbon rings (i.e., not limited to C2H). Using a detailed thermo-chemical model we show that reproducing the emission from C2H requires a strong UV field and C/O > 1 in the upper disk atmosphere and outer disk, beyond the edge of the pebble disk. This naturally arises in a disk where the ice-coated dust mass is spatially stratified due to the combined effects of coagulation, gravitational settling and drift. This stratification causes the disk surface and outer disk to have a greater permeability to UV photons. Furthermore the concentration of ices that transport key volatile carriers of oxygen and carbon in the midplane, along with photochemical erosion of CO, leads to an elemental C/O ratio that exceeds unity in the UV-dominated disk. Thus the motions of the grains, and not the gas, lead to a rich hydrocarbon chemistry in disk surface layers and in the outer disk midplane.

  10. Strong electron and ion emissions induced by a pyroelectric crystal

    NASA Astrophysics Data System (ADS)

    Hockley, M.; Huang, Z.

    2013-01-01

    A novel method of high voltage pulse generation was developed, based on charging a capacitor by changing the temperature of a pyroelectric crystal. A high voltage pulse is formed when a miniature spark gap device in connection with the charging capacitor is suddenly switched on. This high voltage pulse is then used to trigger strong electron and ion emissions from a ferroelectric cathode. The developments of voltage and emission with time were compared with those when the voltage pulse was produced by an external power source, and the differences were explained as due to different electric boundary conditions, based on the surface plasma assisted emission mechanisms. Factors affecting the ferroelectric cathode emissions, such as the capacitance of the charging capacitor, the polarity of the voltage pulses being applied to the front or rear electrode of the cathode, and the shape of the front grid electrode, have been investigated. Significantly higher current and total emitted electrons were observed in the case of a negative voltage applied to the front electrode. Other emission features such as the energy of the emitted particles and density distribution were also characterised.

  11. A mobile system for a comprehensive online-characterization of nanoparticle aggregates based on wide-angle light scattering and laser-induced incandescence

    NASA Astrophysics Data System (ADS)

    Huber, Franz J. T.; Altenhoff, Michael; Will, Stefan

    2016-05-01

    A mobile demonstrator for the comprehensive online-characterization of gas-borne nanoparticle aggregates is presented. Two optical measurement techniques are combined, both utilizing a pulsed Nd:YAG laser as light source. Aggregate size and fractal dimension are measured by Wide-Angle Light Scattering (WALS). An ellipsoidal mirror images elastically scattered light from scattering angles between 10° and 165° onto a CCD-camera chip resulting in an almost complete scattering diagram with high angular resolution. Primary particle size and volume fraction are measured by time-resolved Laser-Induced Incandescence (TiRe-LII). Here, particles are heated up to about 3000 K by the short laser pulse, the enhanced thermal radiation signal is detected with gated photomultiplier tubes. Analysis of the signal decay time and maximum LII-signal allows for the determination of primary particle diameter and volume fraction. The performance of the system is demonstrated by combined measurements on soot nanoparticle aggregates from a soot aerosol generator. Particle and aggregate sizes are varied by using different equivalence ratios of the combustion in the generator. Soot volume fraction can be adjusted by different levels of dilution with air. Online-measurements were carried out demonstrating the favorable performance of the system and the potential for industrial applications such as process control and product development. The particle properties obtained are confirmed through transmission electron microscopy analysis on representative samples.

  12. A mobile system for a comprehensive online-characterization of nanoparticle aggregates based on wide-angle light scattering and laser-induced incandescence.

    PubMed

    Huber, Franz J T; Altenhoff, Michael; Will, Stefan

    2016-05-01

    A mobile demonstrator for the comprehensive online-characterization of gas-borne nanoparticle aggregates is presented. Two optical measurement techniques are combined, both utilizing a pulsed Nd:YAG laser as light source. Aggregate size and fractal dimension are measured by Wide-Angle Light Scattering (WALS). An ellipsoidal mirror images elastically scattered light from scattering angles between 10° and 165° onto a CCD-camera chip resulting in an almost complete scattering diagram with high angular resolution. Primary particle size and volume fraction are measured by time-resolved Laser-Induced Incandescence (TiRe-LII). Here, particles are heated up to about 3000 K by the short laser pulse, the enhanced thermal radiation signal is detected with gated photomultiplier tubes. Analysis of the signal decay time and maximum LII-signal allows for the determination of primary particle diameter and volume fraction. The performance of the system is demonstrated by combined measurements on soot nanoparticle aggregates from a soot aerosol generator. Particle and aggregate sizes are varied by using different equivalence ratios of the combustion in the generator. Soot volume fraction can be adjusted by different levels of dilution with air. Online-measurements were carried out demonstrating the favorable performance of the system and the potential for industrial applications such as process control and product development. The particle properties obtained are confirmed through transmission electron microscopy analysis on representative samples. PMID:27250387

  13. Protein-peptide interaction: study of heat-induced aggregation and gelation of β-lactoglobulin in the presence of two peptides from its own hydrolysate.

    PubMed

    Kosters, Hans A; Wierenga, Peter A; de Vries, Renko; Gruppen, Harry

    2013-05-01

    Two peptides, [f135-158] and [f135-162]-SH, were used to study the binding of the peptides to native β-lactolobulin, as well as the subsequent effects on aggregation and gelation of β-lactoglobulin. The binding of the peptide [f135-158] to β-lactoglobulin at room temperature was confirmed by SELDI-TOF-MS. It was further illustrated by increased turbidity of mixed solutions of peptide and protein (at pH 7), indicating association of proteins and peptides in larger complexes. At pH below the isoelectric point of the protein, the presence of peptides did not lead to an increased turbidity, showing the absence of complexation. The protein-peptide complexes formed at pH 7 were found to dissociate directly upon heating. After prolonged heating, extensive aggregation was observed, whereas no aggregation was seen for the pure protein or pure peptide solutions. The presence of the free sulfhydryl group in [f135-162]-SH resulted in a 10 times increase in the amount of aggregation of β-lactoglobulin upon heating, illustrating the additional effect of the free sulfhydryl group. Subsequent studies on the gel strength of heat-induced gels also showed a clear difference between these two peptides. The replacement of additional β-lactoglobulin by [f135-158] resulted in a decrease in gel strength, whereas replacement by peptide [f135-162]-SH increased gel strength.

  14. Tunneling-Electron-Induced Light Emission from Single Gold Nanoclusters.

    PubMed

    Yu, Arthur; Li, Shaowei; Czap, Gregory; Ho, W

    2016-09-14

    The coupling of tunneling electrons with the tip-nanocluster-substrate junction plasmon was investigated by monitoring light emission in a scanning tunneling microscope (STM). Gold atoms were evaporated onto the ∼5 Å thick Al2O3 thin film grown on the NiAl (110) surface where they formed nanoclusters 3-7 nm wide. Scanning tunneling spectroscopy (STS) of these nanoclusters revealed quantum-confined electronic states. Spatially resolved photon imaging showed localized emission hot spots. Size dependent study and light emission from nanocluster dimers further support the viewpoint that coupling of tunneling electrons to the junction plasmon is the main radiative mechanism. These results showed the potential of the STM to reveal the electronic and optical properties of nanoscale metallic systems in the confined geometry of the tunnel junction. PMID:27529568

  15. Unraveling the aggregation effect on amorphous phase AIE luminogens: a computational study.

    PubMed

    Zheng, Xiaoyan; Peng, Qian; Zhu, Lizhe; Xie, Yujun; Huang, Xuhui; Shuai, Zhigang

    2016-08-18

    To achieve the efficient and precise regulation of aggregation-induced emission (AIE), unraveling the aggregation effects on amorphous AIE luminogens is of vital importance. Using a theoretical protocol combining molecular dynamics simulations and quantum mechanics/molecular mechanics calculations, we explored the relationship between molecular packing, optical spectra and fluorescence quantum efficiency of amorphous AIE luminogens hexaphenylsilole (HPS). We confirmed that the redshifted emission of amorphous aggregates as compared to crystalline HPS is caused by the lower packing density of amorphous HPS aggregates and the reduced restrictions on their intramolecular low-frequency vibrational motions. Strikingly, our calculations revealed the size independent fluorescence quantum efficiency of nanosized HPS aggregates and predicted the linear relationship between the fluorescence intensity and aggregate size. This is because the nanosized aggregates are dominated by embedded HPS molecules which exhibit similar fluorescence quantum efficiency at different aggregate sizes. In addition, our results provided a direct explanation for the crystallization-enhanced emission phenomenon of propeller-shaped AIE luminogens in experiments. Our theoretical protocol is general and applicable to other AIE luminogens, thus laying solid foundation for the rational design of advanced AIE materials. PMID:27417250

  16. Laser Induced Emission Spectroscopy of Cold and Isolated Neutral PAHs and PANH: Implications for the red rectangle emission

    NASA Astrophysics Data System (ADS)

    Bejaoui, Salma; Salama, Farid; Sciamma O'Brien, Ella

    2016-06-01

    Blue luminescence (BL) in the emission spectra of the red rectangle centered on the bright star HD44179 is recently reported by Vijh et al [1]. This results is consistent with the broad band polarization measurements obtained in 1980 by Schmidt et al. Both experimental and theoretical studies support that BL emission could be attributed the luminescence of Polycyclic Aromatic Hydrocarbon (PAH) excited with ultraviolet light from the center of the star [4 and reference therein]. The abundance on N to C in the interstellar medium suggest also that nitrogen substituted PAH (PANH) are likely abundant in the interstellar medium [3]. They exhibit similar features as PAHs and could contribute to the unidentified spectral bands. Comparing the BL to laboratory spectra obtained on similar environment is crucial for the identification of interstellar molecules. We present in this works the absorption and the laser induced emission spectra of several isolated and cold PAHs and PANHs. Laser induced emission was performed first to PAHs and PANHs isolated in Argon matrix at 10 K. Then, measurements are performed with the supersonic jet technique of the COSmIC laboratory facility at NASA Ames. We focus, here, on the emission spectra (fluorescence and (or) phosphorescence) of these molecules and we discuss their contributions to the blue luminescence emission in the Red Rectangle nebula.[1] Vijh,U.P., Witt. A.N. & Gordon,K.D, APJ, 606, L69 (2004)[2] Schmidt, G. D., Cohen, M. & Margon, B., ApJ, 239L.133S (1980)[3] Spitzer, L., Physical Processes in the Interstellar Medium (New York Wiley-Interscience) (1978)[4] Salama, F., Galazutdinov, G. A., Kre lowski, J., Allamandola, L. J., & Musaev, F. A. ApJ, 526,(1999)

  17. Thermally induced acoustic emissions in thermal barrier coatings

    SciTech Connect

    Voyer, J.; Gitzhofer, F.; Boulos, M.I.; Durham, S.

    1995-12-31

    In this study, acoustic emission signals are used to monitor the degradation of plasma sprayed Thermal Barrier Coatings (TBC) under thermal cycling conditions. Signal analysis both in time and frequency domains is carried out in order to identify the key parameters which can be used to classify the acoustic emission signals as a function of the damage mechanisms. This classification offers a means of prediction of the long-term behavior of the thermal barrier coating based on the acoustic emission signal signature at the early stages of bench testing. The tests were carried out using an experimental rig that was developed to reproduce thermal conditions encountered inside a combustion chamber. Twelve infrared lamps, each with a power rating of 1,200 W, are used as a heat source. The samples consist of an alloy blade coated with a duplex TBC made of a 150 {micro}m thick bond coat covered with a 300 {micro}m thick partially-stabilized zirconia coating. The maximum surface temperature of the sample was measured to be around 1,000 C. Two broadband transducers are used for acquisition of acoustic emission signals. Measuring the time between signal detection by each of the two transducers provides a means of determination of the location of the source of the acoustic signals. A classification of the signals based on their energy and their maximum peak frequency is presented.

  18. Optimally enhanced optical emission in laser-induced air plasma by femtosecond double-pulse

    SciTech Connect

    Chen, Anmin; Li, Suyu; Li, Shuchang; Jiang, Yuanfei; Ding, Dajun; Shao, Junfeng; Wang, Tingfeng; Huang, Xuri; Jin, Mingxing

    2013-10-15

    In laser-induced breakdown spectroscopy, a femtosecond double-pulse laser was used to induce air plasma. The plasma spectroscopy was observed to lead to significant increase of the intensity and reproducibility of the optical emission signal compared to femtosecond single-pulse laser. In particular, the optical emission intensity can be optimized by adjusting the delay time of femtosecond double-pulse. An appropriate pulse-to-pulse delay was selected, that was typically about 50 ps. This effect can be especially advantageous in the context of femtosecond laser-induced breakdown spectroscopy, plasma channel, and so on.

  19. A novel fusion protein domain III-capsid from dengue-2, in a highly aggregated form, induces a functional immune response and protection in mice

    SciTech Connect

    Valdes, Iris; Bernardo, Lidice; Pavon, Alekis; Guzman, Maria G.

    2009-11-25

    Based on the immunogenicity of domain III from the Envelope protein of dengue virus as well as the proven protective capacity of the capsid antigen, we have designed a novel domain III-capsid chimeric protein with the goal of obtaining a molecule potentially able to induce both humoral and cell-mediated immunity (CMI). After expression of the recombinant gene in Escherichia coli, the domain III moiety retained its antigenicity as evaluated with anti-dengue sera. In order to explore alternatives for modulating the immunogenicity of the protein, it was mixed with oligodeoxynucleotides in order to obtain particulated aggregates and then immunologically evaluated in mice in comparison with non-aggregated controls. Although the humoral immune response induced by both forms of the protein was equivalent, the aggregated variant resulted in a much stronger CMI as measured by in vitro IFN-gamma secretion and protection experiments, mediated by CD4{sup +} and CD8{sup +} cells. The present work provides additional evidence in support for a crucial role of CMI in protection against dengue virus and describes a novel vaccine candidate against the disease based on a recombinant protein that can stimulate both arms of the acquired immune system.

  20. Construction aggregates

    USGS Publications Warehouse

    Langer, W.H.; Tepordei, V.V.; Bolen, W.P.

    2000-01-01

    Construction aggregates consist primarily of crushed stone and construction sand and gravel. Total estimated production of construction aggregates increased in 1999 by about 2% to 2.39 Gt (2.64 billion st) compared with 1998. This record production level continued an expansion that began in 1992. By commodities, crushed stone production increased 3.3%, while sand and gravel production increased by about 0.5%.

  1. Construction aggregates

    USGS Publications Warehouse

    Tepordei, V.V.

    1994-01-01

    Part of a special section on industrial minerals in 1993. The 1993 production of construction aggregates increased 6.3 percent over the 1992 figure, to reach 2.01 Gt. This represents the highest estimated annual production of combined crushed stone and construction sand and gravel ever recorded in the U.S. The outlook for construction aggregates and the issues facing the industry are discussed.

  2. Emission characteristics in solution-processed asymmetric white alternating current field-induced polymer electroluminescent devices

    NASA Astrophysics Data System (ADS)

    Chen, Yonghua; Xia, Yingdong; Smith, Gregory M.; Gu, Yu; Yang, Chuluo; Carroll, David L.

    2013-01-01

    In this work, the emission characteristics of a blue fluorophor poly(9, 9-dioctylfluorene) (PFO) combined with a red emitting dye: Bis(2-methyl-dibenzo[f,h]quinoxaline)(acetylacetonate)iridium (III) [Ir(MDQ)2(acac)], are examined in two different asymmetric white alternating current field-induced polymer electroluminescent (FIPEL) device structures. The first is a top-contact device in which the triplet transfer is observed resulting in the concentration-dependence of the emission similar to the standard organic light-emitting diode (OLED) structure. The second is a bottom-contact device which, however, exhibits concentration-independence of emission. Specifically, both dye emission and polymer emission are found for the concentrations as high as 10% by weight of the dye in the emitter. We attribute this to the significant different carrier injection characteristics of the two FIPEL devices. Our results suggest a simple and easy way to realize high-quality white emission.

  3. Inactivation, aggregation, secondary and tertiary structural changes of germin-like protein in Satsuma mandarine with high polyphenol oxidase activity induced by ultrasonic processing.

    PubMed

    Huang, Nana; Cheng, Xi; Hu, Wanfeng; Pan, Siyi

    2015-02-01

    The inhibition of Polyphenol oxidase (PPO) in plants has been widely researched for their important roles in browning reaction. A newly found germin-like protein (GLP) with high PPO activity in Satsuma mandarine was inactivated by low-frequency high-intensity ultrasonic (20 kHz) processing. The effects of ultrasound on PPO activity and structure of GLP were investigated using dynamic light scattering (DLS) analysis, transmission electron microscopy (TEM), circular dichroism (CD) spectral measurement and fluorescence spectral measurement. The lowest PPO activity achieved was 27.4% following ultrasonication for 30 min at 400 W. DLS analysis showed ultrasound caused both aggregation and dissociation of GLP particles. TEM images also demonstrated protein aggregation phenomena. CD spectra exhibited a certain number of loss in α-helix structure content. Fluorescence spectra showed remarkable increase in fluorescence intensity with tiny blue-shift following ultrasonication. In conclusion, ultrasound applied in this study induced structural changes of GLP and eventually inactivated PPO activity.

  4. Investigating the feasibility of scale up and automation of human induced pluripotent stem cells cultured in aggregates in feeder free conditions.

    PubMed

    Soares, Filipa A C; Chandra, Amit; Thomas, Robert J; Pedersen, Roger A; Vallier, Ludovic; Williams, David J

    2014-03-10

    The transfer of a laboratory process into a manufacturing facility is one of the most critical steps required for the large scale production of cell-based therapy products. This study describes the first published protocol for scalable automated expansion of human induced pluripotent stem cell lines growing in aggregates in feeder-free and chemically defined medium. Cells were successfully transferred between different sites representative of research and manufacturing settings; and passaged manually and using the CompacT SelecT automation platform. Modified protocols were developed for the automated system and the management of cells aggregates (clumps) was identified as the critical step. Cellular morphology, pluripotency gene expression and differentiation into the three germ layers have been used compare the outcomes of manual and automated processes.

  5. Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage.

    PubMed

    Niinemets, Ulo; Kännaste, Astrid; Copolovici, Lucian

    2013-01-01

    Plants have to cope with a plethora of biotic stresses such as herbivory and pathogen attacks throughout their life cycle. The biotic stresses typically trigger rapid emissions of volatile products of lipoxygenase (LOX) pathway (LOX products: various C6 aldehydes, alcohols, and derivatives, also called green leaf volatiles) associated with oxidative burst. Further a variety of defense pathways is activated, leading to induction of synthesis and emission of a complex blend of volatiles, often including methyl salicylate, indole, mono-, homo-, and sesquiterpenes. The airborne volatiles are involved in systemic responses leading to elicitation of emissions from non-damaged plant parts. For several abiotic stresses, it has been demonstrated that volatile emissions are quantitatively related to the stress dose. The biotic impacts under natural conditions vary in severity from mild to severe, but it is unclear whether volatile emissions also scale with the severity of biotic stresses in a dose-dependent manner. Furthermore, biotic impacts are typically recurrent, but it is poorly understood how direct stress-triggered and systemic emission responses are silenced during periods intervening sequential stress events. Here we review the information on induced emissions elicited in response to biotic attacks, and argue that biotic stress severity vs. emission rate relationships should follow principally the same dose-response relationships as previously demonstrated for different abiotic stresses. Analysis of several case studies investigating the elicitation of emissions in response to chewing herbivores, aphids, rust fungi, powdery mildew, and Botrytis, suggests that induced emissions do respond to stress severity in dose-dependent manner. Bi-phasic emission kinetics of several induced volatiles have been demonstrated in these experiments, suggesting that next to immediate stress-triggered emissions, biotic stress elicited emissions typically have a secondary induction

  6. Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage

    PubMed Central

    Niinemets, Ülo; Kännaste, Astrid; Copolovici, Lucian

    2013-01-01

    Plants have to cope with a plethora of biotic stresses such as herbivory and pathogen attacks throughout their life cycle. The biotic stresses typically trigger rapid emissions of volatile products of lipoxygenase (LOX) pathway (LOX products: various C6 aldehydes, alcohols, and derivatives, also called green leaf volatiles) associated with oxidative burst. Further a variety of defense pathways is activated, leading to induction of synthesis and emission of a complex blend of volatiles, often including methyl salicylate, indole, mono-, homo-, and sesquiterpenes. The airborne volatiles are involved in systemic responses leading to elicitation of emissions from non-damaged plant parts. For several abiotic stresses, it has been demonstrated that volatile emissions are quantitatively related to the stress dose. The biotic impacts under natural conditions vary in severity from mild to severe, but it is unclear whether volatile emissions also scale with the severity of biotic stresses in a dose-dependent manner. Furthermore, biotic impacts are typically recurrent, but it is poorly understood how direct stress-triggered and systemic emission responses are silenced during periods intervening sequential stress events. Here we review the information on induced emissions elicited in response to biotic attacks, and argue that biotic stress severity vs. emission rate relationships should follow principally the same dose–response relationships as previously demonstrated for different abiotic stresses. Analysis of several case studies investigating the elicitation of emissions in response to chewing herbivores, aphids, rust fungi, powdery mildew, and Botrytis, suggests that induced emissions do respond to stress severity in dose-dependent manner. Bi-phasic emission kinetics of several induced volatiles have been demonstrated in these experiments, suggesting that next to immediate stress-triggered emissions, biotic stress elicited emissions typically have a secondary induction

  7. Platelet function: aggregation by PAF or sequestration in lung is not modified during immediate or late allergen-induced bronchospasm in man.

    PubMed

    Hemmendinger, S; Pauli, G; Tenabene, A; Pujol, J L; Bessot, J C; Eber, M; Cazenave, J P

    1989-05-01

    Among the mediators involved in the pathophysiologic mechanisms that underly the reactions of the acute and delayed phases of bronchospasm induced by allergens in man, platelet-activating factor (PAF) could play an important role, in particular by its effects on platelets. In animals, inhalation or injection of PAF causes a platelet-dependent bronchoconstriction that is blocked by prior administration of an antiplatelet antiserum and accompanied by platelet accumulation in the pulmonary vessels. In man, inhalation of PAF causes a bronchospasm and induces a bronchial hyperreactivity. Abnormalities of platelet aggregation and the secretion into plasma of platelet factor 4 and beta-thromboglobulin have been described in patients with asthma during induced bronchospasm. Platelet functions have been studied in 15 patients with asthma before and after allergen bronchial provocation tests. There was no difference between platelet counts, plasma concentrations of platelet factor 4 and beta-thromboglobulin, and platelet aggregation induced by several agonists (adrenaline, arachidonic acid, or PAF) before and immediately after the allergen bronchial provocation test. There was no platelet pulmonary sequestration as studied with 111Indium-labeled platelets during 24 hours after the antigen challenge, and the life span of circulating platelets was normal. Our results do not support an important direct role for PAF in the pathophysiology of asthma. It is still possible that the current methodology is too insensitive to detect amounts of PAF in the circulation or that PAF is acting locally. PMID:2523922

  8. Alpha-synuclein up-regulation and aggregation during MPP+-induced apoptosis in neuroblastoma cells: intermediacy of transferrin receptor iron and hydrogen peroxide.

    PubMed

    Kalivendi, Shasi V; Cunningham, Sonya; Kotamraju, Srigiridhar; Joseph, Joy; Hillard, Cecilia J; Kalyanaraman, B

    2004-04-01

    1-Methyl-4-phenylpyridinium (MPP(+)) is a neurotoxin that causes Parkinson's disease in experimental animals and humans. Despite the fact that intracellular iron was shown to be crucial for MPP(+)-induced apoptotic cell death, the molecular mechanisms for the iron requirement remain unclear. We investigated the role of transferrin receptor (TfR) and iron in modulating the expression of alpha-synuclein (alpha-syn) in MPP(+)-induced oxidative stress and apoptosis. Results show that MPP(+) inhibits mitochondrial complex-1 and aconitase activities leading to enhanced H(2)O(2) generation, TfR expression and alpha-syn expression/aggregation. Pretreatment with cell-permeable iron chelators, TfR antibody (that inhibits TfR-mediated iron uptake), or transfection with glutathione peroxidase (GPx1) enzyme inhibits intracellular oxidant generation, alpha-syn expression/aggregation, and apoptotic signaling as measured by caspase-3 activation. Cells overexpressing alpha-syn exacerbated MPP(+) toxicity, whereas antisense alpha-syn treatment totally abrogated MPP(+)-induced apoptosis in neuroblastoma cells without affecting oxidant generation. The increased cytotoxic effects of alpha-syn in MPP(+)-treated cells were attributed to inhibition of mitogen-activated protein kinase and proteasomal function. We conclude that MPP(+)-induced iron signaling is responsible for intracellular oxidant generation, alpha-syn expression, proteasomal dysfunction, and apoptosis. Relevance to Parkinson's disease is discussed. PMID:14742448

  9. Predator-induced reduction of freshwater carbon dioxide emissions

    NASA Astrophysics Data System (ADS)

    Atwood, Trisha B.; Hammill, Edd; Greig, Hamish S.; Kratina, Pavel; Shurin, Jonathan B.; Srivastava, Diane S.; Richardson, John S.

    2013-03-01

    Predators can influence the exchange of carbon dioxide between ecosystems and the atmosphere by altering ecosystem processes such as decomposition and primary production, according to food web theory. Empirical knowledge of such an effect in freshwater systems is limited, but it has been suggested that predators in odd-numbered food chains suppress freshwater carbon dioxide emissions, and predators in even-numbered food chains enhance emissions. Here, we report experiments in three-tier food chains in experimental ponds, streams and bromeliads in Canada and Costa Rica in the presence or absence of fish (Gasterosteus aculeatus) and invertebrate (Hesperoperla pacifica and Mecistogaster modesta) predators. We monitored carbon dioxide fluxes along with prey and primary producer biomass. We found substantially reduced carbon dioxide emissions in the presence of predators in all systems, despite differences in predator type, hydrology, climatic region, ecological zone and level of in situ primary production. We also observed lower amounts of prey biomass and higher amounts of algal and detrital biomass in the presence of predators. We conclude that predators have the potential to markedly influence carbon dioxide dynamics in freshwater systems.

  10. A hybrid model describing ion induced kinetic electron emission

    NASA Astrophysics Data System (ADS)

    Hanke, S.; Duvenbeck, A.; Heuser, C.; Weidtmann, B.; Wucher, A.

    2015-06-01

    We present a model to describe the kinetic internal and external electron emission from an ion bombarded metal target. The model is based upon a molecular dynamics treatment of the nuclear degree of freedom, the electronic system is assumed as a quasi-free electron gas characterized by its Fermi energy, electron temperature and a characteristic attenuation length. In a series of previous works we have employed this model, which includes the local kinetic excitation as well as the rapid spread of the generated excitation energy, in order to calculate internal and external electron emission yields within the framework of a Richardson-Dushman-like thermionic emission model. However, this kind of treatment turned out to fail in the realistic prediction of experimentally measured internal electron yields mainly due to the restriction of the treatment of electronic transport to a diffusive manner. Here, we propose a slightly modified approach additionally incorporating the contribution of hot electrons which are generated in the bulk material and undergo ballistic transport towards the emitting interface.

  11. Electron impact induced light emission from zinc atoms

    NASA Astrophysics Data System (ADS)

    Cvejanovic, Danica

    2009-10-01

    Experimental studies of electron impact excitation of zinc atom are rare, primarily due to experimental difficulties. However, zinc is an interesting target because of possible applications in light sources. Also, due to its position in periodic table, zinc is an interesting case for the fundamental understanding of momentum couplings and the role of electron correlations in complex metal atoms. Recent experimental investigations have indicated the existence of highly correlated scattering mechanisms via formation of negative ion resonances and Post Collision Interaction (PCI) in the decay of autoionizing states. These can significantly modify energy dependence of the emission cross sections at low impact energies and the studies of photon emission offer a sensitive way to investigate electron correlations. Specifically, in the lowest autoionizing region of zinc, i.e. between 10 and 15 eV, both the cross sections and polarization of emitted light are affected by the formation of short lived negative ions and PCI effects. These are associated with excitation of one of the sub-valence 3d electrons and complex correlations between inner 3d and outer excited electrons in the target and also with the slow electron released into continuum, need to be included in modeling. Also the scattering of the spin polarized electrons has shown significant spin effects when excitation proceeds via negative ion resonances. Emission cross sections and comparison with theory would be discussed at the conference.

  12. Nanoparticle-Induced Ellipse-to-Vesicle Morphology Transition of Rod-Coil-Rod Triblock Copolymer Aggregates.

    PubMed

    Yang, Chaoying; Li, Qing; Cai, Chunhua; Lin, Jiaping

    2016-07-12

    Cooperative self-assembly behavior of rod-coil-rod poly(γ-benzyl-l-glutamate)-block-poly(ethylene glycol)-block-poly(γ-benzyl-l-glutamate) (PBLG-b-PEG-b-PBLG) amphiphilic triblock copolymers and hydrophobic gold nanoparticles (AuNPs) was investigated by both experiments and dissipative particle dynamics (DPD) simulations. It was discovered that pure PBLG-b-PEG-b-PBLG copolymers self-assemble into ellipse-like aggregates, and the morphology transforms into vesicles as AuNPs are introduced. When the hydrophobicity of AuNPs is close to that of the copolymers, AuNPs are homogeneously distributed in the vesicle wall. While for the AuNPs with higher hydrophobicity, they are embedded in the vesicle wall as clusters. In addition to the experimental observations, DPD simulations were performed on the self-assembly behavior of triblock copolymer/nanoparticle mixtures. Simulations well reproduced the morphology transition observed in the experiments and provided additional information such as chain packing mode in aggregates. It is deduced that the main reason for the ellipse-to-vesicle transition of the aggregates is attributed to the breakage of ordered and dense packing of PBLG rods in the aggregate core by encapsulating AuNPs. This study deepens our understanding of the self-assembly behavior of rod-coil copolymer/nanoparticle mixtures and provides strategy for designing hybrid polypeptide nanostructures. PMID:27314970

  13. Aggregation and structural changes of α(S1)-, β- and κ-caseins induced by homocysteinylation.

    PubMed

    Stroylova, Yulia Y; Zimny, Jaroslaw; Yousefi, Reza; Chobert, Jean-Marc; Jakubowski, Hieronim; Muronetz, Vladimir I; Haertlé, Thomas

    2011-10-01

    Elevated homocysteine levels are resulting in N-homocysteinylation of lysyl residues in proteins and they correlate with a number of human pathologies. However, the role of homocysteinylation of lysyl residues is still poorly known. In order to study the features of homocysteinylation of intrinsically unstructured proteins (IUP) bovine caseins were used as a model. α(S1)-, β- and κ-caseins, showing different aggregations and micelle formation, were modified with homocysteine-thiolactone and their physico-chemical properties were studied. Efficiency of homocysteine incorporation was estimated to be about 1.5, 2.1 and 1.3 homocysteyl residues per one β-, α(S1)-, and κ-casein molecule, respectively. Use of intrinsic and extrinsic fluorescent markers such as Trp, thioflavin T and ANS, reveal structural changes of casein structures after homocysteinylation reflected by an increase in beta-sheet content, which in some cases may be characteristic of amyloid-like transformations. CD spectra also show an increase in beta-sheet content of homocysteinylated caseins. Casein homocysteinylation leads in all cases to aggregation. The sizes of aggregates and aggregation rates were dependent on homocysteine thiolactone concentration and temperature. DLS and microscopic studies have revealed the formation of large aggregates of about 1-3μm. Homocysteinylation of α(S1)- and β-caseins results in formation of regular spheres. Homocysteinylated κ-casein forms thin unbranched fibrils about 400-800nm long. In case of κ-casein amyloidogenic effect of homocysteinylation was confirmed by Congo red spectra. Taken together, data indicate that N-homocysteinylation provokes significant changes in properties of native caseins. A comparison of amyloidogenic transformation of 3 different casein types, belonging to the IUP protein family, shows that the efficiency of amyloidogenic transformation upon homocysteinylation depends on micellization capacity, additional disulphide bonds and

  14. Trace gas emissions and smoke-induced seed germination

    SciTech Connect

    Keeley, J.E.; Fotheringham, C.J.

    1997-05-23

    Dormant seeds of a California chaparral annual were induced to germinate by smoke or paper. Nitrogen oxides induced 100 percent vapors emitted from smoke-treated sand or treated water samples inducing. Smoke germination in a manner similar to smoke germination were comparable in acidity and concentration of nitrate and nitrite to nitrogen dioxide (NO{sub 2})-treated samples. Vapors from smoke-treated and NO{sub 2}-treated filter paper had comparable NO{sub 2} flux rates. Chaparral wildfires generate sufficient nitrogen oxides from combustion of organic matter or from postfire biogenic nitrification to trigger germination of Emmerianthe penduliflora. Nitrogen oxide-triggered germination is not the result of changes in imbibition, as is the case with heat stimulated seeds.

  15. Fibronectin Aggregation and Assembly

    PubMed Central

    Ohashi, Tomoo; Erickson, Harold P.

    2011-01-01

    The mechanism of fibronectin (FN) assembly and the self-association sites are still unclear and contradictory, although the N-terminal 70-kDa region (I1–9) is commonly accepted as one of the assembly sites. We previously found that I1–9 binds to superfibronectin, which is an artificial FN aggregate induced by anastellin. In the present study, we found that I1–9 bound to the aggregate formed by anastellin and a small FN fragment, III1–2. An engineered disulfide bond in III2, which stabilizes folding, inhibited aggregation, but a disulfide bond in III1 did not. A gelatin precipitation assay showed that I1–9 did not interact with anastellin, III1, III2, III1–2, or several III1–2 mutants including III1–2KADA. (In contrast to previous studies, we found that the III1–2KADA mutant was identical in conformation to wild-type III1–2.) Because I1–9 only bound to the aggregate and the unfolding of III2 played a role in aggregation, we generated a III2 domain that was destabilized by deletion of the G strand. This mutant bound I1–9 as shown by the gelatin precipitation assay and fluorescence resonance energy transfer analysis, and it inhibited FN matrix assembly when added to cell culture. Next, we introduced disulfide mutations into full-length FN. Three disulfide locks in III2, III3, and III11 were required to dramatically reduce anastellin-induced aggregation. When we tested the disulfide mutants in cell culture, only the disulfide bond in III2 reduced the FN matrix. These results suggest that the unfolding of III2 is one of the key factors for FN aggregation and assembly. PMID:21949131

  16. Electric field-induced emission enhancement and modulation in individual CdSe nanowires.

    PubMed

    Vietmeyer, Felix; Tchelidze, Tamar; Tsou, Veronica; Janko, Boldizsar; Kuno, Masaru

    2012-10-23

    CdSe nanowires show reversible emission intensity enhancements when subjected to electric field strengths ranging from 5 to 22 MV/m. Under alternating positive and negative biases, emission intensity modulation depths of 14 ± 7% are observed. Individual wires are studied by placing them in parallel plate capacitor-like structures and monitoring their emission intensities via single nanostructure microscopy. Observed emission sensitivities are rationalized by the field-induced modulation of carrier detrapping rates from NW defect sites responsible for nonradiative relaxation processes. The exclusion of these states from subsequent photophysics leads to observed photoluminescence quantum yield enhancements. We quantitatively explain the phenomenon by developing a kinetic model to account for field-induced variations of carrier detrapping rates. The observed phenomenon allows direct visualization of trap state behavior in individual CdSe nanowires and represents a first step toward developing new optical techniques that can probe defects in low-dimensional materials.

  17. Chemiluminescence from UVA-exposed skin: separating photo-induced chemiluminescence from photophysical light emission.

    PubMed

    Millington, Keith R; Jones, Leslie N; Sinclair, Rodney D

    2012-09-01

    Several previous studies have reported luminescence emission from skin following exposure to UVA radiation in air. We show that UVA irradiation of biomaterials and polymers in oxygen, including bovine stratum corneum, followed by photon counting results in a complex emission due to a combination of photophysical processes together with photo-induced chemiluminescence (PICL). The photophysical processes include fluorescence, phosphorescence and charge-recombination luminescence. By irradiating materials in an inert atmosphere such as nitrogen and allowing photophysical light emission to fully decay before admitting oxygen, the weak photo-induced chemiluminescence generated via free radical reactions with oxygen can be separated and analysed. PICL emission from bovine stratum corneum is weaker than for wool keratin and bovine skin collagen, probably due to its higher water content, and the presence of the natural antioxidants ascorbate and tocopherol.

  18. Experimental Study of Active Path Block in a Multi-Bifurcated Flow by Microbubble Aggregation

    NASA Astrophysics Data System (ADS)

    Shigehara, Nobuhiko; Demachi, Fumi; Koda, Ren; Mochizuki, Takashi; Masuda, Kohji; Ikeda, Seiichi; Arai, Fumihito; Miyamoto, Yoshitaka; Chiba, Toshio

    2013-07-01

    We previously reported our attempts at the active control of microbubble aggregations using acoustic radiation force, which propels microbubbles and adjusts the size of aggregations. However, because we used simple-shape artificial blood vessels, the behavior of aggregations in a small channel, e.g., the probability to obstruct the bloodstream, and the possibility of embolization, has not been predicted. Thus, we designed and fabricated a multi-bifurcated artificial blood vessel to apply to the production and active control of microbubble aggregations. Then, we introduced two kinds of ultrasound transducers for producing and propelling aggregations. First, we produced aggregations in a flow to measure their size and investigate their variation according to the emission duration of ultrasound. Then, we control the aggregations in an artificial blood vessel to verify their controllability. When ultrasound was stopped, the aggregations flaked off the vessel wall and flowed downstream, were propelled to the desired path, and finally were caught at a narrow path. We verified the same experiment under similar parameters to calculate the probability of realizing a path block. When the flow velocity was 20 mm/s, almost 50% of the aggregations were induced to flow through the desired path and a maximum probability of realizing a path block of 86% was achieved with the formation of aggregations.

  19. Observation of radio-wave-induced red hydroxyl emission at low altitude in the ionosphere.

    PubMed

    Kagan, L M; Nicolls, M J; Kelley, M C; Carlson, H C; Belikovich, V V; Bakhmet'eva, N V; Komrakov, G P; Trondsen, T S; Donovan, E

    2005-03-11

    We report the discovery of radio-wave-induced red emission of OH Meinel rotation-vibrational bands at 629.79 nm. These are the first measurements of artificial aurora below 100 km. We believe that the 629.79-nm OH emission was due to radio-wave focusing by sporadic ionization clouds near 80-85 km altitude, thus giving a technique to visualize the low-altitude sporadic ionization and providing insight into ionospheric interactions at these low altitudes.

  20. Dynamic fluctuations in ultrasmall nanocrystals induce white light emission

    SciTech Connect

    Pennycook, Timothy J; Mcbride, J. R.; Rosenthal, Sandra; Pennycook, Stephen J; Pantelides, Sokrates T.

    2012-01-01

    Nanocrystals typically emit monochromatically at their size-dependent energy gaps. Recently, it was found that by pushing the size of a nanocrystal to its lower limits, absorption occurs at increasingly larger energies, but the expected blue to ultraviolet emission does not occur. Instead, individual ultrasmall CdSe nanocrystals emit white light1-5. Here we show that following excitation, partial thermalization sets the ultrasmall nanocrystals into a fluxional6 state, with a continuously varying energy gap which results in white light emission. Even the larger, monochromatic nanocrystals have a fluxional surface but a stable crystal core. A degree of fluxionality persists even at room temperature and represents a radical change to the accepted view of nanocrystals, with wide-ranging ramifications for other applications. The results were obtained using a combination of state-of-the-art experiment and theory: dynamic imaging by aberration-corrected scanning transmission electron microscopy and finite-temperature quantum molecular dynamics simulations. The results show that small is different, but ultrasmall is different yet again.

  1. Sound Emission of Rotor Induced Deformations of Generator Casings

    NASA Technical Reports Server (NTRS)

    Polifke, W.; Mueller, B.; Yee, H. C.; Mansour, Nagi (Technical Monitor)

    2001-01-01

    The casing of large electrical generators can be deformed slightly by the rotor's magnetic field. The sound emission produced by these periodic deformations, which could possibly exceed guaranteed noise emission limits, is analysed analytically and numerically. From the deformation of the casing, the normal velocity of the generator's surface is computed. Taking into account the corresponding symmetry, an analytical solution for the acoustic pressure outside the generator is round in terms of the Hankel function of second order. The normal velocity or the generator surface provides the required boundary condition for the acoustic pressure and determines the magnitude of pressure oscillations. For the numerical simulation, the nonlinear 2D Euler equations are formulated In a perturbation form for low Mach number Computational Aeroacoustics (CAA). The spatial derivatives are discretized by the classical sixth-order central interior scheme and a third-order boundary scheme. Spurious high frequency oscillations are damped by a characteristic-based artificial compression method (ACM) filter. The time derivatives are approximated by the classical 4th-order Runge-Kutta method. The numerical results are In excellent agreement with the analytical solution.

  2. Controlled Ultrasound-Induced Blood-Brain Barrier Disruption Using Passive Acoustic Emissions Monitoring

    PubMed Central

    Arvanitis, Costas D.; Livingstone, Margaret S.; Vykhodtseva, Natalia; McDannold, Nathan

    2012-01-01

    The ability of ultrasonically-induced oscillations of circulating microbubbles to permeabilize vascular barriers such as the blood-brain barrier (BBB) holds great promise for noninvasive targeted drug delivery. A major issue has been a lack of control over the procedure to ensure both safe and effective treatment. Here, we evaluated the use of passively-recorded acoustic emissions as a means to achieve this control. An acoustic emissions monitoring system was constructed and integrated into a clinical transcranial MRI-guided focused ultrasound system. Recordings were analyzed using a spectroscopic method that isolates the acoustic emissions caused by the microbubbles during sonication. This analysis characterized and quantified harmonic oscillations that occur when the BBB is disrupted, and broadband emissions that occur when tissue damage occurs. After validating the system's performance in pilot studies that explored a wide range of exposure levels, the measurements were used to control the ultrasound exposure level during transcranial sonications at 104 volumes over 22 weekly sessions in four macaques. We found that increasing the exposure level until a large harmonic emissions signal was observed was an effective means to ensure BBB disruption without broadband emissions. We had a success rate of 96% in inducing BBB disruption as measured by in contrast-enhanced MRI, and we detected broadband emissions in less than 0.2% of the applied bursts. The magnitude of the harmonic emissions signals was significantly (P<0.001) larger for sonications where BBB disruption was detected, and it correlated with BBB permeabilization as indicated by the magnitude of the MRI signal enhancement after MRI contrast administration (R2 = 0.78). Overall, the results indicate that harmonic emissions can be a used to control focused ultrasound-induced BBB disruption. These results are promising for clinical translation of this technology. PMID:23029240

  3. Engraftment of human induced pluripotent stem cell-derived hepatocytes in immunocompetent mice via 3D co-aggregation and encapsulation

    PubMed Central

    Song, Wei; Lu, Yen-Chun; Frankel, Angela S.; An, Duo; Schwartz, Robert E.; Ma, Minglin

    2015-01-01

    Cellular therapies for liver diseases and in vitro models for drug testing both require functional human hepatocytes (Hum-H), which have unfortunately been limited due to the paucity of donor liver tissues. Human pluripotent stem cells (hPSCs) represent a promising and potentially unlimited cell source to derive Hum-H. However, the hepatic functions of these hPSC-derived cells to date are not fully comparable to adult Hum-H and are more similar to fetal ones. In addition, it has been challenging to obtain functional hepatic engraftment of these cells with prior studies having been done in immunocompromised animals. In this report, we demonstrated successful engraftment of human induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (iPS-H) in immunocompetent mice by pre-engineering 3D cell co-aggregates with stromal cells (SCs) followed by encapsulation in recently developed biocompatible hydrogel capsules. Notably, upon transplantation, human albumin and α1-antitrypsin (A1AT) in mouse sera secreted by encapsulated iPS-H/SCs aggregates reached a level comparable to the primary Hum-H/SCs control. Further immunohistochemistry of human albumin in retrieved cell aggregates confirmed the survival and function of iPS-H. This proof-of-concept study provides a simple yet robust approach to improve the engraftment of iPS-H, and may be applicable to many stem cell-based therapies. PMID:26592180

  4. Effect of extraction pH on heat-induced aggregation, gelation and microstructure of protein isolate from quinoa (Chenopodium quinoa Willd).

    PubMed

    Ruiz, Geraldine Avila; Xiao, Wukai; van Boekel, Martinus; Minor, Marcel; Stieger, Markus

    2016-10-15

    The aim of this study was to determine the influence of extraction pH on heat-induced aggregation, gelation and microstructure of suspensions of protein isolates extracted from quinoa (Chenopodium quinoa Willd). Quinoa seed protein was extracted by alkaline treatment at various pH values (pH 8 (E8), 9 (E9), 10 (E10) and 11 (E11)), followed by acid precipitation. The obtained protein isolates were freeze dried. The protein isolates E8 and E9 resulted in a lower protein yield as well as less protein denaturation. These isolates also had a higher protein purity, more protein bands at higher molecular weights, and a higher protein solubility in the pH range of 3-4.5, compared to the isolates E10 and E11. Heating the 10%w/w protein isolate suspensions E8 and E9 led to increased aggregation, and semi-solid gels with a dense microstructure were formed. The isolate suspensions E10 and E11, on the other hand, aggregated less, did not form self-supporting gels and had loose particle arrangements. We conclude that extraction pH plays an important role in determining the functionality of quinoa protein isolates.

  5. Engraftment of human induced pluripotent stem cell-derived hepatocytes in immunocompetent mice via 3D co-aggregation and encapsulation

    PubMed Central

    Song, Wei; Lu, Yen-Chun; Frankel, Angela S.; An, Duo; Schwartz, Robert E.; Ma, Minglin

    2015-01-01

    Cellular therapies for liver diseases and in vitro models for drug testing both require functional human hepatocytes (Hum-H), which have unfortunately been limited due to the paucity of donor liver tissues. Human pluripotent stem cells (hPSCs) represent a promising and potentially unlimited cell source to derive Hum-H. However, the hepatic functions of these hPSC-derived cells to date are not fully comparable to adult Hum-H and are more similar to fetal ones. In addition, it has been challenging to obtain functional hepatic engraftment of these cells with prior studies having been done in immunocompromised animals. In this report, we demonstrated successful engraftment of human induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (iPS-H) in immunocompetent mice by pre-engineering 3D cell co-aggregates with stromal cells (SCs) followed by encapsulation in recently developed biocompatible hydrogel capsules. Notably, upon transplantation, human albumin and α1-antitrypsin (A1AT) in mouse sera secreted by encapsulated iPS-H/SCs aggregates reached a level comparable to the primary Hum-H/SCs control. Further immunohistochemistry of human albumin in retrieved cell aggregates confirmed the survival and function of iPS-H. This proof-of-concept study provides a simple yet robust approach to improve the engraftment of iPS-H, and may be applicable to many stem cell-based therapies. PMID:26592180

  6. Effect of extraction pH on heat-induced aggregation, gelation and microstructure of protein isolate from quinoa (Chenopodium quinoa Willd).

    PubMed

    Ruiz, Geraldine Avila; Xiao, Wukai; van Boekel, Martinus; Minor, Marcel; Stieger, Markus

    2016-10-15

    The aim of this study was to determine the influence of extraction pH on heat-induced aggregation, gelation and microstructure of suspensions of protein isolates extracted from quinoa (Chenopodium quinoa Willd). Quinoa seed protein was extracted by alkaline treatment at various pH values (pH 8 (E8), 9 (E9), 10 (E10) and 11 (E11)), followed by acid precipitation. The obtained protein isolates were freeze dried. The protein isolates E8 and E9 resulted in a lower protein yield as well as less protein denaturation. These isolates also had a higher protein purity, more protein bands at higher molecular weights, and a higher protein solubility in the pH range of 3-4.5, compared to the isolates E10 and E11. Heating the 10%w/w protein isolate suspensions E8 and E9 led to increased aggregation, and semi-solid gels with a dense microstructure were formed. The isolate suspensions E10 and E11, on the other hand, aggregated less, did not form self-supporting gels and had loose particle arrangements. We conclude that extraction pH plays an important role in determining the functionality of quinoa protein isolates. PMID:27173553

  7. Magnetic-Field-Induced Rotation of Polarized Light Emission from Monolayer WS2

    NASA Astrophysics Data System (ADS)

    Schmidt, Robert; Arora, Ashish; Plechinger, Gerd; Nagler, Philipp; Granados del Águila, Andrés; Ballottin, Mariana V.; Christianen, Peter C. M.; Michaelis de Vasconcellos, Steffen; Schüller, Christian; Korn, Tobias; Bratschitsch, Rudolf

    2016-08-01

    We control the linear polarization of emission from the coherently emitting K+ and K- valleys (valley coherence) in monolayer WS2 with an out-of-plane magnetic field of up to 25 T. The magnetic-field-induced valley Zeeman splitting causes a rotation of the emission polarization with respect to the excitation by up to 35° and reduces the polarization degree by up to 16%. We explain both of these phenomena with a model based on two noninteracting coherent two-level systems. We deduce that the coherent light emission from the valleys decays with a time constant of τc=260 fs .

  8. Plasmon-induced modulation of the emission spectra of the fluorescent molecules near gold nanorods.

    PubMed

    Zhao, Lei; Ming, Tian; Chen, Huanjun; Liang, Yao; Wang, Jianfang

    2011-09-01

    Both the excitation and emission processes of a fluorescent molecule positioned near a noble metal nanocrystal can interact strongly with the localized surface plasmon resonance of the metal nanocrystal. While the effects of this plasmon-fluorophore interaction on the intensity, polarization, and direction of the fluorescence emission have been intensively investigated, the plasmonic effect on the emission spectrum has barely been explored. We show, on the single-particle level, that the localized surface plasmon resonance of Au nanorods can strongly alter the spectral profile of the emission from adjacent fluorescent molecules. The fluorescent molecules are embedded in a mesostructured silica shell that is uniformly coated on each Au nanorod. The longitudinal plasmon resonance wavelengths of the nanorods are deliberately shifted away from the intrinsic fluorescence emission peak wavelength by synthetically tuning the nanorod aspect ratio. The resultant emission spectra of the fluorescent molecules are found to be remarkably modulated. Besides the intrinsic fluorescence peak, a plasmon-induced new peak emerges at the plasmon resonance wavelength. The intensity of this plasmon-induced fluorescence peak increases as the size of the Au nanorod is increased. This spectral modulation can be understood by depicting the decay process of the fluorophore with multiple vibrational energy levels. The plasmon with a specific resonance energy will enhance the transition rate between the energy levels that have the transition energy approximately equal to the plasmon energy. This plasmon-enhanced transition rate results in a modulated spectral profile of the fluorescence emission.

  9. Use of tertiary nitrogen heterocyclic material to reduce moisture-induced damage in asphalt-aggregate mixtures

    SciTech Connect

    Plancher, H.; Petersen, J.C.

    1981-01-15

    Asphalt-aggregate roads crack when subjected to freezing and thawing cycles. Herein, the useful life of asphalts are substantially improved by a minor amount of a moisture damage inhibiting agent selected from compounds having a pyridine moiety, including acid salts of such compounds. A shale oil fraction may serve as the source of the improving agent and may simply be blended with conventional petroleum asphalts.

  10. The effect of magnetically induced linear aggregates on proton transverse relaxation rates of aqueous suspensions of polymer coated magnetic nanoparticles.

    PubMed

    Saville, Steven L; Woodward, Robert C; House, Michael J; Tokarev, Alexander; Hammers, Jacob; Qi, Bin; Shaw, Jeremy; Saunders, Martin; Varsani, Rahi R; St Pierre, Tim G; Mefford, O Thompson

    2013-03-01

    It has been recently reported that for some suspensions of magnetic nanoparticles the transverse proton relaxation rate, R(2), is dependent on the time that the sample is exposed to an applied magnetic field. This time dependence has been linked to the formation of linear aggregates or chains in an applied magnetic field via numerical modeling. It is widely known that chain formation occurs in more concentrated ferrofluids systems and that this has an affect on the ferrofluid properties. In this work we examine the relationships between colloidal stability, the formation of these linear structures, and changes observed in the proton transverse relaxation rate of aqueous suspensions of magnetic particles. A series of iron oxide nanoparticles with varying stabilizing ligand brush lengths were synthesized. These systems were characterized with dynamic light scattering, transmission electron microscopy, dark-field optical microscopy, and proton transverse relaxation rate measurements. The dark field optical microscopy and R(2) measurements were made in similar magnetic fields over the same time scale so as to correlate the reduction of the transverse relaxivity with the formation of linear aggregates. Our results indicate that varying the ligand length has a direct effect on the colloidal arrangement of the system in a magnetic field, producing differences in the rate and size of chain formation, and hence systematic changes in transverse relaxation rates over time. With increasing ligand brush length, attractive inter-particle interactions are reduced, which results in slower aggregate formation and shorter linear aggregate length. These results have implications for the stabilization, characterization and potentially the toxicity of magnetic nanoparticle systems used in biomedical applications. PMID:23389324

  11. DNA base-stacking assay utilizing catalytic hairpin assembly-induced gold nanoparticle aggregation for colorimetric protein sensing.

    PubMed

    Chang, Chia-Chen; Chen, Chie-Pein; Chen, Chen-Yu; Lin, Chii-Wann

    2016-03-18

    A label-free and enzyme-free colorimetric sensing platform for the amplified detection of fibronectin was developed based on an ingenious combination of catalytic hairpin assembly and a base stacking hybridization-based gold nanoparticle aggregation strategy. The detection limit of 2.3 pM is at least one order of magnitude lower than that of established fibronectin biosensors. PMID:26906691

  12. Oscillating load-induced acoustic emission in laboratory experiment

    USGS Publications Warehouse

    Ponomarev, Alexander; Lockner, David A.; Stroganova, S.; Stanchits, S.; Smirnov, V.

    2010-01-01

    Spatial and temporal patterns of acoustic emission (AE) were studied. A pre-fractured cylinder of granite was loaded in a triaxial machine at 160 MPa confining pressure until stick-slip events occurred. The experiments were conducted at a constant strain rate of 10−7 s−1 that was modulated by small-amplitude sinusoidal oscillations with periods of 175 and 570 seconds. Amplitude of the oscillations was a few percent of the total load and was intended to simulate periodic loading observed in nature (e.g., earth tides or other sources). An ultrasonic acquisition system with 13 piezosensors recorded acoustic emissions that were generated during deformation of the sample. We observed a correlation between AE response and sinusoidal loading. The effect was more pronounced for higher frequency of the modulating force. A time-space spectral analysis for a “point” process was used to investigate details of the periodic AE components. The main result of the study was the correlation of oscillations of acoustic activity synchronized with the applied oscillating load. The intensity of the correlated AE activity was most pronounced in the “aftershock” sequences that followed large-amplitude AE events. We suggest that this is due to the higher strain-sensitivity of the failure area when the sample is in a transient, unstable mode. We also found that the synchronization of AE activity with the oscillating external load nearly disappeared in the period immediately after the stick-slip events and gradually recovered with further loading.

  13. Time-Resolved Aluminum Monoxide Emission Measurements in Laser-Induced Plasma

    NASA Astrophysics Data System (ADS)

    Surmick, David; Parigger, Christian

    2014-03-01

    Laser-induced plasmas are useful for diagnostic applications in a wide variety of fields. One application is the creation of laser-induced plasmas on the surface of an aluminum sample to simulate an aluminized flame. In this study, aluminum monoxide emissions are measured to characterize the temperature along the laser-induced plasma as a function of time delay following laser-induced optical breakdown. The breakdown event is achieved by focusing 1064 nanometer laser radiation from an Nd:YAG laser onto the surface of an aluminum sample. Light from the plasma is dispersed with the use of a Czerny-Turner spectrograph, and time resolved emission spectra are recorded with an intensified, gated detector. Temperatures are inferred from the diatomic molecular emissions by fitting the experimentally collected to theoretically calculated spectra using a Nelder-Mead algorithm. For computation of synthetic spectra we utilize accurate line strengths for selected AlO molecular bands. Atomic emissions from aluminum are also investigated in our study of laser-induced plasma.

  14. An Interfacial Europium Complex on SiO2 Nanoparticles: Reduction-Induced Blue Emission System

    PubMed Central

    Ishii, Ayumi; Hasegawa, Miki

    2015-01-01

    In this study, Eu-coated SiO2 nanoparticles have been prepared, consisting of an interfacial complex of Eu and 1,10-phenanthroline (phen) at the solid surfaces of the SiO2/Eu nanostructures. The as-prepared SiO2/Eu/phen nanoparticles exhibits sharp red emission via energy transfer from the phen to the EuIII. After sintering at 200 °C in air, the emission is tuned from red to blue. The blue emission is originated from EuII. This reduction-induced emissive phenomenon resulted from the electron-donating environment created by the surrounding phen and SiO2, which is the first reported fabrication of a stable EuII-based emissive material using mild conditions (reaction in air and at low temperature) and an organic-inorganic hybrid nanostructure. The existence of two different stable oxidation states with characteristic emissions, blue emissive EuII and red emissive EuIII, suggests significant potential applications as novel luminescent materials with inorganic-organic hybrid structures. PMID:26122318

  15. A mechanism for biologically induced iodine emissions from sea ice

    NASA Astrophysics Data System (ADS)

    Saiz-Lopez, A.; Blaszczak-Boxe, C. S.; Carpenter, L. J.

    2015-09-01

    Ground- and satellite-based measurements have reported high concentrations of iodine monoxide (IO) in coastal Antarctica. The sources of such a large iodine burden in the coastal Antarctic atmosphere remain unknown. We propose a mechanism for iodine release from sea ice based on the premise that micro-algae are the primary source of iodine emissions in this environment. The emissions are triggered by the biological production of iodide (I-) and hypoiodous acid (HOI) from micro-algae (contained within and underneath sea ice) and their diffusion through sea-ice brine channels, ultimately accumulating in a thin brine layer (BL) on the surface of sea ice. Prior to reaching the BL, the diffusion timescale of iodine within sea ice is depth-dependent. The BL is also a vital component of the proposed mechanism as it enhances the chemical kinetics of iodine-related reactions, which allows for the efficient release of iodine to the polar boundary layer. We suggest that iodine is released to the atmosphere via three possible pathways: (1) emitted from the BL and then transported throughout snow atop sea ice, from where it is released to the atmosphere; (2) released directly from the BL to the atmosphere in regions of sea ice that are not covered with snowpack; or (3) emitted to the atmosphere directly through fractures in the sea-ice pack. To investigate the proposed biology-ice-atmosphere coupling at coastal Antarctica we use a multiphase model that incorporates the transport of iodine species, via diffusion, at variable depths, within brine channels of sea ice. Model simulations were conducted to interpret observations of elevated springtime IO in the coastal Antarctic, around the Weddell Sea. While a lack of experimental and observational data adds uncertainty to the model predictions, the results nevertheless show that the levels of inorganic iodine (i.e. I2, IBr, ICl) released from sea ice through this mechanism could account for the observed IO concentrations during

  16. A closed-loop life cycle assessment of recycled aggregate concrete utilization in China.

    PubMed

    Ding, Tao; Xiao, Jianzhuang; Tam, Vivian W Y

    2016-10-01

    This paper studies the potential environmental impact of recycled coarse aggregate (RCA) for concrete production in China. According to the cradle-to-cradle theory, a closed-loop life cycle assessment (LCA) on recycled aggregate concrete (RAC) utilization in China with entire local life cycle inventory (LCI) is performed, regarding the environmental influence of cement content, aggregate production, transportation and waste landfilling. Special attention is paid on the primary resource and energy conservation, as well as climate protection induced by RAC applications. Environmental impact between natural aggregate concrete (NAC) and RAC are also compared. It is shown that cement proportion and transportation are the top two contributors for carbon dioxide (CO2) emissions and energy consumption for both NAC and RAC. Sensitivity analysis also proves that long delivery distances for natural coarse aggregate (NCA) leave a possible opportunity for lowering environmental impact of RAC in China. PMID:27297045

  17. A closed-loop life cycle assessment of recycled aggregate concrete utilization in China.

    PubMed

    Ding, Tao; Xiao, Jianzhuang; Tam, Vivian W Y

    2016-10-01

    This paper studies the potential environmental impact of recycled coarse aggregate (RCA) for concrete production in China. According to the cradle-to-cradle theory, a closed-loop life cycle assessment (LCA) on recycled aggregate concrete (RAC) utilization in China with entire local life cycle inventory (LCI) is performed, regarding the environmental influence of cement content, aggregate production, transportation and waste landfilling. Special attention is paid on the primary resource and energy conservation, as well as climate protection induced by RAC applications. Environmental impact between natural aggregate concrete (NAC) and RAC are also compared. It is shown that cement proportion and transportation are the top two contributors for carbon dioxide (CO2) emissions and energy consumption for both NAC and RAC. Sensitivity analysis also proves that long delivery distances for natural coarse aggregate (NCA) leave a possible opportunity for lowering environmental impact of RAC in China.

  18. Color difference threshold of chromostereopsis induced by flat display emission

    PubMed Central

    Ozolinsh, Maris; Muizniece, Kristine

    2015-01-01

    The study of chromostereopsis has gained attention in the backdrop of the use of computer displays in daily life. In this context, we analyze the illusory depth sense using planar color images presented on a computer screen. We determine the color difference threshold required to induce an illusory sense of depth psychometrically using a constant stimuli paradigm. Isoluminant stimuli are presented on a computer screen, which stimuli are aligned along the blue–red line in the computer display CIE xyY color space. Stereo disparity is generated by increasing the color difference between the central and surrounding areas of the stimuli with both areas consisting of random dots on a black background. The observed altering of illusory depth sense, thus also stereo disparity is validated using the “center-of-gravity” model. The induced illusory sense of the depth effect undergoes color reversal upon varying the binocular lateral eye pupil covering conditions (lateral or medial). Analysis of the retinal image point spread function for the display red and blue pixel radiation validates the altering of chromostereopsis retinal disparity achieved by increasing the color difference, and also the chromostereopsis color reversal caused by varying the eye pupil covering conditions. PMID:25883573

  19. ELECTRON-BEAM-INDUCED RADIO EMISSION FROM ULTRACOOL DWARFS

    SciTech Connect

    Yu, S.; Doyle, J. G.; Kuznetsov, A.; Hallinan, G.; Antonova, A.; MacKinnon, A. L.; Golden, A.

    2012-06-10

    We present the numerical simulations for an electron-beam-driven and loss-cone-driven electron-cyclotron maser (ECM) with different plasma parameters and different magnetic field strengths for a relatively small region and short timescale in an attempt to interpret the recent discovered intense radio emission from ultracool dwarfs. We find that a large amount of electromagnetic (EM) field energy can be effectively released from the beam-driven ECM, which rapidly heats the surrounding plasma. A rapidly developed high-energy tail of electrons in velocity space (resulting from the heating process of the ECM) may produce the radio continuum depending on the initial strength of the external magnetic field and the electron beam current. Both significant linear polarization and circular polarization of EM waves can be obtained from the simulations. The spectral energy distributions of the simulated radio waves show that harmonics may appear from 10 to 70{nu}{sub pe} ({nu}{sub pe} is the electron plasma frequency) in the non-relativistic case and from 10 to 600{nu}{sub pe} in the relativistic case, which makes it difficult to find the fundamental cyclotron frequency in the observed radio frequencies. A wide frequency band should therefore be covered by future radio observations.

  20. A noble function of BAY 11-7082: Inhibition of platelet aggregation mediated by an elevated cAMP-induced VASP, and decreased ERK2/JNK1 phosphorylations.

    PubMed

    Lee, Hyun-Sub; Kim, Sung Dae; Lee, Whi Min; Endale, Mehari; Kamruzzaman, S M; Oh, Won Jun; Cho, Jae Youl; Kim, Sang Keun; Cho, Hyun-Jeong; Park, Hwa-Jin; Rhee, Man Hee

    2010-02-10

    Platelets, though anucleated, possess several transcription factors, including NF-kappaB, that exert non-genomic functions regulating platelet activation. Since platelets have not only been recognized as central players of homeostasis, but also participated in pathological conditions such as thrombosis, atherosclerosis, and inflammation, we examined rat platelet NF-kappaB expression and evaluated the effects of anti-inflammatory drug BAY 11-7082, an inhibitor of NF-kappaB activation, in platelet physiology. Western blotting revealed that rat platelets express NF-kappaB. BAY 11-7082, dose dependently, inhibited collagen- or thrombin-induced-platelet aggregation. ATP release, TXB(2) formation, P-selectin expression, and intercellular Ca(2+) concentration activated by collagen were reduced in BAY 11-7082-treated platelets. BAY 11-7082 elevated intracellular levels of cAMP, but not cGMP, and its co-incubation with cAMP-activating agent (forskolin) or its hydrolyzing enzyme inhibitor (3-isobutyl-1-methylxanthine, IBMX), synergistically inhibited collagen-induced-platelet aggregation. In addition, vasodilator-stimulated-phosphoprotein (VASP) phosphorylation was enhanced in BAY 11-7082-treated platelets, which was partially inhibited by a protein kinase A (PKA) inhibitor, H-89. Moreover, while p38 mitogen-activated protein kinase (MAPK) was not affected, BAY 11-7082 attenuated c-Jun N-terminal kinase 1 (JNK1) and extracellular-signal-regulated protein kinase 2 (ERK2) phosphorylations. In conclusion, BAY 11-7082 inhibits platelet activation, granule secretion, and aggregation, and that this effect is mediated by inhibition of JNK1 and ERK2 phosphorylations, and partially by stimulation of cAMP-dependent PKA VASP phosphorylation. The ability of BAY 11-7082 to inhibit platelet function might be relevant in cases involving aberrant platelet activation where the drug is considered as anti-atherothrombosis, and anti-inflammatory therapy.

  1. Poly(aryl ether) Dendrons with Monopyrrolotetrathiafulvalene Unit-Based Organogels exhibiting Gel-Induced Enhanced Emission (GIEE).

    PubMed

    Liu, Yucun; Lei, Wenwei; Chen, Tie; Jin, Longyi; Sun, Guangyan; Yin, Bingzhu

    2015-10-19

    A series of poly(aryl ether) dendrons with a monopyrrolo-tetrathiafulvalene unit linked through an acyl hydrazone linkage were designed and synthesized as low molecular mass organogelators (LMOGs). Two of the dendrons could gelate the aromatic solvents and some solvent mixtures, but the others could not gel all solvents tested except for n-pentanol. A subtle change on the molecular structure produces a great influence on the gelation behavior. Note that the dendrons could form the stable gel in the DMSO/water mixture without thermal treatment and could also form the binary gel with fullerene (C60 ) in toluene. The formed gels undergo a reversible gel-sol phase transition upon exposure to external stimuli, such as temperature and chemical oxidation/reduction. A number of experiments (SEM, FTIR spectroscopy, (1) H NMR spectroscopy, and UV/Vis absorption spectroscopy, and XRD) revealed that these dendritic molecules self-assembled into elastically interpenetrating one-dimensional fibrillar aggregates and maintain rectangular molecular-packing mode in organogels. The hydrogen bonding, π-π, and donor-acceptor interactions were found to be the main driving forces for formation of the gels. Moreover, the gel system exhibited gel-induced enhanced emission (GIEE) property in the visible region in spite of the absence of a conventional fluorophore unit and the fluorescence was effectively quenched by introduction of C60 . PMID:26471439

  2. QED induced redshift and anomalous microwave emission from dust

    NASA Astrophysics Data System (ADS)

    Prevenslik, Thomas V.

    2015-08-01

    The Planck satellite imaging of CMB polarizations at 353 GHz extrapolated to 160 GHz suggested the AME was caused by dust and not as a relic of gravity waves from Universe expansion. AME stands for anomalous microwave emisssion. Similarly, dust has also been implicated in questioning Universe expansion by exaggerating Hubble redshift measurements. In this regard, QED induced EM radiation in dust NPs may be the commonality by which an expanding Universe may be assessed. QED stands for quantum electrodynamics, EM for electromagnetic, and NPs for nanoparticles. QED radiation is a consequence of QM that denies the atoms in NPs under TIR confinement the heat capacity to allow increases in NP temperature upon absorbing galaxy light. QM stands for quantum mechanics and TIR for total internal reflection.In this paper, the only galaxy light considered are single Lyα photons absorbed in spherical dust NPs. Since NPs have high surface to volume ratios, an absorbed Lyα photon is induced by QED to be totally confined by TIR to the NP surface. Hence, the TIR wavelength λ of the QED photon moving at velocity c/n in the NP surface is λ = 2πa, where c is the speed of light, and n and a are the refractive index and radius of the NP. The boundary between QED induced spinning and redshift depends on the NP material. For amorphous silicate, small NPs with a < 0.040 microns conserve the Lyα photon energy by NP spinning; whereas, the larger NPs having a > 0.040 microns redshift the Lyα photon to produce VIS and near IR galaxy light.Since the TIR mode is tangential to the surface of the NP, the Lyα photon produces circularly polarized light during absorption thereby exerting a momentary torque on the NP. Conserving the Lyα photon energy hc/λ* with the rotational energy ½ Jω2 of the NP gives the spin ω = √ (2 hc/Jλ*). Here, h is Planck’s constant, λ* the Lyα wavelength, J the NP rotational moment of inertia, J = 2 ma2/5, m the NP mass, m = 4πρa3/3, and ρ the NP

  3. Eye-safe infrared laser-induced breakdown spectroscopy (LIBS) emissions from energetic materials

    NASA Astrophysics Data System (ADS)

    Brown, Ei E.; Hömmerich, Uwe; Yang, Clayton C.; Jin, Feng; Trivedi, Sudhir B.; Samuels, Alan C.

    2016-05-01

    Laser-induced breakdown spectroscopy is a powerful diagnostic tool for detection of trace elements by monitoring the atomic and ionic emission from laser-induced plasmas. Besides elemental emissions from conventional UV-Vis LIBS, molecular LIBS emission signatures of the target compounds were observed in the long-wave infrared (LWIR) region in recent studies. Most current LIBS studies employ the fundamental Nd:YAG laser output at 1.064 μm, which has extremely low eye-damage threshold. In this work, comparative LWIR-LIBS emissions studies using traditional 1.064 μm pumping and eye-safe laser wavelength at 1.574 μm were performed on several energetic materials for applications in chemical, biological, and explosive (CBE) sensing. A Q-switched Nd: YAG laser operating at 1.064 μm and the 1.574 μm output of a pulsed Nd:YAG pumped Optical Parametric Oscillator were employed as the excitation sources. The investigated energetic materials were studied for the appearance of LWIR-LIBS emissions (4-12 μm) that are directly indicative of oxygenated breakdown products as well as partially dissociated and recombination molecular species. The observed molecular IR LIBS emission bands showed strong correlation with FTIR absorption spectra of the studied materials for 1.064 μm and 1.574 μm pump wavelengths.

  4. Identification of a novel platelet antagonist that binds to CLEC-2 and suppresses podoplanin-induced platelet aggregation and cancer metastasis.

    PubMed

    Chang, Yao-Wen; Hsieh, Pei-Wen; Chang, Yu-Tsui; Lu, Meng-Hong; Huang, Tur-Fu; Chong, Kowit-Yu; Liao, Hsiang-Ruei; Cheng, Ju-Chien; Tseng, Ching-Ping

    2015-12-15

    Podoplanin (PDPN) enhances tumor metastases by eliciting tumor cell-induced platelet aggregation (TCIPA) through activation of platelet C-type lectin-like receptor 2 (CLEC-2). A novel and non-cytotoxic 5-nitrobenzoate compound 2CP was synthesized that specifically inhibited the PDPN/CLEC-2 interaction and TCIPA with no effect on platelet aggregation stimulated by other platelet agonists. 2CP possessed anti-cancer metastatic activity in vivo and augmented the therapeutic efficacy of cisplatin in the experimental animal model without causing a bleeding risk. Analysis of the molecular action of 2CP further revealed that Akt1/PDK1 and PKCμ were two alternative CLEC-2 signaling pathways mediating PDPN-induced platelet activation. 2CP directly bound to CLEC-2 and, by competing with the same binding pocket of PDPN in CLEC-2, inhibited PDPN-mediated platelet activation. This study provides evidence that 2CP is the first defined platelet antagonist with CLEC-2 binding activity. The augmentation in the therapeutic efficacy of cisplatin by 2CP suggests that a combination of a chemotherapeutic agent and a drug with anti-TCIPA activity such as 2CP may prove clinically effective. PMID:26528756

  5. Identification of a novel platelet antagonist that binds to CLEC-2 and suppresses podoplanin-induced platelet aggregation and cancer metastasis

    PubMed Central

    Chang, Yu-Tsui; Lu, Meng-Hong; Huang, Tur-Fu; Chong, Kowit-Yu; Liao, Hsiang-Ruei; Cheng, Ju-Chien; Tseng, Ching-Ping

    2015-01-01

    Podoplanin (PDPN) enhances tumor metastases by eliciting tumor cell-induced platelet aggregation (TCIPA) through activation of platelet C-type lectin-like receptor 2 (CLEC-2). A novel and non-cytotoxic 5-nitrobenzoate compound 2CP was synthesized that specifically inhibited the PDPN/CLEC-2 interaction and TCIPA with no effect on platelet aggregation stimulated by other platelet agonists. 2CP possessed anti-cancer metastatic activity in vivo and augmented the therapeutic efficacy of cisplatin in the experimental animal model without causing a bleeding risk. Analysis of the molecular action of 2CP further revealed that Akt1/PDK1 and PKCμ were two alternative CLEC-2 signaling pathways mediating PDPN-induced platelet activation. 2CP directly bound to CLEC-2 and, by competing with the same binding pocket of PDPN in CLEC-2, inhibited PDPN-mediated platelet activation. This study provides evidence that 2CP is the first defined platelet antagonist with CLEC-2 binding activity. The augmentation in the therapeutic efficacy of cisplatin by 2CP suggests that a combination of a chemotherapeutic agent and a drug with anti-TCIPA activity such as 2CP may prove clinically effective. PMID:26528756

  6. Biological and biophysics aspects of metformin-induced effects: cortex mitochondrial dysfunction and promotion of toxic amyloid pre-fibrillar aggregates.

    PubMed

    Picone, Pasquale; Vilasi, Silvia; Librizzi, Fabio; Contardi, Marco; Nuzzo, Domenico; Caruana, Luca; Baldassano, Sara; Amato, Antonella; Mulè, Flavia; San Biagio, Pier Luigi; Giacomazza, Daniela; Di Carlo, Marta

    2016-08-01

    The onset of Alzheimer disease (AD) is influenced by several risk factors comprising diabetes. Within this context, antidiabetic drugs, including metformin, are investigated for their effect on AD. We report that in the C57B6/J mice, metformin is delivered to the brain where activates AMP-activated kinase (AMPK), its molecular target. This drug affects the levels of β-secretase (BACE1) and β-amyloid precursor protein (APP), promoting processing and aggregation of β-amyloid (Aβ), mainly in the cortex region. Moreover, metformin induces mitochondrial dysfunction and cell death by affecting the level and conformation of Translocase of the Outer Membrane 40 (TOM40), voltage-dependent anion-selective channels 1 (VDAC1) and hexokinase I (HKI), proteins involved in mitochondrial transport of molecules, including Aβ. By using biophysical techniques we found that metformin is able to directly interact with Aβ influencing its aggregation kinetics and features. These findings indicate that metformin induces different adverse effects, leading to an overall increase of the risk of AD onset. PMID:27509335

  7. Biological and biophysics aspects of metformin-induced effects: cortex mitochondrial dysfunction and promotion of toxic amyloid pre-fibrillar aggregates

    PubMed Central

    Picone, Pasquale; Vilasi, Silvia; Librizzi, Fabio; Contardi, Marco; Nuzzo, Domenico; Caruana, Luca; Baldassano, Sara; Amato, Antonella; Mulè, Flavia; San Biagio, Pier Luigi; Giacomazza, Daniela; Di Carlo, Marta

    2016-01-01

    The onset of Alzheimer disease (AD) is influenced by several risk factors comprising diabetes. Within this context, antidiabetic drugs, including metformin, are investigated for their effect on AD. We report that in the C57B6/J mice, metformin is delivered to the brain where activates AMP-activated kinase (AMPK), its molecular target. This drug affects the levels of β-secretase (BACE1) and β-amyloid precursor protein (APP), promoting processing and aggregation of β-amyloid (Aβ), mainly in the cortex region. Moreover, metformin induces mitochondrial dysfunction and cell death by affecting the level and conformation of Translocase of the Outer Membrane 40 (TOM40), voltage-dependent anion-selective channels 1 (VDAC1) and hexokinase I (HKI), proteins involved in mitochondrial transport of molecules, including Aβ. By using biophysical techniques we found that metformin is able to directly interact with Aβ influencing its aggregation kinetics and features. These findings indicate that metformin induces different adverse effects, leading to an overall increase of the risk of AD onset. PMID:27509335

  8. Slurry sample introduction with microwave induced plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Matusiewicz, Henryk; Sturgeon, Ralph E.

    1993-04-01

    The successful direct introduction of aqueous slurry samples into a highly efficient TE 101 microwave plasma has been demonstrated. Slurry samples from a spray chamber are fed directly into the cavity with no desolvation apparatus. A V-groove, clog-free Babington-type nebulizer was evaluated for use with high solids content solutions. Slurry concentrations up to 10% m/v were used for the microwave induced plasma work with calibration by the standard additions method. Results are presented for the analysis of two NRCC Standard Reference Materials, i.e. TORT-1 (Lobster Hepatopancreas) and PACS-21 (Marine Sediment). Agreement between analytical results and certified values for the test elements Cd, Cu, Fe and Zn (in the range of 28-850 μg/g) was good. No memory effects were evident and the nebulizer system had a rapid clean-out time.

  9. Magnon emission and radiation induced by spin-polarized current

    NASA Astrophysics Data System (ADS)

    Zholud, Andrei; Freeman, Ryan; Cao, Rongxing; Urazhdin, Sergei

    The spin-torque effect due to spin injection into ferromagnets can affect their effective dynamical damping, and modify the magnon populations. The latter leads to the onset of nonlinear damping that can prevent spontaneous current-induced magnetization oscillations. It has been argued that these nonlinear processes can be eliminate by the radiation of magnons excited by local spin injection in extended magnetic films. To test these effects, studied of the effects of spin injection on the magnon populations in nanoscale spin valves and magnetic point contacts. Measurements of the giant magnetoresistance show a significant resistance component that is antisymmetric in current, and linearly dependent on temperature T. This component is significantly larger for the nanopatterned ferromagnets than for point contacts. We interpret our observations in terms of stimulated generation of magnons by the spin current, and their radiation in point contacts. Supported by NSF ECCS-1305586, ECCS-1509794.

  10. Zn(II)- and Cu(II)-induced non-fibrillar aggregates of amyloid-beta (1-42) peptide are transformed to amyloid fibrils, both spontaneously and under the influence of metal chelators.

    PubMed

    Tõugu, Vello; Karafin, Ann; Zovo, Kairit; Chung, Roger S; Howells, Claire; West, Adrian K; Palumaa, Peep

    2009-09-01

    Aggregation of amyloid-beta (Abeta) peptides is a central phenomenon in Alzheimer's disease. Zn(II) and Cu(II) have profound effects on Abeta aggregation; however, their impact on amyloidogenesis is unclear. Here we show that Zn(II) and Cu(II) inhibit Abeta(42) fibrillization and initiate formation of non-fibrillar Abeta(42) aggregates, and that the inhibitory effect of Zn(II) (IC(50) = 1.8 micromol/L) is three times stronger than that of Cu(II). Medium and high-affinity metal chelators including metallothioneins prevented metal-induced Abeta(42) aggregation. Moreover, their addition to preformed aggregates initiated fast Abeta(42) fibrillization. Upon prolonged incubation the metal-induced aggregates also transformed spontaneously into fibrils, that appear to represent the most stable state of Abeta(42). H13A and H14A mutations in Abeta(42) reduced the inhibitory effect of metal ions, whereas an H6A mutation had no significant impact. We suggest that metal binding by H13 and H14 prevents the formation of a cross-beta core structure within region 10-23 of the amyloid fibril. Cu(II)-Abeta(42) aggregates were neurotoxic to neurons in vitro only in the presence of ascorbate, whereas monomers and Zn(II)-Abeta(42) aggregates were non-toxic. Disturbed metal homeostasis in the vicinity of zinc-enriched neurons might pre-dispose formation of metal-induced Abeta aggregates, subsequent fibrillization of which can lead to amyloid formation. The molecular background underlying metal-chelating therapies for Alzheimer's disease is discussed in this light. PMID:19619132

  11. Secondary aerosol formation from stress-induced biogenic emissions and possible climate feedbacks

    NASA Astrophysics Data System (ADS)

    Mentel, Th. F.; Kleist, E.; Andres, S.; Dal Maso, M.; Hohaus, T.; Kiendler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Uerlings, R.; Wahner, A.; Wildt, J.

    2013-09-01

    Atmospheric aerosols impact climate by scattering and absorbing solar radiation and by acting as ice and cloud condensation nuclei. Biogenic secondary organic aerosols (BSOAs) comprise an important component of atmospheric aerosols. Biogenic volatile organic compounds (BVOCs) emitted by vegetation are the source of BSOAs. Pathogens and insect attacks, heat waves and droughts can induce stress to plants that may impact their BVOC emissions, and hence the yield and type of formed BSOAs, and possibly their climatic effects. This raises questions of whether stress-induced changes in BSOA formation may attenuate or amplify effects of climate change. In this study we assess the potential impact of stress-induced BVOC emissions on BSOA formation for tree species typical for mixed deciduous and Boreal Eurasian forests. We studied the photochemical BSOA formation for plants infested by aphids in a laboratory setup under well-controlled conditions and applied in addition heat and drought stress. The results indicate that stress conditions substantially modify BSOA formation and yield. Stress-induced emissions of sesquiterpenes, methyl salicylate, and C17-BVOCs increase BSOA yields. Mixtures including these compounds exhibit BSOA yields between 17 and 33%, significantly higher than mixtures containing mainly monoterpenes (4-6% yield). Green leaf volatiles suppress SOA formation, presumably by scavenging OH, similar to isoprene. By classifying emission types, stressors and BSOA formation potential, we discuss possible climatic feedbacks regarding aerosol effects. We conclude that stress situations for plants due to climate change should be considered in climate-vegetation feedback mechanisms.

  12. Theory of activated-rate processes under shear with application to shear-induced aggregation of colloids.

    PubMed

    Zaccone, Alessio; Wu, Hua; Gentili, Daniele; Morbidelli, Massimo

    2009-11-01

    Using an approximation scheme within the convective diffusion (two-body Smoluchowski) equation framework, we unveil the shear-driven aggregation mechanism at the origin of structure formation in sheared colloidal systems. The theory, verified against numerics and experiments, explains the induction time followed by explosive (irreversible) rise of viscosity observed in charge-stabilized colloidal and protein systems under steady shear. The Arrhenius-type equation with shear derived here, extending Kramers' theory in the presence of shear, clearly demonstrates the important role of shear drive in activated-rate processes as they are encountered in soft condensed matter.

  13. Study of atomic and molecular emission spectra of Sr by laser induced breakdown spectroscopy (LIBS).

    PubMed

    Bhatt, Chet R; Alfarraj, Bader; Ayyalasomayajula, Krishna K; Ghany, Charles; Yueh, Fang Y; Singh, Jagdish P

    2015-12-01

    Laser Induced Breakdown Spectroscopy (LIBS) is an ideal analytical technique for in situ analysis of elemental composition. We have performed a comparative study of the quantitative and qualitative analysis of atomic and molecular emission from LIBS spectra. In our experiments, a mixture of SrCl2 and Al2O3 in powder form was used as a sample. The atomic emission from Sr and molecular emission from SrCl and SrO observed in LIBS spectra were analyzed. The optimum laser energies, gate delays, and gate widths for selected atomic lines and molecular bands were determined from spectra recorded at various experimental parameters. These optimum experimental conditions were used to collect calibration data, and the calibration curves were used to predict the Sr concentration. Limits of detection (LODs) for selected atomic and molecular emission spectra were determined.

  14. Kinetic model of atomic and molecular emissions in laser-induced breakdown spectroscopy of organic compounds.

    PubMed

    Ma, Qianli; Dagdigian, Paul J

    2011-07-01

    A kinetic model previously developed to predict the relative intensities of atomic emission lines in laser-induced breakdown spectroscopy has been extended to include processes related to CN and C(2) molecular emissions. Simulations with this model were performed to predict the relative excited-state populations. The results from the simulations are compared with experimentally determined excited-state populations from 1,064 nm laser irradiation of organic residues on aluminum foil. The model reasonably predicts the relative intensity of the molecular emissions. Significantly, the model reproduces the vastly different temporal profiles of the atomic and molecular emissions. The latter are found to extend to much longer times after the laser pulse, and this appears to be due to the increasing concentration of the molecules versus time. From the simulations, the important processes affecting the CN and C(2) concentrations are identified.

  15. Construction aggregates

    USGS Publications Warehouse

    Nelson, T.I.; Bolen, W.P.

    2007-01-01

    Construction aggregates, primarily stone, sand and gravel, are recovered from widespread naturally occurring mineral deposits and processed for use primarily in the construction industry. They are mined, crushed, sorted by size and sold loose or combined with portland cement or asphaltic cement to make concrete products to build roads, houses, buildings, and other structures. Much smaller quantities are used in agriculture, cement manufacture, chemical and metallurgical processes, glass production and many other products.

  16. Construction aggregates

    USGS Publications Warehouse

    Tepordei, V.V.

    1996-01-01

    Part of the Annual Commodities Review 1995. Production of construction aggregates such as crushed stone and construction sand and gravel showed a marginal increase in 1995. Most of the 1995 increases were due to funding for highway construction work. The major areas of concern to the industry included issues relating to wetlands classification and the classification of crystalline silica as a probable human carcinogen. Despite this, an increase in demand is anticipated for 1996.

  17. Construction aggregates

    USGS Publications Warehouse

    Tepordei, V.V.

    1993-01-01

    Part of a special section on the market performance of industrial minerals in 1992. Production of construction aggregates increased by 4.6 percent in 1992. This increase was due, in part, to the increased funding for transportation and infrastructure projects. The U.S. produced about 1.05 Gt of crushed stone and an estimated 734 Mt of construction sand and gravel in 1992. Demand is expected to increase by about 5 percent in 1993.

  18. Constitutive versus heat and biotic stress induced BVOC emissions in Pseudotsuga menziesii

    NASA Astrophysics Data System (ADS)

    Joó, É.; Dewulf, J.; Amelynck, C.; Schoon, N.; Pokorska, O.; Šimpraga, M.; Steppe, K.; Aubinet, Marc; Van Langenhove, H.

    2011-07-01

    Induced volatiles have been a focus of recent research, as not much is known of their emission behavior or atmospheric contribution. BVOC emissions were measured from Pseudotsuga menziesii saplings under natural environmental conditions, using a dynamic branch enclosure system and GC-MS for their analysis. We determined temperature and light dependency of the individual compounds, studied seasonality of the emissions and discuss the effect of heat stress in comparison with two specific biotic stresses that occurred naturally on the trees. A standardized emission rate of 6.8 μg g (dw)-1 h -1 for monoterpenes under stressed conditions was almost a magnitude higher than that obtained for healthy trees (0.8 ± 0.2 μg g (dw)-1 h -1), with higher beta factors characterizing the stressed trees. The response of the emissions to light intensity was different for the individual compounds, suggesting a distinct minimum light intensity to reach saturation. Heat stress changed the relative contribution of specific volatiles, with larger extent of increase of sesquiterpenes, methyl salicylate and linalool emissions compared to monoterpenes. Biotic stress kept low the emissions of sesquiterpenes, (E)-4,8-dimethyl-1,3,7-nonatriene and methylbutenol isomers, and increased the level of methyl salicylate and monoterpenes. The ratio of β-pinene/α-pinene was also found to be significantly enhanced from 1.3 to 2.4 and 3.2 for non-stressed, heat stressed and combined biotic and heat stressed, respectively.

  19. Sir2 is induced by oxidative stress in a yeast model of Huntington disease and its activation reduces protein aggregation.

    PubMed

    Sorolla, M Alba; Nierga, Clara; Rodríguez-Colman, M José; Reverter-Branchat, Gemma; Arenas, Alicia; Tamarit, Jordi; Ros, Joaquim; Cabiscol, Elisa

    2011-06-01

    Huntington disease (HD) is a neurodegenerative disorder caused by expansion of CAG trinucleotide repeats, leading to an elongated polyglutamine sequence (polyQ) in the huntingtin protein. Misfolding of mutant polyQ proteins with expanded tracts results in aggregation, causing cytotoxicity. Oxidative stress in HD has been documented in humans as important to disease progression. Using yeast cells as a model of HD, we report that when grown at high glucose concentration, cells expressing mutant polyQ do not show apparent oxidative stress. At higher cell densities, when glucose becomes limiting and cells are metabolically shifting from fermentation to respiration, protein oxidation and catalase activity increases in relation to the length of the polyQ tract. Oxidative stress, either endogenous as a result of mutant polyQ expression or exogenously generated, increases Sir2 levels. Δ sir2 cells expressing expanded polyQ lengths show signs of oxidative stress even at the early exponential phase. In a wild-type background, isonicotinamide, a Sir2 activator, decreases mutant polyQ aggregation and the stress generated by expanded polyQ. Taken together, these results describe mutant polyQ proteins as being more toxic in respiring cells, causing oxidative stress and an increase in Sir2 levels. Activation of Sir2 would play a protective role against this toxicity. PMID:21513696

  20. Involvement of Raft Aggregates Enriched in Fas/CD95 Death-Inducing Signaling Complex in the Antileukemic Action of Edelfosine in Jurkat Cells

    PubMed Central

    Gajate, Consuelo; Gonzalez-Camacho, Fernando; Mollinedo, Faustino

    2009-01-01

    Background Recent evidence suggests that co-clustering of Fas/CD95 death receptor and lipid rafts plays a major role in death receptor-mediated apoptosis. Methodology/Principal Findings By a combination of genetic, biochemical, and ultrastructural approaches, we provide here compelling evidence for the involvement of lipid raft aggregates containing recruited Fas/CD95 death receptor, Fas-associated death domain-containing protein (FADD), and procaspase-8 in the induction of apoptosis in human T-cell leukemia Jurkat cells by the antitumor drug edelfosine, the prototype compound of a promising family of synthetic antitumor lipids named as synthetic alkyl-lysophospholipid analogues. Co-immunoprecipitation assays revealed that edelfosine induced the generation of the so-called death-inducing signaling complex (DISC), made up of Fas/CD95, FADD, and procaspase-8, in lipid rafts. Electron microscopy analyses allowed to visualize the formation of raft clusters and their co-localization with DISC components Fas/CD95, FADD, and procaspase-8 following edelfosine treatment of Jurkat cells. Silencing of Fas/CD95 by RNA interference, transfection with a FADD dominant-negative mutant that blocks Fas/CD95 signaling, and specific inhibition of caspase-8 prevented the apoptotic response triggered by edelfosine, hence demonstrating the functional role of DISC in drug-induced apoptosis. By using radioactive labeled edelfosine and a fluorescent analogue, we found that edelfosine accumulated in lipid rafts, forming edelfosine-rich membrane raft clusters in Jurkat leukemic T-cells. Disruption of these membrane raft domains abrogated drug uptake and drug-induced DISC assembly and apoptosis. Thus, edelfosine uptake into lipid rafts was critical for the onset of both co-aggregation of DISC in membrane rafts and subsequent apoptotic cell death. Conclusions/Significance This work shows the involvement of DISC clusters in lipid raft aggregates as a supramolecular and physical entity

  1. The dynamic relationship between low birthweight and induced abortion in New York City. An aggregate time-series analysis.

    PubMed

    Joyce, T; Grossman, M

    1990-11-01

    We use a vector autoregression to examine the dynamic relationship between the race-specific percentage of pregnancies terminated by induced abortion and the race-specific percentage of low-birthweight births in New York City. With monthly data beginning in 1972, we find that induced abortion explains low birthweight for blacks, but not for whites. There is no evidence of feedback from low birthweight to induced abortion. The findings suggest that unanticipated decreases in the percentage of pregnancies terminated by induced abortion would worsen birth outcomes among blacks in New York City.

  2. A monoclonal antibody directed against a granule membrane glycoprotein (GMP-140/PADGEM, P-selectin, CD62P) inhibits ristocetin-induced platelet aggregation.

    PubMed

    Boukerche, H; Ruchaud-Sparagano, M H; Rouen, C; Brochier, J; Kaplan, C; McGregor, J L

    1996-02-01

    P-selectin (also called CD62, GMP-140, PADGEM, CD62P) is a recently described member of a family of vascular adhesion receptors expressed by activated platelets and endothelial cells that are involved in leucocyte cell adhesion. The aim of this study was to characterize a new monoclonal antibody (LYP7) directed against activated human blood platelets that inhibits ristocetin-induced platelet aggregation. Immunoadsorbent affinity chromatography and immunoprecipitation studies showed that LYP7 (IgG1) bound a surface-labelled glycoprotein (GP) which changed its apparent molecular mass (M(r)) on reduction from 138 kD (situated below GPIIb) to 148 kD (above GPIIb alpha). LYP7 and S12, a monoclonal antibody directed against P-selectin immunoprecipitated the same band. Using ELISA assay, purified P-selectin was shown to bind LYP7 and S12 monoclonal antibodies. Binding sites of 125I-labelled LYP7, which was greatly increased on thrombin-stimulated (2 U/ml) washed platelets (10825 +/- 2886, mean +/- SD) Kd = 1.5 +/- 0.5 nM) compared to resting platelets (2801 +/- 1278, mean +/- SD) (Kd = 1.5 +/- 0.6 nM), was found to be normal on thrombin-stimulated platelets taken from a patient with grey platelet syndrome or a patient with Glanzmann thrombasthenia. LYP7 (IgG1, F(ab')2 or Fab fragments) inhibited ristocetin-induced platelet aggregation of platelets in a dose-dependent fashion without affecting the binding of von Willebrand (vWf) factor. However, agglutination of formaldehyde-fixed platelets induced by ristocetin was not affected by monoclonal antibody LYP7. In addition, the binding of thrombin-activated platelets to neutrophils was inhibited by monoclonal antibody LYP7. These results strongly suggest that P-selectin, by promoting cell-cell contact, may play an active role in platelet-platelet interactions. PMID:8603015

  3. Characteristics of seabed tremors induced by gas emissions off Southwest Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, S.; Hsu, S.; Liang, C.; Doo, W.; Lin, J.

    2013-12-01

    Gas emissions out of the seabed have been observed in the offshore area of southwest Taiwan by 38 kHz echo sounders and sub-bottom profilers. The intensities of the gas emissions are closely modulated by the tidal variation. In this study, we use ocean bottom seismometer (OBS) to monitor the gas emissions and analyze the behavior of the seabed tremors. Among the recorded seismic signals, the long-duration tremors are very prounced. Those tremors are characterized by monochromatic signals and mainly horizontally oscillate for several hours. Becuse the particle motions are almost along horizontal directions, it suggests that the tremor source is from near-seafloor source link to gas emission out of the seabed. Gas-induced tremors mainly occur during both the rising periods and falling period of the tides, probably related to the higher stress variations induced by the tidal variation. However, although they may be recorded at different sites within a time interval, their amplitudes are not coherent, indicating the source is small and origin at the vicinity of each receiver. Because of the lack of temporal coherence, it's hard to identify the tremors' sources by traditional earthquake relocation methods. Here, we use the horizontal particle motions of the tremors to define the azimuths of the gas emission sources to each receiver. By summarizing multiple sources azimuths, we are able us to minimize the source spots. The results can also be used to characterize the seabed attributes in the offshore area of SW Taiwan.

  4. Carbon accounting and economic model uncertainty of emissions from biofuels-induced land use change.

    PubMed

    Plevin, Richard J; Beckman, Jayson; Golub, Alla A; Witcover, Julie; O'Hare, Michael

    2015-03-01

    Few of the numerous published studies of the emissions from biofuels-induced "indirect" land use change (ILUC) attempt to propagate and quantify uncertainty, and those that have done so have restricted their analysis to a portion of the modeling systems used. In this study, we pair a global, computable general equilibrium model with a model of greenhouse gas emissions from land-use change to quantify the parametric uncertainty in the paired modeling system's estimates of greenhouse gas emissions from ILUC induced by expanded production of three biofuels. We find that for the three fuel systems examined--US corn ethanol, Brazilian sugar cane ethanol, and US soybean biodiesel--95% of the results occurred within ±20 g CO2e MJ(-1) of the mean (coefficient of variation of 20-45%), with economic model parameters related to crop yield and the productivity of newly converted cropland (from forestry and pasture) contributing most of the variance in estimated ILUC emissions intensity. Although the experiments performed here allow us to characterize parametric uncertainty, changes to the model structure have the potential to shift the mean by tens of grams of CO2e per megajoule and further broaden distributions for ILUC emission intensities.

  5. Black tattoo inks induce reactive oxygen species production correlating with aggregation of pigment nanoparticles and product brand but not with the polycyclic aromatic hydrocarbon content.

    PubMed

    Høgsberg, Trine; Jacobsen, Nicklas Raun; Clausen, Per Axel; Serup, Jørgen

    2013-07-01

    Black tattoo inks are composed of carbon nanoparticles, additives and water and may contain polycyclic aromatic hydrocarbons (PAHs). We aimed to clarify whether reactive oxygen species (ROS) induced by black inks in vitro is related to pigment chemistry, physico-chemical properties of the ink particles and the content of chemical additives and contaminants including PAHs. The study included nine brands of tattoo inks of six colours each (black, red, yellow, blue, green and white) and two additional black inks of different brands (n = 56). The ROS formation potential was determined by the dichlorofluorescein (DCFH) assay. A semiquantitative method was developed for screening extractable organic compounds in tattoo ink based on gas chromatography-mass spectrometry (GC-MS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Two black inks produced high amounts of ROS. Peroxyl radicals accounted for up to 72% of the free radicals generated, whereas hydroxyl radicals and H₂O₂ accounted for <14% and 16%, respectively. The same two inks aggregated strongly in water in contrast to the other black inks. They did not exhibit any shared pattern in PAHs and other organic substances. Aggregation was exclusively shared by all ink colours belonging to the same two brands. Ten of 11 black inks had PAH concentrations exceeding the European Council's recommended level, and all 11 exceeded the recommended level for benzo(a)pyrene. It is a new finding that aggregation of tattoo pigment particles correlates with ROS production and brand, independently of chemical composition including PAHs. ROS is hypothesized to be implicated in minor clinical symptoms.

  6. Enhancement of Laser Induced Breakdown Emission in the Presence of External Magnetic Field

    NASA Astrophysics Data System (ADS)

    Rai, Virendra N.; Zhang, Hansheng; Yueh, Fang Y.; Singh, Jagdish P.

    2001-04-01

    Laser induced breakdown spectroscopy (LIBS) is a useful method for determining the elemental composition in solid, liquid and gaseous samples. Elemental analysis of sample is accomplished by measuring the emission of the elemental atom or ions present in the plasma from any kind of samples. The ability to form and study the plasma on unprepared sample makes LIBS a very attractive analytical technique. Various techniques have been used for enhancing the analytical characteristics of the plasma sources used for elemental analysis. Many complicated magnetic field geometries have been used earlier with various types of plasma sources to enhance the plasma emission. In this paper characterization of laser induced plasma emission from Manganese (Mn) in liquid solution is presented. The plasma was formed in between the poles of two magnets with 1200 Gauss pole strength separated by 5 mm. The effect of magnetic field on various emission properties was studied. An one and half times enhancement in the intensity of Mn emission line at 403.076, 403.307 and 403.449 nm was observed for the laser intensity below 1.5x10e12 W/cm2. The intensity of Mn line decreases at higher laser intensity in the presence of magnetic field. This decrease in the emission at higher laser intensity seems to be due to turbulence as a result of laser induced shock as well as generation of instability in the plasma in the presence of magnetic field. The calibration curve for Mn was obtained in an optimized condition in the absence and presence of magnetic field. The limit of detection for Mn in liquid was found to be 0.63 PPM in the presence of magnetic field, which is less in comparison to the absence of magnetic field ( 0.87 PPM). * Visiting Scientist from Centre for Advanced Technology, Indore-452 013 (INDIA)

  7. Folding-induced modulation of excited-state dynamics in an oligophenylene-ethynylene-tethered spiral perylene bisimide aggregate.

    PubMed

    Son, Minjung; Fimmel, Benjamin; Dehm, Volker; Würthner, Frank; Kim, Dongho

    2015-06-01

    The excited-state photophysical behavior of a spiral perylene bisimide (PBI) folda-octamer (F8) tethered to an oligophenylene-ethynylene scaffold is comprehensively investigated. Solvent-dependent UV/Vis and fluorescence studies reveal that the degree of folding in this foldamer is extremely sensitive to the solvent, thus giving rise to an extended conformation in CHCl(3) and a folded helical aggregate in methylcyclohexane (MCH). The exciton-deactivation dynamics are largely governed by the supramolecular structure of F8. Femtosecond transient absorption (TA) in the near-infrared region indicates a photoinduced electron-transfer process from the backbone to the PBI core in the extended conformation, whereas excitation power- and polarization-dependent TA measurements combined with computational modeling showed that excitation energy transfer between the unit PBI chromophores is the major deactivation pathway in the folded counterpart. PMID:25827823

  8. Bright and photostable fluorescent probe with aggregation-induced emission characteristics for specific lysosome imaging and tracking.

    PubMed

    Ouyang, Jiang; Zang, Qiguang; Chen, Wansong; Wang, Liqiang; Li, Shuo; Liu, Ren-Yu; Deng, Yuanyuan; Liu, Zhao-Qian; Li, Juan; Deng, Liu; Liu, You-Nian

    2016-10-01

    We develop a new lysosome-targeting AIE fluorescent probe tetraphenylethene-morpholine (TPE-MPL), by incorporating a typical lysosome-targeting moiety of morpholine into a stable tetraphenylethene skeleton. Due to both the AIE and antenna effects, TPE-MPL possesses superior photostability, appreciable tolerance to microenvironment change and high lysosome targeting ability. Our findings confirm that TPE-MPL is a well-suited imaging agent for targeting lysosome and tracking dynamic movement of lysosome. Moreover, due to its synthetic accessibility, TPE-MPL could be further modified as a dual-functional probe for lysosome, thereby gain further insight into the role of lysosome in biomedical applications. PMID:27474306

  9. Aggregation induced Raman scattering of squaraine dye: Implementation in diagnosis of cervical cancer dysplasia by SERS imaging.

    PubMed

    Narayanan, Nisha; Karunakaran, Varsha; Paul, Willi; Venugopal, Karunakaran; Sujathan, K; Kumar Maiti, Kaustabh

    2015-08-15

    The extent of squaraine dye aggregation that reflects on surface enhanced Raman signal scattering (SERS) intensity upon adsorption on nano-roughened gold surface has been investigated. Here we have synthesized a serious of six squaraine dyes consisting of two different electron donor moiety i.e. 1,1,2-trimethyl-1H-benzo[e]indole and 2-methylbenzo[d]thiazole which modulates the chemisorptions and hydrophobicity being designated as SQ1, SQ2, SQ3, SQ4, SQ5 and SQ6. Interestingly, SQ2 (mono lipoic acid appended), SQ5 and SQ6 (conjugated with hexyl and dodecyl side chain) squaraine derivatives having more tendency of aggregation in DMSO-water mixed solvent showed significant increase of Raman scattering in the fingerprint region when chemisorbed on spherical gold nanoparticles. Two sets of SERS nanotags were prepared with colloidal gold nanoparticle (Au-NPs size: 40 nm) by incorporating Raman reporters SQ2 and SQ5 followed by thiolated PEG encapsulation (SH-PEG, SH-PEG-COOH) denoted as AuNPs-SQ2-PEG and AuNPs-SQ5-PEG. Further conjugation of these nanotag with monoclonal antibodies specific to over expressed receptors, EGFR and p16/Ki-67 in cervical cancer cell, HeLa showed prominent SERS mapping intensity and selectivity towards cell surface and nucleus. The fast and accurate recognition obtained by antibody triggered SERS-nanotag has been compared with conventional time consuming immunocytochemistry technique which prompted us to extend further investigation using real patient cervical smear sample for a non-invasive, ultrafast and accurate diagnosis. PMID:25801955

  10. Aggregation induced Raman scattering of squaraine dye: Implementation in diagnosis of cervical cancer dysplasia by SERS imaging.

    PubMed

    Narayanan, Nisha; Karunakaran, Varsha; Paul, Willi; Venugopal, Karunakaran; Sujathan, K; Kumar Maiti, Kaustabh

    2015-08-15

    The extent of squaraine dye aggregation that reflects on surface enhanced Raman signal scattering (SERS) intensity upon adsorption on nano-roughened gold surface has been investigated. Here we have synthesized a serious of six squaraine dyes consisting of two different electron donor moiety i.e. 1,1,2-trimethyl-1H-benzo[e]indole and 2-methylbenzo[d]thiazole which modulates the chemisorptions and hydrophobicity being designated as SQ1, SQ2, SQ3, SQ4, SQ5 and SQ6. Interestingly, SQ2 (mono lipoic acid appended), SQ5 and SQ6 (conjugated with hexyl and dodecyl side chain) squaraine derivatives having more tendency of aggregation in DMSO-water mixed solvent showed significant increase of Raman scattering in the fingerprint region when chemisorbed on spherical gold nanoparticles. Two sets of SERS nanotags were prepared with colloidal gold nanoparticle (Au-NPs size: 40 nm) by incorporating Raman reporters SQ2 and SQ5 followed by thiolated PEG encapsulation (SH-PEG, SH-PEG-COOH) denoted as AuNPs-SQ2-PEG and AuNPs-SQ5-PEG. Further conjugation of these nanotag with monoclonal antibodies specific to over expressed receptors, EGFR and p16/Ki-67 in cervical cancer cell, HeLa showed prominent SERS mapping intensity and selectivity towards cell surface and nucleus. The fast and accurate recognition obtained by antibody triggered SERS-nanotag has been compared with conventional time consuming immunocytochemistry technique which prompted us to extend further investigation using real patient cervical smear sample for a non-invasive, ultrafast and accurate diagnosis.

  11. Urban stress-induced biogenic VOC emissions and SOA-forming potentials in Beijing

    NASA Astrophysics Data System (ADS)

    Ghirardo, Andrea; Xie, Junfei; Zheng, Xunhua; Wang, Yuesi; Grote, Rüdiger; Block, Katja; Wildt, Jürgen; Mentel, Thomas; Kiendler-Scharr, Astrid; Hallquist, Mattias; Butterbach-Bahl, Klaus; Schnitzler, Jörg-Peter

    2016-03-01

    Trees can significantly impact the urban air chemistry by the uptake and emission of reactive biogenic volatile organic compounds (BVOCs), which are involved in ozone and particle formation. Here we present the emission potentials of "constitutive" (cBVOCs) and "stress-induced" BVOCs (sBVOCs) from the dominant broadleaf woody plant species in the megacity of Beijing. Based on the municipal tree census and cuvette BVOC measurements on leaf level, we built an inventory of BVOC emissions, and assessed the potential impact of BVOCs on secondary organic aerosol (SOA) formation in 2005 and 2010, i.e., before and after realizing the large tree-planting program for the 2008 Olympic Games. We found that sBVOCs, such as fatty acid derivatives, benzenoids, and sesquiterpenes, constituted a significant fraction ( ˜ 40 %) of the total annual BVOC emissions, and we estimated that the overall annual BVOC budget may have doubled from ˜ 4.8 × 109 g C year-1 in 2005 to ˜ 10.3 × 109 g C year-1 in 2010 due to the increase in urban greening, while at the same time the emission of anthropogenic VOCs (AVOCs) decreased by 24 %. Based on the BVOC emission assessment, we estimated the biological impact on SOA mass formation potential in Beijing. Constitutive and stress-induced BVOCs might produce similar amounts of secondary aerosol in Beijing. However, the main contributors of SOA-mass formations originated from anthropogenic sources (> 90 %). This study demonstrates the general importance to include sBVOCs when studying BVOC emissions. Although the main problems regarding air quality in Beijing still originate from anthropogenic activities, the present survey suggests that in urban plantation programs, the selection of low-emitting plant species has some potential beneficial effects on urban air quality.

  12. Research on the fluorescence emission from water vapor induced by femtosecond filamentation in air

    NASA Astrophysics Data System (ADS)

    Li, He; Jiang, Yuanfei; Li, Shuchang; Chen, Anmin; Li, Suyu; Jin, Mingxing

    2016-10-01

    Our experiments show that initial energy and humidity strongly influences the water vapor fluorescence induced by ultrashort intense femtosecond laser pulses. It is found that the fluorescence signal can be enhanced by both increasing the humidity in the case of fixed energy and increasing the pulse energy in the case of fixed humidity. In addition, water vapor fluorescence emission in the linear polarization is stronger than that in the circular polarization due to the higher dissociation efficiency of linearly polarized pulses. The mechanism of water vapor fluorescence emission during femtosecond filamentation is discussed based on the analysis of these phenomena.

  13. Construction aggregates

    USGS Publications Warehouse

    Bolen, W.P.; Tepordei, V.V.

    2001-01-01

    The estimated production during 2000 of construction aggregates, crushed stone, and construction sand and gravel increased by about 2.6% to 2.7 Gt (3 billion st), compared with 1999. The expansion that started in 1992 continued with record production levels for the ninth consecutive year. By commodity, construction sand and gravel production increased by 4.5% to 1.16 Gt (1.28 billion st), while crushed stone production increased by 1.3% to 1.56 Gt (1.72 billion st).

  14. Shock-wave-induced enhancement of optical emission in nitrogen afterglow plasma

    SciTech Connect

    Siefert, N.; Ganguly, B.N.; Bletzinger, P.

    2005-12-15

    This paper reports measurements of optical emission enhancement at the shock front of Mach 1.5 to Mach 3.5 shockwaves propagating in the afterglow of a 0.75 Torr nitrogen glow discharge. Electrically-generated shocks pass through the afterglow and create noticeable enhancements of the B {sup 3}{pi}{sub g}-A {sup 3}{sigma}{sub u}{sup +} and C {sup 3}{pi}{sub u}-B {sup 3}{pi}{sub g} transitions of nitrogen. Under our discharge conditions, the electron Debye length was approximately the same magnitude as the shock thickness; this allows the possibility of a space-charge region extending beyond the neutral shockwave discontinuity. Previous researchers have measured enhancement in the B {sup 3}{pi}{sub g}-A {sup 3}{sigma}{sub u}{sup +} optical emission at the shock front, but only in the active discharge. Fibers connected to photomultipler tubes measure the optical emission from the discharge. Laser deflection measures the shock velocity. The data reveals that the emission enhancement increases with Mach number, and also indicates that the emission enhancement decreases exponentially with time in the afterglow. Since the discharge voltage has already been shut off, the energy needed to create the emission enhancement cannot come from the power supply. We conclude that under our discharge conditions there is an increase in the already non-equilibrium energy of the electrons at the shock front via a shockwave-induced strong double layer.

  15. Shock-wave-induced enhancement of optical emission in nitrogen afterglow plasma.

    PubMed

    Siefert, N; Ganguly, B N; Bletzinger, P

    2005-12-01

    This paper reports measurements of optical emission enhancement at the shock front of Mach 1.5 to Mach 3.5 shockwaves propagating in the afterglow of a 0.75 Torr nitrogen glow discharge. Electrically-generated shocks pass through the afterglow and create noticeable enhancements of the B 3Pig-A 3Sigma+u and C 3Piu-B 3Pig transitions of nitrogen. Under our discharge conditions, the electron Debye length was approximately the same magnitude as the shock thickness; this allows the possibility of a space-charge region extending beyond the neutral shockwave discontinuity. Previous researchers have measured enhancement in the B 3Pig-A 3Sigma+u optical emission at the shock front, but only in the active discharge. Fibers connected to photomultipler tubes measure the optical emission from the discharge. Laser deflection measures the shock velocity. The data reveals that the emission enhancement increases with Mach number, and also indicates that the emission enhancement decreases exponentially with time in the afterglow. Since the discharge voltage has already been shut off, the energy needed to create the emission enhancement cannot come from the power supply. We conclude that under our discharge conditions there is an increase in the already non-equilibrium energy of the electrons at the shock front via a shockwave-induced strong double layer.

  16. Femtosecond laser induced X-ray emission from metal alloys, polymers and color filters

    NASA Astrophysics Data System (ADS)

    Hatanaka, Koji; Yomogihata, Ken-ichiro; Ono, Hiroshi; Fukumura, Hiroshi

    2005-07-01

    Various material surfaces were irradiated on a moving stage with focused laser pulses from a conventional 1 kHz femtosecond laser system, and X-ray emission spectra were measured during the laser ablation of the materials. Sharp K or L characteristic X-ray lines from the elements contained in the materials were clearly observed in a range of 2-15 keV. Signals due to copper and zinc were recognizable within a few minutes when a brass surface was irradiated. Poly(vinyl chloride) gave a marked emission originating from chlorine. When a color glass filter was irradiated, the detection of cobalt and arsenic was possible even though the amounts of these components were estimated to be less than 1 wt.% by using an electron probe microanalyzer. Time-integrated emission spectra in the visible region were also monitored during the femtosecond laser ablation of these materials. The emission spectra in the visible region were complicated owing to peaks originating from air components and white continuum emissions. Thus, the elemental analysis by femtoseond laser induced X-ray is considered to be useful for some samples. The etched trenches left at the surfaces after the laser ablation were examined with an optical microscope. The trench width varied with the materials, which may be attributed to changes in the irradiation area giving maximum counts of X-ray emission.

  17. Incorporation of the fluoride induced Si-O bond cleavage and functionalized gold nanoparticle aggregation into one colorimetric probe for highly specific and sensitive detection of fluoride.

    PubMed

    Sun, Jie-Fang; Liu, Rui; Zhang, Zhong-Mian; Liu, Jing-Fu

    2014-04-11

    A highly selective and sensitive probe was developed for the field test of F(-) in environmental waters. The probe was fabricated by anchoring 4-mercaptopyridine (MPD) on AuNPs via Au-S interaction to form MPD-AuNPs, and further assembling 3-aminopropyltrimethoxysilane (APTMS) on the surface of MPD-AuNPs. The hydrolysis and cross-link of APTMS resulted in a thin monolayer of Si-O-Si protecting layer to encapsulated MPD-AuNPs. In the assay, F(-) reacted with Si-O bond and thus destroyed the outer protecting layer of the probe, and further triggered the aggregation of internal MPD-AuNPs by forming N-H-F hydrogen bond. The F(-) induced aggregation of functionalized AuNPs gave rise to significant solution color switch from red to blue, which facilitated visual assay of F(-) in the range of 1.0-7.0 μg mL(-1) by naked eyes. The probe is able to discriminate F(-) from a wide range of environmentally dominant ions, thus it can be applied to detect F(-) in drinkable water with satisfactory results that is agreed well with that of using ion chromatography.

  18. Guarana (Paullinia cupana Mart.) prevents β-amyloid aggregation, generation of advanced glycation-end products (AGEs), and acrolein-induced cytotoxicity on human neuronal-like cells.

    PubMed

    Bittencourt, Leonardo da Silva; Zeidán-Chuliá, Fares; Yatsu, Francini Kiyono Jorge; Schnorr, Carlos Eduardo; Moresco, Karla Suzana; Kolling, Eduardo Antônio; Gelain, Daniel Pens; Bassani, Valquiria Linck; Moreira, José Cláudio Fonseca

    2014-11-01

    Advanced glycation end-products (AGEs) are considered potent molecules capable of promoting neuronal cell death and participating in the development of neurodegenerative disorders such as Alzheimer's disease (AD). Previous studies have shown that AGEs exacerbate β-amyloid (Aβ) aggregation and AGE-related cross-links are also detected in senile plaques. Acrolein (ACR) is an α, β-unsaturated aldehyde found in the environment and thermally processed foods, which can additionally be generated through endogenous metabolism. The role of ACR in AD is widely accepted in the literature. Guarana (Paullinia cupana Mart.) is popularly consumed by the population in Brazil, mainly for its stimulant activity. In the present study, we showed that guarana (10, 100, and 1000 µg/mL) is able to prevent protein glycation, β-amyloid aggregation, in vitro methylglyoxal, glyoxal, and ACR (20 μM)-induced toxicity on neuronal-like cells (SH-SY5Y). Since these are considered typical AD pathological hallmarks, we propose that guarana may deserve further research as a potential therapeutic agent in such a neurodegenerative disease. PMID:24840232

  19. A label-free colorimetric aptasensor for simple, sensitive and selective detection of Pt (II) based on platinum (II)-oligonucleotide coordination induced gold nanoparticles aggregation.

    PubMed

    Fan, Daoqing; Zhai, Qingfeng; Zhou, Weijun; Zhu, Xiaoqing; Wang, Erkang; Dong, Shaojun

    2016-11-15

    Herein, a gold nanoparticles (AuNPs) based label-free colorimetric aptasensor for simple, sensitive and selective detection of Pt (II) was constructed for the first time. Four bases (G-G mismatch) mismatched streptavidin aptamer (MSAA) was used to protect AuNPs from salt-induced aggregation and recognize Pt (II) specifically. Only in the presence of Pt (II), coordination occurs between G-G bases and Pt (II), leading to the activation of streptavidin aptamer. Streptavidin coated magnetic beads (MBs) were used as separation agent to separate Pt (II)-coordinated MSAA. The residual less amount of MSAA could not efficiently protect AuNPs anymore and aggregation of AuNPs will produce a colorimetric product. With the addition of Pt (II), a pale purple-to-blue color variation could be observed by the naked eye. A detection limit of 150nM and a linear range from 0.6μM to 12.5μM for Pt (II) could be achieved without any amplification. PMID:27281107

  20. Guarana (Paullinia cupana Mart.) prevents β-amyloid aggregation, generation of advanced glycation-end products (AGEs), and acrolein-induced cytotoxicity on human neuronal-like cells.

    PubMed

    Bittencourt, Leonardo da Silva; Zeidán-Chuliá, Fares; Yatsu, Francini Kiyono Jorge; Schnorr, Carlos Eduardo; Moresco, Karla Suzana; Kolling, Eduardo Antônio; Gelain, Daniel Pens; Bassani, Valquiria Linck; Moreira, José Cláudio Fonseca

    2014-11-01

    Advanced glycation end-products (AGEs) are considered potent molecules capable of promoting neuronal cell death and participating in the development of neurodegenerative disorders such as Alzheimer's disease (AD). Previous studies have shown that AGEs exacerbate β-amyloid (Aβ) aggregation and AGE-related cross-links are also detected in senile plaques. Acrolein (ACR) is an α, β-unsaturated aldehyde found in the environment and thermally processed foods, which can additionally be generated through endogenous metabolism. The role of ACR in AD is widely accepted in the literature. Guarana (Paullinia cupana Mart.) is popularly consumed by the population in Brazil, mainly for its stimulant activity. In the present study, we showed that guarana (10, 100, and 1000 µg/mL) is able to prevent protein glycation, β-amyloid aggregation, in vitro methylglyoxal, glyoxal, and ACR (20 μM)-induced toxicity on neuronal-like cells (SH-SY5Y). Since these are considered typical AD pathological hallmarks, we propose that guarana may deserve further research as a potential therapeutic agent in such a neurodegenerative disease.

  1. Immunogenicity of Therapeutic Protein Aggregates.

    PubMed

    Moussa, Ehab M; Panchal, Jainik P; Moorthy, Balakrishnan S; Blum, Janice S; Joubert, Marisa K; Narhi, Linda O; Topp, Elizabeth M

    2016-02-01

    Therapeutic proteins have a propensity for aggregation during manufacturing, shipping, and storage. The presence of aggregates in protein drug products can induce adverse immune responses in patients that may affect safety and efficacy, and so it is of concern to both manufacturers and regulatory agencies. In this vein, there is a lack of understanding of the physicochemical determinants of immunological responses and a lack of standardized analytical methods to survey the molecular properties of aggregates associated with immune activation. In this review, we provide an overview of the basic immune mechanisms in the context of interactions with protein aggregates. We then critically examine the literature with emphasis on the underlying immune mechanisms as they relate to aggregate properties. Finally, we highlight the gaps in our current understanding of this issue and offer recommendations for future research. PMID:26869409

  2. The Effects of Abiotic Factors on Induced Volatile Emissions in Corn Plants1

    PubMed Central

    Gouinguené, Sandrine P.; Turlings, Ted C.J.

    2002-01-01

    Many plants respond to herbivory by releasing a specific blend of volatiles that is attractive to natural enemies of the herbivores. In corn (Zea mays), this induced odor blend is mainly composed of terpenoids and indole. The induced signal varies with plant species and genotype, but little is known about the variation due to abiotic factors. Here, we tested the effect of soil humidity, air humidity, temperature, light, and fertilization rate on the emission of induced volatiles in young corn plants. Each factor was tested separately under constant conditions for the other factors. Plants released more when standing in dry soil than in wet soil, whereas for air humidity, the optimal release was found at around 60% relative humidity. Temperatures between 22°C and 27°C led to a higher emission than lower or higher temperatures. Light intensity had a dramatic effect. The emission of volatiles did not occur in the dark and increased steadily with an increase in the light intensity. An experiment with an unnatural light-dark cycle showed that the release was fully photophase dependent. Fertilization also had a strong positive effect; the emission of volatiles was minimal when plants were grown under low nutrition, even when results were corrected for plant biomass. Changes in all abiotic factors caused small but significant changes in the relative ratios among the different compounds (quality) in the induced odor blends, except for air humidity. Hence, climatic conditions and nutrient availability can be important factors in determining the intensity and variability in the release of induced plant volatiles. PMID:12114583

  3. Time-dependent inhibitory effects of cGMP-analogues on thrombin-induced platelet-derived microparticles formation, platelet aggregation, and P-selectin expression.

    PubMed

    Nygaard, Gyrid; Herfindal, Lars; Kopperud, Reidun; Aragay, Anna M; Ho