Science.gov

Sample records for aggregation induced emission

  1. Cu nanoclusters with aggregation induced emission enhancement.

    PubMed

    Jia, Xiaofang; Li, Jing; Wang, Erkang

    2013-11-25

    A facile and versatile method for preparing water-soluble, stable, luminescent Cu nanoclusters (NCs) via the process of size-focusing etching from nonluminescent nanocrystals is presented. Using glutathione as a model ligand, the smallest cluster, Cu2 , is selectively synthesized to form a nearly monodisperse product, eliminating the need for tedious size fractionation. Evolution of photoluminescence and absorption spectra reveal that the formation of stable cluster species occurs through surface etching. Intriguingly, the as-prepared CuNCs exhibit an aggregation-induced emission enhancement effect. The CuNCs emit a faint light when dispersed in aqueous solution, but generate a striking fluorescence intensity enhancement upon aggregation. Armed with these attractive properties, the emissive CuNCs are expected to open new opportunities for the construction of light-emitting diodes, chemosensors, and bioimaging systems. PMID:23670847

  2. Gelation process visualized by aggregation-induced emission fluorogens

    PubMed Central

    Wang, Zhengke; Nie, Jingyi; Qin, Wei; Hu, Qiaoling; Tang, Ben Zhong

    2016-01-01

    Alkaline-urea aqueous solvent system provides a novel and important approach for the utilization of polysaccharide. As one of the most important polysaccharide, chitosan can be well dissolved in this solvent system, and the resultant hydrogel material possesses unique and excellent properties. Thus the sound understanding of the gelation process is fundamentally important. However, current study of the gelation process is still limited due to the absence of direct observation and the lack of attention on the entire process. Here we show the entire gelation process of chitosan LiOH-urea aqueous system by aggregation-induced emission fluorescent imaging. Accompanied by other pseudo in situ investigations, we propose the mechanism of gelation process, focusing on the formation of junction points including hydrogen bonds and crystalline. PMID:27337500

  3. Gelation process visualized by aggregation-induced emission fluorogens.

    PubMed

    Wang, Zhengke; Nie, Jingyi; Qin, Wei; Hu, Qiaoling; Tang, Ben Zhong

    2016-01-01

    Alkaline-urea aqueous solvent system provides a novel and important approach for the utilization of polysaccharide. As one of the most important polysaccharide, chitosan can be well dissolved in this solvent system, and the resultant hydrogel material possesses unique and excellent properties. Thus the sound understanding of the gelation process is fundamentally important. However, current study of the gelation process is still limited due to the absence of direct observation and the lack of attention on the entire process. Here we show the entire gelation process of chitosan LiOH-urea aqueous system by aggregation-induced emission fluorescent imaging. Accompanied by other pseudo in situ investigations, we propose the mechanism of gelation process, focusing on the formation of junction points including hydrogen bonds and crystalline. PMID:27337500

  4. Gelation process visualized by aggregation-induced emission fluorogens

    NASA Astrophysics Data System (ADS)

    Wang, Zhengke; Nie, Jingyi; Qin, Wei; Hu, Qiaoling; Tang, Ben Zhong

    2016-06-01

    Alkaline-urea aqueous solvent system provides a novel and important approach for the utilization of polysaccharide. As one of the most important polysaccharide, chitosan can be well dissolved in this solvent system, and the resultant hydrogel material possesses unique and excellent properties. Thus the sound understanding of the gelation process is fundamentally important. However, current study of the gelation process is still limited due to the absence of direct observation and the lack of attention on the entire process. Here we show the entire gelation process of chitosan LiOH-urea aqueous system by aggregation-induced emission fluorescent imaging. Accompanied by other pseudo in situ investigations, we propose the mechanism of gelation process, focusing on the formation of junction points including hydrogen bonds and crystalline.

  5. Fluorescence Aggregation-Caused Quenching versus Aggregation-Induced Emission: A Visual Teaching Technology for Undergraduate Chemistry Students

    ERIC Educational Resources Information Center

    Ma, Xiaofeng; Sun, Rui; Cheng, Jinghui; Liu, Jiaoyan; Gou, Fei; Xiang, Haifeng; Zhou, Xiangge

    2016-01-01

    A laboratory experiment visually exploring two opposite basic principles of fluorescence of aggregation-caused quenching (ACQ) and aggregation-induced emission (AIE) is demonstrated. The students would prepared two salicylaldehyde-based Schiff bases through a simple one-pot condensation reaction of one equiv of 1,2-diamine with 2 equiv of…

  6. The synthesis and aggregation-induced near-infrared emission of terrylenediimide-tetraphenylethene dyads.

    PubMed

    Xie, Nuo-Hua; Li, Chong; Liu, Jun-Xia; Gong, Wen-Liang; Tang, Ben Zhong; Li, Guigen; Zhu, Ming-Qiang

    2016-04-30

    We design and synthesize terrylenediimide-tetraphenylethene dyads, which exhibit featured aggregation-induced near-infrared fluorescence with a maximum emission wavelength of up to 800 nm. PMID:27035468

  7. Bio-/Chemosensors and Imaging with Aggregation-Induced Emission Luminogens.

    PubMed

    Zhan, Chi; You, Xue; Zhang, Guanxin; Zhang, Deqing

    2016-08-01

    Aggregation-induced emission (AIE) luminogens show abnormal fluorescent behavior; they are non-emissive in solution, but they become strongly emissive after aggregation. Sensing and imaging are the major applications of AIE luminogens. By properly manipulating the aggregation and deaggregation of AIE molecules, various bio-/chemosensors have been developed. Moreover, AIE molecules with targeting groups have been devised for imaging of organelles and cancer cells. In this account, we report our recent work on the application of AIE luminogens for the construction of bio-/chemosensors and imaging. PMID:27427427

  8. Nucleic acid-induced tetraphenylethene probe noncovalent self-assembly and the superquenching of aggregation-induced emission.

    PubMed

    Chen, Jian; Wang, Yan; Li, Wenying; Zhou, Huipeng; Li, Yongxin; Yu, Cong

    2014-10-01

    Superquenching of aggregation-induced emission (AIE) has been utilized in biosensing for the first time. A positively charged tetraphenylethene derivative (compound 1) showed no emission in an aqueous buffer solution. A single-stranded DNA (a polyanion) induced aggregation of compound 1, and strong compound 1 aggregate emission was observed. When the DNA was labeled with a quencher molecule, compound 1 aggregate emission was efficiently quenched. On the basis of this observation, a new, simple, sensitive and selective DNA methyltransferase (MTase) assay has been developed. A quencher-labeled double-stranded DNA could induce aggregation of compound 1, and superquenching of compound 1 AIE was observed. In the presence of MTase and an endonuclease, the DNA could be specifically methylated and cleaved into single-stranded DNA fragments. The quencher molecule was released, and a turn-on emission signal was detected. PMID:25203656

  9. Photoactivatable aggregation-induced emission fluorophores with multiple-color fluorescence and wavelength-selective activation.

    PubMed

    Peng, Lu; Zheng, Yue; Wang, Xiaoyan; Tong, Aijun; Xiang, Yu

    2015-03-01

    Photoactivatable (caged) fluorophores are widely used in chemistry, materials, and biology. However, the development of such molecules exhibiting photoactivable solid-state fluorescence is still challenging due to the aggregation-caused quenching (ACQ) effect of most fluorophores in their aggregate or solid states. In this work, we developed caged salicylaldehyde hydrazone derivatives, which are of aggregation-induced emission (AIE) characteristics upon light irradiation, as efficient photoactivatable solid-state fluorophores. These compounds displayed multiple-color emissions and ratiometric (photochromic) fluorescence switches upon wavelength-selective photoactivation, and were successfully applied for photopatterning and photoactivatable cell imaging in a multiple-color and stepwise manner. PMID:25644036

  10. Aggregation induced enhanced emission of 2-(2'-hydroxyphenyl)benzimidazole.

    PubMed

    Malakar, Ashim; Kumar, Manishekhar; Reddy, Anki; Biswal, Himadree T; Mandal, Biman B; Krishnamoorthy, G

    2016-07-01

    In this study, the aggregation induced emission enhancement (AIEE) of 2-(2'-hydroxyphenyl)benzimidazole (HPBI) is reported. To investigate the AIEE process of HPBI, absorption/fluorescence spectroscopy, fluorescence imaging and field emission scanning electron microscopy were employed. A comparative study with 2-phenylbenzimidazole (PBI) divulges the significance of the hydroxyl group in the AIEE process. Further, molecular dynamics simulations have been carried out with explicit solvent molecules to follow the aggregation process of HPBI with time. The obtained molecular dynamics simulation results not only predicted the formation of aggregates but also provided detailed insight and information on the molecular interactions. The cellular studies showed aggregates yield higher fluorescence in the visible region inside HeLa cells in comparison to monomeric compounds which failed to exhibit any visible fluorescence inside the cell. The obtained aggregates were further found to be biocompatible and therefore can be used for bio-imaging applications. PMID:27334264

  11. Aggregation-induced emission molecules in layered matrices for two-color luminescence films.

    PubMed

    Guan, Weijiang; Lu, Jun; Zhou, Wenjuan; Lu, Chao

    2014-10-14

    We fabricated two-color luminescence ultrathin films (UTFs) composed of the layered double hydroxide host-aggregation-induced emission guests by LBL assembly. The fabricated UTFs were simple, tunable, controllable and highly luminescent. Moreover, reversible thermochromic luminescence further exhibited their potential in practical applications. PMID:25154856

  12. Dual-responsive aggregation-induced emission-active supramolecular nanoparticles for gene delivery and bioimaging.

    PubMed

    Dong, Ruijiao; Ravinathan, Screenath P; Xue, Lizhe; Li, Nan; Zhang, Yingjian; Zhou, Linzhu; Cao, Chengxi; Zhu, Xinyuan

    2016-06-28

    Dual-responsive aggregation-induced emission-active supramolecular fluorescent nanoparticles are reported, which have the ability to undergo a unique morphological transition combining with a cooperative optical variation in response to pH and light stimuli. The dynamic supramolecular nanoparticles show excellent biocompatibility and effective plasmid DNA condensation capability, further achieving efficient in vitro gene delivery and bioimaging. PMID:27251637

  13. Tetraphenylethene-2-Pyrone Conjugate: Aggregation-Induced Emission Study and Explosives Sensor.

    PubMed

    Mahendran, Vaithiyanathan; Pasumpon, Kamaraj; Thimmarayaperumal, Solaimalai; Thilagar, Pakkirisamy; Shanmugam, Sivakumar

    2016-05-01

    Design and synthesis of a novel tetraphenylethene-2-pyrone (TPEP) conjugate exhibiting donor-acceptor characteristics is reported. The localized frontier molecular orbitals (DFT studies) and the solvent polarity dependent photoluminescence characteristics directly corroborate the presence of intramolecular charge transfer character in TPEP. TPEP is poorly emissive in the solution state. In contrast, upon aggregation (THF/water mixtures), TPEP exhibits aggregation-induced emission enhancement. Upon aggregation, dyad TPEP forms a fluorescent nanoaggregate which was confirmed by transmission electron microscopy imaging studies. The luminescence nanoaggregates were elegantly exploited for selective detection of nitro aromatic compounds (NACs). It was found that nanoaggregates of TPEP were selectively sensing the picric acid over the other NACs. Efficiency of the quenching process was further evaluated by the Stern-Volmer equation. TPEP-based low-cost fluorescent test strips were developed for the selective detection of picric acid. PMID:27050365

  14. Aggregation-Induced-Emissive Molecule Incorporated into Polymeric Nanoparticulate as FRET Donor for Observing Doxorubicin Delivery.

    PubMed

    Han, Xiongqi; Liu, De-E; Wang, Tieyan; Lu, Hongguang; Ma, Jianbiao; Chen, Qixian; Gao, Hui

    2015-10-28

    Tetraphenylethene (TPE) derivatives characterized with distinct aggregation-induced-emission, attempted to aggregate with doxorubicin (Dox) to formulate the interior compartment of polymeric nanoparticulate, served as fluorescence resonance energy transfer (FRET) donor to promote emission of acceptor Dox. Accordingly, this FRET formulation allowed identification of Dox in complexed form by detecting FRET. Important insight into the Dox releasing can be subsequently explored by extracting complexed Dox (FRET) from the overall Dox via direct single-photon excitation of Dox. Of note, functional catiomers were used to complex with FRET partners for a template formulation, which was verified to induce pH-responsive release in the targeted subcellular compartment. Hence, this well-defined multifunctional system entitles in situ observation of the drug releasing profile and insight on drug delivery journey from the tip of injection vein to the subcellular organelle of the targeted cells. PMID:26448180

  15. Aggregation-induced emission: a simple strategy to improve chemiluminescence resonance energy transfer.

    PubMed

    Zhang, Lijuan; He, Nan; Lu, Chao

    2015-01-20

    The emergence of aggregation-induced emission (AIE) has opened up a new avenue for scientists. There is a great demand for the development of a new generation chemiluminescence resonance energy transfer (CRET) acceptors with AIE characteristics due to the aggregation-caused chemiluminescence (CL) quenching effect commonly observed in the conventional fluorophore CL acceptors at high concentrations. However, the systematical studies involving in AIE-amplified CL are still scarce. Herein, it is the first report that the gold nanocluster aggregates (a type of well-defined AIE molecules) are used to study their influence on the bis(2,4,6-trichlorophenyl) oxalate (TCPO)-H2O2 CL reaction. Interestingly, the AIE molecules in the diluted solution are unable to boost the CL signal of the TCPO-H2O2 system, but their aggregates display a strongly enhanced CL emission compared to their counterparts of fluorophore molecules, thanks to the unique AIE effect of gold nanoclusters. In comparison to rhodamine B with the aid of an imidazole catalyst, the detection limit of the gold nanocluster aggregate-amplified CL probe for H2O2 (S/N = 3) is low in the absence of any catalyst. Finally, the other two typical AIE molecules, Au(I)-thiolate complexes and 9,10-bis[4-(3-sulfonatopropoxyl)-styryl]anthracene (BSPSA), are investigated to verify the generality of the AIE molecule-amplified CL emissions. These results demonstrate effective access to highly fluorescent AIE molecules with practical applications in avoiding the aggregation-induced CL quenching at high concentrations, which can be expected to provide a novel and sensitive platform for the CL amplified detection. PMID:25526522

  16. Utilising tetraphenylethene as a dual activator for intramolecular charge transfer and aggregation induced emission.

    PubMed

    Zhang, Guo-Feng; Aldred, Matthew P; Gong, Wen-Liang; Li, Chong; Zhu, Ming-Qiang

    2012-08-11

    We report a simple design and synthesis of a donor-acceptor tetraphenylethene-naphthalimide (TPE-NI) dyad, in which TPE acts both as an electron-donor for intramolecular charge transfer (ICT) and activator for aggregation induced emission (AIE). Strong solvent-dependent photoluminescence covering almost the whole visible spectrum and AIE in its nanoparticle state compared to its solution state are demonstrated. PMID:22745935

  17. Mechanochromic Luminescence and Aggregation Induced Emission of Dinaphthoylmethane β-Diketones and Their Boronated Counterparts.

    PubMed

    Butler, Tristan; Morris, William A; Samonina-Kosicka, Jelena; Fraser, Cassandra L

    2016-01-20

    Mechanochromic luminescence has been observed in many boron coordinated β-diketonate (BF2bdk) complexes. Recently, it was shown that the metal-free methoxy-substituted dinaphthoylmethane β-diketone (dnmOMe) also displayed aggregation induced emission (AIE), solvatochromism, and high contrast mechanochromic luminescence (ML) that recovered rapidly at room temperature. In order to understand how substituents and boron coordination affect solution and solid-state optical properties, a series of methoxy- and bromo-substituted derivatives (dnm, dnmOMe, dnmBr, and dnmBrOMe) and their corresponding boron complexes (BF2dnm, BF2dnmOMe, BF2dnmBr, and BF2dnmBrOMe) were synthesized and their AIE, ML, and room temperature recovery properties were compared. All boron complexes exhibited red-shifted absorption and emission, in addition to larger solution and solid-state quantum yields than β-diketones. While AIE studies show increased emission for dnmOMe and dnmBrOMe, the emission of corresponding boron complexes diminished upon aggregation. However, boron complexes were still strongly emissive in the solid state. ML properties were investigated using spin-cast films. Smearing resulted in the appearance of blue-green emission in ligands and a color change from green to yellow-orange in boron complexes. Bromide substituted derivatives showed increased room temperature recovery times compared to other dnm ligands, and boron complexes show only partial recovery over several days. PMID:26735315

  18. Aggregation-Induced Emission in a Hyperbranched Poly(silylenevinylene) and Superamplification in Its Emission Quenching by Explosives.

    PubMed

    Lu, Ping; Lam, Jacky W Y; Liu, Jianzhao; Jim, Cathy K W; Yuan, Wangzhang; Xie, Ni; Zhong, Yongchun; Hu, Qin; Wong, Kam Sing; Cheuk, Kevin K L; Tang, Ben Zhong

    2010-05-12

    A silicon-containing hyperbranched polymer (hb-P1/2) with σ*-π* conjugation was prepared in a good yield and high molecular weight by rhodium-catalyzed alkyne polyhydrosilylation of 1,2-bis(4-ethynylphenyl)-1,2-diphenylethene (1) with tris(4-dimethylsilylphenyl)amine (2). The polymer was thermally stable, losing merely 5% of its weight when heated to ≈445 °C. Whereas hb-P1/2 was weakly luminescent when molecularly dissolved, it became highly emissive when supramolecularly aggregated, showing an aggregation-induced emission (AIE) phenomenon. A superamplification effect was observed when the AIE nanoaggregates were used as fluorescent chemosensor for explosive detection: the quenching efficiency was greatly increased in a nonlinear fashion with increasing quencher concentration. PMID:21590975

  19. Development of Functional Nanomaterials with Aggregation-Induced Emission Characteristics and Exploration of Their Biological Applications

    NASA Astrophysics Data System (ADS)

    Hong, Yuning

    2011-12-01

    The development of fluorescent biosensors with high sensitivity, selectivity, and biocompatibility is of critical importance to bioscience and biotechnology because it offers a direct visualization tool for the detection of biological macromolecules and the monitoring of biological events under real and living conditions. Most of the conventional organic fluorophores exhibit remarkably bright emission in their dilute solutions but become weakly or even nonemissive when aggregated or in solid state, which has greatly limited the scope of their applications. An opposite phenomenon has recently been discovered: a group of nonluminescent molecules are induced to emit efficiently by aggregate formation. "Aggregation-induced emission" (AIE) is coined for this novel effect. Attracted by the intriguing phenomenon and its fascinating perspectives, we have launched a new program directed towards the development of new AIE materials and exploration of their biological applications. A new class of water-soluble AIE luminogens are designed and synthesized. Hydrophilic groups such as hydroxyl, sulfonate, and amino groups are introduced to make the AIE molecules readily soluble in water. Being practically non-emissive in water, these AIE dyes are lightened up when bound to biomacromolecules, such as proteins and DNA, thus enabling the quantitation and visualization of biomacromolecules in aqueous solutions and in electrophoretic gels. The AIE luminogens are sensitive to microenvironment inside the biomolecules and their fluorescent intensity can readily reflect the global stability of the biomolecules. In this work, we employ the AIE luminogens as fluorescent reporters for the monitoring of G-quadruplex DNA folding, protein unfolding by denaturant and protein misfolding into amyloid fibrils. Thanks to the AIE characteristics, the delicate information on the conformational transition of the biomolecules can be revealed. In addition, lipophilic AIE luminogens form highly emissive

  20. Highly selective fluorogenic multianalyte biosensors constructed via enzyme-catalyzed coupling and aggregation-induced emission.

    PubMed

    Wang, Xiaorui; Hu, Jinming; Zhang, Guoying; Liu, Shiyong

    2014-07-16

    The development of a highly selective and fast responsive fluorogenic biosensor for diverse analytes ranging from bioactive small molecules to specific antigens is highly desirable but remains a considerable challenge. We herein propose a new approach by integrating substrate-selective enzymatic reactions with fluorogens exhibiting aggregation-induced emission feature. Tyrosine-functionalized tetraphenylethene, TPE-Tyr, molecularly dissolves in aqueous media with negligible fluorescence emission; upon addition of horseradish peroxidase (HRP) and H2O2, effective cross-linking occurs due to HRP-catalyzed oxidative coupling of tyrosine moieties in TPE-Tyr. This leads to fluorescence emission turn-on and fast detection of H2O2 with high sensitivity and selectivity. As a validation of the new strategy's generality, we further configure it into the biosensor design for glucose through cascade enzymatic reactions and for pathologically relevant antigens (e.g., human carcinoembryonic antigen) by combining with the ELISA kit. PMID:24983204

  1. Aggregation-induced emission active tetraphenylethene-based sensor for uranyl ion detection.

    PubMed

    Wen, Jun; Huang, Zeng; Hu, Sheng; Li, Shuo; Li, Weiyi; Wang, Xiaolin

    2016-11-15

    A novel tetraphenylethene-based fluorescent sensor, TPE-T, was developed for the detection of uranyl ions. The selective binding of TPE-T to uranyl ions resulted in a detectable signal owing to the quenching of its aggregation-induced emission. The developed sensor could be used to visually distinguish UO2(2+) from lanthanides, transition metals, and alkali metals under UV light; the presence of other metal ions did not interfere with the detection of uranyl ions. In addition, TPE-T was successfully used for the detection of uranyl ions in river water, illustrating its potential applications in environmental systems. PMID:27439180

  2. Aggregation-Induced Emission Mechanism of Dimethoxy-Tetraphenylethylene in Water Solution: Molecular Dynamics and QM/MM Investigations.

    PubMed

    Sun, Guangxu; Zhao, Yi; Liang, WanZhen

    2015-05-12

    Molecular dynamics simulations and combined quantum mechanics and molecular mechanics calculations are employed to investigate dimethoxy-tetraphenylethylene (DMO-TPE) molecules in water solution for their detailed aggregation process and the mechanism of aggregation-induced emission. The molecular dynamics simulations show that the aggregates start to appear in the nanosecond time scale, and small molecular aggregates appear at low concentration; whereas the large aggregates with a chain-type structure appear at high concentration, and the intramolecular rotation is largely restricted by a molecular aggregated environment. The average radical distribution demonstrates that the waters join the aggregation process and that two types of hydrogen bonds between DMO-TPE and water molecules are built with the peaks at about 0.5 and 0.7 nm, respectively. The spectral features further reveal that the aggregates dominantly present J-type aggregation although they fluctuate between J-type and H-type at a given temperature. The statistical absorption, emission spectra, and the aggregation-induced emission enhancement with respect to the solution concentration agree well with the experimental measurements, indicating the significant effect of molecular environments on the molecular properties. PMID:26574424

  3. Aggregation-Induced Emission of Platinum(II) Metallacycles and Their Ability to Detect Nitroaromatics.

    PubMed

    Chowdhury, Aniket; Howlader, Prodip; Mukherjee, Partha Sarathi

    2016-05-23

    Two new acceptors containing platinum-carbazole (1) and platinum-triphenylamine (2) backbones with bite angles of 90° and 120°, respectively, have been synthesised and characterised. Reactions of the rigid acceptor 1 with linear dipyridyl-based donors (3 and 4) generated [4+4] self-assembled molecular squares (5 and 6), and similar treatments with acceptor 2 instead of 1 yielded [6+6] self-assembled molecular hexagons (7 and 8). The metallacycles were characterised by multinuclear NMR spectroscopy ((1) H and (31) P) and ESI-MS. The geometries of the metallacycles were optimised by using the PM6 method. When aggregates of the metallacycles were formed by adding hexane solutions in dichloromethane, aggregation-induced emission was observed for metallacycles 5 and 7, and aggregation-caused quenching was observed for metallacycles 6 and 8. The formation of aggregates was verified by dynamic light scattering and TEM analyses. Macrocycles 5 and 7 are white-light emitters in THF. Moreover, their high luminescence in both solution and the solid state was utilised for the recognition of nitroaromatic explosives. PMID:27106871

  4. Multistimuli-Responsive Luminescence of Naphthalazine Based on Aggregation-Induced Emission

    PubMed Central

    Yao, Xiang; Ru, Jia-Xi; Xu, Cong; Liu, Ya-Ming; Dou, Wei; Tang, Xiao-Liang; Zhang, Guo-Lin; Liu, Wei-Sheng

    2015-01-01

    Stimuli-responsive luminescent materials, which are dependent on changes in physical molecular packing modes, have attracted more and more interest over the past ten years. In this study, 2,2-dihydroxy-1,1-naphthalazine was synthesized and shown to exhibit different fluorescence emission in solution and solid states with characteristic aggregation-induced emission (AIE) properties. A remarkable change in the fluorescence of 2,2-dihydroxy-1,1-naphthalazine occurred upon mechanical grinding, heating, or exposure to solvents. According to the characterization by solid-state fluorescence spectroscopy, X-ray crystallography, differential scanning calorimetry, and X-ray powder diffraction, the fluorescence change could be attributed to transitions between two structurally different polymorphs. These significant properties could also give 2,2-dihydroxy-1,1-naphthalazine more potential applications as a multifunctional material. PMID:26478843

  5. Aggregation-Induced Emission Luminogen-Embedded Silica Nanoparticles Containing DNA Aptamers for Targeted Cell Imaging.

    PubMed

    Wang, Xiaoyan; Song, Panshu; Peng, Lu; Tong, Aijun; Xiang, Yu

    2016-01-13

    Conventional fluorophores usually undergo aggregation-caused quenching (ACQ), which limits the loading amount of these fluorophores in nanoparticles for bright fluorescence imaging. On the contrary, fluorophores with aggregation-induced emission (AIE) characteristics are strongly fluorescent in their aggregate states and have been an ideal platform for developing highly fluorescent nanomaterials, such as fluorescent silica nanoparticles (FSNPs). In this work, AIE luminogens based on salicylaldehyde hydrazones were embedded in silica nanoparticles through a facile noncovalent approach, which afforded AIE-FSNPs emitting much brighter fluorescence than that of some commercial fluorescein-doped silica and polystyrene nanoparticles. These AIE-FSNPs displaying multiple fluorescence colors were fabricated by a general method, and they underwent much less fluorescence variation due to environmental pH changes compared with fluorescein-hybridized FSNPs. In addition, a DNA aptamer specific to nucleolin was functionalized on the surface of AIE-FSNPs for targeted cell imaging. Fluorescent microscopy and flow cytometry studies both revealed highly selective fluorescence staining of MCF-7 (a cancer cell line with nucleolin overexpression) over MCF-10A (normal) cells by the aptamer-functionalized AIE-FSNPs. The fluorescence imaging in different color channels was achieved using AIE-FSNPs containing each of the AIE luminogens, as well as photoactivatable fluorescent imaging of target cells by the caged AIE fluorophore. PMID:26653325

  6. Aggregation-Induced-Emission-Active Macrocycle Exhibiting Analogous Triply and Singly Twisted Möbius Topologies.

    PubMed

    Wang, Erjing; He, Zikai; Zhao, Engui; Meng, Luming; Schütt, Christian; Lam, Jacky W Y; Sung, Herman H Y; Williams, Ian D; Huang, Xuhui; Herges, Rainer; Tang, Ben Zhong

    2015-08-10

    Molecules with Möbius topology have drawn increasing attention from scientists in a variety of fields, such as organic chemistry, inorganic chemistry, and material science. However, synthetic difficulties and the lack of functionality impede their fundamental understanding and practical applications. Here, we report the facile synthesis of an aggregation-induced-emission (AIE)-active macrocycle (TPE-ET) and investigate its analogous triply and singly twisted Möbius topologies. Because of the twisted and flexible nature of the tetraphenylethene units, the macrocycle adjusts its conformations so as to accommodate different guest molecules in its crystals. Moreover, theoretical studies including topological and electronic calculations reveal the energetically favorable interconversion process between triply and singly twisted topologies. PMID:26177730

  7. An aggregation-induced-emission platform for direct visualization of interfacial dynamic self-assembly.

    PubMed

    Li, Junwei; Li, Yuan; Chan, Carrie Y K; Kwok, Ryan T K; Li, Hongkun; Zrazhevskiy, Pavel; Gao, Xiaohu; Sun, Jing Zhi; Qin, Anjun; Tang, Ben Zhong

    2014-12-01

    An in-depth understanding of dynamic interfacial self-assembly processes is essential for a wide range of topics in theoretical physics, materials design, and biomedical research. However, direct monitoring of such processes is hampered by the poor imaging contrast of a thin interfacial layer. We report in situ imaging technology capable of selectively highlighting self-assembly at the phase boundary in real time by employing the unique photophysical properties of aggregation-induced emission. Its application to the study of breath-figure formation, an immensely useful yet poorly understood phenomenon, provided a mechanistic model supported by direct visualization of all main steps and fully corroborated by simulation and theoretical analysis. This platform is expected to advance the understanding of the dynamic phase-transition phenomena, offer insights into interfacial biological processes, and guide development of novel self-assembly technologies. PMID:25363745

  8. An Aggregation-Induced-Emission Platform for Direct Visualization of Interfacial Dynamic Self-Assembly**

    PubMed Central

    Chan, Carrie Y.K.; Kwok, Ryan T.K.; Li, Hongkun; Zrazhevskiy, Pavel; Gao, Xiaohu; Sun, Jing Zhi; Qin, Anjun; Tang, Ben Zhong

    2015-01-01

    An in-depth understanding of dynamic interfacial self-assembly processes is essential for a wide range of topics in theoretical physics, materials design, and biomedical research. However, direct monitoring of such processes is hampered by the poor imaging contrast of a thin interfacial layer. We report in situ imaging technology capable of selectively highlighting self-assembly at the phase boundary in real time by employing the unique photophysical properties of aggregation-induced emission. Its application to the study of breath-figure formation, an immensely useful yet poorly understood phenomenon, provided a mechanistic model supported by direct visualization of all main steps and fully corroborated by simulation and theoretical analysis. This platform is expected to advance the understanding of the dynamic phase-transition phenomena, offer insights into interfacial biological processes, and guide development of novel self-assembly technologies. PMID:25363745

  9. Aggregation-induced emissive nanoparticles for fluorescence signaling in a low cost paper-based immunoassay.

    PubMed

    Engels, Jan F; Roose, Jesse; Zhai, Demi Shuang; Yip, Ka Man; Lee, Mei Suet; Tang, Ben Zhong; Renneberg, Reinhard

    2016-07-01

    Low cost paper based immunoassays are receiving interest due to their fast performance and small amounts of biomolecules needed for developing an immunoassay complex. In this work aggregation-induced emissive (AIE) nanoparticles, obtained from a diastereoisomeric mixture of 1,2-di-(4-hydroxyphenyl)-1,2-diphenylethene (TPEDH) in a one-step top-down method, are characterized through Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), and Zeta potential. By measuring the Zeta potential before and after labeling the nanoparticles with antibodies we demonstrate that the colloidal system is stable in a wide pH-range. The AIE-active nanoparticles are deposited on chitosan and glutaraldehyde modified paper pads overcoming the common aggregation-caused quenching (ACQ) effect. Analyte concentrations from 1000ng and below are applied in a model immunocomplex using Goat anti-Rabbit IgG and Rabbit IgG. In the range of 7.81ng-250ng, linear trends with a high R(2) are observed, which leads to a strong increase of the blue fluorescence from the TPEDH nanoparticles. PMID:27037781

  10. Discriminatory detection of cysteine and homocysteine based on dialdehyde-functionalized aggregation-induced emission fluorophores.

    PubMed

    Mei, Ju; Wang, Yijia; Tong, Jiaqi; Wang, Jian; Qin, Anjun; Sun, Jing Zhi; Tang, Ben Zhong

    2013-01-01

    We demonstrate a concept-proof work of using fluorescence (FL) "turn-on" probes for the discriminatory detection of cysteine (Cys) over homocysteine (Hcy). The fluorogens are provided with aggregation-induced emission (AIE) characteristic and functionalized with two aldehyde-groups (DMTPS-ALD and TPE-ALD). All the detections were carried out in a biocompatible medium (10 mM HEPES buffer and DMSO, pH 7.4). In principle, the formation of thiazinane/thiazolidine through the chemical reaction of aldehydes on the probe molecules and the residue of Cys/Hcy determines the selective recognition of Cys and Hcy over other amino acids and glucose. The FL responses originate from the AIE property of thiazinane/thiazolidine resultants, which have low solubility and precipitate (aggregate) in the detection medium. The discrimination between Cys and Hcy comes from the difference in reaction kinetics of TPE-ALD/DMTPS-ALD with Cys and Hcy, thereby the FL responses show different time courses and intensity enhancement. It is worth noting that TPE-ALD outshined the other two probes in performance with fast response, a high FL enhancement up to 16-fold, high sensitivity, and good specificity and selectivity. Moreover, its FL response threshold at 250 μM is very close to the lower limit of the normal level of Cys in human plasma, which implies that TPE-ALD could be applied as a potential indicator of Cys deficiency. PMID:23193021

  11. Self-assembly of diphenylalanine peptides into microtubes with "turn on" fluorescence using an aggregation-induced emission molecule.

    PubMed

    Na, Na; Mu, Xiaoyan; Liu, Qiuling; Wen, Jiying; Wang, Fangfang; Ouyang, Jin

    2013-10-01

    The self-assembly of diphenylalanine peptides (l-Phe-l-Phe) into microtubes with "turn on" bright yellow green fluorescence was described, which was achieved using an aggregation-induced emission (AIE) molecule of 9,10-bis[4-(3-sulfonatopropoxyl)-styryl] anthracene (BSPSA) sodium. PMID:24045462

  12. Fabrication of aggregation induced emission active luminescent chitosan nanoparticles via a "one-pot" multicomponent reaction.

    PubMed

    Wan, Qing; Liu, Meiying; Xu, Dazhuang; Mao, Liucheng; Tian, Jianwen; Huang, Hongye; Gao, Peng; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2016-11-01

    Chitosan based nanomaterials have been extensively examined for biomedical applications for their biodegradability, low toxicity, biological activity and low cost. In this work, a novel strategy for fabrication of luminescent polymeric nanoparticles (LPNs) based on aggregation induced emission (AIE) dye and water soluble chitosan (WS-Chitosan) were firstly developed via a highly efficient mercaptoacetic acid (MA) locking imine reaction. In this multicomponent reaction (MCR), MA serves as "lock" to connect 9,10-Bis(aldehydephenl)anthracene dye (An-CHO) and amino-containing WS-Chitosan under mild reaction conditions. The obtained WS-Chitosan@An-CHO LPNs show strong yellow emission and great water dispersibility. Biological evaluation results demonstrated that synthetic luminescent polymeric nanoparticles possess desirable cytocompatibility and distinct imaging properties. Therefore, we have developed a facile and useful method to fabricate AIE active nanoprobes with desirable properties for various biomedical applications. This strategy should be a general and easy handling tool to fabricate many other AIE dye based materials. PMID:27516264

  13. Redox-responsive nanoparticles with Aggregation-Induced Emission (AIE) characteristic for fluorescence imaging.

    PubMed

    Cheng, Weiren; Wang, Guan; Pan, Xiaoyong; Zhang, Yong; Tang, Ben Zhong; Liu, Ye

    2014-08-01

    The redox environment between intracellular compartments and extracellular matrix is significantly different, and the cellular redox homeostasis determines many physiological functions. Here, redox-responsive nanoparticles with aggregation-induced emission (AIE) characteristic for fluorescence imaging are developed by encapsulation of fluorophore with redox "turn-on" AIE characteristic, TPE-MI, into the micelles of poly(ethylene glycol) (PEG)- and cholesterol (CE)-conjugated disulfide containing poly(amido amine)s. The redox-responsive fluorescence profiles of the nanoparticles are investigated after reaction with glutathione (GSH). The encapsulation of TPE-MI in micelles leads to a higher efficiency and red shift in emission, and the fluorescence intensity of the nanoparticles increases with the concentration of GSH. Confocal microscopy imaging shows that the nanoparticles can provide obvious contrast between the intracellular compartments and the extracellular matrix in MCF-7 and HepG2 cells. So the nanoparticles with PEG shells and low cytotoxicity are promising to provide fluorescence bioimaging with a high contrast and for differentiation of cellular redox environment. PMID:24771703

  14. Time-dependent aggregation-induced enhanced emission, absorption spectral broadening, and aggregation morphology of a novel perylene derivative with a large D-π-A structure.

    PubMed

    Yang, Long; Yu, Yuyan; Zhang, Jin; Ge, Feijie; Zhang, Jianling; Jiang, Long; Gao, Fang; Dan, Yi

    2015-05-01

    Strong aggregation-caused quenching of perylene diimides (PDI) is changed successfully by simple chemical modification with two quinoline moieties through C=C at the bay positions to obtain aggregation-induced enhanced emission (AIEE) of a perylene derivative (Cya-PDI) with a large π-conjugation system. Cya-PDI is weakly luminescent in the well-dispersed CH(3)CN or THF solutions and exhibits an evident time-dependent AIEE and absorption spectra broadening in the aggregated state. In addition, morphological inspection demonstrates that the morphology of the aggregated form of Cya-PDI molecules changed from plate-shaped to rod-like aggregates under the co-effects of time and water. An edge-to-face arrangement of aggregation was proposed and discussed. The fact that the Cya-PDI aggregates show a broad absorption covering the whole visible-light range and strong intermolecular interaction through π-π stacking in the solid state makes them promising materials for optoelectric applications. PMID:25643930

  15. Structure-Dependent cis/trans Isomerization of Tetraphenylethene Derivatives: Consequences for Aggregation-Induced Emission.

    PubMed

    Zhang, Chong-Jing; Feng, Guangxue; Xu, Shidang; Zhu, Zhenshu; Lu, Xianmao; Wu, Jien; Liu, Bin

    2016-05-17

    The isomerization and optical properties of the cis and trans isomers of tetraphenylethene (TPE) derivatives with aggregation-induced emission (AIEgens) have been sparsely explored. We have now observed the tautomerization-induced isomerization of a hydroxy-substituted derivative, TPETH-OH, under acidic but not under basic conditions. Replacing the proton of the hydroxy group in TPETH-OH with an alkyl group leads to the formation of TPETH-MAL, for which the pure cis and trans isomers were obtained and characterized by HPLC analysis and NMR spectroscopy. Importantly, cis-TPETH-MAL emits yellow fluorescence in DMSO at -20 °C whereas trans-TPETH-MAL shows red fluorescence under the same conditions. Moreover, the geometry of cis- and trans-TPETH-MAL remains unchanged when they undergo thiol-ene reactions to form cis- and trans-TPETH-cRGD, respectively. Collectively, our findings improve our fundamental understanding of the cis/trans isomerization and photophysical properties of TPE derivatives, which will guide further AIEgen design for various applications. PMID:27071955

  16. Aggregation Induced Emission Mediated Controlled Release by Using a Built-In Functionalized Nanocluster with Theranostic Features.

    PubMed

    Zhou, Zhan; Zhang, Cheng Cheng; Zheng, Yuhui; Wang, Qianming

    2016-01-14

    We report biological evaluation of a novel nanoparticle delivery system based on 1,1,2-triphenyl-2-(p-hydroxyphenyl)-ethene (TPE-OH, compound 1), which has tunable aggregation-induced emission (AIE) characteristics. Compound 1 exhibited no emission in DMSO. In aqueous media, compound 1 aggregated, and luminescence was observed. The novel membrane-cytoplasm-nucleus sequential delivery strategy could induce apoptosis in four different kinds of cancer cells (including three adherent cell lines and one suspension cell line). The nanoparticles remained in the cytoplasm with intense blue emissions, whereas doxorubicin was observed in the nucleus with striking red luminescence. The nanoassembly was internalized in cells through an energy-dependent process. Three sorts of chemical inhibitors were used to clarify the endocytosis mechanism based on the AIE type prodrug. Furthermore, we have developed the first AIE theranostic system where drug targeting and release have been applied in an animal model. PMID:26689502

  17. Fluorogens with Aggregation Induced Emission: Ideal Photoacoustic Contrast Reagents Due to Intramolecular Rotation.

    PubMed

    Geng, Junlong; Liao, Lun-De; Qin, Wei; Tang, Ben Zhong; Thakor, Nitish; Liu, Bin

    2015-02-01

    Exogenous contrast agents with high sensitivity are highly desirable for photoacoustic (PA) imaging. In this work, we show that fluorogens with aggregation induced emission (AIE) characteristics are born with strong PA signals. In addition, we find that the PA signal of conventional fluorophores could be significantly enhanced through conjugation with tetraphenylethene (TPE), an iconic AIE fluorogen. Taking 2,3-bis[4-(diphenylamino)phenyl]fumaronitrile (TPAFN) as an example, conjugation between TPAFN and TPE affords 2,3-bis(4-(phenyl(4-(1,2,2-triphenylvinyl)phenyl)amino)phenyl) fumaroni-trile (TPETPAFN), a molecule with significant AIE characteristics, which shows 170% higher PA signals as compared to that of TPAFN. The higher PA signal of TPETPAFN is mainly ascribed to the enhanced molecular rotation, which is beneficial to its thermal expansion upon light absorption. Moreover, the significantly reduced PA signals for TPETPAFN in solvents with high viscosity or as nanoparticles further highlight the contribution of molecular rotation on PA signals. PMID:26353745

  18. Ultrabright organic dots with aggregation-induced emission characteristics for cell tracking.

    PubMed

    Feng, Guangxue; Tay, Chor Yong; Chui, Qi Xiang; Liu, Rongrong; Tomczak, Nikodem; Liu, Jie; Tang, Ben Zhong; Leong, David Tai; Liu, Bin

    2014-10-01

    Noninvasive fluorescence cell tracking provides critical information on the physiological displacement and translocation of actively migrating cells, which deepens our understanding of biomedical engineering, oncological research, stem cell transplantation and therapies. Non-viral fluorescent protein transfection based cell tracing has been widely used but with issues related to cell type-dependent expression, lagged readout, immunogenicity and mutagenesis. Alternative cell tracking methods are therefore desired to attain reliable, stable, and efficient labeling over a long time. In this work, we have successfully developed ultra-bright organic dots with aggregation-induced emission (AIE dots) and demonstrated their capabilities for cellular imaging and cell tracking. The AIE dots possess high fluorescence, super photostability, and excellent cellular retention and biocompatibility. As compared to commonly used pMAX-GFP plasmid labeling approach, the organic AIE dots showed excellent cell labeling on all tested human cell lines and superior tracing performance, which opens up new opportunities in the cell-based immunotherapies and other related biological researches. PMID:25002264

  19. Ultrasmall Organic Nanoparticles with Aggregation-Induced Emission and Enhanced Quantum Yield for Fluorescence Cell Imaging.

    PubMed

    Xu, Suying; Bai, Xilin; Ma, Jingwen; Xu, Minmin; Hu, Gaofei; James, Tony D; Wang, Leyu

    2016-08-01

    The use of fluorescence probes for biomedical imaging has attracted significant attention over recent years owing to their high resolution at cellular level. The probes are available in many formats including small particle size based imaging agents which are considered to be promising candidates, due to their excellent stabilities. Yet, concerns over the potential cytotoxicity effects of inorganic luminescent particles have led to questions about their suitability for imaging applications. Exploration of alternatives inspired us to use organic fluorophores with aggregation-induced emission (AIE), prepared by functionalizing the amine group on tetraphenylethene with 3,5-bis(trifluoromethyl)phenyl isocyanate. The as-synthesized novel AIE fluorophore (TPE-F) display enhanced quantum yield and longer lifetime as compared with its counterparts (4,4',4″,4‴-(ethene-1,1,2,2-tetrayl)tetraaniline, TPE-AM). Furthermore, the TPE-F was encapsulated into small-size organic nanoparticles (NPs; dynamic light scattering size, ∼10 nm) with polysuccinimide (PSI). The biocompatibility, excellent stability, bright fluorescence, and selective cell targeting of these NPs enable the as-prepared TPE-F NPs to be suitable for specific fluorescence cell imaging. PMID:27349933

  20. Synthesis and Design of Aggregation-Induced Emission Surfactants: Direct Observation of Micelle Transitions and Microemulsion Droplets.

    PubMed

    Guan, Weijiang; Zhou, Wenjuan; Lu, Chao; Tang, Ben Zhong

    2015-12-01

    The direct visualization of micelle transitions is a long-standing challenge owing to the intractable aggregation-caused quenching of light emission in the micelle solution. Herein, we report the synthesis of a surfactant with a tetraphenylethene (TPE) core and aggregation-induced emission (AIE) characteristics. The transition processes of surfactant micelles and the microemulsion droplets (MEDs) formed by the surfactant with a TPE core were clearly visualized by a high-contrast fluorescence imaging method. The fluorescence intensity of the MEDs decreased as the size of MEDs increased as a result of weakening of the restriction of intramolecular rotation (RIR). The results of this study deepen our understanding of micelle-transition processes and provide solid evidence in favor of the hypothesis that the AIE phenomenon has its origin in the RIR of fluorophores in the aggregate state. PMID:26473748

  1. Unusual Aggregation-Induced Emission of a Coumarin Derivative as a Result of the Restriction of an Intramolecular Twisting Motion.

    PubMed

    Bu, Fan; Duan, Ruihong; Xie, Yujun; Yi, Yuanping; Peng, Qian; Hu, Rongrong; Qin, Anjun; Zhao, Zujin; Tang, Ben Zhong

    2015-11-23

    Aggregation-induced emission (AIE) is commonly observed for propeller-like luminogens with aromatic rotors and stators. Herein, we report that a coumarin derivative containing a seven-membered aliphatic ring (CD-7) but no rotors showed typical AIE characteristics, whereas its analogue with a five-membered aliphatic ring (CD-5) exhibited an opposite aggregation-caused quenching (ACQ) effect. Experimental and theoretical results revealed that a large aliphatic ring in CD-7 weakens structural rigidity and promotes out-of-plane twisting of the molecular backbone to drastically accelerate nonradiative excited-state decay, thus resulting in poor emission in solution. The restriction of twisting motion in aggregates blocks the nonradiative decay channels and enables CD-7 to fluoresce strongly. The results also show that AIE is a general phenomenon and not peculiar to propeller-like molecules. The AIE and ACQ effects can be switched readily by the modulation of molecular rigidity. PMID:26439884

  2. Ultrasound-induced emission enhancement based on structure-dependent homo- and heterochiral aggregations of chiral binuclear platinum complexes.

    PubMed

    Komiya, Naruyoshi; Muraoka, Takako; Iida, Masayuki; Miyanaga, Maiko; Takahashi, Koichi; Naota, Takeshi

    2011-10-12

    Instant and precise control of phosphorescent emission can be performed by ultrasound-induced gelation of organic liquids with chiral, clothespin-shaped trans-bis(salicylaldiminato)Pt(II) complexes, anti-1. Nonemissive solutions of racemic, short-linked anti-1a (n = 5) and optically pure, long-linked anti-1c (n = 7) in organic liquids are transformed immediately into stable phosphorescent gels upon brief irradiation of low-power ultrasound. Emission from the gels can be controlled by sonication time, linker length, and optical activity of the complexes. Several experimental results indicated that structure-dependent homo- and heterochiral aggregations and ultrasound-control of the aggregate morphology are key factors for emission enhancement. PMID:21894951

  3. A pyrene-benzthiazolium conjugate portraying aggregation induced emission, a ratiometric detection and live cell visualization of HSO3(.).

    PubMed

    Diwan, Uzra; Kumar, Virendra; Mishra, Rakesh K; Rana, Nishant Kumar; Koch, Biplob; Singh, Manish Kumar; Upadhyay, K K

    2016-07-27

    The present study deals with the photophysical property of a pyrene-benzthiazolium conjugate R1, as a strong intramolecular charge transfer (ICT) probe exhibiting long wavelength emission in the red region. Unlike traditional planar polyaromatic hydrocarbons whose aggregation generally quenches the light emission, the pyrene based R1 was found to display aggregation-induced emission (AIE) property along with simultaneous increase in its quantum yield upon increasing the water content of the medium. The R1 exhibits high specificity towards HSO3(-)/SO3(2-) by interrupting its own ICT producing there upon a large ratiometric blue shift of ∼220 nm in its emission spectrum. The lowest detection limit for the above measurement was found to be 8.90 × 10(-8) M. The fluorescent detection of HSO3(-) was also demonstrated excellently by test paper strip and silica coated TLC plate incorporating R1. The live cell imaging of HSO3(─) through R1 in HeLa cells was studied using fluorescence microscopic studies. The particle size and morphological features of R1 and R1-HSO3(-) aggregates in aqueous solution were characterized by DLS along with SEM analysis. PMID:27251947

  4. Far-red/near-infrared fluorescent bioprobes based on biocompatible nanoparticles with aggregation-induced emission characteristics for bioimaging applications

    NASA Astrophysics Data System (ADS)

    Qin, Wei; Ding, Dan; Liu, Bin; Tang, Ben Zhong

    2013-09-01

    Light emission of 2-(2,6-bis((E)-4-(diphenylamino)styryl]-4H-pyran-4-ylidene}malononitrile (TPA-DCM) is weakened by aggregate formation. Attaching tetraphenylethene (TPE) units as terminals to TPA-DCM dramatically changes its emission behavior: the resulting fluorogen 2-(2,6-bis((E)-4-(phenyl(4'-(1,2,2-triphenylvinyl)-[1,1'-biphenyl]-4- yl)amino)styryl)-4H-pyran-4-ylidene)malononitrile (TPE-TPA-DCM) is more emissive in the aggregate state, showing a novel phenomenon of aggregation-induced emission (AIE). Formulation of TPE-TPA-DCM using bovine serum albumin (BSA) as the polymer matrix yields uniformly sized protein nanoparticles (NPs) with high brightness and low cytotoxicity. Applications of the fluorogen-loaded BSA NPs for in vitro and in vivo far-red/near-infrared (FR/NIR) bioimaging are successfully demonstrated using MCF-7 breast cancer cells and a murine hepatoma-22 (H22) tumorbearing mice model, respectively. The AIE-active fluorogen-loaded BSA NPs show excellent cancer cell uptake and prominent tumor targeting ability in vivo due to the enhanced permeability and retention effect.

  5. Highly Efficient Far Red/Near-Infrared Solid Fluorophores: Aggregation-Induced Emission, Intramolecular Charge Transfer, Twisted Molecular Conformation, and Bioimaging Applications.

    PubMed

    Lu, Hongguang; Zheng, Yadan; Zhao, Xiaowei; Wang, Lijuan; Ma, Suqian; Han, Xiongqi; Xu, Bin; Tian, Wenjing; Gao, Hui

    2016-01-01

    The development of organic fluorophores with efficient solid-state emissions or aggregated-state emissions in the red to near-infrared region is still challenging. Reported herein are fluorophores having aggregation-induced emission ranging from the orange to far red/near-infrared (FR/NIR) region. The bioimaging performance of the designed fluorophore is shown to have potential as FR/NIR fluorescent probes for biological applications. PMID:26576818

  6. Aggregation-induced emission of diarylamino-π-carborane triads: effects of charge transfer and π-conjugation.

    PubMed

    Cho, Yang-Jin; Kim, So-Yoen; Cho, Minji; Han, Won-Sik; Son, Ho-Jin; Cho, Dae Won; Kang, Sang Ook

    2016-04-14

    Carborane-based donor-π-acceptor triads (D-π-A-π-D) bearing triarylamine moieties were synthesised. All the monomeric triads showed a blue-green emission in a dilute solution, which was assigned as an intramolecular charge-transfer (CT) emission. The intramolecular CT emission showed large Stokes shifts at a higher solvent polarity. The intramolecular CT emission further shifted to a longer wavelength with the increase in π-conjugation. Interestingly, a strong red emission was observed in highly concentrated solutions or in the solid state, which was assigned as an aggregation-induced emission (AIE). Moreover, the AIE strongly depended on solvent polarity. A large Stokes shift in AIE was attributed to the strong CT character. The changes in the dipole moment for the AIE state and monomer emission were evaluated using the Lippert-Mataga relationship. The density functional theory calculations showed that the change in electron distribution between the aryl amino group (highest occupied molecular orbital, HOMO) and the carborane moiety (lowest unoccupied molecular orbital, LUMO) indicates the intramolecular CT character, and the emission colour changes were attributed to the HOMO-LUMO energy gap controlled by the π-extension of the phenylene linker. The electrochemical properties such as oxidation and reduction potentials were consistent with theoretical calculation results. The emission properties were affected by two main factors: solvent polarity and solubility. PMID:26996491

  7. Aggregation induced emission enhancement from Bathophenanthroline microstructures and its potential use as sensor of mercury ions in water.

    PubMed

    Mazumdar, Prativa; Das, Debasish; Sahoo, Gobinda Prasad; Salgado-Morán, Guillermo; Misra, Ajay

    2014-04-01

    Bathophenanthroline (BA) microstructures of various morphologies have been synthesized using a reprecipitation method. The morphologies of the particles are characterized using optical and scanning electron microscopy (SEM) methods. An aqueous dispersion of BA microstructures shows aggregation induced emission enhancement (AIEE) compared to BA in a good solvent, THF. This luminescent property of aggregated BA hydrosol is used for the selective detection of trace amounts of mercury ion (Hg(2+)) in water. It is observed that Hg(2+) ions can quench the photoluminescence (PL) intensity of BA aggregates even at very low concentrations, compared to other heavy metal ions e.g. nickel (Ni(2+)), manganese (Mn(2+)), cadmium (Cd(2+)), cobalt (Co(2+)), copper (Cu(2+)), ferrous (Fe(2+)) and zinc (Zn(2+)). This strong fluorescence quenching of aggregated BA in the presence of Hg(2+) ions has been explained as a complex interplay between the ground state complexation between BA and Hg(2+) ions and external heavy atom induced perturbation by Hg(2+) ions on the excited states of the fluorophore BA. PMID:24569390

  8. Bioorthogonal Turn-On Probe Based on Aggregation-Induced Emission Characteristics for Cancer Cell Imaging and Ablation.

    PubMed

    Yuan, Youyong; Xu, Shidang; Cheng, Xiamin; Cai, Xiaolei; Liu, Bin

    2016-05-23

    Bioorthogonal turn-on probes have been widely utilized in visualizing various biological processes. Most of the currently available bioorthogonal turn-on probes are blue or green emissive fluorophores with azide or tetrazine as functional groups. Herein, we present an alternative strategy of designing bioorthogonal turn-on probes based on red-emissive fluorogens with aggregation-induced emission characteristics (AIEgens). The probe is water soluble and non-fluorescent due to the dissipation of energy through free molecular motion of the AIEgen, but the fluorescence is immediately turned on upon click reaction with azide-functionalized glycans on cancer cell surface. The fluorescence turn-on is ascribed to the restriction of molecular motion of AIEgen, which populates the radiative decay channel. Moreover, the AIEgen can generate reactive oxygen species (ROS) upon visible light (λ=400-700 nm) irradiation, demonstrating its dual role as an imaging and phototherapeutic agent. PMID:27079297

  9. Aggregation-induced emission behavior of a pH-controlled molecular shuttle based on a tetraphenylethene moiety.

    PubMed

    Han, Xie; Cao, Meijiao; Xu, Zhiqiang; Wu, Di; Chen, Zhao; Wu, Anxin; Liu, Sheng Hua; Yin, Jun

    2015-10-14

    Tetraphenylethene (TPE) with aggregation-induced emission (AIE) behavior as a popular backbone is applied widely in the construction of functional supramolecular systems. In this work, a TPE-based linear molecule having amide and amine units is synthesized. Its ammonium template is used to construct the N-hetero crown ether-based [2]rotaxane by the template-directed clipping approach. Their structures are well-characterized by NMR, MALDI-TOF-MS and elemental analysis. Owing to the existence of the amide unit, [2]rotaxane possesses the function of a molecular shuttle. The shuttling motion of the macrocycle component between the ammonium station and the amide station can be driven by external acid-base stimuli in solution, accompanied by changes in visual behavior. Investigation on their AIE behavior shows that (1) ammonium reaches the aggregation state almost in the presence of same water with the deprotonated form of ammonium; (2) the [2]rotaxane that the macrocycle component locates at the site of ammonium forms the aggregation state in the presence of less water than the deprotonated [2]rotaxane that the macrocycle component locates at the site of the amide, attributed to stronger interaction between the crown ether component and the TPE unit of the template component when the distance between the two is shorter. The result indicates that the shuttling motion of the macrocycle component can adjust the aggregation state of AIE molecules. PMID:26284316

  10. Dual-modal MRI contrast agent with aggregation-induced emission characteristic for liver specific imaging with long circulation lifetime.

    PubMed

    Chen, Yilong; Li, Min; Hong, Yuning; Lam, Jacky W Y; Zheng, Qichang; Tang, Ben Zhong

    2014-07-01

    We herein report a novel dual-modal MRI contrast agent, TPE-2Gd, for both magnetic and fluorescence imaging. TPE-2Gd consists of a hydrophobic tetraphenylethene (TPE) fluorophore and two hydrophilic gadolinium (Gd) diethylenetriaminepentaacetic acid moieties. As an amphiphilic molecule, TPE-2Gd aggregates into micelles at a high concentration in aqueous medium. These aggregates are highly emissive, showing an aggregation-induced emission (AIE) characteristic. TPE-2Gd is used as a fluorescent agent for cell imaging, which demonstrates negligible cytotoxicity and excellent photostability owing to its AIE property. As a magnetic resonance imaging (MRI) contrast agent, TPE-2Gd exhibits similar longitudinal relaxivity in water (R1,TPE-2Gd = 3.36 ± 0.10 s(-1) per mM of Gd(3+)) as those commercial agents (e.g., Magnevist, R1,magnevist = 3.70 ± 0.02 s(-1) per mM of Gd(3+)). Compared with Magnevist, the circulation lifetime of TPE-2Gd nanoaggregates in living rats is extended from 10 min to 1 h. With relatively high specificity to the liver, the MR imaging could remain hyperintense in liver even after 150 min post injection. These TPE-2Gd nanoparticles can be excreted gradually via renal filtration due to the disassembly of the nanoparticles into small molecules during circulation. TPE-2Gd could thus potentially be used as a liver specific MRI contrast agent for clinical diagnosis. PMID:24942209

  11. Study on photophysical and aggregation induced emission recognition of 1,8-naphthalimide probe for casein by spectroscopic method

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Liu, Zhen; Liang, Xuhua; Fan, Jun; Han, Quan

    2013-05-01

    A novel water-soluble 1,8-naphthalimide derivative 1, bearing two acetic carboxylic groups, exhibited fluorescent turn-on recognition for casein based on the aggregation induced emission (AIE) character. The photophysical properties of 1 consisting of donor and acceptor units were investigated in different solutions. The fluorescence intensity decreased through taking advantage of twisted intramolecular charge transfer (TICT) and self-association emission with increasing solvent polarity. Moreover, the spectral red-shift and intensity quench in protic solvents were caused by the excited-state hydrogen bond strengthening effect. Density Functional Theory (DFT) calculations revealed that 1 exhibited a strong TICT character. The AIE mechanism of 1 with casein was due to 1 docked in the hydrophobic cavity between sub-micelles and bound with Tyr and Trp residues, resulting in the aggregation of 1 on the casein surface and emission enhancement. Based on this, a novel casein assay method was developed. The proposed exhibited a good linear range from 0.1 to 22 μg mL-1, with the detection limit of 2.8 ng mL-1. Satisfactory reproducibility, reversibility and a short response time were realized. This method was applied to the determination of casein in milk powder samples and the results were in good agreement with the result of Biuret method.

  12. Photostable fluorescent organic dots with aggregation-induced emission (AIE dots) for noninvasive long-term cell tracing

    NASA Astrophysics Data System (ADS)

    Li, Kai; Qin, Wei; Ding, Dan; Tomczak, Nikodem; Geng, Junlong; Liu, Rongrong; Liu, Jianzhao; Zhang, Xinhai; Liu, Hongwei; Liu, Bin; Tang, Ben Zhong

    2013-01-01

    Long-term noninvasive cell tracing by fluorescent probes is of great importance to life science and biomedical engineering. For example, understanding genesis, development, invasion and metastasis of cancerous cells and monitoring tissue regeneration after stem cell transplantation require continual tracing of the biological processes by cytocompatible fluorescent probes over a long period of time. In this work, we successfully developed organic far-red/near-infrared dots with aggregation-induced emission (AIE dots) and demonstrated their utilities as long-term cell trackers. The high emission efficiency, large absorptivity, excellent biocompatibility, and strong photobleaching resistance of the AIE dots functionalized by cell penetrating peptides derived from transactivator of transcription proteins ensured outstanding long-term noninvasive in vitro and in vivo cell tracing. The organic AIE dots outperform their counterparts of inorganic quantum dots, opening a new avenue in the development of fluorescent probes for following biological processes such as carcinogenesis.

  13. Photostable fluorescent organic dots with aggregation-induced emission (AIE dots) for noninvasive long-term cell tracing

    PubMed Central

    Li, Kai; Qin, Wei; Ding, Dan; Tomczak, Nikodem; Geng, Junlong; Liu, Rongrong; Liu, Jianzhao; Zhang, Xinhai; Liu, Hongwei; Liu, Bin; Tang, Ben Zhong

    2013-01-01

    Long-term noninvasive cell tracing by fluorescent probes is of great importance to life science and biomedical engineering. For example, understanding genesis, development, invasion and metastasis of cancerous cells and monitoring tissue regeneration after stem cell transplantation require continual tracing of the biological processes by cytocompatible fluorescent probes over a long period of time. In this work, we successfully developed organic far-red/near-infrared dots with aggregation-induced emission (AIE dots) and demonstrated their utilities as long-term cell trackers. The high emission efficiency, large absorptivity, excellent biocompatibility, and strong photobleaching resistance of the AIE dots functionalized by cell penetrating peptides derived from transactivator of transcription proteins ensured outstanding long-term noninvasive in vitro and in vivo cell tracing. The organic AIE dots outperform their counterparts of inorganic quantum dots, opening a new avenue in the development of fluorescent probes for following biological processes such as carcinogenesis. PMID:23359649

  14. Near-infrared fluorescence amplified organic nanoparticles with aggregation-induced emission characteristics for in vivo imaging

    NASA Astrophysics Data System (ADS)

    Geng, Junlong; Zhu, Zhenshu; Qin, Wei; Ma, Lin; Hu, Yong; Gurzadyan, Gagik G.; Tang, Ben Zhong; Liu, Bin

    2013-12-01

    Near-infrared (NIR) fluorescence signals are highly desirable to achieve high resolution in biological imaging. To obtain NIR emission with high brightness, fluorescent nanoparticles (NPs) are synthesized by co-encapsulation of 2,3-bis(4-(phenyl(4-(1,2,2-triphenylvinyl)phenylamino)phenyl)fumaronitrile (TPETPAFN), a luminogen with aggregation-induced emission (AIE) characteristics, and a NIR fluorogen of silicon 2,3-naphthalocyanine bis(trihexylsilyloxide) (NIR775) using 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] as the encapsulation matrix. The good spectral overlap between the emission of TPETPAFN and the absorption of NIR775 leads to efficient energy transfer, resulting in a 47-fold enhancement of the NIR775 emission intensity upon excitation of TPETPAFN at 510 nm as compared to that upon direct excitation of NIR775 at 760 nm. The obtained fluorescent NPs show sharp NIR emission with a band width of 20 nm, a large Stokes shift of 275 nm, good photostability and low cytotoxicity. In vivo imaging study reveals that the synthesized NPs are able to provide high fluorescence contrast in live animals. The Förster resonance energy transfer strategy overcomes the intrinsic limitation of broad emission spectra for AIE NPs, which opens new opportunities to synthesize organic NPs with high brightness and narrow emission for potential applications in multiplex sensing and imaging.Near-infrared (NIR) fluorescence signals are highly desirable to achieve high resolution in biological imaging. To obtain NIR emission with high brightness, fluorescent nanoparticles (NPs) are synthesized by co-encapsulation of 2,3-bis(4-(phenyl(4-(1,2,2-triphenylvinyl)phenylamino)phenyl)fumaronitrile (TPETPAFN), a luminogen with aggregation-induced emission (AIE) characteristics, and a NIR fluorogen of silicon 2,3-naphthalocyanine bis(trihexylsilyloxide) (NIR775) using 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000

  15. A highly selective fluorescent probe for sulfide ions based on aggregation of Cu nanocluster induced emission enhancement.

    PubMed

    Li, Zenghe; Guo, Song; Lu, Chao

    2015-04-21

    In this study, S(2-) ions were found to enhance the fluorescence of cysteine-capped Cu nanoclusters (Cu NCs). High resolution transmission electron microscopy (HRTEM), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy-energy dispersive X-ray (SEM-EDX) measurements, zeta potential and X-ray photoelectron spectroscopy (XPS) measurements demonstrated that the S(2-) ion-induced aggregation of the Cu NCs contributed to the fluorescence enhancement of the dispersed Cu NCs. Based on these findings, a highly selective fluorescent probe was developed for the determination of H2S using the S(2-) ion-enhanced fluorescence of the as-prepared Cu NCs. The relative fluorescence intensity was proportional to the concentration of S(2-) in the range from 0.2 to 50 μM. The detection limit (S/N = 3) was 42 nM. The proposed method has been successfully applied to determine H2S produced from toys called "Fart Bomb" with recoveries of 97.6-101.8%. The results of the proposed method were in good agreement with those determined by a standard methylene blue method. This work is not only of importance for a better understanding of the aggregation induced emission (AIE) properties of the Cu NCs but also of great potential to find extensive biological applications for H2S. PMID:25697240

  16. Probe Intracellular Trafficking of a Polymeric DNA Delivery Vehicle by Functionalization with an Aggregation-Induced Emissive Tetraphenylethene Derivative.

    PubMed

    Han, Xiongqi; Chen, Qixian; Lu, Hongguang; Ma, Jianbiao; Gao, Hui

    2015-12-30

    Characteristic aggregation-induced quenching of π-fluorophores imposed substantial hindrance to their utilization in nanomedicine for insight into microscopic intracellular trafficking of therapeutic payload. To address this obstacle, we attempted to introduce a novel aggregation-induced emission (AIE) fluorophore into the cationic polymer, which was further used for formulation of a gene delivery carrier. Note that the selective restriction of the intramolecular rotation of the AIE fluorophore through its covalent bond to the polymer conduced to immense AIE. Furthermore, DNA payload labeled with the appropriate fluorophore as the Förster resonance energy transfer (FRET) acceptor verified a facile strategy to trace intracellular DNA releasing activity relying on the distance limitation requested by FRET (AIE fluorophore as FRET donor). Moreover, the hydrophobic nature of the AIE fluorophore appeared to promote colloidal stability of the constructed formulation. Together with other chemistry functionalization strategies (including endosome escape), the ultimate formulation exerted dramatic gene transfection efficiency. Hence, this report manifested a first nanomedicine platform combining AIE and FRET for microscopic insight into DNA intracellular trafficking activity. PMID:26634294

  17. A fluorescent assay for γ-glutamyltranspeptidase via aggregation induced emission and its applications in real samples.

    PubMed

    Hou, Xianfeng; Zeng, Fang; Wu, Shuizhu

    2016-11-15

    γ-Glutamyl transpeptidase (GGT) plays crucial roles in some physiological processes. Herein a turn-on fluorescent probe for γ-glutamyl transpeptidase (GGT) assay based on aggregation-induced-emission (AIE) effect and the enzyme-induced transformation of hydrophilicity to hydrophobicity has been developed by functionalizing tetraphenylethylene (TPE) derivative with two γ-glutamyl amide groups, which simultaneously work as recognition units and hydrophilic groups. When the γ-glutamyl amide groups are cleaved through GGT enzymatic reaction, the hydrophobic reaction product readily aggregate and correspondingly strong blue fluorescence can be observed, as a result of activated AIE process. By virtue of the probe's good solubility in totally aqueous solution, high sensitivity and excellent photostability, the probe can be employed to detect GGT level in human serum samples. Furthermore, the probe can be used for imaging endogenous GGT in living A2780 cells. Hence, the probe holds great promise for acting as a convenient one-step straightforward assay for GGT detection in diagnostic-related applications, and also it could provide a useful approach for conducting pathological analysis for diseases involving GGT. PMID:27183282

  18. Color- and morphology-controlled self-assembly of new electron-donor-substituted aggregation-induced emission compounds.

    PubMed

    Niu, Caixia; Zhao, Liu; Fang, Tao; Deng, Xuebin; Ma, Hui; Zhang, Jiaxin; Na, Na; Han, Jingsa; Ouyang, Jin

    2014-03-11

    Four electron-donor-substituted aggregation-induced emission (AIE) compounds, N,N'-bis(4-methoxylsalicylidene)-p-phenylenediamine (BSPD-OMe), N,N'-bis(4-methylsalicylidene)-p-phenylenediamine (BSPD-Me), N,N'-bis(salicylidene)-p-phenylenediamine (BSPD), and N,N'-bis(4-hydroxylsalicylidene)-p-phenylenediamine (BSPD-OH), are designed and synthesized. They are all found to exhibit controlled self-assembly behaviors and good thermal properties. By changing the terminal electron-donor groups, they are controlled to self-assemble into three emission colors (green, yellow, and orange) and four morphologies (microblocks, microparticles, microrods, and nanowires) in THF/water mixtures. Their self-assembled structures were investigated with scanning electron microscopy (SEM), fluorescent microscopy images, transmission electron microscopy (TEM), and powder X-ray diffraction (PXRD) techniques. In addition, the emission colors of BSPD-OH can be successfully controlled to three colors (green → yellow → orange) through simply changing the water fraction (fw). Their thermal gravimetric analysis (TGA) results indicate that their thermal decomposition temperatures (Td, corresponding to 5% weight loss) range from 282 to 319 °C. Their differential scanning calorimetry (DSC) data show that BSPD-OH bears a glass-transition temperature (Tg) of 118 °C. The good Td and Tg values will ensure them to be luminogens for organic light-emitting diodes (OLEDs). The theoretical calculations and single-crystal X-ray diffraction (XRD) analysis of BSPD-OMe and BSPD suggest that the stronger electron donor substituent can twist the molecular conformation, decrease the degree of π conjugation, increase the energy gap, and then induce the emission colors' blue shift and morphology variation. The results are meaningful in controlling the emission colors and self-assembly shapes of these derivatives, and they also provide a novel but facile way to get color-tunable AIE luminogens for OLEDs. PMID

  19. A Simple Fluorescence Probe Based on Aggregation-Induced Emission (AIE) Property for the Detection of Mg(2+) Ions.

    PubMed

    Bian, Yan-Jiang; Wang, Lu-Qiong; Cao, Fu-Xiang; Tang, Li-Jun

    2016-01-01

    A simple aggregation-induced emission-based fluorescence probe (1) for Mg(2+) was synthesized by condensation of benzene-1, 2-diamine with 5-bromo-2-hydroxybenzaldehyde, This compound shows favourable character of the AIE-active molecules. More importantly, after addition of Mg(2+) to probe (1) in acetonitrile, the solution changed from colorless to yellow colour solution under ultraviolet (UV) radiation obtained from hand-held UV lamp, this finding suggested that probe (1) can be used to detect Mg(2+) by colorimetric detection. Detection limit can reach 2.31 × 10(-5) M(-1). The practical value of the selective and sensitive fluorescence indicators was confirmed by its application to detection of magnesium ion in acetonitrile. PMID:26547420

  20. Fluorogenic Thorium Sensors Based on 2,6-Pyridinedicarboxylic Acid-Substituted Tetraphenylethenes with Aggregation-Induced Emission Characteristics.

    PubMed

    Wen, Jun; Dong, Liang; Hu, Sheng; Li, Weiyi; Li, Shuo; Wang, Xiaolin

    2016-01-01

    A novel fluorescent sensor based on tetraphenylethene (TPE) modified with 2,6-pyridinedicarboxylic acid (PDA) that shows aggregation-induced emission (AIE) characteristics for thorium recognition with remarkable fluoresence enhancement response has been synthesized. This sensor is capable of visually distinguishing Th(4+) among lanthanides, transition metals, and alkali metals under UV light. Th(4+) can be detected by the naked eye at ppb levels owing to the AIE phenomenon. The sensor showed high selectivity for Th(4+) compared to all other metals tested, and this recognition displayed good anti-interference qualities. This study represents the first application of a AIE fluorescence sensor in actinide metal recognition and it has potential applications in environmental systems for thorium ion detection. PMID:26419754

  1. Live Cell MicroRNA Imaging Using Exonuclease III-Aided Recycling Amplification Based on Aggregation-Induced Emission Luminogens.

    PubMed

    Min, Xuehong; Zhang, Mengshi; Huang, Fujian; Lou, Xiaoding; Xia, Fan

    2016-04-13

    Enzyme-assisted detection strategies of microRNAs (miRNAs) in vitro have accomplished both great sensitivity and specificity. However, low expression of miRNAs and a complex environment in cells induces big challenges for monitoring and tracking miRNAs in vivo. The work reports the attempt to carry miRNA imaging into live cells, by enzyme-aided recycling amplification. We utilize facile probes based yellow aggregation-induced emission luminogens (AIEgens) with super photostable property but without quencher, which are applied to monitor miRNAs not only from urine sample extracts (in vitro) but also in live cells (in vivo). The assay could distinguish the cancer patients' urine samples from the healthy urine due to the good specificity. Moreover, the probe showed much higher fluorescence intensity in breast cancer cells (MCF-7) (miR-21 in high expression) than that in cervical cancer cells (HeLa) and human lung fibroblast cells (HLF) (miR-21 in low expression) in more than 60 min, which showed the good performance and super photostability for the probe in vivo. As controls, another two probes with FAM/Cy3 and corresponding quenchers, respectively, could perform miRNAs detections in vitro and parts of in vivo tests but were not suitable for the long-term cell tracking due to the photobleach phenomena, which also demonstrates that the probe with AIEgens is a potential candidate for the accurate identification of cancer biomarkers. PMID:27011025

  2. Effect of Amide Hydrogen Bonding Interaction on Supramolecular Self-Assembly of Naphthalene Diimide Amphiphiles with Aggregation Induced Emission.

    PubMed

    Ghule, Namdev V; La, Duong Duc; Bhosale, Rajesh S; Al Kobaisi, Mohammad; Raynor, Aaron M; Bhosale, Sheshanath V; Bhosale, Sidhanath V

    2016-04-01

    In the present work, two new naphthalene diimide (NDI) amphiphiles, NDI-N and NDI-NA, were successfully synthesized and employed to investigate their self-assembly and optical properties. For NDI-NA, which contains an amide group, aggregation-induced emission enhancement (AIEE) was demonstrated in the presence of various ratios of methylcyclohexane (MCH) in chloroform, which led to the visual color changes. This new amide-containing NDI-NA amphiphile formed nanobelt structures in chloroform/MCH (10:90, v/v) and microcup-like morphologies in chloroform/MCH (5:95, v/v). The closure of these microcups led to the formation of vesicles and microcapsules. The structural morphologies gained from the solvophobic control of NDI-NA were confirmed by various complementary techniques such as infrared spectroscopy, X-ray diffraction, and scanning and transmission electron microscopy. In the absence of the amide moiety in NDI-N, no self-assembly was observed, indicating the fundamental role of H-bonding in the self-association process. PMID:27308233

  3. Facile preparation and biological imaging of luminescent polymeric nanoprobes with aggregation-induced emission characteristics through Michael addition reaction.

    PubMed

    Lv, Qiulan; Wang, Ke; Xu, Dazhuang; Liu, Meiying; Wan, Qing; Huang, Hongye; Liang, Shangdong; Zhang, Xiaoyong; Wei, Yen

    2016-09-01

    Water dispersion aggregation-induced emission (AIE) dyes based nanomaterials have recently attracted increasing attention in the biomedical fields because of their unique optical properties, outstanding performance as imaging and therapeutic agents. The methods to conjugate hydrophilic polymers with AIE dyes to solve the hydrophobic nature of AIE dyes and makeS them widely used in biomedicine, which have been extensively explored and paid great effort previously. Although great advance has been made in the fabrication and biomedical applications of AIE-active polymeric nanoprobes, facile and efficient strategies for fabrication of biodegradable AIE-active nanoprobes are still high desirable. In this work, amphiphilic biodegradable fluorescent organic nanoparticles (PLL-TPE-O-E FONs) have been fabricated for the first time by conjugation of AIE dye tetraphenylethene acrylate (TPE-O-E) with Poly-l-Lysine (PLL) through a facile one-step Michael addition reaction, which was carried out under rather mild conditions, included air atmosphere, near room temperature and absent of metal catalysts or hazardous reagents. Due to the unique AIE properties, these amphiphilic copolymers tend to self-assemble into high luminescent water dispersible nanoparticles with size range from 400 to 600nm. Laser scanning microscope and cytotoxicity results revealed that PLL-TPE-O-E FONs can be internalized into cytoplasm with negative cytotoxicity, which implied that PLL-TPE-O-E FONs are promising for biological applications. PMID:27311129

  4. The effects of side-chain-induced disorder on the emission spectra and quantum yields of oligothiophene nano-aggregates. A combined experimental and MD-TDDFT study

    SciTech Connect

    Hong, Jiyun; Jeon, SuKyung; Kim, Janice J.; Devi, Diane; Chacon-Madrid, Kelly; Lee, Wynee; Koo, Seung Moh; Wildeman, Jurjen; Sfeir, Matthew Y.; Peteanu, Linda A.; Wen, Jin; Ma, Jing

    2014-07-24

    Oligomeric thiophenes are commonly-used components in organic electronics and solar cells. These molecules stack and/or aggregate readily under the processing conditions used to form thin films for these applications, significantly altering their optical and charge-transport properties. To determine how these effects depend on the substitution pattern of the thiophene main chains, nano-aggregates of three sexi-thiophene (6T) oligomers having different alkyl substitution patterns were formed using solvent poisoning techniques and studied using steady-state and time-resolved emission spectroscopy. The results indicate the substantial role played by the side-chain substituents in determining the emissive properties of these species. Both the measured spectral changes and their dependence on substitution are well modeled by combined quantum chemistry and molecular dynamics simulations. The simulations connect the side-chain-induced disorder, which determines the favorable chain packing configurations within the aggregates, with their measured electronic spectra.

  5. Benzo[c,d]indole-Containing Aza-BODIPY Dyes: Asymmetrization-Induced Solid-State Emission and Aggregation-Induced Emission Enhancement as New Properties of a Well-Known Chromophore.

    PubMed

    Shimizu, Soji; Murayama, Ai; Haruyama, Takuya; Iino, Taku; Mori, Shigeki; Furuta, Hiroyuki; Kobayashi, Nagao

    2015-09-01

    A series of symmetric and asymmetric benzo[c,d]indole-containing aza boron dipyrromethene (aza-BODIPY) compounds was synthesized by a titanium tetrachloride-mediated Schiff-base formation reaction of commercially available benzo[c,d]indole-2(1H)-one and heteroaromatic amines. These aza-BODIPY analogues show different electronic structures from those of regular aza-BODIPYs, with hypsochromic shifts of the main absorption compared to their BODIPY counterparts. In addition to the intense fluorescence in solution, asymmetric compounds exhibited solid-state fluorescence due to significant contribution of the vibronic bands to both absorption and fluorescence as well as reduced fluorescence quenching in the aggregates. Finally, aggregation-induced emission enhancement, which is rare in BODIPY chromophores, was achieved by introducing a nonconjugated moiety into the core structure. PMID:26212774

  6. Novel functional conjugative hyperbranched polymers with aggregation-induced emission: synthesis through one-pot "A2+B4" polymerization and application as explosive chemsensors and PLEDs.

    PubMed

    Wu, Wenbo; Ye, Shanghui; Yu, Gui; Liu, Yunqi; Qin, Jingui; Li, Zhen

    2012-01-01

    With the aim to develop new tetraphenylethylene (TPE)-based conjugated hyperbranched polymer, TPE units, one famous aggregation-induced emission (AIE) active group, are utilized to construct hyperbranched polymers with three other aromatic blocks, through an "A2+B4" approach by using one-pot Suzuki polycondensation reaction. These three hyperbranched polymers exhibit interesting AIEE behavior and act as explosive chemsensors with high sensitivity both in the nanoparticles and solid states. This is the first report of the AIE activity of the TPE-based conjugated hyperbranched polymers. Their corresponding PLED devices also demonstrate good performance. PMID:22134953

  7. The effects of side-chain-induced disorder on the emission spectra and quantum yields of oligothiophene nano-aggregates. A combined experimental and MD-TDDFT study

    DOE PAGESBeta

    Hong, Jiyun; Jeon, SuKyung; Kim, Janice J.; Devi, Diane; Chacon-Madrid, Kelly; Lee, Wynee; Koo, Seung Moh; Wildeman, Jurjen; Sfeir, Matthew Y.; Peteanu, Linda A.; et al

    2014-07-24

    Oligomeric thiophenes are commonly-used components in organic electronics and solar cells. These molecules stack and/or aggregate readily under the processing conditions used to form thin films for these applications, significantly altering their optical and charge-transport properties. To determine how these effects depend on the substitution pattern of the thiophene main chains, nano-aggregates of three sexi-thiophene (6T) oligomers having different alkyl substitution patterns were formed using solvent poisoning techniques and studied using steady-state and time-resolved emission spectroscopy. The results indicate the substantial role played by the side-chain substituents in determining the emissive properties of these species. Both the measured spectral changesmore » and their dependence on substitution are well modeled by combined quantum chemistry and molecular dynamics simulations. The simulations connect the side-chain-induced disorder, which determines the favorable chain packing configurations within the aggregates, with their measured electronic spectra.« less

  8. Stable and Size-Tunable Aggregation-Induced Emission Nanoparticles Encapsulated with Nanographene Oxide and Applications in Three-Photon Fluorescence Bioimaging.

    PubMed

    Zhu, Zhenfeng; Qian, Jun; Zhao, Xinyuan; Qin, Wei; Hu, Rongrong; Zhang, Hequn; Li, Dongyu; Xu, Zhengping; Tang, Ben Zhong; He, Sailing

    2016-01-26

    Organic fluorescent dyes with high quantum yield are widely applied in bioimaging and biosensing. However, most of them suffer from a severe effect called aggregation-caused quenching (ACQ), which means that their fluorescence is quenched at high molecular concentrations or in the aggregation state. Aggregation-induced emission (AIE) is a diametrically opposite phenomenon to ACQ, and luminogens with this feature can effectively solve this problem. Graphene oxide has been utilized as a quencher for many fluorescent dyes, based on which biosensing can be achieved. However, using graphene oxide as a surface modification agent of fluorescent nanoparticles is seldom reported. In this article, we used nanographene oxide (NGO) to encapsulate fluorescent nanoparticles, which consisted of a type of AIE dye named TPE-TPA-FN (TTF). NGO significantly improved the stability of nanoparticles in aqueous dispersion. In addition, this method could control the size of nanoparticles' flexibly as well as increase their emission efficiency. We then used the NGO-modified TTF nanoparticles to achieve three-photon fluorescence bioimaging. The architecture of ear blood vessels in mice and the distribution of nanoparticles in zebrafish could be observed clearly. Furthermore, we extended this method to other AIE luminogens and showed it was widely feasible. PMID:26641528

  9. A 1,3-indandione-functionalized tetraphenylethene: aggregation-induced emission, solvatochromism, mechanochromism, and potential application as a multiresponsive fluorescent probe.

    PubMed

    Tong, Jiaqi; Wang, Yijia; Mei, Ju; Wang, Jian; Qin, Anjun; Sun, Jing Zhi; Tang, Ben Zhong

    2014-04-14

    A tetraphenylethene (TPE) derivative substituted with the electron-acceptor 1,3-indandione (IND) group was designed and prepared. The targeted IND-TPE reserves the intrinsic aggregation-induced emission (AIE) property of the TPE moiety. Meanwhile, owing to the decorated IND moiety, IND-TPE demonstrates intramolecular charge-transfer process and pronounced solvatochromic behavior. When the solvent is changed from apolar toluene to highly polar acetonitrile, the emission peak redshifts from 543 to 597 nm. IND-TPE solid samples show an evident mechanochromic process. Grinding of the as-prepared powder sample induces a redshift of emission from green (peak at 515 nm) to orange (peak at 570 nm). The mechanochromic process is reversible in multiple grinding-thermal annealing and grinding-solvent-fuming cycles, and the emission of the solid sample switches between orange (ground) and yellow (thermal/solvent-fuming-treated) colors. The mechanochromism is ascribed to the phase transition between amorphous and crystalline states. IND-TPE undergoes a hydrolysis reaction in basic aqueous solution, thus the red-orange emission can be quenched by OH(-) or other species that can induce the generation of sufficient OH(-). Accordingly, IND-TPE has been used to discriminatively detect arginine and lysine from other amino acids, due to their basic nature. The experimental data are satisfactory. Moreover, the hydrolyzation product of IND-TPE is weakly emissive in the resultant mixture but becomes highly blue-emissive after the illumination for a period by UV light. Thus IND-TPE can be used as a dual-responsive fluorescent probe, which may extend the application of TPE-based molecular probes in chemical and biological categories. PMID:24615918

  10. Eccentric loading of fluorogen with aggregation-induced emission in PLGA matrix increases nanoparticle fluorescence quantum yield for targeted cellular imaging.

    PubMed

    Geng, Junlong; Li, Kai; Qin, Wei; Ma, Lin; Gurzadyan, Gagik G; Tang, Ben Zhong; Liu, Bin

    2013-06-10

    A simple strategy is developed to prepare eccentrically or homogeneously loaded nanoparticles (NPs) using poly (DL-lactide-co-glycolide) (PLGA) as the encapsulation matrix in the presence of different amounts of polyvinyl alcohol (PVA) as the emulsifier. Using 2,3-bis(4-(phenyl(4-(1,2,2-triphenylvinyl)-phenyl)amino)-phenyl)-fumaronitrile (TPETPAFN), a fluorogen with aggregation-induced emission (AIE) characteristics, as an example, the eccentrically loaded PLGA NPs show increased fluorescence quantum yields (QYs) as compared to the homogeneously loaded ones. Field emission transmission electron microscopy and fluorescence lifetime measurements reveal that the higher QY of the eccentrically loaded NPs is due to the more compact aggregation of AIE fluorogens that restricts intramolecular rotations of phenyl rings, which is able to more effectively block the non-radiative decay pathways. The eccentrically loaded NPs show far red/near infrared emission with a high fluorescence QY of 34% in aqueous media. In addition, by using poly([lactide-co-glycolide]-b-folate [ethylene glycol]) (PLGA-PEG-folate) as the co-encapsulation matrix, the obtained NPs are born with surface folic acid groups, which are successfully applied for targeted cellular imaging with good photostability and low cytotoxicity. Moreover, the developed strategy is also demonstrated for inorganic-component eccentrically or homogeneously loaded PLGA NPs, which facilitates the synthesis of polymer NPs with controlled internal architectures. PMID:23404950

  11. Selective and Sensitive Detection of Heavy Metal Ions in 100% Aqueous Solution and Cells with a Fluorescence Chemosensor Based on Peptide Using Aggregation-Induced Emission.

    PubMed

    Neupane, Lok Nath; Oh, Eun-Taex; Park, Heon Joo; Lee, Keun-Hyeung

    2016-03-15

    A fluorescent peptidyl chemosensor for the detection of heavy metal ions in aqueous solution as well as in cells was synthesized on the basis of the peptide receptor for the metal ions using an aggregation-induced emission fluorophore. The peptidyl chemosensor (1) bearing tetraphenylethylene fluorophore showed an exclusively selective turn-on response to Hg(2+) among 16 metal ions in aqueous buffered solution containing NaCl. The peptidyl chemosensor complexed Hg(2+) ions and then aggregated in aqueous buffered solution, resulting in the significant enhancement (OFF-On) of emissions at around 470 nm. The fluorescent sensor showed a highly sensitive response to Hg(2+), and about 1.0 equiv of Hg(2+) was enough for the saturation of the emission intensity change. The detection limit (5.3 nM, R(2) = 0.99) of 1 for Hg(2+) ions was lower than the maximum allowable level of Hg(2+) in drinking water by EPA. Moreover, the peptidyl chemosensor penetrated live cells and detected intracellular Hg(2+) ions by the turn-on response. PMID:26872241

  12. A series of poly[N-(2-hydroxypropyl)methacrylamide] copolymers with anthracene-derived fluorophores showing aggregation-induced emission properties for bioimaging

    PubMed Central

    Lu, Hongguang; Su, Fengyu; Mei, Qian; Zhou, Xianfeng; Tian, Yanqing; Tian, Wenjing; Johnson, Roger H.; Meldrum, Deirdre R.

    2011-01-01

    A series of new poly[N-(2-hydroxypropyl)methacrylamide]-based amphiphilic copolymers were synthesized through a radical copolymerization of a monomeric/hydrophobic fluorophore possessing aggregation-induced emission (AIE) property with N-(2-hydroxypropyl)methacrylamide. Photophysical properties were investigated using UV-Vis absorbance and fluorescence spectrophotometry. Influences of the polymer structures with different molar ratios of the AIE fluorophores on their photophysical properties were studied. Results show that the AIE fluorophores aggregate in the cores of the micelles formed from the amphiphilic random copolymers and polymers with more hydrophobic AIE fluorophores facilitate stronger aggregations of the AIE segments to obtain higher quantum efficiencies. The polymers reported herein have good water solubility, enabling the application of hydrophobic AIE materials in biological conditions. The polymers were endocytosed by two experimental cell lines, human brain glioblastoma U87MG cells and human esophagus premalignant CP-A, with a distribution into the cytoplasm. The polymers are non-cytotoxic to the two cell lines at a polymer concentration of 1 mg/mL. PMID:22287826

  13. A Suite of Tetraphenylethylene-Based Discrete Organoplatinum(II) Metallacycles: Controllable Structure and Stoichiometry, Aggregation-Induced Emission, and Nitroaromatics Sensing.

    PubMed

    Yan, Xuzhou; Wang, Haoze; Hauke, Cory E; Cook, Timothy R; Wang, Ming; Saha, Manik Lal; Zhou, Zhixuan; Zhang, Mingming; Li, Xiaopeng; Huang, Feihe; Stang, Peter J

    2015-12-01

    Materials that organize multiple functionally active sites, especially those with aggregation-induced emission (AIE) properties, are of growing interest due to their widespread applications. Despite promising early architectures, the fabrication and preparation of multiple AIEgens, such as multiple tetraphenylethylene (multi-TPE) units, in a single entity remain a big challenge due to the tedious covalent synthetic procedures often accompanying such preparations. Coordination-driven self-assembly is an alternative synthetic methodology with the potential to deliver multi-TPE architectures with light-emitting characteristics. Herein, we report the preparation of a new family of discrete multi-TPE metallacycles in which two pendant phenyl rings of the TPE units remain unused as a structural element, representing novel AIE-active metal-organic materials based on supramolecular coordination complex platforms. These metallacycles possess relatively high molar absorption coefficients but weak fluorescent emission under dilute conditions because of the ability of the untethered phenyl rings to undergo torsional motion as a non-radiative decay pathway. Upon molecular aggregation, the multi-TPE metallacycles show AIE-activity with markedly enhanced quantum yields. Moreover, on account of their AIE characteristics in the condensed state and ability to interact with electron-deficient substrates, the photophysics of these metallacycles is sensitive to the presence of nitroaromatics, motivating their use as sensors. This work represents a unification of themes including molecular self-assembly, AIE, and fluorescence sensing and establishes structure-property-application relationships of multi-TPE scaffolds. The fundamental knowledge obtained from the current research facilitates progress in the field of metal-organic materials, metal-coordination-induced emission, and fluorescent sensing. PMID:26550682

  14. A Red to Near-IR Fluorogen: Aggregation-Induced Emission, Large Stokes Shift, High Solid Efficiency and Application in Cell-Imaging.

    PubMed

    Wang, Yi Jia; Shi, Yang; Wang, Zhaoyang; Zhu, Zhenfeng; Zhao, Xinyuan; Nie, Han; Qian, Jun; Qin, Anjun; Sun, Jing Zhi; Tang, Ben Zhong

    2016-07-01

    A tetraphenylethene (TPE) derivative modified with the strong electron acceptor 2-dicyano-methylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran (TCF) was obtained in high yield by a simple two-step reaction. The resultant TPE-TCF showed evident aggregation-induced emission (AIE) features and pronounced solvatochromic behavior. Changing the solvent from apolar cyclohexane to highly polar acetonitrile, the emission peak shifted from 560 to 680 nm (120 nm redshift). In an acetonitrile solution and in the solid powder, the Stokes shifts are as large as 230 and 190 nm, respectively. The solid film emits red to near-IR (red-NIR) fluorescence with an emission peak at 670 nm and a quantum efficiency of 24.8 %. Taking the advantages of red-NIR emission and high efficiency, nanoparticles (NPs) of TPE-TCF were fabricated by using tat-modified 1,2-distearoylsn-glycero-3-phosphor-ethanol-amine-N-[methoxy-(polyethyl-eneglycol)-2000] as the encapsulation matrix. The obtained NPs showed perfect membrane penetrability and high fluorescent imaging quality of cell cytoplasm. Upon co-incubation with 4,6-diamidino-2-phenylindole (DAPI) in the presence of tritons, the capsulated TPE-TCF nanoparticles could enter into the nucleus and displayed similar staining properties to those of DAPI. PMID:27265326

  15. Fluorescent turn-on detection and assay of water based on 4-(2-dimethylaminoethyloxy)-N-octadecyl-1,8-naphthalimide with aggregation-induced emission enhancement.

    PubMed

    Sun, Yang; Liang, Xuhua; Wei, Song; Fan, Jun; Yang, Xiaohui

    2012-11-01

    The photophysical properties of 4-(2-dimethylaminoethyloxy)-N-octadecyl-1,8-naphthalimide (DON) consisting of donor and acceptor units were investigated in different solutions. Changing from a non-polar to a polar solvent increased the solvent interaction and both the excitation and emission spectra were shifted to longer wavelength and intensity decreased through taking advantage of twisted intramolecular charge transfer (TICT). Density functional theory (DFT) calculations and spectral analyses revealed that such fluorophores were capable of sensing protons by intramolecular charge transfer (ICT). Empirical and quantum mechanical calculations showed that the electron donating effect of the dimethylamino group decreased the change in dipole moment on excitation which resulted in a fluorescence quantum yield remarkably enhanced as the solvent polarity increased. In alkaline media the fluorescence of DON was quenched owing to photoinduced electron transfer being disabled in acidic media. The pK(a) of the 1,8-naphthailimide dye was 6.70, which defines the dye as a highly efficient "off-on" switch. DON exhibited a typical aggregation-induced emission enhancement (AIEE) behavior that it is virtually nonemissive in organic solvent but highly luminescent in water, as a result of the restriction of free intramolecular rotation of a C-N bond and the non-planar configuration in the aggregate state. The hydrophobicity of octadecyl group provided DON with a fluorescent response to water based on AIEE and the water-dependent spectral characteristics of DON, and the AIEE of DON caused by the effect of water and formation of J-aggregation states. In the range of 0-79.8% (v/v), the fluorescence intensity of DON in acetone solution increased as a linear function of the water content. The optimum detection limits were of 0.011%, 0.0021%, and 0.0033% of water in acetone, ethanol, and acetonitrile, respectively. Satisfactory reproducibility, reversibility and a short response time

  16. The Fixed Propeller-Like Conformation of Tetraphenylethylene that Reveals Aggregation-Induced Emission Effect, Chiral Recognition, and Enhanced Chiroptical Property.

    PubMed

    Xiong, Jia-Bin; Feng, Hai-Tao; Sun, Jian-Ping; Xie, Wen-Zhao; Yang, Dong; Liu, Minghua; Zheng, Yan-Song

    2016-09-14

    The propeller-like conformation of tetraphenylethylene (TPE) with aggregation-induced emission (AIE) effect was partially and completely fixed by intramolecular cyclization for the first time. The immobilization of propeller-like conformation was found to show great advantages in determining the enantiomer purity, identifying the chiral amines. The completely fixed conformers are resolved into M- and P-enantiomer, which showed mirror imaged CD and almost quantitative fluorescence quantum yield. Furthermore, it also showed a mirror and large circularly polarized luminescence dissymmetric factor, depending on the helicity of the enantiomer. The result provides the most direct and persuasive evidence for AIE via the restriction of intramolecular rotation and finds the new insight of the compounds in chiroptical property. PMID:27564514

  17. Aggregation-Induced Emission Active Metal-Free Chemosensing Platform for Highly Selective Turn-On Sensing and Bioimaging of Pyrophosphate Anion.

    PubMed

    Gogoi, Abhijit; Mukherjee, Sandipan; Ramesh, Aiyagari; Das, Gopal

    2015-07-01

    We report the synthesis of a metal-free chemosensor for highly selective sensing of pyrophosphate (PPi) anion in physiological medium. The novel phenylbenzimidazole functionalized imine containing chemosensor (L; [2,6-bis(((4-(1H-benzo[d]imidazol-2-yl)phenyl)imino) methyl)-4 methyl phenol]) could sense PPi anion through "turn-on" colorimetric and fluorimetric responses in a very competitive environment. The overall sensing mechanism is based on the aggregation-induced emission (AIE) phenomenon. Moreover, a real time in-field device application was demonstrated by sensing PPi in paper strips coated with L. Interestingly, detection of intracellular PPi ions in model human cells could also be possible by fluorescence microscopic studies without any toxicity to these cells. PMID:26059015

  18. Effect of Amide Hydrogen Bonding Interaction on Supramolecular Self‐Assembly of Naphthalene Diimide Amphiphiles with Aggregation Induced Emission

    PubMed Central

    Ghule, Namdev V.; La, Duong Duc; Bhosale, Rajesh S.; Al Kobaisi, Mohammad; Raynor, Aaron M.

    2016-01-01

    Abstract In the present work, two new naphthalene diimide (NDI) amphiphiles, NDI‐N and NDI‐NA, were successfully synthesized and employed to investigate their self‐assembly and optical properties. For NDI‐NA, which contains an amide group, aggregation‐induced emission enhancement (AIEE) was demonstrated in the presence of various ratios of methylcyclohexane (MCH) in chloroform, which led to the visual color changes. This new amide‐containing NDI‐NA amphiphile formed nanobelt structures in chloroform/MCH (10:90, v/v) and microcup‐like morphologies in chloroform/MCH (5:95, v/v). The closure of these microcups led to the formation of vesicles and microcapsules. The structural morphologies gained from the solvophobic control of NDI‐NA were confirmed by various complementary techniques such as infrared spectroscopy, X‐ray diffraction, and scanning and transmission electron microscopy. In the absence of the amide moiety in NDI‐N, no self‐assembly was observed, indicating the fundamental role of H‐bonding in the self‐association process. PMID:27308233

  19. Fluorescent turn-on sensing of bacterial lipopolysaccharide in artificial urine sample with sensitivity down to nanomolar by tetraphenylethylene based aggregation induced emission molecule.

    PubMed

    Jiang, Guoyu; Wang, Jianguo; Yang, Yang; Zhang, Guanxin; Liu, Yaling; Lin, He; Zhang, Guilan; Li, Yongdong; Fan, Xiaolin

    2016-11-15

    A tetraphenylethylene based aggregation induced emission (AIE) probe, TPEPyE, bearing a positively charged pyridinium pendant was designed and synthesized. The positively charged TPEPyE can efficiently bind to the negatively charged lipopolysaccharide (LPS) through electrostatic interactions between the two oppositely charged species. As a result, upon the addition of LPS into the PBS solution of TPEPyE, this probe aggregated immediately onto the surface of LPS and resulted over 22-fold of fluorescence enhancement. TPEPyE exhibited good selectivity and high sensitivity toward LPS in PBS buffer solution and the detection limit was calculated to be 370 pM (3.7ng/mL). More notably, TPEPyE also retained good sensitivity and selectivity in artificial urine system (with much higher ionic strength) with the detection limit down to nanomolar. Moreover, this probe can also make a distinction between gram-positive bacteria Staphylococcus aureus (S. aureus) and gram-negative bacteria Escherichia coli (E. coli), making it a promising sensor for clinical monitoring of urinary tract infections. PMID:27155117

  20. Exquisite 1D Assemblies Arising from Rationally Designed Asymmetric Donor-Acceptor Architectures Exhibiting Aggregation-Induced Emission as a Function of Auxiliary Acceptor Strength.

    PubMed

    Singh, Roop Shikha; Mukhopadhyay, Sujay; Biswas, Arnab; Pandey, Daya Shankar

    2016-01-11

    One-dimensional nanostructures with aggregation-induced emission (AIE) properties have been fabricated to keep the pace with growing demand from optoelectronics applications. The compounds 2-[4-(4-methylpiperazin-1-yl)benzylidene]malononitrile (PM1), 2-{4-[4-(pyridin-2-yl)piperazin-1-yl]-benzylidene}malononitrile (PM2), and 2-{4-[4-(pyrimidin-2-yl)piperazin-1-yl]benzylidene}malononitrile (PM3) have been designed and synthesized by melding piperazine and dicyanovinylene to investigate AIE in an asymmetric donor-acceptor (D-A) construct of A'-D-π-A- topology. The synthetic route has been simplified by using phenylpiperazine as a weak donor (D), dicyanovinylene as an acceptor (A), and pyridyl/pyrimidyl groups (PM2/PM3) as auxiliary acceptors (A'). It has been established that A' plays a vital role in triggering AIE in these compounds because the same D-A construct led to aggregation-caused quenching upon replacing A' with an electron-donating ethyl group (PM1). Moreover, the effect of restricted intramolecular rotation and twisted intramolecular charge transfer on the mechanism of AIE has also been investigated. Furthermore, it has been clearly shown that the optical disparities of these A'-D-π-A architectures are a direct consequence of comparative A' strength. Single-crystal X-ray analyses provided justification for role of intermolecular interactions in aggregate morphology. Electrochemical and theoretical studies affirmed the effect of the A' strength on the overall properties of the A'-D-π-A system. PMID:26615814

  1. Aggregation-induced emission from gold nanoclusters for use as a luminescence-enhanced nanosensor to detect trace amounts of silver ions.

    PubMed

    Li, Bingzhi; Wang, Xi; Shen, Xin; Zhu, Wanying; Xu, Lei; Zhou, Xuemin

    2016-04-01

    Several research have reported that silver ions (Ag(+)) could enhance the photoluminescence of some kinds of gold nanoclusters (AuNCs), and redox reaction involved mechanisms were recognized as the main reason to cause such phenomenon. However, in this work, we found that Ag(+) could enhance the luminescence of aggregation-induced emission gold nanoclusters (AIE-AuNCs) without valence state change. Upon addition of Ag(+), the luminescence of AIE-AuNCs enhanced instantly by 7.2 times with a red-shift of emission peak and a complete restoration of luminescence features was observed when Ag(+) was removed. A cost-effective, rapid-response, highly sensitive and selective method to detect trace amount of Ag(+) has thereby been established using AIE-AuNCs as a nanosensor. This analytical method exhibited a linear range of 0.5nM-20μM with a limit of detection of 0.2nM and it showed great promise for Ag(+) monitoring in environmental water. PMID:26773614

  2. Phenyl Ring Dynamics in a Tetraphenylethylene-Bridged Metal-Organic Framework: Implications for the Mechanism of Aggregation-Induced Emission

    PubMed Central

    Shustova, Natalia B.; Ong, Ta-Chung; Cozzolino, Anthony F.; Michaelis, Vladimir K.; Griffin, Robert G.; Dincã, Mircea

    2012-01-01

    Molecules that exhibit emission in the solid state, especially those known as aggregation-induced emission (AIE) chromophores, have found applications in areas as varied as light-emitting diodes and biological sensors. Despite numerous studies, the mechanism of fluorescence quenching in AIE chromophores is still not completely understood. To this end, much interest has focused on understanding the low frequency vibrational dynamics of prototypical systems such as tetraphenylethylene (TPE), in the hope that such studies would provide more general principles towards the design of new sensors and electronic materials. We hereby show that a perdeuterated TPE-based metal-organic framework (MOF) serves as an excellent platform for studying the low energy vibrational modes of AIE-type chromophores. In particular, we use solid-state 2H and 13C NMR experiments to investigate the phenyl ring dynamics of TPE cores that are coordinatively trapped inside a MOF and find a phenyl ring flipping energy barrier of 43(6) kJ/mol. DFT calculations are then used to deconvolute the electronic and steric contributions to this flipping barrier. Finally, we couple the NMR and DFT studies with variable temperature X-ray diffraction experiments to propose that both the ethylenic C=C bond twist and the torsion of the phenyl rings are important for quenching emission in TPE, but that the former may gate the latter. To conclude, we use these findings to propose a set of design criteria for the development of tunable turn-on porous sensors constructed from AIE-type molecules, particularly as applied to the design of new multifunctional MOFs. PMID:22889020

  3. Phenyl Ring Dynamics in a Tetraphenylethylene-Bridged Metal-Organic Framework: Implications for the Mechanism of Aggregation-Induced Emission

    SciTech Connect

    Shustova, Natalia B; Ong, Ta-Chung; Cozzolino, Anthony F; Michaelis, Vladimir K; Griffin, Robert G; Dinc,; #259; Mircea,

    2013-03-12

    Molecules that exhibit emission in the solid state, especially those known as aggregation-induced emission (AIE) chromophores, have found applications in areas as varied as light-emitting diodes and biological sensors. Despite numerous studies, the mechanism of fluorescence quenching in AIE chromophores is still not completely understood. To this end, much interest has focused on understanding the low-frequency vibrational dynamics of prototypical systems, such as tetraphenylethylene (TPE), in the hope that such studies would provide more general principles toward the design of new sensors and electronic materials. We hereby show that a perdeuterated TPE-based metal–organic framework (MOF) serves as an excellent platform for studying the low-energy vibrational modes of AIE-type chromophores. In particular, we use solid-state 2H and 13C NMR experiments to investigate the phenyl ring dynamics of TPE cores that are coordinatively trapped inside a MOF and find a phenyl ring flipping energy barrier of 43(6) kJ/mol. DFT calculations are then used to deconvolute the electronic and steric contributions to this flipping barrier. Finally, we couple the NMR and DFT studies with variable-temperature X-ray diffraction experiments to propose that both the ethylenic C=C bond twist and the torsion of the phenyl rings are important for quenching emission in TPE, but that the former may gate the latter. To conclude, we use these findings to propose a set of design criteria for the development of tunable turn-on porous sensors constructed from AIE-type molecules, particularly as applied to the design of new multifunctional MOFs.

  4. Phenyl ring dynamics in a tetraphenylethylene-bridged metal-organic framework: implications for the mechanism of aggregation-induced emission.

    PubMed

    Shustova, Natalia B; Ong, Ta-Chung; Cozzolino, Anthony F; Michaelis, Vladimir K; Griffin, Robert G; Dincă, Mircea

    2012-09-12

    Molecules that exhibit emission in the solid state, especially those known as aggregation-induced emission (AIE) chromophores, have found applications in areas as varied as light-emitting diodes and biological sensors. Despite numerous studies, the mechanism of fluorescence quenching in AIE chromophores is still not completely understood. To this end, much interest has focused on understanding the low-frequency vibrational dynamics of prototypical systems, such as tetraphenylethylene (TPE), in the hope that such studies would provide more general principles toward the design of new sensors and electronic materials. We hereby show that a perdeuterated TPE-based metal-organic framework (MOF) serves as an excellent platform for studying the low-energy vibrational modes of AIE-type chromophores. In particular, we use solid-state (2)H and (13)C NMR experiments to investigate the phenyl ring dynamics of TPE cores that are coordinatively trapped inside a MOF and find a phenyl ring flipping energy barrier of 43(6) kJ/mol. DFT calculations are then used to deconvolute the electronic and steric contributions to this flipping barrier. Finally, we couple the NMR and DFT studies with variable-temperature X-ray diffraction experiments to propose that both the ethylenic C═C bond twist and the torsion of the phenyl rings are important for quenching emission in TPE, but that the former may gate the latter. To conclude, we use these findings to propose a set of design criteria for the development of tunable turn-on porous sensors constructed from AIE-type molecules, particularly as applied to the design of new multifunctional MOFs. PMID:22889020

  5. Rational design of aggregation-induced emission luminogen with weak electron donor-acceptor interaction to achieve highly efficient undoped bilayer OLEDs.

    PubMed

    Chen, Long; Jiang, Yibin; Nie, Han; Hu, Rongrong; Kwok, Hoi Sing; Huang, Fei; Qin, Anjun; Zhao, Zujin; Tang, Ben Zhong

    2014-10-01

    In this work, two tailored luminogens (TPE-NB and TPE-PNPB) consisting of tetraphenylethene (TPE), diphenylamino, and dimesitylboryl as a π-conjugated linkage, electron donor, and electron acceptor, respectively, are synthesized and characterized. Their thermal stabilities, photophysical properties, solvachromism, fluorescence decays, electronic structures, electrochemical behaviors, and electroluminescence (EL) properties are investigated systematically, and the impacts of electron donor-acceptor (D-A) interaction on optoelectronic properties are discussed. Due to the presence of a TPE unit, both luminogens show aggregation-induced emission, but strong D-A interaction causes a decrease in emission efficiency and red-shifts in photoluminescence and EL emissions. The luminogen, TPE-PNPB, with a weak D-A interaction fluoresces strongly in solid film with a high fluorescence quantum yield of 94%. The trilayer OLED [ITO/NPB (60 nm)/TPE-PNPB (20 nm)/TPBi (40 nm)/LiF (1 nm)/Al (100 nm)] utilizing TPE-PNPB as a light emitter shows a peak luminance of 49 993 cd m(-2) and high EL efficiencies up to 15.7 cd A(-1), 12.9 lm W(-1), and 5.12%. The bilayer OLED [ITO/TPE-PNPB (80 nm)/TPBi (40 nm)/LiF (1 nm)/Al (100 nm)] adopting TPE-PNPB as a light emitter and hole transporter simultaneously affords even better EL efficiencies of 16.2 cd A(-1), 14.4 lm W(-1), and 5.35% in ambient air, revealing that TPE-PNPB is an eximious p-type light emitter. PMID:25254940

  6. Aggregation emission properties of oligomers based on tetraphenylethylene.

    PubMed

    Wang, Weizhi; Lin, Tingting; Wang, Min; Liu, Tian-Xi; Ren, Lulu; Chen, Dan; Huang, Shu

    2010-05-13

    A series of eight derivatives based on tetraphenylethylene were prepared, and two of these, i.e., 1,1-bis(4-phenylcarbonyl)-2,2-diphenylethylene (2), 1,1,2,2-tetrakis(4-phenylcarbonyl)phenylethylene (4), were characterized crystallographically. Because the rigidity and steric hindrance in the molecular structure enhanced regularly from sample 5 to 8, UV-visible absorption and PL spectra of 5-8 show the transition from aggregation-induced emission (AIE) to aggregation-induced emission enhancement (AIEE) behavior. Solid fluorescence lifetime characterization shows that samples with less steric hindrance and more interaction in or between molecules will result in a short fluorescence lifetime. All samples 5-8 become more emissive when their chains are induced to aggregate by adding water into their acetonitrile solutions. Cyclic voltammetry measurements taken give the band gap of sample 5-8 as 2.88, 2.70, 2.56, and 2.43 eV, and theoretical calculations also support these bad gap results. Conformational simulations also suggest that the origin of transition from AIE to AIEE behavior is due to the restricted intramolecular rotations of the aromatic rings in samples. PMID:20408586

  7. T-shaped monopyridazinotetrathiafulvalene-amino acid diad based chiral organogels with aggregation-induced fluorescence emission.

    PubMed

    Wang, Yuan; Liu, Yucun; Jin, Longyi; Yin, Bingzhu

    2016-08-14

    A series of pyridazine coupled tetrathiafulvalene T-shaped derivatives with varying amino acid moieties have been synthesized and their gelation properties were studied in various organic solvents. Among these derivatives, two gelators bearing glycine or phenylalanine units display efficient gelation in aromatic and polar solvents. Interestingly, these gelators, except for the gelator containing two tryptophan units, are able to gel DMF via a solution-to-gel transformation when triggered with sonication for less than 20 s or cooled below zero. A number of experiments revealed that these gelator molecules self-assembled into elastically interpenetrating three-dimensional chiral fibrillar aggregates. Importantly, all of the resulting gels result in a dramatic enhancement of the fluorescence intensity compared with their hot solution in spite of the absence of a conventional fluorophore unit and the fluorescence was effectively quenched by the introduction of C60. Moreover, the gelators can be utilized for the removal of different types of toxic molecules, such as aromatic solvents and cationic dyes, from wastewater. PMID:27418524

  8. Diketopyrrolopyrrole-Based Ratiometric/Turn-on Fluorescent Chemosensors for Citrate Detection in the Near-Infrared Region by an Aggregation-Induced Emission Mechanism.

    PubMed

    Hang, Yandi; Wang, Jian; Jiang, Tao; Lu, Niannian; Hua, Jianli

    2016-02-01

    This work reports two new diketoprrrolopyrrole-based fluorescent chemosensors (DPP-Py1 and DPP-Py2) using symmetrical diamides as recognition groups for selective and fast detection of citrate in the near-infrared region. To our delight, DPP-Py1 is a ratiometric sensor, whereas DPP-Py2 is a turn-on fluorescent sensor. It is worth noting that DPP-Py1 has higher accuracy and sensitivity with a relatively lower detection limit (1.8 × 10(-7) M) and better stability in different pH buffers than DPP-Py2. Scanning electron microscopy, dynamic light scattering analyses, (1)H NMR titration, and 2D-NOESY NMR suggested that the fluorescence increment of the probes DPP-Py1 and DPP-Py2 for citrate could probably originate from aggregation-induced emission (AIE) on the basis of the complexation of the pyridinium-based symmetrical diamides, DPPs, with carboxyl anions of citrate. Our work may provide a simpler and faster means for qualitative and quantitative analysis of citrate through an AIE mechanism. PMID:26745355

  9. In vivo tumor-targeted dual-modal fluorescence/CT imaging using a nanoprobe co-loaded with an aggregation-induced emission dye and gold nanoparticles.

    PubMed

    Zhang, Jimei; Li, Chan; Zhang, Xu; Huo, Shuaidong; Jin, Shubin; An, Fei-Fei; Wang, Xiaodan; Xue, Xiangdong; Okeke, C I; Duan, Guiyun; Guo, Fengguang; Zhang, Xiaohong; Hao, Jifu; Wang, Paul C; Zhang, Jinchao; Liang, Xing-Jie

    2015-02-01

    As an intensely studied computed tomography (CT) contrast agent, gold nanoparticle has been suggested to be combined with fluorescence imaging modality to offset the low sensitivity of CT. However, the strong quenching of gold nanoparticle on fluorescent dyes requires complicated design and shielding to overcome. Herein, we report a unique nanoprobe (M-NPAPF-Au) co-loading an aggregation-induced emission (AIE) red dye and gold nanoparticles into DSPE-PEG(2000) micelles for dual-modal fluorescence/CT imaging. The nanoprobe was prepared based on a facile method of "one-pot ultrasonic emulsification". Surprisingly, in the micelles system, fluorescence dye (NPAPF) efficiently overcame the strong fluorescence quenching of shielding-free gold nanoparticles and retained the crucial AIE feature. In vivo studies demonstrated the nanoprobe had superior tumor-targeting ability, excellent fluorescence and CT imaging effects. The totality of present studies clearly indicates the significant potential application of M-NPAPF-Au as a dual-modal non-invasive fluorescence/X-ray CT nanoprobe for in vivo tumor-targeted imaging and diagnosis. PMID:25542798

  10. Light-Up Probes Based on Fluorogens with Aggregation-Induced Emission Characteristics for Monoamine Oxidase-A Activity Study in Solution and in Living Cells.

    PubMed

    Shen, Wei; Yu, Jiajun; Ge, Jingyan; Zhang, Ruoyu; Cheng, Feng; Li, Xuefeng; Fan, Yong; Yu, Shian; Liu, Bin; Zhu, Qing

    2016-01-13

    Fluorogens with aggregation-induced emission (AIEgens) have emerged as a powerful and versatile platform for the development of novel biosensors. In this study, a series of water-soluble fluorescent probes based on tetraphenylethylene (TPE) were designed and synthesized for the detection of monoamine oxidases (MAOs) based on specific interactions between the probes and the proteins. Among the six probes developed, t-TPEM displays a significant fluorescence increase upon introduction of MAOs. Of particular significance is that the fluorescence of t-TPEM in the presence of MAO-A is 21-fold higher than other proteins including MAO-B. Lineweaver-Burk plots reveal that t-TPEM acts as an uncompetitive inhibitor of MAO-A with Ki = 17.1 μM, which confirms its good binding affinity toward MAO-A. Furthermore, a cell imaging experiment reveals that t-TPEM is able to selectively monitor the activity of MAO-A which is localized in mitochondria of MCF-7 cells. PMID:26666866

  11. Conjugated polymer amplified far-red/near-infrared fluorescence from nanoparticles with aggregation-induced emission characteristics for targeted in vivo imaging.

    PubMed

    Ding, Dan; Li, Kai; Qin, Wei; Zhan, Ruoyu; Hu, Yong; Liu, Jianzhao; Tang, Ben Zhong; Liu, Bin

    2013-03-01

    Fluorescence-amplified far-red/near-infrared (FR/NIR) nanoparticles (NPs) are synthesized by co-encapsulation of conjugated polymer donor (poly[9,9-bis(2-(2-(2-methoxyethoxy)ethoxy)ethyl)fluorenyldivinylene]; PFV) and a fluorogen acceptor (2-(2,6-bis((E)-4-(phenyl(4'-(1,2,2-triphenylvinyl)-[1,1'-biphenyl]-4-yl)amino)styryl)-4H-pyran-4-ylidene)malononitrile; TPE-TPA-DCM) with aggregation-induced emission (AIE) characteristics using biocompatible bovine serum albumin (BSA) as the encapsulation matrix. The good spectral overlap and close proximity between PFV and TPE-TPA-DCM in BSA NPs result in a 5.3-fold amplified TPE-TPA-DCM emission signal via fluorescence resonance energy transfer (FRET). The obtained PFV/TPE-TPA-DCM co-loaded BSA NPs are spherical in shape with a large Stokes shift of ∼223 nm and low cytotoxicity. The BSA matrix allows further functionalization with arginine-glycine-aspartic acid (RGD) peptide to yield fluorescent probes for specific recognition of integrin receptor-overexpressed cancer cells. The advantage of PFV amplified FR/NIR signal from TPE-TPA-DCM is further demonstrated in cellular and in vivo imaging using HT-29 colon cancer cells and a murine hepatoma H22 tumor-bearing mouse model, respectively. The high FR/NIR fluorescence and specific cancer targeting ability by RGD surface functionalization make the PFV/TPE-TPA-DCM co-loaded BSA-RGD NPs a unique FR/NIR fluorescent probe for cellular imaging and in vivo tumor diagnosis in a high contrast and selective manner. PMID:23184536

  12. Value of the Debris of Reduction Sculpture: Thiol Etching of Au Nanoclusters for Preparing Water-Soluble and Aggregation-Induced Emission-Active Au(I) Complexes as Phosphorescent Copper Ion Sensor.

    PubMed

    Shu, Tong; Su, Lei; Wang, Jianxing; Lu, Xin; Liang, Feng; Li, Chenzhong; Zhang, Xueji

    2016-06-01

    Chemical etching of gold by thiols has been known to be capable of generating nonluminescent gold(I) complexes, e.g., in size-focusing synthesis of atomically precise gold nanoclusters (GNCs). These nonluminescent gold(I) complexes have usually been considered as useless or worthless byproducts. This study shows a promising potential of thiol etching of GNCs to prepare novel water-soluble and phosphorescent gold(I) materials for sensing application. First, cysteamine-induced etching of GNCs is used to produce nonluminescent oligomeric gold(I)-thiolate complexes. Then, cadmium ion induces the aggregation of these oligomeric complexes to produce highly water-soluble ultrasmall intra-aggregates. These intra-aggregates can phosphoresce both in dilute aqueous solutions and in the solid phase. Studies on the effect of pH on their phosphorescent emission reveal the importance of the interaction between the amino groups of the ligands and cadmium ion for their phosphorescent emission property. Furthermore, Cu(2+) ion is found to quickly quench the phosphorescent emission of the intra-aggregates and simultaneously cause a Cu(2+)-concentration-dependent peak wavelength shift, enabling the establishment of a novel colorimetric sensor for sensitive and selective visual sensing of Cu(2+). PMID:27175974

  13. pH-Regulated Reversible Transition Between Polyion Complexes (PIC) and Hydrogen-Bonding Complexes (HBC) with Tunable Aggregation-Induced Emission.

    PubMed

    Tian, Sidan; Liu, Guhuan; Wang, Xiaorui; Wu, Tao; Yang, Jinxian; Ye, Xiaodong; Zhang, Guoying; Hu, Jinming; Liu, Shiyong

    2016-02-17

    The mimicking of biological supramolecular interactions and their mutual transitions to fabricate intelligent artificial systems has been of increasing interest. Herein, we report the fabrication of supramolecular micellar nanoparticles consisting of quaternized poly(ethylene oxide)-b-poly(2-dimethylaminoethyl methacrylate) (PEO-b-PQDMA) and tetrakis(4-carboxylmethoxyphenyl)ethene (TPE-4COOH), which was capable of reversible transition between polyion complexes (PIC) and hydrogen bonding complexes (HBC) with tunable aggregation-induced emission (AIE) mediated by solution pH. At pH 8, TPE-4COOH chromophores can be directly dissolved in aqueous milieu without evident fluorescence emission. However, upon mixing with PEO-b-PQDMA, polyion complexes were formed by taking advantage of electrostatic interaction between carboxylate anions and quaternary ammonium cations and the most compact PIC micelles were achieved at the isoelectric point (i.e., [QDMA(+)]/[COO(-)] = 1), as confirmed by dynamic light scattering (DLS) measurement. Simultaneously, fluorescence spectroscopy revealed an evident emission turn-on and the maximum fluorescence intensity was observed near the isoelectric point due to the restriction of intramolecular rotation of TPE moieties within the PIC cores. The kinetic study supported a micelle fusion/fission mechanism on the formation of PIC micelles at varying charge ratios, exhibiting a quick time constant (τ1) relating to the formation of quasi-equilibrium micelles and a slow time constant (τ2) corresponding to the formation of final equilibrium micelles. Upon deceasing the pH of PIC micelles from 8 to 2 at the [QDMA(+)]/[COO(-)] molar ratio of 1, TPE-4COOH chromophores became gradually protonated and hydrophobic. The size of micellar nanoparticles underwent a remarkable decrease, whereas the fluorescence intensity exhibited a further increase by approximately 7.35-fold, presumably because of the formation of HBC micelles comprising cationic PQDMA

  14. Reduction in soil aggregation in response to dust emission processes

    NASA Astrophysics Data System (ADS)

    Swet, Nitzan; Katra, Itzhak

    2016-09-01

    Dust emission by aeolian (wind) soil erosion depends on the topsoil properties of the source area, especially on the nature of the aggregates where most dust particles are held. Although the key role of soil aggregates in dust emission, the response of soil aggregation to aeolian processes and its implications for dust emission remain unknown. This study focuses on aggregate size distribution (ASD) analyses before and after in-situ aeolian experiments in semiarid loess soils that are associated with dust emission. Wind tunnel simulations show that particulate matter (PM) emission and saltation rates depend on the initial ASD and shear velocity. Under all initial ASD conditions, the content of saltator-sized aggregates (63-250 μm) increased by 10-34% due to erosion of macro-aggregates (> 500 μm), resulting in a higher size ratio (SR) between the saltators and macro-aggregates following the aeolian erosion. The results revealed that the saltator production increases significantly for soils that are subjected to short-term (anthropogenic) disturbance of the topsoil. The findings highlight a decrease in soil aggregation for all initial ASD's in response to aeolian erosion, and consequently its influence on the dust emission potential. Changes in ASD should be considered as a key parameter in dust emission models of complex surfaces.

  15. Analysis of topsoil aggregation with linkage to dust emission potential

    NASA Astrophysics Data System (ADS)

    Swet, Nitzan; Katra, Itzhak

    2015-04-01

    Dust emission by soil erosion has environmental and socioeconomic significances due to loss of a natural resource and air pollution. Topsoil resistance to erosion depends on its physicochemical properties, especially on the soil aggregation. Aggregate size distribution of soil samples is commonly used for the assessment of soil stability and fertility. It is suggested that aggregates larger than 840 µm in their effective diameter are stable to aeolian (wind) soil erosion. However the physicochemical properties of aggregates should be considered in determining the dust emission potential from soils. This study focuses on quantitative analyses of physical and chemical properties of aggregates in order to develop a soil stability index for dust emission. The study integrates laboratory analyses of soil samples and aeolian experiments of dust emission. Soil samples were taken from different land uses in a semi-arid loess soil that is subjected to aeolian erosion and dust emission. Laboratory tests include particle size distribution (PSD), soil organic carbon (SOC), inorganic carbon (CaCO3), water content (WC), and elemental composition by XRF technique. The size analysis shows significant differences in aggregation between natural-soil plots (N) and grazing-soil plots (G). The MWD index was higher in N (1204 µm) than that of G (400 µm). Basic aeolain experiments with a boundary layer wind tunnel showed dust emission of particulate matter (PM10) from both soils, although the concentrations were significantly lower in N plots. Aggregates at specific size fractions are characterized by different content of cementing agents. The content of fine particles (< 20 µm) and SOM were higher in macro-aggregates (500-2000 µm), while the CaCO3 content was higher in aggregate fraction of 63-250 µm. WC values were highest in micro-aggregates (< 63 µm). However the lowest content of these cementing agents were mostly found in the aggregate size fraction of 1000 µm. Differences

  16. Inflammation Induces TDP-43 Mislocalization and Aggregation

    PubMed Central

    Correia, Ana Sofia; Patel, Priyanka; Dutta, Kallol; Julien, Jean-Pierre

    2015-01-01

    TAR DNA-binding protein 43 (TDP-43) is a major component in aggregates of ubiquitinated proteins in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Here we report that lipopolysaccharide (LPS)-induced inflammation can promote TDP-43 mislocalization and aggregation. In culture, microglia and astrocytes exhibited TDP-43 mislocalization after exposure to LPS. Likewise, treatment of the motoneuron-like NSC-34 cells with TNF-alpha (TNF-α) increased the cytoplasmic levels of TDP-43. In addition, the chronic intraperitoneal injection of LPS at a dose of 1mg/kg in TDP-43A315T transgenic mice exacerbated the pathological TDP-43 accumulation in the cytoplasm of spinal motor neurons and it enhanced the levels of TDP-43 aggregation. These results suggest that inflammation may contribute to development or exacerbation of TDP-43 proteinopathies in neurodegenerative disorders. PMID:26444430

  17. Inflammation Induces TDP-43 Mislocalization and Aggregation.

    PubMed

    Correia, Ana Sofia; Patel, Priyanka; Dutta, Kallol; Julien, Jean-Pierre

    2015-01-01

    TAR DNA-binding protein 43 (TDP-43) is a major component in aggregates of ubiquitinated proteins in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Here we report that lipopolysaccharide (LPS)-induced inflammation can promote TDP-43 mislocalization and aggregation. In culture, microglia and astrocytes exhibited TDP-43 mislocalization after exposure to LPS. Likewise, treatment of the motoneuron-like NSC-34 cells with TNF-alpha (TNF-α) increased the cytoplasmic levels of TDP-43. In addition, the chronic intraperitoneal injection of LPS at a dose of 1mg/kg in TDP-43(A315T) transgenic mice exacerbated the pathological TDP-43 accumulation in the cytoplasm of spinal motor neurons and it enhanced the levels of TDP-43 aggregation. These results suggest that inflammation may contribute to development or exacerbation of TDP-43 proteinopathies in neurodegenerative disorders. PMID:26444430

  18. The fluorescent bioprobe with aggregation-induced emission features for monitoring to carbon dioxide generation rate in single living cell and early identification of cancer cells.

    PubMed

    Chen, Didi; Wang, Huan; Dong, Lichao; Liu, Pai; Zhang, Yahui; Shi, Jianbing; Feng, Xiao; Zhi, Junge; Tong, Bin; Dong, Yuping

    2016-10-01

    A novel fluorescent probe, tris (2-(dimethylamino) ethyl)-4,4',4″-(1H-pyrrole-1,2,5-triyl) tribenzoate (TPP-TMAE), with aggregation-enhanced emission (AEE) feature showed a simple, highly selective, specific, and instant response to trace amount carbon dioxide (CO2). Because of this special characteristic, TPP-TMAE is ideal to be a biomarker for in-situ monitoring of the CO2 generation rate during the metabolism of single living cell. The rates in single living HeLa cell, MCF-7 cell, and MEF cell were 6.40 × 10(-6)±6.0 × 10(-8) μg/h, 5.78 × 10(-6)±6.0 × 10(-8) μg/h, and 4.27 × 10(-7)±4.0 × 10(-9) μg/h, respectively. The distinct responses of TPP-TMAE to CO2 generated from cancer cells and normal cells suggested TPP-TMAE as a useful tool for deeper understanding metabolism process and distinguishing cancer cells from normal cells during the early diagnosis of cancers. PMID:27372422

  19. Aggregation-induced emission—fluorophores and applications

    NASA Astrophysics Data System (ADS)

    Hong, Yuning

    2016-06-01

    Aggregation-induced emission (AIE) is a novel photophysical phenomenon found in a group of luminogens that are not fluorescent in solution but are highly emissive in the aggregate or solid state. Since the first publication of AIE luminogens in 2001, AIE has become a hot research area in which the number of research papers regarding new AIE molecules and their applications has been increasing in an exponential manner. Thomson Reuters Essential Science Indicators ranked AIE no.3 among the Top 100 Research Frontiers in the field of Chemistry and Materials Science in 2013. In this review, I will give a general introduction of the AIE phenomenon, discuss the structure-property relationship of the AIE lumingens and summarize the recent progress in the applications including as light-emitting materials in optoelectronics, as chemosensors and bioprobes, and for bioimaging (total 69 references cited).

  20. From Dark to Light to Fluorescence Resonance Energy Transfer (FRET): Polarity-Sensitive Aggregation-Induced Emission (AIE)-Active Tetraphenylethene-Fused BODIPY Dyes with a Very Large Pseudo-Stokes Shift.

    PubMed

    Şen, Esra; Meral, Kadem; Atılgan, Serdar

    2016-01-11

    The work presented herein is devoted to the fabrication of large Stokes shift dyes in both organic and aqueous media by combining dark resonance energy transfer (DRET) and fluorescence resonance energy transfer (FRET) in one donor-acceptor system. In this respect, a series of donor-acceptor architectures of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) dyes substituted by one, two, or three tetraphenylethene (TPE) luminogens were designed and synthesised. The photophysical properties of these three chromophore systems were studied to provide insight into the nature of donor-acceptor interactions in both THF and aqueous media. Because the generation of emissive TPE donor(s) is strongly polarity dependent, due to its aggregation-induced emission (AIE) feature, one might expect the formation of appreciable fluorescence emission intensity with a very large pseudo-Stokes shift in aqueous media when considering FRET process. Interestingly, similar results were also recorded in THF for the chromophore systems, although the TPE fragment(s) of the dyes are non-emissive. The explanation for this photophysical behaviour lies in the DRET. This is the first report on combining two energy-transfer processes, namely, FRET and DRET, in one polarity-sensitive donor-acceptor pair system. The accuracy of the dark-emissive donor property of the TPE luminogen is also presented for the first time as a new feature for AIE phenomena. PMID:26617068

  1. Acoustic emission monitoring of recycled aggregate concrete under bending

    NASA Astrophysics Data System (ADS)

    Tsoumani, A. A.; Barkoula, N.-M.; Matikas, T. E.

    2015-03-01

    The amount of construction and demolition waste has increased considerably over the last few years, making desirable the reuse of this waste in the concrete industry. In the present study concrete specimens are subjected at the age of 28 days to four-point bending with concurrent monitoring of their acoustic emission (AE) activity. Several concrete mixtures prepared using recycled aggregates at various percentages of the total coarse aggregate and also a reference mix using natural aggregates, were included to investigate their influence of the recycled aggregates on the load bearing capacity, as well as on the fracture mechanisms. The results reveal that for low levels of substitution the influence of using recycled aggregates on the flexural strength is negligible while higher levels of substitution lead into its deterioration. The total AE activity, as well as the AE signals emitted during failure, was related to flexural strength. The results obtained during test processing were found to be in agreement with visual observation.

  2. Probing the self-assembly and stability of oligohistidine based rod-like micelles by aggregation induced luminescence.

    PubMed

    Frisch, Hendrik; Spitzer, Daniel; Haase, Mathias; Basché, Thomas; Voskuhl, Jens; Besenius, Pol

    2016-06-15

    The synthesis and self-assembly of a new C2-symmetric oligohistidine amphiphile equipped with an aggregation induced emission luminophore is reported. We observe the formation of highly stable and ordered rod-like micelles in phosphate buffered saline, with a critical aggregation concentration below 200 nM. Aggregation induced emission of the luminophore confirms the high stability of the anisotropic assemblies in serum. PMID:26972230

  3. Synthesis of cinnolines via Rh(iii)-catalysed dehydrogenative C-H/N-H functionalization: aggregation induced emission and cell imaging.

    PubMed

    Mayakrishnan, Sivakalai; Arun, Yuvaraj; Balachandran, Chandrasekar; Emi, Nobuhiko; Muralidharan, Doraiswamy; Perumal, Paramasivan Thirumalai

    2016-02-14

    Rhodium catalysed dehydrogenative C-H/N-H functionalization was developed to construct phthalazino[2,3-a]-/indazolo[1,2-a]cinnolines by reacting N-phenyl phthalazine/indazole with alkynes. The synthesized compounds exhibit prominent fluorescence properties in solid and aggregation states. Their application in cell imaging was investigated using various cancer cell lines. PMID:26754143

  4. Intraspecific Signals Inducing Aggregation in Periplaneta americana (Insecta: Dictyoptera).

    PubMed

    Imen, Saïd; Christian, Malosse; Virginie, Durier; Colette, Rivault

    2015-06-01

    Chemical communication is necessary to induce aggregation and to maintain the cohesion of aggregates in Periplaneta americana (L.) cockroaches. We aimed to identify the chemical message inducing aggregation in this species. Two types of bioassays were used-binary choice tests in Petri dishes and tests in Y-olfactometer. Papers conditioned by direct contact of conspecifics induce aggregation when proposed in binary choice tests and were attractive in a Y-olfactometer. The identification of the molecules present on these conditioned papers indicated that dichloromethane extracts contained mainly cuticular hydrocarbons whereas methanol extracts contained more volatile molecules. Only a mixture of extracts in both solvents induced aggregation. High concentrations of cuticular hydrocarbons are necessary to induce aggregation when presented alone. When presented with volatile molecules present in methanol extracts, low concentrations of cuticular hydrocarbons are sufficient to induce aggregation if they are presented in contact. Among volatile molecules collected on filter paper, a mixture of three compounds-hexadecanoic acid, pentadecanoic acid, and pentaethylene glycol-induced aggregation. Our results provide evidence that aggregation processes in P. americana relies on a dual mechanism: attraction over long distances by three volatile molecules and maintenance on site by contact with cuticular hydrocarbons. PMID:26313978

  5. Apolipoprotein A-I mimetic peptide 4F blocks sphingomyelinase-induced LDL aggregation[S

    PubMed Central

    Nguyen, Su Duy; Javanainen, Matti; Rissanen, Sami; Zhao, Hongxia; Huusko, Jenni; Kivelä, Annukka M.; Ylä-Herttuala, Seppo; Navab, Mohamad; Fogelman, Alan M.; Vattulainen, Ilpo; Kovanen, Petri T.; Öörni, Katariina

    2015-01-01

    Lipolytic modification of LDL particles by SMase generates LDL aggregates with a strong affinity for human arterial proteoglycans and may so enhance LDL retention in the arterial wall. Here, we evaluated the effects of apoA-I mimetic peptide 4F on structural and functional properties of the SMase-modified LDL particles. LDL particles with and without 4F were incubated with SMase, after which their aggregation, structure, and proteoglycan binding were analyzed. At a molar ratio of L-4F to apoB-100 of 2.5 to 20:1, 4F dose-dependently inhibited SMase-induced LDL aggregation. At a molar ratio of 20:1, SMase-induced aggregation was fully blocked. Binding of 4F to LDL particles inhibited SMase-induced hydrolysis of LDL by 10% and prevented SMase-induced LDL aggregation. In addition, the binding of the SMase-modified LDL particles to human aortic proteoglycans was dose-dependently inhibited by pretreating LDL with 4F. The 4F stabilized apoB-100 conformation and inhibited SMase-induced conformational changes of apoB-100. Molecular dynamic simulations showed that upon binding to protein-free LDL surface, 4F locally alters membrane order and fluidity and induces structural changes to the lipid layer. Collectively, 4F stabilizes LDL particles by preventing the SMase-induced conformational changes in apoB-100 and so blocks SMase-induced LDL aggregation and the resulting increase in LDL retention. PMID:25861792

  6. Using fluorine-containing amphiphilic random copolymers to manipulate the quantum yields of aggregation-induced emission fluorophores in aqueous solutions and the use of these polymers for fluorescent bioimaging

    PubMed Central

    Lu, Hongguang; Su, Fengyu; Mei, Qian; Tian, Yanqing; Tian, Wenjing; Johnson, Roger H.; Meldrum, Deirdre R.

    2012-01-01

    Two new series of aggregation-induced emission (AIE) fluorophore-containing amphiphilic copolymers possessing the segments of a monomeric AIE fluorophore, N-(2-hydroxypropyl)methacrylamide (HPMA), [2-(methacryloyloxy)ethyl]trimethylammonium chloride (MATMA), and/or 2,2,2-trifluoroethyl methacrylate (TFEMA) were synthesized. Photophysical properties were investigated using UV-Vis absorbance and fluorescence spectrofluorometry. The increases of molar fractions of the hydrophobic AIE fluorophores and/or the trifluoroethyl moieties result in the higher quantum yields of the AIE fluorophores in the polymers. Using 1-mol% of AIE fluorophores with the tuning of molar fractions of TFEMA, 40% quantum yield was achieved, whereas only less than 10% quantum yield was obtained for the polymers without the TFEMA segments. The quantum yield difference indicates the importance of the fluorine segments for getting high quantum yields of the AIE fluorophores. These polymers were explored for fluorescent bioimaging using human brain glioblastoma U87MG and human esophagus premalignant CP-A cell lines. All the polymers are cell permeable and located in the cellular cytoplasma area. Cellular uptake was demonstrated to be through endocytosis, which is time and energy dependent. The polymers are non-cytotoxic to the two cell lines. Because the polymers contain 19F segments, we studied the spin-lattice relaxation time (T1) and spin-spin relaxation time (T2) of these polymers. T1 and T2 are the two important parameters for the evaluations of the capacity of these polymers for further applications in 19F magnetic resonance imaging (19F MRI). Structure influence on T1 and T2, especially for T2, was observed. These new multifunctional materials are the first series of fluorinated polymers with AIE fluorophores for bioapplications. PMID:23397360

  7. Comparison of heat-induced aggregation of globular proteins.

    PubMed

    Delahaije, Roy J B M; Wierenga, Peter A; Giuseppin, Marco L F; Gruppen, Harry

    2015-06-01

    Typically, heat-induced aggregation of proteins is studied using a single protein under various conditions (e.g., temperature). Because different studies use different conditions and methods, a mechanistic relationship between molecular properties and the aggregation behavior of proteins has not been identified. Therefore, this study investigates the kinetics of heat-induced aggregation and the size/density of formed aggregates for three different proteins (ovalbumin, β-lactoglobulin, and patatin) under various conditions (pH, ionic strength, concentration, and temperature). The aggregation rate of β-lactoglobulin was slower (>10 times) than that of ovalbumin and patatin. Moreover, the conditions (pH, ionic strength, and concentration) affected the aggregation kinetics of β-lactoglobulin more strongly than for ovalbumin and patatin. In contrast to the kinetics, for all proteins the aggregate size/density increased with decreasing electrostatic repulsion. By comparing these proteins under these conditions, it became clear that the aggregation behavior cannot easily be correlated to the molecular properties (e.g., charge and exposed hydrophobicity). PMID:25965109

  8. Surfactant-induced aggregation patterns of thiazole orange: a photophysical study.

    PubMed

    Choudhury, Sharmistha Dutta; Bhasikuttan, Achikanath C; Pal, Haridas; Mohanty, Jyotirmayee

    2011-10-18

    The aggregation behavior of the DNA marker dye thiazole orange (TO), has been investigated in two types of surfactant assemblies, namely, premicelles/micelles of sodium dodecyl sulfate (SDS) and pre reverse micelles/reverse micelles of sodium bis(2-ethylhexyl) sulfosuccinate (AOT). In the case of an SDS/water system, absorption spectral changes of TO signify the formation of H-aggregates and H-dimers of the dye at premicellar concentrations, which subsequently convert to the monomeric form beyond the critical micellar concentration (cmc). Interestingly, the observed changes in the absorption and emission characteristics due to the surfactant-induced formation of H-aggregates/dimers of TO are found to be useful to estimate the surfactant concentration parameters for premicellar aggregation of SDS. In the case of an AOT/n-heptane system, similarly, H-aggregates/dimers are observed at low AOT concentrations, below the cmc. However, in this case, the H-dimers persist even beyond the cmc. This is attributed to the strong tendency of TO for self-aggregation and its favorable electrostatic interactions with the AOT head groups. With increasing water content in the AOT reverse micelles, the hydration of the dye leads to the conversion of H-dimers to the monomeric form. The steady-state fluorescence results are nicely corroborated with those from time-resolved fluorescence studies and demonstrate the interesting behavior of the surfactant-induced aggregation of TO dye. PMID:21902267

  9. Implications of epidermal growth factor (EGF) induced egf receptor aggregation.

    PubMed Central

    Wofsy, C; Goldstein, B; Lund, K; Wiley, H S

    1992-01-01

    To investigate the role of receptor aggregation in EGF binding, we construct a mathematical model describing receptor dimerization (and higher levels of aggregation) that permits an analysis of the influence of receptor aggregation on ligand binding. We answer two questions: (a) Can Scatchard plots of EGF binding data be analyzed productively in terms of two noninteracting receptor populations with different affinities if EGF induced receptor aggregation occurs? No. If two affinities characterize aggregated and monomeric EGF receptors, we show that the Scatchard plot should have curvature characteristic of positively cooperative binding, the opposite of that observed. Thus, the interpretation that the high affinity population represents aggregated receptors and the low affinity population nonaggregated receptors is wrong. If the two populations are interpreted without reference to receptor aggregation, an important determinant of Scatchard plot shape is ignored. (b) Can a model for EGF receptor aggregation and EGF binding be consistent with the "negative curvature" (i.e., curvature characteristic of negatively cooperative binding) observed in most Scatchard plots of EGF binding data? Yes. In addition, the restrictions on the model parameters required to obtain negatively curved Scatchard plots provide new information about binding and aggregation. In particular, EGF binding to aggregated receptors must be negatively cooperative, i.e., binding to a receptor in a dimer (or higher oligomer) having one receptor already bound occurs with lower affinity than the initial binding event. A third question we consider is whether the model we present can be used to detect the presence of mechanisms other than receptor aggregation that are contributing to Scatchard plot curvature. For the membrane and cell binding data we analyzed, the best least squares fits of the model to each of the four data sets deviate systematically from the data, indicating that additional factors are

  10. Evaluation of Fracture in Concrete with Recycled Aggregate by Acoustic Emission

    NASA Astrophysics Data System (ADS)

    Nishibata, Sayaka; Watanabe, Takeshi; Hashimoro, Chikanori; Kohno, Kiyoshi

    This research revealed fracture behavior of concrete in using recycled aggregates by Acoustic Emission as one of the Non-destructive Inspection. The phenomenon of acoustic emission (AE) is the propagation of elastic waves generated from a source, known as a micro-crack in an elastic material. There were taken to use low-treated recycled aggregate, crushed returned ready mixed concrete for aggregate and normal aggregate. Examination measured AE under the uniaxial compression test. The condition of load is repeated loading. As a result, fracture behavior due to low treated recycled aggregate was detected by AE. It is clarified that AE of concrete with low treated recycled aggregate appeared in low stress level. It has been understood that difference of aggregates becomes clear from Kaiser effect in repeated loading. In relation between RA value and average frequency, it has been understood the adhesion properties of the cement paste in recycled aggregate are appreciable.

  11. Changes in soil aggregation and dust emission potential in response to aeolian processes

    NASA Astrophysics Data System (ADS)

    swet, Nitzan; Katra, Itzhak

    2016-04-01

    Aeolian (wind) dust emission has high environmental and socioeconomic significances due to loss of natural soil and air pollution. Dust emission involves complex interactions between the airflow and the soil surface. The soil aggregates were dust particles are held determine the topsoil erodibility in aeolian erosion. Although the key role of soil aggregation in dust emission mechanisms, information on changes in soil aggregate size distribution (ASD) due to aeolian erosion is lucking. This study is focused on quantitative ASD analyses before and after aeolian processes (saltation). Aeolian experiments and soil analyses were conducted on semiarid loess topsoils with different initial conditions of aggregation. The results show that saltation rates and PM emissions depend on the initial ASD and shear velocity. In all initial soil conditions, the content of aggregates at saltator-sized 63-250 μm was increased by 10-34 % following erosion of macro-aggregates > 500 μm. It revealed that the aggregate-saltator production increases with the shear velocity (up to 0.61 m s-1) for soils with available macro-aggregates. The findings highlight the dynamics in soil aggregation in response to aeolian transport and therefore its significance for determining the mechanisms of dust emission from soil aggregates.

  12. Aggregation in charged nanoparticles solutions induced by different interactions

    NASA Astrophysics Data System (ADS)

    Abbas, S.; Kumar, Sugam; Aswal, V. K.; Kohlbrecher, J.

    2016-05-01

    Small-angle neutron scattering (SANS) has been used to study the aggregation of anionic silica nanoparticles as induced through different interactions. The nanoparticle aggregation is induced by addition of salt (NaCl), cationic protein (lysozyme) and non-ionic surfactant (C12E10) employing different kind of interactions. The results show that the interaction in presence of salt can be explained using DLVO theory whereas non-DLVO forces play important role for interaction of nanoparticles with protein and surfactant. The presence of salt screens the repulsion between charged nanoparticles giving rise to a net attraction in the DLVO potential. On the other hand, strong electrostatic attraction between nanoparticle and oppositely charged protein leads to protein-mediated nanoparticle aggregation. In case of non-ionic surfactant, the relatively long-range attractive depletion interaction is found to be responsible for the particle aggregation. Interestingly, the completely different interactions lead to similar kind of aggregate morphology. The nanoparticle aggregates formed are found to have mass fractal nature having a fractal dimension (~2.5) consistent with diffusion limited type of fractal morphology in all three cases.

  13. Lonomia obliqua venomous secretion induces human platelet adhesion and aggregation.

    PubMed

    Berger, Markus; Reck, José; Terra, Renata M S; Beys da Silva, Walter O; Santi, Lucélia; Pinto, Antônio F M; Vainstein, Marilene H; Termignoni, Carlos; Guimarães, Jorge A

    2010-10-01

    The caterpillar Lonomia obliqua is a venomous animal that causes numerous accidents, especially in southern Brazil, where it is considered a public health problem. The clinical manifestations include several haemostatic disturbances that lead to a hemorrhagic syndrome. Considering that platelets play a central role in hemostasis, in this work we investigate the effects of L. obliqua venomous secretion upon blood platelets responses in vitro. Results obtained shows that L. obliqua venom directly induces aggregation and ATP secretion in human washed platelets in a dose-dependent manner. Electron microscopy studies clearly showed that the venomous bristle extract was also able to produce direct platelets shape change and adhesion as well as activation and formation of platelet aggregates. Differently from other enzyme inhibitors, the venom-induced platelet aggregation was significatively inhibited by p-bromophenacyl bromide, a specific inhibitor of phospholipases A2. Additional experiments with different pharmacological antagonists indicate that the aggregation response triggered by the venom active components occurs through a calcium-dependent mechanism involving arachidonic acid metabolite(s) of the cyclooxygenase pathway and activation of phosphodiesterase 3A, an enzyme that leads to the consumption of intracellular cAMP content. It was additionally found that L. obliqua-induced platelet aggregation was independent of ADP release. Altogether, these findings are in line with the need for a better understanding of the complex hemorrhagic syndrome resulting from the envenomation caused by L. obliqua caterpillars, and can also give new insights into the management of its clinical profile. PMID:20157842

  14. PM10 emissions from aggregate fractions of an Entic Haplustoll under two contrasting tillage systems

    NASA Astrophysics Data System (ADS)

    Mendez, Mariano J.; Aimar, Silvia B.; Buschiazzo, Daniel E.

    2015-12-01

    Tillage systems affect physical and chemical properties of soils modifying its aggregation. How changes of the aggregate size distribution affect the capacity of the soil to emit fine particulate matter (PM10) to the atmosphere during wind erosion processes, is a less investigated issue. In order to answer this question, PM10 emissions from an Entic Haplustoll submitted to 25 years of continuous conventional tillage (LC) and no-till (NT) were analyzed. Soil samples were sieved with a rotary sieve in order to determine the aggregate size distribution (fractions : <0.42 mm, 0.42-0.84 mm, 0.84-2 mm, 2-6.4 mm, 6.4-19.2 mm, and >19.2 mm), the dry aggregate stability (DAS) and the erodible fraction (EF). The organic matter contents (OM), the particle size composition and the PM10 emission of each aggregate fraction were also measured. Results showed that NT promoted OM accumulations in all aggregate fractions which favored DAS and soil aggregation. The <0.42 mm sized aggregates (27%) predominated in CT and the >19.2 mm (41.7%) in NT, while the proportion of the other aggregate fractions was similar in both tillage systems. As a consequence of the smaller proportion of the <0.42 mm aggregates, the erodible fraction was lower in NT (EF: 17.3%) than in CT (30.8%). PM10 emissions of each aggregate fraction (AE) decreased exponentially with increasing size of the fractions in both tillage systems, mainly as a consequence of the smaller size and higher specific surface. AE was higher in CT than in NT for all aggregate fractions, but the higher differences were found in the <0.42 mm aggregates (18 μg g-1 in CT vs 8 μg g-1 in NT). The PM10 emission of the whole soil was three times higher in CT than in NT, while the emission of the erodible fraction (EFE) was in CT four times higher than in NT. PM10 emissions of the <0.42 mm aggregates represented over 50% of SE and 90% of EFE. We concluded that NT reduced the capacity of soils of the semiarid Pampas to emit PM10 because it

  15. Accurate modelling of flow induced stresses in rigid colloidal aggregates

    NASA Astrophysics Data System (ADS)

    Vanni, Marco

    2015-07-01

    A method has been developed to estimate the motion and the internal stresses induced by a fluid flow on a rigid aggregate. The approach couples Stokesian dynamics and structural mechanics in order to take into account accurately the effect of the complex geometry of the aggregates on hydrodynamic forces and the internal redistribution of stresses. The intrinsic error of the method, due to the low-order truncation of the multipole expansion of the Stokes solution, has been assessed by comparison with the analytical solution for the case of a doublet in a shear flow. In addition, it has been shown that the error becomes smaller as the number of primary particles in the aggregate increases and hence it is expected to be negligible for realistic reproductions of large aggregates. The evaluation of internal forces is performed by an adaptation of the matrix methods of structural mechanics to the geometric features of the aggregates and to the particular stress-strain relationship that occurs at intermonomer contacts. A preliminary investigation on the stress distribution in rigid aggregates and their mode of breakup has been performed by studying the response to an elongational flow of both realistic reproductions of colloidal aggregates (made of several hundreds monomers) and highly simplified structures. A very different behaviour has been evidenced between low-density aggregates with isostatic or weakly hyperstatic structures and compact aggregates with highly hyperstatic configuration. In low-density clusters breakup is caused directly by the failure of the most stressed intermonomer contact, which is typically located in the inner region of the aggregate and hence originates the birth of fragments of similar size. On the contrary, breakup of compact and highly cross-linked clusters is seldom caused by the failure of a single bond. When this happens, it proceeds through the removal of a tiny fragment from the external part of the structure. More commonly, however

  16. Structural investigation of radiation-induced aggregates of ribonuclease.

    PubMed

    Hajós, G; Delincée, H

    1983-10-01

    Following irradiation of bovine pancreatic ribonuclease in aqueous solution with 60Co gamma-rays protein aggregates are formed. The nature of the bonds linking these radiation-induced aggregates together has been investigated by chromatographic and electrophoretic methods. Thin-layer gel filtration and polyacrylamide gel electrophoresis, both in the presence of sodium dodecyl sulphate, demonstrated the existence of covalent crosslinks between the aggregates. However, non-covalent crosslinking also plays a role in the radiolysis of ribonuclease. Thin-layer gel filtration with and without 6 M urea and 2 per cent beta-mercaptoethanol added to the gel, revealed that only part of the covalent bonds between the aggregates consisted of disulphide linkages. By separation of the reduced aggregates by thin-layer gel filtration and electrophoresis, both with SDS, this finding was substantiated. Densitometric measurements indicated for example that the percentage of covalently linked dimers held together by disulphide bridges amounted to about 40-45 per cent, whereas the remaining 55-60 per cent of the dimers must be linked by other covalent bonds. The existence of covalent crosslinks other than disulphide bonds was also confirmed by isoelectric focusing. By this method definite differences were established between the proteolytic hydrolysates of the reduced aggregates and the reduced monomer of gamma-irradiated ribonuclease. PMID:6605318

  17. Analysis of Shear-Induced Platelet Aggregation and Breakup.

    PubMed

    Hellmuth, Rudolf; Bruzzi, Mark S; Quinlan, Nathan J

    2016-04-01

    To better understand the mechanisms leading to the formation of thrombi of hazardous sizes in the bulk of the blood, we have developed a kinetic model of shear-induced platelet aggregation (SIPA). In our model, shear rate regulates a mass-conservative population balance equation which computes the aggregation and disaggregation of platelets in a cluster mass distribution. Aggregation is modeled by the Smoluchowski coagulation equation, and disaggregation is incorporated using the aggregate breakup model of Pandya and Spielman. Previous experimental data for SIPA have been correlated with a special case of this model where only the two-body collision of free platelets was considered. However, the two-body collision theory is oblivious to the steady-state condition, and it required the use of a shear-dependent aggregation efficiency parameter to fit it to experimental data. Our method not only predicts steady states but also correlates with literature data without employing a shear-dependent aggregation efficiency. PMID:26228488

  18. Assembly of naphthalenediimide conjugated peptides: aggregation induced changes in fluorescence.

    PubMed

    Basak, Shibaji; Nanda, Jayanta; Banerjee, Arindam

    2013-08-01

    Naphthalenediimide appended peptide based self-assembly was studied. Interestingly, an aggregation induced drastic change in the fluorescence property and gel formation were observed depending on the solvent composition (chloroform : methylcyclohexane) at a fixed concentration of 1.6 mM at room temperature. PMID:23799544

  19. Alterations of platelet aggregation kinetics with ultraviolet laser emission: the "stunned platelet" phenomenon.

    PubMed

    Topaz, O; Minisi, A J; Bernardo, N L; McPherson, R A; Martin, E; Carr, S L; Carr, M E

    2001-10-01

    Platelets, a major constituent of thrombus, play a crucial role in the pathogenesis of acute ischemic coronary syndromes. The effect of ultraviolet laser emission on platelets within thrombi is unknown. The effects of increasing levels of laser energy on platelets in whole blood were investigated. Blood samples were obtained by aseptic venipuncture and anticoagulated with 3.8% sodium citrate. Samples were exposed to increased levels (0, 30, 45, 60 mJ/mm2; 25 Hz) of ultraviolet excimer laser fluence (308 nm wave-length) and then tested for ADP and collagen induced platelet aggregation, platelet concentration, and for platelet contractile force (PCF) development. Scanning electron microscopy was used to detect laser induced morphologic changes of platelets and by flow cytometric analysis to detect changes in expression of platelet surface antigens p-selectin (CD 62) and glycoprotein IIb/IIIa (CD 43). Exposure to excimer laser energy produced dose dependent suppression of platelet aggregation and force development ("stunned platelets"). ADP aggregation decreased from 8.0+/-1.1 Ohms (mean+/-SEM) to 3.7+/-0.8 Ohms (p<0.001) to 2.7+/-0.6 Ohms (p <0.001) and to 1.8+/-0.5 Ohms (p <0.001) as the laser energy increased from 0 to 30 to 45 to 60 mJ/mm2, respectively. Collagen induced aggregation decreased from 21.4+/-1.4 Ohms to 15.7+/-1.2 Ohms (p <0.001) to 11.7+/-1.1 Ohms (p <0.001) and to 9.9+/-1.0 Ohms (p <0.001), in response to the same incremental range of laser energy. Platelet contractile forces declined from 34,500+/-3700 to 27.800+/-2700 dynes as laser energy increased from 0 to 60 mJ/mm2 (p <0.03). Platelet concentration did not change with increasing laser energy. The expression of platelet surface antigen p-selectin (CD 62) remained stable through increasing levels of laser energy exposures while the percentage of CD 43 positive platelets significantly increased with exposure to laser energy, yet the level of expression did not exceed 0.5% of cells. Thus

  20. High-speed centrifugation induces aggregation of extracellular vesicles

    PubMed Central

    Linares, Romain; Tan, Sisareuth; Gounou, Céline; Arraud, Nicolas; Brisson, Alain R.

    2015-01-01

    Plasma and other body fluids contain cell-derived extracellular vesicles (EVs), which participate in physiopathological processes and have potential biomedical applications. In order to isolate, concentrate and purify EVs, high-speed centrifugation is often used. We show here, using electron microscopy, receptor-specific gold labelling and flow cytometry, that high-speed centrifugation induces the formation of EV aggregates composed of a mixture of EVs of various phenotypes and morphologies. The presence of aggregates made of EVs of different phenotypes may lead to erroneous interpretation concerning the existence of EVs harbouring surface antigens from different cell origins. PMID:26700615

  1. Salt-induced aggregation of lysozyme: Implications for crystal growth

    NASA Technical Reports Server (NTRS)

    Wilson, Lori J.

    1994-01-01

    Crystallization of proteins is a prerequisite for structural analysis by x-ray crystallography. While improvements in protein crystals have been obtained in microgravity onboard the U.S. Space Shuttle, attempts to improve the crystal growth process both on the ground and in space have been limited by our lack of understanding of the mechanisms involved. Almost all proteins are crystallized with the aid of a precipitating agent. Many of the common precipitating agents are inorganic salts. An understanding of the role of salts on the aggregation of protein monomers is the key to the elucidation of the mechanisms involved in protein crystallization. In order for crystallization to occur individual molecules must self-associate into aggregates. Detection and characterization of aggregates in supersaturated protein solutions is the first step in understanding salt-induced crystallization.

  2. Salt-induced aggregation of lysozyme: Implications for crystal growth

    NASA Astrophysics Data System (ADS)

    Wilson, Lori J.

    1994-10-01

    Crystallization of proteins is a prerequisite for structural analysis by x-ray crystallography. While improvements in protein crystals have been obtained in microgravity onboard the U.S. Space Shuttle, attempts to improve the crystal growth process both on the ground and in space have been limited by our lack of understanding of the mechanisms involved. Almost all proteins are crystallized with the aid of a precipitating agent. Many of the common precipitating agents are inorganic salts. An understanding of the role of salts on the aggregation of protein monomers is the key to the elucidation of the mechanisms involved in protein crystallization. In order for crystallization to occur individual molecules must self-associate into aggregates. Detection and characterization of aggregates in supersaturated protein solutions is the first step in understanding salt-induced crystallization.

  3. Sphingosine induces the aggregation of imine-containing peroxidized vesicles.

    PubMed

    Jiménez-Rojo, Noemi; Viguera, Ana R; Collado, M Isabel; Sims, Kacee H; Constance, Chad; Hill, Kasey; Shaw, Walt A; Goñi, Félix M; Alonso, Alicia

    2014-08-01

    Lipid peroxidation plays a central role in the pathogenesis of many diseases like atherosclerosis and multiple sclerosis. We have analyzed the interaction of sphingosine with peroxidized bilayers in model membranes. Cu(2+) induced peroxidation was checked following UV absorbance at 245nm, and also using the novel Avanti snoopers®. Mass spectrometry confirms the oxidation of phospholipid unsaturated chains. Our results show that sphingosine causes aggregation of Cu(2+)-peroxidized vesicles. We observed that aggregation is facilitated by the presence of negatively-charged phospholipids in the membrane, and inhibited by anti-oxidants e.g. BHT. Interestingly, long-chain alkylamines (C18, C16) but not their short-chain analogues (C10, C6, C1) can substitute sphingosine as promoters of vesicle aggregation. Furthermore, sphinganine but not sphingosine-1-phosphate can mimic this effect. Formation of imines in the membrane upon peroxidation was detected by (1)H-NMR and it appeared to be necessary for the aggregation effect. (31)P-NMR spectroscopy reveals that sphingosine facilitates formation of non-lamellar phase in parallel with vesicle aggregation. The data might suggest a role for sphingosine in the pathogenesis of atherosclerosis. PMID:24802275

  4. Rab7 induces clearance of α-synuclein aggregates.

    PubMed

    Dinter, Elisabeth; Saridaki, Theodora; Nippold, Markus; Plum, Sarah; Diederichs, Leonie; Komnig, Daniel; Fensky, Luisa; May, Caroline; Marcus, Katrin; Voigt, Aaron; Schulz, Jörg B; Falkenburger, Björn H

    2016-09-01

    Parkinson's disease can be caused by mutations in the α-synuclein gene and is characterized by aggregates of α-synuclein protein. Aggregates are degraded by the autophago-lysosomal pathway. Since Rab7 has been shown to regulate trafficking of late endosomes and autophagosomes, we hypothesized that over-expressing Rab7 might be beneficial in Parkinson's disease. To test this hypothesis, we expressed the pathogenic A53T mutant of α-synuclein in HEK293 cells and Drosophila melanogaster. In HEK293 cells, EGFP-Rab7-decorated vesicles contain α-synuclein. Rab7 over-expression reduced the percentage of cells with α-synuclein particles and the amount of α-synuclein protein. Time-lapse microscopy confirmed that particles frequently disappeared with Rab7 over-expression. Clearance of α-synuclein is explained by the increased occurrence of acidified α-synuclein vesicles with Rab7 over-expression, presumably representing autolysosomes. Rab7 over-expression reduced apoptosis and the percentage of dead cells in trypan blue staining. In the fly model, Rab7 rescued the locomotor deficit induced by neuronal expression of A53T-α-synuclein. These beneficial effects were not produced by Rab7 missense mutations causing Charcot Marie Tooth neuropathy, or by the related GTPases Rab5, Rab9, or Rab23. Using mass spectrometry, we identified Rab7 in neuromelanin granules purified from human substantia nigra, indicating that Rab7 might be involved in the biogenesis of these possibly protective, autophagosome-like organelles in dopaminergic neurons. Taken together, Rab7 increased the clearance of α-synuclein aggregates, reduced cell death, and rescued the phenotype in a fly model of Parkinson's disease. These findings indicate that Rab7 is rate-limiting for aggregate clearance, and that Rab7 activation may offer a therapeutic strategy for Parkinson's disease. Cells over-expressing aggregation-prone A53T alpha-synuclein develop cytoplasmic aggregates mimicking changes observed in

  5. Aggregation-induced fabrication of fluorescent organic nanorings: selective biosensing of cysteine and application to molecular logic gate.

    PubMed

    Mati, Soumya Sundar; Chall, Sayantani; Bhattacharya, Subhash Chandra

    2015-05-12

    Self-aggregation behavior in aqueous medium of four naphthalimide derivatives has exhibited substitution-dependent, unusual, aggregation induced emission enhancement (AIEE) phenomena. Absorption, emission, and time-resolved study initially indicated the formation of J-type fluorescent organic nanoaggregates (FONs). Simultaneous applications of infrared spectroscopy, theoretical studies, and dynamic light scattering (DLS) measurements explored the underlying mechanism of such substitution-selective aggregation of a chloro-naphthalimide organic molecule. Furthermore, transmission electron microscopy (TEM) visually confirmed the formation of ring like FONs with average size of 7.5-9.5 nm. Additionally, naphthalimide FONs also exhibited selective and specific cysteine amino acid sensing property. The specific behavior of NPCl aggregation toward amino acids was also employed as a molecular logic gate in information technology (IT). PMID:25893428

  6. Aggregated Myocilin Induces Russell Bodies and Causes Apoptosis

    PubMed Central

    Yam, Gary Hin-Fai; Gaplovska-Kysela, Katarina; Zuber, Christian; Roth, Jürgen

    2007-01-01

    Primary open-angle glaucoma with elevated intraocular pressure is a leading cause of blindness worldwide. Mutations of myocilin are known to play a critical role in the manifestation of the disease. Misfolded mutant myocilin forms secretion-incompetent intracellular aggregates. The block of myocilin secretion was proposed to alter the extracellular matrix environment of the trabecular meshwork, with subsequent impediment of aqueous humor outflow leading to elevated intraocular pressure. However, the molecular pathogenesis of myocilin-caused glaucoma is poorly defined. In this study, we show that heteromeric complexes composed of wild-type and mutant myocilin were retained in the rough endoplasmic reticulum, aggregating to form inclusion bodies typical of Russell bodies. The presence of myocilin aggregates induced the unfolded protein response proteins BiP and phosphorylated endoplasmic reticulum-localized eukaryotic initiation factor-2α kinase (PERK) with the subsequent activation of caspases 12 and 3 and expression of C/EBP homologous protein (CHOP)/GADD153, leading to apoptosis. Our findings identify endoplasmic reticulum stress-induced apoptosis as a pathway to explain the reduction of trabecular meshwork cells in patients with myocilin-caused glaucoma. As a consequence, the phagocytotic capacity of the remaining trabecular meshwork cell population would be insufficient for effective cleaning of aqueous humor, constituting a major pathogenetic factor for the development of increased intraocular pressure in primary open-angle glaucoma. PMID:17200186

  7. Rifampicin Induced Aggregation of Ovalbumin: Malicious Behaviour of Antibiotics.

    PubMed

    Fazili, Naveed A; Siddiqui, Gufran A; Bhat, Sheraz A; Afsar, Mohammad; Furkan, Mohammad; Naeem, Aabgeena

    2015-01-01

    Molecular modeling deciphered the site of interaction of rifampicin in the structure of ovalbumin at a site which is surrounded by residues Glu-214, Asp-98, Pro-85, Asp-91 and Asp-47. Isothermal calorimetric analysis determined the thermodynamic parameters i.e. ΔH and ΔS which came out be -8.086 cal/mol and -131 cal/mol/deg. respectively. Ovalbumin is a secretory protein of hen oviduct, present in the human blood serum and interacts with the drug rifampicin in vivo, when administered. Simulating these conditions in vitro revealed that rifampicin induced the aggregated state at 6 µM concentration which was featured by a decrease in the ANS fluorescence intensity relative to the native state while as the pre-molten and molten globule state were obtained at 3 µM and 5 µM concentration of rifampicin respectively displaying a hike in the ANS fluorescence intensity. Far-UV CD analysis suggested β-sheet rich structure with negative ellipticity peak at 217 nm for native ovalbumin incubated with 6 µM rifampicin. Increase in absorbance at 450 nm, red shift of 50 nm in the congo red binding assay and a hike of 10 fold in the ThT fluorescence intensity compared to the native state further confirmed aggregate formation. Moreover, TEM images displayed aggregates to be spherical morphologically. Aggregates formed at 6 µM rifampicin concentration were found to be cytotoxic as there was a reduction of cell viability to 28%. Thus, protein-drug interaction primarily facilitates a structural alteration in the native structure of proteins leading to their aggregation which were proved to be cytotoxic in nature. PMID:26008186

  8. Membrane Permeation Induced by Aggregates of Human Islet Amyloid Polypeptides

    PubMed Central

    Poojari, Chetan; Xiao, Dequan; Batista, Victor S.; Strodel, Birgit

    2013-01-01

    Several neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases as well as nonneuropathic diseases such as type II diabetes and atrial amyloidosis are associated with aggregation of amyloid polypeptides into fibrillar structures, or plaques. In this study, we use molecular dynamics simulations to test the stability and orientation of membrane-embedded aggregates of the human islet amyloid polypeptide (hIAPP) implicated in type II diabetes. We find that in both monolayers and bilayers of dipalmitoylphosphatidylglycerol (DPPG) hIAPP trimers and tetramers remain inside the membranes and preserve their β-sheet secondary structure. Lipid bilayer-inserted hIAPP trimers and tetramers orient inside DPPG at 60° relative to the membrane/water interface and lead to water permeation and Na+ intrusion, consistent with ion-toxicity in islet β-cells. In particular, hIAPP trimers form a water-filled β-sandwich that induce water permeability comparable with channel-forming proteins, such as aquaporins and gramicidin-A. The predicted disruptive orientation is consistent with the amphiphilic properties of the hIAPP aggregates and could be probed by chiral sum frequency generation (SFG) spectroscopy, as predicted by the simulated SFG spectra. PMID:24268144

  9. Beam-induced graphitic carbon cage transformation from sumanene aggregates

    SciTech Connect

    Fujita, Jun-ichi Tachi, Masashi; Murakami, Katsuhisa; Sakurai, Hidehiro; Morita, Yuki; Higashibayashi, Shuhei; Takeguchi, Masaki

    2014-01-27

    We found that electron-beam irradiation of sumanene aggregates strongly enhanced their transformation into a graphitic carbon cage, having a diameter of about 20 nm. The threshold electron dose was about 32 mC/cm{sup 2} at 200 keV, but the transformation is still induced at 20 keV. The transformation sequence suggested that the cage was constructed accompanied by the dynamical movement of the transiently linked sumanene molecules in order to pile up inside the shell. Thus, bond excitation in the sumanene molecules rather than a knock-on of carbon atoms seems to be the main cause of the cage transformation.

  10. Photoinduced Synthesis of Dual-Emissive Tetraphenylethene-Based Dendrimers with Tunable Aggregates and Solution States Emissions.

    PubMed

    Abd-El-Aziz, Alaa S; Agatemor, Christian; Etkin, Nola; Wagner, Brian

    2016-08-01

    Photoactive materials are actively researched, piloting breakthroughs that have enriched fundamental understanding of science, and have led to real applications. Tetraphenylethene, a photoactive molecule that is of interest from fundamental and applied perspectives, features photochemical properties that are not exploited in the design of photoactive, dual-emissive materials. Here, tetraphenylethene-based, dual-emissive dendrimers are constructed via a synthetic approach that involves a photochemical reaction that exploits the photochemistry of tetraphenylethene. These dendrimers are emissive in solution and in the aggregate state with tunable dual emissions at 368 and 469 nm. The photochemical reaction also tunes the size of the aggregates, increasing the size after UV irradiation. The reported synthetic strategy is a direct and facile approach to accessing dual-emissive macromolecules, especially tetraphenylethene-based systems for real applications. PMID:27226397

  11. Detection of Gold Nanoparticles Aggregation Growth Induced by Nucleic Acid through Laser Scanning Confocal Microscopy

    PubMed Central

    Gary, Ramla; Carbone, Giovani; Petriashvili, Gia; De Santo, Maria Penelope; Barberi, Riccardo

    2016-01-01

    The gold nanoparticle (GNP) aggregation growth induced by deoxyribonucleic acid (DNA) is studied by laser scanning confocal and environmental scanning electron microscopies. As in the investigated case the direct light scattering analysis is not suitable, we observe the behavior of the fluorescence produced by a dye and we detect the aggregation by the shift and the broadening of the fluorescence peak. Results of laser scanning confocal microscopy images and the fluorescence emission spectra from lambda scan mode suggest, in fact, that the intruding of the hydrophobic moiety of the probe within the cationic surfactants bilayer film coating GNPs results in a Förster resonance energy transfer. The environmental scanning electron microscopy images show that DNA molecules act as template to assemble GNPs into three-dimensional structures which are reminiscent of the DNA helix. This study is useful to design better nanobiotechnological devices using GNPs and DNA. PMID:26907286

  12. Detection of Gold Nanoparticles Aggregation Growth Induced by Nucleic Acid through Laser Scanning Confocal Microscopy.

    PubMed

    Gary, Ramla; Carbone, Giovani; Petriashvili, Gia; De Santo, Maria Penelope; Barberi, Riccardo

    2016-01-01

    The gold nanoparticle (GNP) aggregation growth induced by deoxyribonucleic acid (DNA) is studied by laser scanning confocal and environmental scanning electron microscopies. As in the investigated case the direct light scattering analysis is not suitable, we observe the behavior of the fluorescence produced by a dye and we detect the aggregation by the shift and the broadening of the fluorescence peak. Results of laser scanning confocal microscopy images and the fluorescence emission spectra from lambda scan mode suggest, in fact, that the intruding of the hydrophobic moiety of the probe within the cationic surfactants bilayer film coating GNPs results in a Förster resonance energy transfer. The environmental scanning electron microscopy images show that DNA molecules act as template to assemble GNPs into three-dimensional structures which are reminiscent of the DNA helix. This study is useful to design better nanobiotechnological devices using GNPs and DNA. PMID:26907286

  13. The cell aggregating propensity of probiotic actinobacterial isolates: isolation and characterization of the aggregation inducing peptide pheromone.

    PubMed

    Muthu Selvam, Ramu; Vinothini, Gopal; Palliyarai Thaiyammal, Sethuramalingam; Latha, Selvanathan; Chinnathambi, Arunachalam; Dhanasekaran, Dharumadurai; Padmanabhan, Parasuraman; Ali Alharbi, Sulaiman; Archunan, Govindaraju

    2016-01-01

    The auto-aggregating ability of a probiotic is a prerequisite for colonization and protection of the gastrointestinal tract, whereas co-aggregation provides a close interaction with pathogenic bacteria. Peptide pheromone mediated signaling has been studied in several systems. However, it has not yet been explored in prokaryotes, especially actinobacteria. Hence, in the present study, the diffusible aggregation promoting factor was purified from the culture supernatant of a potent actinobacterial probiont and characterized using 20 different actinobacterial cultures isolated from the gut region of chicken and goat. The results showed that the pheromone-like compound induces the aggregation propensity of treated isolates. The factor was found to be a heat stable, acidic pH resistant, low molecular weight peptide which enhances the biofilm forming ability of other actinobacterial isolates. The aggregation promoting factor represents a bacterial sex factor (pheromone) and its characterization confirms its usage in the probiotic formulation. PMID:26754920

  14. Methylglyoxal-induced modification causes aggregation of myoglobin.

    PubMed

    Banerjee, Sauradipta; Maity, Subhajit; Chakraborti, Abhay Sankar

    2016-02-15

    Post-translational modification of proteins by Maillard reaction, known as glycation, is thought to be the root cause of different complications, particularly in diabetes mellitus and age-related disorders. Methylglyoxal (MG), a reactive α-oxoaldehyde, increases in diabetic condition and reacts with proteins to form advanced glycation end products (AGEs) following Maillard-like reaction. We have investigated the in vitro effect of MG (200μM) on the monomeric heme protein myoglobin (Mb) (100μM) in a time-dependent manner (7 to 18days incubation at 25°C). MG induces significant structural alterations of the heme protein, including heme loss, changes in tryptophan fluorescence, decrease of α-helicity with increased β-sheet content etc. These changes occur gradually with increased period of incubation. Incubation of Mb with MG for 7days results in formation of the AGE adducts: carboxyethyllysine at Lys-16, carboxymethyllysine at Lys-87 and carboxyethyllysine or pyrraline-carboxymethyllysine at Lys-133. On increasing the period of incubation up to 14days, additional AGEs namely, carboxyethyllysine at Lys-42 and hydroimidazolone or argpyrimidine at Arg-31 and Arg-139 have been detected. MG also induces aggregation of Mb, which is clearly evident with longer period of incubation (18days), and appears to have amyloid nature. MG-derived AGEs may thus have an important role as the precursors of protein aggregation, which, in turn, may be associated with physiological complications. PMID:26554310

  15. Methylglyoxal-induced modification causes aggregation of myoglobin

    NASA Astrophysics Data System (ADS)

    Banerjee, Sauradipta; Maity, Subhajit; Chakraborti, Abhay Sankar

    2016-02-01

    Post-translational modification of proteins by Maillard reaction, known as glycation, is thought to be the root cause of different complications, particularly in diabetes mellitus and age-related disorders. Methylglyoxal (MG), a reactive α-oxoaldehyde, increases in diabetic condition and reacts with proteins to form advanced glycation end products (AGEs) following Maillard-like reaction. We have investigated the in vitro effect of MG (200 μM) on the monomeric heme protein myoglobin (Mb) (100 μM) in a time-dependent manner (7 to 18 days incubation at 25 °C). MG induces significant structural alterations of the heme protein, including heme loss, changes in tryptophan fluorescence, decrease of α-helicity with increased β-sheet content etc. These changes occur gradually with increased period of incubation. Incubation of Mb with MG for 7 days results in formation of the AGE adducts: carboxyethyllysine at Lys-16, carboxymethyllysine at Lys-87 and carboxyethyllysine or pyrraline-carboxymethyllysine at Lys-133. On increasing the period of incubation up to 14 days, additional AGEs namely, carboxyethyllysine at Lys-42 and hydroimidazolone or argpyrimidine at Arg-31 and Arg-139 have been detected. MG also induces aggregation of Mb, which is clearly evident with longer period of incubation (18 days), and appears to have amyloid nature. MG-derived AGEs may thus have an important role as the precursors of protein aggregation, which, in turn, may be associated with physiological complications.

  16. Evidence of DMSO-Induced Protein Aggregation in Cells.

    PubMed

    Giugliarelli, A; Urbanelli, L; Ricci, M; Paolantoni, M; Emiliani, C; Saccardi, R; Mazzanti, B; Lombardini, L; Morresi, A; Sassi, P

    2016-07-14

    We report on a study of protein aggregation induced on different cell samples by dimethyl sulfoxide (DMSO) addition. DMSO is the most commonly used cryoprotectant because it is supposed to readily diffuse across lipid bilayers, thus reducing water activity within cells; despite its large use, the mechanism of penetration and even the main interaction features with cell components are far from being understood. In the present work, infrared absorption spectroscopy is successfully applied to real time detection of chemical and structural changes occurring in cells during dehydration from water and water/DMSO suspensions. As a most interesting result, DMSO is observed to favor protein aggregation both in cellular model systems, as cultured lymphocytes and fibroblasts, and in human samples for clinic use, as hematopoietic stem cells from cord blood. This effect is evidenced at low water content, analogously to what is observed for protein solutions. Such tendency is not specific of the type of protein and suggests one possible origin of DMSO toxicity. PMID:26859100

  17. Mechanisms of large Stokes shift and aggregation-enhanced emission of osmapentalyne cations in solution: combined MD simulations and QM/MM calculations.

    PubMed

    Sun, Guang-Xu; Ju, Ming-Gang; Zang, Hang; Zhao, Yi; Liang, WanZhen

    2015-10-01

    Osmapentalyne cations synthesized recently show remarkable optical properties, such as near-infrared emission, unusual large Stokes shift and aggregation-enhanced emission. Here, the mechanisms behind those novel optical behaviors are revealed from the combined molecular dynamics simulations and hybrid quantum mechanics/molecular mechanics calculations. The results demonstrate that the large Stokes shift in the gas phase comes from a photoexcitation-induced deformation of the osmium plane, whereas in solution it corresponds to the variation of osmium ring symmetry. Although the central chromophore ring dominates the absorption and emission processes, the protecting groups PPh3 join the emission. As osmapentalyne cations are aggregated together in solution, the radical distribution functions of their mass-central distances display several peaks immersed in a broad envelope due to different aggregation pathways. However, the chromophore centers are protected by the PPh3 groups, the aggregation structures do not affect the Stokes shift too much, and the calculated aggregate-enhanced emission is consistent with experimental measurements. PMID:26339695

  18. Chaotic dynamics in cardiac aggregates induced by potassium channel block

    NASA Astrophysics Data System (ADS)

    Quail, Thomas; McVicar, Nevin; Aguilar, Martin; Kim, Min-Young; Hodge, Alex; Glass, Leon; Shrier, Alvin

    2012-09-01

    Chaotic rhythms in deterministic models can arise as a consequence of changes in model parameters. We carried out experimental studies in which we induced a variety of complex rhythms in aggregates of embryonic chick cardiac cells using E-4031 (1.0-2.5 μM), a drug that blocks the hERG potassium channel. Following the addition of the drug, the regular rhythm evolved to display a spectrum of complex dynamics: irregular rhythms, bursting oscillations, doublets, and accelerated rhythms. The interbeat intervals of the irregular rhythms can be described by one-dimensional return maps consistent with chaotic dynamics. A Hodgkin-Huxley-style cardiac ionic model captured the different types of complex dynamics following blockage of the hERG mediated potassium current.

  19. Fluorescence spectroscopy in probing spontaneous and induced aggregation amongst size-selective gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Rahman, Dewan S.; Ghosh, Sujit Kumar

    2014-06-01

    Gold nanoparticles have been synthesized by borohydride reduction using poly(N-vinyl 2-pyrrolidone) as the stabilizing agent in aqueous medium in the size regime of 1-5 nm. Aggregation amongst these polymer-stabilized gold nanoparticles has been accomplished by the controlled addition of hydrazine or aggregation may occur spontaneously (devoid of any chemicals) that is ubiquitous to nanoparticulate systems. Now, fluorescencein isothiocyanate (FITC), a prototype molecular probe has been employed in understanding the physical principles of aggregation phenomenon of the size-selective gold nanoparticles undergoing spontaneous and induced-aggregation under stipulated conditions. It is seen that there is enhancement of fluorescence intensity of FITC in the presence of both spontaneously and induced-aggregated gold nanoclusters as compared to free FITC. Interestingly, it is observed that the fluorescence sensitivity is able to distinguish seven different sizes of the gold nanoparticles in the aggregates and maximum enhancement of intensity arises at higher concentration with increase in size of gold particles within the aggregates. With increase in concentration of gold nanoparticle aggregates, the intensity increases, initially, reaches a maximum at a threshold concentration and then, gradually decreases in the presence of both spontaneously and induced-aggregated gold particles. However, the salient feature of physical significance is that the maximum enhancement of intensity with time has remained almost same for induced-aggregated gold while decreases exponentially with spontaneously aggregated gold particles.

  20. Aggregation-Induced Delayed Fluorescence Based on Donor/Acceptor-Tethered Janus Carborane Triads: Unique Photophysical Properties of Nondoped OLEDs.

    PubMed

    Furue, Ryuhei; Nishimoto, Takuro; Park, In Seob; Lee, Jiyoung; Yasuda, Takuma

    2016-06-13

    Luminescent materials consisting of boron clusters, such as carboranes, have attracted immense interest in recent years. In this study, luminescent organic-inorganic conjugated systems based on o-carboranes directly bonded to electron-donating and electron-accepting π-conjugated units were elaborated as novel optoelectronic materials. These o-carborane derivatives simultaneously possessed aggregation-induced emission (AIE) and thermally activated delayed fluorescence (TADF) capabilities, and showed strong yellow-to-red emissions with high photoluminescence quantum efficiencies of up to 97 % in their aggregated states or in solid neat films. Organic light-emitting diodes utilizing these o-carborane derivatives as a nondoped emission layer exhibited maximum external electroluminescence quantum efficiencies as high as 11 %, originating from TADF. PMID:27145481

  1. Effects of aluminum-induced aggregation on the fluorescence of humic substances

    SciTech Connect

    Sharpless, C.M.; McGown, L.B.

    1999-09-15

    Aluminum-induced aggregates of terrestrial and aquatic humic acid standards from the International Humic Substances Society are shown to be fluorescent by means of a multiwavelength fluorescence anisotropy experiment in which the data were treated with a model for nonspherical particles. While aggregates of aquatic humic acids appear in the fluorescence signal at both short and long excitation wavelengths, aggregates of terrestrial humic acids are detected only at the long Wavelength. Furthermore, the results indicate that emission obtained at longer excitation wavelengths is representative of smaller particles. At pH 4, the aquatic humic acids appear to exist in an extended conformation, whereas the terrestrial humic acids show less extension. The size and shape of the fluorescent particles display a complex dependence on Al concentration. Both enhancement and quenching of fluorescence are observed in the total luminescence spectra upon Al addition. However, quenching is shown to be the result of decreased humic acid concentration due to precipitation by Al rather than photophysical processes.

  2. Theory of non-Condon emission from the interchain exciton in conjugated polymer aggregates

    NASA Astrophysics Data System (ADS)

    Bittner, Eric R.; Karabunarliev, Stoyan; Herz, Laura M.

    2007-05-01

    The authors present here a simple analysis that explains the apparent strengthening of electron phonon interaction upon aggregation in conjugated polymer materials. The overall scheme is that of an intermolecular Herzberg-Teller effect whereby sidebands of a forbidden transition are activated by oppositely phased vibrations. The authors show that upon aggregation, the 0-0 emission becomes symmetry forbidden and the apparent redshift and remaining vibronic structure are due to sideband (0-1,0-2, etc.) emission. At higher temperatures, the 0-0 peak is due to thermal population in a higher lying even-parity vibronic state rather than direct emission from the odd-paritied lowest intermolecular vibronic state.

  3. Light-induced self-assembly and decay of J aggregates of thiamonomethinecyanine dyes.

    PubMed

    Petrenko, Volodymyr Yu; Dimitriev, Oleg P

    2014-12-15

    Formation of J aggregates, that is, one-dimensional supramolecular self-organizations in which the transition moments of individual molecules are aligned parallel to the line joining their centers through a "head-to-tail" arrangement, normally proceed via electrostatic interactions between oppositely charged molecular groups; this is facilitated by an electrolyte medium. Here, we show that J aggregates of thiamonomethinecyanine dyes in a solution can be assembled from dye dimers by illuminating the solution with light of the appropriate wavelength to induce excitation of the dye dimers. The reverse process is also demonstrated by application of light of the correct wavelength to induce excitation of the J aggregates. Our results indicate that spontaneous J aggregation in the dark and formation of J aggregates through illumination proceed through different mechanisms; the former resulting in an increase in the number of the aggregates and the latter in an increase in the size of the aggregates. PMID:25294591

  4. Proton triggered emission and selective sensing of picric acid by the fluorescent aggregates of 6,7-dimethyl-2,3-bis-(2-pyridyl)-quinoxaline.

    PubMed

    Mazumdar, Prativa; Maity, Samir; Shyamal, Milan; Das, Debasish; Sahoo, Gobinda Prasad; Misra, Ajay

    2016-03-14

    A heteroatom containing organic fluorophore 6,7-dimethyl-2,3-bis-(2-pyridyl)-quinoxaline (BPQ) is weakly emissive in solution but its emission properties are highly enhanced in the aggregated state due to the restriction of intramolecular rotation (RIR) and large amplitude vibrational modes, demonstrating the phenomenon, aggregation induced emission enhancement (AIEE). It has strong proton capture capability, allowing reversible fluorescence switching in basic and acidic medium and the emission color changes from blue to green in the aggregated state through protonation. It has been explained as a competition between intramolecular charge transfers (ICTs) and the AIEE phenomena at a lower pH range (pH ∼1-4). Such behavior enables it as a fluorescent pH sensor for detection in acidic and basic medium. Morphologies of the particles are characterized using optical and field emission scanning electron microscopic (FESEM) studies. The turn off fluorescence properties of aggregated BPQ have been utilized for the selective detection of picric acid and the fluorescence quenching is explained due to ground state complexation with a strong quenching constant, 7.81 × 10(4) M(-1). PMID:26608816

  5. Paradoxical Acceleration of Dithiothreitol-Induced Aggregation of Insulin in the Presence of a Chaperone

    PubMed Central

    Bumagina, Zoya; Gurvits, Bella; Artemova, Natalya; Muranov, Konstantin; Kurganov, Boris

    2010-01-01

    The kinetics of dithiothreitol (DTT)-induced aggregation of human recombinant insulin and the effect of α-crystallin, a representative of the family of small heat shock proteins, on the aggregation process have been studied using dynamic light scattering technique. Analysis of the distribution of the particles by size measured in the course of aggregation showed that the initial stage of the aggregation process was the stage of formation of the start aggregates with a hydrodynamic radius (Rh) of about 90 nm. When studying the effect of α-crystallin on the rate of DTT-induced aggregation of insulin, it was demonstrated that low concentrations of α-crystallin dramatically accelerated the aggregation process, whereas high concentrations of α-crystallin suppressed insulin aggregation. In the present study, at the molar stoichiometric ratio (insulin:α-crystallin) less than 1:0.5, a pronounced accelerating effect of α-crystallin was observed; whereas a ratio exceeding the value of 1:0.6 caused suppression of insulin aggregation. The mechanisms underlying the dual effect of α-crystallin have been proposed. It is assumed that heterogeneous nucleation occurring on the surface of the α-crystallin particle plays the key role in the paradoxical acceleration of insulin aggregation by α-crystallin that may provide an alternative biologically significant pathway of the aggregation process. PMID:21151456

  6. Aggregation-Induced Resonance Raman Optical Activity (AIRROA): A New Mechanism for Chirality Enhancement.

    PubMed

    Zajac, Grzegorz; Kaczor, Agnieszka; Pallares Zazo, Ana; Mlynarski, Jacek; Dudek, Monika; Baranska, Malgorzata

    2016-05-01

    Raman optical activity (ROA) spectroscopy is hampered by low sensitivity, with limited possibilities for enhancing the signal. In the present study, we report a new mechanism whereby chirality is enhanced using the resonance resulting from supramolecular aggregation. We have named this mechanism aggregation-induced resonance Raman optical activity (AIRROA). As an example, we study J-aggregates of astaxanthin (AXT), which show strong absorption of circularly polarized light in the range of ROA excitation. The implications of aggregation-induced signal enhancement for chiroptical spectroscopy are discussed. PMID:27057926

  7. Concentrating Aggregation-Induced Fluorescence in Planar Waveguides: A Proof-of-Principle

    PubMed Central

    Banal, James L.; White, Jonathan M.; Ghiggino, Kenneth P.; Wong, Wallace W. H.

    2014-01-01

    The photophysical properties of fluorescent dyes are key determinants in the performance of luminescent solar concentrators (LSCs). First-generation dyes – coumarin, perylenes, and rhodamines - used in LSCs suffer from both concentration quenching in the solid-state and small Stokes shifts which limit the current LSC efficiencies to below theoretical limits. Here we show that fluorophores that exhibit aggregation-induced emission (AIE) are promising materials for LSC applications. Experiments and Monte Carlo simulations show that the optical quantum efficiencies of LSCs with AIE fluorophores are at least comparable to those of LSCs with first-generation dyes as the active materials even without the use of any optical accessories to enhance the trapping efficiency of the LSCs. Our results demonstrate that AIE fluorophores can potentially solve some key limiting properties of first-generation LSC dyes. PMID:24844675

  8. Bismuth-Based Coordination Polymers with Efficient Aggregation-Induced Phosphorescence and Reversible Mechanochromic Luminescence.

    PubMed

    Toma, Oksana; Allain, Magali; Meinardi, Francesco; Forni, Alessandra; Botta, Chiara; Mercier, Nicolas

    2016-07-01

    Two bismuth coordination polymers (CPs), (TBA)[BiBr4 (bp4mo)] (TBA=tetrabutylammonium) and [BiBr3 (bp4mo)2 ], which are based on the rarely used simple ditopic ligand N-oxide-4,4'-bipyridine (bp4mo), show mechanochromic luminescence (MCL). High solid-state phosphorescence quantum yields of up to 85 % were determined for (TBA)[BiBr4 (bp4mo)] (λem =540 nm). Thorough investigations of the luminescence properties combined with DFT and TDDFT calculations revealed that the emission is due to aggregation-induced phosphorescence (AIP). Upon grinding, both samples became amorphous, and their luminescence changed from yellow to orange and red, respectively. Heating or exposure to water vapor led to the recovery of the initial luminescence. These materials are the first examples of mechanochromic phosphors based on bismuth(III). PMID:27166740

  9. Fluorinated counterion-enhanced emission of rhodamine aggregates: ultrabright nanoparticles for bioimaging and light-harvesting.

    PubMed

    Shulov, Ievgen; Oncul, Sule; Reisch, Andreas; Arntz, Youri; Collot, Mayeul; Mely, Yves; Klymchenko, Andrey S

    2015-11-21

    The key to ultrabright fluorescent nanomaterials is the control of dye emission in the aggregated state. Here, lipophilic rhodamine B derivatives are assembled into nanoparticles (NPs) using tetraphenylborate counterions with varied fluorination levels that should tune the short-range dye ordering. Counterion fluorination is found to drastically enhance the emission characteristics of these NPs. Highly fluorinated counterions produce 10-20 nm NPs containing >300 rhodamine dyes with a fluorescence quantum yield of 40-60% and a remarkably narrow emission band (34 nm), whereas, for other counterions, aggregation caused quenching with a weak broad-band emission is observed. NPs with the most fluorinated counterion (48 fluorines) are ∼40-fold brighter than quantum dots (QD585 at 532 nm excitation) in single-molecule microscopy, showing improved photostability and suppressed blinking. Due to exciton diffusion, revealed by fluorescence anisotropy, these NPs are efficient FRET donors to single cyanine-5 acceptors with a light-harvesting antenna effect reaching 200. Finally, NPs with the most fluorinated counterion are rather stable after entry into living cells, in contrast to their less fluorinated analogue. Thus, the present work shows the crucial role of counterion fluorination in achieving high fluorescence brightness and photostability, narrow-band emission, efficient energy transfer and high intracellular stability of nanomaterials for light harvesting and bioimaging applications. PMID:26482443

  10. Equilibrium excited state and emission spectra of molecular aggregates from the hierarchical equations of motion approach

    NASA Astrophysics Data System (ADS)

    Jing, Yuanyuan; Chen, Liping; Bai, Shuming; Shi, Qiang

    2013-01-01

    The hierarchical equations of motion (HEOM) method was applied to calculate the emission spectra of molecular aggregates using the Frenkel exciton model. HEOM equations for the one-exciton excited state were first propagated until equilibration. The reduced density operator and auxiliary density operators (ADOs) were used to characterize the coupled system-bath equilibrium. The dipole-dipole correlation functions were then calculated to obtain the emission spectra of model dimers, and the B850 band of light-harvesting complex II (LH2) in purple bacteria. The effect of static disorder on equilibrium excited state and the emission spectra of LH2 was also explicitly considered. Several approximation schemes, including the high temperature approximation (HTA) of the HEOM, a modified version of the HTA, the stochastic Liouville equation approach, the perturbative time-local and time-nonlocal generalized quantum master equations, were assessed in the calculation of the equilibrium excited state and emission spectra.

  11. Mechanism of flow-induced biomolecular and colloidal aggregate breakup

    NASA Astrophysics Data System (ADS)

    Conchúir, Breanndán Ó.; Zaccone, Alessio

    2013-03-01

    The drift-diffusion equation is first solved analytically for the dissociation rate and lifetime of a biomolecular or colloidal dimer bonded by realistic intermolecular potentials, under shear flow. Then we show using rigidity percolation concepts that the lifetime of a generic cluster formed under shear is controlled by the typical lifetime of a single bond in its interior. The latter, however, is also affected by collective stress transmission from other bonds in the aggregate, which we account for by introducing a semiempirical, analytical stress transmission efficiency 0⩽Γ⩽1 calibrated on several simulation data sets. We show that aggregate breakup is a thermally activated process in which the activation energy is controlled by the interplay between intermolecular forces and the shear drift. The collective contribution to the overall shear drift term is dominant for large enough fractal aggregates, while surface erosion prevails for small and compact aggregates. The crossover between the two regimes occurs when ΓN≃2, where both the number of particles in the cluster N and the stress transmission efficiency Γ depend on the aggregate structure through the fractal dimension df. The analytical framework for the aggregate breakup rate is in quantitative agreement with experiments and can be used in future studies in the population balance modeling of colloidal and protein aggregation.

  12. [Effect of microbial aggregation state on nitrous oxide emission in simultaneous nitrification and denitrification nitrogen removal process].

    PubMed

    Yin, Qian-Ting; Li, Ping; Wu, Jin-Hua; Wang, Xiang-De

    2011-07-01

    In order to realize efficient nitrogen removal and N2O emission reduction, air lift circulation bioreactors were applied to study the relationship between activated sludge aggregation state and N2O emission characters on the basis of high nitrogen removal performance. The nitrification/denitrification activity of different microbial aggregates was evaluated by key enzyme action ratio method. Combined with correlative theoretical analysis, the optimal aggregation state with efficient nitrogen removal and N2O emission reduction was selected. According to the results, different activated sludge aggregation state in SND would lead to significant difference of N2O emission amount (> or = 40%). The smaller aggregates (< or = 0.9 mm) with moderate compactness could keep high SND efficiency (> or = 70%) and achieved N2O emission reduction. In experimental defined system, the optimal diameter of aggregates was in the range of 0.45-0.9 mm, which could obtain higher nitrification activity [ammonia-oxidizing bacteria activity was 0.17 mg x (g x min) (-1), nitrite-oxidizing bacteria activity was 0.74 mg x (g x min) (-1)] and denitrification activity [NO3(-) -N consumption rate was 0.47 mg x (g x min) (-1), NO2(-) -N consumption rate was 0.22 mg x (g x min) (-1)]. Compared to the control group, N2O accumulated emission amount in the reactor with aggregates of 0.45-0.9 mm could be realized reduction more than 32.55%. PMID:21922830

  13. Ralstonia insidiosa induces cell aggregation by Listeria monocytogenes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofilm formation is an important strategy for foodborne bacterial pathogens to survive in stressful environments such as fresh produce processing facilities. Bacterial cell aggregation strongly promotes the initiation of microcolonies and the formation of biofilms on abiological surfaces. We previ...

  14. Glyceraldehyde-3-phosphate Dehydrogenase Aggregate Formation Participates in Oxidative Stress-induced Cell Death*

    PubMed Central

    Nakajima, Hidemitsu; Amano, Wataru; Kubo, Takeya; Fukuhara, Ayano; Ihara, Hideshi; Azuma, Yasu-Taka; Tajima, Hisao; Inui, Takashi; Sawa, Akira; Takeuchi, Tadayoshi

    2009-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)2 is a classic glycolytic enzyme that also mediates cell death by its nuclear translocation under oxidative stress. Meanwhile, we previously presented that oxidative stress induced disulfide-bonded GAPDH aggregation in vitro. Here, we propose that GAPDH aggregate formation might participate in oxidative stress-induced cell death both in vitro and in vivo. We show that human GAPDH amyloid-like aggregate formation depends on the active site cysteine-152 (Cys-152) in vitro. In SH-SY5Y neuroblastoma, treatment with dopamine decreases the cell viability concentration-dependently (IC50 = 202 μm). Low concentrations of dopamine (50–100 μm) mainly cause nuclear translocation of GAPDH, whereas the levels of GAPDH aggregates correlate with high concentrations of dopamine (200–300 μm)-induced cell death. Doxycycline-inducible overexpression of wild-type GAPDH in SH-SY5Y, but not the Cys-152-substituted mutant (C152A-GAPDH), accelerates cell death accompanying both endogenous and exogenous GAPDH aggregate formation in response to high concentrations of dopamine. Deprenyl, a blocker of GAPDH nuclear translocation, fails to inhibit the aggregation both in vitro and in cells but reduced cell death in SH-SY5Y treated with only a low concentration of dopamine (100 μm). These results suggest that GAPDH participates in oxidative stress-induced cell death via an alternative mechanism in which aggregation but not nuclear translocation of GAPDH plays a role. Moreover, we observe endogenous GAPDH aggregate formation in nigra-striatum dopaminergic neurons after methamphetamine treatment in mice. In transgenic mice overexpressing wild-type GAPDH, increased dopaminergic neuron loss and GAPDH aggregate formation are observed. These data suggest a critical role of GAPDH aggregates in oxidative stress-induced brain damage. PMID:19837666

  15. Silicone oil- and agitation-induced aggregation of a monoclonal antibody in aqueous solution.

    PubMed

    Thirumangalathu, Renuka; Krishnan, Sampathkumar; Ricci, Margaret Speed; Brems, David N; Randolph, Theodore W; Carpenter, John F

    2009-09-01

    Silicone oil, which is used as a lubricant or coating in devices such as syringes, needles and pharmaceutical containers, has been implicated in aggregation and particulation of proteins and antibodies. Aggregation of therapeutic protein products induced by silicone oil can pose a challenge to their development and commercialization. To systematically characterize the role of silicone oil on protein aggregation, the effects of agitation, temperature, pH, and ionic strength on silicone oil-induced loss of monomeric anti-streptavidin IgG 1 antibody were examined. Additionally, the influences of excipients polysorbate 20 and sucrose on protein aggregation were investigated. In the absence of agitation, protein absorbed to silicone oil with approximately monolayer coverage, however silicone oil did not stimulate aggregation during isothermal incubation unless samples were also agitated. A synergistic stimulation of aggregation by a combination of agitation and silicone oil was observed. Solution conditions which reduced colloidal stability of the antibody, as assessed by determination of osmotic second virial coefficients, accelerated aggregation during agitation with silicone oil. Polysorbate 20 completely inhibited silicone oil-induced monomer loss during agitation. A formulation strategy involving optimization of colloidal stability of the antibody as well as incorporation of surfactants such as polysorbate 20 is proposed to reduce silicone oil-induced aggregation of therapeutic protein products. PMID:19360857

  16. Antimicrobial preservatives induce aggregation of interferon alpha-2a: The order in which preservatives induce protein aggregation is independent of the protein

    PubMed Central

    Bis, Regina L.; Mallela, Krishna M.G.

    2014-01-01

    Antimicrobial preservatives (APs) are included in liquid multi-dose protein formulations to combat the growth of microbes and bacteria. These compounds have been shown to cause protein aggregation, which leads to serious immunogenic and toxic side-effects in patients. Our earlier work on a model protein cytochrome c (Cyt c) demonstrated that APs cause protein aggregation in a specific manner. The aim of this study is to validate the conclusions obtained from our model protein studies on a pharmaceutical protein. Interferon α-2a (IFNA2) is available as a therapeutic treatment for numerous immune-compromised disorders including leukemia and hepatitis c, and APs have been used in its multi-dose formulation. Similar to Cyt c, APs induced IFNA2 aggregation, demonstrated by the loss of soluble monomer and increase in solution turbidity. The extent of IFNA2 aggregation increased with the increase in AP concentration. IFNA2 aggregation also depended on the nature of AP, and followed the order m-cresol > phenol > benzyl alcohol > phenoxyethanol. This specific order exactly matched with that observed for the model protein Cyt c. These and previously published results on antibodies and other recombinant proteins suggest that the general mechanism by which APs induce protein aggregation may be independent of the protein. PMID:24974985

  17. Aggregates-induced dynamic negative differential resistance in conducting organic films

    NASA Astrophysics Data System (ADS)

    Xie, Xian Ning; Wang, Junzhong; Loh, Kian Ping; Wee, Andrew Thye Shen

    2009-11-01

    This letter reports the negative differential resistance (NDR) behavior of perylene-3,4,9,10-tetracarboxylic-3,4,9,10-dianhydride films induced by aggregate formation in the film. It is observed that aggregate-states in the energy gap can by-pass the common charge conduction mode, and electron injection, trapping, and conduction through these states lead to the NDR characteristic. The rate-dependence of NDR is discussed in terms of the transit time and lifetime of the aggregates-states electrons. The quenching of NDR by photoillumination is also observed, and is attributed to the saturation of aggregates-states by photoelectrons.

  18. Remediating agitation-induced antibody aggregation by eradicating exposed hydrophobic motifs

    PubMed Central

    Clark, Rutilio H; Latypov, Ramil F; De Imus, Cyr; Carter, Jane; Wilson, Zien; Manchulenko, Kathy; Brown, Michael E; Ketchem, Randal R

    2014-01-01

    Therapeutic antibodies must encompass drug product suitable attributes to be commercially marketed. An undesirable antibody characteristic is the propensity to aggregate. Although there are computational algorithms that predict the propensity of a protein to aggregate from sequence information alone, few consider the relevance of the native structure. The Spatial Aggregation Propensity (SAP) algorithm developed by Chennamsetty et. al. incorporates structural and sequence information to identify motifs that contribute to protein aggregation. We have utilized the algorithm to design variants of a highly aggregation prone IgG2. All variants were tested in a variety of high-throughput, small-scale assays to assess the utility of the method described herein. Many variants exhibited improved aggregation stability whether induced by agitation or thermal stress while still retaining bioactivity. PMID:25484048

  19. Kinetic regime of dithiothreitol-induced aggregation of bovine serum albumin.

    PubMed

    Borzova, Vera A; Markossian, Kira A; Kara, Dmitriy A; Kurganov, Boris

    2015-09-01

    A search for agents, which are capable of effectively suppressing protein aggregation, and elaboration of the appropriate test systems, are among important problems of modern biochemistry and biotechnology. One such test system is based on dithiothreitol (DTT)-induced aggregation of bovine serum albumin (BSA). Study of the kinetics of DTT-induced aggregation of BSA by asymmetric flow field flow fractionation showed that a decrease in the portion of the non-aggregated protein in time followed the exponential law, the rate constant of the first order remaining unchanged at varying protein concentration (0.1M Na-phosphate buffer, pH 7.0; 45 °C). The obtained results indicate that the rate-limiting stage of the general aggregation process is that of unfolding of the protein molecule. When studying the kinetics of DTT-induced aggregation of BSA by dynamic light scattering, we proposed to use parameter K(LS) as a measure of the initial rate of aggregation. Parameter K(LS) corresponds to the initial slope of the dependence of (I-I0)(0.5) on time (I0 and I are the initial and current values of the light scattering intensity, respectively). The K(LS) value has been applied to estimate anti-aggregation activity of chemical chaperones (arginine, its derivatives and proline). PMID:26116389

  20. Thermally induced aggregation of rigid spheres on a liquid surface

    NASA Astrophysics Data System (ADS)

    Forgoston, Eric; Hentschker, Leo; Soltau, Siobhan; Truitt, Patrick; Vaidya, Ashwin

    2016-01-01

    Fluids provide the optimal setting to explore natural patterns far from thermodynamic equilibrium. Experiments suggest that randomly dispersed particles on a liquid surface tend to aggregate on the surface of liquid over time, and the process is enhanced by an increase in the temperature of the liquid. We show that the agglomeration radii increases monotonically with temperature up until the point where all particles in the system form a single, large aggregate. The aggregation dynamics is related to changes in the material properties of the liquid including its viscosity and surface tension as well as the convection driven flow generated on the fluid surface. In this article we compare our experimental observations with analytical asymptotic results. The analytical arguments are seen to agree well with the experimental observations.

  1. Tunneling electron induced molecular electroluminescence from individual porphyrin J-aggregates

    NASA Astrophysics Data System (ADS)

    Meng, Qiushi; Zhang, Chao; Zhang, Yang; Zhang, Yao; Liao, Yuan; Dong, Zhenchao

    2015-07-01

    We investigate molecular electroluminescence from individual tubular porphyrin J-aggregates on Au(111) by tunneling electron excitations in an ultrahigh-vacuum scanning tunneling microscope (STM). High-resolution STM images suggest a spiral tubular structure for the porphyrin J-aggregate with highly ordered "brickwork"-like arrangements. Such aggregated nanotube is found to behave like a self-decoupled molecular architecture and shows red-shifted electroluminescence characteristics of J-aggregates originated from the delocalized excitons. The positions of the emission peaks are found to shift slightly depending on the excitation sites, which, together with the changes in the observed spectral profiles with vibronic progressions, suggest a limited exciton coherence number within several molecules. The J-aggregate electroluminescence is also found unipolar, occurring only at negative sample voltages, which is presumably related to the junction asymmetry in the context of molecular excitations via the carrier injection mechanism.

  2. Tunneling electron induced molecular electroluminescence from individual porphyrin J-aggregates

    SciTech Connect

    Meng, Qiushi; Zhang, Chao; Zhang, Yang E-mail: zcdong@ustc.edu.cn; Zhang, Yao; Liao, Yuan; Dong, Zhenchao E-mail: zcdong@ustc.edu.cn

    2015-07-27

    We investigate molecular electroluminescence from individual tubular porphyrin J-aggregates on Au(111) by tunneling electron excitations in an ultrahigh-vacuum scanning tunneling microscope (STM). High-resolution STM images suggest a spiral tubular structure for the porphyrin J-aggregate with highly ordered “brickwork”-like arrangements. Such aggregated nanotube is found to behave like a self-decoupled molecular architecture and shows red-shifted electroluminescence characteristics of J-aggregates originated from the delocalized excitons. The positions of the emission peaks are found to shift slightly depending on the excitation sites, which, together with the changes in the observed spectral profiles with vibronic progressions, suggest a limited exciton coherence number within several molecules. The J-aggregate electroluminescence is also found unipolar, occurring only at negative sample voltages, which is presumably related to the junction asymmetry in the context of molecular excitations via the carrier injection mechanism.

  3. Fluorinated counterion-enhanced emission of rhodamine aggregates: ultrabright nanoparticles for bioimaging and light-harvesting

    NASA Astrophysics Data System (ADS)

    Shulov, Ievgen; Oncul, Sule; Reisch, Andreas; Arntz, Youri; Collot, Mayeul; Mely, Yves; Klymchenko, Andrey S.

    2015-10-01

    The key to ultrabright fluorescent nanomaterials is the control of dye emission in the aggregated state. Here, lipophilic rhodamine B derivatives are assembled into nanoparticles (NPs) using tetraphenylborate counterions with varied fluorination levels that should tune the short-range dye ordering. Counterion fluorination is found to drastically enhance the emission characteristics of these NPs. Highly fluorinated counterions produce 10-20 nm NPs containing >300 rhodamine dyes with a fluorescence quantum yield of 40-60% and a remarkably narrow emission band (34 nm), whereas, for other counterions, aggregation caused quenching with a weak broad-band emission is observed. NPs with the most fluorinated counterion (48 fluorines) are ~40-fold brighter than quantum dots (QD585 at 532 nm excitation) in single-molecule microscopy, showing improved photostability and suppressed blinking. Due to exciton diffusion, revealed by fluorescence anisotropy, these NPs are efficient FRET donors to single cyanine-5 acceptors with a light-harvesting antenna effect reaching 200. Finally, NPs with the most fluorinated counterion are rather stable after entry into living cells, in contrast to their less fluorinated analogue. Thus, the present work shows the crucial role of counterion fluorination in achieving high fluorescence brightness and photostability, narrow-band emission, efficient energy transfer and high intracellular stability of nanomaterials for light harvesting and bioimaging applications.The key to ultrabright fluorescent nanomaterials is the control of dye emission in the aggregated state. Here, lipophilic rhodamine B derivatives are assembled into nanoparticles (NPs) using tetraphenylborate counterions with varied fluorination levels that should tune the short-range dye ordering. Counterion fluorination is found to drastically enhance the emission characteristics of these NPs. Highly fluorinated counterions produce 10-20 nm NPs containing >300 rhodamine dyes with a

  4. The Thioredoxin System Protects Ribosomes against Stress-induced Aggregation

    PubMed Central

    Rand, Jonathan D.; Grant, Chris M.

    2006-01-01

    We previously showed that thioredoxins are required for dithiothreitol (DTT) tolerance, suggesting they maintain redox homeostasis in response to both oxidative and reductive stress conditions. In this present study, we screened the complete set of viable deletion strains in Saccharomyces cerevisiae for sensitivity to DTT to identify cell functions involved in resistance to reductive stress. We identified 195 mutants, whose gene products are localized throughout the cell. DTT-sensitive mutants were distributed among most major biological processes, but they particularly affected gene expression, metabolism, and the secretory pathway. Strikingly, a mutant lacking TSA1, encoding a peroxiredoxin, showed a similar sensitivity to DTT as a thioredoxin mutant. Epistasis analysis indicated that thioredoxins function upstream of Tsa1 in providing tolerance to DTT. Our data show that the chaperone function of Tsa1, rather than its peroxidase function, is required for this activity. Cells lacking TSA1 were found to accumulate aggregated proteins, and this was exacerbated by exposure to DTT. Analysis of the protein aggregates revealed that they are predominantly composed of ribosomal proteins. Furthermore, aggregation was found to correlate with an inhibition of translation initiation. We propose that Tsa1 normally functions to chaperone misassembled ribosomal proteins, preventing the toxicity that arises from their aggregation. PMID:16251355

  5. Surface properties of heat-induced soluble soy protein aggregates of different molecular masses.

    PubMed

    Guo, Fengxian; Xiong, Youling L; Qin, Fang; Jian, Huajun; Huang, Xiaolin; Chen, Jie

    2015-02-01

    Suspensions (2% and 5%, w/v) of soy protein isolate (SPI) were heated at 80, 90, or 100 °C for different time periods to produce soluble aggregates of different molecular sizes to investigate the relationship between particle size and surface properties (emulsions and foams). Soluble aggregates generated in these model systems were characterized by gel permeation chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Heat treatment increased surface hydrophobicity, induced SPI aggregation via hydrophobic interaction and disulfide bonds, and formed soluble aggregates of different sizes. Heating of 5% SPI always promoted large-size aggregate (LA; >1000 kDa) formation irrespective of temperature, whereas the aggregate size distribution in 2% SPI was temperature dependent: the LA fraction progressively rose with temperature (80→90→100 °C), corresponding to the attenuation of medium-size aggregates (MA; 670 to 1000 kDa) initially abundant at 80 °C. Heated SPI with abundant LA (>50%) promoted foam stability. LA also exhibited excellent emulsifying activity and stabilized emulsions by promoting the formation of small oil droplets covered with a thick interfacial protein layer. However, despite a similar influence on emulsion stability, MA enhanced foaming capacity but were less capable of stabilizing emulsions than LA. The functionality variation between heated SPI samples is clearly related to the distribution of aggregates that differ in molecular size and surface activity. The findings may encourage further research to develop functional SPI aggregates for various commercial applications. PMID:25586667

  6. Bubble-induced aggregation of platelets: effects of gas species, proteins, and decompression.

    PubMed

    Thorsen, T; Klausen, H; Lie, R T; Holmsen, H

    1993-06-01

    We show that bubbles containing different gases (N2, He, Ne, Ar, or an O2-CO2-N2 mixture) are equally potent platelet agonists. The synergistic effect of different platelet antagonists does not seem to be affected by the type of gas in the bubbles. In contrast to aggregation in platelet-rich plasma (PRP), bubbles cause only a weak response in gel-filtered platelets (GFP), i.e., comparison of aggregation in protein-rich and protein-poor platelet suspensions may shed light on the role of different plasma proteins. Extracellular fibrinogen promotes bubble-induced platelet aggregation similar to known physiologic agonists, whereas albumin counteracts this aggregation. Bubble-induced aggregation is inhibited in GFP-fibrinogen by 2-deoxy-D-glucose plus antimycin A, suggesting dependency on ATP generation in the platelets and evidence for direct exposure of the "cryptic" fibrinogen receptor by bubbles. Hyperbaric compression and subsequent rapid, inadequate decompression of PRP caused little change in the aggregation response to gas bubbles and epinephrine at 1 bar, but reduced the response to ADP. Bubbles tended not to form before the surface film was broken. Pressure-induced aggregation was apparently metabolically active and not due to passive agglutination; electron microscopic studies and PRP with added glutaraldehyde did not show platelet activation, clumping, or reduced platelet count. In contrast to aggregation caused by pressure, bubble-induced aggregation in PRP at 1 bar (after treatment in the pressure chamber) was nearly completely inhibited by theophylline, a phosphodiesterase inhibitor that increases intracellular platelet cyclic AMP. PMID:8392414

  7. Temperature induced structural transitions from native to unfolded aggregated states of tobacco etch virus protease

    NASA Astrophysics Data System (ADS)

    Zhu, Guo-Fei; Ren, Si-Yan; Xi, Lei; Du, Lin-Fang; Zhu, Xiao-Feng

    2015-02-01

    Tobacco etch virus protease (TEVp) is widely used to remove fusion tags from recombinant proteins because of its high and unique specificity. This work describes the conformational and the thermodynamic properties in the unfolding/refolding process of TEVp3M (three-point mutant: L56V/S135G/S219V) induced by temperature. With temperature increasing from 20 to 100 °C, the CD spectra showed a transition trend from α-helix to β-sheet, and the fluorescence emission, synchronous fluorescence, ANS and RLS spectroscopy consistently revealed that the temperature-induced unfolding process behaved in a three-state manner, for there was a relatively stable intermediate state observed around 50 °C. The reversibility of thermal unfolding of TEVp3M further showed that the transition from the native to the intermediate state was reversible (below 50 °C), however the transition from the intermediate to the unfolded state was irreversible (above 60 °C). Moreover, aggregates were observed above 60 °C as revealed by SDS-PAGE, Thioflavin-T fluorescence and Congo red absorbance.

  8. Hyperthermia restores apoptosis induced by death receptors through aggregation-induced c-FLIP cytosolic depletion.

    PubMed

    Morlé, A; Garrido, C; Micheau, O

    2015-01-01

    TRAIL is involved in immune tumor surveillance and is considered a promising anti-cancer agent owing to its limited side effects on healthy cells. However, some cancer cells display resistance, or become resistant to TRAIL-induced cell death. Hyperthermia can enhance sensitivity to TRAIL-induced cell death in various resistant cancer cell lines, including lung, breast, colon or prostate carcinomas. Mild heat shock treatment has been proposed to restore Fas ligand or TRAIL-induced apoptosis through c-FLIP degradation or the mitochondrial pathway. We demonstrate here that neither the mitochondria nor c-FLIP degradation are required for TRAIL-induced cell death restoration during hyperthermia. Our data provide evidence that insolubilization of c-FLIP, alone, is sufficient to enhance apoptosis induced by death receptors. Hyperthermia induced c-FLIP depletion from the cytosolic fraction, without apparent degradation, thereby preventing c-FLIP recruitment to the TRAIL DISC and allowing efficient caspase-8 cleavage and apoptosis. Hyperthermia-induced c-FLIP depletion was independent of c-FLIP DED2 FL chain assembly motif or ubiquitination-mediated c-FLIP degradation, as assessed using c-FLIP point mutants on lysine 167 and 195 or threonine 166, a phosphorylation site known to regulate ubiquitination of c-FLIP. Rather, c-FLIP depletion was associated with aggregation, because addition of glycerol not only prevented the loss of c-FLIP from the cytosol but also enabled c-FLIP recruitment within the TRAIL DISC, thus inhibiting TRAIL-induced apoptosis during hyperthermia. Altogether our results demonstrate that c-FLIP is a thermosensitive protein whose targeting by hyperthermia allows restoration of apoptosis induced by TNF ligands, including TRAIL. Our findings suggest that combining TRAIL agonists with whole-body or localized hyperthermia may be an interesting approach in cancer therapy. PMID:25675293

  9. Unusual Cyclodextrin Derivatives as a New Avenue to Modulate Self- and Metal-InducedAggregation.

    PubMed

    Oliveri, Valentina; Bellia, Francesco; Pietropaolo, Adriana; Vecchio, Graziella

    2015-09-28

    Mounting evidence suggests an important role of cyclodextrins in providing protection in neurodegenerative disorders. Metal dyshomeostasis is reported to be a pathogenic factor in neurodegeneration because it could be responsible for damage involving oxidative stress and protein aggregation. As such, metal ions represent an effective target. To improve the metal-binding ability of cyclodextrin, we synthesized three new 8-hydroxyquinoline-cyclodextrin conjugates with difunctionalized cyclodextrins. In particular, the 3-difunctionalized regioisomer represents the first example of cyclodextrin with two pendants at the secondary rim, resulting in a promising compound. The derivatives have significant antioxidant capacity and the powerful activity in inhibiting self-induced amyloid-β aggregation seems to be led by synergistic effects of both cyclodextrin and hydroxyquinoline. Moreover, the derivatives are also able to complex metal ions and to inhibit metal-induced protein aggregation. Therefore, these compounds could have potential as therapeutic agents in diseases related to protein aggregation and metal dyshomeostasis. PMID:26298549

  10. Laser-induced breakdown detection of temperature-ramp generated aggregates of therapeutic monoclonal antibody.

    PubMed

    Menzen, Tim; Friess, Wolfgang; Niessner, Reinhard; Haisch, Christoph

    2015-08-01

    The detection and characterization of protein aggregation is essential during development and quality control of therapeutic proteins, as aggregates are typically inactive and may trigger anti-drug-antibody formation in patients. Especially large multi-domain molecules, such as the important class of therapeutic monoclonal antibodies (mAbs), can form various aggregates that differ in size and morphology. Although particle analysis advanced over the recent years, new techniques and orthogonal methods are highly valued. To our knowledge, the physical principle of laser-induced breakdown detection (LIBD) was not yet applied to sense aggregates in therapeutic protein formulations. We established a LIBD setup to monitor the temperature-induced aggregation of a mAb. The obtained temperature of aggregation was in good agreement with the results from previously published temperature-ramped turbidity and dynamic light scattering measurements. This study demonstrates the promising applicability of LIBD to investigate aggregates from therapeutic proteins. The technique is also adaptive to online detection and size determination, and offers interesting opportunities for morphologic characterization of protein particles and impurities, which will be part of future studies. PMID:26158409

  11. Sulfur mustard induces the formation of keratin aggregates in human epidermal keratinocytes.

    PubMed

    Dillman, James F; McGary, Kriston L; Schlager, John J

    2003-12-01

    The vesicant sulfur mustard is an alkylating agent that has the capacity to cross-link biological molecules. We are interested in identifying specific proteins that are altered upon sulfur mustard exposure. Keratins are particularly important for the structural integrity of skin, and several genetically inherited blistering diseases have been linked to mutations in keratin 5 and keratin 14. We examined whether sulfur mustard exposure alters keratin biochemistry in cultured human epidermal keratinocytes. Western blotting with specific monoclonal antibodies revealed the formation of stable high-molecular-weight "aggregates" containing keratin 14 and/or keratin 5. These aggregates begin to form within 15 min after sulfur mustard exposure. These aggregates display a complex gel electrophoresis pattern between approximately 100 and approximately 200 kDa. Purification and analysis of these aggregates by one- and two-dimensional gel electrophoresis and mass spectrometry confirmed the presence of keratin 14 and keratin 5 and indicate that at least some of the aggregates are composed of keratin 14-keratin 14, keratin 14-keratin 5, or keratin 5-keratin 5 dimers. These studies demonstrate that sulfur mustard induces keratin aggregation in keratinocytes and support further investigation into the role of keratin aggregation in sulfur mustard-induced vesication. PMID:14644625

  12. UV-induced self-aggregation of E. coli after low and medium pressure ultraviolet irradiation.

    PubMed

    Kollu, Kerim; Örmeci, Banu

    2015-07-01

    Presence of aggregated bacteria has been shown to decrease the efficacy of ultraviolet (UV) disinfection and there is some indication that UV irradiation may promote aggregation of bacteria among themselves. This study aims to provide an in-depth understanding of the effect of UV light on inducing self-aggregation of Escherichia coli bacteria by using microscopy and particle counter analysis techniques. The bacteria were observed and quantified before and after UV irradiation by employing size and concentration parameters. Four doses of low-pressure (LP) UV irradiation, 20, 40, 60 and 80 mJ/cm(2), and two doses of medium-pressure (MP) UV irradiation, 40 and 80 mJ/cm(2), were tested. At all LP UV doses tested, a significant increase in particle size was observed following UV exposure, indicating UV-induced self-aggregation. However, the magnitude of UV dose did not seem to have an impact. In the MP UV experiments, only a dose of 80 mJ/cm(2) had a significant impact on the formation of aggregates upon UV exposure. Changing the light intensity and exposure time to deliver the same LP UV dose resulted in different levels of aggregation. The results indicated that UV light intensity and wavelength may play a role in aggregation of bacteria. PMID:26002538

  13. Laser light scattering measurement of dextran-induced Streptococcus mutans aggregation.

    PubMed Central

    Ryan, V; Hart, T R; Schiller, R

    1980-01-01

    Intensity fluctuation spectroscopy was used to study dextran-induced aggregation of Streptococcus mutans bacteria. Smoluchowski's theory of colloidal flocculation provided a consistent model of the agglutination process. Our experiments indicated that aggregation was inhibited by the negatively charged surfaces of the cells, while dextran polymers effectively bound organisms together. Our experimental data were consistent with the quantitative predictions of a polymer bridge model of agglutination. PMID:6168309

  14. Heterogeneity in (2-butoxyethanol + water) mixtures: Hydrophobicity-induced aggregation or criticality-driven concentration fluctuations?

    NASA Astrophysics Data System (ADS)

    Indra, Sandipa; Biswas, Ranjit

    2015-05-01

    Micro-heterogeneity in aqueous solutions of 2-butoxyethanol (BE), a system with closed loop miscibility gap, has been explored via absorption and time-resolved fluorescence measurements of a dissolved dipolar solute, coumarin 153 (C153), in the water-rich region at various BE mole fractions (0 ≤ XBE ≤ 0.25) in the temperature range, 278 ≤ T/K ≤ 320. Evidences for both alcohol-induced H-bond strengthening and subsequent structural transition of H-bond network have been observed. Analyses of steady state and time-resolved spectroscopic data for these aqueous mixtures and comparisons with the results for aqueous solutions of ethanol and tertiary butanol indicate that alcohol aggregation in BE/water mixtures is driven by hydrophobic interaction with no or insignificant role for criticality-driven concentration fluctuations preceding phase separation. Excitation energy dependence of fluorescence emission of C153 confirms formation of aggregated structures at very low BE mole fractions. No asymptotic critical power law dependence for relaxation rates of the type, k ∝ (|T - Tc|/Tc)γ, with γ denoting universal critical constant, has been observed for both solute's rotational relaxation and population relaxation rates in these mixtures upon either approaching to critical concentration or critical temperature. Estimated activation energies for rotational relaxation rate of C153 and solution viscosity have been found to follow each other with no abrupt changes in either of them at any mixture composition. In addition, measured C153 rotation times at various compositions and temperatures reflect near-hydrodynamic viscosity coupling through the dependence, <τr> ∝ (η/T)p, with p = 0.8-1.0, suggesting solute's orientational relaxation dynamics being, on an average, temporally homogeneous.

  15. Platelet-collagen adhesion enhances platelet aggregation induced by binding of VWF to platelets

    SciTech Connect

    Laduca, F.M.; Bell, W.R.; Bettigole, R.E. State Univ. of New York, Buffalo )

    1987-11-01

    Ristocetin-induced platelet aggregation (RIPA) was evaluated in the presence of platelet-collagen adhesion. RIPA of normal donor platelet-rich plasma (PRP) demonstrated a primary wave of aggregation mediated by the binding of von Willebrand factor (VWF) to platelets and a secondary aggregation wave, due to a platelet-release reaction, initiated by VWF-platelet binding and inhibitable by acetylsalicylic acid (ASA). An enhanced RIPA was observed in PRP samples to which collagen had been previously added. These subthreshold concentrations of collagen, which by themselves were insufficient to induce aggregation, caused measurable platelet-collagen adhesion. Subthreshold collagen did not cause microplatelet aggregation, platelet release of ({sup 3}H)serotonin, or alter the dose-responsive binding of {sup 125}I-labeled VWF to platelets, which occurred with increasing ristocetin concentrations. However, ASA inhibition of the platelet release reaction prevented collagen-enhanced RIPA. These results demonstrate that platelet-collagen adhesion altered the platelet-release reaction induced by the binding of VWF to platelets causing a platelet-release reaction at a level of VWF-platelet binding not normally initiating a secondary aggregation. These findings suggest that platelet-collagen adhesion enhances platelet function mediated by VWF.

  16. The Lantibiotic Nisin Induces Lipid II Aggregation, Causing Membrane Instability and Vesicle Budding

    PubMed Central

    Scherer, Katharina M.; Spille, Jan-Hendrik; Sahl, Hans-Georg; Grein, Fabian; Kubitscheck, Ulrich

    2015-01-01

    The antimicrobial peptide nisin exerts its activity by a unique dual mechanism. It permeates the cell membranes of Gram-positive bacteria by binding to the cell wall precursor Lipid II and inhibits cell wall synthesis. Binding of nisin to Lipid II induces the formation of large nisin-Lipid II aggregates in the membrane of bacteria as well as in Lipid II-doped model membranes. Mechanistic details of the aggregation process and its impact on membrane permeation are still unresolved. In our experiments, we found that fluorescently labeled nisin bound very inhomogeneously to bacterial membranes as a consequence of the strong aggregation due to Lipid II binding. A correlation between cell membrane damage and nisin aggregation was observed in vivo. To further investigate the aggregation process of Lipid II and nisin, we assessed its dynamics by single-molecule microscopy of fluorescently labeled Lipid II molecules in giant unilamellar vesicles using light-sheet illumination. We observed a continuous reduction of Lipid II mobility due to a steady growth of nisin-Lipid II aggregates as a function of time and nisin concentration. From the measured diffusion constants of Lipid II, we estimated that the largest aggregates contained tens of thousands of Lipid II molecules. Furthermore, we observed that the formation of large nisin-Lipid II aggregates induced vesicle budding in giant unilamellar vesicles. Thus, we propose a membrane permeation mechanism that is dependent on the continuous growth of nisin-Lipid II aggregation and probably involves curvature effects on the membrane. PMID:25762323

  17. The lantibiotic nisin induces lipid II aggregation, causing membrane instability and vesicle budding.

    PubMed

    Scherer, Katharina M; Spille, Jan-Hendrik; Sahl, Hans-Georg; Grein, Fabian; Kubitscheck, Ulrich

    2015-03-10

    The antimicrobial peptide nisin exerts its activity by a unique dual mechanism. It permeates the cell membranes of Gram-positive bacteria by binding to the cell wall precursor Lipid II and inhibits cell wall synthesis. Binding of nisin to Lipid II induces the formation of large nisin-Lipid II aggregates in the membrane of bacteria as well as in Lipid II-doped model membranes. Mechanistic details of the aggregation process and its impact on membrane permeation are still unresolved. In our experiments, we found that fluorescently labeled nisin bound very inhomogeneously to bacterial membranes as a consequence of the strong aggregation due to Lipid II binding. A correlation between cell membrane damage and nisin aggregation was observed in vivo. To further investigate the aggregation process of Lipid II and nisin, we assessed its dynamics by single-molecule microscopy of fluorescently labeled Lipid II molecules in giant unilamellar vesicles using light-sheet illumination. We observed a continuous reduction of Lipid II mobility due to a steady growth of nisin-Lipid II aggregates as a function of time and nisin concentration. From the measured diffusion constants of Lipid II, we estimated that the largest aggregates contained tens of thousands of Lipid II molecules. Furthermore, we observed that the formation of large nisin-Lipid II aggregates induced vesicle budding in giant unilamellar vesicles. Thus, we propose a membrane permeation mechanism that is dependent on the continuous growth of nisin-Lipid II aggregation and probably involves curvature effects on the membrane. PMID:25762323

  18. Cognitive defects are reversible in inducible mice expressing pro-aggregant full-length human Tau

    PubMed Central

    Sydow, Astrid; Hofmann, Anne; Wu, Dan; Messing, Lars; Balschun, Detlef; D'Hooge, Rudi; Mandelkow, Eva-Maria

    2016-01-01

    Neurofibrillary lesions of abnormal Tau are hallmarks of Alzheimer´s disease and frontotemporal dementias. Our regulatable (Tet-OFF) mouse models of tauopathy express variants of human full-length Tau in the forebrain (CaMKIIα promoter) either with mutation ΔK280 (pro-aggregant) or ΔK280/I277P/I308P (anti-aggregant). Co-expression of luciferase enables in vivo quantification of gene expression by bioluminescence imaging. Pro-aggregant mice develop synapse loss and Tau pathology including missorting, phosphorylation and early pretangle formation, whereas anti-aggregant mice do not. We correlated hippocampal Tau pathology with learning/memory performance and synaptic plasticity. Pro-aggregant mice at 16 months of gene expression exhibited severe cognitive deficits in Morris water-maze and in passive-avoidance paradigms, whereas anti-aggregant mice were comparable to controls. Cognitive impairment of pro-aggregant mice was accompanied by loss of hippocampal LTP in CA1 and CA3 areas and by a reduction of synaptic proteins and dendritic spines, although no neuronal loss was observed. Remarkably, memory and LTP recovered when pro-aggregant Tau was switched-OFF for ∼4 months, Tau phosphorylation and missorting were reversed, and synapses recovered. Moreover soluble and insoluble pro-aggregant hTau40 disappeared while insoluble mouse Tau was still present. This study links early Tau pathology without neurofibrillary tangles and neuronal death to cognitive decline and synaptic dysfunction. It demonstrates that Tau-induced impairments are reversible after switching-OFF pro-aggregant Tau. Therefore our mouse model may mimic an early phase of AD when the hippocampus does not yet suffer from irreversible cell death but cognitive deficits are already striking. It offers potential to evaluate drugs with regard to learning and memory performance. PMID:22532069

  19. Cholesterol-induced stimulation of platelet aggregation is prevented by a hempseed-enriched diet.

    PubMed

    Prociuk, M A; Edel, A L; Richard, M N; Gavel, N T; Ander, B P; Dupasquier, C M C; Pierce, G N

    2008-04-01

    Hypercholesterolemia indirectly increases the risk for myocardial infarction by enhancing the ability of platelets to aggregate. Diets enriched with polyunsaturated fatty acids (PUFAs) have been shown to reduce the detrimental effects of cholesterol on platelet aggregation. This study investigated whether dietary hempseed, a rich source of PUFAs, inhibits platelet aggregation under normal and hypercholesterolemic conditions. Male New Zealand white rabbits were fed one of 6 dietary interventions: regular control diet (RG); control diet + 10% hempseed (HP); control diet + 10% partially delipidated hempseed (DHP); control diet + 0.5% cholesterol (OL); control diet + 0.5% cholesterol + 10% hempseed (OLHP); control diet + 5% coconut oil (CO). After 8 weeks, blood was collected to measure ADP- and collagen-induced platelet aggregation and plasma levels of fatty acids, cholesterol, and triglycerides. The hempseed-fed animals (HP and OLHP) displayed elevated plasma levels of PUFAs and a prominent enhancement in 18:3n-6 (gamma-linolenic acid, GLA) levels, a unique PUFA found in hempseed. The cholesterol-supplemented groups (OL and OLHP) had significantly elevated plasma levels of cholesterol and triglycerides, but platelet aggregation was significantly augmented only in the OL group. The addition of hempseed to this diet (OLHP) normalized aggregation. The direct addition of GLA to the OL platelet samples blocked the cholesterol-induced stimulation of platelet aggregation. The results of this study demonstrate that when hempseed is added to a cholesterol-enriched diet, cholesterol-induced platelet aggregation returns to control levels. This normalization is not due to a reduction in plasma cholesterol levels, but may be partly due to increased levels of plasma GLA. PMID:18418423

  20. Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer.

    PubMed

    Sun, Mengmeng; Liu, Fei; Zhu, Yukun; Wang, Wansheng; Hu, Jin; Liu, Jing; Dai, Zhifei; Wang, Kun; Wei, Yen; Bai, Jing; Gao, Weiping

    2016-02-28

    The challenge in photothermal therapy (PTT) is to develop biocompatible photothermal transducers that can absorb and convert near-infrared (NIR) light into heat with high efficiency. Herein, we report salt-induced aggregation of gold nanoparticles (GNPs) in biological media to form highly efficient and biocompatible NIR photothermal transducers for PTT and photothermal/photoacoustic (PT/PA) imaging of cancer. The GNP depots in situ formed by salt-induced aggregation of GNPs show strong NIR absorption induced by plasmonic coupling between adjacent GNPs and very high photothermal conversion efficiency (52%), enabling photothermal destruction of tumor cells. More interestingly, GNPs in situ aggregate in tumors to form GNP depots, enabling simultaneous PT/PA imaging and PTT of the tumors. These findings may provide a simple and effective way to develop a new class of intelligent and biocompatible NIR photothermal transducers with high efficiency for PT/PA imaging and PTT. PMID:26847879

  1. N-type organic luminescent materials based on siloles with aggregation-enhanced emission

    NASA Astrophysics Data System (ADS)

    Quan, Changyun; Nie, Han; Zhao, Zujin; Tang, Ben Zhong

    2015-09-01

    Simplifying the configurations of organic light-emitting diodes (OLEDs) without sacrificing device performances is of high practical importance to shorten fabrication procedures and cut down cost. In view of this, organic active materials for OLEDs are anticipated to possess multiple functions, including high solid-state emission efficiency, efficient hole- and/ or electron transport ability, etc. To realize this purpose, we designed a series of bifunctional materials consisting of a silole core and electron-transporting functional groups, such as dimesitylboryl and diphenylphosphoryl groups. These silole derivatives show aggregation-enhanced emission (AEE) characteristics and afford high emission efficiencies in the solid films. The presence of these electron-withdrawing substituents lowers the LUMO energy levels as revealed by cyclic voltammetry, and allows for efficient electron transport ability of the luminogens. The double-layer OLEDs fabricated using these silole derivatives as light-emitting and electron-transporting layers simultaneously show good electroluminescence performances, which are almost equal to those of triple-layer OLEDs with an additional electrontransporting layer (TPBi), revealing that they are excellent n-type light emitters. These results demonstrate that the combination of AEE-active luminogens with charge transport groups at molecular level is a promising design for multifunctional solid-state light emitters.

  2. Tuning of Aggregation Enhanced Emission and Solid State Emission from 1,8-Naphthalimide Derivatives: Nanoaggregates, Spectra, and DFT Calculations.

    PubMed

    Srivastava, Ashish Kumar; Singh, Avinash; Mishra, Lallan

    2016-07-01

    Four new 1,8-naphthalimide based compounds, 4-(1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-ylmethyl)-benzoic acid (LH), 4-(1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-ylmethyl)-benzoic acid methyl ester (LMe), 4-(1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-ylmethyl)-benzoyl chloride (LCl), and 4-(1,3-dioxo-1H,3H-benzo[de]isoquinolin-2-ylmethyl)-benzoic acid hydrazide (LN) are synthesized and characterized using spectral data and X-ray crystallography. They form nanoaggregates in aqueous-DMF solution and exhibited aggregation enhanced emission. The nanoaggregates are characterized using their scanning electron and atomic force microscopy images. The emission intensity follows the order as LH > LMe > LCl > LN. Their photophysical properties are recorded both in solution and in the solid-state and are correlated with the nature of benzoic acid derivatives owing to the combinatorial effect of π-π stacking and intermolecular and intramolecular interactions. The density functional theory calculations empower the understanding of their molecular and cumulative electronic behaviors. Antiparallel dimeric interactions in the solid-state extend a herringbone arrangement to LH and 2D channel and stair-like arrangement for LCl and LN, respectively. PMID:27294534

  3. Unusual sintering behavior of porous chromatographic zirconia produced by polymerization-induced colloid aggregation

    SciTech Connect

    Lorenzano-Porras, C.F.; Reeder, D.H.; Annen, M.J.; Carr, P.W.; McCormick, A.V.

    1995-08-01

    The effects of sintering temperature and duration on the pore structure of chromatographic zirconia particles produced by the controlled polymerization-induced aggregation of 1,000 {angstrom} colloids are studied with an eye toward optimally strengthening the aggregates and eliminating small pores while preserving large pores. Nitrogen adsorption and mercury porosimetry are used to estimate the surface area, pore volume, and pore size distribution. Pulsed field gradient NMR measurements of solvent diffusion are used to estimate the diffusion tortuosity of the pore space. Initially of course, the pore volume and surface area decrease significantly, the decrease being more pronounced at higher temperatures. With prolonged sintering, the pore size, pore volume, and surface area change much more slowly, but the diffusion tortuosity seems to be minimized at a sintering temperature and time at which pores are allowed to redistribute so as to optimize large pores. The aggregates synthesized by this aggregation method apparently produce metastable large pores which are not easily collapsed.

  4. Raman studies of gluten proteins aggregation induced by dietary fibres.

    PubMed

    Nawrocka, Agnieszka; Szymańska-Chargot, Monika; Miś, Antoni; Kowalski, Radosław; Gruszecki, Wiesław I

    2016-03-01

    Interactions between gluten proteins and dietary fibre preparations are crucial in the baking industry. The addition of dietary fibre to bread causes significant reduction in its quality which is influenced by changes in the structure of gluten proteins. Fourier transform Raman spectroscopy was applied to determine changes in the structure of gluten proteins modified by seven dietary fibres. The commercially available gluten proteins without starch were mixed with the fibres in three concentrations: 3%, 6% and 9%. The obtained results showed that all fibres, regardless of their origin, caused the same kind of changes i.e. decrease in the α-helix content with a simultaneous increase in the content of antiparallel-β-sheet. The results indicated that presence of cellulose was the probable cause of these changes, and lead to aggregation or abnormal folding of the gluten proteins. Other changes observed in the gluten structure concerning β-structures, conformation of disulphide bridges, and aromatic amino acid environment, depended on the fibres chemical composition. PMID:26471530

  5. The Aminopeptidase CD13 Induces Homotypic Aggregation in Neutrophils and Impairs Collagen Invasion

    PubMed Central

    Fiddler, Christine A.; Parfrey, Helen; Cowburn, Andrew S.; Luo, Ding; Nash, Gerard B.; Murphy, Gillian; Chilvers, Edwin R.

    2016-01-01

    Aminopeptidase N (CD13) is a widely expressed cell surface metallopeptidase involved in the migration of cancer and endothelial cells. Apart from our demonstration that CD13 modulates the efficacy of tumor necrosis factor-α-induced apoptosis in neutrophils, no other function for CD13 has been ascribed in this cell. We hypothesized that CD13 may be involved in neutrophil migration and/or homotypic aggregation. Using purified human blood neutrophils we confirmed the expression of CD13 on neutrophils and its up-regulation by pro-inflammatory agonists. However, using the anti-CD13 monoclonal antibody WM-15 and the aminopeptidase enzymatic inhibitor bestatin we were unable to demonstrate any direct involvement of CD13 in neutrophil polarisation or chemotaxis. In contrast, IL-8-mediated neutrophil migration in type I collagen gels was significantly impaired by the anti-CD13 monoclonal antibodies WM-15 and MY7. Notably, these antibodies also induced significant homotypic aggregation of neutrophils, which was dependent on CD13 cross-linking and was attenuated by phosphoinositide 3-kinase and extracellular signal-related kinase 1/2 inhibition. Live imaging demonstrated that in WM-15-treated neutrophils, where homotypic aggregation was evident, the number of cells entering IL-8 impregnated collagen I gels was significantly reduced. These data reveal a novel role for CD13 in inducing homotypic aggregation in neutrophils, which results in a transmigration deficiency; this mechanism may be relevant to neutrophil micro-aggregation in vivo. PMID:27467268

  6. Lateral aggregation induced by magnetic perturbations in a magnetorheological fluid based on non-Brownian particles.

    PubMed

    Moctezuma, R E; Donado, F; Arauz-Lara, J L

    2013-09-01

    A study of lateral aggregation, induced by an oscillatory field, in a magnetorheological fluid based on non-Brownian magnetic particles is presented. We investigate the behavior of chains formed by the particles, due to the simultaneous application of a static magnetic field and a sinusoidal magnetic field transverse to each other. We show that the effective oscillating field enhances the aggregation process. We discuss this result in terms of an effective particle concentration induced by the oscillating field when chains oscillate angularly and sweep the area around them. The oscillating field produces a lateral aggregation similar to that observed in systems composed of Brownian particles which is induced by thermal fluctuations. We study the effect of the oscillating field on the angular amplitude described by single chains. It is observed that the angular amplitude decreases as the frequency of the oscillating field increases; we discuss this behavior numerically in terms of a simple model for this system. Lateral aggregation is studied in detail in isolated pairs of chains of equal length at several conditions of separation and displacement. From the results, a phase diagram is obtained showing the conditions under which aggregation is possible. PMID:24125266

  7. Aggregation pheromone of the cereal leaf beetle: field evaluation and emission from males in the laboratory.

    PubMed

    Rao, Sujaya; Cossé, Allard A; Zilkowski, Bruce W; Bartelt, Robert J

    2003-09-01

    The previously identified, male-specific compound of the cereal leaf beetle (CLB, Chrysomelidae; Oulema melanopus), (E)-8-hydroxy-6-methyl-6-octen-3-one, was studied further with respect to field activity and emission rate from male beetles. In a 5-week field experiment in Oregon, the compound was shown to function as an aggregation pheromone in attracting male and female CLBs migrating from overwintering sites in spring. Traps baited with the synthetic compound (500 microg per rubber septum) caught 3.3 times more CLBs than control traps. Lower doses of the pheromone (50 and 150 microg) were less attractive than the 500 microg dose. One relatively abundant, volatile compound from the host plant (oats), (Z)-3-hexenyl acetate, that elicited responses from beetle antennae was not attractive, either by itself or as a synergist of the pheromone. Both sexes were captured about equally for all treatments. We also measured daily pheromone emission by male beetles in the laboratory. Individual males feeding on oat seedlings under greenhouse conditions emitted as much as 6 microg per day, which is about 500 times higher than had been previously observed under incubator conditions. The pheromone emission rate was at least five times higher during the day than at night, and in one male, emission spanned a period of 28 d. The release rate of synthetic pheromone from the 500 microg septa was very similar to the maximum from single males; thus, future experiments should evaluate even higher doses. The field results indicate that the pheromone has potential as a monitoring tool for early detection of CLBs as they move from their overwintering sites into newly planted cereal crops in spring. PMID:14584683

  8. Charge state of arginine as an additive on heat-induced protein aggregation.

    PubMed

    Miyatake, Takumi; Yoshizawa, Shunsuke; Arakawa, Tsutomu; Shiraki, Kentaro

    2016-06-01

    Arginine (Arg) is one of the most versatile solvent additives, such as suppressing protein aggregation, increasing solubility of small aromatic compounds and peptides, and preventing protein binding on solid surfaces. In this study, we investigated the role of the charged state of α-amino group of Arg for the prevention of protein aggregation. As expected, Arg effectively suppressed thermal aggregation of hen egg-white lysozyme at neutral pH, whereas the suppression effect diminished at and above pH 9.0, which corresponds to the pK of Arg's α-amino group. The pH dependence of Arg as an aggregation suppressor was confirmed by additional experiments with neutral proteins, bovine hemoglobin and bovine γ-globulin. Interestingly, N-acetylated arginine, which lacks the α-amino group, showed a weaker suppressive effect on protein aggregation than Arg, even at neutral pH. These results indicate that both positively charged α-amino group and guanidinium group play important roles in suppressing heat-induced protein aggregation by Arg. The elucidated limitation of Arg at alkaline pH provides new insight in the application as well as the mechanism of Arg as a solvent additive. PMID:26987431

  9. [THE INFLUENCE OF HYDROGEN SULFIDE ON COLLAGEN-INDUCED AGGREGATION OF HUMAN PLATELETS].

    PubMed

    Petrova, I V; Trubacheva, O A; Mangataeva, O S; Suslova, T E; Kovalev, I V; Gusakova, S V

    2015-10-01

    Study the impact of hydrogen sulfide on collagen-induced platelet aggregation from healthy donors and patients with type 2 diabetes. In healthy individuals, in contrast to patients with type 2 diabetes, NaHS significantly inhibited platelet aggregation. Activators of cAMP signaling (forskolin and phosphodiesterase inhibitor) significantly reduced platelet aggregation in both groups of examinees. NO-synthase inhibitors increased platelet aggregation in healthy volunteers, but not in patients with type 2 diabetes. The presence of H2S donor did not alter the extent of platelet aggregation at high concentrations of cAMP or decreased production of nitric oxide. It is assumed that the antiplatelet effect of H2S is not associated with the effect on the signal system, mediated cAMP or nitric oxide. Change H2S-dependent regulation of platelet aggregation in patients with type 2 diabetes is caused by disorders have been reported with this disease: the increase of intracellular calcium ion concentration, oxidative damage to proteins, hyperhomocysteinemia, glycosylation of key proteins involved in this process. PMID:26827498

  10. Embryonic brain extract induces collagen biosynthesis in cultured muscle cells: involvement in acetylcholine receptor aggregation.

    PubMed Central

    Kalcheim, C; Vogel, Z; Duksin, D

    1982-01-01

    The involvement of extracellular matrix components in induction of the aggregation of acetylcholine (AcCho) receptors by factor(s) present in embryonic brain extract was investigated. Embryonic brain extract induced a three-fold increase in the number of AcCho receptor aggregates on the surface of cultured myotubes and a 5- to 10-fold increase in the synthesis of procollagen, which was secreted into the medium and converted to collagen. Adult brain extract, embryonic serum, and embryonic liver extract were less active in stimulating both collagen synthesis and AcCho receptor aggregation. A physiological connection between the two processes is suggested, since the number of AcCho receptor aggregates could be reduced to control levels by treating brain extract-stimulated myotubes with purified bacterial collagenase. In addition, stimulation of collagen secretion by ascorbic acid (50 micrograms/ml) promoted a 1.6-fold increase in AcCho receptor aggregation. When ascorbic acid was added together with the brain extract, further increases in both collagen synthesis and AcCho receptor aggregation were observed. Images PMID:6285338

  11. Inhibition of Primary ADP-Induced Platelet Aggregation in Normal Subjects after Administration of Nitrofurantoin (Furadantin)

    PubMed Central

    Rossi, Ennio C.; Levin, Nathan W.

    1973-01-01

    The evidence indicating that platelets may play a role in the occurrence of certain thromboembolic phenomena has stimulated a search for inhibitors of platelet function. This report presents data to indicate that nitrofurantoin is a potent inhibitor of primary ADP-induced platelet aggregation. The addition of 10 μM nitrofurantoin to citrated platelet-rich plasma obtained from 12 normal subjects produced a 29±6% (2 SD) inhibition of the velocity of platelet aggregation induced by 2 μM ADP. The inhibitory effect of nitrofurantoin demonstrated competitive kinetics in respect to ADP. The intravenous (180 mg) or oral (200 mg) administration of nitrofurantoin produced a serum nitrofurantoin concentration ranging from 2.7 to 23 μM in 28 normal subjects. Platelet-rich plasma obtained from these subjects demonstrated inhibition of the velocity of ADP-induced platelet aggregation that correlated with the log of the serum nitrofurantoin concentration (P < 0.001). Collagen-induced platelet aggregation was also inhibited in a dose-related manner, and the bleeding time was significantly prolonged in the two subjects with the highest serum nitrofurantoin concentration. These studies indicate that nitrofurantoin in vivo inhibits platelet function to a degree that is proportional to the serum nitrofurantoin concentration. PMID:4729043

  12. EFFECTS OF ALUMINUM-INDUCED AGGREGATION ON THE FLUORESCENCE OF HUMIC SUBSTANCES. (R822251)

    EPA Science Inventory

    Aluminum-induced aggregates of terrestrial and aquatic humic acid standards from the International Humic Substances Society are shown to be fluorescent by means of a multiwavelength fluorescence anisotropy experiment in which the data was treated with a model for nonspherical ...

  13. Aspirin-mediated acetylation induces structural alteration and aggregation of bovine pancreatic insulin.

    PubMed

    Yousefi, Reza; Taheri, Behnaz; Alavi, Parnian; Shahsavani, Mohammad Bagher; Asadi, Zahra; Ghahramani, Maryam; Niazi, Ali; Alavianmehr, Mohammad Mehdi; Moosavi-Movahedi, Ali Akbar

    2016-01-01

    The simple aggregation of insulin under various chemical and physical stresses is still an important challenge for both pharmaceutical production and clinical formulation. In the storage form, this protein is subjected to various chemical modifications which alter its physicochemical and aggregation properties. Aspirin (acetylsalicylic acid) which is the most widely used medicine worldwide has been indicated to acetylate a large number of proteins both in vitro and in vivo. In this study, as insulin treated with aspirin at 37°C, a significant level of acetylation was observed by flourescamine and o-phthalaldehyde assay. Also, different spectroscopic techniques, gel electrophoresis, and microscopic assessment were applied to compare the structural variation and aggregation/fibrillation propensity among acetylated and non-acetylated insulin samples. The results of spectroscopic assessments elucidate that acetylation induces insulin unfolding which is accompanied with the exposure of protein hydrophobic patches, a transition from alpha-helix to beta-sheet and increased propensity of the protein for aggregation. The kinetic studies propose that acetylation increases aggregation rate of insulin under both thermal and chemical stresses. Also, gel electrophoresis and dynamic light scattering experiments suggest that acetylation induces insulin oligomerization. Additionally, the results of Thioflavin T fluorescence study, Congo red absorption assessment, and microscopic analysis suggest that acetylation with aspirin enhances the process of insulin fibrillation. Overall, the increased susceptibility of acetylated insulin for aggregation may reflect the fact that this type of modification has significant structural destabilizing effect which finally makes the protein more vulnerable for pathogenic aggregation/fibrillation. PMID:25994118

  14. Dextran-induced aggregation in a mutant of Streptococcus sobrinus 6715-13.

    PubMed Central

    Freedman, M L; Guggenheim, B

    1983-01-01

    A mutant of wild-type Streptococcus sobrinus 6715-13 has been isolated which resists aggregation by exogenous dextran. This variant is able to form adherent plaque deposits in vitro when cultured in the presence of sucrose and has dextranase activity. In these respects it is the complement of previously described isolates which are plaque formation defective but aggregation normal. Measurements of the incorporation of glucose from glucosyl-labeled sucrose into glucan by cell-associated glucosyltransferase enzyme activity and the thermal labilities of catalytic and receptor functions, as well as the binding of labeled dextrans to the cells, provide evidence that neither dextranase nor glucosyltransferase is the receptor involved in dextran-induced aggregation. Blockage of such bacterial aggregation by anti-glucosyltransferase or anti-dextranase sera suggests cross-reactivity between the antigenic determinants of proteins which recognize alpha(1-6) glucan linkages. A model is proposed, consistent with these and previous findings, in which enzymatic function precedes dextran receptor activity in emergence from the cell. It is also proposed that dextran receptor components of the multireactive glucosyltransferase enzyme(s) and dextranase(s) are spatially separate from, although functionally and antigenically related to, the receptors on the bacterial surface involved in dextran-induced aggregation. Images PMID:6190754

  15. Prolonged nitric oxide treatment induces tau aggregation in SH-SY5Y cells.

    PubMed

    Takahashi, Muneaki; Chin, Yo; Nonaka, Takashi; Hasegawa, Masato; Watanabe, Nobuo; Arai, Takao

    2012-02-21

    Presence of cytoplasmic tau aggregates is a hallmark of brains in patients with tauopathies such as Alzheimer's disease. However, the mechanism underlying formation of these insoluble tau aggregates remains elusive. In this study, we investigated the impact of prolonged nitric oxide (NO) exposure on neuronal SH-SY5Y cells overexpressing human tau. Treatment with the NO donor DETA NONOate for up to 48h resulted in an increase in S-nitrosation of cellular proteins, inactivation of proteasome, and impairment of respiration. Western blot analysis of Triton X-soluble fractions of NO-treated cells revealed that persistent NO treatment increased heterogeneity in tau molecule size, as a result of dephosphorylation, and induced the formation of sodium dodecyl sulfate (SDS)-stable oligomeric tau aggregates, stabilized by disulfide bonds. Moreover, further NO treatment induced the formation of SDS-stable insoluble tau mega-aggregates that were composed of dephosphorylated full-length tau molecules and other proteins, and were stabilized through disulfide bonds. Evaluation of the role of these tau aggregates as potential seeds for tau fibrillization and elucidation of their formation mechanism in our model, could lead to better understanding of the pathogenesis of tauopathies. PMID:22249117

  16. Surfactant induced aggregation behavior of Merocyanine-540 adsorbed on polymer coated positively charged gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Das, K.; Uppal, A.; Saini, R. K.

    2016-01-01

    Surfactant induced aggregation behavior of Merocyanine 540 adsorbed on polymer (PDD) coated gold nanoparticles (AuNP) is reported. The absorption band of the dye shifts to higher energy in the presence of free polymer and polymer coated AuNP implying aggregation. Addition of a negatively charged surfactant (SDS) induces multiple bands in the extinction spectrum of the dye adsorbed on nanoparticle surface. The highest (460 nm) and lowest (564 nm) energy bands of the dye become prominent at 10 and >50 μM SDS concentrations respectively (dye: 10 μM; AuNP: 100-200 pM). Based on earlier results the high energy band is likely to originate from dye aggregates and the low energy band is likely to originate from dye monomers. This is attributed to the interplay between polymer-surfactant and polymer-dye interactions at the AuNP surface. The extinction spectra of dye adsorbed at AuNP surface remain unaffected in the presence of a positively charged (CTAB) or a neutral surfactant (Tx-100), at low surfactant concentrations. However at higher surfactant concentrations (>60 μM) dye aggregation takes place which is attributed to dye-surfactant interactions. The fluorescence intensity of the dye quenched significantly but its lifetime increased in the presence of polymer coated AuNP. This is attributed to aggregation and reduction in the photoisomerization rate of the dye adsorbed on AuNP surface.

  17. Positron annihilation induced Auger electron emission

    SciTech Connect

    Weiss, A.; Jibaly, M.; Lei, Chun; Mehl, D.; Mayer, R.; Lynn, K.G.

    1988-01-01

    We report on measurements of Auger electron emission from Cu and Fe due to core hole excitations produced by the removal of core electrons by matter-antimatter annihilation. Estimates are developed of the probability of positrons annihilating with a 3p electron in these materials. Several important advantages of Positron annihilation induced Auger Electron Spectroscopy (PAES) for surface analysis are suggested. 10 refs., 2 figs.

  18. Ultrasensitive detection of target analyte-induced aggregation of gold nanoparticles using laser-induced nanoparticle Rayleigh scattering.

    PubMed

    Lin, Jia-Hui; Tseng, Wei-Lung

    2015-01-01

    Detection of salt- and analyte-induced aggregation of gold nanoparticles (AuNPs) mostly relies on costly and bulky analytical instruments. To response this drawback, a portable, miniaturized, sensitive, and cost-effective detection technique is urgently required for rapid field detection and monitoring of target analyte via the use of AuNP-based sensor. This study combined a miniaturized spectrometer with a 532-nm laser to develop a laser-induced Rayleigh scattering technique, allowing the sensitive and selective detection of Rayleigh scattering from the aggregated AuNPs. Three AuNP-based sensing systems, including salt-, thiol- and metal ion-induced aggregation of the AuNPs, were performed to examine the sensitivity of laser-induced Rayleigh scattering technique. Salt-, thiol-, and metal ion-promoted NP aggregation were exemplified by the use of aptamer-adsorbed, fluorosurfactant-stabilized, and gallic acid-capped AuNPs for probing K(+), S-adenosylhomocysteine hydrolase-induced hydrolysis of S-adenosylhomocysteine, and Pb(2+), in sequence. Compared to the reported methods for monitoring the aggregated AuNPs, the proposed system provided distinct advantages of sensitivity. Laser-induced Rayleigh scattering technique was improved to be convenient, cheap, and portable by replacing a diode laser and a miniaturized spectrometer with a laser pointer and a smart-phone. Using this smart-phone-based detection platform, we can determine whether or not the Pb(2+) concentration exceed the maximum allowable level of Pb(2+) in drinking water. PMID:25476277

  19. Theoretical study on electromagnetically induced transparency in molecular aggregate models using quantum Liouville equation method

    SciTech Connect

    Minami, Takuya; Nakano, Masayoshi

    2015-01-22

    Electromagnetically induced transparency (EIT), which is known as an efficient control method of optical absorption property, is investigated using the polarizability spectra and population dynamics obtained by solving the quantum Liouville equation. In order to clarify the intermolecular interaction effect on EIT, we examine several molecular aggregate models composed of three-state monomers with the dipole-dipole coupling. On the basis of the present results, we discuss the applicability of EIT in molecular aggregate systems to a new type of optical switch.

  20. PPARγ Ligands Decrease Hydrostatic Pressure-Induced Platelet Aggregation and Proinflammatory Activity

    PubMed Central

    Chen, Xiao-Shu; Xu, Jin-Song; Fu, Hui-Min; Su, Hai; Wang, Ling

    2014-01-01

    Hypertension is known to be associated with platelet overactivity, but the direct effects of hydrostatic pressure on platelet function remain unclear. The present study sought to investigate whether elevated hydrostatic pressure is responsible for platelet activation and to address the potential role of peroxisome proliferator-activated receptor-γ (PPARγ). We observed that hypertensive patients had significantly higher platelet volume and rate of ADP-induced platelets aggregation compared to the controls. In vitro, Primary human platelets were cultured under standard (0 mmHg) or increased (120, 180, 240 mmHg) hydrostatic pressure for 18 h. Exposure to elevated pressure was associated with morphological changes in platelets. Platelet aggregation and PAC-1 (the active confirmation of GPIIb/IIIa) binding were increased, CD40L was translocated from cytoplasm to the surface of platelet and soluble CD40L (sCD40L) was released into the medium in response to elevated hydrostatic pressure (180 and 240 mmHg). The PPARγ activity was up-regulated as the pressure was increased from 120 mmHg to 180 mmHg. Pressure-induced platelet aggregation, PAC-1 binding, and translocation and release of CD40L were all attenuated by the PPARγ agonist Thiazolidinediones (TZDs). These results demonstrate that platelet activation and aggregation are increased by exposure to elevated pressure and that PPARγ may modulate platelet activation induced by high hydrostatic pressure. PMID:24586940

  1. Platelet Aggregation and Mental Stress Induced Myocardial Ischemia: Results from the REMIT Study

    PubMed Central

    Jiang, Wei; Boyle, Stephen H.; Ortel, Thomas L.; Samad, Zainab; Velazquez, Eric J.; Harrison, Robert W.; Wilson, Jennifer; Kuhn, Cynthia; Williams, Redford B.; O’Connor, Christopher M.; Becker, Richard C.

    2015-01-01

    BACKGROUND Mental stress-induced myocardial ischemia (MSIMI) is common in patients with ischemic heart disease (IHD) and associated with a poorer cardiovascular prognosis. Platelet hyperactivity is an important factor in acute coronary syndrome. This study examined associations between MSIMI and resting and mental stress-induced platelet activity. METHODS Eligible patients with clinically stable IHD underwent a battery of 3 mental stress tests during the recruitment phase of REMIT (Responses of Myocardial Ischemia to Escitalopram Treatment) study. MSIMI was assessed by echocardiography and electrocardiography. Ex vivo platelet aggregation in response to ADP, epinephrine, collagen, serotonin, and combinations of serotonin plus ADP, epinephrine, and collagen were evaluated as was platelet serotonin transporter expression. RESULTS Of the 270 participants who completed mental stress testing, and had both resting and post-stress platelet aggregation evaluation, 43.33% (N=117) met criteria for MSIMI and 18.15% (N=49) had normal left ventricular response to stress (NLVR). The MSIMI group, relative to the NLVR groups, demonstrated heightened mental stress-induced aggregation responses, as measured by area under the curve, to collagen 10 μM (6.95[5.54] vs. −14.23[8.75].; p=0.045), epinephrine 10 μM (12.84[4.84] vs. −6.40[7.61].; p=0.037) and to serotonin 10 μM plus ADP 1 μM (6.64[5.29] vs. −27.34[8.34]; p < .001). The resting platelet aggregation and serotonin transporter expression, however, were not different between the two groups. CONCLUSIONS These findings suggest that the dynamic change of platelet aggregation caused by mental stress may underlie MSIMI. While the importance of these findings requires additional investigation, they raise concern given the recognized relationship between mental stress-induced platelet hyperactivity and cardiovascular events in patients with IHD. PMID:25819856

  2. TABS, a T cell activation antigen that induces LFA-1-dependent aggregation.

    PubMed

    Andrew, D P; Yoshino, T; Guh, L; Martin-Simonet, M T; Butcher, E C

    1995-08-15

    We describe here a mAb, DATK44, which induces homotypic aggregation of TK1 cells (a CD8 lymphoma). The glycoprotein recognized by DATK44 is of approximate m.w. 50 kDa and is expressed by monocytes, neutrophils, and subsets of lymphocytes, as well as on the high endothelial venule in peripheral and mesenteric lymph nodes. We named this Ag TABS (T cell activation B cell subset Ag), as TABS appears on T lymphocyte activation and is expressed at low and high levels by B cells. TABS is differentially regulated during T lymphocyte development, CD4+veCD8+ve thymocytes being TABShigh, while single positive CD4+ve and CD8+ve thymocytes are TABSdull CD4-veCD8-ve thymocytes are clearly split into dull and bright populations by the mAb. On exit from the thymus, T lymphocytes cease to express TABS, but T lymphocyte activation results in re-expression of TABS. TABS also shows tight coregulation with heat stable Ag on resting lymphocytes, but coexpression of these two molecules is lost upon lymphocyte activation. DATK44-induced aggregation of TK1 cells is temperature sensitive and blocked by pretreatment of the cells with metabolic inhibitors, genestein, dibutyl cAMP or cytochalasin B, while colchicine, staurosporin, sphingosine, okadaic acid, and W7 are without effect. DATK44-induced TK1 cell aggregation appears to be mediated by the LFA-1 pathway, as aggregation is blocked by anti-LFA-1 and anti-ICAM-1 mAbs but not by Abs capable of blocking CD44 and alpha 4 beta 7-mediated adhesion. Thus, TABS appears to be an adhesion inducer that selectively activates LFA-1-mediated lymphocyte aggregation. PMID:7543529

  3. Micelle depletion-induced vs. micelle-mediated aggregation in nanoparticles

    SciTech Connect

    Ray, D. Aswal, V. K.

    2015-06-24

    The phase behavior anionic silica nanoparticle (Ludox LS30) with non-ionic surfactants decaethylene glycol monododecylether (C12E10) and cationic dodecyltrimethyl ammonium bromide (DTAB) in aqueous electrolyte solution has been studied by small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations of nanoparticle (1 wt%), surfactants (1 wt%) and electrolyte (0.1 M NaCl). Each of these nanoparticle–surfactant systems has been examined for different contrast conditions where individual components (nanoparticle or surfactant) are made visible. It is observed that the nanoparticle-micelle system in both the cases lead to the aggregation of nanoparticles. The aggregation is found to be micelle depletion-induced for C12E10 whereas micelle-mediated aggregation for DTAB. Interestingly, it is also found that phase behavior of mixed surfactant (C12E10 + DTAB) system is similar to that of C12E10 (unlike DTAB) micelles with nanoparticles.

  4. Highly Oriented J-Aggregates of Nitroazo Dye and Its Surface-Induced Chromism.

    PubMed

    Tanaka, Toshihiko; Ishitobi, Masamitsu; Aoyama, Tetsuya; Matsumoto, Shinya

    2016-05-17

    Highly oriented J-aggregates of a nitroazo dye were obtained in solid thin films on aligned poly(tetrafluoroethylene) surfaces. During film deposition on a friction-transferred poly(tetrafluoroethylene) layer, a sharp peak grew in the polarized absorption spectra around 613 nm, which was red-shifted 117 nm from the peak in dilute dichloromethane solution. The peak showed remarkable optical anisotropy: dichroic ratios D of up to 22 were observed, and the intrinsic D value should substantially exceed this value. These results indicate that the peak is attributable to highly oriented J-aggregates. On glass, however, H-like aggregates grew, exhibiting an absorption peak at 410 nm. Hence, the substrate surface induced the remarkable chromism observed as a 203 nm red shift. PMID:27088848

  5. Exercise-induced cramp, myoglobinuria, and tubular aggregates in phosphoglycerate mutase deficiency.

    PubMed

    Oh, Shin J; Park, Kyung-Seok; Ryan, Hewitt F; Danon, Moris J; Lu, Jiesheng; Naini, Ali B; DiMauro, Salvatore

    2006-11-01

    We report two patients in whom phosphoglycerate mutase (PGAM) deficiency was associated with the triad of exercise-induced cramps, recurrent myoglobinuria, and tubular aggregates in the muscle biopsy. Serum creatine kinase (CK) levels were elevated between attacks of myoglobinuria. Forearm ischemic exercise tests produced subnormal increases of venous lactate. Muscle biopsies showed subsarcolemmal tubular aggregates in type 2 fibers. Muscle PGAM activities were markedly decreased (3% of the normal mean) and molecular genetic studies showed that both patients were homozygous for a described missense mutation (W78X). A review of 15 cases with tubular aggregates in the muscle biopsies from our laboratory and 15 cases with PGAM deficiency described in the literature showed that this clinicopathological triad is highly suggestive of PGAM deficiency. PMID:16881065

  6. Rapid Formation of Cell Aggregates and Spheroids Induced by a "Smart" Boronic Acid Copolymer.

    PubMed

    Amaral, Adérito J R; Pasparakis, George

    2016-09-01

    Cell surface engineering has emerged as a powerful approach to forming cell aggregates/spheroids and cell-biomaterial ensembles with significant uses in tissue engineering and cell therapeutics. Herein, we demonstrate that cell membrane remodeling with a thermoresponsive boronic acid copolymer induces the rapid formation of spheroids using either cancer or cardiac cell lines under conventional cell culture conditions at minute concentrations. It is shown that the formation of well-defined spheroids is accelerated by at least 24 h compared to non-polymer-treated controls, and, more importantly, the polymer allows for fine control of the aggregation kinetics owing to its stimulus response to temperature and glucose content. On the basis of its simplicity and effectiveness to promote cellular aggregation, this platform holds promise in three-dimensional tissue/tumor modeling and tissue engineering applications. PMID:27571512

  7. Solution structure of copper ion-induced molecular aggregates of tyrosine melanin.

    PubMed

    Gallas, J M; Littrell, K C; Seifert, S; Zajac, G W; Thiyagarajan, P

    1999-08-01

    Melanin, the ubiquitous biological pigment, provides photoprotection by efficient filtration of light and also by its antioxidant behavior. In solutions of synthetic melanin, both optical and antioxidant behavior are affected by the aggregation states of melanin. We have utilized small-angle x-ray and neutron scattering to determine the molecular dimensions of synthetic tyrosine melanin in its unaggregated state in D(2)O and H(2)O to study the structure of melanin aggregates formed in the presence of copper ions at various copper-to-melanin molar ratios. In the absence of copper ions, or at low copper ion concentrations, tyrosine melanin is present in solution as a sheet-like particle with a mean thickness of 12.5 A and a lateral extent of approximately 54 A. At a copper-to-melanin molar ratio of 0.6, melanin aggregates to form long, rod-like structures with a radius of 32 A. At a higher copper ion concentration, with a copper-to-melanin ratio of 1.0, these rod-like structures further aggregate, forming sheet-like structures with a mean thickness of 51 A. A change in the charge of the ionizable groups induced by the addition of copper ions is proposed to account for part of the aggregation. The data also support a model for the copper-induced aggregation of melanin driven by pi stacking assisted by peripheral Cu(2+) complexation. The relationship between our results and a previous hypothesis for reduced cellular damage from bound-to-melanin redox metal ions is also discussed. PMID:10423458

  8. Effect of diabetic duration on hemorheological properties and platelet aggregation in streptozotocin-induced diabetic rats

    PubMed Central

    Yeom, Eunseop; Byeon, Hyeokjun; Lee, Sang Joon

    2016-01-01

    Diabetes mellitus with abnormal glucose concentration is associated with changes in hemorheological properties, endothelial function, and platelets hyperactivity. Disturbances may significantly be responsible for diabetes-related vascular complications. In this study, hemorheological and hemodynamic properties were measured according to diabetic duration after streptozotocin treatment in rats. For ex vivo measurements, an extracorporeal model was adopted. Flow rate and blood viscosity were measured using a microfluidic device. Erythrocyte aggregation and morphological parameters of erythrocytes were measured by modified erythrocyte sedimentation rate and the phase-contrast holography under in vitro conditions. The platelet aggregation and mean pressure in the femoral artery were estimated under ex vivo conditions. Hemorheological properties including blood viscosity, erythrocyte aggregation and shape parameters for the control group are significantly different with those for diabetic groups. The changes with respect to diabetic duration were relatively unnoticeable. However, the platelet aggregation is strongly dependent on the diabetic duration. Based on these results, hyperglycemia exposure may induce hemorheological variations in early stages of diabetes mellitus. High platelet aggregation may become more pronounced according to the diabetic duration caused by variations in hemorheological properties resulting in endothelial dysfunction. This study would be helpful in understanding the effects of diabetic duration on biophysical properties. PMID:26898237

  9. Effect of diabetic duration on hemorheological properties and platelet aggregation in streptozotocin-induced diabetic rats.

    PubMed

    Yeom, Eunseop; Byeon, Hyeokjun; Lee, Sang Joon

    2016-01-01

    Diabetes mellitus with abnormal glucose concentration is associated with changes in hemorheological properties, endothelial function, and platelets hyperactivity. Disturbances may significantly be responsible for diabetes-related vascular complications. In this study, hemorheological and hemodynamic properties were measured according to diabetic duration after streptozotocin treatment in rats. For ex vivo measurements, an extracorporeal model was adopted. Flow rate and blood viscosity were measured using a microfluidic device. Erythrocyte aggregation and morphological parameters of erythrocytes were measured by modified erythrocyte sedimentation rate and the phase-contrast holography under in vitro conditions. The platelet aggregation and mean pressure in the femoral artery were estimated under ex vivo conditions. Hemorheological properties including blood viscosity, erythrocyte aggregation and shape parameters for the control group are significantly different with those for diabetic groups. The changes with respect to diabetic duration were relatively unnoticeable. However, the platelet aggregation is strongly dependent on the diabetic duration. Based on these results, hyperglycemia exposure may induce hemorheological variations in early stages of diabetes mellitus. High platelet aggregation may become more pronounced according to the diabetic duration caused by variations in hemorheological properties resulting in endothelial dysfunction. This study would be helpful in understanding the effects of diabetic duration on biophysical properties. PMID:26898237

  10. Aldosterone and angiotensin II induce protein aggregation in renal proximal tubules

    PubMed Central

    Cheema, Muhammad U; Poulsen, Ebbe T; Enghild, Jan J; Hoorn, Ewout; Fenton, Robert A; Praetorius, Jeppe

    2013-01-01

    Renal tubules are highly active transporting epithelia and are at risk of protein aggregation due to high protein turnover and/or oxidative stress. We hypothesized that the risk of aggregation was increased upon hormone stimulation and assessed the state of the intracellular protein degradation systems in the kidney from control rats and rats receiving aldosterone or angiotensin II treatment for 7 days. Control rats formed both aggresomes and autophagosomes specifically in the proximal tubules, indicating a need for these structures even under baseline conditions. Fluorescence sorted aggresomes contained various rat keratins known to be expressed in renal tubules as assessed by protein mass spectrometry. Aldosterone administration increased the abundance of the proximal tubular aggresomal protein keratin 5, the ribosomal protein RPL27, ataxin-3, and the chaperone heat shock protein 70-4 with no apparent change in the aggresome–autophagosome markers. Angiotensin II induced aggregation of RPL27 specifically in proximal tubules, again without apparent change in antiaggregating proteins or the aggresome–autophagosome markers. Albumin endocytosis was unaffected by the hormone administration. Taken together, we find that the renal proximal tubules display aggresome formation and autophagy. Despite an increase in aggregation-prone protein load in these tubules during hormone treatment, renal proximal tubules seem to have sufficient capacity for removing protein aggregates from the cells. PMID:24303148

  11. Kinetics for Cu(2+) induced Sepia pharaonis arginine kinase inactivation and aggregation.

    PubMed

    Shi, Xiao-Yu; Zhang, Li-Li; Wu, Feng; Fu, Yang-Yong; Yin, Shang-Jun; Si, Yue-Xiu; Park, Yong-Doo

    2016-10-01

    Arginine kinase plays an important role in cellular energy metabolism and is closely related to the environmental stress response in marine invertebrates. We studied the Cu(2+)-mediated inhibition and aggregation of Sepia pharaonis arginine kinase (SPAK) and found that Cu(2+) markedly inhibited the SPAK activity along with mixed-type inhibition against the arginine substrate and noncompetitive inhibition against the ATP cofactor. Spectrofluorimetry results showed that Cu(2+) induced a tertiary structure change in SPAK, resulting in exposure of the hydrophobic surface and increased aggregation. Cu(2+)-mediated SPAK aggregation followed first-order kinetics consistent with monophasic and a biphasic processes. Addition of osmolytes, including glycine and proline, effectively blocked SPAK aggregation and restored SPAK activity. Our results demonstrated the effects of Cu(2+) on SPAK catalytic function, conformation, and aggregation, as well as the protective effects of osmolytes on SPAK folding. This study provided important insights into the role of Cu(2+) as a negative effector of the S. pharaonis metabolic enzyme AK and the possible responses of cephalopods to unfavorable environmental conditions. PMID:27318110

  12. Interaction of salvianolic acids and notoginsengnosides in inhibition of ADP-induced platelet aggregation.

    PubMed

    Yao, Yan; Wu, Wan-Ying; Liu, Ai-Hua; Deng, Shao-Sheng; Bi, Kai-Shun; Liu, Xuan; Guo, De-An

    2008-01-01

    Salvia miltiorrhiza and Panax notoginseng were both considered to be beneficial to cardiovascular diseases in traditional Chinese medicine and often used in combination. To examine the possible interaction between them, the effects of the active fractions of these two herbs, salvianolic acids (SA) and notoginsengnosides (NG), on platelet aggregation were checked respectively or in combination in vitro and in vivo. Both the platelet aggregation of platelet rich plasma (PRP) and washed platelet after ADP induction were checked. In vitro study showed that both SA and NG had an inhibitory effect on platelet aggregation. However, there is no synergistic effect of the combination of SA and NG in vitro. In vivo study showed that i.g. 550 mg/kg/day SA or NG for 5 days could significantly inhibit ADP-induced platelet aggregation of PRP. Moreover, combination of SA and NG at a ratio of 5:1 had a synergistic effect on platelet aggregation of PRP. The mechanism for the synergism of SA and NG in vivo was not clear. High performance liquid chromatography analysis of the plasma of rats received SA, NG or combination of SA and NG showed that co-administration of NG caused change in the plasma distribution profile of SA. The influence of combination on the absorption and/or metabolism of SA may be one of the reasons for the synergism of SA and NG in vivo. PMID:18457363

  13. Synthesis of porous zirconia spheres for HPLC by polymerization-induced colloid aggregation (PICA)

    SciTech Connect

    Sun, L.; Annen, M.J.; Lorenzano-Porras, F.; Carr, P.W.; McCormick, A.V. )

    1994-03-15

    Porous, spherical zirconia particles with a narrow particle size distribution, which are useful as chromatographic packing materials for high performance liquid chromatography (HPLC), were synthesized by polymerization-induced colloid aggregation (PICA) first described by Iler and McQueston (US Patent 4,010,242, 1977.) and the effects of a number of crucial processing variables were examined. In this method, an aqueous zirconia sol consisting of 700 [angstrom] (mean diameter) particles is mixed with urea and formaldehyde polymer adsorbs onto the ZrO[sub 2] colloids, entraining the colloids in the precipitation of the polymer gel and thus alloying the colloids to aggregate. Features of the aggregation process are elucidated from responses of the process to variations in temperature, reaction mixture composition, and solvent polarity. Results suggest that the aggregation process resembles those reported for the bridging flocculation of colloids by adsorbed polymers. Porous zirconia particles obtained after polymer combustion and sintering of the aggregates are 3.5 [mu]m in diameter with a surface area of 13 m[sup 2]/g, a porosity of 29% and pores ranging from <50 to 350 [angstrom] in diameter. The particles are strong enough to withstand the packing of a HPLC column.

  14. Pulsed Laser-Driven Molecular Self-assembly of Cephalexin: Aggregation-Induced Fluorescence and Its Utility as a Mercury Ion Sensor.

    PubMed

    Singh, Pradeep Kumar; Prabhune, Asmita; Ogale, Satishchandra

    2015-11-01

    A fluorescent self-assembly of cephalexin is obtained by pulsed laser irradiation process. An intense fluorescence emission is found in the self-assembled form due to occurrence of a typical aggregation-induced emission in cephalexin molecules. It is observed that fluorescence quenching of the self-assembled fluorescent nanostructures occurs in the presence of extremely low Hg(++) ions concentrations (10(-7) m) as compared to other heavy metal ions e.g. Ferrous (Fe(++) ), Manganese (Mn(++) ), Magnesium (Mg(++) ), Cobalt (Co(++) ), Nickel (Ni(++) ) and Zinc (Zn(++) ) at the same concentrations. PMID:26333412

  15. Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer

    NASA Astrophysics Data System (ADS)

    Sun, Mengmeng; Liu, Fei; Zhu, Yukun; Wang, Wansheng; Hu, Jin; Liu, Jing; Dai, Zhifei; Wang, Kun; Wei, Yen; Bai, Jing; Gao, Weiping

    2016-02-01

    The challenge in photothermal therapy (PTT) is to develop biocompatible photothermal transducers that can absorb and convert near-infrared (NIR) light into heat with high efficiency. Herein, we report salt-induced aggregation of gold nanoparticles (GNPs) in biological media to form highly efficient and biocompatible NIR photothermal transducers for PTT and photothermal/photoacoustic (PT/PA) imaging of cancer. The GNP depots in situ formed by salt-induced aggregation of GNPs show strong NIR absorption induced by plasmonic coupling between adjacent GNPs and very high photothermal conversion efficiency (52%), enabling photothermal destruction of tumor cells. More interestingly, GNPs in situ aggregate in tumors to form GNP depots, enabling simultaneous PT/PA imaging and PTT of the tumors. These findings may provide a simple and effective way to develop a new class of intelligent and biocompatible NIR photothermal transducers with high efficiency for PT/PA imaging and PTT.The challenge in photothermal therapy (PTT) is to develop biocompatible photothermal transducers that can absorb and convert near-infrared (NIR) light into heat with high efficiency. Herein, we report salt-induced aggregation of gold nanoparticles (GNPs) in biological media to form highly efficient and biocompatible NIR photothermal transducers for PTT and photothermal/photoacoustic (PT/PA) imaging of cancer. The GNP depots in situ formed by salt-induced aggregation of GNPs show strong NIR absorption induced by plasmonic coupling between adjacent GNPs and very high photothermal conversion efficiency (52%), enabling photothermal destruction of tumor cells. More interestingly, GNPs in situ aggregate in tumors to form GNP depots, enabling simultaneous PT/PA imaging and PTT of the tumors. These findings may provide a simple and effective way to develop a new class of intelligent and biocompatible NIR photothermal transducers with high efficiency for PT/PA imaging and PTT. Electronic supplementary

  16. Tunable emission properties by ferromagnetic coupling Mn(II) aggregates in Mn-doped CdS microbelts/nanowires

    NASA Astrophysics Data System (ADS)

    Arshad Kamran, Muhammad; Liu, Ruibin; Shi, Li-Jie; Li, Zi-An; Marzi, Thomas; Schöppner, Christian; Farle, Michael; Zou, Bingsuo

    2014-09-01

    Tunable optical emission properties from ferromagnetic semiconductors have not been well identified yet. In this work, high-quality Mn(II)-doped CdS nanowires and micrometer belts were prepared using a controlled chemical vapor deposition technique. The Mn doping could be controlled with time, precursor concentration and temperature. These wires or belts can produce both tunable redshifted emissions and ferromagnetic responses simultaneously upon doping. The strong emission bands at 572, 651, 693, 712, 745, 768, 787 and 803 nm, due to the Mn(II) 4T1(4G) → 6A1(6s) d-d transition, can be detected and accounted for by the aggregation of Mn ions at Cd sites in the CdS lattice at high temperature. These aggregates with ferromagnetism and shifted luminescence are related to the excitonic magnetic polaron (EMP) and localized EMP formations; this is verified by ab initio calculations. The correlation between aggregation-dependent optical emissions and ferromagnetic responses not only presents a new size effect for diluted magnetic semiconductors (DMSs), but also supplies a possible way to study or modulate the ferromagnetic properties of a DMS and to fabricate spin-related photonic devices in the future.

  17. Methodological considerations for the assessment of ADP induced platelet aggregation using the Multiplate® analyser.

    PubMed

    Johnston, Lisa R; Larsen, Peter D; La Flamme, Anne C; Harding, Scott A

    2013-01-01

    Factors affecting the Multiplate® assay's analytical precision have not been well defined. We investigated the effect of methodological factors on the measurement of ADP-induced platelet aggregation using the Multiplate® assay. ADP-induced platelet aggregation was analysed in whole blood using the Multiplate® assay. We tested the reproducibility of measurement, the effect of different anticoagulants (hirudin, citrate and heparin) and the effect of time delay (15, 30, 45, 60, 120 and 180 minutes) between sampling and analysis in patients. The use of a manual calibrated pipette with the Multiplate® analyser was also tested. The mean coefficient of variation (CV) using the manufacturers recommended methods was 10.8 ± 8.7% (n = 30). When compared to hirudin (359.5 ± 309 AU*min) the use of heparin (521.0 ± 316 AU*min, p = 0.0015) increased platelet aggregation, while the use of sodium citrate (245.0 ± 209 AU*min, p = 0.003) decreased the platelet aggregation (n = 20). The addition of CaCl2 to the citrate-anticoagulated blood resulted in platelet aggregation levels similar to hirudin. Platelet aggregation varied with time delay (n = 20). When compared to platelet aggregation at 30 minutes (391.1 ± 283 AU*min), platelet aggregation was reduced at 60 minutes (335.2 ± 251.6 AU*min, p < 0.05), 120 minutes (198.8 ± 122.9 AU*min, p < 0.001) and 180 minutes (160.7 ± 92 AU*min, p < 0.001). The use of a manual calibrated pipette did not significantly reduce the mean CV in the assay (n = 20). Methodological factors such as the anticoagulant used and the time delay should be standardised where possible to reduce variability, and allow thresholds derived from one study to be comparable across multiple studies. PMID:22686487

  18. The unprecedented J-aggregate formation of rhodamine moieties induced by 9-phenylanthracenyl substitution.

    PubMed

    Kim, Sooyeon; Fujitsuka, Mamoru; Tohnai, Norimitsu; Tachikawa, Takashi; Hisaki, Ichiro; Miyata, Mikiji; Majima, Tetsuro

    2015-07-25

    We report a substitution of 9-phenylanthracenyl group into rhodamine derivatives that can induce the J-aggregate formation of rhodamine moieties in the aqueous solution upon the addition of a halide ion. From X-ray crystallographic analysis, the dramatic red-shift in the absorption band (i.e. app. 100 nm) originates from the cooperative slipped-stacking of rhodamine and anthracene molecules. PMID:26095853

  19. Suppression of Photocyclization: Stabilization of an Aggregation-Induced Tetraaryldistyrylbenzene Emitter.

    PubMed

    Freudenberg, Jan; Rominger, Frank; Bunz, Uwe H F

    2016-06-20

    The synthesis of 2,3,5,6-tetrakis(2,6-difluorophenyl)di(styryl)benzene by using a conventional synthetic sequence, including Diels-Alder and Horner reactions is reported. The target is an effective aggregation-induced emitter. It is photostable with respect to electrocyclization, due to the presence of the fluorine substituents. This compound undergoes photochemical trans/cis isomerization of its styryl double bonds. PMID:27124375

  20. Evaluation of clay aggregate biotrickling filters for treatment of gaseous emissions from intensive pig production.

    PubMed

    Liu, Dezhao; Løkke, Mette Marie; Riis, Anders Leegaard; Mortensen, Knud; Feilberg, Anders

    2014-04-01

    Treatment of ventilation air from livestock production by biological airfiltration has emerged as a cost-effective technology for reduction of emissions of odorants and ammonia. Volatile sulfur compounds from livestock production include H2S and methanethiol, which have been identified as potentially important odorants that are not removed sufficiently by biological air filters. Light-expanded clay aggregates (Leca(®)) is a biotrickling filter material that contains iron oxides, which can oxidize H2S and methanethiol, and thus potentially may help to remove these two compounds in biological air filters. This study used on-line PTR-MS measurements to investigate the performances of two Leca(®) biotrickling filters (abraded Leca(®) filter and untreated Leca(®) filter) for removal of odorants and ammonia emitted from an experimental pig house. The results indicated that the abraded Leca(®) filter had a similar or slightly better capability for removing odorants than the untreated Leca(®) filter. This may be due to the enlargement of the surface area by the friction process. The volatile sulfur compounds, however, were not removed efficiently by either of the two Leca(®) filters. Kinetic analysis of a ventilation controlled experiment during the first period indicated that Grau second-order kinetics could be applied to analyze the removal of sulfur compounds and other odorants, whereas the Stover-Kincannon model could only be applied to analyze the removal of odorants other than sulfur compounds, partly due to the limitation of mass transfer of these compounds in the biotrickling filters. In the last measurement period, a production of dimethyl disulfide and dimethyltrisulfide coinciding with strongly enhanced removal of methanethiol was observed for the untreated filter. This was assumed to be enhanced by an incidence of low local air velocity in the filter and indicated involvement of iron-catalyzed reactions in the removal of sulfur compounds. PMID:24534901

  1. Analysis of six heavy metals in Ortho mineral trioxide aggregate and ProRoot mineral trioxide aggregate by inductively coupled plasma-optical emission spectrometry.

    PubMed

    Kum, Kee-Yeon; Zhu, Qiang; Safavi, Kamran; Gu, Yu; Bae, Kwang-Shik; Chang, Seok Woo

    2013-12-01

    Ortho mineral trioxide aggregate (MTA) is a mineral aggregate newly developed for perforation repair, root end filling and pulp capping. The aim of this study was to investigate the levels of cadmium (Cd), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni) and zinc (Zn) in Ortho MTA and ProRoot MTA. A total of 0.2 g of each MTA was digested using a mixture of hydrochloric and nitric acids and filtered. Six heavy metals in the resulting filtrates were analyzed by inductively coupled plasma-optical emission spectrometry (n = 5). The results were statistically analyzed using the Mann-Whitney U-test. The concentrations of Cd, Cu, Fe, Mn, Ni and Zn in Ortho MTA were 0.10, 7.73, 49.51, 2.58, 0.82 and 10.09 p.p.m., respectively. The concentrations of Cd, Cu, Fe, Mn, Ni and Zn in ProRoot MTA were 0.16, 9.38, 1438.11, 74.51, 18.98 and 4.05 p.p.m., respectively. In conclusion, Ortho MTA had lower levels of Cd, Cu, Fe, Mn and Ni than ProRoot MTA. PMID:24279659

  2. Quantification of alginate by aggregation induced by calcium ions and fluorescent polycations.

    PubMed

    Zheng, Hewen; Korendovych, Ivan V; Luk, Yan-Yeung

    2016-01-01

    For quantification of polysaccharides, including heparins and alginates, the commonly used carbazole assay involves hydrolysis of the polysaccharide to form a mixture of UV-active dye conjugate products. Here, we describe two efficient detection and quantification methods that make use of the negative charges of the alginate polymer and do not involve degradation of the targeted polysaccharide. The first method utilizes calcium ions to induce formation of hydrogel-like aggregates with alginate polymer; the aggregates can be quantified readily by staining with a crystal violet dye. This method does not require purification of alginate from the culture medium and can measure the large amount of alginate that is produced by a mucoid Pseudomonas aeruginosa culture. The second method employs polycations tethering a fluorescent dye to form suspension aggregates with the alginate polyanion. Encasing the fluorescent dye in the aggregates provides an increased scattering intensity with a sensitivity comparable to that of the conventional carbazole assay. Both approaches provide efficient methods for monitoring alginate production by mucoid P. aeruginosa. PMID:26408812

  3. Ubiquilin overexpression reduces GFP-polyalanine-induced protein aggregates and toxicity

    SciTech Connect

    Wang Hongmin; Monteiro, Mervyn J. . E-mail: monteiro@umbi.umd.edu

    2007-08-01

    Several human disorders are associated with an increase in a continuous stretch of alanine amino acids in proteins. These so-called polyalanine expansion diseases share many similarities with polyglutamine-related disorders, including a length-dependent reiteration of amino acid induction of protein aggregation and cytotoxicity. We previously reported that overexpression of ubiquilin reduces protein aggregates and toxicity of expanded polyglutamine proteins. Here, we demonstrate a similar role for ubiquilin toward expanded polyalanine proteins. Overexpression of ubiquilin-1 in HeLa cells reduced protein aggregates and the cytotoxicity associated with expression of a transfected nuclear-targeted GFP-fusion protein containing 37-alanine repeats (GFP-A37), in a dose dependent manner. Ubiquilin coimmunoprecipitated more with GFP proteins containing a 37-polyalanine tract compared to either 7 (GFP-A7), or no alanine tract (GFP). Moreover, overexpression of ubiquilin suppressed the increased vulnerability of HeLa cell lines stably expressing the GFP-A37 fusion protein to oxidative stress-induced cell death compared to cell lines expressing GFP or GFP-A7 proteins. By contrast, siRNA knockdown of ubiquilin expression in the GFP-A37 cell line was associated with decreased cellular proliferation, and increases in GFP protein aggregates, nuclear fragmentation, and cell death. Our results suggest that boosting ubiquilin levels in cells might provide a universal and attractive strategy to prevent toxicity of proteins containing reiterative expansions of amino acids involved in many human diseases.

  4. Strategy of ring-shaped aggregates in excitation energy transfer for removing disorder-induced shielding

    NASA Astrophysics Data System (ADS)

    Tei, Go; Nakatani, Masatoshi; Ishihara, Hajime

    2013-06-01

    Peripheral light harvesting complex (LH2), which is found in photosynthetic antenna systems of purple photosynthetic bacteria, has important functions in the photosynthetic process, such as harvesting sunlight and transferring its energy to the photosynthetic reaction center. The key component in excitation energy transfer (EET) between LH2s is B850, which is a characteristic ring-shaped aggregate of pigments usually formed by 18 or 16 bacteriochlorophylls in LH2. We theoretically study the strategy of the ring-shaped aggregate structure, which maximizes EET efficiency, by using the standard Frenkel exciton model and the self-consistent calculation method for the Markovian quantum master equation and Maxwell equation. As a result, we have revealed a simple but ingenious strategy of the ring-shaped aggregate structure. The combination of three key properties of the ring unit system maximizes the EET efficiency, namely the large dipole moment of aggregates causes the basic improvement of EET efficiency, and the isotropic nature and the large occupying area are critically effective to remove the disorder-induced shielding that inhibits EET in the presence of the randomness of orientation and alignment of carriers of excitation energy.

  5. Osmolyte Induced Changes in Peptide Conformational Ensemble Correlate with Slower Amyloid Aggregation: A Coarse-Grained Simulation Study.

    PubMed

    Sukenik, Shahar; Sapir, Liel; Harries, Daniel

    2015-12-01

    Stabilizing osmolytes are known to impact the process of amyloid aggregation, often altering aggregation kinetics. Recent evidence further suggests that osmolytes modify the peptide conformational dynamics, as well as change the physical characteristics of assembling amyloid fibrils. To resolve how these variations emerge on the molecular level, we simulated the initial aggregation steps of an amyloid-forming peptide in the presence and absence of the osmolyte sorbitol, a naturally occurring polyol. To this end, a coarse-grained force field was extended and implemented to access larger aggregate sizes and longer time scales. The force field optimization procedure placed emphasis on calibrating the solution thermodynamics of sorbitol, the aggregating peptide in its monomeric form, and the interaction of both of these components with each other and with water. Our simulations show a difference in aggregation kinetics and structural parameters in the presence of sorbitol compared to water, which qualitatively agree well with our experimentally resolved aggregation kinetics of the same peptide. The kinetic changes induced by sorbitol can be traced in our simulations to changes in monomer conformations resulting from osmolyte presence. These translate into changes in peptide conformations within the aggregated clusters and into differences in rates of monomer nucleation and of association to formed fibrils. We find that, compared to pure water as solvent, the presence of sorbitol induces formation of more aggregates each containing fewer peptides, with an increased tendency toward parallel interpeptide contacts. PMID:26587669

  6. Rate laws of the self-induced aggregation kinetics of Brownian particles

    NASA Astrophysics Data System (ADS)

    Mondal, Shrabani; Sen, Monoj Kumar; Baura, Alendu; Bag, Bidhan Chandra

    2016-03-01

    In this paper we have studied the self induced aggregation kinetics of Brownian particles in the presence of both multiplicative and additive noises. In addition to the drift due to the self aggregation process, the environment may induce a drift term in the presence of a multiplicative noise. Then there would be an interplay between the two drift terms. It may account qualitatively the appearance of the different laws of aggregation process. At low strength of white multiplicative noise, the cluster number decreases as a Gaussian function of time. If the noise strength becomes appreciably large then the variation of cluster number with time is fitted well by the mono exponentially decaying function of time. For additive noise driven case, the decrease of cluster number can be described by the power law. But in case of multiplicative colored driven process, cluster number decays multi exponentially. However, we have explored how the rate constant (in the mono exponentially cluster number decaying case) depends on strength of interference of the noises and their intensity. We have also explored how the structure factor at long time depends on the strength of the cross correlation (CC) between the additive and the multiplicative noises.

  7. Aggregation and hemi-fusion of anionic vesicles induced by the antimicrobial peptide cryptdin-4.

    PubMed

    Cummings, Jason E; Vanderlick, T Kyle

    2007-07-01

    We show that cryptdin-4 (Crp4), an antimicrobial peptide found in mice, induces the aggregation and hemi-fusion of charged phospholipid vesicles constructed of the anionic lipid POPG and the zwitterionic lipid POPC. Hemi-fusion is confirmed with positive total lipid-mixing assay results, negative inner monolayer lipid-mixing assay results, and negative results from contents-mixing assays. Aggregation, as quantified by absorbance and dynamic light scattering, is self-limiting, creating finite-sized vesicle assemblies. The rate limiting step in the formation process is the mixing of juxtaposed membrane leaflets, which is regulated by bound peptide concentration as well as vesicle radius (with larger vesicles less prone to hemi-fusion). Bound peptide concentration is readily controlled by total peptide concentration and the fraction of anionic lipid in the vesicles. As little as 1% PEGylated lipid significantly reduces aggregate size by providing a steric barrier for membrane apposition. Finally, as stable hemi-fusion is a rare occurrence, we compare properties of Crp4 to those of many peptides known to induce complete fusion and lend insight into conditions necessary for this unusual type of membrane merger. PMID:17531950

  8. Rapid KRAS Mutation Detection via Hybridization-Induced Aggregation of Microbeads.

    PubMed

    Sloane, Hillary S; Kelly, Kimberly A; Landers, James P

    2015-10-20

    Using hybridization-induced aggregation (HIA), a unique bead-based DNA detection technology scalable for a microchip platform, we describe a simplistic, low-cost method for rapid mutation testing. HIA utilizes a pair of sequence-specific oligonucleotide probes bound to magnetic microbeads. Hybridization to a target DNA strand tethers the beads together, inducing bead aggregation. By simply using the extent of bead aggregation as a measure of the hybridization efficiency, we avoid the need for additional labels and sophisticated analytical equipment. Through strategic manipulation of the assay design and experimental parameters, we use HIA to facilitate, for the first time, the detection of single base mutations in a gene segment and, specifically, the detection of activating KRAS mutations. Following the development and optimization of the assay, we apply it for KRAS mutation analysis of four human cancer cell lines. Ultimately, we present a proof-of-principle method for detecting any of the common KRAS mutations in a single-step, 2 min assay, using only one set of oligonucleotide probes, for a total analysis time of less than 10 min post-PCR. The assay is performed at room temperature and uses simple, inexpensive instrumentation that permits multiplexed analysis. PMID:26339780

  9. Chronic lead treatment accelerates photochemically induced platelet aggregation in cerebral microvessels of mice, in vivo

    SciTech Connect

    Al Dhaheri, A.H.; El-Sabban, F.; Fahim, M.A.

    1995-04-01

    Effects of two chronic treatment levels with lead on platelet aggregation in cerebral (pial) microcirculation of the mouse were investigated. Exposure to lead was made by subcutaneous injections for 7 days of lead acetate dissolved in 5% glucose solution, vehicle. Two doses of lead were used, a low dose of 0.1 mg/kg and a high dose of 1.0 mg/kg. Adult male mice were divided into three groups, 10 each; one group was injected with vehicle (control), another was injected with the low dose, and the third was injected with the high dose. Additional mice were used for the determination of hematological parameters and for the lead level in serum of the three groups. On the eighth day, platelet aggregation in pial microvessels of these groups of mice was carried out in vivo. Animals were anesthetized (urethane, 1-2 mg/g, ip), the trachea was intubated, and a craniotomy was performed. Platelet aggregation in pial microvessels was induced photochemically, by activation of circulating sodium fluorescein (0.1 mg/25 g, iv) with an intense mercury light. The time required for the first platelet aggregate to appear in pial arterioles was significantly shorter in the lead-treated mice than in control. This effect was in a dose-dependent manner; 113 {+-} 44 sec for low dose and 71 {+-} 18 sec for high dose vs 155 {+-} 25 sec for control, P < 0.02 and P < 0.001, respectively. Between the two lead-treated groups, the high dose significantly (P < 0.05) shortened the time to first aggregate. These data evidenced an increased susceptibility to cerebrovascular thrombosis as a result of exposure to lead. 26 refs., 4 figs., 2 tabs.

  10. Silicification-induced cell aggregation for the sustainable production of H2 under aerobic conditions.

    PubMed

    Xiong, Wei; Zhao, Xiaohong; Zhu, Genxing; Shao, Changyu; Li, Yaling; Ma, Weimin; Xu, Xurong; Tang, Ruikang

    2015-10-01

    Photobiological hydrogen production is of great importance because of its promise for generating clean renewable energy. In nature, green algae cannot produce hydrogen as a result of the extreme sensitivity of hydrogenase to oxygen. However, we find that silicification-induced green algae aggregates can achieve sustainable photobiological hydrogen production even under natural aerobic conditions. The core-shell structure of the green algae aggregates creates a balance between photosynthetic electron generation and hydrogenase activity, thus allowing the production of hydrogen. This finding provides a viable pathway for the solar-driven splitting of water into hydrogen and oxygen to develop green energy alternatives by using rationally designed cell-material complexes. PMID:26302695

  11. Study of molecular mechanisms of UV-induced aggregation of crystallins and possibility of maintaining eye lens transparency

    NASA Astrophysics Data System (ADS)

    Soustov, L. V.; Chelnokov, E. V.; Bityurin, N. M.; Kiselev, A. L.; Nemov, V. V.; Sergeev, Yu. V.; Ostrovsky, M. A.

    2006-03-01

    The effect of D-pantethine and L-carnosine on the rate of UV-induced (XeC1 laser λ = 308 nm) aggregation of a mixture of βL-crystallin and α-crystallin is studied. We also demonstrate that the suggested by us combination of short-chain peptides shows better protective properties with respect to UV-induced aggregation than known anti-cataract agents.

  12. Quantification of Anti-Aggregation Activity of Chaperones: A Test-System Based on Dithiothreitol-Induced Aggregation of Bovine Serum Albumin

    PubMed Central

    Borzova, Vera A.; Markossian, Kira A.; Kara, Dmitriy A.; Chebotareva, Natalia A.; Makeeva, Valentina F.; Poliansky, Nikolay B.; Muranov, Konstantin O.; Kurganov, Boris I.

    2013-01-01

    The methodology for quantification of the anti-aggregation activity of protein and chemical chaperones has been elaborated. The applicability of this methodology was demonstrated using a test-system based on dithiothreitol-induced aggregation of bovine serum albumin at 45°C as an example. Methods for calculating the initial rate of bovine serum albumin aggregation (vagg) have been discussed. The comparison of the dependences of vagg on concentrations of intact and cross-linked α-crystallin allowed us to make a conclusion that a non-linear character of the dependence of vagg on concentration of intact α-crystallin was due to the dynamic mobility of the quaternary structure of α-crystallin and polydispersity of the α-crystallin–target protein complexes. To characterize the anti-aggregation activity of the chemical chaperones (arginine, arginine ethyl ester, arginine amide and proline), the semi-saturation concentration [L]0.5 was used. Among the chemical chaperones studied, arginine ethyl ester and arginine amide reveal the highest anti-aggregation activity ([L]0.5 = 53 and 58 mM, respectively). PMID:24058554

  13. Adenosine diphosphate-induced aggregation of human platelets in flow through tubes. I. Measurement of concentration and size of single platelets and aggregates.

    PubMed Central

    Bell, D N; Spain, S; Goldsmith, H L

    1989-01-01

    A double infusion flow system and particle sizing technique were developed to study the effect of time and shear rate on adenosine diphosphate-induced platelet aggregation in Poiseuille flow. Citrated platelet-rich plasma, PRP, and 2 microM ADP were simultaneously infused into a 40-microliters cylindrical mixing chamber at a fixed flow ratio, PRP/ADP = 9:1. After rapid mixing by a rotating magnetic stirbar, the platelet suspension flowed through 1.19 or 0.76 mm i.d. polyethylene tubing for mean transit times, t, from 0.1 to 86 s, over a range of mean tube shear rate, G, from 41.9 to 1,000 s-1. Known volumes of suspension were collected into 0.5% buffered glutaraldehyde, and all particles in the volume range 1-10(5) microns 3 were counted and sized using a model ZM particle counter (Coulter Electronics Inc., Hialeah, FL) and a logarithmic amplifier. The decrease in the single platelet concentration served as an overall index of aggregation. The decrease in the total particle concentration was used to calculate the collision capture efficiency during the early stages of aggregation, and aggregate growth was followed by changes in the volume fraction of particles of successively increasing size. Preliminary results demonstrate that both collision efficiency and particle volume fraction reveal important aspects of the aggregation process not indicated by changes in the single platelet concentration alone. PMID:2605298

  14. Beta-amyrin from Ardisia elliptica Thunb. is more potent than aspirin in inhibiting collagen-induced platelet aggregation.

    PubMed

    Ching, Jianhong; Chua, Tung-Kian; Chin, Lee-Cheng; Lau, Aik-Jiang; Pang, Yun-Keng; Jaya, Johannes Murti; Tan, Chay-Hoon; Koh, Hwee-Ling

    2010-03-01

    Ardisia elliptica Thunberg (Myrsinaceae) is a medicinal plant traditionally used for alleviating chest pains, treatment of fever, diarrhoea, liver poisoning and parturition complications. The objectives of the study were to investigate the effect of A. elliptica on collagen induced platelet aggregation and to isolate and purify potential antiplatelet components. Fresh A. elliptica leaves were extracted using methanol (70% v/v) by Soxhlet extraction and the extract was analysed for its inhibition of collagen-induced platelet aggregation. Inhibition of platelet aggregation was assessed by incubating the extracts with rabbit blood and collagen in a whole blood aggregometer and measuring the impedance. The leaf extract was found to inhibit platelet aggregation with an IC50 value of 167 microg/ml. Using bioassay guided fractionation, beta-amyrin was isolated and purified. The IC50 value of beta-amyrin was found to be 4.5 microg/ml (10.5 microM) while that of aspirin was found to be 11 microg/ml (62.7 microM), indicating that beta-amyrin was six times as active as aspirin in inhibiting platelet aggregation. This paper is the first report that beta-amyrin isolated from A. elliptica is more potent than aspirin in inhibiting collagen-induced platelet aggregation. In conclusion, A. elliptica leaves were found to inhibit collagen-induced platelet aggregation and one of the bioactive components responsible for the observed effect was determined to be beta-amyrin. PMID:21046981

  15. Innovations in X-ray-induced electron emission spectroscopy (XIEES)

    SciTech Connect

    Pogrebitsky, K. Ju. Sharkov, M. D.

    2010-06-15

    Currently, a pressing need has arisen for controlling the local atomic and electron structure of materials irrespective of their aggregate state. Efficient approaches to the studies of short-range order are based on phenomena accompanied by interference of secondary electrons excited by primary X-ray radiation. The set of such approaches are commonly referred to as the X-ray absorption fine structure (XAFS) methods. In reality, the XAFS methods are based on the use of synchrotron radiation and applied to structural studies in two modes of measurements, transmission analysis and recording of secondary effects. Only two such effects-specifically, the X-ray fluorescence an d X-ray-induced electron emission effect-are commonly discussed. Access to synchrotron accelerators is problematic for most researchers, so a demand is created for designing laboratory systems that make direct access possible. Since the power of laboratory systems is much lower than that of synchrotrons, it is essential to use much more efficient detectors of secondary electrons. In addition, it is of interest to analyze energy characteristics with a high spatial resolution. Channel multipliers and multichannel boards are incapable of providing such a possibility. For this reason, an improved electron detector has been developed to analyze the photoemission effect in an accelerating field.

  16. Inhibition of adrenaline and adenosine diphosphate induced platelet aggregation by Lansberg's hognose pit viper (Porthidium lansbergii hutmanni) venom.

    PubMed

    Lopez-Johnston, J C; de Bosch, N; Scannone, H; Rodríguez-Acosta, A

    2007-12-01

    The haemostatic components of venom from the genus Porthidium has been poorly studied, although it is known that severe manifestations occur when humans are envenomed, which include invasive oedema and disseminated ecchymosis. The effects of venom on blood platelets are commonly studied and are normally carried out with platelet-rich plasma (PRP). A series of crude venom dilutions was used to determine the effects of adenosine diphosphate (2 microM) and adrenaline (11 microM) induced platelet aggregation. Venom of Porthidium lansbergii hutmanni was fractioned by anionic exchange chromatography, and the fractions were also used to determine the 50% inhibition of adenosine diphosphate (ADP) and adrenaline-induced platelet aggregating dose (AD50). Crude venom has more effect in inhibiting adrenaline-induced aggregation (AD50 = 0.0043 microg) followed by the adenosine diphosphate (AD50 = 17 microg). Peaks I and II obtained by chromatography also inhibited adrenaline-induced platelet aggregation with an AD50 of 3.2 and 0.013 microg, respectively, and both peaks inhibited ADP-induced platelet aggregation with an AD50 of 10 microg. The main purpose of this work was to characterise the in vitro effects caused by P. lansbergii hutmanni crude venom and its fractions on the platelet aggregation mediated by adrenaline and ADP agonists. PMID:17891398

  17. Clay induced aggregation of a tetra-cationic metalloporphyrin in Layer by Layer self assembled film

    NASA Astrophysics Data System (ADS)

    Banik, Soma; Bhattacharjee, J.; Hussain, S. A.; Bhattacharjee, D.

    2015-12-01

    Porphyrins have a general tendency to form aggregates in ultrathin films. Also electrostatic adsorption of cationic porphyrins onto anionic nano clay platelets results in the flattening of porphyrin moieties. The flattening is evidenced by the red-shifting of Soret band with respect to the aqueous solution. In the present communication, we have studied the clay induced aggregation behaviour of a tetra-cationic metalloporphyrin Manganese (III) 5, 10, 15, 20-tetra (4 pyridyl)-21 H, 23 H-porphine chloride tetrakis (methochloride) (MnTMPyP) in Layer-by-Layer (LbL) self assembled film. The adsorption of dye molecules onto nano clay platelets resulted in the flattening of the meso substituent groups of the dye chromophore. In Layer-by-Layer ultrathin film, the flattened porphyrin molecules tagged nano clay platelets were further associated to form porphyrin aggregates. This has been clearly demonstrated from the UV-vis absorption spectroscopic studies. Atomic Force Microscopic (AFM) studies gave visual evidence of the association of organo-clay hybrid molecules in the LbL film.

  18. Vitamin C Prevents Cigarette Smoke-Induced Leukocyte Aggregation and Adhesion to Endothelium in vivo

    NASA Astrophysics Data System (ADS)

    Lehr, Hans-Anton; Frei, Balz; Arfors, Karl-E.

    1994-08-01

    A common feature of cigarette-smoke (CS)-associated diseases such as atherosclerosis and pulmonary emphysema is the activation, aggregation, and adhesion of leukocytes to micro- and macrovascular endothelium. A previous study, using a skinfold chamber model for intravital fluorescence microscopy in awake hamsters, has shown that exposure of hamsters to the smoke generated by one research cigarette elicits the adhesion of fluorescently labeled leukocytes to the endothelium of arterioles and small venules. By the combined use of intravital microscopy and scanning electron microscopy, we now demonstrate in the same animal model that (i) CS-induced leukocyte adhesion is not confined to the microcirculation, but that leukocytes also adhere singly and in clusters to the aortic endothelium; (ii) CS induces the formation in the bloodstream of aggregates between leukocytes and platelets; and (iii) CS-induced leukocyte adhesion to micro- and macrovascular endothelium and leukocyte-platelet aggregate formation are almost entirely prevented by dietary or intravenous pretreatment with the water-soluble antioxidant vitamin C (venules, 21.4 ± 11.0 vs. 149.6 ± 38.7 leukocytes per mm^2, P < 0.01; arterioles, 8.5 ± 4.2 vs. 54.3 ± 21.6 leukocytes per mm^2, P < 0.01; aortas, 0.8 ± 0.4 vs. 12.4 ± 5.6 leukocytes per mm^2, P < 0.01; means ± SD of n = 7 animals, 15 min after CS exposure). No inhibitory effect was observed by pretreatment of the animals with the lipid-soluble antioxidants vitamin E or probucol. The protective effects of vitamin C on CS-induced leukocyte adhesion and aggregation were seen at vitamin C plasma levels (55.6 ± 22.2 μM, n = 7) that can easily be reached in humans by dietary means or supplementation, suggesting that vitamin C effectively contributes to protection from CS-associated cardiovascular and pulmonary diseases in humans.

  19. Modeling human protein aggregation cardiomyopathy using murine induced pluripotent stem cells.

    PubMed

    Limphong, Pattraranee; Zhang, Huali; Christians, Elisabeth; Liu, Qiang; Riedel, Michael; Ivey, Kathryn; Cheng, Paul; Mitzelfelt, Katie; Taylor, Graydon; Winge, Dennis; Srivastava, Deepak; Benjamin, Ivor

    2013-03-01

    Several mutations in αB-crystallin (CryAB), a heat shock protein with chaperone-like activities, are causally linked to skeletal and cardiac myopathies in humans. To better understand the underlying pathogenic mechanisms, we had previously generated transgenic (TG) mice expressing R120GCryAB, which recapitulated distinguishing features of the myopathic disorder (e.g., protein aggregates, hypertrophic cardiomyopathy). To determine whether induced pluripotent stem cell (iPSC)-derived cardiomyocytes, a new experimental approach for human disease modeling, would be relevant to aggregation-prone disorders, we decided to exploit the existing transgenic mouse model to derive iPSCs from tail tip fibroblasts. Several iPSC lines were generated from TG and non-TG mice and validated for pluripotency. TG iPSC-derived cardiomyocytes contained perinuclear aggregates positive for CryAB staining, whereas CryAB protein accumulated in both detergent-soluble and insoluble fractions. iPSC-derived cardiomyocytes identified by cardiac troponin T staining were significantly larger when expressing R120GCryAB at a high level in comparison with TG low expressor or non-TG cells. Expression of fetal genes such as atrial natriuretic factor, B-type natriuretic peptide, and α-skeletal α-actin, assessed by quantitative reverse transcription-polymerase chain reaction, were increased in TG cardiomyocytes compared with non-TG, indicating the activation of the hypertrophic genetic program in vitro. Our study demonstrates for the first time that differentiation of R120G iPSCs into cardiomyocytes causes protein aggregation and cellular hypertrophy, recapitulating in vitro key pathognomonic hallmarks found in both animal models and patients. Our findings pave the way for further studies exploiting this cell model system for mechanistic and therapeutic investigations. PMID:23430692

  20. Composite alginate hydrogel microparticulate delivery system of zidovudine hydrochloride based on counter ion induced aggregation

    PubMed Central

    Roy, Harekrishna; Rao, P. Venkateswar; Panda, Sanjay Kumar; Biswal, Asim Kumar; Parida, Kirti Ranjan; Dash, Jharana

    2014-01-01

    Aim: The present study deals with preparation of zidovudine loaded microparticle by counter ion induced aggregation method. During this study effect of polyacrylates and hypromellose polymers on release study were investigated. Materials and Methods: The ion induced aggregated alginate based microparticles were characterized for surface morphology, particle size analysis, drug entrapment study, in-vitro study, Fourier-transform infrared (FTIR) spectroscopy, and differential scanning calorimetry (DSC) study. Results and Discussion: The result showed Eudragit RL-100 (ERL) based formulations had smoother surface as well as their mean particle sizes were found greater compared with Eudragit RS-100 (ERS) microparticles. Furthermore, drug entrapments were found to be more in ERL formulae as compared with ERS. RL3 released 101.05% drug over a period of 8th h and followed Higuchi profile and Fickian diffusion. Moreover, data obtained illustrated that, higher amount of quaternary ammonium group, alkali value, and glass transition temperature may be possible reason for improving permeability of ERL based formulations. It was also noticed, hyroxypropyl methylcellulose (HPMC) K4M premium grade polymer sustained drug release more than HPMC K15M. In addition, drug-excipient interaction study was carried out by FTIR and DSC study. PMID:25298940

  1. α- and γ-mangostin cause shape changes, inhibit aggregation and induce cytolysis of rat platelets.

    PubMed

    Liu, Yingqiu; Park, Jung-Min; Chang, Kyung-Hwa; Chin, Young-Won; Lee, Moo-Yeol

    2015-10-01

    α- and γ-mangostin are natural xanthones isolated from mangosteen (Garcinia mangostana) and the major constituents responsible for the plant's diverse biological activities. In this study, the effects of α- and γ-mangostin on platelets were investigated based on their possible antiplatelet activity. Treatment of isolated platelets with α-mangostin resulted in attenuation of platelet aggregatory response to collagen, thrombin or ADP. Such antiaggregatory effects were concentration-dependent in ranges of 1-10 μM. Interestingly, α-mangostin alone induced shape changes in platelets at the same concentration, and higher levels, 25 and 50 μM caused platelet lysis. Similarly, γ-mangostin induced shape changes and inhibited aggregation at 2.5-25 μM, while 50 and 100 μM γ-mangostin exhibited cytotoxicity. Platelet shape change induced by α- and γ-mangostin was accompanied by increases in myosin light chain (MLC) phosphorylation. MLC phosphorylation and subsequent shape changes were prevented by pretreatment with Rho kinase (ROCK) inhibitor Y-27632, but not by the intracellular Ca(2+) chelating with BAPTA-AM and extracellular Ca(2+) removal. Cytolysis by both α- and γ-mangostin was abolished in the absence of extracellular Ca(2+). Taken together, α- and γ-mangostin have differential effects on platelets depending on their concentration, which includes inducing shape change, inhibiting aggregation and causing cytolysis. Platelet shape change is attributed to stimulation of the Rho/ROCK signaling pathway, while platelet lysis is presumably mediated by extracellular Ca(2+) influx. These results suggest that mangosteen consumption may have potential platelet effects, although the in vivo or clinical consequences have yet to be assessed. PMID:26343955

  2. Inverting microwell array chip for the cultivation of human induced pluripotent stem cells with controlled aggregate size and geometrical arrangement

    PubMed Central

    Satoh, Taku; Sugiura, Shinji; Sumaru, Kimio; Ozaki, Shigenori; Gomi, Shinichi; Kurakazu, Tomoaki; Oshima, Yasuhiro; Kanamori, Toshiyuki

    2014-01-01

    We present a novel cell culture chip, namely, “inverting microwell array chip,” for cultivation of human induced pluripotent stem cells. The chip comprises a lower hydrogel microwell array and an upper polystyrene culture surface. We demonstrate the formation of uniform cellular aggregates in the microwell array, and after inversion, a culture with controlled aggregate size and geometrical arrangement on the polystyrene surface. Here, we report effects of cell concentrations on a cultivation sequence in the chip. PMID:24803961

  3. Capsaicin-induced inhibition of platelet aggregation is not mediated by transient receptor potential vanilloid type 1.

    PubMed

    Mittelstadt, Scott W; Nelson, Richard A; Daanen, Jerome F; King, Andrew J; Kort, Michael E; Kym, Philip R; Lubbers, Nathan L; Cox, Bryan F; Lynch, James J

    2012-01-01

    Capsaicin is an agonist of transient receptor potential vanilloid type 1 (TRPV1), in which it can act as a neuronal stimulant and result in nociception. Capsaicin also affects a variety of nonneuronal tissues, in which its mechanisms of action are less certain. The present study investigated whether the inhibitory effects of capsaicin on platelet aggregation are mediated via TRPV1. Venous whole blood obtained from beagle dogs (n = 6) was preincubated with capsaicin and/or the potent and selective competitive TRPV1 antagonist, A-993610 and then exposed to collagen (2 μg/ml). An aggregometer was used to quantify the platelet response. Capsaicin exposure inhibited collagen-induced platelet aggregation in a concentration-dependent manner, with significant effects at 10 and 30 μg capsaicin per millilitre. A-993610 alone (0.1-1.0 μg/ml) had no effects on collagen-induced platelet aggregation, nor did it have any effects on capsaicin's ability to inhibit platelet aggregation. The current results agree with previous findings that capsaicin can inhibit platelet aggregation. In addition, the present study demonstrates that capsaicin's inhibitory effect on collagen-induced canine platelet aggregation is not mediated by TRPV1. PMID:22089942

  4. Effects of platelet inhibitors on propyl gallate-induced platelet aggregation, protein tyrosine phosphorylation, and platelet factor 3 activation.

    PubMed

    Xiao, Hongyan; Kovics, Richard; Jackson, Van; Remick, Daniel G

    2004-04-01

    Propyl gallate (PG) is a platelet agonist characterized by inducing platelet aggregation, protein tyrosine phosphorylation, and platelet factor 3 activity. The mechanisms of platelet activation following PG stimulation were examined by pre-incubating platelets with well-defined platelet inhibitors using platelet aggregation, protein tyrosine phosphorylation, activated plasma clotting time, and annexin V binding by flow cytometry. PG-induced platelet aggregation and tyrosine phosphorylation of multiple proteins were substantially abolished by aspirin, apyrase, and abciximab (c7E3), suggesting that PG is associated with activation of platelet cyclooxygenase 1, adenosine phosphate receptors, and glycoprotein IIb/IIIa, respectively. The phosphorylation of the cytoskeletal enzyme pp60(c-src) increased following PG stimulation, but was blunted by pre-incubation of platelets with aspirin, apyrase, and c7E3, suggesting that tyrosine kinase is important for the signal transduction of platelet aggregation. Propyl gallate also activates platelet factor 3 by decreasing the platelet coagulation time and increasing platelet annexin V binding. Platelet incubation with aspirin, apyrase, and c7E3 did not alter PG-induced platelet coagulation and annexin V binding. The results suggest that platelet factor 3 activation and membrane phosphotidylserine expression were not involved with activation of platelet cyclooxygenase, adenosine phosphate receptors, and glycoprotein IIb/IIIa. PG is unique in its ability to stimulate platelet aggregation and coagulation simultaneously, and platelet inhibitors in this study affect only platelet aggregation but not platelet coagulation. PMID:15060414

  5. Inhibition of collagen, and thrombin-induced platelet aggregation by Lansberg's hognose pit viper (Porthidium lansbergii hutmanni) venom.

    PubMed

    López-Johnston, Juan C; de Bosch, Norma; Scannone, Héctor; Rodríguez-Acosta, Alexis

    2007-12-01

    The Porthidium genus is represented by the P. lansbergii rozei and P. lansbergii hutmanni (Plh) subspecies in Venezuela. The venom components of these have been little studied, probably due to the low incidence of reported accidents, although acute and serious local effects such as invasive edema and disseminated ecchymosis are present during human envenonation. The aim of this work was to characterize the in vitro effects of crude P. l. hutmanni venom, and its fractions, on platelet aggregation triggered by two physiologic agonists: thrombin and collagen. The effects of thrombin and collagen were observed on a platelet-rich plasma (PRP) solution (3 x 10(5) platelets/microL) using serial dilutions of P. l. hutmanni venom (0.625-40 microg). The crude venom was fractionated by anionic exchange chromatography and two peaks obtained. Crude venom and both fractions were highly inhibitory on platelet aggregation mediated by the two agonists. The anti-aggregating dose (AD(50)) for both agonists was determined. PRP collagen-triggered aggregation was most inhibited by the crude venom (AD(50) = 0.67 microg) when compared with PRP thrombin-triggered aggregation (AD(50) = 4.92 microg). Collagen-induced aggregation was more intensely inhibited by venom than thrombin-induced aggregation. In conclusion, to specify the inhibition mechanisms involved for each of the active components in the venom from these subspecies, we must characterize and purify the inhibitors of aggregation from P. l. hutmanni venom, with the purpose of suggesting new pharmacological substances to be incorporated into the therapeutic arsenal to treat hemostatic pathologies related to high levels of platelet aggregation. PMID:17486300

  6. Bubble-induced platelet aggregation in a rat model of decompression sickness.

    PubMed

    Pontier, Jean-Michel; Vallée, Nicolas; Bourdon, Lionel

    2009-12-01

    Previous studies have highlighted that bubble-induced platelet aggregation is a predictor index of decompression sickness (DCS) severity in animals and bubble formation after a single air dive in humans. The present study attempted to investigate plasmatic indexes of the coagulation system and platelet activation in our rat model of DCS. Male Sprague-Dawley rats were assigned to one experimental group with a hyperbaric exposure and one control group maintained at atmospheric pressure. Rats were compressed to 1,000 kPa (90 m saltwater) for 45 min while breathing air. The onset of death time and DCS symptoms were recorded during a 30-min observed period after rats had surfaced. Plasmatic indexes were platelet factor 4 (PF4) for platelet activation, soluble glycoprotein V (sGPV) for thrombin generation, and thrombin-antithrombin complexes for the coagulation system. Blood samples for a platelet count and markers were taken 3 wk before the experimental protocol and within the 30 min after rats had surfaced. We confirmed a correlation between the percent fall in platelet count and DCS severity. Plasmatic levels of sGPV and PF4 were significantly increased after the hyperbaric exposure, with no change in the control group. The present study confirms platelet consumption as a potential index for evaluating decompression stress and DCS severity. The results point to the participation of thrombin generation in the coagulation cascade and platelet activation in bubble-induced platelet aggregation. In our animal model of DCS, the results cannot prejudge the mechanisms of platelet activation between bubble-induced vessel wall injury and bubble-blood component interactions. PMID:19850726

  7. A precursor-inducible zebrafish model of acute protoporphyria with hepatic protein aggregation and multiorganelle stress.

    PubMed

    Elenbaas, Jared S; Maitra, Dhiman; Liu, Yang; Lentz, Stephen I; Nelson, Bradley; Hoenerhoff, Mark J; Shavit, Jordan A; Omary, M Bishr

    2016-05-01

    Protoporphyria is a metabolic disease that causes excess production of protoporphyrin IX (PP-IX), the final biosynthetic precursor to heme. Hepatic PP-IX accumulation may lead to end-stage liver disease. We tested the hypothesis that systemic administration of porphyrin precursors to zebrafish larvae results in protoporphyrin accumulation and a reproducible nongenetic porphyria model. Retro-orbital infusion of PP-IX or the iron chelator deferoxamine mesylate (DFO), with the first committed heme precursor α-aminolevulinic acid (ALA), generates high levels of PP-IX in zebrafish larvae. Exogenously infused or endogenously produced PP-IX accumulates preferentially in the liver of zebrafish larvae and peaks 1 to 3 d after infusion. Similar to patients with protoporphyria, PP-IX is excreted through the biliary system. Porphyrin accumulation in zebrafish liver causes multiorganelle protein aggregation as determined by mass spectrometry and immunoblotting. Endoplasmic reticulum stress and induction of autophagy were noted in zebrafish larvae and corroborated in 2 mouse models of protoporphyria. Furthermore, electron microscopy of zebrafish livers from larvae administered ALA + DFO showed hepatocyte autophagosomes, nuclear membrane ruffling, and porphyrin-containing vacuoles with endoplasmic reticulum distortion. In conclusion, systemic administration of the heme precursors PP-IX or ALA + DFO into zebrafish larvae provides a new model of acute protoporphyria with consequent hepatocyte protein aggregation and proteotoxic multiorganelle alterations and stress.-Elenbaas, J. S., Maitra, D., Liu, Y., Lentz, S. I., Nelson, B., Hoenerhoff, M. J., Shavit, J. A., Omary, M. B. A precursor-inducible zebrafish model of acute protoporphyria with hepatic protein aggregation and multiorganelle stress. PMID:26839379

  8. Can inducible resistance in plants cause herbivore aggregations? Spatial patterns in an inducible plant/herbivore model.

    PubMed

    Anderson, Kurt E; Inouye, Brian D; Underwood, Nora

    2015-10-01

    Many theories regarding the evolution of inducible resistance in plants have an implicit spatial component, but most relevant population dynamic studies ignore spatial dynamics. We examined a spatially explicit model of plant inducible resistance and herbivore population dynamics to explore how realistic features of resistance and herbivore responses influence spatial patterning. Both transient and persistent spatial patterns developed in all models examined, where patterns manifested as wave-like aggregations of herbivores and variation in induction levels. Patterns arose when herbivores moved away from highly induced plants, there was a lag between damage and deployment of induced resistance, and the relationship between herbivore density and strength of the induction response had a sigmoid shape. These mechanisms influenced pattern formation regardless of the assumed functional relationship between resistance and herbivore recruitment and mortality. However, in models where induction affected herbivore mortality, large-scale herbivore population cycles driven by the mortality response often co-occurred with smaller scale spatial patterns driven by herbivore movement. When the mortality effect dominated, however, spatial pattern formation was completely replaced by spatially synchronized herbivore population cycles. Our results present a new type of ecological pattern formation driven by induced trait variation, consumer behavior, and time delays that has broad implications for the community and evolutionary ecology of plant defenses. PMID:26649396

  9. Temperature-induced aggregation kinetics in aqueous solutions of a temperature-sensitive amphiphilic block copolymer.

    PubMed

    Maleki, Atoosa; Kjøniksen, Anna-Lena; Zhu, Kaizheng; Nyström, Bo

    2011-07-28

    Time effects for the temperature-induced association complexes in solutions of the thermoresponsive poly(N-isopropylacrylamide)-block-poly(ethylene glycol)-block-poly(N-isopropylacrylamide) (PNIPAAM(69)-b-PEG(23)-b-PNIPAAM(69)) copolymer that exhibit a lower critical solution temperature were studied by means of turbidimetry and dynamic light scattering (DLS). The DLS results clearly show that at temperatures below the cloud point (CP) unimers coexist with intermicellar structures, which contract as the CP is approached. At this stage, no time effect was detected. At temperatures above the CP, large association structures are formed, and these aggregates dominate the decay of the correlation functions. A novel time-dependent growth of the aggregates was observed over several hours. The growth of the clusters is strengthened as the temperature rises, and this feature is supported by the turbidity results and the reduced scattered intensity experiments. For a low polymer concentration, an initial growth of the clusters is observed, whereas at longer times the apparent hydrodynamic radius from DLS is virtually constant. The results from this work stress the importance to check possible time effects in solutions of thermosensitive copolymers as the cloud point is approached. PMID:21699234

  10. Interplay between desolvation and secondary structure in mediating cosolvent and temperature induced alpha-synuclein aggregation

    NASA Astrophysics Data System (ADS)

    Anderson, V. L.; Webb, W. W.; Eliezer, D.

    2012-10-01

    Both increased temperature and moderate concentrations of fluorinated alcohols enhance aggregation of the Parkinson's disease-associated protein α-synuclein (αS). Here, we investigate the secondary structural rearrangements induced by heating and trifluoroethanol [TFE]. At low TFE concentrations, CD spectra feature a negative peak characteristic of disordered polypeptides near 200 nm and a slight shoulder around 220 nm suggesting some polyproline-II content. Upon heating, these peaks weaken, while a weak negative signal develops at 222 nm. At high TFE concentrations, the spectra show distinct minima at 208 and 222 nm, indicative of considerable α-helical structure, which diminish upon heating. We observe a crossover between the low-TFE and high-TFE behavior near 15% TFE, where we previously showed that a partially helical intermediate is populated. We postulate that the protein is well solvated by water at low TFE concentrations and by TFE at high TFE concentrations, but may become desolvated at the crossover point. We discuss the potential roles and interplay of desolvation and helical secondary structure in driving αS aggregation.

  11. The influence of the crystal structure on aggregation-induced luminescence of derivatives of aminobenzoic acid

    NASA Astrophysics Data System (ADS)

    Nosova, D. A.; Zarochentseva, E. P.; Vysotskaya, S. O.; Klemesheva, N. A.; Korotkov, V. I.

    2014-12-01

    The luminescence of three derivatives of 2-(phenylamino)-benzoic acid (N-phenylanthranilic, mefenamic, and niflumic acids) in benzene solution, in the polycrystalline state, and in the hexamethylbenzene matrix is studied. In the crystalline state, these compounds exhibit intense aggregation-induced luminescence. An increase in luminescence is also observed in the impurity crystal. The hexamethylbenzene crystal lattice restricts the mobility of molecules, thus ensuring the rigidity of the molecular structure of acids, which decreases the efficiency of nonradiative electron energy degradation. The main reason for the increase in the luminescence intensity in the case of fixation in a crystalline matrix is the formation of intramolecular hydrogen bonds and dimers of acid molecules.

  12. H- and J-aggregation of fluorene-based chromophores.

    PubMed

    Deng, Yonghong; Yuan, Wen; Jia, Zhe; Liu, Gao

    2014-12-11

    Understanding of H- and J-aggregation behaviors in fluorene-based polymers is significant both for determining the origin of various red-shifted emissions occurring in blue-emitting polyfluorenes and for developing polyfluorene-based device performance. In this contribution, we demonstrate a new theory of the H- and J-aggregation of polyfluorenes and oligofluorenes, and understand the influence of chromosphere aggregation on their photoluminescent properties. H- and J-aggregates are induced by a continuous increasing concentration of the oligofluorene or polyfluorene solution. A relaxed molecular configuration is simulated to illustrate the spatial arrangement of the bonding of fluorenes. It is indicated that the relaxed state adopts a 21 helical backbone conformation with a torsion angle of 18° between two connected repeat units. This configuration makes the formation of H- and J-aggregates through the strong π-π interaction between the backbone rings. A critical aggregation concentration is observed to form H- and J-aggregates for both polyfluorenes and oligofluorenes. These aggregates show large spectral shifts and distinct shape changes in photoluminescent excitation (PLE) and emission (PL) spectroscopy. Compared with "isolated" chromophores, H-aggregates induce absorption spectral blue-shift and fluorescence spectral red-shift but largely reduce fluorescence efficiency. "Isolated" chromophores not only refer to "isolated molecules" but also include those associated molecules if their conjugated backbones are not compact enough to exhibit perturbed absorption and emission. J-aggregates induce absorption spectral red-shift and fluorescence spectral red-shift but largely enhance fluorescence efficiency. The PLE and PL spectra also show that J-aggregates dominate in concentrated solutions. Different from the excimers, the H- and J-aggregate formation changes the ground-state absorption of fluorene-based chromophores. H- and J-aggregates show changeable

  13. Ruby laser induced emission from NO2

    NASA Technical Reports Server (NTRS)

    Hakala, D. F.; Reeves, R. R.

    1976-01-01

    Two different types of emission from excited NO2 were observed using pulsed ruby laser light at 6943 A. The first type of fluorescence was seen in the near IR and results from the single photon excitation of NO2 from the ground 2-A1 state. By observing the emission as a function of time an unexpected behavior was observed in the near IR and could be explained by a consecutive deactivation mechanism, wherein a secondary species is preferentially detected. A second type of emission recently observed in the blue spectral region is weaker and is due to a multiphoton process. The intensity of the blue emission is a function of the cube of the laser intensity at low pressures and approaches the square at high pressures. This variation is attributed to simultaneous deactivation of the excited NO2 intermediate by collision (square) and by anti-Stokes Raman scattering off of the excited NO2 (cube).

  14. Photonic band-edge-induced enhancement in absorption and emission

    NASA Astrophysics Data System (ADS)

    Ummer, Karikkuzhi Variyath; Vijaya, Ramarao

    2015-01-01

    An enhancement in photonic band-edge-induced absorption and emission from rhodamine-B dye doped polystyrene pseudo gap photonic crystals is studied. The band-edge-induced enhancement in absorption is achieved by selecting the incident angle of the excitation beam so that the absorption spectrum of the emitter overlaps the photonic band edge. The band-edge-induced enhancement in emission, on the other hand, is possible with and without an enhancement in band-edge-induced absorption, depending on the collection angle of emission. Through a simple set of measurements with suitably chosen angles for excitation and emission, we achieve a maximum enhancement of 70% in emission intensity with band-edge-induced effects over and above the intrinsic emission in the case of self-assembled opals. This is a comprehensive effort to interpret tunable lasing in opals as well as to predict the wavelength of lasing arising as a result of band-edge-induced distributed feedback effects.

  15. An analytical continuation approach for evaluating emission lineshapes of molecular aggregates and the adequacy of multichromophoric Förster theory

    NASA Astrophysics Data System (ADS)

    Banchi, Leonardo; Costagliola, Gianluca; Ishizaki, Akihito; Giorda, Paolo

    2013-05-01

    In large photosynthetic chromophore-protein complexes not all chromophores are coupled strongly, and thus the situation is well described by formation of delocalized states in certain domains of strongly coupled chromophores. In order to describe excitation energy transfer among different domains without performing extensive numerical calculations, one of the most popular techniques is a generalization of Förster theory to multichromophoric aggregates (generalized Förster theory) proposed by Sumi [J. Phys. Chem. B 103, 252 (1999), 10.1021/jp983477u] and Scholes and Fleming [J. Phys. Chem. B 104, 1854 (2000), 10.1021/jp993435l]. The aim of this paper is twofold. In the first place, by means of analytic continuation and a time convolutionless quantum master equation approach, a theory of emission lineshape of multichromophoric systems or molecular aggregates is proposed. In the second place, a comprehensive framework that allows for a clear, compact, and effective study of the multichromophoric approach in the full general version proposed by Jang, Newton, and Silbey [Phys. Rev. Lett. 92, 218301 (2004), 10.1103/PhysRevLett.92.218301] is developed. We apply the present theory to simple paradigmatic systems and we show on one hand the effectiveness of time-convolutionless techniques in deriving lineshape operators and on the other hand we show how the multichromophoric approach can give significant improvements in the determination of energy transfer rates in particular when the systems under study are not the purely Förster regime. The presented scheme allows for an effective implementation of the multichromophoric Förster approach which may be of use for simulating energy transfer dynamics in large photosynthetic aggregates, for which massive computational resources are usually required. Furthermore, our method allows for a systematic comparison of multichromophoric Föster and generalized Förster theories and for a clear understanding of their respective limits

  16. Self-emission and enhancement of laser-induced emission of electrons from ferroelectrics

    NASA Astrophysics Data System (ADS)

    Geissler, K. K.; Meineke, A.; Riege, H.; Handerek, J.

    1994-02-01

    We report on laser-induced electron emission (LIEE) from ferroelectrics (FE) at 266, 355 and 532 nm wavelength. The self-emission of charges up to 20 nC/cm 2 with kinetic energies up to several keV was observed with PLZT ceramics at laser-pulse energy densities of 13 mJ/cm 2 and a pulse width of 5 ns FWHM after high-voltage-induced polarization switching. The driving electric field is generated by the laser-induced change of the spontaneous polarization in a time scale of 1 ns. The dependence of the emission on the laser-pulse energy density is shown and the relation between the enhancement of LIEE and the laser-induced self-emission is discussed.

  17. “Exchanges of Aggregate Air Nitrogen Emissions and Watershed Nitrogen Loads”

    EPA Science Inventory

    An approach has been developed to define transfer coefficients that can be used to convert changes in air emissions to changes in air deposition and subsequently to changes in loads delivered to the Bay. This approach uses a special CMAQ version that quantitatively attributes wa...

  18. Pressure effects on the structure, kinetic, and thermodynamic properties of heat-induced aggregation of protein studied by FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Taniguchi, Y.; Okuno, A.; Kato, M.

    2010-03-01

    Pressure can retrain the heat-induced aggregation and dissociate the heat-induced aggregates. We observed the aggregation-preventing pressure effect and the aggregates-dissociating pressure effect to characterize the heat-induced aggregation of equine serum albumin (ESA) by FT-IR spectroscopy. The results suggest the α-helical structure collapses at the beginning of heat-induced aggregation through the swollen structure, and then the rearrangement of structure to the intermolecular β-sheet takes place through partially unfolded structure. We determined the activation volume for the heat-induced aggregation (ΔV# = +93 ml/mol) and the partial molar volume difference between native state and heat-induced aggregates (ΔV=+32 ml/mol). This positive partial molar volume difference suggests that the heat-induced aggregates have larger internal voids than the native structure. Moreover, the positive volume change implies that the formation of the intermolecular β-sheet is unfavorable under high pressure.

  19. Ultraweak and induced photon emission after wounding of plants.

    PubMed

    Winkler, R; Guttenberger, H; Klima, H

    2009-01-01

    The ultraweak and induced photon emission were measured by a single photon counting equipment (Photomultiplier Hamamatsu R562) on Cucurbita pepo variaca styriacae after wounding. Wounding significantly changes the emission from a stationary to a nonstationary state and the shape of the decay curve obtained after light illumination. The rise in the ultraweak photon emission depends on the kind of wounding and its localization on the plant. The decay curves obtained after wounding could be better fit by an exponential function than by a hyperbolic one. So the biophoton emission correlates with physiological and bioelectrical changes like membrane depolarizations as they also depend on the kind of injury. PMID:19254235

  20. The structure of divalent cation-induced aggregates of PIP2 and their alteration by gelsolin and tau.

    PubMed Central

    Flanagan, L A; Cunningham, C C; Chen, J; Prestwich, G D; Kosik, K S; Janmey, P A

    1997-01-01

    Phosphatidylinositol bisphosphate (PIP2) serves as a precursor for diacylglycerol and inositol trisphosphate in signal transduction cascades and regulates the activities of several actin binding proteins that influence the organization of the actin cytoskeleton. Molecules of PIP2 form 6-nm diameter micelles in water, but aggregate into larger, multilamellar structures in physiological concentrations of divalent cations. Electron microscopic analysis of these aggregates reveals that they are clusters of striated filaments, suggesting that PIP2 aggregates form stacks of discoid micelles rather than multilamellar vesicles or inverted hexagonal arrays as previously inferred from indirect observations. The distance between striations within the filaments varies from 4.2 to 5.4 nm and the diameter of the filaments depends on the dehydrated ionic radius of the divalent cation, with average diameters of 19, 12, and 10 nm for filaments formed by Mg2+, Ca2+, and Ba2+, respectively. The structure of the divalent cation-induced aggregates can be altered by PIP2 binding proteins. Gelsolin and the microtubule associated protein tau both affect the formation of aggregates, indicating that tau acts as a PIP2 binding protein in a manner similar to gelsolin. In contrast, another PIP2 binding protein, profilin, does not modify the aggregates. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 PMID:9284311

  1. Temperature-Induced Aggregate Transitions in Mixtures of Cationic Ammonium Gemini Surfactant with Anionic Glutamic Acid Surfactant in Aqueous Solution.

    PubMed

    Ji, Xiuling; Tian, Maozhang; Wang, Yilin

    2016-02-01

    The aggregation behaviors of the mixtures of cationic gemini surfactant 1,4-bis(dodecyl-N,N-dimethylammonium bromide)-2,3-butanediol (C12C4(OH)2C12Br2) and anionic amino acid surfactant N-dodecanoylglutamic acid (C12Glu) in aqueous solution of pH = 10.0 have been studied. The mixture forms spherical micelles, vesicles, and wormlike micelles at 25 °C by changing mixing ratios and/or total surfactant concentration. Then these aggregates undergo a series of transitions upon increasing the temperature. Smaller spherical micelles transfer into larger vesicles, vesicles transfer into solid spherical aggregates and then into larger irregular aggregates, and entangled wormlike micelles transfer into branched wormlike micelles. Moreover, the larger irregular aggregates and branched micelles finally lead to precipitation and clouding phenomenon, respectively. All these transitions are thermally reversible, and the transition temperatures can be tuned by varying the mixing ratios and/or total concentration. These temperature-dependent aggregate transitions can be elucidated on the basis of the temperature-induced variations in the dehydration, electrostatic interaction, and hydrogen bonds of the headgroup area and in the hydrophobic interaction between the hydrocarbon chains. The results suggest that the surfactants carrying multiple binding sites will greatly improve the regulation ability and temperature sensitivity. PMID:26750978

  2. The Heparin-Induced Thrombocytopenia and Thrombosis Syndrome: Treatment with Intraarterial Urokinase and Systemic Platelet Aggregation Inhibitors

    SciTech Connect

    Murphy, Kenneth D.; McCrohan, Gerard; DeMarta, Deborah A.; Shirodkar, Nitin B.; Kwon, Oun J.; Chopra, Paramjit S.

    1996-03-15

    We report a case of the heparin-induced thrombocytopenia and thrombosis syndrome presenting with acute ischemia of a lower limb. The patient was successfully treated by withdrawal of heparin products, intraarterial urokinase, and platelet anti-aggregation therapy consisting of Dextran and aspirin.

  3. Rapid Myoglobin Aggregation through Glucosamine-Induced α-Dicarbonyl Formation

    PubMed Central

    2015-01-01

    The extent of glycation and conformational changes of horse myoglobin (Mb) upon glycation with N-acetyl-glucosamine (GlcNAc), glucose (Glc) and glucosamine (GlcN) were investigated. Among tested sugars, the rate of glycation with GlcN was the most rapid as shown by MALDI and ESI mass spectrometries. Protein oxidation, as evaluated by the amount of carbonyl groups present on Mb, was found to increase exponentially in Mb-Glc conjugates over time, whereas in Mb-GlcN mixtures the carbonyl groups decreased significantly after maximum at 3 days of the reaction. The reaction between GlcN and Mb resulted in a significantly higher amount of α-dicarbonyl compounds, mostly glucosone and 3-deoxyglucosone, ranging from and 27 to 332 mg/L and from 14 to 304 mg/L, respectively. Already at 0.5 days, tertiary structural changes of Mb-GlcN conjugate were observed by altered tryptophan fluorescence. A reduction of metmyoglobin to deoxy-and oxymyoglobin forms was observed on the first day of reaction, coinciding with the greatest amount of glucosone produced. In contrast to native α-helical myoglobin, 41% of the glycated protein sequence was transformed into a β-sheet conformation, as determined by circular dichroism spectropolarimetry. Transmission electron microscopy demonstrated that Mb glycation with GlcN causes the formation of amorphous or fibrous aggregates, started already at 3 reaction days. These aggregates bind to an amyloid-specific dye thioflavin T. With the aid of α-dicarbonyl compounds and advanced products of reaction, this study suggests that the Mb glycation with GlcN induces the unfolding of an initially globular protein structure into amyloid fibrils comprised of a β-sheet structure. PMID:26406447

  4. Protein carbonylation and aggregation precede neuronal apoptosis induced by partial glutathione depletion

    PubMed Central

    Dasgupta, Anushka; Zheng, Jianzheng; Bizzozero, Oscar A.

    2012-01-01

    While the build-up of oxidized proteins within cells is believed to be toxic, there is currently no evidence linking protein carbonylation and cell death. In the present study, we show that incubation of nPC12 (neuron-like PC12) cells with 50 μM DEM (diethyl maleate) leads to a partial and transient depletion of glutathione (GSH). Concomitant with GSH disappearance there is increased accumulation of PCOs (protein carbonyls) and cell death (both by necrosis and apoptosis). Immunocytochemical studies also revealed a temporal/spatial relationship between carbonylation and cellular apoptosis. In addition, the extent of all three, PCO accumulation, protein aggregation and cell death, augments if oxidized proteins are not removed by proteasomal degradation. Furthermore, the effectiveness of the carbonyl scavengers hydralazine, histidine hydrazide and methoxylamine at preventing cell death identifies PCOs as the toxic species. Experiments using well-characterized apoptosis inhibitors place protein carbonylation downstream of the mitochondrial transition pore opening and upstream of caspase activation. While the study focused mostly on nPC12 cells, experiments in primary neuronal cultures yielded the same results. The findings are also not restricted to DEM-induced cell death, since a similar relationship between carbonylation and apoptosis was found in staurosporine- and buthionine sulfoximine-treated nPC12 cells. In sum, the above results show for the first time a causal relationship between carbonylation, protein aggregation and apoptosis of neurons undergoing oxidative damage. To the best of our knowledge, this is the first study to place direct (oxidative) protein carbonylation within the apoptotic pathway. PMID:22376187

  5. EGCG in Green Tea Induces Aggregation of HMGB1 Protein through Large Conformational Changes with Polarized Charge Redistribution

    PubMed Central

    Meng, Xuan-Yu; Li, Baoyu; Liu, Shengtang; Kang, Hongsuk; Zhao, Lin; Zhou, Ruhong

    2016-01-01

    As a major effective component in green tea, (−)-epigallocatechin-3-gallate (EGCG)’s potential benefits to human health have been widely investigated. Recent experimental evidences indicate that EGCG can induce the aggregation of HMGB1 protein, a late mediator of inflammation, which subsequently stimulates the autophagic degradation and thus provides protection from lethal endotoxemia and sepsis. In this study, we use molecular dynamics (MD) simulations to explore the underlying molecular mechanism of this aggregation of HMGB1 facilitated by EGCG. Our simulation results reveal that EGCG firmly binds to HMGB1 near Cys106, which supports previous preliminary experimental evidence. A large HMGB1 conformational change is observed, where Box A and Box B, two homogenous domains of HMGB1, are repositioned and packed together by EGCG. This new HMGB1 conformation has large molecular polarity and distinctive electrostatic potential surface. We suggest that the highly polarized charge distribution leads to the aggregation of HMGB1, which differs from the previous hypothesis that two HMGB1 monomers are linked by the dimer of EGCG. Possible aggregating modes have also been investigated with potential of mean force (PMF) calculations. Finally, we conclude that the conformation induced by EGCG is more aggregation-prone with higher binding free energies as compared to those without EGCG. PMID:26899177

  6. Fluorescent H-Aggregates Hosted by a Charged Cyclodextrin Cavity.

    PubMed

    Mudliar, Niyati H; Singh, Prabhat K

    2016-05-23

    Most macrocyclic host molecules, including cyclodextrins, usually prevent self-aggregation of the guest organic molecules, by exploiting inclusion complexation of the guest with the host. In this work, it was found that a negatively charged β-cylcodextrin derivative induces aggregation of a well-known amyloid sensing dye, Thioflavin-T, and leads to an unprecedented formation of the rarely observed emissive H-type aggregates of the dye. PMID:27028039

  7. White Mineral Trioxide Aggregate Induces Migration and Proliferation of Stem Cells from the Apical Papilla

    PubMed Central

    Schneider, Robert; Holland, G. Rex; Chiego, Daniel; Hu, Jan C. C.; Nör, Jacques E.; Botero, Tatiana M.

    2014-01-01

    Introduction Regenerative endodontic protocols recommend White Mineral Trioxide Aggregate (WMTA) as a capping material due to its osteoinductive properties. Stem Cells from the Apical Papilla (SCAP) are presumed to be involved in this regenerative process, but the effects of WMTA on SCAP are largely unknown. Our hypothesis is that WMTA induces proliferation and migration of SCAP. Methods Here, we used an unsorted population of SCAP (passages 3 to 5) characterized by high CD24, CD146 and Stro-1 expression. The effect of WMTA on SCAP migration was assessed using transwells and its effect on proliferation was determined by the WST-1 assay. Fetal bovine serum (FBS) and calcium-chloride enriched media were used as positive controls. Results The SCAP analyzed here showed a low percentage of STRO-1+ and CD24+ cells. Both set and unset WMTA significantly increased the short-term migration of SCAP after 6 hours (P<0.05), whereas calcium-chloride enriched medium did after 24 hours of exposure. Set WMTA significantly increased proliferation on days 1 to 5 while calcium-enriched media showed a significant increase on day 7 with a significant reduction on proliferation afterwards. SCAP migration and proliferation were significantly and steadily induced by the presence of 2% and 10% FBS Conclusions Collectively, these data demonstrate that WMTA induced an early short-term migration and proliferation of a mixed population of stem cells from apical papilla as compared to a later and longer-term induction by calcium-chloride or FBS. PMID:24935538

  8. Structural phase transition of merocyanine J-aggregate induced by ion-recombination in the aqueous sub-phase

    NASA Astrophysics Data System (ADS)

    Kato, Noritaka; Saito, Kentaro; Uesu, Yoshiaki

    2000-08-01

    By using the sub-phase, which contains two different kinds of counter-ions, we found a reversible thermochromic transition between different J-aggregate states of amphiphilic merocyanine dye (MD) molecules in the monolayer at the air-water interface. This chromatic change is attributed to the structural phase transition of MD J-aggregate crystallites induced by the mutual recombination of different counter-ions to MD molecules. The drastic morphological change of the MD monolayer during the transition is revealed by the in-situ observation using a multipurpose non-linear optical microscope.

  9. Synergistic effect of polyethylene glycol with arginine on the prevention of heat-induced aggregation of lysozyme

    NASA Astrophysics Data System (ADS)

    Tomita, S.; Hamada, H.; Nagasaki, Y.; Shiraki, K.

    2008-03-01

    . Arginine (Arg) is a commonly used additive to prevent protein aggregation and inactivation in denaturing solutions. This paper presents new findings on the synergistic effect on the prevention of heat-induced aggregation of lysozyme using Arg in combination with polyethylene glycol (PEG). The synergistic enhancement was observed in the presence of Arg with amphiphilic polymers, such as PEG6000, PEG20000, and poly(vinyl pyrrolidone), while it was not observed with hydrophilic polymers, such as PEG200, Poly(acrylic acid), poly(vinyl alcohol), dextran, and Ficoll 70.

  10. Particulate emissions by a small non-road diesel engine: Biodiesel and diesel characterization and mass measurements using the extended idealized aggregates theory

    NASA Astrophysics Data System (ADS)

    Chung, A.; Lall, A. A.; Paulson, S. E.

    Particulate emissions from a 4.8-kW diesel generator running on ultra-low sulfur diesel and biodiesel fuels are characterized as a function of engine load. Number distributions measured by a scanning mobility particle sizer (SMPS) show that particle mobility diameters rise with increasing engine loads. The elemental carbon (EC) to organic carbon (OC) ratio, measured by thermo-optical transmission evolved gas analysis, with careful attention to avoid OC sampling artifacts, increases from about 0.5 at idle load to 3.8 at 100% load when using diesel fuel. Transmission electron microscopy (TEM) images of the particles showed that at idle, the particles were liquid droplets together with a few aggregates. When a load was applied, the droplets were replaced by chain aggregates, which had a mean primary particle size of 29±9 nm at 100% load. Fractal dimension averaged 1.63±0.13, consistent with much larger diesel engines emissions reported in the literature. The use of biofuel (B100) results in emissions of particles that are compact, irregular, and lack the clearly defined primary particles of diesel aggregates, and yet at maximum load they have similar EC and OC content as diesel particles. The accuracy of the idealized aggregate (IA) theory correction and its extension to the transition regime [Lall, A.A., Friedlander, S.K., 2006. On-line measurement of ultrafine aggregate surface area and volume distributions by electrical mobility analysis: 1. Theoretical analysis. Journal of Aerosol Science 37, 260-271] was tested as a method to obtain mass distributions for diesel aggregates using and SMPS. The total mass concentrations calculated from the SMPS measurements using the extended IA theory are in good agreement with the mass concentrations obtained from gravimetric and EC/OC measurements. The loss of aggregates in the TSI SMPS inlet impactor is also discussed.

  11. Efficient crystallization induced emissive materials based on a simple push-pull molecular structure.

    PubMed

    Cariati, Elena; Lanzeni, Valentina; Tordin, Elisa; Ugo, Renato; Botta, Chiara; Schieroni, Alberto Giacometti; Sironi, Angelo; Pasini, Dario

    2011-10-28

    Solid state luminescent materials are the subject of ever growing interest both from a scientific and a technological point of view. Aggregation caused quenching (ACQ) processes however represent an obstacle to the development of most luminogens in the condensed phase. This is why particularly fascinating are those materials showing higher emission intensity in the solid state than in solution. Here we report on three 4-dialkylamino-2-benzylidene malonic acid dialkyl esters, very simple push-pull molecules, which are hardly emissive in solution and in the amorphous phase but become good emitters in the crystalline phase according to what has been indicated as crystallization induced emission (CIE). Thanks to combined emission and NMR spectroscopies at different temperatures on the prototype compound 4-dimethylamino-2-benzylidene malonic acid dimethyl ester in solution, we give full evidence that a restricted intramolecular rotation (RIR) phenomenon, in particular the hindered rotation around the aryl main axis of the compound, is at the origin of this behaviour. In addition, solid state photophysical and X-ray diffraction structural characterization allow us to identify J-dimeric interactions as responsible for the particularly intense emission of two of the three compounds. Moreover, by exploiting the compounds' acidochromic properties, applications in sensors and optoelectronics are envisaged. PMID:21915408

  12. Inhibitory effects and mechanisms of high molecular-weight phlorotannins from Sargassum thunbergii on ADP-induced platelet aggregation

    NASA Astrophysics Data System (ADS)

    Wei, Yuxi; Wang, Changyun; Li, Jing; Guo, Qi; Qi, Hongtao

    2009-09-01

    We evaluated the effects of high molecular-weight phlorotannins from Sargassum thunbergii (STP) on ADP-induced platelet aggregation and arachidonic acid (AA) metabolism in New Zealand white rabbits and Wistar rats. The inhibition of STP on platelet aggregation was investigated using a turbidimetric method, and the levels of the terminal products of AA metabolism were measured using the corresponding kits for maleic dialdehyde (MDA), thromboxane B2 (TXB2) and 6-keto-prostaglandin F1α (6-keto-PGF1α) by colorimetry and radioimmunoassay, as appropriate. We found that STP could inhibit ADP-induced platelet aggregation, and the inhibitory ratio was 91.50% at the STP concentration of 4.0 mg/mL. Furthermore, STP markedly affected AA metabolism by decreasing the synthesis of MDA ( P<0.01) and increasing the synthesis of 6-keto-PGF1α, thus changing the plasma TXB2/6-keto-PGF1α balance when the platelets were activated ( P<0.01). Therefore, STP altered AA metabolism and these findings partly revealed the molecular mechanism by which STP inhibits ADP-induced platelet aggregation.

  13. The Ratio of ADP- to TRAP-Induced Platelet Aggregation Quantifies P2Y12-Dependent Platelet Inhibition Independently of the Platelet Count

    PubMed Central

    Olivier, Christoph B.; Meyer, Melanie; Bauer, Hans; Schnabel, Katharina; Weik, Patrick; Zhou, Qian; Bode, Christoph; Moser, Martin; Diehl, Philipp

    2016-01-01

    Objective This study aimed to assess the association of clinical factors with P2Y12-dependent platelet inhibition as monitored by the ratio of ADP- to TRAP-induced platelet aggregation and conventional ADP-induced aggregation, respectively. Background Controversial findings to identify and overcome high platelet reactivity (HPR) after coronary stent-implantation and to improve clinical outcome by tailored anti-platelet therapy exist. Monitoring anti-platelet therapy ex vivo underlies several confounding parameters causing that ex vivo platelet aggregation might not reflect in vivo platelet inhibition. Methods In a single centre observational study, multiple electrode aggregometry was performed in whole blood of patients after recent coronary stent-implantation. Relative ADP-induced aggregation (r-ADP-agg) was defined as the ratio of ADP- to TRAP- induced aggregation reflecting the individual degree of P2Y12-mediated platelet reactivity. Results Platelet aggregation was assessed in 359 patients. Means (± SD) of TRAP-, ADP-induced aggregation and r-ADP-agg were 794 ± 239 AU*min, 297 ± 153 AU*min and 37 ± 14%, respectively. While ADP- and TRAP-induced platelet aggregation correlated significantly with platelet count (ADP: r = 0.302; p<0.001; TRAP: r = 0.509 p<0.001), r-ADP-agg values did not (r = -0.003; p = 0.960). These findings were unaltered in multivariate analyses adjusting for a range of factors potentially influencing platelet aggregation. The presence of an acute coronary syndrome and body weight were found to correlate with both ADP-induced platelet aggregation and r-ADP-agg. Conclusion The ratio of ADP- to TRAP-induced platelet aggregation quantifies P2Y12-dependent platelet inhibition independently of the platelet count in contrast to conventional ADP-induced aggregation. Furthermore, r-ADP-agg was associated with the presence of an acute coronary syndrome and body weight as well as ADP-induced aggregation. Thus, the r-ADP-agg is a more valid

  14. Cascade of tau toxicity in inducible hippocampal brain slices and prevention by aggregation inhibitors

    PubMed Central

    Messing, Lars; Mandelkow, Eckhard; Mandelkow, Eva-Maria

    2016-01-01

    Mislocalization and aggregation of the axonal protein Tau are hallmarks of Alzheimer disease and other tauopathies. Here, we studied the relationship between Tau aggregation, loss of spines and neurons, and reversibility by aggregation inhibitors. To this end we established an in vitro model of tauopathy based on regulatable transgenic hippocampal organotypic slice cultures prepared from mice expressing pro-aggregant TauRDΔK. Transgene expression was monitored by a bioluminescence reporter assay. Abnormal Tau phosphorylation, mislocalization of exogenous and endogenous Tau into the somatodendritic compartment, followed by reduction of dendritic spines, altered morphology from mushroom-shaped to thin spines, dysregulation of Ca++ dynamics, Tau aggregation, neuronal loss and elevated activation of microglia. Neurotoxicity was mediated by Caspase-3 activation and correlated with the expression level of pro-aggregant TauRDΔK. Finally, Tau aggregates appeared in areas CA1 and CA3 after three weeks in vitro. Neurodegeneration was relieved by aggregation inhibitors or by switching off transgene expression. Thus the slice culture model is suitable for monitoring the development of tauopathy and the therapeutic benefit of anti-aggregation drugs. PMID:23158765

  15. Self-organization and photo-induced formation of cyanine dye aggregates on the plasmonic Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Starovoytov, Anton A.; Nabiullina, Rezida D.; Toropov, Nikita A.

    2016-04-01

    The optical properties of hybrid film based on plasmon Ag nanoparticles of different size and cyanine dyes with different length of conjugation chain depending on the relative position of the plasmon resonance and the absorption of organic molecules were studied. The absorption spectra of the films revealed several molecular forms, such as all-trans- and cisisomers, dimers and J-aggregate, which also exist in pure organic films without Ag nanoparticles. It's shown that the absorption of aggregate bands increased after exposure by nanosecond laser on the hybrid films due to photo-induced additional self-organization of aggregates. In the presence of Ag nanoparticles, laser radiation leads to the change of molecular forms at a comparatively low threshold.

  16. PM4 crystalline silica emission factors and ambient concentrations at aggregate-producing sources in California.

    PubMed

    Richards, John R; Brozell, Todd T; Rea, Charles; Boraston, Geoff; Hayden, John

    2009-11-01

    The California Construction and Industrial Minerals Association and the National Stone, Sand, & Gravel Association have sponsored tests at three sand and gravel plants in California to compile crystalline silica emission factors for particulate matter (PM) of aerodynamic diameter of 4 microm or less (PM4) and ambient concentration data. This information is needed by industrial facilities to evaluate compliance with the Chronic Reference Exposure Level (REL) for ambient crystalline silica adopted in 2005 by the California Office of Environmental Health Hazard Assessment. The REL applies to PM4 respirable PM. Air Control Techniques, P.C. sampled for PM4 crystalline silica using a conventional sampler for PM of aerodynamic diameter of 2.5 microm or less (PM2.5), which met the requirements of 40 Code of Federal Regulations Part 50, Appendix L. The sample flow rate was adjusted to modify the 50% cut size to 4 microm instead of 2.5 microm. The filter was also changed to allow for crystalline silica analyses using National Institute for Occupational Safety and Health (NIOSH) Method 7500. The particle size-capture efficiency curve for the modified Appendix L instrument closely matched the performance curve of NIOSH Method 0600 for PM4 crystalline silica and provided a minimum detection limit well below the levels attainable with NIOSH Method 0600. The results of the tests indicate that PM4 crystalline silica emissions range from 0.000006 to 0.000110 lb/t for screening operations, tertiary crushers, and conveyor transfer points. The PM4 crystalline silica emission factors were proportional to the crystalline silica content of the material handled in the process equipment. Measured ambient concentrations ranged from 0 (below detectable limit) to 2.8 microg/m3. All values measured above 2 microg/m3 were at locations upwind of the facilities being tested. The ambient PM4 crystalline silica concentrations measured during this study were below the California REL of 3 microg/m3

  17. Induced growth of dendrite gold nanostructure by controlling self-assembly aggregation dynamics.

    PubMed

    Abdellatif, M H; Abdelrasoul, G N; Scarpellini, A; Marras, S; Diaspro, A

    2015-11-15

    Self-assembly of gold nanoparticles (AuNPs) is an important growth mode for fabricating functional materials. In this work we report a dendrite structure formed by slowing down the aggregation dynamics of AuNPs self-assembly. The obtained results show that the aggregation dynamics is dominated by the Reaction Limited Aggregation Model (RLA) more than the Diffusion Limited Aggregation Model (DLA). In which the repulsion due to electrostatic forces is dominant by the Van Der Walls attraction forces, and low sticking probability of nanoparticles. The aggregation dynamics of AuNPs can be slowed down if the water evaporation of the drop casted colloidal AuNPs on a quartz substrate is slowed. Slowing down the evaporation allows electrostatic repulsion forces to decrease gradually. At certain point, the attraction forces become higher than the electrostatic repulsion and hence cluster aggregation take place slowly. The slow aggregation dynamics allows the nanoparticles to sample all possible orientation in the sticking site, searching for the lowest energy configuration. The size distribution of the nanoparticles in liquid is confirmed using dynamic light scattering based on Stokes-Einstein equation for diffusion coefficient in water. X-ray and photoluminescence (PL) spectra of the sample after aggregation showed a shift which is related to the aggregation compared with non-aggregated colloidal nanoparticles in the solution. The study shows that dendrite self similar structure can be formed by slowing down the aggregation dynamics of nanoparticles as a result of minimizing the Helmholtz free surface energy of the system. PMID:26233557

  18. Enhanced hydrophobicity of polyurethane via non-solvent induced surface aggregation of silica nanoparticles.

    PubMed

    Seyfi, Javad; Hejazi, Iman; Jafari, Seyed Hassan; Khonakdar, Hossein Ali; Simon, Frank

    2016-09-15

    Fabrication of superhydrophobic surfaces from hydrophilic polymers has always been regarded as a challenge. In this study, to achieve superhydrophobic polyurethane (PU) surfaces, silica nanoparticles and ethanol as non-solvent were simultaneously utilized during a solution casting-based process. Such modified version of phase separation process was found to be highly efficient, and also it required much lower concentration of nanoparticles to achieve superhydrophobicity as compared to the previously reported methods in the literature. According to the proposed mechanism, non-solvent induces a more profound aggregation of silica nanoparticles at the surface's top layer causing the surface energy to be highly diminished, and thus, the water repellency is improved. Morphology and topography results showed that a unique "triple-sized" structure was formed on the surface of superhydrophobic samples. X-ray photoelectron spectroscopy results proved that both PU macromolecules and silica nanoparticles were concurrently present at the surface layer of the superhydrophobic sample. It was concluded that surface composition and roughness could be regarded as competing factors in achieving superhydrophobicity. Based on the obtained results, the proposed method exhibits a promising potential in large-scale fabrication of surface layers with superhydrophobic property. Moreover, a mechanism was also presented to further explicate the physics behind the suggested method. PMID:27288577

  19. Membrane aggregation and perturbation induced by antimicrobial peptide of S-thanatin

    SciTech Connect

    Wu, Guoqiu; Wu, Hongbin; Li, Linxian; Fan, Xiaobo; Ding, Jiaxuan; Li, Xiaofang; Xi, Tao; Shen, Zilong

    2010-04-23

    Thanatin, a 21-residue peptide, is an inducible insect peptide. In our previous study, we have identified a novel thanatin analog of S-thanatin, which exhibited a broad antimicrobial activity against bacteria and fungi with low hemolytic activity. This study was aimed to delineate the antimicrobial mechanism of S-thanatin and identify its interaction with bacterial membranes. In this study, membrane phospholipid was found to be the target for S-thanatin. In the presence of vesicles, S-thanatin interestingly led to the aggregation of anionic vesicles and sonicated bacteria. Adding S-thanatin to Escherichia coli suspension would result in the collapse of membrane and kill bacteria. The sensitivity assay of protoplast elucidated the importance of outer membrane (OM) for S-thanatin's antimicrobial activity. Compared with other antimicrobial peptide, S-thanatin produced chaotic membrane morphology and cell debris in electron microscopic appearance. These results supported our hypothesis that S-thanatin bound to negatively charged LPS and anionic lipid, impeded membrane respiration, exhausted the intracellular potential, and released periplasmic material, which led to cell death.

  20. Synthetic Quorum Sensing and Induced Aggregation in Model Microcapsule Colonies with Repressilator Feedback

    NASA Astrophysics Data System (ADS)

    Shum, Henry; Yashin, Victor; Balazs, Anna

    We model a system of synthetic microcapsules that communicate chemically by releasing nanoparticles or signaling molecules. These signaling species bind to receptors on the shells of capsules and modulate the target shell's permeability, thereby controlling nanoparticle release from the target capsule. Using the repressilator regulatory network motif, whereby three species suppress the production of the next in a cyclic fashion, we show that large amplitude oscillations in nanoparticle release can emerge when many capsules are close together. This exemplifies quorum sensing, which is the ability of cells to gauge their population density and collectively initiate a new behavior once a critical density is reached. We present a physically realizable model in which the oscillations exhibited in crowded populations induce aggregation of the microcapsules, mimicking complex biological behavior of the slime mold Dictyostelium discoideum with only simple, synthetic components. We also show that the clusters can be dispersed and reformed repeatedly and controllably by addition of chemical stimuli, demonstrating possible applications in creating reconfigurable or programmable materials.

  1. Small heat shock proteins protect against {alpha}-synuclein-induced toxicity and aggregation

    SciTech Connect

    Outeiro, Tiago Fleming; Klucken, Jochen; Strathearn, Katherine E.; Liu Fang; Nguyen, Paul; Rochet, Jean-Christophe; Hyman, Bradley T.; McLean, Pamela J. . E-mail: touteiro@partners.org

    2006-12-22

    Protein misfolding and inclusion formation are common events in neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD) or Huntington's disease (HD). {alpha}-Synuclein (aSyn) is the main protein component of inclusions called Lewy bodies (LB) which are pathognomic of PD, Dementia with Lewy bodies (DLB), and other diseases collectively known as LB diseases. Heat shock proteins (HSPs) are one class of the cellular quality control system that mediate protein folding, remodeling, and even disaggregation. Here, we investigated the role of the small heat shock proteins Hsp27 and {alpha}B-crystallin, in LB diseases. We demonstrate, via quantitative PCR, that Hsp27 messenger RNA levels are {approx}2-3-fold higher in DLB cases compared to control. We also show a corresponding increase in Hsp27 protein levels. Furthermore, we found that Hsp27 reduces aSyn-induced toxicity by {approx}80% in a culture model while {alpha}B-crystallin reduces toxicity by {approx}20%. In addition, intracellular inclusions were immunopositive for endogenous Hsp27, and overexpression of this protein reduced aSyn aggregation in a cell culture model.

  2. Inhalation of nitric oxide inhibits ADP-induced platelet aggregation and alpha-granule release.

    PubMed

    Hagberg, I A; Sølvik, U Ø; Opdahl, H; Roald, H E; Lyberg, T

    1999-01-01

    To gather further information about the effects on blood platelet activation of in vivo exposure to nitric oxide (NO), platelet reactivity was studied in blood from healthy, non-smoking male volunteers before and after 30 min inhalation of 40 ppm NO. Whole blood was stimulated in vitro with adenosine diphosphate or thrombin receptor activation peptide (TRAP-6). In an ex vivo perfusion model, non-anticoagulated blood was exposed to immobilised collagen at arterial blood flow conditions (2600 s(-1)). Blood samples from both the in vitro and ex vivo experiments were stained with fluorochrome-labelled Annexin-V and antibodies against CD42a, CD45, CD49b, CD61, CD62P and fibrinogen, and analysed with a three-colour flow cytometry technique. NO inhalation reduced the platelet activation response to adenosine diphosphate (ADP) stimulation by decreasing platelet-platelet aggregation, alpha-granule release and platelet-leukocyte conjugate formation. TRAP-stimulated platelet activation, collagen-induced platelet activation and thrombus growth was unaffected by NO inhalation. We therefore suggest an ADP receptor inhibitor mode of action of inhaled NO, selective on the newly suggested G protein- and phospholipase C-coupled P2Y1 receptor. Our results demonstrate that blood platelet activation in healthy subjects is modulated by inhalation of NO in therapeutically relevant doses, although the clinical impact of our findings remains unclear. PMID:16801117

  3. The Effect of Surface Induced Flows on Bubble and Particle Aggregation

    NASA Technical Reports Server (NTRS)

    Guelcher, Scott A.; Solomentsev, Yuri E.; Anderson, John L.; Boehmer, Marcel; Sides, Paul J.

    1999-01-01

    Almost 20 years have elapsed since a phenomenon called "radial specific coalescence" was identified. During studies of electrolytic oxygen evolution from the back side of a vertically oriented, transparent tin oxide electrode in alkaline electrolyte, one of the authors (Sides) observed that large "collector" bubbles appeared to attract smaller bubbles. The bubbles moved parallel to the surface of the electrode, while the electric field was normal to the electrode surface. The phenomenon was reported but not explained. More recently self ordering of latex particles was observed during electrophoretic deposition at low DC voltages likewise on a transparent tin oxide electrode. As in the bubble work, the field was normal to the electrode while the particles moved parallel to it. Fluid convection caused by surface induced flows (SIF) can explain these two apparently different experimental observations: the aggregation of particles on an electrode during electrophoretic deposition, and a radial bubble coalescence pattern on an electrode during electrolytic gas evolution. An externally imposed driving force (the gradient of electrical potential or temperature), interacting with the surface of particles or bubbles very near a planar conducting surface, drives the convection of fluid that causes particles and bubbles to approach each other on the electrode.

  4. Surface enhanced Raman spectroscopy on dielectrophoresis induced diffusion limited aggregation of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Chowdhury, Faisal Khair

    Wires formed by diffusion limited aggregation (DLA) induced by dielectrophoresis (DEP) of gold nanoparticles were investigated as an effective sample preparation method for surface enhanced Raman spectroscopy (SERS). Thymine was used as a test molecule and its SERS was measured to investigate the effectiveness of this technique that reproducibly resulted in x10 9 enhancement. It is known that molecules adsorbed near or at the surface of certain nanostructures produce strongly increased Raman signals and such phenomena is attributed to the concentration of electromagnetic (EM) optical fields at "hotspots" that usually occur at nanoscale junctions or clefts in metal nanostructures. Similarly, the enhancement obtained is attributed to the localized surface Plasmon's of the gold nanoparticles and the formation of "hotspots" in DEP wires. There are other methods that reproducibly yield in excess of x108 enhancement in SERS using tunable lasers and very elaborate Raman spectroscopy. The results presented here are obtained using a fixed laser excitation source at 785 nm and a simple spectrometer (5 cm-1 resolution).

  5. Influence of calcium-induced aggregation on the sensitivity of aminobis(methylenephosphonate)-containing potential MRI contrast agents.

    PubMed

    Henig, Jörg; Mamedov, Ilgar; Fouskova, Petra; Tóth, Éva; Logothetis, Nikos K; Angelovski, Goran; Mayer, Hermann A

    2011-07-18

    A novel class of 1,4,7,10-tetraazacyclododecane-1,4,7-tris(methylenecarboxylic) acid (DO3A)-based lanthanide complexes with relaxometric response to Ca(2+) was synthesized, and their physicochemical properties were investigated. Four macrocyclic ligands containing an alkyl-aminobis(methylenephosphonate) side chain for Ca(2+)-chelation have been studied (alkyl is propyl, butyl, pentyl, and hexyl for L(1), L(2), L(3), and L(4), respectively). Upon addition of Ca(2+), the r(1) relaxivity of their Gd(3+) complexes decreased up to 61% of the initial value for the best compounds GdL(3) and GdL(4). The relaxivity of the complexes was concentration dependent (it decreases with increasing concentration). Diffusion NMR studies on the Y(3+) analogues evidenced the formation of agglomerates at higher concentrations; the aggregation becomes even more important in the presence of Ca(2+). (31)P NMR experiments on EuL(1) and EuL(4) indicated the coordination of a phosphonate to the Ln(3+) for the ligand with a propyl chain, while phosphonate coordination was not observed for the analogue bearing a hexyl linker. Potentiometric titrations yielded protonation constants of the Gd(3+) complexes. log K(H1) values for all complexes lie between 6.12 and 7.11 whereas log K(H2) values are between 4.61 and 5.87. Luminescence emission spectra recorded on the Eu(3+) complexes confirmed the coordination of a phosphonate group to the Ln(3+) center in EuL(1). Luminescence lifetime measurements showed that Ca-induced agglomeration reduces the hydration number which is the main cause for the change in r(1). Variable temperature (17)O NMR experiments evidenced high water exchange rates on GdL(1), GdL(2), and GdL(3) comparable to that of the aqua ion. PMID:21671565

  6. Rosin Surfactant QRMAE Can Be Utilized as an Amorphous Aggregate Inducer: A Case Study of Mammalian Serum Albumin

    PubMed Central

    Ishtikhar, Mohd; Chandel, Tajjali Ilm; Ahmad, Aamir; Ali, Mohd Sajid; Al-lohadan, Hamad A.; Atta, Ayman M.; Khan, Rizwan Hasan

    2015-01-01

    Quaternary amine of diethylaminoethyl rosin ester (QRMAE), chemically synthesized biocompatible rosin based cationic surfactant, has various biological applications including its use as a food product additive. In this study, we examined the amorphous aggregation behavior of mammalian serum albumins at pH 7.5, i.e., two units above their isoelectric points (pI ~5.5), and the roles played by positive charge and hydrophobicity of exogenously added rosin surfactant QRMAE. The study was carried out on five mammalian serum albumins, using various spectroscopic methods, dye binding assay, circular dichroism and electron microscopy. The thermodynamics of the binding of mammalian serum albumins to cationic rosin modified surfactant were established using isothermal titration calorimetry (ITC). It was observed that a suitable molar ratio of protein to QRMAE surfactant enthusiastically induces amorphous aggregate formation at a pH above two units of pI. Rosin surfactant QRMAE-albumins interactions revealed a unique interplay between the initial electrostatic and the subsequent hydrophobic interactions that play an important role towards the formation of hydrophobic interactions-driven amorphous aggregate. Amorphous aggregation of proteins is associated with varying diseases, from the formation of protein wine haze to the expansion of the eye lenses in cataract, during the expression and purification of recombinant proteins. This study can be used for the design of novel biomolecules or drugs with the ability to neutralize factor(s) responsible for the aggregate formation, in addition to various other industrial applications. PMID:26418451

  7. Milk protein suspensions enriched with three essential minerals: Physicochemical characterization and aggregation induced by a novel enzymatic pool.

    PubMed

    Lombardi, Julia; Spelzini, Darío; Corrêa, Ana Paula Folmer; Brandelli, Adriano; Risso, Patricia; Boeris, Valeria

    2016-04-01

    Structural changes of casein micelles and their aggregation induced by a novel enzymatic pool isolated from Bacillus spp. in the presence of calcium, magnesium or zinc were investigated. The effect of cations on milk protein structure was studied using fluorescence and dynamic light scattering. In the presence of cations, milk protein structure rearrangements and larger casein micelle size were observed. The interaction of milk proteins with zinc appears to be of a different nature than that with calcium or magnesium. Under the experimental conditions assayed, the affinity of each cation for some groups present in milk proteins seems to play an important role, besides electrostatic interaction. On the other hand, the lowest aggregation times were achieved at the highest calcium and zinc concentrations (15 mM and 0.25 mM, respectively). The study found that the faster the aggregation of casein micelles, the less compact the gel matrix obtained. Cation concentrations affected milk protein aggregation kinetics and the structure of the aggregates formed. PMID:26803666

  8. Thiosemicarbazone modification of 3-acetyl coumarin inhibits Aβ peptide aggregation and protect against Aβ-induced cytotoxicity.

    PubMed

    Ranade, Dnyanesh S; Bapat, Archika M; Ramteke, Shefali N; Joshi, Bimba N; Roussel, Pascal; Tomas, Alain; Deschamps, Patrick; Kulkarni, Prasad P

    2016-10-01

    Aggregation of amyloid β peptide (Aβ) is an important event in the progression of Alzheimer's disease. Therefore, among the available therapeutic approaches to fight with disease, inhibition of Aβ aggregation is widely studied and one of the promising approach for the development of treatments for Alzheimer's disease. Thiosemicarbazone compounds are known for their variety of biological activities. However, the potential of thiosemicarbazone compounds towards inhibition of Aβ peptide aggregation and the subsequent toxicity is little explored. Herein, we report synthesis and x-ray crystal structure of novel compound 3-acetyl coumarin thiosemicarbazone and its efficacy toward inhibition of Aβ(1-42) peptide aggregation. Our results indicate that 3-acetyl coumarin thiosemicarbazone inhibits Aβ(1-42) peptide aggregation up to 80% compared to the parent 3-acetyl coumarin which inhibits 52%. Further, 3-acetyl coumarin thiosemicarbazone provides neuroprotection against Aβ-induced cytotoxicity in SH-SY5Y cell line. These findings indicate that thiosemicarbazone modification renders 3-acetyl coumarin neuroprotective properties. PMID:26232353

  9. Vascular pentraxin 3 controls arterial thrombosis by targeting collagen and fibrinogen induced platelets aggregation

    PubMed Central

    Bonacina, F.; Barbieri, S.S.; Cutuli, L.; Amadio, P.; Doni, A.; Sironi, M.; Tartari, S.; Mantovani, A.; Bottazzi, B.; Garlanda, C.; Tremoli, E.; Catapano, A.L.; Norata, G.D.

    2016-01-01

    Aim The long pentraxin PTX3 plays a non-redundant role during acute myocardial infarction, atherosclerosis and in the orchestration of tissue repair and remodeling during vascular injury, clotting and fibrin deposition. The aim of this work is to investigate the molecular mechanisms underlying the protective role of PTX3 during arterial thrombosis. Methods and results PTX3 KO mice transplanted with bone marrow from WT or PTX3 KO mice presented a significant reduction in carotid artery blood flow following FeCl3 induced arterial thrombosis (− 80.36 ± 11.5% and − 95.53 ± 4.46%), while in WT mice transplanted with bone marrow from either WT or PTX3 KO mice, the reduction was less dramatic (− 45.55 ± 1.37% and − 53.39 ± 9.8%), thus pointing to a protective effect independent of a hematopoietic cell's derived PTX3. By using P-selectin/PTX3 double KO mice, we further excluded a role for P-selectin, a target of PTX3 released by neutrophils, in vascular protection played by PTX3. In agreement with a minor role for hematopoietic cell-derived PTX3, platelet activation (assessed by flow cytometric expression of markers of platelet activation) was similar in PTX3 KO and WT mice as were haemostatic properties. Histological analysis indicated that PTX3 localizes within the thrombus and the vessel wall, and specific experiments with the N-terminal and the C-terminal PTX3 domain showed the ability of PTX3 to selectively dampen either fibrinogen or collagen induced platelet adhesion and aggregation. Conclusion PTX3 interacts with fibrinogen and collagen and, by dampening their pro-thrombotic effects, plays a protective role during arterial thrombosis. PMID:26976330

  10. Comparison of Tooth Discoloration Induced by Calcium-Enriched Mixture and Mineral Trioxide Aggregate

    PubMed Central

    Rouhani, Armita; Akbari, Majid; Farhadi-faz, Aida

    2016-01-01

    Introduction: The aim of this in vitro study was to evaluate the tooth discoloration induced by calcium-enriched mixture (CEM) cement and mineral trioxide aggregate (MTA). Methods and Materials: Forty five endodontically treated human maxillary central incisors were selected and divided into three groups (n=15) after removing the coronal 3 mm of the obturating materials. In the MTA group, white MTA plug was placed in pulp chamber and coronal zone of the root canal. In CEM cement group, CEM plug was placed in the tooth in the same manner. In both groups, a wet cotton pellet was placed in the access cavity and the teeth were temporarily sealed. After 24 h the teeth were restored with resin composite. In the negative control group the teeth were also restored with resin composite. The color change in the cervical third of teeth was measured with a colorimeter and was repeated 3 times for each specimen. The teeth were kept in artificial saliva for 6 months. After this period, the color change was measured again. Data were collected by Commission International de I'Eclairage's L*a*b color values, and corresponding ΔE values were calculated. The results were analyzed using the one-way ANOVA and post-hoc Tukey’s test with the significance level defined as 0.05. Results: There was no significant differences between CEM group and control group in mean discoloration. The mean tooth discoloration in MTA group was significantly greater than CEM and control groups (P<0.05). Conclusion: According to the result of the present study CEM cement did not induce tooth discoloration after six months. Therefore it can be used in vital pulp therapy of esthetically sensitive teeth. PMID:27471526

  11. Cerenkov emission induced by external beam radiation stimulates molecular fluorescence

    SciTech Connect

    Axelsson, Johan; Davis, Scott C.; Gladstone, David J.; Pogue, Brian W.

    2011-07-15

    Purpose: Cerenkov emission is induced when a charged particle moves faster than the speed of light in a given medium. Both x-ray photons and electrons produce optical Cerenkov photons in everyday radiation therapy of tissue; yet, this phenomenon has never been fully documented. This study quantifies the emissions and also demonstrates that the Cerenkov emission can excite a fluorophore, protoporphyrin IX (PpIX), embedded in biological phantoms. Methods: In this study, Cerenkov emission induced by radiation from a clinical linear accelerator is investigated. Biological mimicking phantoms were irradiated with x-ray photons, with energies of 6 or 18 MV, or electrons at energies 6, 9, 12, 15, or 18 MeV. The Cerenkov emission and the induced molecular fluorescence were detected by a camera or a spectrometer equipped with a fiber optic cable. Results: It is shown that both x-ray photons and electrons, at MeV energies, produce optical Cerenkov photons in tissue mimicking media. Furthermore, we demonstrate that the Cerenkov emission can excite a fluorophore, protoporphyrin IX (PpIX), embedded in biological phantoms. Conclusions: The results here indicate that molecular fluorescence monitoring during external beam radiotherapy is possible.

  12. Ion-induced electron emission microscopy

    DOEpatents

    Doyle, Barney L.; Vizkelethy, Gyorgy; Weller, Robert A.

    2001-01-01

    An ion beam analysis system that creates multidimensional maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the secondary electrons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted secondary electrons are collected in a strong electric field perpendicular to the sample surface and (optionally) projected and refocused by the electron lenses found in a photon emission electron microscope, amplified by microchannel plates and then their exact position is sensed by a very sensitive X Y position detector. Position signals from this secondary electron detector are then correlated in time with nuclear, atomic or electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these secondary electrons in the fit place.

  13. Staphylococcal enterotoxin B initiates protein kinase C translocation and eicosanoid metabolism while inhibiting thrombin-induced aggregation in human platelets.

    PubMed

    Tran, Uyen; Boyle, Thomas; Shupp, Jeffrey W; Hammamieh, Rasha; Jett, Marti

    2006-08-01

    Staphylococcal enterotoxin (SE) B, a heat-stable toxin secreted by Staphylococcus aureus, has been implicated in the pathogenesis and exacerbation of several critical illnesses. It has been hypothesized that enterotoxins may interact with blood products such as platelets, in addition to T-lymphocytes and renal proximal tubule cells. The aim of this present study was to elucidate whether SEB directly alters human platelet function. Human platelet rich plasma (PRP) was pre-incubated with SEA, SEB, SEC or TSST-1, (at various concentrations and incubation times). After incubation, PRP was exposed to thrombin and aggregation was assessed. Incubation with all toxins tested resulted in decreased aggregation, specifically; exposure to 10mu g/ml of SEB for 30 min caused a 20% decrease and a 49% decrease at 90 min. A similar reduction in aggregation was seen in samples incubated with phorbol myristate acetate, a known stimulator of protein kinase C (PKC). Further, platelets exposed to SEB exhibited an increased plasma membrane PKC activity. Sphingosine, an inhibitor of PKC proved to block the SEB-induced reduction in aggregation. SEB effects on platelet metabolism were investigated using high performance liquid chromatography showing up to a 2-fold increase of active metabolites lipoxin A4 and 12-HETE, as compared to control. These data indicate that SEB is able to induce platelet dysfunction, and these effects may be mediated through activation of PKC. PMID:16550298

  14. Differential inhibition of tumour cell-induced platelet aggregation by the nicotinate aspirin prodrug (ST0702) and aspirin

    PubMed Central

    Medina, Carlos; Harmon, Shona; Inkielewicz, Iwona; Santos-Martinez, Maria Jose; Jones, Michael; Cantwell, Paula; Bazou, Despina; Ledwidge, Mark; Radomski, Marek W; Gilmer, John F

    2012-01-01

    BACKGROUND AND PURPOSE Tumour cell-induced platelet aggregation (TCIPA) facilitates cancer cell invasion, angiogenesis and the formation of metastatic foci. TCIPA can be modulated by pharmacological inhibitors of MMP-2 and ADP; however, the COX inhibitor aspirin did not prevent TCIPA. In this study, we have tested the pharmacological effects of a new group of isosorbide-based aspirin prodrugs on TCIPA. EXPERIMENTAL APPROACH TCIPA was induced in human platelets by mixing with human adenocarcinoma or fibrosarcoma cells under no flow and flow conditions. The release of gelatinases and P-selectin expression during TCIPA were studied by zymography and flow cytometry respectively. KEY RESULTS Tumour cells caused platelet aggregation. This aggregation resulted in the release of MMP-2 and a significant up-regulation of P-selectin on platelets, indicative of platelet activation. Pharmacological modulation of TCIPA revealed that ST0702, one of the aspirin prodrugs, down-regulated TCIPA while aspirin was ineffective. The deacetylated metabolite of ST0702, 5-nicotinate salicylate (ST0702 salicylate), down-regulated both ADP-stimulated platelet aggregation and TCIPA. CONCLUSIONS AND IMPLICATIONS Our results show that ST0702 was an effective inhibitor of TCIPA in vitro. Its deacetylated metabolite may contribute to the effects of ST0702 by inhibiting ADP-mediated TCIPA. PMID:22122360

  15. Ionizing Radiation Induces Macrophage Foam Cell Formation and Aggregation Through JNK-Dependent Activation of CD36 Scavenger Receptors

    SciTech Connect

    Katayama, Ikuo; Hotokezaka, Yuka; Matsuyama, Toshifumi; Sumi, Tadateru; Nakamura, Takashi

    2008-03-01

    Purpose: Irradiated arteries of cancer patients can be associated with atherosclerosis-like lesions containing cholesterol-laden macrophages (foam cells). Endothelial cell damage by irradiation does not completely explain the foam cell formation. We investigated the possible underlying mechanisms for ionizing radiation (IR)-induced foam cell formation. Methods and Materials: Human peripheral blood monocytes were activated by macrophage colony-stimulating factor and then treated with varying doses of IR in vitro in the absence of endothelial cells. Scavenger receptor expression and foam cell formation of IR-treated macrophages were investigated in the presence or absence of oxidized low-density lipoprotein. We also assessed the importance of mitogen-activated protein kinase activity in the macrophage colony-stimulating factor-activated human monocytes (macrophages) for the foam cell formation. Results: We found that IR treatment of macrophage colony-stimulating factor-activated human peripheral blood monocytes resulted in the enhanced expression of CD36 scavenger receptors and that cholesterol accumulated in the irradiated macrophages with resultant foam cell formation in the presence of oxidized low-density lipoprotein. Furthermore, when cultured on collagen gels, human macrophages formed large foam cell aggregates in response to IR. Antibodies against CD36 inhibited the IR-induced foam cell formation and aggregation, indicating that the IR-induced foam cell formation and the subsequent aggregation are dependent on functional CD36. In addition, we found that IR of human macrophages resulted in c-Jun N-terminal kinase activation and that c-Jun N-terminal kinase inhibition suppressed IR-induced CD36 expression and the subsequent foam cell formation and aggregation. Conclusion: Taken together, these results suggest that IR-induced foam cell formation is mediated by c-Jun N-terminal kinase-dependent CD36 activation.

  16. Dabigatran and rivaroxaban do not affect AA- and ADP-induced platelet aggregation in patients receiving concomitant platelet inhibitors.

    PubMed

    Olivier, Christoph B; Weik, Patrick; Meyer, Melanie; Weber, Susanne; Diehl, Philipp; Bode, Christoph; Moser, Martin; Zhou, Qian

    2016-08-01

    Dabigatran and rivaroxaban are novel, vitamin K-independent oral anticoagulants (NOACs) and act via antagonism of the coagulation factor (F) IIa (dabigatran) or FXa (rivaroxaban), respectively. Compared to vitamin-K-antagonists, NOACs have shown non-inferiority of risk and benefit in patients with non valvular atrial fibrillation (AF). In clinical practice there is increasing use of NOACs combined with platelet inhibitors in patients with AF and coronary artery disease. However, whether NOACs affect the function of platelet inhibitors remains incompletely known. This observational study aimed to assess the platelet function in patients receiving dabigatran or rivaroxaban and concomitant platelet inhibitors. A single centre observational study was performed analysing the platelet aggregation of patients treated with dabigatran or rivaroxaban with or without concomitant platelet inhibitors. Measurements before the initiation of NOAC therapy served as the respective control group. Platelet aggregation was measured by multiple electrode aggregometry and was induced with adenosine diphosphate (ADP, 6.5 µM) and arachidonic acid (AA, 0.5 mM), respectively. In order to evaluate whether NOACs interact with platelet inhibition by ASA or the P2Y12-antagonist clopidogrel, 87 patients were grouped according to their concomitant antiplatelet medication. Comparing the ADP- and AA-induced platelet aggregation in patients without concomitant platelet inhibitors (n = 45) no significant differences under therapy with dabigatran (d) or rivaroxaban (r) compared to the control group (c) were observed. In patients taking clopidogrel as a concomitant platelet inhibitor (n = 21), neither dabigatran nor rivaroxaban affected the ADP-induced platelet aggregation (c 20 ± 11, d 21 ± 14, r 18 ± 8 AU*min, p = 0.200). Patients receiving dabigatran or rivaroxaban in combination with ASA (n = 42; 21 ASA only, 21 ASA + clopidogrel) showed no significant differences of the AA-induced

  17. Mechanism for benzyl alcohol-induced aggregation of recombinant human interleukin-1 receptor antagonist in aqueous solution.

    PubMed

    Zhang, Ye; Roy, Shouvik; Jones, Latoya S; Krishnan, Sampathkumar; Kerwin, Bruce A; Chang, Byeong S; Manning, Mark C; Randolph, Theodore W; Carpenter, John F

    2004-12-01

    Benzyl alcohol, an antimicrobial preservative, accelerates aggregation and precipitation of recombinant human interleukin-1 receptor antagonist (rhIL-1ra) in aqueous solution. The loss of native monomer during incubation at 37 degrees C was determined by analysis of sample aliquots with size exclusion high performance liquid chromatography (SE-HPLC). Benzyl alcohol caused minor perturbation of the tertiary structure of the protein without changing its secondary structure, documenting that the preservative caused a minor shift in the protein molecular population toward partially unfolded species. Consistent with this conclusion, in the presence of benzyl alcohol the rate of H-D exchange was accelerated and the fluorescence of 1-anilinonaphthalene-8-sulfonic acid in the presence of rhIL1ra was increased. Benzyl alcohol did not alter the free energy of unfolding based on unfolding experiments in urea or guanidine HCl. With differential scanning calorimetry it was determined that benzyl alcohol reduced the apparent Tm of rhIL-1ra, but this effect occurred because the preservative lowered the temperature at which the protein aggregated during heating. Isothermal calorimetry documented that the interaction of benzyl alcohol with rhIL-1ra is relatively weak and hydrophobically driven. Thus, benzyl alcohol accelerates protein aggregation by binding to the protein and favoring an increase in the level of partially unfolded, aggregation-competent species. Sucrose partially inhibited benzyl alcohol-induced aggregation and tertiary structural change. Sucrose is preferentially excluded from the surface of the protein, favoring most compact native state species over expanded aggregation-prone forms. PMID:15514986

  18. N114S mutation causes loss of ATP-induced aggregation of human phosphoribosylpyrophosphate synthetase 1

    SciTech Connect

    Liu Honglin; Peng, Xiaohui; Zhao Fang; Zhang Guobin; Tao Ye; Luo Zhaofeng; Li Yang; Teng Maikun; Li Xu Wei Shiqiang

    2009-02-20

    This study examined recombinant wild-type human phosphoribosylpyrophosphate synthetase 1 (wt-PRS1, EC 2.7.6.1) and the point mutant Asn114Ser PRS1 (N114S-Mutant) in cells of a patient with primary gout. Dynamic light-scattering and sedimentation velocity experiments indicated that the monomeric wt-PRS1 in solution was assembled into hexamers after adding the substrate ATP. However, this ATP-induced aggregation effect was not observed with N114S-Mutant, which has a 50% higher enzymatic activity than that of wt-PRS1. Synchrotron radiation circular dichroism spectroscopy revealed that the point mutation causes an increase of {alpha}-helix content and a decrease of turn content. Examination of the crystal structure of wt-PRS1 indicated that 12 hydrogen bonds formed by 6 pairs of N114 and D139 have an important role in stabilizing the hexamer. We suggest that the substitution of S114 for N114 in N114S-Mutant leads to the rupture of 12 hydrogen bonds and breakage of the PO{sub 4}{sup 3-} allosteric site where PO{sub 4}{sup 3-} functions as a fixer of the ATP-binding loop. Therefore, we consider that formation of the hexamer as the structural basis of the ADP allosteric inhibition is greatly weakened by the N114S mutation, and that alteration of the ATP-binding loop conformation is the key factor in the increased activity of N114S-Mutant. These two factors could be responsible for the high level of activity of N114S-Mutant in this patient.

  19. Platelet-activating factor mediates the cytotoxicity induced by W7FW14F apomyoglobin amyloid aggregates in neuroblastoma cells.

    PubMed

    Sirangelo, Ivana; Giovane, Alfonso; Maritato, Rosa; D'Onofrio, Nunzia; Iannuzzi, Clara; Giordano, Antonio; Irace, Gaetano; Balestrieri, Maria Luisa

    2014-12-01

    W7FW14F apomyoglobin (W7FW14F ApoMb) amyloid aggregates induce cytotoxicity in SH-SY5Y human neuroblastoma cells through a mechanism not fully elucidated. Amyloid neurotoxicity process involves calcium dyshomeostasis and reactive oxygen species (ROS) production. Another key mediator of the amyloid neurotoxicity is Platelet-Activating Factor (PAF), an inflammatory phospholipid implicated in neurodegenerative diseases. Here, with the aim at evaluating the possible involvement of PAF signaling in the W7FW14F ApoMb-induced cytotoxicity, we show that the presence of CV3899, a PAF receptor (PAF-R) antagonist, prevented the detrimental effect of W7FW14F ApoMb aggregates on SH-SY5Y cell viability. Noticeably, we found that the activation of PAF signaling, following treatment with W7FW14F ApoMb, involves a decreased expression of the PAF acetylhydroase II (PAF-AH II). Interestingly, the reduced PAF-AH II expression was associated with a decreased acetylhydrolase (AH) activity and to an increased sphingosine-transacetylase activity (TA(S)) with production of N-acetylsphingosine (C2-ceramide), a well known mediator of neuronal caspase-dependent apoptosis. These findings suggest that an altered PAF catabolism takes part to the molecular events leading to W7FW14F ApoMb amyloid aggregates-induced cell death. PMID:25053109

  20. Operating longevity of organic light-emitting diodes with perylene derivatives as aggregating light-emitting-layer additives: Expansion of the emission zone

    NASA Astrophysics Data System (ADS)

    Jarikov, Viktor V.; Young, Ralph H.; Vargas, J. Ramon; Brown, Christopher T.; Klubek, Kevin P.; Liao, Liang-Sheng

    2006-11-01

    We describe aggregating perylene derivatives as light-emitting-layer (LEL) additives in organic light-emitting diodes (OLEDs). These molecules readily form emissive aggregates when added to the LEL. In the resulting devices, the aggregates show moderate external quantum efficiencies of 0.9%-1.7%, which can be improved to 2.7%-4.0% by further adding a proper dopant. Importantly, addition of these polycyclic aromatic hydrocarbons increases the half-life (t50) of undoped and doped OLEDs by 30-150 times. Thus, 11cd/A green and 5.2cd/A red devices are produced that have pure color, Commission Internationale de l'Eclairage 1931 2° color chromaticity coordinates (CIEx ,y) 0.32, 0.63 and 0.64, 0.36, respectively, and t50 of 30 000 and 200 000h, respectively, upon operation at 40mA/cm2. A possible link between the thickness of the emission zone and the lifetime increase is illustrated by comparing aluminum 8-hydroxyquinoline chelate (Alq3) as an LEL host versus an Alq3+dibenzo[b ,k]perylene mixed host using C545T as an emissive probe. The comparison suggests that the emission zone and probably the electron-hole recombination zone are expanded for the mixed host.

  1. The concentration-dependent aggregation of Ag NPs induced by cystine.

    PubMed

    Afshinnia, K; Gibson, I; Merrifield, R; Baalousha, M

    2016-07-01

    Cystine is widely used in cell culture media. Cysteine, the reduced form of cystine, is widely used to scavenge dissolved Ag in eco-toxicological studies to differentiate dissolved vs. nanoparticle uptake and toxicity. However, little is known about the impact of cysteine and cystine on the aggregation behavior of Ag NPs, in particular as a function of Ag NP concentration. Herein, we investigate how cystine (0-300μM) affects the stability of citrate-, polyvinylpyrrolidone-, and polyethylene glycol-coated silver nanoparticles (cit-Ag NPs, PVP-Ag NPs and PEG-Ag NPs, respectively) with and without Suwannee River fulvic acid (SRFA) as a function of Ag NPs concentration using UV-vis spectroscopy at environmentally and ecotoxicologically relevant Ag NP concentrations (ca. 125-1000μgL(-1)). The results demonstrate, for the first time, the concentration-dependent aggregation of cit-Ag NPs in the presence of cystine with a shift in the critical coagulation concentration (CCC) to lower cystine concentrations at lower cit-Ag NP concentrations. At the highest cit-Ag NP concentration (1000μgL(-1)), reaction limited aggregation was only observed and no CCC was measured. SRFA slowed the aggregation of cit-Ag NPs by cystine and aggregation occurred in reaction limited aggregation (RLA) regime only. No CCC value was measured in the presence of SRFA. Cystine replaces citrate, PVP and PEG coatings, resulting in aggregation of both electrostatically and sterically stabilized Ag NPs. These findings are important in understanding the factors determining the behavior of Ag NPs in cell culture media. Also due to the similarity between cystine and cysteine, these results are important in understanding the uptake and toxicity of Ag NPs vs. Ag ions, and suggest that the reduction of the toxicity of Ag NPs in the presence of cysteine could be due to a combined effect of scavenging Ag(+) ions and Ag NP aggregation in the presence of cysteine. PMID:27016687

  2. Identification and characterization of a collagen-induced platelet aggregation inhibitor, triplatin, from salivary glands of the assassin bug, Triatoma infestans.

    PubMed

    Morita, Akihiro; Isawa, Haruhiko; Orito, Yuki; Iwanaga, Shiroh; Chinzei, Yasuo; Yuda, Masao

    2006-07-01

    To facilitate feeding, certain hematophagous invertebrates possess inhibitors of collagen-induced platelet aggregation in their saliva. However, their mechanisms of action have not been fully elucidated. Here, we describe two major salivary proteins, triplatin-1 and -2, from the assassin bug, Triatoma infestans, which inhibited platelet aggregation induced by collagen but not by other agents including ADP, arachidonic acid, U46619 and thrombin. Furthermore, these triplatins also inhibited platelet aggregation induced by collagen-related peptide, a specific agonist of the major collagen-signaling receptor glycoprotein (GP)VI. Moreover, triplatin-1 inhibited Fc receptor gamma-chain phosphorylation induced by collagen, which is the first step of GPVI-mediated signaling. These results strongly suggest that triplatins target GPVI and inhibit signal transduction necessary for platelet activation by collagen. This is the first report on the mechanism of action of collagen-induced platelet aggregation inhibitors from hematophagus invertebrates. PMID:16759235

  3. C and N accumulations in soil aggregates determine nitrous oxide emissions from cover crop treated rice paddy soils during fallow season.

    PubMed

    Pramanik, Prabhat; Haque, Md Mozammel; Kim, Sang Yoon; Kim, Pil Joo

    2014-08-15

    Combination of leguminous and non-leguminous plant residues are preferably applied in rice paddy soils to increase the rate of organic matter mineralization and to improve plant growth. However, organic matter addition facilitates methane (CH4) emission from rice paddy soil. Mineralization of organic nitrogen (N) increases NO3-N concentrations in soil, which are precursors for the formation of nitrous oxide (N2O). However, N2O is a minor greenhouse gas emitted from submerged rice field and hence is not often considered during calculation of total global warming potential (GWP) during rice cultivation. The hypothesis of this study was that fluxes of N2O emissions might be changed after removal of flooded water from rice field and the effect of cover crops on N2O emissions in the fallow season might be interesting. However, the effects of N-rich plant residues on N2O emission rates in the fallow season and its effect on annual GWP were not studied before. In this experiment, combination of barley (non-leguminous) and hairy vetch (leguminous) biomasses were applied at 9 Mg ha(-1) and 27 Mg ha(-1) rates in rice paddy soil. Cover crop application significantly increased CH4 emission flux while decreased N2O emissions during rice cultivation. The lowest N2O emission was observed in 27 Mg ha(-1) cover crop treated plots. Cover crop applications increased N contents in soil aggregates especially in smaller aggregates (<250 μm), and that proportionately increased the N2O emission potentials of these soil aggregates. Fluxes of N2O emissions in the fallow season were influenced by the N2O emission potentials of soil aggregates and followed opposite trends as those observed during rice cultivation. Therefore, it could be concluded that the doses of cover crop applications for rice cultivation should not be optimized considering only CH4, but N2O should also be considered especially for fallow season to calculate total GWP. PMID:24880551

  4. Heat-Induced Soluble Protein Aggregates from Mixed Pea Globulins and β-Lactoglobulin.

    PubMed

    Chihi, Mohamed-Lazhar; Mession, Jean-Luc; Sok, Nicolas; Saurel, Rémi

    2016-04-01

    The present work investigates the formation of protein aggregates (85 °C, 60 min incubation) upon heat treatment of β-lactoglobulin (βlg)-pea globulins (Glob) mixtures at pH 7.2 and 5 mM NaCl from laboratory-prepared protein isolates. Various βlg/Glob weight ratios were applied, for a total protein concentration of 2 wt % in admixture. Different analytical methods were used to determine the aggregation behavior of "mixed" aggregates, that is, surface hydrophobicity and also sulfhydryl content, protein interactions by means of SDS-PAGE electrophoresis, and molecule size distribution by DLS and gel filtration. The production of "mixed" thermal aggregates would involve both the formation of new disulfide bonds and noncovalent interactions between the denatured βlg and Glob subunits. The majority of "mixed" soluble aggregates displayed higher molecular weight and smaller diameter than those for Glob heated in isolation. The development of pea-whey protein "mixed" aggregates may help to design new ingredients for the control of innovative food textures. PMID:26996062

  5. Pharmacological intervention against bubble-induced platelet aggregation in a rat model of decompression sickness

    PubMed Central

    Vallée, Nicolas; Ignatescu, Mihaela; Bourdon, Lionel

    2011-01-01

    Decompression sickness (DCS) with alterations in coagulation system and formation of platelet thrombi occurs when a subject is subjected to a reduction in environmental pressure. Blood platelet consumption after decompression is clearly linked to bubble formation in humans and offers an index for evaluating DCS severity in animal models. Previous studies highlighted a predominant involvement of platelet activation and thrombin generation in bubble-induced platelet aggregation (BIPA). To study the mechanism of the BIPA in DCS, we examined the effect of acetylsalicylic acid (ASA), heparin (Hep), and clopidogrel (Clo), with anti-thrombotic dose pretreatment in a rat model of DCS. Male Sprague-Dawley rats (n = 208) were randomly assigned to one experimental group treated before the hyperbaric exposure and decompression protocol either with ASA (3×100 mg·kg−1·day−1, n = 30), Clo (50 mg·kg−1·day−1, n = 60), Hep (500 IU/kg, n = 30), or to untreated group (n = 49). Rats were first compressed to 1,000 kPa (90 msw) for 45 min and then decompressed to surface in 38 min. In a control experiment, rats were treated with ASA (n = 13), Clo (n = 13), or Hep (n = 13) and maintained at atmospheric pressure for an equivalent period of time. Onset of DCS symptoms and death were recorded during a 60-min observation period after surfacing. DCS evaluation included pulmonary and neurological signs. Blood samples for platelet count (PC) were taken 30 min before hyperbaric exposure and 30 min after surfacing. Clo reduces the DCS mortality risk (mortality rate: 3/60 with Clo, 15/30 with ASA, 21/30 with Hep, and 35/49 in the untreated group) and DCS severity (neurological DCS incidence: 9/60 with Clo, 6/30 with ASA, 5/30 with Hep, and 12/49 in the untreated group). Clo reduced fall in platelet count and BIPA (−4,5% with Clo, −19.5% with ASA, −19,9% with Hep, and −29,6% in the untreated group). ASA, which inhibits the thromboxane A2 pathway, and Hep, which inhibits thrombin

  6. Pharmacological intervention against bubble-induced platelet aggregation in a rat model of decompression sickness.

    PubMed

    Pontier, Jean-Michel; Vallée, Nicolas; Ignatescu, Mihaela; Bourdon, Lionel

    2011-03-01

    Decompression sickness (DCS) with alterations in coagulation system and formation of platelet thrombi occurs when a subject is subjected to a reduction in environmental pressure. Blood platelet consumption after decompression is clearly linked to bubble formation in humans and offers an index for evaluating DCS severity in animal models. Previous studies highlighted a predominant involvement of platelet activation and thrombin generation in bubble-induced platelet aggregation (BIPA). To study the mechanism of the BIPA in DCS, we examined the effect of acetylsalicylic acid (ASA), heparin (Hep), and clopidogrel (Clo), with anti-thrombotic dose pretreatment in a rat model of DCS. Male Sprague-Dawley rats (n = 208) were randomly assigned to one experimental group treated before the hyperbaric exposure and decompression protocol either with ASA (3×100 mg·kg(-1)·day(-1), n = 30), Clo (50 mg·kg(-1)·day(-1), n = 60), Hep (500 IU/kg, n = 30), or to untreated group (n = 49). Rats were first compressed to 1,000 kPa (90 msw) for 45 min and then decompressed to surface in 38 min. In a control experiment, rats were treated with ASA (n = 13), Clo (n = 13), or Hep (n = 13) and maintained at atmospheric pressure for an equivalent period of time. Onset of DCS symptoms and death were recorded during a 60-min observation period after surfacing. DCS evaluation included pulmonary and neurological signs. Blood samples for platelet count (PC) were taken 30 min before hyperbaric exposure and 30 min after surfacing. Clo reduces the DCS mortality risk (mortality rate: 3/60 with Clo, 15/30 with ASA, 21/30 with Hep, and 35/49 in the untreated group) and DCS severity (neurological DCS incidence: 9/60 with Clo, 6/30 with ASA, 5/30 with Hep, and 12/49 in the untreated group). Clo reduced fall in platelet count and BIPA (-4,5% with Clo, -19.5% with ASA, -19,9% with Hep, and -29,6% in the untreated group). ASA, which inhibits the thromboxane A2 pathway, and Hep, which inhibits thrombin

  7. Chemical properties of lipids strongly affect the kinetics of the membrane-induced aggregation of α-synuclein

    PubMed Central

    Brown, James W. P.; Ouberai, Myriam M.; Flagmeier, Patrick; Vendruscolo, Michele; Buell, Alexander K.; Sparr, Emma; Dobson, Christopher M.

    2016-01-01

    Intracellular α-synuclein deposits, known as Lewy bodies, have been linked to a range of neurodegenerative disorders, including Parkinson’s disease. α-Synuclein binds to synthetic and biological lipids, and this interaction has been shown to play a crucial role for both α-synuclein’s native function, including synaptic plasticity, and the initiation of its aggregation. Here, we describe the interplay between the lipid properties and the lipid binding and aggregation propensity of α-synuclein. In particular, we have observed that the binding of α-synuclein to model membranes is much stronger when the latter is in the fluid rather than the gel phase, and that this binding induces a segregation of the lipids into protein-poor and protein-rich populations. In addition, α-synuclein was found to aggregate at detectable rates only when interacting with membranes composed of the most soluble lipids investigated here. Overall, our results show that the chemical properties of lipids determine whether or not the lipids can trigger the aggregation of α-synuclein, thus affecting the balance between functional and aberrant behavior of the protein. PMID:27298346

  8. Expansion of polyglutamine induces the formation of quasi-aggregate in the early stage of protein fibrillization.

    PubMed

    Tanaka, Motomasa; Machida, Yoko; Nishikawa, Yukihiro; Akagi, Takumi; Hashikawa, Tsutomu; Fujisawa, Tetsuro; Nukina, Nobuyuki

    2003-09-01

    We examined the effects of the expansion of glutamine repeats on the early stage of protein fibrillization. Small-angle x-ray scattering (SAXS) and electron microscopic studies revealed that the elongation of polyglutamine from 35 to 50 repeats in protein induced a large assembly of the protein upon incubation at 37 degrees C and that its formation was completed in approximately 3 h. A bead modeling procedure based on SAXS spectra indicated that the largely assembled species of the protein, quasi-aggregate, is composed of 80 to approximately 90 monomers and a bowl-like structure with long and short axes of 400 and 190 A, respectively. Contrary to fibril, the quasi-aggregate did not show a peak at S = 0.21 A-1 corresponding to the 4.8-A spacing of beta-pleated sheets in SAXS spectra, and reacted with a monoclonal antibody specific to expanded polyglutamine. These results imply that beta-sheets of expanded polyglutamines in the quasi-aggregate are not orderly aligned and are partially exposed, in contrast to regularly oriented and buried beta-pleated sheets in fibril. The formation of non-fibrillary quasi-aggregate in the early phase of fibril formation would be one of the major characteristics of the protein containing an expanded polyglutamine. PMID:12815051

  9. Aggregation-Induced Resonance Raman Optical Activity (AIRROA) and Time-Dependent Helicity Switching of Astaxanthin Supramolecular Assemblies.

    PubMed

    Dudek, Monika; Zajac, Grzegorz; Kaczor, Agnieszka; Baranska, Malgorzata

    2016-08-18

    New methods for enhancing the Raman optical activity (ROA) signal are desirable due to the low efficiency of ROA, demanding otherwise high sample concentrations, high laser powers, and/or long acquisition times. Previously, we have demonstrated a new phenomenon, aggregation-induced resonance ROA (AIRROA), that produces significant enhancement of the ROA signal provided that the excitation wavelength coincides with the absorption of the measured species and that the electronic circular dichroism (ECD) signal in the range of this absorption is nonzero. In this work, analyzing three very different supramolecular astaxanthin aggregates (H1, H2, and J), we confirm the phenomenon and demonstrate that aggregation itself is not enough to enhance the ROA signal and that the above-mentioned conditions are necessary for induction of the resonance ROA effect. Additionally, by analyzing the changes in the ECD spectra of the H1 assembly, we demonstrate that the supramolecular helicity sign switches with time, which is dependent on the prevalence of kinetic or thermodynamic stabilization of the obtained aggregates. PMID:27438433

  10. Thermal Stress Induced Aggregation of Aquaporin 0 (AQP0) and Protection by α-Crystallin via Its Chaperone Function

    PubMed Central

    Swamy-Mruthinti, Satyanarayana; Srinivas, Volety; Hansen, John E.; Rao, Ch Mohan

    2013-01-01

    Aquaporin 0 (AQP0) formerly known as membrane intrinsic protein (MIP), is expressed exclusively in the lens during terminal differentiation of fiber cells. AQP0 plays an important role not only in the regulation of water content but also in cell-to-cell adhesion of the lens fiber cells. We have investigated the thermal stress-induced structural alterations of detergent (octyl glucoside)-solubilized calf lens AQP0. The results show an increase in the amount of AQP0 that aggregated as the temperature increased from 40°C to 65°C. α-Crystallin, molecular chaperone abundantly present in the eye lens, completely prevented the AQP0 aggregation at a 1∶1 (weight/weight) ratio. Since α-crystallin consists of two gene products namely αA- and αB-crystallins, we have tested the recombinant proteins on their ability to prevent thermal-stress induced AQP0 aggregation. In contrast to the general observation made with other target proteins, αA-crystallin exhibited better chaperone-like activity towards AQP0 compared to αB-crystallin. Neither post-translational modifications (glycation) nor C-terminus truncation of AQP0 have any appreciable effect on its thermal aggregation properties. α-Crystallin offers similar protection against thermal aggregation as in the case of the unmodified AQP0, suggesting that αcrystallin may bind to either intracellular loops or other residues of AQP0 that become exposed during thermal stress. Far-UV circular dichroism studies indicated a loss of αhelical structures when AQP0 was subjected to temperatures above 45°C, and the presence of α-crystallin stabilized these secondary structures. We report here, for the first time, that α-crystallin protects AQP0 from thermal aggregation. Since stress-induced structural perturbations of AQP0 may affect the integrity of the lens, presence of the molecular chaperone, α-crystallin (particularly αA-crystallin) in close proximity to the lens membrane is physiologically relevant. PMID:24312215

  11. Aggregation-induced reversal of transport distances of soil organic matter: are our balances correct?

    NASA Astrophysics Data System (ADS)

    Hu, Yaxian; Kuhn, Nikolaus

    2014-05-01

    The effect of soil erosion on global carbon cycling, especially as a source or sink of green-house gases (GHGs), is the subject of intense debate. The controversy arises mostly from the lack of information on the fate of eroded soil organic carbon (SOC) as it moves from the site of erosion to the site of longer-term deposition. This requires improved understanding the transport distances of eroded SOC, which is principally related to the settling velocities of sediment fractions that carry the eroded SOC. For aggregated soils, settling velocities are affected by their actual aggregate size rather than the mineral grain size distribution. Aggregate stability is, in turn, strongly influenced by soil organic matter. This study aims at identifying the effect of aggregation on the transport distances of eroded SOC and its susceptibility to mineralization after transport and deposition. A rainfall simulation was carried out on a silty loam soil. The eroded sediments were fractionated by a settling tube apparatus into six different size classes according to their settling velocities and likely transport distances. Weight, SOC concentration and instantaneous respiration rates of the fractions of the six classes were measured. Our results show that: 1) 41% of the eroded SOC was transported with coarse aggregates that would be likely re-distributed across landscapes; 2) erosion was prone to accelerate the mineralization of eroded organic carbon immediately after erosion, compared to undisturbed aggregates; 3) erosion might make a higher contribution to atmospheric CO2 than the estimation made without considering the effects of aggregation and extra SOC mineralization during transport.

  12. Prompt Emission in Fission Induced with Fast Neutrons

    NASA Astrophysics Data System (ADS)

    Wilson, J. N.; Lebois, M.; Halipré, P.; Oberstedt, S.; Oberstedt, A.

    Prompt gamma-ray and neutron emission data in fission integrates a large amount of information on the fission process and can shed light on the partition of energy. Measured emission spectra, average energies and multiplicities also provide important information for energy applications. While current reactors mostly use thermal neutron spectra, the future reactors of Generation IV will use fast neutron spectra for which little experimental prompt emission data exist. Initial investigations on prompt emission in fast neutron induced fission have recently been carried out at the LICORNE facility at the IPN Orsay, which exploits inverse reactions to produce naturally collimated, intense beams of neutrons. We report on first results with LICORNE to measure prompt fission gamma-ray spectra, average energies and multiplicities for 235U and 238U. Current improvements and upgrades being carried out on the LICORNE facility will also be described, including the development of a H2 gas target to reduce parasitic backgrounds and increase intensities, and the deployment of 11B beams to extend the effective LICORNE neutron energy range up to 12 MeV. Prospects for future experimental studies of prompt gamma-ray and neutron emission in fast neutron induced fission will be presented.

  13. Human myocytes are protected from titin aggregation-induced stiffening by small heat shock proteins.

    PubMed

    Kötter, Sebastian; Unger, Andreas; Hamdani, Nazha; Lang, Patrick; Vorgerd, Matthias; Nagel-Steger, Luitgard; Linke, Wolfgang A

    2014-01-20

    In myocytes, small heat shock proteins (sHSPs) are preferentially translocated under stress to the sarcomeres. The functional implications of this translocation are poorly understood. We show here that HSP27 and αB-crystallin associated with immunoglobulin-like (Ig) domain-containing regions, but not the disordered PEVK domain (titin region rich in proline, glutamate, valine, and lysine), of the titin springs. In sarcomeres, sHSP binding to titin was actin filament independent and promoted by factors that increased titin Ig unfolding, including sarcomere stretch and the expression of stiff titin isoforms. Titin spring elements behaved predominantly as monomers in vitro. However, unfolded Ig segments aggregated, preferentially under acidic conditions, and αB-crystallin prevented this aggregation. Disordered regions did not aggregate. Promoting titin Ig unfolding in cardiomyocytes caused elevated stiffness under acidic stress, but HSP27 or αB-crystallin suppressed this stiffening. In diseased human muscle and heart, both sHSPs associated with the titin springs, in contrast to the cytosolic/Z-disk localization seen in healthy muscle/heart. We conclude that aggregation of unfolded titin Ig domains stiffens myocytes and that sHSPs translocate to these domains to prevent this aggregation. PMID:24421331

  14. Dynamic light scattering investigations of nanoparticle aggregation following a light-induced pH jump.

    PubMed

    Murphy, Ryan J; Pristinski, Denis; Migler, Kalman; Douglas, Jack F; Prabhu, Vivek M

    2010-05-21

    There are many important processes where the stability of nanoparticles can change due to changes in solution environment. These processes are often difficult to study under controlled changes to the solution conditions. Dynamic light scattering was used to measure the initial kinetics of aggregation of carboxylated polystyrene nanoparticles after well-defined pH jumps using aqueous solutions of photoacid generator (PAG). With this approach, the pH of the solution was controlled by exposure to ultraviolet (UV) light without the delays from mixing or stirring. The aggregation kinetics of the nanoparticles was extremely sensitive to the solution pH. The UV exposure dose is inversely correlated with the resulting surface charge of the nanoparticles. Decreasing pH decreases the electrostatic repulsion force between particles and leads to aggregation. The reaction-limited or diffusion-limited aggregation kinetics was sensitive to the pH quench depth, relative to the acid-equilibrium constant (pK(a)) of the surface carboxylic acid groups on the nanoparticles. Since numerous PAGs are commercially available, this approach provides a flexible method to study the aggregation of a variety of solvent-dispersed nanoparticle systems. PMID:20499988

  15. Infrared laser-induced breakdown spectroscopy emissions from energetic materials

    NASA Astrophysics Data System (ADS)

    Yang, Clayton S.; Brown, E.; Hommerich, Uwe; Trivedi, Sudhir B.; Samuels, Alan C.; Snyder, A. Peter

    2011-05-01

    Laser-induced breakdown spectroscopy (LIBS) has shown great promise for applications in chemical, biological, and explosives (CBE) sensing and has significant potential for real time standoff detection and analysis. We have studied LIBS emissions in the mid-infrared (MIR) spectral region for potential applications in CBE sensing. Detailed MIR-LIBS studies were performed for several energetic materials for the first time. In this study, the IR signature spectral region between 4 - 12 um was mined for the appearance of MIR-LIBS emissions that are directly indicative of oxygenated breakdown products as well as partially dissociated and recombination molecular species.

  16. Elucidation of flow-mediated tumour cell-induced platelet aggregation using an ultrasound standing wave trap

    PubMed Central

    Bazou, D; Santos-Martinez, MJ; Medina, C; Radomski, MW

    2011-01-01

    BACKGROUND AND PURPOSE Tumour cells activate and aggregate platelets [tumour cell-induced platelet aggregation (TCIPA)] and this process plays an important role in the successful metastasis of cancer cells. To date, most studies on TCIPA have been conducted under no-flow conditions. In this study, we have investigated TCIPA in real time under flow conditions, using an ultrasound standing wave trap that allows formation and levitation of cancer cell clusters in suspension, thus mimicking the conditions generated by flowing blood. EXPERIMENTAL APPROACH Using 59M adenocarcinoma and HT1080 fibrosarcoma cells and human platelets, cancer cell cluster–platelet aggregates were imaged in real time using epi-fluorescence microscopy (F-actin) and investigated in detail using confocal microscopy (matrix metalloproteinase-2-GPIIb/IIIa co-localization) and scanning electron and helium-ion microscopy (<1 nm resolution). The release of gelatinases from aggregates was studied using zymography. KEY RESULTS We found that platelet activation and aggregation takes place on the surface of cancer cells (TCIPA), leading to time-dependent disruption of cancer cell clusters. Pharmacological modulation of TCIPA revealed that EDTA, prostacyclin, o-phenanthroline and apyrase significantly down-regulated TCIPA and, in turn, delayed cell cluster disruption, However, EGTA and aspirin were ineffective. Pharmacological inhibition of TCIPA correlated with the down-regulation of platelet activation as shown by flow-cytometry assay of platelet P-selectin. CONCLUSION AND IMPLICATIONS Our results show for the first time, that during TCIPA, platelet activation disrupts cancer cell clusters and this can contribute to metastasis. Thus, selective targeting of platelet aggregate–cancer cell clusters may be an important strategy to control metastasis. PMID:21182493

  17. Mid-infrared emission from laser-induced breakdown spectroscopy.

    PubMed

    Yang, Clayton S-C; Brown, Ei E; Hommerich, Uwe H; Trivedi, Sudhir B; Samuels, Alan C; Snyder, A Peter

    2007-03-01

    Laser-induced breakdown spectroscopy (LIBS) is a powerful analytical technique for detecting and identifying trace elemental contaminants by monitoring the visible atomic emission from small plasmas. However, mid-infrared (MIR), generally referring to the wavelength range between 2.5 to 25 microm, molecular vibrational and rotational emissions generated by a sample during a LIBS event has not been reported. The LIBS investigations reported in the literature largely involve spectral analysis in the ultraviolet-visible-near-infrared (UV-VIS-NIR) region (less than 1 microm) to probe elemental composition and profiles. Measurements were made to probe the MIR emission from a LIBS event between 3 and 5.75 microm. Oxidation of the sputtered carbon atoms and/or carbon-containing fragments from the sample and atmospheric oxygen produced CO(2) and CO vibrational emission features from 4.2 to 4.8 microm. The LIBS MIR emission has the potential to augment the conventional UV-VIS electronic emission information with that in the MIR region. PMID:17389073

  18. Protein-Nanoparticle Interaction-Induced Changes in Protein Structure and Aggregation.

    PubMed

    Kim, Yuna; Ko, Sung Min; Nam, Jwa-Min

    2016-07-01

    Large surface area, small size, strong optical properties, controllable structural features, variety of bioconjugation chemistries, and biocompatibility make many different types of nanoparticles (NPs), such as gold NPs, useful for many biological applications, such as biosensing, cellular imaging, disease diagnostics, drug delivery, and therapeutics. Recently, interactions between proteins and NPs have been extensively studied to understand, control, and utilize the interactions involved in biomedical applications of NPs and several biological processes, such as protein aggregation, for many diseases, including Alzheimer's disease. These studies also offer fundamental knowledge on changes in protein structure, protein aggregation mechanisms, and ways to unravel the roles and fates of NPs within the human body. This review focuses on recent studies on the roles and uses of NPs in protein structural changes and aggregation processes. PMID:27062521

  19. C-Terminal Fragment, Aβ32-37, Analogues Protect Against Aβ Aggregation-Induced Toxicity.

    PubMed

    Bansal, Sunil; Maurya, Indresh Kumar; Yadav, Nitin; Thota, Chaitanya Kumar; Kumar, Vinod; Tikoo, Kulbhushan; Chauhan, Virander Singh; Jain, Rahul

    2016-05-18

    Amyloid-β aggregation is a major etiological phenomenon in Alzheimer's disease. Herein, we report peptide-based inhibitors that diminish the amyloid load by obviating Aβ aggregation. Taking the hexapeptide fragment, Aβ32-37, as lead, more than 40 new peptides were synthesized. Upon evaluation of the newly synthesized hexapeptides as inhibitors of Aβ toxicity by the MTT-based cell viability assay, a number of peptides exhibited significant Aβ aggregation inhibitory activity at sub-micromolar concentration range. A hexapeptide (1) showed complete mitigation of Aβ toxicity in the cell culture assay at 2 μM. In the ThT fluorescence assay, upon incubation of Aβ with this peptide, we observed no increase in the ThT fluorescence relative to control. The secondary structure estimation by circular dichroism spectroscopy and morphological examination by transmission electron microscopy further confirmed the results. PMID:26835536

  20. Direct observation of electric field induced pattern formation and particle aggregation in ferrofluids

    SciTech Connect

    Rajnak, Michal; Kopcansky, Peter; Timko, Milan; Petrenko, Viktor I.; Avdeev, Mikhail V.; Ivankov, Olexandr I.; Feoktystov, Artem; Dolnik, Bystrik; Kurimsky, Juraj

    2015-08-17

    Ferrofluids typically respond to magnetic fields and can be manipulated by external magnetic fields. Here, we report on formation of visually observable patterns in a diluted low-polarity ferrofluid exposed to external electric fields. This presents a specific type of ferrofluid structure driven by a combined effect of electrohydrodynamics and electrical body forces. The free charge and permittivity variation are considered to play a key role in the observed phenomenon. The corresponding changes in the ferrofluid structure have been found at nanoscale as well. By small-angle neutron scattering (SANS), we show that the magnetic nanoparticles aggregate in direct current (dc) electric field with a strong dependence on the field intensity. The anisotropic aggregates preferably orient in the direction of the applied electric field. Conducting SANS experiments with alternating current (ac) electric fields of various frequencies, we found a critical frequency triggering the aggregation process. Our experimental study could open future applications of ferrofluids based on insulating liquids.

  1. CFD simulation of shear-induced aggregation and breakage in turbulent Taylor-Couette flow.

    PubMed

    Wang, Liguang; Vigil, R Dennis; Fox, Rodney O

    2005-05-01

    An experimental and computational investigation of the effects of local fluid shear rate on the aggregation and breakage of approximately 10 microm latex spheres suspended in an aqueous solution undergoing turbulent Taylor-Couette flow was carried out. First, computational fluid dynamics (CFD) simulations were performed and the flow field predictions were validated with data from particle image velocimetry experiments. Subsequently, the quadrature method of moments (QMOM) was implemented into the CFD code to obtain predictions for mean particle size that account for the effects of local shear rate on the aggregation and breakage. These predictions were then compared with experimental data for latex sphere aggregates (using an in situ optical imaging method). Excellent agreement between the CFD-QMOM and experimental results was observed for two Reynolds numbers in the turbulent-flow regime. PMID:15797411

  2. Direct observation of electric field induced pattern formation and particle aggregation in ferrofluids

    NASA Astrophysics Data System (ADS)

    Rajnak, Michal; Petrenko, Viktor I.; Avdeev, Mikhail V.; Ivankov, Olexandr I.; Feoktystov, Artem; Dolnik, Bystrik; Kurimsky, Juraj; Kopcansky, Peter; Timko, Milan

    2015-08-01

    Ferrofluids typically respond to magnetic fields and can be manipulated by external magnetic fields. Here, we report on formation of visually observable patterns in a diluted low-polarity ferrofluid exposed to external electric fields. This presents a specific type of ferrofluid structure driven by a combined effect of electrohydrodynamics and electrical body forces. The free charge and permittivity variation are considered to play a key role in the observed phenomenon. The corresponding changes in the ferrofluid structure have been found at nanoscale as well. By small-angle neutron scattering (SANS), we show that the magnetic nanoparticles aggregate in direct current (dc) electric field with a strong dependence on the field intensity. The anisotropic aggregates preferably orient in the direction of the applied electric field. Conducting SANS experiments with alternating current (ac) electric fields of various frequencies, we found a critical frequency triggering the aggregation process. Our experimental study could open future applications of ferrofluids based on insulating liquids.

  3. Water-soluble jack-knife prawn extract inhibits 5-hydroxytryptamine-induced vasoconstriction and platelet aggregation in humans.

    PubMed

    Gamoh, Shuji; Kanai, Tasuku; Tanaka-Totoribe, Naoko; Ohkura, Masamichi; Kuwabara, Masachika; Nakamura, Eisaku; Yokota, Atsuko; Yamasaki, Tetsuo; Watanabe, Akiko; Hayashi, Masahiro; Fujimoto, Shouichi; Yamamoto, Ryuichi

    2015-02-01

    Coronary artery spasm plays an important role in the pathogenesis of various ischemic heart diseases or serious arrhythmia. The aim of this study is to look for functional foods which have physiologically active substances preventing 5-hydroxytryptamine (5-HT)-related vasospastic diseases including peri- and postoperative ischemic complications of coronary artery bypass grafting (CABG) from ocean resources in Japanese coastal waters. First, we evaluated the effect of water-soluble ocean resource extracts on the response to 5-HT in HEK293 cells which have forcibly expressed cyan fluorescent protein-fused 5-HT2A receptors (5-HT2A-CFP). Among 5 different water-soluble extracts of ocean resources, the crude water-soluble jack-knife prawn extract (WJPE) significantly reduced maximal Ca(2+) influx induced by 0.1 μM 5-HT in a concentration-dependent manner. The Crude WJPE significantly inhibited, in a concentration-dependent manner, 5-HT-induced constriction of human saphenous vein. 5-HT released from activated platelets plays a crucial roles in the constriction of coronary artery. Next the WJPE was purified for applying the experiment of 5-HT-induced human platelet aggregation. The purified WJPE significantly inhibited 5-HT-induced human platelet aggregation also in a concentration-dependent manner. Based on our findings, jack-knife prawn could be one of a functional food with health-promoting benefits for most people with vasospastic diseases including patients who have gone CABG. PMID:25464143

  4. Inhibition of TTR Aggregation-Induced Cell Death – A New Role for Serum Amyloid P Component

    PubMed Central

    Dacklin, Ingrid; Lundgren, Erik

    2013-01-01

    Background Serum amyloid P component (SAP) is a glycoprotein that is universally found associated with different types of amyloid deposits. It has been suggested that it stabilizes amyloid fibrils and therefore protects them from proteolytic degradation. Methodology/Principal Findings In this paper, we show that SAP binds not only to mature amyloid fibrils but also to early aggregates of amyloidogenic mutants of the plasma protein transthyretin (TTR). It does not inhibit fibril formation of TTR mutants, which spontaneously form amyloid in vitro at physiological pH. We found that SAP prevents cell death induced by mutant TTR, while several other molecules that are also known to decorate amyloid fibrils do not have such effect. Using a Drosophila model for TTR-associated amyloidosis, we found a new role for SAP as a protective factor in inhibition of TTR-induced toxicity. Overexpression of mutated TTR leads to a neurological phenotype with changes in wing posture. SAP-transgenic flies were crossed with mutated TTR-expressing flies and the results clearly confirmed a protective effect of SAP on TTR-induced phenotype, with an almost complete reduction in abnormal wing posture. Furthermore, we found in vivo that binding of SAP to mutated TTR counteracts the otherwise detrimental effects of aggregation of amyloidogenic TTR on retinal structure. Conclusions/Significance Together, these two approaches firmly establish the protective effect of SAP on TTR-induced cell death and degenerative phenotypes, and suggest a novel role for SAP through which the toxicity of early amyloidogenic aggregates is attenuated. PMID:23390551

  5. Distinct roles of GPVI and integrin α2β1 in platelet shape change and aggregation induced by different collagens

    PubMed Central

    Jarvis, Gavin E; Atkinson, Ben T; Snell, Daniel C; Watson, Steve P

    2002-01-01

    Various platelet membrane glycoproteins have been proposed as receptors for collagen, in some cases as receptors for specific collagen types. In this study we have compared the ability of a range of collagen types to activate platelets. Bovine collagen types I–V, native equine tendon collagen fibrils and collagen-related peptide (CRP) all induced platelet aggregation and shape change. Responses were abolished in FcRγ chain-deficient platelets, which also lack GPVI, indicating a critical dependence on the GPVI/FcRγ chain complex. Responses to all collagens were unaffected in CD36-deficient platelets. A monoclonal antibody (6F1) which binds to the α2 integrin subunit of human platelets had a minimal effect on the rate and extent of aggregation induced by the collagens; however, it delayed the onset of aggregation following addition of all collagens. For shape change, 6F1 abolished the response induced by collagen types I and IV, substantially attenuated that to collagen types II, III and V, but only partially inhibited Horm collagen. Simultaneous blockade of the P2Y1 and P2Y12 receptors, and inhibition of cyclo-oxygenase demonstrated that CRP can activate platelets independently of ADP and TxA2; however, responses to the collagens were dependent on these mediators. This study confirms the importance of the GPVI/FcRγ chain complex in platelet responses induced by a range of collagen agonists, while providing no evidence for collagen type-specific receptors. It also provides evidence for a modulatory role of α2β1, the significance of which depends on the collagen preparation. PMID:12183336

  6. Acid-induced aggregation of human monoclonal IgG1 and IgG2: molecular mechanism and the effect of solution composition.

    PubMed

    Hari, Sanjay B; Lau, Hollis; Razinkov, Vladimir I; Chen, Shuang; Latypov, Ramil F

    2010-11-01

    The prevention of aggregation in therapeutic antibodies is of great importance to the biopharmaceutical industry. In our investigation, acid-induced aggregation of monoclonal IgG1 and IgG2 antibodies was studied at pH 3.5 as a function of salt concentration and buffer type. The extent of aggregation was estimated using a native cation-exchange chromatography (CEX) method based on the loss of soluble monomer. This approach allowed quantitative analysis of antibody aggregation kinetics for individual and mixed protein solutions. Information regarding the aggregation mechanism was gained by assessing stabilities of intact antibodies relative to their Fc and Fab fragments. The role of protein thermodynamic stability in aggregation was deduced from differential scanning calorimetry (DSC). The rate of aggregation under conditions mimicking the viral inactivation step during monoclonal antibody (mAb) processing was found to be strongly dependent on the antibody subclass (IgG1 vs IgG2). At 25 °C, IgG1s were resistant to low pH aggregation, but IgG2s aggregated readily in the presence of salt. The observed distinction between IgG1 and IgG2 aggregation resulted from differential stability of the corresponding C(H)2 domains. This was further confirmed by experimenting with an IgG1 molecule containing an aglycosylated C(H)2 domain. Interestingly, comparative analysis of two buffer systems (based on acetic acid vs citric acid) revealed differences in mAb aggregation under identical pH conditions. Evidence is provided for the importance of the total acid concentration for antibody aggregation at low pH. The effects of C(H)2 instability and solution composition on aggregation are significant and deserve careful consideration during the development of mAb- or Fc-based therapeutics. PMID:20843079

  7. Imaging special nuclear material with muon-induced neutron emission.

    NASA Astrophysics Data System (ADS)

    Durham, J. Matthew

    2015-10-01

    Cosmic ray muons are a ubiquitous source of energetic charged particles that can be used to image high-Z material through significant amounts of shielding. Negative muons which come to rest inside fissile material can be captured into atomic orbitals and induce fission, which may lead to detectable neutron emission. Muon tracks that are correlated with neutron emission can therefore serve as a signal for the presence of fissile material, and laminography with the tagged muon tracks can be performed to produce an image of the neutron emission source. In this presentation, we will discuss results of imaging tests using this technique at Los Alamos National Laboratory, and possible applications in treaty verification.

  8. Turbulence-Induced Acoustic Emission of SCUBA Breathing Apparatus

    NASA Astrophysics Data System (ADS)

    Donskoy, D.; Imas, L.; Yen, T.; Sedunov, N.; Tsionskiy, M.; Sedunov, A.

    2008-06-01

    Our initial study, [1], demonstrated that the primary originating source of vibration and subsequent acoustic emission from an underwater breathing apparatus is turbulent air flow pressure fluctuations occurring during the inhale phase of breathing. The process of energy release associated with the expansion of compressed air in the high pressure scuba tank, through the first stage regulator, results in a highly turbulent, unsteady, compressible air flow. The paper presents results of experimental investigation and fluid dynamic simulation of turbulence-induced acoustic emission. The simulation reveals complex supersonic flow within the regulator's valve and channel topology. The associated regulator's air turbulent pressure pulsations and underwater acoustic emission are observed in a broadband frequency range.

  9. TGF-β induces TIAF1 self-aggregation via type II receptor-independent signaling that leads to generation of amyloid β plaques in Alzheimer's disease

    PubMed Central

    Lee, M-H; Lin, S-R; Chang, J-Y; Schultz, L; Heath, J; Hsu, L-J; Kuo, Y-M; Hong, Q; Chiang, M-F; Gong, C-X; Sze, C-I; Chang, N-S

    2010-01-01

    The role of a small transforming growth factor beta (TGF-β)-induced TIAF1 (TGF-β1-induced antiapoptotic factor) in the pathogenesis of Alzheimer's disease (AD) was investigated. TIAF1 physically interacts with mothers against DPP homolog 4 (Smad4), and blocks SMAD-dependent promoter activation when overexpressed. Accordingly, knockdown of TIAF1 by small interfering RNA resulted in spontaneous accumulation of Smad proteins in the nucleus and activation of the promoter governed by the SMAD complex. TGF-β1 and environmental stress (e.g., alterations in pericellular environment) may induce TIAF1 self-aggregation in a type II TGF-β receptor-independent manner in cells, and Smad4 interrupts the aggregation. Aggregated TIAF1 induces apoptosis in a caspase-dependent manner. By filter retardation assay, TIAF1 aggregates were found in the hippocampi of nondemented humans and AD patients. Total TIAF1-positive samples containing amyloid β (Aβ) aggregates are 17 and 48%, respectively, in the nondemented and AD groups, suggesting that TIAF1 aggregation occurs preceding formation of Aβ. To test this hypothesis, in vitro analysis showed that TGF-β-regulated TIAF1 aggregation leads to dephosphorylation of amyloid precursor protein (APP) at Thr668, followed by degradation and generation of APP intracellular domain (AICD), Aβ and amyloid fibrils. Polymerized TIAF1 physically interacts with amyloid fibrils, which would favorably support plaque formation in vivo. PMID:21368882

  10. Obsidian hydration profiles measured by sputter-induced optical emission.

    PubMed

    Tsong, I S; Houser, C A; Yusef, N A; Messier, R F; White, W B; Michels, J W

    1978-07-28

    The variation of concentrations of hydrogen, sodium, potassium, lithium, calcium, magnesium, silicon, and aluminum as a function of depth in the hydration layer of obsidian artifacts has been determined by sputter-induced optical emission. The surface hydration is accompanied by dealkalization, and there is a buildup of alkaline earths, calcium and magnesium in the outermost layers. These results have clarified the phenomena underlying the obsidian hydration dating technique. PMID:17793728

  11. Direct Observation of Aggregation-Induced Backbone Conformational Changes in Tau Peptides.

    PubMed

    Jiji, A C; Shine, A; Vijayan, Vinesh

    2016-09-12

    In tau proteins, the hexapeptides in the R2 and R3 repeats are known to initiate tau fibril formation, which causes a class of neurodegenerative diseases called the taupathies. We show that in R3, in addition to the presence of the hexapeptides, the correct turn conformation upstream to it is also essential for producing prion-like fibrils that are capable of propagation. A time-dependent NMR aggregation assay of a slow fibril forming R3-S316P peptide revealed a trans to cis equilibrium shift in the peptide-bond conformation preceding P316 during the growth phase of the aggregation process. S316 was identified as the key residue in the turn that confers templating capacity on R3 fibrils to accelerate the aggregation of the R3-S316P peptide. These results on the specific interactions and conformational changes responsible for tau aggregation could prove useful for developing an efficient therapeutic intervention in Alzheimer's disease. PMID:27513615

  12. Ionic Liquid-Induced Unprecedented Size Enhancement of Aggregates within Aqueous Sodium Dodecylbenzene Sulfonate

    SciTech Connect

    Rai, Rewa; Baker, Gary A; Behera, Kamalakanta; Mohanty, Pravakar; Kurur, Narayanan; Pandey, Siddharth

    2010-01-01

    Physicochemical properties of aqueous micellar solutions may change in the presence of ionic liquids (ILs). Micelles help to increase the aqueous solubility of ILs. The average size of the micellar aggregates within aqueous sodium dodecylbenzene sulfonate (SDBS) is observed by dynamic light scattering (DLS) and transmission electron microscopy (TEM) to increase in a sudden and drastic fashion as the IL 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) is added. Similar addition of [bmim][PF6] to aqueous sodium dodecyl sulfate (SDS) results in only a slow gradual increase in average aggregate size. While addition of the IL [bmim][BF4] also gives rise to sudden aggregate size enhancement within aqueous SDBS, the IL 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF4]), and inorganic salts NaPF6 and NaBF4, only gradually increase the assembly size upon their addition. Bulk dynamic viscosity, microviscosity, dipolarity (indicated by the fluorescent reporter pyrene), zeta potential, and electrical conductance measurements were taken to gain insight into this unusual size enhancement. It is proposed that bmim cations of the IL undergo Coulombic attractive interactions with anionic headgroups at the micellar surface at all [bmim][PF6] concentrations in aqueous SDS; in aqueous SDBS, beyond a critical IL concentration, bmim becomes involved in cation- interaction with the phenyl moiety of SDBS within micellar aggregates with the butyl group aligned along the alkyl chain of the surfactant. This relocation of bmim results in an unprecedented size increase in micellar aggregates. Aromaticity of the IL cation alongside the presence of sufficiently aliphatic (butyl or longer) alkyl chains on the IL appear to be essential for this dramatic critical expansion in self-assembly dimensions within aqueous SDBS.

  13. Identification of the epitope for a monoclonal antibody that blocks platelet aggregation induced by type III collagen.

    PubMed Central

    Glattauer, V; Werkmeister, J A; Kirkpatrick, A; Ramshaw, J A

    1997-01-01

    A library of eight conformation-dependent monoclonal antibodies that react with distinct epitopes on native human type III collagen has been examined for the ability of these antibodies to inhibit platelet aggregation induced by this collagen. Six of these antibodies had no effects; one, 1E7-D7/Col3, delayed the onset and slowed the rate of platelet aggregation, while another, 2G8-B1/Col3, completely inhibited aggregation. In order to identify the epitope recognized by this inhibitory antibody, a series of peptides that could fold to form triple-helical fragments was examined. Each peptide included six Gly-Xaa-Yaa triplets from the human type III collagen sequence, where Xaa and Yaa represent the particular amino acids in the sequence, and a C-terminal (Gly-Pro-Hyp)4 sequence to enhance triple-helical stability. Using these peptides we have identified the epitope as a nine-amino-acid sequence, GLAGAOGLR (where O is the one-letter code for 4-hydroxyproline), starting at position 520 in the human type III collagen helical domain. This sequence is proximal to the site proposed for the interaction of type III collagen with alpha2beta1-integrin of platelets. PMID:9173900

  14. Dermcidin isoform-2 induced nullification of the effect of acetyl salicylic acid in platelet aggregation in acute myocardial infarction

    PubMed Central

    Bank, Sarbashri; Jana, Pradipta; Maiti, Smarajit; Guha, Santanu; Sinha, A. K.

    2014-01-01

    The aggregation of platelets on the plaque rupture site on the coronary artery is reported to cause both acute coronary syndromes (ACS) and acute myocardial infarction (AMI). While the inhibition of platelet aggregation by acetyl salicylic acid was reported to produce beneficial effects in ACS, it failed to do in AMI. The concentration of a stress induced protein (dermcidin isoform-2) was much higher in AMI than that in ACS. Incubation of normal platelet rich plasma (PRP) with dermcidin showed one high affinity (Kd = 40 nM) and one low affinity binding sites (Kd = 333 nM). When normal PRP was incubated with 0.4 μM dermcidin, the platelets became resistant to the inhibitory effect of aspirin similar to that in the case of AMI. Incubation of PRP from AMI with dermcidin antibody restored the sensitivity of the platelets to the aspirin effect. Incubation of AMI PRP pretreated with 15 μM aspirin, a stimulator of the NO synthesis, resulted in the increased production of NO in the platelets that removed the bound dermcidin by 40% from the high affinity binding sites of AMI platelets. When the same AMI PRP was retreated with 10 μM aspirin, the aggregation of platelets was completely inhibited by NO synthesis. PMID:25055737

  15. The Kinetics of Dislocation Loop Formation in Ferritic Alloys Through the Aggregation of Irradiation Induced Defects

    NASA Astrophysics Data System (ADS)

    Kohnert, Aaron Anthony

    The mechanical properties of materials are often degraded over time by exposure to irradiation environments, a phenomenon that has hindered the development of multiple nuclear reactor design concepts. Such property changes are the result of microstructural changes induced by the collision of high energy particles with the atoms in a material. The lattice defects generated in these recoil events migrate and interact to form extended damage structures. This study has used theoretical models based on the mean field chemical reaction rate theory to analyze the aggregation of isolated lattice defects into larger microstructural features that are responsible for long term property changes, focusing on the development of black dot damage in ferritic iron based alloys. The purpose of such endeavors is two-fold. Primarily, such models explain and quantify the processes through which these microstructures form. Additionally, models provide insight into the behavior and properties of the point defects and defect clusters which drive general microstructural evolution processes. The modeling effort presented in this work has focused on physical fidelity, drawing from a variety of sources of information to characterize the unobservable defect generation and agglomeration processes that give rise to the observable features reported in experimental data. As such, the models are based not solely on isolated point defect creation, as is the case with many older rate theory approaches, but instead on realistic estimates of the defect cluster population produced in high energy cascade damage events. Experimental assessments of the microstructural changes evident in transmission electron microscopy studies provide a means to measure the efficacy of the kinetic models. Using common assumptions of the mobility of defect clusters generated in cascade damage conditions, an unphysically high density of damage features develops at the temperatures of interest with a temperature dependence

  16. UV-induced N2O emission from plants

    NASA Astrophysics Data System (ADS)

    Bruhn, Dan; Albert, Kristian R.; Mikkelsen, Teis N.; Ambus, Per

    2014-12-01

    Nitrous oxide (N2O) is an important long-lived greenhouse gas and precursor of stratospheric ozone-depleting mono-nitrogen oxides. The atmospheric concentration of N2O is persistently increasing; however, large uncertainties are associated with the distinct source strengths. Here we investigate for the first time N2O emission from terrestrial vegetation in response to natural solar ultra violet radiation. We conducted field site measurements to investigate N2O atmosphere exchange from grass vegetation exposed to solar irradiance with and without UV-screening. Further laboratory tests were conducted with a range of species to study the controls and possible loci of UV-induced N2O emission from plants. Plants released N2O in response to natural sunlight at rates of c. 20-50 nmol m-2h-1, mostly due to the UV component. The emission response to UV-A is of the same magnitude as that to UV-B. Therefore, UV-A is more important than UV-B given the natural UV-spectrum at Earth's surface. Plants also emitted N2O in darkness, although at reduced rates. The emission rate is temperature dependent with a rather high activation energy indicative for an abiotic process. The prevailing zone for the N2O formation appears to be at the very surface of leaves. However, only c. 26% of the UV-induced N2O appears to originate from plant-N. Further, the process is dependent on atmospheric oxygen concentration. Our work demonstrates that ecosystem emission of the important greenhouse gas, N2O, may be up to c. 30% higher than hitherto assumed.

  17. Insights into Kinetics of Agitation-Induced Aggregation of Hen Lysozyme under Heat and Acidic Conditions from Various Spectroscopic Methods

    PubMed Central

    Chaari, Ali; Fahy, Christine; Chevillot-Biraud, Alexandre; Rholam, Mohamed

    2015-01-01

    Protein misfolding and amyloid formation are an underlying pathological hallmark in a number of prevalent diseases of protein aggregation ranging from Alzheimer’s and Parkinson’s diseases to systemic lysozyme amyloidosis. In this context, we have used complementary spectroscopic methods to undertake a systematic study of the self-assembly of hen egg-white lysozyme under agitation during a prolonged heating in acidic pH. The kinetics of lysozyme aggregation, monitored by Thioflavin T fluorescence, dynamic light scattering and the quenching of tryptophan fluorescence by acrylamide, is described by a sigmoid curve typical of a nucleation-dependent polymerization process. Nevertheless, we observe significant differences between the values deduced for the kinetic parameters (lag time and aggregation rate). The fibrillation process of lysozyme, as assessed by the attenuated total reflection-Fourier transform infrared spectroscopy, is accompanied by an increase in the β-sheet conformation at the expense of the α-helical conformation but the time-dependent variation of the content of these secondary structures does not evolve as a gradual transition. Moreover, the tryptophan fluorescence-monitored kinetics of lysozyme aggregation is described by three phases in which the temporal decrease of the tryptophan fluorescence quantum yield is of quasilinear nature. Finally, the generated lysozyme fibrils exhibit a typical amyloid morphology with various lengths (observed by atomic force microscopy) and contain exclusively the full-length protein (analyzed by highly performance liquid chromatography). Compared to the data obtained by other groups for the formation of lysozyme fibrils in acidic pH without agitation, this work provides new insights into the structural changes (local, secondary, oligomeric/fibrillar structures) undergone by the lysozyme during the agitation-induced formation of fibrils. PMID:26571264

  18. β-Amyloid amorphous aggregates induced by the small natural molecule ferulic acid.

    PubMed

    Bramanti, Emilia; Fulgentini, Lorenzo; Bizzarri, Ranieri; Lenci, Francesco; Sgarbossa, Antonella

    2013-11-01

    There is an emerging interest in small natural molecules for their potential therapeutic use in neurodegenerative disorders like Alzheimer's disease (AD). Ferulic acid (FA), an antioxidant phenolic compound present in fruit and vegetables, has been proposed as an inhibitor of beta amyloid (Aβ) pathological aggregation. Using fluorescence and Fourier transform infrared spectroscopy, electrophoresis techniques, chromatographic analysis, and confocal microscopy, we investigated the effects of FA in the early stages of Aβ fibrillogenesis in vitro. Our results show that FA interacts promptly with Aβ monomers/oligomers, interfering since the beginning with its self-assembly and finally forming amorphous aggregates more prone to destabilization. These findings highlight the molecular basis underlying FA antiamyloidogenic activity in AD. PMID:24168390

  19. Bivalent Copper Ions Promote Fibrillar Aggregation of KCTD1 and Induce Cytotoxicity

    PubMed Central

    Liu, Zhepeng; Song, Feifei; Ma, Zhi-li; Xiong, Qiushuang; Wang, Jingwen; Guo, Deyin; Sun, Guihong

    2016-01-01

    Potassium channel tetramerization domain containing 1 (KCTD1) family members have a BTB/POZ domain, which can facilitate protein-protein interactions involved in the regulation of different signaling pathways. KCTD proteins have potential Zn2+/Cu2+ binding sites with currently unknown structural and functional roles. We investigated potential Cu2+-specific effects on KCTD1 using circular dichroism, turbidity measurement, fluorescent dye binding, proteinase K (PK) digestion, cell proliferation and apoptosis assays. These experiments indicate that the KCTD1 secondary structure assumes greater β-sheet content and the proteins aggregate into a PK-resistant form under 20 μM Cu2+, and this β-sheet-rich aggregation with Cu2+ promotes fibril formation, which results in increased cell toxicity by apoptosis. Our results reveal a novel role for Cu2+ in determining the structure and function of KCTD1. PMID:27596723

  20. Ethanol and Acetaminophen Synergistically Induce Hepatic Aggregation and TCH346-Insensitive Nuclear Translocation of GAPDH

    PubMed Central

    Snider, Natasha T.; Portney, Daniel A.; Willcockson, Helen H.; Maitra, Dhiman; Martin, Hope C.; Greenson, Joel K.; Omary, M. Bishr

    2016-01-01

    The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) signals during cellular stress via several post-translational modifications that change its folding properties, protein-protein interactions and sub-cellular localization. We examined GAPDH properties in acute mouse liver injury due to ethanol and/or acetaminophen (APAP) treatment. Synergistic robust and time-dependent nuclear accumulation and aggregation of GAPDH were observed only in combined, but not individual, ethanol/APAP treatments. The small molecule GAPDH-targeting compound TCH346 partially attenuated liver damage possibly via mitochondrial mechanisms, and independent of nuclear accumulation and aggregation of GAPDH. These findings provide a novel potential mechanism for hepatotoxicity caused by combined alcohol and acetaminophen exposure. PMID:27513663

  1. Bivalent Copper Ions Promote Fibrillar Aggregation of KCTD1 and Induce Cytotoxicity.

    PubMed

    Liu, Zhepeng; Song, Feifei; Ma, Zhi-Li; Xiong, Qiushuang; Wang, Jingwen; Guo, Deyin; Sun, Guihong

    2016-01-01

    Potassium channel tetramerization domain containing 1 (KCTD1) family members have a BTB/POZ domain, which can facilitate protein-protein interactions involved in the regulation of different signaling pathways. KCTD proteins have potential Zn(2+)/Cu(2+) binding sites with currently unknown structural and functional roles. We investigated potential Cu(2+)-specific effects on KCTD1 using circular dichroism, turbidity measurement, fluorescent dye binding, proteinase K (PK) digestion, cell proliferation and apoptosis assays. These experiments indicate that the KCTD1 secondary structure assumes greater β-sheet content and the proteins aggregate into a PK-resistant form under 20 μM Cu(2+), and this β-sheet-rich aggregation with Cu(2+) promotes fibril formation, which results in increased cell toxicity by apoptosis. Our results reveal a novel role for Cu(2+) in determining the structure and function of KCTD1. PMID:27596723

  2. Identities of Sequestered Proteins in Aggregates from Cells with Induced Polyglutamine Expression

    PubMed Central

    Suhr, Steven T.; Senut, Marie-Claude; Whitelegge, Julian P.; Faull, Kym F.; Cuizon, Denise B.; Gage, Fred H.

    2001-01-01

    Proteins with expanded polyglutamine (polyQ) tracts have been linked to neurodegenerative diseases. One common characteristic of expanded-polyQ expression is the formation of intracellular aggregates (IAs). IAs purified from polyQ-expressing cells were dissociated and studied by protein blot assay and mass spectrometry to determine the identity, condition, and relative level of several proteins sequestered within aggregates. Most of the sequestered proteins comigrated with bands from control extracts, indicating that the sequestered proteins were intact and not irreversibly bound to the polyQ polymer. Among the proteins found sequestered at relatively high levels in purified IAs were ubiquitin, the cell cycle–regulating proteins p53 and mdm-2, HSP70, the global transcriptional regulator Tata-binding protein/TFIID, cytoskeleton proteins actin and 68-kD neurofilament, and proteins of the nuclear pore complex. These data reveal that IAs are highly complex structures with a multiplicity of contributing proteins. PMID:11309410

  3. Tertiary nitrogen heterocyclic material to reduce moisture-induced damage in asphalt-aggregate mixtures

    DOEpatents

    Plancher, Henry; Petersen, Joseph C.

    1982-01-01

    Asphalt-aggregate roads crack when subjected to freezing and thawing cycles. Herein, the useful life of asphalts are substantially improved by a minor amount of a moisture damage inhibiting agent selected from compounds having a pyridine moiety, including acid salts of such compounds. A shale oil fraction may serve as the source of the improving agent and may simply be blended with conventional petroleum asphalts.

  4. Amino acid induced fractal aggregation of gold nanoparticles: Why and how.

    PubMed

    Doyen, Matthieu; Goole, Jonathan; Bartik, Kristin; Bruylants, Gilles

    2016-02-15

    Gold colloids are the object of many studies as they are reported to have potential biological sensing, imaging and drug delivery applications. In the presence of certain amino acids the aggregation of the gold nanoparticles into linear structures is observed, as highlighted by the appearance of a second plasmon band in the UV-Vis spectra of the colloid. The mechanism behind this phenomenon is still under debate. In order to help elucidate this issue, the interaction between gold colloids and different amino acids, modified amino acids and molecules mimicking their side-chain was monitored by UV-Vis absorption, DLS and TEM. The results show that phenomenon can be rationalized in terms of the Diffusion Limited Colloid Aggregation (DLCA) model which gives rise to the fractal aggregation colloids. The global charge of the compound, which influences the ionic strength of the solution, and the ease with which the compound can interact with the GNPs and affect their surface potential, are, the two parameters which control the DLCA regime. Calculations based on the Derjaguin, Landau, Verwey and Overbeek (DLVO) theory confirm all the experimental observations. PMID:26613335

  5. Additive-induced morphological tuning of self-assembled silica-barium carbonate crystal aggregates

    NASA Astrophysics Data System (ADS)

    Kellermeier, Matthias; Glaab, Fabian; Carnerup, Anna M.; Drechsler, Markus; Gossler, Benjamin; Hyde, Stephen T.; Kunz, Werner

    2009-04-01

    Crystallisation of barium carbonate from alkaline silica solutions results in the formation of extraordinary micron-scale architectures exhibiting non-crystallographic curved shapes, such as helical filaments and worm-like braids. These so-called "silica biomorphs" consist of a textured assembly of uniform elongated witherite nanocrystallites, which is occasionally sheathed by a skin of amorphous silica. Although great efforts have been devoted to clarifying the physical origin of these fascinating materials, to date little is known about the processes underlying the observed self-organisation. Herein, we describe the effect of two selected additives, a cationic surfactant and a cationic polymer, on the morphology of the forming crystal aggregates, and relate changes to experiments conducted in the absence of additives. Minor amounts of both substances are shown to exert a significant influence on the growth process, leading to the formation of predominantly flower-like spherulitic aggregates. The observed effects are discussed in terms of feasible morphogenesis pathways. Based on the assumption of a template membrane steering biomorph formation, it is proposed that the two additives are capable of performing specific bridging functions promoting the aggregation of colloidal silica which constitutes the membrane. Morphological changes are tentatively ascribed to varying colloid coordination effecting distinct membrane curvatures.

  6. Varicella-zoster virus induces the formation of dynamic nuclear capsid aggregates

    SciTech Connect

    Lebrun, Marielle; Thelen, Nicolas; Thiry, Marc; Riva, Laura; Ote, Isabelle; Condé, Claude; Vandevenne, Patricia; Di Valentin, Emmanuel; Bontems, Sébastien; Sadzot-Delvaux, Catherine

    2014-04-15

    The first step of herpesviruses virion assembly occurs in the nucleus. However, the exact site where nucleocapsids are assembled, where the genome and the inner tegument are acquired, remains controversial. We created a recombinant VZV expressing ORF23 (homologous to HSV-1 VP26) fused to the eGFP and dually fluorescent viruses with a tegument protein additionally fused to a red tag (ORF9, ORF21 and ORF22 corresponding to HSV-1 UL49, UL37 and UL36). We identified nuclear dense structures containing the major capsid protein, the scaffold protein and maturing protease, as well as ORF21 and ORF22. Correlative microscopy demonstrated that the structures correspond to capsid aggregates and time-lapse video imaging showed that they appear prior to the accumulation of cytoplasmic capsids, presumably undergoing the secondary egress, and are highly dynamic. Our observations suggest that these structures might represent a nuclear area important for capsid assembly and/or maturation before the budding at the inner nuclear membrane. - Highlights: • We created a recombinant VZV expressing the small capsid protein fused to the eGFP. • We identified nuclear dense structures containing capsid and procapsid proteins. • Correlative microscopy showed that the structures correspond to capsid aggregates. • Procapsids and partial capsids are found within the aggregates of WT and eGFP-23 VZV. • FRAP and FLIP experiments demonstrated that they are dynamic structures.

  7. L X-ray emission induced by heavy ions

    NASA Astrophysics Data System (ADS)

    Pajek, M.; Banaś, D.; Braziewicz, J.; Majewska, U.; Semaniak, J.; Fijał-Kirejczyk, I.; Jaskóła, M.; Czarnacki, W.; Korman, A.; Kretschmer, W.; Mukoyama, T.; Trautmann, D.

    2015-11-01

    Particle-induced X-ray emission (PIXE) technique is usually applied using typically 1 MeV to 3 MeV protons or helium ions, for which the ion-atom interaction is dominated by the single ionization process. For heavier ions the multiple ionization plays an increasingly important role and this process can influence substantially both the X-ray spectra and atomic decay rates. Additionally, the subshell coupling effects are important for the L- and M-shells ionized by heavy ions. Here we discuss the main features of the X-ray emission induced by heavy ions which are important for PIXE applications, namely, the effects of X-ray line shifts and broadening, vacancy rearrangement and change of the fluorescence and Coster-Kronig yields in multiple ionized atoms. These effects are illustrated here by the results of the measurements of L X-ray emission from heavy atoms bombarded by 6 MeV to 36 MeV Si ions, which were reported earlier. The strong L-subshell coupling effects are observed, in particular L2-subshell, which can be accounted for within the coupling subshell model (CSM) developed within the semiclassical approximation. Finally, the prospects to use heavy ions in PIXE analysis are discussed.

  8. A novel method for study of the aggregation of protein induced by metal ion aluminum(III) using resonance Rayleigh scattering technique

    NASA Astrophysics Data System (ADS)

    Long, Xiufen; Zhang, Caihua; Cheng, Jiongjia; Bi, Shuping

    2008-01-01

    We present a novel method for the study of the aggregation of protein induced by metal ion aluminum(III) using resonance Rayleigh scattering (RRS) technique. In neutral Tris-HCl medium, the effect of this aggregation of protein results in the enhancement of RRS intensity and the relationship between the enhancement of the RRS signal and the Al concentration is nonlinear. On this basis, we established a new method for the determination of the critical induced-aggregation concentrations ( CCIAC) of metal ion Al(III) inducing the protein aggregation. Our results show that many factors, such as, pH value, anions, salts, temperature and solvents have obvious effects. We also studied the extent of aggregation and structural changes using ultra-violet spectrometry, protein intrinsic fluorescence and circular dichroism to further understand the exact mechanisms of the aggregation characteristics of proteins induced by metal ion Al(III) at the molecular level, to help us to develop effective methods to investigate the toxicity of metal ion Al, and to provide theoretical and quantitative evidences for the development of appropriate treatments for neurodementia such as Parkinson's disease, Alzheimer's disease and dementia related to dialysis.

  9. Emission factors for organic fertilizer-induced N2O emissions from Japanese agricultural soils

    NASA Astrophysics Data System (ADS)

    Sano, T.; Nishina, K.; Sudo, S.

    2013-12-01

    1. Introduction Agricultural fields are significant sources of nitrous oxide (N2O), which is one of the important greenhouse gases with a contribution of 7.9% to the anthropogenic global warming (IPCC, 2007). Direct fertilizer-induced N2O emission from agricultural soil is estimated using the emission factor (EF). National greenhouse gas inventory of Japan defines direct EF for N2O associated with the application of chemical and organic fertilizers as the same value (0.62%) in Japanese agricultural fields. However, it is necessary to estimate EF for organic fertilizers separately, because there are some differences in factors controlling N2O emissions (e.g. nutrient content) between chemical and organic fertilizers. The purpose of this study is to estimate N2O emissions and EF for applied organic fertilizers in Japanese agricultural fields. 2. Materials and Methods We conducted the experiments at 10 prefectural agricultural experimental stations in Japan (Yamagata, Fukushima, Niigata, Ibaraki, Aichi, Shiga, Tokushima, Nagasaki, Kumamoto, and Kagoshima) to consider the variations of cultivation and environmental conditions among regions. Field measurements had been conducted for 2-2.5 years during August 2010-April 2013. Each site set experimental plots with the applications of composted manure (cattle, swine, and poultry), chemical fertilizer, and non-nitrogen fertilizer as a control. The annual amount of applied nitrogen ranged from 16 g-N m-2 y-1 to 60 g-N m-2 y-1 depending on cropping system and cultivated crops (e.g. cabbage, potato) at each site. N2O fluxes were measured using a closed-chamber method. N2O concentrations of gas samples were measured with gas chromatography. The EF value of each fertilizer was calculated as the N2O emission from fertilizer plots minus the background N2O emission (emission from a control plot), and was expressed as a percentage of the applied nitrogen. The soil NH4+ and NO3-, soil temperature, precipitation, and WFPS (water

  10. Effect of alginate on the aggregation kinetics of copper oxide nanoparticles (CuO NPs): bridging interaction and hetero-aggregation induced by Ca(2.).

    PubMed

    Miao, Lingzhan; Wang, Chao; Hou, Jun; Wang, Peifang; Ao, Yanhui; Li, Yi; Lv, Bowen; Yang, Yangyang; You, Guoxiang; Xu, Yi

    2016-06-01

    The stability of CuO nanoparticles (NPs) is expected to play a key role in the environmental risk assessment of nanotoxicity in aquatic systems. In this study, the effect of alginate (model polysaccharides) on the stability of CuO NPs in various environmentally relevant ionic strength conditions was investigated by using time-resolved dynamic light scattering. Significant aggregation of CuO NPs was observed in the presence of both monovalent and divalent cations. The critical coagulation concentrations (CCC) were 54.5 and 2.9 mM for NaNO3 and Ca(NO3)2, respectively. The presence of alginate slowed nano-CuO aggregation rates over the entire NaNO3 concentration range due to the combined electrostatic and steric effect. High concentrations of Ca(2+) (>6 mM) resulted in stronger adsorption of alginate onto CuO NPs; however, enhanced aggregation of CuO NPs occurred simultaneously under the same conditions. Spectroscopic analysis revealed that the bridging interaction of alginate with Ca(2+) might be an important mechanism for the enhanced aggregation. Furthermore, significant coagulation of the alginate molecules was observed in solutions of high Ca(2+) concentrations, indicating a hetero-aggregation mechanism between the alginate-covered CuO NPs and the unabsorbed alginate. These results suggested a different aggregation mechanism of NPs might co-exist in aqueous systems enriched with natural organic matter, which should be taken into consideration in future studies. Graphical abstract Hetero-aggregation mechanism of CuO nanoparticles and alginate under high concentration of Ca(2.) PMID:26931664

  11. In vitro platelet activation, aggregation and platelet-granulocyte complex formation induced by surface modified single-walled carbon nanotubes.

    PubMed

    Fent, János; Bihari, Péter; Vippola, Minnamari; Sarlin, Essi; Lakatos, Susan

    2015-08-01

    Surface modification of single-walled carbon nanotubes (SWCNTs) such as carboxylation, amidation, hydroxylation and pegylation is used to reduce the nanotube toxicity and render them more suitable for biomedical applications than their pristine counterparts. Toxicity can be manifested in platelet activation as it has been shown for SWCNTs. However, the effect of various surface modifications on the platelet activating potential of SWCNTs has not been tested yet. In vitro platelet activation (CD62P) as well as the platelet-granulocyte complex formation (CD15/CD41 double positivity) in human whole blood were measured by flow cytometry in the presence of 0.1mg/ml of pristine or various surface modified SWCNTs. The effect of various SWCNTs was tested by whole blood impedance aggregometry, too. All tested SWCNTs but the hydroxylated ones activate platelets and promote platelet-granulocyte complex formation in vitro. Carboxylated, pegylated and pristine SWCNTs induce whole blood aggregation as well. Although pegylation is preferred from biomedical point of view, among the samples tested by us pegylated SWCNTs induced far the most prominent activation and a well detectable aggregation of platelets in whole blood. PMID:25956790

  12. Electrically induced spontaneous emission in open electronic system

    NASA Astrophysics Data System (ADS)

    Wang, Rulin; Zhang, Yu; Yam, Chiyung; Computation Algorithms Division (CSRC) Team; Theoretical; Computational Chemistry (HKU) Collaboration

    A quantum mechanical approach is formulated for simulation of electroluminescence process in open electronic system. Based on nonequilibrium Green's function quantum transport equations and combining with photon-electron interaction, this method is used to describe electrically induced spontaneous emission caused by electron-hole recombination. The accuracy and reliability of simulation depends critically on correct description of the electronic band structure and the electron occupancy in the system. In this work, instead of considering electron-hole recombination in discrete states in the previous work, we take continuous states into account to simulate the spontaneous emission in open electronic system, and discover that the polarization of emitted photon is closely related to its propagation direction. Numerical studies have been performed to silicon nanowire-based P-N junction with different bias voltage.

  13. Sunlight-induced carbon dioxide emissions from inland waters

    NASA Astrophysics Data System (ADS)

    Koehler, Birgit; Landelius, Tomas; Weyhenmeyer, Gesa A.; Machida, Nanako; Tranvik, Lars J.

    2014-07-01

    The emissions of carbon dioxide (CO2) from inland waters are substantial on a global scale. Yet the fundamental question remains open which proportion of these CO2 emissions is induced by sunlight via photochemical mineralization of dissolved organic carbon (DOC), rather than by microbial respiration during DOC decomposition. Also, it is unknown on larger spatial and temporal scales how photochemical mineralization compares to other C fluxes in the inland water C cycle. We combined field and laboratory data with atmospheric radiative transfer modeling to parameterize a photochemical rate model for each day of the year 2009, for 1086 lakes situated between latitudes from 55°N to 69°N in Sweden. The sunlight-induced production of dissolved inorganic carbon (DIC) averaged 3.8 ± 0.04 g C m-2 yr-1, which is a flux comparable in size to the organic carbon burial in the lake sediments. Countrywide, 151 ± 1 kt C yr-1 was produced by photochemical mineralization, corresponding to about 12% of total annual mean CO2 emissions from Swedish lakes. With a median depth of 3.2 m, the lakes were generally deep enough that incoming, photochemically active photons were absorbed in the water column. This resulted in a linear positive relationship between DIC photoproduction and the incoming photon flux, which corresponds to the absorbed photons. Therefore, the slope of the regression line represents the wavelength- and depth-integrated apparent quantum yield of DIC photoproduction. We used this relationship to obtain a first estimate of DIC photoproduction in lakes and reservoirs worldwide. Global DIC photoproduction amounted to 13 and 35 Mt C yr-1 under overcast and clear sky, respectively. Consequently, these directly sunlight-induced CO2 emissions contribute up to about one tenth to the global CO2 emissions from lakes and reservoirs, corroborating that microbial respiration contributes a substantially larger share than formerly thought, and generate annual C fluxes similar in

  14. Atomic Number Dependence of Ion-Induced Electron Emission

    NASA Astrophysics Data System (ADS)

    Arrale, Abdikarim Mohamed

    Knowledge of the atomic number (Z_1 ) dependence of ion-induced electron emission yields (gamma) can be the basis for a general understanding of ion-atom interaction phenomena and, in particular, for the design of Z_1 -sensitive detectors that could be useful, for example, in the separation of isobars in accelerator mass spectrometry. The Z_1 dependence of ion-induced electron emission yields has been investigated using heavy ions of identical velocity (v = 2 v_0, with v_0 as the Bohr velocity) incident in a normal direction on sputter-cleaned carbon foils. Yields measured in this work plotted as a function of the ion's atomic number reveal an oscillatory behavior with pronounced maxima and minima. This nonmonotonic dependence of the yield on Z_1 will be discussed in the light of existing theories. Ion-induced electron emission yields from contaminated surfaces are well known to be enhanced relative to the yields from atomically clean surfaces. Under the bombardment of energetic ions, the surfaces become sputter-cleaned with time, and the yields from the samples are reduced accordingly. The time dependent reduction of yields observed are shown to be due to various effects such as the desorption of contaminant atoms and molecules by incident ions and the adsorption of residual gas onto previously clean sites. Experimental results obtained in the present work show the lower, saturated yield (gamma_{rm s} ) to be a function of residual gas pressure (P) and the fluence (phi_{rm i}) of the ion. We present a dynamic equilibrium model which explains the increase in yields for surface gas contamination, the decrease in yields for contaminant desorption, and the pressure/fluence dependence of the time required to reach gamma_{ rm s}. The predictions of the model agree well with the observations of gamma _{rm s} as a function of the ratio of gas flux to ion flux, and the electron yields of clean and gas covered surfaces.

  15. Temperature Effects on Threshold Counterion Concentration to Induce Aggregation of fd Virus

    NASA Astrophysics Data System (ADS)

    Wen, Qi; Tang, Jay X.

    2006-07-01

    We seek to elucidate the dominant mechanism of attractive interaction between like-charged biopolymers by measuring the temperature dependence of the critical divalent counterion concentration (Cc) for the aggregation of fd viruses. A decrease in either temperature or the dieletric constant alone causes a decrease in Cc, providing evidence for the Wigner crystal model. Surprisingly, the effects of these two parameters can be combined so that Cc is expressed as a function of a single parameter: the Bjerrum length. Cc decreases exponentially as the Bjerrum length increases, suggesting that an energetic balance between the entropic effect of counterions and the counterion mediated attractive interaction gives rise to the onset of bundle formation.

  16. Effects of oral contraceptives, or lanosterol, on ADP-induced aggregation and binding of /sup 125/I-fibrinogen to rat platelets

    SciTech Connect

    McGregor, L.; Toor, B.; McGregor, J.L.; Renaud, S.; Clemetson, K.J.

    1984-03-01

    The aggregation to ADP and the binding of /sup 125/I-fibrinogen to platelets from rats treated with oral contraceptives or normal platelets treated in vitro with lanosterol were compared to their respective controls. Both types of platelets showed a significant increase in ADP-induced aggregation and in binding of fibrinogen, indicating that the effect of oral contraceptives could be partly due to increased levels of lanosterol in platelet membrane.

  17. o-Carborane-based anthracene: a variety of emission behaviors.

    PubMed

    Naito, Hirofumi; Morisaki, Yasuhiro; Chujo, Yoshiki

    2015-04-20

    An o-carborane-based anthracene was synthesized, and single crystals, with incorporated solvent molecules, were obtained from the CHCl3 , CH2 Cl2 , and C6 H6 solutions. The anthracene ring in the crystal is highly distorted by the formation of a π-stacked dimer between the anthracene units. The crystals exhibited a variety of emission behaviors such as aggregation-induced emission (AIE), crystallization-induced emission (CIE), aggregation-caused quenching (ACQ), and multichromism. PMID:25729004

  18. Intermediate conformation between native β-sheet and non-native α-helix is a precursor of trifluoroethanol-induced aggregation of Human Carbonic Anhydrase-II

    SciTech Connect

    Gupta, Preeti; Deep, Shashank

    2014-06-20

    Highlights: • HCAII forms amyloid-like aggregates at moderate concentration of trifluoroethanol. • Protein adopts a state between β-sheet and α-helix at moderate % of TFE. • Hydrophobic surface(s) of partially structured conformation forms amyloid. • High % of TFE induces stable α-helical state preventing aggregation. - Abstract: In the present work, we examined the correlation between 2,2,2-trifluoroethanol (TFE)-induced conformational transitions of human carbonic anhydrase II (HCAII) and its aggregation propensity. Circular dichroism data indicates that protein undergoes a transition from β-sheet to α-helix on addition of TFE. The protein was found to aggregate maximally at moderate concentration of TFE at which it exists somewhere between β-sheet and α-helix, probably in extended non-native β-sheet conformation. Thioflavin-T (ThT) and Congo-Red (CR) assays along with fluorescence microscopy and transmission electron microscopy (TEM) data suggest that the protein aggregates induced by TFE possess amyloid-like features. Anilino-8-naphthalene sulfonate (ANS) binding studies reveal that the exposure of hydrophobic surface(s) was maximum in intermediate conformation. Our study suggests that the exposed hydrophobic surface and/or the disruption of the structural features protecting a β-sheet protein might be the major reason(s) for the high aggregation propensity of non-native intermediate conformation of HCAII.

  19. Detergent induces the formation of IgG aggregates: a multi-methodological approach.

    PubMed

    Amani, Samreen; Nasim, Faisal; Khan, Taqi Ahmed; Fazili, Naveed Ahmad; Furkan, Mohammad; Bhat, Imtiyaz Ahmad; Khan, Javed Masood; Khan, Rizwan Hasan; Naeem, Aabgeena

    2014-01-01

    Role of micellar environment created by Triton X-100 (TX-100) and CHAPSO on protein conformation using IgG as a model system has been studied in this paper. A substantial amount of secondary structure with the reduction in constant tertiary contacts was obtained in both bovine and human IgG in the presence of 0.12 mM TX-100 where as 6 and 8 mM CHAPSO concentration was required for this type of secondary structure. Further addition of either of the detergents result in the induction of α-helix in both the IgGs as evident by helix specific peaks in the amide I region of FTIR and circular dichroism spectra. Tryptophan and 8-anilino-1-naphthalene-sulphonic acid (ANS) fluorescence confirmed changes in protein conformation upon addition of detergents. Maximum ANS binding at 0.12 mM TX-100 in both while 6 and 8 mM CHAPSO in bovine and human IgG respectively, indicate a compact ''molten-globule''-like conformation. An increase addition of these detergents results in the burial of hydrophobic patches of both IgG owing to aggregation. Presence of aggregates at 0.2 and 0.16 mM TX-100 and 8 and 9 mM CHAPSO, for bovine and human IgG respectively, was further confirmed by reduction in ANS fluorescence, dynamic light scattering study, thioflavin T fluorescence and congo red absorbance. PMID:24184618

  20. Binding of Folic Acid Induces Specific Self-Aggregation of Lactoferrin: Thermodynamic Characterization.

    PubMed

    Tavares, Guilherme M; Croguennec, Thomas; Lê, Sébastien; Lerideau, Olivia; Hamon, Pascaline; Carvalho, Antônio F; Bouhallab, Saïd

    2015-11-17

    In the study presented here, we investigated the interaction at pH 5.5 between folic acid (FA) and lactoferrin (LF), a positively charged protein. We found a binding constant Ka of 10(5) M(-1) and a high stoichiometry of 10 mol of FA/mol of LF. The size and charge of the complexes formed evolved during titration experiments. Increasing the ionic strength to 50 mM completely abolished the isothermal titration calorimetry (ITC) signal, suggesting the predominance of electrostatic interactions in the exothermic binding obtained. We developed a theoretical model that explains the complex triphasic ITC profile. Our results revealed a two-step mechanism: FA/LF interaction followed by self-association of the complexes thus formed. We suggest that 10 FA molecules bind to LF to form saturated reactive complexes (FA10/LF) that further self-associate into aggregates with a finite size of around 15 nm. There is thus a critical saturation degree of the protein, above which the self-association can take place. We present here the first results that provide comprehensive details of the thermodynamics of FA/LF complexation-association. Given the high stoichiometry, allowing a load of 55 mg of FA/g of LF, we suggest that FA/LF aggregates would be an effective vehicle for FA in fortified drinks. PMID:26488446

  1. Salt-induced gelation of globular protein aggregates: structure and kinetics.

    PubMed

    Ako, Komla; Nicolai, Taco; Durand, Dominique

    2010-04-12

    Aggregates of the globular protein beta-lactoglobulin were formed by heating solutions of native proteins at pH 7, after which gels were formed by the addition of salt. The second step does not necessitate elevated temperatures and is therefore often called cold gelation. The structure of the gels was studied during their formation using light scattering and turbidity. Complementary confocal laser scanning microscopy measurements were done. We compared the structure with that of gels formed by heating native beta-lactoglobulin under the same conditions. Whereas in the latter case, microphase separation occurs above 0.2 M NaCl, no microphase separation was observed during cold gelation up to at least 1 M NaCl. The dependence of the kinetics and the final gel structure on the protein concentration, the temperature, the salt concentration, and the aggregate size was quantified. A few measurements on gels formed by adding CaCl(2) confirmed the higher efficiency of this bivalent cation but revealed no qualitative differences with gels formed by adding NaCl. PMID:20297835

  2. Effects of anticoagulant on pH, ionized calcium concentration, and agonist-induced platelet aggregation in canine platelet-rich plasma.

    PubMed

    Callan, Mary Beth; Shofer, Frances S; Catalfamo, James L

    2009-04-01

    OBJECTIVE-To compare effects of 3.8% sodium citrate and anticoagulant citrate dextrose solution National Institutes of Health formula A (ACD-A) on pH, extracellular ionized calcium (iCa) concentration, and platelet aggregation in canine platelet-rich plasma (PRP). SAMPLE POPULATION-Samples from 12 dogs. PROCEDURES-Blood samples were collected into 3.8% sodium citrate (dilution, 1:9) and ACD-A (dilution, 1:5). Platelet function, pH, and iCa concentration were evaluated in PRP. Platelet agonists were ADP, gamma-thrombin, and convulxin; final concentrations of each were 20microm, 100nM, and 20nM, respectively. Washed platelets were used to evaluate effects of varying the pH and iCa concentration. RESULTS-Mean pH and iCa concentration were significantly greater in 3.8% sodium citrate PRP than ACD-A PRP. Platelet aggregation induced by ADP and gamma-thrombin was markedly diminished in ACD-A PRP, compared with results for 3.8% sodium citrate PRP. Anticoagulant had no effect on amplitude of convulxin-induced platelet aggregation. In washed platelet suspensions (pH, 7.4), there were no differences in amplitude of platelet aggregation induced by convulxin or gamma-thrombin at various iCa concentrations. Varying the pH had no effect on amplitude of aggregation induced by convulxin or gamma-thrombin, but the aggregation rate increased with increasing pH for both agonists. CONCLUSIONS AND CLINICAL RELEVANCE-Aggregation of canine platelets induced by ADP and gamma-thrombin was negligible in ACD-A PRP, which suggested an increase in extraplatelet hydrogen ion concentration inhibits signaling triggered by these agonists but not by convulxin. Choice of anticoagulant may influence results of in vitro evaluation of platelet function, which can lead to erroneous conclusions. PMID:19335102

  3. An atypical IgM class platelet cold agglutinin induces GPVI-dependent aggregation of human platelets.

    PubMed

    Sánchez Guiu, I M; Martínez-Martinez, I; Martínez, C; Navarro-Fernandez, J; García-Candel, F; Ferrer-Marín, F; Vicente, V; Watson, S P; Andrews, R K; Gardiner, E E; Lozano, M L; Rivera, J

    2015-08-01

    Platelet cold agglutinins (PCA) cause pseudothrombocytopenia, spurious thrombocytopenia due to ex vivo platelet clumping, complicating clinical diagnosis, but mechanisms and consequences of PCA are not well defined. Here, we characterised an atypical immunoglobulin (Ig)M PCA in a 37-year-old woman with lifelong bleeding and chronic moderate thrombocytopenia, that induces activation and aggregation of autologous or allogeneic platelets via interaction with platelet glycoprotein (GP)VI. Patient temperature-dependent pseudothrombocytopenia was EDTA-independent, but was prevented by integrin αIIbβ3 blockade. Unstimulated patient platelets revealed elevated levels of bound IgM, increased expression of activation markers (P-selectin and CD63), low GPVI levels and abnormally high thromboxane (TX)A2 production. Patient serum induced temperature- and αIIbβ3-dependent decrease of platelet count in allogeneic donor citrated platelet-rich plasma (PRP), but not in PRP from Glanzmann's thrombasthenia or afibrinogenaemia patients. In allogeneic platelets, patient plasma induced shape change, P-selectin and CD63 expression, (14)C-serotonin release, and TXA2 production. Activation was not inhibited by aspirin, cangrelor or blocking anti-Fc receptor (FcγRIIA) antibody, but was abrogated by inhibitors of Src and Syk, and by a soluble GPVI-Fc fusion protein. GPVI-deficient platelets were not activated by patient plasma. These data provide the first evidence for an IgM PCA causing platelet activation/aggregation via GPVI. The PCA activity persisted over a five-year follow-up period, supporting a causative role in patient chronic thrombocytopenia and bleeding. PMID:25994029

  4. Analytical laser induced liquid beam desorption mass spectrometry of protonated amino acids and their non-covalently bound aggregates

    NASA Astrophysics Data System (ADS)

    Charvat, A.; Lugovoj, E.; Faubel, M.; Abel, B.

    2002-09-01

    We have used analytical laser induced liquid beam desorption in combination with high resolution mass spectrometry (m/Δ mgeq 1 000) for the study of protonated amino acids (ornithine, citrulline, lysine, arginine) and their non-covalently bound complexes in the gas phase desorbed from water solutions. We report studies in which the desorption mechanism has been investigated. The results imply that biomolecule desorption at our conditions is a single step process involving laser heating of the solvent above its supercritical temperature, a rapid expansion, ion recombination and finally isolation and desorption of only a small fraction of preformed ions and charged aggregates. In addition, we report an investigation of the aqueous solution concentration and pH-dependence of the laser induced desorption of protonated species (monomers and dimers). The experimental findings suggest that the desorption process depends critically upon the proton affinity of the molecules, the concentration of other ions, and of the pH value of the solution. Therefore the ion concentrations measured in the gas phase very likely reflect solution properties (equilibrium concentrations). Arginine self-assembles large non-covalent singly protonated multimers (n=1...8) when sampled by IR laser induced water beam desorption mass spectrometry. The structures of these aggregates may resemble those of the solid state and may be preformed in solution prior to desorption. A desorption of mixtures of amino acids in water solution enabled us to study (mixed) protonated dimers, one of the various applications of the present technique. Reasons for preferred dimerization leading to simple cases of molecular recognition as well as less preferred binding is discussed in terms of the number of specific H-bonds that can be established in the clusters.

  5. Hofmeister Ion-Induced Changes in Water Structure Correlate with Changes in Solvation of an Aggregated Protein Complex.

    PubMed

    Light, Taylor P; Corbett, Karen M; Metrick, Michael A; MacDonald, Gina

    2016-02-01

    RecA is a naturally aggregating Escherichia coli protein that catalyzes the strand exchange reaction utilized in DNA repair. Previous studies have shown that the presence of salts influence RecA activity, aggregation, and stability and that salts stabilize RecA in an inverse-anionic Hofmeister series. Here we utilized attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and circular dichroism (CD) to investigate how various Hofmeister salts alter the water structure and RecA solvation and aggregation. Spectroscopic studies performed in water and deuterium oxide suggest that salts alter water O-(1)H and O-(2)H stretch and bend vibrations as well as protein amide I (or I') and amide II (or II') vibrations. Anions have a much larger influence on water vibrations than cations. Water studies also show increased water-water and/or water-ion interactions in the presence of strongly hydrated SO4(2-) salts and evidence for decreased interactions with weakly hydrated Cl(-) and ClO4(-) salts. Salt-water difference infrared spectra show that kosmotropic salts are more hydrated than chaotropic salts. Interestingly, this is the opposite trend to the changes in protein solvation. Infrared spectra of RecA show that vibrations associated with protein desolvation were observed in the presence of SO4(2-) salts. Conversely, vibrations associated with protein solvation were observed in the presence of Cl(-) and ClO4(-) salts. Difference infrared studies on the dehydration of model proteins aided in identifying changes in RecA-solvent interactions. This study provides evidence that salt-induced changes in water vibrations correlate to changes in protein solvent interactions and thermal stability. PMID:26760222

  6. Proteotoxic Stress Induces Phosphorylation of p62/SQSTM1 by ULK1 to Regulate Selective Autophagic Clearance of Protein Aggregates

    PubMed Central

    Lim, Junghyun; Lachenmayer, M. Lenard; Wu, Shuai; Liu, Wenchao; Kundu, Mondira; Wang, Rong; Komatsu, Masaaki; Oh, Young J.; Zhao, Yanxiang; Yue, Zhenyu

    2015-01-01

    Disruption of proteostasis, or protein homeostasis, is often associated with aberrant accumulation of misfolded proteins or protein aggregates. Autophagy offers protection to cells by removing toxic protein aggregates and injured organelles in response to proteotoxic stress. However, the exact mechanism whereby autophagy recognizes and degrades misfolded or aggregated proteins has yet to be elucidated. Mounting evidence demonstrates the selectivity of autophagy, which is mediated through autophagy receptor proteins (e.g. p62/SQSTM1) linking autophagy cargos and autophagosomes. Here we report that proteotoxic stress imposed by the proteasome inhibition or expression of polyglutamine expanded huntingtin (polyQ-Htt) induces p62 phosphorylation at its ubiquitin-association (UBA) domain that regulates its binding to ubiquitinated proteins. We find that autophagy-related kinase ULK1 phosphorylates p62 at a novel phosphorylation site S409 in UBA domain. Interestingly, phosphorylation of p62 by ULK1 does not occur upon nutrient starvation, in spite of its role in canonical autophagy signaling. ULK1 also phosphorylates S405, while S409 phosphorylation critically regulates S405 phosphorylation. We find that S409 phosphorylation destabilizes the UBA dimer interface, and increases binding affinity of p62 to ubiquitin. Furthermore, lack of S409 phosphorylation causes accumulation of p62, aberrant localization of autophagy proteins and inhibition of the clearance of ubiquitinated proteins or polyQ-Htt. Therefore, our data provide mechanistic insights into the regulation of selective autophagy by ULK1 and p62 upon proteotoxic stress. Our study suggests a potential novel drug target in developing autophagy-based therapeutics for the treatment of proteinopathies including Huntington’s disease. PMID:25723488

  7. High Resolution Imagery of Haarp-Induced Optical Emissions

    NASA Astrophysics Data System (ADS)

    Kendall, E. A.

    2012-12-01

    One powerful technique for diagnosing radio frequency interactions in the ionosphere is to use ground-based optical instrumentation. High-frequency (HF), heater-induced optical emission observations can be used to diagnose electron energies and distributions in the heated region, illuminate natural and/or artificially induced ionospheric irregularities, determine ExB plasma drifts, and measure quenching rates by neutral species. Optical emissions are caused by HF-accelerated electrons colliding with various atmospheric constituents, which in turn emit a photon. The most common emissions are 630.0 nm O(1D), 557.7 nm O(1S), and 427.8 nm N2+(1NG). Since fairly wide field-of-view imagers are typically deployed in airglow campaigns, it is not well-known what meter-scale features exist in the artificial airglow emissions. Telescopic imaging provides high resolution spatial coverage of ionospheric irregularities and goes hand in hand with other observing techniques such as GPS scintillation, radar, and ionosonde. Imaging can be used to verify the interpretation of data from these other instruments, and this in turn allows confidence in such measurements when airglow cannot be observed (high solar angle or cloud cover). Telescopic imaging of airglow is the only technique capable of simultaneously determining the properties of ionospheric irregularities at decameter resolution over a range of several kilometers. The HAARP telescopic imager consists of two cameras, a set of optics for each camera, and a robotic mount that supports and orients the system. The camera and optics systems are identical except for the camera lenses: one has a wide-angle lens (~19 degrees) and the other has a telescopic lens (~3 degrees). The telescopic imager has a resolution of ~20 m in the F layer and ~10 m in the E layer, which allows the observation of decameter- and kilometer-scale features. Telescopic data has been recorded at HAARP for several years and images will be presented showing

  8. Inhibition of LFA-1-dependent human B-cell aggregation induced by CD40 antibodies and interleukin-4 leads to decreased IgE synthesis.

    PubMed Central

    Björck, P; Paulie, S

    1993-01-01

    Antibodies to CD40 have been shown to induce homotypic aggregation of human resting B cells and B-cell lines via an LFA-1-dependent mechanism. We show here that interleukin-4 (IL-4) is a strong potentiator of this process and stimulation of tonsillar B cells for 4 days with IL-4 and CD40 antibodies resulted in the formation of large, dense aggregates. Also in this case, aggregation appeared to be chiefly dependent on the activation of LFA-1, although the small clusters of cells remaining after blocking with LFA-1 antibodies suggest the involvement of another adhesion system(s). When testing the relationship between aggregation and IgE synthesis, a known consequences of IL-4/CD40 stimulation, IgE levels were found to be significantly decreased in the presence of LFA-1 antibodies. In contrast to these observations, proliferation occurring in response to the IL-4/CD40 stimulation was not inhibitable by LFA-1 antibodies. Rather, in most cases, this was slightly enhanced, suggesting that aggregation may have a limiting effect on cell growth. Isolated aggregates, each of which could comprise more than 10(5) cells, were also examined by electron microscopy. This revealed a tissue-like structure of the aggregates with large contact areas and with minimal intercellular space between the adjacent cells. As the apparent inhibitory effect of aggregation on proliferation may reflect a negative autocrine signalling, which is enhanced by the close cell contact, we also tested the effect of neutralizing antibodies to IL-6, one of the factors known to be produced in the system. Such treatment did not affect aggregation but in most experiments enhanced proliferation. The results suggest that a possible effect of aggregation may be to enhance differentiation of cells and that this may also be associated with the difficulties in growing B cells in vitro. Images Figure 1 Figure 3 PMID:7682536

  9. Melatonin attenuates MPTP-induced neurotoxicity via preventing CDK5-mediated autophagy and SNCA/α-synuclein aggregation

    PubMed Central

    Su, Ling-Yan; Li, Hao; Lv, Li; Feng, Yue-Mei; Li, Guo-Dong; Luo, Rongcan; Zhou, He-Jiang; Lei, Xiao-Guang; Ma, Liang; Li, Jia-Li; Xu, Lin; Hu, Xin-Tian; Yao, Yong-Gang

    2015-01-01

    Autophagy is involved in the pathogenesis of neurodegenerative diseases including Parkinson disease (PD). However, little is known about the regulation of autophagy in neurodegenerative process. In this study, we characterized aberrant activation of autophagy induced by neurotoxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) and demonstrated that melatonin has a protective effect on neurotoxicity. We found an excessive activation of autophagy in monkey brain tissues and C6 cells, induced by MPTP, which is mediated by CDK5 (cyclin-dependent kinase 5). MPTP treatment significantly reduced total dendritic length and dendritic complexity of cultured primary cortical neurons and melatonin could reverse this effect. Decreased TH (tyrosine hydroxylase)-positive cells and dendrites of dopaminergic neurons in the substantia nigra pars compacta (SNc) were observed in MPTP-treated monkeys and mice. Along with decreased TH protein level, we observed an upregulation of CDK5 and enhanced autophagic activity in the striatum of mice with MPTP injection. These changes could be salvaged by melatonin treatment or knockdown of CDK5. Importantly, melatonin or knockdown of CDK5 reduced MPTP-induced SNCA/α-synuclein aggregation in mice, which is widely thought to trigger the pathogenesis of PD. Finally, melatonin or knockdown of CDK5 counteracted the PD phenotype in mice induced by MPTP. Our findings uncover a potent role of CDK5-mediated autophagy in the pathogenesis of PD, and suggest that control of autophagic pathways may provide an important clue for exploring potential target for novel therapeutics of PD. PMID:26292069

  10. pH-Induced aggregated melanin nanoparticles for photoacoustic signal amplification

    NASA Astrophysics Data System (ADS)

    Ju, Kuk-Youn; Kang, Jeeun; Pyo, Jung; Lim, Joohyun; Chang, Jin Ho; Lee, Jin-Kyu

    2016-07-01

    We present a new melanin-like nanoparticle (MelNP) and its performance evaluation results. This particle is proposed as an exogenous contrast agent for photoacoustic (PA) imaging. Conventional PA contrast agents are based on non-biological materials. In contrast, the MelNPs are organic nanoparticles inspired by natural melanin. Melanin is an endogenous chromophore that has the ability to produce a PA signal in vivo. The developed MelNPs are capable of aggregating with one another under mildly acidic conditions after introducing hydrolysis-susceptible citraconic amide on the surface of bare MelNPs. We ascertained that the physical aggregation of the MelNPs resulted in an increased PA signal strength in the near-infrared window of biological tissue (i.e., 700 nm) without absorption tuning. This phenomenon is likely because of the overlapping thermal fields of the developed MelNPs. The PA signal produced from the developed MelNPs, after exposure to mildly acidic conditions (i.e., pH 6), is 8.1 times stronger than under neutral conditions. This unique characteristic found in this study can be utilized in a practical strategy for highly sensitive in vivo cancer target imaging in response to its acidic microenvironment. This approach to amplify the PA response of MelNPs in clusters could accelerate the use of MelNPs as an alternative to non-biological nanoprobes, so that MelNPs may be applicable in PA imaging and functional PA imaging such as stimuli sensitive, multimodal, and theranostic imaging.We present a new melanin-like nanoparticle (MelNP) and its performance evaluation results. This particle is proposed as an exogenous contrast agent for photoacoustic (PA) imaging. Conventional PA contrast agents are based on non-biological materials. In contrast, the MelNPs are organic nanoparticles inspired by natural melanin. Melanin is an endogenous chromophore that has the ability to produce a PA signal in vivo. The developed MelNPs are capable of aggregating with one

  11. Phototransformation-Induced Aggregation of Functionalized Single-Walled Carbon Nanotubes: The Importance of Amorphous Carbon.

    PubMed

    Hou, Wen-Che; He, Chen-Jing; Wang, Yi-Sheng; Wang, David K; Zepp, Richard G

    2016-04-01

    Single-walled carbon nanotubes (SWCNTs) with proper functionalization are desirable for applications that require dispersion in aqueous and biological environments, and functionalized SWCNTs also serve as building blocks for conjugation with specific molecules in these applications. In this study, we examined the phototransformation of carboxylated SWCNTs and associated amorphous carbon impurities in the presence or absence of H2O2 under simulated sunlight conditions. We found that while carboxylated SWCNTs were rather unreactive with respect to direct solar photolysis, they photoreacted in the presence of H2O2, forming CO2 and strongly aggregated SWCNT products that precipitated. Photoreaction caused SWCNTs to lose oxygen-containing functionalities, and interestingly, the resulting photoproducts had spectral characteristics similar to those of parent carboxylated SWCNTs whose amorphous carbon was removed by base washing. These results indicated that photoreaction of the amorphous carbon was likely involved. The removal of amorphous carbon after indirect photoreaction was confirmed with thermogravimetric analysis (TGA). Further studies using carboxylated SWCNTs with and without base washing indicate that amorphous carbon reduced the extent of aggregation caused by photoreaction. The second-order rate constant for carboxylated SWCNTs reacting with (•)OH was estimated to be in the range of 1.7-3.8 × 10(9) MC(-1) s(-1). The modeled phototransformation half-lives fall in the range of 2.8-280 days in typical sunlit freshwaters. Our study indicates that photosensitized reactions involving (•)OH may be a transformation and removal pathway of functionalized SWCNTs in the aquatic environment, and that the residual amorphous carbon associated with SWCNTs plays a role in SWCNT stabilization. PMID:26928260

  12. pH-Induced aggregated melanin nanoparticles for photoacoustic signal amplification.

    PubMed

    Ju, Kuk-Youn; Kang, Jeeun; Pyo, Jung; Lim, Joohyun; Chang, Jin Ho; Lee, Jin-Kyu

    2016-08-14

    We present a new melanin-like nanoparticle (MelNP) and its performance evaluation results. This particle is proposed as an exogenous contrast agent for photoacoustic (PA) imaging. Conventional PA contrast agents are based on non-biological materials. In contrast, the MelNPs are organic nanoparticles inspired by natural melanin. Melanin is an endogenous chromophore that has the ability to produce a PA signal in vivo. The developed MelNPs are capable of aggregating with one another under mildly acidic conditions after introducing hydrolysis-susceptible citraconic amide on the surface of bare MelNPs. We ascertained that the physical aggregation of the MelNPs resulted in an increased PA signal strength in the near-infrared window of biological tissue (i.e., 700 nm) without absorption tuning. This phenomenon is likely because of the overlapping thermal fields of the developed MelNPs. The PA signal produced from the developed MelNPs, after exposure to mildly acidic conditions (i.e., pH 6), is 8.1 times stronger than under neutral conditions. This unique characteristic found in this study can be utilized in a practical strategy for highly sensitive in vivo cancer target imaging in response to its acidic microenvironment. This approach to amplify the PA response of MelNPs in clusters could accelerate the use of MelNPs as an alternative to non-biological nanoprobes, so that MelNPs may be applicable in PA imaging and functional PA imaging such as stimuli sensitive, multimodal, and theranostic imaging. PMID:27406260

  13. Latent heat induced rotation limited aggregation in 2D ice nanocrystals

    NASA Astrophysics Data System (ADS)

    Bampoulis, Pantelis; Siekman, Martin H.; Kooij, E. Stefan; Lohse, Detlef; Zandvliet, Harold J. W.; Poelsema, Bene

    2015-07-01

    The basic science responsible for the fascinating shapes of ice crystals and snowflakes is still not understood. Insufficient knowledge of the interaction potentials and the lack of relevant experimental access to the growth process are to blame for this failure. Here, we study the growth of fractal nanostructures in a two-dimensional (2D) system, intercalated between mica and graphene. Based on our scanning tunneling spectroscopy data, we provide compelling evidence that these fractals are 2D ice. They grow while they are in material contact with the atmosphere at 20 °C and without significant thermal contact to the ambient. The growth is studied in situ, in real time and space at the nanoscale. We find that the growing 2D ice nanocrystals assume a fractal shape, which is conventionally attributed to Diffusion Limited Aggregation (DLA). However, DLA requires a low mass density mother phase, in contrast to the actual currently present high mass density mother phase. Latent heat effects and consequent transport of heat and molecules are found to be key ingredients for understanding the evolution of the snow (ice) flakes. We conclude that not the local availability of water molecules (DLA), but rather them having the locally required orientation is the key factor for incorporation into the 2D ice nanocrystal. In combination with the transport of latent heat, we attribute the evolution of fractal 2D ice nanocrystals to local temperature dependent rotation limited aggregation. The ice growth occurs under extreme supersaturation, i.e., the conditions closely resemble the natural ones for the growth of complex 2D snow (ice) flakes and we consider our findings crucial for solving the "perennial" snow (ice) flake enigma.

  14. Latent heat induced rotation limited aggregation in 2D ice nanocrystals.

    PubMed

    Bampoulis, Pantelis; Siekman, Martin H; Kooij, E Stefan; Lohse, Detlef; Zandvliet, Harold J W; Poelsema, Bene

    2015-07-21

    The basic science responsible for the fascinating shapes of ice crystals and snowflakes is still not understood. Insufficient knowledge of the interaction potentials and the lack of relevant experimental access to the growth process are to blame for this failure. Here, we study the growth of fractal nanostructures in a two-dimensional (2D) system, intercalated between mica and graphene. Based on our scanning tunneling spectroscopy data, we provide compelling evidence that these fractals are 2D ice. They grow while they are in material contact with the atmosphere at 20 °C and without significant thermal contact to the ambient. The growth is studied in situ, in real time and space at the nanoscale. We find that the growing 2D ice nanocrystals assume a fractal shape, which is conventionally attributed to Diffusion Limited Aggregation (DLA). However, DLA requires a low mass density mother phase, in contrast to the actual currently present high mass density mother phase. Latent heat effects and consequent transport of heat and molecules are found to be key ingredients for understanding the evolution of the snow (ice) flakes. We conclude that not the local availability of water molecules (DLA), but rather them having the locally required orientation is the key factor for incorporation into the 2D ice nanocrystal. In combination with the transport of latent heat, we attribute the evolution of fractal 2D ice nanocrystals to local temperature dependent rotation limited aggregation. The ice growth occurs under extreme supersaturation, i.e., the conditions closely resemble the natural ones for the growth of complex 2D snow (ice) flakes and we consider our findings crucial for solving the "perennial" snow (ice) flake enigma. PMID:26203037

  15. Drosophila UNC-45 prevents heat-induced aggregation of skeletal muscle myosin and facilitates refolding of citrate synthase

    SciTech Connect

    Melkani, Girish C.; Lee, Chi F.; Cammarato, Anthony; Bernstein, Sanford I.

    2010-05-28

    UNC-45 belongs to the UCS (UNC-45, CRO1, She4p) domain protein family, whose members interact with various classes of myosin. Here we provide structural and biochemical evidence that Escherichia coli-expressed Drosophila UNC-45 (DUNC-45) maintains the integrity of several substrates during heat-induced stress in vitro. DUNC-45 displays chaperone function in suppressing aggregation of the muscle myosin heavy meromyosin fragment, the myosin S-1 motor domain, {alpha}-lactalbumin and citrate synthase. Biochemical evidence is supported by electron microscopy, which reveals the first structural evidence that DUNC-45 prevents inter- or intra-molecular aggregates of skeletal muscle heavy meromyosin caused by elevated temperatures. We also demonstrate for the first time that UNC-45 is able to refold a denatured substrate, urea-unfolded citrate synthase. Overall, this in vitro study provides insight into the fate of muscle myosin under stress conditions and suggests that UNC-45 protects and maintains the contractile machinery during in vivo stress.

  16. The use of quartz crystal microbalance with dissipation (QCM-D) for studying nanoparticle-induced platelet aggregation

    PubMed Central

    Santos-Martinez, Maria Jose; Inkielewicz-Stepniak, Iwona; Medina, Carlos; Rahme, Kamil; D’Arcy, Deirdre M; Fox, Daniel; Holmes, Justin D; Zhang, Hongzhou; Radomski, Marek Witold

    2012-01-01

    Interactions between blood platelets and nanoparticles have both pharmacological and toxicological significance and may lead to platelet activation and aggregation. Platelet aggregation is usually studied using light aggregometer that neither mimics the conditions found in human microvasculature nor detects microaggregates. A new method for the measurement of platelet microaggregation under flow conditions using a commercially available quartz crystal microbalance with dissipation (QCM-D) has recently been developed. The aim of the current study was to investigate if QCM-D could be used for the measurement of nanoparticle-platelet interactions. Silica, polystyrene, and gold nanoparticles were tested. The interactions were also studied using light aggregometry and flow cytometry, which measured surface abundance of platelet receptors. Platelet activation was imaged using phase contrast and scanning helium ion microscopy. QCM-D was able to measure nanoparticle-induced platelet microaggregation for all nanoparticles tested at concentrations that were undetectable by light aggregometry and flow cytometry. Microaggregates were measured by changes in frequency and dissipation, and the presence of platelets on the sensor surface was confirmed and imaged by phase contrast and scanning helium ion microscopy. PMID:22275839

  17. Cancer associated missense mutations in BAP1 catalytic domain induce amyloidogenic aggregation: A new insight in enzymatic inactivation

    PubMed Central

    Bhattacharya, Sushmita; Hanpude, Pranita; Maiti, Tushar Kanti

    2015-01-01

    BRCA1 associated protein 1 (BAP1) is a nuclear deubiquitinase that regulates tumor suppressor activity and widely involves many cellular processes ranging from cell cycle regulation to gluconeogenesis. Impairment of enzymatic activity and nuclear localization induce abnormal cell proliferation. It is considered to be an important driver gene, which undergoes frequent mutations in several cancers. However the role of mutation and oncogenic gain of function of BAP1 are poorly understood. Here, we investigated cellular localization, enzymatic activity and structural changes for four missense mutants of the catalytic domain of BAP1, which are prevalent in different types of cancer. These mutations triggered cytoplasmic/perinuclear accumulation in BAP1 deficient cells, which has been observed in proteins that undergo aggregation in cellular condition. Amyloidogenic activity of mutant BAP1 was revealed from its reactivity towards anti oligomeric antibody in HEK293T cells. We have also noted structural destabilization in the catalytic domain mutants, which eventually produced beta amyloid structure as indicated in atomic force microscopy study. The cancer associated mutants up-regulate heat shock response and activates transcription of genes normally co-repressed by BAP1. Overall, our results unambiguously demonstrate that structural destabilization and subsequent aggregation abrogate its cellular mechanism leading to adverse outcome. PMID:26680512

  18. Effect of Vitamin C Supplementation on Platelet Aggregation and Serum Electrolytes Levels in Streptozotocin-Induced Diabetes Mellitus in Rats.

    PubMed

    Owu, Daniel U; Nwokocha, Chukwuemeka R; Ikpi, Daniel E; Ogar, Emmanuel I

    2016-01-01

    Diabetes mellitus (DM) is a disease condition characterised by hyperglycemia; free radical and abnormalhaematological indices. Vitamin C can reduce free radical generation and ameliorate adverse conditions of diabetes mellitus.The aim of the present study is to investigate the effect of vitamin C on platelet aggregation and electrolyte levels in Type 1DM. Male Wistar rats were divided into four groups namely control, DM, DM +Vitamin C and Vitamin C groups. Rats weremade diabetic with a single dose of streptozotocin (65 mg/kg) intraperitoneally. Vitamin C was administered orally todiabetic and normal rats at 200 mg/kg body weight for 28 days. Blood samples were analyzed for hematological parameters,platelet aggregation, and serum electrolyte levels. Blood glucose in DM+ Vitamin C group (9.9 ± 1.8 mmol/L) wassignificantly reduced (p<0.01) compared to DM group (32.2 ± 2.1 mmol/L) and significantly higher (p<0.05) than control(4.4 ± 0.8 mmol/L). Haemoglobin (Hb) concentration in DM group (12 ± 0.1 g/dL) was significantly reduced (p<0.01) whencompared with control groups (14 ± 0.24 g/dL) and significantly increased (p<0.05) in the DM+vitamin C group (13.5 ± 0.5g/dL) compared with the diabetic group. The mean corpuscular volume values in DM (68.66 ± 0.5 fL) and DM+vitamin Cgroups (68.11 ± 0.4 fL) were significantly higher (p<0.01) than the control (59.49 ± 0.5fL). Platelet count in DM group (523± 8.5 x109/L) was significantly raised (p<0.01) when compared to control (356 ± 6.2 x109/L) and significantly reduced(p<0.01) in DM+ vitamin C-treated group (385 ± 7.8 x109/L) compared with DM group. Platelet aggregation and serumsodium/potassium ratios was significantly reduced (p<0.01) in DM+vitamin C compared with DM group. These resultssuggest that oral vitamin C administration increases haemoglobin, reduced plasma glucose level, platelet count, serumsodium/potassium ion ratio and inhibits platelet aggregation in streptozotocin-induced DM in rats. PMID:27574765

  19. Streptococcal SpeB Cleaved PAR-1 Suppresses ERK Phosphorylation and Blunts Thrombin-Induced Platelet Aggregation

    PubMed Central

    Ender, Miriam; Andreoni, Federica; Zinkernagel, Annelies Sophie; Schuepbach, Reto Andreas

    2013-01-01

    Background The family of 4 related protease-activated receptors (PAR-1, 2, 3 & 4) expressed by mammalian cells allow to sense for and react to extracellular proteolytic activity. Since major human bacterial pathogens secret a wide array of protease(-s) we investigated whether they interfere with human PAR function. Methodology/Principal Findings Supernatants from cultures of major human bacterial pathogens were assayed for the presence of protease(-s) capable to cleave overexpressed human PAR-1, 2, 3 and 4 reporter constructs. Group A streptococcus (GAS) was found to secret a PAR-1-cleaving protease. Experiments involving genetical and pharmacological gain and loss of function identified streptococcal pyrogenic exotoxin B SpeB as the protease responsible. On the host’s side analysis of overexpressed PAR-1 carrying alanine substitutions and deletions showed the amino acid residue leucine44 on PAR-1’s extracellular N-terminus to be the only cleavage site. Complementary studies on endogenously expressed PAR-1 using PAR-1 blocking antibodies further supported our conclusion. Through PAR-1 cleavage SpeB efficiently blunted thrombin-induced induction of the ERK-pathway in endothelial cells and prevented platelets aggregation in response to thrombin. Conclusions/Significance Our results identify a novel function of the streptococcal virulence factor SpeB. By cleaving human PAR-1 at the N-terminal amino acid residue leucine44 SpeB rendered endothelial cells unresponsive to thrombin and prevented human platelets from thrombin-induced aggregation. These results suggest that by blunting PAR-1 signaling, SpeB modulates various innate host responses directed against invasive GAS potentially helping the invasive bacteria to escape. This may allow to tailor additional treatments in the future since upon invasion of the blood stream endothelial cells as well as platelets and mononuclear cells respond to PAR-1 agonists aiming to prevent further bacterial dissemination. PMID

  20. Detection of adenosine triphosphate through polymerization-induced aggregation of actin-conjugated gold/silver nanorods

    NASA Astrophysics Data System (ADS)

    Liao, Yu-Ju; Shiang, Yen-Chun; Chen, Li-Yi; Hsu, Chia-Lun; Huang, Chih-Ching; Chang, Huan-Tsung

    2013-11-01

    We have developed a simple and selective nanosensor for the optical detection of adenosine triphosphate (ATP) using globular actin-conjugated gold/silver nanorods (G-actin-Au/Ag NRs). By simply mixing G-actin and Au/Ag NRs (length ˜56 nm and diameter ˜12 nm), G-actin-Au/Ag NRs were prepared which were stable in physiological solutions (25 mM Tris-HCl, 150 mM NaCl, 5.0 mM KCl, 3.0 mM MgCl2 and 1.0 mM CaCl2; pH 7.4). Introduction of ATP into the G-actin-Au/Ag NR solutions in the presence of excess G-actin induced the formation of filamentous actin-conjugated Au/Ag NR aggregates through ATP-induced polymerization of G-actin. When compared to G-actin-modified spherical Au nanoparticles having a size of 13 nm or 56 nm, G-actin-Au/Ag NRs provided better sensitivity for ATP, mainly because the longitudinal surface plasmon absorbance of the Au/Ag NR has a more sensitive response to aggregation. This G-actin-Au/Ag NR probe provided high sensitivity (limit of detection 25 nM) for ATP with remarkable selectivity (>10-fold) over other adenine nucleotides (adenosine, adenosine monophosphate and adenosine diphosphate) and nucleoside triphosphates (guanosine triphosphate, cytidine triphosphate and uridine triphosphate). It also allowed the determination of ATP concentrations in plasma samples without conducting tedious sample pretreatments; the only necessary step was simple dilution. Our experimental results are in good agreement with those obtained from a commercial luciferin-luciferase bioluminescence assay. Our simple, sensitive and selective approach appears to have a practical potential for the clinical diagnosis of diseases (e.g. cystic fibrosis) associated with changes in ATP concentrations.

  1. Reparative Dentinogenesis Induced by Mineral Trioxide Aggregate: A Review from the Biological and Physicochemical Points of View

    PubMed Central

    Okiji, Takashi; Yoshiba, Kunihiko

    2009-01-01

    This paper aims to review the biological and physicochemical properties of mineral trioxide aggregate (MTA) with respect to its ability to induce reparative dentinogenesis, which involves complex cellular and molecular events leading to hard-tissue repair by newly differentiated odontoblast-like cells. Compared with that of calcium hydroxide-based materials, MTA is more efficient at inducing reparative dentinogenesis in vivo. The available literature suggests that the action of MTA is attributable to the natural wound healing process of exposed pulps, although MTA can stimulate hard-tissue-forming cells to induce matrix formation and mineralization in vitro. Physicochemical analyses have revealed that MTA not only acts as a “calcium hydroxide-releasing” material, but also interacts with phosphate-containing fluids to form apatite precipitates. MTA also shows better sealing ability and structural stability, but less potent antimicrobial activity compared with that of calcium hydroxide. The clinical outcome of direct pulp capping and pulpotomy with MTA appears quite favorable, although the number of controled prospective studies is still limited. Attempts are being conducted to improve the properties of MTA by the addition of setting accelerators and the development of new calcium silicate-based materials. PMID:20339574

  2. Specific ion effects induced by mono-valent salts in like charged aggregates in water.

    PubMed

    Huang, Ningdong; Tao, Jiaojiao; Liu, Jun; Wei, Shenghui; Li, Liangbin; Wu, Ziyu

    2014-06-28

    While salt mediated association between similarly charged poly-electrolytes occurs in a broad range of biological and colloidal systems, the effects of mono-valent salts remains little known experimentally. In this communication we systematically study influences of assorted mono-valent salts on structures of and interactions in two dimensional ordered bundles of charged fibrils assembled in water using Small Angle X-ray Scattering (SAXS). By quantitatively analyzing the scattering peak features, we discern two competing effects with opposite influences due to partitioning of salts in the aqueous complex. While electrostatic effects from salts residing between the fibrils suppress attraction between fibrils and expand the bundles, it is compensated by external osmotic pressure from peripheral salts in the aqueous media. The balance between the two effects varies for different salts and gives rise to ion-specific equilibrium behavior as well as structure of ordered bundles in salty water. The specific ions effects in like charged aggregates can be attributed to preferential distribution of ions inside or outside the bundles, correlated to the ranking of ions in Hofmeister series for macromolecules. Unlike conventional studies on Hofmeister effects by thermodynamic measurements relying on modeling for data interpretation, our study is based directly on structural analysis and is model-insensitive. PMID:24828119

  3. Highly sensitive colorimetric determination of amoxicillin in pharmaceutical formulations based on induced aggregation of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Akhond, Morteza; Absalan, Ghodratollah; Ershadifar, Hamid

    2015-05-01

    A novel, simple and highly sensitive colorimetric method is developed for determination of Amoxicillin (AMX). The system is based on aggregation of citrate-capped gold nanoparticles (AuNP) in acetate buffer (pH = 4.5) in the presence of the degradation product of Amoxicillin (DPAMX). It was found that the color of gold nanoparticles changed from red to purple and the intensity of surface plasmon resonance (SPR) peak of AuNPs decreased. A new absorption band was appeared in the wavelength range of 600-700 nm upon addition of DPAMX. The absorbance ratio at the wavelength of 660 and 525 nm (A660/A525) was chosen as the analytical signal indirectly related to AMX concentration. The linearity of the calibration graph was found over the concentration range of 0.3-4.5 μM AMX with a correlation coefficient of 0.9967. Under the optimum experimental conditions, the detection limit was found to be 0.15 μM. The applicability of the method was successfully demonstrated by analysis of AMX in pharmaceutical formulations including capsules and oral suspensions.

  4. Tooth discoloration induced by a novel mineral trioxide aggregate-based root canal sealer

    PubMed Central

    Lee, Dae-Sung; Lim, Myung-Jin; Choi, Yoorina; Rosa, Vinicius; Hong, Chan-Ui; Min, Kyung-San

    2016-01-01

    Objectives: The aim of this study was to evaluate tooth discoloration caused by contact with a novel injectable mineral trioxide aggregate (MTA)-based root canal sealer (Endoseal; Maruchi, Wonju, Korea) compared with a widely used resin-based root canal sealer (AHplus; Dentsply De Trey, Konstanz, Germany) and conventional MTA (ProRoot; Dentsply, Tulsa, OK, USA). Materials and Methods: Forty standardized bovine tooth samples were instrumented and divided into three experimental groups and one control group (n = 10/group). Each material was inserted into the cavity, and all specimens were sealed with a self-adhesive resin. Based on CIE Lab system, brightness change (ΔL) and total color change (ΔE) of each specimen between baseline and 1, 2, 4, and 8 weeks were obtained. Results: At all time points, Endoseal showed no significant difference in ΔL and ΔE compared to AHplus and control group (P > 0.05), whereas the ProRoot group showed significantly higher ΔL and ΔE values than the Endoseal group at 2, 4, and 8 weeks (P < 0.05). Therefore, Endoseal showed less discoloration than conventional MTA and a similar color change to AHplus. Conclusions: Within the limitations of this study, our data indicate that the MTA-based sealer produces a similar amount of tooth discoloration as AHplus which is considered to be acceptable. PMID:27403062

  5. Organic solvents induce the formation of oil-in-ionic liquid microemulsion aggregations.

    PubMed

    Gao, Yanan; Li, Na; Zhang, Shaohua; Zheng, Liqiang; Li, Xinwei; Dong, Bin; Yu, Li

    2009-02-01

    The role of four organic solvents in the formation process of 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF4) based ionic liquid (IL) microemulsions is investigated. The results showed that the addition of Triton X-100 remarkably decreased the conductivity of bmimBF4. The added organic solvents provided a strong apolar environment for the hydrophobic tails of Triton X-100 and caused the surfactant molecules to aggregate into the interfacial film of oil-in-bmimBF4 (O/IL) microemulsions. As a result, the conductivities of the solutions were initially increased because the insulative Triton X-100 molecules were assembled, which corresponded to increasing the concentration of continuous bmimBF4 solutions. The hydrophobic interaction between the dispersed organic solvents and the hydrophobic tails of Triton X-100 may be the driving force for the formation of O/IL microemulsions. The droplets of O/IL microemulsions were successively swollen by organic solvents, and a bicontinuous IL-containing microemulsion was observed by freeze-fracture transmission electron microscopy for the first time. The current study can help in further understanding the ILs-containing microemulsions and thereby improve microemulsion theory. PMID:19138136

  6. The response of aggregate production to fertility-induced changes in population age distribution.

    PubMed

    Denton, F T; Mountain, D C; Spencer, B G

    1996-01-01

    With a particular focus upon long-term supply effects, the authors explored the implications of different population age distributions for the productive capacity of an economy. A multilevel aggregate production process was specified, plausible values assigned to its parameters, and steady-state solutions obtained under a range of alternative fertility assumptions. The theoretical model was calibrated to conform with Canadian data and published estimates of age-sex substitution elasticities. The study found productive capacity to be related to age distribution, although the output effects exceed 8%, regardless of the structure of the economy, only when total fertility rate is less than 1.6 or well above 3.0; within the range of variation, productive capacity and output per capita are lower for both younger and older populations; altering the elasticity of substitution between different tasks has negligible effects upon the sensitivity of the economy to changes in age distribution; altering the elasticity of substitution between different age-sex groups for a given task has a markedly greater effect; introducing either increasing or decreasing returns to scale has only a minor effect upon the sensitivity of the economy to changes in age distribution; and marginal products are quite sensitive to changes in age distribution for both younger and older workers, but far less sensitive for middle-aged workers. PMID:12320140

  7. VASP Activation via the Gα13/RhoA/PKA Pathway Mediates Cucurbitacin-B-Induced Actin Aggregation and Cofilin-Actin Rod Formation

    PubMed Central

    Zhang, Yan-Ting; Xu, Li-Hui; Lu, Qun; Liu, Kun-Peng; Liu, Pei-Yan; Ji, Fang; Liu, Xiao-Ming; Ouyang, Dong-Yun; He, Xian-Hui

    2014-01-01

    Cucurbitacin B (CuB), a potent antineoplastic agent of cucurbitacin triterpenoids, induces rapid disruption of actin cytoskeleton and aberrant cell cycle inhibiting carcinogenesis. However, the underlying molecular mechanism of such anticancer effects remains incompletely understood. In this study, we showed that CuB treatment rapidly induced vasodilator-stimulated phosphoprotein (VASP) phosphorylation (i.e. activation) at the Ser157 residue and generated VASP clumps which were co-localized with amorphous actin aggregates prior to the formation of highly-ordered cofilin-actin rods in melanoma cells. Knockdown of VASP or inhibition of VASP activation using PKA-specific inhibitor H89 suppressed CuB-induced VASP activation, actin aggregation and cofilin-actin rod formation. The VASP activation was mediated by cAMP-independent PKA activation as CuB decreased the levels of cAMP while MDL12330A, an inhibitor of adenylyl cyclase, had weak effect on VASP activation. Knockdown of either Gα13 or RhoA not only suppressed VASP activation, but also ameliorated CuB-induced actin aggregation and abrogated cofilin-actin rod formation. Collectively, our studies highlighted that the CuB-induced actin aggregation and cofilin-actin rod formation was mediated via the Gα13/RhoA/PKA/VASP pathway. PMID:24691407

  8. Enhancing Laser Induced Plasma Emissions using Various Excitation Modalities

    NASA Astrophysics Data System (ADS)

    Johnson, Lewis; Akpovo, Charlemagne; Gebreegziabher, Samson; Martinez, Jorge, Jr.

    2008-11-01

    Detection of hazardous materials with Laser Induced Breakdown Spectroscopy (LIBS) requires a detailed understanding of the sample matrix as well as the surrounding environment. We report on our efforts to understand and manipulate the continuum and atmospheric levels while enhancing surface and substrate material identifications. Comparisons are made between: single pulse (SP) nanosecond (ns); SP femtosecond (fs); SP fs-self-channeled (fs-sc); Dual pulse (DP) ns; DP ns -- fs; and DP ns fs-sc; and multi--pulse Continuous Wave (CW) plasmas formed on the sample surface. Plasma emission spectra from atmospheric oxygen and nitrogen, as well as aluminum and Copper substrates, and hazardous oxygen and nitrogen rich materials residues are analyzed.

  9. Proton-Induced X-Ray Emission Analysis of Crematorium Emissions

    NASA Astrophysics Data System (ADS)

    Ali, Salina; Nadareski, Benjamin; Yoskowitz, Joshua; Labrake, Scott; Vineyard, Michael

    2014-09-01

    There has been considerable debate in recent years about possible mercury emissions from crematoria due to amalgam tooth restorations. We have performed a proton-induced X-ray emission (PIXE) analysis of aerosol and soil samples taken near the Vale Cemetery Crematorium in Schenectady, NY, to address this concern. The aerosol samples were collected on the roof of the crematorium using a nine-stage, cascade impactor that separates the particulate matter by aerodynamic diameter and deposits it onto thin Kapton foils. The soil samples were collected at several different distances from the crematorium and compressed into pellets with a hydraulic press. The Kapton foils containing the aerosol samples and the soil pellets were bombarded with 2.2-MeV protons from the 1.1-MV tandem Pelletron accelerator in the Union College Ion-Beam Analysis Laboratory. We measured significant concentrations of sulfur, phosphorus, potassium, calcium, and iron, but essentially no mercury in the aerosol samples. The lower limit of detection for airborne mercury in this experiment was approximately 0.2 ng / m3. The PIXE analysis of the soil samples showed the presence of elements commonly found in soil (Si, K, Ca, Ti, Mn, Fe), but no trace of mercury. There has been considerable debate in recent years about possible mercury emissions from crematoria due to amalgam tooth restorations. We have performed a proton-induced X-ray emission (PIXE) analysis of aerosol and soil samples taken near the Vale Cemetery Crematorium in Schenectady, NY, to address this concern. The aerosol samples were collected on the roof of the crematorium using a nine-stage, cascade impactor that separates the particulate matter by aerodynamic diameter and deposits it onto thin Kapton foils. The soil samples were collected at several different distances from the crematorium and compressed into pellets with a hydraulic press. The Kapton foils containing the aerosol samples and the soil pellets were bombarded with 2.2-Me

  10. [Inhibition of NF-kB Activation Decreases Resistance in Acute Myeloid Leukemia Cells to TRAIL-induced Apoptosis in Multicellular Aggregates].

    PubMed

    Fadeev, R S; Solovieva, M E; Slyadovskiy, D A; Zakharov, S G; Fadeeva, I S; Senotov, A S; Golenkov, A K; Akatov, V S

    2015-01-01

    Suppression of resistance in acute myeloid leukemia cells to TRAIL-induced apoptosis in multicellular aggregates, was studied using small molecule inhibitors of the activation of the transcription factor NF-kB - NF-k9 Activation Inhibitor IV and JSH-23 at non-toxic concentrations. NF-kB Activation Inhibitor IV and JSH-23 reduced resistance in the acute myeloid leukemia cells in multicellular aggregates to cytotoxic action of recombinant protein izTRAIL. It is shown that the use of these inhibitors decreased the phosphorylation of the RelA (p65) as a main marker activation of the transcription factor NF-kB. We discuss a possible reason for increasing resistance in acute myeloid leukemia cells to TRAIL-induced apoptosis in multicellular aggregates. PMID:26841509

  11. Electric-field-induced dielectrophoresis and heterogeneous aggregation in dilute suspensions of positively polarizable particles

    NASA Astrophysics Data System (ADS)

    Acrivos, Andreas; Qiu, Zhiyong; Markarian, Nikolai; Khusid, Boris

    2002-11-01

    We specified the conditions under which a dilute suspension of positively polarizable particles would undergo a heterogeneous aggregation in high-gradient strong AC fields and then examined experimentally and theoretically its kinetics [1]. Experiments were conducted on flowing dilute suspensions of heavy aluminum oxide spheres subjected to a high-gradient AC field (several kV/mm) such that the dielectrophoretic force acting on the particles was arranged in the plane perpendicular to the streamlines of the main flow. To reduce the gravitational settling of the particles, the electric chamber was kept slowly rotating around a horizontal axis. Following the application of a field, the particles were found to move towards both the high-voltage and grounded electrodes and to form arrays of "bristles" along their edges. The process was modeled by computing the motion of a single particle under the action of dielectrophoretic, viscous, and gravitational forces for negligibly small particle Reynolds numbers. The particle polarization required for the calculation of the dielectrophoretic force was measured in low-strength fields (several V/mm). The theoretical predictions for the kinetics of the particle accumulation on the electrodes were found to be in a reasonable agreement with experiment, although the interparticle interactions governed the formation of arrays of bristles. These bristles were formed in a two-step mechanism, which arose from the interplay of the dielectrophoretic force that confined the particles near the electrode edge and the dipolar interactions of nearby particles. The results of our studies provide the basic characteristics needed for the design and optimization of electro-hydrodynamic apparatuses. The work was supported by a NASA grant. The suspension characterization was conducted at the NJIT W.M. Keck Laboratory. 1. Z. Qiu, N. Markarian, B. Khusid, A. Acrivos, J. Apple. Phys., 92(5), 2002.

  12. Pulsed electric field (PEF)-induced aggregation between lysozyme, ovalbumin and ovotransferrin in multi-protein system.

    PubMed

    Wu, Li; Zhao, Wei; Yang, Ruijin; Yan, Wenxu

    2015-05-15

    The aggregation of multi-proteins is of great interest in food processing and a good understanding of the formation of aggregates during PEF processing is needed for the application of the process to pasteurize protein-based foods. The aggregates formation of a multi-protein system (containing ovalbumin, ovotransferrin and lysozyme) was studied through turbidity, size exclusion chromatography and SDS-PAGE patterns for interaction studies and binding forces. Results from size exclusion chromatography indicated that there was no soluble aggregates formed during PEF processing. The existence of lysozyme was important to form insoluble aggregates in the chosen ovalbumin solution. The results of SDS-PAGE patterns indicated that lysozyme was prone to precipitate, and was relatively the higher component of aggregates. Citric acid could be effective in inhibiting lysozyme from interacting with other proteins during PEF processing. Blocking the free sulphydryl by N-ethylmaleimide (NEM) did not affect aggregation inhibition. PMID:25577059

  13. Photochemically induced emission tuning of conductive polumers used in OLEDs

    NASA Astrophysics Data System (ADS)

    Vasilopoulou, M.; Pistolis, G.; Argitis, P.

    2005-01-01

    The present work focuses on the use of novel patterning technology schemes for the fabrication of OLED-based displays and in particular on the definition of two colour emitting pixels in one polymeric conducting layer. The approach adopted to this end is based on photochemically induced emition tuning. On the basis of this approach a novel photolithographic patterning technique was developed, aiming at the considerable simplification of the display fabrication process and on the performance improvement. We prepared electroluminescent devices that are emitting blue colour (λmax = 413 nm) with a turnon voltage about 12-15 V. In other devices we introduce a dispersed dye (1-[4-(dimethylamino)phenyl]-6-phenylhexatriene) and a series of photoacid generators (onium salts) in the polymeric layer and, by using an appropriate photochemical transformation through a photomask in a single layer, we were able to change the colour to desirable direction, since the parent compound and its photochemical product have distinguishable luminescence spectra (green and blue colour respectively). We were able to produce two of the three primary colours in a single layer of a conductive polymer by using a photochemical transformation based on photoacid induced emission change. A series of photoacid generators were evaluated.

  14. Real-Time Monitoring of Heat-Induced Aggregation of β-Lactoglobulin in Aqueous Solutions Using High-Resolution Ultrasonic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ochenduszko, Agnieszka; Buckin, Vitaly

    2010-01-01

    High-resolution ultrasonic spectroscopy was applied for real-time monitoring of the heat-induced denaturation and aggregation processes in aqueous solutions of β-lactoglobulin. The temperature profiles for the ultrasonic velocity and attenuation in the frequency range from 4MHz to 16MHz were measured during heating and cooling cycles, 35°C to 120°C to 35°C, with different heating and cooling rates. Two processes were identified in the heating profiles: transition to the molten globular state followed by formation of protein aggregates. Both processes are accompanied by a decrease in the ultrasonic velocity and an increase in compressibility. The ultrasonic attenuation did not show a significant change during the transition to the molten globule but increased significantly during aggregation. The diameter of the aggregates (calculated from ultrasonic attenuation) was of the order of 100nm and depended on the pH and the heating rate. Variation of pH from 6.0 to 7.5 had a pronounced effect on the size of protein aggregates. Some effect of pH on the intrinsic properties of aggregates was also detected.

  15. Formation of cofilin-actin rods following cucurbitacin-B-induced actin aggregation depends on Slingshot homolog 1-mediated cofilin hyperactivation.

    PubMed

    Zhang, Yan-Ting; Ouyang, Dong-Yun; Xu, Li-Hui; Zha, Qing-Bing; He, Xian-Hui

    2013-10-01

    Accumulating evidence indicates that cucurbitacin B (CuB), as well as other cucurbitacins, damages the actin cytoskeleton in a variety of cell types. However, the underlying mechanism of such an effect is not well understood. In this study, we showed that CuB rapidly induced actin aggregation followed by actin rod formation in melanoma cells. Cofilin, a critical regulator of actin dynamics, was dramatically dephosphorylated (i.e., activated) upon CuB treatment. Notably, the activated cofilin subsequently formed rod-like aggregates, which were highly colocalized with actin rods, indicating the formation of cofilin-actin rods. Cofilin knockdown significantly suppressed rod formation but did not prevent actin aggregation. Furthermore, knockdown of the cofilin phosphatase Slingshot homolog 1 (SSH1), but not chronophin (CIN), alleviated CuB-induced cofilin hyperactivation and cofilin-actin rod formation. The activity of Rho kinase and LIM kinase, two upstream regulators of cofilin activation, was downregulated after cofilin hyperactivation. Pretreatment with a thiol-containing reactive oxygen species (ROS) scavenger N-acetyl cysteine, but not other ROS inhibitors without thiol groups, suppressed CuB-induced actin aggregation, cofilin hyperactivation and cofilin-actin rod formation, suggesting that thiol oxidation might be involved in these processes. Taken together, our results demonstrated that CuB-induced formation of cofilin-actin rods was mediated by SSH1-dependent but CIN-independent cofilin hyperactivation. PMID:23695982

  16. Interactions of Divalent and Trivalent Metal Counterions with Anionic Sulfonate Gemini Surfactant and Induced Aggregate Transitions in Aqueous Solution.

    PubMed

    Liu, Zhang; Cao, Meiwen; Chen, Yao; Fan, Yaxun; Wang, Dong; Xu, Hai; Wang, Yilin

    2016-05-01

    Interactions of multivalent metal counterions with anionic sulfonate gemini surfactant 1,3-bis(N-dodecyl-N-propanesulfonate sodium)-propane (C12C3C12(SO3)2) and the induced aggregate transitions in aqueous solution have been studied. Divalent metal ions Ca(2+), Mg(2+), Cu(2+), Zn(2+), Mn(2+), Co(2+), and Ni(2+) and trivalent metal ions Al(3+), Fe(3+), and Cr(3+) were chosen. The results indicate that the critical micelle concentration (CMC) of C12C3C12(SO3)2 is greatly reduced by the ions, and the aggregate morphologies of C12C3C12(SO3)2 are adjusted by changing the nature and molar ratio of the metal ions. These metal ions can be classified into four groups because the ions in each group have very similar interaction mechanisms with C12C3C12(SO3)2: (I) Cu(2+) and Zn(2+); (II) Ca(2+), Mn(2+) and Mg(2+); (III) Ni(2+) and Co(2+); and (IV) Cr(3+), Al(3+) and Fe(3+). Cu(2+), Mg(2+), Ni(2+), and Al(3+) then were selected as representatives for each group to further study their interaction with C12C3C12(SO3)2. C12C3C12(SO3)2 interacts with the multivalent metal ions by electrostatic interaction and coordination interaction. C12C3C12(SO3)2 forms prolate micelles and plate-like micelles with Cu(2+), vesicles and wormlike micelles with Al(3+) or Ni(2+), and viscous three-dimensional network structure with Mg(2+). Moreover, precipitation does not take place in aqueous solution even at a high ion/surfactant ratio. The related mechanisms have been discussed. The present work provides guidance on how to apply the anionic surfactant into the solutions containing the multivalent metal ions, and those aggregates may have potential usage in separating heavy metal ions from aqueous solutions. PMID:27096262

  17. Hexanol-induced order-disorder transitions in lamellar self-assembling aggregates of bacteriochlorophyll c in Chlorobium tepidum chlorosomes.

    PubMed

    Arellano, Juan B; Torkkeli, Mika; Tuma, Roman; Laurinmäki, Pasi; Melø, Thor B; Ikonen, Teemu P; Butcher, Sarah J; Serimaa, Ritva E; Psencík, Jakub

    2008-03-01

    Chlorosomes are light-harvesting complexes of green photosynthetic bacteria. Chlorosomes contain bacteriochlorophyll (BChl) c, d, or e aggregates that exhibit strong excitonic coupling. The short-range order, which is responsible for the coupling, has been proposed to be augmented by pigment arrangement into undulated lamellar structures with spacing between 2 and 3 nm. Treatment of chlorosomes with hexanol reversibly converts the aggregated chlorosome chlorophylls into a form with spectral properties very similar to that of the monomer. Although this transition has been extensively studied, the structural basis remains unclear due to variability in the obtained morphologies. Here we investigated hexanol-induced structural changes in the lamellar organization of BChl c in chlorosomes from Chlorobium tepidum by a combination of X-ray scattering, electron cryomicroscopy, and optical spectroscopy. At a low hexanol/pigment ratio, the lamellae persisted in the presence of hexanol while the short-range order and exciton interactions between chlorin rings were effectively eliminated, producing a monomer-like absorption. The result suggested that hexanol hydroxyls solvated the chlorin rings while the aliphatic tail partitioned into the hydrophobic part of the lamellar structure. This partitioning extended the chlorosome along its long axis. Further increase of the hexanol/pigment ratio produced round pigment-hexanol droplets, which lost all lamellar order. After hexanol removal the spectral properties were restored. In the samples treated under the high hexanol/pigment ratio, lamellae reassembled in small domains after hexanol removal while the shape and long-range order were irreversibly lost. Thus, all the interactions required for establishing the short-range order by self-assembly are provided by BChl c molecules alone. However, the long-range order and overall shape are imposed by an external structure, e.g., the proteinaceous chlorosome baseplate. PMID:18197717

  18. Alpha-synuclein aggregation induced by brief ischemia negatively impacts neuronal survival in vivo: a study in [A30P]alpha-synuclein transgenic mouse.

    PubMed

    Unal-Cevik, Isin; Gursoy-Ozdemir, Yasemin; Yemisci, Muge; Lule, Sevda; Gurer, Gunfer; Can, Alp; Müller, Veronica; Kahle, Philip J; Dalkara, Turgay

    2011-03-01

    Alpha-synuclein oligomerization and aggregation are considered to have a role in the pathogenesis of neurodegenerative diseases. However, despite numerous in vitro studies, the impact of aggregates in the intact brain is unclear. In vitro, oxidative/nitrative stress and acidity induce α-synuclein oligomerization. These conditions favoring α-synuclein fibrillization are present in the ischemic brain, which may serve as an in vivo model to study α-synuclein aggregation. In this study, we show that 30-minute proximal middle cerebral artery (MCA) occlusion and 72 hours reperfusion induce oligomerization of wild-type α-synuclein in the ischemic mouse brain. The nonamyloidogenic isoform β-synuclein did not form oligomers. Alpha-synuclein aggregates were confined to neurons and colocalized with ubiquitin immunoreactivity. We also found that 30 minutes proximal MCA occlusion and 24 hours reperfusion induced larger infarcts in C57BL/6(Thy1)-h[A30P]alphaSYN transgenic mice, which have an increased tendency to form synuclein fibrils. Trangenics also developed more selective neuronal necrosis when subjected to 20 minutes distal MCA occlusion and 72 hours reperfusion. Enhanced 3-nitrotyrosine immunoreactivity in transgenic mice suggests that oxidative/nitrative stress may be one of the mechanisms mediating aggregate toxicity. Thus, the increased vulnerability of transgenic mice to ischemia suggests that α-synuclein aggregates not only form during ischemia but also negatively impact neuronal survival, supporting the idea that α-synuclein misfolding may be neurotoxic. PMID:20877387

  19. Alpha-synuclein aggregation induced by brief ischemia negatively impacts neuronal survival in vivo: a study in [A30P]alpha-synuclein transgenic mouse

    PubMed Central

    Unal-Cevik, Isin; Gursoy-Ozdemir, Yasemin; Yemisci, Muge; Lule, Sevda; Gurer, Gunfer; Can, Alp; Müller, Veronica; Kahle, Philip J; Dalkara, Turgay

    2011-01-01

    Alpha-synuclein oligomerization and aggregation are considered to have a role in the pathogenesis of neurodegenerative diseases. However, despite numerous in vitro studies, the impact of aggregates in the intact brain is unclear. In vitro, oxidative/nitrative stress and acidity induce α-synuclein oligomerization. These conditions favoring α-synuclein fibrillization are present in the ischemic brain, which may serve as an in vivo model to study α-synuclein aggregation. In this study, we show that 30-minute proximal middle cerebral artery (MCA) occlusion and 72 hours reperfusion induce oligomerization of wild-type α-synuclein in the ischemic mouse brain. The nonamyloidogenic isoform β-synuclein did not form oligomers. Alpha-synuclein aggregates were confined to neurons and colocalized with ubiquitin immunoreactivity. We also found that 30 minutes proximal MCA occlusion and 24 hours reperfusion induced larger infarcts in C57BL/6(Thy1)-h[A30P]alphaSYN transgenic mice, which have an increased tendency to form synuclein fibrils. Trangenics also developed more selective neuronal necrosis when subjected to 20 minutes distal MCA occlusion and 72 hours reperfusion. Enhanced 3-nitrotyrosine immunoreactivity in transgenic mice suggests that oxidative/nitrative stress may be one of the mechanisms mediating aggregate toxicity. Thus, the increased vulnerability of transgenic mice to ischemia suggests that α-synuclein aggregates not only form during ischemia but also negatively impact neuronal survival, supporting the idea that α-synuclein misfolding may be neurotoxic. PMID:20877387

  20. Laser-induced breakdown emission in hydrocarbon fuel mixtures

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kazunobu; Bak, Moon Soo; Tanaka, Hiroki; Carter, Campbell; Do, Hyungrok

    2016-04-01

    Time-resolved emission measurements of laser-induced breakdown plasmas have been carried out to investigate the effect that gas species might have on the kinetics, particularly in excited states, and the resulting plasma properties. For this purpose, fuel-oxygen (O2)-carbon dioxide (CO2) mixtures with either helium (He) or nitrogen (N2) balance are prepared while maintaining their atomic compositions. The fuels tested in this study are methane (CH4), ethylene (C2H4), propane (C3H8), and butane (C4H10). The breakdown is produced in the mixtures (CH4/CO2/O2/He, C2H4/O2/He, C3H8/CO2/O2/He and C4H10/CO2/O2/He or CH4/CO2/O2/N2, C2H4/O2/N2, C3H8/CO2/O2/N2 and C4H10/CO2/O2/N2) at room conditions using the second harmonic of a Q-switched Nd:YAG laser (with pulse duration of 10 ns). The temporal evolution of plasma temperature is deduced from the ratio of two oxygen lines (777 nm and 823 nm) through Boltzmann analysis, while the evolution of electron number density is estimated based on Stark broadening of the Balmer-alpha (H α ) line at 656 nm and the measured plasma temperature. From the results, the temporal evolution of emission spectra and decay rates of atomic line-intensities are found to be almost identical between the breakdown plasma in the different mixtures given balancing gases. Furthermore, the temporal evolution of plasma temperature and electron number density are also found to be independent of the species compositions. Therefore, this behavior—of the breakdown emissions and plasma properties in the different mixtures with identical atomic composition—may be because the breakdown gases reach similar thermodynamic and physiochemical states immediately after the breakdown.

  1. Individual aggregates of amyloid beta induce temporary calcium influx through the cell membrane of neuronal cells.

    PubMed

    Drews, Anna; Flint, Jennie; Shivji, Nadia; Jönsson, Peter; Wirthensohn, David; De Genst, Erwin; Vincke, Cécile; Muyldermans, Serge; Dobson, Chris; Klenerman, David

    2016-01-01

    Local delivery of amyloid beta oligomers from the tip of a nanopipette, controlled over the cell surface, has been used to deliver physiological picomolar oligomer concentrations to primary astrocytes or neurons. Calcium influx was observed when as few as 2000 oligomers were delivered to the cell surface. When the dosing of oligomers was stopped the intracellular calcium returned to basal levels or below. Calcium influx was prevented by the presence in the pipette of the extracellular chaperone clusterin, which is known to selectively bind oligomers, and by the presence a specific nanobody to amyloid beta. These data are consistent with individual oligomers larger than trimers inducing calcium entry as they cross the cell membrane, a result supported by imaging experiments in bilayers, and suggest that the initial molecular event that leads to neuronal damage does not involve any cellular receptors, in contrast to work performed at much higher oligomer concentrations. PMID:27553885

  2. Individual aggregates of amyloid beta induce temporary calcium influx through the cell membrane of neuronal cells

    PubMed Central

    Drews, Anna; Flint, Jennie; Shivji, Nadia; Jönsson, Peter; Wirthensohn, David; De Genst, Erwin; Vincke, Cécile; Muyldermans, Serge; Dobson, Chris; Klenerman, David

    2016-01-01

    Local delivery of amyloid beta oligomers from the tip of a nanopipette, controlled over the cell surface, has been used to deliver physiological picomolar oligomer concentrations to primary astrocytes or neurons. Calcium influx was observed when as few as 2000 oligomers were delivered to the cell surface. When the dosing of oligomers was stopped the intracellular calcium returned to basal levels or below. Calcium influx was prevented by the presence in the pipette of the extracellular chaperone clusterin, which is known to selectively bind oligomers, and by the presence a specific nanobody to amyloid beta. These data are consistent with individual oligomers larger than trimers inducing calcium entry as they cross the cell membrane, a result supported by imaging experiments in bilayers, and suggest that the initial molecular event that leads to neuronal damage does not involve any cellular receptors, in contrast to work performed at much higher oligomer concentrations. PMID:27553885

  3. Fertilizer-induced emission factors and background emissions of N 2 O from vegetable fields in China

    NASA Astrophysics Data System (ADS)

    Wang, Jinyang; Xiong, Zhengqin; Yan, Xiaoyuan

    2011-12-01

    The estimation of nitrous oxide (N 2O) emissions based on specific cropping systems is important for accurate national N 2O budgets. Intensively managed vegetable cultivation is responsible for large N 2O emissions in mainland China. However, little information can be obtained on the nationwide estimation of direct N 2O emissions from vegetable fields. Estimates of fertilizer-induced direct N 2O emissions from vegetable fields in mainland China were thus obtained by compiling and analyzing reported data in peer-reviewed journals and research reports. The results indicated that the seasonal N 2O emissions from vegetable fields significantly increased with nitrogen (N) fertilizer application ( p < 0.0001). According to the ordinary least squares (OLS) model, the fertilizer-induced emission factor (EF) and background emissions of N 2O were estimated to be 0.55 ± 0.05% and 1.067 ± 0.277 kg N ha -1 yr -1, respectively. The EF was reduced and the background emission of N 2O increased when the measurement duration was prolonged from ≤100 d to >100 and ≤200 d. Comparable results were obtained by the maximum likelihood (ML) model, with an EF of 0.49 ± 0.06% and background N 2O emissions of 1.228 ± 0.189 kg N ha -1 yr -1. Based on the OLS-derived parameters, the fertilizer-induced direct emissions and background emissions of N 2O were estimated to be 66.95 Gg N and 19.63 Gg N, respectively, in 2009, and the annual N 2O emissions were much higher in the provinces of Shandong, Henan, Hebei and Sichuan. The estimated N 2O emissions from vegetable fields accounted for 21.4% of the total direct N 2O emissions from Chinese croplands, with large uncertainties. Therefore, the EF and background emissions of N 2O for each cropping system, particularly for intensively managed vegetable fields, should be specifically determined for accurate national N 2O inventories.

  4. Bone metabolism induced by denture insertion in positron emission tomography.

    PubMed

    Suenaga, H; Chen, J; Yamaguchi, K; Sugazaki, M; Li, W; Swain, M; Li, Q; Sasaki, K

    2016-03-01

    18F-fluoride positron emission tomogra-phy (PET) can identify subtle functional variation prior to the major structural change detectable by X-ray. This study aims to investigate the mechanobiological bone reaction around the abutment tooth and in the residual ridge, induced by insertion of removable partial denture (RPD) within two different groups of patients: patients without denture experience (Group 1) and patients with denture experience before (Group 2), using 18F-fluoride PET imaging technique. 18F-fluoride PET/computerised tomography (CT) scan was performed to examine the bone metabolic change in mandible before and after the RPD treatment. Region of interests (ROIs) were placed in alveolar bone around abutment tooth and in residual bone beneath the RPD. Standardised uptake value (SUV), reflecting the accumulation of 18F-fluoride, was measured for each ROI. In all subjects of Group 1, SUVs after insertion were higher than before in both alveolar bone and residual bone, while there was less significant change in SUV in subjects of Group 2. This study demonstrated using longitudinal 18F-fluoride PET scans to effectively examine the bone metabolic change in mandible induced by occlusal loading after RPD insertion. Using this technique, within the six subjects in this study, it was shown that bone metabolism around abutment tooth and residual ridge increased after RPD insertion in case of first-time denture user, while there was no big change in the patient with experience of denture before. This study revealed the effectiveness of applying PET to evaluate bone metabolic activity as mechanobiolo-gical reaction. PMID:26431672

  5. Plasma-induced field emission study of carbon nanotube cathode

    NASA Astrophysics Data System (ADS)

    Shen, Yi; Xia, Liansheng; Zhang, Huang; Liu, Xingguang; Yang, Anmin; Shi, Jinshui; Zhang, Linwen; Liao, Qingliang; Zhang, Yue

    2011-10-01

    An investigation on the plasma-induced field emission (PFE) properties of a large area carbon nanotube (CNT) cathode on a 2 MeV linear induction accelerator injector is presented. Experimental results show that the cathode is able to emit intense electron beams. Intense electron beams of 14.9-127.8A/cm2 are obtained from the cathode. The CNT cathode desorbs gases from the CNTs during the PFE process. The fast cathode plasma expansion affects the diode perveance. The amount of outgassing is estimated to be 0.06-0.49Pa·L, and the ratio of outgassing and electron are roughly calculated to be within the range of 170-350 atoms per electron. The effect of the outgassing is analyzed, and the outgassing mass spectrum of the CNT cathode has been studied during the PFE. There is a significant desorption of CO2, N2(CO), and H2 gases, which plays an important role during the PFE process. All the experiments demonstrate that the outgassing plays an important role in the formation of the cathode plasma. Moreover, the characteristic turn-on time of the CNT cathode was measured to be 39 ns.

  6. Defect-induced emission band in CdTe

    NASA Astrophysics Data System (ADS)

    Seto, S.; Tanaka, A.; Takeda, F.; Matsuura, K.

    1994-04-01

    We report on a distinct correlation between the 1.47 eV emission band and the dislocation density in bulk CdTe. The 1.47 eV band intensifies around the high-dislocation area (lineage structure) and at the position just on dislocation bundle. On the other hand, the 1.47 eV band was hardly observed in the low-dislocation area (etch pit density less than 2 × 10 5 cm -2) or at the position away from the dislocation bundle. Furthermore, the 1.47 eV band was intensified by γ-ray irradiation of 1.7 × 10 7 Gy, which produced a great number of Frenkel defects. It was shown that the 1.47 eV band is related not only to an extended defect such as a dislocation, but also to a point defect such as a Frenkel defect. These results suggest that the strain field induced in the vicinity of the defects is responsible for the recombination center of the 1.47 eV band.

  7. Aggregation of Trp > Glu point mutants of human gamma-D crystallin provides a model for hereditary or UV-induced cataract.

    PubMed

    Serebryany, Eugene; Takata, Takumi; Erickson, Erika; Schafheimer, Nathaniel; Wang, Yongting; King, Jonathan A

    2016-06-01

    Numerous mutations and covalent modifications of the highly abundant, long-lived crystallins of the eye lens cause their aggregation leading to progressive opacification of the lens, cataract. The nature and biochemical mechanisms of the aggregation process are poorly understood, as neither amyloid nor native-state polymers are commonly found in opaque lenses. The βγ-crystallin fold contains four highly conserved buried tryptophans, which can be oxidized to more hydrophilic products, such as kynurenine, upon UV-B irradiation. We mimicked this class of oxidative damage using Trp→Glu point mutants of human γD-crystallin. Such substitutions may represent a model of UV-induced photodamage-introduction of a charged group into the hydrophobic core generating "denaturation from within." The effects of Trp→Glu substitutions were highly position dependent. While each was destabilizing, only the two located in the bottom of the double Greek key fold-W42E and W130E-yielded robust aggregation of partially unfolded intermediates at 37°C and pH 7. The αB-crystallin chaperone suppressed aggregation of W130E, but not W42E, indicating distinct aggregation pathways from damage in the N-terminal vs C-terminal domain. The W130E aggregates had loosely fibrillar morphology, yet were nonamyloid, noncovalent, showed little surface hydrophobicity, and formed at least 20°C below the melting temperature of the native β-sheets. These features are most consistent with domain-swapped polymerization. Aggregation of partially destabilized crystallins under physiological conditions, as occurs in this class of point mutants, could provide a simple in vitro model system for drug discovery and optimization. PMID:26991007

  8. Purine twisted-intercalating nucleic acids: a new class of anti-gene molecules resistant to potassium-induced aggregation.

    PubMed

    Paramasivam, Manikandan; Cogoi, Susanna; Filichev, Vyacheslav V; Bomholt, Niels; Pedersen, Erik B; Xodo, Luigi E

    2008-06-01

    Sequence-specific targeting of genomic DNA by triplex-forming oligonucleotides (TFOs) is a promising strategy to modulate in vivo gene expression. Triplex formation involving G-rich oligonucleotides as third strand is, however, strongly inhibited by potassium-induced TFO self-association into G-quartet structures. We report here that G-rich TFOs with bulge insertions of (R)-1-O-[4-(1-pyrenylethynyl)-phenylmethyl] glycerol (called twisted intercalating nucleic acids, TINA) show a much lower tendency to aggregate in potassium than wild-type analogues do. We designed purine-motif TINA-TFOs for binding to a regulatory polypurine-polypyrimidine (pur/pyr) motif present in the promoter of the KRAS proto-oncogene. The binding of TINA-TFOs to the KRAS target has been analysed by electrophoresis mobility shift assays and DNase I footprinting experiments. We discovered that in the presence of potassium the wild-type TFOs did not bind to the KRAS target, differently from the TINA analogues, whose binding was observed up to 140 mM KCl. The designed TINA-TFOs were found to abrogate the formation of a DNA-protein complex at the pur/pyr site and to down-regulate the transcription of CAT driven by the murine KRAS promoter. Molecular modelling of the DNA/TINA-TFO triplexes are also reported. This study provides a new and promising approach to create TFOs to target in vivo the genome. PMID:18456705

  9. A preconcentration method for analysis of neonicotinoids in honey samples by ionic liquid-based cold-induced aggregation microextraction.

    PubMed

    Vichapong, Jitlada; Burakham, Rodjana; Santaladchaiyakit, Yanawath; Srijaranai, Supalax

    2016-08-01

    A preconcentration approach based on ionic liquid-based cold-induced aggregation microextraction for determination of neonicotinoid insecticide residues in honey samples before high-performance liquid chromatographic analysis has been developed. Room temperature ionic liquid [C4MIM][PF6] (extraction solvent) and SDS (emulsifier) was used for extraction of the target analytes. The parameters affecting the extraction efficiency were optimized. The optimum microextraction conditions were 200µL room temperature ionic liquids [C4MIM][PF6] containing 0.05molL(-1) SDS, 0.75g sodium carbonate, vortex agitation speed of 1800rpm for 30s and centrifugation at 3500rpm for 10min. Under optimum conditions, the high enrichment factors of 200 could be obtained, leading to low limit of detection (0.01µgL(-1) for all analytes) with the relative standard deviations lower than 2.68% and 5.38% for retention time and peak area, respectively. Good recoveries for the spiked target neonicotinoids at three different concentrations of honey samples were obtained in 86-100% and relative standard deviations were lower than 8.1%. The results demonstrated that the proposed method can be used as an alternative powerful method for the simultaneous determination of the studied insecticides in real honey samples. PMID:27216676

  10. Degradation and aggregation of delta sleep-inducing peptide (DSIP) and two analogs in plasma and serum

    SciTech Connect

    Graf, M.V.; Saegesser, B.; Schoenenberger, G.A.

    1987-07-01

    The biostability of DSIP (delta sleep-inducing peptide) and two analogs in blood was investigated in order to determine if rates of inactivation contribute to variable effects in vivo. Incubation of DSIP in human or rat blood led to release of products having retention times on a gel filtration column equivalent to Trp. Formation of products was dependent on temperature, time, and species. Incubation of /sup 125/I-N-Tyr-DSIP and /sup 125/I-N-Tyr-P-DSIP, a phosphorylated analog, revealed slower degradation and, in contrast to DSIP, produced complex formation. An excess of unlabeled material did not displace the radioactivity supporting the assumption of non-specific binding/aggregation. It was concluded that the rapid disappearance of injected DSIP in blood was due to degradation, whereas complex formation together with slower degradation resulted in longer persistence of apparently intact analogs. Whether this could explain the sometimes stronger and more consistent effects of DSIP-analogs remains to be examined.

  11. Aggregation-Induced FRET via Polymer-Surfactant Complexation: A New Strategy for the Detection of Spermine.

    PubMed

    Malik, Akhtar Hussain; Hussain, Sameer; Iyer, Parameswar Krishnan

    2016-07-19

    A new water-soluble cationic conjugated polymer [9,9-bis(6'-methyl imidazolium bromide)hexyl)fluorene-co-4,7-(2,1,3-benzothiadiazole)] (PFBT-MI) was designed and synthesized via Suzuki cross-coupling polymerization in good yields without any tedious purification steps. PFBT-MI showed excellent photophysical responses toward SDS and SDBS with a detection limit of 0.12 μM/(34 ppb) and 0.13 μM/(45 ppb), respectively. Furthermore, occurrence of FRET from the donor (fluorene) to acceptor (BT units), via surfactant-induced aggregation, results in naked-eye detection of these common anionic surfactants (SDS/SDBS) as the color changes from blue to yellowish green in aqueous solution. The polymer-surfactant nanoaggregates thus formed via electrostatic as well as hydrophobic interactions have been explored for the sensitive detection of spermine (considered as an excellent biomarker for early cancer diagnosis) with a detection limit of 66 ppb (0.33 μM), which is much below the range 1-10 μM pertinent for the early diagnosis of cancer in urinary samples. This highly sensitive technique would facilitate the direct and noninvasive detection of spermine from urine rapidly and is likely to have great significance in early cancer diagnosis. PMID:27322621

  12. Hybridization-Induced Aggregation Technology for Practical Clinical Testing: KRAS Mutation Detection in Lung and Colorectal Tumors.

    PubMed

    Sloane, Hillary S; Landers, James P; Kelly, Kimberly A

    2016-07-01

    KRAS mutations have emerged as powerful predictors of response to targeted therapies in the treatment of lung and colorectal cancers; thus, prospective KRAS genotyping is essential for appropriate treatment stratification. Conventional mutation testing technologies are not ideal for routine clinical screening, as they often involve complex, time-consuming processes and/or costly instrumentation. In response, we recently introduced a unique analytical strategy for revealing KRAS mutations, based on the allele-specific hybridization-induced aggregation (HIA) of oligonucleotide probe-conjugated microbeads. Using simple, inexpensive instrumentation, this approach allows for the detection of any common KRAS mutation in <10 minutes after PCR. Here, we evaluate the clinical utility of the HIA method for mutation detection (HIAMD). In the analysis of 20 lung and colon tumor pathology specimens, we observed a 100% correlation between the KRAS mutation statuses determined by HIAMD and sequencing. In addition, we were able to detect KRAS mutations in a background of 75% wild-type DNA-a finding consistent with that reported for sequencing. With this, we show that HIAMD allows for the rapid and cost-effective detection of KRAS mutations, without compromising analytical performance. These results indicate the validity of HIAMD as a mutation-testing technology suitable for practical clinical testing. Further expansion of this platform may involve the detection of mutations in other key oncogenic pathways. PMID:27289420

  13. Molecular level insights into thermally induced α-chymotrypsinogen A amyloid aggregation mechanism and semiflexible protofibril morphology.

    PubMed

    Zhang, Aming; Jordan, Jacob L; Ivanova, Magdalena I; Weiss, William F; Roberts, Christopher J; Fernandez, Erik J

    2010-12-14

    Understanding nonnative protein aggregation is critical not only to a number of amyloidosis disorders but also for the development of effective and safe biopharmaceuticals. In a series of previous studies [Weiss et al. (2007) Biophys. J. 93, 4392-4403; Andrews et al. (2007) Biochemistry 46, 7558-7571; Andrews et al. (2008) Biochemistry 47, 2397-2403], α-chymotrypsinogen A (aCgn) and bovine granulocyte colony stimulating factor (bG-CSF) have been shown to exhibit the kinetic and morphological features of other nonnative aggregating proteins at low pH and ionic strength. In this study, we investigated the structural mechanism of aCgn aggregation. The resultant aCgn aggregates were found to be soluble and exhibited semiflexible filamentous aggregate morphology under transmission electron microscopy. In addition, the filamentous aggregates were demonstrated to possess amyloid characteristics by both Congo red binding and X-ray diffraction. Peptide level hydrogen exchange (HX) analysis suggested that a buried native β-sheet comprised of three peptide segments (39-46, 51-64, and 106-114) reorganizes into the cross-β amyloid core of aCgn aggregates and that at least ∼50% of the sequence adopts a disordered structure in the aggregates. Furthermore, the equimolar, bimodal HX labeling distribution observed for three reported peptides (65-102, 160-180, and 229-245) suggested a heterogeneous assembly of two molecular conformations in aCgn aggregates. This demonstrates that extended β-sheet interactions typical of the amyloid are sufficiently strong that a relatively small fraction of polypeptide sequence can drive formation of filamentous aggregates even under conditions favoring colloidal stability. PMID:21067192

  14. Molecular Level Insights into Thermally Induced [alpha]-Chymotrypsinogen A Amyloid Aggregation Mechanism and Semiflexible Protofibril Morphology

    SciTech Connect

    Zhang, Aming; Jordan, Jacob L.; Ivanova, Magdalena I.; Weiss, IV., William F.; Roberts, Christopher J.; Fernandez, Erik J.

    2010-12-07

    Understanding nonnative protein aggregation is critical not only to a number of amyloidosis disorders but also for the development of effective and safe biopharmaceuticals. In a series of previous studies [Weiss et al. (2007) Biophys. J. 93, 4392-4403; Andrews et al. (2007) Biochemistry 46, 7558-7571; Andrews et al. (2008) Biochemistry 47, 2397-2403], {alpha}-chymotrypsinogen A (aCgn) and bovine granulocyte colony stimulating factor (bG-CSF) have been shown to exhibit the kinetic and morphological features of other nonnative aggregating proteins at low pH and ionic strength. In this study, we investigated the structural mechanism of aCgn aggregation. The resultant aCgn aggregates were found to be soluble and exhibited semiflexible filamentous aggregate morphology under transmission electron microscopy. In addition, the filamentous aggregates were demonstrated to possess amyloid characteristics by both Congo red binding and X-ray diffraction. Peptide level hydrogen exchange (HX) analysis suggested that a buried native {beta}-sheet comprised of three peptide segments (39-46, 51-64, and 106-114) reorganizes into the cross-{beta} amyloid core of aCgn aggregates and that at least 50% of the sequence adopts a disordered structure in the aggregates. Furthermore, the equimolar, bimodal HX labeling distribution observed for three reported peptides (65-102, 160-180, and 229-245) suggested a heterogeneous assembly of two molecular conformations in aCgn aggregates. This demonstrates that extended {beta}-sheet interactions typical of the amyloid are sufficiently strong that a relatively small fraction of polypeptide sequence can drive formation of filamentous aggregates even under conditions favoring colloidal stability.

  15. 1,4-Benzenediboronic-Acid-Induced Aggregation of Gold Nanoparticles: Application to Hydrogen Peroxide Detection and Biotin-Avidin-Mediated Immunoassay with Naked-Eye Detection.

    PubMed

    Yang, Ya-Chun; Tseng, Wei-Lung

    2016-05-17

    Hydrogen-peroxide (H2O2)-induced growth of small-sized gold nanoparticles (AuNPs) is often implemented for H2O2 sensing and plasmonic immunoassay. In contrast, there is little-to-no information in the literature regarding the application of H2O2-inhibited aggregation of citrate-capped AuNPs. This study discloses that benzene-1,4-diboronic acid (BDBA) was effective in driving the aggregation of citrate-capped AuNPs through an interaction between α-hydroxycarboxylate of citrate and boronic acids of BDBA. The H2O2-mediated oxidation of BDBA resulted in the conversion of boronic acid groups to phenol groups. The oxidized BDBA was incapable of triggering the aggregation of citrate-capped AuNPs. Thus, the presence of H2O2 prohibited BDBA-induced aggregation of citrate-capped AuNPs. The BDBA-induced aggregation of citrate-capped AuNPs can be paired with the glucose oxidase (GOx)-glucose system to design a colorimetric probe for glucose. Moreover, a H2O2·BDBA·AuNP probe was integrated with sandwich immunoassay, biotinylated antibody, and avidin-conjugated GOx for the selective naked-eye detection of rabbit immunoglobulin G (IgG) and human-prostate-specific antigen (PSA). The lowest detectable concentrations of rabbit IgG and human PSA by the naked eye were down to 0.1 and 4 ng/mL, respectively. More importantly, the proposed plasmonic immunoassay allowed the naked-eye quantification of 0-10 ng/mL PSA at an interval of 2 ng/mL in plasma samples. PMID:27091002

  16. Construction aggregates

    USGS Publications Warehouse

    Tepordei, V.V.

    1995-01-01

    Part of the 1994 Industrial Minerals Review. The production, consumption, and applications of construction aggregates are reviewed. In 1994, the production of construction aggregates, which includes crushed stone and construction sand and gravel combined, increased 7.7 percent to 2.14 Gt compared with the previous year. These record production levels are mostly a result of funding for highway construction work provided by the Intermodal Surface Transportation Efficiency Act of 1991. Demand is expected to increase for construction aggregates in 1995.

  17. Intriguing emission properties of triphenylamine-carborane systems.

    PubMed

    Kim, So-Yoen; Cho, Yang-Jin; Jin, Guo Fan; Han, Won-Sik; Son, Ho-Jin; Cho, Dae Won; Kang, Sang Ook

    2015-06-28

    Electron donor-acceptor (D-A) systems with a triphenylamino moiety (D) and ortho-carborane (A) show three kinds of intriguing emissions that can be attributed to the local excited state, the intramolecular charge-transfer state, and the aggregation-induced emission state. The emission behaviors depend on which positions of the carborane are substituted. PMID:26013604

  18. In Vitro Spectrophotometry of Tooth Discoloration Induced by Tooth-Colored Mineral Trioxide Aggregate and Calcium-Enriched Mixture Cement

    PubMed Central

    Arman, Marjan; Khalilak, Zohreh; Rajabi, Moones; Esnaashari, Ehsan; Saati, Keyvan

    2015-01-01

    Introduction: There are numerous factors that can lead to tooth discoloration after endodontic treatment, such as penetration of endodontic materials into the dentinal tubules during root canal treatment. The aim of this in vitro study was to compare discoloration induced by tooth colored mineral trioxide aggregate (MTA) and calcium-enriched mixture (CEM) cement in extracted human teeth. Methods and Materials: Thirty two dentin-enamel cuboid blocks (7×7×2 mm) were prepared from extracted maxillary central incisors. Standardized cavities were prepared in the middle of each cube, leaving 1 mm of enamel and dentin on the labial surface. The specimens were randomly divided into two study groups (n=12) and two positive and negative control groups (n=4). In either study groups the cavities were filled with MTA or CEM cement. The positive and negative control groups were filled with blood or left empty, respectively. The cavities were sealed with composite resin and stored in normal saline. Color measurement was carried out by spectrophotometry at different time intervals including before (T0), and 1 week (T1), 1 month (T2) and 6 months (T3) after placement of materials. Repeated-measures ANOVA was used to compare the discoloration between the groups; the material type was considered as the inter-subject factor. The level of significance was set at 0.05. Results: No significant differences were detected between the groups in all time intervals (P>0.05). Conclusion: Tooth discoloration was similarly detectable with both of the two experimental materials. PMID:26576163

  19. Sustained Systemic Glucocerebrosidase Inhibition Induces Brain α-Synuclein Aggregation, Microglia and Complement C1q Activation in Mice

    PubMed Central

    Rocha, Emily M.; Smith, Gaynor A.; Park, Eric; Cao, Hongmei; Graham, Anne-Renee; Brown, Eilish; McLean, Jesse R.; Hayes, Melissa A.; Beagan, Jonathan; Izen, Sarah C.; Perez-Torres, Eduardo

    2015-01-01

    Abstract Aims: Loss-of-function mutations in GBA1, which cause the autosomal recessive lysosomal storage disease, Gaucher disease (GD), are also a key genetic risk factor for the α-synucleinopathies, including Parkinson's disease (PD) and dementia with Lewy bodies. GBA1 encodes for the lysosomal hydrolase glucocerebrosidase and reductions in this enzyme result in the accumulation of the glycolipid substrates glucosylceramide and glucosylsphingosine. Deficits in autophagy and lysosomal degradation pathways likely contribute to the pathological accumulation of α-synuclein in PD. In this report we used conduritol-β-epoxide (CBE), a potent selective irreversible competitive inhibitor of glucocerebrosidase, to model reduced glucocerebrosidase activity in vivo, and tested whether sustained glucocerebrosidase inhibition in mice could induce neuropathological abnormalities including α-synucleinopathy, and neurodegeneration. Results: Our data demonstrate that daily systemic CBE treatment over 28 days caused accumulation of insoluble α-synuclein aggregates in the substantia nigra, and altered levels of proteins involved in the autophagy lysosomal system. These neuropathological changes were paralleled by widespread neuroinflammation, upregulation of complement C1q, abnormalities in synaptic, axonal transport and cytoskeletal proteins, and neurodegeneration. Innovation: A reduction in brain GCase activity has been linked to sporadic PD and normal aging, and may contribute to the susceptibility of vulnerable neurons to degeneration. This report demonstrates that systemic reduction of GCase activity using chemical inhibition, leads to neuropathological changes in the brain reminiscent of α-synucleinopathy. Conclusions: These data reveal a link between reduced glucocerebrosidase and the development of α-synucleinopathy and pathophysiological abnormalities in mice, and support the development of GCase therapeutics to reduce α-synucleinopathy in PD and related disorders

  20. Coronal Discoloration Induced by Calcium-Enriched Mixture, Mineral Trioxide Aggregate and Calcium Hydroxide: A Spectrophotometric Analysis

    PubMed Central

    Esmaeili, Behnaz; Alaghehmand, Homayoun; Kordafshari, Tavoos; Daryakenari, Ghazaleh; Ehsani, Maryam; Bijani, Ali

    2016-01-01

    Introduction: The aim of this study was to compare the discoloration potential of calcium-enriched mixture (CEM) cement, white mineral trioxide aggregate (WMTA) and calcium hydroxide (CH), after placement in pulp chamber. Methods and Materials: Access cavities were prepared in 40 intact maxillary central incisors. Then, a 2×2 mm box was prepared on the middle third of the inner surface on the buccal wall of the access cavity. The specimens were randomly assigned into four groups; the boxes in the control group were left empty, in groups 1 to 3, the boxes were filled with CH, WMTA and CEM cement, respectively. The access cavities and the apical openings were sealed using resin modified glass ionomer (RMGI). The color measurement was performed with a spectrophotometer at the following intervals: before (T0), immediately after placement of the filling material (T1), one week (T2), 1 month (T3), 3 months (T4) and 5 months (T5) after filling of the box and finally immediately after removing the material from the boxes (T6). Color change (ΔE) values were calculated using the sample Kolmogorov-Smirnov test to determine the normal distribution of data, followed by ANOVA, repeated measured ANOVA and post-hoc Tukey’s tests. Results: All materials led to clinically perceptible crown discoloration after 1 week. The highest ΔE value belonged to WMTA group. Discoloration induced by CEM cement was not significantly different from CH or the control group (P>0.05). Conclusion: CEM cement may be the material of choice in the esthetic region, specifically pertaining to its lower color changing potential compared to WMTA. PMID:26843873

  1. Weighted aggregation

    NASA Technical Reports Server (NTRS)

    Feiveson, A. H. (Principal Investigator)

    1979-01-01

    The use of a weighted aggregation technique to improve the precision of the overall LACIE estimate is considered. The manner in which a weighted aggregation technique is implemented given a set of weights is described. The problem of variance estimation is discussed and the question of how to obtain the weights in an operational environment is addressed.

  2. Synchrotron-Radiation Induced X-Ray Emission (SRIXE)

    SciTech Connect

    Jones, Keith W.

    1999-09-01

    and increase in scientific use can be maintained for the synchrotron x-ray source. A short summary of the present state of the synchrotron radiation-induced x-ray emission (SRIXE) method is presented here. Basically, SRIXE experiments can include any that depend on the detection. of characteristic x-rays produced by the incident x-ray beam born the synchrotron source as they interact with a sample. Thus, experiments done to measure elemental composition, chemical state, crystal, structure, and other sample parameters can be considered in a discussion of SRIXE. It is also clear that the experimentalist may well wish to use a variety of complementary techniques for study of a given sample. For this reason, discussion of computed microtomography (CMT) and x-ray diffraction is included here. It is hoped that this present discussion will serve as a succinct introduction to the basic ideas of SRIXE for those not working in the field and possibly help to stimulate new types of work by those starting in the field as well as by experienced practitioners of the art. The topics covered include short descriptions of (1) the properties of synchrotron radiation, (2) a description of facilities used for its production, (3) collimated microprobe, (4) focused microprobes, (5) continuum and monoenergetic excitation, (6) detection limits, (7) quantitation, (8) applications of SRIXE, (9) computed microtomography (CMT), and (10)chemical speciation using x-ray absorption near-edge structure (XANES) and extended x-ray absorption fine structure (EXAFS). An effort has been made to cite a wide variety of work from different laboratories to show the vital nature of the field.

  3. Laser-induced light emission from carbon nanoparticles

    SciTech Connect

    Osswald, S.; Behler, K.; Gogotsi, Y.

    2008-10-01

    Strong absorption of light in a broad wavelength range and poor thermal conductance between particles of carbon nanomaterials, such as nanotubes, onions, nanodiamond, and carbon black, lead to strong thermal emission (blackbody radiation) upon laser excitation, even at a very low (milliwatts) power. The lasers commonly used during Raman spectroscopy characterization of carbon can cause sample heating to very high temperatures. While conventional thermometry is difficult in the case of nanomaterials, Raman spectral features, such as the G band of graphitic carbon and thermal emission spectra were used to estimate the temperature during light emission that led to extensive graphitization and evaporation of carbon nanomaterials, indicating local temperatures exceeding 3500 deg. C.

  4. Inhaled Diesel Emissions Generated with Cerium Oxide Nanoparticle Fuel Additive Induce Adverse Pulmonary and Systemic Effects

    EPA Science Inventory

    Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Cerium oxide nanoparticles added to diesel fuel (DECe) increases fuel burning efficiency but leads to altered emission characteristics and potentially altered health effects. Here, we evaluated whether DECe res...

  5. A mobile system for a comprehensive online-characterization of nanoparticle aggregates based on wide-angle light scattering and laser-induced incandescence

    NASA Astrophysics Data System (ADS)

    Huber, Franz J. T.; Altenhoff, Michael; Will, Stefan

    2016-05-01

    A mobile demonstrator for the comprehensive online-characterization of gas-borne nanoparticle aggregates is presented. Two optical measurement techniques are combined, both utilizing a pulsed Nd:YAG laser as light source. Aggregate size and fractal dimension are measured by Wide-Angle Light Scattering (WALS). An ellipsoidal mirror images elastically scattered light from scattering angles between 10° and 165° onto a CCD-camera chip resulting in an almost complete scattering diagram with high angular resolution. Primary particle size and volume fraction are measured by time-resolved Laser-Induced Incandescence (TiRe-LII). Here, particles are heated up to about 3000 K by the short laser pulse, the enhanced thermal radiation signal is detected with gated photomultiplier tubes. Analysis of the signal decay time and maximum LII-signal allows for the determination of primary particle diameter and volume fraction. The performance of the system is demonstrated by combined measurements on soot nanoparticle aggregates from a soot aerosol generator. Particle and aggregate sizes are varied by using different equivalence ratios of the combustion in the generator. Soot volume fraction can be adjusted by different levels of dilution with air. Online-measurements were carried out demonstrating the favorable performance of the system and the potential for industrial applications such as process control and product development. The particle properties obtained are confirmed through transmission electron microscopy analysis on representative samples.

  6. A mobile system for a comprehensive online-characterization of nanoparticle aggregates based on wide-angle light scattering and laser-induced incandescence.

    PubMed

    Huber, Franz J T; Altenhoff, Michael; Will, Stefan

    2016-05-01

    A mobile demonstrator for the comprehensive online-characterization of gas-borne nanoparticle aggregates is presented. Two optical measurement techniques are combined, both utilizing a pulsed Nd:YAG laser as light source. Aggregate size and fractal dimension are measured by Wide-Angle Light Scattering (WALS). An ellipsoidal mirror images elastically scattered light from scattering angles between 10° and 165° onto a CCD-camera chip resulting in an almost complete scattering diagram with high angular resolution. Primary particle size and volume fraction are measured by time-resolved Laser-Induced Incandescence (TiRe-LII). Here, particles are heated up to about 3000 K by the short laser pulse, the enhanced thermal radiation signal is detected with gated photomultiplier tubes. Analysis of the signal decay time and maximum LII-signal allows for the determination of primary particle diameter and volume fraction. The performance of the system is demonstrated by combined measurements on soot nanoparticle aggregates from a soot aerosol generator. Particle and aggregate sizes are varied by using different equivalence ratios of the combustion in the generator. Soot volume fraction can be adjusted by different levels of dilution with air. Online-measurements were carried out demonstrating the favorable performance of the system and the potential for industrial applications such as process control and product development. The particle properties obtained are confirmed through transmission electron microscopy analysis on representative samples. PMID:27250387

  7. Charge state effect on Si K X-ray emission induced by Iq+ ions impacting

    NASA Astrophysics Data System (ADS)

    Lei, Yu; Zhao, Yongtao; Cheng, Rui; Zhou, Xianming; Sun, Yuanbo; Wang, Xing; Wang, Yuyu; Ren, Jieru; Li, Yongfeng; Yu, Yang; Liu, Shidong; Xu, Ge

    2014-04-01

    K X-ray emission of Si induced by Iq+ (q=20, 22, 25) ion impact has been investigated. The results show a much higher intensity of X-ray emission for I25+ ions bombardment compared to I20+ and I22+ ions. The experimental data are explained within the framework of 3dπ, δ-3dσ rotational coupling.

  8. Unraveling the aggregation effect on amorphous phase AIE luminogens: a computational study.

    PubMed

    Zheng, Xiaoyan; Peng, Qian; Zhu, Lizhe; Xie, Yujun; Huang, Xuhui; Shuai, Zhigang

    2016-08-18

    To achieve the efficient and precise regulation of aggregation-induced emission (AIE), unraveling the aggregation effects on amorphous AIE luminogens is of vital importance. Using a theoretical protocol combining molecular dynamics simulations and quantum mechanics/molecular mechanics calculations, we explored the relationship between molecular packing, optical spectra and fluorescence quantum efficiency of amorphous AIE luminogens hexaphenylsilole (HPS). We confirmed that the redshifted emission of amorphous aggregates as compared to crystalline HPS is caused by the lower packing density of amorphous HPS aggregates and the reduced restrictions on their intramolecular low-frequency vibrational motions. Strikingly, our calculations revealed the size independent fluorescence quantum efficiency of nanosized HPS aggregates and predicted the linear relationship between the fluorescence intensity and aggregate size. This is because the nanosized aggregates are dominated by embedded HPS molecules which exhibit similar fluorescence quantum efficiency at different aggregate sizes. In addition, our results provided a direct explanation for the crystallization-enhanced emission phenomenon of propeller-shaped AIE luminogens in experiments. Our theoretical protocol is general and applicable to other AIE luminogens, thus laying solid foundation for the rational design of advanced AIE materials. PMID:27417250

  9. A novel fusion protein domain III-capsid from dengue-2, in a highly aggregated form, induces a functional immune response and protection in mice

    SciTech Connect

    Valdes, Iris; Bernardo, Lidice; Pavon, Alekis; Guzman, Maria G.

    2009-11-25

    Based on the immunogenicity of domain III from the Envelope protein of dengue virus as well as the proven protective capacity of the capsid antigen, we have designed a novel domain III-capsid chimeric protein with the goal of obtaining a molecule potentially able to induce both humoral and cell-mediated immunity (CMI). After expression of the recombinant gene in Escherichia coli, the domain III moiety retained its antigenicity as evaluated with anti-dengue sera. In order to explore alternatives for modulating the immunogenicity of the protein, it was mixed with oligodeoxynucleotides in order to obtain particulated aggregates and then immunologically evaluated in mice in comparison with non-aggregated controls. Although the humoral immune response induced by both forms of the protein was equivalent, the aggregated variant resulted in a much stronger CMI as measured by in vitro IFN-gamma secretion and protection experiments, mediated by CD4{sup +} and CD8{sup +} cells. The present work provides additional evidence in support for a crucial role of CMI in protection against dengue virus and describes a novel vaccine candidate against the disease based on a recombinant protein that can stimulate both arms of the acquired immune system.

  10. Engineering a Dual-Layer Chitosan-Lactide Hydrogel To Create Endothelial Cell Aggregate-Induced Microvascular Networks In Vitro and Increase Blood Perfusion In Vivo.

    PubMed

    Kim, Sungwoo; Kawai, Toshiyuki; Wang, Derek; Yang, Yunzhi

    2016-08-01

    Here, we report the use of chemically cross-linked and photo-cross-linked hydrogels to engineer human umbilical vein endothelial cell (HUVEC) aggregate-induced microvascular networks to increase blood perfusion in vivo. First, we studied the effect of chemically cross-linked and photo-cross-linked chitosan-lactide hydrogels on stiffness, degradation rates, and HUVEC behaviors. The photo-cross-linked hydrogel was relatively stiff (E = ∼15 kPa) and possessed more compact networks, denser surface texture, and lower enzymatic degradation rates than the relatively soft, chemically cross-linked hydrogel (E = ∼2 kPa). While both hydrogels exhibited nontoxicity, the soft chemically cross-linked hydrogels expedited the formation of cell aggregates compared to the photo-cross-linked hydrogels. Cells on the less stiff, chemically cross-linked hydrogels expressed more matrix metalloproteinase (MMP) activity than the stiffer, photo-cross-linked hydrogel. This difference in MMP activity resulted in a more dramatic decrease in mechanical stiffness after 3 days of incubation for the chemically cross-linked hydrogel, as compared to the photo-cross-linked one. After determining the physical and biological properties of each hydrogel, we accordingly engineered a dual-layer hydrogel construct consisting of the relatively soft, chemically cross-linked hydrogel layer for HUVEC encapsulation, and the relatively stiff, acellular, photo-cross-linked hydrogel for retention of cell-laden microvasculature above. This dual-layer hydrogel construct enabled a lasting HUVEC aggregate-induced microvascular network due to the combination of stable substrate, enriched cell adhesion molecules, and extracellular matrix proteins. We tested the dual-layer hydrogel construct in a mouse model of hind-limb ischemia, where the HUVEC aggregate-induced microvascular networks significantly enhanced blood perfusion rate to ischemic legs and decreased tissue necrosis compared with both no treatment and

  11. Chirality-driven intrinsic spin-glass ordering and field-induced ferromagnetism in Ni3Al nanoparticle aggregates

    NASA Astrophysics Data System (ADS)

    Kaul, S. N.; Messala, Umasankar

    2016-03-01

    Weak itinerant-electron ferromagnet Ni3Al is driven to magnetic instability (quantum critical point, QCP, where the long-range ferromagnetic order of the bulk ceases to exist) by reducing the average crystallite size to d=50 nm. 'Zero-field' (H=0) linear and nonlinear ac-susceptibilities, measured on Ni3Al nanoparticle aggregates, with d=50 nm (S1) and d=5 nm (S2), provide strong evidence for two spin glass (SG)-like thermodynamic phase transitions: one at Ti(H = 0) ≃ 30 K (Ti† (H = 0) ≃ 230 K) and the other at a lower temperature Tp(H = 0) ≃ 8 K (Th(H = 0) ≃ 52 K) in S1 (S2). 'In-field' (H ≠ 0) linear ac-susceptibility and dc magnetization demonstrate that the thermodynamic nature of these transitions is preserved in finite fields. The presently determined H-T phase diagrams for the samples S1 and S2 are compared with those predicted by the Kotliar-Sompolinsky and Gabay-Toulouse mean-field models and Monte Carlo simulations, based on the chirality-driven spin glass (SG) ordering scenario, for a three-dimensional nearest-neighbor Heisenberg SG system with or without weak random anisotropy. Such a detailed comparison permits us to unambiguously identify various 'zero-field' and 'in-field' SG phase transitions as: (i) the simultaneous paramagnetic (PM)-chiral glass (CG) and PM-SG phase transitions at Ti(H), (ii) the PM-CG transition at Ti† (H), (iii) the replica symmetry-breaking SG transition at Tp(H), and (iv) the continuous spin-rotation symmetry-breaking SG transition at Th(H). In the presence of random anisotropy, magnetization fails to saturate even at 90 kOe in S1 whereas negligibly small anisotropy allows even fields as weak as 1 kOe to saturate magnetization and induce ferromagnetism in S2. Due to the proximity to CG/SG-QCP, magnetization and susceptibility both exhibit non-Fermi liquid behavior over a wide range at low temperatures.

  12. Construction aggregates

    USGS Publications Warehouse

    Langer, W.H.; Tepordei, V.V.; Bolen, W.P.

    2000-01-01

    Construction aggregates consist primarily of crushed stone and construction sand and gravel. Total estimated production of construction aggregates increased in 1999 by about 2% to 2.39 Gt (2.64 billion st) compared with 1998. This record production level continued an expansion that began in 1992. By commodities, crushed stone production increased 3.3%, while sand and gravel production increased by about 0.5%.

  13. Construction aggregates

    USGS Publications Warehouse

    Tepordei, V.V.

    1994-01-01

    Part of a special section on industrial minerals in 1993. The 1993 production of construction aggregates increased 6.3 percent over the 1992 figure, to reach 2.01 Gt. This represents the highest estimated annual production of combined crushed stone and construction sand and gravel ever recorded in the U.S. The outlook for construction aggregates and the issues facing the industry are discussed.

  14. Investigating the feasibility of scale up and automation of human induced pluripotent stem cells cultured in aggregates in feeder free conditions☆

    PubMed Central

    Soares, Filipa A.C.; Chandra, Amit; Thomas, Robert J.; Pedersen, Roger A.; Vallier, Ludovic; Williams, David J.

    2014-01-01

    The transfer of a laboratory process into a manufacturing facility is one of the most critical steps required for the large scale production of cell-based therapy products. This study describes the first published protocol for scalable automated expansion of human induced pluripotent stem cell lines growing in aggregates in feeder-free and chemically defined medium. Cells were successfully transferred between different sites representative of research and manufacturing settings; and passaged manually and using the CompacT SelecT automation platform. Modified protocols were developed for the automated system and the management of cells aggregates (clumps) was identified as the critical step. Cellular morphology, pluripotency gene expression and differentiation into the three germ layers have been used compare the outcomes of manual and automated processes. PMID:24440272

  15. Reduction, aggregation and physicochemical properties of silver nanoparticles in propan-2-ol:cyclohexane mixtures induced by a high energy electron beam

    SciTech Connect

    Rele, Medha; Kapoor, Sudhir; Mukherjee, Tulsi

    2002-11-20

    Radiolytic reduction of silver and gold ions and subsequent formation of their aggregates have been studied in propan-2-ol:cyclohexane mixture using pulse radiolysis technique. The silver sol, produced on irradiation of Ag{sup +} solution with a train of electron pulses, has been characterized using XRD and TEM. The size of the particles has been found to be in the range of 30-50 nm. The silver sol emit light with a maximum at 340 nm on irradiation with a high energy electron beam. The intensity of emission has been found to decrease with decrease in concentration of Ag particles. Formation of colloidal gold has also been observed on irradiation of NAuCl{sub 4} solution in propan-2-ol:cyclohexane by train of electron pulses. The particles so formed are oxidized on exposure to air. No light emission has been observed from Au sol.

  16. Ion-induced electron emission from surfaces: Dynamical screening effects

    SciTech Connect

    Kouzakov, Konstantin A.; Berakdar, Jamal

    2003-08-01

    A theoretical model is developed for the description of the single-electron emission from surfaces following the impact of fast ions. The theory describes quantum mechanically the ion reflection at the surface and the excitation of the valence band electrons via an ion-electron interaction renormalized by the dielectric response of the target. Numerical calculations are presented and analyzed for the electron emission from the conduction band of an aluminum surface upon proton impact. Particular attention is devoted to the influence of the dielectric screening on the energy distributions and the angular distributions of the ejected electrons. In addition, the role of the surface electronic structure is studied.

  17. N2 Laser Induced Photoluminescence Emission in (ZnS: ZnO):Cu Phosphors

    NASA Astrophysics Data System (ADS)

    Muraleedharan, R.; Khokhar, M. S. K.; Namboodiri, V. P.; Girijavallabhan, C. P.

    Nitrogen laser induced photoluminescence (PL) emissions from (ZnS: ZnO):Cu powder phosphors have been carried out under varying conditions of sample preparation. The conditions for optimum efficiency of PL emission in (ZnS: ZnO):Cu phosphors and their spectral characteristics have been investigated. The emission peak in the PL spectra was found to shift towards longer wavelengths side as the concentrations of ZnO in (ZnS: ZnO) mixture was varied from 0% to 100%. The mechanism of PL emission in the above phosphor is explained on the basis of classical “Schon-Klassen” model.

  18. Dynamics of propagating surface plasmon induced photon emission from quantum dots: quantum history approach

    NASA Astrophysics Data System (ADS)

    Srisangyingcharoen, P.; Klinkla, R.; Boonchui, S.

    2015-11-01

    The quantum history approach is applied to investigate the first-photon emission of a quantum dot induced by propagating surface plasmons. The dynamics of the emission is described through the partitioning dynamics of a quantum system. The extended probability distribution which correspond to the photon emission rate is directly calculated. In the case that the Markov's approximation is satisfied, the well known double decay character of the first-photon emission is obtained accompanying with the analytic expression of decay amplitudes which has never been derived before. This is a merit of our approach which allows us to analytically investigate this interacting quantum system and goes beyond the master equation approach.

  19. Molecular dissection of SO (SOFT) protein in stress-induced aggregation and cell-to-cell interactive functions in filamentous fungal multicellularity.

    PubMed

    Tsukasaki, Wakako; Saeki, Kei; Katayama, Takuya; Maruyama, Jun-Ichi; Kitamoto, Katsuhiko

    2016-05-01

    Filamentous fungi grow by organizing multicellularity through hyphal compartmentalization and cell fusion. SO (SOFT) protein, which was originally identified in Neurospora crassa, plays distinct functional roles in cell-to-cell interactions, such as septal plugging and cell fusion. We previously reported that AoSO, an Aspergillus oryzae SO homologue, forms aggregates at the septal pore in response to stress, as well as upon hyphal wounding. However, the functional regions that mediate the multicellular functions of AoSO, which is a large protein composed of 1195 amino acids, have not been elucidated. Here, we divided AoSO protein into regions according to amino acid sequence conservation among other fungal SO homologues. By heterologous expression of full-length and truncated forms of AoSO in the yeast Saccharomyces cerevisiae, the region responsible for the stress-induced aggregation of AoSO was identified to be between amino acids 556 and 1146. In A. oryzae, however, septal localization of AoSO aggregates required the 49 C-terminal amino acids. Thus, expression of only the C-terminal half of AoSO was sufficient for septal plugging and prevention of excessive cytoplasmic loss upon hyphal wounding. In contrast, the N-terminal half of AoSO, from amino acids 1 to 555, together with the C-terminal end, was revealed to be indispensable for cell fusion. Collectively, these findings suggest that the C-terminal half of AoSO, which mediates stress-induced aggregation, is required for both septal plugging and cell fusion, whereas the N-terminal half confers an additional functionality that is essential for cell fusion. PMID:27109373

  20. Laser Induced Emission Spectroscopy of Cold and Isolated Neutral PAHs and PANH: Implications for the red rectangle emission

    NASA Astrophysics Data System (ADS)

    Bejaoui, Salma; Salama, Farid; Sciamma O'Brien, Ella

    2016-06-01

    Blue luminescence (BL) in the emission spectra of the red rectangle centered on the bright star HD44179 is recently reported by Vijh et al [1]. This results is consistent with the broad band polarization measurements obtained in 1980 by Schmidt et al. Both experimental and theoretical studies support that BL emission could be attributed the luminescence of Polycyclic Aromatic Hydrocarbon (PAH) excited with ultraviolet light from the center of the star [4 and reference therein]. The abundance on N to C in the interstellar medium suggest also that nitrogen substituted PAH (PANH) are likely abundant in the interstellar medium [3]. They exhibit similar features as PAHs and could contribute to the unidentified spectral bands. Comparing the BL to laboratory spectra obtained on similar environment is crucial for the identification of interstellar molecules. We present in this works the absorption and the laser induced emission spectra of several isolated and cold PAHs and PANHs. Laser induced emission was performed first to PAHs and PANHs isolated in Argon matrix at 10 K. Then, measurements are performed with the supersonic jet technique of the COSmIC laboratory facility at NASA Ames. We focus, here, on the emission spectra (fluorescence and (or) phosphorescence) of these molecules and we discuss their contributions to the blue luminescence emission in the Red Rectangle nebula.[1] Vijh,U.P., Witt. A.N. & Gordon,K.D, APJ, 606, L69 (2004)[2] Schmidt, G. D., Cohen, M. & Margon, B., ApJ, 239L.133S (1980)[3] Spitzer, L., Physical Processes in the Interstellar Medium (New York Wiley-Interscience) (1978)[4] Salama, F., Galazutdinov, G. A., Kre lowski, J., Allamandola, L. J., & Musaev, F. A. ApJ, 526,(1999)

  1. Optimally enhanced optical emission in laser-induced air plasma by femtosecond double-pulse

    NASA Astrophysics Data System (ADS)

    Chen, Anmin; Li, Suyu; Li, Shuchang; Jiang, Yuanfei; Shao, Junfeng; Wang, Tingfeng; Huang, Xuri; Jin, Mingxing; Ding, Dajun

    2013-10-01

    In laser-induced breakdown spectroscopy, a femtosecond double-pulse laser was used to induce air plasma. The plasma spectroscopy was observed to lead to significant increase of the intensity and reproducibility of the optical emission signal compared to femtosecond single-pulse laser. In particular, the optical emission intensity can be optimized by adjusting the delay time of femtosecond double-pulse. An appropriate pulse-to-pulse delay was selected, that was typically about 50 ps. This effect can be especially advantageous in the context of femtosecond laser-induced breakdown spectroscopy, plasma channel, and so on.

  2. Optimally enhanced optical emission in laser-induced air plasma by femtosecond double-pulse

    SciTech Connect

    Chen, Anmin; Li, Suyu; Li, Shuchang; Jiang, Yuanfei; Ding, Dajun; Shao, Junfeng; Wang, Tingfeng; Huang, Xuri; Jin, Mingxing

    2013-10-15

    In laser-induced breakdown spectroscopy, a femtosecond double-pulse laser was used to induce air plasma. The plasma spectroscopy was observed to lead to significant increase of the intensity and reproducibility of the optical emission signal compared to femtosecond single-pulse laser. In particular, the optical emission intensity can be optimized by adjusting the delay time of femtosecond double-pulse. An appropriate pulse-to-pulse delay was selected, that was typically about 50 ps. This effect can be especially advantageous in the context of femtosecond laser-induced breakdown spectroscopy, plasma channel, and so on.

  3. Nanoparticle-Induced Ellipse-to-Vesicle Morphology Transition of Rod-Coil-Rod Triblock Copolymer Aggregates.

    PubMed

    Yang, Chaoying; Li, Qing; Cai, Chunhua; Lin, Jiaping

    2016-07-12

    Cooperative self-assembly behavior of rod-coil-rod poly(γ-benzyl-l-glutamate)-block-poly(ethylene glycol)-block-poly(γ-benzyl-l-glutamate) (PBLG-b-PEG-b-PBLG) amphiphilic triblock copolymers and hydrophobic gold nanoparticles (AuNPs) was investigated by both experiments and dissipative particle dynamics (DPD) simulations. It was discovered that pure PBLG-b-PEG-b-PBLG copolymers self-assemble into ellipse-like aggregates, and the morphology transforms into vesicles as AuNPs are introduced. When the hydrophobicity of AuNPs is close to that of the copolymers, AuNPs are homogeneously distributed in the vesicle wall. While for the AuNPs with higher hydrophobicity, they are embedded in the vesicle wall as clusters. In addition to the experimental observations, DPD simulations were performed on the self-assembly behavior of triblock copolymer/nanoparticle mixtures. Simulations well reproduced the morphology transition observed in the experiments and provided additional information such as chain packing mode in aggregates. It is deduced that the main reason for the ellipse-to-vesicle transition of the aggregates is attributed to the breakage of ordered and dense packing of PBLG rods in the aggregate core by encapsulating AuNPs. This study deepens our understanding of the self-assembly behavior of rod-coil copolymer/nanoparticle mixtures and provides strategy for designing hybrid polypeptide nanostructures. PMID:27314970

  4. Mid-infrared Molecular Emission Studies from Energetic Materials using Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Brown, Ei; Hommerich, Uwe; Yang, Clayton; Trivedi, Sudhir; Samuels, Alan; Snyder, Peter

    2011-10-01

    Laser-induced breakdown spectroscopy (LIBS) is a powerful diagnostic tool for detection of trace elements by monitoring the atomic and ionic emission from laser-induced plasmas. The laser-induced plasma was produced by focusing a 30 mJ pulsed Nd:YAG laser (1064 nm) to dissociate, atomize, and ionize target molecules. In this work, LIBS emissions in the mid-infrared (MIR) region were studied for potential applications in chemical, biological, and explosives (CBE) sensing. We report on the observation of MIR emissions from energetic materials (e.g. ammonium compounds) due to laser-induced breakdown processes. All samples showed LIBS-triggered oxygenated breakdown products as well as partially dissociated and recombination molecular species. More detailed results of the performed MIR LIBS studies on the energetic materials will be discussed at the conference.

  5. Experimental Study of Active Path Block in a Multi-Bifurcated Flow by Microbubble Aggregation

    NASA Astrophysics Data System (ADS)

    Shigehara, Nobuhiko; Demachi, Fumi; Koda, Ren; Mochizuki, Takashi; Masuda, Kohji; Ikeda, Seiichi; Arai, Fumihito; Miyamoto, Yoshitaka; Chiba, Toshio

    2013-07-01

    We previously reported our attempts at the active control of microbubble aggregations using acoustic radiation force, which propels microbubbles and adjusts the size of aggregations. However, because we used simple-shape artificial blood vessels, the behavior of aggregations in a small channel, e.g., the probability to obstruct the bloodstream, and the possibility of embolization, has not been predicted. Thus, we designed and fabricated a multi-bifurcated artificial blood vessel to apply to the production and active control of microbubble aggregations. Then, we introduced two kinds of ultrasound transducers for producing and propelling aggregations. First, we produced aggregations in a flow to measure their size and investigate their variation according to the emission duration of ultrasound. Then, we control the aggregations in an artificial blood vessel to verify their controllability. When ultrasound was stopped, the aggregations flaked off the vessel wall and flowed downstream, were propelled to the desired path, and finally were caught at a narrow path. We verified the same experiment under similar parameters to calculate the probability of realizing a path block. When the flow velocity was 20 mm/s, almost 50% of the aggregations were induced to flow through the desired path and a maximum probability of realizing a path block of 86% was achieved with the formation of aggregations.

  6. Aggregation and structural changes of α(S1)-, β- and κ-caseins induced by homocysteinylation.

    PubMed

    Stroylova, Yulia Y; Zimny, Jaroslaw; Yousefi, Reza; Chobert, Jean-Marc; Jakubowski, Hieronim; Muronetz, Vladimir I; Haertlé, Thomas

    2011-10-01

    Elevated homocysteine levels are resulting in N-homocysteinylation of lysyl residues in proteins and they correlate with a number of human pathologies. However, the role of homocysteinylation of lysyl residues is still poorly known. In order to study the features of homocysteinylation of intrinsically unstructured proteins (IUP) bovine caseins were used as a model. α(S1)-, β- and κ-caseins, showing different aggregations and micelle formation, were modified with homocysteine-thiolactone and their physico-chemical properties were studied. Efficiency of homocysteine incorporation was estimated to be about 1.5, 2.1 and 1.3 homocysteyl residues per one β-, α(S1)-, and κ-casein molecule, respectively. Use of intrinsic and extrinsic fluorescent markers such as Trp, thioflavin T and ANS, reveal structural changes of casein structures after homocysteinylation reflected by an increase in beta-sheet content, which in some cases may be characteristic of amyloid-like transformations. CD spectra also show an increase in beta-sheet content of homocysteinylated caseins. Casein homocysteinylation leads in all cases to aggregation. The sizes of aggregates and aggregation rates were dependent on homocysteine thiolactone concentration and temperature. DLS and microscopic studies have revealed the formation of large aggregates of about 1-3μm. Homocysteinylation of α(S1)- and β-caseins results in formation of regular spheres. Homocysteinylated κ-casein forms thin unbranched fibrils about 400-800nm long. In case of κ-casein amyloidogenic effect of homocysteinylation was confirmed by Congo red spectra. Taken together, data indicate that N-homocysteinylation provokes significant changes in properties of native caseins. A comparison of amyloidogenic transformation of 3 different casein types, belonging to the IUP protein family, shows that the efficiency of amyloidogenic transformation upon homocysteinylation depends on micellization capacity, additional disulphide bonds and

  7. A hybrid model describing ion induced kinetic electron emission

    NASA Astrophysics Data System (ADS)

    Hanke, S.; Duvenbeck, A.; Heuser, C.; Weidtmann, B.; Wucher, A.

    2015-06-01

    We present a model to describe the kinetic internal and external electron emission from an ion bombarded metal target. The model is based upon a molecular dynamics treatment of the nuclear degree of freedom, the electronic system is assumed as a quasi-free electron gas characterized by its Fermi energy, electron temperature and a characteristic attenuation length. In a series of previous works we have employed this model, which includes the local kinetic excitation as well as the rapid spread of the generated excitation energy, in order to calculate internal and external electron emission yields within the framework of a Richardson-Dushman-like thermionic emission model. However, this kind of treatment turned out to fail in the realistic prediction of experimentally measured internal electron yields mainly due to the restriction of the treatment of electronic transport to a diffusive manner. Here, we propose a slightly modified approach additionally incorporating the contribution of hot electrons which are generated in the bulk material and undergo ballistic transport towards the emitting interface.

  8. Predator-induced reduction of freshwater carbon dioxide emissions

    NASA Astrophysics Data System (ADS)

    Atwood, Trisha B.; Hammill, Edd; Greig, Hamish S.; Kratina, Pavel; Shurin, Jonathan B.; Srivastava, Diane S.; Richardson, John S.

    2013-03-01

    Predators can influence the exchange of carbon dioxide between ecosystems and the atmosphere by altering ecosystem processes such as decomposition and primary production, according to food web theory. Empirical knowledge of such an effect in freshwater systems is limited, but it has been suggested that predators in odd-numbered food chains suppress freshwater carbon dioxide emissions, and predators in even-numbered food chains enhance emissions. Here, we report experiments in three-tier food chains in experimental ponds, streams and bromeliads in Canada and Costa Rica in the presence or absence of fish (Gasterosteus aculeatus) and invertebrate (Hesperoperla pacifica and Mecistogaster modesta) predators. We monitored carbon dioxide fluxes along with prey and primary producer biomass. We found substantially reduced carbon dioxide emissions in the presence of predators in all systems, despite differences in predator type, hydrology, climatic region, ecological zone and level of in situ primary production. We also observed lower amounts of prey biomass and higher amounts of algal and detrital biomass in the presence of predators. We conclude that predators have the potential to markedly influence carbon dioxide dynamics in freshwater systems.

  9. Electron impact induced light emission from zinc atoms

    NASA Astrophysics Data System (ADS)

    Cvejanovic, Danica

    2009-10-01

    Experimental studies of electron impact excitation of zinc atom are rare, primarily due to experimental difficulties. However, zinc is an interesting target because of possible applications in light sources. Also, due to its position in periodic table, zinc is an interesting case for the fundamental understanding of momentum couplings and the role of electron correlations in complex metal atoms. Recent experimental investigations have indicated the existence of highly correlated scattering mechanisms via formation of negative ion resonances and Post Collision Interaction (PCI) in the decay of autoionizing states. These can significantly modify energy dependence of the emission cross sections at low impact energies and the studies of photon emission offer a sensitive way to investigate electron correlations. Specifically, in the lowest autoionizing region of zinc, i.e. between 10 and 15 eV, both the cross sections and polarization of emitted light are affected by the formation of short lived negative ions and PCI effects. These are associated with excitation of one of the sub-valence 3d electrons and complex correlations between inner 3d and outer excited electrons in the target and also with the slow electron released into continuum, need to be included in modeling. Also the scattering of the spin polarized electrons has shown significant spin effects when excitation proceeds via negative ion resonances. Emission cross sections and comparison with theory would be discussed at the conference.

  10. Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage

    PubMed Central

    Niinemets, Ülo; Kännaste, Astrid; Copolovici, Lucian

    2013-01-01

    Plants have to cope with a plethora of biotic stresses such as herbivory and pathogen attacks throughout their life cycle. The biotic stresses typically trigger rapid emissions of volatile products of lipoxygenase (LOX) pathway (LOX products: various C6 aldehydes, alcohols, and derivatives, also called green leaf volatiles) associated with oxidative burst. Further a variety of defense pathways is activated, leading to induction of synthesis and emission of a complex blend of volatiles, often including methyl salicylate, indole, mono-, homo-, and sesquiterpenes. The airborne volatiles are involved in systemic responses leading to elicitation of emissions from non-damaged plant parts. For several abiotic stresses, it has been demonstrated that volatile emissions are quantitatively related to the stress dose. The biotic impacts under natural conditions vary in severity from mild to severe, but it is unclear whether volatile emissions also scale with the severity of biotic stresses in a dose-dependent manner. Furthermore, biotic impacts are typically recurrent, but it is poorly understood how direct stress-triggered and systemic emission responses are silenced during periods intervening sequential stress events. Here we review the information on induced emissions elicited in response to biotic attacks, and argue that biotic stress severity vs. emission rate relationships should follow principally the same dose–response relationships as previously demonstrated for different abiotic stresses. Analysis of several case studies investigating the elicitation of emissions in response to chewing herbivores, aphids, rust fungi, powdery mildew, and Botrytis, suggests that induced emissions do respond to stress severity in dose-dependent manner. Bi-phasic emission kinetics of several induced volatiles have been demonstrated in these experiments, suggesting that next to immediate stress-triggered emissions, biotic stress elicited emissions typically have a secondary induction

  11. Inhibition and reversal of endotoxin-, aggregated IgG- and paf-induced hypotension in the rat by SRI 63-072, a paf receptor antagonist.

    PubMed

    Handley, D A; Van Valen, R G; Melden, M K; Flury, S; Lee, M L; Saunders, R N

    1986-08-01

    Platelet activating factor (paf) given intravenously produces systemic hypotension in the rat. Similar effects can be induced using endotoxin or heat-aggregated IgG challenges, which are thought to involve endogenous paf release. Extending this concept, we have examined the ability of the paf antagonist SRI 63-072 to inhibit or reverse systemic hypotension induced with paf, heat-aggregated IgG or endotoxin 0111-B4 in rats. At 100 ng kg-1 paf, there occurred a 38.6 +/- 5.1% decrease in carotid mean arterial pressure (MAP) followed by a 3.2 +/- 0.7 min recovery period (RP) to return to normal pressure values. The ED50 of SRI 63-072 was 0.16 mg kg-1 i.v. (MAP) and 0.25 mg kg-1 (RP) when given 1-5 min before the paf challenge. Endotoxin (15 mg kg-1 i.v.) produced a hypotensive response (54 +/- 8% decrease in MAP) and a corresponding 80% decrease in mesenteric artery blood flow. When given 2-8 min after endotoxin, 1.0 mg kg-1 i.v. SRI 63-072 totally restored blood pressure and artery blood flow. SRI 63-072 similarly reversed heat-aggregated IgG (10 mg kg-1) induced reduction of MAP, with an ED50 of 0.05 mg kg-1 i.v. The observations that SRI 63-072 can inhibit or reverse systemic vascular effects produced from paf and other provocators of endogenous paf release strongly implicates paf as a common final mediator of hypotension and shock. As SRI 63-072 is a competitive receptor antagonist, the hypotensive effects of these provocators appear to be mediated by vascular receptors for paf. PMID:3019921

  12. Effect of extraction pH on heat-induced aggregation, gelation and microstructure of protein isolate from quinoa (Chenopodium quinoa Willd).

    PubMed

    Ruiz, Geraldine Avila; Xiao, Wukai; van Boekel, Martinus; Minor, Marcel; Stieger, Markus

    2016-10-15

    The aim of this study was to determine the influence of extraction pH on heat-induced aggregation, gelation and microstructure of suspensions of protein isolates extracted from quinoa (Chenopodium quinoa Willd). Quinoa seed protein was extracted by alkaline treatment at various pH values (pH 8 (E8), 9 (E9), 10 (E10) and 11 (E11)), followed by acid precipitation. The obtained protein isolates were freeze dried. The protein isolates E8 and E9 resulted in a lower protein yield as well as less protein denaturation. These isolates also had a higher protein purity, more protein bands at higher molecular weights, and a higher protein solubility in the pH range of 3-4.5, compared to the isolates E10 and E11. Heating the 10%w/w protein isolate suspensions E8 and E9 led to increased aggregation, and semi-solid gels with a dense microstructure were formed. The isolate suspensions E10 and E11, on the other hand, aggregated less, did not form self-supporting gels and had loose particle arrangements. We conclude that extraction pH plays an important role in determining the functionality of quinoa protein isolates. PMID:27173553

  13. Sulindac Sulfide Induces the Formation of Large Oligomeric Aggregates of the Alzheimer's Disease Amyloid-β Peptide Which Exhibit Reduced Neurotoxicity.

    PubMed

    Prade, Elke; Barucker, Christian; Sarkar, Riddhiman; Althoff-Ospelt, Gerhard; Lopez del Amo, Juan Miguel; Hossain, Shireen; Zhong, Yifei; Multhaup, Gerd; Reif, Bernd

    2016-03-29

    Alzheimer's disease is characterized by deposition of the amyloid β-peptide (Aβ) in brain tissue of affected individuals. In recent years, many potential lead structures have been suggested that can potentially be used for diagnosis and therapy. However, the mode of action of these compounds is so far not understood. Among these small molecules, the nonsteroidal anti-inflammatory drug (NSAID) sulindac sulfide received a lot of attention. In this manuscript, we characterize the interaction between the monomeric Aβ peptide and the NSAID sulindac sulfide. We find that sulindac sulfide efficiently depletes the pool of toxic oligomers by enhancing the rate of fibril formation. In vitro, sulindac sulfide forms colloidal particles which catalyze the formation of fibrils. Aggregation is immediate, presumably by perturbing the supersaturated Aβ solution. We find that sulindac sulfide inducedaggregates are structurally homogeneous. The C-terminal part of the peptide adopts a β-sheet structure, whereas the N-terminus is disordered. The salt bridge between D23 and K28 is present, similar as in wild type fibril structures. (13)C-(19)F transferred echo double resonance experiments suggest that sulindac sulfide colocalizes with the Aβ peptide in the aggregate. PMID:26900939

  14. Engraftment of human induced pluripotent stem cell-derived hepatocytes in immunocompetent mice via 3D co-aggregation and encapsulation

    PubMed Central

    Song, Wei; Lu, Yen-Chun; Frankel, Angela S.; An, Duo; Schwartz, Robert E.; Ma, Minglin

    2015-01-01

    Cellular therapies for liver diseases and in vitro models for drug testing both require functional human hepatocytes (Hum-H), which have unfortunately been limited due to the paucity of donor liver tissues. Human pluripotent stem cells (hPSCs) represent a promising and potentially unlimited cell source to derive Hum-H. However, the hepatic functions of these hPSC-derived cells to date are not fully comparable to adult Hum-H and are more similar to fetal ones. In addition, it has been challenging to obtain functional hepatic engraftment of these cells with prior studies having been done in immunocompromised animals. In this report, we demonstrated successful engraftment of human induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (iPS-H) in immunocompetent mice by pre-engineering 3D cell co-aggregates with stromal cells (SCs) followed by encapsulation in recently developed biocompatible hydrogel capsules. Notably, upon transplantation, human albumin and α1-antitrypsin (A1AT) in mouse sera secreted by encapsulated iPS-H/SCs aggregates reached a level comparable to the primary Hum-H/SCs control. Further immunohistochemistry of human albumin in retrieved cell aggregates confirmed the survival and function of iPS-H. This proof-of-concept study provides a simple yet robust approach to improve the engraftment of iPS-H, and may be applicable to many stem cell-based therapies. PMID:26592180

  15. Trace gas emissions and smoke-induced seed germination

    SciTech Connect

    Keeley, J.E.; Fotheringham, C.J.

    1997-05-23

    Dormant seeds of a California chaparral annual were induced to germinate by smoke or paper. Nitrogen oxides induced 100 percent vapors emitted from smoke-treated sand or treated water samples inducing. Smoke germination in a manner similar to smoke germination were comparable in acidity and concentration of nitrate and nitrite to nitrogen dioxide (NO{sub 2})-treated samples. Vapors from smoke-treated and NO{sub 2}-treated filter paper had comparable NO{sub 2} flux rates. Chaparral wildfires generate sufficient nitrogen oxides from combustion of organic matter or from postfire biogenic nitrification to trigger germination of Emmerianthe penduliflora. Nitrogen oxide-triggered germination is not the result of changes in imbibition, as is the case with heat stimulated seeds.

  16. Pancreatic Islet-Like Three-Dimensional Aggregates Derived From Human Embryonic Stem Cells Ameliorate Hyperglycemia in Streptozotocin-Induced Diabetic Mice.

    PubMed

    Shim, Joong-Hyun; Kim, JongHyun; Han, Jiyou; An, Su Yeon; Jang, Yu Jin; Son, Jeongsang; Woo, Dong-Hun; Kim, Suel-Kee; Kim, Jong-Hoon

    2015-01-01

    We previously reported the in vitro differentiation of human embryonic stem cells (hESCs) into pancreatic endoderm. Here we demonstrate that islet-like three-dimensional (3D) aggregates can be derived from the pancreatic endoderm by optimizing our previous protocol. Sequential treatment with Wnt3a, activin A, and noggin induced a transient upregulation of T and MixL1, followed by increased expression of endodermal genes, including FOXA2, SOX17, and CXCR4. Subsequent treatment with retinoic acid highly upregulated PDX1 expression. We also show that inhibition of sonic hedgehog signaling by bFGF/activin βB and cotreatment with VEGF and FGF7 produced many 3D cellular clusters that express both SOX17 and PDX1. We found for the first time that proteoglycans and vimentin(+) mesenchymal cells were mainly localized in hESC-derived PDX1(+) clusters. Importantly, treatment with chlorate, an inhibitor of proteoglycan sulfation, together with inhibition of Notch signaling significantly increased the expression of Neurog3 and NeuroD1, promoting a transition from PDX1(+) progenitor cells toward mature pancreatic endocrine cells. Purified dithizone(+) 3D aggregates generated by our refined protocol produced pancreatic hormones and released insulin in response to both glucose and pharmacological drugs in vitro. Furthermore, the islet-like 3D aggregates decreased blood glucose levels and continued to exhibit pancreatic features after transplantation into diabetic mice. Generation of islet-like 3D cell aggregates from human pluripotent stem cells may overcome the shortage of cadaveric donor islets for future cases of clinical islet transplantation. PMID:25397866

  17. Role of Planar Conformations in Aggregation Induced Spectral Shifts of Supermolecular Oligofluorenols in Solutions and Films: A Combined Experimental and MD/TD-DFT Study.

    PubMed

    Yuan, Xiangai; Zhang, Wanwan; Xie, Ling-Hai; Ma, Jing; Huang, Wei; Liu, Wenjian

    2015-08-13

    The supramolecular approach of fluorenol polymers brings about excellent self-assembly behavior to fabricate organogels and superstructured thin films through highly directional noncovalent interactions. To understand the aggregation effects on electronic structures, the packing structures and the UV/vis absorption spectra of oligofluorenols (PFOHn, n = 1/3-8), with and without OC8H17 side chains, were studied experimentally and theoretically in crystal, amorphous solids, and solutions, respectively. For the ground state in vacuum the steric repulsion between two adjacent fluorenol units renders the PFOH oligomers twisted in a helix conformation, while the molecular aggregation favors the appearance of planar π-conjugated structures. In comparison with the crystal packing, the content of planar conformation (with the torsion angle less than 20°) is increased in amorphous solids. The hydroxyl groups in oligofluorenols facilitate the formation of hydrogen bonding networks. The red shift in absorption spectra was observed in a systematic experimental study of unsubstituted and substituted oligofluorenols with the increasing concentration both in toluene and chloroform solutions. The subsitituted oligofluorenol R-PFOH1 with only one OC8H17 side chain exhibited a shoulder peak at 430-440 nm, which is different from PFOH1 without side chain and 3R-PFO1 with three OC8H17 side chain. Time-dependent density functional theory (TDDFT) calculations, which were carried out on conformation ensembles taken from a series of molecular dynamics (MD) simulations, revealed that the increase in the content of planar π-conjugated conformations is correlated to the red shift in the absorption spectra upon increasing the solution concentrations. The aggregation-induced red-shift in absorption spectra of oligofluorenols, as well as the blue-shift for oligothiophenes, was rationalized in a unified way from the increased (and reduced) content of planar conformations in molecular

  18. The effect of magnetically induced linear aggregates on proton transverse relaxation rates of aqueous suspensions of polymer coated magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Saville, Steven L.; Woodward, Robert C.; House, Michael J.; Tokarev, Alexander; Hammers, Jacob; Qi, Bin; Shaw, Jeremy; Saunders, Martin; Varsani, Rahi R.; St Pierre, Tim G.; Mefford, O. Thompson

    2013-02-01

    It has been recently reported that for some suspensions of magnetic nanoparticles the transverse proton relaxation rate, R2, is dependent on the time that the sample is exposed to an applied magnetic field. This time dependence has been linked to the formation of linear aggregates or chains in an applied magnetic field via numerical modeling. It is widely known that chain formation occurs in more concentrated ferrofluids systems and that this has an affect on the ferrofluid properties. In this work we examine the relationships between colloidal stability, the formation of these linear structures, and changes observed in the proton transverse relaxation rate of aqueous suspensions of magnetic particles. A series of iron oxide nanoparticles with varying stabilizing ligand brush lengths were synthesized. These systems were characterized with dynamic light scattering, transmission electron microscopy, dark-field optical microscopy, and proton transverse relaxation rate measurements. The dark field optical microscopy and R2 measurements were made in similar magnetic fields over the same time scale so as to correlate the reduction of the transverse relaxivity with the formation of linear aggregates. Our results indicate that varying the ligand length has a direct effect on the colloidal arrangement of the system in a magnetic field, producing differences in the rate and size of chain formation, and hence systematic changes in transverse relaxation rates over time. With increasing ligand brush length, attractive inter-particle interactions are reduced, which results in slower aggregate formation and shorter linear aggregate length. These results have implications for the stabilization, characterization and potentially the toxicity of magnetic nanoparticle systems used in biomedical applications.It has been recently reported that for some suspensions of magnetic nanoparticles the transverse proton relaxation rate, R2, is dependent on the time that the sample is exposed to

  19. High intensity, plasma-induced electron emission from large area carbon nanotube array cathodes

    SciTech Connect

    Liao Qingliang; Yang Ya; Qi Junjie; Zhang Yue; Huang Yunhua; Xia Liansheng; Liu Liang

    2010-02-15

    The plasma-induced electron emission properties of large area carbon nanotube (CNT) array cathodes under different pulse electric fields were investigated. The formation and expansion of cathode plasmas were proved; in addition, the cathodes have higher emission current in the double-pulse mode than that in the single-pulse mode due to the expansion of plasma. Under the double-pulse electric field of 8.16 V/mum, the plasma's expansion velocity is about 12.33 cm/mus and the highest emission current density reached 107.72 A/cm{sup 2}. The Cerenkov radiation was used to diagnose the distribution of electron beams, and the electron beams' generating process was plasma-induced emission.

  20. Effect of laser intensity on radio frequency emissions from laser induced breakdown of atmospheric air

    NASA Astrophysics Data System (ADS)

    Vinoth Kumar, L.; Manikanta, E.; Leela, Ch.; Prem Kiran, P.

    2016-06-01

    The studies on the effect of input laser intensity, through the variation of laser focusing geometry, on radio frequency (RF) emissions, over 30-1000 MHz from nanosecond (ns) and picosecond (ps) laser induced breakdown (LIB) of atmospheric air are presented. The RF emissions from the ns and ps LIB were observed to be decreasing and increasing, respectively, when traversed from tight to loose focusing conditions. The angular and radial intensities of the RF emissions from the ns and ps LIB are found to be consistent with sin2θ/r2 dependence of the electric dipole radiation. The normalized RF emissions were observed to vary with incident laser intensity (Iλ2), indicating the increase in the induced dipole moment at moderate input laser intensities and the damping of radiation due to higher recombination rate of plasma at higher input laser intensities.

  1. The effect of magnetically induced linear aggregates on proton transverse relaxation rates of aqueous suspensions of polymer coated magnetic nanoparticles.

    PubMed

    Saville, Steven L; Woodward, Robert C; House, Michael J; Tokarev, Alexander; Hammers, Jacob; Qi, Bin; Shaw, Jeremy; Saunders, Martin; Varsani, Rahi R; St Pierre, Tim G; Mefford, O Thompson

    2013-03-01

    It has been recently reported that for some suspensions of magnetic nanoparticles the transverse proton relaxation rate, R(2), is dependent on the time that the sample is exposed to an applied magnetic field. This time dependence has been linked to the formation of linear aggregates or chains in an applied magnetic field via numerical modeling. It is widely known that chain formation occurs in more concentrated ferrofluids systems and that this has an affect on the ferrofluid properties. In this work we examine the relationships between colloidal stability, the formation of these linear structures, and changes observed in the proton transverse relaxation rate of aqueous suspensions of magnetic particles. A series of iron oxide nanoparticles with varying stabilizing ligand brush lengths were synthesized. These systems were characterized with dynamic light scattering, transmission electron microscopy, dark-field optical microscopy, and proton transverse relaxation rate measurements. The dark field optical microscopy and R(2) measurements were made in similar magnetic fields over the same time scale so as to correlate the reduction of the transverse relaxivity with the formation of linear aggregates. Our results indicate that varying the ligand length has a direct effect on the colloidal arrangement of the system in a magnetic field, producing differences in the rate and size of chain formation, and hence systematic changes in transverse relaxation rates over time. With increasing ligand brush length, attractive inter-particle interactions are reduced, which results in slower aggregate formation and shorter linear aggregate length. These results have implications for the stabilization, characterization and potentially the toxicity of magnetic nanoparticle systems used in biomedical applications. PMID:23389324

  2. DNA base-stacking assay utilizing catalytic hairpin assembly-induced gold nanoparticle aggregation for colorimetric protein sensing.

    PubMed

    Chang, Chia-Chen; Chen, Chie-Pein; Chen, Chen-Yu; Lin, Chii-Wann

    2016-03-18

    A label-free and enzyme-free colorimetric sensing platform for the amplified detection of fibronectin was developed based on an ingenious combination of catalytic hairpin assembly and a base stacking hybridization-based gold nanoparticle aggregation strategy. The detection limit of 2.3 pM is at least one order of magnitude lower than that of established fibronectin biosensors. PMID:26906691

  3. Induced Emission of Cold Atoms Passing Through a Micromaser Cavity

    NASA Astrophysics Data System (ADS)

    Abdel-Aty, Mahmoud; Obada, Abdel-Shafy F.

    The emission probability of a cold atom in a microcavity when its center-of-mass motion is described quantum mechanically is presented, but is distinguished from other treatments by the inclusion of the spatial variation along the cavity axis. In particular, the mesa mode cavity profile is considered. The quantum theory of the one-photon mazer is constructed in the framework of the dressed-state coordinate formalism. Simple expressions for the atomic populations, the cavity photon statistics, and the reflection and transmission probabilities are given for any initial state of the atom-field system. The general conclusions reached are illustrated by numerical results.

  4. Characterisation of Stress-Induced Aggregate Size Distributions and Morphological Changes of a Bi-Specific Antibody Using Orthogonal Techniques.

    PubMed

    Hamrang, Zahra; Hussain, Maryam; Tingey, Katie; Tracka, Malgorzata; Casas-Finet, José R; Uddin, Shahid; van der Walle, Christopher F; Pluen, Alain

    2015-08-01

    A critical step in monoclonal antibody (mAb) screening and formulation selection is the ability of the mAb to resist aggregation following exposure to environmental stresses. Regulatory authorities welcome not only information on the presence of micron-sized particles, but often any information on sub-visible particles in the size range obtained by orthogonal sizing techniques. The present study demonstrates the power of combining established techniques such as dynamic light scattering (DLS) and micro-flow imaging (MFI), with novel analyses such as raster image correlation spectroscopy (RICS) that offer to bridge existent particle sizing gaps in this area. The influence of thermal and freeze-thaw stress treatments on particle size and morphology was assessed for a bi-specific antibody (mAb2). Aggregation of mAb2 was confirmed to be concentration- and treatment-dependent following thermal stress and freeze-thaw cycling. Particle size and count data show concentration- and treatment-dependent behaviour of aggregate counts, morphological descriptors and particle size distributions. Complementarity in particle size output was observed between all approaches utilised, where RICS bridged the analytical size gap (∼0.5-5 μm) between DLS and MFI. Overall, this study highlights the potential of orthogonal image analyses such as RICS (analytical size gap) and MFI (particle morphology) for formulation screening. PMID:26053418

  5. Dynamic fluctuations in ultrasmall nanocrystals induce white light emission

    SciTech Connect

    Pennycook, Timothy J; Mcbride, J. R.; Rosenthal, Sandra; Pennycook, Stephen J; Pantelides, Sokrates T.

    2012-01-01

    Nanocrystals typically emit monochromatically at their size-dependent energy gaps. Recently, it was found that by pushing the size of a nanocrystal to its lower limits, absorption occurs at increasingly larger energies, but the expected blue to ultraviolet emission does not occur. Instead, individual ultrasmall CdSe nanocrystals emit white light1-5. Here we show that following excitation, partial thermalization sets the ultrasmall nanocrystals into a fluxional6 state, with a continuously varying energy gap which results in white light emission. Even the larger, monochromatic nanocrystals have a fluxional surface but a stable crystal core. A degree of fluxionality persists even at room temperature and represents a radical change to the accepted view of nanocrystals, with wide-ranging ramifications for other applications. The results were obtained using a combination of state-of-the-art experiment and theory: dynamic imaging by aberration-corrected scanning transmission electron microscopy and finite-temperature quantum molecular dynamics simulations. The results show that small is different, but ultrasmall is different yet again.

  6. Electron-Impact-Induced Emission Cross Sections of Atomic Oxygen

    NASA Astrophysics Data System (ADS)

    Noren, C.; Kanik, I.; James, G. K.; Ajello, J. M.; Khakoo, M. A.

    1998-05-01

    One cannot overstate the importance of ultraviolet (UV) lines of neutral atomic oxygen. For example, the atomic oxygen resonance transition at 130.4 nm is a prominent emission feature in the vacuum ultraviolet (VUV) spectrum of the Earth's aurora and dayglow as well as the atmospheres of Venus and Mars. In this poster, we present our measurements of the electron-impact emission cross sections of the 130.4 nm atomic oxygen feature from threshold to 100 eV impact energy. A high-density atomic oxygen beam, created by a microwave discharge source, was intersected at a right angle by a magnetically focused electron beam. A 0.2m UV spectrometer system was used in the present measurements. It consists of an electron-impact collision chamber in tandem with an UV spectrometer equipped with a CsI coated channel electron multiplier detector. Emitted photons corresponding to radiative decay of collisionally excited state of the 130.4 nm atomic oxygen feature were detected.

  7. Shock-induced polarized hydrogen emission lines in omicron Ceti

    NASA Astrophysics Data System (ADS)

    Fabas, N.; Lèbre, A.; Gillet, D.

    2012-05-01

    Hydrogen emission lines in Mira variable stars are a well-known phenomenon whose origin has been established as related to the propagation of radiative hypersonic shock waves throughout the stellar atmosphere. A polarimetric observation by McLean and Coyne [1] made on omicron Ceti (the prototype of Mira variable stars) has revealed the existence of linear polarization signatures associated with Balmer emission lines. However, the polarizing mechanism has never been properly explained so far. The study presented here is the first of its kind since it displays the results of a spectropolarimetric survey of omicron Ceti in the Balmer lines. The survey was made with the NARVAL spectropolarimeter (Telescope Bernard Lyot, France) in full Stokes mode. We did not just confirm the appearance of this polarization but we also and above all showed the temporal variation of the linear polarization in the lines. We conclude that the polarizing mechanism is definitely intrinsic to the shock wave propagation throughout the stellar atmosphere of Mira and give some leads about the nature of this mechanism.

  8. Sound Emission of Rotor Induced Deformations of Generator Casings

    NASA Technical Reports Server (NTRS)

    Polifke, W.; Mueller, B.; Yee, H. C.; Mansour, Nagi (Technical Monitor)

    2001-01-01

    The casing of large electrical generators can be deformed slightly by the rotor's magnetic field. The sound emission produced by these periodic deformations, which could possibly exceed guaranteed noise emission limits, is analysed analytically and numerically. From the deformation of the casing, the normal velocity of the generator's surface is computed. Taking into account the corresponding symmetry, an analytical solution for the acoustic pressure outside the generator is round in terms of the Hankel function of second order. The normal velocity or the generator surface provides the required boundary condition for the acoustic pressure and determines the magnitude of pressure oscillations. For the numerical simulation, the nonlinear 2D Euler equations are formulated In a perturbation form for low Mach number Computational Aeroacoustics (CAA). The spatial derivatives are discretized by the classical sixth-order central interior scheme and a third-order boundary scheme. Spurious high frequency oscillations are damped by a characteristic-based artificial compression method (ACM) filter. The time derivatives are approximated by the classical 4th-order Runge-Kutta method. The numerical results are In excellent agreement with the analytical solution.

  9. Prevention of thermally induced aggregation of IgG antibodies by noncovalent interaction with poly(acrylate) derivatives.

    PubMed

    Martin, Nicolas; Ma, Dewang; Herbet, Amaury; Boquet, Didier; Winnik, Françoise M; Tribet, Christophe

    2014-08-11

    Prevention of thermal aggregation of antibodies in aqueous solutions was achieved by noncovalent association with hydrophobically modified poly(acrylate) copolymers. Using a polyclonal immunoglobin G (IgG) as a model system for antibodies, we have studied the mechanisms by which this multidomain protein interacts with polyanions when incubated at physiological pH and at temperatures below and above the protein unfolding/denaturation temperature, in salt-free solutions and in 0.1 M NaCl solutions. The polyanions selected were sodium poly(acrylates), random copolymers of sodium acrylate and N-n-octadecylacrylamide (3 mol %), and a random copolymer of sodium acrylate, N-n-octylacrylamide (25 mol %), and N-isopropylacrylamide (40 mol %). They were derived from two poly(acrylic acid) parent chains of Mw 5000 and 150000 g·mol(-1). The IgG/polyanion interactions were monitored by static and dynamic light scattering, fluorescence correlation spectroscopy, capillary zone electrophoresis, and high sensitivity differential scanning calorimetry. In salt-free solutions, the hydrophilic PAA chains form complexes with IgG upon thermal unfolding of the protein (1:1 w/w IgG/PAA), but they do not interact with native IgG. The complexes exhibit a remarkable protective effect against IgG aggregation and maintain low aggregation numbers (average degree of oligomerization <12 at a temperature up to 85 °C). These interactions are screened in 0.1 M NaCl and, consequently, PAAs lose their protective effect. Amphiphilic PAA derivatives (1:1 w/w IgG/polymer) are able to prevent thermal aggregation (preserving IgG monomers) or retard aggregation of IgG (formation of oligomers and slow growth), revealing the importance of both hydrophobic interactions and modulation of the Coulomb interactions with or without NaCl present. This study leads the way toward the design of new formulations of therapeutic proteins using noncovalent 1:1 polymer/protein association that are transient and require a

  10. A closed-loop life cycle assessment of recycled aggregate concrete utilization in China.

    PubMed

    Ding, Tao; Xiao, Jianzhuang; Tam, Vivian W Y

    2016-10-01

    This paper studies the potential environmental impact of recycled coarse aggregate (RCA) for concrete production in China. According to the cradle-to-cradle theory, a closed-loop life cycle assessment (LCA) on recycled aggregate concrete (RAC) utilization in China with entire local life cycle inventory (LCI) is performed, regarding the environmental influence of cement content, aggregate production, transportation and waste landfilling. Special attention is paid on the primary resource and energy conservation, as well as climate protection induced by RAC applications. Environmental impact between natural aggregate concrete (NAC) and RAC are also compared. It is shown that cement proportion and transportation are the top two contributors for carbon dioxide (CO2) emissions and energy consumption for both NAC and RAC. Sensitivity analysis also proves that long delivery distances for natural coarse aggregate (NCA) leave a possible opportunity for lowering environmental impact of RAC in China. PMID:27297045

  11. Magnetic-Field-Induced Rotation of Polarized Light Emission from Monolayer WS2

    NASA Astrophysics Data System (ADS)

    Schmidt, Robert; Arora, Ashish; Plechinger, Gerd; Nagler, Philipp; Granados del Águila, Andrés; Ballottin, Mariana V.; Christianen, Peter C. M.; Michaelis de Vasconcellos, Steffen; Schüller, Christian; Korn, Tobias; Bratschitsch, Rudolf

    2016-08-01

    We control the linear polarization of emission from the coherently emitting K+ and K- valleys (valley coherence) in monolayer WS2 with an out-of-plane magnetic field of up to 25 T. The magnetic-field-induced valley Zeeman splitting causes a rotation of the emission polarization with respect to the excitation by up to 35° and reduces the polarization degree by up to 16%. We explain both of these phenomena with a model based on two noninteracting coherent two-level systems. We deduce that the coherent light emission from the valleys decays with a time constant of τc=260 fs .

  12. Time-dependent induced potentials in convoy electron emission

    NASA Astrophysics Data System (ADS)

    Acuña, G. P.; Miraglia, J. E.

    2006-11-01

    We study the time-dependent induced potentials at the convoy electron position due to the self-interaction with a metal surface and to the shock wave created by the positive hole (vacancy) left. The time evolution of these potentials are calculated using the linear response theory. Results obtained are fitted with simple functions. We find that those two potentials nearly cancel each other in the first ten atomic units of time.

  13. Oscillating load-induced acoustic emission in laboratory experiment

    USGS Publications Warehouse

    Ponomarev, Alexander; Lockner, David A.; Stroganova, S.; Stanchits, S.; Smirnov, V.

    2010-01-01

    Spatial and temporal patterns of acoustic emission (AE) were studied. A pre-fractured cylinder of granite was loaded in a triaxial machine at 160 MPa confining pressure until stick-slip events occurred. The experiments were conducted at a constant strain rate of 10−7 s−1 that was modulated by small-amplitude sinusoidal oscillations with periods of 175 and 570 seconds. Amplitude of the oscillations was a few percent of the total load and was intended to simulate periodic loading observed in nature (e.g., earth tides or other sources). An ultrasonic acquisition system with 13 piezosensors recorded acoustic emissions that were generated during deformation of the sample. We observed a correlation between AE response and sinusoidal loading. The effect was more pronounced for higher frequency of the modulating force. A time-space spectral analysis for a “point” process was used to investigate details of the periodic AE components. The main result of the study was the correlation of oscillations of acoustic activity synchronized with the applied oscillating load. The intensity of the correlated AE activity was most pronounced in the “aftershock” sequences that followed large-amplitude AE events. We suggest that this is due to the higher strain-sensitivity of the failure area when the sample is in a transient, unstable mode. We also found that the synchronization of AE activity with the oscillating external load nearly disappeared in the period immediately after the stick-slip events and gradually recovered with further loading.

  14. Identification of a novel platelet antagonist that binds to CLEC-2 and suppresses podoplanin-induced platelet aggregation and cancer metastasis

    PubMed Central

    Chang, Yu-Tsui; Lu, Meng-Hong; Huang, Tur-Fu; Chong, Kowit-Yu; Liao, Hsiang-Ruei; Cheng, Ju-Chien; Tseng, Ching-Ping

    2015-01-01

    Podoplanin (PDPN) enhances tumor metastases by eliciting tumor cell-induced platelet aggregation (TCIPA) through activation of platelet C-type lectin-like receptor 2 (CLEC-2). A novel and non-cytotoxic 5-nitrobenzoate compound 2CP was synthesized that specifically inhibited the PDPN/CLEC-2 interaction and TCIPA with no effect on platelet aggregation stimulated by other platelet agonists. 2CP possessed anti-cancer metastatic activity in vivo and augmented the therapeutic efficacy of cisplatin in the experimental animal model without causing a bleeding risk. Analysis of the molecular action of 2CP further revealed that Akt1/PDK1 and PKCμ were two alternative CLEC-2 signaling pathways mediating PDPN-induced platelet activation. 2CP directly bound to CLEC-2 and, by competing with the same binding pocket of PDPN in CLEC-2, inhibited PDPN-mediated platelet activation. This study provides evidence that 2CP is the first defined platelet antagonist with CLEC-2 binding activity. The augmentation in the therapeutic efficacy of cisplatin by 2CP suggests that a combination of a chemotherapeutic agent and a drug with anti-TCIPA activity such as 2CP may prove clinically effective. PMID:26528756

  15. Biological and biophysics aspects of metformin-induced effects: cortex mitochondrial dysfunction and promotion of toxic amyloid pre-fibrillar aggregates.

    PubMed

    Picone, Pasquale; Vilasi, Silvia; Librizzi, Fabio; Contardi, Marco; Nuzzo, Domenico; Caruana, Luca; Baldassano, Sara; Amato, Antonella; Mulè, Flavia; San Biagio, Pier Luigi; Giacomazza, Daniela; Di Carlo, Marta

    2016-08-01

    The onset of Alzheimer disease (AD) is influenced by several risk factors comprising diabetes. Within this context, antidiabetic drugs, including metformin, are investigated for their effect on AD. We report that in the C57B6/J mice, metformin is delivered to the brain where activates AMP-activated kinase (AMPK), its molecular target. This drug affects the levels of β-secretase (BACE1) and β-amyloid precursor protein (APP), promoting processing and aggregation of β-amyloid (Aβ), mainly in the cortex region. Moreover, metformin induces mitochondrial dysfunction and cell death by affecting the level and conformation of Translocase of the Outer Membrane 40 (TOM40), voltage-dependent anion-selective channels 1 (VDAC1) and hexokinase I (HKI), proteins involved in mitochondrial transport of molecules, including Aβ. By using biophysical techniques we found that metformin is able to directly interact with Aβ influencing its aggregation kinetics and features. These findings indicate that metformin induces different adverse effects, leading to an overall increase of the risk of AD onset. PMID:27509335

  16. Identification of a novel platelet antagonist that binds to CLEC-2 and suppresses podoplanin-induced platelet aggregation and cancer metastasis.

    PubMed

    Chang, Yao-Wen; Hsieh, Pei-Wen; Chang, Yu-Tsui; Lu, Meng-Hong; Huang, Tur-Fu; Chong, Kowit-Yu; Liao, Hsiang-Ruei; Cheng, Ju-Chien; Tseng, Ching-Ping

    2015-12-15

    Podoplanin (PDPN) enhances tumor metastases by eliciting tumor cell-induced platelet aggregation (TCIPA) through activation of platelet C-type lectin-like receptor 2 (CLEC-2). A novel and non-cytotoxic 5-nitrobenzoate compound 2CP was synthesized that specifically inhibited the PDPN/CLEC-2 interaction and TCIPA with no effect on platelet aggregation stimulated by other platelet agonists. 2CP possessed anti-cancer metastatic activity in vivo and augmented the therapeutic efficacy of cisplatin in the experimental animal model without causing a bleeding risk. Analysis of the molecular action of 2CP further revealed that Akt1/PDK1 and PKCμ were two alternative CLEC-2 signaling pathways mediating PDPN-induced platelet activation. 2CP directly bound to CLEC-2 and, by competing with the same binding pocket of PDPN in CLEC-2, inhibited PDPN-mediated platelet activation. This study provides evidence that 2CP is the first defined platelet antagonist with CLEC-2 binding activity. The augmentation in the therapeutic efficacy of cisplatin by 2CP suggests that a combination of a chemotherapeutic agent and a drug with anti-TCIPA activity such as 2CP may prove clinically effective. PMID:26528756

  17. Time-Resolved Aluminum Monoxide Emission Measurements in Laser-Induced Plasma

    NASA Astrophysics Data System (ADS)

    Surmick, David; Parigger, Christian

    2014-03-01

    Laser-induced plasmas are useful for diagnostic applications in a wide variety of fields. One application is the creation of laser-induced plasmas on the surface of an aluminum sample to simulate an aluminized flame. In this study, aluminum monoxide emissions are measured to characterize the temperature along the laser-induced plasma as a function of time delay following laser-induced optical breakdown. The breakdown event is achieved by focusing 1064 nanometer laser radiation from an Nd:YAG laser onto the surface of an aluminum sample. Light from the plasma is dispersed with the use of a Czerny-Turner spectrograph, and time resolved emission spectra are recorded with an intensified, gated detector. Temperatures are inferred from the diatomic molecular emissions by fitting the experimentally collected to theoretically calculated spectra using a Nelder-Mead algorithm. For computation of synthetic spectra we utilize accurate line strengths for selected AlO molecular bands. Atomic emissions from aluminum are also investigated in our study of laser-induced plasma.

  18. A specialist root herbivore reduces plant resistance and uses an induced plant volatile to aggregate in a density dependent manner

    Technology Transfer Automated Retrieval System (TEKTRAN)

    1. Leaf-herbivore attack often triggers induced resistance in plants. However, certain specialist herbivores can also take advantage of the induced metabolic changes. In some cases, they even manipulate plant resistance, leading to a phenomenon called induced susceptibility. Compared to above-ground...

  19. A mechanism for biologically induced iodine emissions from sea ice

    NASA Astrophysics Data System (ADS)

    Saiz-Lopez, A.; Blaszczak-Boxe, C. S.; Carpenter, L. J.

    2015-09-01

    Ground- and satellite-based measurements have reported high concentrations of iodine monoxide (IO) in coastal Antarctica. The sources of such a large iodine burden in the coastal Antarctic atmosphere remain unknown. We propose a mechanism for iodine release from sea ice based on the premise that micro-algae are the primary source of iodine emissions in this environment. The emissions are triggered by the biological production of iodide (I-) and hypoiodous acid (HOI) from micro-algae (contained within and underneath sea ice) and their diffusion through sea-ice brine channels, ultimately accumulating in a thin brine layer (BL) on the surface of sea ice. Prior to reaching the BL, the diffusion timescale of iodine within sea ice is depth-dependent. The BL is also a vital component of the proposed mechanism as it enhances the chemical kinetics of iodine-related reactions, which allows for the efficient release of iodine to the polar boundary layer. We suggest that iodine is released to the atmosphere via three possible pathways: (1) emitted from the BL and then transported throughout snow atop sea ice, from where it is released to the atmosphere; (2) released directly from the BL to the atmosphere in regions of sea ice that are not covered with snowpack; or (3) emitted to the atmosphere directly through fractures in the sea-ice pack. To investigate the proposed biology-ice-atmosphere coupling at coastal Antarctica we use a multiphase model that incorporates the transport of iodine species, via diffusion, at variable depths, within brine channels of sea ice. Model simulations were conducted to interpret observations of elevated springtime IO in the coastal Antarctic, around the Weddell Sea. While a lack of experimental and observational data adds uncertainty to the model predictions, the results nevertheless show that the levels of inorganic iodine (i.e. I2, IBr, ICl) released from sea ice through this mechanism could account for the observed IO concentrations during

  20. Poly(aryl ether) Dendrons with Monopyrrolotetrathiafulvalene Unit-Based Organogels exhibiting Gel-Induced Enhanced Emission (GIEE).

    PubMed

    Liu, Yucun; Lei, Wenwei; Chen, Tie; Jin, Longyi; Sun, Guangyan; Yin, Bingzhu

    2015-10-19

    A series of poly(aryl ether) dendrons with a monopyrrolo-tetrathiafulvalene unit linked through an acyl hydrazone linkage were designed and synthesized as low molecular mass organogelators (LMOGs). Two of the dendrons could gelate the aromatic solvents and some solvent mixtures, but the others could not gel all solvents tested except for n-pentanol. A subtle change on the molecular structure produces a great influence on the gelation behavior. Note that the dendrons could form the stable gel in the DMSO/water mixture without thermal treatment and could also form the binary gel with fullerene (C60 ) in toluene. The formed gels undergo a reversible gel-sol phase transition upon exposure to external stimuli, such as temperature and chemical oxidation/reduction. A number of experiments (SEM, FTIR spectroscopy, (1) H NMR spectroscopy, and UV/Vis absorption spectroscopy, and XRD) revealed that these dendritic molecules self-assembled into elastically interpenetrating one-dimensional fibrillar aggregates and maintain rectangular molecular-packing mode in organogels. The hydrogen bonding, π-π, and donor-acceptor interactions were found to be the main driving forces for formation of the gels. Moreover, the gel system exhibited gel-induced enhanced emission (GIEE) property in the visible region in spite of the absence of a conventional fluorophore unit and the fluorescence was effectively quenched by introduction of C60 . PMID:26471439

  1. An Interfacial Europium Complex on SiO2 Nanoparticles: Reduction-Induced Blue Emission System

    NASA Astrophysics Data System (ADS)

    Ishii, Ayumi; Hasegawa, Miki

    2015-06-01

    In this study, Eu-coated SiO2 nanoparticles have been prepared, consisting of an interfacial complex of Eu and 1,10-phenanthroline (phen) at the solid surfaces of the SiO2/Eu nanostructures. The as-prepared SiO2/Eu/phen nanoparticles exhibits sharp red emission via energy transfer from the phen to the EuIII. After sintering at 200 °C in air, the emission is tuned from red to blue. The blue emission is originated from EuII. This reduction-induced emissive phenomenon resulted from the electron-donating environment created by the surrounding phen and SiO2, which is the first reported fabrication of a stable EuII-based emissive material using mild conditions (reaction in air and at low temperature) and an organic-inorganic hybrid nanostructure. The existence of two different stable oxidation states with characteristic emissions, blue emissive EuII and red emissive EuIII, suggests significant potential applications as novel luminescent materials with inorganic-organic hybrid structures.

  2. An Interfacial Europium Complex on SiO2 Nanoparticles: Reduction-Induced Blue Emission System

    PubMed Central

    Ishii, Ayumi; Hasegawa, Miki

    2015-01-01

    In this study, Eu-coated SiO2 nanoparticles have been prepared, consisting of an interfacial complex of Eu and 1,10-phenanthroline (phen) at the solid surfaces of the SiO2/Eu nanostructures. The as-prepared SiO2/Eu/phen nanoparticles exhibits sharp red emission via energy transfer from the phen to the EuIII. After sintering at 200 °C in air, the emission is tuned from red to blue. The blue emission is originated from EuII. This reduction-induced emissive phenomenon resulted from the electron-donating environment created by the surrounding phen and SiO2, which is the first reported fabrication of a stable EuII-based emissive material using mild conditions (reaction in air and at low temperature) and an organic-inorganic hybrid nanostructure. The existence of two different stable oxidation states with characteristic emissions, blue emissive EuII and red emissive EuIII, suggests significant potential applications as novel luminescent materials with inorganic-organic hybrid structures. PMID:26122318

  3. Color difference threshold of chromostereopsis induced by flat display emission

    PubMed Central

    Ozolinsh, Maris; Muizniece, Kristine

    2015-01-01

    The study of chromostereopsis has gained attention in the backdrop of the use of computer displays in daily life. In this context, we analyze the illusory depth sense using planar color images presented on a computer screen. We determine the color difference threshold required to induce an illusory sense of depth psychometrically using a constant stimuli paradigm. Isoluminant stimuli are presented on a computer screen, which stimuli are aligned along the blue–red line in the computer display CIE xyY color space. Stereo disparity is generated by increasing the color difference between the central and surrounding areas of the stimuli with both areas consisting of random dots on a black background. The observed altering of illusory depth sense, thus also stereo disparity is validated using the “center-of-gravity” model. The induced illusory sense of the depth effect undergoes color reversal upon varying the binocular lateral eye pupil covering conditions (lateral or medial). Analysis of the retinal image point spread function for the display red and blue pixel radiation validates the altering of chromostereopsis retinal disparity achieved by increasing the color difference, and also the chromostereopsis color reversal caused by varying the eye pupil covering conditions. PMID:25883573

  4. ELECTRON-BEAM-INDUCED RADIO EMISSION FROM ULTRACOOL DWARFS

    SciTech Connect