Sample records for aggressive b-cell malignancy

  1. Bcl-2 antisense therapy in B-cell malignancies.

    PubMed

    Chanan-Khan, Asher

    2005-07-01

    Bcl-2 is an apoptosis regulating protein, overexpression of which is associated with chemotherapy resistant disease, aggressive clinical course, and poor survival in patients with B-cell lymphoproliferative disorders. Overexpression of Bcl-2 protein results in an aberrant intrinsic apoptotic pathway that confers a protective effect on malignant cells against a death signal (e.g., chemotherapy or radiotherapy). Downregulation of this oncoprotein, thus, represents a possible new way to target clinically aggressive disease. Preclinical studies have shown that this oncoprotein can be effectively decreased by Bcl-2 antisense in malignant lymphoid cells and can reverse chemotherapy resistance, as well as enhance the anti-apoptotic potential of both chemotherapeutic and biologic agents. Ongoing clinical trials are exploring the role of Bcl-2 downregulation with oblimersen (Bcl-2 antisense) in patients with non-Hodgkin's lymphoma, chronic lymphocytic leukemia and multiple myeloma. Early results from these studies are promising and support the proof of the principle. As these studies are completed and mature data emerges, the role of Bcl-2 antisense therapy in the treatment of B-cell malignancies will become clearer.

  2. Cutaneous double-hit B-cell lymphoma: an aggressive form of B-cell lymphoma with a propensity for cutaneous dissemination.

    PubMed

    Magro, Cynthia M; Wang, Xuan; Subramaniyam, Shivakumar; Darras, Natasha; Mathew, Susan

    2014-04-01

    Diffuse large cell B-cell lymphoma of the skin is most commonly represented by diffuse large cell variants of primary cutaneous follicle center cell lymphoma and the leg-type lymphoma. In a minority of cases, the infiltrates are an expression of stage 4 disease of established extracutaneous B-cell lymphoma. We describe 3 patients with an aggressive form of B-cell lymphoma secondarily involving the skin. Two of the patients were in the ninth decade of life, whereas 1 patient was 34 years of age. In the elderly patients, there was an antecedent and/or concurrent history of follicular lymphoma, whereas in the younger patient, the tumor was a de novo presentation of this aggressive form of lymphoma. The elderly patients succumbed to their disease within less than a year from the time of diagnosis, whereas 1 patient is alive but with persistent and progressive disease despite chemotherapeutic intervention. The infiltrates in all 3 cases were diffuse and composed of large malignant hematopoietic cells that exhibited a round nucleus with a finely dispersed chromatin. Phenotypically, the tumor cells were Bcl-2 and CD10 positive, whereas Bcl-6 and Mum-1 showed variable positivity. One case showed combined Mum-1 positivity along with an acute lymphoblastic lymphoma phenotype, including the absence of CD20 expression. In each case, there was a c-MYC and BCL2/IGH rearrangement diagnostic of double-hit lymphoma. In one case, there was an additional BCL6 rearrangement, defining what is in essence triple-hit lymphoma. In conclusion, double-hit lymphoma is an aggressive form of B-cell neoplasia resistant to standard chemotherapy regimens, which in many but not all cases represents tumor progression in the setting of a lower grade B-cell malignancy.

  3. Plasma cell leukaemia and other aggressive plasma cell malignancies

    PubMed Central

    Sher, Taimur; Miller, Kena C.; Deeb, George; Lee, Kelvin; Chanan-Khan, Asher

    2014-01-01

    Summary Extramedullary plasma cell cancers, such as plasma cell leukemia (PCL) and multiple extramedullary plasmacytomas (MEP) are very aggressive malignancies. These can be primary (de-novo) or secondary due to progressive prior multiple myeloma (MM). Recent reports suggest an increase in incidence of these disorders. Compared to MM, organ invasion is common in PCL, while soft tissue tumors involving the head, neck or paraspinal area are common sites for MEP. Markers of poor prognosis are frequently observed in these extramedullary forms of plasma cell cancers, and survival is significantly inferior compared to patients with MM. Conventional chemotherapeutic and radiotherapy approaches have been employed with variable results. Even high dose chemotherapy with autologous stem cell rescue has not been able to demonstrate consistent improvement in survival outcome. Although not specifically evaluated, novel anti-plasma cell agents, such as the proteasome inhibitor bortezomib, and immunomodulatory drugs, such as lenalidomide, appear to be active against these aggressive cancers. Clinical and translational research directed at improved understanding of disease biology and development of novel therapeutics is urgently needed. PMID:20701603

  4. Novel anti-CD3 chimeric antigen receptor targeting of aggressive T cell malignancies

    PubMed Central

    Firor, Amelia E.; Pinz, Kevin G.; Jares, Alexander; Liu, Hua; Salman, Huda; Golightly, Marc; Lan, Fengshuo; Jiang, Xun; Ma, Yupo

    2016-01-01

    Peripheral T-cell lymphomas (PTCLS) comprise a diverse group of difficult to treat, very aggressive non-Hodgkin's lymphomas (NHLS) with poor prognoses and dismal patient outlook. Despite the fact that PTCLs comprise the majority of T-cell malignancies, the standard of care is poorly established. Chimeric antigen receptor (CAR) immunotherapy has shown in B-cell malignancies to be an effective curative option and this extends promise into treating T-cell malignancies. Because PTCLS frequently develop from mature T-cells, CD3 is similarly strongly and uniformly expressed in many PTCL malignancies, with expression specific to the hematological compartment thus making it an attractive target for CAR design. We engineered a robust 3rd generation anti-CD3 CAR construct (CD3CAR) into an NK cell line (NK-92). We found that CD3CAR NK-92 cells specifically and potently lysed diverse CD3+ human PTCL primary samples as well as T-cell leukemia cells lines ex vivo. Furthermore, CD3CAR NK-92 cells effectively controlled and suppressed Jurkat tumor cell growth in vivo and significantly prolonged survival. In this study, we present the CAR directed targeting of a novel target - CD3 using CAR modified NK-92 cells with an emphasis on efficacy, specificity, and potential for new therapeutic approaches that could improve the current standard of care for PTCLs. PMID:27494836

  5. Rituximab in B-Cell Hematologic Malignancies: A Review of 20 Years of Clinical Experience.

    PubMed

    Salles, Gilles; Barrett, Martin; Foà, Robin; Maurer, Joerg; O'Brien, Susan; Valente, Nancy; Wenger, Michael; Maloney, David G

    2017-10-01

    Rituximab is a human/murine, chimeric anti-CD20 monoclonal antibody with established efficacy, and a favorable and well-defined safety profile in patients with various CD20-expressing lymphoid malignancies, including indolent and aggressive forms of B-cell non-Hodgkin lymphoma. Since its first approval 20 years ago, intravenously administered rituximab has revolutionized the treatment of B-cell malignancies and has become a standard component of care for follicular lymphoma, diffuse large B-cell lymphoma, chronic lymphocytic leukemia, and mantle cell lymphoma. For all of these diseases, clinical trials have demonstrated that rituximab not only prolongs the time to disease progression but also extends overall survival. Efficacy benefits have also been shown in patients with marginal zone lymphoma and in more aggressive diseases such as Burkitt lymphoma. Although the proven clinical efficacy and success of rituximab has led to the development of other anti-CD20 monoclonal antibodies in recent years (e.g., obinutuzumab, ofatumumab, veltuzumab, and ocrelizumab), rituximab is likely to maintain a position within the therapeutic armamentarium because it is well established with a long history of successful clinical use. Furthermore, a subcutaneous formulation of the drug has been approved both in the EU and in the USA for the treatment of B-cell malignancies. Using the wealth of data published on rituximab during the last two decades, we review the preclinical development of rituximab and the clinical experience gained in the treatment of hematologic B-cell malignancies, with a focus on the well-established intravenous route of administration. This article is a companion paper to A. Davies, et al., which is also published in this issue. F. Hoffmann-La Roche Ltd., Basel, Switzerland.

  6. Oncogenic Properties of Apoptotic Tumor Cells in Aggressive B Cell Lymphoma

    PubMed Central

    Ford, Catriona A.; Petrova, Sofia; Pound, John D.; Voss, Jorine J.L.P.; Melville, Lynsey; Paterson, Margaret; Farnworth, Sarah L.; Gallimore, Awen M.; Cuff, Simone; Wheadon, Helen; Dobbin, Edwina; Ogden, Carol Anne; Dumitriu, Ingrid E.; Dunbar, Donald R.; Murray, Paul G.; Ruckerl, Dominik; Allen, Judith E.; Hume, David A.; van Rooijen, Nico; Goodlad, John R.; Freeman, Tom C.; Gregory, Christopher D.

    2015-01-01

    Summary Background Cells undergoing apoptosis are known to modulate their tissue microenvironments. By acting on phagocytes, notably macrophages, apoptotic cells inhibit immunological and inflammatory responses and promote trophic signaling pathways. Paradoxically, because of their potential to cause death of tumor cells and thereby militate against malignant disease progression, both apoptosis and tumor-associated macrophages (TAMs) are often associated with poor prognosis in cancer. We hypothesized that, in progression of malignant disease, constitutive loss of a fraction of the tumor cell population through apoptosis could yield tumor-promoting effects. Results Here, we demonstrate that apoptotic tumor cells promote coordinated tumor growth, angiogenesis, and accumulation of TAMs in aggressive B cell lymphomas. Through unbiased “in situ transcriptomics” analysis—gene expression profiling of laser-captured TAMs to establish their activation signature in situ—we show that these cells are activated to signal via multiple tumor-promoting reparatory, trophic, angiogenic, tissue remodeling, and anti-inflammatory pathways. Our results also suggest that apoptotic lymphoma cells help drive this signature. Furthermore, we demonstrate that, upon induction of apoptosis, lymphoma cells not only activate expression of the tumor-promoting matrix metalloproteinases MMP2 and MMP12 in macrophages but also express and process these MMPs directly. Finally, using a model of malignant melanoma, we show that the oncogenic potential of apoptotic tumor cells extends beyond lymphoma. Conclusions In addition to its profound tumor-suppressive role, apoptosis can potentiate cancer progression. These results have important implications for understanding the fundamental biology of cell death, its roles in malignant disease, and the broader consequences of apoptosis-inducing anti-cancer therapy. PMID:25702581

  7. Oncogenic properties of apoptotic tumor cells in aggressive B cell lymphoma.

    PubMed

    Ford, Catriona A; Petrova, Sofia; Pound, John D; Voss, Jorine J L P; Melville, Lynsey; Paterson, Margaret; Farnworth, Sarah L; Gallimore, Awen M; Cuff, Simone; Wheadon, Helen; Dobbin, Edwina; Ogden, Carol Anne; Dumitriu, Ingrid E; Dunbar, Donald R; Murray, Paul G; Ruckerl, Dominik; Allen, Judith E; Hume, David A; van Rooijen, Nico; Goodlad, John R; Freeman, Tom C; Gregory, Christopher D

    2015-03-02

    Cells undergoing apoptosis are known to modulate their tissue microenvironments. By acting on phagocytes, notably macrophages, apoptotic cells inhibit immunological and inflammatory responses and promote trophic signaling pathways. Paradoxically, because of their potential to cause death of tumor cells and thereby militate against malignant disease progression, both apoptosis and tumor-associated macrophages (TAMs) are often associated with poor prognosis in cancer. We hypothesized that, in progression of malignant disease, constitutive loss of a fraction of the tumor cell population through apoptosis could yield tumor-promoting effects. Here, we demonstrate that apoptotic tumor cells promote coordinated tumor growth, angiogenesis, and accumulation of TAMs in aggressive B cell lymphomas. Through unbiased "in situ transcriptomics" analysis-gene expression profiling of laser-captured TAMs to establish their activation signature in situ-we show that these cells are activated to signal via multiple tumor-promoting reparatory, trophic, angiogenic, tissue remodeling, and anti-inflammatory pathways. Our results also suggest that apoptotic lymphoma cells help drive this signature. Furthermore, we demonstrate that, upon induction of apoptosis, lymphoma cells not only activate expression of the tumor-promoting matrix metalloproteinases MMP2 and MMP12 in macrophages but also express and process these MMPs directly. Finally, using a model of malignant melanoma, we show that the oncogenic potential of apoptotic tumor cells extends beyond lymphoma. In addition to its profound tumor-suppressive role, apoptosis can potentiate cancer progression. These results have important implications for understanding the fundamental biology of cell death, its roles in malignant disease, and the broader consequences of apoptosis-inducing anti-cancer therapy. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Adoptive immunotherapy utilizing anti-CD19 chimeric antigen receptor T-cells for B-cell malignancies.

    PubMed

    Oh, Iekuni; Oh, Yukiko; Ohmine, Ken

    2016-01-01

    Genetically modified T-cells with forced expression of anti-CD19 chimeric antigen receptor (CD19 CAR) have demonstrated promising clinical results for relapsed and refractory B cell malignancies in early clinical trial settings. The first beneficial tumor regressions were identified among approximately half of CLL patients in 2011. Similarly, CD19 CAR T-cells achieved remissions in about 80% of aggressive B-cell lymphomas in 2012. Furthermore, in 2013 this cellular therapy showed an extremely high rate of efficacy against refractory CD19 positive acute lymphoid leukemia, which had been regarded as the most difficult to treat hematologic disease. Recently, despite the absence of CD19 expression by neoplastic plasma cells, patients with refractory multiple myeloma achieved stringent complete remission after this therapy coupled with high dose chemotherapy and autologous stem cell transplantation. However, there are significant toxicities. Cytokine releasing syndrome and neurotoxicity are recognized as life-threatening adverse events. Although phase I/II clinical trials have just started in Japan, given the exciting results obtained to date, this cellular therapy is expected to be a novel breakthrough immunotherapy for treating refractory B-cell malignancies.

  9. Aggressive B-cell lymphomas in patients with myelofibrosis receiving JAK1/2 inhibitor therapy.

    PubMed

    Porpaczy, Edit; Tripolt, Sabrina; Hoelbl-Kovacic, Andrea; Gisslinger, Bettina; Bago-Horvath, Zsuzsanna; Casanova-Hevia, Emilio; Clappier, Emmanuelle; Decker, Thomas; Fajmann, Sabine; Fux, Daniela A; Greiner, Georg; Gueltekin, Sinan; Heller, Gerwin; Herkner, Harald; Hoermann, Gregor; Kiladjian, Jean-Jacques; Kolbe, Thomas; Kornauth, Christoph; Krauth, Maria-Theresa; Kralovics, Robert; Muellauer, Leonhard; Mueller, Mathias; Prchal-Murphy, Michaela; Putz, Eva Maria; Raffoux, Emmanuel; Schiefer, Ana-Iris; Schmetterer, Klaus; Schneckenleithner, Christine; Simonitsch-Klupp, Ingrid; Skrabs, Cathrin; Sperr, Wolfgang R; Staber, Philipp Bernhard; Strobl, Birgit; Valent, Peter; Jaeger, Ulrich; Gisslinger, Heinz; Sexl, Veronika

    2018-06-14

    Inhibition of Janus-kinase 1/2 (JAK1/2) is a mainstay to treat myeloproliferative neoplasms (MPN). Sporadic observations reported the co-incidence of B-cell non-Hodgkin lymphomas during treatment of MPN with JAK1/2 inhibitors. We assessed 626 MPN patients including 69 with myelofibrosis receiving JAK1/2 inhibitors for lymphoma development. B-cell lymphomas evolved in 4/69 patients (5.8%) upon JAK1/2 inhibition compared to 2/557 (0.36%) with conventional treatment (16-fold increased risk). A similar 15-fold increase was observed in an independent cohort of 929 MPN patients. Considering primary myelofibrosis only (N=216), 3 lymphomas were observed in 31 inhibitor-treated patients (9.7%) versus 1/185 controls (0.54%). Lymphomas were of aggressive B-cell type, extra-nodal or leukemic with high MYC expression in the absence of JAK2 V617F or other MPN-associated mutations. Median time from initiation of inhibitor therapy to lymphoma diagnosis was 25 months. Clonal immunoglobulin gene rearrangements were already detected in the bone marrow during myelofibrosis in 16.3% of patients. Lymphomas occurring during JAK1/2 inhibitor treatment were preceded by a pre-existing B-cell clone in all 3 patients tested. Sequencing verified clonal identity in 2 patients. The effects of JAK1/2 inhibition were mirrored in Stat1 -/- mice: 16/24 mice developed a spontaneous myeloid hyperplasia with the concomitant presence of aberrant B-cells. Transplantations of bone marrow from diseased mice unmasked the outgrowth of a malignant B-cell clone evolving into aggressive B-cell leukemia-lymphoma. We conclude that JAK/STAT1 pathway inhibition in myelofibrosis is associated with an elevated frequency of aggressive B-cell lymphomas. Detection of a pre-existing B-cell clone may identify individuals at risk. Copyright © 2018 American Society of Hematology.

  10. B-Cell Hematologic Malignancy Vaccination Registry

    ClinicalTrials.gov

    2017-12-29

    Monoclonal Gammopathy of Undetermined Significance; Multiple Myeloma; Waldenstrom Macroglobulinemia; Lymphocytosis; Lymphoma, Non-Hodgkin; B-Cell Chronic Lymphocytic Leukemia; Hematological Malignancies

  11. Radioimmunotherapy for treatment of B-cell lymphomas and other hematologic malignancies.

    PubMed

    Park, Steven I; Press, Oliver W

    2007-11-01

    Radioimmunotherapy has emerged as one of the most promising treatment options for hematologic malignancies. This review will present the latest information on radioimmunotherapy for treatment of hematologic malignancies in various clinical settings and assess its long-term safety profile. Recent data suggest that radioimmunotherapy with 131I-tositumomab or 90Y-ibritumomab tiuxetan not only induces high response rates but also results in durable remissions in patients with relapsed or refractory indolent non-Hodgkin's lymphomas. Even more notable response rates have been observed when radioimmunotherapy is used as front-line treatment in patients with indolent non-Hodgkin's lymphomas. The use of radioimmunotherapy has been evaluated in the treatment of aggressive lymphomas with promising results, but it remains investigational. Standard doses of radioimmunotherapy given as a conditioning regimen for hematopoietic stem-cell transplant or myeloablative doses of radioimmunotherapy given in conjunction with stem-cell support have yielded encouraging outcomes with durable remissions and a low incidence of treatment-related mortality. The safety and efficacy of radioimmunotherapy has been demonstrated for patients with B-cell lymphomas and other hematologic malignancies in various clinical settings. A number of randomized phase III clinical trials are currently underway to further define radioimmunotherapy's role in the treatment of lymphomas.

  12. Cell of origin associated classification of B-cell malignancies by gene signatures of the normal B-cell hierarchy.

    PubMed

    Johnsen, Hans Erik; Bergkvist, Kim Steve; Schmitz, Alexander; Kjeldsen, Malene Krag; Hansen, Steen Møller; Gaihede, Michael; Nørgaard, Martin Agge; Bæch, John; Grønholdt, Marie-Louise; Jensen, Frank Svendsen; Johansen, Preben; Bødker, Julie Støve; Bøgsted, Martin; Dybkær, Karen

    2014-06-01

    Recent findings have suggested biological classification of B-cell malignancies as exemplified by the "activated B-cell-like" (ABC), the "germinal-center B-cell-like" (GCB) and primary mediastinal B-cell lymphoma (PMBL) subtypes of diffuse large B-cell lymphoma and "recurrent translocation and cyclin D" (TC) classification of multiple myeloma. Biological classification of B-cell derived cancers may be refined by a direct and systematic strategy where identification and characterization of normal B-cell differentiation subsets are used to define the cancer cell of origin phenotype. Here we propose a strategy combining multiparametric flow cytometry, global gene expression profiling and biostatistical modeling to generate B-cell subset specific gene signatures from sorted normal human immature, naive, germinal centrocytes and centroblasts, post-germinal memory B-cells, plasmablasts and plasma cells from available lymphoid tissues including lymph nodes, tonsils, thymus, peripheral blood and bone marrow. This strategy will provide an accurate image of the stage of differentiation, which prospectively can be used to classify any B-cell malignancy and eventually purify tumor cells. This report briefly describes the current models of the normal B-cell subset differentiation in multiple tissues and the pathogenesis of malignancies originating from the normal germinal B-cell hierarchy.

  13. Bcl-2 antisense therapy in B-cell malignant proliferative disorders.

    PubMed

    Chanan-Khan, Asher; Czuczman, Myron S

    2004-08-01

    Overexpression of Bcl-2 oncogene has been clinically associated with an aggressive clinical course, chemotherapy and radiotherapy resistance, and poor survival in patients with malignant B-cell disorders. Patients with relapsed or refractory chronic lymphocytic leukemia, multiple myeloma, or non-Hodgkin's lymphoma have limited therapeutic options. Preclinical and early clinical data have shown that Bcl-2 oncoprotein can be decreased by Bcl-2 antisense therapy. Also, downregulation of Bcl-2 protein can result in reversal of chemotherapy resistance and improved antitumor activity of biologic agents. Various clinical trials are evaluating the role of targeting Bcl-2 as a mechanism to enhance the antitumor potential of chemotherapy and immunotherapy. Early results from these clinical studies are encouraging and confirm the proof of principle for antisense therapy. As current data mature, these trials will hopefully validate preliminary results and establish Bcl-2 antisense as an important addition to the current armamentarium used in the treatment of patients with B-cell neoplasms.

  14. Biology and clinical application of CAR T Cells for B cell malignancies

    PubMed Central

    Davila, Marco L; Sadelain, Michel

    2017-01-01

    Chimeric antigen receptor (CAR)-modified T cells have generated broad interest in oncology following a series of dramatic clinical successes in patients with chemorefractory B cell malignancies. CAR therapy now appears to be on the cusp of regulatory approval as a cell-based immunotherapy. We review here the T cell biology and cell engineering research that led to the development of second generation CARs, the selection of CD19 as a CAR target, and the preclinical studies in animal models that laid the foundation for clinical trials targeting CD19+ malignancies. We further summarize the status of CD19 CAR clinical therapy for non-Hodgkin lymphoma (NHL) and B cell acute lymphoblastic leukemia (B-ALL), including their efficacy, toxicities (cytokine release syndrome, neurotoxicity and B cell aplasia) and current management in humans. We conclude with an overview of recent pre-clinical advances in CAR design that argues favorably for the advancement of CAR therapy to tackle other hematological malignancies as well as solid tumors. PMID:27262700

  15. Management of aggressive B cell NHLs in the AYA population: an adult versus pediatric perspective.

    PubMed

    Dunleavy, Kieron; Gross, Thomas G

    2018-06-12

    The adolescents and young adult (AYA) population represent a group where mature B-cell lymphomas constitute a significant proportion of the overall malignancies that occur. Among these are aggressive B-cell non-Hodgkin lymphomas (NHLs) which are predominantly diffuse large B-cell lymphoma (DLBCL), primary mediastinal B-cell lymphoma (PMBCL) and Burkitt lymphoma (BL). For the most part, there is remarkable divide in how pediatric/adolescent patients (under the age of 18 years) with lymphoma are treated versus their young adult counterparts and molecular data are lacking, especially in pediatric and AYA series. The outcome for AYA patients with cancers has historically been inferior to that of children or older adults, highlighting the necessity to focus on this population. This review discusses the pediatric versus adult perspective in terms of how these diseases are understood and approached and emphasizes the importance of collaborative efforts in both developing consensus for treatment of this population and planning future research endeavors. Copyright © 2018 American Society of Hematology.

  16. Biology and clinical application of CAR T cells for B cell malignancies.

    PubMed

    Davila, Marco L; Sadelain, Michel

    2016-07-01

    Chimeric antigen receptor (CAR)-modified T cells have generated broad interest in oncology following a series of dramatic clinical successes in patients with chemorefractory B cell malignancies. CAR therapy now appears to be on the cusp of regulatory approval as a cell-based immunotherapy. We review here the T cell biology and cell engineering research that led to the development of second generation CARs, the selection of CD19 as a CAR target, and the preclinical studies in animal models that laid the foundation for clinical trials targeting CD19+ malignancies. We further summarize the status of CD19 CAR clinical therapy for non-Hodgkin lymphoma and B cell acute lymphoblastic leukemia, including their efficacy, toxicities (cytokine release syndrome, neurotoxicity and B cell aplasia) and current management in humans. We conclude with an overview of recent pre-clinical advances in CAR design that argues favorably for the advancement of CAR therapy to tackle other hematological malignancies as well as solid tumors.

  17. Malignant granular cell tumors: the role of electron microscopy in the definitive diagnosis of an extremely aggressive soft tissue neoplasm.

    PubMed

    Knowles, Kurt J; Al-Delfi, Firas; Abdulsattar, Jehan; Lacour, Robin; Black, Destin; Chaudhery, Shabnum; Turbat-Herrera, Elba A

    2018-01-01

    Granular cell tumors (GCTs) are rare soft tissue neoplasms which may be multicentric. The vast majority are benign, however approximately 100 malignant GCTs have been reported, with only 8 originating in the vulva. Malignant GCTs are very aggressive with very poor survival rates. As the diagnosis of malignant GCT carries an extremely poor prognosis, the utilization of EM ensures that the most accurate diagnosis possible can be rendered.

  18. Long non-coding RNAs in B-cell malignancies: a comprehensive overview

    PubMed Central

    Taiana, Elisa; Neri, Antonino

    2017-01-01

    B-cell malignancies constitute a large part of hematological neoplasias. They represent a heterogeneous group of diseases, including Hodgkin's lymphoma, most non-Hodgkin's lymphomas (NHL), some leukemias and myelomas. B-cell malignancies reflect defined stages of normal B-cell differentiation and this represents the major basis for their classification. Long non-coding RNAs (lncRNAs) are non-protein-coding transcripts longer than 200 nucleotides, for which many recent studies have demonstrated a function in regulating gene expression, cell biology and carcinogenesis. Deregulated expression levels of lncRNAs have been observed in various types of cancers including hematological malignancies. The involvement of lncRNAs in cancer initiation and progression and their attractive features both as biomarker and for therapeutic research are becoming increasingly evident. In this review, we summarize the recent literature to highlight the status of the knowledge of lncRNAs role in normal B-cell development and in the pathogenesis of B-cell tumors. PMID:28947998

  19. Hemophagocytic lymphohistiocytosis secondary to T-cell/histiocyte-rich large B-cell lymphoma

    PubMed Central

    Devitt, Katherine; Cerny, Jan; Switzer, Bradley; Ramanathan, Muthalagu; Nath, Rajneesh; Yu, Hongbo; Woda, Bruce A.; Chen, Benjamin J.

    2014-01-01

    Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening clinical syndrome characterized by dysregulation of the immune system. Impaired function of cytotoxic T cells and natural killer cells is often seen, and T-cell malignancies represent most cases of lymphoma-associated HLH. HLH associated with B-cell lymphoma is rare. We describe a case of a 30-year-old man who presented with fever, splenomegaly, and hyperferritinemia. Bone marrow biopsy revealed T-cell/histiocyte-rich large B-cell lymphoma, a rare, aggressive B-cell malignancy. This case highlights the interplay between a pro-inflammatory cytokine microenvironment and tumor-mediated immune suppression, and addresses the importance of accurately diagnosing these entities for appropriate clinical management. PMID:24955327

  20. Hemophagocytic lymphohistiocytosis secondary to T-cell/histiocyte-rich large B-cell lymphoma.

    PubMed

    Devitt, Katherine; Cerny, Jan; Switzer, Bradley; Ramanathan, Muthalagu; Nath, Rajneesh; Yu, Hongbo; Woda, Bruce A; Chen, Benjamin J

    2014-01-01

    Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening clinical syndrome characterized by dysregulation of the immune system. Impaired function of cytotoxic T cells and natural killer cells is often seen, and T-cell malignancies represent most cases of lymphoma-associated HLH. HLH associated with B-cell lymphoma is rare. We describe a case of a 30-year-old man who presented with fever, splenomegaly, and hyperferritinemia. Bone marrow biopsy revealed T-cell/histiocyte-rich large B-cell lymphoma, a rare, aggressive B-cell malignancy. This case highlights the interplay between a pro-inflammatory cytokine microenvironment and tumor-mediated immune suppression, and addresses the importance of accurately diagnosing these entities for appropriate clinical management.

  1. Adoptive immunotherapy for B-cell malignancies with autologous chimeric antigen receptor modified tumor targeted T cells.

    PubMed

    Park, Jae H; Brentjens, Renier J

    2010-04-01

    Chemotherapy-resistant B-cell hematologic malignancies may be cured with allogeneic hematopoietic stem cell transplantation (HSCT), demonstrating the potential susceptibility of these tumors to donor T-cell mediated immune responses. However, high rates of transplant-related morbidity and mortality limit this approach. For this reason, there is an urgent need for less-toxic forms of immune-based cellular therapy to treat these malignancies. Adoptive transfer of autologous T cells genetically modified to express chimeric antigen receptors (CARs) targeted to specific tumor-associated antigens represents an attractive means of overcoming the limitations of conventional HSCT. To this end, investigators have generated CARs targeted to various antigens expressed by B-cell malignancies, optimized the design of these CARs to enhance receptor mediated T cell signaling, and demonstrated significant anti-tumor efficacy of the resulting CAR modified T cells both in vitro and in vivo mouse tumor models. These encouraging preclinical data have justified the translation of this approach to the clinical setting with currently 12 open clinical trials and one completed clinical trial treating various B-cell malignancies utilizing CAR modified T cells targeted to either the CD19 or CD20 B-cell specific antigens.

  2. Cell-type-specific role of ΔFosB in nucleus accumbens in modulating inter-male aggression.

    PubMed

    Aleyasin, Hossein; Flanigan, Meghan E; Golden, Sam A; Takahashi, Aki; Menard, Caroline; Pfau, Madeline L; Multer, Jacob; Pina, Jacqueline; McCabe, Kathryn A; Bhatti, Naemal; Hodes, Georgia E; Heshmati, Mitra; Neve, Rachael L; Nestler, Eric J; Heller, Elizabeth A; Russo, Scott J

    2018-06-11

    A growing number of studies implicate the brain's reward circuitry in aggressive behavior. However, the cellular and molecular mechanisms within brain reward regions that modulate the intensity of aggression as well as motivation for it have been underexplored. Here, we investigate the cell-type-specific influence of ΔFosB, a transcription factor known to regulate a range of reward and motivated behaviors, acting in the nucleus accumbens (NAc)-a key reward region-in male aggression in mice. We show that ΔFosB is specifically increased in dopamine D1 receptor (Drd1) expressing medium spiny neurons (D1-MSNs) in NAc after repeated aggressive encounters. Viral-mediated induction of ΔFosB selectively in D1-MSNs of NAc intensifies aggressive behavior, without affecting the preference for the aggression-paired context in a conditioned place preference (CPP) assay. In contrast, ΔFosB induction selectively in D2-MSNs reduces the time spent exploring the aggression-paired context during CPP without affecting the intensity of aggression per se. These data strongly support a dissociable cell-type-specific role for ΔFosB in the NAc in modulating aggression and aggression reward. Significance Statement: Aggressive behavior is associated with several neuropsychiatric disorders and can be disruptive for the individuals as well as their victims. Studies have shown a positive reinforcement mechanism underlying aggressive behavior that shares many common features with drug addiction. Here, we explore the cell-type-specific role of the addiction-associated transcription factor ΔFosB in the nucleus accumbens (NAc) in aggression. We found that ΔFosB expression promotes aggressive behavior, effects that are dissociable from its effects on aggression reward. This finding is a significant first step in identifying therapeutic targets for the reduction of aggressive behavior across a range of neuropsychiatric illnesses. Copyright © 2018 the authors.

  3. VpreB gene expression in hematopoietic malignancies: a lineage- and stage-restricted marker for B-cell precursor leukemias.

    PubMed

    Bauer, S R; Kubagawa, H; Maclennan, I; Melchers, F

    1991-09-15

    We show here that analysis of VpreB gene transcription can be a specific way to identify acute leukemias of cells at very early stages of B-cell development. Northern blot analysis of RNAs from 63 leukemia samples showed that VpreB RNA was present in malignancies of precursor B cells, the expression being a feature of both common acute lymphoblastic leukemia (ALL) (CD10+) and null ALL (CD10-). It was absent from malignancies of mature B cells (surface Ig positive), from acute leukemias of the T-cell lineage and granulocyte-macrophage lineages, and from normal tonsil B and T lymphocytes. Chronic myeloid leukemia blast crises of the B-precursor-cell type expressed the VpreB gene while myeloid blast crises did not. VpreB RNA was also expressed in the neoplastic cells of one of three patients with acute undifferentiated leukemias. These data show that VpreB RNA expression is a marker of the malignant forms of precursor B cells, and that it appears at least as early as cytoplasmic CD22 and CD19 in tumors of the B-cell lineage.

  4. Targeted PET imaging strategy to differentiate malignant from inflamed lymph nodes in diffuse large B-cell lymphoma

    PubMed Central

    Salloum, Darin; Carney, Brandon; Brand, Christian; Kossatz, Susanne; Sadique, Ahmad; Lewis, Jason S.; Weber, Wolfgang A.; Wendel, Hans-Guido; Reiner, Thomas

    2017-01-01

    Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma in adults. DLBCL exhibits highly aggressive and systemic progression into multiple tissues in patients, particularly in lymph nodes. Whole-body 18F-fluodeoxyglucose positron emission tomography ([18F]FDG-PET) imaging has an essential role in diagnosing DLBCL in the clinic; however, [18F]FDG-PET often faces difficulty in differentiating malignant tissues from certain nonmalignant tissues with high glucose uptake. We have developed a PET imaging strategy for DLBCL that targets poly[ADP ribose] polymerase 1 (PARP1), the expression of which has been found to be much higher in DLBCL than in healthy tissues. In a syngeneic DLBCL mouse model, this PARP1-targeted PET imaging approach allowed us to discriminate between malignant and inflamed lymph nodes, whereas [18F]FDG-PET failed to do so. Our PARP1-targeted PET imaging approach may be an attractive addition to the current PET imaging strategy to differentiate inflammation from malignancy in DLBCL. PMID:28827325

  5. IDH1(R132H) mutation causes a less aggressive phenotype and radiosensitizes human malignant glioma cells independent of the oxygenation status.

    PubMed

    Kessler, Jacqueline; Güttler, Antje; Wichmann, Henri; Rot, Swetlana; Kappler, Matthias; Bache, Matthias; Vordermark, Dirk

    2015-09-01

    In malignant glioma the presence of the IDH1 mutation (IDH1(R132H)) is associated with better clinical outcome. However, it is unclear whether IDH1 mutation is associated with a less aggressive phenotype or directly linked to increased sensitivity to radiotherapy. We determined the influence of IDH1(R132H) mutant protein on proliferation and growth in 3D culture, migration, cell survival and radiosensitivity in vitro under normoxia (21% O2) and hypoxia (<1% O2) in a panel of human malignant glioma cell lines (U-251MG, U-343MG, LN-229) with stable overexpression of wild-type (IDH1(wt)) and mutated IDH1 (IDH1(R132H)). Overexpression of IDH1(R132H) in glioma cells resulted in slightly decreased cell proliferation, considerably reduced cell migration and caused differences in growth properties in 3D spheroid cultures. Furthermore, IDH1(R132H)-positive cells consistently demonstrated an increased radiosensitivity in human malignant glioma cells U-251MG (DMF10: 1.52, p<0.01 and 1.42, p<0.01), U-343MG (DMF10: 1.78, p<0.01 and 1.75, p<0.01) and LN-229 (DMF10: 1.41, p<0.05 and 1.68, p<0.01) under normoxia and hypoxia, respectively. Our data indicate that IDH1(R132H) mutation causes both a less aggressive biological behavior and direct radiosensitization of human malignant glioma cells. Targeting IDH1 appears to be an attractive approach in combination with radiotherapy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Absence of tissue factor is characteristic of lymphoid malignancies of both T- and B-cell origin

    PubMed Central

    Cesarman-Maus, Gabriela; Braggio, Esteban; Lome-Maldonado, Carmen; Morales-Leyte, Ana Lilia; Fonseca, Rafael

    2014-01-01

    Summary Background Thrombosis is a marker of poor prognosis in individuals with solid tumors. The expression of tissue factor (TF) on the cell surface membrane of malignant cells is a pivotal molecular link between activation of coagulation, angiogenesis, metastasis, aggressive tumor behavior and poor survival. Interestingly, thrombosis is associated with shortened survival in solid, but not in lymphoid neoplasias. Objectives We sought to study whether the lack of impact of thrombosis on survival in lymphoid neoplasias could be due to a lack of tumor-derived TF expression. Methods We analyzed TF gene (F3) expression in lymphoid (N=114), myeloid (N=49) and solid tumor (N=856) cell lines using the publicly available dataset from the Broad-Novartis Cancer Cell Line Encyclopedia (http://www.broadinstitute.org/ccle/home), and in 90 patient-derived lymphoma samples. TF protein expression was studied by immunohistochemistry (IHC). Results In sharp contrast to wide F3 expression in solid tumors (74.2%), F3 was absent in all low and high grade T- and B-cell lymphomas, and in most myeloid tumors, except for select acute myeloid leukemias with monocytic component. IHC confirmed the absence of TF protein in all indolent and high-grade B-cell (0/90) and T-cell (0/20) lymphomas, and acute leukemias (0/11). Conclusions We show that TF in lymphomas does not derive from the malignant cells, since these do not express either F3 or TF protein. Therefore, it is unlikely that thrombosis in patients with lymphoid neoplasms is secondary to tumor-derived tissue factor. PMID:24491425

  7. Development of the Bruton's tyrosine kinase inhibitor ibrutinib for B cell malignancies.

    PubMed

    Gayko, Urte; Fung, Mann; Clow, Fong; Sun, Steven; Faust, Elizabeth; Price, Samiyeh; James, Danelle; Doyle, Margaret; Bari, Samina; Zhuang, Sen Hong

    2015-11-01

    Ibrutinib is a first-in-class oral covalent inhibitor of Bruton's tyrosine kinase that has demonstrated clinical benefit for many patients with B cell malignancies. Positive results in initial trials led the U.S. Food and Drug Administration to grant ibrutinib three breakthrough therapy designations for mantle cell lymphoma (MCL), del17p chronic lymphocytic leukemia (CLL), and Waldenström's macroglobulinemia (WM). Ibrutinib was approved for these three cancers within 14 months of the original U.S. approval. Additionally, ibrutinib is approved for patient subsets with MCL and/or CLL in >45 other countries. Via a unique mechanism of action, ibrutinib inhibits B cell signaling pathways that regulate the survival, proliferation, adhesion, and homing of cancerous cells. This marks a paradigm shift from the conventional cytotoxic chemotherapy approach to treating B cell malignancies. Ibrutinib continues to be evaluated across a range of B cell malignancies, either as single-agent therapy or in combination with other therapies, and continues to transform the lives of these patients. © 2015 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.

  8. 3-Deazaneplanocin A suppresses aggressive phenotype-related gene expression in an oral squamous cell carcinoma cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatta, Mitsutoki, E-mail: hatta@college.fdcnet.ac.jp; Naganuma, Kaori; Kato, Kenichi

    In tumor tissues, alterations of gene expression caused by aberrant epigenetic modifications confer phenotypic diversity on malignant cells. Although 3-deazaneplanocin A (DZNep) has been shown to reactivate tumor suppressor genes in several cancer cells, it remains unclear whether DZNep attenuates the malignant phenotypes of oral squamous cell carcinoma (OSCC) cells. In this study, we investigated the effect of DZNep on the expression of genes related to aggressive phenotypes, such as epithelial–mesenchymal transition, in OSCC cells. We found that DZNep reduced the cellular levels of polycomb group proteins (EZH2, SUZ12, BMI1, and RING1A) and the associated trimethylation of Lys27 on histonemore » H3 and monoubiquitination of Lys119 on histone H2A in the poorly differentiated OSCC cell line SAS. Immunocytochemical staining demonstrated that DZNep induced the reorganization of filamentous actin and the membrane localization of E-cadherin associated with cell–cell adhesions. We also found an inhibitory effect of DZNep on cell proliferation using a WST assay. Finally, quantitative RT-PCR analysis demonstrated that genes involved in the aggressive phenotypes (TWIST2, EGFR, ACTA2, TGFB1, WNT5B, and APLIN) were down-regulated, whereas epithelial phenotype genes (CDH1, CLDN4, IVL, and TGM1) were up-regulated in SAS cells treated with DZNep. Collectively, our findings suggest that DZNep reverses the aggressive characteristics of OSCC cells through the dynamic regulation of epithelial plasticity via the reprogramming of gene expression patterns. - Highlights: • DZNep reduced PcG proteins and associated histone modifications in OSCC cells. • DZNep enhanced cell–cell adhesion indicative of epithelial phenotype in OSCC cells. • DZNep suppressed the aggressive phenotype-related gene expression in OSCC cells. • DZNep activated the gene expression of epithelial markers in OSCC cells.« less

  9. Blockage of epithelial to mesenchymal transition and upregulation of let 7b are critically involved in ursolic acid induced apoptosis in malignant mesothelioma cell

    PubMed Central

    Sohn, Eun Jung; Won, Gunho; Lee, Jihyun; Yoon, Sang Wook; Lee, Ilho; Kim, Hee Jeong; Kim, Sung-Hoon

    2016-01-01

    Malignant pleural mesothelioma (MPN), which is caused by asbestos exposure, is one of aggressive lung tumors. In the present study, we elucidated the anti-tumor mechanism of ursolic acid in malignant mesotheliomas. Ursolic acid significantly exerted cytotoxicity in a time and dose dependent manner in H28, H2452 and MSTO-211H mesothelioma cells and inhibited cell proliferation by colony formation assay in a dose-dependent fashion. Also, ursolic acid treatment accumulated the sub-G1 population, attenuated the expression of procapase 9, cyclin D1, pAKT, p-glycogen synthase kinase 3-alpha/beta (pGSK3α/β), β-catenin and nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) and also cleaved caspase 3 and poly (ADP-ribose) polymerase (PARP) in mesothelioma cells. Furthermore, ursolic acid treatment blocked epithelial and mesenchymal transition (EMT) molecules by activating E-cadherin as an epithelial marker and attenuating Vimentin, and Twist as mesenchymal molecules. Interestingly, miRNA array revealed that 23 miRNAs (>2 folds) including let-7b and miRNA3613-5p, miRNA134 and miRNA196b were significantly upregulated while 33 miRNAs were downregulated in ursolic acid treated H2452 cells. Furthermore, overexpression of let 7b using let-7b mimics enhanced the antitumor effect of ursolic acid to attenuate the expression of procaspases 3, pro-PARP, pAKT, β-catenin and Twist and increase sub-G1 accumulation in H2452 mesothelioma cells. Overall, our findings suggest that ursolic acid induces apoptosis via inhibition of EMT and activation of let7b in mesothelioma cells as a potent chemotherapeutic agent for treatment of malignant mesotheliomas. PMID:28090191

  10. Genetic landscape and deregulated pathways in B-cell lymphoid malignancies.

    PubMed

    Rosenquist, R; Beà, S; Du, M-Q; Nadel, B; Pan-Hammarström, Q

    2017-11-01

    With the introduction of next-generation sequencing, the genetic landscape of the complex group of B-cell lymphoid malignancies has rapidly been unravelled in recent years. This has provided important information about recurrent genetic events and identified key pathways deregulated in each lymphoma subtype. In parallel, there has been intense search and development of novel types of targeted therapy that 'hit' central mechanisms in lymphoma pathobiology, such as BTK, PI3K or BCL2 inhibitors. In this review, we will outline the current view of the genetic landscape of selected entities: follicular lymphoma, diffuse large B-cell lymphoma, mantle cell lymphoma, chronic lymphocytic leukaemia and marginal zone lymphoma. We will detail recurrent alterations affecting important signalling pathways, that is the B-cell receptor/NF-κB pathway, NOTCH signalling, JAK-STAT signalling, p53/DNA damage response, apoptosis and cell cycle regulation, as well as other perhaps unexpected cellular processes, such as immune regulation, cell migration, epigenetic regulation and RNA processing. Whilst many of these pathways/processes are commonly altered in different lymphoid tumors, albeit at varying frequencies, others are preferentially targeted in selected B-cell malignancies. Some of these genetic lesions are either involved in disease ontogeny or linked to the evolution of each disease and/or specific clinicobiological features, and some of them have been demonstrated to have prognostic and even predictive impact. Future work is especially needed to understand the therapy-resistant disease, particularly in patients treated with targeted therapy, and to identify novel targets and therapeutic strategies in order to realize true precision medicine in this clinically heterogeneous patient group. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  11. Notch signaling is a potent inducer of growth arrest and apoptosis in a wide range of B-cell malignancies

    PubMed Central

    Zweidler-McKay, Patrick A.; He, Yiping; Xu, Lanwei; Rodriguez, Carlos G.; Karnell, Fredrick G.; Carpenter, Andrea C.; Aster, Jon C.; Allman, David; Pear, Warren S.

    2005-01-01

    Although Notch receptor expression on malignant B cells is widespread, the effect of Notch signaling in these cells is poorly understood. To investigate Notch signaling in B-cell malignancy, we assayed the effect of Notch activation in multiple murine and human B-cell tumors, representing both immature and mature subtypes. Expression of constitutively active, truncated forms of the 4 mammalian Notch receptors (ICN1-4) inhibited growth and induced apoptosis in both murine and human B-cell lines but not T-cell lines. Similar results were obtained in human precursor B-cell acute lymphoblastic leukemia lines when Notch activation was achieved by coculture with fibroblasts expressing the Notch ligands Jagged1 or Jagged2. All 4 truncated Notch receptors, as well as the Jagged ligands, induced Hes1 transcription. Retroviral expression of Hairy/Enhancer of Split-1 (Hes1) recapitulated the Notch effects, suggesting that Hes1 is an important mediator of Notch-induced growth arrest and apoptosis in B cells. Among the B-cell malignancies that were susceptible to Notch-mediated growth inhibition/apoptosis were mature B-cell and therapy-resistant B-cell malignancies, including Hodgkin, myeloma, and mixed-lineage leukemia (MLL)–translocated cell lines. These results suggest that therapies capable of activating Notch/Hes1 signaling may have therapeutic potential in a wide range of human B-cell malignancies. PMID:16118316

  12. Cytologic Features of Malignant Melanoma with Osteoclast-Like Giant Cells.

    PubMed

    Jiménez-Heffernan, José A; Adrados, Magdalena; Muñoz-Hernández, Patricia; Fernández-Rico, Paloma; Ballesteros-García, Ana I; Fraga, Javier

    2018-01-01

    Malignant melanoma showing numerous osteoclast-like giant cells (OGCs) is an uncommon morphologic phenomenon, rarely mentioned in the cytologic literature. The few reported cases seem to have an aggressive clinical behavior. Although most findings support monocyte/macrophage differentiation, the exact nature of OGCs is not clear. A 57-year-old woman presented with an inguinal lymphadenopathy. Sixteen years before, cutaneous malignant melanoma of the lower limb had been excised. Needle aspiration revealed abundant neoplastic single cells as well as numerous multinucleated OGCs. Occasional neoplastic giant cells were also present. Nuclei of OGCs were monomorphic with oval morphology and were smaller than those of melanoma cells. The immunophenotype of OGCs (S100-, HMB45-, Melan-A-, SOX10-, Ki67-, CD163-, BRAF-, CD68+, MiTF+, p16+) was the expected for reactive OGCs of monocyte/macrophage origin. The tumor has shown an aggressive behavior with further metastases to the axillary lymph nodes and oral cavity. Numerous OGCs are a rare and relevant finding in malignant melanoma. Their presence should not induce confusion with other tumors rich in osteoclastic cells. Since a relevant number of OGCs in melanoma may mean a more aggressive behavior, and patients may benefit from specific treatments, their presence should be mentioned in the pathologic report. © 2018 S. Karger AG, Basel.

  13. DSE promotes aggressive glioma cell phenotypes by enhancing HB-EGF/ErbB signaling.

    PubMed

    Liao, Wen-Chieh; Liao, Chih-Kai; Tsai, You-Huan; Tseng, To-Jung; Chuang, Li-Ching; Lan, Chyn-Tair; Chang, Hung-Ming; Liu, Chiung-Hui

    2018-01-01

    Remodeling of the extracellular matrix (ECM) in the tumor microenvironment promotes glioma progression. Chondroitin sulfate (CS) proteoglycans appear in the ECM and on the cell surface, and can be catalyzed by dermatan sulfate epimerase to form chondroitin sulfate/dermatan sulfate (CS/DS) hybrid chains. Dermatan sulfate epimerase 1 (DSE) is overexpressed in many types of cancer, and CS/DS chains mediate several growth factor signals. However, the role of DSE in gliomas has never been explored. In the present study, we determined the expression of DSE in gliomas by consulting a public database and conducting immunohistochemistry on a tissue array. Our investigation revealed that DSE was upregulated in gliomas compared with normal brain tissue. Furthermore, high DSE expression was associated with advanced tumor grade and poor survival. We found high DSE expression in several glioblastoma cell lines, and DSE expression directly mediated DS chain formation in glioblastoma cells. Knockdown of DSE suppressed the proliferation, migration, and invasion of glioblastoma cells. In contrast, overexpression of DSE in GL261 cells enhanced these malignant phenotypes and in vivo tumor growth. Interestingly, we found that DSE selectively regulated heparin-binding EGF-like growth factor (HB-EGF)-induced signaling in glioblastoma cells. Inhibiting epidermal growth factor receptor (EGFR) and ErbB2 with afatinib suppressed DSE-enhanced malignant phenotypes, establishing the critical role of the ErbB pathway in regulating the effects of DSE expression. This evidence indicates that upregulation of DSE in gliomas contributes to malignant behavior in cancer cells. We provide novel insight into the significance of DS chains in ErbB signaling and glioma pathogenesis.

  14. [Ibrutinib: A new drug of B-cell malignancies].

    PubMed

    Thieblemont, Catherine

    2015-06-01

    Ibrutinib (Imbruvica®) is a first-in-class, orally administered once-daily, that inhibits B-cell antigen receptor signaling downstream of Bruton's tyrosine kinase (BTK). Ibrutinib has been approved in USA in February 2014 and in France in October 2014 for the treatment of patients with relapsed/refractory mantle cell lymphoma (MCL) or chronic lymphocytic leukaemia (CLL) and for the treatment of patients with CLL and a chromosome 17 deletion (del 17p) or TP53 mutation. In clinical studies, ibrutinib induced an impressive overall response rate (68%) in patients with relapsed/refractory MCL (phase II study). In CLL, ibrutinib has shown to significantly improve progression-free survival, response rate and overall survival in patients with relapsed/refractory CLL, including in those with del 17p. Ibrutinib had an acceptable tolerability profile. Less than 10% of patients discontinued their treatment because of adverse events. Results are pending in other B-cell lymphomas subtypes such as in diffuse large B-cell lymphoma and in follicular lymphoma. An approval extension has already been enregistered for Waldenström disease in USA in January 2015. Given its efficacy and tolerability, ibrutinib is an emerging treatment option for patients with B-cell malignancies. Copyright © 2015 Société Françise du Cancer. Publié par Elsevier Masson SAS. Tous droits réservés. Published by Elsevier Masson SAS. All rights reserved.

  15. Therapeutic Strategy for Targeting Aggressive Malignant Gliomas by Disrupting Their Energy Balance.

    PubMed

    Hegazy, Ahmed M; Yamada, Daisuke; Kobayashi, Masahiko; Kohno, Susumu; Ueno, Masaya; Ali, Mohamed A E; Ohta, Kumiko; Tadokoro, Yuko; Ino, Yasushi; Todo, Tomoki; Soga, Tomoyoshi; Takahashi, Chiaki; Hirao, Atsushi

    2016-10-07

    Although abnormal metabolic regulation is a critical determinant of cancer cell behavior, it is still unclear how an altered balance between ATP production and consumption contributes to malignancy. Here we show that disruption of this energy balance efficiently suppresses aggressive malignant gliomas driven by mammalian target of rapamycin complex 1 (mTORC1) hyperactivation. In a mouse glioma model, mTORC1 hyperactivation induced by conditional Tsc1 deletion increased numbers of glioma-initiating cells (GICs) in vitro and in vivo Metabolic analysis revealed that mTORC1 hyperactivation enhanced mitochondrial biogenesis, as evidenced by elevations in oxygen consumption rate and ATP production. Inhibition of mitochondrial ATP synthetase was more effective in repressing sphere formation by Tsc1-deficient glioma cells than that by Tsc1-competent glioma cells, indicating a crucial function for mitochondrial bioenergetic capacity in GIC expansion. To translate this observation into the development of novel therapeutics targeting malignant gliomas, we screened drug libraries for small molecule compounds showing greater efficacy in inhibiting the proliferation/survival of Tsc1-deficient cells compared with controls. We identified several compounds able to preferentially inhibit mitochondrial activity, dramatically reducing ATP levels and blocking glioma sphere formation. In human patient-derived glioma cells, nigericin, which reportedly suppresses cancer stem cell properties, induced AMPK phosphorylation that was associated with mTORC1 inactivation and induction of autophagy and led to a marked decrease in sphere formation with loss of GIC marker expression. Furthermore, malignant characteristics of human glioma cells were markedly suppressed by nigericin treatment in vivo Thus, targeting mTORC1-driven processes, particularly those involved in maintaining a cancer cell's energy balance, may be an effective therapeutic strategy for glioma patients. © 2016 by The American

  16. An unusual presentation of primary malignant B-cell-type dural lymphoma

    PubMed Central

    Low, Yin Yee Sharon; Lai, Siang Hui; Ng, Wai Hoe

    2014-01-01

    Primary malignant B-cell-type dural lymphoma is a rare subtype of primary central nervous system lymphoma (PCNSL). We herein report an unusual case of diffuse B-cell lymphoma that presents as a chronic subdural haematoma without extracranial involvement. The notable aspects of this case include the patient’s immunocompetence, a short clinical history of symptom onset, rapid neurological deterioration and a final diagnosis of high-grade PCNSL. This case highlights the challenges neurosurgeons face, especially in the emergency setting, when the disease manifests in varied presentations. PMID:25631982

  17. Update on the imaging of malignant perivascular epithelioid cell tumors (PEComas).

    PubMed

    Phillips, Catherine H; Keraliya, Abhishek R; Shinagare, Atul B; Ramaiya, Nikhil H; Tirumani, Sree Harsha

    2016-02-01

    Malignant perivascular epithelioid cell tumors (PEComas) are a histologic group of mesenchymal neoplasms that share a distinctive histological phenotype, the perivascular epithelioid cell. These tumors are known for their perivascular distribution. Malignant PEComas have a female predominance and are associated with aggressive disease and poor prognosis, making timely diagnosis critical to management. Imaging features of malignant PEComas are nonspecific and mimic other benign and malignant neoplasms. Surgery is the mainstay in the management of malignant PEComas. Promising novel molecular targeted therapies like m-TOR inhibitors have been shown to be effective in the metastatic setting. The aim of this review is to familiarize radiologists with the imaging appearances of and potential therapies for primary and metastatic malignant PEComa.

  18. Lymphomagenic CARD11/BCL10/MALT1 signaling drives malignant B-cell proliferation via cooperative NF-κB and JNK activation.

    PubMed

    Knies, Nathalie; Alankus, Begüm; Weilemann, Andre; Tzankov, Alexandar; Brunner, Kristina; Ruff, Tanja; Kremer, Marcus; Keller, Ulrich B; Lenz, Georg; Ruland, Jürgen

    2015-12-29

    The aggressive activated B cell-like subtype of diffuse large B-cell lymphoma is characterized by aberrant B-cell receptor (BCR) signaling and constitutive nuclear factor kappa-B (NF-κB) activation, which is required for tumor cell survival. BCR-induced NF-κB activation requires caspase recruitment domain-containing protein 11 (CARD11), and CARD11 gain-of-function mutations are recurrently detected in human diffuse large B-cell lymphoma (DLBCL). To investigate the consequences of dysregulated CARD11 signaling in vivo, we generated mice that conditionally express the human DLBCL-derived CARD11(L225LI) mutant. Surprisingly, CARD11(L225LI) was sufficient to trigger aggressive B-cell lymphoproliferation, leading to early postnatal lethality. CARD11(L225LI) constitutively associated with B-cell CLL/lymphoma 10 (BCL10) and mucosa-associated lymphoid tissue lymphoma translocation gene 1 (MALT1) to simultaneously activate the NF-κB and c-Jun N-terminal kinase (JNK) signaling cascades. Genetic deficiencies of either BCL10 or MALT1 completely rescued the phenotype, and pharmacological inhibition of JNK was, similar to NF-κB blockage, toxic to autonomously proliferating CARD11(L225LI)-expressing B cells. Moreover, constitutive JNK activity was observed in primary human activated B cell-like (ABC)-DLBCL specimens, and human ABC-DLBCL cells were also sensitive to JNK inhibitors. Thus, our results demonstrate that enforced activation of CARD11/BCL10/MALT1 signaling is sufficient to drive transformed B-cell expansion in vivo and identify the JNK pathway as a therapeutic target for ABC-DLBCL.

  19. Clinical trial for patients with relapsed/refractory B-cell malignancies now recruiting | Center for Cancer Research

    Cancer.gov

    B-cell lymphomas are blood cancers that affect B-cells, white blood cells that develop and mature in bone marrow in the core of most bones. Mark Roschewski, M.D., of the Lymphoid Malignancies Branch is leading a study of a new treatment for B-cell lymphomas that have not responded to radiation and chemotherapy. Read more...

  20. New CD20 alternative splice variants: molecular identification and differential expression within hematological B cell malignancies.

    PubMed

    Gamonet, Clémentine; Bole-Richard, Elodie; Delherme, Aurélia; Aubin, François; Toussirot, Eric; Garnache-Ottou, Francine; Godet, Yann; Ysebaert, Loïc; Tournilhac, Olivier; Caroline, Dartigeas; Larosa, Fabrice; Deconinck, Eric; Saas, Philippe; Borg, Christophe; Deschamps, Marina; Ferrand, Christophe

    2015-01-01

    CD20 is a B cell lineage-specific marker expressed by normal and leukemic B cells and targeted by several antibody immunotherapies. We have previously shown that the protein from a CD20 mRNA splice variant (D393-CD20) is expressed at various levels in leukemic B cells or lymphoma B cells but not in resting, sorted B cells from the peripheral blood of healthy donors. Western blot (WB) analysis of B malignancy primary samples showed additional CD20 signals. Deep molecular PCR analysis revealed four new sequences corresponding to in-frame CD20 splice variants (D657-CD20, D618-CD20, D480-CD20, and D177-CD20) matching the length of WB signals. We demonstrated that the cell spliceosome machinery can process ex vivo D480-, D657-, and D618-CD20 transcript variants by involving canonical sites associated with cryptic splice sites. Results of specific and quantitative RT-PCR assays showed that these CD20 splice variants are differentially expressed in B malignancies. Moreover, Epstein-Barr virus (EBV) transformation modified the CD20 splicing profile and mainly increased the D393-CD20 variant transcripts. Finally, investigation of three cohorts of chronic lymphocytic leukemia (CLL) patients showed that the total CD20 splice variant expression was higher in a stage B and C sample collection compared to routinely collected CLL samples or relapsed refractory stage A, B, or C CLL. The involvement of these newly discovered alternative CD20 transcript variants in EBV transformation makes them interesting molecular indicators, as does their association with oncogenesis rather than non-oncogenic B cell diseases, differential expression in B cell malignancies, and correlation with CLL stage and some predictive CLL markers. This potential should be investigated in further studies.

  1. Targeting CD22 in B-cell malignancies: current status and clinical outlook.

    PubMed

    Sullivan-Chang, Loretta; O'Donnell, Robert T; Tuscano, Joseph M

    2013-08-01

    CD22 is a B-cell-specific transmembrane glycoprotein found on the surface of most B cells; it modulates B-cell function, survival and apoptosis. CD22 has emerged as an ideal target for monoclonal antibody (mAb)-based therapy of B-cell malignancies including most lymphomas and many leukemias. Epratuzumab, an anti-CD22 mAb, has been developed in various forms, including as an unlabeled (naked) mAb, as a radioimmunotherapeutic, as an antibody drug conjugate (ADC), and as a vehicle for CD22-targeted nanoparticles. While clinical trials with unlabeled epratuzumab have demonstrated modest results, its combination with rituximab in phase II studies has been more encouraging. Based on the potential for CD22 to become internalized, CD22-targeted constructs carrying radioisotopes or toxins have generated promising results. Radioimmunotherapy, utilizing ⁹⁰Y-labeled epratuzumab, was shown to be highly effective in patients with follicular lymphoma, generating a complete response (CR) rate of 92 % and progression-free survival of more than 2 years. ADC therapy is a promising therapeutic approach to B-cell malignancies which includes the direct conjugation of mAbs with cytotoxic agents. Phase II studies of inotuzumab ozogamicin, an ADC which combines anti-CD22 mAb with calicheamicin, an enediyne antibiotic which mediates apoptosis, in patients with acute lymphoblastic leukemia have produced an overall response rate (ORR) of greater than 50 % in treatment-refractory patients. Phase I trials of moxetumomab pasudotox, an ADC which combines anti-CD22 with PE38, a fragment of Pseudomonas exotoxin A, have been completed in hairy cell leukemia with a ORR of 86 %. Finally, a review of CD22-targeted nanoparticles, that include a doxorubicin-containing lipid complex that uses synthetic high-affinity CD22 ligand mimetics as well as anti-CD22 mAb-coated pegylated liposomas doxorubin (PLD), has demonstrated promising results in pre-clinical models of human lymphoma. Moreover, novel anti

  2. Chemotherapy-Refractory Diffuse Large B-Cell Lymphoma and Indolent B-Cell Malignancies Can Be Effectively Treated With Autologous T Cells Expressing an Anti-CD19 Chimeric Antigen Receptor

    PubMed Central

    Kochenderfer, James N.; Dudley, Mark E.; Kassim, Sadik H.; Somerville, Robert P.T.; Carpenter, Robert O.; Stetler-Stevenson, Maryalice; Yang, James C.; Phan, Giao Q.; Hughes, Marybeth S.; Sherry, Richard M.; Raffeld, Mark; Feldman, Steven; Lu, Lily; Li, Yong F.; Ngo, Lien T.; Goy, Andre; Feldman, Tatyana; Spaner, David E.; Wang, Michael L.; Chen, Clara C.; Kranick, Sarah M.; Nath, Avindra; Nathan, Debbie-Ann N.; Morton, Kathleen E.; Toomey, Mary Ann; Rosenberg, Steven A.

    2015-01-01

    Purpose T cells can be genetically modified to express an anti-CD19 chimeric antigen receptor (CAR). We assessed the safety and efficacy of administering autologous anti-CD19 CAR T cells to patients with advanced CD19+ B-cell malignancies. Patients and Methods We treated 15 patients with advanced B-cell malignancies. Nine patients had diffuse large B-cell lymphoma (DLBCL), two had indolent lymphomas, and four had chronic lymphocytic leukemia. Patients received a conditioning chemotherapy regimen of cyclophosphamide and fludarabine followed by a single infusion of anti-CD19 CAR T cells. Results Of 15 patients, eight achieved complete remissions (CRs), four achieved partial remissions, one had stable lymphoma, and two were not evaluable for response. CRs were obtained by four of seven evaluable patients with chemotherapy-refractory DLBCL; three of these four CRs are ongoing, with durations ranging from 9 to 22 months. Acute toxicities including fever, hypotension, delirium, and other neurologic toxicities occurred in some patients after infusion of anti-CD19 CAR T cells; these toxicities resolved within 3 weeks after cell infusion. One patient died suddenly as a result of an unknown cause 16 days after cell infusion. CAR T cells were detected in the blood of patients at peak levels, ranging from nine to 777 CAR-positive T cells/μL. Conclusion This is the first report to our knowledge of successful treatment of DLBCL with anti-CD19 CAR T cells. These results demonstrate the feasibility and effectiveness of treating chemotherapy-refractory B-cell malignancies with anti-CD19 CAR T cells. The numerous remissions obtained provide strong support for further development of this approach. PMID:25154820

  3. Intertriginous mycosis fungoides: a distinct presentation of cutaneous T-cell lymphoma that may be caused by malignant follicular helper T cells.

    PubMed

    Gammon, Bryan; Guitart, Joan

    2012-09-01

    Follicular helper T cells are a subset of helper T cells that facilitate B-cell recruitment and maturation. Rare cases of cutaneous T-cell lymphoma manifesting as de novo tumor lesions in intertriginous skin contain an infiltrate rich in B cells. These cases may represent malignant counterparts of skin-homing follicular helper T cells. Two men and 1 woman (age range, 35-58 years) were seen with predominantly intertriginous tumor-stage cutaneous T-cell lymphoma lesions characterized by the absence of epidermotropism and the presence of a mixed infiltrate rich in B cells. Two of the patients died of the disease less than 3 years from the initial diagnosis. The surviving patient has aggressive disease and underwent hematopoietic stem cell transplantation. Two of the patients had a prominent CXCL13+, Bcl6/CD3+, and programmed death protein 1-positive follicular helper T-cell population. The intertriginous tumor variant of cutaneous T-cell lymphoma is heterogeneous but may be associated in some cases with a follicular helper T-cell immunophenotype. These patients may follow an aggressive clinical course. Tumor progression in sanctuary sites on patients receiving phototherapy may manifest as a similar clinical phenotype. Further characterization of the disease process is needed to confirm this observation.

  4. Adoptive cellular therapy for chronic lymphocytic leukemia and B cell malignancies. CARs and more.

    PubMed

    Castro, Januario E; Kipps, Thomas J

    2016-03-01

    Treatment of patients with chronic lymphocytic leukemia and other B cell malignancies is evolving very rapidly. We have observed the quick transition during the last couple of years, from chemo-immunotherapy based treatments to oral targeted therapies based on B cell receptor signaling and Bcl-2 inhibitors, as well as the increasing use of second generation glyco-engineered antibodies. The next wave of revolution in the treatment for this conditions is approaching and it will be based on strategies that harness the power of the immune system to fight cancer. In the center of this biotechnological revolution is cellular engineering, the field that had made possible to redirect the immune system effector cells to achieve a more effective and targeted adoptive cellular therapy. In this chapter, we will review the historical context of these scientific developments, the most recent basic and clinical research in the field and some opinions regarding the future of adoptive cellular therapy in CLL and other B cell malignancies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. TP53 mutation and survival in aggressive B cell lymphoma.

    PubMed

    Zenz, Thorsten; Kreuz, Markus; Fuge, Maxi; Klapper, Wolfram; Horn, Heike; Staiger, Annette M; Winter, Doris; Helfrich, Hanne; Huellein, Jennifer; Hansmann, Martin-Leo; Stein, Harald; Feller, Alfred; Möller, Peter; Schmitz, Norbert; Trümper, Lorenz; Loeffler, Markus; Siebert, Reiner; Rosenwald, Andreas; Ott, German; Pfreundschuh, Michael; Stilgenbauer, Stephan

    2017-10-01

    TP53 is mutated in 20-25% of aggressive B-cell lymphoma (B-NHL). To date, no studies have addressed the impact of TP53 mutations in prospective clinical trial cohorts. To evaluate the impact of TP53 mutation to current risk models in aggressive B-NHL, we investigated TP53 gene mutations within the RICOVER-60 trial. Of 1,222 elderly patients (aged 61-80 years) enrolled in the study and randomized to six or eight cycles of CHOP-14 with or without Rituximab (NCT00052936), 265 patients were analyzed for TP53 mutations. TP53 mutations were demonstrated in 63 of 265 patients (23.8%). TP53 mutation was associated with higher LDH (65% vs. 37%; p < 0.001), higher international prognostic index-Scores (IPI 4/5 27% vs. 12%; p = 0.025) and B-symptoms (41% vs. 24%; p = 0.011). Patients with TP53 mutation were less likely to obtain a complete remission CR/CRu (CR unconfirmed) 61.9% (mut) vs. 79.7% (wt) (p = 0.007). TP53 mutations were associated with decreased event-free (EFS), progression-free (PFS) and overall survival (OS) (median observation time of 40.2 months): the 3 year EFS, PFS and OS were 42% (vs. 60%; p = 0.012), 42% (vs. 67.5%; p < 0.001) and 50% (vs. 76%; p < 0.001) for the TP53 mutation group. In a Cox proportional hazard analysis adjusting for IPI-factors and treatment arms, TP53 mutation was shown to be an independent predictor of EFS (HR 1.5), PFS (HR 2.0) and OS (HR 2.3; p < 0.001). TP53 mutations are independent predictors of survival in untreated patients with aggressive CD20+ lymphoma. TP53 mutations should be considered for risk models in DLBCL and strategies to improve outcome for patients with mutant TP53 must be developed. © 2017 UICC.

  6. Trends in incidence, treatment and survival of aggressive B-cell lymphoma in the Netherlands 1989–2010

    PubMed Central

    Issa, Djamila E.; van de Schans, Saskia A.M.; Chamuleau, Martine E.D.; Karim-Kos, Henrike E.; Wondergem, Marielle; Huijgens, Peter C.; Coebergh, Jan Willem W.; Zweegman, Sonja; Visser, Otto

    2015-01-01

    Only a small number of patients with aggressive B-cell lymphoma take part in clinical trials, and elderly patients in particular are under-represented. Therefore, we studied data of the population-based nationwide Netherlands Cancer Registry to determine trends in incidence, treatment and survival in an unselected patient population. We included all patients aged 15 years and older with newly diagnosed diffuse large B-cell lymphoma or Burkitt lymphoma in the period 1989–2010 and mantle cell lymphoma in the period 2001–2010, with follow up until February 2013. We examined incidence, first-line treatment and survival. We calculated annual percentage of change in incidence and carried out relative survival analyses. Incidence remained stable for diffuse large B-cell lymphoma (n=23,527), while for mantle cell lymphoma (n=1,634) and Burkitt lymphoma (n=724) incidence increased for men and remained stable for women. No increase in survival for patients with aggressive B-cell lymphoma was observed during the period 1989–1993 and the period 1994–1998 [5-year relative survival 42% (95%CI: 39%–45%) and 41% (38%–44%), respectively], but increased to 46% (43%–48%) in the period 1999–2004 and to 58% (56%–61%) in the period 2005–2010. The increase in survival was most prominent in patients under 65 years of age, while there was a smaller increase in patients over 75 years of age. However, when untreated patients were excluded, patients over 75 years of age had a similar increase in survival to younger patients. In the Netherlands, survival for patients with aggressive B-cell lymphoma increased over time, particularly in younger patients, but also in elderly patients when treatment had been initiated. The improvement in survival coincided with the introduction of rituximab therapy and stem cell transplantation into clinical practice. PMID:25512643

  7. Bruton’s tyrosine kinase inhibitors and their clinical potential in the treatment of B-cell malignancies: focus on ibrutinib

    PubMed Central

    Aalipour, Amin

    2014-01-01

    Aberrant signaling of the B-cell receptor pathway has been linked to the development and maintenance of B-cell malignancies. Bruton’s tyrosine kinase (BTK), a protein early in this pathway, has emerged as a new therapeutic target in a variety of such malignancies. Ibrutinib, the most clinically advanced small molecule inhibitor of BTK, has demonstrated impressive tolerability and activity in a range of B-cell lymphomas which led to its recent approval for relapsed mantle cell lymphoma and chronic lymphocytic leukemia. This review focuses on the preclinical and clinical development of ibrutinib and discusses its therapeutic potential. PMID:25360238

  8. Tracking B-Cell Repertoires and Clonal Histories in Normal and Malignant Lymphocytes.

    PubMed

    Weston-Bell, Nicola J; Cowan, Graeme; Sahota, Surinder S

    2017-01-01

    Methods for tracking B-cell repertoires and clonal history in normal and malignant B-cells based on immunoglobulin variable region (IGV) gene analysis have developed rapidly with the advent of massive parallel next-generation sequencing (mpNGS) protocols. mpNGS permits a depth of analysis of IGV genes not hitherto feasible, and presents challenges of bioinformatics analysis, which can be readily met by current pipelines. This strategy offers a potential resolution of B-cell usage at a depth that may capture fully the natural state, in a given biological setting. Conventional methods based on RT-PCR amplification and Sanger sequencing are also available where mpNGS is not accessible. Each method offers distinct advantages. Conventional methods for IGV gene sequencing are readily adaptable to most laboratories and provide an ease of analysis to capture salient features of B-cell use. This chapter describes two methods in detail for analysis of IGV genes, mpNGS and conventional RT-PCR with Sanger sequencing.

  9. Role of Immune Microenvironmental Factors for Improving the IPI-related Risk Stratification of Aggressive B Cell Lymphoma.

    PubMed

    Gong, Yi; Chen, Rui; Zhang, Xi; Zou, Zhong Min; Chen, Xing Hua

    2017-07-01

    To investigate the risk stratification of aggressive B cell lymphoma using the immune microenvironment and clinical factors. A total of 127 patients with aggressive B cell lymphoma between 2014 and 2015 were enrolled in this study. CD4, Foxp3, CD8, CD68, CD163, PD-1, and PD-L1 expression levels were evaluated in paraffin-embedded lymphoma tissues to identify their roles in the risk stratification. Eleven factors were identified for further evaluation using analysis of variance, chi-square, and multinomial logistic regression analysis. Significant differences in 11 factors (age, Ann Arbor stage, B symptom, ECOG performance status, infiltrating CD8+ T cells, PD-L1 expression, absolute blood monocyte count, serum lactate dehydrogenase, serum iron, serum albumin, and serum β2-microglobulin) were observed among patient groups stratified by at least two risk stratification methods [International Prognostic Index (IPI), revised IPI, and NCCN-IPI models] (P < 0.05). Concordance rates were high (81.4%-100.0%) when these factors were used for the risk stratification. No difference in the risk stratification results was observed with or without the Ann Arbor stage data. We developed a convenient and inexpensive tool for use in risk stratification of aggressive B cell lymphomas, although further studies on the role of immune microenvironmental factors are needed. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  10. Aggressive natural killer-cell leukemia mutational landscape and drug profiling highlight JAK-STAT signaling as therapeutic target.

    PubMed

    Dufva, Olli; Kankainen, Matti; Kelkka, Tiina; Sekiguchi, Nodoka; Awad, Shady Adnan; Eldfors, Samuli; Yadav, Bhagwan; Kuusanmäki, Heikki; Malani, Disha; Andersson, Emma I; Pietarinen, Paavo; Saikko, Leena; Kovanen, Panu E; Ojala, Teija; Lee, Dean A; Loughran, Thomas P; Nakazawa, Hideyuki; Suzumiya, Junji; Suzuki, Ritsuro; Ko, Young Hyeh; Kim, Won Seog; Chuang, Shih-Sung; Aittokallio, Tero; Chan, Wing C; Ohshima, Koichi; Ishida, Fumihiro; Mustjoki, Satu

    2018-04-19

    Aggressive natural killer-cell (NK-cell) leukemia (ANKL) is an extremely aggressive malignancy with dismal prognosis and lack of targeted therapies. Here, we elucidate the molecular pathogenesis of ANKL using a combination of genomic and drug sensitivity profiling. We study 14 ANKL patients using whole-exome sequencing (WES) and identify mutations in STAT3 (21%) and RAS-MAPK pathway genes (21%) as well as in DDX3X (29%) and epigenetic modifiers (50%). Additional alterations include JAK-STAT copy gains and tyrosine phosphatase mutations, which we show recurrent also in extranodal NK/T-cell lymphoma, nasal type (NKTCL) through integration of public genomic data. Drug sensitivity profiling further demonstrates the role of the JAK-STAT pathway in the pathogenesis of NK-cell malignancies, identifying NK cells to be highly sensitive to JAK and BCL2 inhibition compared to other hematopoietic cell lineages. Our results provide insight into ANKL genetics and a framework for application of targeted therapies in NK-cell malignancies.

  11. Bruton's Tyrosine Kinase: From X-Linked Agammaglobulinemia Toward Targeted Therapy for B-Cell Malignancies

    PubMed Central

    Ponader, Sabine; Burger, Jan A.

    2014-01-01

    Discovery of Bruton's tyrosine kinase (BTK) mutations as the cause for X-linked agammaglobulinemia was a milestone in understanding the genetic basis of primary immunodeficiencies. Since then, studies have highlighted the critical role of this enzyme in B-cell development and function, and particularly in B-cell receptor signaling. Because its deletion affects mostly B cells, BTK has become an attractive therapeutic target in autoimmune disorders and B-cell malignancies. Ibrutinib (PCI-32765) is the most advanced BTK inhibitor in clinical testing, with ongoing phase III clinical trials in patients with chronic lymphocytic leukemia and mantle-cell lymphoma. In this article, we discuss key discoveries related to BTK and clinically relevant aspects of BTK inhibitors, and we provide an outlook into clinical development and open questions regarding BTK inhibitor therapy. PMID:24778403

  12. B-cell receptor signalling and its crosstalk with other pathways in normal and malignant cells.

    PubMed

    Seda, Vaclav; Mraz, Marek

    2015-03-01

    The physiology of B cells is intimately connected with the function of their B-cell receptor (BCR). B-cell lymphomas frequently (dys)regulate BCR signalling and thus take advantage of this pre-existing pathway for B-cell proliferation and survival. This has recently been underscored by clinical trials demonstrating that small molecules (fosfamatinib, ibrutinib, idelalisib) inhibiting BCR-associated kinases (SYK, BTK, PI3K) have an encouraging clinical effect. Here we describe the current knowledge of the specific aspects of BCR signalling in diffuse large B-cell lymphoma (DLBCL), follicular lymphoma, chronic lymphocytic leukaemia (CLL) and normal B cells. Multiple factors can contribute to BCR pathway (dys)regulation in these malignancies and the activation of 'chronic' or 'tonic' BCR signalling. In lymphoma B cells, the balance of initiation, amplitude and duration of BCR activation can be influenced by a specific immunoglobulin structure, the expression and mutations of adaptor molecules (like GAB1, BLNK, GRB2, CARD11), the activity of kinases (like LYN, SYK, PI3K) or phosphatases (like SHIP-1, SHP-1 and PTEN) and levels of microRNAs. We also discuss the crosstalk of BCR with other signalling pathways (NF-κB, adhesion through integrins, migration and chemokine signalling) to emphasise that the 'BCR inhibitors' target multiple pathways interconnected with BCR, which might explain some of their clinical activity. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. T cell-recruiting triplebody 19-3-19 mediates serial lysis of malignant B-lymphoid cells by a single T cell

    PubMed Central

    Roskopf, Claudia C.; Schiller, Christian B.; Braciak, Todd A.; Kobold, Sebastian; Schubert, Ingo A.; Fey, Georg H.; Hopfner, Karl-Peter; Oduncu, Fuat S.

    2014-01-01

    Triplebody 19-3-19, an antibody-derived protein, carries three single chain fragment variable domains in tandem in a single polypeptide chain. 19-3-19 binds CD19-bearing lymphoid cells via its two distal domains and primary T cells via its CD3-targeting central domain in an antigen-specific manner. Here, malignant B-lymphoid cell lines and primary cells from patients with B cell malignancies were used as targets in cytotoxicity tests with pre-stimulated allogeneic T cells as effectors. 19-3-19 mediated up to 95% specific lysis of CD19-positive tumor cells and, at picomolar EC50 doses, had similar cytolytic potency as the clinically successful agent BlinatumomabTM. 19-3-19 activated resting T cells from healthy unrelated donors and mediated specific lysis of both autologous and allogeneic CD19-positive cells. 19-3-19 led to the elimination of 70% of CD19-positive target cells even with resting T cells as effectors at an effector-to-target cell ratio of 1 : 10. The molecule is therefore capable of mediating serial lysis of target cells by a single T cell. These results highlight that central domains capable of engaging different immune effectors can be incorporated into the triplebody format to provide more individualized therapy tailored to a patient’s specific immune status. PMID:25115385

  14. Functional characterisation of osteosarcoma cell lines and identification of mRNAs and miRNAs associated with aggressive cancer phenotypes

    PubMed Central

    Lauvrak, S U; Munthe, E; Kresse, S H; Stratford, E W; Namløs, H M; Meza-Zepeda, L A; Myklebost, O

    2013-01-01

    Background: Osteosarcoma is the most common primary malignant bone tumour, predominantly affecting children and adolescents. Cancer cell line models are required to understand the underlying mechanisms of tumour progression and for preclinical investigations. Methods: To identify cell lines that are well suited for studies of critical cancer-related phenotypes, such as tumour initiation, growth and metastasis, we have evaluated 22 osteosarcoma cell lines for in vivo tumorigenicity, in vitro colony-forming ability, invasive/migratory potential and proliferation capacity. Importantly, we have also identified mRNA and microRNA (miRNA) gene expression patterns associated with these phenotypes by expression profiling. Results: The cell lines exhibited a wide range of cancer-related phenotypes, from rather indolent to very aggressive. Several mRNAs were differentially expressed in highly aggressive osteosarcoma cell lines compared with non-aggressive cell lines, including RUNX2, several S100 genes, collagen genes and genes encoding proteins involved in growth factor binding, cell adhesion and extracellular matrix remodelling. Most notably, four genes—COL1A2, KYNU, ACTG2 and NPPB—were differentially expressed in high and non-aggressive cell lines for all the cancer-related phenotypes investigated, suggesting that they might have important roles in the process of osteosarcoma tumorigenesis. At the miRNA level, miR-199b-5p and mir-100-3p were downregulated in the highly aggressive cell lines, whereas miR-155-5p, miR-135b-5p and miR-146a-5p were upregulated. miR-135b-5p and miR-146a-5p were further predicted to be linked to the metastatic capacity of the disease. Interpretation: The detailed characterisation of cell line phenotypes will support the selection of models to use for specific preclinical investigations. The differentially expressed mRNAs and miRNAs identified in this study may represent good candidates for future therapeutic targets. To our knowledge, this is

  15. CBL family E3 ubiquitin ligases control JAK2 ubiquitination and stability in hematopoietic stem cells and myeloid malignancies

    PubMed Central

    Lv, Kaosheng; Jiang, Jing; Donaghy, Ryan; Riling, Christopher R.; Cheng, Ying; Chandra, Vemika; Rozenova, Krasimira; An, Wei; Mohapatra, Bhopal C.; Goetz, Benjamin T.; Pillai, Vinodh; Han, Xu; Todd, Emily A.; Jeschke, Grace R.; Langdon, Wallace Y.; Kumar, Suresh; Hexner, Elizabeth O.

    2017-01-01

    Janus kinase 2 (JAK2) is a central kinase in hematopoietic stem/progenitor cells (HSPCs), and its uncontrolled activation is a prominent oncogenic driver of hematopoietic neoplasms. However, molecular mechanisms underlying the regulation of JAK2 have remained elusive. Here we report that the Casitas B-cell lymphoma (CBL) family E3 ubiquitin ligases down-regulate JAK2 stability and signaling via the adaptor protein LNK/SH2B3. We demonstrated that depletion of CBL/CBL-B or LNK abrogated JAK2 ubiquitination, extended JAK2 half-life, and enhanced JAK2 signaling and cell growth in human cell lines as well as primary murine HSPCs. Built on these findings, we showed that JAK inhibitor (JAKi) significantly reduced aberrant HSPCs and mitigated leukemia development in a mouse model of aggressive myeloid leukemia driven by loss of Cbl and Cbl-b. Importantly, primary human CBL mutated (CBLmut) leukemias exhibited increased JAK2 protein levels and signaling and were hypersensitive to JAKi. Loss-of-function mutations in CBL E3 ubiquitin ligases are found in a wide range of myeloid malignancies, which are diseases without effective treatment options. Hence, our studies reveal a novel signaling axis that regulates JAK2 in normal and malignant HSPCs and suggest new therapeutic strategies for treating CBLmut myeloid malignancies. PMID:28611190

  16. Bax345/BLyS: a novel, completely human fusion protein targeting malignant B cells and delivering a unique mitochondrial toxin.

    PubMed

    Lyu, Mi-Ae; Cheung, Lawrence H; Hittelman, Walter N; Liu, Yuying; Marks, John W; Cho, Min-Jeong; Rosenblum, Michael G

    2012-09-28

    We generated a fusion protein Bax(345)/BLyS containing the truncated form of Bax (Bax(345)) at the N-terminus followed by a 218 linker to the B lymphocyte stimulator (BLyS). Bax(345)/BLyS was cytotoxic to a panel of diffuse large B cell lymphoma and mantle cell lymphoma lines expressing the BLyS receptors. Specific delivery of Bax(345)/BLyS to malignant B cells drove cells into apoptosis by mitochondrial dysfunction and treatment of cells with Bax(345)/BLyS induced down-regulation of Mcl-1, X-IAP, and survivin. Bax(345)/BLyS represents a new class of targeted therapeutic agents with a unique mechanism of action and may have therapeutic potential for malignant B cells. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. A novel anti-CD22 scFv-apoptin fusion protein induces apoptosis in malignant B-cells.

    PubMed

    Agha Amiri, Solmaz; Shahhosseini, Soraya; Zarei, Najmeh; Khorasanizadeh, Dorsa; Aminollahi, Elahe; Rezaie, Faegheh; Zargari, Mehryar; Azizi, Mohammad; Khalaj, Vahid

    2017-12-01

    CD22 marker is a highly internalizing antigen which is located on the surface of B-cells and is being used as a promising target for treatment of B cell malignancies. Monoclonal antibodies targeting CD22 have been introduced and some are currently under investigation in clinical trials. Building on the success of antibody drug conjugates, we developed a fusion protein consisting of a novel anti-CD22 scFv and apoptin and tested binding and therapeutic effects in lymphoma cells. The recombinant protein was expressed in E. coli and successfully purified and refolded. In vitro binding analysis by immunofluorescence and flow cytometry demonstrated that the recombinant protein specifically binds to CD22 positive Raji cells but not to CD22 negative Jurkat cells. The cytotoxic properties of scFv-apoptin were assessed by an MTT assay and Annexin V/PI flow cytometry analysis and showed that the recombinant protein induced apoptosis preferentially in Raji cells with no detectable effects in Jurkat cells. Our findings indicated that the recombinant anti-CD22 scFv-apoptin fusion protein could successfully cross the cell membrane and induce apoptosis with high specificity, make it as a promising molecule for immunotherapy of B-cell malignancies.

  18. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies.

    PubMed

    Advani, Ranjana H; Buggy, Joseph J; Sharman, Jeff P; Smith, Sonali M; Boyd, Thomas E; Grant, Barbara; Kolibaba, Kathryn S; Furman, Richard R; Rodriguez, Sara; Chang, Betty Y; Sukbuntherng, Juthamas; Izumi, Raquel; Hamdy, Ahmed; Hedrick, Eric; Fowler, Nathan H

    2013-01-01

    Survival and progression of mature B-cell malignancies depend on signals from the B-cell antigen receptor, and Bruton tyrosine kinase (BTK) is a critical signaling kinase in this pathway. We evaluated ibrutinib (PCI-32765), a small-molecule irreversible inhibitor of BTK, in patients with B-cell malignancies. Patients with relapsed or refractory B-cell lymphoma and chronic lymphocytic leukemia received escalating oral doses of ibrutinib. Two schedules were evaluated: one, 28 days on, 7 days off; and two, once-daily continuous dosing. Occupancy of BTK by ibrutinib in peripheral blood was monitored using a fluorescent affinity probe. Dose escalation proceeded until either the maximum-tolerated dose (MTD) was achieved or, in the absence of MTD, until three dose levels above full BTK occupancy by ibrutinib. Response was evaluated every two cycles. Fifty-six patients with a variety of B-cell malignancies were treated over seven cohorts. Most adverse events were grade 1 and 2 in severity and self-limited. Dose-limiting events were not observed, even with prolonged dosing. Full occupancy of the BTK active site occurred at 2.5 mg/kg per day, and dose escalation continued to 12.5 mg/kg per day without reaching MTD. Pharmacokinetic data indicated rapid absorption and elimination, yet BTK occupancy was maintained for at least 24 hours, consistent with the irreversible mechanism. Objective response rate in 50 evaluable patients was 60%, including complete response of 16%. Median progression-free survival in all patients was 13.6 months. Ibrutinib, a novel BTK-targeting inhibitor, is well tolerated, with substantial activity across B-cell histologies.

  19. Inefficient differentiation response to cell cycle stress leads to genomic instability and malignant progression of squamous carcinoma cells

    PubMed Central

    Alonso-Lecue, Pilar; de Pedro, Isabel; Coulon, Vincent; Molinuevo, Rut; Lorz, Corina; Segrelles, Carmen; Ceballos, Laura; López-Aventín, Daniel; García-Valtuille, Ana; Bernal, José M; Mazorra, Francisco; Pujol, Ramón M; Paramio, Jesús; Ramón Sanz, J; Freije, Ana; Toll, Agustí; Gandarillas, Alberto

    2017-01-01

    Squamous cell carcinoma (SCC) or epidermoid cancer is a frequent and aggressive malignancy. However in apparent paradox it retains the squamous differentiation phenotype except for very dysplastic lesions. We have shown that cell cycle stress in normal epidermal keratinocytes triggers a squamous differentiation response involving irreversible mitosis block and polyploidisation. Here we show that cutaneous SCC cells conserve a partial squamous DNA damage-induced differentiation response that allows them to overcome the cell division block. The capacity to divide in spite of drug-induced mitotic stress and DNA damage made well-differentiated SCC cells more genomically instable and more malignant in vivo. Consistently, in a series of human biopsies, non-metastatic SCCs displayed a higher degree of chromosomal alterations and higher expression of the S phase regulator Cyclin E and the DNA damage signal γH2AX than the less aggressive, non-squamous, basal cell carcinomas. However, metastatic SCCs lost the γH2AX signal and Cyclin E, or accumulated cytoplasmic Cyclin E. Conversely, inhibition of endogenous Cyclin E in well-differentiated SCC cells interfered with the squamous phenotype. The results suggest a dual role of cell cycle stress-induced differentiation in squamous cancer: the resulting mitotic blocks would impose, when irreversible, a proliferative barrier, when reversible, a source of genomic instability, thus contributing to malignancy. PMID:28661481

  20. Novel BAFF-Receptor Antibody to Natively Folded Recombinant Protein Eliminates Drug-Resistant Human B-cell Malignancies In Vivo.

    PubMed

    Qin, Hong; Wei, Guowei; Sakamaki, Ippei; Dong, Zhenyuan; Cheng, Wesley A; Smith, D Lynne; Wen, Feng; Sun, Han; Kim, Kunhwa; Cha, Soungchul; Bover, Laura; Neelapu, Sattva S; Kwak, Larry W

    2018-03-01

    Purpose: mAbs such as anti-CD20 rituximab are proven therapies in B-cell malignancies, yet many patients develop resistance. Novel therapies against alternative targets are needed to circumvent resistance mechanisms. We sought to generate mAbs against human B-cell-activating factor receptor (BAFF-R/TNFRSF13C), which has not yet been targeted successfully for cancer therapy. Experimental Design: Novel mAbs were generated against BAFF-R, expressed as a natively folded cell surface immunogen on mouse fibroblast cells. Chimeric BAFF-R mAbs were developed and assessed for in vitro and in vivo monotherapy cytotoxicity. The chimeric mAbs were tested against human B-cell tumor lines, primary patient samples, and drug-resistant tumors. Results: Chimeric antibodies bound with high affinity to multiple human malignant B-cell lines and induced potent antibody-dependent cellular cytotoxicity (ADCC) against multiple subtypes of human lymphoma and leukemia, including primary tumors from patients who had relapsed after anti-CD20 therapy. Chimeric antibodies also induced ADCC against ibrutinib-resistant and rituximab-insensitive CD20-deficient variant lymphomas, respectively. Importantly, they demonstrated remarkable in vivo growth inhibition of drug-resistant tumor models in immunodeficient mice. Conclusions: Our method generated novel anti-BAFF-R antibody therapeutics with remarkable single-agent antitumor effects. We propose that these antibodies represent an effective new strategy for targeting and treating drug-resistant B-cell malignancies and warrant further development. Clin Cancer Res; 24(5); 1114-23. ©2017 AACR . ©2017 American Association for Cancer Research.

  1. Deep sequencing of the small RNA transcriptome of normal and malignant human B cells identifies hundreds of novel microRNAs

    PubMed Central

    Jima, Dereje D.; Zhang, Jenny; Jacobs, Cassandra; Richards, Kristy L.; Dunphy, Cherie H.; Choi, William W. L.; Yan Au, Wing; Srivastava, Gopesh; Czader, Magdalena B.; Rizzieri, David A.; Lagoo, Anand S.; Lugar, Patricia L.; Mann, Karen P.; Flowers, Christopher R.; Bernal-Mizrachi, Leon; Naresh, Kikkeri N.; Evens, Andrew M.; Gordon, Leo I.; Luftig, Micah; Friedman, Daphne R.; Weinberg, J. Brice; Thompson, Michael A.; Gill, Javed I.; Liu, Qingquan; How, Tam; Grubor, Vladimir; Gao, Yuan; Patel, Amee; Wu, Han; Zhu, Jun; Blobe, Gerard C.; Lipsky, Peter E.; Chadburn, Amy

    2010-01-01

    A role for microRNA (miRNA) has been recognized in nearly every biologic system examined thus far. A complete delineation of their role must be preceded by the identification of all miRNAs present in any system. We elucidated the complete small RNA transcriptome of normal and malignant B cells through deep sequencing of 31 normal and malignant human B-cell samples that comprise the spectrum of B-cell differentiation and common malignant phenotypes. We identified the expression of 333 known miRNAs, which is more than twice the number previously recognized in any tissue type. We further identified the expression of 286 candidate novel miRNAs in normal and malignant B cells. These miRNAs were validated at a high rate (92%) using quantitative polymerase chain reaction, and we demonstrated their application in the distinction of clinically relevant subgroups of lymphoma. We further demonstrated that a novel miRNA cluster, previously annotated as a hypothetical gene LOC100130622, contains 6 novel miRNAs that regulate the transforming growth factor-β pathway. Thus, our work suggests that more than a third of the miRNAs present in most cellular types are currently unknown and that these miRNAs may regulate important cellular functions. PMID:20733160

  2. Switch-mediated activation and retargeting of CAR-T cells for B-cell malignancies

    PubMed Central

    Rodgers, David T.; Mazagova, Magdalena; Hampton, Eric N.; Cao, Yu; Ramadoss, Nitya S.; Hardy, Ian R.; Schulman, Andrew; Du, Juanjuan; Wang, Feng; Singer, Oded; Ma, Jennifer; Nunez, Vanessa; Shen, Jiayin; Woods, Ashley K.; Wright, Timothy M.; Schultz, Peter G.; Kim, Chan Hyuk; Young, Travis S.

    2016-01-01

    Chimeric antigen receptor T (CAR-T) cell therapy has produced impressive results in clinical trials for B-cell malignancies. However, safety concerns related to the inability to control CAR-T cells once infused into the patient remain a significant challenge. Here we report the engineering of recombinant antibody-based bifunctional switches that consist of a tumor antigen-specific Fab molecule engrafted with a peptide neo-epitope, which is bound exclusively by a peptide-specific switchable CAR-T cell (sCAR-T). The switch redirects the activity of the bio-orthogonal sCAR-T cells through the selective formation of immunological synapses, in which the sCAR-T cell, switch, and target cell interact in a structurally defined and temporally controlled manner. Optimized switches specific for CD19 controlled the activity, tissue-homing, cytokine release, and phenotype of sCAR-T cells in a dose-titratable manner in a Nalm-6 xenograft rodent model of B-cell leukemia. The sCAR–T-cell dosing regimen could be tuned to provide efficacy comparable to the corresponding conventional CART-19, but with lower cytokine levels, thereby offering a method of mitigating cytokine release syndrome in clinical translation. Furthermore, we demonstrate that this methodology is readily adaptable to targeting CD20 on cancer cells using the same sCAR-T cell, suggesting that this approach may be broadly applicable to heterogeneous and resistant tumor populations, as well as other liquid and solid tumor antigens. PMID:26759369

  3. Colony formation by normal and malignant human B-lymphocytes.

    PubMed Central

    Izaguirre, C. A.; Minden, M. D.; Howatson, A. F.; McCulloch, E. A.

    1980-01-01

    A method is described that permits colony formation in culture by B lymphocytes from normal blood and from blood, marrow or lymph nodes of patients with myeloma or lymphoma. The method depends on: (1) exhaustively depleting cell suspensions of T lymphocytes, (2) a medium conditioned by T lymphocytes in the presence of phytohaemagglutinin (PHA-TCM), and (3) irradiated autologous or homologous T lymphocytes. Under these conditions the assay is linear. Cellular development of B lymphocytes can be followed; differentiation to plasma cells is seen in cultures of cells from normal individuals and myeloma patients, but not lymphoma patients. Malignant B lymphocytes in culture produced immunoglobulin of the class identified in the patient's blood, or in freshly obtained cells. We conclude that the assay is suitable for studying the growth, differentiation and regulation of normal and malignant B lymphocytes in culture. Images Fig. 1 Fig. 2 PMID:6968572

  4. Allogeneic T Cells That Express an Anti-CD19 Chimeric Antigen Receptor Induce Remissions of B-Cell Malignancies That Progress After Allogeneic Hematopoietic Stem-Cell Transplantation Without Causing Graft-Versus-Host Disease.

    PubMed

    Brudno, Jennifer N; Somerville, Robert P T; Shi, Victoria; Rose, Jeremy J; Halverson, David C; Fowler, Daniel H; Gea-Banacloche, Juan C; Pavletic, Steven Z; Hickstein, Dennis D; Lu, Tangying L; Feldman, Steven A; Iwamoto, Alexander T; Kurlander, Roger; Maric, Irina; Goy, Andre; Hansen, Brenna G; Wilder, Jennifer S; Blacklock-Schuver, Bazetta; Hakim, Frances T; Rosenberg, Steven A; Gress, Ronald E; Kochenderfer, James N

    2016-04-01

    Progressive malignancy is the leading cause of death after allogeneic hematopoietic stem-cell transplantation (alloHSCT). After alloHSCT, B-cell malignancies often are treated with unmanipulated donor lymphocyte infusions (DLIs) from the transplant donor. DLIs frequently are not effective at eradicating malignancy and often cause graft-versus-host disease, a potentially lethal immune response against normal recipient tissues. We conducted a clinical trial of allogeneic T cells genetically engineered to express a chimeric antigen receptor (CAR) targeting the B-cell antigen CD19. Patients with B-cell malignancies that had progressed after alloHSCT received a single infusion of CAR T cells. No chemotherapy or other therapies were administered. The T cells were obtained from each recipient's alloHSCT donor. Eight of 20 treated patients obtained remission, which included six complete remissions (CRs) and two partial remissions. The response rate was highest for acute lymphoblastic leukemia, with four of five patients obtaining minimal residual disease-negative CR. Responses also occurred in chronic lymphocytic leukemia and lymphoma. The longest ongoing CR was more than 30 months in a patient with chronic lymphocytic leukemia. New-onset acute graft-versus-host disease after CAR T-cell infusion developed in none of the patients. Toxicities included fever, tachycardia, and hypotension. Peak blood CAR T-cell levels were higher in patients who obtained remissions than in those who did not. Programmed cell death protein-1 expression was significantly elevated on CAR T cells after infusion. Presence of blood B cells before CAR T-cell infusion was associated with higher postinfusion CAR T-cell levels. Allogeneic anti-CD19 CAR T cells can effectively treat B-cell malignancies that progress after alloHSCT. The findings point toward a future when antigen-specific T-cell therapies will play a central role in alloHSCT. © 2016 by American Society of Clinical Oncology.

  5. Bruton Tyrosine Kinase Inhibitor Ibrutinib (PCI-32765) Has Significant Activity in Patients With Relapsed/Refractory B-Cell Malignancies

    PubMed Central

    Buggy, Joseph J.; Sharman, Jeff P.; Smith, Sonali M.; Boyd, Thomas E.; Grant, Barbara; Kolibaba, Kathryn S.; Furman, Richard R.; Rodriguez, Sara; Chang, Betty Y.; Sukbuntherng, Juthamas; Izumi, Raquel; Hamdy, Ahmed; Hedrick, Eric; Fowler, Nathan H.

    2013-01-01

    Purpose Survival and progression of mature B-cell malignancies depend on signals from the B-cell antigen receptor, and Bruton tyrosine kinase (BTK) is a critical signaling kinase in this pathway. We evaluated ibrutinib (PCI-32765), a small-molecule irreversible inhibitor of BTK, in patients with B-cell malignancies. Patients and Methods Patients with relapsed or refractory B-cell lymphoma and chronic lymphocytic leukemia received escalating oral doses of ibrutinib. Two schedules were evaluated: one, 28 days on, 7 days off; and two, once-daily continuous dosing. Occupancy of BTK by ibrutinib in peripheral blood was monitored using a fluorescent affinity probe. Dose escalation proceeded until either the maximum-tolerated dose (MTD) was achieved or, in the absence of MTD, until three dose levels above full BTK occupancy by ibrutinib. Response was evaluated every two cycles. Results Fifty-six patients with a variety of B-cell malignancies were treated over seven cohorts. Most adverse events were grade 1 and 2 in severity and self-limited. Dose-limiting events were not observed, even with prolonged dosing. Full occupancy of the BTK active site occurred at 2.5 mg/kg per day, and dose escalation continued to 12.5 mg/kg per day without reaching MTD. Pharmacokinetic data indicated rapid absorption and elimination, yet BTK occupancy was maintained for at least 24 hours, consistent with the irreversible mechanism. Objective response rate in 50 evaluable patients was 60%, including complete response of 16%. Median progression-free survival in all patients was 13.6 months. Conclusion Ibrutinib, a novel BTK-targeting inhibitor, is well tolerated, with substantial activity across B-cell histologies. PMID:23045577

  6. Strategic Therapeutic Targeting to Overcome Venetoclax Resistance in Aggressive B-cell Lymphomas.

    PubMed

    Pham, Lan V; Huang, Shengjian; Zhang, Hui; Zhang, Jun; Bell, Taylor; Zhou, Shouhao; Pogue, Elizabeth; Ding, Zhiyong; Lam, Laura; Westin, Jason; Davis, R Eric; Young, Ken H; Medeiros, L Jeffrey; Ford, Richard J; Nomie, Krystle; Zhang, Leo; Wang, Michael

    2018-04-17

    Purpose: B-cell lymphoma-2 (BCL-2), an antiapoptotic protein often dysregulated in B-cell lymphomas, promotes cell survival and provides protection from stress. A recent phase I first-in-human study of the BCL-2 inhibitor venetoclax in non-Hodgkin lymphoma showed an overall response rate of 44%. These promising clinical results prompted our examination of the biological effects and mechanism of action underlying venetoclax activity in aggressive B-cell lymphoma, including mantle cell lymphoma (MCL) and diffuse large B-cell lymphoma (DLBCL). Experimental Design: MCL and DLBCL cell lines, primary patient samples, and in vivo patient-derived xenograft (PDX) models were utilized to examine venetoclax efficacy. Furthermore, the mechanisms underlying venetoclax response and the development of venetoclax resistance were evaluated using proteomics analysis and Western blotting. Results: Potential biomarkers linked to venetoclax activity and targeted combination therapies that can augment venetoclax response were identified. We demonstrate that DLBCL and MCL cell lines, primary patient samples, and PDX mouse models expressing high BCL-2 levels are extremely sensitive to venetoclax treatment. Proteomics studies showed that venetoclax substantially alters the expression levels and phosphorylation status of key proteins involved in cellular processes, including the DNA damage response, cell metabolism, cell growth/survival, and apoptosis. Short- and long-term exposure to venetoclax inhibited PTEN expression, leading to enhanced AKT pathway activation and concomitant susceptibility to PI3K/AKT inhibition. Intrinsic venetoclax-resistant cells possess high AKT activation and are highly sensitive to PI3K/AKT inhibition. Conclusions: These findings demonstrate the on-target effect of venetoclax and offer potential mechanisms to overcome acquired and intrinsic venetoclax resistance through PI3K/AKT inhibition. Clin Cancer Res; 1-14. ©2018 AACR. ©2018 American Association for

  7. Oncogenic miR-181a/b affect the DNA damage response in aggressive breast cancer.

    PubMed

    Bisso, Andrea; Faleschini, Michela; Zampa, Federico; Capaci, Valeria; De Santa, Jacopo; Santarpia, Libero; Piazza, Silvano; Cappelletti, Vera; Daidone, Mariagrazia; Agami, Reuven; Del Sal, Giannino

    2013-06-01

    Breast cancer is a heterogeneous tumor type characterized by a complex spectrum of molecular aberrations, resulting in a diverse array of malignant features and clinical outcomes. Deciphering the molecular mechanisms that fuel breast cancer development and act as determinants of aggressiveness is a primary need to improve patient management. Among other alterations, aberrant expression of microRNAs has been found in breast cancer and other human tumors, where they act as either oncogenes or tumor suppressors by virtue of their ability to finely modulate gene expression at the post-transcriptional level. In this study, we describe a new role for miR-181a/b as negative regulators of the DNA damage response in breast cancer, impacting on the expression and activity of the stress-sensor kinase ataxia telangiectasia mutated (ATM). We report that miR-181a and miR-181b were overexpressed in more aggressive breast cancers, and their expression correlates inversely with ATM levels. Moreover we demonstrate that deregulated expression of miR-181a/b determines the sensitivity of triple-negative breast cancer cells to the poly-ADP-ribose-polymerase1 (PARP1) inhibition. These evidences suggest that monitoring the expression of miR-181a/b could be helpful in tailoring more effective treatments based on inhibition of PARP1 in breast and other tumor types.

  8. Primary intra-abdominal malignant fibrous histiocytoma: a highly aggressive tumor.

    PubMed

    Salemis, Nikolaos S; Gourgiotis, Stavros; Tsiambas, Evangelos; Panagiotopoulos, Nikolaos; Karameris, Andreas; Tsohataridis, Efstathios

    2010-12-01

    Malignant fibrous histiocytoma (MFH) is the most common soft-tissue sarcoma of late adult life occurring predominantly in the extremities. Primary intra-abdominal MFH is a very rare occurrence. The aim of this study is to describe a very rare case of an intra-abdominal MFH with a highly aggressive clinical course. A 67-year-old male was referred to our department with a 2-week history of dull lower abdominal pain and a gradually enlarging right lower abdominal mass, which he first noticed 2 months prior to admission. Computed tomography (CT) scan demonstrated a mass in the right iliac fossa. On exploratory laparotomy, a tumor was found in the right iliac fossa attached to the parietal lateral peritoneum without any evidence of invasion into the adjacent structures. Complete excision of the tumor with clear margins was performed. Histological and immunohistochemical examinations showed a MFH. One month after surgery, while on adjuvant chemotherapy, the patient was readmitted with dyspnea and a slightly palpable mass in the area of the previous radical resection. CT scan revealed local tumor recurrence along with multiple pulmonary metastatic deposits. Unfortunately, despite treatment, the patient died of progressive disease 5 weeks later. Primary intra-abdominal MFH is a very rare but aggressive malignancy with a high tendency of local recurrence and metastatic spread. Early detection and complete surgical excision with clear margins is the treatment of choice. In some cases, however, the tumor can exhibit a highly aggressive clinical course despite radical surgery and adjuvant therapy.

  9. Infusing CD19-directed T cells to augment disease control in patients undergoing autologous hematopoietic stem-cell transplantation for advanced B-lymphoid malignancies.

    PubMed

    Kebriaei, Partow; Huls, Helen; Jena, Bipulendu; Munsell, Mark; Jackson, Rineka; Lee, Dean A; Hackett, Perry B; Rondon, Gabriela; Shpall, Elizabeth; Champlin, Richard E; Cooper, Laurence J N

    2012-05-01

    Limited curative treatment options exist for patients with advanced B-lymphoid malignancies, and new therapeutic approaches are needed to augment the efficacy of hematopoietic stem-cell transplantation (HSCT). Cellular therapies, such as adoptive transfer of T cells that are being evaluated to target malignant disease, use mechanisms independent of chemo- and radiotherapy with nonoverlapping toxicities. Gene therapy is employed to generate tumor-specific T cells, as specificity can be redirected through enforced expression of a chimeric antigen receptor (CAR) to achieve antigen recognition based on the specificity of a monoclonal antibody. By combining cell and gene therapies, we have opened a new Phase I protocol at the MD Anderson Cancer Center (Houston, TX) to examine the safety and feasibility of administering autologous genetically modified T cells expressing a CD19-specific CAR (capable of signaling through chimeric CD28 and CD3-ζ) into patients with high-risk B-lymphoid malignancies undergoing autologous HSCT. The T cells are genetically modified by nonviral gene transfer of the Sleeping Beauty system and CAR(+) T cells selectively propagated in a CAR-dependent manner on designer artificial antigen-presenting cells. The results of this study will lay the foundation for future protocols including CAR(+) T-cell infusions derived from allogeneic sources.

  10. Malignant lymphomas (ML) and HIV infection in Tanzania

    PubMed Central

    2008-01-01

    Background HIV infection is reported to be associated with some malignant lymphomas (ML) so called AIDS-related lymphomas (ARL), with an aggressive behavior and poor prognosis. The ML frequency, pathogenicity, clinical patterns and possible association with AIDS in Tanzania, are not well documented impeding the development of preventive and therapeutic strategies. Methods Sections of 176 archival formalin-fixed paraffin-embedded biopsies of ML patients at Muhimbili National Hospital (MNH)/Muhimbili University of Health and Allied Sciences (MUHAS), Tanzania from 1996–2001 were stained for hematoxylin and eosin and selected (70) cases for expression of pan-leucocytic (CD45), B-cell (CD20), T-cell (CD3), Hodgkin/RS cell (CD30), histiocyte (CD68) and proliferation (Ki-67) antigen markers. Corresponding clinical records were also evaluated. Available sera from 38 ML patients were screened (ELISA) for HIV antibodies. Results The proportion of ML out of all diagnosed tumors at MNH during the 6 year period was 4.2% (176/4200) comprising 77.84% non-Hodgkin (NHL) including 19.32% Burkitt's (BL) and 22.16% Hodgkin's disease (HD). The ML tumors frequency increased from 0.42% (1997) to 0.70% (2001) and 23.7% of tested sera from these patients were HIV positive. The mean age for all ML was 30, age-range 3–91 and peak age was 1–20 years. The male:female ratio was 1.8:1. Supra-diaphragmatic presentation was commonest and histological sub-types were mostly aggressive B-cell lymphomas however, no clear cases of primary effusion lymphoma (PEL) and primary central nervous system lymphoma (PCNSL) were diagnosed. Conclusion Malignant lymphomas apparently, increased significantly among diagnosed tumors at MNH between 1996 and 2001, predominantly among the young, HIV infected and AIDS patients. The frequent aggressive clinical and histological presentation as well as the dominant B-immunophenotype and the HIV serology indicate a pathogenic association with AIDS. Therefore, routine

  11. Malignant lymphomas (ML) and HIV infection in Tanzania.

    PubMed

    Mwakigonja, Amos R; Kaaya, Ephata E; Mgaya, Edward M

    2008-06-10

    HIV infection is reported to be associated with some malignant lymphomas (ML) so called AIDS-related lymphomas (ARL), with an aggressive behavior and poor prognosis. The ML frequency, pathogenicity, clinical patterns and possible association with AIDS in Tanzania, are not well documented impeding the development of preventive and therapeutic strategies. Sections of 176 archival formalin-fixed paraffin-embedded biopsies of ML patients at Muhimbili National Hospital (MNH)/Muhimbili University of Health and Allied Sciences (MUHAS), Tanzania from 1996-2001 were stained for hematoxylin and eosin and selected (70) cases for expression of pan-leucocytic (CD45), B-cell (CD20), T-cell (CD3), Hodgkin/RS cell (CD30), histiocyte (CD68) and proliferation (Ki-67) antigen markers. Corresponding clinical records were also evaluated. Available sera from 38 ML patients were screened (ELISA) for HIV antibodies. The proportion of ML out of all diagnosed tumors at MNH during the 6 year period was 4.2% (176/4200) comprising 77.84% non-Hodgkin (NHL) including 19.32% Burkitt's (BL) and 22.16% Hodgkin's disease (HD). The ML tumors frequency increased from 0.42% (1997) to 0.70% (2001) and 23.7% of tested sera from these patients were HIV positive. The mean age for all ML was 30, age-range 3-91 and peak age was 1-20 years. The male:female ratio was 1.8:1. Supra-diaphragmatic presentation was commonest and histological sub-types were mostly aggressive B-cell lymphomas however, no clear cases of primary effusion lymphoma (PEL) and primary central nervous system lymphoma (PCNSL) were diagnosed. Malignant lymphomas apparently, increased significantly among diagnosed tumors at MNH between 1996 and 2001, predominantly among the young, HIV infected and AIDS patients. The frequent aggressive clinical and histological presentation as well as the dominant B-immunophenotype and the HIV serology indicate a pathogenic association with AIDS. Therefore, routine HIV screening of all malignant lymphoma

  12. Belinostat and vincristine demonstrate mutually synergistic cytotoxicity associated with mitotic arrest and inhibition of polyploidy in a preclinical model of aggressive diffuse large B cell lymphoma.

    PubMed

    Havas, Aaron P; Rodrigues, Kameron B; Bhakta, Anvi; Demirjian, Joseph A; Hahn, Seongmin; Tran, Jack; Scavello, Margarethakay; Tula-Sanchez, Ana A; Zeng, Yi; Schmelz, Monika; Smith, Catharine L

    2016-12-01

    Diffuse Large B-cell lymphoma (DLBCL) is an aggressive malignancy that has a 60 percent 5-year survival rate, highlighting a need for new therapeutic approaches. Histone deacetylase inhibitors (HDACi) are novel therapeutics being clinically-evaluated in combination with a variety of other drugs. However, rational selection of companion therapeutics for HDACi is difficult due to their poorly-understood, cell-type specific mechanisms of action. To address this, we developed a pre-clinical model system of sensitivity and resistance to the HDACi belinostat using DLBCL cell lines. In the current study, we demonstrate that cell lines sensitive to the cytotoxic effects of HDACi undergo early mitotic arrest prior to apoptosis. In contrast, HDACi-resistant cell lines complete mitosis after a short delay and arrest in G1. To force mitotic arrest in HDACi-resistant cell lines, we used low dose vincristine or paclitaxel in combination with belinostat and observed synergistic cytotoxicity. Belinostat curtails vincristine-induced mitotic arrest and triggers a strong apoptotic response associated with downregulated MCL-1 expression and upregulated BIM expression. Resistance to microtubule targeting agents (MTAs) has been associated with their propensity to induce polyploidy and thereby increase the probability of genomic instability that enables cancer progression. Co-treatment with belinostat effectively eliminated a vincristine-induced, actively cycling polyploid cell population. Our study demonstrates that vincristine sensitizes DLBCL cells to the cytotoxic effects of belinostat and that belinostat prevents polyploidy that could cause vincristine resistance. Our findings provide a rationale for using low dose MTAs in conjunction with HDACi as a potential therapeutic strategy for treatment of aggressive DLBCL.

  13. Suppression of miR-184 in malignant gliomas upregulates SND1 and promotes tumor aggressiveness

    PubMed Central

    Emdad, Luni; Janjic, Aleksandar; Alzubi, Mohammad A.; Hu, Bin; Santhekadur, Prasanna K.; Menezes, Mitchell E.; Shen, Xue-Ning; Das, Swadesh K.; Sarkar, Devanand; Fisher, Paul B.

    2015-01-01

    Background Malignant glioma is an aggressive cancer requiring new therapeutic targets. MicroRNAs (miRNAs) regulate gene expression post transcriptionally and are implicated in cancer development and progression. Deregulated expressions of several miRNAs, specifically hsa-miR-184, correlate with glioma development. Methods Bioinformatic approaches were used to identify potential miR-184-regulated target genes involved in malignant glioma progression. This strategy identified a multifunctional nuclease, SND1, known to be overexpressed in multiple cancers, including breast, colon, and hepatocellular carcinoma, as a putative direct miR-184 target gene. SND1 levels were evaluated in patient tumor samples and human-derived cell lines. We analyzed invasion and signaling in vitro through SND1 gain-of-function and loss-of-function. An orthotopic xenograft model with primary glioma cells demonstrated a role of miR-184/SND1 in glioma pathogenesis in vivo. Results SND1 is highly expressed in human glioma tissue and inversely correlated with miR-184 expression. Transfection of glioma cells with a miR-184 mimic inhibited invasion, suppressed colony formation, and reduced anchorage-independent growth in soft agar. Similar phenotypes were evident when SND1 was knocked down with siRNA. Additionally, knockdown (KD) of SND1 induced senescence and improved the chemoresistant properties of malignant glioma cells. In an orthotopic xenograft model, KD of SND1 or transfection with a miR-184 mimic induced a less invasive tumor phenotype and significantly improved survival of tumor bearing mice. Conclusions Our study is the first to show a novel regulatory role of SND1, a direct target of miR-184, in glioma progression, suggesting that the miR-184/SND1 axis may be a useful diagnostic and therapeutic tool for malignant glioma. PMID:25216670

  14. NF-κB in Hematological Malignancies

    PubMed Central

    Imbert, Véronique; Peyron, Jean-François

    2017-01-01

    NF-κB (Nuclear Factor Κ-light-chain-enhancer of activated B cells) transcription factors are critical regulators of immunity, stress response, apoptosis, and differentiation. Molecular defects promoting the constitutive activation of canonical and non-canonical NF-κB signaling pathways contribute to many diseases, including cancer, diabetes, chronic inflammation, and autoimmunity. In the present review, we focus our attention on the mechanisms of NF-κB deregulation in hematological malignancies. Key positive regulators of NF-κB signaling can act as oncogenes that are often prone to chromosomal translocation, amplifications, or activating mutations. Negative regulators of NF-κB have tumor suppressor functions, and are frequently inactivated either by genomic deletions or point mutations. NF-κB activation in tumoral cells is also driven by the microenvironment or chronic signaling that does not rely on genetic alterations. PMID:28561798

  15. Mechanisms of NF-κB deregulation in lymphoid malignancies.

    PubMed

    Krappmann, Daniel; Vincendeau, Michelle

    2016-08-01

    Deregulations promoting constitutive activation of canonical and non-canonical NF-κB signaling are a common feature of many lymphoid malignancies. Due to their cellular origin and the pivotal role of NF-κB for the normal function of B lymphocytes, B-cell malignancies are particularly prone to genetic aberrations that affect the pathway. Key positive regulators of NF-κB signaling can act as oncogenes that are often prone to chromosomal translocation, amplifications or activating mutations. Negative regulators of NF-κB have tumor suppressor functions and are frequently inactivated either by genomic deletions or point mutations. Whereas some aberrations are found in a variety of different lymphoid malignancies, some oncogenic alterations are very restricted to distinct lymphoma subsets, reflecting the clonal and cellular origin of specific lymphoma entities. NF-κB activation in many lymphoma cells is also driven by the microenvironment or chronic signaling that does not rely on genetic alterations. A number of drugs that target the NF-κB pathway are in preclinical or clinical development, revealing that there will be new options for therapies in the future. Since each lymphoma entity utilizes distinct mechanisms to activate NF-κB, a major challenge is to elucidate the exact pathological processes in order to faithfully predict clinical responses to the different therapeutic approaches. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Effective Targeting of Multiple B-Cell Maturation Antigen-Expressing Hematological Malignances by Anti-B-Cell Maturation Antigen Chimeric Antigen Receptor T Cells.

    PubMed

    Friedman, Kevin M; Garrett, Tracy E; Evans, John W; Horton, Holly M; Latimer, Howard J; Seidel, Stacie L; Horvath, Christopher J; Morgan, Richard A

    2018-05-01

    B-cell maturation antigen (BCMA) expression has been proposed as a marker for the identification of malignant plasma cells in patients with multiple myeloma (MM). Nearly all MM tumor cells express BCMA, while normal tissue expression is restricted to plasma cells and a subset of mature B cells. Consistent BCMA expression was confirmed on MM biopsies (29/29 BCMA+), and it was further demonstrated that BCMA is expressed in a substantial number of lymphoma samples, as well as primary chronic lymphocytic leukemia B cells. To target BCMA using redirected autologous T cells, lentiviral vectors (LVV) encoding chimeric antigen receptors (CARs) were constructed with four unique anti-BCMA single-chain variable fragments, fused to the CD137 (4-1BB) co-stimulatory and CD3ζ signaling domains. One LVV, BB2121, was studied in detail, and BB2121 CAR-transduced T cells (bb2121) exhibited a high frequency of CAR + T cells and robust in vitro activity against MM cell lines, lymphoma cell lines, and primary chronic lymphocytic leukemia peripheral blood. Based on receptor quantification, bb2121 recognized tumor cells expressing as little as 222 BCMA molecules per cell. The in vivo pharmacology of anti-BCMA CAR T cells was studied in NSG mouse models of human MM, Burkitt lymphoma, and mantle cell lymphoma, where mice received a single intravenous administration of vehicle, control vector-transduced T cells, or anti-BCMA CAR-transduced T cells. In all models, the vehicle and control CAR T cells failed to inhibit tumor growth. In contrast, treatment with bb2121 resulted in rapid and sustained elimination of the tumors and 100% survival in all treatment models. Together, these data support the further development of anti-BCMA CAR T cells as a potential treatment for not only MM but also some lymphomas.

  17. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy

    PubMed Central

    Honigberg, Lee A.; Smith, Ashley M.; Sirisawad, Mint; Verner, Erik; Loury, David; Chang, Betty; Li, Shyr; Pan, Zhengying; Thamm, Douglas H.; Miller, Richard A.; Buggy, Joseph J.

    2010-01-01

    Activation of the B-cell antigen receptor (BCR) signaling pathway contributes to the initiation and maintenance of B-cell malignancies and autoimmune diseases. The Bruton tyrosine kinase (Btk) is specifically required for BCR signaling as demonstrated by human and mouse mutations that disrupt Btk function and prevent B-cell maturation at steps that require a functional BCR pathway. Herein we describe a selective and irreversible Btk inhibitor, PCI-32765, that is currently under clinical development in patients with B-cell non-Hodgkin lymphoma. We have used this inhibitor to investigate the biologic effects of Btk inhibition on mature B-cell function and the progression of B cell-associated diseases in vivo. PCI-32765 blocked BCR signaling in human peripheral B cells at concentrations that did not affect T cell receptor signaling. In mice with collagen-induced arthritis, orally administered PCI-32765 reduced the level of circulating autoantibodies and completely suppressed disease. PCI-32765 also inhibited autoantibody production and the development of kidney disease in the MRL-Fas(lpr) lupus model. Occupancy of the Btk active site by PCI-32765 was monitored in vitro and in vivo using a fluorescent affinity probe for Btk. Active site occupancy of Btk was tightly correlated with the blockade of BCR signaling and in vivo efficacy. Finally, PCI-32765 induced objective clinical responses in dogs with spontaneous B-cell non-Hodgkin lymphoma. These findings support Btk inhibition as a therapeutic approach for the treatment of human diseases associated with activation of the BCR pathway. PMID:20615965

  18. Phenotypes and Karyotypes of Human Malignant Mesothelioma Cell Lines

    PubMed Central

    Relan, Vandana; Morrison, Leanne; Parsonson, Kylie; Clarke, Belinda E.; Duhig, Edwina E.; Windsor, Morgan N.; Matar, Kevin S.; Naidoo, Rishendran; Passmore, Linda; McCaul, Elizabeth; Courtney, Deborah; Yang, Ian A.; Fong, Kwun M.; Bowman, Rayleen V.

    2013-01-01

    Background Malignant mesothelioma is an aggressive tumour of serosal surfaces most commonly pleura. Characterised cell lines represent a valuable tool to study the biology of mesothelioma. The aim of this study was to develop and biologically characterise six malignant mesothelioma cell lines to evaluate their potential as models of human malignant mesothelioma. Methods Five lines were initiated from pleural biopsies, and one from pleural effusion of patients with histologically proven malignant mesothelioma. Mesothelial origin was assessed by standard morphology, Transmission Electron Microscopy (TEM) and immunocytochemistry. Growth characteristics were assayed using population doubling times. Spectral karyotyping was performed to assess chromosomal abnormalities. Authentication of donor specific derivation was undertaken by DNA fingerprinting using a panel of SNPs. Results Most of cell lines exhibited spindle cell shape, with some retaining stellate shapes. At passage 2 to 6 all lines stained positively for calretinin and cytokeratin 19, and demonstrated capacity for anchorage-independent growth. At passage 4 to 16, doubling times ranged from 30–72 hours, and on spectral karyotyping all lines exhibited numerical chromosomal abnormalities ranging from 41 to 113. Monosomy of chromosomes 8, 14, 22 or 17 was observed in three lines. One line displayed four different karyotypes at passage 8, but only one karyotype at passage 42, and another displayed polyploidy at passage 40 which was not present at early passages. At passages 5–17, TEM showed characteristic features of mesothelioma ultrastructure in all lines including microvilli and tight intercellular junctions. Conclusion These six cell lines exhibit varying cell morphology, a range of doubling times, and show diverse passage-dependent structural chromosomal changes observed in malignant tumours. However they retain characteristic immunocytochemical protein expression profiles of mesothelioma during

  19. Plexin-B2 promotes invasive growth of malignant glioma

    PubMed Central

    Pingle, Sandeep C.; Kesari, Santosh; Wang, Huaien; Yong, Raymund L.; Zou, Hongyan; Friedel, Roland H.

    2015-01-01

    Invasive growth is a major determinant of the high lethality of malignant gliomas. Plexin-B2, an axon guidance receptor important for mediating neural progenitor cell migration during development, is upregulated in gliomas, but its function therein remains poorly understood. Combining bioinformatic analyses, immunoblotting and immunohistochemistry of patient samples, we demonstrate that Plexin-B2 is consistently upregulated in all types of human gliomas and that its expression levels correlate with glioma grade and poor survival. Activation of Plexin-B2 by Sema4C ligand in glioblastoma cells induced actin-based cytoskeletal dynamics and invasive migration in vitro. This proinvasive effect was associated with activation of the cell motility mediators RhoA and Rac1. Furthermore, costimulation of Plexin-B2 and the receptor tyrosine kinase Met led to synergistic Met phosphorylation. In intracranial glioblastoma transplants, Plexin-B2 knockdown hindered invasive growth and perivascular spreading, and resulted in decreased tumor vascularity. Our results demonstrate that Plexin-B2 promotes glioma invasion and vascularization, and they identify Plexin-B2 as a potential novel prognostic marker for glioma malignancy. Targeting the Plexin-B2 pathway may represent a novel therapeutic approach to curtail invasive growth of glioblastoma. PMID:25762646

  20. Whole-genome sequencing of a malignant granular cell tumor with metabolic response to pazopanib

    PubMed Central

    Wei, Lei; Liu, Song; Conroy, Jeffrey; Wang, Jianmin; Papanicolau-Sengos, Antonios; Glenn, Sean T.; Murakami, Mitsuko; Liu, Lu; Hu, Qiang; Conroy, Jacob; Miles, Kiersten Marie; Nowak, David E.; Liu, Biao; Qin, Maochun; Bshara, Wiam; Omilian, Angela R.; Head, Karen; Bianchi, Michael; Burgher, Blake; Darlak, Christopher; Kane, John; Merzianu, Mihai; Cheney, Richard; Fabiano, Andrew; Salerno, Kilian; Talati, Chetasi; Khushalani, Nikhil I.; Trump, Donald L.; Johnson, Candace S.; Morrison, Carl D.

    2015-01-01

    Granular cell tumors are an uncommon soft tissue neoplasm. Malignant granular cell tumors comprise <2% of all granular cell tumors, are associated with aggressive behavior and poor clinical outcome, and are poorly understood in terms of tumor etiology and systematic treatment. Because of its rarity, the genetic basis of malignant granular cell tumor remains unknown. We performed whole-genome sequencing of one malignant granular cell tumor with metabolic response to pazopanib. This tumor exhibited a very low mutation rate and an overall stable genome with local complex rearrangements. The mutation signature was dominated by C>T transitions, particularly when immediately preceded by a 5′ G. A loss-of-function mutation was detected in a newly recognized tumor suppressor candidate, BRD7. No mutations were found in known targets of pazopanib. However, we identified a receptor tyrosine kinase pathway mutation in GFRA2 that warrants further evaluation. To the best of our knowledge, this is only the second reported case of a malignant granular cell tumor exhibiting a response to pazopanib, and the first whole-genome sequencing of this uncommon tumor type. The findings provide insight into the genetic basis of malignant granular cell tumors and identify potential targets for further investigation. PMID:27148567

  1. A case of primary osseous malignant immunoblastic B-cell lymphoma with intracytoplasmic mu lambda immunoglobulin inclusions.

    PubMed

    Fiche, M; Le Tourneau, A; Audouin, J; Touzard, R C; Diebold, J

    1990-02-01

    Primary malignant lymphoma of bone, so-called Parker-Jackson reticulosarcoma, is a rare form of extranodal lymphoma with a relatively good prognosis. It often corresponds to B-cell lymphoma of high-grade malignancy. We report a case of mu lambda immunoblastic lymphoma showing two distinctive features: an abundant reactive T-lymphocytic population and unusual intra-cytoplasmic inclusions. These inclusions were PAS positive and consisted of monotypic mu lambda immunoglobulin localized in peculiar aggregates of rough endoplasmic reticulum. Their morphological appearances resembled the well-documented inclusions described in some varieties of non-Hodgkin's lymphoma.

  2. The Tol2 transposon system mediates the genetic engineering of T-cells with CD19-specific chimeric antigen receptors for B-cell malignancies.

    PubMed

    Tsukahara, T; Iwase, N; Kawakami, K; Iwasaki, M; Yamamoto, C; Ohmine, K; Uchibori, R; Teruya, T; Ido, H; Saga, Y; Urabe, M; Mizukami, H; Kume, A; Nakamura, M; Brentjens, R; Ozawa, K

    2015-02-01

    Engineered T-cell therapy using a CD19-specific chimeric antigen receptor (CD19-CAR) is a promising strategy for the treatment of advanced B-cell malignancies. Gene transfer of CARs to T-cells has widely relied on retroviral vectors, but transposon-based gene transfer has recently emerged as a suitable nonviral method to mediate stable transgene expression. The advantages of transposon vectors compared with viral vectors include their simplicity and cost-effectiveness. We used the Tol2 transposon system to stably transfer CD19-CAR into human T-cells. Normal human peripheral blood lymphocytes were co-nucleofected with the Tol2 transposon donor plasmid carrying CD19-CAR and the transposase expression plasmid and were selectively propagated on NIH3T3 cells expressing human CD19. Expanded CD3(+) T-cells with stable and high-level transgene expression (~95%) produced interferon-γ upon stimulation with CD19 and specifically lysed Raji cells, a CD19(+) human B-cell lymphoma cell line. Adoptive transfer of these T-cells suppressed tumor progression in Raji tumor-bearing Rag2(-/-)γc(-/-) immunodeficient mice compared with control mice. These results demonstrate that the Tol2 transposon system could be used to express CD19-CAR in genetically engineered T-cells for the treatment of refractory B-cell malignancies.

  3. Malignant mixed germ cell tumour of ovary--an unusual combination and review of literature.

    PubMed

    Goyal, Lajya Devi; Kaur, Sharanjit; Kawatra, Kanwardeep

    2014-11-04

    Mixed germ cell tumours of the ovary are malignant neoplasms of the ovary comprising of two or more types of germ cell components. Most of the malignant mixed germ cell tumours consists of dysgerminoma accompanied by endodermal sinus tumours, immature teratoma or choriocarcinoma. There are only few case reports of mixed germ cell tumours with different combinations of malignant components. We report a very rare case of mixed germ cell tumours consisted of malignant components of endodermal sinus tumour, emryonal carcinoma, and benign component of teratomatuos and trophoblastic differentiation. This is the first case report in the literature with both benign and malignant component of type described to best of our knowledge. Patient was an 18 year old girl, who presented with pain abdomen, abdominal mass and irregular bleeding. Ultrasound and CT scan showed a huge mass with solid and cystic component. Tumour markers i.e alpha feto- protein (AFP), human chorionic gonadotropin (hCG), lactate dehydrogenate (LDH) and Ca-125 were raised. We performed fertility sparing surgery by preserving one ovary, tube and uterus. Conclusion: Malingnant mixed germ cell tumours of ovary are highly aggressive neoplasm and early intervention and fertility sparing surgery is required for any adolescent girl presenting with rapidly enlarging pelvic mass.

  4. A Phase I Clinical Trial of Systemically Delivered NEMO Binding Domain Peptide in Dogs with Spontaneous Activated B-Cell like Diffuse Large B-Cell Lymphoma

    PubMed Central

    Habineza Ndikuyeze, Georges; Gaurnier-Hausser, Anita; Patel, Reema; Baldwin, Albert S.; May, Michael J.; Flood, Patrick; Krick, Erika; Propert, Kathleen J.; Mason, Nicola J.

    2014-01-01

    Activated B-Cell (ABC) Diffuse Large B-Cell Lymphoma (DLBCL) is a common, aggressive and poorly chemoresponsive subtype of DLBCL, characterized by constitutive canonical NF-κB signaling. Inhibition of NF-κB signaling leads to apoptosis of ABC-DLBCL cell lines, suggesting targeted disruption of this pathway may have therapeutic relevance. The selective IKK inhibitor, NEMO Binding Domain (NBD) peptide effectively blocks constitutive NF-κB activity and induces apoptosis in ABC-DLBCL cells in vitro. Here we used a comparative approach to determine the safety and efficacy of systemic NBD peptide to inhibit constitutive NF-κB signaling in privately owned dogs with spontaneous newly diagnosed or relapsed ABC-like DLBCL. Malignant lymph nodes biopsies were taken before and twenty-four hours after peptide administration to determine biological effects. Intravenous administration of <2 mg/kg NBD peptide was safe and inhibited constitutive canonical NF-κB activity in 6/10 dogs. Reductions in mitotic index and Cyclin D expression also occurred in a subset of dogs 24 hours post peptide and in 3 dogs marked, therapeutically beneficial histopathological changes were identified. Mild, grade 1 toxicities were noted in 3 dogs at the time of peptide administration and one dog developed transient subclinical hepatopathy. Long term toxicities were not identified. Pharmacokinetic data suggested rapid uptake of peptide into tissues. No significant hematological or biochemical toxicities were identified. Overall the results from this phase I study indicate that systemic administration of NBD peptide is safe and effectively blocks constitutive NF-κB signaling and reduces malignant B cell proliferation in a subset of dogs with ABC-like DLBCL. These results have potential translational relevance for human ABC-DLBCL. PMID:24798348

  5. Pathogenetic Importance and Therapeutic Implications of NF-κB in Lymphoid Malignancies

    PubMed Central

    Lim, Kian-Huat; Yang, Yibin; Staudt, Louis M.

    2014-01-01

    Summary Derangement of the nuclear factor κB (NF-κB) pathway initiates and/or sustains many types of human cancer. B-cell malignancies are particularly affected by oncogenic mutations, translocations, and copy number alterations affecting key components the NF-κB pathway, most likely owing to the pervasive role of this pathway in normal B cells. These genetic aberrations cause tumors to be ‘addicted’ to NF-κB, which can be exploited therapeutically. Since each subtype of lymphoid cancer utilizes different mechanisms to activate NF-κB, several different therapeutic strategies are needed to address this pathogenetic heterogeneity. Fortunately, a number of drugs that block signaling cascades leading to NF-κB are in early phase clinical trials, several of which are already showing activity in lymphoid malignancies. PMID:22435566

  6. Immunohistochemical analysis of the novel marginal zone B-cell marker IRTA1 in malignant lymphoma.

    PubMed

    Ikeda, Jun-Ichiro; Kohara, Masaharu; Tsuruta, Yoko; Nojima, Satoshi; Tahara, Shinichiro; Ohshima, Kenji; Kurashige, Masako; Wada, Naoki; Morii, Eiichi

    2017-01-01

    Marginal zone lymphoma (MZL) is a low-grade B-cell lymphoma derived from marginal zone B cells. Because of a lack of specific immunohistochemical markers, MZL is mainly diagnosed based on the cytological appearance and growth pattern of the tumor. Marginal zone B cells were recently shown to selectively express immunoglobulin superfamily receptor translocation-associated 1 (IRTA1), but the antibody used in that study is not commercially available. We therefore investigated the IRTA1 expression in nonneoplastic lymphoid tissues and 261 malignant lymphomas, examining the ability of a commercially available antibody to accurately diagnose MZL. Among 37 MZLs, 23 of 25 extranodal MZLs of mucosa-associated lymphoid tissue (MALT lymphomas), 3 of 6 splenic MZLs and 3 of 6 nodal MZLs were positive for IRTA1. Among the 98 diffuse large B-cell lymphomas, 33 were positive for IRTA1, including 1 of 38 follicular lymphomas, and all precursor B-lymphoblastic (2/2) and T-lymphoblastic (7/7) leukemia/lymphomas. Other mature B-cell and T-cell lymphomas, and Hodgkin lymphoma were negative for IRTA1. In MALT lymphoma, positive cells were detected mainly in intraepithelial and subepithelial marginal zone B cells. In 1 case of grade 3 follicular lymphoma, IRTA1 was also expressed in the area of large cell transformation. When tumors were classified as germinal center B cell-like (GCB) or non-GCB using the algorithm of Hans, positive expression of IRTA1 was correlated significantly with non-GCB diffuse large B-cell lymphomas (P < .05). These results demonstrated the ability of the commercially available IRTA1 antibody to distinguish MALT lymphoma from other low-grade B-cell lymphomas. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Investigational Antibody-Drug Conjugates for Treatment of B-lineage Malignancies.

    PubMed

    Herrera, Alex F; Molina, Arturo

    2018-05-10

    Antibody-drug conjugates (ADCs) are tripartite molecules consisting of a monoclonal antibody, a covalent linker, and a cytotoxic payload. ADC development has aimed to target the specificity inherent in antigen-antibody interactions to deliver potent cytotoxins preferentially to tumor cells and maximize antitumor activity and simultaneously minimize off-target toxicity. The earliest ADCs provided disappointing results in the clinic; however, the lessons learned regarding the need for human or humanized antibodies, more stable linkers, and greater potency payloads led to improved ADCs. Three ADCs, gemtuzumab ozogamicin, brentuximab vedotin (BV), and inotuzumab ozogamicin, have been approved for hematologic malignancies. Site-specific conjugation methods have now resulted in a new generation of more uniform, molecularly defined ADCs. These are expected to display improved in vivo properties and have recently entered the clinic. We reviewed investigational ADCs currently in clinical testing for the treatment of B-cell lineage malignancies, including leukemias, lymphomas, and multiple myeloma. The rationales for antigen targeting, data reported to date, current trial status, and preclinical results for several newer ADCs expected to enter first-in-human studies are presented. Owing to the large number of ongoing and reported BV clinical studies, only the studies of BV for diffuse large B-cell lymphoma and those combining BV with checkpoint inhibitors in B-lineage malignancies have been reviewed. With > 40 ongoing clinical trials and 7 investigational ADCs already having advanced to phase II studies, the role of ADCs in the armamentarium for the treatment of B-lineage malignancies continues to be elucidated. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  8. NEMO Binding Domain peptide inhibits constitutive NF-κB activity and reduces tumor burden in a canine model of relapsed, refractory Diffuse Large B-Cell Lymphoma

    PubMed Central

    Gaurnier-Hausser, Anita; Patel, Reema; Baldwin, Albert S.; May, Michael J.; Mason, Nicola J.

    2011-01-01

    Purpose Activated B-Cell Diffuse Large B-Cell Lymphoma (ABC-DLBCL) is an aggressive, poorly chemoresponsive lymphoid malignancy characterized by constitutive canonical NF-κB activity that promotes lymphomagenesis and chemotherapy resistance via over-expression of anti-apoptotic NF-κB target genes. Inhibition of the canonical NF-κB pathway may therefore have therapeutic relevance in ABC-DLBCL. Here we set out to determine whether dogs with spontaneous DLBCL have comparative aberrant constitutive NF-κB activity and to determine the therapeutic relevance of NF-κB inhibition in dogs with relapsed, resistant DLBCL. Experimental Design Canonical NF-κB activity was evaluated by electrophoretic mobility shift assays and immunoblot analyses, and NF-κB target gene expression was measured by qRT-PCR. Primary malignant canine B lymphocytes were treated with the selective IKK complex inhibitor Nemo Binding Domain (NBD) peptide, and evaluated for NF-κB activity and apoptosis. NBD peptide was administered intra-nodally to dogs with relapsed B-cell lymphoma and NF-κB target gene expression and tumor burden were evaluated pre and post treatment. Results Constitutive canonical NF-κB activity and increased NF-κB target gene expression was detected in primary DLBCL tissue. NBD peptide inhibited this activity and induced apoptosis of primary malignant B cells in vitro. Intra-tumoral injections of NBD peptide to dogs with relapsed DLBCL inhibited NF-κB target gene expression and reduced tumor burden. Conclusions This work shows that dogs with spontaneous DLBCL represent a clinically relevant, spontaneous, large animal model for human ABC-DLBCL and demonstrates the therapeutic relevance of NF-κB inhibition in the treatment of ABC-DLBCL. These results have important translational relevance for ABC-DLBCL treatment in human patients. PMID:21610150

  9. CD20-based Immunotherapy of B-cell Derived Hematologic Malignancies.

    PubMed

    Shanehbandi, Dariush; Majidi, Jafar; Kazemi, Tohid; Baradaran, Behzad; Aghebati-Maleki, Leili

    2017-01-01

    CD20 is a surface antigen, which is expressed at certain stages of B-cell differentiation. Targeting the CD20-positive B-cells with therapeutic monoclonal antibodies (MAbs) has been an effectual strategy in the treatment of hematologic malignancies such as non-Hodgkin's lymphoma (NHL) and chronic lymphocytic leukemia (CLL). Initial success with Rituximab (RTX) has encouraged the creation and development of more effective CD20 based therapeutics. However, treatment with conventional MAbs has not been adequate to overcome the problems such as refractory/ relapsed disease. In this regard, new generations of MAbs with enhanced affinity or improved anti-tumor properties have been developed. CD20 directed therapeutics have heterogeneous features and mechanisms of action. Hence, having sufficient knowledge on the immunological and molecular aspects of CD20 based cancer therapy is necessary for predicting the clinical outcomes and taking the necessary measures. An extensive search was performed in PubMed and similar databases for peer-reviewed articles concerning the biology, function and characteristics of CD20 molecule as well as the mechanisms of action and evolutionary process of CD20 targeting agents. This review provides information about the current situation of CD20 targeting immunotherapeutics including MAbs, bispecific antibodies (which exert multiple functions or involve Tcells in tumor elimination) and CAR T-cells (engineered T-cells armed with chimeric antigen receptors). Moreover, limitations, challenges and available solutions regarding the application of CD20 targeting treatments are addressed. Utilization of CD20-targeted therapeutics, due to their diverse properties, requires special considerations. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Modulation of T Cell Activation by Malignant Melanoma Initiating Cells

    PubMed Central

    Schatton, Tobias; Schütte, Ute; Frank, Natasha Y.; Zhan, Qian; Hoerning, André; Robles, Susanne C.; Zhou, Jun; Hodi, F. Stephen; Spagnoli, Giulio C.; Murphy, George F.; Frank, Markus H.

    2010-01-01

    Highly immunogenic cancers such as malignant melanoma are capable of inexorable tumor growth despite the presence of antitumor immunity. This raises the possibility that only a restricted minority of tumorigenic malignant cells might possess the phenotypic and functional characteristics to modulate tumor-directed immune activation. Here we provide evidence supporting this hypothesis, by demonstrating that tumorigenic ABCB5+ malignant melanoma-initiating cells (MMICs) possess the capacity to preferentially inhibit interleukin (IL)-2-dependent T cell activation and to support, in a B7.2-dependent manner, regulatory T (Treg) cell induction. Compared to melanoma bulk populations, ABCB5+ MMICs expressed lower levels of the major histocompatibility complex (MHC) class I, showed aberrant positivity for MHC class II, and exhibited lower expression levels of the melanoma-associated antigens (MAAs) MART-1, ML-IAP, NY-ESO-1, and MAGE-A. In addition, tumorigenic ABCB5+ subpopulations preferentially expressed the costimulatory molecules B7.2 and PD-1 in both established melanoma xenografts and clinical tumor specimens in vivo. In immune activation assays, ABCB5+ melanoma cells inhibited mitogen-dependent human peripheral blood mononuclear cell (PBMC) proliferation and IL-2 production more efficiently than ABCB5− populations. Moreover, coculture with ABCB5+ MMICs increased, in a B7.2 signalling-dependent manner, CD4+CD25+FoxP3+ Treg cell abundance and IL-10 production by mitogen-activated PBMCs. Consistent with these findings, ABCB5+ melanoma subsets also preferentially inhibited IL-2 production and induced IL-10 secretion by cocultured patient-derived, syngeneic PBMCs. Our findings identify novel T cell-modulatory functions of ABCB5+ melanoma subpopulations and suggest specific roles for MMICs in the evasion of antitumor immunity and in cancer immunotherapeutic resistance. PMID:20068175

  11. Rapamycin attenuates BAFF-extended proliferation and survival via disruption of mTORC1/2 signaling in normal and neoplastic B-lymphoid cells.

    PubMed

    Zeng, Qingyu; Qin, Shanshan; Zhang, Hai; Liu, Beibei; Qin, Jiamin; Wang, Xiaoxue; Zhang, Ruijie; Liu, Chunxiao; Dong, Xiaoqing; Zhang, Shuangquan; Huang, Shile; Chen, Long

    2018-01-01

    B cell activating factor from the TNF family (BAFF) stimulates B-cell proliferation and survival, but excessive BAFF promotes the development of aggressive B cells leading to malignant and autoimmune diseases. Recently, we have reported that rapamycin, a macrocyclic lactone, attenuates human soluble BAFF (hsBAFF)-stimulated B-cell proliferation/survival by suppressing mTOR-mediated PP2A-Erk1/2 signaling pathway. Here, we show that the inhibitory effect of rapamycin on hsBAFF-promoted B cell proliferation/survival is also related to blocking hsBAFF-stimulated phosphorylation of Akt, S6K1, and 4E-BP1, as well as expression of survivin in normal and B-lymphoid (Raji and Daudi) cells. It appeared that both mTORC1 and mTORC2 were involved in the inhibitory activity of rapamycin, as silencing raptor or rictor enhanced rapamycin's suppression of hsBAFF-induced survivin expression and proliferation/viability in B cells. Also, PP242, an mTORC1/2 kinase inhibitor, repressed survivin expression, and cell proliferation/viability more potently than rapamycin (mTORC1 inhibitor) in B cells in response to hsBAFF. Of interest, ectopic expression of constitutively active Akt (myr-Akt) or constitutively active S6K1 (S6K1-ca), or downregulation of 4E-BP1 conferred resistance to rapamycin's attenuation of hsBAFF-induced survivin expression and B-cell proliferation/viability, whereas overexpression of dominant negative Akt (dn-Akt) or constitutively hypophosphorylated 4E-BP1 (4EBP1-5A), or downregulation of S6K1, or co-treatment with Akt inhibitor potentiated the inhibitory effects of rapamycin. The findings indicate that rapamycin attenuates excessive hsBAFF-induced cell proliferation/survival via blocking mTORC1/2 signaling in normal and neoplastic B-lymphoid cells. Our data underscore that rapamycin may be a potential agent for preventing excessive BAFF-evoked aggressive B-cell malignancies and autoimmune diseases. © 2017 Wiley Periodicals, Inc.

  12. New targeted therapies for indolent B-cell malignancies in older patients.

    PubMed

    Krem, Maxwell M; Gopal, Ajay K

    2015-01-01

    Molecularly targeted agents have become an established component of the treatment of indolent B-cell malignancies (iNHL). iNHL disproportionately affects older adults, so treatments that have excellent tolerability and efficacy across multiple lines of therapy are in demand. The numbers and classes of targeted therapies for iNHL have proliferated rapidly in recent years; classes of agents that show promise for older patients with iNHL include anti-CD20 antibodies, phosphatidyl-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway inhibitors, immunomodulators, proteasome inhibitors, epigenetic modulators, and immunotherapies. Here, we review the proposed mechanisms of action, efficacy, and tolerability of novel agents for iNHL, with an emphasis on their applicability to older patients.

  13. Targeting malignant B cells with an immunotoxin against ROR1

    PubMed Central

    Baskar, Sivasubramanian; Wiestner, Adrian; Wilson, Wyndham H.; Pastan, Ira; Rader, Christoph

    2012-01-01

    The selective cell surface expression of receptor tyrosine kinase-like orphan receptor 1 (ROR1) in chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) has made ROR1 a novel and promising target for therapeutic monoclonal antibodies (mAbs). Four mouse mAbs generated by hybridoma technology exhibited specific binding to human ROR1. Epitope mapping studies showed that two mAbs (2A2 and 2D11) recognized N-terminal epitopes in the extracellular region of ROR1 and the other two (1A1 and 1A7) recognized C-terminal epitopes. A ROR1- immunotoxin (BT-1) consisting of truncated Pseudomonas exotoxin A (PE38) and the VH and VL fragments of 2A2-IgG was made recombinantly. Both 2A2-IgG and BT-1 showed dose-dependent and selective binding to primary CLL and MCL cells and MCL cell lines. Kinetic analyses revealed 0.12-nM (2A2-IgG) to 65-nM (BT-1) avidity/affinity to hROR1, depicting bivalent and monovalent interactions, respectively. After binding to cell surface ROR1, 2A2-IgG and BT-1 were partially internalized by primary CLL cells and MCL cell lines, and BT-1 induced profound apoptosis of ROR1-expressing MCL cell lines in vitro (EC50 = 16 pM–16 nM), but did not affect ROR1-negative cell lines. Our data suggest that ROR1-immunotoxins such as BT-1 could serve as targeted therapeutic agents for ROR1-expressing B cell malignancies and other cancers. PMID:22531447

  14. Lnk adaptor suppresses radiation resistance and radiation-induced B-cell malignancies by inhibiting IL-11 signaling

    PubMed Central

    Louria-Hayon, Igal; Frelin, Catherine; Ruston, Julie; Gish, Gerald; Jin, Jing; Kofler, Michael M.; Lambert, Jean-Philippe; Adissu, Hibret A.; Milyavsky, Michael; Herrington, Robert; Minden, Mark D.; Dick, John E.; Gingras, Anne-Claude; Iscove, Norman N.; Pawson, Tony

    2013-01-01

    The Lnk (Sh2b3) adaptor protein dampens the response of hematopoietic stem cells and progenitors (HSPCs) to a variety of cytokines by inhibiting JAK2 signaling. As a consequence, Lnk−/− mice develop hematopoietic hyperplasia, which progresses to a phenotype resembling the nonacute phase of myeloproliferative neoplasm. In addition, Lnk mutations have been identified in human myeloproliferative neoplasms and acute leukemia. We find that Lnk suppresses the development of radiation-induced acute B-cell malignancies in mice. Lnk-deficient HSPCs recover more effectively from irradiation than their wild-type counterparts, and this resistance of Lnk−/− HSPCs to radiation underlies the subsequent emergence of leukemia. A search for the mechanism responsible for radiation resistance identified the cytokine IL-11 as being critical for the ability of Lnk−/− HSPCs to recover from irradiation and subsequently become leukemic. In IL-11 signaling, wild-type Lnk suppresses tyrosine phosphorylation of the Src homology region 2 domain-containing phosphatase-2/protein tyrosine phosphatase nonreceptor type 11 and its association with the growth factor receptor-bound protein 2, as well as activation of the Erk MAP kinase pathway. Indeed, Src homology region 2 domain-containing phosphatase-2 has a binding motif for the Lnk Src Homology 2 domain that is phosphorylated in response to IL-11 stimulation. IL-11 therefore drives a pathway that enhances HSPC radioresistance and radiation-induced B-cell malignancies, but is normally attenuated by the inhibitory adaptor Lnk. PMID:24297922

  15. CD4+ T cell-mediated cytotoxicity is associated with MHC class II expression on malignant CD19+ B cells in diffuse large B cell lymphoma.

    PubMed

    Zhou, Yong; Zha, Jie; Lin, Zhijuan; Fang, Zhihong; Zeng, Hanyan; Zhao, Jintao; Luo, Yiming; Li, Zhifeng; Xu, Bing

    2018-01-15

    Diffuse large B cell lymphoma (DLBCL) is a common B cell malignancy with approximately 30% of patients present relapsed or refractory disease after first-line therapy. Research of further treatment options is needed. Cytotoxic CD4 + T cells express cytolytic molecules and have potential antitumor function. Here, we showed that the CD19 + cells from DLBCL patients presented significantly reduced expression of MHC II molecules than those from healthy controls. Three years after the first-line treatment, patients that presented relapsed disease had significantly lower MHC II expression on their CD19 + cells than patients who did not show recurrence. Examining cytotoxic CD4 + T cells show that DLBCL patients presented significantly elevated frequencies of granzyme A-, granzyme B-, and/or perforin-expressing cytotoxic CD4 + T cells. Also, frequency of cytotoxic CD4 + T cells in DLBCL patients was positively correlated with the MHC II expression level. Subsequently, the cytotoxic potential of CD4 + T cells against autologous CD19 + cells was investigated. We found that the cytotoxic potential of CD4 + T cells was highest in MHC II-high, intermediate in MHC II-mid, and lowest in MHC II-low patients. The percentage of MHC II-expressing viable CD19 + cells presented a significant reduction after longer incubation with cytotoxic CD4 + T cells, suggesting that cytotoxic CD4 + T cells preferentially eliminated MHC II-expressing CD19 + cells. Blocking MHC II on CD19 + cells significantly reduced the cytolytic capacity of CD4 + T cells. Despite these discoveries, the frequency of cytotoxic CD4 + T cells did not predict the clinical outcome of DLBCL patients. Together, these results demonstrated that cytotoxic CD4 + T cells presented an MHC II-dependent cytotoxic potential against autologous CD19 + cells and could potentially represent a future treatment option for DLBCL. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. At the Bench: Chimeric antigen receptor (CAR) T cell therapy for the treatment of B cell malignancies.

    PubMed

    Daniyan, Anthony F O; Brentjens, Renier J

    2016-12-01

    The chimeric antigen receptor (CAR) represents the epitome of cellular engineering and is one of the best examples of rational biologic design of a synthetic molecule. The CAR is a single polypeptide with modular domains, consisting of an antibody-derived targeting moiety, fused in line with T cell-derived signaling domains, allowing for T cell activation upon ligand binding. T cells expressing a CAR are able to eradicate selectively antigen-expressing tumor cells in a MHC-independent fashion. CD19, a tumor-associated antigen (TAA) present on normal B cells, as well as most B cell-derived malignancies, was an early target of this technology. Through years of experimental refinement and preclinical optimization, autologously derived CD19-targeting CAR T cells have been successfully, clinically deployed, resulting in dramatic and durable antitumor responses but not without therapy-associated toxicity. As CD19-targeted CAR T cells continue to show clinical success, work at the bench continues to be undertaken to increase further the efficacy of this therapy, while simultaneously minimizing the risk for treatment-related morbidities. In this review, we cover the history and evolution of CAR technology and its adaptation to targeting CD19. Furthermore, we discuss the future of CAR T cell therapy and the need to ask, as well as answer, critical questions as this treatment modality is being translated to the clinic. © Society for Leukocyte Biology.

  17. Identification of cancer stem cell markers in human malignant mesothelioma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghani, Farhana Ishrat; Yamazaki, Hiroto; Iwata, Satoshi

    2011-01-14

    Research highlights: {yields} We performed serial transplantation of surgical samples and established new cell lines of malignant mesothelioma. {yields} SP cell and expressions of CD9/CD24/CD26 were often observed in mesothelioma cell lines. {yields} SP and CD24{sup +} cells proliferated by asymmetric cell division-like manner. CD9{sup +} and CD24{sup +} cells have higher potential to generate spheroid colony. {yields} The marker-positive cells have clear tendency to generate larger tumors in mice. -- Abstract: Malignant mesothelioma (MM) is an aggressive and therapy-resistant neoplasm arising from the pleural mesothelial cells and usually associated with long-term asbestos exposure. Recent studies suggest that tumors containmore » cancer stem cells (CSCs) and their stem cell characteristics are thought to confer therapy-resistance. However, whether MM cell has any stem cell characteristics is not known. To understand the molecular basis of MM, we first performed serial transplantation of surgical samples into NOD/SCID mice and established new cell lines. Next, we performed marker analysis of the MM cell lines and found that many of them contain SP cells and expressed several putative CSC markers such as CD9, CD24, and CD26. Interestingly, expression of CD26 closely correlated with that of CD24 in some cases. Sorting and culture assay revealed that SP and CD24{sup +} cells proliferated by asymmetric cell division-like manner. In addition, CD9{sup +} and CD24{sup +} cells have higher potential to generate spheroid colony than negative cells in the stem cell medium. Moreover, these marker-positive cells have clear tendency to generate larger tumors in mouse transplantation assay. Taken together, our data suggest that SP, CD9, CD24, and CD26 are CSC markers of MM and could be used as novel therapeutic targets.« less

  18. [A case of small-cell malignant melanoma in a pregnant patient].

    PubMed

    Calderón Garcidueñas, Anna Laura; Dragustinovis Valdez, Irma Yadira; Castelán Maldonado, Edmundo Erbey; Zavala, Pompa Angel

    2005-01-01

    Malignant melanoma (MM) is an aggressive neoplasm that may affect pregnant women. Malignant melanoma with small-cell morphology (MMSCM) is a rare variant of MM that can cause confusion in its diagnosis. To report a fatal case of MMSCM in a pregnant woman, highlighting immunohistochemistry (IHC) as a very useful tool in the final diagnosis. A 22-year-old pregnant female presented with a 5-cm cutaneous tumor in her right leg. The lesion was excised but the patient refused any further therapy. The natural outcome of this neoplasm occurred with local recurrence and multiple metastases to the lungs, liver, and kidneys. MM should be included in the differential diagnosis of small-cell cutaneous tumor, and IHC is mandatory for diagnosis confirmation. The recommended suggested screening includes, as a minimum, one sensitive marker (S-100 protein) and one specific (HMB45) marker for melanogenesis.

  19. A T-cell-directed chimeric antigen receptor for the selective treatment of T-cell malignancies.

    PubMed

    Mamonkin, Maksim; Rouce, Rayne H; Tashiro, Haruko; Brenner, Malcolm K

    2015-08-20

    Options for targeted therapy of T-cell malignancies remain scarce. Recent clinical trials demonstrated that chimeric antigen receptors (CARs) can effectively redirect T lymphocytes to eradicate lymphoid malignancies of B-cell origin. However, T-lineage neoplasms remain a more challenging task for CAR T cells due to shared expression of most targetable surface antigens between normal and malignant T cells, potentially leading to fratricide of CAR T cells or profound immunodeficiency. Here, we report that T cells transduced with a CAR targeting CD5, a common surface marker of normal and neoplastic T cells, undergo only limited fratricide and can be expanded long-term ex vivo. These CD5 CAR T cells effectively eliminate malignant T-cell acute lymphoblastic leukemia (T-ALL) and T-cell lymphoma lines in vitro and significantly inhibit disease progression in xenograft mouse models of T-ALL. These data support the therapeutic potential of CD5 CAR in patients with T-cell neoplasms. © 2015 by The American Society of Hematology.

  20. ZNF423 and ZNF521: EBF1 Antagonists of Potential Relevance in B-Lymphoid Malignancies

    PubMed Central

    Mesuraca, Maria; Chiarella, Emanuela; Scicchitano, Stefania; Codispoti, Bruna; Giordano, Marco; Nappo, Giovanna; Bond, Heather M.; Morrone, Giovanni

    2015-01-01

    The development of the B-lymphoid cell lineage is tightly controlled by the concerted action of a network of transcriptional and epigenetic regulators. EBF1, a central component of this network, is essential for B-lymphoid specification and commitment as well as for the maintenance of the B-cell identity. Genetic alterations causing loss of function of these B-lymphopoiesis regulators have been implicated in the pathogenesis of B-lymphoid malignancies, with particular regard to B-cell acute lymphoblastic leukaemias (B-ALLs), where their presence is frequently detected. The activity of the B-cell regulatory network may also be disrupted by the aberrant expression of inhibitory molecules. In particular, two multi-zinc finger transcription cofactors named ZNF423 and ZNF521 have been characterised as potent inhibitors of EBF1 and are emerging as potentially relevant contributors to the development of B-cell leukaemias. Here we will briefly review the current knowledge of these factors and discuss the importance of their functional cross talk with EBF1 in the development of B-cell malignancies. PMID:26788497

  1. Intracavitary 'T4 immunotherapy' of malignant mesothelioma using pan-ErbB re-targeted CAR T-cells.

    PubMed

    Klampatsa, Astero; Achkova, Daniela Y; Davies, David M; Parente-Pereira, Ana C; Woodman, Natalie; Rosekilly, James; Osborne, Georgina; Thayaparan, Thivyan; Bille, Andrea; Sheaf, Michael; Spicer, James F; King, Juliet; Maher, John

    2017-05-01

    Malignant mesothelioma remains an incurable cancer. We demonstrated that mesotheliomas expressed EGFR (79.2%), ErbB4 (49.0%) and HER2 (6.3%), but lacked ErbB3. At least one ErbB family member was expressed in 88% of tumors. To exploit ErbB dysregulation in this disease, patient T-cells were engineered by retroviral transduction to express a panErbB-targeted chimeric antigen receptor (CAR), co-expressed with a chimeric cytokine receptor that allows interleukin (IL)-4 mediated CAR T-cell proliferation. This combination is referred to as T4 immunotherapy. T-cells from mesothelioma patients were uniformly amenable to T4 genetic modification and expansion/enrichment thereafter using IL-4. Patient-derived T4 + T-cells were activated upon contact with a panel of four mesothelioma cell lines, leading to cytotoxicity and cytokine release in all cases. Adoptive transfer of T4 immunotherapy to SCID Beige mice with an established bioluminescent LO68 mesothelioma xenograft was followed by regression or eradication of disease in all animals. Despite the established ability of T4 immunotherapy to elicit cytokine release syndrome in SCID Beige mice, therapy was very well tolerated. These findings provide a strong rationale for the clinical evaluation of intracavitary T4 immunotherapy to treat mesothelioma. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A taspine derivative supresses Caco-2 cell growth by competitively targeting EphrinB2 and regulating its pathway.

    PubMed

    Dai, Bingling; Wang, Wenjie; Ma, Yujiao; Liu, Rui; Zhang, Yanmin

    2016-09-01

    Colorectal cancer is a common gastrointestinal malignancy worldwide and it is a lethal and aggressive malignancy with a dismal prognosis. In the present study, we investigated the effect of taspine derivative 12k on human colorectal cancer targeted at EphrinB2 and its PDZ. The results indicated that 12k could bind to EphrinB2 and showed a higher suppressive effect on EphrinB2/HEK293 than on HEK293 cells. Caco‑2 cells were screened for high expression of EphrinB2. We found that 12k not only significantly decreased Caco‑2 cell viability and colony formation but impaired migration. Meanwhile, 12k effectively inhibited blood vessel formation in a tissue model of angiogenesis. Mechanistic studies revealed that 12k significantly reduced the phosphorylation of EphrinB2 and PDZ protein PICK1. Accordingly, it was associated with the downregulation by 12k of the PI3K/AKT/mTOR and MAPK signaling pathways which were downstream of VEGFR2, yet it had no effect on VEGFR3. Moreover, the expression of CD34, CD45 and HIF‑1α were downregulated in the Caco‑2 cells. In conclusion, our findings showed that 12k had an inhibitory effect on the growth of Caco-2 cells, and it functioned by interrupting the phosphorylation of EphrinB2 and its related signaling pathway.

  3. Axicabtagene ciloleucel (KTE-C19), an anti-CD19 CAR T therapy for the treatment of relapsed/refractory aggressive B-cell non-Hodgkin's lymphoma.

    PubMed

    Jain, Michael D; Bachmeier, Christina A; Phuoc, Vania H; Chavez, Julio C

    2018-01-01

    Adoptive T-cell immunotherapy is a rapidly growing field and is shifting the paradigm of clinical cancer treatment. Axicabtagene ciloleucel (axi-cel) is an anti-CD19 chimeric antigen receptor T-cell therapy that was initially developed at the National Cancer Institute and has recently been commercially approved by the US Food and Drug Administration for relapsed or refractory aggressive non-Hodgkin's lymphomas including diffuse large B-cell lymphoma and its variants. The ZUMA-1 Phase I and II clinical trials formed the basis of the US Food and Drug Administration approval of this product, and we discuss the particulars of the clinical trials and the pharmacology of axi-cel. In addition, we review the CD19 chimeric antigen receptor T-specific toxicities of cytokine release syndrome and neurotoxicity, which remain the challenges to the safe delivery of this important therapy for aggressive B-cell lymphomas with poor prognosis.

  4. Primary malignant perivascular epithelioid cell neoplasm (PEComa) of the bone mimicking granular cell tumor in core biopsy: A case report and literature review

    PubMed Central

    Sadigh, Sam; Shah, Preya; Weber, Kristy; Sebro, Ronnie; Zhang, Paul J.

    2018-01-01

    The present study investigated the case of a 46-year-old female with primary malignant perivascular epithelioid cell neoplasm (PEComa) of the femur. The patient presented with a 5-month history of right distal thigh pain following trauma. Radiographs of the right distal femur revealed a mixed lytic and sclerotic lesion with subtle areas of cortical destruction and soft tissue extension, consistent with an aggressive tumor. A core biopsy revealed an epithelioid tumor with granular cell features, but a definitive diagnosis could not be made. Due to the aggressive features on radiologic evaluation, the patient underwent a resection of the distal femur and reconstruction with a distal femoral megaprosthesis and hinged knee replacement. The post-resection pathology led to a final diagnosis of primary bone PEComa, with histologic features including epithelioid, granular cell and spindled cell morphologies and biphasic immunoreactivity for melanocytic and smooth muscle markers. The large tumor size (>5 cm), rapid mitotic rate, infiltrative growth pattern, high nuclear grade and cellularity, and the presence of necrosis rendered this a malignant PEComa. The present study discussed the case, including radiographic (radiographs, magnetic resonance imaging and positron emission tomography scans) and histologic appearance and a literature review. PMID:29435023

  5. Contribution of an alveolar cell of origin to the aggressive phenotype of pregnancy-associated breast cancer

    PubMed Central

    Haricharan, Svasti; Hein, Sarah; Dong, Jie; Toneff, Michael; Aina, Olulana; Rao, Pulivarthi H.; Cardiff, Robert; Li, Yi

    2014-01-01

    Pregnancy-associated breast cancers (PABCs) are malignancies diagnosed during pregnancy or up to five years following parturition, and are usually aggressive, stroma-rich, and estrogen receptor/progesterone receptor-negative; but little is known about the cellular origin of PABCs or the mechanisms by which PABCs initiate. Using the RCAS retrovirus to deliver the ErbB2 oncogene into the mammary epithelium of our previous reported MMTV-tva transgenic mice, we detected human PABC-like tumors during pregnancy and lactation but not in involuted mice or in age-matched virgin mice. More importantly, by generating a WAP-tva transgenic line for expression of ErbB2 selectively in WAP+ mammary alveolar cells, we found that the resulting tumors exhibited the hallmarks of PABCs irrespective of the time since pregnancy and even in the absence of pregnancy. These data suggest that PABCs arise preferentially from an alveolar cell population that expands during pregnancy and lactation. This somatic mouse model may also be useful for preclinical testing of new prophylactic and therapeutic strategies against PABC. PMID:24317513

  6. Phase II study of alisertib, a selective Aurora A kinase inhibitor, in relapsed and refractory aggressive B- and T-cell non-Hodgkin lymphomas.

    PubMed

    Friedberg, Jonathan W; Mahadevan, Daruka; Cebula, Erin; Persky, Daniel; Lossos, Izidore; Agarwal, Amit B; Jung, Jungah; Burack, Richard; Zhou, Xiaofei; Leonard, E Jane; Fingert, Howard; Danaee, Hadi; Bernstein, Steven H

    2014-01-01

    Aurora A kinase (AAK) is overexpressed in aggressive lymphomas and can correlate with more histologically aggressive forms of disease. We therefore designed a phase II study of alisertib, a selective AAK inhibitor, in patients with relapsed and refractory aggressive non-Hodgkin lymphomas. Patients age ≥ 18 years were eligible if they had relapsed or refractory diffuse large B-cell lymphoma (DLBCL), mantle-cell lymphoma (MCL), transformed follicular lymphoma, Burkitt's lymphoma, or noncutaneous T-cell lymphoma. Alisertib was administered orally at 50 mg twice daily for 7 days in 21-day cycles. We enrolled 48 patients. Histologies included DLBCL (n = 21), MCL (n = 13), peripheral T-cell lymphoma (n = 8), transformed follicular lymphoma (n = 5), and Burkitt's (n = 1). Most common grade 3 to 4 adverse events were neutropenia (63%), leukopenia (54%), anemia (35%), thrombocytopenia (33%), stomatitis (15%), febrile neutropenia (13%), and fatigue (6%). Four deaths during the study were attributed to progressive non-Hodgkin lymphoma (n = 2), treatment-related sepsis (n = 1), and unknown cause (n = 1). The overall response rate was 27%, including responses in three of 21 patients with DLBCL, three of 13 with MCL, one of one with Burkitt's lymphoma, two of five with transformed follicular lymphoma, and four of eight with noncutaneous T-cell lymphoma. The alisertib steady-state trough concentration (n = 25) revealed the expected pharmacokinetic variability, with a trend for higher incidence of adverse event-related dose reductions at higher trough concentrations. Analysis for AAK gene amplification and total AAK protein revealed no differences between histologies or correlation with clinical response. The novel AAK inhibitor alisertib seems clinically active in both B- and T-cell aggressive lymphomas. On the basis of these results, confirmatory single-agent and combination studies have been initiated.

  7. Phase II Study of Alisertib, a Selective Aurora A Kinase Inhibitor, in Relapsed and Refractory Aggressive B- and T-Cell Non-Hodgkin Lymphomas

    PubMed Central

    Friedberg, Jonathan W.; Mahadevan, Daruka; Cebula, Erin; Persky, Daniel; Lossos, Izidore; Agarwal, Amit B.; Jung, JungAh; Burack, Richard; Zhou, Xiaofei; Leonard, E. Jane; Fingert, Howard; Danaee, Hadi; Bernstein, Steven H.

    2014-01-01

    Purpose Aurora A kinase (AAK) is overexpressed in aggressive lymphomas and can correlate with more histologically aggressive forms of disease. We therefore designed a phase II study of alisertib, a selective AAK inhibitor, in patients with relapsed and refractory aggressive non-Hodgkin lymphomas. Patients and Methods Patients age ≥ 18 years were eligible if they had relapsed or refractory diffuse large B-cell lymphoma (DLBCL), mantle-cell lymphoma (MCL), transformed follicular lymphoma, Burkitt's lymphoma, or noncutaneous T-cell lymphoma. Alisertib was administered orally at 50 mg twice daily for 7 days in 21-day cycles. Results We enrolled 48 patients. Histologies included DLBCL (n = 21), MCL (n = 13), peripheral T-cell lymphoma (n = 8), transformed follicular lymphoma (n = 5), and Burkitt's (n = 1). Most common grade 3 to 4 adverse events were neutropenia (63%), leukopenia (54%), anemia (35%), thrombocytopenia (33%), stomatitis (15%), febrile neutropenia (13%), and fatigue (6%). Four deaths during the study were attributed to progressive non-Hodgkin lymphoma (n = 2), treatment-related sepsis (n = 1), and unknown cause (n = 1). The overall response rate was 27%, including responses in three of 21 patients with DLBCL, three of 13 with MCL, one of one with Burkitt's lymphoma, two of five with transformed follicular lymphoma, and four of eight with noncutaneous T-cell lymphoma. The alisertib steady-state trough concentration (n = 25) revealed the expected pharmacokinetic variability, with a trend for higher incidence of adverse event–related dose reductions at higher trough concentrations. Analysis for AAK gene amplification and total AAK protein revealed no differences between histologies or correlation with clinical response. Conclusion The novel AAK inhibitor alisertib seems clinically active in both B- and T-cell aggressive lymphomas. On the basis of these results, confirmatory single-agent and combination studies have been initiated. PMID:24043741

  8. The inhibition of FGF receptor 1 activity mediates sorafenib antiproliferative effects in human malignant pleural mesothelioma tumor-initiating cells.

    PubMed

    Pattarozzi, Alessandra; Carra, Elisa; Favoni, Roberto E; Würth, Roberto; Marubbi, Daniela; Filiberti, Rosa Angela; Mutti, Luciano; Florio, Tullio; Barbieri, Federica; Daga, Antonio

    2017-05-25

    Malignant pleural mesothelioma is an aggressive cancer, characterized by rapid progression and high mortality. Persistence of tumor-initiating cells (TICs, or cancer stem cells) after cytotoxic drug treatment is responsible for tumor relapse, and represents one of the main reasons for the poor prognosis of mesothelioma. In fact, identification of the molecules affecting TIC viability is still a significant challenge. TIC-enriched cultures were obtained from 10 human malignant pleural mesotheliomas and cultured in vitro. Three fully characterized tumorigenic cultures, named MM1, MM3, and MM4, were selected and used to assess antiproliferative effects of the multi-kinase inhibitor sorafenib. Cell viability was investigated by MTT assay, and cell cycle analysis as well as induction of apoptosis were determined by flow cytometry. Western blotting was performed to reveal the modulation of protein expression and the phosphorylation status of pathways associated with sorafenib treatment. We analyzed the molecular mechanisms of the antiproliferative effects of sorafenib in mesothelioma TIC cultures. Sorafenib inhibited cell cycle progression in all cultures, but only in MM3 and MM4 cells was this effect associated with Mcl-1-dependent apoptosis. To investigate the mechanisms of sorafenib-mediated antiproliferative activity, TICs were treated with epidermal growth factor (EGF) or basic fibroblast growth factor (bFGF) causing, in MM3 and MM4 cells, MEK, ERK1/2, Akt, and STAT3 phosphorylation. These effects were abolished by sorafenib only in bFGF-treated cells, while a modest inhibition occurred after EGF stimulation, suggesting that sorafenib effects are mainly due to FGF receptor (FGFR) inhibition. Indeed, FGFR1 phosphorylation was inhibited by sorafenib. Moreover, in MM1 cells, which release high levels of bFGF and showed autocrine activation of FGFR1 and constitutive phosphorylation/activation of MEK-ERK1/2, sorafenib induced a more effective antiproliferative response

  9. Successful Treatment of Pediatric Epstein-Barr Virus-positive Aggressive Natural Killer-Cell Leukemia.

    PubMed

    Kim, Bo Kyung; Hong, Kyung Taek; Kang, Hyoung Jin; An, Hong Yul; Choi, Jung Yoon; Hong, Che Ry; Park, Kyung Duk; Lee, Dong Soon; Shin, Hee Young

    2018-06-08

    Epstein-Barr virus (EBV)-positive aggressive natural killer-cell leukemia (ANKL) is a rare malignancy of mature natural killer cells, with a very poor survival rate. Patients have a rapidly declining clinical course and a poor prognosis, with a median survival of only a few months. Herein, we describe a 16-year-old boy who was diagnosed with EBV-positive ANKL and successfully treated using combination chemotherapy and a subsequent allogeneic hematopoietic stem cell transplantation (alloHSCT). The patient is disease free 4 years and 9 months after alloHSCT. Thus, combination chemotherapy followed by alloHSCT seems to be a promising therapeutic option for EBV-positive ANKL.

  10. Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Kochenderfer, James N; Dudley, Mark E; Carpenter, Robert O; Kassim, Sadik H; Rose, Jeremy J; Telford, William G; Hakim, Frances T; Halverson, David C; Fowler, Daniel H; Hardy, Nancy M; Mato, Anthony R; Hickstein, Dennis D; Gea-Banacloche, Juan C; Pavletic, Steven Z; Sportes, Claude; Maric, Irina; Feldman, Steven A; Hansen, Brenna G; Wilder, Jennifer S; Blacklock-Schuver, Bazetta; Jena, Bipulendu; Bishop, Michael R; Gress, Ronald E; Rosenberg, Steven A

    2013-12-12

    New treatments are needed for B-cell malignancies persisting after allogeneic hematopoietic stem cell transplantation (alloHSCT). We conducted a clinical trial of allogeneic T cells genetically modified to express a chimeric antigen receptor (CAR) targeting the B-cell antigen CD19. T cells for genetic modification were obtained from each patient's alloHSCT donor. All patients had malignancy that persisted after alloHSCT and standard donor lymphocyte infusions (DLIs). Patients did not receive chemotherapy prior to the CAR T-cell infusions and were not lymphocyte depleted at the time of the infusions. The 10 treated patients received a single infusion of allogeneic anti-CD19-CAR T cells. Three patients had regressions of their malignancies. One patient with chronic lymphocytic leukemia (CLL) obtained an ongoing complete remission after treatment with allogeneic anti-CD19-CAR T cells, another CLL patient had tumor lysis syndrome as his leukemia dramatically regressed, and a patient with mantle cell lymphoma obtained an ongoing partial remission. None of the 10 patients developed graft-versus-host disease (GVHD). Toxicities included transient hypotension and fever. We detected cells containing the anti-CD19-CAR gene in the blood of 8 of 10 patients. These results show for the first time that donor-derived allogeneic anti-CD19-CAR T cells can cause regression of B-cell malignancies resistant to standard DLIs without causing GVHD.

  11. Antitumor activity of the investigational proteasome inhibitor MLN9708 in mouse models of B-cell and plasma cell malignancies.

    PubMed

    Lee, Edmund C; Fitzgerald, Michael; Bannerman, Bret; Donelan, Jill; Bano, Kristen; Terkelsen, Jennifer; Bradley, Daniel P; Subakan, Ozlem; Silva, Matthew D; Liu, Ray; Pickard, Michael; Li, Zhi; Tayber, Olga; Li, Ping; Hales, Paul; Carsillo, Mary; Neppalli, Vishala T; Berger, Allison J; Kupperman, Erik; Manfredi, Mark; Bolen, Joseph B; Van Ness, Brian; Janz, Siegfried

    2011-12-01

    The clinical success of the first-in-class proteasome inhibitor bortezomib (VELCADE) has validated the proteasome as a therapeutic target for treating human cancers. MLN9708 is an investigational proteasome inhibitor that, compared with bortezomib, has improved pharmacokinetics, pharmacodynamics, and antitumor activity in preclinical studies. Here, we focused on evaluating the in vivo activity of MLN2238 (the biologically active form of MLN9708) in a variety of mouse models of hematologic malignancies, including tumor xenograft models derived from a human lymphoma cell line and primary human lymphoma tissue, and genetically engineered mouse (GEM) models of plasma cell malignancies (PCM). Both cell line-derived OCI-Ly10 and primary human lymphoma-derived PHTX22L xenograft models of diffuse large B-cell lymphoma were used to evaluate the pharmacodynamics and antitumor effects of MLN2238 and bortezomib. The iMyc(Cα)/Bcl-X(L) GEM model was used to assess their effects on de novo PCM and overall survival. The newly developed DP54-Luc-disseminated model of iMyc(Cα)/Bcl-X(L) was used to determine antitumor activity and effects on osteolytic bone disease. MLN2238 has an improved pharmacodynamic profile and antitumor activity compared with bortezomib in both OCI-Ly10 and PHTX22L models. Although both MLN2238 and bortezomib prolonged overall survival, reduced splenomegaly, and attenuated IgG2a levels in the iMyc(Cα)/Bcl-X(L) GEM model, only MLN2238 alleviated osteolytic bone disease in the DP54-Luc model. Our results clearly showed the antitumor activity of MLN2238 in a variety of mouse models of B-cell lymphoma and PCM, supporting its clinical development. MLN9708 is being evaluated in multiple phase I and I/II trials. ©2011 AACR.

  12. Antitumor Activity of the Investigational Proteasome Inhibitor MLN9708 in Mouse Models of B-cell and Plasma Cell Malignancies

    PubMed Central

    Lee, Edmund C.; Fitzgerald, Michael; Bannerman, Bret; Donelan, Jill; Bano, Kristen; Terkelsen, Jennifer; Bradley, Daniel P.; Subakan, Ozlem; Silva, Matthew D.; Liu, Ray; Pickard, Michael; Li, Zhi; Tayber, Olga; Li, Ping; Hales, Paul; Carsillo, Mary; Neppalli, Vishala T.; Berger, Allison J.; Kupperman, Erik; Manfredi, Mark; Bolen, Joseph B.; Van Ness, Brian; Janz, Siegfried

    2012-01-01

    Purpose The clinical success of the first-in-class proteasome inhibitor bortezomib (VELCADE) has validated the proteasome as a therapeutic target for treating human cancers. MLN9708 is an investigational proteasome inhibitor that, compared with bortezomib, has improved pharmacokinetics, pharmacodynamics, and antitumor activity in preclinical studies. Here, we focused on evaluating the in vivo activity of MLN2238 (the biologically active form of MLN9708) in a variety of mouse models of hematologic malignancies, including tumor xenograft models derived from a human lymphoma cell line and primary human lymphoma tissue, and genetically engineered mouse (GEM) models of plasma cell malignancies (PCM). Experimental Design Both cell line–derived OCI-Ly10 and primary human lymphoma–derived PHTX22L xenograft models of diffuse large B-cell lymphoma were used to evaluate the pharmacodynamics and antitumor effects of MLN2238 and bortezomib. The iMycCα/Bcl-XL GEM model was used to assess their effects on de novo PCM and overall survival. The newly developed DP54-Luc–disseminated model of iMycCα/ Bcl-XL was used to determine antitumor activity and effects on osteolytic bone disease. Results MLN2238 has an improved pharmacodynamic profile and antitumor activity compared with bortezomib in both OCI-Ly10 and PHTX22L models. Although both MLN2238 and bortezomib prolonged overall survival, reduced splenomegaly, and attenuated IgG2a levels in the iMycCα/Bcl-XL GEM model, only MLN2238 alleviated osteolytic bone disease in the DP54-Luc model. Conclusions Our results clearly showed the antitumor activity of MLN2238 in a variety of mouse models of B-cell lymphoma and PCM, supporting its clinical development. MLN9708 is being evaluated in multiple phase I and I/II trials. PMID:21903769

  13. Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors.

    PubMed

    Kochenderfer, James N; Rosenberg, Steven A

    2013-05-01

    Most B-cell malignancies express CD19, and a majority of patients with B-cell malignancies are not cured by current standard therapies. Chimeric antigen receptors (CARs) are fusion proteins consisting of antigen recognition moieties and T-cell activation domains. T cells can be genetically modified to express CARs, and adoptive transfer of anti-CD19 CAR T cells is now being tested in clinical trials. Effective clinical treatment with anti-CD19 CAR T cells was first reported in 2010 after a patient with advanced-stage lymphoma treated at the NCI experienced a partial remission of lymphoma and long-term eradication of normal B cells. Additional patients have subsequently obtained long-term remissions of advanced-stage B-cell malignancies after infusions of anti-CD19 CAR T cells. Long-term eradication of normal CD19(+) B cells from patients receiving infusions of anti-CD19 CAR T cells demonstrates the potent antigen-specific activity of these T cells. Some patients treated with anti-CD19 CAR T cells have experienced acute adverse effects, which were associated with increased levels of serum inflammatory cytokines. Although anti-CD19 CAR T cells are at an early stage of development, the potent antigen-specific activity observed in patients suggests that infusions of anti-CD19 CAR T cells might become a standard therapy for some B-cell malignancies.

  14. B-cell receptor signaling as a driver of lymphoma development and evolution.

    PubMed

    Niemann, Carsten U; Wiestner, Adrian

    2013-12-01

    The B-cell receptor (BCR) is essential for normal B-cell development and maturation. In an increasing number of B-cell malignancies, BCR signaling is implicated as a pivotal pathway in tumorigenesis. Mechanisms of BCR activation are quite diverse and range from chronic antigenic drive by microbial or viral antigens to autostimulation of B-cells by self-antigens to activating mutations in intracellular components of the BCR pathway. Hepatitis C virus infection can lead to the development of splenic marginal zone lymphoma, while Helicobacter pylori infection is associated with the development of mucosa-associated lymphoid tissue lymphomas. In some of these cases, successful treatment of the infection removes the inciting antigen and results in resolution of the lymphoma. Chronic lymphocytic leukemia has been recognized for decades as a malignancy of auto-reactive B-cells and its clinical course is in part determined by the differential response of the malignant cells to BCR activation. In a number of B-cell malignancies, activating mutations in signal transduction components of the BCR pathway have been identified; prominent examples are activated B-cell-like (ABC) diffuse large B-cell lymphomas (DLBCL) that carry mutations in CD79B and CARD11 and display chronic active BCR signaling resulting in constitutive activation of the NF-κB pathway. Despite considerable heterogeneity in biology and clinical course, many mature B-cell malignancies are highly sensitive to kinase inhibitors that disrupt BCR signaling. Thus, targeted therapy through inhibition of BCR signaling is emerging as a new treatment paradigm for many B-cell malignancies. Here, we review the role of the BCR in the pathogenesis of B-cell malignancies and summarize clinical results of the emerging class of kinase inhibitors that target this pathway. Copyright © 2013. Published by Elsevier Ltd.

  15. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor–transduced T cells

    PubMed Central

    Dudley, Mark E.; Feldman, Steven A.; Wilson, Wyndham H.; Spaner, David E.; Maric, Irina; Stetler-Stevenson, Maryalice; Phan, Giao Q.; Hughes, Marybeth S.; Sherry, Richard M.; Yang, James C.; Kammula, Udai S.; Devillier, Laura; Carpenter, Robert; Nathan, Debbie-Ann N.; Morgan, Richard A.; Laurencot, Carolyn; Rosenberg, Steven A.

    2012-01-01

    We conducted a clinical trial to assess adoptive transfer of T cells genetically modified to express an anti-CD19 chimeric Ag receptor (CAR). Our clinical protocol consisted of chemotherapy followed by an infusion of anti–CD19-CAR–transduced T cells and a course of IL-2. Six of the 8 patients treated on our protocol obtained remissions of their advanced, progressive B-cell malignancies. Four of the 8 patients treated on the protocol had long-term depletion of normal polyclonal CD19+ B-lineage cells. Cells containing the anti-CD19 CAR gene were detected in the blood of all patients. Four of the 8 treated patients had prominent elevations in serum levels of the inflammatory cytokines IFNγ and TNF. The severity of acute toxicities experienced by the patients correlated with serum IFNγ and TNF levels. The infused anti–CD19-CAR–transduced T cells were a possible source of these inflammatory cytokines because we demonstrated peripheral blood T cells that produced TNF and IFNγ ex vivo in a CD19-specific manner after anti–CD19-CAR–transduced T-cell infusions. Anti–CD19-CAR–transduced T cells have great promise to improve the treatment of B-cell malignancies because of a potent ability to eradicate CD19+ cells in vivo; however, reversible cytokine-associated toxicities occurred after CAR–transduced T-cell infusions. This trial was registered with ClinicalTrials.gov as NCT00924326. PMID:22160384

  16. SLC6A4 expression and anti-proliferative responses to serotonin transporter ligands chlomipramine and fluoxetine in primary B-cell malignancies.

    PubMed

    Chamba, Anita; Holder, Michelle J; Jarrett, Ruth F; Shield, Lesley; Toellner, Kai M; Drayson, Mark T; Barnes, Nicholas M; Gordon, John

    2010-08-01

    B-cell lines of diverse neoplastic origin express the serotonin transporter (SERT/SLC6A4) and growth arrest in response to SERT-ligands, including the antidepressants chlomipramine and fluoxetine. Here we detail SLC6A4 transcript (Q-PCR) and protein (FACS) expression in primary cells from patients with: chronic lymphocytic leukaemia; mantle cell lymphoma; follicular lymphoma; Burkitt's lymphoma; and diffuse large B-cell lymphoma. The ability of the SERT-binding antidepressants to impact the growth of these cells when sustained on CD154-transfected fibroblasts was also determined. The results reveal a broad spectrum of primary B-cell malignancies expressing SLC6A4 with a proportion additionally displaying growth arrest on SERT-ligand exposure. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  17. Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation

    PubMed Central

    Dudley, Mark E.; Carpenter, Robert O.; Kassim, Sadik H.; Rose, Jeremy J.; Telford, William G.; Hakim, Frances T.; Halverson, David C.; Fowler, Daniel H.; Hardy, Nancy M.; Mato, Anthony R.; Hickstein, Dennis D.; Gea-Banacloche, Juan C.; Pavletic, Steven Z.; Sportes, Claude; Maric, Irina; Feldman, Steven A.; Hansen, Brenna G.; Wilder, Jennifer S.; Blacklock-Schuver, Bazetta; Jena, Bipulendu; Bishop, Michael R.; Gress, Ronald E.; Rosenberg, Steven A.

    2013-01-01

    New treatments are needed for B-cell malignancies persisting after allogeneic hematopoietic stem cell transplantation (alloHSCT). We conducted a clinical trial of allogeneic T cells genetically modified to express a chimeric antigen receptor (CAR) targeting the B-cell antigen CD19. T cells for genetic modification were obtained from each patient’s alloHSCT donor. All patients had malignancy that persisted after alloHSCT and standard donor lymphocyte infusions (DLIs). Patients did not receive chemotherapy prior to the CAR T-cell infusions and were not lymphocyte depleted at the time of the infusions. The 10 treated patients received a single infusion of allogeneic anti-CD19-CAR T cells. Three patients had regressions of their malignancies. One patient with chronic lymphocytic leukemia (CLL) obtained an ongoing complete remission after treatment with allogeneic anti-CD19-CAR T cells, another CLL patient had tumor lysis syndrome as his leukemia dramatically regressed, and a patient with mantle cell lymphoma obtained an ongoing partial remission. None of the 10 patients developed graft-versus-host disease (GVHD). Toxicities included transient hypotension and fever. We detected cells containing the anti-CD19-CAR gene in the blood of 8 of 10 patients. These results show for the first time that donor-derived allogeneic anti-CD19-CAR T cells can cause regression of B-cell malignancies resistant to standard DLIs without causing GVHD. This trial was registered at www.clinicaltrials.gov as #NCT01087294. PMID:24055823

  18. Adoptive immunotherapy for B-cell malignancies using CD19-targeted chimeric antigen receptor T-cells: A systematic review of efficacy and safety.

    PubMed

    Hao, Lu; Li, Tongtong; Chang, Lung-Ji; Chen, Xiaochuan

    2017-08-01

    Adoptive infusion of chimeric antigen receptor transduced T-cells (CAR-T) is a powerful tool of immunotherapy for hematological malignancies, as evidenced by recently published and unpublished clinical results. In this report, we performed a meta-analysis to evaluate the efficacy and side effects of CAR-T on relapsed B-cell malignancies, including leukemia and lymphoma. Clinical studies investigating efficacy and safety of CAR-T in acute and chronic lymphocytic leukemia and lymphoma were identified by searching PubMed and EMBASE. Outcomes of efficacy subjected to analysis were the rates of complete remission (CR) and partial remission (PR). The safety parameters were the prevalence of adverse effects including fever, hypotension, and acute renal failure. Meta analyses were performed using R software. Weighted hazard ratio (HR) with 95% confidence intervals was calculated for each outcome. Fixed or random-effects models were employed depending on the heterogeneity across the included studies. Nineteen published clinical studies, with a total of 391 patients were included for the meta-analysis. The pooled rate of complete remission was 55% (95% CI 41%-69%); the pooled rate of partial remission was 25% (95% CI: 19%-33%). The prevalence of fever was 62% (95% CI: 41%-79%); the hypotension was 22% (95% CI: 15%-31%); acute renal failure was 24% (95% CI: 16%-34%). All adverse effects were manageable and no death was reported due to toxicity. CD19-targeted CAR-T is an effective modality in treating refractory B-cell malignancies including acute and chronic lymphatic leukemia, Hodjkin's and non-Hodjkin's lymphoma. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. MiR-181a/b induce the growth, invasion, and metastasis of neuroblastoma cells through targeting ABI1.

    PubMed

    Liu, Xiaodan; Peng, Hongxia; Liao, Wang; Luo, Ailing; Cai, Mansi; He, Jing; Zhang, Xiaohong; Luo, Ziyan; Jiang, Hua; Xu, Ling

    2018-05-26

    Neuroblastoma is a pediatric malignancy, and the clinical phenotypes range from localized tumors with excellent outcomes to widely metastatic disease in which long-term survival is approximately 40%, despite intensive therapy. Emerging evidence suggests that aberrant miRNA regulation plays a role in neuroblastoma, but the miRNA functions and mechanisms remain unknown. miR-181 family members were detected in 32 neuroblastoma patients, and the effects of miR-181a/b on cell viability, invasion, and migration were evaluated in vitro and in vivo. A parallel global mRNA expression profile was obtained for neuroblastoma cells overexpressing miR-181a. The potential targets of miR-181a/b were validated. miR-181a/b expression levels were positively associated with MYCN amplification and neuroblastoma aggressiveness. Moreover, ectopic miR-181a/b expression significantly induced the growth and invasion of neuroblastoma cells in vitro and in vivo. Microarray analysis revealed that mRNAs were consistently downregulated after miR-181a overexpression, leading to cell migration. In addition, the expression of ABI1 was suppressed by miR-181a/b, and ABI1 was validated as a direct target of miR-181a/b. We concluded that miR-181a/b were significantly upregulated in aggressive neuroblastoma, which enhanced its tumorigenesis and progression by suppressing the expression of ABI1. © 2018 Wiley Periodicals, Inc.

  20. Exposure to 9,10-phenanthrenequinone accelerates malignant progression of lung cancer cells through up-regulation of aldo-keto reductase 1B10

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsunaga, Toshiyuki, E-mail: matsunagat@gifu-pu.ac.jp; Morikawa, Yoshifumi; Haga, Mariko

    2014-07-15

    Inhalation of 9,10-phenanthrenequinone (9,10-PQ), a major quinone in diesel exhaust, exerts fatal damage against a variety of cells involved in respiratory function. Here, we show that treatment with high concentrations of 9,10-PQ evokes apoptosis of lung cancer A549 cells through production of reactive oxygen species (ROS). In contrast, 9,10-PQ at its concentrations of 2 and 5 μM elevated the potentials for proliferation, invasion, metastasis and tumorigenesis, all of which were almost completely inhibited by addition of an antioxidant N-acetyl-L-cysteine, inferring a crucial role of ROS in the overgrowth and malignant progression of lung cancer cells. Comparison of mRNA expression levelsmore » of six aldo-keto reductases (AKRs) in the 9,10-PQ-treated cells advocated up-regulation of AKR1B10 as a major cause contributing to the lung cancer malignancy. In support of this, the elevation of invasive, metastatic and tumorigenic activities in the 9,10-PQ-treated cells was significantly abolished by the addition of a selective AKR1B10 inhibitor oleanolic acid. Intriguingly, zymographic and real-time PCR analyses revealed remarkable increases in secretion and expression, respectively, of matrix metalloproteinase 2 during the 9,10-PQ treatment, and suggested that the AKR1B10 up-regulation and resultant activation of mitogen-activated protein kinase cascade are predominant mechanisms underlying the metalloproteinase induction. In addition, HPLC analysis and cytochrome c reduction assay in in vitro 9,10-PQ reduction by AKR1B10 demonstrated that the enzyme catalyzes redox-cycling of this quinone, by which ROS are produced. Collectively, these results suggest that AKR1B10 is a key regulator involved in overgrowth and malignant progression of the lung cancer cells through ROS production due to 9,10-PQ redox-cycling. - Highlights: • 9,10-PQ promotes invasion, metastasis and tumorigenicity in lung cancer cells. • The 9,10-PQ-elicited promotion is possibly due to AKR1B10

  1. SYK as a New Therapeutic Target in B-Cell Precursor Acute Lymphoblastic Leukemia

    PubMed Central

    Uckun, Fatih M.; Qazi, Sanjive

    2014-01-01

    The identification of SYK as a master regulator of apoptosis controlling the activation of the PI3-K/AKT, NFκB, and STAT3 pathways—three major anti-apoptotic signaling pathways in B-lineage leukemia/lymphoma cells—prompts the hypothesis that rationally designed inhibitors targeting SYK may overcome the resistance of malignant B-lineage lymphoid cells to apoptosis and thereby provide the foundation for more effective multi-modality treatment regimens for poor prognosis B-precursor acute lymphoblastic leukemia (BPL). In recent preclinical proof-of-concept studies, a liposomal nanoparticle (LNP) formulation of a SYK substrate-binding site inhibitor, known as C61, has been developed as a nanomedicine candidate against poor prognosis and relapsed BPL. This nanoscale formulation of C61 exhibited a uniquely favorable pharmacokinetics and safety profile in mice, induced apoptosis in radiation-resistant primary leukemic cells taken directly from BPL patients as well as in vivo clonogenic BPL xenograft cells, destroyed the leukemic stem cell fraction of BPL blasts, and exhibited potent in vivo anti-leukemic activity in xenograft models of aggressive BPL. Further development of C61-LNP may provide the foundation for new and effective treatment strategies against therapy-refractory BPL. PMID:24851191

  2. New insights into the biology and origin of mature aggressive B-cell lymphomas by combined epigenomic, genomic, and transcriptional profiling.

    PubMed

    Martín-Subero, José I; Kreuz, Markus; Bibikova, Marina; Bentink, Stefan; Ammerpohl, Ole; Wickham-Garcia, Eliza; Rosolowski, Maciej; Richter, Julia; Lopez-Serra, Lidia; Ballestar, Esteban; Berger, Hilmar; Agirre, Xabier; Bernd, Heinz-Wolfram; Calvanese, Vincenzo; Cogliatti, Sergio B; Drexler, Hans G; Fan, Jian-Bing; Fraga, Mario F; Hansmann, Martin L; Hummel, Michael; Klapper, Wolfram; Korn, Bernhard; Küppers, Ralf; Macleod, Roderick A F; Möller, Peter; Ott, German; Pott, Christiane; Prosper, Felipe; Rosenwald, Andreas; Schwaenen, Carsten; Schübeler, Dirk; Seifert, Marc; Stürzenhofecker, Benjamin; Weber, Michael; Wessendorf, Swen; Loeffler, Markus; Trümper, Lorenz; Stein, Harald; Spang, Rainer; Esteller, Manel; Barker, David; Hasenclever, Dirk; Siebert, Reiner

    2009-03-12

    Lymphomas are assumed to originate at different stages of lymphocyte development through chromosomal aberrations. Thus, different lymphomas resemble lymphocytes at distinct differentiation stages and show characteristic morphologic, genetic, and transcriptional features. Here, we have performed a microarray-based DNA methylation profiling of 83 mature aggressive B-cell non-Hodgkin lymphomas (maB-NHLs) characterized for their morphologic, genetic, and transcriptional features, including molecular Burkitt lymphomas and diffuse large B-cell lymphomas. Hierarchic clustering indicated that methylation patterns in maB-NHLs were not strictly associated with morphologic, genetic, or transcriptional features. By supervised analyses, we identified 56 genes de novo methylated in all lymphoma subtypes studied and 22 methylated in a lymphoma subtype-specific manner. Remarkably, the group of genes de novo methylated in all lymphoma subtypes was significantly enriched for polycomb targets in embryonic stem cells. De novo methylated genes in all maB-NHLs studied were expressed at low levels in lymphomas and normal hematopoietic tissues but not in nonhematopoietic tissues. These findings, especially the enrichment for polycomb targets in stem cells, indicate that maB-NHLs with different morphologic, genetic, and transcriptional background share a similar stem cell-like epigenetic pattern. This suggests that maB-NHLs originate from cells with stem cell features or that stemness was acquired during lymphomagenesis by epigenetic remodeling.

  3. Knockdown of NF-κB1 by shRNA Inhibits the Growth of Renal Cell Carcinoma In Vitro and In Vivo.

    PubMed

    Ikegami, Amanda; Teixeira, Luiz Felipe S; Braga, Marina S; Dias, Matheus Henrique Dos S; Lopes, Eduardo C; Bellini, Maria Helena

    2018-06-11

    Renal cell carcinoma (RCC) accounts for approximately 2%-3% of human malignancies and is the most aggressive among urologic tumors. Biological heterogeneity, drug resistance, and chemotherapy side effects are the biggest obstacles to the effective treatment of RCC. The NF-κB transcription factor is one of several molecules identified to be responsible for the aggressive phenotype of this tumor. In the past decade, several studies have demonstrated the activation of NF-κB in RCC, and many have implicated NF-κB1 (p50) as an important molecule in tumor progression and metastasis. In the present study, a lentivirus was used to deliver shRNA targeting NF-κB1 into mouse RCC (Renca) cells. It was determined that the knockdown of the NF-κB1 gene led to a reduction in cell proliferation and late apoptosis/necrosis in vitro. Flow cytometry analysis demonstrated G2/M arrest in the cells. In addition, immunoblotting analysis revealed a significant increase in cyclin B1 and Bax. In vivo experiments showed that Renca-shRNA-NF-κB1 cells have significantly diminished tumorigenicity. Moreover, immunohistochemical analysis revealed an increase in necrotic areas of Renca-shRNA-NF-κB1 tumors. Thus, this study indicates that downregulation of NF-κB1 can suppress RCC tumorigenesis by inducing late apoptosis/necrosis. Therefore, NF-κB1 may be a potential therapeutic target for RCC.

  4. Advances in the management of malignant mesothelioma.

    PubMed

    Khalil, Mazen Y; Mapa, Marissa; Shin, Hyung Ju C; Shin, Dong M

    2003-07-01

    Malignant mesotheliomas are very aggressive tumors that originate from mesothelial cells, which form the serosal lining of the pleura, pericardial, and peritoneal cavities. Finding effective chemotherapeutic treatment for malignant mesothelioma is a challenge. There is no standard treatment because this tumor is relatively resistant to therapy. A resurgence of interest has been expressed in novel therapies and conventional treatments used in different ways. Several treatment modalities have been studied, including chemotherapy, radiotherapy, surgery, and immunotherapy. Chemotherapy can be administered systemically or directly into the pleura. This review presents the results of the most recent trials and highlights the most promising advances in the battle against this aggressive disease.

  5. Axicabtagene ciloleucel (KTE-C19), an anti-CD19 CAR T therapy for the treatment of relapsed/refractory aggressive B-cell non-Hodgkin’s lymphoma

    PubMed Central

    Jain, Michael D; Bachmeier, Christina A; Phuoc, Vania H; Chavez, Julio C

    2018-01-01

    Adoptive T-cell immunotherapy is a rapidly growing field and is shifting the paradigm of clinical cancer treatment. Axicabtagene ciloleucel (axi-cel) is an anti-CD19 chimeric antigen receptor T-cell therapy that was initially developed at the National Cancer Institute and has recently been commercially approved by the US Food and Drug Administration for relapsed or refractory aggressive non-Hodgkin’s lymphomas including diffuse large B-cell lymphoma and its variants. The ZUMA-1 Phase I and II clinical trials formed the basis of the US Food and Drug Administration approval of this product, and we discuss the particulars of the clinical trials and the pharmacology of axi-cel. In addition, we review the CD19 chimeric antigen receptor T-specific toxicities of cytokine release syndrome and neurotoxicity, which remain the challenges to the safe delivery of this important therapy for aggressive B-cell lymphomas with poor prognosis. PMID:29910620

  6. Regulation of cell cycle checkpoint kinase WEE1 by miR-195 in malignant melanoma.

    PubMed

    Bhattacharya, A; Schmitz, U; Wolkenhauer, O; Schönherr, M; Raatz, Y; Kunz, M

    2013-06-27

    WEE1 kinase has been described as a major gate keeper at the G2 cell cycle checkpoint and to be involved in tumour progression in different malignant tumours. Here we analysed the expression levels of WEE1 in a series of melanoma patient samples and melanoma cell lines using immunoblotting, quantitative real-time PCR and immunohistochemistry. WEE1 expression was significantly downregulated in patient samples of metastatic origin as compared with primary melanomas and in melanoma cell lines of high aggressiveness as compared with cell lines of low aggressiveness. Moreover, there was an inverse correlation between the expression of WEE1 and WEE1-targeting microRNA miR-195. Further analyses showed that transfection of melanoma cell lines with miR-195 indeed reduced WEE1 mRNA and protein expression in these cells. Reporter gene analysis confirmed direct targeting of the WEE1 3' untranslated region (3'UTR) by miR-195. Overexpression of miR-195 in SK-Mel-28 melanoma cells was accompanied by WEE1 reduction and significantly reduced stress-induced G2-M cell cycle arrest, which could be restored by stable overexpression of WEE1. Moreover, miR-195 overexpression and WEE1 knockdown, respectively, increased melanoma cell proliferation. miR-195 overexpression also enhanced migration and invasiveness of melanoma cells. Taken together, the present study shows that WEE1 expression in malignant melanoma is directly regulated by miR-195. miR-195-mediated downregulation of WEE1 in metastatic lesions may help to overcome cell cycle arrest under stress conditions in the local tissue microenvironment to allow unrestricted growth of tumour cells.

  7. Expression patterns of nicotinamide phosphoribosyltransferase and nicotinic acid phosphoribosyltransferase in human malignant lymphomas.

    PubMed

    Olesen, Uffe Høgh; Hastrup, Nina; Sehested, Maxwell

    2011-04-01

    The purpose of the study was to determine in human malignant lymphomas the expression patterns of nicotinamide phosphoribosyltransferase (NAMPT) and nicotinic acid phosphoribosyltransferase (NAPRT), the primary, rate-limiting enzymes in the synthesis of NAD+. NAMPT is a potential biomarker for sensitivity to NAMPT inhibitors and NAPRT is a biomarker for the use of nicotinic acid as a chemoprotectant in treatment with NAMPT inhibitors. The NAMPT inhibitor, APO866, is currently in clinical phase II trials in lymphomas. The expression of NAMPT and NAPRT was investigated in 53 samples of malignant lymphomas (diffuse large B-cell lymphoma, follicular B-cell lymphoma, Hodgkin's lymphoma and peripheral T-cell lymphoma). The expression of NAMPT was generally high in the more aggressive malignant lymphomas, with >80% strong expression, whereas the expression in the more indolent follicular lymphoma (FL) was significantly lower (>75% moderate or low expression, p = 0.0002). NAMPT was very highly expressed in Hodgkin Reed-Sternberg cells in Hodgkin's lymphoma. NAPRT expression was more varied (p > 0.0001) with 30-50% low expression except for Hodgkin's lymphoma where 85% displayed low expression (p = 0.0024). In conclusion, FL are a promising target for NAMPT inhibitors whereas substantial subsets of malignant lymphomas especially in Hodgkin lymphoma may be suitable for a combination treatment with nicotinic acid and NAMPT inhibitors. © 2011 The Authors. APMIS © 2011 APMIS.

  8. Epigenetic up-regulation of ribosome biogenesis and more aggressive phenotype triggered by the lack of the histone demethylase JHDM1B in mammary epithelial cells.

    PubMed

    Galbiati, Alice; Penzo, Marianna; Bacalini, Maria Giulia; Onofrillo, Carmine; Guerrieri, Ania Naila; Garagnani, Paolo; Franceschi, Claudio; Treré, Davide; Montanaro, Lorenzo

    2017-06-06

    The alterations of ribosome biogenesis and protein synthesis play a direct role in the development of tumors. The accessibility and transcription of ribosomal genes is controlled at several levels, with their epigenetic regulation being one of the most important. Here we explored the JmjC domain-containing histone demethylase 1B (JHDM1B) function in the epigenetic control of rDNA transcription. Since JHDM1B is a negative regulator of gene transcription, we focused on the effects induced by JHDM1B knock-down (KD). We studied the consequences of stable inducible JHDM1B silencing in cell lines derived from transformed and untransformed mammary epithelial cells. In these cellular models, prolonged JHDM1B downregulation triggered a surge of 45S pre-rRNA transcription and processing, associated with a re-modulation of the H3K36me2 levels at rDNA loci and with changes in DNA methylation of specific CpG sites in rDNA genes. We also found that after JHDM1B KD, cells showed a higher ribosome content: which were engaged in mRNA translation. JHDM1B KD and the consequent stimulation of ribosomes biogenesis conferred more aggressive features to the tested cellular models, which acquired a greater clonogenic, staminal and invasive potential. Taken together, these data indicate that the reduction of JHDM1B leads to a more aggressive cellular phenotype in mammary gland cells, by virtue of its negative regulatory activity on ribosome biogenesis.

  9. MYC immunohistochemical and cytogenetic analysis are required for identification of clinically relevant aggressive B cell lymphoma subtypes.

    PubMed

    Raess, Philipp W; Moore, Stephen R; Cascio, Michael J; Dunlap, Jennifer; Fan, Guang; Gatter, Ken; Olson, Susan B; Braziel, Rita M

    2018-06-01

    Accurate subclassification of aggressive B cell lymphomas (ABCLs) requires integration of morphologic, immunohistochemical (IHC), and cytogenetic information. Optimal strategies have not been well defined for diagnosis of high grade B cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements (HGBLwR) and double expressor lymphomas with MYC and BCL2 protein overexpression. One hundred and eighty seven ABCLs were investigated with complete IHC and FISH analysis. Morphologic and IHC analysis was insufficient to identify clinically relevant HGBLwR. Approximately, 75% of cases classified as HGBLwR showed conventional DLBCL morphologic features. Fourteen percent of MYC-rearranged cases were negative by IHC. Conversely, 60% of cases positive for MYC by IHC did not demonstrate a MYC rearrangement. Analysis by FISH without MYC and BCL2 IHC would miss 41 cases of double expressor lymphoma. Complete IHC and FISH analysis is recommended in the evaluation of all ABCLs.

  10. Malignant hematopoietic cell lines: in vitro models for the study of natural killer cell leukemia-lymphoma.

    PubMed

    Drexler, H G; Matsuo, Y

    2000-05-01

    Malignancies involving natural killer (NK) cells are rare disorders. The complexity of NK cell-involving disorders has only recently been appreciated. Modern classifications discern immature (precursor) from mature NK cell leukemias-lymphomas. Continuous NK leukemia-lymphoma cell lines represent important model systems to study these neoplasms. While there are a number of putative NK cell lines which are, however, either not characterized, not immortalized, non-malignant, non-NK, or plain false cell lines, six bona fide malignant NK cell lines have been established and are sufficiently well characterized: HANK1, KHYG-1, NK-92, NKL, NK-YS and YT. Except for YT which was derived from a not further defined acute lymphoblastic lymphoma, these cell lines were established from patients with various NK cell malignancies. Five of the six cell lines are constitutively interleukin-2-dependent. Their immunoprofile is remarkably similar: CD1-, CD2+, surface CD3 (but cytoplasmic CD3epsilon+), CD4-, CD5-, CD7+, CD8-, CD16-, CD56+, CD57-, TCRalphabeta-, TCRgammadelta-, negative for B cell and myelomonocytic markers. The immunoglobulin heavy chain and T cell receptor genes are all in germline configuration. All six lines show complex chromosomal alterations, with both numerical and structural aberrations, attesting to their malignant and monoclonal nature. Functionally, these cells which contain azurophilic granules in their cytoplasm are nearly universally positive in NK activity assays. Three of five cell lines are Epstein-Barr virus-positive (type II latency). The composite data on these six cell lines allow for the operational definition of a typical malignant NK cell line profile. NK leukemia-lymphoma cell lines will prove invaluable for studies of normal and malignant NK cell biology.

  11. Expression of plakophilin 3 in diffuse malignant pleural mesothelioma.

    PubMed

    Mašić, Silvija; Brčić, Luka; Krušlin, Božo; Šepac, Ana; Pigac, Biserka; Stančić-Rokotov, Dinko; Jakopović, Marko; Seiwerth, Sven

    2018-05-03

    Diffuse malignant pleural mesothelioma (DMPM) is the most common primary malignant pleural neoplasm still posing major diagnostic, prognostic and therapeutic challenges. Plakophilins are structural proteins considered to be important for cell stability and adhesion in both tumor and normal tissues. Plakophilin 3 is a protein present in desmosomes of stratified and simple epithelia of normal tissues with presence in malignant cells of various tumors where it participates in the process of tumorigenesis. The aim of this study was to investigate the expression of plakophilin 3 protein in DMPM, but also to study its prognostic significance and relation to histologically accessible parameters of aggressive growth. Archival samples of tissue with established diagnosis of DMPM and samples of normal pleural tissue were used. Tumor samples were classified into three histological types of DMPM (epithelioid, sarcomatoid and biphasic). Additional subclassification of epithelioid mesotheliomas into nine patterns based on the prevalent histological component of the tumor was then performed. After immunohistochemical staining, cytoplasmic and membrane immunopositivity of tumor cells was assesed by scoring the intensity of the staining from 0 (no staining) to 4 (very strong staining). Prognostic value and expression of plakophilin 3 with consideration to histologically estimated aggression in tumor growth were then statistically analyzed using non- parametric tests. The results demonstrated higher level of plakophilin 3 expression in tumor samples with histologically more aggressive tumor growth, but no significant prognostic value. According to our study, plakophilin 3 appears to be involved in tumor invasion in malignant mesothelioma.

  12. Cyclophilin B Supports Myc and Mutant p53 Dependent Survival of Glioblastoma Multiforme Cells

    PubMed Central

    Choi, Jae Won; Schroeder, Mark A.; Sarkaria, Jann N.; Bram, Richard J.

    2014-01-01

    Glioblastoma multiforme (GBM) is an aggressive, treatment-refractory type of brain tumor for which effective therapeutic targets remain important to identify. Here we report that cyclophilin B (CypB), a prolyl isomerase residing in the endoplasmic reticulum (ER), provides an essential survival signal in GBM cells. Analysis of gene expression databases revealed that CypB is upregulated in many cases of malignant glioma. We found that suppression of CypB reduced cell proliferation and survival in human GBM cells in vitro and in vivo. We also found that treatment with small molecule inhibitors of cyclophilins, including the approved drug cyclosporine, greatly reduced the viability of GBM cells. Mechanistically, depletion or pharmacologic inhibition of CypB caused hyperactivation of the oncogenic RAS-MAPK pathway, induction of cellular senescence signals, and death resulting from loss of MYC, mutant p53, Chk1 and JAK/STAT3 signaling. Elevated reactive oxygen species, ER expansion and abnormal unfolded protein responses in CypB-depleted GBM cells indicated that CypB alleviates oxidative and ER stresses and coordinates stress adaptation responses. Enhanced cell survival and sustained expression of multiple oncogenic proteins downstream of CypB may thus contribute to the poor outcome of GBM tumors. Our findings link chaperone-mediated protein folding in the ER to mechanisms underlying oncogenic transformation, and they make CypB an attractive and immediately targetable molecule for GBM therapy. PMID:24272483

  13. B-cell lymphomas with concurrent IGH-BCL2 and MYC rearrangements are aggressive neoplasms with clinical and pathologic features distinct from Burkitt lymphoma and diffuse large B-cell lymphoma.

    PubMed

    Snuderl, Matija; Kolman, Olga K; Chen, Yi-Bin; Hsu, Jessie J; Ackerman, Adam M; Dal Cin, Paola; Ferry, Judith A; Harris, Nancy Lee; Hasserjian, Robert P; Zukerberg, Lawrence R; Abramson, Jeremy S; Hochberg, Ephraim P; Lee, Hang; Lee, Alfred I; Toomey, Christiana E; Sohani, Aliyah R

    2010-03-01

    B-cell lymphomas with concurrent IGH-BCL2 and MYC rearrangements, also known as "double-hit" lymphomas (DHL), are rare neoplasms characterized by highly aggressive clinical behavior, complex karyotypes, and a spectrum of pathologic features overlapping with Burkitt lymphoma (BL), diffuse large B-cell lymphoma (DLBCL) and B-lymphoblastic lymphoma/leukemia (B-LBL). The clinical and pathologic spectrum of this rare entity, including comparison to other high-grade B-cell neoplasms, has not been well defined. We conducted a retrospective analysis of clinical and pathologic features of 20 cases of DHL seen at our institution during a 5-year period. In addition, we carried out case-control comparisons of DHL with BL and International Prognostic Index (IPI)-matched DLBCL. The 11 men and 9 women had a median age of 63.5 years (range 32 to 91). Six patients had a history of grade 1 to 2 follicular lymphoma; review of the prior biopsy specimens in 2 of 5 cases revealed blastoid morphology. Eighteen patients had Ann Arbor stage 3 or 4 disease and all had elevated serum lactate dehydrogenase (LDH) levels at presentation. Extranodal disease was present in 17/20 (85%), bone marrow involvement in 10/17 (59%) and central nervous system (CNS) disease in 5/11 (45%). Nineteen patients were treated with combination chemotherapy, of whom 18 received rituximab and 14 received CNS-directed therapy. Fourteen patients (70%) died within 8 months of diagnosis. Median overall survival in the DHL group (4.5 mo) was inferior to both BL (P=0.002) and IPI-matched DLBCL (P=0.04) control patients. Twelve DHL cases (60%) were classified as B-cell lymphoma, unclassifiable, with features intermediate between DLBCL and BL, 7 cases (35%) as DLBCL, not otherwise specified, and 1 case as B-LBL. Distinguishing features from BL included expression of Bcl2 (P<0.0001), Mum1/IRF4 (P=0.006), Ki-67 <95% (P<0.0001), and absence of EBV-EBER (P=0.006). DHL commonly contained the t(8;22) rather than the t(8;14) seen

  14. Aberrant c-erbB2 expression in cell clusters overlying focally disrupted breast myoepithelial cell layers: a trigger or sign for emergence of more aggressive cell clones?

    PubMed Central

    Zhang, Xichen; Hashemi, Shahreyar Shar; Yousefi, Morvarid; Ni, Jinsong; Wang, Qiuyue; Gao, Ling; Gong, Pengtao; Gao, Chunling; Sheng, Joy; Mason, Jeffrey; Man, Yan-gao

    2008-01-01

    Our recent studies revealed that cell clusters overlying focal myoepithelial cell layer disruption (FMCLD) had a significantly higher frequency of genetic instabilities and expression of invasion-related genes than their adjacent counterparts within the same duct. Our current study attempted to assess whether these cell clusters would also have elevated c-erbB2 expression. Human breast tumors (n=50) with a high frequency of FMCLD were analyzed with double immunohistochemistry, real-time RT-PCR, and chromogenic in situ hybridization for c-erbB2 protein and gene expression. Of 448 FMCLD detected, 404 (90.2%) were associated with cell clusters that had intense c-erbB2 immunoreactivities primarily in their cytoplasm, in contrast to their adjacent counterparts within the same duct, which had no or barely detectable c-erbB2 expression. These c-erbB2 positive cells were arranged as tongue-like projections, “puncturing” into the stroma, and about 20% of them were in direct continuity with tube-like structures that resembled blood vessels. Aberrant c-erbB2 expression was also seen in clusters of architecturally normal-appearing ducts that had distinct cytological abnormalities in both ME and epithelial cells, whereas not in their clear-cut normal counterparts. Molecular assays detected markedly higher c-erbB2 mRNA and gene amplification in cell clusters associated with FMCLD than in those associated with non-disrupted ME cell layers. Our findings suggest that cell clusters overlying FMCLD may represent the precursors of pending invasive lesions, and that aberrant cerbB2 expression may trigger or signify the emergence of biologically more aggressive cell clones. PMID:18726004

  15. HMGB1 targeting by ethyl pyruvate suppresses malignant phenotype of human mesothelioma.

    PubMed

    Pellegrini, Laura; Xue, Jiaming; Larson, David; Pastorino, Sandra; Jube, Sandro; Forest, Kelly H; Saad-Jube, Zeyana Salim; Napolitano, Andrea; Pagano, Ian; Negi, Vishal S; Bianchi, Marco E; Morris, Paul; Pass, Harvey I; Gaudino, Giovanni; Carbone, Michele; Yang, Haining

    2017-04-04

    Human malignant mesothelioma (MM) is an aggressive cancer linked to asbestos and erionite exposure. We previously reported that High-Mobility Group Box-1 protein (HMGB1), a prototypic damage-associated molecular pattern, drives MM development and sustains MM progression. Moreover, we demonstrated that targeting HMGB1 inhibited MM cell growth and motility in vitro, reduced tumor growth in vivo, and prolonged survival of MM-bearing mice. Ethyl pyruvate (EP), the ethyl ester of pyruvic acid, has been shown to be an effective HMGB1 inhibitor in inflammation-related diseases and several cancers. Here, we studied the effect of EP on the malignant phenotype of MM cells in tissue culture and on tumor growth in vivo using an orthotopic MM xenograft model. We found that EP impairs HMGB1 secretion by MM cells leading to reduced RAGE expression and NF-κB activation. As a consequence, EP impaired cell motility, cell proliferation, and anchorage-independent growth of MM cells. Moreover, EP reduced HMGB1 serum levels in mice and inhibited the growth of MM xenografts.Our results indicate that EP effectively hampers the malignant phenotype of MM, offering a novel potential therapeutic approach to patients afflicted with this dismal disease.

  16. B-1 phagocytes: the myeloid face of B-1 cells.

    PubMed

    Popi, Ana Flavia

    2015-12-01

    The relationship between malignant B cells and macrophages has long been established. Furthermore, evolutionary studies have demonstrated that B cells from early vertebrates have both phagocytic and antibody production capabilities. In addition to their lymphoid nature, B-1 cells retain several myeloid characteristics. Various reports have demonstrated that B-1 cells can differentiate into phagocytes. However, descriptions of B-1 cells as a novel phagocyte cell member are rarely found in the literature. This review aims to present the available data regarding B-1 cell-derived phagocytes and also discusses how their existence might be relevant to hematopoiesis and immune responses. © 2015 New York Academy of Sciences.

  17. EBV-Positive Lymphoproliferations of B- T- and NK-Cell Derivation in Non-Immunocompromised Hosts

    PubMed Central

    Fend, Falko

    2018-01-01

    The contribution of Epstein-Barr virus (EBV) to the development of specific types of benign lymphoproliferations and malignant lymphomas has been extensively studied since the discovery of the virus over the last 50 years. The importance and better understanding of the EBV-associated lymphoproliferative disorders (LPD) of B, T or natural killer (NK) cell type has resulted in the recognition of new entities like EBV+ mucocutaneous ulcer or the addition of chronic active EBV (CAEBV) infection in the revised 2016 World Health Organization (WHO) lymphoma classification. In this article, we review the definitions, morphology, pathogenesis, and evolving concepts of the various EBV-associated disorders including EBV+ diffuse large B-cell lymphoma, not otherwise specified (DLBCL, NOS), EBV+ mucocutaneous ulcer, DLBCL associated with chronic inflammation, fibrin-associated DLBCL, lymphomatoid granulomatosis, the EBV+ T and NK-cell LPD of childhood, aggressive NK leukaemia, extranodal NK/T-cell lymphoma, nasal type, and the new provisional entity of primary EBV+ nodal T- or NK-cell lymphoma. The current knowledge regarding the pathogenesis of B-cell lymphomas that can be EBV-associated including Burkitt lymphoma, plasmablastic lymphoma and classic Hodgkin lymphoma will be also explored. PMID:29518976

  18. The serotonin transporter (SLC6A4) is present in B-cell clones of diverse malignant origin: probing a potential anti-tumor target for psychotropics.

    PubMed

    Meredith, Elizabeth J; Holder, Michelle J; Chamba, Anita; Challa, Anita; Drake-Lee, Adrian; Bunce, Christopher M; Drayson, Mark T; Pilkington, Geoffrey; Blakely, Randy D; Dyer, Martin J S; Barnes, Nicholas M; Gordon, John

    2005-07-01

    Following our previous description of the serotonin transporter (SERT) acting as a conduit to 5-hydroxytryptamine (5-HT)-mediated apoptosis, specifically in Burkitt's lymphoma, we now detail its expression among a broad spectrum of B cell malignancy, while exploring additional SERT substrates for potential therapeutic activity. SERT was readily detected in derived B cell lines with origins as diverse as B cell precursor acute lymphoblastic leukemia, mantle cell lymphoma, diffuse large B cell lymphoma, and multiple myeloma. Concentration and timecourse kinetics for the antiproliferative and proapoptotic activities of the amphetamine derivatives fenfluramine (an appetite suppressant) and 3,4-methylenedioxymethamphetamine (MDMA; "Ecstasy") revealed them as being similar to the endogenous indoleamine. A tricyclic antidepressant, clomipramine, instead mirrored the behavior of the selective serotonin reuptake inhibitor fluoxetine, both being effective in the low micromolar range. A majority of neoplastic clones were sensitive to one or more of the serotonergic compounds. Dysregulated bcl-2 expression, either by t(14;18)(q32;q21) translocation or its introduction as a constitutively active transgene, provided protection from proapoptotic but not antiproliferative outcomes. These data indicate a potential for SERT as a novel anti-tumor target for amphetamine analogs, while evidence is presented that the seemingly more promising antidepressants are likely impacting malignant B cells independently of the transporter itself.

  19. Patterns of genomic aberrations suggest that Burkitt lymphomas with complex karyotype are distinct from other aggressive B-cell lymphomas with MYC rearrangement.

    PubMed

    Havelange, Violaine; Ameye, Geneviève; Théate, Ivan; Callet-Bauchu, Evelyne; Mugneret, Francine; Michaux, Lucienne; Dastugue, Nicole; Penther, Dominique; Barin, Carole; Collonge-Rame, Marie-Agnès; Baranger, Laurence; Terré, Christine; Nadal, Nathalie; Lippert, Eric; Laï, Jean-Luc; Cabrol, Christine; Tigaud, Isabelle; Herens, Christian; Hagemeijer, Anne; Raphael, Martine; Libouton, Jeanne-Marie; Poirel, Hélène A

    2013-01-01

    We previously showed that complex karyotypes (CK) and chromosome 13q abnormalities have an adverse prognostic impact in childhood Burkitt lymphomas/leukemias (BL) and diffuse large B-cell lymphomas (DLBCL). The aim of our study was to identify recurrent alterations associated with MYC rearrangements in aggressive B-cell lymphomas with CK. Multicolor fluorescence in situ hybridization (M-FISH) was performed in 84 patient samples (59 adults and 25 children), including 37 BL (13 lymphomas and 24 acute leukemias), 12 DLBCL, 28 B-cell lymphomas with intermediate features (DLBCL/BL), 4 B-cell precursor acute lymphoblastic leukemias (BCP-ALL), and 3 unclassifiable B-cell lymphomas. New (cytogenetically undetected) abnormalities were identified in 80% of patients. We also refined one-third of the chromosomal aberrations detected by karyotyping. M-FISH proved to be more useful in identifying chromosomal partners involved in unbalanced translocations and in revealing greater complexity of 13q rearrangements. Most of the newly identified or refined recurrent alterations involved 1q, 13q and 3q (gains/losses), 7q and 18q (gains), or 6q (losses), suggesting that these secondary aberrations may play a role in lymphomagenesis. Several patterns of genomic aberrations were identified: 1q gains in BL, trisomies 7 in DLBCL, and 18q-translocations in adult non-BL. BCP-ALL usually displayed an 18q21 rearrangement. BL karyotypes were less complex and aneuploid than those of other MYC-rearranged lymphomas. BCP-ALL and DLBCL/BL were associated with a higher rate of early death than BL and DLBCL. These findings support the categorization of DLBCL/BL as a distinct entity and suggest that BL with CK are indeed different from other aggressive MYC-rearranged lymphomas, which usually show greater genetic complexity. © 2012 Wiley Periodicals, Inc. Copyright © 2012 Wiley Periodicals, Inc.

  20. Identification of miR-15b as a transformation-related factor in mantle cell lymphoma.

    PubMed

    Arakawa, Fumiko; Kimura, Yoshizo; Yoshida, Noriaki; Miyoshi, Hiroaki; Doi, Atushi; Yasuda, Kaori; Nakajima, Kazutaka; Kiyasu, Junichi; Niino, Daisuke; Sugita, Yasuo; Tashiro, Kosuke; Kuhara, Satoru; Seto, Masao; Ohshima, Koichi

    2016-02-01

    Mantle cell lymphoma (MCL) is an aggressive B cell lymphoma with a poor prognosis. It is characterized by the t(11;14)(q13;q32) translocation, resulting in over-expression of CCND1. Morphologically, MCL is categorised into two types: classical MCL (cMCL) and aggressive MCL (aMCL), with a proportion of cMCL progressing to develop into aMCL. miRNAs are currently considered to be important regulators for cell behavior and are deregulated in many malignancies. Although several genetic alterations have been implicated in the transformation of cMCL to aMCL, the involvement of miRNAs in transformation is not known. In an effort to identify the miRNAs related to the transformation of MCL, miRNA microarray analyses were used for cMCL and aMCL cases. These analyses demonstrated significant differences in the expression of seven microRNAs based on a t-test (p-value <0.05); miR-15b was greatly upregulated in aMCL. Locked nucleic acid in situ hybridization showed increased staining of miR-15b in formalin-fixed paraffin-embedded sections of aMCL. These results correlated well with the microRNA microarray analysis. Although the molecular functions of miR-15b are largely unknown, it has been found to be associated with the cell cycle and apoptosis. However, the physiological significance of increased miR-15b in MCL is still unknown. Our present findings suggest that the upregulated expression of miR-15b is likely to play an important role in the trans-formation of cMCL to aMCL.

  1. Regulation of normal B-cell differentiation and malignant B-cell survival by OCT2

    PubMed Central

    Hodson, Daniel J.; Shaffer, Arthur L.; Xiao, Wenming; Wright, George W.; Schmitz, Roland; Phelan, James D.; Yang, Yandan; Webster, Daniel E.; Rui, Lixin; Kohlhammer, Holger; Nakagawa, Masao; Waldmann, Thomas A.; Staudt, Louis M.

    2016-01-01

    The requirement for the B-cell transcription factor OCT2 (octamer-binding protein 2, encoded by Pou2f2) in germinal center B cells has proved controversial. Here, we report that germinal center B cells are formed normally after depletion of OCT2 in a conditional knockout mouse, but their proliferation is reduced and in vivo differentiation to antibody-secreting plasma cells is blocked. This finding led us to examine the role of OCT2 in germinal center-derived lymphomas. shRNA knockdown showed that almost all diffuse large B-cell lymphoma (DLBCL) cell lines are addicted to the expression of OCT2 and its coactivator OCA-B. Genome-wide chromatin immunoprecipitation (ChIP) analysis and gene-expression profiling revealed the broad transcriptional program regulated by OCT2 that includes the expression of STAT3, IL-10, ELL2, XBP1, MYC, TERT, and ADA. Importantly, genetic alteration of OCT2 is not a requirement for cellular addiction in DLBCL. However, we detected amplifications of the POU2F2 locus in DLBCL tumor biopsies and a recurrent mutation of threonine 223 in the DNA-binding domain of OCT2. This neomorphic mutation subtly alters the DNA-binding preference of OCT2, leading to the transactivation of noncanonical target genes including HIF1a and FCRL3. Finally, by introducing mutations designed to disrupt the OCT2–OCA-B interface, we reveal a requirement for this protein–protein interface that ultimately might be exploited therapeutically. Our findings, combined with the predominantly B-cell–restricted expression of OCT2 and the absence of a systemic phenotype in our knockout mice, suggest that an OCT2-targeted therapeutic strategy would be efficacious in both major subtypes of DLBCL while avoiding systemic toxicity. PMID:26993806

  2. Activation of the Endoplasmic Reticulum Stress-Associated Transcription Factor X Box-Binding Protein-1 Occurs in a Subset of Normal Germinal-Center B Cells and in Aggressive B-Cell Lymphomas with Prognostic Implications

    PubMed Central

    Balague, Olga; Mozos, Ana; Martinez, Daniel; Hernandez, Luis; Colomo, Lluis; Mate, Jose Luis; Teruya-Feldstein, Julie; Lin, Oscar; Campo, Elias; Lopez-Guillermo, Armando; Martinez, Antonio

    2009-01-01

    X box-binding protein 1 (Xbp-1) is a transcription factor that is required for the terminal differentiation of B lymphocytes into plasma cells. The Xbp-1 gene is activated in response to endoplasmic reticulum stress signals, which generate a 50-kDa nuclear protein that acts as a potent transactivator and regulates the expression of genes related to the unfolded protein response. Activated Xbp-1 is essential for cell survival in plasma-cell tumors but its role in B-cell lymphomas is unknown. We analyzed the expression of activated Xbp-1 in reactive lymphoid tissues, 411 lymphomas and plasma-cell neoplasms, and 24 B-cell lines. In reactive tissues, Xbp-1 was only found in nuclear extracts. Nuclear expression of Xbp-1 was observed in occasional reactive plasma cells and in a subpopulation of Irf-4+/Bcl-6−/Pax-5− B cells in the light zones of reactive germinal centers, probably representing cells committed to plasma-cell differentiation. None of the low-grade lymphomas showed evidence of Xbp-1 activation; however, Xbp-1 activation was found in 28% of diffuse large B-cell lymphomas, independent of germinal or postgerminal center phenotype, as well as in 48% of plasmablastic lymphomas and 69% of plasma-cell neoplasms. Diffuse large B-cell lymphomas with nuclear Xbp-1 expression had a significantly worse response to therapy and shorter overall survival compared with negative tumors. These findings suggest that Xbp-1 activation may play a role in the pathogenesis of aggressive B-cell lymphomas. PMID:19389935

  3. Why do human B cells secrete granzyme B? Insights into a novel B-cell differentiation pathway.

    PubMed

    Hagn, Magdalena; Jahrsdörfer, Bernd

    2012-11-01

    B cells are generally believed to operate as producers of high affinity antibodies to defend the body against microorganisms, whereas cellular cytotoxicity is considered as an exclusive prerogative of natural killer (NK) cells and cytotoxic T lymphocytes (CTLs). In conflict with this dogma, recent studies have demonstrated that the combination of interleukin-21 (IL-21) and B-cell receptor (BCR) stimulation enables B cells to produce and secrete the active form of the cytotoxic serine protease granzyme B (GrB). Although the production of GrB by B cells is not accompanied by that of perforin as in the case of many other GrB-secreting cells, recent findings suggest GrB secretion by B cells may play a significant role in early antiviral immune responses, in the regulation of autoimmune responses, and in cancer immunosurveillance. Here, we discuss in detail how GrB-secreting B cells may influence a variety of immune processes. A better understanding of the role that GrB-secreting B cells are playing in the immune system may allow for the development and improvement of novel immunotherapeutic approaches against infectious, autoimmune and malignant diseases.

  4. Epigenetic up-regulation of ribosome biogenesis and more aggressive phenotype triggered by the lack of the histone demethylase JHDM1B in mammary epithelial cells

    PubMed Central

    Galbiati, Alice; Penzo, Marianna; Bacalini, Maria Giulia; Onofrillo, Carmine; Guerrieri, Ania Naila; Garagnani, Paolo; Franceschi, Claudio; Treré, Davide; Montanaro, Lorenzo

    2017-01-01

    The alterations of ribosome biogenesis and protein synthesis play a direct role in the development of tumors. The accessibility and transcription of ribosomal genes is controlled at several levels, with their epigenetic regulation being one of the most important. Here we explored the JmjC domain-containing histone demethylase 1B (JHDM1B) function in the epigenetic control of rDNA transcription. Since JHDM1B is a negative regulator of gene transcription, we focused on the effects induced by JHDM1B knock-down (KD). We studied the consequences of stable inducible JHDM1B silencing in cell lines derived from transformed and untransformed mammary epithelial cells. In these cellular models, prolonged JHDM1B downregulation triggered a surge of 45S pre-rRNA transcription and processing, associated with a re-modulation of the H3K36me2 levels at rDNA loci and with changes in DNA methylation of specific CpG sites in rDNA genes. We also found that after JHDM1B KD, cells showed a higher ribosome content: which were engaged in mRNA translation. JHDM1B KD and the consequent stimulation of ribosomes biogenesis conferred more aggressive features to the tested cellular models, which acquired a greater clonogenic, staminal and invasive potential. Taken together, these data indicate that the reduction of JHDM1B leads to a more aggressive cellular phenotype in mammary gland cells, by virtue of its negative regulatory activity on ribosome biogenesis. PMID:28415746

  5. Irradiated Donor Cells Following Stem Cell Transplant in Controlling Cancer in Patients With Hematologic Malignancies

    ClinicalTrials.gov

    2018-05-16

    Acute Lymphoblastic Leukemia; Acute Myeloid Leukemia in Remission; Hematopoietic Cell Transplantation Recipient; JAK2 Gene Mutation; Loss of Chromosome 17p; Mantle Cell Lymphoma; Minimal Residual Disease; Myelodysplastic Syndrome; Non-Hodgkin Lymphoma; Plasma Cell Myeloma; RAS Family Gene Mutation; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Hematologic Malignancy; Recurrent Mature T- and NK-Cell Non-Hodgkin Lymphoma; Refractory Diffuse Large B-Cell Lymphoma; Refractory Mature T-Cell and NK-Cell Non-Hodgkin Lymphoma; Therapy-Related Acute Myeloid Leukemia; Therapy-Related Myelodysplastic Syndrome; TP53 Gene Mutation

  6. Tight regulation between cell survival and programmed cell death in GBM stem-like cells by EGFR/GSK3b/PP2A signaling.

    PubMed

    Gürsel, Demirkan B; Banu, Matei A; Berry, Nicholas; Marongiu, Roberta; Burkhardt, Jan-Karl; Kobylarz, Keith; Kaplitt, Michael G; Rafii, Shahin; Boockvar, John A

    2015-01-01

    Malignant gliomas represent one of the most aggressive forms of cancer, displaying high mortality rates and limited treatment options. Specific subpopulations of cells residing in the tumor niche with stem-like characteristics have been postulated to initiate and maintain neoplasticity while resisting conventional therapies. The study presented here aims to define the role of glycogen synthase kinase 3 beta (GSK3b) in patient-derived glioblastoma (GBM) stem-like cell (GSC) proliferation, apoptosis and invasion. To evaluate the potential role of GSK3b in GBM, protein profiles from 68 GBM patients and 20 normal brain samples were analyzed for EGFR-mediated PI3kinase/Akt and GSK3b signaling molecules including protein phosphatase 2A (PP2A). To better understand the function of GSK3b in GBM, GSCs were isolated from GBM patient samples. Blocking GSK3b phosphorylation at Serine 9 attenuated cell proliferation while concomitantly stimulating apoptosis through activation of Caspase-3 in patient-derived GSCs. Increasing GSK3b protein content resulted in the inhibition of cell proliferation, colony formation and stimulated programmed cell death. Depleting GSK3b in GSCs down regulated PP2A. Furthermore, knocking down PP2A or blocking its activity by okadaic acid inactivated GSK3b by increasing GSK3b phosphorylation at Serine 9. Our data suggests that GSK3b may function as a regulator of apoptosis and tumorigenesis in GSCs. Therapeutic approaches targeting GSK3b in glioblastoma stem-like cells may be a useful addition to our current therapeutic armamentarium.

  7. Malignant histiocytic lymphoma with large lacunar cells.

    PubMed

    Leahu, S; Dobrea, M

    1997-01-01

    A case of lymph node biopsy with a peculiar histological aspect is described. The clinical data suggest a malignant lymphoid disease. The histological picture is that of a malignant histiocytosis but, among the majority of small histiocytes, there are some large cells like the large lacunar cells from Hodgkin's disease. These large cells (and some small cells) contain the CD 30 antigen of Reed-Sternberg cells. It is discussed whether the appropriate diagnosis is Hodgkin's disease, malignant histiocytosis, or non-Hodgkin's malignant lymphoma. Our diagnosis is Hodgkin's disease, the nodular sclerosing form.

  8. Analysis of Efficacy and Tolerability of Bruton Tyrosine Kinase Inhibitor Ibrutinib in Various B-cell Malignancies in the General Community: A Single-center Experience.

    PubMed

    Ali, Naveed; Malik, Faizan; Jafri, Syed Imran Mustafa; Naglak, Mary; Sundermeyer, Mark; Pickens, Peter V

    2017-07-01

    Ibrutinib, an irreversible inhibitor of Bruton tyrosine kinase (BTK), is a novel drug that has shown significant efficacy and survival benefit for treatment of various B-cell malignancies. The primary objective of the present study was to investigate the efficacy of ibrutinib therapy in various B-cell malignancies in the general community. The secondary objectives included studying the adverse effects, ibrutinib-induced peripheral lymphocytosis, and effect on immunoglobulin levels. The present study was a retrospective observational cohort analysis conducted at Abington Jefferson Health. The clinical response was determined from the hematologist's assessment and evaluated independently using the response criteria for each B-cell malignancy. Adverse effects were graded according to the Common Terminology Criteria for Adverse Events, version 4.0. The Wilcoxon signed-rank test was used to compare immunoglobulin levels before and after ibrutinib. Forty five patients with B-cell malignancies and receiving ibrutinib therapy were eligible. The median age was 73 years (range, 49-96 years), and 84.4% of the patients had received ≥ 1 previous therapy. The best overall response rate of all cohorts combined was 63.8%. The greatest overall response rate was observed in patients with chronic lymphocytic leukemia or small lymphocytic lymphoma (76.1%), followed by those with Waldenström macroglobulinemia (75%). Of the 45 patients, 88.9% experienced adverse effects. Antiplatelet activity of ibrutinib was most commonly observed (30.5%). Of note, 5 patients (11%) developed new-onset atrial fibrillation after drug initiation. Peripheral lymphocytosis after drug initiation was observed in most patients, with a peak level at 1 month (median lymphocyte count, 2.7 × 10 3 cells/μL). Although the IgG levels at 3, 6, and 12 months had decreased (P = .01 for all) compared with the levels before ibrutinib, the IgA levels had not increased at 3, 6, 12, and 24 months (P = .6, P = .5

  9. c-RET Molecule in Malignant Melanoma from Oncogenic RET-Carrying Transgenic Mice and Human Cell Lines

    PubMed Central

    Takeda, Kozue; Iida, Machiko; Kumasaka, Mayuko; Matsumoto, Yoshinari; Kato, Masashi

    2010-01-01

    Malignant melanoma is one of the most aggressive cancers and its incidence worldwide has been increasing at a greater rate than that of any other cancer. We previously reported that constitutively activated RFP-RET-carrying transgenic mice (RET-mice) spontaneously develop malignant melanoma. In this study, we showed that expression levels of intrinsic c-Ret, glial cell line-derived neurotrophic factor (Gdnf) and Gdnf receptor alpha 1 (Gfra1) transcripts in malignant melanomas from RET-transgenic mice were significantly upregulated compared with those in benign melanocytic tumors. These results suggest that not only introduced oncogenic RET but also intrinsic c-Ret/Gdnf are involved in murine melanomagenesis in RET-mice. We then showed that c-RET and GDNF transcript expression levels in human malignant melanoma cell lines (HM3KO and MNT-1) were higher than those in primary cultured normal human epithelial melanocytes (NHEM), while GFRa1 transcript expression levels were comparable among NHEM, HM3KO and MNT-1. We next showed c-RET and GFRa1 protein expression in HM3KO cells and GDNF-mediated increased levels of their phosphorylated c-RET tyrosine kinase and signal transduction molecules (ERK and AKT) sited potentially downstream of c-RET. Taken together with the finding of augmented proliferation of HM3KO cells after GDNF stimulation, our results suggest that GDNF-mediated c-RET kinase activation is associated with the pathogenesis of malignant melanoma. PMID:20422010

  10. c-RET molecule in malignant melanoma from oncogenic RET-carrying transgenic mice and human cell lines.

    PubMed

    Ohshima, Yuichiro; Yajima, Ichiro; Takeda, Kozue; Iida, Machiko; Kumasaka, Mayuko; Matsumoto, Yoshinari; Kato, Masashi

    2010-04-21

    Malignant melanoma is one of the most aggressive cancers and its incidence worldwide has been increasing at a greater rate than that of any other cancer. We previously reported that constitutively activated RFP-RET-carrying transgenic mice (RET-mice) spontaneously develop malignant melanoma. In this study, we showed that expression levels of intrinsic c-Ret, glial cell line-derived neurotrophic factor (Gdnf) and Gdnf receptor alpha 1 (Gfra1) transcripts in malignant melanomas from RET-transgenic mice were significantly upregulated compared with those in benign melanocytic tumors. These results suggest that not only introduced oncogenic RET but also intrinsic c-Ret/Gdnf are involved in murine melanomagenesis in RET-mice. We then showed that c-RET and GDNF transcript expression levels in human malignant melanoma cell lines (HM3KO and MNT-1) were higher than those in primary cultured normal human epithelial melanocytes (NHEM), while GFRa1 transcript expression levels were comparable among NHEM, HM3KO and MNT-1. We next showed c-RET and GFRa1 protein expression in HM3KO cells and GDNF-mediated increased levels of their phosphorylated c-RET tyrosine kinase and signal transduction molecules (ERK and AKT) sited potentially downstream of c-RET. Taken together with the finding of augmented proliferation of HM3KO cells after GDNF stimulation, our results suggest that GDNF-mediated c-RET kinase activation is associated with the pathogenesis of malignant melanoma.

  11. Eradication of Borrelia burgdorferi infection in primary marginal zone B-cell lymphoma of the skin.

    PubMed

    Roggero, E; Zucca, E; Mainetti, C; Bertoni, F; Valsangiacomo, C; Pedrinis, E; Borisch, B; Piffaretti, J C; Cavalli, F; Isaacson, P G

    2000-02-01

    Primary cutaneous B-cell lymphomas have been associated with Borrelia burgdorferi, the spirochete responsible for Lyme disease. Recently, cutaneous marginal zone B-cell lymphoma has been proposed as a distinct clinical-pathological entity. We report a case of primary cutaneous marginal zone lymphoma, associated with B burgdorferi infection. Polymerase chain reaction (PCR) amplification of the third complementarity determining region (CDR3) of the immunoglobulin heavy chain gene showed the presence of a monoclonal lymphoproliferation, therefore strengthening the histological diagnosis of a malignant process. B burgdorfer-specific hbb gene sequences were detected by PCR in the lymphoma tissue at diagnosis but not after antibiotic treatment. A nearly complete clinical and histological regression was observed after B burgdorferi eradication, with immunohistochemistry studies showing disappearance of plasma cell differentiation and a marked decline in the number of CD3+ T cells and Ki-67+ cells. Our case confirms the link between B burgdorferi and some cutaneous lymphomas. The disappearance of the microorganism accompanied by the unequivocal decrease of most indicators of active T- and B-cell immune response strongly supported a pathogenetic role for B burgdorferi in sustaining an antigen-driven development and growth of this cutaneous marginal zone lymphoma. Antibiotic therapy (analogous to Helicobacter pylori infection in gastric MALT lymphoma) might be helpful with the aim of averting or at least deferring the indication for more aggressive treatment.

  12. Fibroblast growth factor 2 restrains Ras-driven proliferation of malignant cells by triggering RhoA-mediated senescence.

    PubMed

    Costa, Erico T; Forti, Fábio L; Matos, Tatiana G F; Dermargos, Alexandre; Nakano, Fábio; Salotti, Jacqueline; Rocha, Kátia M; Asprino, Paula F; Yoshihara, Celina K; Koga, Marianna M; Armelin, Hugo A

    2008-08-01

    Fibroblast growth factor 2 (FGF2) is considered to be a bona fide oncogenic factor, although results from our group and others call this into question. Here, we report that exogenous recombinant FGF2 irreversibly inhibits proliferation by inducing senescence in Ras-dependent malignant mouse cells, but not in immortalized nontumorigenic cell lines. We report the following findings in K-Ras-dependent malignant Y1 adrenocortical cells and H-Ras V12-transformed BALB-3T3 fibroblasts: (a) FGF2 inhibits clonal growth and tumor onset in nude and immunocompetent BALB/c mice, (b) FGF2 irreversibly blocks the cell cycle, and (c) FGF2 induces the senescence-associated beta-galactosidase with no accompanying signs of apoptosis or necrosis. The tyrosine kinase inhibitor PD173074 completely protected malignant cells from FGF2. In Y1 adrenal cells, reducing the constitutively high levels of K-Ras-GTP using the dominant-negative RasN17 mutant made cells resistant to FGF2 cytotoxicity. In addition, transfection of the dominant-negative RhoA-N19 into either Y1 or 3T3-B61 malignant cell lines yielded stable clonal transfectants that were unable to activate RhoA and were resistant to the FGF2 stress response. We conclude that in Ras-dependent malignant cells, FGF2 interacts with its cognate receptors to trigger a senescence-like process involving RhoA-GTP. Surprisingly, attempts to select FGF2-resistant cells from the Y1 and 3T3-B61 cell lines yielded only rare clones that (a) had lost the overexpressed ras oncogene, (b) were dependent on FGF2 for proliferation, and (c) were poorly tumorigenic. Thus, FGF2 exerted a strong negative selection that Ras-dependent malignant cells could rarely overcome.

  13. Cyclophilin B supports Myc and mutant p53-dependent survival of glioblastoma multiforme cells.

    PubMed

    Choi, Jae Won; Schroeder, Mark A; Sarkaria, Jann N; Bram, Richard J

    2014-01-15

    Glioblastoma multiforme is an aggressive, treatment-refractory type of brain tumor for which effective therapeutic targets remain important to identify. Here, we report that cyclophilin B (CypB), a prolyl isomerase residing in the endoplasmic reticulum (ER), provides an essential survival signal in glioblastoma multiforme cells. Analysis of gene expression databases revealed that CypB is upregulated in many cases of malignant glioma. We found that suppression of CypB reduced cell proliferation and survival in human glioblastoma multiforme cells in vitro and in vivo. We also found that treatment with small molecule inhibitors of cyclophilins, including the approved drug cyclosporine, greatly reduced the viability of glioblastoma multiforme cells. Mechanistically, depletion or pharmacologic inhibition of CypB caused hyperactivation of the oncogenic RAS-mitogen-activated protein kinase pathway, induction of cellular senescence signals, and death resulting from loss of MYC, mutant p53, Chk1, and Janus-activated kinase/STAT3 signaling. Elevated reactive oxygen species, ER expansion, and abnormal unfolded protein responses in CypB-depleted glioblastoma multiforme cells indicated that CypB alleviates oxidative and ER stresses and coordinates stress adaptation responses. Enhanced cell survival and sustained expression of multiple oncogenic proteins downstream of CypB may thus contribute to the poor outcome of glioblastoma multiforme tumors. Our findings link chaperone-mediated protein folding in the ER to mechanisms underlying oncogenic transformation, and they make CypB an attractive and immediately targetable molecule for glioblastoma multiforme therapy.

  14. Inhibition of Src by microRNA-23b increases the cisplatin sensitivity of chondrosarcoma cells.

    PubMed

    Huang, Kai; Chen, Jun; Yang, Mo-Song; Tang, Yu-Jun; Pan, Feng

    2017-01-01

    Chondrosarcomas are malignant cartilage-forming tumors from low-grade to high-grade aggressive tumors characterized by metastasis. Cisplatin is an effective DNA-damaging anti-tumor agent for the treatment against a wide variety of solid tumors. However, chondrosarcomas are notorious for their resistance to conventional chemo- and radio- therapies. In this study, we report miR-23b acts as a tumor suppressor in chondrosarcoma. The expressions of miR-23b are down-regulated in chondrosarcoma patient samples and cell lines compared with adjacent normal tissues and human primary chondrocytes. In addition, overexpression of miR-23b suppresses chondrosarcoma cell proliferation. By comparison of the cisplatin resistant chondrosarcoma cells and parental cells, we observed miR-23b was significantly down regulated in cisplatin resistant cells. Moreover, we demonstrate here Src kinase is a direct target of miR-23b in chondrosarcoma cells. Overexpression of miR-23b suppresses Src-Akt pathway, leading to the sensitization of cisplatin resistant chondrosarcoma cells to cisplatin. This chemo-sensitivity effect by the miR-23b-mediated inhibition of Src-Akt pathway is verified with the restoration of Src kinase in miR-23b-overespressing chondrosarcoma cells, resulting in the acquirement of resistance to cisplatin. In summary, our study reveals a novel role of miR-23b in cisplatin resistance in chondrosarcoma and will contribute to the development of the microRNA-targeted anti-cancer therapeutics.

  15. Fatty acid-binding protein 5 (FABP5) promotes lipolysis of lipid droplets, de novo fatty acid (FA) synthesis and activation of nuclear factor-kappa B (NF-κB) signaling in cancer cells.

    PubMed

    Senga, Shogo; Kobayashi, Narumi; Kawaguchi, Koichiro; Ando, Akira; Fujii, Hiroshi

    2018-06-12

    Fatty acid-binding proteins (FABPs) are involved in binding and storing hydrophobic ligands such as long-chain fatty acids, as well as transporting them to the appropriate compartments in the cell. Epidermal fatty acid-binding protein (FABP5) is an intracellular lipid-binding protein that is abundantly expressed in adipocytes and macrophages. Previous studies have revealed that the FABP5 expression level is closely related to malignancy in various types of cancer. However, its precise functions in the metabolisms of cancer cells remain unclear. Here, we revealed that FABP5 knockdown significantly induced downregulation of the genes expression, such as hormone-sensitive lipase (HSL), monoacylglycerol lipase (MAGL), elongation of long-chain fatty acid member 6 (Elovl6), and acyl-CoA synthetase long-chain family member 1 (ACSL1), which are involved in altered lipid metabolism, lipolysis, and de novo FA synthesis in highly aggressive prostate and breast cancer cells. Moreover, we demonstrated that FABP5 induced inflammation and cytokine production through the nuclear factor-kappa B signaling pathway activated by reactive oxygen species and protein kinase C in PC-3 and MDA-MB-231 cells. Thus, FABP5 might regulate lipid quality and/or quantity to promote aggressiveness such as cell growth, invasiveness, survival, and inflammation in prostate and breast cancer cells. In the present study, we have revealed for the first time that high expression of FABP5 plays a critical role in alterations of lipid metabolism, leading to cancer development and metastasis in highly aggressive prostate and breast cancer cells. Copyright © 2018. Published by Elsevier B.V.

  16. NF1 truncating mutations associated to aggressive clinical phenotype with elephantiasis neuromatosa and solid malignancies.

    PubMed

    Ponti, Giovanni; Martorana, Davide; Pellacani, Giovanni; Ruini, Cristel; Loschi, Pietro; Baccarani, Alessio; De Santis, Giorgio; Pollio, Annamaria; Neri, Tauro Maria; Mandel, Victor Desmond; Maiorana, Antonio; Maccio, Livia; Maccaferri, Monia; Tomasi, Aldo

    2014-06-01

    Von Recklinghausen disease is a syndrome characterized by a wide phenotypic variability giving rise to both, cutaneous and visceral benign and malignant neoplasms. The first include cutaneous neurofibromas, subcutaneous and plexiform neurofibromas. The latter can undergo malignant transformation and/or determine elephantiasis neuromatosa. Visceral tumors may include malignant peripheral nerve sheet tumors, gastrointestinal stromal tumors, cerebral gliomas and abdominal neurofibromas. In the present study, the authors discuss the clinical and biomolecular characterization of a cohort of 20 families with a diagnosis of type 1 neurofibromatosis. Clinically, the cohort includes three probands with elephantiasis neuromatosa and a peculiarly high incidence of breast and gastrointestinal cancer. Among the 14 NF1 mutations documented, 10 encoding for a truncated protein have been associated to particularly aggressive clinical phenotypes including elephantiasis neuromatosa, malignant peripheral nerve sheet tumors, breast cancer, gastrointestinal stromal tumors. This effect on protein synthesis, rather than the type of NF1 mutation, is the key to the explanation of the genotype-phenotype correlations in the context of neurofibromatosis type 1. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  17. PITPNC1 recruits RAB1B to the Golgi network to drive malignant secretion

    PubMed Central

    Halberg, Nils; Sengelaub, Caitlin A.; Navrazhina, Kristina; Molina, Henrik; Uryu, Kunihiro; Tavazoie, Sohail F.

    2017-01-01

    SUMMARY Enhanced secretion of tumorigenic effector proteins is a feature of malignant cells. The molecular and cellular mechanisms underlying this feature are poorly defined. We identify PITPNC1 as a gene amplified in a large fraction of human breast cancer and over-expressed in metastatic breast, melanoma and colon cancer. Biochemical, molecular, and cell-biological studies reveal that PITPNC1 promotes malignant secretion by binding Golgi resident PI4P and localizing RAB1B to the Golgi. RAB1B localization to the Golgi allows for the recruitment of GOLPH3 to the trans-Golgi, which facilitates Golgi extension and enhanced vesicular release. PITPNC1-mediated vesicular release drives metastasis by increasing the secretion of pro-invasive and pro-angiogenic mediators HTRA1, MMP1, FAM3C, PDGFA, and ADAM10. We establish PITPNC1 as a PI4P-binding protein that enhances vesicular secretion capacity in malignancy. PMID:26977884

  18. Inhibition of WNT signaling reduces differentiation and induces sensitivity to doxorubicin in human malignant neuroblastoma SH-SY5Y cells.

    PubMed

    Suebsoonthron, Junjira; Jaroonwitchawan, Thiranut; Yamabhai, Montarop; Noisa, Parinya

    2017-06-01

    Neuroblastoma is one of the most common cancers in infancy, arising from the neuroblasts during embryonic development. This cancer is difficult to treat and resistance to chemotherapy is often found; therefore, clinical trials of novel therapeutic approaches, such as targeted-cancer signaling, could be an alternative for a better treatment. WNT signaling plays significant roles in the survival, proliferation, and differentiation of human neuroblastoma. In this report, WNT signaling of a malignant human neuroblastoma cell line, SH-SY5Y cells, was inhibited by XAV939, a specific inhibitor of the Tankyrase enzyme. XAV939 treatment led to the reduction of β-catenin within the cells, confirming its inhibitory effect of WNT. The inhibition of WNT signaling by XAV939 did not affect cell morphology, survival, and proliferation; however, the differentiation and sensitivity to anticancer drugs of human neuroblastoma cells were altered. The treatment of XAV939 resulted in the downregulation of mature neuronal markers, including β-tubulin III, PHOX2A, and PHOX2B, whereas neural progenitor markers (PAX6, TFAP2α, and SLUG) were upregulated. In addition, the combination of XAV939 significantly enhanced the sensitivity of SH-SY5Y and IMR-32 cells to doxorubicin in both 2D and 3D culture systems. Microarray gene expression profiling suggested numbers of candidate target genes of WNT inhibition by XAV939, in particular, p21, p53, ubiquitin C, ZBED8, MDM2, CASP3, and FZD1, and this explained the enhanced sensitivity of SH-SY5Y cells to doxorubicin. Altogether, these results proposed that the altered differentiation of human malignant neuroblastoma cells by inhibiting WNT signaling sensitized the cells to anticancer drugs. This approach could thus serve as an effective treatment option for aggressive brain malignancy.

  19. AGS67E, an Anti-CD37 Monomethyl Auristatin E Antibody–Drug Conjugate as a Potential Therapeutic for B/T-Cell Malignancies and AML: A New Role for CD37 in AML

    PubMed Central

    Pereira, Daniel S.; Guevara, Claudia I.; Jin, Liqing; Mbong, Nathan; Verlinsky, Alla; Hsu, Ssucheng J.; Aviña, Hector; Karki, Sher; Abad, Joseph D.; Yang, Peng; Moon, Sung-Ju; Malik, Faisal; Choi, Michael Y.; An, Zili; Morrison, Kendall; Challita-Eid, Pia M.; Doñate, Fernando; Joseph, Ingrid B.J.; Kipps, Thomas J.; Dick, John E.; Stover, David R.

    2015-01-01

    CD37 is a tetraspanin expressed on malignant B cells. Recently, CD37 has gained interest as a therapeutic target. We developed AGS67E, an antibody–drug conjugate that targets CD37 for the potential treatment of B/T-cell malignancies. It is a fully human monoclonal IgG2 antibody (AGS67C) conjugated, via a protease-cleavable linker, to the microtubule-disrupting agent mono-methyl auristatin E (MMAE). AGS67E induces potent cytotoxicity, apoptosis, and cell-cycle alterations in many non-Hodgkin lymphoma (NHL) and chronic lymphocytic leukemia (CLL) cell lines and patient-derived samples in vitro. It also shows potent antitumor activity in NHL and CLL xenografts, including Rituxan-refractory models. During profiling studies to confirm the reported expression of CD37 in normal tissues and B-cell malignancies, we made the novel discovery that the CD37 protein was expressed in T-cell lymphomas and in AML. AGS67E bound to >80% of NHL and T-cell lymphomas, 100% of CLL and 100% of AML patient-derived samples, including CD34+CD38− leukemic stem cells. It also induced cytotoxicity, apoptosis, and cell-cycle alterations in AML cell lines and antitumor efficacy in orthotopic AML xenografts. Taken together, this study shows not only that AGS67E may serve as a potential therapeutic for B/T-cell malignancies, but it also demonstrates, for the first time, that CD37 is well expressed and a potential drug target in AML. PMID:25934707

  20. Regulation of Mitochondria Function by TRAF3 in B Lymphocytes and B Cell Malignancies

    DTIC Science & Technology

    2014-08-01

    PARP1, PHB2 4 Background B cell neoplasms account for over 90% of lymphoid tumors worldwide, and comprise >50% of blood cancers. Despite recent... cells examined include common lymphoid progenitor, pre-pro-B, pro-B, pre-B, newly-formed B, and transitional (T1, T2 and T3) B cells . The data in...factor 3 is a critical regulator of B cell homeostasis in secondary lymphoid organs. Immunity 2007, 27:253-267. 13. Moore CR, Liu Y, Shao CS, Covey LR

  1. Resveratrol induces cell cycle arrest and apoptosis in malignant NK cells via JAK2/STAT3 pathway inhibition.

    PubMed

    Quoc Trung, Ly; Espinoza, J Luis; Takami, Akiyoshi; Nakao, Shinji

    2013-01-01

    Natural killer (NK) cell malignancies, particularly aggressive NK cell leukaemias and lymphomas, have poor prognoses. Although recent regimens with L-asparaginase substantially improved outcomes, novel therapeutic approaches are still needed to enhance clinical response. Resveratrol, a naturally occurring polyphenol, has been extensively studied for its anti-inflammatory, cardioprotective and anti-cancer activities. In this study, we investigated the potential anti-tumour activities of resveratrol against the NK cell lines KHYG-1, NKL, NK-92 and NK-YS. Resveratrol induced robust G0/G1 cell cycle arrest, significantly suppressed cell proliferation and induced apoptosis in a dose- and time-dependent manner for all four cell lines. In addition, resveratrol suppressed constitutively active STAT3 in all the cell lines and inhibited JAK2 phosphorylation but had no effect on other upstream mediators of STAT3 activation, such as PTEN, TYK2, and JAK1. Resveratrol also induced downregulation of the anti-apoptotic proteins MCL1 and survivin, two downstream effectors of the STAT3 pathway. Finally, resveratrol induced synergistic effect on the apoptotic and antiproliferative activities of L-asparaginase against KHYG-1, NKL and NK-92 cells. These results suggest that resveratrol may have therapeutic potential against NK cell malignancies. Furthermore, our finding that resveratrol is a bonafide JAK2 inhibitor extends its potential benefits to other diseases with dysregulated JAK2 signaling.

  2. Resveratrol Induces Cell Cycle Arrest and Apoptosis in Malignant NK Cells via JAK2/STAT3 Pathway Inhibition

    PubMed Central

    Quoc Trung, Ly; Espinoza, J. Luis; Takami, Akiyoshi; Nakao, Shinji

    2013-01-01

    Natural killer (NK) cell malignancies, particularly aggressive NK cell leukaemias and lymphomas, have poor prognoses. Although recent regimens with L-asparaginase substantially improved outcomes, novel therapeutic approaches are still needed to enhance clinical response. Resveratrol, a naturally occurring polyphenol, has been extensively studied for its anti-inflammatory, cardioprotective and anti-cancer activities. In this study, we investigated the potential anti-tumour activities of resveratrol against the NK cell lines KHYG-1, NKL, NK-92 and NK-YS. Resveratrol induced robust G0/G1 cell cycle arrest, significantly suppressed cell proliferation and induced apoptosis in a dose- and time-dependent manner for all four cell lines. In addition, resveratrol suppressed constitutively active STAT3 in all the cell lines and inhibited JAK2 phosphorylation but had no effect on other upstream mediators of STAT3 activation, such as PTEN, TYK2, and JAK1. Resveratrol also induced downregulation of the anti-apoptotic proteins MCL1 and survivin, two downstream effectors of the STAT3 pathway. Finally, resveratrol induced synergistic effect on the apoptotic and antiproliferative activities of L-asparaginase against KHYG-1, NKL and NK-92 cells. These results suggest that resveratrol may have therapeutic potential against NK cell malignancies. Furthermore, our finding that resveratrol is a bonafide JAK2 inhibitor extends its potential benefits to other diseases with dysregulated JAK2 signaling. PMID:23372833

  3. Utilizing cell-based therapeutics to overcome immune evasion in hematologic malignancies.

    PubMed

    Sun, Chuang; Dotti, Gianpietro; Savoldo, Barbara

    2016-06-30

    Hematologic malignancies provide a suitable testing environment for cell-based immunotherapies, which were pioneered by the development of allogeneic hematopoietic stem cell transplant. All types of cell-based therapies, from donor lymphocyte infusion to dendritic cell vaccines, and adoptive transfer of tumor-specific cytotoxic T cells and natural killer cells, have been clinically translated for hematologic malignancies. The recent success of chimeric antigen receptor-modified T lymphocytes in B-cell malignancies has stimulated the development of this approach toward other hematologic tumors. Similarly, the remarkable activity of checkpoint inhibitors as single agents has created enthusiasm for potential combinations with other cell-based immune therapies. However, tumor cells continuously develop various strategies to evade their immune-mediated elimination. Meanwhile, the recruitment of immunosuppressive cells and the release of inhibitory factors contribute to the development of a tumor microenvironment that hampers the initiation of effective immune responses or blocks the functions of immune effector cells. Understanding how tumor cells escape from immune attack and favor immunosuppression is essential for the improvement of immune cell-based therapies and the development of rational combination approaches. © 2016 by The American Society of Hematology.

  4. Translational studies support a role for serotonin 2B receptor (HTR2B) gene in aggression-related cannabis response.

    PubMed

    Montalvo-Ortiz, Janitza L; Zhou, Hang; D'Andrea, Ivana; Maroteaux, Luc; Lori, Adriana; Smith, Alicia; Ressler, Kerry J; Nuñez, Yaira Z; Farrer, Lindsay A; Zhao, Hongyu; Kranzler, Henry R; Gelernter, Joel

    2018-06-06

    Cannabis use is increasing in the United States, as are its adverse effects. We investigated the genetics of an adverse consequence of cannabis use: cannabis-related aggression (CRA) using a genome-wide association study (GWAS) design. Our GWAS sample included 3269 African Americans (AAs) and 2546 European Americans (EAs). An additional 89 AA subjects from the Grady Trauma Project (GTP) were also examined using a proxy-phenotype replication approach. We identified genome-wide significant risk loci contributing to CRA in AAs at the serotonin receptor 2B receptor gene (HTR2B), and the lead SNP, HTR2B*rs17440378, showed nominal association to aggression in the GTP cohort of cannabis-exposed subjects. A priori evidence linked HTR2B to impulsivity/aggression but not to cannabis response. Human functional data regarding the HTR2B variant further supported our finding. Treating an Htr2b -/- knockout mouse with THC resulted in increased aggressive behavior, whereas wild-type mice following THC administration showed decreased aggression in the resident-intruder paradigm, demonstrating that HTR2B variation moderates the effects of cannabis on aggression. These concordant findings in mice and humans implicate HTR2B as a major locus associated with cannabis-induced aggression.

  5. Determining the Origin of Human Germinal Center B Cell-Derived Malignancies.

    PubMed

    Seifert, Marc; Küppers, Ralf

    2017-01-01

    Most human B cell lymphomas originate from germinal center (GC) B cells. This is partly caused by the high proliferative activity of GC B cells and the remodeling processes acting at the immunoglobulin (Ig) loci of these cells, i.e., somatic hypermutation and class-switching. Mistargeting of these processes can cause chromosomal translocations, and the hypermutation machinery may also target non-Ig genes. As somatic hypermutation is exclusively active in GC B cells, the presence of somatic mutations in rearranged IgV genes is a standard criterium for a GC or post-GC B cell origin of lymphomas. Beyond this, ongoing somatic hypermutation during lymphoma clone expansion indicates that the lymphoma has an active GC B cell differentiation program. The proto-oncogene BCL6 is specifically expressed in GC B cells and also acquires somatic mutations as a physiological by-product of the somatic hypermutation process, albeit at a lower level than IgV genes. Thus, detection of BCL6 mutations is a further genetic trait of a GC experience of a B cell lymphoma. Typically, B cell lymphomas retain key features of their specific cells of origin, including a differentiation stage-specific gene expression pattern. This is at least partly due to genetic lesions, which "freeze" the lymphoma cells at the differentiation stage at which the transformation occurred. Therefore, identification of the normal B cell subset with the most similar gene expression pattern to a particular type of B cell lymphoma has been instrumental to deduce the precise cell of origin of lymphomas.We present here protocols to analyze human B cell lymphomas for a potential origin from GC B cells by determining the presence of mutations in rearranged IgV genes and the BCL6 gene, and by comparing the gene expression pattern of lymphoma cells with those of normal B cell subsets by genechip or RNA-sequencing analysis.

  6. A Druggable TCF4 and BRD4 dependent Transcriptional Network Sustains Malignancy in Blastic Plasmacytoid Dendritic Cell Neoplasm

    PubMed Central

    Ceribelli, Michele; Hou, Zhiying Esther; Kelly, Priscilla N.; Huang, Da Wei; Wright, George; Ganapathi, Karthik; Evbuomwan, Moses O.; Pittaluga, Stefania; Shaffer, Arthur L.; Marcucci, Guido; Forman, Stephen J.; Xiao, Wenming; Guha, Rajarshi; Zhang, Xiaohu; Ferrer, Marc; Chaperot, Laurence; Plumas, Joel; Jaffe, Elaine S.; Thomas, Craig J.; Reizis, Boris; Staudt, Louis M.

    2016-01-01

    SUMMARY Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an aggressive and largely incurable hematologic malignancy originating from plasmacytoid dendritic cells (pDCs). Using RNA interference screening, we identified the E-box transcription factor TCF4 as a master regulator of the BPDCN oncogenic program. TCF4 served as a faithful diagnostic marker of BPDCN, and its downregulation caused the loss of the BPDCN-specific gene expression program and apoptosis. High-throughput drug screening revealed that bromodomain and extra-terminal domain inhibitors (BETi’s) induced BPDCN apoptosis, which was attributable to disruption of a BPDCN-specific transcriptional network controlled by TCF4-dependent super-enhancers. BETi’s retarded the growth of BPDCN xenografts, supporting their clinical evaluation in this recalcitrant malignancy. PMID:27846392

  7. IL27 controls skin tumorigenesis via accumulation of ETAR-positive CD11b cells in the pre-malignant skin

    PubMed Central

    Dibra, Denada; Mitra, Abhisek; Newman, Melissa; Xia, Xueqing; Keenan, Camille; Cutrera, Jeffry J.; Mathis, J. Michael; Wang, Xiao-Jing; Myers, Jeffrey; Li, Shulin

    2016-01-01

    Establishment of a permissive pre-malignant niche in concert with mutant stem are key triggers to initiate skin carcinogenesis. An understudied area of research is finding upstream regulators of both these triggers. IL27, a pleiotropic cytokine with both pro- and anti-inflammatory properties, was found to be a key regulator of both. Two step skin carcinogenesis model and K15-KRASG12D mouse model were used to understand the role of IL27 in skin tumors. CD11b−/− mice and small-molecule of ETAR signaling (ZD4054) inhibitor were used in vivo to understand mechanistically how IL27 promotes skin carcinogenesis. Interestingly, using in vivo studies, IL27 promoted papilloma incidence primarily through IL27 signaling in bone-marrow derived cells. Mechanistically, IL27 initiated the establishment of the pre-malignant niche and expansion of mutated stem cells in K15-KRASG12D mouse model by driving the accumulation of Endothelin A receptor (ETAR)-positive CD11b cells in the skin—a novel category of pro-tumor inflammatory identified in this study. These findings are clinically relevant, as the number of IL27RA-positive cells in the stroma is highly related to tumor de-differentiation in patients with squamous cell carcinomas. PMID:27738312

  8. Human T-cell leukemia virus type 1 Tax oncoprotein represses the expression of the BCL11B tumor suppressor in T-cells

    PubMed Central

    Takachi, Takayuki; Takahashi, Masahiko; Takahashi-Yoshita, Manami; Higuchi, Masaya; Obata, Miki; Mishima, Yukio; Okuda, Shujiro; Tanaka, Yuetsu; Matsuoka, Masao; Saitoh, Akihiko; Green, Patrick L; Fujii, Masahiro

    2015-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T cell leukemia (ATL), which is an aggressive form of T-cell malignancy. HTLV-1 oncoproteins, Tax and HBZ, play crucial roles in the immortalization of T-cells and/or leukemogenesis by dysregulating the cellular functions in the host. Recent studies show that HTLV-1-infected T-cells have reduced expression of the BCL11B tumor suppressor protein. In the present study, we explored whether Tax and/or HBZ play a role in downregulating BCL11B in HTLV-1-infected T-cells. Lentiviral transduction of Tax in a human T-cell line repressed the expression of BCL11B at both the protein and mRNA levels, whereas the transduction of HBZ had little effect on the expression. Tax mutants with a decreased activity for the NF-κB, CREB or PDZ protein pathways still showed a reduced expression of the BCL11B protein, thereby implicating a different function of Tax in BCL11B downregulation. In addition, the HTLV-2 Tax2 protein reduced the BCL11B protein expression in T-cells. Seven HTLV-1-infected T-cell lines, including three ATL-derived cell lines, showed reduced BCL11B mRNA and protein expression relative to an uninfected T-cell line, and the greatest reductions were in the cells expressing Tax. Collectively, these results indicate that Tax is responsible for suppressing BCL11B protein expression in HTLV-1-infected T-cells; Tax-mediated repression of BCL11B is another mechanism that Tax uses to promote oncogenesis of HTLV-1-infected T-cells. PMID:25613934

  9. Luteolin inhibits Cr(VI)-induced malignant cell transformation of human lung epithelial cells by targeting ROS mediated multiple cell signaling pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratheeshkumar, Poyil; Son, Young-Ok; Divya, Sasidharan Padmaja

    Hexavalent chromium [Cr(VI)] is a well-known human carcinogen associated with the incidence of lung cancer. Inhibition of metal induced carcinogenesis by a dietary antioxidant is a novel approach. Luteolin, a natural dietary flavonoid found in fruits and vegetables, possesses potent antioxidant and anti-inflammatory activity. We found that short term exposure of human bronchial epithelial cells (BEAS-2B) to Cr(VI) (5 μM) showed a drastic increase in ROS generation, NADPH oxidase (NOX) activation, lipid peroxidation, and glutathione depletion, which were significantly inhibited by the treatment with luteolin in a dose dependent manner. Treatment with luteolin decreased AP-1, HIF-1α, COX-2, and iNOS promotermore » activity induced by Cr(VI) in BEAS-2B cells. In addition, luteolin protected BEAS-2B cells from malignant transformation induced by chronic Cr(VI) exposure. Moreover, luteolin also inhibited the production of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) and VEGF in chronic Cr(VI) exposed BEAS-2B cells. Western blot analysis showed that luteolin inhibited multiple gene products linked to survival (Akt, Fak, Bcl-2, Bcl-xL), inflammation (MAPK, NF-κB, COX-2, STAT-3, iNOS, TNF-α) and angiogenesis (HIF-1α, VEGF, MMP-9) in chronic Cr(VI) exposed BEAS-2B cells. Nude mice injected with BEAS-2B cells chronically exposed to Cr(VI) in the presence of luteolin showed reduced tumor incidence compared to Cr(VI) alone treated group. Overexpression of catalase (CAT) or SOD2, eliminated Cr(VI)-induced malignant transformation. Overall, our results indicate that luteolin protects BEAS-2B cells from Cr(VI)-induced carcinogenesis by scavenging ROS and modulating multiple cell signaling mechanisms that are linked to ROS. Luteolin, therefore, serves as a potential chemopreventive agent against Cr(VI)-induced carcinogenesis. - Highlights: • Luteolin inhibited Cr(VI)-induced oxidative stress. • Luteolin inhibited chronic Cr(VI)-induced malignant

  10. Cks1 Is Required for Tumor Cell Proliferation but Not Sufficient to Induce Hematopoietic Malignancies

    PubMed Central

    Kratzat, Susanne; Nikolova, Viktoriya; Miething, Cornelius; Hoellein, Alexander; Schoeffmann, Stephanie; Gorka, Oliver; Pietschmann, Elke; Illert, Anna-Lena; Ruland, Jürgen; Peschel, Christian; Nilsson, Jonas; Duyster, Justus; Keller, Ulrich

    2012-01-01

    The Cks1 component of the SCFSkp2 complex is necessary for p27Kip1 ubiquitylation and degradation. Cks1 expression is elevated in various B cell malignancies including Burkitt lymphoma and multiple myeloma. We have previously shown that loss of Cks1 results in elevated p27Kip1 levels and delayed tumor development in a mouse model of Myc-induced B cell lymphoma. Surprisingly, loss of Skp2 in the same mouse model also resulted in elevated p27Kip1 levels but exhibited no impact on tumor onset. This raises the possibility that Cks1 could have other oncogenic activities than suppressing p27Kip1. To challenge this notion we have targeted overexpression of Cks1 to B cells using a conditional retroviral bone marrow transduction-transplantation system. Despite potent ectopic overexpression, Cks1 was unable to promote B cell hyperproliferation or B cell malignancies, indicating that Cks1 is not oncogenic when overexpressed in B cells. Since Skp2 overexpression can drive T-cell tumorigenesis or other cancers we also widened the quest for oncogenic activity of Cks1 by ubiquitously expressing Cks1 in hematopoetic progenitors. At variance with c-Myc overexpression, which caused acute myeloid leukemia, Cks1 overexpression did not induce myeloproliferation or leukemia. Therefore, despite being associated with a poor prognosis in various malignancies, sole Cks1 expression is insufficient to induce lymphoma or a myeloproliferative disease in vivo. PMID:22624029

  11. A phase 1 clinical trial of the selective BTK inhibitor ONO/GS-4059 in relapsed and refractory mature B-cell malignancies.

    PubMed

    Walter, Harriet S; Rule, Simon A; Dyer, Martin J S; Karlin, Lionel; Jones, Ceri; Cazin, Bruno; Quittet, Philippe; Shah, Nimish; Hutchinson, Claire V; Honda, Hideyuki; Duffy, Kevin; Birkett, Joseph; Jamieson, Virginia; Courtenay-Luck, Nigel; Yoshizawa, Toshio; Sharpe, John; Ohno, Tomoya; Abe, Shinichiro; Nishimura, Akihisa; Cartron, Guillaume; Morschhauser, Franck; Fegan, Christopher; Salles, Gilles

    2016-01-28

    We report the results of a multicenter phase 1 dose-escalation study of the selective Bruton tyrosine kinase (BTK) inhibitor ONO/GS-4059 in 90 patients with relapsed/refractory B-cell malignancies. There were 9 dose-escalation cohorts ranging from 20 mg to 600 mg once daily with twice-daily regimens of 240 mg and 300 mg. Twenty-four of 25 evaluable chronic lymphocytic leukemia (CLL) patients (96%) responded to ONO/GS-4059, with a median treatment duration of 80 weeks; 21 CLL patients remain on treatment. Lymph node responses were rapid and associated with a concurrent lymphocytosis. Eleven of 12 evaluable patients with mantle cell lymphoma (92%) responded (median treatment duration, 40 weeks). Eleven of 31 non-germinal center B-cell diffuse large B-cell lymphoma patients (35%) responded but median treatment duration was 12 weeks due to development of progressive disease. ONO/GS-4059 was very well tolerated with 75% of adverse events (AEs) being Common Toxicity Criteria for Adverse Events version 4.0 grade 1 or grade 2. Grade 3/4 AEs were mainly hematologic and recovered spontaneously during therapy. One CLL patient experienced a grade 3 treatment-related bleeding event (spontaneous muscle hematoma) but no clinically significant diarrhea, cardiac dysrhythmias, or arthralgia were observed. No maximal tolerated dose (MTD) was reached in the CLL cohort. In the non-Hodgkin lymphoma cohort, 4 patients developed a dose-limiting toxicity, yielding an MTD of 480 mg once daily. ONO/GS-4059 has significant activity in relapsed/refractory B-cell malignancies without major drug-related toxicity. The selectivity of ONO/GS-4059 should confer advantages in combination therapies. This trial was registered at www.clinicaltrials.gov as #NCT01659255. © 2016 by The American Society of Hematology.

  12. Paclitaxel synergizes with exposure time adjusted CD22-targeting immunotoxins against B-cell malignancies.

    PubMed

    Müller, Fabian; Stookey, Stephanie; Cunningham, Tyler; Pastan, Ira

    2017-05-09

    CD22-targeted recombinant immunotoxins (rIT) are active in hairy cell leukemia or acute lymphoblastic leukemia (ALL), but not in mantle cell lymphoma (MCL) patients. The goal was to enhance rIT efficacy in vivo and to define a strong combination treatment. Activity of Moxetumomab pasudotox (Moxe) and LR combined with paclitaxel was tested against MCL cell lines in vitro and as bolus doses or continuous infusion in xenograft models. In the KOPN-8 ALL xenograft, Moxe or paclitaxel alone was active, but all mice died from leukemia; when combined, 60% of the mice achieved a sustained complete remission. Against MCL cells in vitro, LR was more active than Moxe and the cells had to be exposed to rIT for more than 24 hours for them to die. To maintain high blood levels in vivo, LR was administered continuously by 7-day pumps achieving a well-tolerated steady plasma concentration of 45 ng/ml. In JeKo-1 xenografts, continuously administered LR was 14-fold more active than bolus doses and the combination with paclitaxel additionally improved responses by 135-fold. Maintaining high rIT-plasma levels greatly improves responses in the JeKo-1 model and paclitaxel substantially enhances bolus and continuously infused rIT, supporting a clinical evaluation against B-cell malignancies.

  13. A T-cell–directed chimeric antigen receptor for the selective treatment of T-cell malignancies

    PubMed Central

    Mamonkin, Maksim; Rouce, Rayne H.; Tashiro, Haruko

    2015-01-01

    Options for targeted therapy of T-cell malignancies remain scarce. Recent clinical trials demonstrated that chimeric antigen receptors (CARs) can effectively redirect T lymphocytes to eradicate lymphoid malignancies of B-cell origin. However, T-lineage neoplasms remain a more challenging task for CAR T cells due to shared expression of most targetable surface antigens between normal and malignant T cells, potentially leading to fratricide of CAR T cells or profound immunodeficiency. Here, we report that T cells transduced with a CAR targeting CD5, a common surface marker of normal and neoplastic T cells, undergo only limited fratricide and can be expanded long-term ex vivo. These CD5 CAR T cells effectively eliminate malignant T-cell acute lymphoblastic leukemia (T-ALL) and T-cell lymphoma lines in vitro and significantly inhibit disease progression in xenograft mouse models of T-ALL. These data support the therapeutic potential of CD5 CAR in patients with T-cell neoplasms. PMID:26056165

  14. MicroRNA-105 inhibits human glioma cell malignancy by directly targeting SUZ12.

    PubMed

    Zhang, Jie; Wu, Weining; Xu, Shuo; Zhang, Jian; Zhang, Jiale; Yu, Qun; Jiao, Yuanyuan; Wang, Yingyi; Lu, Ailin; You, Yongping; Zhang, Junxia; Lu, Xiaoming

    2017-06-01

    Glioma accounts for the majority of primary malignant brain tumors in adults and is highly aggressive. Although various therapeutic approaches have been applied, outcomes of glioma treatment remain poor. MicroRNAs are a class of small noncoding RNAs that function as regulators of gene expression. Accumulating evidence shows that microRNAs are associated with tumorigenesis and tumor progression. In this study, we found that miR-105 is significantly downregulated in glioma tissues and glioma cell lines. We identified suppressor of Zeste 12 homolog as a novel direct target of miR-105 and showed that suppressor of Zeste 12 homolog protein levels were inversely correlated with the levels of miR-105 expression in clinical specimens. Overexpression of miR-105 inhibited cell proliferation, tumorigenesis, migration, invasion, and drug sensitivity, whereas overexpression of suppressor of Zeste 12 homolog antagonized the tumor-suppressive functions of miR-105. Taken together, our results indicate that miR-105 plays a significant role in tumor behavior and malignant progression, which may provide a novel therapeutic strategy for the treatment of glioma and other cancers.

  15. Pax-5 is a potent regulator of E-cadherin and breast cancer malignant processes

    PubMed Central

    Benzina, Sami; Beauregard, Annie-Pier; Guerrette, Roxann; Jean, Stéphanie; Faye, Mame Daro; Laflamme, Mark; Maïcas, Emmanuel; Crapoulet, Nicolas; Ouellette, Rodney J.; Robichaud, Gilles A.

    2017-01-01

    Pax-5, an essential transcription factor for B lymphocyte development, has been linked with the development and progression of lymphoid cancers and carcinoma. In contrast to B-cell cancer lesions, the specific expression signatures and roles of Pax-5 in breast cancer progression are relatively unknown. In the present study, we set out to profile Pax-5 expression in mammary tissues and elucidate the cellular and molecular roles of Pax-5 in breast cancer processes. Using immunohistology on mammary tissue arrays, Pax-5 was detected in a total of 298/306 (97.6%) samples tested. Interestingly, our studies reveal that Pax-5 inhibits aggressive features and confers anti-proliferative effects in breast carcinoma cells in contrast to its oncogenic properties in B cell cancers. More precisely, Pax-5 suppressed breast cancer cell migration, invasion and tumor spheroid formation while concomitantly promoting cell adhesion properties. We also observed that Pax-5 inhibited and reversed breast cancer epithelial to mesenchymal phenotypic transitioning. Mechanistically, we found that the Pax-5 transcription factor binds and induces gene expression of E-cadherin, a pivotal regulator of epithelialisation. Globally, we demonstrate that Pax-5 is predominant expressed factor in mammary epithelial cells. We also present an important role for Pax-5 in the phenotypic transitioning processes and aggressive features associated with breast cancer malignancy and disease progression. PMID:28076843

  16. Glycolytic rate and lymphomagenesis depend on PARP14, an ADP ribosyltransferase of the B aggressive lymphoma (BAL) family.

    PubMed

    Cho, Sung Hoon; Ahn, Annie K; Bhargava, Prerna; Lee, Chih-Hao; Eischen, Christine M; McGuinness, Owen; Boothby, Mark

    2011-09-20

    Poly(ADP-ribose)polymerase (PARP)14--a member of the B aggressive lymphoma (BAL) family of macrodomain-containing PARPs--is an ADP ribosyltransferase that interacts with Stat6, enhances induction of certain genes by IL-4, and is expressed in B lymphocytes. We now show that IL-4 enhancement of glycolysis in B cells requires PARP14 and that this process is central to a role of PARP14 in IL-4-induced survival. Thus, enhancements of AMP-activated protein kinase activity restored both IL-4-induced glycolytic activity in Parp14(-/-) B cells and prosurvival signaling by this cytokine. Suppression of apoptosis is central to B-lymphoid oncogenesis, and elevated macro-PARP expression has been correlated with lymphoma aggressiveness. Strikingly, PARP14 deficiency delayed B lymphomagenesis and reversed the block to B-cell maturation driven by the Myc oncogene. Collectively, these findings reveal links between a mammalian ADP ribosyltransferase, cytokine-regulated metabolic activity, and apoptosis; show that PARP14 influences Myc-induced oncogenesis; and suggest that the PARP14-dependent capacity to increase cellular metabolic rates may be an important determinant of lymphoma pathobiology.

  17. AKT Axis, miR-21, and RECK Play Pivotal Roles in Dihydroartemisinin Killing Malignant Glioma Cells

    PubMed Central

    Shao, Ying-Ying; Zhang, Tao-Lan; Wu, Lan-Xiang; Zou, He-Cun; Li, Shuang; Huang, Jin; Zhou, Hong-Hao

    2017-01-01

    Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, is known to play important roles in inhibiting proliferation rate, inducing apoptosis, as well as hindering the metastasis and invasion of glioma cells, but the underlying mechanisms are still unclear so far. In this study, methyl thiazolyl tetrazolium (MTT), colony-forming, wound healing, invasion, and apoptosis assays were performed to investigate the effect of DHA on malignant glioma cells. Results showed that DHA induced apoptosis of malignant glioma cells through Protein Kinase B (AKT) axis, induced death of malignant glioma cells by downregulating miR-21, and inhibited the invasion of malignant glioma cells corresponding with up-regulation of the reversion-inducing-cysteine-rich protein with kazal motifs (RECK). These results revealed that AKT axis, miR-21, and RECK play pivotal roles in DHA killing malignant glioma cells, suggesting that DHA is a potential agent for treating glioma. PMID:28208619

  18. Sulforaphane counteracts aggressiveness of pancreatic cancer driven by dysregulated Cx43-mediated gap junctional intercellular communication

    PubMed Central

    Zhang, Yiyao; Isayev, Orkhan; Heilmann, Katharina; Schoensiegel, Frank; Liu, Li; Nessling, Michelle; Richter, Karsten; Labsch, Sabrina; Nwaeburu, Clifford C.; Mattern, Juergen; Gladkich, Jury; Giese, Nathalia; Werner, Jens; Schemmer, Peter; Gross, Wolfgang; Gebhard, Martha M.; Gerhauser, Clarissa; Schaefer, Michael; Herr, Ingrid

    2014-01-01

    The extreme aggressiveness of pancreatic ductal adenocarcinoma (PDA) has been associated with blocked gap junctional intercellular communication (GJIC) and the presence of cancer stem cells (CSCs). We examined whether disturbed GJIC is responsible for a CSC phenotype in established and primary cancer cells and patient tissue of PDA using interdisciplinary methods based in physiology, cell and molecular biology, histology and epigenetics. Flux of fluorescent dyes and gemcitabine through gap junctions (GJs) was intact in less aggressive cells but not in highly malignant cells with morphological dysfunctional GJs. Among several connexins, only Cx43 was expressed on the cell surface of less aggressive and GJIC-competent cells, whereas Cx43 surface expression was absent in highly malignant, E-cadherin-negative and GJIC-incompetent cells. The levels of total Cx43 protein and Cx43 phosphorylated at Ser368 and Ser279/282 were high in normal tissue but low to absent in malignant tissue. si-RNA-mediated inhibition of Cx43 expression in GJIC-competent cells prevented GJIC and induced colony formation and the expression of stem cell-related factors. The bioactive substance sulforaphane enhanced Cx43 and E-cadherin levels, inhibited the CSC markers c-Met and CD133, improved the functional morphology of GJs and enhanced GJIC. Sulforaphane altered the phosphorylation of several kinases and their substrates and inhibition of GSK3, JNK and PKC prevented sulforaphane-induced CX43 expression. The sulforaphane-mediated expression of Cx43 was not correlated with enhanced Cx43 RNA expression, acetylated histone binding and Cx43 promoter de-methylation, suggesting that posttranslational phosphorylation is the dominant regulatory mechanism. Together, the absence of Cx43 prevents GJIC and enhances aggressiveness, whereas sulforaphane counteracts this process, and our findings highlight dietary co-treatment as a viable treatment option for PDA. PMID:24742583

  19. Sulforaphane counteracts aggressiveness of pancreatic cancer driven by dysregulated Cx43-mediated gap junctional intercellular communication.

    PubMed

    Forster, Tobias; Rausch, Vanessa; Zhang, Yiyao; Isayev, Orkhan; Heilmann, Katharina; Schoensiegel, Frank; Liu, Li; Nessling, Michelle; Richter, Karsten; Labsch, Sabrina; Nwaeburu, Clifford C; Mattern, Juergen; Gladkich, Jury; Giese, Nathalia; Werner, Jens; Schemmer, Peter; Gross, Wolfgang; Gebhard, Martha M; Gerhauser, Clarissa; Schaefer, Michael; Herr, Ingrid

    2014-03-30

    The extreme aggressiveness of pancreatic ductal adenocarcinoma (PDA) has been associated with blocked gap junctional intercellular communication (GJIC) and the presence of cancer stem cells (CSCs). We examined whether disturbed GJIC is responsible for a CSC phenotype in established and primary cancer cells and patient tissue of PDA using interdisciplinary methods based in physiology, cell and molecular biology, histology and epigenetics. Flux of fluorescent dyes and gemcitabine through gap junctions (GJs) was intact in less aggressive cells but not in highly malignant cells with morphological dysfunctional GJs. Among several connexins, only Cx43 was expressed on the cell surface of less aggressive and GJIC-competent cells, whereas Cx43 surface expression was absent in highly malignant, E-cadherin-negative and GJIC-incompetent cells. The levels of total Cx43 protein and Cx43 phosphorylated at Ser368 and Ser279/282 were high in normal tissue but low to absent in malignant tissue. si-RNA-mediated inhibition of Cx43 expression in GJIC-competent cells prevented GJIC and induced colony formation and the expression of stem cell-related factors. The bioactive substance sulforaphane enhanced Cx43 and E-cadherin levels, inhibited the CSC markers c-Met and CD133, improved the functional morphology of GJs and enhanced GJIC. Sulforaphane altered the phosphorylation of several kinases and their substrates and inhibition of GSK3, JNK and PKC prevented sulforaphane-induced CX43 expression. The sulforaphane-mediated expression of Cx43 was not correlated with enhanced Cx43 RNA expression, acetylated histone binding and Cx43 promoter de-methylation, suggesting that posttranslational phosphorylation is the dominant regulatory mechanism. Together, the absence of Cx43 prevents GJIC and enhances aggressiveness, whereas sulforaphane counteracts this process, and our findings highlight dietary co-treatment as a viable treatment option for PDA.

  20. T-cell/histiocyte-rich large B-cell lymphoma of stomach.

    PubMed

    Barut, Figen; Kandemir, Nilufer Onak; Gun, Banu Dogan; Ozdamar, Sukru Oguz

    2016-07-01

    T-cell/histiocyte-rich large B-cell lymphoma is an unusually encountered lymphoid neoplasm of stomach with aggressive course, and is an uncommon morphologic variant of diffuse large B-cell lymphoma. An ulcerated mass, 7x5x1 cm in size was observed within the gastrectomy specimen of a 76-year-old female patient. In cross sections, besides mature lymphoid cells displaying T-cell phenotype, a neoplastic formation composed of large, pleomorphic atypical lymphoid cells with, prominent nucleoli, vesicular nuclei and abundant eosinophilic cytoplasm displaying B-cell phenotype were observed. Meanwhile, histiocyte-like mononuclear cells and Reed-Sternberg-like multinuclear cells expressing CD68 and Mac387 were also observed. The diagnosis of the case was T cell/histiocyte-rich large B-cell lymphoma. This rarely encountered neoplasm should be kept in mind in the differential diagnosis of primary gastric lymphomas.

  1. Anti-ATLA (antibody to adult T-cell leukemia virus-associated antigen), highly positive in OKT4-positive mature T-cell malignancies.

    PubMed

    Tobinai, K; Nagai, M; Setoya, T; Shibata, T; Minato, K; Shimoyama, M

    1983-01-01

    Serum or plasma specimens from 252 patients with lymphoid malignancies were screened for reactivity with adult T-cell leukemia virus-associated antigen (ATLA), and the relationship between the immunologic phenotype of the tumor cells and ATLA reactivity was determined. Anti-ATLA antibodies were found in 24 (29.3%) of 82 patients with T-cell malignancy. In contrast, the antibodies were found in none of the 106 patients with B-cell malignancy and only rarely in patients with other lymphoid malignancies without blood transfusions. Among the patients with T-cell malignancy, anti-ATLA antibodies were found in 23 (45.1%) of the 51 patients with OKT4-positive mature T-cell (inducer/helper T-cell) malignancy, but in none of the patients with T-cell malignancy of pre-T, thymic T-cell or OKT8-positive mature T-cell (suppressor/cytotoxic T-cell) phenotype. Furthermore, among the OKT4-positive mature T-cell malignancies, the antibodies were found in 16 (84.2%) of 19 patients with ATL and in 5 (27.8%) of 18 patients with mature (peripheral) T-cell lymphoma, in none of four with typical T-chronic lymphocytic leukemia, in one of nine with mycosis fungoides and in the one patient with small-cell variant of Sézary's syndrome. These results suggest that anti-ATLA positive T-cell malignancies with OKT4-positive mature T-cell phenotype must be the same disease, because it is highly possible that they have the same etiology and the same cellular origin. In the atypical cases, it seems necessary to demonstrate monoclonal integration of proviral DNA of ATLV or HTLV into the tumor cells in order to establish the final diagnosis of ATL.

  2. Cell-of-Origin in Diffuse Large B-Cell Lymphoma: Are the Assays Ready for the Clinic?

    PubMed

    Scott, David W

    2015-01-01

    Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma worldwide and consists of a heterogeneous group of cancers classified together on the basis of shared morphology, immunophenotype, and aggressive clinical behavior. It is now recognized that this malignancy comprises at least two distinct molecular subtypes identified by gene expression profiling: the activated B-cell-like (ABC) and the germinal center B-cell-like (GCB) groups-the cell-of-origin (COO) classification. These two groups have different genetic mutation landscapes, pathobiology, and outcomes following treatment. Evidence is accumulating that novel agents have selective activity in one or the other COO group, making COO a predictive biomarker. Thus, there is now a pressing need for accurate and robust methods to assign COO, to support clinical trials, and ultimately guide treatment decisions for patients. The "gold standard" methods for COO are based on gene expression profiling (GEP) of RNA from fresh frozen tissue using microarray technology, which is an impractical solution when formalin-fixed paraffin-embedded tissue (FFPET) biopsies are the standard diagnostic material. This review outlines the history of the COO classification before examining the practical implementation of COO assays applicable to FFPET biopsies. The immunohistochemistry (IHC)-based algorithms and gene expression-based assays suitable for the highly degraded RNA from FFPET are discussed. Finally, the technical and practical challenges that still need to be addressed are outlined before robust gene expression-based assays are used in the routine management of patients with DLBCL.

  3. Frequent downregulation of BTB and CNC homology 2 expression in Epstein-Barr virus-positive diffuse large B-cell lymphoma.

    PubMed

    Noujima-Harada, Mai; Takata, Katsuyoshi; Miyata-Takata, Tomoko; Sakurai, Hiroaki; Igarashi, Kazuhiko; Ito, Etsuro; Nagakita, Keina; Taniguchi, Kohei; Ohnishi, Nobuhiko; Omote, Shizuma; Tabata, Tetsuya; Sato, Yasuharu; Yoshino, Tadashi

    2017-05-01

    Diffuse large B-cell lymphoma (DLBCL) is the most common B-cell lymphoma subtype, and the Epstein-Barr virus (EBV)-positive subtype of DLBCL is known to show a more aggressive clinical behavior than the EBV-negative one. BTB and CNC homology 2 (BACH2) has been highlighted as a tumor suppressor in hematopoietic malignancies; however, the role of BACH2 in EBV-positive DLBCL is unclear. In the present study, BACH2 expression and its significance were studied in 23 EBV-positive and 43 EBV-negative patient samples. Immunohistochemistry revealed BACH2 downregulation in EBV-positive cases (P < 0.0001), although biallelic deletion of BACH2 was not detected by FISH. Next, we analyzed the contribution of BACH2 negativity to aggressiveness in EBV-positive B-cell lymphomas using FL-18 (EBV-negative) and FL-18-EB cells (FL-18 sister cell line, EBV-positive). In BACH2-transfected FL-18-EB cells, downregulation of phosphorylated transforming growth factor-β-activated kinase 1 (pTAK1) and suppression in p65 nuclear fractions were observed by Western blot analysis contrary to non-transfected FL-18-EB cells. In patient samples, pTAK1 expression and significant nuclear p65, p50, and p52 localization were detected immunohistochemically in BACH2-negative DLBCL (P < 0.0001, P = 0.006, and P = 0.001, respectively), suggesting that BACH2 downregulation contributes to constitutive activation of the nuclear factor-κB pathway through TAK1 phosphorylation in BACH2-negative DLBCL (most EBV-positive cases). Although further molecular and pathological studies are warranted to clarify the detailed mechanisms, downregulation of BACH2 may contribute to constitutive activation of the nuclear factor-κB pathway through TAK1 activation. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  4. Human T-cell leukemia virus type 1 Tax oncoprotein represses the expression of the BCL11B tumor suppressor in T-cells.

    PubMed

    Takachi, Takayuki; Takahashi, Masahiko; Takahashi-Yoshita, Manami; Higuchi, Masaya; Obata, Miki; Mishima, Yukio; Okuda, Shujiro; Tanaka, Yuetsu; Matsuoka, Masao; Saitoh, Akihiko; Green, Patrick L; Fujii, Masahiro

    2015-04-01

    Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T cell leukemia (ATL), which is an aggressive form of T-cell malignancy. HTLV-1 oncoproteins, Tax and HBZ, play crucial roles in the immortalization of T-cells and/or leukemogenesis by dysregulating the cellular functions in the host. Recent studies show that HTLV-1-infected T-cells have reduced expression of the BCL11B tumor suppressor protein. In the present study, we explored whether Tax and/or HBZ play a role in downregulating BCL11B in HTLV-1-infected T-cells. Lentiviral transduction of Tax in a human T-cell line repressed the expression of BCL11B at both the protein and mRNA levels, whereas the transduction of HBZ had little effect on the expression. Tax mutants with a decreased activity for the NF-κB, CREB or PDZ protein pathways still showed a reduced expression of the BCL11B protein, thereby implicating a different function of Tax in BCL11B downregulation. In addition, the HTLV-2 Tax2 protein reduced the BCL11B protein expression in T-cells. Seven HTLV-1-infected T-cell lines, including three ATL-derived cell lines, showed reduced BCL11B mRNA and protein expression relative to an uninfected T-cell line, and the greatest reductions were in the cells expressing Tax. Collectively, these results indicate that Tax is responsible for suppressing BCL11B protein expression in HTLV-1-infected T-cells; Tax-mediated repression of BCL11B is another mechanism that Tax uses to promote oncogenesis of HTLV-1-infected T-cells. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  5. Nuclear factor kappa B role in inflammation associated gastrointestinal malignancies

    PubMed Central

    Gambhir, Sahil; Vyas, Dinesh; Hollis, Michael; Aekka, Apporva; Vyas, Arpita

    2015-01-01

    Nuclear factor kappa B (NF-κB) has an established role in the regulation of innate immunity and inflammation. NF-κB is also involved in critical mechanisms connecting inflammation and cancer development. Recent investigations suggest that the NF-κB signaling cascade may be the central mediator of gastrointestinal malignancies including esophageal, gastric and colorectal cancers. This review will explore NF-κB’s function in inflammation-associated gastrointestinal malignancies, highlighting its oncogenic contribution to each step of carcinogenesis. NF-κB’s role in the inflammation-to-carcinoma sequence in gastrointestinal malignancies warrants stronger emphasis upon targeting this pathway in achieving greater therapeutic efficacy. PMID:25805923

  6. Malignant lymphoma in african lions (panthera leo).

    PubMed

    Harrison, T M; McKnight, C A; Sikarskie, J G; Kitchell, B E; Garner, M M; Raymond, J T; Fitzgerald, S D; Valli, V E; Agnew, D; Kiupel, M

    2010-09-01

    Malignant lymphoma has become an increasingly recognized problem in African lions (Panthera leo). Eleven African lions (9 male and 2 female) with clinical signs and gross and microscopic lesions of malignant lymphoma were evaluated in this study. All animals were older adults, ranging in age from 14 to 19 years. Immunohistochemically, 10 of the 11 lions had T-cell lymphomas (CD3(+), CD79a(-)), and 1 lion was diagnosed with a B-cell lymphoma (CD3(-), CD79a(+)). The spleen appeared to be the primary site of neoplastic growth in all T-cell lymphomas, with involvement of the liver (6/11) and regional lymph nodes (5/11) also commonly observed. The B-cell lymphoma affected the peripheral lymph nodes, liver, and spleen. According to the current veterinary and human World Health Organization classification of hematopoietic neoplasms, T-cell lymphoma subtypes included peripheral T-cell lymphoma (4/11), precursor (acute) T-cell lymphoblastic lymphoma/leukemia (2/11), chronic T-cell lymphocytic lymphoma/leukemia (3/11), and T-zone lymphoma (1/11). The single B-cell lymphoma subtype was consistent with diffuse large B-cell lymphoma. Feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) testing by immunohistochemistry on sections of malignant lymphoma was negative for all 11 lions. One lion was seropositive for FeLV. In contrast to domestic and exotic cats, in which B-cell lymphomas are more common than T-cell lymphomas, African lions in this study had malignant lymphomas that were primarily of T-cell origin. Neither FeLV nor FIV, important causes of malignant lymphoma in domestic cats, seems to be significant in the pathogenesis of malignant lymphoma in African lions.

  7. CD26-mediated regulation of periostin expression contributes to migration and invasion of malignant pleural mesothelioma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komiya, Eriko; Ohnuma, Kei, E-mail: kohnuma@juntendo.ac.jp; Yamazaki, Hiroto

    Highlights: • CD26-expressing MPM cells upregulate production of periostin. • The intracytoplasmic region of CD26 mediates the upregulation of periostin. • CD26 expression leads to nuclear translocation of Twist1 via phosphorylation of Src. • Secreted periostin enhances migration and invasion of MPM cells. - Abstract: Malignant pleural mesothelioma (MPM) is an aggressive malignancy arising from mesothelial lining of pleura. It is generally associated with a history of asbestos exposure and has a very poor prognosis, partly due to the lack of a precise understanding of the molecular mechanisms associated with its malignant behavior. In the present study, we expanded onmore » our previous studies on the enhanced motility and increased CD26 expression in MPM cells, with a particular focus on integrin adhesion molecules. We found that expression of CD26 upregulates periostin secretion by MPM cells, leading to enhanced MPM cell migratory and invasive activity. Moreover, we showed that upregulation of periostin expression results from the nuclear translocation of the basic helix-loop-helix transcription factor Twist1, a process that is mediated by CD26-associated activation of Src phosphorylation. While providing new and profound insights into the molecular mechanisms involved in MPM biology, these findings may also lead to the development of novel therapeutic strategies for MPM.« less

  8. NF-κB-Induced IL-6 Ensures STAT3 Activation and Tumor Aggressiveness in Glioblastoma

    PubMed Central

    McFarland, Braden C.; Hong, Suk W.; Rajbhandari, Rajani; Twitty, George B.; Gray, G. Kenneth; Yu, Hao; Benveniste, Etty N.; Nozell, Susan E.

    2013-01-01

    Glioblastoma (GBM) is the most aggressive, neurologically destructive and deadly tumor of the central nervous system (CNS). In GBM, the transcription factors NF-κB and STAT3 are aberrantly activated and associated with tumor cell proliferation, survival, invasion and chemoresistance. In addition, common activators of NF-κB and STAT3, including TNF-α and IL-6, respectively, are abundantly expressed in GBM tumors. Herein, we sought to elucidate the signaling crosstalk that occurs between the NF-κB and STAT3 pathways in GBM tumors. Using cultured GBM cell lines as well as primary human GBM xenografts, we elucidated the signaling crosstalk between the NF-κB and STAT3 pathways utilizing approaches that either a) reduce NF-κB p65 expression, b) inhibit NF-κB activation, c) interfere with IL-6 signaling, or d) inhibit STAT3 activation. Using the clinically relevant human GBM xenograft model, we assessed the efficacy of inhibiting NF-κB and/or STAT3 alone or in combination in mice bearing intracranial xenograft tumors in vivo. We demonstrate that TNF-α-induced activation of NF-κB is sufficient to induce IL-6 expression, activate STAT3, and elevate STAT3 target gene expression in GBM cell lines and human GBM xenografts in vitro. Moreover, the combined inhibition of NF-κB and STAT3 signaling significantly increases survival of mice bearing intracranial tumors. We propose that in GBM, the activation of NF-κB ensures subsequent STAT3 activation through the expression of IL-6. These data verify that pharmacological interventions to effectively inhibit the activity of both NF-κB and STAT3 transcription factors must be used in order to reduce glioma size and aggressiveness. PMID:24244348

  9. NF-κB-induced IL-6 ensures STAT3 activation and tumor aggressiveness in glioblastoma.

    PubMed

    McFarland, Braden C; Hong, Suk W; Rajbhandari, Rajani; Twitty, George B; Gray, G Kenneth; Yu, Hao; Benveniste, Etty N; Nozell, Susan E

    2013-01-01

    Glioblastoma (GBM) is the most aggressive, neurologically destructive and deadly tumor of the central nervous system (CNS). In GBM, the transcription factors NF-κB and STAT3 are aberrantly activated and associated with tumor cell proliferation, survival, invasion and chemoresistance. In addition, common activators of NF-κB and STAT3, including TNF-α and IL-6, respectively, are abundantly expressed in GBM tumors. Herein, we sought to elucidate the signaling crosstalk that occurs between the NF-κB and STAT3 pathways in GBM tumors. Using cultured GBM cell lines as well as primary human GBM xenografts, we elucidated the signaling crosstalk between the NF-κB and STAT3 pathways utilizing approaches that either a) reduce NF-κB p65 expression, b) inhibit NF-κB activation, c) interfere with IL-6 signaling, or d) inhibit STAT3 activation. Using the clinically relevant human GBM xenograft model, we assessed the efficacy of inhibiting NF-κB and/or STAT3 alone or in combination in mice bearing intracranial xenograft tumors in vivo. We demonstrate that TNF-α-induced activation of NF-κB is sufficient to induce IL-6 expression, activate STAT3, and elevate STAT3 target gene expression in GBM cell lines and human GBM xenografts in vitro. Moreover, the combined inhibition of NF-κB and STAT3 signaling significantly increases survival of mice bearing intracranial tumors. We propose that in GBM, the activation of NF-κB ensures subsequent STAT3 activation through the expression of IL-6. These data verify that pharmacological interventions to effectively inhibit the activity of both NF-κB and STAT3 transcription factors must be used in order to reduce glioma size and aggressiveness.

  10. EMMPRIN/CD147-encriched membrane vesicles released from malignant human testicular germ cells increase MMP production through tumor-stroma interaction.

    PubMed

    Milia-Argeiti, Eleni; Mourah, Samia; Vallée, Benoit; Huet, Eric; Karamanos, Nikos K; Theocharis, Achilleas D; Menashi, Suzanne

    2014-08-01

    Elevated levels of EMMPRIN/CD147 in cancer tissues have been correlated with tumor progression but the regulation of its expression is not yet understood. Here, the regulation of EMMPRIN expression was investigated in testicular germ cell tumor (TGCTs) cell lines. EMMPRIN expression in seminoma JKT-1 and embryonal carcinoma NT2/D1 cell lines was determined by Western blot, immunofluorescence and qRT-PCR. Membrane vesicles (MVs) secreted from these cells, treated or not with EMMPRIN siRNA, were isolated by differential centrifugations of their conditioned medium. MMP-2 was analyzed by zymography and qRT-PCR. The more aggressive embryonic carcinoma NT2/D1 cells expressed more EMMPRIN mRNA than the seminoma JKT-1 cells, but surprisingly contained less EMMPRIN protein, as determined by immunoblotting and immunostaining. The protein/mRNA discrepancy was not due to accelerated protein degradation in NT2/D1 cells, but by the secretion of EMMPRIN within MVs, as the vesicles released from NT2/D1 contained considerably more EMMPRIN than those released from JKT-1. EMMPRIN-containing MVs obtained from NT2/D1, but not from EMMPRIN-siRNA treated NT2/D1, increased MMP-2 production in fibroblasts to a greater extent than those from JKT-1 cells. The data presented show that the more aggressive embryonic carcinoma cells synthesize more EMMPRIN than seminoma cells, but which they preferentially target to secreted MVs, unlike seminoma cells which retain EMMPRIN within the cell membrane. This cellular event points to a mechanism by which EMMPRIN expressed by malignant testicular cells can exert its MMP inducing effect on distant cells within the tumor microenvironment to promote tumor invasion. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Intrapleural cisplatin for management of malignant pleural effusion in a patient with plasma cell leucaemia.

    PubMed

    Agarwal, Abhishek; Klair, Jagpal; Patolia, Setu; Meena, Nikhil K

    2015-06-29

    Plasma cell leucaemia (PCL) is a rare aggressive form of multiple myeloma. It occasionally involves the pleura, causing malignant pleural effusion (MPE). MPE presents a management dilemma for physicians, given the different treatment options available with varying efficacy and side effects. We report a case of a 64-year-old man with MPE due to PCL, successfully managed with intrapleural cisplatin and a tunnelled pleural catheter. We believe this to be the first report of management of PCL-associated MPE with intrapleural cisplatin. 2015 BMJ Publishing Group Ltd.

  12. Bone marrow-derived CD13+ cells sustain tumor progression: A potential non-malignant target for anticancer therapy.

    PubMed

    Dondossola, Eleonora; Corti, Angelo; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2014-01-01

    Non-malignant cells found within neoplastic lesions express alanyl (membrane) aminopeptidase (ANPEP, best known as CD13), and CD13-null mice exhibit limited tumor growth and angiogenesis. We have recently demonstrated that a subset of bone marrow-derived CD11b + CD13 + myeloid cells accumulate within neoplastic lesions in several murine models of transplantable cancer to promote angiogenesis. If these findings were confirmed in clinical settings, CD11b + CD13 + myeloid cells could become a non-malignant target for the development of novel anticancer regimens.

  13. Tailoring CD19xCD3-DART exposure enhances T-cells to eradication of B-cell neoplasms.

    PubMed

    Circosta, Paola; Elia, Angela Rita; Landra, Indira; Machiorlatti, Rodolfo; Todaro, Maria; Aliberti, Sabrina; Brusa, Davide; Deaglio, Silvia; Chiaretti, Sabina; Bruna, Riccardo; Gottardi, Daniela; Massaia, Massimo; Giacomo, Filomena Di; Guarini, Anna Rita; Foà, Robin; Kyriakides, Peter W; Bareja, Rohan; Elemento, Olivier; Chichili, Gurunadh R; Monteleone, Emanuele; Moore, Paul A; Johnson, Syd; Bonvini, Ezio; Cignetti, Alessandro; Inghirami, Giorgio

    2018-01-01

    Many patients with B-cell malignancies can be successfully treated, although tumor eradication is rarely achieved. T-cell-directed killing of tumor cells using engineered T-cells or bispecific antibodies is a promising approach for the treatment of hematologic malignancies. We investigated the efficacy of CD19xCD3 DART bispecific antibody in a broad panel of human primary B-cell malignancies. The CD19xCD3 DART identified 2 distinct subsets of patients, in which the neoplastic lymphocytes were eliminated with rapid or slow kinetics. Delayed responses were always overcome by a prolonged or repeated DART exposure. Both CD4 and CD8 effector cytotoxic cells were generated, and DART-mediated killing of CD4 + cells into cytotoxic effectors required the presence of CD8 + cells. Serial exposures to DART led to the exponential expansion of CD4 + and CD8 + cells and to the sequential ablation of neoplastic cells in absence of a PD-L1-mediated exhaustion. Lastly, patient-derived neoplastic B-cells (B-Acute Lymphoblast Leukemia and Diffuse Large B Cell Lymphoma) could be proficiently eradicated in a xenograft mouse model by DART-armed cytokine induced killer (CIK) cells. Collectively, patient tailored DART exposures can result in the effective elimination of CD19 positive leukemia and B-cell lymphoma and the association of bispecific antibodies with unmatched CIK cells represents an effective modality for the treatment of CD19 positive leukemia/lymphoma.

  14. Tumor cell-associated immune checkpoint molecules - Drivers of malignancy and stemness.

    PubMed

    Marcucci, Fabrizio; Rumio, Cristiano; Corti, Angelo

    2017-12-01

    Inhibitory or stimulatory immune checkpoint molecules are expressed on a sizeable fraction of tumor cells in different tumor types. It was thought that the main function of tumor cell-associated immune checkpoint molecules would be the modulation (down- or upregulation) of antitumor immune responses. In recent years, however, it has become clear that the expression of immune checkpoint molecules on tumor cells has important consequences on the biology of the tumor cells themselves. In particular, a causal relationship between the expression of these molecules and the acquisition of malignant traits has been demonstrated. Thus, immune checkpoint molecules have been shown to promote the epithelial-mesenchymal transition of tumor cells, the acquisition of tumor-initiating potential and resistance to apoptosis and antitumor drugs, as well as the propensity to disseminate and metastasize. Herein, we review this evidence, with a main focus on PD-L1, the most intensively investigated tumor cell-associated immune checkpoint molecule and for which most information is available. Then, we discuss more concisely other tumor cell-associated immune checkpoint molecules that have also been shown to induce the acquisition of malignant traits, such as PD-1, B7-H3, B7-H4, Tim-3, CD70, CD28, CD137, CD40 and CD47. Open questions in this field as well as some therapeutic approaches that can be derived from this knowledge, are also addressed. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. p14(ARF) nuclear overexpression in aggressive B-cell lymphomas is a sensor of malfunction of the common tumor suppressor pathways.

    PubMed

    Sánchez-Aguilera, Abel; Sánchez-Beato, Margarita; García, Juan F; Prieto, Ignacio; Pollan, Marina; Piris, Miguel A

    2002-02-15

    p14(ARF), the alternative product from the human INK4a/ARF locus, antagonizes Hdm2 and mediates p53 activation in response to oncogenic stimuli. An immunohistochemical study of p14(ARF) expression in 74 samples of aggressive B-cell lymphomas was performed, demonstrating an array of different abnormalities. A distinct nucleolar expression pattern was detected in nontumoral tissue and a subset of lymphomas (50/74). In contrast, a group of cases (8/74) showed absence of p14(ARF) expression, dependent either on promoter hypermethylation or gene loss. Additionally, 16 out of 74 cases displayed an abnormal nuclear p14(ARF) overexpression not confined to the nucleoli, as confirmed by confocal microscopy, and that was associated with high levels of p53 and Hdm2. A genetic study of these cases failed to show any alteration in the p14(ARF) gene, but revealed the presence of p53 mutations in over 50% of these cases. An increased growth fraction and a more aggressive clinical course, with a shortened survival time, also characterized the group of tumors with p14(ARF) nuclear overexpression. Moreover, this p14(ARF) expression pattern was more frequent in tumors displaying accumulated alterations in the p53, p16(INK4a), and p27(KIP1) tumor supressors. These observations, together with the consideration of the central role of p14(ARF) in cell cycle control, suggest that p14(ARF) abnormal nuclear overexpression is a sensor of malfunction of the major cell cycle regulatory pathways, and consequently a marker of a high tumor aggressivity.

  16. Differential expression of miR-34b and androgen receptor pathway regulate prostate cancer aggressiveness between African-Americans and Caucasians

    PubMed Central

    Kato, Taku; Yamamura, Soichiro; Tanaka, Yuichiro; Majid, Shahana; Saini, Sharanjot; Varahram, Shahryari; Kulkarni, Priyanka; Dasgupta, Pritha; Mitsui, Yozo; Sumida, Mitsuho; Tabatabai, Laura; Deng, Guoren; Kumar, Deepak; Dahiya, Rajvir

    2017-01-01

    African-Americans are diagnosed with more aggressive prostate cancers and have worse survival than Caucasians, however a comprehensive understanding of this health disparity remains unclear. To clarify the mechanisms leading to this disparity, we analyzed the potential involvement of miR-34b expression in African-Americans and Caucasians. miR-34b functions as a tumor suppressor and has a multi-functional role, through regulation of cell proliferation, cell cycle and apoptosis. We found that miR-34b expression is lower in human prostate cancer tissues from African-Americans compared to Caucasians. DNA hypermethylation of the miR-34b-3p promoter region showed significantly higher methylation in prostate cancer compared to normal samples. We then sequenced the promoter region of miR-34b-3p and found a chromosomal deletion in miR-34b in African-American prostate cancer cell line (MDA-PCA-2b) and not in Caucasian cell line (DU-145). We found that AR and ETV1 genes are differentially expressed in MDA-PCa-2b and DU-145 cells after overexpression of miR-34b. Direct interaction of miR-34b with the 3’ untranslated region of AR and ETV1 was validated by luciferase reporter assay. We found that miR-34b downregulation in African-Americans is inversely correlated with high AR levels that lead to increased cell proliferation. Overexpression of miR-34b in cell lines showed higher inhibition of cell proliferation, apoptosis and G1 arrest in the African-American cells (MDA-PCa-2b) compared to Caucasian cell line (DU-145). Taken together, our results show that differential expression of miR-34b and AR are associated with prostate cancer aggressiveness in African-Americans. PMID:28039468

  17. Bisphosphonates Significantly Increase the Activity of Doxorubicin or Vincristine Against Canine Malignant Histiocytosis Cells

    PubMed Central

    Hafeman, S.D.; Varland, D.; Dow, S.W.

    2011-01-01

    Canine malignant histiocytosis (MH) is an aggressive neoplasm of macrophages and dendritic cells. It carries a poor prognosis due to the development of widespread metastasis and poor sensitivity to chemotherapy. Thus, there is a large need for new treatments for MH. We hypothesized that bisphosphonates might be useful to increase the effectiveness of cytotoxic chemotherapy against MH. To address this question, we conducted in vitro screening studies using MH cell lines and a panel of 6 chemotherapy and 5 bisphosphonate drugs. The combination of clodronate with vincristine was found to elicit synergistic killing which was associated with a significant increase in cell cycle arrest. Second, zoledronate combined with doxorubicin also significantly increased cell killing. Zoledronate significantly increased the uptake of doxorubicin by MH cells. Based on these findings, we conclude that certain bisphosphonate drugs may increase the overall effectiveness of chemotherapy for MH in dogs. PMID:22236140

  18. Adoptive TReg Cell for Suppression of aGVHD After UCB HSCT for Heme Malignancies

    ClinicalTrials.gov

    2018-03-26

    Acute Lymphoblastic Leukemia; Burkitt Lymphoma; Natural Killer Cell Malignancies; Chronic Myelogenous Leukemia; Myelodysplastic Syndromes; Large-cell Lymphoma; Chronic Lymphocytic Leukemia; Small Lymphocytic Lymphoma; Marginal Zone B-Cell Lymphoma; Follicular Lymphoma; Lymphoplasmacytic Lymphoma; Mantle-Cell Lymphoma; Prolymphocytic Leukemia; Hodgkin Lymphoma; Multiple Myeloma; Acute Myelogenous Leukemia; Biphenotypic Leukemia; Undifferentiated Leukemia

  19. DNA methylation and histone acetylation regulate the expression of MGMT and chemosensitivity to temozolomide in malignant melanoma cell lines.

    PubMed

    Chen, Ya-Ping; Hou, Xiao-Yang; Yang, Chun-Sheng; Jiang, Xiao-Xiao; Yang, Ming; Xu, Xi-Feng; Feng, Shou-Xin; Liu, Yan-Qun; Jiang, Guan

    2016-08-01

    Malignant melanoma is an aggressive, highly lethal dermatological malignancy. Chemoresistance and rapid metastasis limit the curative effect of multimodal therapies like surgery or chemotherapy. The suicide enzyme O6-methylguanine-DNA methyltransferase (MGMT) removes adducts from the O6-position of guanine to repair DNA damage. High MGMT expression is associated with resistance to therapy in melanoma. However, it is unknown if MGMT is regulated by DNA methylation or histone acetylation in melanoma. We examined the effects of the DNA methylation inhibitor 5-Aza-2'-deoxycytidine and histone deacetylase inhibitor Trichostatin A alone or in combination on MGMT expression and promoter methylation and histone acetylation in A375, MV3, and M14 melanoma cells. This study demonstrates that MGMT expression, CpG island methylation, and histone acetylation vary between melanoma cell lines. Combined treatment with 5-Aza-2'-deoxycytidine and Trichostatin A led to reexpression of MGMT, indicating that DNA methylation and histone deacetylation are associated with silencing of MGMT in melanoma. This study provides information on the role of epigenetic modifications in malignant melanoma that may enable the development of new strategies for treating malignant melanoma.

  20. [Metastasis revealing malignant peritoneum mesothelioma: About the difficulty to identify the primary tumors].

    PubMed

    Bretagne, Charles-Henri; Petitjean, Alain; Felix, Sophie; Bedgedjian, Isabelle; Algros, Marie-Paule; Delabrousse, Eric; Valmary-Degano, Séverine

    2016-04-01

    Peritoneal malignant mesothelioma is a rare and extremely aggressive tumor that is sometimes difficult to diagnose. We report two cases of metastatic malignant peritoneal mesothelioma. In one case, malignant metastatic cells were identified in cervical lymph nodes while in the other case, the cells were found in the liver. In both cases, metastases were identified before discovering the primary tumor. This led to the misdiagnosis of carcinoma of unknown origin. Nevertheless, the histological and immuno-histochemical patterns were typical of malignant mesothelioma. Regarding metastasis of unknown origin, a differentiation of epithelioid peritoneal malignant mesothelioma and adenocarcinoma proved to be difficult. Therefore, we discuss the diagnostic usefulness of immuno-histochemical mesothelioma markers. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  1. Ewing's Sarcoma as a Second Malignancy in Long-Term Survivors of Childhood Hematologic Malignancies.

    PubMed

    Wolpert, Fabian; Grotzer, Michael A; Niggli, Felix; Zimmermann, Dieter; Rushing, Elisabeth; Bode-Lesniewska, Beata

    2016-01-01

    Modern multimodal treatment has significantly increased survival for patients affected by hematologic malignancies, especially in childhood. Following remission, however, the risk of developing a further malignancy is an important issue. The long-term estimated risk of developing a sarcoma as a secondary malignancy is increased severalfold in comparison to the general population. Ewing's sarcoma family encompasses a group of highly aggressive, undifferentiated, intra- and extraosseous, mesenchymal tumors, caused by several types of translocations usually involving the EWSR1 gene. Translocation associated sarcomas, such as Ewing sarcoma, are only rarely encountered as therapy associated secondary tumors. We describe the clinical course and management of three patients from a single institution with Ewing's sarcoma that followed successfully treated lymphoblastic T-cell leukemia or non-Hodgkin lymphoma. The literature on secondary Ewing's sarcoma is summarized and possible pathogenic mechanisms are critically discussed.

  2. Prevention and management of hepatitis B virus reactivation in patients with hematological malignancies treated with anticancer therapy

    PubMed Central

    Law, Man Fai; Ho, Rita; Cheung, Carmen K M; Tam, Lydia H P; Ma, Karen; So, Kent C Y; Ip, Bonaventure; So, Jacqueline; Lai, Jennifer; Ng, Joyce; Tam, Tommy H C

    2016-01-01

    Hepatitis due to hepatitis B virus (HBV) reactivation can be severe and potentially fatal, but is preventable. HBV reactivation is most commonly reported in patients receiving cancer chemotherapy, especially rituximab-containing therapy for hematological malignancies and those receiving stem cell transplantation. All patients with hematological malignancies receiving anticancer therapy should be screened for active or resolved HBV infection by blood tests for hepatitis B surface antigen (HBsAg) and antibody to hepatitis B core antigen (anti-HBc). Patients found to be positive for HBsAg should be given prophylactic antiviral therapy to prevent HBV reactivation. For patients with resolved HBV infection, no standard strategy has yet been established to prevent HBV reactivation. There are usually two options. One is pre-emptive therapy guided by serial HBV DNA monitoring, whereby antiviral therapy is given as soon as HBV DNA becomes detectable. However, there is little evidence regarding the optimal interval and period of monitoring. An alternative approach is prophylactic antiviral therapy, especially for patients receiving high-risk therapy such as rituximab, newer generation of anti-CD20 monoclonal antibody, obinutuzumab or hematopoietic stem cell transplantation. This strategy may effectively prevent HBV reactivation and avoid the inconvenience of repeated HBV DNA monitoring. Entecavir or tenofovir are preferred over lamivudine as prophylactic therapy. Although there is no well-defined guideline on the optimal duration of prophylactic therapy, there is growing evidence to recommend continuing prophylactic antiviral therapy for at least 12 mo after cessation of chemotherapy, and even longer for those who receive rituximab or who had high serum HBV DNA levels before the start of immunosuppressive therapy. Many novel agents have recently become available for the treatment of hematological malignancies, and these agents may be associated with HBV reactivation. Although

  3. Targeting eradication of malignant cells derived from human bone marrow mesenchymal stromal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yingbin; School of Life Science, Southwest University, Chongqing 400715; Cai, Shaoxi, E-mail: sxcai@cqu.edu.cn

    2010-12-10

    Human bone marrow mesenchymal stromal cells (hBMSC) have been shown to participate in malignant transformation. However, hampered by the low frequency of malignant transformation of hBMSC, we do not yet know how to prevent malignant transformation of implanted hBMSC. In this study, in order to establish a model for the eradication of hBMSC-derived malignant cells, a gene fusion consisting of a human telomerase (hTERT) promoter modified with both c-Myc and myeloid zinc finger protein2 (MZF-2) binding elements and followed by the E. coli cytosine deaminase (CD) and luciferase genes was stably transferred into hBMSC via lentiviral transduction; n-phosphonacelyl-L-aspartic acid (PALA)more » selection was used to generate malignant cell colonies derived from transduced hBMSC after treatment with the carcinogenic reagent BPDE. Cells that were amplified after PALA selection were used for transplantation and 5-FC pro-drug cytotoxicity tests. The results showed that PALA-resistant malignant cells could be generated from hBMSC co-induced with lentiviral transduction and treatment with Benzo(a)pyrene Diol Epoxide (BPDE); the modification of c-Myc and MZF-2 binding elements could remarkably enhance the transcriptional activities of the hTERT promoter in malignant cells, whereas transcriptional activity was depressed in normal hBMSC; malignant cells stably expressing CD under the control of the modified hTERT promoter could be eliminated by 5-FC administration. This study has provided a method for targeted eradication of malignant cells derived from hBMSC.« less

  4. Impact of salvage treatment modalities in patients with positive FDG-PET/CT after R-CHOP chemotherapy for aggressive B-cell non-Hodgkin lymphoma.

    PubMed

    Chin, Vicky; Fulham, Michael; Hertzberg, Mark; Jackson, Michael; Lindeman, Robert; Brighton, Timothy; Kidson-Gerber, Giselle; Wegner, Eva A; Cheung, Carol; MacCallum, Susan; Williams, Janet; Thompson, Stephen R

    2018-06-01

    To compare outcomes of different salvage treatment modalities in patients with aggressive B-cell non-Hodgkin lymphoma (NHL) who remain FDG-PET positive after R-CHOP chemotherapy. Existing data on these patients with FDG-PET primary refractory disease are limited. Patients with diffuse large B-cell lymphoma or grade 3 follicular lymphoma were retrospectively reviewed from the Prince of Wales Hospital databases. Eligibility criteria were: age≥18 years, treated with R-CHOP, with positive post-chemotherapy FDG-PET. Salvage treatment modalities were: radical radiotherapy (RT, dose≥30 Gy), high dose chemotherapy and autologous stem cell transplant (ASCT), or non-radical management. Survival was calculated from date of post-chemotherapy FDG-PET to last follow-up. Twenty-six patients from 2003-2015 met the inclusion criteria. Median age was 60 (range 19-84). Most had adverse baseline features: 21 (81%) stage III-IV, 24 (92%) bulky disease and nine (35%) skeletal involvement. Characteristics of PET-positivity post-chemotherapy were single site in 16 (62%), sites of prior bulk in 24 of 24, skeletal sites in five of nine, and able to be encompassed by RT in 21 (81%). Salvage treatment was: radical RT in 17 (65%), ASCT in four (15%) and non-radical in five (20%). Median follow-up of surviving patients was 31 months. Kaplan-Meier estimates of 3-year PFS and OS were 41% and 52%, respectively. By salvage modality, 3-year PFS was 51% for RT, 25% for ASCT and 20% for non-radical treatment, (P = 0.453); 3-year OS was respectively 65%, 25% and 40% (P = 0.173). Patients with FDG-PET positive disease after R-CHOP for aggressive B-cell NHL are salvageable with radiotherapy. © 2018 The Royal Australian and New Zealand College of Radiologists.

  5. Downregulation of β-arrestin 1 suppresses glioblastoma cell malignant progression vis inhibition of Src signaling.

    PubMed

    Lan, Tian; Wang, Haoran; Zhang, Zhihua; Zhang, Mingshan; Qu, Yanming; Zhao, Zitong; Fan, Xinyi; Zhan, Qimin; Song, Yongmei; Yu, Chunjiang

    2017-08-01

    Glioblastoma multiforme (GBM) is one of the most common brain malignancies worldwide and is typically associated with a dismal prognosis, yet the mechanisms underlying its aggressiveness remain unclear. Here, we revealed that β-arrestin 1 was overexpressed in GBM and contributed to poorer outcome. Knockdown of β-arrestin 1 suppressed the proliferation, invasiveness and glycolysis of GBM cells, and also enhanced temozolomide efficacy. Further, we discovered that knockdown of β-arrestin 1 decreased the activity of Src, and suppression of Src signaling was critically involved in β-arrestin 1 silencing-mediated suppression of GBM malignancies. Finally, we investigated the effect of β-arrestin 1 knockdown on the tumor growth and survival of xenograft models, and found that shβ-arrestin 1 apparently inhibited GBM growth in vivo and resulted in better survival of mice. Taken together, our findings suggest that knockdown of β-arrestin 1 can suppress GBM cell proliferation, invasion and glycolysis by inhibiting Src signaling. Thus, targeting β-arrestin 1 may be a potential therapeutic strategy for GBM treatment. Copyright © 2017. Published by Elsevier Inc.

  6. Inhibition of ZEB1 by miR-200 characterizes Helicobacter pylori-positive gastric diffuse large B-cell lymphoma with a less aggressive behavior.

    PubMed

    Huang, Wei-Ting; Kuo, Sung-Hsin; Cheng, Ann-Lii; Lin, Chung-Wu

    2014-08-01

    Primary gastric diffuse large B-cell lymphomas may or may not have a concurrent component of mucosa-associated lymphoid tissue lymphoma. Diffuse large B-cell lymphoma/mucosa-associated lymphoid tissue lymphomas are often associated with Helicobacter pylori (H. pylori) infection, suggesting that the large cells are transformed from mucosa-associated lymphoid tissue lymphomas. In contrast, only limited data are available on the clinical and molecular features of pure gastric diffuse large B-cell lymphomas. In 102 pure gastric diffuse large B-cell lymphomas, we found H. pylori infection in 53% of the cases. H. pylori-positive gastric diffuse large B-cell lymphomas were more likely to present at an earlier stage (73% vs 52% at stage I/II, P=0.03), to achieve complete remission (75% vs 43%, P=0.001), and had a better 5-year disease-free survival rate (73% vs 29%, P<0.001) than H. pylori-negative gastric diffuse large B-cell lymphomas. Through genome-wide expression profiles of both miRNAs and mRNAs in nine H. pylori-positive and nine H. pylori-negative gastric diffuse large B-cell lymphomas, we identified inhibition of ZEB1 (zinc-finger E-box-binding homeobox 1) by miR-200 in H. pylori-positive gastric diffuse large B-cell lymphomas. ZEB1, a transcription factor for marginal zone B cells, can suppress BCL6, the master transcription factor for germinal center B cells. In 30 H. pylori-positive and 30 H. pylori-negative gastric diffuse large B-cell lymphomas, we confirmed that H. pylori-positive gastric diffuse large B-cell lymphomas had higher levels of miR-200 by qRT-PCR, and lower levels of ZEB1 and higher levels of BCL6 using immunohistochemistry. As BCL6 is a known predictor of a better prognosis in gastric diffuse large B-cell lymphomas, our data demonstrate that inhibition of ZEB1 by miR-200, with secondary increase in BCL6, is a molecular event that characterizes H. pylori-positive gastric diffuse large B-cell lymphomas with a less aggressive behavior.

  7. Spectrally resolved fluorescence lifetime imaging to investigate cell metabolism in malignant and nonmalignant oral mucosa cells

    NASA Astrophysics Data System (ADS)

    Rück, Angelika; Hauser, Carmen; Mosch, Simone; Kalinina, Sviatlana

    2014-09-01

    Fluorescence-guided diagnosis of tumor tissue is in many cases insufficient, because false positive results interfere with the outcome. Improvement through observation of cell metabolism might offer the solution, but needs a detailed understanding of the origin of autofluorescence. With respect to this, spectrally resolved multiphoton fluorescence lifetime imaging was investigated to analyze cell metabolism in metabolic phenotypes of malignant and nonmalignant oral mucosa cells. The time-resolved fluorescence characteristics of NADH were measured in cells of different origins. The fluorescence lifetime of bound and free NADH was calculated from biexponential fitting of the fluorescence intensity decay within different spectral regions. The mean lifetime was increased from nonmalignant oral mucosa cells to different squamous carcinoma cells, where the most aggressive cells showed the longest lifetime. In correlation with reports in the literature, the total amount of NADH seemed to be less for the carcinoma cells and the ratio of free/bound NADH was decreased from nonmalignant to squamous carcinoma cells. Moreover for squamous carcinoma cells a high concentration of bound NADH was found in cytoplasmic organelles (mainly mitochondria). This all together indicates that oxidative phosphorylation and a high redox potential play an important role in the energy metabolism of these cells.

  8. Stop and go: hematopoietic cell transplantation in the era of chimeric antigen receptor T cells and checkpoint inhibitors.

    PubMed

    Ghosh, Arnab; Politikos, Ioannis; Perales, Miguel-Angel

    2017-11-01

    For several decades, hematopoietic cell transplantation (HCT) has been considered the standard curative therapy for many patients with hematological malignancies. In addition to the cytotoxic effects of the chemotherapy and radiation used in the conditioning regimen, the benefits of HCT are derived from a reset of the immune system and harnessing the ability of donor T cells to eliminate malignant cells. With the dawn of the era of immunotherapies in the form of checkpoint inhibitors and chimeric antigen receptor (CAR) T cells, the role of HCT has evolved. Immunotherapy with checkpoint inhibitors is increasingly being used for relapsed Hodgkin and non-Hodgkin lymphoma after autologous HCT. Checkpoint inhibitors are also being tested after allogeneic HCT with observable benefits in treating hematological malignancies, but with a potential risk of increased graft versus host disease and transplant-related mortality. Immunotherapy with Cluster of differentiation 19 CAR T cells are powerful options with aggressive B-cell malignancies both for therapy and as induction leading to allogeneic HCT. Although immunotherapies with checkpoint inhibition and CAR T cells are increasingly being used to treat hematological malignancies, HCT remains a standard of care for most of the diseases with the best chance of cure. Combination of these therapies with HCT has the potential to more effectively treat hematological malignancies.

  9. Bisphosphonates significantly increase the activity of doxorubicin or vincristine against canine malignant histiocytosis cells.

    PubMed

    Hafeman, S D; Varland, D; Dow, S W

    2012-03-01

    Canine malignant histiocytosis (MH) is an aggressive neoplasm of macrophages and dendritic cells. It carries a poor prognosis because of the development of widespread metastasis and poor sensitivity to chemotherapy. Thus, there is a large need for new treatments for MH. We hypothesized that bisphosphonates might be useful to increase the effectiveness of cytotoxic chemotherapy against MH. To address this question, we conducted in vitro screening studies using MH cell lines and a panel of 6 chemotherapy and 5 bisphosphonate drugs. The combination of clodronate with vincristine was found to elicit synergistic killing which was associated with a significant increase in cell cycle arrest. Second, zoledronate combined with doxorubicin also significantly increased cell killing. Zoledronate significantly increased the uptake of doxorubicin by MH cells. On the basis of these findings, we conclude that certain bisphosphonate drugs may increase the overall effectiveness of chemotherapy for MH in dogs. © 2011 Blackwell Publishing Ltd.

  10. Synchronous Pulmonary Malignancies: Atypical Presentation of Mantle Cell Lymphoma Masking a Lung Malignancy.

    PubMed

    Masha, Luke; Zinchuk, Andrey; Boosalis, Valia

    2015-09-07

    We present a case of a pleural space malignancy masked by an atypical presentation of mantle cell lymphoma. Our patient presented with a large pleural effusion and right sided pleural studding, initially attributed to a new diagnosis of mantle cell lymphoma. Rare atypical epithelial cells were also seen amongst the clonal population of lymphocytes. The patient lacked systemic manifestations of mantle cell lymphoma and did not improve with chemotherapy. A pleural biopsy ultimately revealed the presence of an undifferentiated carcinoma, favoring a lung primary. A discussion of synchronous pleural space malignancies involving lymphomas is given.

  11. Trastuzumab-Resistant Luminal B Breast Cancer Cells Show Basal-Like Cell Growth Features Through NF-κB-Activation

    PubMed Central

    Kanzaki, Hirotaka; Mukhopadhya, Nishit K.; Cui, Xiaojiang; Ramanujan, V. Krishnan

    2016-01-01

    A major clinical problem in the treatment of breast cancer is mortality due to metastasis. Understanding the molecular mechanisms associated with metastasis should aid in designing new therapeutic approaches for breast cancer. Trastuzumab is the main therapeutic option for HER2+ breast cancer patients; however, the molecular basis for trastuzumab resistance (TZR) and subsequent metastasis is not known. Earlier, we found expression of basal-like molecular markers in TZR tissues from patients with invasive breast cancer.(1) The basal-like phenotype is a particularly aggressive form of breast cancer. This observation suggests that TZR might contribute to an aggressive phenotype. To understand if resistance to TZR can lead to basal-like phenotype, we generated a trastuzumab-resistant human breast cancer cell line (BT-474-R) that maintained human epidermal growth factor receptor 2 (HER2) overexpression and HER2 mediated signaling. Analysis showed that nuclear factor-kappa B (NF-κB) was constitutively activated in the BT-474-R cells, a feature similar to the basal-like tumor phenotype. Pharmacologic inhibition of NF-κB improved sensitivity of BT-474-R cells to trastuzumab. Interestingly, activation of HER2 independent NF-κB is not shown in luminal B breast cancer cells. Our study suggests that by activating the NF-κB pathway, luminal B cells may acquire a HER2+ basal-like phenotype in which NF-κB is constitutively activated; this notion is consistent with the recently proposed “progression through grade” or “evolution of resistance” hypothesis. Furthermore, we identified IKK-α/IKK-β and nuclear accumulation of RelA/p65 as the major determinants in the resistant cells. Thus our study additionally suggests that the nuclear accumulation of p65 may be a useful marker for identifying metastasis-initiating tumor cells and targeting RelA/p65 may limit metastasis of breast and other cancers associated with NF-κB activation. PMID:26871511

  12. ErbB-targeted CAR T-cell immunotherapy of cancer.

    PubMed

    Whilding, Lynsey M; Maher, John

    2015-01-01

    Chimeric antigen receptor (CAR) based immunotherapy has been under development for the last 25 years and is now a promising new treatment modality in the field of cancer immunotherapy. The approach involves genetically engineering T cells to target malignant cells through expression of a bespoke fusion receptor that couples an HLA-independent antigen recognition domain to one or more intracellular T-cell activating modules. Multiple clinical trials are now underway in several centers to investigate CAR T-cell immunotherapy of diverse hematologic and solid tumor types. The most successful results have been achieved in the treatment of patients with B-cell malignancies, in whom several complete and durable responses have been achieved. This review focuses on the preclinical and clinical development of CAR T-cell immunotherapy of solid cancers, targeted against members of the ErbB family.

  13. LIM-domain protein AJUBA suppresses malignant mesothelioma cell proliferation via Hippo signaling cascade.

    PubMed

    Tanaka, I; Osada, H; Fujii, M; Fukatsu, A; Hida, T; Horio, Y; Kondo, Y; Sato, A; Hasegawa, Y; Tsujimura, T; Sekido, Y

    2015-01-02

    Malignant mesothelioma (MM) is one of the most aggressive neoplasms usually associated with asbestos exposure and is highly refractory to current therapeutic modalities. MMs show frequent activation of a transcriptional coactivator Yes-associated protein (YAP), which is attributed to the neurofibromatosis type 2 (NF2)-Hippo pathway dysfunction, leading to deregulated cell proliferation and acquisition of a malignant phenotype. However, the whole mechanism of disordered YAP activation in MMs has not yet been well clarified. In the present study, we investigated various components of the NF2-Hippo pathway, and eventually found that MM cells frequently showed downregulation of LIM-domain protein AJUBA, a binding partner of large tumor suppressor type 2 (LATS2), which is one of the last-step kinases of the NF2-Hippo pathway. Although loss of AJUBA expression was independent of the alteration status of other Hippo pathway components, MM cell lines with AJUBA inactivation showed a more dephosphorylated (activated) level of YAP. Immunohistochemical analysis showed frequent downregulation of AJUBA in primary MMs, which was associated with YAP constitutive activation. We found that AJUBA transduction into MM cells significantly suppressed promoter activities of YAP-target genes, and the suppression of YAP activity by AJUBA was remarkably canceled by knockdown of LATS2. In connection with these results, transduction of AJUBA-expressing lentivirus significantly inhibited the proliferation and anchorage-independent growth of the MM cells that harbored ordinary LATS family expression. Taken together, our findings indicate that AJUBA negatively regulates YAP activity through the LATS family, and inactivation of AJUBA is a novel key mechanism in MM cell proliferation.

  14. Fully-human Heavy-chain-only Anti-B-cell Maturation Antigen (BCMA) Chimeric Antigen Receptors (CARs) | NCI Technology Transfer Center | TTC

    Cancer.gov

    Chimeric Antigen Receptor T cell (CAR-T) therapies that specifically target B-cell maturation antigen (BCMA) are strong therapeutic candidates for patients with plasma cell malignancy diseases such as, multiple myeloma (MM), as well as for patients with Hodgkin’s lymphoma. BCMA is a cell surface protein preferentially expressed on a subset of B cells and mature plasma cells, but not on other cells in the body. The limited expression of BCMA on B and plasma cells makes BCMA an attractive therapeutic target for B cell and plasma cell malignancy diseases. The 12 anti-BCMA CARs described are fully human CARS and have the potential to treat patients with various plasma cell and B cell malignancy diseases.

  15. Subcutaneous Rituximab for the Treatment of B-Cell Hematologic Malignancies: A Review of the Scientific Rationale and Clinical Development.

    PubMed

    Davies, Andrew; Berge, Claude; Boehnke, Axel; Dadabhoy, Anjum; Lugtenburg, Pieternella; Rule, Simon; Rummel, Mathias; McIntyre, Christine; Smith, Rodney; Badoux, Xavier

    2017-10-01

    Rituximab (MabThera ® /Rituxan ® ), a chimeric murine/human monoclonal antibody that binds specifically to the transmembrane antigen CD20, was the first therapeutic antibody to enter clinical practice for the treatment of cancer. As monotherapy and in combination with chemotherapy, rituximab has been shown to prolong progression-free survival and, in some indications overall survival, in patients with various B-cell malignancies, while having a well-established and manageable safety profile and a wide therapeutic window. As a result, rituximab is considered to have revolutionized treatment practices for patients with B-cell malignancies. A subcutaneous (SC) formulation of rituximab has been developed, comprising the same monoclonal antibody as the originally marketed formulation [rituximab concentrate for solution for intravenous (IV) infusion], and has undergone a detailed, sequential clinical development program. This program demonstrated that, at fixed doses, rituximab SC achieves non-inferior serum trough concentrations in patients with non-Hodgkin lymphoma and chronic lymphocytic leukemia, with comparable efficacy and safety relative to the IV formulation. The added benefit of rituximab SC was demonstrated in dedicated studies showing that rituximab SC allows for simplified and shortened drug preparation and administration times resulting in a reduced treatment burden for patients as well as improved resource utilization (efficiency) at the treatment facility. The improved efficiency of delivering rituximab's benefit to patients may broaden patient access to rituximab therapy in areas with low levels of healthcare resources, including IV-chair capacity constraints. This article is a companion paper to G. Salles, et al., which is also published in this issue. F. Hoffmann-La Roche Ltd.

  16. Inhibition of the Hedgehog Signaling Pathway Depresses the Cigarette Smoke-Induced Malignant Transformation of 16HBE Cells on a Microfluidic Chip.

    PubMed

    Qin, Yong-Xin; Yang, Zhi-Hui; Du, Xiao-Hui; Zhao, Hui; Liu, Yuan-Bin; Guo, Zhe; Wang, Qi

    2018-05-20

    The hedgehog signaling system (HHS) plays an important role in the regulation of cell proliferation and differentiation during the embryonic phases. However, little is known about the involvement of HHS in the malignant transformation of cells. This study aimed to detect the role of HHS in the malignant transformation of human bronchial epithelial (16HBE) cells. In this study, two microfluidic chips were designed to investigate cigarette smoke extract (CSE)-induced malignant transformation of cells. Chip A contained a concentration gradient generator, while chip B had four cell chambers with a central channel. The 16HBE cells cultured in chip A were used to determine the optimal concentration of CSE for inducing malignant transformation. The 16HBE cells in chip B were cultured with 12.25% CSE (Group A), 12.25% CSE + 5 μmol/L cyclopamine (Group B), or normal complete medium as control for 8 months (Group C), to establish the in vitro lung inflammatory-cancer transformation model. The transformed cells were inoculated into 20 nude mice as cells alone (Group 1) or cells with cyclopamine (Group 2) for tumorigenesis testing. Expression of HHS proteins was detected by Western blot. Data were expressed as mean ± standard deviation. The t-test was used for paired samples, and the difference among groups was analyzed using a one-way analysis of variance. The optimal concentration of CSE was 12.25%. Expression of HHS proteins increased during the process of malignant transformation (Group B vs. Group A, F = 7.65, P < 0.05). After CSE exposure for 8 months, there were significant changes in cellular morphology, which allowed the transformed cells to grow into tumors in 40 days after being inoculated into nude mice. Cyclopamine could effectively depress the expression of HHS proteins (Group C vs. Group B, F = 6.47, P < 0.05) and prevent tumor growth in nude mice (Group 2 vs. Group 1, t = 31.59, P < 0.01). The activity of HHS is upregulated during the CSE-induced malignant

  17. Synchronous Pulmonary Malignancies: Atypical Presentation of Mantle Cell Lymphoma Masking a Lung Malignancy

    PubMed Central

    Masha, Luke; Zinchuk, Andrey; Boosalis, Valia

    2015-01-01

    We present a case of a pleural space malignancy masked by an atypical presentation of mantle cell lymphoma. Our patient presented with a large pleural effusion and right sided pleural studding, initially attributed to a new diagnosis of mantle cell lymphoma. Rare atypical epithelial cells were also seen amongst the clonal population of lymphocytes. The patient lacked systemic manifestations of mantle cell lymphoma and did not improve with chemotherapy. A pleural biopsy ultimately revealed the presence of an undifferentiated carcinoma, favoring a lung primary. A discussion of synchronous pleural space malignancies involving lymphomas is given. PMID:26500732

  18. Nonepithelial tumors of the nasal cavity, paranasal sinuses and nasopharynx. A clinicopathologic study. XII: Schwann cell tumors (neurilemoma, neurofibroma, malignant schwannoma).

    PubMed

    Perzin, K H; Panyu, H; Wechter, S

    1982-11-15

    Twelve Schwann cell tumors (two neurilemomas, six neurofibromas, and four malignant schwannomas), arising in the nasal cavity, paranasal sinuses or nasopharynx, are described. Schwann cell neoplasms only rarely develop in this area. Clinically, these tumors lead to nonspecific symptoms including nasal obstruction epistaxis, facial pain and swellling, and proptosis, similar to those produced by other neoplasms that involve this area. On radiologic examination, a mass lesion may be identified. Benign Schwann cell tumors may lead to bone erosion, which thus is not necessarily a sign of malignancy. The correct diagnosis of Schwann cell tumor is usually made only when histologic sections are studied. The histologic differentiation between Schwann cell neoplasms and myxomas, fibroblastic tumors, fibrous histiocytomas and fibro-osseous lesions is discussed. Treatment depends upon the type of tumor. Neurilemomas, which usually are encapsulated neoplasms, can be treated by local excision. Neurofibromas may infiltrate extensively, and thus may require an extensive surgical resection; however, functional and cosmetic considerations should be taken into account because neurofibromas, even if incompletely excised, may recur clinically only after many years. Malignant schwannomas tend to be aggressive neoplasms, but because of the anatomy of the area, radical resections leading to complete removal of the tumor cannot always be carried out.

  19. Malignant perivascular epithelioid cell tumor of the retroperitoneum.

    PubMed

    Wu, Ji-Hua; Zhou, Jin-Lian; Cui, Yan; Jing, Qing-Ping; Shang, Le; Zhang, Jian-Zhong

    2013-01-01

    Perivascular epithelioid cell tumors (PEComas) are a rare type of mesenchymal neoplasms characterized by a proliferation of perivascular cells with an epithelioid phenotype and expression of myo-melanocytic markers. The majority of PEComas seem to be benign and usually their prognosis is good. Malignant cases are extremely rare, exhibiting a malignant course with local recurrences and distant metastases. We herein report a case of a malignant PEComa arising in the retroperitoneum. The patient was a 55-year-old woman experiencing abdominal discomfort for approximately one month. Ultrasound and computer tomography (CT) scans of the abdomen revealed a solid mass arising from the retroperitoneum. Microscopically, the tumor was composed of epithelioid cells mixed with spindled cells. The nucleus had significant atypia, and the mitoses were obvious. The focal intravascular tumor embolus was visible. Immunohistochemically, the epithelioid tumor cells were positive for HMB45 and Melan-A, and the spindled tumor celLs were positive for SMA and desmin. Seven months after a surgical resection, an ultrasound revealed liver metastases. In conclusion, the malignant PEComas of the retroperitoneum is a very rare neoplasm with unique morphological and immunohistochemical characteristics. It should be differentiated from other epithelioid cell tumors of the retroperitoneum.

  20. Double-hit lymphomas constitute a highly aggressive subgroup in diffuse large B-cell lymphomas in the era of rituximab.

    PubMed

    Kobayashi, Tsutomu; Tsutsumi, Yasuhiko; Sakamoto, Natsumi; Nagoshi, Hisao; Yamamoto-Sugitani, Mio; Shimura, Yuji; Mizutani, Shinsuke; Matsumoto, Yosuke; Nishida, Kazuhiro; Horiike, Shigeo; Asano, Naoko; Nakamura, Shigeo; Kuroda, Junya; Taniwaki, Masafumi

    2012-11-01

    The incorporation of rituximab in immunochemotherapy has improved treatment outcomes for diffuse large B-cell lymphoma, but the prognosis for some diffuse large B-cell lymphomas remains dismal. Identification of adverse prognostic subgroups is essential for the choice of appropriate therapeutic strategy. We retrospectively investigated the impact of so-called 'double-hit' cytogenetic abnormalities, i.e. cytogenetic abnormalities involving c-MYC co-existing with other poor prognostic cytogenetic abnormalities involving BCL2, BCL6 or BACH2, on treatment outcomes for 93 consecutive diffuse large B-cell lymphoma patients. According to the revised international prognostic index, no patients were cytogenetically diagnosed with double-hit lymphomas in the 'very good' risk group or in the 'good' risk group, while 5 of 33 patients had double-hit lymphomas in the 'poor' risk group. All the double-hit lymphoma patients possessed both nodal and extranodal involvement. The overall complete response rate was 89.3%, overall survival 87.1% and progression-free survival 75.8% over 2 years (median observation period: 644 days). The complete response rates were 93.2% for the non-double-hit lymphoma patients and 40.0% for the double-hit lymphoma patients. Significantly longer progression-free survival and overall survival were observed for the 'very good' and the 'good' risk patients than for the 'poor' risk patients. Moreover, the progression-free survival of double-hit lymphoma was significantly shorter than that of the non-double-hit lymphoma 'poor' risk patients (P = 0.016). In addition, the overall survival of the double-hit lymphoma patients also tended to be shorter than that of the non-double-hit lymphoma 'poor' risk group. The diagnosis of double-hit lymphoma can help discriminate a subgroup of highly aggressive diffuse large B-cell lymphomas and indicate the need for the development of novel therapeutic strategies for double-hit lymphoma.

  1. KPNA7, a nuclear transport receptor, promotes malignant properties of pancreatic cancer cells in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurila, Eeva; Vuorinen, Elisa; Fimlab Laboratories, Biokatu 4, 33520 Tampere

    2014-03-10

    Pancreatic cancer is an aggressive malignancy and one of the leading causes of cancer deaths. The high mortality rate is mostly due to the lack of appropriate tools for early detection of the disease and a shortage of effective therapies. We have previously shown that karyopherin alpha 7 (KPNA7), the newest member of the alpha karyopherin family of nuclear import receptors, is frequently amplified and overexpressed in pancreatic cancer. Here, we report that KPNA7 expression is absent in practically all normal human adult tissues but elevated in several pancreatic cancer cell lines. Inhibition of KPNA7 expression in AsPC-1 and Hs700Tmore » pancreatic cancer cells led to a reduction in cell growth and decreased anchorage independent growth, as well as increased autophagy. The cell growth effects were accompanied by an induction of the cell cycle regulator p21 and a G1 arrest of the cell cycle. Interestingly, the p21 induction was caused by increased mRNA synthesis and not defective nuclear transport. These data strongly demonstrate that KPNA7 silencing inhibits the malignant properties of pancreatic cancer cells in vitro and thereby provide the first evidence on the functional role for KPNA7 in human cancer. - Highlights: • KPNA7 expression is elevated in several pancreatic cancer cell lines. • KPNA7 silencing in high expressing cancer cells leads to growth inhibition. • The cell growth reduction is associated with p21 induction and G1 arrest. • KPNA7 silencing is also accompanied with increased autophagy.« less

  2. The Role of Cyclin D1 in the Chemoresistance of Mantle Cell Lymphoma

    DTIC Science & Technology

    2017-09-01

    Genetic and molecular pathogenesis of mantle cell lymphoma: perspectives for new targeted therapeutics. Nat Rev Cancer. 2007; 7:750–762. 16. Perez...understand the molecular mechanism underlying the resistant nature of mantle cell lymphoma (MCL), an aggressive and incurable B-cell malignancy that is...sufficient and additional genetic lesions are required for MCL development. For example, the Emu-CCND1 transgenic mouse, which mimics the t(11;14

  3. Glycovariant anti-CD37 monospecific protein therapeutic exhibits enhanced effector cell-mediated cytotoxicity against chronic and acute B cell malignancies

    PubMed Central

    Rafiq, Sarwish; Siadak, Anthony; Butchar, Jonathan P.; Cheney, Carolyn; Lozanski, Gerard; Jacob, Naduparambil K.; Lapalombella, Rosa; McGourty, Jackie; Moledor, Meghan; Lowe, Richard; Setter, Ben; Jones, Jeffrey; Flynn, Joseph M.; Andritsos, Leslie; Devine, Steven; Mo, Xiaokui; Jarjoura, David; Tridandapani, Susheela; Algate, Paul; Byrd, John C.; Muthusamy, Natarajan

    2013-01-01

    TRU-016 is a SMIPTM (monospecific protein therapeutic) molecule against the tetraspanin transmembrane family protein CD37 that is currently in Phase 2 trials in Chronic Lymphocytic Leukemia (CLL) and Non-Hodgkin Lymphoma (NHL). In an attempt to enhance the ADCC function of SMIP-016, the chimeric version of TRU-016, SMIP-016GV was engineered with a modification in a glycosylation site in the Fc domain. The wild-type and glycovariant SMIP proteins mediate comparable Type I antibody-like direct cytotoxicity in the presence of anti-human Fc crosslinker and show a similar tyrosine phosphorylation pattern post-treatment. However, NK cells stimulated with the SMIP-016GV exhibit enhanced activation and release 3-fold more interferon-γ compared with SMIP-016. SMIP-016GV shows enhanced ADCC function against cells expressing CD37 with NK cell effectors derived from both normal and CLL-affected individuals. Enhanced ADCC is observed against CLL cells and is sustained at concentrations of SMIP-016GV as low at 5E−6 µg/mL on cells expressing minimal CD37 antigen. In support of the biological relevance of this, SMIP-016GV mediates effective ADCC against primary acute lymphoblastic leukemia (ALL) cells with low surface expression of CD37. Collectively, these data suggest potential use of the novel therapeutic agent SMIP-016GV with enhanced effector function for B cell malignancies, including CLL and ALL therapy. PMID:23883821

  4. In vitro evaluation of human hybrid cell lines generated by fusion of B-lymphoblastoid cells and ex vivo tumour cells as candidate vaccines for haematological malignancies.

    PubMed

    Mohamed, Yehia S; Dunnion, Debbie; Teobald, Iryna; Walewska, Renata; Browning, Michael J

    2012-10-12

    Fusions of dendritic cells (DCs) and tumour cells have been shown to induce protective immunity to tumour challenge in animal models, and to represent a promising approach to cancer immunotherapy. The broader clinical application of this approach, however, is potentially constrained by the lack of replicative capacity and limited standardisation of fusion cell preparations. We show here that fusion of ex vivo tumour cells isolated from patients with a range of haematological malignancies with the human B-lymphoblastoid cell line (LCL), HMy2, followed by chemical selection of the hybridomas, generated stable, self-replicating human hybrid cell lines that grew continuously in tissue culture, and survived freeze/thawing cycles. The hybrid cell lines expressed HLA class I and class II molecules, and the major T-cell costimulatory molecules, CD80 and CD86. All but two of 14 hybrid cell lines generated expressed tumour-associated antigens that were not expressed by HMy2 cells, and were therefore derived from the parent tumour cells. The hybrid cell lines stimulated allogeneic T-cell proliferative responses and interferon-gamma release in vitro to a considerably greater degree than their respective parent tumour cells. The enhanced T-cell stimulation was inhibited by CTLA4-Ig fusion protein, and by blocking antibodies to MHC class I and class II molecules. Finally, all of five LCL/tumour hybrid cell lines tested induced tumour antigen-specific cytotoxic T-cell responses in vitro in PBL from healthy, HLA-A2+ individuals, as detected by HLA-A2-peptide pentamer staining and cellular cytotoxicity. These data show that stable hybrid cell lines, with enhanced immunostimulatory properties and potential for therapeutic vaccination, can be generated by in vitro fusion and chemical selection of B-LCL and ex vivo haematological tumour cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Tumor malignancy is engaged to prokaryotic homolog toolbox.

    PubMed

    Fernandes, Janaina; Guedes, Patrícia G; Lage, Celso Luiz S; Rodrigues, Juliany Cola F; Lage, Claudia de Alencar S

    2012-04-01

    Cancer cells display high proliferation rates and survival provided by high glycolysis, chemoresistance and radioresistance, metabolic features that appear to be activated with malignancy, and seemed to have arisen as early in evolution as in unicellular/prokaryotic organisms. Based on these assumptions, we hypothesize that aggressive phenotypes found in malignant cells may be related to acquired unicellular behavior, launched within a tumor when viral and prokaryotic homologs are overexpressed performing likely robust functions. The ensemble of these expressed viral and prokaryotic close homologs in the proteome of a tumor tissue gives them advantage over normal cells. To assess the hypothesis validity, sequences of human proteins involved in apoptosis, energetic metabolism, cell mobility and adhesion, chemo- and radio-resistance were aligned to homologs present in other life forms, excluding all eukaryotes, using PSI-BLAST, with further corroboration from data available in the literature. The analysis revealed that selected sequences of proteins involved in apoptosis and tumor suppression (as p53 and pRB) scored non-significant (E-value>0.001) with prokaryotic homologs; on the other hand, human proteins involved in cellular chemo- and radio-resistance scored highly significant with prokaryotic and viral homologs (as catalase, E-value=zero). We inferred that such upregulated and/or functionally activated proteins in aggressive malignant cells represent a toolbox of modern human homologs evolved from a similar key set that have granted survival of ancient prokaryotes against extremely harsh environments. According to what has been discussed along this analysis, high mutation rates usually hit hotspots in important conserved protein domains, allowing uncontrolled expansion of more resistant, death-evading malignant clones. That is the case of point mutations in key viral proteins affording viruses escape to chemotherapy, and human homologs of such retroviral

  6. Piperlongumine inhibits LMP1/MYC-dependent mouse B-lymphoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Seong-Su; Tompkins, Van S.; Son, Dong-Ju

    2013-07-12

    Highlights: •Mouse model of human Burkitt lymphoma revealed cancer inhibition by PL. •Treatment with PL led to apoptosis of malignant but not normal B cells. •PL inhibited LMP1–NF-κB–Myc-dependent target genes including p21-encoding Cdkn1a. •PL holds promise for new interventions approaches to hematologic malignancies. -- Abstract: Piperlongumine (PL), isolated from the fruit of Long pepper, Piper longum, is a cancer-inhibiting compound that selectively kills tumor cells while sparing their normal counterparts. Here we evaluated the efficacy with which PL suppresses malignant B cells derived from a newly developed, double-transgenic mouse model of human endemic Burkitt lymphoma (BL), designated mCD40-LMP1/iMyc{sup Eμ}. PLmore » inhibited tumor cell proliferation in a concentration-dependent manner and induced apoptosis of neoplastic but not normal B cells. Treatment with PL resulted in downregulation of EBV-encoded LMP1, cellular Myc, constitutive NF-κB activity, and a host of LMP1-Myc-NF-κB-regulated target genes including Aurka, Bcat1, Bub1b, Ccnb1, Chek1, Fancd2, Tfrc and Xrcc6. Of note, p21{sup Cip1}-encoding Cdkn1a was suppressed independent of changes in Trp53 mRNA levels and p53 DNA-binding activity. Considering the central role of the LMP1–NF-κB–Myc axis in B-lineage neoplasia, these findings further our understanding of the mechanisms by which PL inhibits B-lymphoma and provide a preclinical rationale for the inclusion of PL in new interventions in blood cancers.« less

  7. SLC12A7 alters adrenocortical carcinoma cell adhesion properties to promote an aggressive invasive behavior.

    PubMed

    Brown, Taylor C; Murtha, Timothy D; Rubinstein, Jill C; Korah, Reju; Carling, Tobias

    2018-06-08

    Altered expression of Solute Carrier Family 12 Member 7 (SLC12A7) is implicated to promote malignant behavior in multiple cancer types through an incompletely understood mechanism. Recent studies have shown recurrent gene amplifications and overexpression of SLC12A7 in adrenocortical carcinoma (ACC). The potential mechanistic effect(s) of SLC12A7 amplifications in portending an aggressive behavior in ACC has not been previously studied and is investigated here using two established ACC cell lines, SW-13 and NCI-H295R. SW-13 cells, which express negligible amounts of SLC12A7, were enforced to express SLC12A7 constitutively, while RNAi gene silencing was performed in NCI-H295R cells, which have robust endogenous expression of SLC12A7. In vitro studies tested the outcomes of experimental alterations in SLC12A7 expression on malignant characteristics, including cell viability, growth, colony formation potential, motility, invasive capacity, adhesion and detachment kinetics, and cell membrane organization. Further, potential alterations in transcription regulation downstream to induced SLC12A7 overexpression was explored using targeted transcription factor expression arrays. Enforced SLC12A7 overexpression in SW-13 cells robustly promoted motility and invasive characteristics (p < 0.05) without significantly altering cell viability, growth, or colony formation potential. SLC12A7 overexpression also significantly increased rates of cellular attachment and detachment turnover (p < 0.05), potentially propelled by increased filopodia formation and/or Ezrin interaction. In contrast, RNAi gene silencing of SLC12A7 stymied cell attachment strength as well as migration and invasion capacity in NCI-H295R cells. Transcription factor expression analysis identified multiple signally pathways potentially affected by SLC12A7 overexpression, including osmotic stress, bone morphogenetic protein, and Hippo signaling pathways. Amplification of SLC12A7 observed in ACCs is shown

  8. The hypoxia signalling pathway in haematological malignancies

    PubMed Central

    Irigoyen, Marta; García-Ruiz, Juan Carlos; Berra, Edurne

    2017-01-01

    Haematological malignancies are tumours that affect the haematopoietic and the lymphatic systems. Despite the huge efforts to eradicate these tumours, the percentage of patients suffering resistance to therapies and relapse still remains significant. The tumour environment favours drug resistance of cancer cells, and particularly of cancer stem/initiating cells. Hypoxia promotes aggressiveness, metastatic spread and relapse in most of the solid tumours. Furthermore, hypoxia is associated with worse prognosis and resistance to conventional treatments through activation of the hypoxia-inducible factors. Haematological malignancies are not considered solid tumours, and therefore, the role of hypoxia in these diseases was initially presumed to be inconsequential. However, hypoxia is a hallmark of the haematopoietic niche. Here, we will review the current understanding of the role of both hypoxia and hypoxia-inducible factors in different haematological tumours. PMID:28415662

  9. RANK-c attenuates aggressive properties of ER-negative breast cancer by inhibiting NF-κB activation and EGFR signaling.

    PubMed

    Sirinian, Chaido; Papanastasiou, Anastasios D; Schizas, Michail; Spella, Magda; Stathopoulos, Georgios T; Repanti, Maria; Zarkadis, Ioannis K; King, Tari A; Kalofonos, Haralabos P

    2018-05-29

    The RANK/RANKL axis emerges as a key regulator of breast cancer initiation, progression, and metastasis. RANK-c is a RANK receptor isoform produced through alternative splicing of the TNFRSF11A (RANK) gene and a dominant-negative regulator of RANK-induced nuclear factor-κB (NF-κB) activation. Here we report that RANK-c transcript is expressed in 3.2% of cases in The Cancer Genome Atlas breast cancer cohort evenly between ER-positive and ER-negative cases. Nevertheless, the ratio of RANK to RANK-c (RANK/RANK-c) is increased in ER-negative breast cancer cell lines compared to ER-positive breast cancer cell lines. In addition, forced expression of RANK-c in ER-negative breast cancer cell lines inhibited stimuli-induced NF-κB activation and attenuated migration, invasion, colony formation, and adhesion of cancer cells. Further, RANK-c expression in MDA-MB-231 cells inhibited lung metastasis and colonization in vivo. The RANK-c-mediated inhibition of cancer cell aggressiveness and nuclear factor-κB (NF-κB) activation in breast cancer cells seems to rely on a RANK-c/TNF receptor-associated factor-2 (TRAF2) protein interaction. This was further confirmed by a mutated RANK-c that is unable to interact with TRAF2 and abolishes the ability to attenuate NF-κB activation, migration, and invasion. Additional protein interaction characterization revealed epidermal growth factor receptor (EGFR) as a novel interacting partner for RANK-c in breast cancer cells with a negative effect on EGFR phosphorylation and EGF-dependent downstream signaling pathway activation. Our findings further elucidate the complex molecular biology of the RANKL/RANK system in breast cancer and provide preliminary data for RANK-c as a possible marker for disease progression and aggressiveness.

  10. Involvement of HIF-1α-regulated miR-21, acting via the Akt/NF-κB pathway, in malignant transformation of HBE cells induced by cigarette smoke extract.

    PubMed

    Lu, Lu; Xu, Hui; Yang, Ping; Xue, Junchao; Chen, Chao; Sun, Qian; Yang, Qianlei; Lu, Jiachun; Shi, Aimin; Liu, Qizhan

    2018-06-01

    Although the relationship between cigarette smoke and lung cancer has been widely studied, the molecular mechanism for cigarette smoke-induced lung cancer remains largely unclear. The present study investigated the roles of hypoxia-inducible factor (HIF)-1α and miR-21 in the malignant transformation of human bronchial epithelial (HBE) cells induced by cigarette smoke extract (CSE). In case of acute and chronic treatment of HBE cells, CSE increased the levels of HIF-1α, p-Akt, p-NF-κB, and miR-21 and decreased PTEN levels. The increased miR-21 levels induced by CSE were prevented by down-regulation of HIF-1α. Further, elevated miR-21 suppressed PTEN levels, which decreased the levels of p-Akt and p-NF-κB. However, those changes were attenuated in cells co-transfected with HIF-1α siRNA and an miR-21 mimic. Silencing of HIF-1α or NF-κB decreased colony formation and the invasion and migration capacities of CSE-transformed HBE cells; however, up-regulation of miR-21 reversed these effects. These results indicate that the oncogenic capacity of HIF-1α in regulation of miR-21-inhibited PTEN in a manner dependent on the Akt/NF-κB pathway, a process that is involved in the CSE-induced malignant transformation of HBE cells. Thus, the present research has established a new mechanism for cigarette smoke-induced lung carcinogenesis. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Is there a common pathogenesis in aggressive periodontitis & ankylosing spondylitis in HLA-B27 patient?

    PubMed

    Agrawal, Neeraj; Agarwal, Kavita; Varshney, Atul; Agrawal, Navneet; Dubey, Ashutosh

    2016-05-01

    HLA-B27 is having strong association to ankylosing spondylitis (AS) and other inflammatory diseases collectively known as seronegative spondyloarthropathy. In literature, although the evidence for association between AS and periodontitis as well as AS and HLA-B27 are there but the association of aggressive periodontitis in HLA-B27 positive patient with AS are not there. We hypothesize that there may be a common pathogenesis in aggressive periodontitis and ankylosing spondylitis in HLA-B27 patient. A 27-years-old female presented with the features of generalized aggressive periodontitis and difficulty in walking. On complete medical examination, ankylosing spondylitis was diagnosed with further positive HLA-B27 phenotype and negative rheumatic factor. This report may open up a new link to explore in the pathogenesis of aggressive periodontitis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Mitochondrial protection impairs BET bromodomain inhibitor-mediated cell death and provides rationale for combination therapeutic strategies.

    PubMed

    Lasorsa, E; Smonksey, M; Kirk, J S; Rosario, S; Hernandez-Ilizaliturri, F J; Ellis, L

    2015-12-10

    Inhibitors of the bromodomain and extraterminal domain family (BETI) have recently entered phase I clinical trials. In patients with advanced leukemia's, potent antileukemia activity was displayed with minimum dose-limiting toxicity. In preclinical models of hematological malignancies, including aggressive B-cell lymphomas, BETI induced cell-cycle arrest and apoptosis. However, the underlying cell death mechanisms are still not well understood. Dissecting the mechanisms required by BETI to mediate cell death would provide strong direction on how to best utilize BETI to treat patients with aggressive hematological malignancies. Herein, we provide understanding of the molecular mechanisms underlying BETI-mediated cell death using I-BET762. Induction of cell death occurred in primary murine and human B-cell lymphomas through apoptosis. Genetic dissection using Eμ-myc B-cell lymphoma compound mutants demonstrated that I-BET762-induced apoptosis does not require the p53 pathway. Furthermore, deletion of Apaf1, and thus the absence of a functional apoptosome, is associated with a delayed drug response but do not provide long-term resistance. Prolonged treatment of this model in fact fails to suppress the therapeutic efficacy of the drug and is associated with biochemical features of autophagy. However, lack of mitochondrial permeability completely inhibited I-BET762-mediated tumor cell death, indicating mitochondrial damage as key events for its activity. Combination of I-BET762 with BH3-only mimetics ABT-263 or obatoclax, restored sensitivity to I-BET762 lymphoma killing; however, success was determined by expression of Bcl-2 family antiapoptotic proteins. Our study provides critical insight for clinical decisions regarding the appropriate strategy for using BETI as a single agent or in combination to treat patients with aggressive B-cell lymphomas.

  13. Detection and cultivation of circulating tumor cells in malignant pleural mesothelioma.

    PubMed

    Bobek, Vladimir; Kacprzak, Grzegorz; Rzechonek, Adam; Kolostova, Katarina

    2014-05-01

    Malignant pleural mesothelioma (MPM) is an aggressive disease with very poor prognosis which tends to affect older patients. Progress in the management of this group of patients has been limited by the rarity of the disease and hence, difficulty in conducting randomized trials. The vast majority of cancer deaths occur due to metastasis of the primary tumor to distant sites via circulating tumor cells (CTCs) in the circulation. CTCs are extremely rare and limits in technology used to capture these cells hamper our complete understanding over the metastatic process. In the present study we present a new method for detection and cultivation of CTCs isolated from peripheral blood of MPM patients. Patients with diagnosed MPM were enrolled into this study. A size-based separation method for viable CTC enrichment from unclothed peripheral blood has been introduced; MetaCell. The size-based enrichment process was based on filtration of peripheral blood (PB) through porous polycarbonate membrane. The separated CTCs are cultured on the membrane in vitro under standard cancer cell culture conditions and observed by an inverted microscope. The reported methodology allows for quick and easy enrichment of CTCs and their cultivation. The cultivated cells can be used for next specification of gene expression and histological/biological specificity of concrete mesothelioma.

  14. Myeloid cell leukaemia 1 has a vital role in retinoic acid-mediated protection of Toll-like receptor 9-stimulated B cells from spontaneous and DNA damage-induced apoptosis.

    PubMed

    Holm, Kristine L; Indrevaer, Randi L; Myklebust, June Helen; Kolstad, Arne; Moskaug, Jan Øivind; Naderi, Elin H; Blomhoff, Heidi K

    2016-09-01

    Vitamin A is an essential anti-infective agent with pleiotropic effects on cells of the immune system. The goal of the present study was to unravel the impact of the vitamin A metabolite retinoic acid (RA) on B-cell survival related both to normal B-cell homeostasis and to the detrimental effects imposed by DNA-damaging agents. By combining RA with Toll-like receptor 9 (TLR9) ligands, we show that RA prevents spontaneous, irradiation- and doxorubicin-induced apoptosis of human B cells in an RA receptor-dependent manner. RA-mediated survival involved up-regulation of the anti-apoptotic protein myeloid cell leukemia 1 (MCL1) at the transcriptional level, and knock down of MCL1 by small interfering RNA partially reversed the effects of RA. To ensure that the combination of TLR9-ligands and RA would not promote the survival of malignant B cells, the combined effects of stimulation with RA and TLR9 ligands was assessed on cells from patients with B-cell malignancies. In contrast to the effects on normal B cells, the combination of TLR9 stimulation and RA neither enhanced the MCL1 levels nor inhibited the death of malignant B cells challenged by DNA-damaging agents. Taken together, the present results reveal a vital role of MCL1 in RA-mediated survival of normal B cells. Moreover, the findings suggest that RA in combination with TLR9 ligands might be useful adjuvants in the treatment of B-cell malignancies by selectively protecting normal and not malignant B cells from DNA-damage-induced cell death. © 2016 John Wiley & Sons Ltd.

  15. Malignant hemangiopericytoma of pituitary fossa.

    PubMed

    Das, Prasenjit; Haresh, Kunhi P; Suri, Vaishali; Sharma, Mehar Chand; Sharma, Bhawani Shankar; Sarkar, Chitra

    2010-01-01

    Intracranial hemangiopericytomas are rare tumors with aggressive behavior. Other than the meninges, this lesion has rarely been reported in periventricular and sellar region. We report a case of malignant hemangiopericytoma in sellar region in a 47-year-old male who presented with history of sudden onset of bilateral visual disturbances. To best of our knowledge, this is the second case report of malignant hemangiopericytoma in this location. As this intracranial lesion shows aggressive behavior, in the form of recurrence or extracranial metastasis in comparison to its extracranial counterparts, diagnosis should be made cautiously.

  16. Pre-malignant lymphoid cells arise from hematopoietic stem/progenitor cells in chronic lymphocytic leukemia.

    PubMed

    Kikushige, Yoshikane; Miyamoto, Toshihiro

    2015-11-01

    Human malignancies progress through a multistep process that includes the development of critical somatic mutations over the clinical course. Recent novel findings have indicated that hematopoietic stem cells (HSCs), which have the potential to self-renew and differentiate into multilineage hematopoietic cells, are an important cellular target for the accumulation of critical somatic mutations in hematological malignancies and play a central role in myeloid malignancy development. In contrast to myeloid malignancies, mature lymphoid malignancies, such as chronic lymphocytic leukemia (CLL), are thought to originate directly from differentiated mature lymphocytes; however, recent compelling data have shown that primitive HSCs and hematopoietic progenitor cells contribute to the pathogenesis of mature lymphoid malignancies. Several representative mutations of hematological malignancies have been identified within the HSCs of CLL and lymphoma patients, indicating that the self-renewing long-lived fraction of HSCs can serve as a reservoir for the development of oncogenic events. Novel mice models have been established as human mature lymphoma models, in which specific oncogenic events target the HSCs and immature progenitor cells. These data collectively suggest that HSCs can be the cellular target involved in the accumulation of oncogenic events in the pathogenesis of mature lymphoid and myeloid malignancies.

  17. Malignant perivascular epithelioid cell tumor of the retroperitoneum

    PubMed Central

    Wu, Ji-Hua; Zhou, Jin-Lian; Cui, Yan; Jing, Qing-Ping; Shang, Le; Zhang, Jian-Zhong

    2013-01-01

    Perivascular epithelioid cell tumors (PEComas) are a rare type of mesenchymal neoplasms characterized by a proliferation of perivascular cells with an epithelioid phenotype and expression of myo-melanocytic markers. The majority of PEComas seem to be benign and usually their prognosis is good. Malignant cases are extremely rare, exhibiting a malignant course with local recurrences and distant metastases. We herein report a case of a malignant PEComa arising in the retroperitoneum. The patient was a 55-year-old woman experiencing abdominal discomfort for approximately one month. Ultrasound and computer tomography (CT) scans of the abdomen revealed a solid mass arising from the retroperitoneum. Microscopically, the tumor was composed of epithelioid cells mixed with spindled cells. The nucleus had significant atypia, and the mitoses were obvious. The focal intravascular tumor embolus was visible. Immunohistochemically, the epithelioid tumor cells were positive for HMB45 and Melan-A, and the spindled tumor celLs were positive for SMA and desmin. Seven months after a surgical resection, an ultrasound revealed liver metastases. In conclusion, the malignant PEComas of the retroperitoneum is a very rare neoplasm with unique morphological and immunohistochemical characteristics. It should be differentiated from other epithelioid cell tumors of the retroperitoneum. PMID:24133607

  18. Mature aggressive B-cell lymphoma across age groups - molecular advances and therapeutic implications.

    PubMed

    Lange, Jonas; Lenz, Georg; Burkhardt, Birgit

    2017-02-01

    Mature B-cell lymphoma represents the most common type of Non-Hodgkin lymphoma, and different subtypes prevail at different patient ages. Areas covered: We review recent data on differences and commonalities in mature B-cell lymphoma occurring in adult and pediatric patients, with a special emphasis on molecular advances and therapeutic implications. To this end, we will discuss knowledge on diffuse large B-cell lymphoma and Burkitt lymphoma/leukemia, which are the most frequent subtypes in adult and pediatric patients, respectively, and on primary mediastinal B-cell lymphoma, which is a subtype of mature B-cell lymphoma occurring mainly in adolescents and young adults with a female predominance. Expert commentary: Molecular profiling has revealed molecular alterations that can be used to further classify the subtypes of mature B-cell lymphoma. These new subgroups frequently respond differentially to targeted therapeutic strategies. Future clinical trials utilizing new drugs will address this issue by combining clinical data and response assessment with a molecular workup of the corresponding lymphomas.

  19. Repurposing the anti-malarial drug dihydroartemisinin suppresses metastasis of non-small-cell lung cancer via inhibiting NF-κB/GLUT1 axis

    PubMed Central

    Jiang, Jie; Geng, Guojun; Yu, Xiuyi; Liu, Hongming; Gao, Jing; An, Hanxiang; Cai, Chengfu; Li, Ning; Shen, Dongyan; Wu, Xiaoqiang; Zheng, Lisheng; Mi, Yanjun; Yang, Shuyu

    2016-01-01

    Non-small-cell lung cancer (NSCLC) is an aggressive malignancy and long-term survival remains unsatisfactory for patients with metastatic and recurrent disease. Repurposing the anti-malarial drug dihydroartemisinin (DHA) has been proved to possess potent antitumor effect on various cancers. However, the effects of DHA in preventing the invasion of NSCLC cells have not been studied. In the present study, we determined the inhibitory effects of DHA on invasion and migration and the possible mechanisms involved using A549 and H1975 cells. DHA inhibited in vitro migration and invasion of NSCLC cells even in low concentration with little cytotoxicity. Additionally, low concentration DHA also inhibited Warburg effect in NSCLC cells. Mechanically, DHA negatively regulates NF-κB signaling to inhibit the GLUT1 translocation. Blocking the NF-κB signaling largely abolishes the inhibitory effects of DHA on the translocation of GLUT1 to the plasma membrane and the Warburg effect. Furthermore, GLUT1 knockdown significantly decreased the inhibition of invasion, and migration by DHA. Our results suggested that DHA can inhibit metastasis of NSCLC by targeting glucose metabolism via inhibiting NF-κB signaling pathway and DHA may deserve further investigation in NSCLC treatment. PMID:27895313

  20. Development of venetoclax for therapy of lymphoid malignancies.

    PubMed

    Zhu, Huayuan; Almasan, Alexandru

    2017-01-01

    B-cell lymphoma-2 (BCL-2) family dysfunction and impairment of apoptosis are common in most B-cell lymphoid malignancies. Venetoclax (Venclexta™, formerly ABT-199, GDC-0199) is a highly selective BCL-2 inhibitor, which mimics its BCL-2 homology 3-domain to induce apoptosis. It was approved for treatment of previously treated chronic lymphocytic leukemia (CLL) patients with 17p deletion early in 2016. It has also been in clinical trials for other B-cell lymphoid malignancies. Unlike the other recently approved targeted agents idelalisib and ibrutinib, so far there has been no relapse reported in some patients. Also, unlike the other targeted agents, it is effective against tumor cells that reside in the blood marrow. Despite its promising outcome in CLL, preclinical data have already uncovered mechanistic insights underlying venetoclax resistance, such as upregulation of MCL-1 or BCL-xL expression and protective signaling from the microenvironment. In this review, we describe the role of the BCL-2 family in the pathogenesis of B-cell lymphoid malignancies, the development of venetoclax, and its current clinical outcome in CLL and other B-cell malignancies. We also discuss the resistance mechanisms that develop following venetoclax therapy, potential strategies to overcome them, and how this knowledge can be translated into clinical applications.

  1. Development of venetoclax for therapy of lymphoid malignancies

    PubMed Central

    Zhu, Huayuan; Almasan, Alexandru

    2017-01-01

    B-cell lymphoma-2 (BCL-2) family dysfunction and impairment of apoptosis are common in most B-cell lymphoid malignancies. Venetoclax (Venclexta™, formerly ABT-199, GDC-0199) is a highly selective BCL-2 inhibitor, which mimics its BCL-2 homology 3-domain to induce apoptosis. It was approved for treatment of previously treated chronic lymphocytic leukemia (CLL) patients with 17p deletion early in 2016. It has also been in clinical trials for other B-cell lymphoid malignancies. Unlike the other recently approved targeted agents idelalisib and ibrutinib, so far there has been no relapse reported in some patients. Also, unlike the other targeted agents, it is effective against tumor cells that reside in the blood marrow. Despite its promising outcome in CLL, preclinical data have already uncovered mechanistic insights underlying venetoclax resistance, such as upregulation of MCL-1 or BCL-xL expression and protective signaling from the microenvironment. In this review, we describe the role of the BCL-2 family in the pathogenesis of B-cell lymphoid malignancies, the development of venetoclax, and its current clinical outcome in CLL and other B-cell malignancies. We also discuss the resistance mechanisms that develop following venetoclax therapy, potential strategies to overcome them, and how this knowledge can be translated into clinical applications. PMID:28331288

  2. Emerging immunotherapy and strategies directly targeting B cells for the treatment of diffuse large B-cell lymphoma.

    PubMed

    Witkowska, Magdalena; Smolewski, Piotr

    2015-01-01

    During the last decade, significant prolonged survival in diffusive large B-cell lymphoma (DLBCL) has been observed. The efficacy of initial treatment improved mostly due to addition of a chimeric anti-CD20 monoclonal antibody (rituximab) to standard chemotherapeutic regimens. Moreover, accurate understanding of DLBCL pathogenesis and remarkable progress in gene expression profiling have led to the development of a variety of tumor-specific regimens. Novel agents target directly the pathways involved in signal transduction, lead to apoptosis and cancer cells differentiation. In this article, we mainly focus on new treatment options, such as monoclonal antibodies, tyrosine kinase inhibitors and immunomodulatory drugs, currently investigated in aggressive B-cell lymphoma with particular attention to DLBCL type.

  3. Immunohistochemistry Study of P53 and C-erbB-2 Expression in Trophoblastic Tissue and Their Predictive Values in Diagnosing Malignant Progression of Simple Molar Pregnancy

    PubMed Central

    Hasanzadeh, Malihe; Sharifi, Norrie; Farazestanian, Marjaneh; Nazemian, Seyed Saman; Madani Sani, Faezeh

    2016-01-01

    Background Finding a tumor marker to predict the aggressive behavior of molar pregnancy in early stages has yet been a topic for studies. Objectives In this survey we planned to study patients with molar pregnancy to 1) assess the p53 and c-erbB-2 expression in trophoblastic tissue, 2) to study the relationship between their expression intensity and progression of a molar pregnancy to gestational trophoblastic neoplasia, and 3) to determine a cut off value for the amount of p53 and c-erbB-2 expression which might correlate with aggressive behavior of molar pregnancy. Patients and Methods In a prospective cross sectional study by using a high accuracy technique EnVision Tm system for immunohistochemistry staining of molar pregnancy samples, we evaluated p53 and c-erbB-2 expression in cytotrophoblast and syncytiotrophoblast and the correlation of their expression with progression of molar pregnancy to gestational trophoblastic neoplasia (GTN). Normal prostatic tissue and Breast cancer tissue were used as positive controls. Results We studied 28 patients with simple molar pregnancy (SMP) and 30 with GTN. Cytotrophobalst had significantly higher expression of p53 and c-erbB-2 and syncytiotrophoblast had greater expression of p53 in GTN group as compared to SMP group. The cut off values for percentage of p53 positive immunostained cytotrophoblast and syncytiotrophoblast were 5.5% and 2.5%. In c-erbB-2 positive membranous stained cytotrophoblast the cut off was 12.5%. Conclusions Our data suggests that over expression of p53 and c-erbB-2 is associated with malignant progression of molar pregnancy. We encountered that high expression of p53 and c-erbB-2 in trophoblastic cells could predict gestational trophoblastic neoplasia during the early stages. PMID:27703642

  4. Pediatric precursor B acute lymphoblastic leukemia: are T helper cells the missing link in the infectious etiology theory?

    PubMed

    Bürgler, Simone; Nadal, David

    2017-12-01

    Precursor B acute lymphoblastic leukemia (BCP-ALL), the most common childhood malignancy, arises from an expansion of malignant B cell precursors in the bone marrow. Epidemiological studies suggest that infections or immune responses to infections may promote such an expansion and thus BCP-ALL development. Nevertheless, a specific pathogen responsible for this process has not been identified. BCP-ALL cells critically depend on interactions with the bone marrow microenvironment. The bone marrow is also home to memory T helper (Th) cells that have previously expanded during an immune response in the periphery. In secondary lymphoid organs, Th cells can interact with malignant cells of mature B cell origin, while such interactions between Th cells and malignant immature B cell in the bone marrow have not been described yet. Nevertheless, literature supports a model where Th cells-expanded during an infection in early childhood-migrate to the bone marrow and support BCP-ALL cells as they support normal B cells. Further research is required to mechanistically confirm this model and to elucidate the interaction pathways between leukemia cells and cells of the tumor microenvironment. As benefit, targeting these interactions could be included in current treatment regimens to increase therapeutic efficiency and to reduce relapses.

  5. Mechanisms regulating enhanced HLA class II-mediated CD4+ T cell recognition of human B-cell lymphoma by resveratrol

    PubMed Central

    RADWAN, FAISAL F. Y.; ZHANG, LIXIA; HOSSAIN, AZIM; DOONAN, BENTLY P.; GOD, JASON; HAQUE, AZIZUL

    2015-01-01

    Malignant B-cells express measurable levels of HLA class II proteins, but often escape immune recognition by CD4+ T cells. Resveratrol (Resv) has been the focus of numerous investigations due to its potential chemopreventive and anti-cancer effects, but it has never been tested in the regulation of immune components in B-cell tumors. Here, we show for the first time that Resv treatment enhances HLA class II-mediated immune detection of B-cell lymphomas by altering immune components and class II presentation in tumor cells. Resv treatment induced an upregulation of both classical and non-classical HLA class II proteins (DR and DM) in B-lymphoma cells. Resv also altered endolysosomal cathepsins (Cat S, B and D) and a thiol reductase (GILT), increasing HLA class II-mediated antigen (Ag) processing in B-cell lymphomas and their subsequent recognition by CD4+ T cells. Mechanistic study demonstrated that Resv treatment activated the recycling class II pathway of Ag presentation through upregulation of Rab 4B protein expression in B-lymphoma cells. These findings suggest that HLA class II-mediated immune recognition of malignant B-cells can be improved by Resv treatment, thus encouraging its potential use in chemoimmunotherapy of B-cell lymphoma. PMID:21854084

  6. Overexpression of Nrp/b (nuclear restrict protein in brain) suppresses the malignant phenotype in the C6/ST1 glioma cell line.

    PubMed

    Degaki, Theri Leica; Demasi, Marcos Angelo Almeida; Sogayar, Mari Cleide

    2009-11-01

    Upon searching for glucocorticoid-regulated cDNA sequences associated with the transformed to normal phenotypic reversion of C6/ST1 rat glioma cells, we identified Nrp/b (nuclear restrict protein in brain) as a novel rat gene. Here we report on the identification and functional characterization of the complete sequence encoding the rat NRP/B protein. The cloned cDNA presented a 1767 nucleotides open-reading frame encoding a 589 amino acids residues sequence containing a BTB/POZ (broad complex Tramtrack bric-a-brac/Pox virus and zinc finger) domain in its N-terminal region and kelch motifs in its C-terminal region. Sequence analysis indicates that the rat Nrp/b displays a high level of identity with the equivalent gene orthologs from other organisms. Among rat tissues, Nrp/b expression is more pronounced in brain tissue. We show that overexpression of the Nrp/b cDNA in C6/ST1 cells suppresses anchorage independence in vitro and tumorigenicity in vivo, altering their malignant nature towards a more benign phenotype. Therefore, Nrp/b may be postulated as a novel tumor suppressor gene, with possible relevance for glioblastoma therapy.

  7. MicroRNA-187, down-regulated in clear cell renal cell carcinoma and associated with lower survival, inhibits cell growth and migration though targeting B7-H3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Jun; Lei, Ting; Xu, Congjie

    2013-08-23

    Highlights: •miR-187 is down-regulated in clear cell renal cell carcinoma (ccRCC). •Down-regulation of miR-187 is associated with poor outcomes in patients with ccRCC. •miR-187 inhibits cell growth and migration though targeting B7-H3 in ccRCC. -- Abstract: Aberrantly expressed microRNAs (miRNAs) are frequently associated with the aggressive malignant behavior of human cancers, including clear cell renal cell carcinoma (ccRCC). Based on the preliminary deep sequencing data, we hypothesized that miR-187 may play an important role in ccRCC development. In this study, we found that miR-187 was down-regulated in both tumor tissue and plasma of ccRCC patients. Lower miR-187 expression levels weremore » associated with higher tumor grade and stage. All patients with high miR-187 expression survived 5 years, while with low miR-187 expression, only 42% survived. Suppressed in vitro proliferation, inhibited in vivo tumor growth, and decreased motility were observed in cells treated with the miR-187 expression vector. Further studies showed that B7 homolog 3 (B7-H3) is a direct target of miR-187. Over-expression of miR-187 decreased B7-H3 mRNA level and repressed B7-H3-3′-UTR reporter activity. Knockdown of B7-H3 using siRNA resulted in similar phenotype changes as that observed for overexpression of miR-187. Our data suggest that miR-187 is emerging as a novel player in the disease state of ccRCC. miR-187 plays a tumor suppressor role in ccRCC.« less

  8. Chemotherapy curable malignancies and cancer stem cells: a biological review and hypothesis.

    PubMed

    Savage, Philip

    2016-11-21

    Cytotoxic chemotherapy brings routine cures to only a small select group of metastatic malignancies comprising gestational trophoblast tumours, germ cell tumours, acute leukemia, Hodgkin's disease, high grade lymphomas and some of the rare childhood malignancies. We have previously postulated that the extreme sensitivity to chemotherapy for these malignancies is linked to the on-going high levels of apoptotic sensitivity that is naturally linked with the unique genetic events of nuclear fusion, meiosis, VDJ recombination, somatic hypermutation, and gastrulation that have occurred within the cells of origin of these malignancies. In this review we will examine the cancer stem cell/cancer cell relationship of each of the chemotherapy curable malignancies and how this relationship impacts on the resultant biology and pro-apoptotic sensitivity of the varying cancer cell types. In contrast to the common epithelial cancers, in each of the chemotherapy curable malignancies there are no conventional hierarchical cancer stem cells. However cells with cancer stem like qualities can arise stochastically from within the general tumour cell population. These stochastic stem cells acquire a degree of resistance to DNA damaging agents but also retain much of the key characteristics of the cancer cells from which they develop. We would argue that the balance between the acquired resistance of the stochastic cancer stem cell and the inherent chemotherapy sensitivity of parent tumour cell determines the overall chemotherapy curability of each diagnosis. The cancer stem cells in the chemotherapy curable malignancies appear to have two key biological differences from those of the more common chemotherapy incurable malignancies. The first difference is that the conventional hierarchical pattern of cancer stem cells is absent in each of the chemotherapy curable malignancies. The other key difference, we suggest, is that the stochastic stem cells in the chemotherapy curable malignancies

  9. N-Myc knockdown and apigenin treatment controlled growth of malignant neuroblastoma cells having N-Myc amplification.

    PubMed

    Hossain, Md Motarab; Banik, Naren L; Ray, Swapan K

    2013-10-15

    Malignant neuroblastomas mostly occur in children and are frequently associated with N-Myc amplification. Oncogene amplification, which is selective increase in copy number of the oncogene, provides survival advantages in solid tumors including malignant neuroblastoma. We have decreased expression of N-Myc oncogene using short hairpin RNA (shRNA) plasmid to increase anti-tumor efficacy of the isoflavonoid apigenin (APG) in human malignant neuroblastoma SK-N-DZ and SK-N-BE2 cell lines that harbor N-Myc amplification. N-Myc knockdown induced morphological and biochemical features of neuronal differentiation. Combination of N-Myc knockdown and APG most effectively induced morphological and biochemical features of apoptotic death. This combination therapy also prevented cell migration and decreased N-Myc driven survival, angiogenic, and invasive factors. Collectively, N-Myc knockdown and APG treatment is a promising strategy for controlling the growth of human malignant neuroblastoma cell lines that harbor N-Myc amplification. © 2013 Elsevier B.V. All rights reserved.

  10. Nivolumab With or Without Varlilumab in Treating Patients With Relapsed or Refractory Aggressive B-cell Lymphomas

    ClinicalTrials.gov

    2018-06-11

    ALK-Positive Large B-Cell Lymphoma; Atypical Burkitt/Burkitt-Like Lymphoma; Burkitt-Like Lymphoma With 11q Aberration; Diffuse Large B-Cell Lymphoma Activated B-Cell Type; Diffuse Large B-Cell Lymphoma Associated With Chronic Inflammation; Diffuse Large B-Cell Lymphoma Germinal Center B-Cell Type; Diffuse Large B-Cell Lymphoma, Not Otherwise Specified; EBV-Positive Diffuse Large B-Cell Lymphoma, Not Otherwise Specified; EBV-Positive Mucocutaneous Ulcer; High-Grade B-Cell Lymphoma With MYC, BCL2, and BCL6 Rearrangements; Human Herpesvirus 8-Positive Neoplastic Cells Present; Intravascular Large B-Cell Lymphoma; Large B-Cell Lymphoma With IRF4 Rearrangement; Plasmablastic Lymphoma; Primary Cutaneous Diffuse Large B-Cell Lymphoma; Primary Cutaneous Diffuse Large B-Cell Lymphoma, Leg Type; Primary Diffuse Large B-Cell Lymphoma of the Central Nervous System; Primary Effusion Lymphoma; Recurrent B-Cell Lymphoma, Unclassifiable, With Features Intermediate Between Diffuse Large B-Cell Lymphoma and Classic Hodgkin Lymphoma; Recurrent Burkitt Lymphoma; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Lymphomatoid Granulomatosis; Recurrent Primary Mediastinal (Thymic) Large B-Cell Cell Lymphoma; Refractory B-Cell Lymphoma, Unclassifiable, With Features Intermediate Between Diffuse Large B-Cell Lymphoma and Classic Hodgkin Lymphoma; Refractory Burkitt Lymphoma; Refractory Diffuse Large B-Cell Lymphoma; Refractory Primary Mediastinal (Thymic) Large B-Cell Cell Lymphoma; Small Intestinal High Grade B-Cell Lymphoma, Not Otherwise Specified; T-Cell/Histiocyte-Rich Large B-Cell Lymphoma

  11. Toxicological characterization of ZnO nanoparticles in malignant and non-malignant cells.

    PubMed

    Moratin, Helena; Scherzad, Agmal; Gehrke, Thomas; Ickrath, Pascal; Radeloff, Katrin; Kleinsasser, Norbert; Hackenberg, Stephan

    2018-04-01

    The increasing usage of zinc oxide nanoparticles (ZnO-NPs) in industrial applications as well as in consumer products raises concern regarding their potential adverse effects to a greater extend. Numerous studies have demonstrated toxic properties of NPs, however there is still a lack of knowledge concerning the underlying mechanisms. This study was designed to systematically investigate cytotoxicity, apoptosis, cell cycle alterations, and genotoxicity induced by ZnO-NP. Moreover, it was an aim of the investigations to specify the diverse effects of nanoparticle exposure in malignant in comparison with non-malignant cells. Therefore, human head and neck squamous cell carcinoma-derived FaDu cells were incubated with 4-20 µg/ml of ZnO-NPs for 1-48 hr and tested for cell viability, cell cycle alterations, apoptosis and caspase-3 gene expression as a sensitive marker of molecular apoptotic processes with regard to time- and dose-dependent effects. Human mesenchymal bone marrow stem cells were used as non-malignant representatives to examine oxidative stress-related genotoxicity. Results showed a significant reduction in cell viability as well as dose- and time-dependent increase of apoptotic cells following nanoparticle treatment. Likewise, caspase-3 gene expression enhanced already before first apoptotic cells were detectable. It could be observed that doses that were cytotoxic in tumor cells did not reduce viability in stem cells. However, the same concentrations already induced significant DNA damage. The findings of the study suggest to keep a more critical eye on the use of nanoparticles as anti-cancer agents. Yet, additional in vivo studies are needed to assess safety concerns for consumers and patients. Environ. Mol. Mutagen. 59:247-259, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. DNA Cytometry and Nuclear Morphometry in Ovarian Benign, Borderline and Malignant Tumors.

    PubMed

    El Din, Amina A Gamal; Badawi, Manal A; Aal, Shereen E Abdel; Ibrahim, Nihad A; Morsy, Fatma A; Shaffie, Nermeen M

    2015-12-15

    Ovarian carcinoma is a leading cause of death in gynecological malignancy. Ovarian surface epithelial serous and mucinous tumours are classified as benign, borderline, and malignant. The identification of borderline tumours most likely to act aggressively remains an important clinical issue. This work aimed to study DNA ploidy and nuclear area in ovarian serous and mucinous; benign, borderline and malignant tumours. This study included forty ovarian (23 serous and 17 mucinous) tumours. Paraffin blocks were sectioned; stained with haematoxylin and eosin for histopathologic and morphometric studies and with blue feulgen for DNA analysis. All four serous and six out of nine mucinous benign tumours were diploid. All eight serous and five mucinous malignant tumours were aneuploid. Nine of eleven (81.8%) serous and all three mucinous borderline tumours were aneuploid. There were highly significant differences in mean aneuploid cells percentage between serous benign (1.5%), borderline (45.6%) and malignant (74.5%) (p = 0.0001) and between mucinous benign (13.2%) and both borderline (63.7%) and malignant (68.4%) groups (p = 0.0001). There were significant differences in nuclear area between serous benign (26.191%), borderline (45.619%) and malignant (67.634 %) and a significant positive correlation between mean percentage aneuploid value and mean nuclear area in all serous and mucinous groups. We suggest that DNA ploidy and nuclear area combined, may be adjuncts to histopathology; in ovarian serous and mucinous benign, borderline and malignant neoplasms; identifying the aggressive borderline tumours.

  13. Differentiation between malignant and benign thyroid nodules and stratification of papillary thyroid cancer with aggressive histological features: Whole-lesion diffusion-weighted imaging histogram analysis.

    PubMed

    Hao, Yonghong; Pan, Chu; Chen, WeiWei; Li, Tao; Zhu, WenZhen; Qi, JianPin

    2016-12-01

    To explore the usefulness of whole-lesion histogram analysis of apparent diffusion coefficient (ADC) derived from reduced field-of-view (r-FOV) diffusion-weighted imaging (DWI) in differentiating malignant and benign thyroid nodules and stratifying papillary thyroid cancer (PTC) with aggressive histological features. This Institutional Review Board-approved, retrospective study included 93 patients with 101 pathologically proven thyroid nodules. All patients underwent preoperative r-FOV DWI at 3T. The whole-lesion ADC assessments were performed for each patient. Histogram-derived ADC parameters between different subgroups (pathologic type, extrathyroidal extension, lymph node metastasis) were compared. Receiver operating characteristic curve analysis was used to determine optimal histogram parameters in differentiating benign and malignant nodules and predicting aggressiveness of PTC. Mean ADC, median ADC, 5 th percentile ADC, 25 th percentile ADC, 75 th percentile ADC, 95 th percentile ADC (all P < 0.001), and kurtosis (P = 0.001) were significantly lower in malignant thyroid nodules, and mean ADC achieved the highest AUC (0.919) with a cutoff value of 1842.78 × 10 -6 mm 2 /s in differentiating malignant and benign nodules. Compared to the PTCs without extrathyroidal extension, PTCs with extrathyroidal extension showed significantly lower median ADC, 5 th percentile ADC, and 25 th percentile ADC. The 5 th percentile ADC achieved the highest AUC (0.757) with cutoff value of 911.5 × 10 -6 mm 2 /s for differentiating between PTCs with and without extrathyroidal extension. Whole-lesion ADC histogram analysis might help to differentiate malignant nodules from benign ones and show the PTCs with extrathyroidal extension. J. Magn. Reson. Imaging 2016;44:1546-1555. © 2016 International Society for Magnetic Resonance in Medicine.

  14. Cutaneous amelanotic signet-ring cell malignant melanoma with interspersed myofibroblastic differentiation in a young cat.

    PubMed

    Hirz, Manuela; Herden, Christiane

    2016-07-01

    The diagnosis of malignant melanoma can be difficult because these tumors can be amelanotic and may contain diverse variants and divergent differentiations, of which the signet-ring cell subtype is very rare and has only been described in humans, dogs, cats, and a hamster. We describe herein histopathologic and immunohistochemical approaches taken to diagnose a case of signet-ring cell malignant melanoma with myofibroblastic differentiation in a cat. A tumor within the abdominal skin of a 2-year-old cat was composed of signet-ring cells and irregularly interwoven streams of spindle cells. Both neoplastic cell types were periodic-acid-Schiff, Fontana, and Sudan black B negative. Signet-ring cells strongly expressed vimentin and S100 protein. Spindle cells strongly expressed vimentin and smooth muscle actin; some cells expressed S100, moderately neuron-specific enolase, and others variably actin and desmin. A few round cells expressed melan A, and a few plump spindle cells expressed melan A and PNL2, confirming the diagnosis of amelanotic signet-ring cell malignant melanoma with myofibroblastic differentiation in a cat. Differential diagnoses were excluded, including signet-ring cell forms of adenocarcinomas, lymphomas, liposarcomas, leiomyosarcomas, squamous cell carcinomas, basal cell carcinomas, and adnexal tumors. © 2016 The Author(s).

  15. Donor Atorvastatin Treatment in Preventing Severe Acute GVHD After Nonmyeloablative Peripheral Blood Stem Cell Transplant in Patients With Hematological Malignancies

    ClinicalTrials.gov

    2018-02-08

    Aggressive Non-Hodgkin Lymphoma; Blasts Under 5 Percent of Bone Marrow Nucleated Cells; Chronic Lymphocytic Leukemia; Loss of Chromosome 17p; Myelodysplastic/Myeloproliferative Neoplasm; Non-Hodgkin Lymphoma; Prolymphocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Aggressive Adult Non-Hodgkin Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Chronic Lymphocytic Leukemia; Recurrent Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Hodgkin Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Non-Hodgkin Lymphoma; Recurrent Plasma Cell Myeloma; Recurrent Small Lymphocytic Lymphoma; Waldenstrom Macroglobulinemia

  16. Phenotypic malignant changes and untargeted lipidomic analysis of long-term exposed prostate cancer cells to endocrine disruptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedia, Carmen, E-mail: carmen.bedia@idaea.csic.es; Dalmau, Núria, E-mail: nuria.dalmau@idaea.csic.es; Jaumot, Joaquim, E-mail: joaquim.jaumot@idaea.csic.es

    2015-07-15

    Endocrine disruptors (EDs) are a class of environmental toxic molecules able to interfere with the normal hormone metabolism. Numerous studies involve EDs exposure to initiation and development of cancers, including prostate cancer. In this work, three different EDs (aldrin, aroclor 1254 and chlorpyrifos (CPF)) were investigated as potential inducers of a malignant phenotype in DU145 prostate cancer cells after a chronic exposure. Epithelial to mesenchymal transition (EMT) induction, proliferation, migration, colony formation and release of metalloproteinase 2 (MMP-2) were analyzed in 50-day exposed cells to the selected EDs. As a result, aldrin and CPF exposure led to an EMT inductionmore » (loss of 16% and 14% of E-cadherin levels, respectively, compared to the unexposed cells). Aroclor and CPF presented an increased migration (134% and 126%, respectively), colony formation (204% and 144%, respectively) and MMP-2 release (137% in both cases) compared to the unexposed cells. An untargeted lipidomic analysis was performed to decipher the lipids involved in the observed transformations. As general results, aldrin exposure showed a global decrease in phospholipids and sphingolipids, and aroclor and CPF showed an increase of certain phospholipids, glycosphingolipids as well as a remarkable increase of some cardiolipin species. Furthermore, the three exposures resulted in an increase of some triglyceride species. In conclusion, some significant changes in lipids were identified and thus we postulate that some lipid compounds and lipid metabolic pathways could be involved in the acquisition of the malignant phenotype in exposed prostate cancer cells to the selected EDs. - Highlights: • Aldrin, aroclor and chlorpyrifos induced an aggressive phenotype in DU145 cells. • An untargeted lipidomic analysis has been performed on chronic exposed cells. • Lipidomic results showed changes in specific lipid species under chronic exposure. • These lipids may have a role in

  17. NF-kappaB Is Involved in the Regulation of EMT Genes in Breast Cancer Cells

    PubMed Central

    Mencalha, Andre L.; Ferreira, Gerson M.; de Souza, Waldemir F.; Morgado-Díaz, José A.; Maia, Amanda M.; Corrêa, Stephany; Abdelhay, Eliana S. F. W.

    2017-01-01

    The metastatic process in breast cancer is related to the expression of the epithelial-to-mesenchymal transition transcription factors (EMT-TFs) SNAIL, SLUG, SIP1 and TWIST1. EMT-TFs and nuclear factor-κB (NF-κB) activation have been associated with aggressiveness and metastatic potential in carcinomas. Here, we sought to examine the role of NF-κB in the aggressive properties and regulation of EMT-TFs in human breast cancer cells. Blocking NF-κB/p65 activity by reducing its transcript and protein levels (through siRNA-strategy and dehydroxymethylepoxyquinomicin [DHMEQ] treatment) in the aggressive MDA-MB-231 and HCC-1954 cell lines resulted in decreased invasiveness and migration, a downregulation of SLUG, SIP1, TWIST1, MMP11 and N-cadherin transcripts and an upregulation of E-cadherin transcripts. No significant changes were observed in the less aggressive cell line MCF-7. Bioinformatics tools identified several NF-κB binding sites along the promoters of SNAIL, SLUG, SIP1 and TWIST1 genes. Through chromatin immunoprecipitation and luciferase reporter assays, the NF-κB/p65 binding on TWIST1, SLUG and SIP1 promoter regions was confirmed. Thus, we suggest that NF-κB directly regulates the transcription of EMT-TF genes in breast cancer. Our findings may contribute to a greater understanding of the metastatic process of this neoplasia and highlight NF-κB as a potential target for breast cancer treatment. PMID:28107418

  18. NF-kappaB Is Involved in the Regulation of EMT Genes in Breast Cancer Cells.

    PubMed

    Pires, Bruno R B; Mencalha, Andre L; Ferreira, Gerson M; de Souza, Waldemir F; Morgado-Díaz, José A; Maia, Amanda M; Corrêa, Stephany; Abdelhay, Eliana S F W

    2017-01-01

    The metastatic process in breast cancer is related to the expression of the epithelial-to-mesenchymal transition transcription factors (EMT-TFs) SNAIL, SLUG, SIP1 and TWIST1. EMT-TFs and nuclear factor-κB (NF-κB) activation have been associated with aggressiveness and metastatic potential in carcinomas. Here, we sought to examine the role of NF-κB in the aggressive properties and regulation of EMT-TFs in human breast cancer cells. Blocking NF-κB/p65 activity by reducing its transcript and protein levels (through siRNA-strategy and dehydroxymethylepoxyquinomicin [DHMEQ] treatment) in the aggressive MDA-MB-231 and HCC-1954 cell lines resulted in decreased invasiveness and migration, a downregulation of SLUG, SIP1, TWIST1, MMP11 and N-cadherin transcripts and an upregulation of E-cadherin transcripts. No significant changes were observed in the less aggressive cell line MCF-7. Bioinformatics tools identified several NF-κB binding sites along the promoters of SNAIL, SLUG, SIP1 and TWIST1 genes. Through chromatin immunoprecipitation and luciferase reporter assays, the NF-κB/p65 binding on TWIST1, SLUG and SIP1 promoter regions was confirmed. Thus, we suggest that NF-κB directly regulates the transcription of EMT-TF genes in breast cancer. Our findings may contribute to a greater understanding of the metastatic process of this neoplasia and highlight NF-κB as a potential target for breast cancer treatment.

  19. Hemangiopericytoma of the infratemporal fossa: progression toward malignancy in a 30-year history.

    PubMed

    Brucoli, Matteo; Giarda, Mariangela; Valente, Guido; Benech, Arnaldo

    2005-11-01

    Hemangiopericytoma is a rare vascular tumor first described by Stout and Murray in 1942 and characterized by a proliferation of Zimmermann's pericytes, smooth muscle cells arranged around blood vessels. This tumor presents as a slowly enlarging painless mass. Diagnosis with certainty is often a difficult one because of the close likeness with other spindle cell tumors; it requires the help of immunohistochemical techniques and sometimes ultrastructural techniques. Only 15% of hemangiopericytomas are localized in the cervicofacial region; in particular, occurrence in the infratemporal fossa is an exceptional occurrence. In this article, we report an unusual case of recidivate hemangiopericytoma of the infratemporal fossa that has progressively assumed features of malignancy over 30 years. The hemangiopericytoma relapse potentiality is elevated, even when the histologic characteristics of the tumor indicate a low aggressivity, and therefore every hemangiopericytoma must be considered to have malignant potential. In conclusion, the unpredictable behavior of hemangiopericytoma requires a radical primary treatment to avoid the risk of relapses that always are frequent and aggressive.

  20. Aggressive fibromatosis (desmoid tumors): definition, occurrence, pathology, diagnostic problems, clinical behavior, genetic background.

    PubMed

    Ferenc, Tomasz; Sygut, Jacek; Kopczyński, Janusz; Mayer, Magdalena; Latos-Bieleńska, Anna; Dziki, Adam; Kulig, Andrzej

    2006-01-01

    Aggressive fibromatosis, usually called desmoid tumor develops from muscle connective tissue, fasciae and aponeuroses. This neoplasm is composed of spindle (fibrocyte-like) cells. As regards the site, aggressive fibromatoses can be divided into: extra-abdominal in the area of the shoulder and pelvic girdle or chest and neck wall; abdominal in abdominal wall muscles; intra-abdominal concerning pelvis, mesentery connective tissue or retroperitoneal space. Desmoid tumor is a neoplasm which rarely turns malignant and is non-metastasizing but demonstrates ability to local infiltration into tissue and is characterized by high risk of recurrence (25-65%) after surgical treatment. Desmoid tumor etiology is uncertain. This neoplasm occurs in sporadic (idiopathic) form and is also associated with some familial neoplastic syndromes. Most sporadic cases of aggressive fibromatosis contain a somatic mutation in either the adenomatous polyposis coli (APC) or beta-catenin genes. Sporadic tumors are more frequent in women than in men from 2 : 1 to 5 : 1. In about 10-15 per cent of patients with familial adenomatous polyposis (FAP), aggressive fibromatosis is a parenteral manifestation of this familial syndrome conditioned by APC gene mutation. Abdomen injury--most frequently due to surgery is said to play an important role in the initiation of fibrous tissue proliferative process in the cases of abdominal and intra abdominal forms. High cells growth potential with relatively high local malignancy is observed in about 10% of cases with sporadic tumors as well as in those FAP-associated.

  1. Arginine inhibits the malignant transformation induced by interferon-gamma through the NF-κB-GCN2/eIF2α signaling pathway in mammary epithelial cells in vitro and in vivo.

    PubMed

    Ren, Wenbo; Li, Yang; Xia, Xiaojing; Guo, Wenfei; Zhai, Taiyu; Jin, Yuting; Che, Yanyi; Gao, Haidi; Duan, Xiumei; Ma, Hongxi; Huang, Tinghao; Huang, Jing; Lei, Liancheng

    2018-07-15

    Breast cancer is the most common female malignant tumors in the world. It seriously affects women's physical and mental health and the leading cause of cancer death among women. Our previous study demonstrated that diet-derived IFN-γ promoted the malignant transformation of primary bovine mammary epithelial cells by accelerating arginine depletion. The current study aimed to explore whether arginine addition could inhibit the degree of malignant transformation and its molecular mechanism. The results indicate that arginine addition could alleviate the malignant transformation of mammary epithelial cells induced by IFN-γ, including reducing cell proliferation, cell migration and colony formation, through the NF-κB-GCN2/eIF2α pathway. The in vivo experiments also consistently confirmed that arginine supplementation could significantly inhibit tumor growth in tumor-bearing mice. Furthermore, the investigation of the clinical data also revealed that the plasma or tissue from human breast cancer patients owned lower arginine level and higher IFN-γ level than that from patients with benign breast disease, showing IFN-γ may be a potential control target. Our findings demonstrate that arginine supplement could antagonize the malignant transformation of mammary epithelial cells induced by IFN-γ (nutritionally induced) both in vitro and in vivo, and IFN-γ was higher in breast cancer women. This might provide a novel strategy for the prevention and treatment of breast cancer regarding to nutrition. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Lung carcinoma mimicking malignant lymphoma: report of three cases.

    PubMed

    Matsui, K; Kitagawa, M; Wakaki, K; Masuda, S

    1993-10-01

    Three cases of lung carcinomas with unusual histologic appearances that have received little or no comment in the literature are presented. They were initially confused with malignant lymphoma because of a diffuse proliferation of relatively monotonous cells simulating large-cell immunoblastic lymphoma. In each case, the possibility of malignant lymphoma was excluded with confidence after the immunohistochemical study (leucocyte common antigen negative and cytokeratins positive), although with conventional microscopy several foci of cohesive groups of tumor cells were observed. The tumors were ranked at the clinical stage II or III when they were initially discovered, but all patients died of disease within 1 year. The present three tumors show an aggressive behavior and could be classified into a peculiar variant of 'large cell' carcinoma. It is necessary for surgical pathologists to have an idea of these variants of lung carcinoma in order to avoid erroneous diagnosis.

  3. Interleukin 21 - its potential role in the therapy of B-cell lymphomas.

    PubMed

    Bhatt, Shruti; Sarosiek, Kristopher A; Lossos, Izidore S

    2017-01-01

    Interleukin-21 (IL-21), a member of IL-2 cytokine family, has pleotropic biological effects on lymphoid and myeloid cells. During the past 15 years, since the discovery of IL-21, great advances have been made regarding its biological activity and the mechanisms controlling IL-21-mediated cellular responses, especially in hematological malignancies. Preclinical studies have shown that IL-21R is expressed on healthy and neoplastic B-cells and exogenous IL-21 can induce direct apoptosis of IL-21R expressing B-cell non-Hodgkin lymphomas (NHL), making it a potentially attractive anti-lymphoma therapy. However, in some hematological malignancies such as multiple myeloma, Hodgkin lymphoma and Burkitt lymphoma, IL-21 can induce proliferation of neoplastic B-cells. In NHL, the underlying mechanism of cell death was found to be different between the various subtypes, including activation of different JAK/STAT signal transduction pathways or other factors. Immunomodulatory effects of IL-21 have also been reported to contribute to its anti-tumor effects as described by earlier studies in solid tumors and B-cell associated malignancies. These effects are predominantly mediated by IL-21's ability to activate cytolytic activities by NK-cells and CD4 + /CD8 + T-cells. In this review, we provide an overview of IL-21's effects in NHL, results from clinical trials utilizing IL-21, and propose how IL-21 can be therapeutically exploited for treating these lymphomas.

  4. Bmi-1-targeting suppresses osteosarcoma aggressiveness through the NF-κB signaling pathway

    PubMed Central

    Liu, Jiaguo; Luo, Bin; Zhao, Meng

    2017-01-01

    Bone cancer is one of the most lethal malignancies and the specific causes of tumor initiation are not well understood. B-cell-specific Moloney murine leukemia virus integration site 1 protein (Bmi-1) has been reported to be associated with the initiation and progression of osteosarcoma, and as a prognostic indicator in the clinic. In the current study, a full-length antibody targeting Bmi-1 (AbBmi-1) was produced and the preclinical value of Bmi-1-targeted therapy was evaluated in bone carcinoma cells and tumor xenograft mice. The results indicated that the Bmi-1 expression level was markedly upregulated in bone cancer cell lines, and inhibition of Bmi-1 by AbBmi-1 reduced the invasiveness and migration of osteosarcoma cells. Overexpression of Bmi-1 promoted proliferation and angiogenesis, and increased apoptosis resistance induced by cisplatin via the nuclear factor-κB (NF-κB) signal pathway. In addition, AbBmi-1 treatment inhibited the tumorigenicity of osteosarcoma cells in vivo. Furthermore, AbBmi-1 blocked NF-κB signaling and reduced MMP-9 expression. Furthermore, Bmi-1 promoted osteosarcoma tumor growth, whereas AbBmi-1 significantly inhibited osteosarcoma tumor growth in vitro and in vivo. Notably, AbBmi-1 decreased the percentages of Ki67-positive cells and terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells in tumors compared with Bmi-1-treated and PBS controls. Notably, MMP-9 and NF-κB expression were downregulated by treatment with AbBmi-1 in MG-63 osteosarcoma cells. In conclusion, the data provides evidence that AbBmi-1 inhibited the progression of osteosarcoma, suggesting that AbBmi-1 may be a novel anti-cancer agent through the inhibition of Bmi-1 via activating the NF-κB pathway in osteosarcoma. PMID:28983587

  5. Ion channel expression patterns in glioblastoma stem cells with functional and therapeutic implications for malignancy.

    PubMed

    Pollak, Julia; Rai, Karan G; Funk, Cory C; Arora, Sonali; Lee, Eunjee; Zhu, Jun; Price, Nathan D; Paddison, Patrick J; Ramirez, Jan-Marino; Rostomily, Robert C

    2017-01-01

    Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like cells (GSCs) are a source of tumor formation and recurrence in glioblastoma multiforme, a highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in this population. However, little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that is also associated with distinct gene mutation signatures. In support of potential clinical relevance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally, genetic knockdown as well as pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental responses to loss-of-function. Together, the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance.

  6. Ion channel expression patterns in glioblastoma stem cells with functional and therapeutic implications for malignancy

    PubMed Central

    Pollak, Julia; Rai, Karan G.; Funk, Cory C.; Arora, Sonali; Lee, Eunjee; Zhu, Jun; Price, Nathan D.; Paddison, Patrick J.; Ramirez, Jan-Marino; Rostomily, Robert C.

    2017-01-01

    Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like cells (GSCs) are a source of tumor formation and recurrence in glioblastoma multiforme, a highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in this population. However, little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that is also associated with distinct gene mutation signatures. In support of potential clinical relevance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally, genetic knockdown as well as pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental responses to loss-of-function. Together, the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance. PMID:28264064

  7. Homing of human B cells to lymphoid organs and B-cell lymphoma engraftment are controlled by cell adhesion molecule JAM-C.

    PubMed

    Doñate, Carmen; Ody, Christiane; McKee, Thomas; Ruault-Jungblut, Sylvie; Fischer, Nicolas; Ropraz, Patricia; Imhof, Beat A; Matthes, Thomas

    2013-01-15

    Junctional adhesion molecule C (JAM-C) is expressed by vascular endothelium and human but not mouse B lymphocytes. The level of JAM-C expression defines B-cell differentiation stages and allows the classification of marginal zone-derived (JAM-C-positive) and germinal center-derived (JAM-C-negative) B-cell lymphomas. In the present study, we investigated the role of JAM-C in homing of human B cells, using a xenogeneic nonobese diabetic/severe combined immunodeficient mouse model. Treatment with anti-JAM-C antibodies in short-term experiments reduced migration of normal and malignant JAM-C-expressing B cells to bone marrow, lymph nodes, and spleen. Blocking homing to the spleen is remarkable, as most other antiadhesion antibodies reduce homing of B cells only to bone marrow and lymph nodes. Long-term administration of anti-JAM-C antibodies prevented engraftment of JAM-Cpos lymphoma cells in bone marrow, spleen, and lymph nodes of mice. Plasmon resonance studies identified JAM-B as the major ligand for JAM-C, whereas homotypic JAM-C interactions remained at background levels. Accordingly, anti-JAM-C antibodies blocked adhesion of JAM-C-expressing B cells to their ligand JAM-B, and immunofluorescence analysis showed the expression of JAM-B on murine and human lymphatic endothelial cells. Targeting JAM-C could thus constitute a new therapeutic strategy to prevent lymphoma cells from reaching supportive microenvironments not only in the bone marrow and lymph nodes but also in the spleen.

  8. Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study.

    PubMed

    Cruz, Conrad Russell Y; Micklethwaite, Kenneth P; Savoldo, Barbara; Ramos, Carlos A; Lam, Sharon; Ku, Stephanie; Diouf, Oumar; Liu, Enli; Barrett, A John; Ito, Sawa; Shpall, Elizabeth J; Krance, Robert A; Kamble, Rammurti T; Carrum, George; Hosing, Chitra M; Gee, Adrian P; Mei, Zhuyong; Grilley, Bambi J; Heslop, Helen E; Rooney, Cliona M; Brenner, Malcolm K; Bollard, Catherine M; Dotti, Gianpietro

    2013-10-24

    Autologous T cells expressing a CD19-specific chimeric antigen receptor (CD19.CAR) are active against B-cell malignancies, but it is unknown whether allogeneic CD19.CAR T cells are safe or effective. After allogeneic hematopoietic stem cell transplantation (HSCT), infused donor-derived virus-specific T cells (VSTs) expand in vivo, persist long term, and display antiviral activity without inducing graft-vs-host disease; therefore, we determined whether donor VSTs, engineered to express CD19.CAR, retained the characteristics of nonmanipulated allogeneic VSTs while gaining antitumor activity. We treated 8 patients with allogeneic (donor-derived) CD19.CAR-VSTs 3 months to 13 years after HSCT. There were no infusion-related toxicities. VSTs persisted for a median of 8 weeks in blood and up to 9 weeks at disease sites. Objective antitumor activity was evident in 2 of 6 patients with relapsed disease during the period of CD19.CAR-VST persistence, whereas 2 patients who received cells while in remission remain disease free. In 2 of 3 patients with viral reactivation, donor CD19.CAR-VSTs expanded concomitantly with VSTs. Hence CD19.CAR-VSTs display antitumor activity and, because their number may be increased in the presence of viral stimuli, earlier treatment post-HSCT (when lymphodepletion is greater and the incidence of viral infection is higher) or planned vaccination with viral antigens may enhance disease control.

  9. Squamous cell cancer (image)

    MedlinePlus

    Squamous cell cancer involves cancerous changes to the cells of the middle portion of the epidermal skin layer. It is ... malignant tumor, and is more aggressive than basal cell cancer, but still may be relatively slow-growing. It ...

  10. Malignant melanocytic neoplasm of pancreas with liver metastasis: Is it malignant melanoma or clear cell sarcoma?

    PubMed

    Kodiatte, Thomas Alex; George, Sam Varghese; Chacko, Raju Titus; Ramakrishna, Banumathi

    2017-01-01

    Malignant melanocytic neoplasm, usually seen in soft tissues, is rare in a visceral location and presents as a diagnostic dilemma. We present a case of pancreatic malignant melanocytic neoplasm with liver metastasis. A 58-year-old man presented with left upper abdominal swelling and loss of appetite. Imaging revealed a large mass arising from the pancreatic tail, and this was diagnosed as malignant neoplasm with melanocytic differentiation on biopsy with the possible differentials of malignant melanoma, clear cell sarcoma (CCS), and perivascular epithelioid cell neoplasm. The patient underwent distal pancreatectomy and splenectomy for the same. Follow-up imaging 6 months later showed a metastatic liver lesion, for which he also underwent a liver resection. BRAF mutational analysis was found to be negative. Both CCS and malignant melanoma have similar morphological features and melanocytic differentiation, but each harbors a distinct genetic background. Differentiation of both has diagnostic and therapeutic implications.

  11. DSP30 and interleukin-2 as a mitotic stimulant in B-cell disorders including those with a low disease burden.

    PubMed

    Dun, Karen A; Riley, Louise A; Diano, Giuseppe; Adams, Leanne B; Chiu, Eleanor; Sharma, Archna

    2018-05-01

    Chromosome abnormalities detected during cytogenetic investigations for B-cell malignancy offer prognostic information that can have wide ranging clinical impacts on patients. These impacts may include monitoring frequency, treatment type, and disease staging level. The use of the synthetic oligonucleotide DSP30 combined with interleukin 2 (IL2) has been described as an effective mitotic stimulant in B-cell disorders, not only in chronic lymphocytic leukemia (CLL) but also in a range of other B-cell malignancies. Here, we describe the comparison of two B-cell mitogens, lipopolysaccharide (LPS), and DSP30 combined with IL2 as mitogens in a range of common B-cell disorders excluding CLL. The results showed that DSP30/IL2 was an effective mitogen in mature B-cell disorders, revealing abnormal cytogenetic results in a range of B-cell malignancies. The abnormality rate increased when compared to the use of LPS to 64% (DSP30/IL2) from 14% (LPS). In a number of cases the disease burden was proportionally very low, less than 10% of white cells. In 37% of these cases, the DSP30 culture revealed abnormal results. Importantly, we also obtained abnormal conventional cytogenetics results in 3 bone marrow cases in which immunophenotyping showed an absence of an abnormal B-cell clone. In these cases, the cytogenetics results correlated with the provisional diagnosis and altered their staging level. The use of DSP30 and IL2 is recommended for use in many B-cell malignancies as an effective mitogen and their use has been shown to enable successful culture of the malignant clone, even at very low levels of disease. © 2018 Wiley Periodicals, Inc.

  12. CD79B limits response of diffuse large B cell lymphoma to ibrutinib.

    PubMed

    Kim, Joo Hyun; Kim, Won Seog; Ryu, Kyungju; Kim, Seok Jin; Park, Chaehwa

    2016-01-01

    Blockage of B cell receptor signaling with ibrutinib presents a promising clinical approach for treatment of B-cell malignancies. However, many patients show primary resistance to the drug or develop secondary resistance. In the current study, cDNA microarray and Western blot analyses revealed CD79B upregulation in the activated B cell-like diffuse large B-cell lymphoma (ABC-DLBCL) that display differential resistance to ibrutinib. CD79B overexpression was sufficient to induce resistance to ibrutinib and enhanced AKT and MAPK activation, indicative of an alternative mechanism underlying resistance. Conversely, depletion of CD79B sensitized primary refractory cells to ibrutinib and led to reduced phosphorylation of AKT or MAPK. Combination of the AKT inhibitor or the MAPK inhibitor with ibrutinib resulted in circumvention of both primary and acquired resistance in ABC-DLBCL. Our data collectively indicate that CD79B overexpression leading to activation of AKT/MAPK is a potential mechanism underlying primary ibrutinib resistance in ABC-DLBCL, and support its utility as an effective biomarker to predict therapeutic response to ibrutinib.

  13. Large anaplastic spinal B-cell lymphoma in a cat.

    PubMed

    Flatland, Bente; Fry, Michael M; Newman, Shelley J; Moore, Peter F; Smith, Joanne R; Thomas, William B; Casimir, Roslyn H

    2008-12-01

    A 5-year-old female spayed domestic shorthair cat was presented for evaluation of tetraparesis. The neurologic lesion was localized to the cervical spinal segment (C1-C6). A left axillary mass was identified, and the results of fine needle aspiration cytology indicated malignant round cell neoplasia of possible histiocytic origin. The cells were large, had marked anisocytosis and anisokaryosis, occasional bi- and multinucleation, and cytoplasmic vacuolation. Euthanasia was performed due to the poor prognosis associated with severe, progressive neurologic signs and a malignant neoplasm. Postmortem examination revealed spinal cord compression and an extradural mass at the C1-C2 spinal segment, with neoplastic cells in the adjacent vertebral bodies, surrounding skeletal muscle, left axillary lymph node, and bone marrow from the right femur. The initial histologic diagnosis was anaplastic sarcoma, but immunohistochemical results indicated the cells were CD20+ and CD45R+ and CD3-, compatible with a diagnosis of B-cell lymphoma. CD79a staining was nonspecific and uninterpretable. Weak to moderate CD18 positivity and E-cadherin positivity were also observed. Clonality of the B-cell population could not be demonstrated using PCR testing for antigen receptor gene rearrangement. To the authors' knowledge, this is the first reported case of a feline spinal anaplastic B-cell lymphoma exhibiting bi- and multinucleated cells. The prognostic significance of this cell morphology and immunophenotype is unknown.

  14. Bilateral primary malignant lymphoma of the breast.

    PubMed

    Shpitz, B; Witz, M; Kaufman, Z; Griffel, B; Manor, Y; Dinbar, A

    1985-08-01

    A rare case of bilateral primary malignant lymphoma of breast in a 76 year old woman is presented. The lesion was examined by electron microscopy and immunochemistry. The diagnosis of primary malignant lymphoma remains a diagnosis by exclusion and requires extensive work-up to exclude widespread malignant process. The behaviour of this malignancy tends to be an aggressive one and the prognosis is generally poor.

  15. Early loss of Crebbp confers malignant stem cell properties on lymphoid progenitors.

    PubMed

    Horton, Sarah J; Giotopoulos, George; Yun, Haiyang; Vohra, Shabana; Sheppard, Olivia; Bashford-Rogers, Rachael; Rashid, Mamunur; Clipson, Alexandra; Chan, Wai-In; Sasca, Daniel; Yiangou, Loukia; Osaki, Hikari; Basheer, Faisal; Gallipoli, Paolo; Burrows, Natalie; Erdem, Ayşegül; Sybirna, Anastasiya; Foerster, Sarah; Zhao, Wanfeng; Sustic, Tonci; Petrunkina Harrison, Anna; Laurenti, Elisa; Okosun, Jessica; Hodson, Daniel; Wright, Penny; Smith, Ken G; Maxwell, Patrick; Fitzgibbon, Jude; Du, Ming Q; Adams, David J; Huntly, Brian J P

    2017-09-01

    Loss-of-function mutations of cyclic-AMP response element binding protein, binding protein (CREBBP) are prevalent in lymphoid malignancies. However, the tumour suppressor functions of CREBBP remain unclear. We demonstrate that loss of Crebbp in murine haematopoietic stem and progenitor cells (HSPCs) leads to increased development of B-cell lymphomas. This is preceded by accumulation of hyperproliferative lymphoid progenitors with a defective DNA damage response (DDR) due to a failure to acetylate p53. We identify a premalignant lymphoma stem cell population with decreased H3K27ac, which undergoes transcriptional and genetic evolution due to the altered DDR, resulting in lymphomagenesis. Importantly, when Crebbp is lost later in lymphopoiesis, cellular abnormalities are lost and tumour generation is attenuated. We also document that CREBBP mutations may occur in HSPCs from patients with CREBBP-mutated lymphoma. These data suggest that earlier loss of Crebbp is advantageous for lymphoid transformation and inform the cellular origins and subsequent evolution of lymphoid malignancies.

  16. Distinct circuits underlie the effects of 5-HT1B receptors on aggression and impulsivity

    PubMed Central

    Nautiyal, Katherine M.; Tanaka, Kenji F.; Barr, Mary M.; Tritschler, Laurent; Le Dantec, Yannick; David, Denis J.; Gardier, Alain M.; Blanco, Carlos; Hen, René; Ahmari, Susanne E.

    2015-01-01

    Summary Impulsive and aggressive behaviors are both modulated by serotonergic signaling, specifically through the serotonin 1B receptor (5-HT1BR). 5-HT1BR knockout mice show increased aggression and impulsivity, and 5-HT1BR polymorphisms are associated with aggression and drug addiction in humans. To dissect the mechanisms by which the 5-HT1BR affects these phenotypes, we developed a mouse model to spatially and temporally regulate 5-HT1BR expression. Our results demonstrate that forebrain 5-HT1B heteroreceptors expressed during an early postnatal period contribute to the development of the neural systems underlying adult aggression. However, distinct heteroreceptors acting during adulthood are involved in mediating impulsivity. Correlating with the impulsivity, dopamine in the nucleus accumbens is elevated in the absence of 5-HT1BRs, and normalized following adult rescue of the receptor. Overall, these data show that while adolescent expression of 5-HT1BRs influences aggressive behavior, a distinct set of 5-HT1B receptors modulate impulsive behavior during adulthood. PMID:25892302

  17. Generation of B-cell chronic lymphocytic leukemia (B-CLL)-reactive T-cell lines and clones from HLA class I-matched donors using modified B-CLL cells as stimulators: implications for adoptive immunotherapy.

    PubMed

    Hoogendoorn, M; Wolbers, J Olde; Smit, W M; Schaafsma, M R; Barge, R M Y; Willemze, R; Falkenburg, J H F

    2004-07-01

    Allogeneic stem cell transplantation following reduced-intensity conditioning is being evaluated in patients with advanced B-cell chronic lymphocytic leukemia (B-CLL). The curative potential of this procedure is mediated by donor-derived alloreactive T cells, resulting in a graft-versus-leukemia effect. However, B-CLL may escape T-cell-mediated immune reactivity since these cells lack expression of costimulatory molecules. We examined the most optimal method to transform B-CLL cells into efficient antigen-presenting cells (APC) using activating cytokines, by triggering toll-like receptors (TLRs) using microbial pathogens and by CD40 stimulation with CD40L-transfected fibroblasts. CD40 activation in the presence of IL-4 induced strongest upregulation of costimulatory and adhesion molecules on B-CLL cells and induced the production of high amounts of IL-12 by the leukemic cells. In contrast to primary B-CLL cells as stimulator cells, these malignant APCs were capable of inducing the generation of B-CLL-reactive CD8(+) CTL lines and clones from HLA class I-matched donors. These CTL lines and clones recognized and killed primary B-CLL as well as patient-derived lymphoblasts, but not donor cells. These results show the feasibility of ex vivo generation of B-CLL-reactive CD8(+) CTLs. This opens new perspectives for adoptive immunotherapy, following allogeneic stem cell transplantation in patients with advanced B-CLL.

  18. Prostaglandin E2 regulates B cell proliferation through a candidate tumor suppressor, Ptger4.

    PubMed

    Murn, Jernej; Alibert, Olivier; Wu, Ning; Tendil, Simon; Gidrol, Xavier

    2008-12-22

    B cell receptor (BCR) signaling contributes to the pathogenesis of B cell malignancies, and most B cell lymphomas depend on BCR signals for survival. Identification of genes that restrain BCR-mediated proliferation is therefore an important goal toward improving the therapy of B cell lymphoma. Here, we identify Ptger4 as a negative feedback regulator of proliferation in response to BCR signals and show that its encoded EP4 receptor is a principal molecule conveying the growth-suppressive effect of prostaglandin E2 (PGE2). Stable knockdown of Ptger4 in B cell lymphoma markedly accelerated tumor spread in mice, whereas Ptger4 overexpression yielded significant protection. Mechanistically, we show that the intrinsic activity of Ptger4 and PGE2-EP4 signaling target a similar set of activating genes, and find Ptger4 to be significantly down-regulated in human B cell lymphoma. We postulate that Ptger4 functions in B cells as a candidate tumor suppressor whose activity is regulated by PGE2 in the microenvironment. These findings suggest that targeting EP4 receptor for prostaglandin may present a novel strategy for treatment of B cell malignancies.

  19. Prostaglandin E2 regulates B cell proliferation through a candidate tumor suppressor, Ptger4

    PubMed Central

    Murn, Jernej; Alibert, Olivier; Wu, Ning; Tendil, Simon; Gidrol, Xavier

    2008-01-01

    B cell receptor (BCR) signaling contributes to the pathogenesis of B cell malignancies, and most B cell lymphomas depend on BCR signals for survival. Identification of genes that restrain BCR-mediated proliferation is therefore an important goal toward improving the therapy of B cell lymphoma. Here, we identify Ptger4 as a negative feedback regulator of proliferation in response to BCR signals and show that its encoded EP4 receptor is a principal molecule conveying the growth-suppressive effect of prostaglandin E2 (PGE2). Stable knockdown of Ptger4 in B cell lymphoma markedly accelerated tumor spread in mice, whereas Ptger4 overexpression yielded significant protection. Mechanistically, we show that the intrinsic activity of Ptger4 and PGE2–EP4 signaling target a similar set of activating genes, and find Ptger4 to be significantly down-regulated in human B cell lymphoma. We postulate that Ptger4 functions in B cells as a candidate tumor suppressor whose activity is regulated by PGE2 in the microenvironment. These findings suggest that targeting EP4 receptor for prostaglandin may present a novel strategy for treatment of B cell malignancies. PMID:19075289

  20. DNA Cytometry and Nuclear Morphometry in Ovarian Benign, Borderline and Malignant Tumors

    PubMed Central

    el Din, Amina A. Gamal; Badawi, Manal A.; Aal, Shereen E. Abdel; Ibrahim, Nihad A.; Morsy, Fatma A.; Shaffie, Nermeen M.

    2015-01-01

    BACKDROUND: Ovarian carcinoma is a leading cause of death in gynecological malignancy. Ovarian surface epithelial serous and mucinous tumours are classified as benign, borderline, and malignant. The identification of borderline tumours most likely to act aggressively remains an important clinical issue. AIM: This work aimed to study DNA ploidy and nuclear area in ovarian serous and mucinous; benign, borderline and malignant tumours. MATERIAL AND METHODS: This study included forty ovarian (23 serous and 17 mucinous) tumours. Paraffin blocks were sectioned; stained with haematoxylin and eosin for histopathologic and morphometric studies and with blue feulgen for DNA analysis. RESULTS: All four serous and six out of nine mucinous benign tumours were diploid. All eight serous and five mucinous malignant tumours were aneuploid. Nine of eleven (81.8%) serous and all three mucinous borderline tumours were aneuploid. There were highly significant differences in mean aneuploid cells percentage between serous benign (1.5%), borderline (45.6%) and malignant (74.5%) (p = 0.0001) and between mucinous benign (13.2%) and both borderline (63.7%) and malignant (68.4%) groups (p = 0.0001). There were significant differences in nuclear area between serous benign (26.191%), borderline (45.619%) and malignant (67.634 %) and a significant positive correlation between mean percentage aneuploid value and mean nuclear area in all serous and mucinous groups. CONCLUSION: We suggest that DNA ploidy and nuclear area combined, may be adjuncts to histopathology; in ovarian serous and mucinous benign, borderline and malignant neoplasms; identifying the aggressive borderline tumours. PMID:27275284

  1. Highly Tumorigenic Diffuse Large B Cell Lymphoma Cells Are Produced by Coculture with Stromal Cells.

    PubMed

    Lin, Zhiguang; Chen, Bobin; Wu, Ting; Xu, Xiaoping

    2018-05-23

    Diffuse large B cell lymphoma (DLBCL) is heterogeneous. We aimed to explore how tumor microenvironment promotes lymphoma cell aggressiveness and heterogeneity. We created a coculture system using human DLBCL cells and mouse bone marrow stromal cells. Proliferative capacity, drug resistance, clonogenicity, and tumorigenicity were compared in lymphoma cells from the coculture system and lymphoma cells cultured alone. Expression of Notch signaling associated genes was evaluated using real-time reverse transcriptase PCR and Western blot. Lymphoma cells in the coculture system differentiated into a suspended cell group and an adherent cell group. They acquired a stronger proliferative capacity and drug resistance than lymphoma cells cultured alone, and differences existed between the adherent cell and suspended cell groups. The suspended cell group acquired the most powerful clonogenic and tumorigenic potential. However, Notch3 was exclusively expressed in the adherent lymphoma cell group and the use of N-[N-(3, 5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester, an inhibitor of Notch pathway, could abolish the emergence of highly aggressive lymphoma cells. Highly tumorigenic lymphoma cells could be generated by coculture with stromal cells, and it was dependent on Notch3 expression in the adjacent lymphoma cells through interaction with stromal cells. © 2018 S. Karger AG, Basel.

  2. Adoptive cell transfer therapy for malignant gliomas.

    PubMed

    Ishikawa, Eiichi; Takano, Shingo; Ohno, Tadao; Tsuboi, Koji

    2012-01-01

    To date, various adoptive immunotherapies have been attempted for treatment of malignant gliomas using nonspecific and/or specific effector cells. Since the late 1980s, with the development of rIL-2, the efficacy of lymphokine-activated killer (LAK) cell therapy with or without rIL-2 for malignant gliomas had been tested with some modifications in therapeutic protocols. With advancements in technology, ex vivo expanded tumor specific cytotoxic T-lymphocytes (CTL) or those lineages were used in clinical trials with higher tumor response rates. In addition, combinations of those adoptive cell transfer using LAK cells, CTLs or natural killer (NK) cells with autologous tumor vaccine (ATV) therapy were attempted. Also, a strategy of high-dose (or lymphodepleting) chemotherapy followed by adoptive cell transfer has been drawing attentions recently. The most important role of these clinical studies using cell therapy was to prove that these ex vivo expanded effector cells could kill tumor cells in vivo. Although recent clinical results could demonstrate radiologic tumor shrinkage in a number of cases, cell transfer therapy alone has been utilized less frequently, because of the high cost of ex vivo cell expansion, the short duration of antitumor activity in vivo, and the recent shift of interest to vaccine immunotherapy. Nevertheless, NK cell therapy using specific feeder cells or allergenic NK cell lines have potentials to be a good choice of treatment because of easy ex vivo expansion and their efficacy especially when combined with vaccine therapy as they are complementary to each other. Also, further studies are expected to clarify the efficacy of the high-dose chemotherapy followed by a large scale cell transfer therapy as a new therapeutic strategy for malignant gliomas.

  3. Reviewing the current evidence supporting early B-cells as the cellular origin of Merkel cell carcinoma.

    PubMed

    Sauer, C M; Haugg, A M; Chteinberg, E; Rennspiess, D; Winnepenninckx, V; Speel, E-J; Becker, J C; Kurz, A K; Zur Hausen, A

    2017-08-01

    Merkel cell carcinoma (MCC) is a highly malignant skin cancer characterized by early metastases and poor survival. Although MCC is a rare malignancy, its incidence is rapidly increasing in the U.S. and Europe. The discovery of the Merkel cell polyomavirus (MCPyV) has enormously impacted our understanding of its etiopathogenesis and biology. MCCs are characterized by trilinear differentiation, comprising the expression of neuroendocrine, epithelial and B-lymphoid lineage markers. To date, it is generally accepted that the initial assumption of MCC originating from Merkel cells (MCs) is unlikely. This is owed to their post-mitotic character, absence of MCPyV in MCs and discrepant protein expression pattern in comparison to MCC. Evidence from mouse models suggests that epidermal/dermal stem cells might be of cellular origin in MCC. The recently formulated hypothesis of MCC originating from early B-cells is based on morphology, the consistent expression of early B-cell lineage markers and the finding of clonal immunoglobulin chain rearrangement in MCC cells. In this review we elaborate on the cellular ancestry of MCC, the identification of which could pave the way for novel and more effective therapeutic regimens. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Ectopic expression of a novel CD22 splice-variant regulates survival and proliferation in malignant T cells from cutaneous T cell lymphoma (CTCL) patients

    PubMed Central

    Bagdonaite, Ieva; Wandall, Hans H.; Litvinov, Ivan V.; Nastasi, Claudia; Becker, Jürgen C.; Dabelsteen, Sally; Geisler, Carsten; Bonefeld, Charlotte M.; Zhang, Qian; Wasik, Mariusz A.; Zhou, Youwen; Sasseville, Denis; Ødum, Niels; Woetmann, Anders

    2015-01-01

    CD22 is a member of the Sialic acid-binding Ig-like lectin (Siglec) family of lectins described to be exclusively present in B lymphocytes and B cell-derived neoplasms. Here, we describe a novel splice form of CD22 (designated CD22ΔN), which lacks the N-terminal domain as demonstrated by exon-specific RT-PCR and differential recognition by anti-CD22 antibodies. Importantly, CD22ΔN mRNA is expressed in skin lesions from 39 out of 60 patients with cutaneous T cell lymphoma (CTCL), whereas few patients (6 out of 60) expresses full-length, wild type CD22 (CD22wt). In addition, IHC staining of tumor biopsies confirmed the expression of CD22 in CD4+ T cells. Moreover, four out of four malignant T cell lines express CD22: Two cell lines express CD22ΔN (MyLa2059 and PB2B) and two express CD22wt (MAC-1 and MAC-2A). siRNA-mediated silencing of CD22 impairs proliferation and survival of malignant T cells, demonstrating a functional role for both CD22ΔN and CD22wt in these cells. In conclusion, we provide the first evidence for an ectopic expression of CD22 and a novel splice variant regulating malignant proliferation and survival in CTCL. Analysis of expression and function of CD22 in cutaneous lymphomas may form the basis for development of novel targeted therapies for our patients. PMID:25957418

  5. Ectopic expression of a novel CD22 splice-variant regulates survival and proliferation in malignant T cells from cutaneous T cell lymphoma (CTCL) patients.

    PubMed

    Bagdonaite, Ieva; Wandall, Hans H; Litvinov, Ivan V; Nastasi, Claudia; Becker, Jürgen C; Dabelsteen, Sally; Geisler, Carsten; Bonefeld, Charlotte M; Zhang, Qian; Wasik, Mariusz A; Zhou, Youwen; Sasseville, Denis; Ødum, Niels; Woetmann, Anders

    2015-06-10

    CD22 is a member of the Sialic acid-binding Ig-like lectin (Siglec) family of lectins described to be exclusively present in B lymphocytes and B cell-derived neoplasms. Here, we describe a novel splice form of CD22 (designated CD22∆N), which lacks the N-terminal domain as demonstrated by exon-specific RT-PCR and differential recognition by anti-CD22 antibodies. Importantly, CD22∆N mRNA is expressed in skin lesions from 39 out of 60 patients with cutaneous T cell lymphoma (CTCL), whereas few patients (6 out of 60) expresses full-length, wild type CD22 (CD22wt). In addition, IHC staining of tumor biopsies confirmed the expression of CD22 in CD4+ T cells. Moreover, four out of four malignant T cell lines express CD22: Two cell lines express CD22∆N (MyLa2059 and PB2B) and two express CD22wt (MAC-1 and MAC-2A). siRNA-mediated silencing of CD22 impairs proliferation and survival of malignant T cells, demonstrating a functional role for both CD22∆N and CD22wt in these cells.In conclusion, we provide the first evidence for an ectopic expression of CD22 and a novel splice variant regulating malignant proliferation and survival in CTCL. Analysis of expression and function of CD22 in cutaneous lymphomas may form the basis for development of novel targeted therapies for our patients.

  6. Immunotherapy for B-Cell Neoplasms using T Cells expressing Chimeric Antigen Receptors

    PubMed Central

    Boulassel, Mohamed-Rachid; Galal, Ahmed

    2012-01-01

    Immunotherapy with T cells expressing chimeric antigen receptors (CAR) is being evaluated as a potential treatment for B-cell neoplasms. In recent clinical trials it has shown promising results. As the number of potential candidate antigens expands, the choice of suitable target antigens becomes more challenging to design studies and to assess optimal efficacy of CAR. Careful evaluation of candidate target antigens is required to ensure that T cells expressing CAR will preferentially kill malignant cells with a minimal toxicity against normal tissues. B cells express specific surface antigens that can theoretically act as targets for CAR design. Although many of these antigens can stimulate effective cellular immune responses in vivo, their implementation in clinical settings remains a challenge. Only targeted B-cell antigens CD19 and CD20 have been tested in clinical trials. This article reviews exploitable B cell surface antigens for CAR design and examines obstacles that could interfere with the identification of potentially useful cellular targets. PMID:23269948

  7. Circulating CXCR5+CD4+ T cells assist in the survival and growth of primary diffuse large B cell lymphoma cells through interleukin 10 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cha, Zhanshan; Qian, Guangfang; Zang, Yan

    Diffuse large B cell lymphoma (DLBCL) is a common and aggressive cancer caused by the malignant transformation of B cells. Although it has been established that the follicular helper T (Tfh) cells play a central role in B cell development, little information is available on their involvement in DLBCL pathogenesis. We studied the role of the peripheral Tfh equivalent, the CXCR5{sup +} CD4{sup +} T cells, in DLBCL. Data showed that compared to CXCR5{sup -} CD4{sup +} T cells, CXCR5{sup +} CD4{sup +} T cells were significantly more effective at promoting the proliferation as well as inhibiting the apoptosis ofmore » primary autologous DLBCL tumor cells. Surprisingly, we found that at equal cell numbers, CXCR5{sup +} CD4{sup +} T cells in DLBCL patients secreted significantly less interleukin (IL)-21 than CXCR5{sup -} CD4{sup +} T cells, while the level of IL-10 secretion was significant elevated in the CXCR5{sup +} compartment compared to the CXCR5{sup -} compartment. Neutralization of IL-10 in the primary DLBCL-CXCR5{sup +} CD4{sup +} T cell coculture compromised the CXCR5{sup +} CD4{sup +} T cell-mediated pro-tumor effects, in a manner that was dependent on the concentration of anti-IL-10 antibodies. The CXCR5{sup +} compartment also contained significantly lower frequencies of cytotoxic CD4{sup +} T cells than the CXCR5{sup -} compartment. In conclusion, our investigations discovered a previously unknown pro-tumor role of CXCR5-expressing circulating CD4{sup +} T cells, which assisted the survival and proliferation of primary DLBCL cells through IL-10. - Highlights: • We studied the role of the peripheral Tfh in DLBCL. • Tfh were effective at promoting the proliferation of primary DLBCL tumor cells. • Tfh were effective at inhibiting the apoptosis of primary DLBCL tumor cells. • IL-10 secretion in Tfh was significant elevated in DLBCL. • Neutralization of IL-10 compromised Tfh-mediated pro-tumor effects.« less

  8. A c-Myc and surface CD19 signaling amplification loop promotes B cell lymphoma development and progression in mice.

    PubMed

    Poe, Jonathan C; Minard-Colin, Veronique; Kountikov, Evgueni I; Haas, Karen M; Tedder, Thomas F

    2012-09-01

    Malignant B cells responding to external stimuli are likely to gain a growth advantage in vivo. These cells may therefore maintain surface CD19 expression to amplify transmembrane signals and promote their expansion and survival. To determine whether CD19 expression influences this process, Eμ-Myc transgenic (c-Myc(Tg)) mice that develop aggressive and lethal B cell lymphomas were made CD19 deficient (c-Myc(Tg)CD19⁻/⁻). Compared with c-Myc(Tg) and c-Myc(Tg)CD19⁺/⁻ littermates, the median life span of c-Myc(Tg)CD19⁻/⁻ mice was prolonged by 81-83% (p < 0.0001). c-Myc(Tg)CD19⁻/⁻ mice also lived 42% longer than c-Myc(Tg) littermates following lymphoma detection (p < 0.01). Tumor cells in c-Myc(Tg) and c-Myc(Tg)CD19⁻/⁻ mice were B lineage derived, had a similar phenotype with a large blastlike appearance, invaded multiple lymphoid tissues, and were lethal when adoptively transferred into normal recipient mice. Importantly, reduced lymphomagenesis in c-Myc(Tg)CD19⁻/⁻ mice was not due to reductions in early B cell numbers prior to disease onset. In mechanistic studies, constitutive c-Myc expression enhanced CD19 expression and phosphorylation on active sites. Reciprocally, CD19 expression in c-Myc(Tg) B cells enhanced c-Myc phosphorylation at regulatory sites, sustained higher c-Myc protein levels, and maintained a balance of cyclin D2 expression over that of cyclin D3. These findings define a new and novel c-Myc:CD19 regulatory loop that positively influences B cell transformation and lymphoma progression.

  9. Viral Carcinogenesis Beyond Malignant Transformation: EBV in the Progression of Human Cancers

    PubMed Central

    Müller-Coan, Bárbara G.; Pagano, Joseph S.

    2017-01-01

    Cancer progression begins when malignant cells colonize adjacent sites, and it is characterized by increasing tumor heterogeneity, invasion and dissemination of cancer cells. Clinically, progression is the most relevant stage in the natural history of cancers. A given virus is usually regarded as oncogenic because of its ability to induce malignant transformation of cells. Nonetheless, oncogenic viruses may also be important for the progression of infection-associated cancers. Recently this hypothesis has been addressed because of studies on the contribution of the Epstein–Barr virus (EBV) to the aggressiveness of nasopharyngeal carcinoma (NPC). Several EBV products modulate cancer progression phenomena, such as the epithelial–mesenchymal transition, cell motility, invasiveness, angiogenesis, and metastasis. In this regard, there are compelling data about the effects of EBV latent membrane proteins (LMPs) and EBV nuclear antigens (EBNAs), as well as nontranslated viral RNAs, such as the EBV-encoded small nonpolyadenylated RNAs (EBERs) and viral microRNAs, notably EBV miR-BARTs. The available data on the mechanisms and players involved in the contribution of EBV infection to the aggressiveness of NPC are discussed in this review. Overall, this conceptual framework may be valuable for the understanding of the contribution of some infectious agents in the progression of cancers. PMID:27068530

  10. Mast cells mediate malignant pleural effusion formation.

    PubMed

    Giannou, Anastasios D; Marazioti, Antonia; Spella, Magda; Kanellakis, Nikolaos I; Apostolopoulou, Hara; Psallidas, Ioannis; Prijovich, Zeljko M; Vreka, Malamati; Zazara, Dimitra E; Lilis, Ioannis; Papaleonidopoulos, Vassilios; Kairi, Chrysoula A; Patmanidi, Alexandra L; Giopanou, Ioanna; Spiropoulou, Nikolitsa; Harokopos, Vaggelis; Aidinis, Vassilis; Spyratos, Dionisios; Teliousi, Stamatia; Papadaki, Helen; Taraviras, Stavros; Snyder, Linda A; Eickelberg, Oliver; Kardamakis, Dimitrios; Iwakura, Yoichiro; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Kalomenidis, Ioannis; Blackwell, Timothy S; Agalioti, Theodora; Stathopoulos, Georgios T

    2015-06-01

    Mast cells (MCs) have been identified in various tumors; however, the role of these cells in tumorigenesis remains controversial. Here, we quantified MCs in human and murine malignant pleural effusions (MPEs) and evaluated the fate and function of these cells in MPE development. Evaluation of murine MPE-competent lung and colon adenocarcinomas revealed that these tumors actively attract and subsequently degranulate MCs in the pleural space by elaborating CCL2 and osteopontin. MCs were required for effusion development, as MPEs did not form in mice lacking MCs, and pleural infusion of MCs with MPE-incompetent cells promoted MPE formation. Once homed to the pleural space, MCs released tryptase AB1 and IL-1β, which in turn induced pleural vasculature leakiness and triggered NF-κB activation in pleural tumor cells, thereby fostering pleural fluid accumulation and tumor growth. Evaluation of human effusions revealed that MCs are elevated in MPEs compared with benign effusions. Moreover, MC abundance correlated with MPE formation in a human cancer cell-induced effusion model. Treatment of mice with the c-KIT inhibitor imatinib mesylate limited effusion precipitation by mouse and human adenocarcinoma cells. Together, the results of this study indicate that MCs are required for MPE formation and suggest that MC-dependent effusion formation is therapeutically addressable.

  11. A Jagged road to lymphoma aggressiveness

    PubMed Central

    Radojcic, Vedran; Maillard, Ivan

    2014-01-01

    In this issue of Cancer Cell, Cao and colleagues identifyanFGF4/Jagged1-driven crosstalk between tumor cells and their vascular niche that activates Notch signaling, sustaining the aggressiveness of certain mouse and human B cell lymphomas. These findings identify new therapeutic opportunities to target pathogenic angiocrine functions in cancer. PMID:24651005

  12. Targeted cellular ablation based on the morphology of malignant cells

    NASA Astrophysics Data System (ADS)

    Ivey, Jill W.; Latouche, Eduardo L.; Sano, Michael B.; Rossmeisl, John H.; Davalos, Rafael V.; Verbridge, Scott S.

    2015-11-01

    Treatment of glioblastoma multiforme (GBM) is especially challenging due to a shortage of methods to preferentially target diffuse infiltrative cells, and therapy-resistant glioma stem cell populations. Here we report a physical treatment method based on electrical disruption of cells, whose action depends strongly on cellular morphology. Interestingly, numerical modeling suggests that while outer lipid bilayer disruption induced by long pulses (~100 μs) is enhanced for larger cells, short pulses (~1 μs) preferentially result in high fields within the cell interior, which scale in magnitude with nucleus size. Because enlarged nuclei represent a reliable indicator of malignancy, this suggested a means of preferentially targeting malignant cells. While we demonstrate killing of both normal and malignant cells using pulsed electric fields (PEFs) to treat spontaneous canine GBM, we proposed that properly tuned PEFs might provide targeted ablation based on nuclear size. Using 3D hydrogel models of normal and malignant brain tissues, which permit high-resolution interrogation during treatment testing, we confirmed that PEFs could be tuned to preferentially kill cancerous cells. Finally, we estimated the nuclear envelope electric potential disruption needed for cell death from PEFs. Our results may be useful in safely targeting the therapy-resistant cell niches that cause recurrence of GBM tumors.

  13. Targeted cellular ablation based on the morphology of malignant cells

    PubMed Central

    Ivey, Jill W.; Latouche, Eduardo L.; Sano, Michael B.; Rossmeisl, John H.; Davalos, Rafael V.; Verbridge, Scott S.

    2015-01-01

    Treatment of glioblastoma multiforme (GBM) is especially challenging due to a shortage of methods to preferentially target diffuse infiltrative cells, and therapy-resistant glioma stem cell populations. Here we report a physical treatment method based on electrical disruption of cells, whose action depends strongly on cellular morphology. Interestingly, numerical modeling suggests that while outer lipid bilayer disruption induced by long pulses (~100 μs) is enhanced for larger cells, short pulses (~1 μs) preferentially result in high fields within the cell interior, which scale in magnitude with nucleus size. Because enlarged nuclei represent a reliable indicator of malignancy, this suggested a means of preferentially targeting malignant cells. While we demonstrate killing of both normal and malignant cells using pulsed electric fields (PEFs) to treat spontaneous canine GBM, we proposed that properly tuned PEFs might provide targeted ablation based on nuclear size. Using 3D hydrogel models of normal and malignant brain tissues, which permit high-resolution interrogation during treatment testing, we confirmed that PEFs could be tuned to preferentially kill cancerous cells. Finally, we estimated the nuclear envelope electric potential disruption needed for cell death from PEFs. Our results may be useful in safely targeting the therapy-resistant cell niches that cause recurrence of GBM tumors. PMID:26596248

  14. Does the immune reaction cause malignant transformation by disrupting cell-to-cell or cell-to-matrix communications?

    PubMed Central

    Prehn, Richmond T

    2007-01-01

    Tumor progression In many (perhaps in all) tumor systems, a malignant cancer is preceded by a benign lesion. Most benign lesions do not transform to malignancy and many regress. The final transformative step to malignancy differs from the preceding steps in, among other things, that it often occurs in the absence of the original carcinogenic stimulus. Mechanism of immunostimulation Relatively low titers of specific immune reactants are known to stimulate, but cell-to-cell or cell-to-matrix interactions appear to be major inhibitors of tumor-growth. Therefore, it seems reasonable to hypothesize that the mechanism of immunostimulation may be an interference with cell-to-cell or cell-to-matrix communication by a sub-lethal immune-reaction. Discussion While the above hypothesis remains unproven, some evidence suggests that immunity may have a major facilitating effect on tumor growth especially at the time of malignant transformation. There is even some evidence suggesting that transformation in vivo may seldom occur in the absence of immunostimulation of the premalignant lesion. Positive selection by the immune reaction may be the reason that tumors are immunogenic. PMID:17480231

  15. Does the immune reaction cause malignant transformation by disrupting cell-to-cell or cell-to-matrix communications?

    PubMed

    Prehn, Richmond T

    2007-05-04

    TUMOR PROGRESSION: In many (perhaps in all) tumor systems, a malignant cancer is preceded by a benign lesion. Most benign lesions do not transform to malignancy and many regress. The final transformative step to malignancy differs from the preceding steps in, among other things, that it often occurs in the absence of the original carcinogenic stimulus. Relatively low titers of specific immune reactants are known to stimulate, but cell-to-cell or cell-to-matrix interactions appear to be major inhibitors of tumor-growth. Therefore, it seems reasonable to hypothesize that the mechanism of immunostimulation may be an interference with cell-to-cell or cell-to-matrix communication by a sub-lethal immune-reaction. While the above hypothesis remains unproven, some evidence suggests that immunity may have a major facilitating effect on tumor growth especially at the time of malignant transformation. There is even some evidence suggesting that transformation in vivo may seldom occur in the absence of immunostimulation of the premalignant lesion. Positive selection by the immune reaction may be the reason that tumors are immunogenic.

  16. Combination Chemotherapy in Treating Young Patients With Recurrent or Resistant Malignant Germ Cell Tumors

    ClinicalTrials.gov

    2017-11-14

    Childhood Extracranial Germ Cell Tumor; Childhood Extragonadal Germ Cell Tumor; Childhood Malignant Ovarian Germ Cell Tumor; Childhood Malignant Testicular Germ Cell Tumor; Ovarian Choriocarcinoma; Ovarian Embryonal Carcinoma; Ovarian Yolk Sac Tumor; Recurrent Childhood Malignant Germ Cell Tumor; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Ovarian Germ Cell Tumor; Testicular Choriocarcinoma; Testicular Choriocarcinoma and Embryonal Carcinoma; Testicular Choriocarcinoma and Yolk Sac Tumor; Testicular Embryonal Carcinoma; Testicular Embryonal Carcinoma and Yolk Sac Tumor; Testicular Yolk Sac Tumor

  17. Simultaneous Drug Targeting of the Promoter MYC G-Quadruplex and BCL2 i-Motif in Diffuse Large B-Cell Lymphoma Delays Tumor Growth.

    PubMed

    Kendrick, Samantha; Muranyi, Andrea; Gokhale, Vijay; Hurley, Laurence H; Rimsza, Lisa M

    2017-08-10

    Secondary DNA structures are uniquely poised as therapeutic targets due to their molecular switch function in turning gene expression on or off and scaffold-like properties for protein and small molecule interaction. Strategies to alter gene transcription through these structures thus far involve targeting single DNA conformations. Here we investigate the feasibility of simultaneously targeting different secondary DNA structures to modulate two key oncogenes, cellular-myelocytomatosis (MYC) and B-cell lymphoma gene-2 (BCL2), in diffuse large B-cell lymphoma (DLBCL). Cotreatment with previously identified ellipticine and pregnanol derivatives that recognize the MYC G-quadruplex and BCL2 i-motif promoter DNA structures lowered mRNA levels and subsequently enhanced sensitivity to a standard chemotherapy drug, cyclophosphamide, in DLBCL cell lines. In vivo repression of MYC and BCL2 in combination with cyclophosphamide also significantly slowed tumor growth in DLBCL xenograft mice. Our findings demonstrate concurrent targeting of different DNA secondary structures offers an effective, precise, medicine-based approach to directly impede transcription and overcome aberrant pathways in aggressive malignancies.

  18. Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study

    PubMed Central

    Cruz, Conrad Russell Y.; Micklethwaite, Kenneth P.; Savoldo, Barbara; Ramos, Carlos A.; Lam, Sharon; Ku, Stephanie; Diouf, Oumar; Liu, Enli; Barrett, A. John; Ito, Sawa; Shpall, Elizabeth J.; Krance, Robert A.; Kamble, Rammurti T.; Carrum, George; Hosing, Chitra M.; Gee, Adrian P.; Mei, Zhuyong; Grilley, Bambi J.; Heslop, Helen E.; Rooney, Cliona M.; Brenner, Malcolm K.; Bollard, Catherine M.

    2013-01-01

    Autologous T cells expressing a CD19-specific chimeric antigen receptor (CD19.CAR) are active against B-cell malignancies, but it is unknown whether allogeneic CD19.CAR T cells are safe or effective. After allogeneic hematopoietic stem cell transplantation (HSCT), infused donor-derived virus-specific T cells (VSTs) expand in vivo, persist long term, and display antiviral activity without inducing graft-vs-host disease; therefore, we determined whether donor VSTs, engineered to express CD19.CAR, retained the characteristics of nonmanipulated allogeneic VSTs while gaining antitumor activity. We treated 8 patients with allogeneic (donor-derived) CD19.CAR-VSTs 3 months to 13 years after HSCT. There were no infusion-related toxicities. VSTs persisted for a median of 8 weeks in blood and up to 9 weeks at disease sites. Objective antitumor activity was evident in 2 of 6 patients with relapsed disease during the period of CD19.CAR-VST persistence, whereas 2 patients who received cells while in remission remain disease free. In 2 of 3 patients with viral reactivation, donor CD19.CAR-VSTs expanded concomitantly with VSTs. Hence CD19.CAR-VSTs display antitumor activity and, because their number may be increased in the presence of viral stimuli, earlier treatment post-HSCT (when lymphodepletion is greater and the incidence of viral infection is higher) or planned vaccination with viral antigens may enhance disease control. This study is registered at clinicaltrials.gov as #NCT00840853. PMID:24030379

  19. Enhanced targeting of triple-negative breast carcinoma and malignant melanoma by photochemical internalization of CSPG4-targeting immunotoxins.

    PubMed

    Eng, M S; Kaur, J; Prasmickaite, L; Engesæter, B Ø; Weyergang, A; Skarpen, E; Berg, K; Rosenblum, M G; Mælandsmo, G M; Høgset, A; Ferrone, S; Selbo, P K

    2018-05-16

    Triple-negative breast cancer (TNBC) and malignant melanoma are highly aggressive cancers that widely express the cell surface chondroitin sulfate proteoglycan 4 (CSPG4/NG2). CSPG4 plays an important role in tumor cell growth and survival and promotes chemo- and radiotherapy resistance, suggesting that CSPG4 is an attractive target in cancer therapy. In the present work, we applied the drug delivery technology photochemical internalization (PCI) in combination with the novel CSPG4-targeting immunotoxin 225.28-saporin as an efficient and specific strategy to kill aggressive TNBC and amelanotic melanoma cells. Light-activation of the clinically relevant photosensitizer TPCS2a (fimaporfin) and 225.28-saporin was found to act in a synergistic manner, and was superior to both PCI of saporin and PCI-no-drug (TPCS2a + light only) in three TNBC cell lines (MDA-MB-231, MDA-MB-435 and SUM149) and two BRAFV600E mutated malignant melanoma cell lines (Melmet 1 and Melmet 5). The cytotoxic effect was highly dependent on the light dose and expression of CSPG4 since no enhanced cytotoxicity of PCI of 225.28-saporin compared to PCI of saporin was observed in the CSPG4-negative MCF-7 cells. The PCI of a smaller, and clinically relevant CSPG4-targeting toxin (scFvMEL-rGel) validated the CSPG4-targeting concept in vitro and induced a strong inhibition of tumor growth in the amelanotic melanoma xenograft A-375 model. In conclusion, the combination of the drug delivery technology PCI and CSPG4-targeting immunotoxins is an efficient, specific and light-controlled strategy for the elimination of aggressive cells of TNBC and malignant melanoma origin. This study lays the foundation for further preclinical evaluation of PCI in combination with CSPG4-targeting.

  20. Overexpression of activin-A and -B in malignant mesothelioma – Attenuated Smad3 signaling responses and ERK activation promote cell migration and invasive growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamminen, Jenni A.; Yin, Miao; Transplantation Laboratory, Haartman Institute, University of Helsinki

    Activin-A and activin-B, members of the TGF-β superfamily, are regulators of reproductive functions, inflammation and wound healing. These dimeric molecules regulate various cellular activities such as proliferation, migration and suvival. Malignant mesothelioma is an asbestos exposure related tumor affecting mainly pleura and it usually has a dismal prognosis. Here, we demonstrate that both activin-A and -B are abundantly expressed in mesothelioma tumor tissue as well as in cultured primary and established mesothelioma cells. Migratory and invasive mesothelioma cells were also found to have attenuated activation of the Smad2/3 pathway in response to activins. Migration and invasive growth of the cellsmore » in three-dimentional matrix was prevented by inhibition of activin activity using a soluble activin receptor 2B (sActR2B-Fc). This was associated with decreased ERK activity. Furthermore, migration and invasive growth was significantly inhibited by blocking ERK phosphorylation. Mesothelioma tumors are locally invasive and our results clearly suggest that acivins have a tumor-promoting function in mesothelioma through increasing expression and switching from canonical Smad3 pathway to non-canonical ERK pathway signaling. Blocking activin activity offers a new therapeutic approach for inhibition of mesothelioma invasive growth. - Highlights: • Activin-A and activin-B are highly expressed in mesothelioma. • Mesothelioma cell migration and invasive growth can be blocked with sActR2B. • Activin induced Smad3 activity is attenuated in invasive mesothelioma cells. • Activins induce ERK activity in mesothelioma cells.« less

  1. Induction of Malignant Plasma Cell Proliferation by Eosinophils

    PubMed Central

    Wong, Tina W.; Kita, Hirohito; Hanson, Curtis A.; Walters, Denise K.; Arendt, Bonnie K.; Jelinek, Diane F.

    2013-01-01

    The biology of the malignant plasma cells (PCs) in multiple myeloma (MM) is highly influenced by the bone marrow (BM) microenvironment in which they reside. More specifically, BM stromal cells (SCs) are known to interact with MM cells to promote MM cell survival and proliferation. By contrast, it is unclear if innate immune cells within this same space also actively participate in the pathology of MM. Our study shows for the first time that eosinophils (Eos) can contribute to the biology of MM by enhancing the proliferation of some malignant PCs. We first demonstrate that PCs and Eos can be found in close proximity in the BM. In culture, Eos were found to augment MM cell proliferation that is predominantly mediated through a soluble factor(s). Fractionation of cell-free supernatants and neutralization studies demonstrated that this activity is independent of Eos-derived microparticles and a proliferation-inducing ligand (APRIL), respectively. Using a multicellular in vitro system designed to resemble the native MM niche, SCs and Eos were shown to have non-redundant roles in their support of MM cell growth. Whereas SCs induce MM cell proliferation predominantly through the secretion of IL-6, Eos stimulate growth of these malignant cells via an IL-6-independent mechanism. Taken together, our study demonstrates for the first time a role for Eos in the pathology of MM and suggests that therapeutic strategies targeting these cells may be beneficial. PMID:23894671

  2. Mast cells mediate malignant pleural effusion formation

    PubMed Central

    Giannou, Anastasios D.; Marazioti, Antonia; Spella, Magda; Kanellakis, Nikolaos I.; Apostolopoulou, Hara; Psallidas, Ioannis; Prijovich, Zeljko M.; Vreka, Malamati; Zazara, Dimitra E.; Lilis, Ioannis; Papaleonidopoulos, Vassilios; Kairi, Chrysoula A.; Patmanidi, Alexandra L.; Giopanou, Ioanna; Spiropoulou, Nikolitsa; Harokopos, Vaggelis; Aidinis, Vassilis; Spyratos, Dionisios; Teliousi, Stamatia; Papadaki, Helen; Taraviras, Stavros; Snyder, Linda A.; Eickelberg, Oliver; Kardamakis, Dimitrios; Iwakura, Yoichiro; Feyerabend, Thorsten B.; Rodewald, Hans-Reimer; Kalomenidis, Ioannis; Blackwell, Timothy S.; Agalioti, Theodora; Stathopoulos, Georgios T.

    2015-01-01

    Mast cells (MCs) have been identified in various tumors; however, the role of these cells in tumorigenesis remains controversial. Here, we quantified MCs in human and murine malignant pleural effusions (MPEs) and evaluated the fate and function of these cells in MPE development. Evaluation of murine MPE-competent lung and colon adenocarcinomas revealed that these tumors actively attract and subsequently degranulate MCs in the pleural space by elaborating CCL2 and osteopontin. MCs were required for effusion development, as MPEs did not form in mice lacking MCs, and pleural infusion of MCs with MPE-incompetent cells promoted MPE formation. Once homed to the pleural space, MCs released tryptase AB1 and IL-1β, which in turn induced pleural vasculature leakiness and triggered NF-κB activation in pleural tumor cells, thereby fostering pleural fluid accumulation and tumor growth. Evaluation of human effusions revealed that MCs are elevated in MPEs compared with benign effusions. Moreover, MC abundance correlated with MPE formation in a human cancer cell–induced effusion model. Treatment of mice with the c-KIT inhibitor imatinib mesylate limited effusion precipitation by mouse and human adenocarcinoma cells. Together, the results of this study indicate that MCs are required for MPE formation and suggest that MC-dependent effusion formation is therapeutically addressable. PMID:25915587

  3. Bilateral primary malignant lymphoma of the breast.

    PubMed Central

    Shpitz, B.; Witz, M.; Kaufman, Z.; Griffel, B.; Manor, Y.; Dinbar, A.

    1985-01-01

    A rare case of bilateral primary malignant lymphoma of breast in a 76 year old woman is presented. The lesion was examined by electron microscopy and immunochemistry. The diagnosis of primary malignant lymphoma remains a diagnosis by exclusion and requires extensive work-up to exclude widespread malignant process. The behaviour of this malignancy tends to be an aggressive one and the prognosis is generally poor. Images Figure 1 Figure 2 PMID:4034464

  4. A rapid and convenient method for detecting a broad spectrum of malignant cells from malignant pleuroperitoneal effusion of patients using a multifunctional NIR heptamethine dye.

    PubMed

    Tian, Ying; Sun, Jing; Yan, Huaijiang; Teng, Zhaogang; Zeng, Leyong; Liu, Ying; Li, Yanjun; Wang, Jiandong; Wang, Shouju; Lu, Guangming

    2015-02-07

    Detection of malignant cells from malignant effusion is crucial to establish or adjust therapies of patients with cancer. The conventional qualitative detection in malignant pleuroperitoneal effusion is cytological analysis, which is time-consuming and complicated. Therefore, a faster and more convenient detection strategy is urgently needed. In this study, we report a rapid method to detect malignant cells from malignant pleuroperitoneal effusion (hydrothorax and ascites) of patients using IR-808, a tumor-targeted near-infrared (NIR) fluorescent heptamethine dye (tNRI dye), which exhibited superior labeling efficacy without specific conjugation to biomarkers. The targeted imaging performance toward malignant cells using IR-808 was confirmed by comparing with normal cells, and the fluorescence stability assay of IR-808 in malignant effusion was performed from 1 h to 48 h. In order to save time and dose, the incubation time and concentration were optimized to 10 min and 5 μM, which were used to detect malignant cells from 28 clinical samples of malignant pleuroperitoneal effusion. The results revealed that IR-808 could be internalized selectively by malignant cells of samples, and these malignant cells could be easily distinguished from normal cells under a fluorescence microscope. The positive rates between cytological analysis and the IR-808 staining method were 86% (24/28) and 79% (22/28), respectively. An excellent concordance level (Kappa = 0.752, P < 0.001) was observed between the two methods. Our results indicated that IR-808, a new NIR fluorescent heptamethine dye with unique optical imaging and tumor targeting properties, could provide a fast and simple way to detect a broad spectrum of malignant cells from malignant pleuroperitoneal effusion in patients.

  5. Hemoglobin enhances tissue factor expression on human malignant cells.

    PubMed

    Siddiqui, F A; Amirkhosravi, A; Amaya, M; Meyer, T; Biggerstaff, J; Desai, H; Francis, J L

    2001-04-01

    Tissue Factor (TF) is a transmembrane glycoprotein that complexes with factor VII/activated factor VII to initiate blood coagulation. TF may be expressed on the surface of various cells including monocytes and endothelial cells. Over-expression of TF in human tumor cell lines promotes metastasis. We recently showed that hemoglobin (Hb) forms a specific complex with TF purified from human malignant melanoma cells and enhances its procoagulant activity (PCA). To further study this interaction, we examined the effect of Hb on the expression of TF on human malignant (TF+) cells and KG1 myeloid leukemia (TF-) cells. Human melanoma A375 and J82 bladder carcinoma cells, which express TF at moderate and relatively high levels, respectively, were incubated with varying concentrations (0-1.5 mg/ml) of Hb. After washing, cells were analyzed for Hb binding and TF expression using flow cytometry and confocal microscopy. Hb bound to the cells in a concentration-dependent manner, and increased both TF expression and PCA. The human A375 malignant melanoma cells incubated with Hb (1 mg/ml) expressed up to six times more TF antigen than cells without Hb. This increase in TF expression and PCA of intact cells incubated with Hb was significantly inhibited by cycloheximide at a concentration of 10 microg/ml (P < 0.01). An increase in total cellular TF antigen content was demonstrated by specific immunoassay. In contrast, Hb (5 mg/ml) did not induce TF expression and PCA on KG1 cells as determined by flow cytometry and TF (FXAA) activity. We conclude that Hb specifically binds to TF-bearing malignant cells and increases their PCA. This effect seems to be at least partly due to de novo synthesis of TF and increased surface expression. However, the exact mechanism by which Hb binds and upregulates TF expression remains to be determined.

  6. Downregulation of miR-125b in metastatic cutaneous malignant melanoma.

    PubMed

    Glud, Martin; Rossing, Maria; Hother, Christoffer; Holst, Line; Hastrup, Nina; Nielsen, Finn C; Gniadecki, Robert; Drzewiecki, Krzysztof T

    2010-12-01

    This study aimed to identify microRNA species involved in the earliest metastatic event in cutaneous malignant melanoma (MM). Samples from 28 patients with MM [stage T2 (tumor), M0 (distant metastasis)] were grouped by the presence of micrometastasis in the sentinel lymph nodes (N0/N1). Melanoma cells were harvested from primary, cutaneous MM tumors by laser-capture microdissection, and microRNA expression profiles were obtained by the microarray technique. Results were validated by quantitative reverse transcription PCR. We found that miR-125b was downregulated in the primary cutaneous melanomas that produced early metastases (T2, N1, M0) compared with the sentinel lymph node-negative (T2, N0, M0) melanomas. MiR-125b has earlier been found to be downregulated in other tumor types and in atypic naevi compared with the common acquired naevi. In conclusion, miR-125b may be involved in an early progression of cutaneous MM.

  7. Intracellular distribution of Photofrin in malignant and normal endothelial cell lines.

    PubMed

    Saczko, J; Mazurkiewicz, M; Chwiłkowska, A; Kulbacka, J; Kramer, G; Ługowski, M; Snietura, M; Banaś, T

    2007-01-01

    Compared to current treatments including surgery, radiation therapy, and chemotherapy, PDT offers the advantage of an effective and selective method of destroying diseased tissues without damaging surrounding healthy tissues. One of the aspects of antitumour effectiveness of PDT is related to the distribution of photosensitizing drugs. The localization of photosensitizers in cytoplasmic organelles during PDT plays a major role in the cell destruction; therefore, intracellular localization of Ph in malignant and normal cells was investigated. The cell lines used throughout the study were: human malignant A549, MCF-7, Me45 and normal endothelial cell line HUV-EC-C. After incubation with Ph cells were examined using fluorescence and confocal microscopy to visualize the photosensitizer accumulation. For cytoplasm and mitochondria identification, cells were stained with CellTracker Green and MitoTracker Green, respectively. Distribution of Ph was different in malignant and normal cells and dependent on the incubation time. The maximal concentration of Ph in two malignant cell lines (A549 and MCF-7) was observed after 4 hours of incubation, and the most intensive signal was observed around the nuclear envelope. Intracellular distribution of Ph in the Me45 cell line showed that the fluorescence emitted by Ph overlaid that from MitoTracker. This indicates preferential accumulation of the sensitizer in mitochondria. Our results based on the mitochondrial localization support the idea that PDT can contribute to elimination of malignant cells by inducing apoptosis, which is of physiological significance.

  8. Involvement of the antioxidative property of morusin in blocking phorbol ester-induced malignant transformation of JB6 P+ mouse epidermal cells.

    PubMed

    Cheng, Pai-Shan; Hu, Chao-Chin; Wang, Chau-Jong; Lee, Yean-Jang; Chung, Wei-Chia; Tseng, Tsui-Hwa

    2017-02-25

    Chemoprevention has been acknowledged as an important and practical strategy for managing cancer. We have previously synthesized morusin, a prenylated flavonoid that exhibits anti-cancer progression activity. In the present study, we evaluated the anti-cancer promotion potential of morusin by using the mouse epidermal JB6 P + cell model. Extensive evidence shows that tumor promotion by phorbol esters is due to the stimulation of reactive oxygen species (ROS). Therefore, the effect of morusin on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ROS production was assessed. Noncytotoxic concentrations of morusin were found to dose-dependently reduce TPA-induced ROS production. Moreover, morusin inhibited TPA-induced activator protein-1 (AP-1) and nuclear factor-kappa B (NF-κB) activation, which can mediate cell proliferation and malignant transformation. Furthermore, morusin inhibited the TPA upregulation of cyclooxygenase 2 (COX-2), which may be regulated by AP-1 and NF-κB. In addition, noncytotoxic concentrations of morusin reduced the TPA-promoted cell growth of JB6 P + cells and inhibited TPA-induced malignant properties, such as cytoskeletal rearrangement and cell migration of JB6 P + cells. Similar to the effects of glutathione (GSH) pretreatment, morusin inhibited TPA-induced expression of N-cadeherin and vimentin, which are malignant cell surface proteins. Finally, morusin treatment dose-dependently suppressed the TPA-induced anchorage-independent cell transformation of JB6 P + cells. In conclusion, our results evidence that morusin possesses anti-cancer promotion potential because of its antioxidant property, which mediates multiple transformation-associated gene expression. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Silibinin suppresses bladder cancer cell malignancy and chemoresistance in an NF-κB signal-dependent and signal-independent manner.

    PubMed

    Sun, Yi; Guan, Zhenfeng; Zhao, Wencai; Jiang, Yazhuo; Li, Qing; Cheng, Yongyi; Xu, Yonggang

    2017-10-01

    Because bladder cancer (BCa) is the 9th most common malignant tumor and 13th leading cause of death due to cancer, therapeutic approaches have attracted a great deal of attention from both clinicians and BCa patients. Although the development of surgery and targeted drugs has brought new challenges for the traditional concept of BCa therapy, various types of chemotherapy remain the final treatment method for many BCa patients. However, chemoresistance inevitably appears, leading to the failure of chemotherapy. Silibinin, a polyphenolic flavonoid component isolated from the fruits or seeds of milk thistle, has been reported to play important roles in inhibiting tumor chemoresistance in breast cancer and head and neck squamous cell carcinomas. Our previous study indicated that silibinin inhibited BCa progression in some mechanisms but with no conclusion of chemoresistance inhibition. Therefore, in the present study, we dissected the role of silibinin in BCa progression and chemoresistance. Our results revealed that in BCa, chemodrug-induced chemoresistance was reversed in the presence of silibinin. Further mechanistic study indicated that silibinin suppressed chemoresistance and BCa malignancy in an NF-κB-dependent and -independent manner. In addition, all of the inhibitory effects were dose‑dependent. Thus, our results provide a potential use for silibinin in BCa therapeutics.

  10. Nab-paclitaxel/Rituximab-coated Nanoparticle AR160 in Treating Patients With Relapsed or Refractory B-Cell Non-Hodgkin Lymphoma

    ClinicalTrials.gov

    2018-04-17

    Aggressive Non-Hodgkin Lymphoma; CD20 Positive; Recurrent B-Cell Non-Hodgkin Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory B-Cell Non-Hodgkin Lymphoma; Refractory Small Lymphocytic Lymphoma

  11. Proliferative verrucous leukoplakia: an aggressive form of oral leukoplakia.

    PubMed

    Shopper, Thomas P; Brannon, Robert B; Stalker, William H

    2004-01-01

    Proliferative verrucous leukoplakia (PVL) is an aggressive form of oral leukoplakia that is persistent, often multifocal, and refractory to treatment with a high risk of recurrence and malignant transformation. This article describes the clinical aspects and histologic features of a case that demonstrated the typical behavior pattern in a long-standing, persistent lesion of PVL of the mandibular gingiva and that ultimately developed into squamous cell carcinoma. Prognosis is poor for this seemingly harmless-appearing white lesion of the oral mucosa.

  12. Pro-Apoptotic Activity of New Honokiol/Triphenylmethane Analogues in B-Cell Lymphoid Malignancies.

    PubMed

    Mędra, Aleksandra; Witkowska, Magdalena; Majchrzak, Agata; Cebula-Obrzut, Barbara; Bonner, Michael Y; Robak, Tadeusz; Arbiser, Jack L; Smolewski, Piotr

    2016-07-30

    Honokiol and triphenylmethanes are small molecules with anti-tumor properties. Recently, we synthesized new honokiol analogues (HAs) that possess common features of both groups. We assessed the anti-tumor effectiveness of HAs in B-cell leukemia/lymphoma cells, namely in chronic lymphocytic leukemia (CLL) cells ex vivo and in pre-B-cell acute lymphoblastic leukemia (Nalm-6), Burkitt lymphoma (BL; Raji), diffuse large B-cell lymphoma (DLBCL; Toledo) and multiple myeloma (MM; RPMI 8226) cell lines. Four of these compounds appeared to be significantly active against the majority of cells examined, with no significant impact on healthy lymphocytes. These active HAs induced caspase-dependent apoptosis, causing significant deregulation of several apoptosis-regulating proteins. Overall, these compounds downregulated Bcl-2 and XIAP and upregulated Bax, Bak and survivin proteins. In conclusion, some of the HAs are potent tumor-selective inducers of apoptosis in ex vivo CLL and in BL, DLBCL and MM cells in vitro. Further preclinical studies of these agents are recommended.

  13. Outcome of breast lesions diagnosed as lesion of uncertain malignant potential (B3) or suspicious of malignancy (B4) on needle core biopsy, including detailed review of epithelial atypia.

    PubMed

    Rakha, Emad A; Ho, Bernard C; Naik, Veena; Sen, Soumadri; Hamilton, Lisa J; Hodi, Zsolt; Ellis, Ian O; Lee, Andrew H S

    2011-03-01

    To provide updated evidence of the outcome of breast lesions of uncertain malignant potential (B3) and suspicious of malignancy (B4) diagnosed on needle core biopsy (NCB) and analyse the outcome of the different types of intraductal epithelial atypia. One-hundred and forty-nine B3 and 26 B4 NCBs diagnosed over a 2-year period (2007-2008) were compared with those diagnosed over a previous 2-year period (1998-2000). The proportion of B3 diagnoses increased from 3.1% to 4.5%, and the positive predictive value (PPV) of malignancy of a B3 core decreased from 25% to 10%. Increased diagnosis of radial scar and reductions in the PPV of lobular neoplasia and of atypical intraductal proliferation may explain the reduction in the PPV of the B3 group as a whole. There were no significant changes in the proportion of B4 diagnosis (1.1% and 0.8%) or the PPV of B4 (83% and 88%). Review of cores with intraductal atypia showed a wide range of PPVs, from 100% for suspicious of ductal carcinoma in situ, to 40% for atypical ductal hyperplasia categorized as B3, and 14% for isolated flat epithelial atypia. The study has found a decrease in the PPV for a B3 diagnosis and suggests possible explanations. © 2011 Blackwell Publishing Limited.

  14. Mycoplasmal Infections Prevent Apoptosis and Induce Malignant Transformation of Interleukin-3-Dependent 32D Hematopoietic Cells

    PubMed Central

    Feng, Shaw-Huey; Tsai, Shien; Rodriguez, Jose; Lo, Shyh-Ching

    1999-01-01

    32D cells, a murine myeloid cell line, rapidly undergo apoptosis upon withdrawal of interleukin-3 (IL-3) supplement in culture. We found that 32D cells, if infected by several species of human mycoplasmas that rapidly activated NF-κB, would live and continue to grow in IL-3-depleted culture. Mycoplasma-infected cells showed no evidence of autocrine production of IL-3. Pyrrolidine dithiocarbamate (PDTC) blocked activation of NF-κB and led to prominent cell death. Heat-killed mycoplasmas or mycoplasmal membrane preparations alone could support continued growth of 32D cells in culture without IL-3 supplement for a substantial period of time. However, upon removal of heat-inactivated mycoplasmas, 32D cells quickly became apoptotic. In comparison, live Mycoplasma fermentans or M. penetrans infection for 4 to 5 weeks induced malignant transformation of 32D cells. Transformed 32D cells grew autonomously and no longer required support of growth-stimulating factors including IL-3 and mycoplasmas. The transformed 32D cells quickly formed tumors when injected into nude mice. Karyotyping showed that development of chromosomal changes and trisomy 19 was often associated with malignant transformation and tumorigenicity of 32D cells. Mycoplasmal infections apparently affected the fidelity of genomic transmission in cell division as well as checkpoints coordinating the progression of cell cycle events. PMID:10567525

  15. Human Lyb-2 homolog CD72 is a marker for progenitor B-cell leukemias.

    PubMed

    Schwarting, R; Castello, R; Moldenhauer, G; Pezzutto, A; von Hoegen, I; Ludwig, W D; Parnes, J R; Dörken, B

    1992-11-01

    S-HCL 2 is the prototype antibody of the recently defined CD72 cluster (human Lyb-2). Under nonreducing conditions, S-HCL 2 monoclonal antibody (mAb) precipitates a glycoprotein of 80-86 kDa. Under reducing conditions, a dimer of 43 and 39 kDa, with core proteins of 40 and 36 kDa, is precipitated. CD72 expression in normal and malignant tissues is different from expression of all other previously described human B-cell antigens. In peripheral blood and bone marrow, the antigen appears to be present on all B lymphocytes, with the exception of plasma cells. In tissue, immunohistochemical staining revealed positivity for all known B-cell compartments; however, pulpa macrophages of the spleen and von Kupffer cells exhibited distinct positivity for CD72 also. Among 83 malignant non-Hodgkin's lymphomas examined by immunohistochemistry (alkaline phosphatase anti-alkaline phosphatase technique), all 54 B-cell lymphomas, including precursor B-cell lymphomas, Burkitt's lymphomas, germinal center lymphomas, chronic lymphocytic leukemias, and hairy cell leukemias, were CD72 positive, but no T-cell lymphomas were. Flow cytometry study of more than 80 mainly acute leukemias (52 B-cell leukemias) showed reactivity with S-HCL 2 mAb over the full range of B-cell differentiation. In particular, very early B cells in cytoplasmic Ig (cIg)-negative, CD19-positive pre-pre-B-cell leukemias and hybrid leukemias (mixed myeloid and B-cell type) were consistently positive for CD72 on the cell surface. Therefore, CD72 may become an important marker for progenitor B-cell leukemias.

  16. Effects of driver cell-phone use on driver aggression.

    PubMed

    McGarva, Andrew R; Ramsey, Matthew; Shear, Suzannah A

    2006-04-01

    Using 2 field procedures, the authors assessed impacts of cell-phone use on mild forms of driver aggression. Participants were 135 drivers traveling within a city of approximately 17,000 people in an otherwise little-populated region of western North Dakota. The authors videotaped the participants while a confederate driver in a low-status vehicle frustrated them. In Experiment 1, the confederate was traveling well under the posted speed limit. In Experiment 2, the confederate remained motionless at a stoplight that had turned green. When the confederate visibly talked on a hand-held cell phone (n = 67), male drivers exhibited their frustration by honking their horn more quickly and frequently than did drivers in no-cell-phone trials, and female drivers were more angry according to blind judgments of videotaped facial expressions that were compared with those of drivers in no-cell-phone trials (n = 68). The present results suggested that driver cell-phone use contributes to the growing crisis of roadway aggression.

  17. Vorinostat and Combination Chemotherapy With Rituximab in Treating Patients With HIV-Related Diffuse Large B-Cell Non-Hodgkin Lymphoma or Other Aggressive B-Cell Lymphomas

    ClinicalTrials.gov

    2018-06-07

    AIDS-Related Plasmablastic Lymphoma; AIDS-Related Primary Effusion Lymphoma; CD20 Positive; HIV Infection; Plasmablastic Lymphoma; Primary Effusion Lymphoma; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Stage I Diffuse Large B-Cell Lymphoma; Stage I Grade 3 Follicular Lymphoma; Stage II Diffuse Large B-Cell Lymphoma; Stage II Grade 3 Contiguous Follicular Lymphoma; Stage II Grade 3 Non-Contiguous Follicular Lymphoma; Stage III Diffuse Large B-Cell Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage IV Diffuse Large B-Cell Lymphoma; Stage IV Grade 3 Follicular Lymphoma

  18. Anti-CD20 Radioimmunotherapy Before Chemotherapy and Stem Cell Transplant in Treating Patients With High-Risk B-Cell Malignancies

    ClinicalTrials.gov

    2018-03-13

    Burkitt Lymphoma; CD20-Positive Neoplastic Cells Present; Diffuse Large B-Cell Lymphoma; Indolent Non-Hodgkin Lymphoma; Mantle Cell Lymphoma; Recurrent B-Cell Non-Hodgkin Lymphoma; Refractory Mature B-Cell Non-Hodgkin Lymphoma

  19. Msi2 Regulates the Aggressiveness of Non Small Cell Lung Cancer (NSCLC)

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0192 TITLE: Msi2 Regulates the Aggressiveness of Non -Small Cell Lung Cancer (NSCLC) PRINCIPAL INVESTIGATOR: Yanis...Annual 3. DATES COVERED (From - To) 15 Sep 2015 - 14 Sep 2016 4. TITLE AND SUBTITLE Msi2 Regulates the Aggressiveness of Non -Small Cell Lung Cancer...in vitro and in vivo are ongoing, while immunohistochemistry studies are starting Fall 2016. 15. SUBJECT TERMS Non -small cell lung cancer

  20. Aggressive natural killer-cell leukemia with jaundice and spontaneous splenic rupture: a case report and review of the literature.

    PubMed

    Gao, Li-min; Liu, Wei-ping; Yang, Qun-pei; Li, Hui-fang; Chen, Jun-jie; Tang, Yuan; Zou, Yan; Liao, Dian-Ying; Liu, Yan-mei; Zhao, Sha

    2013-03-11

    Aggressive natural killer cell leukemia/lymphoma (ANKL) is a rare aggressive form of NK-cell neoplasm. We report an uncommon case of 36-year-old male who showed jaundice and spontaneous splenic rupture. The diagnosis was established by the biopsy of liver and spleen. The monomorphous medium-size neoplastic cells infiltrated into portal areas and sinus of liver as well as the cords and sinus of the spleen. Necrosis, mitotic figures and significant apoptosis could be seen easily. These neoplastic cells demonstrated a typical immunophenotype of CD3ε+, CD56+, CD16+, Granzyme B+, TIA-1+. T-cell receptor γ (TCR-γ) gene rearrangement analysis showed germline configuration and the result of in situ hybridization for Epstein-Barr virus-encoded RNA (EBER-ISH) was positive. The patient has undergone an aggressive clinical course and died of multi-organ function failure 14 days later after admission. To the best of our knowledge, this is the first case of ANKL with spontaneous splenic rupture, and we should pay more attention to recognize it. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2048154883890867.

  1. Mysteries of TGF-β Paradox in Benign and Malignant Cells.

    PubMed

    Zhang, Qiang; Yu, Nengwang; Lee, Chung

    2014-01-01

    TGF-β regulates a wide range of biological functions including embryonic development, wound healing, organogenesis, immune modulation, and cancer progression. Interestingly, TGF-β is known to inhibit cell growth in benign cells but promote progression in cancer cells; this phenomenon is known as TGF-β paradox. To date, the mechanism of this paradox still remains a scientific mystery. In this review, we present our experience, along with the literature, in an attempt to answer this mystery. First, we observed that, on TGF-β engagement, there is a differential activation of Erk between benign and cancer cells. Since activated Erk is a major mediator in tumor progression and metastasis, a differentially activated Erk represents the answer to this mystery. Second, we identified a key player, PP2A-B56α, which is differentially recruited by the activated type I TGF-β receptor (TBRI) in benign and tumor cells, resulting in differential Erk activation. Finally, TGF-β stimulation leads to suppressed TBRs in tumor cells but not in benign cells. This differentially suppressed TBRs triggers differential recruitment of PP2A-B56α and, thus, differential activation of Erk. The above three events explain the mysteries of TGF-β paradox. Understanding the mechanism of TGF-β paradox will help us to predict indolent from aggressive cancers and develop novel anti-cancer strategies.

  2. Mysteries of TGF-β Paradox in Benign and Malignant Cells

    PubMed Central

    Zhang, Qiang; Yu, Nengwang; Lee, Chung

    2014-01-01

    TGF-β regulates a wide range of biological functions including embryonic development, wound healing, organogenesis, immune modulation, and cancer progression. Interestingly, TGF-β is known to inhibit cell growth in benign cells but promote progression in cancer cells; this phenomenon is known as TGF-β paradox. To date, the mechanism of this paradox still remains a scientific mystery. In this review, we present our experience, along with the literature, in an attempt to answer this mystery. First, we observed that, on TGF-β engagement, there is a differential activation of Erk between benign and cancer cells. Since activated Erk is a major mediator in tumor progression and metastasis, a differentially activated Erk represents the answer to this mystery. Second, we identified a key player, PP2A-B56α, which is differentially recruited by the activated type I TGF-β receptor (TBRI) in benign and tumor cells, resulting in differential Erk activation. Finally, TGF-β stimulation leads to suppressed TBRs in tumor cells but not in benign cells. This differentially suppressed TBRs triggers differential recruitment of PP2A-B56α and, thus, differential activation of Erk. The above three events explain the mysteries of TGF-β paradox. Understanding the mechanism of TGF-β paradox will help us to predict indolent from aggressive cancers and develop novel anti-cancer strategies. PMID:24860782

  3. MicroRNA miR-125b induces senescence in human melanoma cells.

    PubMed

    Glud, Martin; Manfé, Valentina; Biskup, Edyta; Holst, Line; Dirksen, Anne Marie Ahlburg; Hastrup, Nina; Nielsen, Finn C; Drzewiecki, Krzysztof T; Gniadecki, Robert

    2011-06-01

    MicroRNAs (miRNAs) are small noncoding RNA molecules involved in gene regulation. Aberrant expression of miRNA has been associated with the development or progression of several diseases, including cancer. In a previous study, we found that the expression of miRNA-125b (miR-125b) was two-fold lower in malignant melanoma producing lymph node micrometastases than in nonmetastasizing tumors. To get further insight into the functional role of miR-125b, we assessed whether its overexpression or silencing affects apoptosis, proliferation, or senescence in melanoma cell lines. We showed that overexpression of miR-125b induced typical senescent cell morphology, including increased cytoplasmatic/nucleus ratio and intensive cytoplasmatic β-galactosidase expression. In contrast, inhibition of miR-125b resulted in 30-35% decreased levels of spontaneous apoptosis. We propose that downregulation of miR-125b in an early cutaneous malignant melanoma can contribute to the increased metastatic capability of this tumor.

  4. The Cytotoxicity of Dacarbazine Potentiated by Sea Cucumber Saponin in Resistant B16F10 Melanoma Cells through Apoptosis Induction

    PubMed Central

    Baharara, Javad; Amini, Elaheh; Nikdel, Najme; Salek-Abdollahi, Farzaneh

    2016-01-01

    Background: Malignant melanoma is a highly aggressive malignant melanocytic neoplasm which resists against the most conventional therapies. Sea cucumber as one of marine organisms contains bioactive compounds such as polysaccharide, terpenoid and other metabolites which have anti-cancer, anti-tumor, anti-inflammatory and antioxidant properties. The present study was designed to investigate the anticancer potential of saponin extracted from sea cucumber Holothuria leucospilata alone and in combination with dacarbazine on B16F10 melanoma cell line. Methods: The B16F10 cell line was treated with different concentrations of saponin (0, 4, 8, 12, 16, 20 μg/ml), dacarbazine (0, 1200, 1400, 1600, 18000, 1200, 1400, 1600, 2000 μg/ml) and co-administration of saponin-dacarbazine (1200 da+8 sp, 1200 da+4 sp) for 24 and 48 hr and the cytotoxic effect was examined by MTT, DAPI, acridine orange/propodium iodide, flow cytometry and caspase colorimetric assay. Results: The results exhibited that sea cucumber saponin, dacarbazine, and co-administration of saponin-dacarbazine inhibited the proliferation of melanoma cells in a dose and time dependent manner with IC50 values of 10, 1400 and 4+1200 μg/ml, respectively. Morphological observation of DAPI and acridine orange/propodium iodide staining documented typical characteristics of apoptotic cell death. Flow cytometry assay indicated accumulation of IC50 treated cells in sub-G1 peak. Additionally, saponin extracted induced intrinsic apoptosis via up-regulation of caspase-3 and caspase-9. Conclusion: These results revealed that the saponin extracted from sea cucumber as a natural anti-cancer compound may be a new treatment modality for metastatic melanoma and the application of sea cucumber saponin in combination with dacarbazine demonstrated the strongest anti-cancer activity as compared with the drug alone. PMID:27563423

  5. The Cytotoxicity of Dacarbazine Potentiated by Sea Cucumber Saponin in Resistant B16F10 Melanoma Cells through Apoptosis Induction.

    PubMed

    Baharara, Javad; Amini, Elaheh; Nikdel, Najme; Salek-Abdollahi, Farzaneh

    2016-01-01

    Malignant melanoma is a highly aggressive malignant melanocytic neoplasm which resists against the most conventional therapies. Sea cucumber as one of marine organisms contains bioactive compounds such as polysaccharide, terpenoid and other metabolites which have anti-cancer, anti-tumor, anti-inflammatory and antioxidant properties. The present study was designed to investigate the anticancer potential of saponin extracted from sea cucumber Holothuria leucospilata alone and in combination with dacarbazine on B16F10 melanoma cell line. The B16F10 cell line was treated with different concentrations of saponin (0, 4, 8, 12, 16, 20 μg/ml), dacarbazine (0, 1200, 1400, 1600, 18000, 1200, 1400, 1600, 2000 μg/ml) and co-administration of saponin-dacarbazine (1200 da+8 sp, 1200 da+4 sp) for 24 and 48 hr and the cytotoxic effect was examined by MTT, DAPI, acridine orange/propodium iodide, flow cytometry and caspase colorimetric assay. The results exhibited that sea cucumber saponin, dacarbazine, and co-administration of saponin-dacarbazine inhibited the proliferation of melanoma cells in a dose and time dependent manner with IC50 values of 10, 1400 and 4+1200 μg/ml, respectively. Morphological observation of DAPI and acridine orange/propodium iodide staining documented typical characteristics of apoptotic cell death. Flow cytometry assay indicated accumulation of IC50 treated cells in sub-G1 peak. Additionally, saponin extracted induced intrinsic apoptosis via up-regulation of caspase-3 and caspase-9. These results revealed that the saponin extracted from sea cucumber as a natural anti-cancer compound may be a new treatment modality for metastatic melanoma and the application of sea cucumber saponin in combination with dacarbazine demonstrated the strongest anti-cancer activity as compared with the drug alone.

  6. Comparison of peritumoral stromal tissue stiffness obtained by shear wave elastography between benign and malignant breast lesions.

    PubMed

    Park, Hye Sun; Shin, Hee Jung; Shin, Ki Chang; Cha, Joo Hee; Chae, Eun Young; Choi, Woo Jung; Kim, Hak Hee

    2018-01-01

    Background Aggressive breast cancers produce abnormal peritumoral stiff areas, which can differ between benign and malignant lesions and between different subtypes of breast cancer. Purpose To compare the tissue stiffness of the inner tumor, tumor border, and peritumoral stroma (PS) between benign and malignant breast masses by shear wave elastography (SWE). Material and Methods We enrolled 133 consecutive patients who underwent preoperative SWE. Using OsiriX commercial software, we generated multiple 2-mm regions of interest (ROIs) in a linear arrangement on the inner tumor, tumor border, and PS. We obtained the mean elasticity value (E mean ) of each ROI, and compared the E mean between benign and malignant tumors. Odds ratios (ORs) for prediction of malignancy were calculated. Subgroup analyses were performed among tumor subtypes. Results There were 85 malignant and 48 benign masses. The E mean of the tumor border and PS were significantly different between benign and malignant masses ( P < 0.05 for all). ORs for malignancy were 1.06, 1.08, 1.05, and 1.04 for stiffness of the tumor border, proximal PS, middle PS, and distal PS, respectively ( P < 0.05 for all). Malignant masses with a stiff rim were significantly larger than malignant masses without a stiff rim, and were more commonly associated with the luminal B and triple negative subtypes. Conclusion Stiffness of the tumor border and PS obtained by SWE were significantly different between benign and malignant masses. Malignant masses with a stiff rim were larger in size and associated with more aggressive pathologic subtypes.

  7. Overexpression of periostin and distinct mesothelin forms predict malignant progression in a rat cholangiocarcinoma model

    PubMed Central

    Manzanares, Miguel Á.; Campbell, Deanna J.W.; Maldonado, Gabrielle T.

    2017-01-01

    Periostin and mesothelin have each been suggested to be predictors of poor survival for patients with intrahepatic cholangiocarcinoma, although the clinical prognostic value of both of these biomarkers remains uncertain. The aim of the current study was to investigate these biomarkers for their potential to act as tumor progression factors when assessed in orthotopic tumor and three‐dimensional culture models of rat cholangiocarcinoma progression. Using our orthotopic model, we demonstrated a strong positive correlation between tumor and serum periostin and mesothelin and increasing liver tumor mass and associated peritoneal metastases that also reflected differences in cholangiocarcinoma cell aggressiveness and malignant grade. Periostin immunostaining was most prominent in the desmoplastic stroma of larger sized more aggressive liver tumors and peritoneal metastases. In comparison, mesothelin was more highly expressed in the cholangiocarcinoma cells; the slower growing more highly differentiated liver tumors exhibited a luminal cancer cell surface immunostaining for this biomarker, and the rapidly growing less differentiated liver and metastatic tumor masses largely showed cytoplasmic mesothelin immunoreactivity. Two molecular weight forms of mesothelin were identified, one at ∼40 kDa and the other, a more heavily glycosylated form, at ∼50 kDa. Increased expression of the 40‐kDa mesothelin over that of the 50 kDa form predicted increased malignant progression in both the orthotopic liver tumors and in cholangiocarcinoma cells of different malignant potential in three‐dimensional culture. Moreover, coculturing of cancer‐associated myofibroblasts with cholangiocarcinoma cells promoted overexpression of the 40‐kDa mesothelin, which correlated with enhanced malignant progression in vitro. Conclusion: Periostin and mesothelin are useful predictors of tumor progression in our rat desmoplastic cholangiocarcinoma models. This supports their relevance to

  8. Correlation between ploidy status using flow cytometry and nucleolar organizer regions in benign and malignant epithelial odontogenic tumors.

    PubMed

    Mohamed Mahmoud, Sarah Ahmed; El-Rouby, Dalia Hussein; El-Ghani, Safa Fathy Abd; Badawy, Omnia Mohamed

    2017-06-01

    Differentiation between the aggressive benign odontogenic tumors and their malignant counterparts is controversial and difficult. While flow cytometry (FCM) allowed DNA analysis in neoplasia, argyrophilic organizer regions (AgNORs) number and/or size in a nucleus are correlated with the ribosomal gene activity and therefore with cellular proliferation. The aim of this research was to study the diagnostic accuracy of FCM and AgNORs staining in differentiating between benign and malignant epithelial odontogenic tumors and to correlate between these two interventions. Sixteen benign cases [8 cases of ameloblastoma (AB) and 8 cases of keratocystic odontogenic tumor (KCOT)] and 13 malignant epithelial odontogenic tumors [8 cases of ameloblastic carcinoma (ABC) and 5 cases of clear cell odontogenic carcinoma(CCOC)] were included in the current study. For FCM analysis, a single cell suspension from Formalin fixed paraffin-embedded (FFPE) tumors was prepared according to a modified method described by Hedley (1989) and AgNORs staining were performed in accordance to the Ploton protocol (1986). Analysis of AgNORs was performed using both quantitative and qualitative methods. The work revealed that all the examined tumors were diploid, except for 40% of CCOC cases. The S-phase fraction (SPF) value, AgNORs count and AgNORs area/cell showed statistically significant difference on comparing benign and malignant groups. A weak positive correlation was observed between SPF and AgNORs count. The SPF value was considered to be more sensitive and specific in differentiation between aggressive benign and malignant epithelial odontogenic tumors in comparison to AgNORs counting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Graft-Versus-Host Disease Prophylaxis in Treating Patients With Hematologic Malignancies Undergoing Unrelated Donor Peripheral Blood Stem Cell Transplant

    ClinicalTrials.gov

    2018-02-13

    Acute Lymphoblastic Leukemia; Acute Myeloid Leukemia; Aggressive Non-Hodgkin Lymphoma; Chronic Lymphocytic Leukemia; Diffuse Large B-Cell Lymphoma; Hematopoietic and Lymphoid Cell Neoplasm; Indolent Non-Hodgkin Lymphoma; Mantle Cell Lymphoma; Myelodysplastic Syndrome; Myeloproliferative Neoplasm; Prolymphocytic Leukemia; Recurrent Chronic Lymphocytic Leukemia; Recurrent Plasma Cell Myeloma; Refractory Chronic Lymphocytic Leukemia; Refractory Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Refractory Hodgkin Lymphoma; Small Lymphocytic Lymphoma; T-Cell Chronic Lymphocytic Leukemia; Waldenstrom Macroglobulinemia

  10. Aggressive B-cell lymphomas in the update of the 4th edition of the World Health Organization classification of haematopoietic and lymphatic tissues: refinements of the classification, new entities and genetic findings.

    PubMed

    Ott, German

    2017-09-01

    The update of the 4th edition of the World Health Organization Classification of Haematopoietic and Lymphatic Tissues portends important new findings and concepts in the diagnosis, classification and biology of lymphomas. This review summarizes the basic concepts and cornerstones of the classification of aggressive B-cell lymphomas and details the major changes. Of importance, there is a new concept of High-grade B-cell lymphomas (HGBL), partly replacing the provisional entity of B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma (DLBCL) and Burkitt lymphoma, the so-called grey zone lymphomas. They either harbour MYC translocations together with a BCL2 and/or a BCL6 rearrangement (HGBL-Double Hit) or HGBL, not otherwise specified (NOS), lacking a double or triple hit constellation. In addition, the requirement for providing the cell-of-origin classification in the diagnostic work-up of DLBCLs, the role of MYC alterations in DLBCL subtypes, and newer findings in the specific variants/subtypes are highlighted. © 2017 John Wiley & Sons Ltd.

  11. Proliferation and apoptosis in malignant and normal cells in B-cell non-Hodgkin's lymphomas.

    PubMed Central

    Stokke, T.; Holte, H.; Smedshammer, L.; Smeland, E. B.; Kaalhus, O.; Steen, H. B.

    1998-01-01

    We have examined apoptosis and proliferation in lymph node cell suspensions from patients with B-cell non-Hodgkin's lymphoma using flow cytometry. A method was developed which allowed estimation of the fractions of apoptotic cells and cells in the S-phase of the cell cycle simultaneously with tumour-characteristic light chain expression. Analysis of the tumour S-phase fraction and the tumour apoptotic fraction in lymph node cell suspensions from 95 B-cell non-Hodgkin's lymphoma (NHL) patients revealed a non-normal distribution for both parameters. The median fraction of apoptotic tumour cells was 1.1% (25 percentiles 0.5%, 2.7%). In the same samples, the median fraction of apoptotic normal cells was higher than for the tumour cells (1.9%; 25 percentiles 0.7%, 4.0%; P = 0.03). The median fraction of tumour cells in S-phase was 1.4% (25 percentiles 0.8%, 4.8%), the median fraction of normal cells in S-phase was significantly lower than for the tumour cells (1.0%; 25 percentiles 0.6%, 1.9%; P = 0.004). When the number of cases was plotted against the logarithm of the S-phase fraction of the tumour cells, a distribution with two Gaussian peaks was needed to fit the data. One peak was centred around an S-phase fraction of 0.9%; the other was centred around 7%. These peaks were separated by a valley at approximately 3%, indicating that the S-phase fraction in NHL can be classified as 'low' (< 3%) or 'high' (> 3%), independent of the median S-phase fraction. The apoptotic fractions were log-normally distributed. The median apoptotic fraction was higher (1.5%) in the 'high' S-phase group than in the 'low' S-phase group (0.8%; P = 0.02). However, there was no significant correlation between the two parameters (P > 0.05). PMID:9667654

  12. Granzyme B mediated function of Parvovirus B19-specific CD4+ T cells

    PubMed Central

    Kumar, Arun; Perdomo, Maria F; Kantele, Anu; Hedman, Lea; Hedman, Klaus; Franssila, Rauli

    2015-01-01

    A novel conception of CD4+ T cells with cytolytic potential (CD4+ CTL) is emerging. These cells appear to have a part in controlling malignancies and chronic infections. Human parvovirus B19 can cause a persistent infection, yet no data exist on the presence of B19-specific CD4+ CTLs. Such cells could have a role in the pathogenesis of some autoimmune disorders reported to be associated with B19. We explored the cytolytic potential of human parvovirus B19-specific T cells by stimulating peripheral blood mononuclear cell (PBMC) with recombinant B19-VP2 virus-like particles. The cytolytic potential was determined by enzyme immunoassay-based quantitation of granzyme B (GrB) and perforin from the tissue culture supernatants, by intracellular cytokine staining (ICS) and by detecting direct cytotoxicity. GrB and perforin responses with the B19 antigen were readily detectable in B19-seropositive individuals. T-cell depletion, HLA blocking and ICS experiments showed GrB and perforin to be secreted by CD4+ T cells. CD4+ T cells with strong GrB responses were found to exhibit direct cytotoxicity. As anticipated, ICS of B19-specific CD4+ T cells showed expected co-expression of GrB, perforin and interferon gamma (IFN-γ). Unexpectedly, also a strong co-expression of GrB and interleukin 17 (IL-17) was detected. These cells expressed natural killer (NK) cell surface marker CD56, together with the CD4 surface marker. To our knowledge, this is the first report on virus-specific CD4+ CTLs co-expressing CD56 antigen. Our results suggest a role for CD4+ CTL in B19 immunity. Such cells could function within both immune regulation and triggering of autoimmune phenomena such as systemic lupus erythematosus (SLE) or rheumatoid arthritis. PMID:26246896

  13. PTP1B-dependent regulation of receptor tyrosine kinase signaling by the actin-binding protein Mena

    PubMed Central

    Hughes, Shannon K.; Oudin, Madeleine J.; Tadros, Jenny; Neil, Jason; Del Rosario, Amanda; Joughin, Brian A.; Ritsma, Laila; Wyckoff, Jeff; Vasile, Eliza; Eddy, Robert; Philippar, Ulrike; Lussiez, Alisha; Condeelis, John S.; van Rheenen, Jacco; White, Forest; Lauffenburger, Douglas A.; Gertler, Frank B.

    2015-01-01

    During breast cancer progression, alternative mRNA splicing produces functionally distinct isoforms of Mena, an actin regulator with roles in cell migration and metastasis. Aggressive tumor cell subpopulations express MenaINV, which promotes tumor cell invasion by potentiating EGF responses. However, the mechanism by which this occurs is unknown. Here we report that Mena associates constitutively with the tyrosine phosphatase PTP1B and mediates a novel negative feedback mechanism that attenuates receptor tyrosine kinase signaling. On EGF stimulation, complexes containing Mena and PTP1B are recruited to the EGFR, causing receptor dephosphorylation and leading to decreased motility responses. Mena also interacts with the 5′ inositol phosphatase SHIP2, which is important for the recruitment of the Mena-PTP1B complex to the EGFR. When MenaINV is expressed, PTP1B recruitment to the EGFR is impaired, providing a mechanism for growth factor sensitization to EGF, as well as HGF and IGF, and increased resistance to EGFR and Met inhibitors in signaling and motility assays. In sum, we demonstrate that Mena plays an important role in regulating growth factor–induced signaling. Disruption of this attenuation by MenaINV sensitizes tumor cells to low–growth factor concentrations, thereby increasing the migration and invasion responses that contribute to aggressive, malignant cell phenotypes. PMID:26337385

  14. Folliculotropic T-cell infiltrates associated with B-cell chronic lymphocytic leukaemia or MALT lymphoma may reveal either true mycosis fungoides or pseudolymphomatous reaction: seven cases and review of the literature.

    PubMed

    Ingen-Housz-Oro, S; Franck, N; Beneton, N; Fauconneau, A; Do-Pham, G; Carlotti, A; Petit, T; Liolios, I; Bara, C; Carpentier, H; Storelli, D; Prophette, B; Garderet, L; Haioun, C; Petit, E; Delfau-Larue, M-H; Vergier, B; Chosidow, O; Beylot-Barry, M; Ortonne, N

    2015-01-01

    Mycosis fungoides (MF) and pseudo-MF (or MF simulant) can be associated with B-cell malignancies, but distinction between a true neoplasm and a reactive process may be difficult. To report seven patients with B-cell malignancy and folliculotropic MF or pseudo-MF and emphasize on criteria allowing distinction between the two conditions. We retrospectively and prospectively included seven patients with B-cell malignancy who presented skin lesions histologically consisting in a folliculotropic T-cell infiltrate and reviewed the literature on the topic. Four men and three women had a chronic lymphocytic leukaemia (n = 6) or a MALT-type lymphoma (n = 1). Five patients had localized papules, and two had patches and plaques. Histological examination showed in all cases a diffuse dermal T-cell infiltrate with folliculotropic involvement and follicular mucinosis associated with clusters of the B-cell lymphoma, without significant expression of follicular helper T-cell markers. T-cell rearrangement studies showed a polyclonal pattern in the patients with papules and a monoclonal pattern in the cases of patches and plaques. Papular lesions had an indolent evolution, whereas patches and plaques persisted or worsened into transformed MF. Folliculotropic T-cell infiltrates associated with B-cell malignancies can be either a true folliculotropic MF or a pseudo-MF. The distinction between both conditions cannot rely only on the histopathological aspect, but needs both a clinical pathological correlation and the search for a dominant T-cell clone. Whether the neoplastic T and B cells derive from a common ancestor or the T-cell proliferation is promoted by the underlying B-cell lymphoma remains unsolved, but interaction between B and T cell in the skin does not appear to be dependent on a TFH differentiation of the T-cell infiltrate. © 2014 European Academy of Dermatology and Venereology.

  15. Treatment of Relapsed and/or Chemotherapy Refractory B-cell Malignancy by CART19

    ClinicalTrials.gov

    2016-01-26

    Hematopoietic/Lymphoid Cancer; Adult Acute Lymphoblastic Leukemia in Remission; B-cell Adult Acute Lymphoblastic Leukemia; B-cell Chronic Lymphocytic Leukemia; Prolymphocytic Leukemia; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma

  16. Ibrutinib (ImbruvicaTM) potently inhibits ErbB receptor phosphorylation and cell viability of ErbB2-positive breast cancer cells.

    PubMed

    Grabinski, Nicole; Ewald, Florian

    2014-12-01

    Ibrutinib (formerly PCI-32765) is a specific, irreversible, and potent inhibitor of Burton's tyrosine kinase (BTK) developed for the treatment of several forms of blood cancer. It is now an FDA-approved drug marketed under the name Imbruvica(TM) (Pharmacyclics, Inc.) and successfully used as an orally administered second-line drug in the treatment of mantle cell lymphoma. Since BTK is predominantly expressed in hematopoietic cells, the sensitivity of solid tumor cells to Ibrutinib has not been analyzed. In this study, we determined the effect of Ibrutinib on breast cancer cells. We demonstrate that Ibrutinib efficiently reduces the phosphorylation of the receptor tyrosine kinases ErbB1, ErbB2 and ErbB3, thereby suppressing AKT and MAPK signaling in ErbB2-positive (ErbB2+) breast cancer cell lines. Treatment with Ibrutinib significantly reduced the viability of ErbB2+ cell lines with IC50 values at nanomolar concentrations, suggesting therapeutic potential of Ibrutinib in breast cancer. Combined treatment with Ibrutinib and the dual PI3K/mTOR inhibitor BEZ235 synergistically reduces cell viability of ErbB2+ breast cancer cells. Combination indices below 0.25 at 50% inhibition of cell viability were determined by the Chou-Talalay method. Therefore, the combination of Ibrutinib and canonical PI3K pathway inhibitors could be a new and effective approach in the treatment of breast cancer with activated ErbB receptors. Ibrutinib could thus become a valuable component of targeted therapy in aggressive ErbB2+ breast cancer.

  17. The malignant niche: safe spaces for toxic stem cell marketing.

    PubMed

    Sipp, Douglas

    2017-01-01

    Many tumors are sustained by microenvironments, or niches, that support and protect malignant cells, thus conferring a competitive advantage against both healthy cells and therapeutic interventions (for a brief review, see Yao and Link (Stem Cells 35: 3-8, 2017)). The global industry engaged in the commercial promotion of unproven and scientifically implausible cell-based "regenerative" therapies has developed a number of self-protective strategies that support its survival and growth in ways that are broadly analogous to the functions of the malignant niche.

  18. Locally Aggressive Fibrous Dysplasia Mimicking Malign Calvarial Lesion.

    PubMed

    Ogul, Hayri; Keskin, Emine

    2018-05-01

    Fibrous dysplasia is an unusual benign bone tumor. It is divided into 3 groups as monostotic, polyostotic, and craniofacial form. The authors reported an unusual patient with fibrous dysplasia with an aggressive radiologic appearance.

  19. Aberrant Huntingtin interacting protein 1 in lymphoid malignancies.

    PubMed

    Bradley, Sarah V; Smith, Mitchell R; Hyun, Teresa S; Lucas, Peter C; Li, Lina; Antonuk, Danielle; Joshi, Indira; Jin, Fang; Ross, Theodora S

    2007-09-15

    Huntingtin interacting protein 1 (HIP1) is an inositol lipid, clathrin, and actin binding protein that is overexpressed in a variety of epithelial malignancies. Here, we report for the first time that HIP1 is elevated in non-Hodgkin's and Hodgkin's lymphomas and that patients with lymphoid malignancies frequently had anti-HIP1 antibodies in their serum. Moreover, p53-deficient mice with B-cell lymphomas were 13 times more likely to have anti-HIP1 antibodies in their serum than control mice. Furthermore, transgenic overexpression of HIP1 was associated with the development of lymphoid neoplasms. The HIP1 protein was induced by activation of the nuclear factor-kappaB pathway, which is frequently activated in lymphoid malignancies. These data identify HIP1 as a new marker of lymphoid malignancies that contributes to the transformation of lymphoid cells in vivo.

  20. Nuclear factor κB and cyclooxygenase-2 immunoexpression in oral dysplasia and oral squamous cell carcinoma.

    PubMed

    Pontes, Hélder Antônio Rebelo; Pontes, Flávia Sirotheau Corrêa; Fonseca, Felipe Paiva; de Carvalho, Pedro Luiz; Pereira, Erika Martins; de Abreu, Michelle Carvalho; de Freitas Silva, Brunno Santos; dos Santos Pinto, Décio

    2013-02-01

    Oral leukoplakia is the main potentially malignant oral lesion, and oral squamous cell carcinoma accounts for more than 95% of all malignant neoplasms in the oral cavity. Therefore, the aim of this study was to verify the immunoexpression of nuclear factor κB (NF-κB) and cyclooxygenase-2 (COX-2) proteins in dysplastic oral lesions and oral squamous cell carcinoma. Immunohistochemical reactions were performed on 6 inflammatory fibrous hyperplasia, 28 oral leukoplakia, and 15 oral squamous cell carcinoma paraffin-embedded samples. Immunoperoxidase reaction for NF-κB and COX-2 was applied on the specimens, and the positivity of the reactions was calculated for 1000 epithelial cells. Using the analysis of variance and the Tukey post hoc statistical analyses, a significantly increased immunoexpression for NF-κB was observed when oral squamous cell carcinoma samples were compared with the other groups studied. However, using the Kruskal-Wallis and the Dunn post hoc tests, a statistically significant result for COX-2 expression was obtained only when the moderate dysplasia group was compared with the inflammatory fibrous hyperplasia group. Nuclear factor κB may participate in the malignant phenotype acquisition process of the oral squamous cell carcinoma in its late stages, whereas COX-2 may be involved in the early stages of oral carcinogenesis process. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Sensitivity of malignant rhabdoid tumor cell lines to PD 0332991 is inversely correlated with p16 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsumi, Yoshiki; Iehara, Tomoko; Miyachi, Mitsuru

    Highlights: {yields} PD 0332991 (PD) could suppress four of five malignant rhabdoid tumor (MRT) cell lines. {yields} The sensitivity of the MRT cell lines to PD was inversely correlated with p16 expression (r = 0.951). {yields} p16 expression in MRT could be used to predict its sensitivity to PD. {yields} PD may be an attractive agent for patients with MRT whose tumors express low levels of p16. -- Abstract: Malignant rhabdoid tumor (MRT) is a rare and highly aggressive neoplasm of young children. MRT is characterized by inactivation of integrase interactor 1 (INI1). Cyclin-dependent kinase 4 (CDK4), which acts downstreammore » of INI1, is required for the proliferation of MRT cells. Here we investigated the effects of PD 0332991 (PD), a potent inhibitor of CDK4, against five human MRT cell lines (MP-MRT-AN, KP-MRT-RY, G401, KP-MRT-NS, KP-MRT-YM). In all of the cell lines except KP-MRT-YM, PD inhibited cell proliferation >50%, (IC{sub 50} values 0.01 to 0.6 {mu}M) by WST-8 assay, and induced G1-phase cell cycle arrest, as shown by flow cytometry and BrdU incorporation assay. The sensitivity of the MRT cell lines to PD was inversely correlated with p16 expression (r = 0.951). KP-MRT-YM cells overexpress p16 and were resistant to the growth inhibitory effect of PD. Small interfering RNA against p16 significantly increased the sensitivity of KP-MRT-YM cells to PD (p < 0.05). These results suggest that p16 expression in MRT could be used to predict its sensitivity to PD. PD may be an attractive agent for patients with MRT whose tumors express low levels of p16.« less

  2. Aggressive aneurysmal bone cyst of the maxilla confused with telangiectatic osteosarcoma.

    PubMed

    Lee, Hyun-Min; Cho, Kyu-Sup; Choi, Kyung-Un; Roh, Hwan-Jung

    2012-06-01

    Aneurysmal bone cyst (ABC) is a benign, expansile lesion typically affecting the long bones and vertebrae of patients younger than 20 years. Approximately 2% of ABCs occur in the head and neck region, most commonly affecting the mandible. Although the most common co-existing lesion associated with ABCs is the giant cell tumor, ABCs can be radiologically confused with telangiectatic osteosarcoma in cases of aggressive behavior and rapid growth. Here, we report a case of an aggressive ABC of the maxilla confused with telangiectatic osteosarcoma in a patient who underwent several operations for an osteoblastoma that was diagnosed histopathologically. This case highlights the need for a differential diagnosis both radiologically and histopathologically, because ABCs can easily be interpreted as a giant cell tumor or an osteoblastoma, and, on occasion, can be mistaken for osteogenic malignancies. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. CHSY1 promotes aggressive phenotypes of hepatocellular carcinoma cells via activation of the hedgehog signaling pathway.

    PubMed

    Liu, Chiung-Hui; Lan, Chyn-Tair; Chou, Jui-Feng; Tseng, To-Jung; Liao, Wen-Chieh

    2017-09-10

    Abnormal expression of chondroitin sulfate has been found in many types of cancer, while its biological functions in hepatocellular carcinoma (HCC) progression remain uninvestigated. Here, we report that chondroitin sulfate synthase 1 (CHSY1), the enzyme that mediates the polymerization step of chondroitin sulfate, is a critical mediator of malignant character in HCC that acts via modulating the activity of the hedgehog signaling. CHSY1 was up-regulated frequently in HCC where these events were associated with worse histologic grade and poor survival. Enforced expression of CHSY1 was sufficient to enhance cell growth, migration, invasion, and epithelial-mesenchymal transition, whereas silencing of CHSY1 suppressed these malignant phenotypes. Mechanistic investigations revealed that the increase of cell surface chondroitin sulfate by CHSY1 promoted sonic hedgehog binding and signaling. Inhibiting hedgehog pathway with vismodegib decreased CHSY1-induced migration, invasion, and lung metastasis of HCC cells, establishing the critical role of hedgehog signaling in mediating the effects of CHSY1 expression. Together, our results indicate that CHSY1 overexpression in HCC contributes to the malignant behaviors in cancer cells, we provide novel insights into the significance of chondroitin sulfate in hedgehog signaling and HCC pathogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Preferential cytotoxicity of bortezomib toward highly malignant human liposarcoma cells via suppression of MDR1 expression and function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Yamei; Wang, Lingxian; Wang, Lu

    2015-02-15

    Liposarcoma is the most common soft tissue sarcoma with a high risk of relapse. Few therapeutic options are available for the aggressive local or metastatic disease. Here, we report that the clinically used proteasome inhibitor bortezomib exhibits significantly stronger cytotoxicity toward highly malignant human liposarcoma SW872-S cells compared with its parental SW872 cells, which is accompanied by enhanced activation of apoptotic signaling both in vitro and in vivo. Treatment of cells with Jun-N-terminal kinase (JNK) inhibitor SP60015 or the translation inhibitor cycloheximide ameliorated this enhanced apoptosis. Bortezomib inhibited MDR1 expression and function more effectively in SW872-S cells than in SW872more » cells, indicating that the increased cytotoxicity relies on the degree of proteasome inhibition. Furthermore, the pharmacological or genetic inhibition of sarco/endoplasmic reticulum calcium-ATPase (SERCA) 2, which is highly expressed in SW872-S cells, resulted in partial reversal of cell growth inhibition and increase of MDR1 expression in bortezomib-treated SW872-S cells. These results show that bortezomib exhibits preferential cytotoxicity toward SW872-S cells possibly via highly expressed SERCA2-associated MDR1 suppression and suggest that bortezomib may serve as a potent agent for treating advanced liposarcoma. - Highlights: • We compare the cytotoxicity of different drugs between SW872-S and SW872 cells. • Highly malignant liposarcoma cells SW872-S show hypersensitivity to bortezomib. • Apoptotic signaling is robustly enhanced in bortezomib-treated SW872-S cells. • Bortezomib has strong suppression on MDR1 expression and function in SW872-S cells. • Inhibition of SERCA2 protects SW872-S cells from bortezomib.« less

  5. Ionene polymers for selectively inhibiting the vitro growth of malignant cells

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1977-01-01

    Ionene polymers of the structure ##STR1## WHERE X AND Y ARE INTEGERS FROM 3 TO 16, Z.sup.- is an anion such as a halogen and n is an integer from 50 to 150 are found to bind negatively charged mammalian cells such as malignant cells and can be utilized to selectively inhibit the growth of malignant cells in vitro.

  6. Targeting BCL2 With BH3 Mimetics: Basic Science and Clinical Application of Venetoclax in Chronic Lymphocytic Leukemia and Related B Cell Malignancies.

    PubMed

    Roberts, A W; Huang, Dcs

    2017-01-01

    The intracellular protein B-cell-lymphoma-2 (BCL2) has been considered an attractive target for cancer therapy since the discovery of its function as a major promoter of cell survival (an anti-apoptotic) in the late 1980s. However, the challenges of targeting a protein-protein interaction delayed the discovery of fit-for-purpose molecules until the mid-2000s. Since then, a series of high affinity small organic molecules that inhibits the interaction of BCL2 with the apoptotic machinery, the so-called BH3-mimetics, have been developed. Venetoclax (formerly ABT-199) is the first to achieve US Food and Drug Administration approval, with an indication for treatment of patients with previously treated chronic lymphocytic leukemia (CLL) bearing deletion of the long arm of chromosome 17. Here, we review key aspects of the science underpinning the clinical application of BCL2 inhibitors and explore both our current knowledge and unresolved questions about its clinical utility, both in CLL and in other B-cell malignancies that highly express BCL2. © 2016 The Authors Clinical Pharmacology & Therapeutics published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  7. MMP1, MMP9, and COX2 expressions in promonocytes are induced by breast cancer cells and correlate with collagen degradation, transformation-like morphological changes in MCF-10A acini, and tumor aggressiveness.

    PubMed

    Chimal-Ramírez, G K; Espinoza-Sánchez, N A; Utrera-Barillas, D; Benítez-Bribiesca, L; Velázquez, J R; Arriaga-Pizano, L A; Monroy-García, A; Reyes-Maldonado, E; Domínguez-López, M L; Piña-Sánchez, Patricia; Fuentes-Pananá, E M

    2013-01-01

    Tumor-associated immune cells often lack immune effector activities, and instead they present protumoral functions. To understand how tumors promote this immunological switch, invasive and noninvasive breast cancer cell (BRC) lines were cocultured with a promonocytic cell line in a Matrigel-based 3D system. We hypothesized that if communication exists between tumor and immune cells, coculturing would result in augmented expression of genes associated with tumor malignancy. Upregulation of proteases MMP1 and MMP9 and inflammatory COX2 genes was found likely in response to soluble factors. Interestingly, changes were more apparent in promonocytes and correlated with the aggressiveness of the BRC line. Increased gene expression was confirmed by collagen degradation assays and immunocytochemistry of prostaglandin 2, a product of COX2 activity. Untransformed MCF-10A cells were then used as a sensor of soluble factors with transformation-like capabilities, finding that acini formed in the presence of supernatants of the highly aggressive BRC/promonocyte cocultures often exhibited total loss of the normal architecture. These data support that tumor cells can modify immune cell gene expression and tumor aggressiveness may importantly reside in this capacity. Modeling interactions in the tumor stroma will allow the identification of genes useful as cancer prognostic markers and therapy targets.

  8. The role of CD133 in normal human prostate stem cells and malignant cancer-initiating cells.

    PubMed

    Vander Griend, Donald J; Karthaus, Wouter L; Dalrymple, Susan; Meeker, Alan; DeMarzo, Angelo M; Isaacs, John T

    2008-12-01

    Resolving the specific cell of origin for prostate cancer is critical to define rational targets for therapeutic intervention and requires the isolation and characterization of both normal human prostate stem cells and prostate cancer-initiating cells (CIC). Single epithelial cells from fresh normal human prostate tissue and prostate epithelial cell (PrEC) cultures derived from them were evaluated for the presence of subpopulations expressing stem cell markers and exhibiting stem-like growth characteristics. When epithelial cell suspensions containing cells expressing the stem cell marker CD133+ are inoculated in vivo, regeneration of stratified human prostate glands requires inductive prostate stromal cells. PrEC cultures contain a small subpopulation of CD133+ cells, and fluorescence-activated cell sorting-purified CD133+ PrECs self-renew and regenerate cell populations expressing markers of transit-amplifying cells (DeltaNp63), intermediate cells (prostate stem cell antigen), and neuroendocrine cells (CD56). Using a series of CD133 monoclonal antibodies, attachment and growth of CD133+ PrECs requires surface expression of full-length glycosylated CD133 protein. Within a series of androgen receptor-positive (AR+) human prostate cancer cell lines, CD133+ cells are present at a low frequency, self-renew, express AR, generate phenotypically heterogeneous progeny negative for CD133, and possess an unlimited proliferative capacity, consistent with CD133+ cells being CICs. Unlike normal adult prostate stem cells, prostate CICs are AR+ and do not require functional CD133. This suggests that (a) AR-expressing prostate CICs are derived from a malignantly transformed intermediate cell that acquires "stem-like activity" and not from a malignantly transformed normal stem cell and (b) AR signaling pathways are a therapeutic target for prostate CICs.

  9. A Novel Cutaneous Fatty Acid–Binding Protein-Related Signaling Pathway Leading to Malignant Progression in Prostate Cancer Cells

    PubMed Central

    Bao, Zhengzheng; Malki, Mohammad I.; Forootan, Shiva S.; Adamson, Janet; Forootan, Farzad S.; Chen, Danqing; Foster, Christopher S.; Rudland, Philip S.

    2013-01-01

    Cutaneous fatty acid–binding protein (C-FABP), a cancer promoter and metastasis inducer, is overexpressed in the majority of prostatic carcinomas. Investigation of molecular mechanisms involved in tumor-promoting activity of C-FABP has established that there is a fatty acid–initiated signaling pathway leading to malignant progression of prostatic cancer cells. Increased C-FABP expression plays an important role in this novel signaling pathway. Thus, when C-FABP expression is increased, excessive amounts of fatty acids are transported into the nucleus where they act as signaling molecules to stimulate their nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ). The activated PPARγ then modulates the expression of its downstream target regulatory genes, which eventually lead to enhanced tumor expansion and aggressiveness caused by an overgrowth of cells with reduced apoptosis and an increased angiogenesis. PMID:24167657

  10. Breast Cancer Malignant Processes are Regulated by Pax-5 Through the Disruption of FAK Signaling Pathways

    PubMed Central

    Benzina, Sami; Harquail, Jason; Guerrette, Roxann; O'Brien, Pierre; Jean, Stéphanie; Crapoulet, Nicolas; Robichaud, Gilles A.

    2016-01-01

    The study of genetic factors regulating breast cancer malignancy is a top priority to mitigate the morbidity and mortality associated with this disease. One of these factors, Pax-5, modulates cancer aggressiveness through the regulation of various components of the epithelial to mesenchymal transitioning (EMT) process. We have previously reported that Pax-5 expression profiles in cancer tissues inversely correlate with those of the Focal Adhesion Kinase (FAK), a potent activator of breast cancer malignancy. In this study, we set out to elucidate the molecular and regulatory relationship between Pax-5 and FAK in breast cancer processes. Interestingly, we found that Pax-5 mediated suppression of breast cancer cell migration is dependent of FAK activity. Our mechanistic examination revealed that Pax-5 inhibits FAK expression and activation. We also demonstrate that Pax-5 is a potent modulator of FAK repressors (p53 and miR-135b) and activator (NFκB) which results in the overall suppression of FAK-mediated signaling cascades. Altogether, our findings bring more insight to the molecular triggers regulating phenotypic transitioning process and signaling cascades leading to breast cancer progression. PMID:28070224

  11. Doxycycline is an NF-κB inhibitor that induces apoptotic cell death in malignant T-cells

    PubMed Central

    Alexander-Savino, Carolina V.; Hayden, Matthew S.; Richardson, Christopher; Zhao, Jiyong; Poligone, Brian

    2016-01-01

    Cutaneous T-cell Lymphoma (CTCL) is a rare non-Hodgkin's lymphoma that can affect the skin, blood, and lymph nodes, and can metastasize at late stages. Novel therapies that target all affected disease compartments and provide longer lasting responses while being safe are needed. One potential therapeutic target is NF-λB, a regulator of immune responses and an important participant in carcinogenesis and cancer progression. As a transcription factor, NF-λB targets genes that promote cell proliferation and survival. Constitutive or aberrant activation of NF-λB is encountered in many types of cancer, including CTCL. Recently, while analyzing gene-expression profiles of a variety of small molecule compounds that target NF-λB, we discovered the tetracycline family of antibiotics, including doxycycline, to be potent inhibitors of the NF-λB pathway. Doxycycline is well-tolerated, safe, and inexpensive; and is commonly used as an antibiotic and anti-inflammatory for the treatment a multitude of medical conditions. In our current study, we show that doxycycline induces apoptosis in a dose dependent manner in multiple different cell lines from patients with the two most common subtypes of CTCL, Mycosis Fungoides (MF) and Sézary Syndrome (SS). Similar results were found using primary CD4+ T cells from a patient with SS. Doxycycline inhibits TNF induced NF-λB activation and reduces expression of NF-λB dependent anti-apoptotic proteins, such as BCL2α. Furthermore, we have identified that doxycycline induces apoptosis through reactive oxygen species. PMID:27732942

  12. Doxycycline is an NF-κB inhibitor that induces apoptotic cell death in malignant T-cells.

    PubMed

    Alexander-Savino, Carolina V; Hayden, Matthew S; Richardson, Christopher; Zhao, Jiyong; Poligone, Brian

    2016-11-15

    Cutaneous T-cell Lymphoma (CTCL) is a rare non-Hodgkin's lymphoma that can affect the skin, blood, and lymph nodes, and can metastasize at late stages. Novel therapies that target all affected disease compartments and provide longer lasting responses while being safe are needed. One potential therapeutic target is NF-κB, a regulator of immune responses and an important participant in carcinogenesis and cancer progression. As a transcription factor, NF-κB targets genes that promote cell proliferation and survival. Constitutive or aberrant activation of NF-κB is encountered in many types of cancer, including CTCL.Recently, while analyzing gene-expression profiles of a variety of small molecule compounds that target NF-κB, we discovered the tetracycline family of antibiotics, including doxycycline, to be potent inhibitors of the NF-κB pathway. Doxycycline is well-tolerated, safe, and inexpensive; and is commonly used as an antibiotic and anti-inflammatory for the treatment a multitude of medical conditions.In our current study, we show that doxycycline induces apoptosis in a dose dependent manner in multiple different cell lines from patients with the two most common subtypes of CTCL, Mycosis Fungoides (MF) and Sézary Syndrome (SS). Similar results were found using primary CD4+ T cells from a patient with SS. Doxycycline inhibits TNF induced NF-κB activation and reduces expression of NF-κB dependent anti-apoptotic proteins, such as BCL2α. Furthermore, we have identified that doxycycline induces apoptosis through reactive oxygen species.

  13. The split personality of NKT cells in malignancy, autoimmune and allergic disorders

    PubMed Central

    Subleski, Jeff J; Jiang, Qun; Weiss, Jonathan M; Wiltrout, Robert H

    2011-01-01

    NKT cells are a heterogeneous subset of specialized, self-reactive T cells, with innate and adaptive immune properties, which allow them to bridge innate and adaptive immunity and profoundly influence autoimmune and malignant disease outcomes. NKT cells mediate these activities through their ability to rapidly express pro- and anti-inflammatory cytokines that influence the type and magnitude of the immune response. Not only do NKT cells regulate the functions of other cell types, but experimental evidence has found NKT cell subsets can modulate the functions of other NKT subsets. Depending on underlying mechanisms, NKT cells can inhibit or exacerbate autoimmunity and malignancy, making them potential targets for disease intervention. NKT cells can respond to foreign and endogenous antigenic glycolipid signals that are expressed during pathogenic invasion or ongoing inflammation, respectively, allowing them to rapidly react to and influence a broad array of diseases. In this article we review the unique development and activation pathways of NKT cells and focus on how these attributes augment or exacerbate autoimmune disorders and malignancy. We also examine the growing evidence that NKT cells are involved in liver inflammatory conditions that can contribute to the development of malignancy. PMID:21995570

  14. Bronchoalveolar lavage in malignancy.

    PubMed

    Poletti, Venerino; Poletti, Giovanni; Murer, Bruno; Saragoni, Luca; Chilosi, Marco

    2007-10-01

    Bronchoalveolar lavage is a useful diagnostic tool in diffuse or disseminated lung malignancies that do not involve the bronchial structures visible by endoscopy. The neoplastic histotype and the intraparenchymal neoplastic growth pattern are good predictors for diagnostic yield; adenocarcinoma, and tumors with lymphangitic or lepidic growth patterns are more easily diagnosed by bronchoalveolar lavage; in these cases the diagnostic yield reported is higher than 80%. In hematologic malignancies the diagnostic yield is quite good in secondary diffuse indolent B cell lymphomas and in primary B cell lymphomas of mucosa-associated lymphoid tissue (MALT) type but low in Hodgkin disease. Morphological analysis may be implemented by immunocytochemical or molecular tests to identify the cell lineage and the presence of monoclonality. Disorders in which bronchioloalveolar cell hyperplasia/dysplasia is a significant morphological component may have cytological features in bronchoalveolar lavage fluid that mimic lung neoplasms: acute respiratory distress syndrome (ARDS), acute interstitial pneumonitis (AIP), and acute exacerbation of idiopathic pulmonary fibrosis are the most important clinical entities in this group.

  15. Non-hematopoietic PAR-2 is essential for matriptase-driven pre-malignant progression and potentiation of ras-mediated squamous cell carcinogenesis

    PubMed Central

    Sales, Katiuchia Uzzun; Friis, Stine; Konkel, Joanne E.; Godiksen, Sine; Hatakeyama, Marcia; Hansen, Karina K.; Rogatto, Silvia Regina; Szabo, Roman; Vogel, Lotte K.; Chen, Wanjun; Gutkind, J. Silvio; Bugge, Thomas H.

    2014-01-01

    The membrane-anchored serine protease, matriptase, is consistently dysregulated in a range of human carcinomas, and high matriptase activity correlates with poor prognosis. Furthermore, matriptase is unique among tumor-associated proteases in that epithelial stem cell expression of the protease suffices to induce malignant transformation. Here, we use genetic epistasis analysis to identify proteinase-activated receptor (PAR)-2-dependent inflammatory signaling as an essential component of matriptase-mediated oncogenesis. In cell-based assays, matriptase was a potent activator of PAR-2, and PAR-2 activation by matriptase caused robust induction of NFκB through Gαi. Importantly, genetic elimination of PAR-2 from mice completely prevented matriptase-induced pre-malignant progression, including inflammatory cytokine production, inflammatory cell recruitment, epidermal hyperplasia, and dermal fibrosis. Selective ablation of PAR-2 from bone marrow-derived cells did not prevent matriptase-driven pre-malignant progression, indicating that matriptase activates keratinocyte stem cell PAR-2 to elicit its pro-inflammatory and pro-tumorigenic effects. When combined with previous studies, our data suggest that dual induction of PAR-2-NFκB inflammatory signaling and PI3K-Akt-mTor survival/proliferative signaling underlies the transforming potential of matriptase and may contribute to pro-tumorigenic signaling in human epithelial carcinogenesis. PMID:24469043

  16. Non-hematopoietic PAR-2 is essential for matriptase-driven pre-malignant progression and potentiation of ras-mediated squamous cell carcinogenesis.

    PubMed

    Sales, K U; Friis, S; Konkel, J E; Godiksen, S; Hatakeyama, M; Hansen, K K; Rogatto, S R; Szabo, R; Vogel, L K; Chen, W; Gutkind, J S; Bugge, T H

    2015-01-15

    The membrane-anchored serine protease, matriptase, is consistently dysregulated in a range of human carcinomas, and high matriptase activity correlates with poor prognosis. Furthermore, matriptase is unique among tumor-associated proteases in that epithelial stem cell expression of the protease suffices to induce malignant transformation. Here, we use genetic epistasis analysis to identify proteinase-activated receptor (PAR)-2-dependent inflammatory signaling as an essential component of matriptase-mediated oncogenesis. In cell-based assays, matriptase was a potent activator of PAR-2, and PAR-2 activation by matriptase caused robust induction of nuclear factor (NF)κB through Gαi. Importantly, genetic elimination of PAR-2 from mice completely prevented matriptase-induced pre-malignant progression, including inflammatory cytokine production, inflammatory cell recruitment, epidermal hyperplasia and dermal fibrosis. Selective ablation of PAR-2 from bone marrow-derived cells did not prevent matriptase-driven pre-malignant progression, indicating that matriptase activates keratinocyte stem cell PAR-2 to elicit its pro-inflammatory and pro-tumorigenic effects. When combined with previous studies, our data suggest that dual induction of PAR-2-NFκB inflammatory signaling and PI3K-Akt-mTor survival/proliferative signaling underlies the transforming potential of matriptase and may contribute to pro-tumorigenic signaling in human epithelial carcinogenesis.

  17. In Vitro Studies on Erythrosine-Based Photodynamic Therapy of Malignant and Pre-Malignant Oral Epithelial Cells

    PubMed Central

    Garg, Abhishek D.; Bose, Muthiah; Ahmed, Mohammed I.; Bonass, William A.; Wood, Simon R.

    2012-01-01

    Photodynamic Therapy (PDT) involves the administration of a tumor localizing photosensitizing agent, which upon activation with light of an appropriate wavelength leads to the destruction of the tumor cells. The aim of the present study was to determine the efficacy of erythrosine as a photosensitizer for the PDT of oral malignancies. The drug uptake kinetics of erythrosine in malignant (H357) and pre-malignant (DOK) oral epithelial cells and their susceptibility to erythrosine-based PDT was studied along with the determination of the subcellular localization of erythrosine. This was followed by initial investigations into the mechanism of cell killing induced following PDT involving both high and low concentrations of erythrosine. The results showed that at 37°C the uptake of erythrosine by both DOK and H357 cells increased in an erythrosine dose dependent manner. However, the percentage of cell killing observed following PDT differed between the 2 cell lines; a maximum of ∼80% of DOK cell killing was achieved as compared to ∼60% killing for H357 cells. Both the DOK and H357 cell types exhibited predominantly mitochondrial accumulation of erythrosine, but the mitochondrial trans-membrane potential (ΔΨm) studies showed that the H357 cells were far more resistant to the changes in ΔΨm when compared to the DOK cells and this might be a factor in the apparent relative resistance of the H357 cells to PDT. Finally, cell death morphology and caspase activity analysis studies demonstrated the occurrence of extensive necrosis with high dose PDT in DOK cells, whereas apoptosis was observed at lower doses of PDT for both cell lines. For H357 cells, high dose PDT produced both apoptotic as well as necrotic responses. This is the first instance of erythrosine-based PDT's usage for cancer cell killing. PMID:22485174

  18. BNIP3 contributes to the glutamine-driven aggressive behavior of melanoma cells.

    PubMed

    Vara-Perez, Monica; Maes, Hannelore; Van Dingenen, Sarah; Agostinis, Patrizia

    2018-06-01

    Aerobic glycolysis (Warburg effect) is used by cancer cells to fuel tumor growth. Interestingly, metastatic melanoma cells rely on glutaminolysis rather than aerobic glycolysis for their bioenergetic needs through the tricarboxylic acid cycle. Here, we compared the effects of glucose or glutamine on melanoma cell proliferation, migration and oxidative phosphorylation in vitro. We found that glutamine-driven melanoma cell's aggressive traits positively correlated with increased expression of HIF1α and its pro-autophagic target BNIP3. BNIP3 silencing reduced glutamine-mediated effects on melanoma cell growth, migration and bioenergetics. Hence, BNIP3 is a vital component of the mitochondria quality control required for glutamine-driven melanoma aggressiveness.

  19. Variables affecting the quantitation of CD22 in neoplastic B cells.

    PubMed

    Jasper, Gregory A; Arun, Indu; Venzon, David; Kreitman, Robert J; Wayne, Alan S; Yuan, Constance M; Marti, Gerald E; Stetler-Stevenson, Maryalice

    2011-03-01

    Quantitative flow cytometry (QFCM) is being applied in the clinical flow cytometry laboratory for diagnosis, prognosis, and assessment of patients receiving antibody-based therapy. ABC values and the effect of technical variables on CD22 quantitation in acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL), follicular lymphoma (FCL), hairy cell leukemia (HCL) and normal B cells were studied. The QuantiBrite System® was used to determine the level of CD22 expression (mean antibody bound per cell, ABC) by malignant and normal B cells. The intra-assay variability, number of cells required for precision, effect of delayed processing as well as shipment of peripheral blood specimens (delayed processing and exposure to noncontrolled environments), and the effect of paraformaldehyde fixation on assay results were studied. The QuantiBRITE method of measuring CD22 ABC is precise (median CV 1.6%, 95% confidence interval, 1.2-2.3%) but a threshold of 250 malignant cells is required for reliable CD22 ABC values. Delayed processing and overnight shipment of specimens resulted in significantly different ABC values whereas fixation for up to 12 h had no significant effect. ABC measurements determined that CD22 expression is lower than normal in ALL, CLL, FCL, and MCL but higher than normal in HCL. CD22 expression was atypical in the hematolymphoid malignancies studied and may have diagnostic utility. Technical variables such as cell number analyzed and delayed processing or overnight shipment of specimens impact significantly on the measurement of antigen expression by QFCM in the clinical laboratory. Published 2010 Wiley-Liss, Inc.

  20. Early Generated B-1-Derived B Cells Have the Capacity To Progress To Become Mantle Cell Lymphoma-like Neoplasia in Aged Mice.

    PubMed

    Hayakawa, Kyoko; Formica, Anthony M; Nakao, Yuka; Ichikawa, Daiju; Shinton, Susan A; Brill-Dashoff, Joni; Smith, Mitchell R; Morse, Herbert C; Hardy, Richard R

    2018-06-13

    In mice, fetal/neonatal B-1 cell development generates murine CD5 + B cells (B1a) with autoreactivity. We analyzed B1a cells at the neonatal stage in a V H 11/D/J H knock-in mouse line (V H 11t) that generates an autoreactive antiphosphatidylcholine BCR. Our study revealed that antiphosphatidylcholine B1a cells develop in liver, mature in spleen, and distribute in intestine/colon, mesenteric lymph node (mLN), and body cavity as the outcome of B-1 cell development before B-2 cell development. Throughout life, self-renewing B-1 B1a cells circulate through intestine, mesenteric vessel, and blood. The body cavity-deposited B1a cells also remigrate. In old age, some B1a cells proceed to monoclonal B cell lymphocytosis. When neonatal B-1 B1a cells express an antithymocyte/Thy-1 autoreactivity (ATA) BCR transgene in the C.B17 mouse background, ATA B cells increase in PBL and strongly develop lymphomas in aging mice that feature splenomegaly and mLN hyperplasia with heightened expression of CD11b, IL-10, and activated Stat3. At the adult stage, ATA B cells were normally present in the mantle zone area, including in intestine. Furthermore, frequent association with mLN hyperplasia suggests the influence by intestinal microenvironment on lymphoma development. When cyclin D1 was overexpressed by the Eμ-cyclin D1 transgene, ATA B cells progressed to further diffused lymphoma in aged mice, including in various lymph nodes with accumulation of IgM hi IgD lo CD5 + CD23 - CD43 + cells, resembling aggressive human mantle cell lymphoma. Thus, our findings reveal that early generated B cells, as an outcome of B-1 cell development, can progress to become lymphocytosis, lymphoma, and mantle cell lymphoma-like neoplasia in aged mice. Copyright © 2018 by The American Association of Immunologists, Inc.

  1. TRIM29 Overexpression Promotes Proliferation and Survival of Bladder Cancer Cells through NF-κB Signaling.

    PubMed

    Tan, Shu-Tao; Liu, Sheng-Ye; Wu, Bin

    2016-10-01

    TRIM29 overexpression has been reported in several human malignancies and showed correlation with cancer cell malignancy. The aim of the current study is to examine its clinical significance and biological roles in human bladder cancer tissues and cell lines. A total of 102 cases of bladder cancer tissues were examined for TRIM29 expression by immunohistochemistry. siRNA and plasmid transfection were performed in 5637 and BIU-87 cell lines. Cell Counting Kit-8, flow cytometry, western blot, and real-time polymerase chain reaction were performed to examine its biological roles and mechanism in bladder cancer cells. We found that TRIM29 overexpression showed correlation with invading depth (p=0.0087). Knockdown of TRIM29 expression in bladder cancer cell line 5637 inhibited cell growth rate and cell cycle transition while its overexpression in BIU-87 cells accelerated cell proliferation and cell cycle progression. TRIM29 overexpression also inhibited cell apoptosis induced by cisplatin. In addition, we demonstrated that TRIM29 depletion decreased while its overexpression led to upregulated expression of cyclin D1, cyclin E, and Bcl-2. We also showed that TRIM29 knockdown inhibited protein kinase C (PKC) and nuclear factor κB (NF-κB) signaling while its overexpression stimulated the PKC and NF-κB pathways. BAY 11-7082 (NF-κB inhibitor) partly attenuated the effect of TRIM29 on expression of cyclin and Bcl-2. Treatment with PKC inhibitor staurosporine resulted in ameliorated TRIM29 induced activation of NF-κB. The current study demonstrated that TRIM29 upregulates cyclin and Bcl family proteins level to facilitate malignant cell growth and inhibit drug-induced apoptosis in bladder cancer, possibly through PKC-NF-κB signaling pathways.

  2. Post-Transcriptional Regulation of BCL2 mRNA by the RNA-Binding Protein ZFP36L1 in Malignant B Cells

    PubMed Central

    Zekavati, Anna; Nasir, Asghar; Alcaraz, Amor; Aldrovandi, Maceler; Marsh, Phil; Norton, John D.; Murphy, John J.

    2014-01-01

    malignant B-cells. PMID:25014217

  3. Single-Cell Analysis Reveals Early Manifestation of Cancerous Phenotype in Pre-Malignant Esophageal Cells

    PubMed Central

    Wang, Jiangxin; Shi, Xu; Johnson, Roger H.; Kelbauskas, Laimonas; Zhang, Weiwen; Meldrum, Deirdre R.

    2013-01-01

    Cellular heterogeneity plays a pivotal role in a variety of functional processes in vivo including carcinogenesis. However, our knowledge about cell-to-cell diversity and how differences in individual cells manifest in alterations at the population level remains very limited mainly due to the lack of appropriate tools enabling studies at the single-cell level. We present a study on changes in cellular heterogeneity in the context of pre-malignant progression in response to hypoxic stress. Utilizing pre-malignant progression of Barrett’s esophagus (BE) as a disease model system we studied molecular mechanisms underlying the progression from metaplastic to dysplastic (pre-cancerous) stage. We used newly developed methods enabling measurements of cell-to-cell differences in copy numbers of mitochondrial DNA, expression levels of a set of mitochondrial and nuclear genes involved in hypoxia response pathways, and mitochondrial membrane potential. In contrast to bulk cell studies reported earlier, our study shows significant differences between metaplastic and dysplastic BE cells in both average values and single-cell parameter distributions of mtDNA copy numbers, mitochondrial function, and mRNA expression levels of studied genes. Based on single-cell data analysis, we propose that mitochondria may be one of the key factors in pre-malignant progression in BE. PMID:24116039

  4. Macrophage migration inhibitory factor induces epithelial to mesenchymal transition, enhances tumor aggressiveness and predicts clinical outcome in resected pancreatic ductal adenocarcinoma.

    PubMed

    Funamizu, Naotake; Hu, Chaoxin; Lacy, Curtis; Schetter, Aaron; Zhang, Geng; He, Peijun; Gaedcke, Jochen; Ghadimi, Michael B; Ried, Thomas; Yfantis, Harris G; Lee, Dong H; Subleski, Jeffrey; Chan, Tim; Weiss, Jonathan M; Back, Timothy C; Yanaga, Katsuhiko; Hanna, Nader; Alexander, H Richard; Maitra, Anirban; Hussain, S Perwez

    2013-02-15

    MIF is a proinflammatory cytokine and is implicated in cancer. A higher MIF level is found in many human cancer and cancer-prone inflammatory diseases, including chronic pancreatitis and pancreatic cancer. We tested the hypothesis that MIF contributes to pancreatic cancer aggressiveness and predicts disease outcome in resected cases. Consistent with our hypothesis we found that an elevated MIF mRNA expression in tumors was significantly associated with poor outcome in resected cases. Multivariate Cox-regression analysis further showed that MIF is independently associated with patients' survival (HR = 2.26, 95% CI = 1.17-4.37, p = 0.015). Mechanistic analyses revealed that MIF overexpression decreased E-cadherin and increased vimentin mRNA and protein levels in pancreatic cancer cell lines, consistent with the features of epithelial-to-mesenchymal transition (EMT). Furthermore, MIF-overexpression significantly increased ZEB1/2 and decreased miR-200b expression, while shRNA-mediated inhibition of MIF increased E-cadherin and miR-200b expression, and reduced the expression of ZEB1/2 in Panc1 cells. Re-expression of miR-200b in MIF overexpressing cells restored the epithelial characteristics, as indicated by an increase in E-cadherin and decrease in ZEB1/2 and vimentin expression. A reduced sensitivity to the chemotherapeutic drug, gemcitabine, occurred in MIF-overexpressing cells. Indicative of an increased malignant potential, MIF over-expressing cells showed significant increase in their invasion ability in vitro, and tumor growth and metastasis in an orthotopic xenograft mouse model. These results support a role of MIF in disease aggressiveness, indicating its potential usefulness as a candidate target for designing improved treatment in pancreatic cancer. Copyright © 2012 UICC.

  5. Reprogramming human A375 amelanotic melanoma cells by catalase overexpression: Reversion or promotion of malignancy by inducing melanogenesis or metastasis

    PubMed Central

    Bracalente, Candelaria; Salguero, Noelia; Notcovich, Cintia; Müller, Carolina B.; da Motta, Leonardo L.; Klamt, Fabio; Ibañez, Irene L.; Durán, Hebe

    2016-01-01

    Advanced melanoma is the most aggressive form of skin cancer. It is highly metastatic and dysfunctional in melanogenesis; two processes that are induced by H2O2. This work presents a melanoma cell model with low levels of H2O2 induced by catalase overexpression to study differentiation/dedifferentiation processes. Three clones (A7, C10 and G10) of human A375 amelanotic melanoma cells with quite distinct phenotypes were obtained. These clones faced H2O2 scavenging by two main strategies. One developed by clone G10 where ROS increased. This resulted in G10 migration and metastasis associated with the increased of cofilin-1 and CAP1. The other strategy was observed in clone A7 and C10, where ROS levels were maintained reversing malignant features. Particularly, C10 was not tumorigenic, while A7 reversed the amelanotic phenotype by increasing melanin content and melanocytic differentiation markers. These clones allowed the study of potential differentiation and migration markers and its association with ROS levels in vitro and in vivo, providing a new melanoma model with different degree of malignancy. PMID:27206672

  6. Reprogramming human A375 amelanotic melanoma cells by catalase overexpression: Reversion or promotion of malignancy by inducing melanogenesis or metastasis.

    PubMed

    Bracalente, Candelaria; Salguero, Noelia; Notcovich, Cintia; Müller, Carolina B; da Motta, Leonardo L; Klamt, Fabio; Ibañez, Irene L; Durán, Hebe

    2016-07-05

    Advanced melanoma is the most aggressive form of skin cancer. It is highly metastatic and dysfunctional in melanogenesis; two processes that are induced by H2O2. This work presents a melanoma cell model with low levels of H2O2 induced by catalase overexpression to study differentiation/dedifferentiation processes. Three clones (A7, C10 and G10) of human A375 amelanotic melanoma cells with quite distinct phenotypes were obtained. These clones faced H2O2 scavenging by two main strategies. One developed by clone G10 where ROS increased. This resulted in G10 migration and metastasis associated with the increased of cofilin-1 and CAP1. The other strategy was observed in clone A7 and C10, where ROS levels were maintained reversing malignant features. Particularly, C10 was not tumorigenic, while A7 reversed the amelanotic phenotype by increasing melanin content and melanocytic differentiation markers. These clones allowed the study of potential differentiation and migration markers and its association with ROS levels in vitro and in vivo, providing a new melanoma model with different degree of malignancy.

  7. Venetoclax: A novel B-cell lymphoma-2 inhibitor for chronic lymphocytic leukemia and other hematologic malignancies.

    PubMed

    Olin, Jacqueline L; Griffiths, Carrie L; Smith, Morgan B

    2017-01-01

    Patients with chronic lymphocytic leukemia with the 17p deletion have a poor prognosis and treatment options are limited. Venetoclax, a novel B-cell lymphoma-2 inhibitor, has been approved for treatment-experienced chronic lymphocytic leukemia patients with the 17p deletion. A phase 1 dose-escalation study to 400 mg daily showed overall response rates across all doses of 79% with a complete response achieved in 20%. A phase 2 multicenter open-label study demonstrated overall response rate of 79.4% of patients (95% confidence interval 70.5-86.6) with median duration of follow-up of 12.1 months (IQR 10.1-14.2). Tumor lysis syndrome has been observed during initiation and titration. Assessing risk of tumor lysis syndrome prior to therapy initiation is essential to provide appropriate prophylactic medications. Neutropenia, potentially warranting dose reduction or discontinuation, has been observed. Venetoclax has demonstrated activity in other leukemias, multiple myeloma, and lymphomas. Venetoclax has shown response, and is well tolerated in patients with highly resistant chronic lymphocytic leukemia. It has the potential to be part of the treatment armamentarium for other malignancies.

  8. Over-expression of tetraspanin 8 in malignant glioma regulates tumor cell progression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Si-Jian; Wu, Yue-Bing; Cai, Shang

    Tumor cell invasion and proliferation remain the overwhelming causes of death for malignant glioma patients. To establish effective therapeutic methods, new targets implied in these processes have to be identified. Tetraspanin 8 (Tspn8) forms complexes with a large variety of trans-membrane and/or cytosolic proteins to regulate several important cellular functions. In the current study, we found that Tspn8 was over-expressed in multiple clinical malignant glioma tissues, and its expression level correlated with the grade of tumors. Tspn8 expression in malignant glioma cells (U251MG and U87MG lines) is important for cell proliferation and migration. siRNA-mediated knockdown of Tspn8 markedly reduced in vitromore » proliferation and migration of U251MG and U87MG cells. Meanwhile, Tspn8 silencing also increased the sensitivity of temozolomide (TMZ), and significantly increased U251MG or U87MG cell death and apoptosis by TMZ were achieved with Tspn8 knockdown. We observed that Tspn8 formed a complex with activated focal adhesion kinase (FAK) in both human malignant glioma tissues and in above glioma cells. This complexation appeared required for FAK activation, since Tspn8 knockdown inhibited FAK activation in U251MG and U87MG cells. These results provide evidence that Tspn8 contributes to the pathogenesis of glioblastoma probably by promoting proliferation, migration and TMZ-resistance of glioma cells. Therefore, targeting Tspn8 may provide a potential therapeutic intervention for malignant glioma. - Highlights: • Tspn8 is over-expressed in multiple clinical malignant glioma tissues. • Tspn8 expression is correlated with the grade of malignant gliomas. • Tspn8 knockdown suppresses U251MG/U87MG proliferation and in vitro migration. • Tspn8 knockdown significantly increases TMZ sensitivity in U251MG/U87MG cells. • Tspn8 forms a complex with FAK, required for FAK activation.« less

  9. Expression profile and function of Wnt signaling mechanisms in malignant mesothelioma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Simon A., E-mail: s.fox@curtin.edu.au; Richards, Alex K.; Kusumah, Ivonne

    Highlights: •Expression profile of Wnt pathway related genes in mesothelioma cells. •Differential expression of key Wnt pathway molecules and regulators. •Wnt3a stimulated mesothelioma growth whereas sFRP4 was inhibitory. •Targeting β-Catenin can sensitise mesothelioma cells to cytotoxic drugs. -- Abstract: Malignant mesothelioma (MM) is an uncommon and particularly aggressive cancer associated with asbestos exposure, which currently presents an intractable clinical challenge. Wnt signaling has been reported to play a role in the neoplastic properties of mesothelioma cells but has not been investigated in detail in this cancer. We surveyed expression of Wnts, their receptors, and other key molecules in this pathwaymore » in well established in vitro mesothelioma models in comparison with primary mesothelial cultures. We also tested the biological response of MM cell lines to exogenous Wnt and secreted regulators, as well as targeting β-catenin. We detected frequent expression of Wnt3 and Wnt5a, as well as Fzd 2, 4 and 6. The mRNA of Wnt4, Fzd3, sFRP4, APC and axin2 were downregulated in MM relative to mesothelial cells while LEF1 was overexpressed in MM. Functionally, we observed that Wnt3a stimulated MM proliferation while sFRP4 was inhibitory. Furthermore, directly targeting β-catenin expression could sensitise MM cells to cytotoxic drugs. These results provide evidence for altered expression of a number of Wnt/Fzd signaling molecules in MM. Modulation of Wnt signaling in MM may prove a means of targeting proliferation and drug resistance in this cancer.« less

  10. Targeting Stereotyped B Cell Receptors from Chronic Lymphocytic Leukemia Patients with Synthetic Antigen Surrogates.

    PubMed

    Sarkar, Mohosin; Liu, Yun; Qi, Junpeng; Peng, Haiyong; Morimoto, Jumpei; Rader, Christoph; Chiorazzi, Nicholas; Kodadek, Thomas

    2016-04-01

    Chronic lymphocytic leukemia (CLL) is a disease in which a single B-cell clone proliferates relentlessly in peripheral lymphoid organs, bone marrow, and blood. DNA sequencing experiments have shown that about 30% of CLL patients have stereotyped antigen-specific B-cell receptors (BCRs) with a high level of sequence homology in the variable domains of the heavy and light chains. These include many of the most aggressive cases that haveIGHV-unmutated BCRs whose sequences have not diverged significantly from the germ line. This suggests a personalized therapy strategy in which a toxin or immune effector function is delivered selectively to the pathogenic B-cells but not to healthy B-cells. To execute this strategy, serum-stable, drug-like compounds able to target the antigen-binding sites of most or all patients in a stereotyped subset are required. We demonstrate here the feasibility of this approach with the discovery of selective, high affinity ligands for CLL BCRs of the aggressive, stereotyped subset 7P that cross-react with the BCRs of several CLL patients in subset 7p, but not with BCRs from patients outside this subset. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Primary Intra-aortic Epstein-Barr Virus-Positive Large B-Cell Lymphoma Presenting as Aortic Mural Thrombosis: An Entity Distinct From Intravascular Large B-Cell Lymphoma.

    PubMed

    Nakao, Ryuta; Sakashita, Aki; Omoto, Atsushi; Sato, Osamu; Hino, Yoko; Yanagisawa, Akio; Urata, Yoji

    2017-12-01

    Intravascular selective growth of neoplastic B lymphocytes is a characteristic finding of intravascular large B-cell lymphoma (IVLBCL). However, because neoplastic B cells of IVLBCL grow merely in the lumina of capillaries or small vessels, primary IVLBCL of the great vessels is considered exceptional. To our knowledge, only 2 primary B-cell lymphomas in the lumina of the vena cava have been reported. However, there has been no report of primary B-cell lymphoma with intra-aortic growth. We describe a novel manifestation of primary Epstein-Barr virus-positive large B-cell lymphoma mainly affecting the lumina of the aorta and its major branches in a 76-year-old man. He had a long-term fever that was refractory to antibiotics and aortic mural thrombosis with visceral embolization. Because he had no detectable mass suggesting a malignancy, it was difficult to diagnose while he was alive. He died without anticancer treatment, and the confirmed diagnosis was made at autopsy.

  12. Differential Utilization and Localization of ErbB Receptor Tyrosine Kinases in Skin Compared to Normal and Malignant Keratinocytes1

    PubMed Central

    Stoll, Stefan W; Kansra, Sanjay; Peshick, Scott; Fry, David W; Leopold, Wilbur R; Wiesen, Jane F; Sibilia, Maria; Zhang, Tong; Werb, Zena; Derynck, Rik; Wagner, Erwin F; Elder, James T

    2001-01-01

    Abstract Induction of heparin-binding epidermal growth factor-like growth factor (HB-EGF) mRNA in mouse skin organ culture was blocked by two pan-ErbB receptor tyrosine kinase (RTK) inhibitors but not by genetic ablation of ErbB1, suggesting involvement of multiple ErbB species in skin physiology. Human skin, cultured normal keratinocytes, and A431 skin carcinoma cells expressed ErbB1, ErbB2, and ErbB3, but not ErbB4. Skin and A431 cells expressed more ErbB3 than did keratinocytes. Despite strong expression of ErbB2 and ErbB3, heregulin was inactive in stimulating tyrosine phosphorylation in A431 cells. In contrast, it was highly active in MDA-MB-453 breast carcinoma cells. ErbB2 displayed punctate cytoplasmic staining in A431 and keratinocytes, compared to strong cell surface staining in MDA-MB-453. In skin, ErbB2 was cytoplasmic in basal keratinocytes, assuming a cell surface pattern in the upper suprabasal layers. In contrast, ErbB1 retained a cell surface distribution in all epidermal layers. Keratinocyte proliferation in culture was found to be ErbB1-RTK-dependent, using a selective inhibitor. These results suggest that in skin keratinocytes, ErbB2 transduces ligand-dependent differentiation signals, whereas ErbB1 transduces ligand-dependent proliferation/survival signals. Intracellular sequestration of ErbB2 may contribute to the malignant phenotype of A431 cells, by allowing them to respond to ErbB1-dependent growth/survival signals, while evading ErbB2-dependent differentiation signals. PMID:11571634

  13. Malignant gastric lymphoma with spontaneous perforation.

    PubMed

    Shimada, Satoko; Gen, Tokichi; Okamoto, Hiroyuki

    2013-01-17

    Malignant gastric lymphoma, accounting only for 1% of primary gastric carcinoma, is usually a diffuse large B-cell lymphoma. Toyota et al reported that 37% of gastric perforations involved malignancy, generally gastric carcinoma. Fukuda et al found that less than 5% of malignant gastric lymphomas perforate. While it is relatively well known that perforations often take place during chemotherapy, they are rare in patients not receiving chemotherapy. To our knowledge, spontaneous perforation is rare in gastric malignant lymphoma, having been reported in the Japanese literature only 26 times, including this case, in the last 25 years.

  14. Antagonism of serotonin receptor 1B decreases viability and promotes apoptosis in the COS canine osteosarcoma cell line.

    PubMed

    Viall, A K; Goodall, C P; Stang, B; Marley, K; Chappell, P E; Bracha, S

    2016-06-01

    Serotonin receptor 1B (5HTR1B) traditionally exhibits anti-proliferative activity in osteoblasts. We examined the expression and function of 5HTR1B in the COS canine osteosarcoma cell line and normal canine osteoblasts. Equal levels of 5HTR1B gene and protein expression were found between normal and malignant osteoblasts. Treatment with serotonin enhanced viability of osteosarcoma cells but not normal osteoblasts. Challenge with the 5HTR1B agonist anpirtoline caused no change in cell viability. Rather incubation with the specific receptor antagonist SB224289 caused reduction in osteoblast viability, with this effect more substantial in osteosarcoma cells. Investigation of this inhibitory activity showed 5HTR1B antagonism induces apoptosis in malignant cells. Evaluation of phosphorylated levels of CREB and ERK, transcriptional regulators associated with serotonin receptor signalling in osteoblasts, revealed aberrant 5HTR1B signalling in COS. Our results confirm the presence of 5HTR1B in a canine osteosarcoma cell line and highlight this receptor as a possible novel therapeutic target. © 2014 John Wiley & Sons Ltd.

  15. TC-PTP and PTP1B: Regulating JAK-STAT signaling, controlling lymphoid malignancies.

    PubMed

    Pike, Kelly A; Tremblay, Michel L

    2016-06-01

    Lymphoid malignancies are characterized by an accumulation of genetic lesions that act co-operatively to perturb signaling pathways and alter gene expression programs. The Janus kinases (JAK)-signal transducers and activators of transcription (STATs) pathway is one such pathway that is frequently mutated in leukemia and lymphoma. In response to cytokines and growth factors, a cascade of reversible tyrosine phosphorylation events propagates the JAK-STAT pathway from the cell surface to the nucleus. Activated STAT family members then play a fundamental role in establishing the transcriptional landscape of the cell. In leukemia and lymphoma, somatic mutations have been identified in JAK and STAT family members, as well as, negative regulators of the pathway. Most recently, inactivating mutations in the protein tyrosine phosphatase (PTP) genes PTPN1 (PTP1B) and PTPN2 (TC-PTP) were sequenced in B cell lymphoma and T cell acute lymphoblastic leukemia (T-ALL) respectively. The loss of PTP1B and TC-PTP phosphatase activity is associated with an increase in cytokine sensitivity, elevated JAK-STAT signaling, and changes in gene expression. As inactivation mutations in PTPN1 and PTPN2 are restricted to distinct subsets of leukemia and lymphoma, a future challenge will be to identify in which cellular contexts do they contributing to the initiation or maintenance of leukemogenesis or lymphomagenesis. As well, the molecular mechanisms by which PTP1B and TC-PTP loss co-operates with other genetic aberrations will need to be elucidated to design more effective therapeutic strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Fidelity of DNA Replication in Normal and Malignant Human Breast Cells

    DTIC Science & Technology

    1998-07-01

    synthesome has been extensively demonstrated to carry out full length DNA replication in vitro, and to accurately depict the DNA replication process as it...occurs in the intact cell. By examining the fidelity of the DNA replication process carried out by the DNA synthesome from a number of breast cell types...we have demonstrated for the first time, that the cellular DNA replication machinery of malignant human breast cells is significantly more error-prone than that of non- malignant human breast cells.

  17. MicroRNAs in B-cell lymphomas: how a complex biology gets more complex.

    PubMed

    Musilova, K; Mraz, M

    2015-05-01

    MicroRNAs (miRNAs) represent important regulators of gene expression besides transcriptional control. miRNA regulation can be involved in the cell developmental fate decisions, but can also have more subtle roles in buffering stochastic fluctuations in gene expression. They participate in pathways fundamental to B-cell development like B-cell receptor (BCR) signalling, B-cell migration/adhesion, cell-cell interactions in immune niches, and the production and class-switching of immunoglobulins. miRNAs influence B-cell maturation, generation of pre-, marginal zone, follicular, B1, plasma and memory B cells. In this review, we discuss miRNAs with essential functions in malignant B-cell development (such as miR-150, miR-155, miR-21, miR-34a, miR-17-92 and miR-15-16). We also put these miRNAs in the context of normal B-cell differentiation, as this is intimately connected to neoplastic B-cell development. We review miRNAs' role in the most common B-cell malignancies, including chronic lymphocytic leukaemia (CLL), diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL) and mantle cell lymphoma (MCL). We focus on miR-contribution to the regulation of important signalling pathways (such as NF-κB, PI3K/AKT and TGF-β), BCR signalling and its modulators (such as PTEN, SHIP-1, ZAP-70, GAB1 and BTK), anti- and pro-apoptotic proteins (such as BCL2, MCL1, TCL1, BIM, p53 and SIRT1) and transcription factors (such as MYC, MYB, PU.1, FOXP1 and BCL6). We also discuss the association of miRNAs' expression levels with the patients' survival and response to therapy, summarizing their potential use as predictive and prognostic markers. Importantly, the targeting of miRNAs (like use of anti-miR-155 or miR-34a mimic) could provide a novel therapeutic approach as evidenced by tumour regression in xenograft mouse models and initial promising data from clinical trials.

  18. Mechanical characterization of benign and malignant urothelial cells from voided urine

    NASA Astrophysics Data System (ADS)

    Shojaei-Baghini, Ehsan; Zheng, Yi; Jewett, Michael A. S.; Geddie, William B.; Sun, Yu

    2013-03-01

    This study investigates whether mechanical differences exist between benign and malignant urothelial cells in voided urine. The Young's modulus of individual cells was measured using the micropipette aspiration technique. Malignant urothelial cells showed significantly lower Young's modulus values compared to benign urothelial cells. The results indicate that Young's modulus as a biomechanical marker could possibly provide additional information to conventional urinary cytology. We hope that these preliminary results could evoke attention to mechanical characterization of urine cells and spark interest in the development of biomechanical approaches to enhance non-invasive urothelial carcinoma detection.

  19. MiR-26b inhibits melanoma cell proliferation and enhances apoptosis by suppressing TRAF5-mediated MAPK activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Meng; Long, Chaoqin; Yang, Guilan

    2016-03-11

    Alterations in microRNA-26b (miR-26b) expression have been shown to participate in various malignant tumor developments. However, the possible function of miR-26b in human melanoma cells remains unclarified. In this study, quantitative polymerase chain reaction was used to explore the expression profiles of miR-26b in melanoma cells. The effect of miR-26b on cell viability was determined by using MTT assays and colony formation assay. The apoptosis levels were evaluated by using Annexin V/fluorescein isothiocyanate (FITC) apoptosis detection kit and the apoptosis cells were confirmed by Transmission Electron Microscopy (TEM). Luciferase reporter plasmids were constructed to confirm direct targeting. Our study foundmore » that the expression of miR-26b was downregulated in human melanoma specimens. Overexpression of miR-26b significantly increased the anti-proliferative effects and apoptosis in A375 and B16F10 melanoma cells. In addition, luciferase gene reporter assays confirmed that TRAF5 was a direct target gene of miR-26b and the anti-tumor effect of miR-26b in melanoma cells was significantly counteracted by treatment with TRAF5 overexpression. Furthermore, the molecular mechanisms underlying the tumor suppressor of miR-26b in malignant melanomas may be due to the dephosphorylation of MAPK pathway caused by the decrease in TRAF5 expression when miR-26b is up-regulated in melanoma cells. These findings indicate that miR-26b might influence TRAF5-MAPK signaling pathways to facilitate the malignant progression of melanoma cells. - Highlights: • miR-26b is downregulated in human melanomas. • miR-26b suppressed melanoma cell proliferation and enhanced cell apoptosis. • TRAF5 is a direct target of miR-26b and inversely correlates with miR-26b expression. • miR-26b modulated MAPK signaling pathway by targeting TRAF5.« less

  20. Nuclear NF-kappaB p65 phosphorylation at serine 276 by protein kinase A contributes to the malignant phenotype of head and neck cancer.

    PubMed

    Arun, Pattatheyil; Brown, Matthew S; Ehsanian, Reza; Chen, Zhong; Van Waes, Carter

    2009-10-01

    Aberrant nuclear activation and phosphorylation of the canonical NF-kappaB subunit RELA/p65 at Serine-536 by inhibitor kappaB kinase is prevalent in head and neck squamous cell carcinoma (HNSCC), but the role of other kinases in NF-kappaB activation has not been well defined. Here, we investigated the prevalence and function of p65-Ser276 phosphorylation by protein kinase A (PKA) in the malignant phenotype and gene transactivation, and studied p65-Ser276 as a potential target for therapy. Phospho and total p65 protein expression and localization were determined in HNSCC tissue array and in cell lines. The effects of the PKA inhibitor H-89 on NF-kappaB activation, downstream gene expression, cell proliferation and cell cycle were examined. Knockdown of PKA by specific siRNA confirmed the specificity. NF-kappaB p65 phosphorylated at Ser276 was prevalent in HNSCC and adjacent dysplastic mucosa, but localized to the cytoplasm in normal mucosa. In HNSCC lines, tumor necrosis factor-alpha (TNF-alpha) significantly increased, whereas H-89 inhibited constitutive and TNF-alpha-induced nuclear p65 (Ser276) phosphorylation, and significantly suppressed NF-kappaB and target gene IL-8 reporter activity. Knockdown of PKA by small interfering RNA inhibited NF-kappaB, IL-8, and BCL-XL reporter gene activities. H-89 suppressed cell proliferation, induced cell death, and blocked the cell cycle in G(1)-S phase. Consistent with its biological effects, H-89 down-modulated expression of NF-kappaB-related genes Cyclin D1, BCL2, BCL-XL, COX2, IL-8, and VEGF, as well as induced cell cycle inhibitor p21(CIP1/WAF1), while suppressing proliferative marker Ki67. NF-kappaB p65 (Ser276) phosphorylation by PKA promotes the malignant phenotype and holds potential as a therapeutic target in HNSCC.

  1. Extremely elevated alpha-fetoprotein due to acute exacerbation of chronic hepatitis B without malignancy: a case report.

    PubMed

    Yoon, Young-Min; Kang, Da-Yeong; Kim, Da-Young; Seo, Jun-Won; Lim, Hyun-Jong; Lee, Hee-Jeong; Park, Sang-Gon

    2016-06-01

    Alpha-fetoprotein is produced by a variety of tumors such as hepatocellular carcinoma, hepatoblastoma, and germ cell tumors of the ovary and testes. However, we present a case of significantly elevated serum alpha-fetoprotein without evidence of malignant disease in a patient who is a carrier of chronic hepatitis B. A 60-year-old Korean man presented with markedly increased alpha-fetoprotein (2350 ng/mL; normal <5 ng/mL). Various diagnostic evaluations, including computed tomography of the abdomen and thorax and ultrasonography of the abdomen and testes, showed liver cirrhosis and mild splenomegaly; however, no mass was detected in the liver, testes, or other organs scanned. The laboratory findings showed elevated liver function, positivity for hepatitis B e antigen, and a marked increase in hepatitis B virus deoxyribonucleic acid copy number (>7 × 105 IU/mL). Our patient was diagnosed with acute exacerbation of chronic hepatitis B, and we presumed that this condition might be related to extremely elevated alpha-fetoprotein. When our patient was treated with entecavir, the serum alpha-fetoprotein level immediately decreased, in parallel with the hepatitis B virus deoxyribonucleic acid copy number. We report a rare case of extremely elevated alpha-fetoprotein due to acute exacerbation of chronic hepatitis B without any malignancy, and a decrease in this tumor marker simultaneous with a decrease in hepatitis B virus deoxyribonucleic acid copy number on entecavir treatment. This case report is important due to the rarity of the case; furthermore, it provides details of a diagnostic process for a variety of benign diseases and malignant tumors that should be considered in patients with elevated alpha-fetoprotein. Thus, we present a case report, along with a review, that will be helpful for diagnosis and treatment of patients with elevated alpha-fetoprotein.

  2. Vascular Gene Expression in Nonneoplastic and Malignant Brain

    PubMed Central

    Madden, Stephen L.; Cook, Brian P.; Nacht, Mariana; Weber, William D.; Callahan, Michelle R.; Jiang, Yide; Dufault, Michael R.; Zhang, Xiaoming; Zhang, Wen; Walter-Yohrling, Jennifer; Rouleau, Cecile; Akmaev, Viatcheslav R.; Wang, Clarence J.; Cao, Xiaohong; St. Martin, Thia B.; Roberts, Bruce L.; Teicher, Beverly A.; Klinger, Katherine W.; Stan, Radu-Virgil; Lucey, Brenden; Carson-Walter, Eleanor B.; Laterra, John; Walter, Kevin A.

    2004-01-01

    Malignant gliomas are uniformly lethal tumors whose morbidity is mediated in large part by the angiogenic response of the brain to the invading tumor. This profound angiogenic response leads to aggressive tumor invasion and destruction of surrounding brain tissue as well as blood-brain barrier breakdown and life-threatening cerebral edema. To investigate the molecular mechanisms governing the proliferation of abnormal microvasculature in malignant brain tumor patients, we have undertaken a cell-specific transcriptome analysis from surgically harvested nonneoplastic and tumor-associated endothelial cells. SAGE-derived endothelial cell gene expression patterns from glioma and nonneoplastic brain tissue reveal distinct gene expression patterns and consistent up-regulation of certain glioma endothelial marker genes across patient samples. We define the G-protein-coupled receptor RDC1 as a tumor endothelial marker whose expression is distinctly induced in tumor endothelial cells of both brain and peripheral vasculature. Further, we demonstrate that the glioma-induced gene, PV1, shows expression both restricted to endothelial cells and coincident with endothelial cell tube formation. As PV1 provides a framework for endothelial cell caveolar diaphragms, this protein may serve to enhance glioma-induced disruption of the blood-brain barrier and transendothelial exchange. Additional characterization of this extensive brain endothelial cell gene expression database will provide unique molecular insights into vascular gene expression. PMID:15277233

  3. Protein kinase inhibitors against malignant lymphoma

    PubMed Central

    D’Cruz, Osmond J; Uckun, Fatih M

    2013-01-01

    Introduction Tyrosine kinases (TKs) are intimately involved in multiple signal transduction pathways regulating survival, activation, proliferation and differentiation of lymphoid cells. Deregulation or overexpression of specific oncogenic TKs is implicated in maintaining the malignant phenotype in B-lineage lymphoid malignancies. Several novel targeted TK inhibitors (TKIs) have recently emerged as active in the treatment of relapsed or refractory B-cell lymphomas that inhibit critical signaling pathways, promote apoptotic mechanisms or modulate the tumor microenvironment. Areas covered In this review, the authors summarize the clinical outcomes of newer TKIs in various B-cell lymphomas from published and ongoing clinical studies and abstracts from major cancer and hematology conferences. Expert opinion Multiple clinical trials have demonstrated that robust antitumor activity can be obtained with TKIs directed toward specific oncogenic TKs that are genetically deregulated in various subtypes of B-cell lymphomas. Clinical success of targeting TKIs is dependent upon on identifying reliable molecular and clinical markers associated with select cohorts of patients. Further understanding of the signaling pathways should stimulate the identification of novel molecular targets and expand the development of new therapeutic options and individualized therapies. PMID:23496343

  4. A Gammaherpesvirus Bcl-2 Ortholog Blocks B Cell Receptor-Mediated Apoptosis and Promotes the Survival of Developing B Cells In Vivo

    PubMed Central

    Coleman, Carrie B.; McGraw, Jennifer E.; Feldman, Emily R.; Roth, Alexa N.; Keyes, Lisa R.; Grau, Katrina R.; Cochran, Stephanie L.; Waldschmidt, Thomas J.; Liang, Chengyu; Forrest, J. Craig; Tibbetts, Scott A.

    2014-01-01

    Gammaherpesviruses such as Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV, HHV-8) establish lifelong latency in their hosts and are associated with the development of several types of malignancies, including a subset of B cell lymphomas. These viruses are thought to co-opt the process of B cell differentiation to latently infect a fraction of circulating memory B cells, resulting in the establishment of a stable latency setpoint. However, little is known about how this infected memory B cell compartment is maintained throughout the life of the host. We have previously demonstrated that immature and transitional B cells are long-term latency reservoirs for murine gammaherpesvirus 68 (MHV68), suggesting that infection of developing B cells contributes to the maintenance of lifelong latency. During hematopoiesis, immature and transitional B cells are subject to B cell receptor (BCR)-mediated negative selection, which results in the clonal deletion of autoreactive B cells. Interestingly, numerous gammaherpesviruses encode homologs of the anti-apoptotic protein Bcl-2, suggesting that virus inhibition of apoptosis could subvert clonal deletion. To test this, we quantified latency establishment in mice inoculated with MHV68 vBcl-2 mutants. vBcl-2 mutant viruses displayed a marked decrease in the frequency of immature and transitional B cells harboring viral genome, but this attenuation could be rescued by increased host Bcl-2 expression. Conversely, vBcl-2 mutant virus latency in early B cells and mature B cells, which are not targets of negative selection, was remarkably similar to wild-type virus. Finally, in vivo depletion of developing B cells during chronic infection resulted in decreased mature B cell latency, demonstrating a key role for developing B cells in the maintenance of lifelong latency. Collectively, these findings support a model in which gammaherpesvirus latency in circulating mature B cells is sustained in part through the

  5. Malignant human cell transformation of Marcellus Shale gas drilling flow back water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Yixin; Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987; Chen, Tingting

    The rapid development of high-volume horizontal hydraulic fracturing for mining natural gas from shale has posed potential impacts on human health and biodiversity. The produced flow back waters after hydraulic stimulation are known to carry high levels of saline and total dissolved solids. To understand the toxicity and potential carcinogenic effects of these wastewaters, flow back waters from five Marcellus hydraulic fracturing oil and gas wells were analyzed. The physicochemical nature of these samples was analyzed by inductively coupled plasma mass spectrometry and scanning electron microscopy/energy dispersive X-ray spectroscopy. A cytotoxicity study using colony formation as the endpoint was carriedmore » out to define the LC{sub 50} values of test samples using human bronchial epithelial cells (BEAS-2B). The BEAS-2B cell transformation assay was employed to assess the carcinogenic potential of the samples. Barium and strontium were among the most abundant metals in these samples and the same metals were found to be elevated in BEAS-2B cells after long-term treatment. BEAS-2B cells treated for 6 weeks with flow back waters produced colony formation in soft agar that was concentration dependent. In addition, flow back water-transformed BEAS-2B cells show better migration capability when compared to control cells. This study provides information needed to assess the potential health impact of post-hydraulic fracturing flow back waters from Marcellus Shale natural gas mining. - Highlights: • This is the first report of potential cytotoxicity and transforming activity of Marcellus shale gas mining flow back to mammalian cells. • Barium and Strontium were elevated in flow back water exposed cells. • Flow back water malignantly transformed cells and formed tumor in athymic nude mice. • Flow back transformed cells exhibited altered transcriptome with dysregulated cell migration pathway and adherent junction pathway.« less

  6. miR148b is a major coordinator of breast cancer progression in a relapse-associated microRNA signature by targeting ITGA5, ROCK1, PIK3CA, NRAS, and CSF1.

    PubMed

    Cimino, Daniela; De Pittà, Cristiano; Orso, Francesca; Zampini, Matteo; Casara, Silvia; Penna, Elisa; Quaglino, Elena; Forni, Marco; Damasco, Christian; Pinatel, Eva; Ponzone, Riccardo; Romualdi, Chiara; Brisken, Cathrin; De Bortoli, Michele; Biglia, Nicoletta; Provero, Paolo; Lanfranchi, Gerolamo; Taverna, Daniela

    2013-03-01

    Breast cancer is often fatal during its metastatic dissemination. To unravel the role of microRNAs (miRs) during malignancy, we analyzed miR expression in 77 primary breast carcinomas and identified 16 relapse-associated miRs that correlate with survival and/or distinguish tumor subtypes in different datasets. Among them, miR-148b, down-regulated in aggressive breast tumors, was found to be a major coordinator of malignancy. In fact, it is able to oppose various steps of tumor progression when overexpressed in cell lines by influencing invasion, survival to anoikis, extravasation, lung metastasis formation, and chemotherapy response. miR-148b controls malignancy by coordinating a novel pathway involving over 130 genes and, in particular, it directly targets players of the integrin signaling, such as ITGA5, ROCK1, PIK3CA/p110α, and NRAS, as well as CSF1, a growth factor for stroma cells. Our findings reveal the importance of the identified 16 miRs for disease outcome predictions and suggest a critical role for miR-148b in the control of breast cancer progression.

  7. Exosomes secreted by placental stem cells selectively inhibit growth of aggressive prostate cancer cells.

    PubMed

    Peak, Taylor C; Praharaj, Prakash P; Panigrahi, Gati K; Doyle, Michael; Su, Yixin; Schlaepfer, Isabel R; Singh, Ravi; Vander Griend, Donald J; Alickson, Julie; Hemal, Ashok; Atala, Anthony; Deep, Gagan

    2018-05-23

    The current paradigm in the development of new cancer therapies is the ability to target tumor cells while avoiding harm to noncancerous cells. Furthermore, there is a need to develop novel therapeutic options against drug-resistant cancer cells. Herein, we characterized the placental-derived stem cell (PLSC) exosomes (PLSC Exo ) and evaluated their anti-cancer efficacy in prostate cancer (PCa) cell lines. Nanoparticle tracking analyses revealed the size distribution (average size 131.4 ± 0.9 nm) and concentration of exosomes (5.23 × 10 10 ±1.99 × 10 9 per ml) secreted by PLSC. PLSC Exo treatment strongly inhibited the viability of enzalutamide-sensitive and -resistant PCa cell lines (C4-2B, CWR-R1, and LNCaP cells). Interestingly, PLSC Exo treatment had no effect on the viability of a non-neoplastic human prostate cell line (PREC-1). Mass spectrometry (MS) analyses showed that PLSC Exo are loaded with 241 proteins and mainly with saturated fatty acids. Further, Ingenuity Pathway Analysis analyses of proteins loaded in PLSC Exo suggested the role of retinoic acid receptor/liver x receptor pathways in their biological effects. Together, these results suggest the novel selective anti-cancer effects of PLSC Exo against aggressive PCa cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. BIM mediates synergistic killing of B-cell acute lymphoblastic leukemia cells by BCL-2 and MEK inhibitors.

    PubMed

    Korfi, K; Smith, M; Swan, J; Somervaille, T C P; Dhomen, N; Marais, R

    2016-04-07

    B-cell acute lymphoblastic leukemia (B-ALL) is an aggressive hematological disease that kills ~50% of adult patients. With the exception of some BCR-ABL1(+) patients who benefit from tyrosine kinase inhibitors, there are no effective targeted therapies for adult B-ALL patients and chemotherapy remains first-line therapy despite adverse side effects and poor efficacy. We show that, although the MEK/ERK pathway is activated in B-ALL cells driven by different oncogenes, MEK inhibition does not suppress B-ALL cell growth. However, MEK inhibition synergized with BCL-2/BCL-XL family inhibitors to suppress proliferation and induce apoptosis in B-ALL cells. We show that this synergism is mediated by the pro-apoptotic factor BIM, which is dephosphorylated as a result of MEK inhibition, allowing it to bind to and neutralize MCL-1, thereby enhancing BCL-2/BCL-XL inhibitor-induced cell death. This cooperative effect is observed in B-ALL cells driven by a range of genetic abnormalities and therefore has significant therapeutic potential.

  9. An Alu-like RNA promotes cell differentiation and reduces malignancy of human neuroblastoma cells.

    PubMed

    Castelnuovo, Manuele; Massone, Sara; Tasso, Roberta; Fiorino, Gloria; Gatti, Monica; Robello, Mauro; Gatta, Elena; Berger, Audrey; Strub, Katharina; Florio, Tullio; Dieci, Giorgio; Cancedda, Ranieri; Pagano, Aldo

    2010-10-01

    Neuroblastoma (NB) is a pediatric cancer characterized by remarkable cell heterogeneity within the tumor nodules. Here, we demonstrate that the synthesis of a pol III-transcribed noncoding (nc) RNA (NDM29) strongly restricts NB development by promoting cell differentiation, a drop of malignancy processes, and a dramatic reduction of the tumor initiating cell (TIC) fraction in the NB cell population. Notably, the overexpression of NDM29 also confers to malignant NB cells an unpredicted susceptibility to the effects of antiblastic drugs used in NB therapy. Altogether, these results suggest the induction of NDM29 expression as possible treatment to increase cancer cells vulnerability to therapeutics and the measure of its synthesis in NB explants as prognostic factor of this cancer type.

  10. Multidimensional Single-Cell Analysis of BCR Signaling Reveals Proximal Activation Defect As a Hallmark of Chronic Lymphocytic Leukemia B Cells

    PubMed Central

    Palomba, M. Lia; Piersanti, Kelly; Ziegler, Carly G. K.; Decker, Hugo; Cotari, Jesse W.; Bantilan, Kurt; Rijo, Ivelise; Gardner, Jeff R.; Heaney, Mark; Bemis, Debra; Balderas, Robert; Malek, Sami N.; Seymour, Erlene; Zelenetz, Andrew D.

    2014-01-01

    Purpose Chronic Lymphocytic Leukemia (CLL) is defined by a perturbed B-cell receptor-mediated signaling machinery. We aimed to model differential signaling behavior between B cells from CLL and healthy individuals to pinpoint modes of dysregulation. Experimental Design We developed an experimental methodology combining immunophenotyping, multiplexed phosphospecific flow cytometry, and multifactorial statistical modeling. Utilizing patterns of signaling network covariance, we modeled BCR signaling in 67 CLL patients using Partial Least Squares Regression (PLSR). Results from multidimensional modeling were validated using an independent test cohort of 38 patients. Results We identified a dynamic and variable imbalance between proximal (pSYK, pBTK) and distal (pPLCγ2, pBLNK, ppERK) phosphoresponses. PLSR identified the relationship between upstream tyrosine kinase SYK and its target, PLCγ2, as maximally predictive and sufficient to distinguish CLL from healthy samples, pointing to this juncture in the signaling pathway as a hallmark of CLL B cells. Specific BCR pathway signaling signatures that correlate with the disease and its degree of aggressiveness were identified. Heterogeneity in the PLSR response variable within the B cell population is both a characteristic mark of healthy samples and predictive of disease aggressiveness. Conclusion Single-cell multidimensional analysis of BCR signaling permitted focused analysis of the variability and heterogeneity of signaling behavior from patient-to-patient, and from cell-to-cell. Disruption of the pSYK/pPLCγ2 relationship is uncovered as a robust hallmark of CLL B cell signaling behavior. Together, these observations implicate novel elements of the BCR signal transduction as potential therapeutic targets. PMID:24489640

  11. Hematopoietic cell transplantation and cellular therapeutics in the treatment of childhood malignancies.

    PubMed

    Mallhi, Kanwaldeep; Lum, Lawrence G; Schultz, Kirk R; Yankelevich, Maxim

    2015-02-01

    Hematopoietic cell transplantation (HCT) represents the most common and effective form of immunotherapy for childhood malignancies. The role of the graft-versus-leukemia effect in allogeneic HCT has been well established in childhood malignancies, but is also associated with short-term and long-term morbidity. HCT may be ineffective in some settings at obtaining control of the malignancy, and as such, cannot be used as a universal cancer immunotherapy. Novel therapies using dendritic cell vaccinations, tumor-infiltrating lymphocytes, and chimeric antigen receptor T cells are being evaluated as potential adjuvants to HCT. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Phenytoin Induced Cutaneous B Cell Pseudolymphoma

    PubMed Central

    Riyaz, Najeeba; Sasidharanpillai, Sarita; Aravindan, Karumathil P; Nobin, Babu K; Raghavan, Nisha T; Nikhila, Pappinissery K

    2015-01-01

    Cutaneous pseudolymphomas are benign lymphoproliferative processes mimicking lymphomas clinically and histologically. One of the precipitating factors for pseudolymphoma is drugs like anticonvulsants, antidepressants and angiotensin-converting enzyme inhibitors. According to existing literature phenytoin-induced cutaneous pseudolymphomas are usually T-cell predominant. Most often withdrawal of the drug with or without short-course systemic steroids can attain a cure. Rarely malignant transformation has been reported years later despite withdrawal of the offending drug, which necessitates a long-term follow up of the affected. We report an 80-year-old male patient who was receiving phenytoin sodium and who presented with diffuse erythema and infiltrated skin lesions which histologically resembled cutaneous B-cell lymphoma. Substituting phenytoin with levetiracetam achieved resolution of symptoms. Further evaluation was suggestive of a reactive process. A detailed drug history is of paramount importance in differentiating drug-induced pseudolymphoma from lymphoma. Searching literature we could not find any previous reports of phenytoin-induced cutaneous B-cell pseudolymphoma. PMID:26538730

  13. Metaplastic carcinoma of the breast with mesenchymal differentiation (carcinosarcoma). A unique presentation of an aggressive malignancy and literature review.

    PubMed

    Salemis, Nikolaos S

    2018-01-01

    Metaplastic carcinoma of the breast with mesenchymal differentiation (MCMD), previously known as carcinosarcoma, is a very rare and aggressive tumor that has been recently classified as a subtype of metaplastic breast carcinoma. It accounts for 0.08%-0.2% of all breast cancers, with only a few cases reported in the literature. Histologically, MCMD is characterized by a biphasic pattern of malignant epithelial and sarcomatous components without evidence of a transition zone between the two elements. We herein describe a unique case of metaplastic carcinoma of the breast with chondrosarcomatous differentiation in a postmenopausal woman who presented with a large, rapidly growing, ulcerated, bleeding mass and signs of impending sepsis. Metaplastic breast carcinomas (MBC) are rare and aggressive tumors. They are characterized by larger size, lower rates of axillary node involvement, higher rates of triple negativity and distal metastases, earlier local recurrence and poorer survival compared with classic invasive breast cancer. Because of the rarity of MBC, the optimal treatment has not been well defined. Surgery is the main curative treatment modality since MBC has shown a suboptimal response to standard chemotherapy. Patients with MBC may be appropriate candidates for novel targeted therapies.

  14. Absence of epithelial atypia in B3-lesions of the breast is associated with decreased risk for malignancy.

    PubMed

    Mayer, Sebastian; Kayser, Gian; Rücker, Gerta; Bögner, Diana; Hirschfeld, Marc; Hug, Christiane; Stickeler, Elmar; Gitsch, Gerald; Erbes, Thalia

    2017-02-01

    Lesions of uncertain malignant potential (B3) represent a heterogeneous group with an overall risk for malignancy of 9.85-35.1% after total resection. Positive predictive values (PPV) for malignancy vary depending on B3 subtype. The aim of this study was to evaluate the PPV for malignancy in B3 lesions and to determine the clinical significance of atypia-dependent sub-classification (a = without epithelial atypia; b = with epithelial atypia) of B3 into B3a and B3b and papillary lesions (PL) in PLa and PLb. 219 patients with histopathologically proven B3 lesions on core needle/vacuum-assisted biopsy who subsequently underwent diagnostic excision biopsy were included in this study. PPVs for malignancy were reported for B3 in general and all B3 sub-categories. Logistic regression analysis identified associations between B3-subgroups and outcome after excision biopsy as well as the impact of clinical and diagnostic findings on excision diagnosis. The overall PPV rate was 10.0% (22/219). Excision histology exhibited a higher malignancy rate in PLb (2/7; PPV: 28.6%) than in PLa (6/127; PPV: 4.7%) (p = 0.057) and in B3b (12/50; PPV: 24.0%) compared to B3a category (8/165; PPV: 4.8%) (p < 0.001). These findings support the necessity of B3 lesion sub-classification into B3a and B3b and of PL into PLa and PLb when considering epithelial atypia. The determination of atypia status represents a relevant factor in risk-stratification for clinical management of B3 lesions. Should future studies using the sub-classification of PL confirm these results, observation may be a safe option for the clinical management of patients with asymptomatic PLa lesions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Alkyl-Capped Silicon Nanocrystals Lack Cytotoxicity and have Enhanced Intracellular Accumulation in Malignant Cells via Cholesterol-Dependent Endocytosis

    PubMed Central

    Alsharif, Naif H; Berger, Christine E M; Varanasi, Satya S; Chao, Yimin; Horrocks, Benjamin R; Datta, Harish K

    2009-01-01

    Nanocrystals of various inorganic materials are being considered for application in the life sciences as fluorescent labels and for such therapeutic applications as drug delivery or targeted cell destruction. The potential applications of the nanoparticles are critically compromised due to the well-documented toxicity and lack of understanding about the mechanisms involved in the intracellular internalization. Here intracellular internalization and toxicity of alkyl-capped silicon nanocrystals in human neoplastic and normal primary cells is reported. The capped nanocrystals lack cytotoxicity, and there is a marked difference in the rate and extent of intracellular accumulation of the nanoparticles between human cancerous and non-cancerous primary cells, the rate and extent being higher in the malignant cells compared to normal human primary cells. The exposure of the cells to the alkyl-capped nanocrystals demonstrates no evidence of in vitro cytotoxicity when assessed by cell morphology, apoptosis, and cell viability assays. The internalization of the nanocrystals by Hela and SW1353 cells is almost completely blocked by the pinocytosis inhibitors filipin, cytochalasin B, and actinomycin D. The internalization process is not associated with any surface change in the nanoparticles, as their luminescence spectrum is unaltered upon transport into the cytosol. The observed dramatic difference in the rate and extent of internalization of the nanocrystals between malignant and non-malignant cells therefore offers potential application in the management of human neoplastic conditions. PMID:19058285

  16. Tax-Independent Constitutive IκB Kinase Activation in Adult T-Cell Leukemia Cells1

    PubMed Central

    Hironaka, Noriko; Mochida, Kanako; Mori, Naoki; Maeda, Michiyuki; Yamamoto, Naoki; Yamaoka, Shoji

    2004-01-01

    Abstract Adult T-cell leukemia (ATL) is a fatal T-cell malignancy that arises long after infection with human T-cell leukemia virus type I (HTLV-I). We reported previously that nuclear factor-κB (NF-κB) was constitutively activated in ATL cells, although expression of the viral proteins was barely detectable, including Tax, which was known to persistently activate NF-κB. Here we demonstrate that ATL cells that do not express detectable Tax protein exhibit constitutive IκB kinase (IKK) activity. Transfection studies revealed that a dominant-negative form of IKK1, and not of IKK2 or NF-κB essential modulator (NEMO), suppressed constitutive NFκB activity in ATL cells. This IKK activity was accompanied by elevated expression of p52, suggesting that the recently described noncanonical pathway of NF-κB activation operates in ATL cells. We finally show that specific inhibition of NF-κB by a super-repressor form of IκBα (SR-IκBα) in HTLV-I-infected T cells results in cell death regardless of Tax expression, providing definitive evidence of an essential role for NF-κB in the survival of ATL cells. In conclusion, the IKK complex is constitutively activated in ATL cells through a cellular mechanism distinct from that of Tax-mediated IKK activation. Further elucidation of this cellular mechanism should contribute to establishing a rationale for treatment of ATL. PMID:15153339

  17. Identification of a nucleoside analog active against adenosine kinase–expressing plasma cell malignancies

    PubMed Central

    Sadek, Jouliana; Hernandez-Hopkins, Denise; Akar, Gunkut; Barelli, Peter J.; Sahai, Michelle A.; Zhou, Hufeng; Totonchy, Jennifer; Jayabalan, David; Niesvizky, Ruben; Guasparri, Ilaria; Liu, Yifang; Sei, Shizuko; Shoemaker, Robert H.; Elemento, Olivier; Kaye, Kenneth M.

    2017-01-01

    Primary effusion lymphoma (PEL) is a largely incurable malignancy of B cell origin with plasmacytic differentiation. Here, we report the identification of a highly effective inhibitor of PEL. This compound, 6-ethylthioinosine (6-ETI), is a nucleoside analog with toxicity to PEL in vitro and in vivo, but not to other lymphoma cell lines tested. We developed and performed resistome analysis, an unbiased approach based on RNA sequencing of resistant subclones, to discover the molecular mechanisms of sensitivity. We found different adenosine kinase–inactivating (ADK-inactivating) alterations in all resistant clones and determined that ADK is required to phosphorylate and activate 6-ETI. Further, we observed that 6-ETI induces ATP depletion and cell death accompanied by S phase arrest and DNA damage only in ADK-expressing cells. Immunohistochemistry for ADK served as a biomarker approach to identify 6-ETI–sensitive tumors, which we documented for other lymphoid malignancies with plasmacytic features. Notably, multiple myeloma (MM) expresses high levels of ADK, and 6-ETI was toxic to MM cell lines and primary specimens and had a robust antitumor effect in a disseminated MM mouse model. Several nucleoside analogs are effective in treating leukemias and T cell lymphomas, and 6-ETI may fill this niche for the treatment of PEL, plasmablastic lymphoma, MM, and other ADK-expressing cancers. PMID:28504647

  18. Identification of a nucleoside analog active against adenosine kinase-expressing plasma cell malignancies.

    PubMed

    Nayar, Utthara; Sadek, Jouliana; Reichel, Jonathan; Hernandez-Hopkins, Denise; Akar, Gunkut; Barelli, Peter J; Sahai, Michelle A; Zhou, Hufeng; Totonchy, Jennifer; Jayabalan, David; Niesvizky, Ruben; Guasparri, Ilaria; Hassane, Duane; Liu, Yifang; Sei, Shizuko; Shoemaker, Robert H; Warren, J David; Elemento, Olivier; Kaye, Kenneth M; Cesarman, Ethel

    2017-06-01

    Primary effusion lymphoma (PEL) is a largely incurable malignancy of B cell origin with plasmacytic differentiation. Here, we report the identification of a highly effective inhibitor of PEL. This compound, 6-ethylthioinosine (6-ETI), is a nucleoside analog with toxicity to PEL in vitro and in vivo, but not to other lymphoma cell lines tested. We developed and performed resistome analysis, an unbiased approach based on RNA sequencing of resistant subclones, to discover the molecular mechanisms of sensitivity. We found different adenosine kinase-inactivating (ADK-inactivating) alterations in all resistant clones and determined that ADK is required to phosphorylate and activate 6-ETI. Further, we observed that 6-ETI induces ATP depletion and cell death accompanied by S phase arrest and DNA damage only in ADK-expressing cells. Immunohistochemistry for ADK served as a biomarker approach to identify 6-ETI-sensitive tumors, which we documented for other lymphoid malignancies with plasmacytic features. Notably, multiple myeloma (MM) expresses high levels of ADK, and 6-ETI was toxic to MM cell lines and primary specimens and had a robust antitumor effect in a disseminated MM mouse model. Several nucleoside analogs are effective in treating leukemias and T cell lymphomas, and 6-ETI may fill this niche for the treatment of PEL, plasmablastic lymphoma, MM, and other ADK-expressing cancers.

  19. Inhibition of glucose turnover by 3-bromopyruvate counteracts pancreatic cancer stem cell features and sensitizes cells to gemcitabine

    PubMed Central

    Bauer, Nathalie; Liu, Li; Fan, Pei; Zhang, Yiyao; Gladkich, Jury; Nwaeburu, Clifford C.; Mattern, Jürgen; Mollenhauer, Martin; Rückert, Felix; Zach, Sebastian; Haberkorn, Uwe; Gross, Wolfgang; Schönsiegel, Frank; Bazhin, Alexandr V.; Herr, Ingrid

    2014-01-01

    According to the cancer stem cell (CSC) hypothesis, the aggressive growth and early metastasis of pancreatic ductal adenocarcinoma (PDA) is due to the activity of CSCs, which are not targeted by current therapies. Otto Warburg suggested that the growth of cancer cells is driven by a high glucose metabolism. Here, we investigated whether glycolysis inhibition targets CSCs and thus may enhance therapeutic efficacy. Four established and 3 primary PDA cell lines, non-malignant cells, and 3 patient-tumor-derived CSC-enriched spheroidal cultures were analyzed by glucose turnover measurements, MTT and ATP assays, flow cytometry of ALDH1 activity and annexin positivity, colony and spheroid formation, western blotting, electrophoretic mobility shift assay, xenotransplantation, and immunohistochemistry. The effect of siRNA-mediated inhibition of LDH-A and LDH-B was also investigated. The PDA cells exhibited a high glucose metabolism, and glucose withdrawal or LDH inhibition by siRNA prevented growth and colony formation. Treatment with the anti-glycolytic agent 3-bromopyruvate almost completely blocked cell viability, self-renewal potential, NF-κB binding activity, and stem cell-related signaling and reverted gemcitabine resistance. 3-bromopyruvate was less effective in weakly malignant PDA cells and did not affect non-malignant cells, predicting minimal side effects. 3-bromopyruvate inhibited in vivo tumor engraftment and growth on chicken eggs and mice and enhanced the efficacy of gemcitabine by influencing the expression of markers of proliferation, apoptosis, self-renewal, and metastasis. Most importantly, primary CSC-enriched spheroidal cultures were eliminated by 3-bromopyruvate. These findings propose that CSCs may be specifically dependent on a high glucose turnover and suggest 3-bromopyruvate for therapeutic intervention. PMID:25015789

  20. Inhibition of glucose turnover by 3-bromopyruvate counteracts pancreatic cancer stem cell features and sensitizes cells to gemcitabine.

    PubMed

    Isayev, Orkhan; Rausch, Vanessa; Bauer, Nathalie; Liu, Li; Fan, Pei; Zhang, Yiyao; Gladkich, Jury; Nwaeburu, Clifford C; Mattern, Jürgen; Mollenhauer, Martin; Rückert, Felix; Zach, Sebastian; Haberkorn, Uwe; Gross, Wolfgang; Schönsiegel, Frank; Bazhin, Alexandr V; Herr, Ingrid

    2014-07-15

    According to the cancer stem cell (CSC) hypothesis, the aggressive growth and early metastasis of pancreatic ductal adenocarcinoma (PDA) is due to the activity of CSCs, which are not targeted by current therapies. Otto Warburg suggested that the growth of cancer cells is driven by a high glucose metabolism. Here, we investigated whether glycolysis inhibition targets CSCs and thus may enhance therapeutic efficacy. Four established and 3 primary PDA cell lines, non-malignant cells, and 3 patient-tumor-derived CSC-enriched spheroidal cultures were analyzed by glucose turnover measurements, MTT and ATP assays, flow cytometry of ALDH1 activity and annexin positivity, colony and spheroid formation, western blotting, electrophoretic mobility shift assay, xenotransplantation, and immunohistochemistry. The effect of siRNA-mediated inhibition of LDH-A and LDH-B was also investigated. The PDA cells exhibited a high glucose metabolism, and glucose withdrawal or LDH inhibition by siRNA prevented growth and colony formation. Treatment with the anti-glycolytic agent 3-bromopyruvate almost completely blocked cell viability, self-renewal potential, NF-κB binding activity, and stem cell-related signaling and reverted gemcitabine resistance. 3-bromopyruvate was less effective in weakly malignant PDA cells and did not affect non-malignant cells, predicting minimal side effects. 3-bromopyruvate inhibited in vivo tumor engraftment and growth on chicken eggs and mice and enhanced the efficacy of gemcitabine by influencing the expression of markers of proliferation, apoptosis, self-renewal, and metastasis. Most importantly, primary CSC-enriched spheroidal cultures were eliminated by 3-bromopyruvate. These findings propose that CSCs may be specifically dependent on a high glucose turnover and suggest 3-bromopyruvate for therapeutic intervention.

  1. Aberrant p63 and WT-1 expression in myoepithelial cells of pregnancy-associated breast cancer: implications for tumor aggressiveness and invasiveness

    PubMed Central

    Xu, Zheli; Wang, Wan; Deng, Chu-Xia; Man, Yan-gao

    2009-01-01

    Our recent studies revealed that focal alterations in breast myoepithelial cell layers significantly impact the biological presentation of associated epithelial cells. As pregnancy-associated breast cancer (PABC) has a significantly more aggressive clinical course and mortality rate than other forms of breast malignancies, our current study compared tumor suppressor expression in myoepithelial cells of PABC and non-PABC, to determine whether myoepithelial cells of PABC may have aberrant expression of tumor suppressors. Tissue sections from 20 cases of PABC and 20 cases of stage, grade, and age matched non-PABC were subjected to immunohistochemistry, and the expression of tumor suppressor maspin, p63, and Wilms' tumor 1 (WT-1) in calponin positive myoepithelial cells were statistically compared. The expression profiles of maspin, p63, and WT-1 in myoepithelial cells of all ducts encountered were similar between PABC and non-PABC. PABC, however, displayed several unique alterations in terminal duct and lobular units (TDLU), acini, and associated tumor tissues that were not seen in those of non-PABC, which included the absence of p63 and WT-1 expression in a vast majority of the myoepithelial cells, cytoplasmic localization of p63 in the entire epithelial cell population of some lobules, and substantially increasing WT-1 expression in vascular structures of the invasive cancer component. All or nearly all epithelial cells with aberrant p63 and WT-1 expression lacked the expression of estrogen receptor and progesterone receptor, whereas they had a substantially higher proliferation index than their counterparts with p63 and WT-1 expression. Hyperplastic cells with cytoplasmic p63 expression often adjacent to, and share a similar immunohistochemical and cytological profile with, invasive cancer cells. To our best knowledge, our main finings have not been previously reported. Our findings suggest that the functional status of myoepithelial cells may be significantly

  2. Phagocytosis of Candida albicans Enhances Malignant Behavior of Murine Tumor Cells

    NASA Astrophysics Data System (ADS)

    Ginsburg, Isaac; Fligiel, Suzanne E. G.; Kunkel, Robin G.; Riser, Bruce L.; Varani, James

    1987-12-01

    Murine tumor cells were induced to phagocytize either Candida albicans or group A streptococcal cells. The presence of microbial particles within the tumor cell cytoplasm had no effect on in vitro tumor cell growth. However, when Candida albicans-infected tumor cells were injected into syngeneic mice, they formed tumors that grew faster, invaded the surrounding normal tissue more rapidly and metastasized more rapidly than control tumor cells. Tumor cells infected with group A streptococcal particles did not grow faster or show increased malignant behavior. These data indicate that the in vivo behavior of malignant tumor cells can be modulated by microbial particles, which are often present in the microenvironment of the growing tumor.

  3. Training stem cells for treatment of malignant brain tumors

    PubMed Central

    Li, Shengwen Calvin; Kabeer, Mustafa H; Vu, Long T; Keschrumrus, Vic; Yin, Hong Zhen; Dethlefs, Brent A; Zhong, Jiang F; Weiss, John H; Loudon, William G

    2014-01-01

    The treatment of malignant brain tumors remains a challenge. Stem cell technology has been applied in the treatment of brain tumors largely because of the ability of some stem cells to infiltrate into regions within the brain where tumor cells migrate as shown in preclinical studies. However, not all of these efforts can translate in the effective treatment that improves the quality of life for patients. Here, we perform a literature review to identify the problems in the field. Given the lack of efficacy of most stem cell-based agents used in the treatment of malignant brain tumors, we found that stem cell distribution (i.e., only a fraction of stem cells applied capable of targeting tumors) are among the limiting factors. We provide guidelines for potential improvements in stem cell distribution. Specifically, we use an engineered tissue graft platform that replicates the in vivo microenvironment, and provide our data to validate that this culture platform is viable for producing stem cells that have better stem cell distribution than with the Petri dish culture system. PMID:25258664

  4. PAQR3 overexpression suppresses the aggressive phenotype of esophageal squamous cell carcinoma cells via inhibition of ERK signaling.

    PubMed

    Bai, Ge; Chu, Jianhu; Eli, Mayinur; Bao, Yongxing; Wen, Hao

    2017-10-01

    Progestin and adipoQ receptor family member 3 (PAQR3) has exhibited anticancer activity in multiple malignancies. However, its expression and function in esophageal squamous cell carcinoma (ESCC) is still elusive. In this work, we examined the expression of PAQR3 in 40 surgically resected ESCC specimens and their adjacent normal tissues. The expression of PAQR3 in ESCC cell lines was measured after treatment with the demethylating agent 5-aza-2'-deoxycytidine (5-Aza-CdR). The effects of overexpression of PAQR3 on cell proliferation, colony formation, invasion, and tumorigenesis were investigated. It was found that the PAQR3 mRNA level was significantly lower in ESCC than that in adjacent normal tissues (P=0.0318). Low PAQR3 expression was significantly associated with more advanced TNM stage (P=0.0093) and absent lymph node involvement (P=0.0324). Compared to normal esophageal epithelial cells, ESCC cells had significantly lower levels of PAQR3. 5-Aza-CdR treatment led to an induction of PAQR3 in ESCC cells. Enforced expression of PAQR3 significantly inhibited ESCC cell proliferation, colony formation and invasion. Moreover, PAQR3 overexpression blocked cell cycle transition from G1 to S phase, which was associated with induction of p27 and p21 and reduction of cyclin D1, CDK4, and CDK2. Mechanistically, overexpression of PAQR3 suppressed the phosphorylation of ERK1/2 in ESCC cells. In vivo tumorigenic studies confirmed that PAQR3 overexpression retarded the growth of ECA-109 xenograft tumors and inhibited the activation of ERK signaling. Taken together, PAQR3 is epigenetically silenced in ESCC and restoration of PAQR3 suppresses the aggressive phenotype of ESCC cells. Therefore, PAQR3 may represent a potential target for the treatment of ESCC. Copyright © 2017. Published by Elsevier Masson SAS.

  5. [Clinical analysis of 25 patients with aggressive peripheral T-cell lymphoma in advanced stage treated with autologous stem cell transplantation].

    PubMed

    Zou, Dehui; Huang, Wenyang; Liu, Hong; Fu, Mingwei; Li, Zengjun; Sui, Weiwei; Qi, Junyuan; Zhao, Yaozhong; Ru, Kun; Han, Mingzhe; Qiu, Lugui

    2015-06-01

    To investigate the outcomes of autologous stem cell transplantation (ASCT) for patients with aggressive peripheral T-cell lymphoma (PTCLs) in advanced stage. The clinical data of 25 patients in complete remission (CR) with aggressive PTCLs received ASCT from May 1997 to June 2013 were retrospectively analyzed. ① Of the 25 cases, 16 were unspecified PTCL (PTCL-U), 4 with angioimmunoblastic T cell lymphoma (AITL), 3 with anaplastic large cell lymphoma (ALCL) and 2 with hepatosplenic T cell lymphoma (HSTL), with a median age of 30(12-54) years old. Ratio of male to female is 16∶9. The distribution of stages was 8 cases with stage Ⅲ and 17 patients with stage Ⅳ. Nine patients presented with bone marrow involvement. Before ASCT, 18 patients were in CR1 and 7 patients were in CR2. ②Two patients with HSTL in stage ⅣB and IPI score 4/5 in CR1 relapsed and died within 12 months after ASCT. At a median follow-up of 38 (range 14-110) months, the estimated 3-year probability of PFS and OS for the other 23 patients was (63.1 ± 10.5)% and (71.8 ± 9.9)%, respectively. The patients in first CR had a better survival than the patients in second CR. The 3-year probability of PFS were (74.9 ± 11.0)% vs (33.3 ± 19.2)% (P=0.092) and OS were (80.2 ± 10.4)% vs (50.0 ± 20.4)% (P=0.043), respectively. The 3-year probability of PFS and OS were (40.0 ± 17.4)% and (53.3 ± 17.3)% in bone marrow involvement patients and the corresponding figure were (77.9 ± 11.3)% and (84.4 ± 10.2)% in non- bone marrow involvement patients. ASCT could improve the survival of aggressive PTCLs. Non CR1 status and bone marrow involvement had negative influence on OS in patients with aggressive PTCLs treated by ASCT. The prognosis was very poor in patients with HSTL and satisfactory regimens should be investigated.

  6. Successful Treatment of Aggressive Mature B-cell Lymphoma Mimicking Immune Thrombocytopenic Purpura.

    PubMed

    Ono, Koya; Onishi, Yasushi; Kobayashi, Masahiro; Ichikawa, Satoshi; Hatta, Shunsuke; Watanabe, Shotaro; Okitsu, Yoko; Fukuhara, Noriko; Ichinohasama, Ryo; Harigae, Hideo

    2018-03-30

    A 55-year-old woman suffered from hemorrhagic tendency. She had severe thrombocytopenia without any hematological or coagulatory abnormalities, and a bone marrow examination revealed an increased number of megakaryocytes without any abnormal cells or blasts. No lymphadenopathy or hepatosplenomegaly was observed on computed tomography. She was initially diagnosed with immune thrombocytopenic purpura (ITP). None of the treatments administered for ITP produced a response. However, abnormal cells were eventually found during the third bone marrow examination. The pathological diagnosis was mature B-cell lymphoma. Rituximab-containing chemotherapy produced a marked increase in the patient's platelet count, and her lymphoma went into complete remission.

  7. Pre-existing malignancy results in increased prevalence of distinct populations of CD4+ T cells during sepsis.

    PubMed

    Xie, Jianfeng; Robertson, Jennifer M; Chen, Ching-Wen; Zhang, Wenxiao; Coopersmith, Craig M; Ford, Mandy L

    2018-01-01

    The presence of pre-existing malignancy in murine hosts results in increased immune dysregulation and risk of mortality following a septic insult. Based on the known systemic immunologic changes that occur in cancer hosts, we hypothesized that the presence of pre-existing malignancy would result in phenotypic and functional changes in CD4+ T cell responses following sepsis. In order to conduct a non-biased, unsupervised analysis of phenotypic differences between CD4+ T cell compartments, cohorts of mice were injected with LLC1 tumor cells and tumors were allowed to grow for 3 weeks. These cancer hosts and age-matched non-cancer controls were then subjected to CLP. Splenocytes were harvested at 24h post CLP and flow cytometry and SPADE (Spanning-tree Progression Analysis of Density-normalized Events) were used to analyze populations of CD4+ cells most different between the two groups. Results indicated that relative to non-cancer controls, cancer mice contained more resting memory CD4+ T cells, more activated CD4+ effectors, and fewer naïve CD4+ T cells during sepsis, suggesting that the CD4+ T cell compartment in cancer septic hosts is one of increased activation and differentiation. Moreover, cancer septic animals exhibited expansion of two distinct subsets of CD4+ T cells relative to previously healthy septic controls. Specifically, we identified increases in both a PD-1hi population and a distinct 2B4hi BTLAhi LAG-3hi population in cancer septic animals. By combining phenotypic analysis of exhaustion markers with functional analysis of cytokine production, we found that PD-1+ CD4+ cells in cancer hosts failed to make any cytokines following CLP, while the 2B4+ PD-1lo cells in cancer mice secreted increased TNF during sepsis. In sum, the immunophenotypic landscape of cancer septic animals is characterized by both increased CD4+ T cell activation and exhaustion, findings that may underlie the observed increased mortality in mice with pre-existing malignancy

  8. Pre-existing malignancy results in increased prevalence of distinct populations of CD4+ T cells during sepsis

    PubMed Central

    Xie, Jianfeng; Robertson, Jennifer M.; Chen, Ching-wen; Zhang, Wenxiao

    2018-01-01

    The presence of pre-existing malignancy in murine hosts results in increased immune dysregulation and risk of mortality following a septic insult. Based on the known systemic immunologic changes that occur in cancer hosts, we hypothesized that the presence of pre-existing malignancy would result in phenotypic and functional changes in CD4+ T cell responses following sepsis. In order to conduct a non-biased, unsupervised analysis of phenotypic differences between CD4+ T cell compartments, cohorts of mice were injected with LLC1 tumor cells and tumors were allowed to grow for 3 weeks. These cancer hosts and age-matched non-cancer controls were then subjected to CLP. Splenocytes were harvested at 24h post CLP and flow cytometry and SPADE (Spanning-tree Progression Analysis of Density-normalized Events) were used to analyze populations of CD4+ cells most different between the two groups. Results indicated that relative to non-cancer controls, cancer mice contained more resting memory CD4+ T cells, more activated CD4+ effectors, and fewer naïve CD4+ T cells during sepsis, suggesting that the CD4+ T cell compartment in cancer septic hosts is one of increased activation and differentiation. Moreover, cancer septic animals exhibited expansion of two distinct subsets of CD4+ T cells relative to previously healthy septic controls. Specifically, we identified increases in both a PD-1hi population and a distinct 2B4hi BTLAhi LAG-3hi population in cancer septic animals. By combining phenotypic analysis of exhaustion markers with functional analysis of cytokine production, we found that PD-1+ CD4+ cells in cancer hosts failed to make any cytokines following CLP, while the 2B4+ PD-1lo cells in cancer mice secreted increased TNF during sepsis. In sum, the immunophenotypic landscape of cancer septic animals is characterized by both increased CD4+ T cell activation and exhaustion, findings that may underlie the observed increased mortality in mice with pre-existing malignancy

  9. Safety and tolerability of ibrutinib monotherapy in Japanese patients with relapsed/refractory B cell malignancies.

    PubMed

    Tobinai, Kensei; Ogura, Michinori; Ishizawa, Kenichi; Suzuki, Tatsuya; Munakata, Wataru; Uchida, Toshiki; Aoki, Tomohiro; Morishita, Takanobu; Ushijima, Yoko; Takahara, Satoko

    2016-01-01

    In this phase I dose-escalation study we evaluated the safety, tolerability, pharmacokinetics, and antitumor activity of ibrutinib, an oral covalent inhibitor of Bruton's tyrosine kinase (BTK, in Japanese patients with relapsed/refractory B cell malignancies (RRBCM). Fifteen patients aged 42-78 years were enrolled to one of three cohorts. Cohort 1 (n = 3) consisted of two phases, a single-dose (140 and 280 mg) phase and a multiple-dose (420 mg) phase of ibrutinib; cohort 2 (n = 6) included multiple doses of ibrutinib 560 mg; and cohort 3 (n = 6) included only patients with chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) dosed at ibrutinib 420 mg. One patient (CLL/SLL cohort) experienced grade 3 pneumonia and sepsis, which were considered dose-limiting toxicities. No deaths were reported. The most common (≥ 20% patients) adverse events were neutropenia, anemia, nasopharyngitis, increased bilirubin, and rash. Dose-dependent increase in maximum plasma concentration and area under the concentration from 0 to the last quantifiable time was observed, while time to reach maximum plasma concentration and elimination half-life was similar between doses. The overall response rate was 73.3% (11/15) for all cohorts combined. Overall, ibrutinib (420 and 560 mg) was tolerable with acceptable safety profiles and effective for Japanese patients with RRBCM including CLL/SLL. NCT01704963.

  10. Expression of prostaglandin- and vitamin D-metabolising enzymes in benign and malignant breast cells.

    PubMed

    Thill, Marc; Hoellen, Friederike; Becker, Steffi; Dittmer, Christine; Fischer, Dorothea; Kümmel, Sherko; Salehin, Darius; Friedrich, Michael; Köster, Frank; Diedrich, Klaus; Cordes, Tim

    2012-01-01

    Cyclooxygenase-2 (COX-2) plays a crucial role in prognosis of malignancy and has been associated with carcinogenesis, particularly neoangiogenesis and tumor progression. 15-Hydroxyprostaglandin dehydrogenase (15-PGDH) is described as a tumour suppressor in cancer. The antiproliferative effects of calcitriol [1,25(OH)(2)D(3)] mediated via the vitamin D receptor (VDR) render vitamin D a promising target in breast cancer therapy. The expression of prostaglandin (PG)-metabolizing enzymes, vitamin D-metabolising enzymes and VDR were determined in benign and malignant breast cell lines using western blot analysis. We detected an inverse correlation between the two types of metabolism, a reduced VDR expression in the malignant breast cell lines, and therefore an insufficient induction of 24-hydroxylase in the malignant cells. We suggest the possibility of dysregulation of vitamin D-metabolizing enzymes in malignant breast cell lines.

  11. [Primary culture of human malignant meningioma cells and its intracranial orthotopic transplantation in nude mice].

    PubMed

    Hu, Mei-Xin; Liu, Jia-le; Chen, Xuan-Bo; Xu, An-Qi; Shu, Song-Ren; Wang, Chao-Hu; Liu, Yi

    2018-03-20

    To obtain stable primary cultures of human malignant meningioma cells and establish an intracranial in-situ tumor model in nude mice. Ten surgical specimens of highly suspected malignant meningioma were obtained with postoperative pathological confirmation. Primary malignant meningioma cells were cultured from the tissues using a modified method and passaged. After identification with cell immunofluorescence, the cultured cells were inoculated into the right parietal lobe of 6 nude mice using stereotaxic apparatus and also transplanted subcutaneously in another 6 nude mice. The nude mice were executed after 6 weeks, and HE staining and immunohistochmistry were used to detect tumor growth and the invasion of the adjacent brain tissues. The primary malignant meningioma cells were cultured successfully, and postoperative pathology reported anaplastic malignant meningioma. Cell immunofluorescence revealed positivity for vimentin and EMA in the cells, which showed a S-shaped growth curve in culture. Flow cytometry revealed a cell percentage in the Q3 area of (95.99∓2.58)%. Six weeks after transplantation, tumor nodules occurred in the subcutaneous tumor group, and the nude mice bearing the in situ tumor showed obvious body weight loss. The xenografts in both groups contained a mean of (36∓5.35)% cells expressing Ki-67, and the intracranial in situ tumor showed obvious invasion of the adjacent peripheral brain tissues. We obtained stable primary cultures of malignant meningioma cells and successfully established a nude mouse model bearing in situ human malignant meningioma.

  12. Synthesis and evaluation of ¹²³/¹³¹I-Iochlonicotinamide as a novel SPECT probe for malignant melanoma.

    PubMed

    Chang, Chih-Chao; Chang, Chih-Hsien; Shen, Chih-Chieh; Chen, Chuan-Lin; Liu, Ren-Shyan; Lin, Ming-Hsien; Wang, Hsin-Ell

    2015-05-01

    Malignant melanoma expresses a highly aggressive metastasis. Early diagnosis of malignant melanoma is important for patient survival. Radiolabeled benzamides and nicotinamides have been reported to be attractive candidates for malignant melanoma diagnosis as they bind to melanin, a characteristic substance that displays in malignant melanoma, and show high tumor accumulation and retention. Herein, we designed and synthesized a novel (123/131)I-labeled nicotinamide derivative that specifically binds to melanin. (123/131)I-Iochlonicotinamide was prepared with good radiochemical yield (50-70%, decay corrected) and high specific radioactivity (50-80 GBq/μmol). (131)I-Iochlonicotinamide exhibited good in vitro stability (radiochemical purity >95% after a 24-h incubation) in human serum. High uptake of (123/131)I-Iochlonicotinamide in B16F0 melanoma cells compared to that in A375 amelanotic cells demonstrated its selective binding to melanin. Intravenous administration of (123/131)I-Iochlonicotinamide in a melanoma-bearing mouse model revealed high uptake in melanotic melanoma and high tumor-to-muscle ratio. MicroSPECT scan of (123/131)I-Iochlonicotinamide injected mice also displayed high contrast tumor imaging as compared with normal organs. The radiation-absorbed dose projection for the administration of (131)I-Iochlonicotinamide to human was based on the results of biodistribution study. The effective dose appears to be approximately 0.44 mSv/MBq(-1). The specific binding of (123/131)I-Iochlonicotinamide to melanin along with a prolonged tumor retention and acceptable projected human dosimetry suggest that it may be a promising theranostic agent for treating malignant melanoma. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. ErbB2 and bone sialoprotein as markers for metastatic osteosarcoma cells

    PubMed Central

    Valabrega, G; Fagioli, F; Corso, S; Madon, E; Brach del Prever, A; Biasin, E; Linari, A; Aglietta, M; Giordano, S

    2003-01-01

    Osteosarcoma is the most common malignant bone neoplasia occurring in young patients in the first two decades of life, and represents 20% of all primitive malignant bone tumours. At present, treatment of metastatic osteosarcoma is unsatisfactory. High-dose chemotherapy followed by CD34+ leukapheresis rescue may improve these poor results. Neoplastic cells contaminating the apheresis may, however, contribute to relapse. To identify markers suitable for detecting osteosarcoma cells in aphereses we analysed the expression of bone-specific genes (Bone Sialoprotein (BSP) and Osteocalcin) and oncogenes (Met and ErbB2) in 22 patients with metastatic osteosarcoma and six healthy stem cell donors. The expression of these genes in aphereses of patients affected by metastatic osteosarcoma was assessed by RT–PCR and Southern blot analysis. Met and Osteocalcin proved to be not useful markers since they are positive in aphereses of both patients with metastatic osteosarcoma and healthy stem cell donors. On the contrary, BSP was expressed at significant levels in 85% of patients. Moreover, 18% of patients showed a strong and significantly positive (seven to 16 times higher than healthy stem cell donors) ErbB2 expression. In all positive cases, neoplastic tissue also expressed ErbB2. Our data show that ErbB2 can be a useful marker for tumour contamination in aphereses of patients affected by ErbB2-expressing osteosarcomas and that analysis of Bone Sialoprotein expression can be an alternative useful marker. PMID:12569382

  14. Effects of Malignant Melanoma Initiating Cells on T-Cell Activation

    PubMed Central

    Schatton, Tobias; Schütte, Ute; Frank, Markus H.

    2016-01-01

    Although human malignant melanoma is a highly immunogenic cancer, both the endogenous antitumor immune response and melanoma immunotherapy often fail to control neoplastic progression. Accordingly, characterizing melanoma cell subsets capable of evading antitumor immunity could unravel optimized treatment strategies that might reduce morbidity and mortality from melanoma. By virtue of their preferential capacity to modulate antitumor immune responses and drive inexorable tumor growth and progression, malignant melanoma-initiating cells (MMICs) warrant closer investigation to further elucidate the cellular and molecular mechanisms underlying melanoma immune evasion and immunotherapy resistance. Here we describe methodologies that enable the characterization of immunoregulatory effects of purified MMICs versus melanoma bulk populations in coculture with syngeneic or allogeneic lymphocytes, using [3H] thymidine incorporation, enzyme-linked immunosorbent spot (ELISPOT), or ELISA assays. These assays were traditionally developed to analyze alloimmune processes and we successfully adapted them for the study of tumor-mediated immunomodulatory functions. PMID:26786883

  15. Human cytomegalovirus inhibits apoptosis by regulating the activating transcription factor 5 signaling pathway in human malignant glioma cells

    PubMed Central

    WANG, TONGMEI; QIAN, DONGMENG; HU, MING; LI, LING; ZHANG, LI; CHEN, HAO; YANG, RUI; WANG, BIN

    2014-01-01

    The activating transcription factor 5 (ATF5), also termed ATFx, is a member of the ATF/cAMP response element-binding protein (CREB) family of basic zipper proteins. ATF5 is an anti-apoptotic protein that is highly expressed in malignant glioma and is essential for glioma cell survival. Accumulating evidence indicates that human malignant gliomas are universally infected with human cytomegalovirus (HCMV). Recent studies have shown that HCMV may be resistant to the induction of apoptosis by disrupting cellular pathways in glioblastoma. To investigate the potential anti-apoptotic function of HCMV in glioma, malignant U87 glioma cells were infected with HCMV. The present study showed that HCMV infection suppressed apoptosis in glioblastoma U87 cells by regulating the expression of ATF5. Furthermore, in glioblastoma U87 cells, HCMV infection induced cellular proliferation in parallel with an increase in the expression level of ATF5 and B-cell lymphoma/leukemia-2 to Bcl-2-associated X protein ratio. Loss of ATF5 function was achieved using a dominant-negative form of ATF5 in U87 cells, whereby cells appeared to grow marginally following HCMV infection when compared with the control. However, the anti-apoptotic ability was appeared to decline in the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. These results indicate that ATF5 signaling pathways may be important in the anti-apoptotic activity of HCMV-infected glioblastoma cells; therefore, the anti-apoptotic molecular mechanisms of HCMV in human glioblastoma cells were investigated in the current study. Prevention of HCMV infection may present a potential and promising approach for the treatment of malignant gliomas. PMID:25120656

  16. Current update of adoptive immunotherapy using cytokine-induced killer cells to eliminate malignant gliomas.

    PubMed

    Ryu, Je Il; Han, Myung Hoon; Cheong, Jin Hwan; Kim, Jae Min; Kim, Choong Hyun

    2017-03-01

    The therapeutic outcome for those with malignant glioma is poor, even though diverse therapeutic modalities have been developed. Immunotherapy has emerged as a therapeutic approach for malignant gliomas, making it possible to selectively treat tumors while sparing normal tissue. Here, we review clinical trials of adoptive immunotherapy approaches for malignant gliomas. We also describe a clinical trial that examined the efficacy and safety of autologous cytokine-induced killer (CIK) cells along with concomitant chemoradiotherapy for newly diagnosed glioblastoma. These CIK cells identify and kill autologous tumor cells. This review focuses on the use of adoptive immunotherapy for malignant gliomas and reviews the current literature on the concept of antitumor activity mediated by CIK cells.

  17. Homeobox NKX2-3 promotes marginal-zone lymphomagenesis by activating B-cell receptor signalling and shaping lymphocyte dynamics

    PubMed Central

    Robles, Eloy F.; Mena-Varas, Maria; Barrio, Laura; Merino-Cortes, Sara V.; Balogh, Péter; Du, Ming-Qing; Akasaka, Takashi; Parker, Anton; Roa, Sergio; Panizo, Carlos; Martin-Guerrero, Idoia; Siebert, Reiner; Segura, Victor; Agirre, Xabier; Macri-Pellizeri, Laura; Aldaz, Beatriz; Vilas-Zornoza, Amaia; Zhang, Shaowei; Moody, Sarah; Calasanz, Maria Jose; Tousseyn, Thomas; Broccardo, Cyril; Brousset, Pierre; Campos-Sanchez, Elena; Cobaleda, Cesar; Sanchez-Garcia, Isidro; Fernandez-Luna, Jose Luis; Garcia-Muñoz, Ricardo; Pena, Esther; Bellosillo, Beatriz; Salar, Antonio; Baptista, Maria Joao; Hernandez-Rivas, Jesús Maria; Gonzalez, Marcos; Terol, Maria Jose; Climent, Joan; Ferrandez, Antonio; Sagaert, Xavier; Melnick, Ari M.; Prosper, Felipe; Oscier, David G.; Carrasco, Yolanda R.; Dyer, Martin J. S.; Martinez-Climent, Jose A.

    2016-01-01

    NKX2 homeobox family proteins have a role in cancer development. Here we show that NKX2-3 is overexpressed in tumour cells from a subset of patients with marginal-zone lymphomas, but not with other B-cell malignancies. While Nkx2-3-deficient mice exhibit the absence of marginal-zone B cells, transgenic mice with expression of NKX2-3 in B cells show marginal-zone expansion that leads to the development of tumours, faithfully recapitulating the principal clinical and biological features of human marginal-zone lymphomas. NKX2-3 induces B-cell receptor signalling by phosphorylating Lyn/Syk kinases, which in turn activate multiple integrins (LFA-1, VLA-4), adhesion molecules (ICAM-1, MadCAM-1) and the chemokine receptor CXCR4. These molecules enhance migration, polarization and homing of B cells to splenic and extranodal tissues, eventually driving malignant transformation through triggering NF-κB and PI3K-AKT pathways. This study implicates oncogenic NKX2-3 in lymphomagenesis, and provides a valid experimental mouse model for studying the biology and therapy of human marginal-zone B-cell lymphomas. PMID:27297662

  18. Involvement of overexpressed wild-type BRAF in the growth of malignant melanoma cell lines.

    PubMed

    Tanami, Hideaki; Imoto, Issei; Hirasawa, Akira; Yuki, Yasuhiro; Sonoda, Itaru; Inoue, Jun; Yasui, Kohichiro; Misawa-Furihata, Akiko; Kawakami, Yutaka; Inazawa, Johji

    2004-11-18

    Comparative genomic hybridization (CGH) using 40 cell lines derived from malignant melanomas (MMs) revealed frequent amplification at 7q33-q34 containing BRAF gene, which often is mutated in MM. We found this gene to be amplified to a remarkable degree in the MM cell lines that exhibited high-level gains at 7q33-q34 in CGH. Among 40 cell lines, the eight lines that revealed neither BRAF nor NRAS mutations showed even higher levels of BRAF mRNA expression than the 32 mutated lines, although DNA amplification at 7q33-q34 was not detected in every lines overexpressing BRAF. MM cells that carried wild-type BRAF and NRAS showed constitutive overexpression of B-Raf protein and phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), even after serum starvation. Not only downregulation of the endogenously overexpressed wild-type B-Raf by antisense oligonucleotide but also a treatment with an inhibitor of mitogen-activated protein kinase kinase (MAPKK, MEK) reduced phosphorylated ERK1/2 and cell growth, whereas the exogenously expressed wild-type B-Raf promoted cell growth in MM cells. Our results provide the evidence that overexpression of wild-type B-Raf, in part but not always as a result of gene amplification, is one of the mechanisms underlying constitutive activation of the MAPK pathway that stimulates growth of MM cells.

  19. Simultaneous occurrence of a CD30 positive/ALK-negative high grade T-cell lymphoma and plasma cell myeloma: Report of a case.

    PubMed

    Nassif, Samer; El-Majzoub, Nadim; Abbas, Ossama; Temraz, Sally; Chakhachiro, Zaher

    2015-03-01

    Simultaneous occurrences of T-cell and B-cell neoplasms are rare, and etiological relationships between these two malignancies are poorly understood. We report the case of a 76-year-old man who presented with hypercalcemia, multiple skin nodular lesions, fatigue, episodic fever, and night sweats. PET/CT scan showed diffuse skin and subcutaneous fat plane active lesions, supra- and infra- diaphragmatic active lymph nodes, liver and spleen involvement, bone marrow infiltration, and nonspecific bilateral lung nodules. A skin biopsy showed a high grade CD30-positive/ALK-negative T-cell lymphoma. A bone marrow biopsy showed involvement by the same neoplastic cells. Additionally, a monoclonal lambda restricted plasma cell population (15% of marrow elements) was identified, which, in view of an IgA lambda spike in the serum, was consistent with plasma cell myeloma. To the best of our knowledge, this case is the first reported case of a plasma cell neoplasm associated with an aggressive CD30-positive ALK-negative systemic T-cell lymphoma with skin involvement. Reporting such cases is important as it adds to the pool of rare cases of concomitant T-cell neoplasms and plasma cell myelomas, and might help in determining an etiological relationship, if any, between these two hematological malignancies. Copyright © 2015 King Faisal Specialist Hospital & Research Centre. Published by Elsevier B.V. All rights reserved.

  20. Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia

    PubMed Central

    Paszkiewicz, Paulina J.; Fräßle, Simon P.; Srivastava, Shivani; Sommermeyer, Daniel; Hudecek, Michael; Sadelain, Michel; Liu, Lingfeng; Jensen, Michael C.; Riddell, Stanley R.; Busch, Dirk H.

    2016-01-01

    The adoptive transfer of T cells that have been genetically modified to express a CD19-specific chimeric antigen receptor (CAR) is effective for treating human B cell malignancies. However, the persistence of functional CD19 CAR T cells causes sustained depletion of endogenous CD19+ B cells and hypogammaglobulinemia. Thus, there is a need for a mechanism to ablate transferred T cells after tumor eradication is complete to allow recovery of normal B cells. Previously, we developed a truncated version of the epidermal growth factor receptor (EGFRt) that is coexpressed with the CAR on the T cell surface. Here, we show that targeting EGFRt with the IgG1 monoclonal antibody cetuximab eliminates CD19 CAR T cells both early and late after adoptive transfer in mice, resulting in complete and permanent recovery of normal functional B cells, without tumor relapse. EGFRt can be incorporated into many clinical applications to regulate the survival of gene-engineered cells. These results support the concept that EGFRt represents a promising approach to improve safety of cell-based therapies. PMID:27760047

  1. Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia.

    PubMed

    Paszkiewicz, Paulina J; Fräßle, Simon P; Srivastava, Shivani; Sommermeyer, Daniel; Hudecek, Michael; Drexler, Ingo; Sadelain, Michel; Liu, Lingfeng; Jensen, Michael C; Riddell, Stanley R; Busch, Dirk H

    2016-11-01

    The adoptive transfer of T cells that have been genetically modified to express a CD19-specific chimeric antigen receptor (CAR) is effective for treating human B cell malignancies. However, the persistence of functional CD19 CAR T cells causes sustained depletion of endogenous CD19+ B cells and hypogammaglobulinemia. Thus, there is a need for a mechanism to ablate transferred T cells after tumor eradication is complete to allow recovery of normal B cells. Previously, we developed a truncated version of the epidermal growth factor receptor (EGFRt) that is coexpressed with the CAR on the T cell surface. Here, we show that targeting EGFRt with the IgG1 monoclonal antibody cetuximab eliminates CD19 CAR T cells both early and late after adoptive transfer in mice, resulting in complete and permanent recovery of normal functional B cells, without tumor relapse. EGFRt can be incorporated into many clinical applications to regulate the survival of gene-engineered cells. These results support the concept that EGFRt represents a promising approach to improve safety of cell-based therapies.

  2. Cadmium-induced malignant transformation of rat liver cells: Potential key role and regulatory mechanism of altered apolipoprotein E expression in enhanced invasiveness.

    PubMed

    Suzuki, Masayo; Takeda, Shuso; Teraoka-Nishitani, Noriko; Yamagata, Akane; Tanaka, Takahiro; Sasaki, Marika; Yasuda, Natsuki; Oda, Makiko; Okano, Tatsuji; Yamahira, Kazuhiro; Nakamura, Yuta; Kobayashi, Takanobu; Kino, Katsuhito; Miyazawa, Hiroshi; Waalkes, Michael P; Takiguchi, Masufumi

    2017-05-01

    Cadmium is a transition metal that is classified as human carcinogen by the International Agency for Research on Cancer (IARC) with multiple target sites. Many studies using various model systems provide evidence of cadmium-induced malignancy formation in vivo or malignant cell transformation in vitro. Nonetheless, further studies are needed to completely understand the mechanisms of cadmium carcinogenicity. Our prior studies have utilized a rat liver epithelial cell line (TRL 1215) as a model for cadmium-induced malignant transformation. In the present study, we focused on the molecular mechanisms of this malignant transformation, especially with regard to hyper-invasiveness stimulated by cadmium transformation. By performing a series of biochemical analyses on cadmium transformed cells, it was determined that cadmium had significantly down-regulated the expression of apolipoprotein E (ApoE). ApoE was recently established as a suppressor of cell invasion. A key factor in the suppression of ApoE by cadmium appeared to be that the metal evoked a 5-aza-2'-deoxycytidine-sensitive hypermethylation of the regulatory region of ApoE, coupled with interference of the action of liver X receptor α (LXRα), a transcriptional regulator for ApoE. Furthermore, the expression of LXRα itself was suppressed by cadmium-mediated epigenetic modification. Re-expression of ApoE clearly abrogated the cell invasion stimulated by cadmium-induced malignant transformation. Together, the current results suggest that the cadmium-mediated enhanced cell invasion is linked to down-regulation of ApoE during malignant transformation these liver cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Analysis of IL-6, IL-10 and NF-κB Gene Polymorphisms in Aggressive and Chronic Periodontitis.

    PubMed

    Toker, Hülya; Görgün, Emine Pirim; Korkmaz, Ertan Mahir

    2017-06-01

    Pro-inflammatory cytokines, interleukin-6 (IL-6), demonstrated to be suppressed by interleukin-10 (IL-10) are known to be regulated by the transcription factor nuclear factor-κB(NF-κB). The aim of this study was to ascertain the association between genetic polymorphism of these genes (IL-6(-174), IL-10(-597) and NF-κB1-94ins/del)) and chronic/aggressive periodontitis. Forty-five patients with chronic periodontitis (CP), 58 patients with aggressive periodontitis (AP) and 38 periodontally healthy subjects were included in this study. Genomic DNA was isolated from whole blood samples. The NF-κB, IL-6, and IL-10 polymorphisms were determined by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Among subjects for the ins/ins genotypes of NF-κB1 gene, the AA genotypes of IL-10 presented a higher frequency in chronic periodontitis group than in healthy controls (p=0.023). A statistically significant difference in genotyping frequencies between AP group and healthy controls was observed for the IL-6 gene. The AA genotype of IL-10 was overrepresented in CP and AP groups compared to healthy controls (OR=9.93, 95% CI: 2.11-46.7, OR=5.7, 95% CI: 1.22-26.89, respectively). Within the limits of this study, it can be concluded that the IL-10 (-597) AA genotype is associated with susceptibility to chronic/aggressive periodontitis and IL-6 (-174) GG genotypes and G allele seems to be associated with aggressive periodontitis. Clinical relevance: The results of the current study indicate that IL-6 and IL-10 genotypes seem to be associated with aggressive periodontitis. Also, the AA genotypes of IL-10 presented a higher frequency in chronic periodontitis subjects with carrying NF-κB1 ins/ins genotypes. Copyright© by the National Institute of Public Health, Prague 2017

  4. Agonist antibody that induces human malignant cells to kill one another

    PubMed Central

    Yea, Kyungmoo; Zhang, Hongkai; Xie, Jia; Jones, Teresa M.; Lin, Chih-Wei; Francesconi, Walter; Berton, Fulvia; Fallahi, Mohammad; Sauer, Karsten; Lerner, Richard A.

    2015-01-01

    An attractive, but as yet generally unrealized, approach to cancer therapy concerns discovering agents that change the state of differentiation of the cancer cells. Recently, we discovered a phenomenon that we call “receptor pleiotropism” in which agonist antibodies against known receptors induce cell fates that are very different from those induced by the natural agonist to the same receptor. Here, we show that one can take advantage of this phenomenon to convert acute myeloblastic leukemic cells into natural killer cells. Upon induction with the antibody, these leukemic cells enter into a differentiation cascade in which as many as 80% of the starting leukemic cells can be differentiated. The antibody-induced killer cells make large amounts of perforin, IFN-γ, and granzyme B and attack and kill other members of the leukemic cell population. Importantly, induction of killer cells is confined to transformed cells, in that normal bone marrow cells are not induced to form killer cells. Thus, it seems possible to use agonist antibodies to change the differentiation state of cancer cells into those that attack and kill other members of the malignant clone from which they originate. PMID:26487683

  5. CYR61 suppresses growth of human malignant melanoma.

    PubMed

    Chen, Jun; Liu, Yang; Sun, Qilin; Wang, Beiqing; Li, Ningli; Chen, Xiangdong

    2016-11-01

    Cysteine-rich protein 61 (CCN1/CYR61) is an important marker of proliferation and metastasis in malignant melanoma, making it a potential target for melanoma treatment. In this study, we compared the expression of CRY61 in Chinese patients with malignant melanoma with its expression in patients with other skin tumors or with no skin pathological conditions. We examined the effects of anti-human CYR61 monoclonal antibody on proliferation and evaluated the changes in CYR61 expression and cell proliferation in response to treatment with either epirubicin or interferon (IFN)-α. CYR61 was expressed at lower levels in patients with malignant melanoma than in patients with other skin tumors or with no pathology. Following the treatment of B16 cells with epirubicin and IFN-α, CYR61 levels increased, cell growth was inhibited, and proliferating cell nuclear antigen expression decreased. Thus, CYR61 could become a therapeutic target for malignant melanoma patients with high CYR61 expression.

  6. Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses vasculogenic mimicry and proliferation of highly aggressive pancreatic cancer PaTu8988 cells

    PubMed Central

    2014-01-01

    Background Pancreatic cancer is one of the most aggressive human malignancies with a extremely low 5-year survival rate. Hence, the search for more effective anti-pancreatic cancer agents is urgent. Methods PaTu8988 pancreatic cancer cells were treated with different concentrations of suberoylanilide hydroxamic acid (SAHA), cell survival, proliferation, migration and vasculogenic mimicry (VM) were analyzed. Associated signaling changes were also analyzed by RT-PCR and Western blots. Results Here, we reported that SAHA, a histone deacetylase inhibitor (HDACi), exerted significant inhibitory efficiency against pancreatic cancer cell survival, proliferation, migration and VM. SAHA dose-dependently inhibited PaTu8988 pancreatic cancer cell growth with the IC-50 of 3.4 ± 0. 7 μM. Meanwhile, SAHA suppressed PaTu8988 cell cycle progression through inducing G2/M arrest, which was associated with cyclin-dependent kinase 1 (CDK-1)/cyclin-B1 degradation and p21/p27 upregulation. Further, SAHA induced both apoptotic and non-apoptotic death of PaTu8988 cells. Significantly, SAHA suppressed PaTu8988 cell in vitro migration and cell-dominant tube formation or VM, which was accompanied by semaphorin-4D (Sema-4D) and integrin-β5 down-regulation. Our evidences showed that Akt activation might be important for Sema-4D expression in PaTu8988 cells, and SAHA-induced Sema-4D down-regulation might be associated with Akt inhibition. Conclusions This study is among the first to report the VM formation in cultured human pancreatic cancer cells. And we provided strong evidence to suggest that SAHA executes significant anti-VM efficiency in the progressive pancreatic cancer cells. Thus, SAHA could be further investigated as a promising anti-pancreatic cancer agent. PMID:24886166

  7. Involvement of SLP-65 and Btk in tumor suppression and malignant transformation of pre-B cells.

    PubMed

    Hendriks, Rudi W; Kersseboom, Rogier

    2006-02-01

    Signals from the precursor-B cell receptor (pre-BCR) are essential for selection and clonal expansion of pre-B cells that have performed productive immunoglobulin heavy chain V(D)J recombination. In the mouse, the downstream signaling molecules SLP-65 and Btk cooperate to limit proliferation and induce differentiation of pre-B cells, thereby acting as tumor suppressors to prevent pre-B cell leukemia. In contrast, recent observations in human BCR-ABL1(+) pre-B lymphoblastic leukemia cells demonstrate that Btk is constitutively phosphorylated and activated by the BCR-ABL1 fusion protein. As a result, activated Btk transmits survival signals that are essential for the transforming activity of oncogenic Abl tyrosine kinase.

  8. Epidemiologic overview of malignant lymphoma

    PubMed Central

    2012-01-01

    Malignant lymphoma encompasses a wide variety of distinct disease entities. It is generally more common in developed countries and less common in developing countries. The East Asia region has one of the lowest incidence rates of malignant lymphoma. The incidence of malignant lymphoma around the world has been increasing at a rate of 3-4% over the last 4 decades, while some stabilization has been observed in developed countries in recent years. The reasons behind this lymphoma epidemic are poorly understood, although improving diagnostic accuracy, the recent AIDS epidemic, an aging world population and the increasing adoption of cancer-causing behaviors are suggested as contributing factors. Etiologies of malignant lymphoma include infectious agents, immunodeficiency, autoimmune disease, exposure to certain organic chemicals, and pharmaceuticals. The distribution of many subtypes exhibit marked geographic variations. Compared to the West, T/natural killer (NK) cell lymphomas (T/NK-cell lymphoma) and extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma) are relatively more common, whereas other B-cell lymphomas, particularly follicular lymphoma and chronic lymphocytic leukemia/small lymphocytic lymphoma, are less common in Asia. Some subtypes of T/NK-cell lymphomas defined by Epstein-Barr virus association are predominantly Asian diseases, if not exclusively so. Both ethnic and environmental factors play roles in such diversity. In this review, we discuss the geographic distribution and etiology of malignant lymphoma, as well as the trend. PMID:22783355

  9. DNA Methylation Signature of Childhood Chronic Physical Aggression in T Cells of Both Men and Women

    PubMed Central

    Guillemin, Claire; Provençal, Nadine; Suderman, Matthew; Côté, Sylvana M.; Vitaro, Frank; Hallett, Michael; Tremblay, Richard E.; Szyf, Moshe

    2014-01-01

    Background High frequency of physical aggression is the central feature of severe conduct disorder and is associated with a wide range of social, mental and physical health problems. We have previously tested the hypothesis that differential DNA methylation signatures in peripheral T cells are associated with a chronic aggression trajectory in males. Despite the fact that sex differences appear to play a pivotal role in determining the development, magnitude and frequency of aggression, most of previous studies focused on males, so little is known about female chronic physical aggression. We therefore tested here whether or not there is a signature of physical aggression in female DNA methylation and, if there is, how it relates to the signature observed in males. Methodology/Principal Findings Methylation profiles were created using the method of methylated DNA immunoprecipitation (MeDIP) followed by microarray hybridization and statistical and bioinformatic analyses on T cell DNA obtained from adult women who were found to be on a chronic physical aggression trajectory (CPA) between 6 and 12 years of age compared to women who followed a normal physical aggression trajectory. We confirmed the existence of a well-defined, genome-wide signature of DNA methylation associated with chronic physical aggression in the peripheral T cells of adult females that includes many of the genes similarly associated with physical aggression in the same cell types of adult males. Conclusions This study in a small number of women presents preliminary evidence for a genome-wide variation in promoter DNA methylation that associates with CPA in women that warrant larger studies for further verification. A significant proportion of these associations were previously observed in men with CPA supporting the hypothesis that the epigenetic signature of early life aggression in females is composed of a component specific to females and another common to both males and females. PMID:24475181

  10. Primary B cell lymphoma of the tongue base: a case report

    PubMed Central

    Bechir, Achour; Asma, Achour; Haifa, Regaieg; Nesrine, Abdessayed; Yosra, Ben Youssef; Badreddine, Sriha; Abderrahim, Khelif

    2016-01-01

    Primary non-Hodgkin’s lymphoma’s of the tongue is very rare and accounts for 1% of all malignant tumor of the oral cavity. Clinical features are non-specific ulcerative lesions that do not heal. In the literature, the majority of cases are diffuse large B cell type however, T cell phenotype also may occur. We describe a 77 years old man, who presented with an ulcerative mass in the left margin of the tongue the diagnosis diffuse large B cell lymphoma was confirmed. The patient is actually on treatment R-mini CEOP and has favorable evolution. PMID:28292136

  11. Ex vivo T-cell-depleted allogeneic stem cell transplantation for hematologic malignancies: The search for an optimum transplant T-cell dose and T-cell add-back strategy.

    PubMed

    Anandi, Prathima; Tian, Xin; Ito, Sawa; Muranski, Pawel; Chokshi, Puja D; Watters, Noelle; Chawla, Upneet; Hensel, Nancy; Stroncek, David F; Battiwalla, Minoo; Barrett, A John

    2017-06-01

    T-cell depletion (TCD) of allogeneic stem cell transplants (SCT) can reduce graft-versus-host disease but may negatively affect transplant outcome by delaying immune recovery. To optimize TCD in HLA-matched siblings with hematologic malignancies, we explored varying the transplant CD3+ T-cell dose between 2 and 50 × 10 4 /kg (corresponding to 3-4 log depletion) and studied the impact of 0-6 × 10 7 /kg CD3+ donor lymphocyte infusion (DLI) "add-back" on immune recovery post-SCT. Two hundred seventeen consecutive patients (age range, 10-75 years) with hematologic malignancy (excluding chronic leukemias) underwent ex vivo TCD SCT from HLA-identical sibling donors from 1994-2015. Ninety-four patients had standard-risk disease (first remission acute leukemia [AL] and early stage myelodysplastic syndromes [MDS]) and 123 had high-risk disease (AL beyond first complete remission, advanced MDS or refractory B-cell malignancy). Median follow-up was 8.5 years. At 20 years post-SCT, overall survival (OS) was 40%, nonrelapse mortality (NRM) was 27% and relapse incidence was 39%. Factors affecting outcome in multivariate analysis were transplantation era, with OS increasing from 38% in the period 1994-2000 to 58% in 2011-2015, disease risk (hazard ratio [HR], 1.68 for high risk) and increasing age (HR, 1.19 per decade). Neither the T-cell dose or the add back of T cells in the first 100 days had any effect on OS, NRM and relapse. Outcomes for TCD SCT have greatly improved. However, our data do not support the need to precisely manipulate transplant CD3+ T-cell dose provided at least 3-log depletion is achieved or the use of T-cell add-back. Future improvements for TCD SCT await better strategies to prevent relapse, especially in high-risk recipients. Published by Elsevier Inc.

  12. CMC-544 (inotuzumab ozogamicin), an anti-CD22 immuno-conjugate of calicheamicin, alters the levels of target molecules of malignant B-cells.

    PubMed

    Takeshita, A; Yamakage, N; Shinjo, K; Ono, T; Hirano, I; Nakamura, S; Shigeno, K; Tobita, T; Maekawa, M; Kiyoi, H; Naoe, T; Ohnishi, K; Sugimoto, Y; Ohno, R

    2009-07-01

    We studied the effect of CMC-544, the calicheamicin-conjugated anti-CD22 monoclonal antibody, used alone and in combination with rituximab, analyzing the quantitative alteration of target molecules, that is, CD20, CD22, CD55 and CD59, in Daudi and Raji cells as well as in cells obtained from patients with B-cell malignancies (BCM). Antibody inducing direct antiproliferative and apoptotic effect, complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC) were tested separately. In Daudi and Raji cells, the CDC effect of rituximab significantly increased within 12 h following incubation with CMC-544. The levels of CD22 and CD55 were significantly reduced (P<0.001 in both cells) after incubation with CMC-544, but CD20 level remained constant or increased for 12 h. Similar results were obtained in cells from 12 patients with BCM. The antiproliferative and apoptotic effect of CMC-544 were greater than that of rituximab. The ADCC of rituximab was not enhanced by CMC-544. Thus, the combination of CMC-544 and rituximab increased the in vitro cytotoxic effect in BCM cells, and sequential administration for 12 h proceeded by CMC-544 was more effective. The reduction of CD55 and the preservation of CD20 after incubation with CMC-544 support the rationale for the combined use of CMC-544 and rituximab.

  13. MYC Immunohistochemistry to Identify MYC-Driven B-Cell Lymphomas in Clinical Practice.

    PubMed

    Kluk, Michael J; Ho, Caleb; Yu, Hongbo; Chen, Benjamin J; Neuberg, Donna S; Dal Cin, Paola; Woda, Bruce A; Pinkus, Geraldine S; Rodig, Scott J

    2016-02-01

    Immunohistochemistry with anti-MYC antibody (MYC IHC) detects MYC protein in fixed samples of aggressive B-cell lymphomas and, according to the number of positive staining tumor nuclei, facilitates tumor subclassification, predicts underlying MYC rearrangements, and stratifies patient outcome. We aimed to determine the performance of MYC IHC in clinical practice. We reviewed MYC IHC performed on control specimens and 256 aggressive B-cell lymphomas and compared clinically reported IHC scores with experts' review. Control tissues showed less than 5% variation in daily IHC staining. Reported and expert IHC scores were well correlated (r = 0.86) with an SD of 14.2%. Reported IHC scores 30% or less and 70% or more were accurate (94.5%) compared with experts in categorizing tumors as "MYC IHC-Low" and "MYC IHC-High," respectively, but scores 40% to 60% were not (60.3%). The mean IHC score among lymphomas with MYC rearrangements was 80%, but with a large range of scores (20%-100%). There was no statistically significant association between IHC score and MYC copy number. Under optimal conditions, clinically reported MYC IHC scores are concordant with expert scores within 15%. MYC IHC does not capture all B-cell lymphomas with MYC rearrangements, however. MYC IHC and MYC fluorescence in situ hybridization are both recommended to identify MYC-driven B-cell lymphomas. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. DOCK2 regulates cell proliferation through Rac and ERK activation in B cell lymphoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lei; Nishihara, Hiroshi, E-mail: nisihara@patho2.med.hokudai.ac.jp; Kimura, Taichi

    2010-04-23

    DOCK2; a member of the CDM protein family, regulates cell motility and cytokine production through the activation of Rac in mammalian hematopoietic cells and plays a pivotal role in the modulation of the immune system. Here we demonstrated the alternative function of DOCK2 in hematopoietic tumor cells, especially in terms of its association with the tumor progression. Immunostaining for DOCK2 in 20 cases of human B cell lymphoma tissue specimens including diffuse large B cell lymphoma and follicular lymphoma revealed the prominent expression of DOCK2 in all of the lymphoma cells. DOCK2-knockdown (KD) of the B cell lymphoma cell lines,more » Ramos and Raji, using the lentiviral shRNA system presented decreased cell proliferation compared to the control cells. Furthermore, the tumor formation of DOCK2-KD Ramos cell in nude mice was significantly abrogated. Western blotting analysis and pull-down assay using GST-PAK-RBD kimeric protein suggested the presence of DOCK2-Rac-ERK pathway regulating the cell proliferation of these lymphoma cells. This is the first report to clarify the prominent role of DOCK2 in hematopoietic malignancy.« less

  15. Sclerodermiform basal cell carcinoma: how much can we rely on dermatoscopy to differentiate from non-aggressive basal cell carcinomas? Analysis of 1256 cases.

    PubMed

    Husein-ElAhmed, Husein

    2018-03-01

    The behaviour of each basal cell carcinoma is known to be different according to the histological growth pattern. Among these aggressive lesions, sclerodermiform basal cell carcinomas are the most common type. This is a challenging-to-treat lesion due to its deep tissue invasion, rapid growth, risk of metastasis and overall poor prognosis if not diagnosed in early stages. To investigate if sclerodermiform basal cell carcinomas are diagnosed later compared to non-sclerodermiform basal cell carcinoma Method: All lesions excised from 2000 to 2010 were included. A pathologist classified the lesions in two cohorts: one with specimens of non-aggressive basal cell carcinoma (superficial, nodular and pigmented), and other with sclerodermiform basal cell carcinoma. For each lesion, we collected patient's information from digital medical records regarding: gender, age when first attending the clinic and the tumor location. 1256 lesions were included, out of which 296 (23.6%) corresponded to sclerodermiform basal cell carcinoma, whereas 960 (76.4%) were non-aggressive subtypes of basal cell carcinoma. The age of diagnosis was: 72.78±12.31 years for sclerodermiform basal cell and 69.26±13.87 years for non-aggressive basal cell carcinoma (P<.0001). Sclerodermiform basal cell carcinomas are diagnosed on average 3.52 years later than non-aggressive basal cell carcinomas. Sclerodermiform basal cell carcinomas were diagnosed 3.40 years and 2.34 years later than non-aggressive basal cell carcinomas in younger and older patients respectively (P=.002 and P=.03, respectively). retrospective design. The diagnostic accuracy and primary clinic conjecture of sclerodermiform basal cell carcinomas is quite low compared to other forms of basal cell carcinoma such as nodular, superficial and pigmented. The dermoscopic vascular patterns, which is the basis for the diagnosis of non-melanocytic nonpigmented skin tumors, may not be particularly useful in identifying sclerodermiform basal cell

  16. Bryostatin and Vincristine in B-Cell Malignancies

    ClinicalTrials.gov

    2013-01-10

    Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Multiple Myeloma; Stage III Multiple Myeloma

  17. Aggressive Rare T-cell Lymphomas with Manifestation in the Skin: A Monocentric Cross-sectional Case Study.

    PubMed

    Brüggen, Marie-Charlotte; Kerl, Katrin; Haralambieva, Eugenia; Schanz, Urs; Chang, Yun-Tsan; Ignatova, Desislava; Dummer, Reinhard; Cozzio, Antonio; Hoetzenecker, Wolfram; French, Lars E; Guenova, Emmanuella

    2018-04-24

    Rare T- or NK-cell lymphomas with cutaneous manifestation may display a highly aggressive clinical course and major diagnostic/therapeutic challenges. This report describes our experiences with different lymphomas of this rare category and the therapeutic options used. This retrospective, descriptive, monocentric, cross-sectional case study, identified 4 rare aggressive T-/NK-cell lymphomas with manifestation in the skin, which were diagnosed in a tertiary care centre over a period of 4 years. Two patients had an Epstein-Barr virus-associated extranodal NK/T-cell lymphoma and 2 patients had a primary cutaneous CD8+ aggressive epidermotropic cytotoxic T-cell lymphoma. Concomitant extracutaneous involvement was observed in 2 of all 4 patients. Two patients had fulminant disease progression and resistance to chemotherapy. Two patients underwent allogeneic haematopoietic stem cell transplantation, which resulted in one complete remission and one partial remission. This report emphasizes the importance of an early diagnostic work-up and a prompt aggressive therapeutic approach.

  18. Metastatic B-cell lymphoma masquerading as infectious retinitis and vasculitis.

    PubMed

    Say, Emil Anthony T; Knupp, Charles L; Gertsch, Kevin R; Chavala, Sai H

    2012-06-01

    Intraocular lymphoma is a rare ocular malignancy that may occur in the retina or the uvea. Retina or vitreoretinal lymphoma accounts for the majority of cases and is often secondary to diffuse large B-cell lymphoma. In the present study, a 66-year-old Caucasian male with a history of Waldenstrom's macroglobulinemia with diffuse large B-cell lymphoma, presented with blurred vision in the left eye one month following cycle 4 of an R-CHOP regimen. At the time of onset, the patient was being treated for bacterial pneumonia. Visual acuity was 20/25 in his right eye (OD) and 20/30 in the left (OS). Ophthalmologic examination showed intraretinal white infiltrates associated with hemorrhage in the superotemporal midperiphery of the retina and vitritis OS. Initial diagnostic considerations included infectious (cytomegalovirus retinitis, syphilis, toxoplasmosis, tuberculosis), inflammatory (retinal vasculitis associated with autoimmune disease or hypercoagulable states) or malignant (intraocular lymphoma) diseases. The patient did not respond to intravitreal injection of foscarnet and oral valgancyclovir. Systemic work-up and aqueous fluid biopsy were inconclusive. Diagnostic vitrectomy yielded inconclusive results and the patient continued to have progressive loss of vision. A repeat diagnostic vitrectomy with retinal and subretinal biopsy confirmed large B cells consistent with metastatic B-cell lymphoma. A concomitant PET/CT scan was performed that revealed bilateral new pulmonary nodules resulting in additional chemotherapy. Our case shows the diagnostic dilemmas in patients with systemic lymphoma and the possible role of concurrent systemic restaging in patients with ocular complaints, even when in systemic remission.

  19. Adoptive immunotherapy for hematological malignancies using T cells gene-modified to express tumor antigen-specific receptors.

    PubMed

    Fujiwara, Hiroshi

    2014-12-15

    Accumulating clinical evidence suggests that adoptive T-cell immunotherapy could be a promising option for control of cancer; evident examples include the graft-vs-leukemia effect mediated by donor lymphocyte infusion (DLI) and therapeutic infusion of ex vivo-expanded tumor-infiltrating lymphocytes (TIL) for melanoma. Currently, along with advances in synthetic immunology, gene-modified T cells retargeted to defined tumor antigens have been introduced as "cellular drugs". As the functional properties of the adoptive immune response mediated by T lymphocytes are decisively regulated by their T-cell receptors (TCRs), transfer of genes encoding target antigen-specific receptors should enable polyclonal T cells to be uniformly redirected toward cancer cells. Clinically, anticancer adoptive immunotherapy using genetically engineered T cells has an impressive track record. Notable examples include the dramatic benefit of chimeric antigen receptor (CAR) gene-modified T cells redirected towards CD19 in patients with B-cell malignancy, and the encouraging results obtained with TCR gene-modified T cells redirected towards NY-ESO-1, a cancer-testis antigen, in patients with advanced melanoma and synovial cell sarcoma. This article overviews the current status of this treatment option, and discusses challenging issues that still restrain the full effectiveness of this strategy, especially in the context of hematological malignancy.

  20. A basal stem cell signature identifies aggressive prostate cancer phenotypes

    PubMed Central

    Smith, Bryan A.; Sokolov, Artem; Uzunangelov, Vladislav; Baertsch, Robert; Newton, Yulia; Graim, Kiley; Mathis, Colleen; Cheng, Donghui; Stuart, Joshua M.; Witte, Owen N.

    2015-01-01

    Evidence from numerous cancers suggests that increased aggressiveness is accompanied by up-regulation of signaling pathways and acquisition of properties common to stem cells. It is unclear if different subtypes of late-stage cancer vary in stemness properties and whether or not these subtypes are transcriptionally similar to normal tissue stem cells. We report a gene signature specific for human prostate basal cells that is differentially enriched in various phenotypes of late-stage metastatic prostate cancer. We FACS-purified and transcriptionally profiled basal and luminal epithelial populations from the benign and cancerous regions of primary human prostates. High-throughput RNA sequencing showed the basal population to be defined by genes associated with stem cell signaling programs and invasiveness. Application of a 91-gene basal signature to gene expression datasets from patients with organ-confined or hormone-refractory metastatic prostate cancer revealed that metastatic small cell neuroendocrine carcinoma was molecularly more stem-like than either metastatic adenocarcinoma or organ-confined adenocarcinoma. Bioinformatic analysis of the basal cell and two human small cell gene signatures identified a set of E2F target genes common between prostate small cell neuroendocrine carcinoma and primary prostate basal cells. Taken together, our data suggest that aggressive prostate cancer shares a conserved transcriptional program with normal adult prostate basal stem cells. PMID:26460041

  1. A potential individual cell malignancy indicator: focal length

    NASA Astrophysics Data System (ADS)

    Wang, Weina; Lear, Kevin L.

    2011-03-01

    The label-free technique of optofluidic intracavity spectroscopy (OFIS) utilizes the optical transmission spectrum of a cell in a microfluidic Fabry-Pérot (F-P) cavity to distinguish cells from cancerous cell lines and baseline normal blood cells. The classification between canine hemangiosarcoma (HSA) cancer cells and monocytes in canine normal peripheral blood mononuclear cells (PBMCs) had been demonstrated with 95% sensitivity and 98% specificity. Now with a new optical model that treats the cell settled at the bottom of the cavity as a thin lens, the focal length of cells was extracted and used as an individual cell malignancy indicator.

  2. Glioma Stem Cells and Immunotherapy for the Treatment of Malignant Gliomas

    PubMed Central

    Toda, Masahiro

    2013-01-01

    Stem cell research has led to the discovery of glioma stem cells (GSCs), and because these cells are resistant to chemotherapy and radiotherapy, analysis of their properties has been rapidly pursued for targeted treatment of malignant glioma. Recent studies have also revealed complex crosstalk between GSCs and their specialized environment (niche). Therefore, targeting not only GSCs but also their niche may be a principle for novel therapies of malignant glioma. One possible novel strategy for targeting GSCs and their niches is immunotherapy with different antitumor mechanism(s) from those of conventional therapy. Recent clinical studies of immunotherapy using peptide vaccines and antibodies have shown promising results. This review describes the recent findings related to GSCs and their niches, as well as immunotherapies for glioma, followed by discussion of immunotherapies that target GSCs for the treatment of malignant glioma. PMID:23762610

  3. Glioma stem cells and immunotherapy for the treatment of malignant gliomas.

    PubMed

    Toda, Masahiro

    2013-01-01

    Stem cell research has led to the discovery of glioma stem cells (GSCs), and because these cells are resistant to chemotherapy and radiotherapy, analysis of their properties has been rapidly pursued for targeted treatment of malignant glioma. Recent studies have also revealed complex crosstalk between GSCs and their specialized environment (niche). Therefore, targeting not only GSCs but also their niche may be a principle for novel therapies of malignant glioma. One possible novel strategy for targeting GSCs and their niches is immunotherapy with different antitumor mechanism(s) from those of conventional therapy. Recent clinical studies of immunotherapy using peptide vaccines and antibodies have shown promising results. This review describes the recent findings related to GSCs and their niches, as well as immunotherapies for glioma, followed by discussion of immunotherapies that target GSCs for the treatment of malignant glioma.

  4. Oroxin B selectively induces tumor-suppressive ER stress and concurrently inhibits tumor-adaptive ER stress in B-lymphoma cells for effective anti-lymphoma therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ping; Fu, Shilong; Cao, Zhifei

    Cancer cells have both tumor-adaptive and -suppressive endoplasmic reticulum (ER) stress machineries that determine cell fate. In malignant tumors including lymphoma, constant activation of tumor-adaptive ER stress and concurrent reduction of tumor-suppressive ER stress favors cancer cell proliferation and tumor growth. Current ER stress-based anti-tumor drugs typically activate both tumor-adaptive and -suppressive ER stresses, resulting in low anti-cancer efficacy; hence, selective induction of tumor-suppressive ER stress and inhibition of tumor-adaptive ER stress are new strategies for novel anti-cancer drug discovery. Thus far, specific tumor-suppressive ER stress therapeutics have remained absent in clinical settings. In this study, we explored unique tumor-suppressivemore » ER stress agents from the traditional Chinese medicinal herb Oroxylum indicum, and found that a small molecule oroxin B selectively induced tumor-suppressive ER stress in malignant lymphoma cells, but not in normal cells, effectively inhibited lymphoma growth in vivo, and significantly prolonged overall survival of lymphoma-xenografted mice without obvious toxicity. Mechanistic studies have revealed that the expression of key tumor-adaptive ER-stress gene GRP78 was notably suppressed by oroxin B via down-regulation of up-stream key signaling protein ATF6, while tumor-suppressive ER stress master gene DDIT3 was strikingly activated through activating the MKK3-p38 signaling pathway, correcting the imbalance between tumor-suppressive DDIT3 and tumor-adaptive GRP78 in lymphoma. Together, selective induction of unique tumor-suppressive ER stress and concurrent inhibition of tumor-adaptive ER stress in malignant lymphoma are new and feasible approaches for novel anti-lymphoma drug discovery and anti-lymphoma therapy. - Highlights: • Oroxin B selectively induces tumor-suppressive ER stress in B-lymphoma cells. • Oroxin B significantly prolonged overall survival of lymphoma-xenografted mice

  5. Systemic diffuse large B-cell lymphoma masquerading as neovascular glaucoma.

    PubMed

    Bawankar, Pritam; Das, Dipankar; Bhattacharjee, Harsha; Tayab, Shahinur; Deori, Nilutparna; Paulbuddhe, Vivek; Dhar, Shriya; Deka, Apurba

    2018-02-01

    We describe a case of spontaneous hyphema associated with anterior uveitis presents in a 69-year old female as the prominent sign of the intraocular spread of systemic diffuse large B-cell lymphoma (DLBCL). She had a history of diabetes and initially misdiagnosed as neovascular glaucoma. Clinical history of systemic lymphoma, characteristic findings on B-scan ultrasonography and magnetic resonance imaging scan, and identification of atypical lymphoid cells in aqueous sample established the diagnosis of intraocular metastasis of systemic DLBCL. Therefore, this report highlights that life-threatening malignant systemic lymphoma may masquerade as anterior segment ocular inflammation or neovascular glaucoma.

  6. Systemic diffuse large B-cell lymphoma masquerading as neovascular glaucoma

    PubMed Central

    Bawankar, Pritam; Das, Dipankar; Bhattacharjee, Harsha; Tayab, Shahinur; Deori, Nilutparna; Paulbuddhe, Vivek; Dhar, Shriya; Deka, Apurba

    2018-01-01

    We describe a case of spontaneous hyphema associated with anterior uveitis presents in a 69-year old female as the prominent sign of the intraocular spread of systemic diffuse large B-cell lymphoma (DLBCL). She had a history of diabetes and initially misdiagnosed as neovascular glaucoma. Clinical history of systemic lymphoma, characteristic findings on B-scan ultrasonography and magnetic resonance imaging scan, and identification of atypical lymphoid cells in aqueous sample established the diagnosis of intraocular metastasis of systemic DLBCL. Therefore, this report highlights that life-threatening malignant systemic lymphoma may masquerade as anterior segment ocular inflammation or neovascular glaucoma. PMID:29380792

  7. Modification of cytokine-induced killer cells with chimeric antigen receptors (CARs) enhances antitumor immunity to epidermal growth factor receptor (EGFR)-positive malignancies.

    PubMed

    Ren, Xuequn; Ma, Wanli; Lu, Hong; Yuan, Lei; An, Lei; Wang, Xicai; Cheng, Guanchang; Zuo, Shuguang

    2015-12-01

    Epidermal growth factor receptor (EGFR, ErbB1, Her-1) is a cell surface molecule overexpressing in a variety of human malignancies and, thus, is an excellent target for immunotherapy. Immunotherapy targeting EGFR-overexpressing malignancies using genetically modified immune effector cells is a novel and promising approach. In the present study, we have developed an adoptive cellular immunotherapy strategy based on the chimeric antigen receptor (CAR)-modified cytokine-induced killer (CAR-CIK) cells specific for the tumor cells expressing EGFR. To generate CAR-CIK cells, a lentiviral vector coding the EGFR-specific CAR was constructed and transduced into the CIK cells. The CAR-CIK cells showed significantly enhanced cytotoxicity and increased production of cytokines IFN-γ and IL-2 when co-cultured with EGFR-positive cancer cells. In tumor xenografts, adoptive immunotherapy of CAR-CIK cells could inhibit tumor growth and prolong the survival of EGFR-overexpressing human tumor xenografts. Moreover, tumor growth inhibition and prolonged survival in mice with EGFR(+) human cancer were associated with the increased persistence of CAR-CIK cells in vivo. Our study indicates that modification with EGFR-specific CAR strongly enhances the antitumor activity of the CIK cells against EGFR-positive malignancies.

  8. [A case of triple malignant tumors consisting of esophagus, stomach and malignant lymphoma with a histopathological feature of collision between gastric cancer and malignant lymphoma--a case report].

    PubMed

    Tagami, Keita; Tanda, Shigeru; Tokumura, Hiromi; Yamaguchi, Masaaki

    2010-12-01

    We report a rare case of a collision between a gastric cancer and a malignant lymphoma with a wide systemic metastasis, combined with esophagus cancer, stomach cancer and malignant lymphoma. A 73-year-old man complained of gross hematuria and swelling of the right testis. Magnetic resonance imaging (MRI) revealed that both testes were swollen with unequal contrast and there were numerous tumors in the retroperitoneal space and pelvis. He was diagnosed with malignant diffuse large B cell lymphoma by immunostaining from the extirpated right testis. He received six cycles of R-CHOP therapy. After the second cycle, partial remission was recognized, but the tumors spread again by the fourth cycle. Thereafter, we performed MTX-HOPE therapy as a salvage therapy for four cycles. During this chemotherapy, he felt epigastralgia; esophagus cancer (squamous cell carcinoma) and stomach cancer (highly-differentiated adenocarcinoma) were found by upper endoscopy. However, the gastrointestinal cancer was inoperable, since the malignant lymphoma was progressive. His general status had been exacerbated, and he died about one year after he was diagnosed with malignant lymphoma. Pathological examination revealed that the adenocarcinoma had partly collided with the malignant lymphoma.

  9. Modeling Aggressive Medulloblastoma Using Human Induced Pluripotent Stem Cells

    DTIC Science & Technology

    2017-09-01

    and Myc in turn induces expression of AT1R creating a positive feedback loop and development of aggression tumor phenotype. The therapeutic...strengths are the relevant expertise of the applicant and his collaborating team, the novel paracrine positive feedback loop in EC-tumor cell...to as MYC-driven MB. The molecular mechanisms that drive MYC hyper -activation in MB remain incompletely understood. MB cells in actual tumors interact

  10. Refractory sciatica could be a sign of malignancy: A unique case presentation.

    PubMed

    Arunachalam, Karuppiah

    2016-01-04

    t Renal cell carcinoma is one of the highly aggressive tumors and notorious for late presentations. It is associated with high morbidity and mortality. Renal cell carcinoma is known for rare metastatic sites. In clinical practice, it is often important not to anchor to a particular diagnosis but rather revisit and revaluate entire history and clinical examination. We describe a case of metastatic renal cell carcinoma that was initially treated as sciatica and later found to have advanced debilitating malignancy. Internal medicine physicians should be able to recognize one of the rare metastatic sites of renal cell carcinoma and understand the importance of imaging studies if patient has persisting sciatica symptoms without improvement.

  11. PTP1B promotes aggressiveness of breast cancer cells by regulating PTEN but not EMT.

    PubMed

    Liu, Xue; Chen, Qian; Hu, Xu-Gang; Zhang, Xian-Chao; Fu, Ti-Wei; Liu, Qing; Liang, Yan; Zhao, Xi-Long; Zhang, Xia; Ping, Yi-Fang; Bian, Xiu-Wu

    2016-10-01

    Metastasis is a complicated, multistep process and remains the major cause of cancer-related mortality. Exploring the molecular mechanisms underlying tumor metastasis is crucial for development of new strategies for cancer prevention and treatment. In this study, we found that protein tyrosine phosphatase 1B (PTP1B) promoted breast cancer metastasis by regulating phosphatase and tensin homolog (PTEN) but not epithelial-mesenchymal transition (EMT). By detecting PTP1B expression of the specimens from 128 breast cancer cases, we found that the level of PTP1B was higher in breast cancer tissues than the corresponding adjacent normal tissues. Notably, PTP1B was positively associated with lymph node metastasis (LNM) and estrogen receptor (ER) status. In vitro, disturbing PTP1B expression obviously attenuated cell migration and invasion. On the contrary, PTP1B overexpression significantly increased migration and invasion of breast cancer cells. Mechanistically, PTP1B knockdown upregulated PTEN, accompanied with an abatement of AKT phosphorylation and the expression of matrix metalloproteinase 2 (MMP2) and MMP7. Conversely, forced expression of PTP1B reduced PTEN and increased AKT phosphorylation as well as the expression of MMP2 and MMP7. Notably, neither EMT nor stemness of breast cancer cells was regulated by PTP1B. We also found that PTP1B acted as an independent prognostic factor and predicted poor prognosis in ER-positive breast cancer patients. Taken together, our findings provide advantageous evidence for the development of PTP1B as a potential therapeutic target for breast cancer, especially for ER-positive breast cancer patients.

  12. Functional analysis of the DEPDC1 oncoantigen in malignant glioma and brain tumor initiating cells.

    PubMed

    Kikuchi, Ryogo; Sampetrean, Oltea; Saya, Hideyuki; Yoshida, Kazunari; Toda, Masahiro

    2017-06-01

    DEP domain containing 1 (DEPDC1) is a novel oncoantigen expressed in cancer cells, which presents oncogenic activity and high immunogenicity. Although DEPDC1 has been predicted to be a useful antigen for the development of a cancer vaccine, its pathophysiological roles in glioma have not been investigated. Here, we analyzed the expression and function of DEPDC1 in malignant glioma. DEPDC1 expression in glioma cell lines, glioma tissues, and brain tumor initiating cells (BTICs) was assessed by western blot and quantitative polymerase chain reaction (PCR). The effect of DEPDC1 downregulation on cell growth and nuclear factor kappa B (NFκB) signaling in glioma cells was investigated. Overall survival was assessed in mouse glioma models using human glioma cells and induced mouse brain tumor stem cells (imBTSCs) to determine the effect of DEPDC1 suppression in vivo. DEPDC1 expression was increased in glioma cell lines, tissues, and BTICs. Suppression of endogenous DEPDC1 expression by small interfering RNA (siRNA) inhibited glioma cell viability and induced apoptosis through NFκB signaling. In mouse glioma models using human glioma cells and imBTSCs, downregulation of DEPDC1 expression prolonged overall survival. These results suggest that DEPDC1 represents a target molecule for the treatment of glioma.

  13. IL-1β produced by aggressive breast cancer cells is one of the factors that dictate their interactions with mesenchymal stem cells through chemokine production.

    PubMed

    Escobar, Pauline; Bouclier, Céline; Serret, Julien; Bièche, Ivan; Brigitte, Madly; Caicedo, Andres; Sanchez, Elodie; Vacher, Sophie; Vignais, Marie-Luce; Bourin, Philippe; Geneviève, David; Molina, Franck; Jorgensen, Christian; Lazennec, Gwendal

    2015-10-06

    The aim of this work was to understand whether the nature of breast cancer cells could modify the nature of the dialog of mesenchymal stem cells (MSCs) with cancer cells. By treating MSCs with the conditioned medium of metastatic Estrogen-receptor (ER)-negative MDA-MB-231, or non-metastatic ER-positive MCF-7 breast cancer cells, we observed that a number of chemokines were produced at higher levels by MSCs treated with MDA-MB-231 conditioned medium (CM). MDA-MB-231 cells were able to induce NF-κB signaling in MSC cells. This was shown by the use of a NF-kB chemical inhibitor or an IκB dominant negative mutant, nuclear translocation of p65 and induction of NF-κB signature. Our results suggest that MDA-MB-231 cells exert their effects on MSCs through the secretion of IL-1β, that activates MSCs and induces the same chemokines as the MDA-MB-231CM. In addition, inhibition of IL-1β secretion in the MDA-MB-231 cells reduces the induced production of a panel of chemokines by MSCs, as well the motility of MDA-MB-231 cells. Our data suggest that aggressive breast cancer cells secrete IL-1β, which increases the production of chemokines by MSCs.

  14. IL-1β produced by aggressive breast cancer cells is one of the factors that dictate their interactions with mesenchymal stem cells through chemokine production

    PubMed Central

    Serret, Julien; Bièche, Ivan; Brigitte, Madly; Caicedo, Andres; Sanchez, Elodie; Vacher, Sophie; Vignais, Marie-Luce; Bourin, Philippe; Geneviève, David; Molina, Franck; Jorgensen, Christian; Lazennec, Gwendal

    2015-01-01

    The aim of this work was to understand whether the nature of breast cancer cells could modify the nature of the dialog of mesenchymal stem cells (MSCs) with cancer cells. By treating MSCs with the conditioned medium of metastatic Estrogen-receptor (ER)-negative MDA-MB-231, or non-metastatic ER-positive MCF-7 breast cancer cells, we observed that a number of chemokines were produced at higher levels by MSCs treated with MDA-MB-231 conditioned medium (CM). MDA-MB-231 cells were able to induce NF-κB signaling in MSC cells. This was shown by the use of a NF-kB chemical inhibitor or an IκB dominant negative mutant, nuclear translocation of p65 and induction of NF-κB signature. Our results suggest that MDA-MB-231 cells exert their effects on MSCs through the secretion of IL-1β, that activates MSCs and induces the same chemokines as the MDA-MB-231CM. In addition, inhibition of IL-1β secretion in the MDA-MB-231 cells reduces the induced production of a panel of chemokines by MSCs, as well the motility of MDA-MB-231 cells. Our data suggest that aggressive breast cancer cells secrete IL-1β, which increases the production of chemokines by MSCs. PMID:26362269

  15. Detection and evaluation of normal and malignant cells using laser-induced fluorescence spectroscopy.

    PubMed

    Khosroshahi, Mohamad E; Rahmani, Mahya

    2012-01-01

    The aim of this research is to study the normalized fluorescence spectra (intensity variations and area under the fluorescence signal), relative quantum yield, extinction coefficient and intracellular properties of normal and malignant human bone cells. Using Laser-Induced Fluorescence Spectroscopy (LIFS) upon excitation of 405 nm, the comparison of emission spectra of bone cells revealed that fluorescence intensity and the area under the spectra of malignant bone cells was less than that of normal. In addition, the area ratio and shape factor were changed. We obtained two emission bands in spectra of normal cells centered at about 486 and 575 nm and for malignant cells about 482 and 586 nm respectively, which are most likely attributed to NADH and riboflavins. Using fluorescein sodium emission spectrum, the relative quantum yield of bone cells is numerically determined.

  16. Expression of cyclophilin B is associated with malignant progression and regulation of genes implicated in the pathogenesis of breast cancer.

    PubMed

    Fang, Feng; Flegler, Ayanna J; Du, Pan; Lin, Simon; Clevenger, Charles V

    2009-01-01

    Cyclophilin B (CypB) is a 21-kDa protein with peptidyl-prolyl cis-trans isomerase activity that functions as a transcriptional inducer for Stat5 and as a ligand for CD147. To better understand the global function of CypB in breast cancer, T47D cells with a small interfering RNA-mediated knockdown of CypB were generated. Subsequent expression profiling analysis showed that 663 transcripts were regulated by CypB knockdown, and that many of these gene products contributed to cell proliferation, cell motility, and tumorigenesis. Real-time PCR confirmed that STMN3, S100A4, S100A6, c-Myb, estrogen receptor alpha, growth hormone receptor, and progesterone receptor were all down-regulated in si-CypB cells. A linkage analysis of these array data to protein networks resulted in the identification of 27 different protein networks that were impacted by CypB knockdown. Functional assays demonstrated that CypB knockdown also decreased cell growth, proliferation, and motility. Immunohistochemical and immunofluorescent analyses of a matched breast cancer progression tissue microarray that was labeled with an anti-CypB antibody demonstrated a highly significant increase in CypB protein levels as a function of breast cancer progression. Taken together, these results suggest that the enhanced expression of CypB in malignant breast epithelium may contribute to the pathogenesis of this disease through its regulation of the expression of hormone receptors and gene products that are involved in cell proliferation and motility.

  17. Malignant external otitis: CT evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtin, H.D.; Wolfe, P.; May, M.

    1982-11-01

    Malignant external otitis is an aggressive infection caused by Pseudomonas aeruginosa that most often occurs in elderly diabetics. Malignant external otitis often spreads inferiorly from the external canal to involve the subtemporal area and progresses medially towards the petrous apex leading to multiple cranial nerve palsies. The computed tomographic (CT) findings in malignant external otitis include obliteration of the normal fat planes in the subtemporal area as well as patchy destruction of the bony cortex of the mastoid. The point of exit of the various cranial nerves can be identified on CT scans, and the extent of the inflammatory massmore » correlates well with the clinical findings. Four cases of malignant external otitis are presented. In each case CT provided a good demonstration of involvement of the soft tissues at the base of the skull.« less

  18. Neurotrophin signaling via TrkB and TrkC receptors promotes the growth of brain tumor-initiating cells.

    PubMed

    Lawn, Samuel; Krishna, Niveditha; Pisklakova, Alexandra; Qu, Xiaotao; Fenstermacher, David A; Fournier, Michelle; Vrionis, Frank D; Tran, Nam; Chan, Jennifer A; Kenchappa, Rajappa S; Forsyth, Peter A

    2015-02-06

    Neurotrophins and their receptors are frequently expressed in malignant gliomas, yet their functions are largely unknown. Previously, we have shown that p75 neurotrophin receptor is required for glioma invasion and proliferation. However, the role of Trk receptors has not been examined. In this study, we investigated the importance of TrkB and TrkC in survival of brain tumor-initiating cells (BTICs). Here, we show that human malignant glioma tissues and also tumor-initiating cells isolated from fresh human malignant gliomas express the neurotrophin receptors TrkB and TrkC, not TrkA, and they also express neurotrophins NGF, BDNF, and neurotrophin 3 (NT3). Specific activation of TrkB and TrkC receptors by ligands BDNF and NT3 enhances tumor-initiating cell viability through activation of ERK and Akt pathways. Conversely, TrkB and TrkC knockdown or pharmacologic inhibition of Trk signaling decreases neurotrophin-dependent ERK activation and BTIC growth. Further, pharmacological inhibition of both ERK and Akt pathways blocked BDNF, and NT3 stimulated BTIC survival. Importantly, attenuation of BTIC growth by EGFR inhibitors could be overcome by activation of neurotrophin signaling, and neurotrophin signaling is sufficient for long term BTIC growth as spheres in the absence of EGF and FGF. Our results highlight a novel role for neurotrophin signaling in brain tumor and suggest that Trks could be a target for combinatorial treatment of malignant glioma. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Neurotrophin Signaling via TrkB and TrkC Receptors Promotes the Growth of Brain Tumor-initiating Cells*

    PubMed Central

    Lawn, Samuel; Krishna, Niveditha; Pisklakova, Alexandra; Qu, Xiaotao; Fenstermacher, David A.; Fournier, Michelle; Vrionis, Frank D.; Tran, Nam; Chan, Jennifer A.; Kenchappa, Rajappa S.; Forsyth, Peter A.

    2015-01-01

    Neurotrophins and their receptors are frequently expressed in malignant gliomas, yet their functions are largely unknown. Previously, we have shown that p75 neurotrophin receptor is required for glioma invasion and proliferation. However, the role of Trk receptors has not been examined. In this study, we investigated the importance of TrkB and TrkC in survival of brain tumor-initiating cells (BTICs). Here, we show that human malignant glioma tissues and also tumor-initiating cells isolated from fresh human malignant gliomas express the neurotrophin receptors TrkB and TrkC, not TrkA, and they also express neurotrophins NGF, BDNF, and neurotrophin 3 (NT3). Specific activation of TrkB and TrkC receptors by ligands BDNF and NT3 enhances tumor-initiating cell viability through activation of ERK and Akt pathways. Conversely, TrkB and TrkC knockdown or pharmacologic inhibition of Trk signaling decreases neurotrophin-dependent ERK activation and BTIC growth. Further, pharmacological inhibition of both ERK and Akt pathways blocked BDNF, and NT3 stimulated BTIC survival. Importantly, attenuation of BTIC growth by EGFR inhibitors could be overcome by activation of neurotrophin signaling, and neurotrophin signaling is sufficient for long term BTIC growth as spheres in the absence of EGF and FGF. Our results highlight a novel role for neurotrophin signaling in brain tumor and suggest that Trks could be a target for combinatorial treatment of malignant glioma. PMID:25538243

  20. Novel ligands for cancer diagnosis: selection of peptide ligands for identification and isolation of B-cell lymphomas.

    PubMed

    McGuire, Michael J; Samli, Kausar N; Chang, Ya-Ching; Brown, Kathlynn C

    2006-04-01

    Lymphoma and leukemia account for nearly 8% of cancer fatalities each year. Present treatments do not differentiate between normal and malignant cells. New reagents that distinguish malignant cells and enable the isolation of these cells from the normal background will enhance the molecular characterization of disease and specificity of treatment. Peptide ligands were selected from a phage-displayed peptide library by biopanning on the B-cell lymphoma line, A20. The isolated peptides were assessed as reagents for identification and isolation of lymphoma cells by flow cytometry and cell capture with magnetic beads. Two novel peptides and one obtained previously on cardiomyocytes were selected. A20 cells bind phage displaying these peptides 250- to 450-fold over control phage. These phage bind to other bone marrow-derived cancel lines including some macrophage and T cells but do not bind to normal splenocytes. Synthetic constructs of these peptides have binding affinities comparable to B-cell-specific antibodies. Similar to antibodies, these peptides can be used in flow cytometry and magnetic bead capture to distinguish lymphoma cells from normal splenocytes. Bone marrow-derived malignant cells express cell surface markers that can be used to distinguish them from normal cells. These results demonstrate the ability to use an unbiased screen to rapidly generate high-affinity peptide ligands for identification and isolation of lymphoma cells.

  1. Cell surface expression of beta 2-microglobulin (beta 2m) correlates with stages of differentiation in B cell tumours.

    PubMed Central

    Jones, R A; Scott, C S; Norfolk, D R; Stark, A N; Child, J A

    1987-01-01

    Cell surface beta 2-microglobulin (beta 2m) densities of malignant B cells were determined by enzyme immunoassay in 97 cases of immunologically defined lymphoproliferative disease. Absolute beta 2m densities were found to depend on disease category with the lowest levels found on cells from chronic lymphocytic leukaemia (mean = 5.6 ng/10(6) cells, n = 27); atypical chronic lymphocytic leukaemia (mean = 5.9 ng/10(6) cells, n = 8); and prolymphocytoid chronic lymphocytic leukaemia variant (mean = 6.0 ng/10(6) cells, n = 16). beta 2m densities for B non-Hodgkin's lymphoma (n = 14) and B prolymphocytic leukaemia (n = 17) cases were 8.1 and 10.0 ng/10(6) cells, respectively, and the highest densities were found on cells from "late-B cell" tumours (mean = 14.3 ng/10(6) cells). Plasma cells from cases of Ig secreting tumours expressed unexpectedly low beta 2m densities (mean = 9.3 ng/10(6) cells; n = 6). PMID:3108331

  2. Phenformin inhibits cell proliferation and induces cell apoptosis and autophagy in cholangiocarcinoma.

    PubMed

    Hu, Shuyang; Ouyang, Qing; Cheng, Qingbao; Wang, Jinghan; Feng, Feiling; Qiao, Liang; Gan, Wei; Shi, Yang; Wu, Demin; Jiang, Xiaoqing

    2018-04-01

    Cholangiocarcinoma (CCA) is an aggressive malignant tumor and the prognosis of patients with advanced stage disease remains poor. Therefore, the identification of novel treatment agents for CCA is required. In the present study, the biological effects of the diabetes therapeutic agent, phenformin, in CCA cell lines was investigated. Cell Counting Kit‑8 cell viability, cellular clone formation and subcutaneous tumor formation assays were performed, which revealed that phenformin inhibited CCA cell proliferation and growth both in vitro and in vivo. In addition, phenformin induced CCA cell apoptosis and autophagy. Phenformin partly activated the liver kinase B1 (LKB1)/5' AMP‑activated protein kinase signaling pathway to exert its biological effects on CCA cell lines, as demonstrated by knockdown of LKB1, which reversed these effects. In conclusion, the present study demonstrated the biological effects of phenformin in CCA and suggested that phenformin may be a potential novel agent for CCA treatment.

  3. Understanding Drug Resistance to Targeted Therapeutics in Malignant B-Cell Lymphoproliferative Disorders (B-LPDs)

    DTIC Science & Technology

    2014-10-01

    18. Munari F et al. Tumor-associated macrophages as major source of APRIL in gastric MALT lymphoma . Blood 2011,117(24)6612-6616. 19. Mackay F et al... Lymphoma (CLL/SLL)  microenvironment  B-cell receptor (BCR)  C-X-C chemokine receptor type 4 (CXCR-4/CD184)  lenalidomide  plerixafor...AND LICENSES: Nothing to report VIII. REPORTABLE OUTCOMES: Nothing to report IX. OTHER ACHIEVEMENTS: A. Funding Applications 1. Lymphoma

  4. Vitamin D Impacts the Expression of Runx2 Target Genes and Modulates Inflammation, Oxidative Stress and Membrane Vesicle Biogenesis Gene Networks in 143B Osteosarcoma Cells.

    PubMed

    Garimella, Rama; Tadikonda, Priyanka; Tawfik, Ossama; Gunewardena, Sumedha; Rowe, Peter; Van Veldhuizen, Peter

    2017-03-16

    Osteosarcoma (OS) is an aggressive malignancy of bone affecting children, adolescents and young adults. Understanding vitamin D metabolism and vitamin D regulated genes in OS is an important aspect of vitamin D/cancer paradigm, and in evaluating vitamin D as adjuvant therapy for human OS. Vitamin D treatment of 143B OS cells induced significant and novel changes in the expression of genes that regulate: (a) inflammation and immunity; (b) formation of reactive oxygen species, metabolism of cyclic nucleotides, sterols, vitamins and mineral (calcium), quantity of gap junctions and skeletogenesis; (c) bone mineral density; and (d) cell viability of skeletal cells, aggregation of bone cancer cells and exocytosis of secretory vesicles. Ingenuity pathway analysis revealed significant reduction in Runx2 target genes such as fibroblast growth factor -1, -12 ( FGF1 and FGF12 ), bone morphogenetic factor-1 ( BMP1 ), SWI/SNF related, matrix associated actin dependent regulator of chromatin subfamily a, member 4 ( SMARCA4 ), Matrix extracellular phosphoglycoprotein ( MEPE ), Integrin, β4 ( ITGBP4 ), Matrix Metalloproteinase -1, -28 ( MMP1 and MMP28 ), and signal transducer and activator of transcription-4 ( STAT4 ) in vitamin D treated 143B OS cells. These genes interact with the inflammation, oxidative stress and membrane vesicle biogenesis gene networks. Vitamin D not only inhibited the expression of Runx2 target genes MMP1 , MMP28 and kallikrein related peptidase-7 ( KLK7 ), but also migration and invasion of 143B OS cells. Vitamin D regulated Runx2 target genes or their products represent potential therapeutic targets and laboratory biomarkers for applications in translational oncology.

  5. Vitamin D Impacts the Expression of Runx2 Target Genes and Modulates Inflammation, Oxidative Stress and Membrane Vesicle Biogenesis Gene Networks in 143B Osteosarcoma Cells

    PubMed Central

    Garimella, Rama; Tadikonda, Priyanka; Tawfik, Ossama; Gunewardena, Sumedha; Rowe, Peter; Van Veldhuizen, Peter

    2017-01-01

    Osteosarcoma (OS) is an aggressive malignancy of bone affecting children, adolescents and young adults. Understanding vitamin D metabolism and vitamin D regulated genes in OS is an important aspect of vitamin D/cancer paradigm, and in evaluating vitamin D as adjuvant therapy for human OS. Vitamin D treatment of 143B OS cells induced significant and novel changes in the expression of genes that regulate: (a) inflammation and immunity; (b) formation of reactive oxygen species, metabolism of cyclic nucleotides, sterols, vitamins and mineral (calcium), quantity of gap junctions and skeletogenesis; (c) bone mineral density; and (d) cell viability of skeletal cells, aggregation of bone cancer cells and exocytosis of secretory vesicles. Ingenuity pathway analysis revealed significant reduction in Runx2 target genes such as fibroblast growth factor -1, -12 (FGF1 and FGF12), bone morphogenetic factor-1 (BMP1), SWI/SNF related, matrix associated actin dependent regulator of chromatin subfamily a, member 4 (SMARCA4), Matrix extracellular phosphoglycoprotein (MEPE), Integrin, β4 (ITGBP4), Matrix Metalloproteinase -1, -28 (MMP1 and MMP28), and signal transducer and activator of transcription-4 (STAT4) in vitamin D treated 143B OS cells. These genes interact with the inflammation, oxidative stress and membrane vesicle biogenesis gene networks. Vitamin D not only inhibited the expression of Runx2 target genes MMP1, MMP28 and kallikrein related peptidase-7 (KLK7), but also migration and invasion of 143B OS cells. Vitamin D regulated Runx2 target genes or their products represent potential therapeutic targets and laboratory biomarkers for applications in translational oncology. PMID:28300755

  6. The effect of genetic variation of the serotonin 1B receptor gene on impulsive aggressive behavior and suicide.

    PubMed

    Zouk, Hana; McGirr, Alexander; Lebel, Véronique; Benkelfat, Chawky; Rouleau, Guy; Turecki, Gustavo

    2007-12-05

    Impulsive-aggressive behaviors (IABs) are regarded as possible suicide intermediate phenotypes, mediating the relationship between genes and suicide outcome. In this study, we aimed to investigate the putative relationship between genetic variation at the 5-HT1B receptor gene, which in animal models is involved in impulse-aggression control, IABs, and suicide risk. We investigated the relationship of variation at five 5-HT1B loci and IAB measures in a sample of 696 subjects, including 338 individuals who died by suicide and 358 normal epidemiological controls. We found that variation at the 5-HT1B promoter A-161T locus had a significant effect on levels of IABs, as measured by the Buss-Durkee Hostility Inventory (BDHI). Suicides also differed from controls in distribution of variants at this locus. The A-161T locus, which seems to impact 5-HT1B transcription, could play a role in suicide predisposition by means of mediating impulsive-aggressive behaviors. 2007 Wiley-Liss, Inc.

  7. The helicase HAGE expressed by malignant melanoma-initiating cells is required for tumor cell proliferation in vivo.

    PubMed

    Linley, Adam J; Mathieu, Morgan G; Miles, Amanda K; Rees, Robert C; McArdle, Stephanie E B; Regad, Tarik

    2012-04-20

    Malignant melanoma-initiating cells (MMIC) are a subpopulation of cells responsible for melanoma tumor growth and progression. They are defined by the expression of the ATP-binding cassette (ABC) subfamily B member 5 (ABCB5). Here, we identified a critical role for the DEAD-box helicase antigen (HAGE) in ABCB5+ MMIC-dependent tumorigenesis and show that HAGE-specific inactivation inhibits melanoma tumor growth mediated by this tumor-initiating population. Knockdown of HAGE led to a significant decrease in RAS protein expression with a concomitant decrease in activation of the AKT and ERK signaling pathways implicated to play an important role in melanoma progression. To confirm that the reduction in NRAS (Neuroblastoma RAS) expression was dependent on the HAGE helicase activity, we showed that NRAS, effectively silenced by siRNA, could be rescued by reintroduction of HAGE in cells lacking HAGE. Furthermore, we provide a mechanism by which HAGE promotes NRAS unwinding in vitro. We also observed using tumor transplantation in Non-obese diabetic/severe combined immunodeficiency mice that the HAGE knockdown in a ABCB5+ melanoma cell line displayed a significant decrease in tumor growth and compared with the control. Our results suggest that the helicase HAGE is required for ABCB5+ MMIC-dependent tumor growth through promoting RAS protein expression and that cancer therapies targeting HAGE helicase may have broad applications for treating malignant melanoma and potentially other cancer types.

  8. The Helicase HAGE Expressed by Malignant Melanoma-Initiating Cells Is Required for Tumor Cell Proliferation in Vivo*

    PubMed Central

    Linley, Adam J.; Mathieu, Morgan G.; Miles, Amanda K.; Rees, Robert C.; McArdle, Stephanie E. B.; Regad, Tarik

    2012-01-01

    Malignant melanoma-initiating cells (MMIC) are a subpopulation of cells responsible for melanoma tumor growth and progression. They are defined by the expression of the ATP-binding cassette (ABC) subfamily B member 5 (ABCB5). Here, we identified a critical role for the DEAD-box helicase antigen (HAGE) in ABCB5+ MMIC-dependent tumorigenesis and show that HAGE-specific inactivation inhibits melanoma tumor growth mediated by this tumor-initiating population. Knockdown of HAGE led to a significant decrease in RAS protein expression with a concomitant decrease in activation of the AKT and ERK signaling pathways implicated to play an important role in melanoma progression. To confirm that the reduction in NRAS (Neuroblastoma RAS) expression was dependent on the HAGE helicase activity, we showed that NRAS, effectively silenced by siRNA, could be rescued by reintroduction of HAGE in cells lacking HAGE. Furthermore, we provide a mechanism by which HAGE promotes NRAS unwinding in vitro. We also observed using tumor transplantation in Non-obese diabetic/severe combined immunodeficiency mice that the HAGE knockdown in a ABCB5+ melanoma cell line displayed a significant decrease in tumor growth and compared with the control. Our results suggest that the helicase HAGE is required for ABCB5+ MMIC-dependent tumor growth through promoting RAS protein expression and that cancer therapies targeting HAGE helicase may have broad applications for treating malignant melanoma and potentially other cancer types. PMID:22393060

  9. Nitrosoureas inhibit the stathmin-mediated migration and invasion of malignant glioma cells.

    PubMed

    Liang, Xing-Jie; Choi, Yong; Sackett, Dan L; Park, John K

    2008-07-01

    Malignant gliomas are the most common primary intrinsic brain tumors and are highly lethal. The widespread migration and invasion of neoplastic cells from the initial site of tumor formation into the surrounding brain render these lesions refractory to definitive surgical treatment. Stathmin, a microtubule-destabilizing protein that mediates cell cycle progression, can also regulate directed cell movement. Nitrosoureas, traditionally viewed as DNA alkylating agents, can also covalently modify proteins such as stathmin. We therefore sought to establish a role for stathmin in malignant glioma cell motility, migration, and invasion and determine the effects of nitrosoureas on these cell movement-related processes. Scratch wound-healing recovery, Boyden chamber migration, Matrigel invasion, and organotypic slice invasion assays were performed before and after the down-regulation of cellular stathmin levels and in the absence and presence of sublethal nitrosourea ([1-(2-chloroethyl)-3-cyclohexyl-l-nitrosourea]; CCNU) concentrations. We show that decreases in stathmin expression lead to significant decreases in malignant glioma cell motility, migration, and invasion. CCNU, at a concentration of 10 micromol/L, causes similar significant decreases, even in the absence of any effects on cell viability. The direct inhibition of stathmin by CCNU is likely a contributing factor. These findings suggest that the inhibition of stathmin expression and function may be useful in limiting the spread of malignant gliomas within the brain, and that nitrosoureas may have therapeutic benefits in addition to their antiproliferative effects.

  10. Nitrosoureas Inhibit the Stathmin Mediated Migration and Invasion of Malignant Glioma Cells

    PubMed Central

    Liang, Xing-Jie; Choi, Yong; Sackett, Dan L.; Park, John K.

    2008-01-01

    Malignant gliomas are the most common primary intrinsic brain tumors and are highly lethal. The widespread migration and invasion of neoplastic cells from the initial site of tumor formation into the surrounding brain render these lesions refractory to definitive surgical treatment. Stathmin, a microtubule destabilizing protein that mediates cell cycle progression, can also regulate directed cell movement. Nitrosoureas, traditionally viewed as DNA alkylating agents, can also covalently modify proteins such as stathmin. We therefore sought to establish a role for stathmin in malignant glioma cell motility, migration, and invasion and determine the effects of nitrosoureas on these cell movement related processes. Scratch-wound healing recovery, Boyden chamber migration, Matrigel invasion, and organotypic slice invasion assays were performed before and after the down regulation of cellular stathmin levels and in the absence and presence of sub-lethal nitrosourea (CCNU; [1-(2-chloroethyl)-3-cyclohexyl-l-nitrosourea]) concentrations. We demonstrate that decreases in stathmin expression lead to significant decreases in malignant glioma cell motility, migration, and invasion. CCNU, at a concentration of 10 μM, causes similar significant decreases, even in the absence of any effects on cell viability. The direct inhibition of stathmin by CCNU is likely a contributing factor. These findings suggest that the inhibition of stathmin expression and function may be useful in limiting the spread of malignant gliomas within the brain and that nitrosoureas may have therapeutic benefits in addition to their anti-proliferative effects. PMID:18593927

  11. Bone marrow - mesenchymal stem cells impact on the U937 cells in the presence of staphylococcal enterotoxin B (SEB).

    PubMed

    Ejtehadifar, Mostafa; Halabian, Raheleh; Ghazavi, Ali; Khansarinejad, Behzad; Mosayebi, Ghasem; Imani Fooladi, Abbas Ali

    2018-04-14

    The growing resistance against conventional chemotherapy in acute myeloid leukemia (AML) is a noticeable clinical concern. Therefore, many researchers are looking for novel substances to overcome drug resistance in cancer. Staphylococcal enterotoxin B (SEB) is a superantigen (SAg) and a promising compound which has lethal effects on malignant cells. In this unprecedented study, SEB was used against U937 cells in a co-culture system in the presence of human bone marrow-mesenchymal stem cells (hBM-MSCs). The effects of hBM-MSCs on the proliferation and survival of U937 cell line with SEB was assessed using MTT assay and AnnexinV/PI flowcytometry, respectively. Moreover, the expression of IL-6, IL-10, TGF-β, and inhibitor of nuclear factor kappa-B kinase (IKKb) was evaluated by real-time PCR technique. The same experiments were also carried out using hBM-MSCs-conditioned medium (hBM-MSCs-CM). The results showed that SEB reduced the proliferation and survival of U937 cell line, but hBM-MSCs or hBM-MSCs-CM suppressed the effects of SEB. Furthermore, real-timePCR demonstrated that SEB could decrease the expression of IL-6, IL-10, and TGF-β in hBM-MSCs (P < .05), while the production of IKKb was increased in comparison with the control group. These findings help us to have a broader understanding ofthe usage of SEB in the treatment of haematological malignancies, especially if it is targeted against hBM-MSCs to disrupt their supportive effects on malignant cells. © 2018 John Wiley & Sons Australia, Ltd.

  12. Early Onset Malignancies - Genomic Study of Cancer Disparities

    Cancer.gov

    The Early Onset Malignancies Initiative studies the genomic basis of six cancers that develop at an earlier age, occur in higher rates, and are typically more aggressive in certain minority populations.

  13. Survivin knockdown increased anti-cancer effects of (-)-epigallocatechin-3-gallate in human malignant neuroblastoma SK-N-BE2 and SH-SY5Y cells.

    PubMed

    Hossain, Md Motarab; Banik, Naren L; Ray, Swapan K

    2012-08-01

    Neuroblastoma is a solid tumor that mostly occurs in children. Malignant neuroblastomas have poor prognosis because conventional chemotherapeutic agents are hardly effective. Survivin, which is highly expressed in some malignant neuroblastomas, plays a significant role in inhibiting differentiation and apoptosis and promoting cell proliferation, invasion, and angiogenesis. We examined consequences of survivin knockdown by survivin short hairpin RNA (shRNA) plasmid and then treatment with (-)-epigallocatechin-3-gallate (EGCG), a green tea flavonoid, in malignant neuroblastoma cells. Our Western blotting and laser scanning confocal immunofluorescence microscopy showed that survivin was highly expressed in malignant neuroblastoma SK-N-BE2 and SH-SY5Y cell lines and slightly in SK-N-DZ cell line. Expression of survivin was very faint in malignant neuroblastoma IMR32 cell line. We transfected SK-N-BE2 and SH-SY-5Y cells with survivin shRNA, treated with EGCG, and confirmed knockdown of survivin at mRNA and protein levels. Survivin knockdown induced morphological features of neuronal differentiation, as we observed following in situ methylene blue staining. Combination of survivin shRNA and EGCG promoted neuronal differentiation biochemically by increases in the expression of NFP, NSE, and e-cadherin and also decreases in the expression of Notch-1, ID2, hTERT, and PCNA. Our in situ Wright staining and Annexin V-FITC/PI staining showed that combination therapy was highly effective in inducing, respectively, morphological and biochemical features of apoptosis. Apoptosis occurred with activation of caspase-8 and cleavage of Bid to tBid, increase in Bax:Bcl-2 ratio, mitochondrial release of cytochrome c, and increases in the expression and activity of calpain and caspase-3. Combination therapy decreased migration of cells through matrigel and inhibited proliferative (p-Akt and NF-κB), invasive (MMP-2 and MMP-9), and angiogenic (VEGF and b-FGF) factors. Also, in vitro

  14. Novel flowcytometry-based approach of malignant cell detection in body fluids using an automated hematology analyzer

    PubMed Central

    Tabe, Yoko; Takemura, Hiroyuki; Kimura, Konobu; Takahashi, Toshihiro; Yang, Haeun; Tsuchiya, Koji; Konishi, Aya; Uchihashi, Kinya; Horii, Takashi; Ohsaka, Akimichi

    2018-01-01

    Morphological microscopic examinations of nucleated cells in body fluid (BF) samples are performed to screen malignancy. However, the morphological differentiation is time-consuming and labor-intensive. This study aimed to develop a new flowcytometry-based gating analysis mode “XN-BF gating algorithm” to detect malignant cells using an automated hematology analyzer, Sysmex XN-1000. XN-BF mode was equipped with WDF white blood cell (WBC) differential channel. We added two algorithms to the WDF channel: Rule 1 detects larger and clumped cell signals compared to the leukocytes, targeting the clustered malignant cells; Rule 2 detects middle sized mononuclear cells containing less granules than neutrophils with similar fluorescence signal to monocytes, targeting hematological malignant cells and solid tumor cells. BF samples that meet, at least, one rule were detected as malignant. To evaluate this novel gating algorithm, 92 various BF samples were collected. Manual microscopic differentiation with the May-Grunwald Giemsa stain and WBC count with hemocytometer were also performed. The performance of these three methods were evaluated by comparing with the cytological diagnosis. The XN-BF gating algorithm achieved sensitivity of 63.0% and specificity of 87.8% with 68.0% for positive predictive value and 85.1% for negative predictive value in detecting malignant-cell positive samples. Manual microscopic WBC differentiation and WBC count demonstrated 70.4% and 66.7% of sensitivities, and 96.9% and 92.3% of specificities, respectively. The XN-BF gating algorithm can be a feasible tool in hematology laboratories for prompt screening of malignant cells in various BF samples. PMID:29425230

  15. Novel flowcytometry-based approach of malignant cell detection in body fluids using an automated hematology analyzer.

    PubMed

    Ai, Tomohiko; Tabe, Yoko; Takemura, Hiroyuki; Kimura, Konobu; Takahashi, Toshihiro; Yang, Haeun; Tsuchiya, Koji; Konishi, Aya; Uchihashi, Kinya; Horii, Takashi; Ohsaka, Akimichi

    2018-01-01

    Morphological microscopic examinations of nucleated cells in body fluid (BF) samples are performed to screen malignancy. However, the morphological differentiation is time-consuming and labor-intensive. This study aimed to develop a new flowcytometry-based gating analysis mode "XN-BF gating algorithm" to detect malignant cells using an automated hematology analyzer, Sysmex XN-1000. XN-BF mode was equipped with WDF white blood cell (WBC) differential channel. We added two algorithms to the WDF channel: Rule 1 detects larger and clumped cell signals compared to the leukocytes, targeting the clustered malignant cells; Rule 2 detects middle sized mononuclear cells containing less granules than neutrophils with similar fluorescence signal to monocytes, targeting hematological malignant cells and solid tumor cells. BF samples that meet, at least, one rule were detected as malignant. To evaluate this novel gating algorithm, 92 various BF samples were collected. Manual microscopic differentiation with the May-Grunwald Giemsa stain and WBC count with hemocytometer were also performed. The performance of these three methods were evaluated by comparing with the cytological diagnosis. The XN-BF gating algorithm achieved sensitivity of 63.0% and specificity of 87.8% with 68.0% for positive predictive value and 85.1% for negative predictive value in detecting malignant-cell positive samples. Manual microscopic WBC differentiation and WBC count demonstrated 70.4% and 66.7% of sensitivities, and 96.9% and 92.3% of specificities, respectively. The XN-BF gating algorithm can be a feasible tool in hematology laboratories for prompt screening of malignant cells in various BF samples.

  16. AB72. Mysteries of TGF-β paradox in benign and malignant cells

    PubMed Central

    Lee, Chung; Grayhack, John T.

    2014-01-01

    TGF-β regulates a wide range of biological functions including embryonic development, wound healing, organogenesis, immune modulation, and cancer progression. Interestingly, TGF-β is known to inhibit cell growth in benign cells but promote progression in cancer cells, a phenomenon known as TGF-β paradox. To date, the mechanism of this paradox still remains as a scientific mystery. In this review, we present our experience, alone with the literature, in an attempt to offer answers to this mystery. First, we observed that, upon TGF-β engagement, there is a differential activation of Erk between benign and cancer cells. Since activated Erk is a major mediator in tumor progression and metastasis, a differentially activated Erk represents the answer to this mystery. Second, we identified a key player, PP2A-B56α, which is differentially recruited by the activated type I TGF-β receptor (TBRI) in benign and tumor cells, resulting in differential Erk activation. Finally, TGF-β stimulation leads to a suppressed TBRs in tumor cells but not in benign cells. This differentially suppressed TBRs triggers differential recruitment of PP2A-B56α and, thus, differential activation of Erk. The above three events offer the explanation to the mysteries of TGF-β paradox. Understanding the mechanism of TGF-β paradox will help us to predict indolent from aggressive cancers and will help us to develop novel anti-cancer strategies.

  17. Anti-CD22 and anti-CD79b antibody-drug conjugates preferentially target proliferating B cells.

    PubMed

    Fuh, Franklin K; Looney, Caroline; Li, Dongwei; Poon, Kirsten A; Dere, Randall C; Danilenko, Dimitry M; McBride, Jacqueline; Reed, Chae; Chung, Shan; Zheng, Bing; Mathews, William Rodney; Polson, Andrew; Prabhu, Saileta; Williams, Marna

    2017-04-01

    CD22 and CD79b are cell-surface receptors expressed on B-cell-derived malignancies such as non-Hodgkin's lymphoma (NHL). An anti-mitotic agent, monomethyl auristatin E, was conjugated to anti-CD22 and anti-CD79b antibodies to develop target-specific therapies for NHL. The mechanism of action (MOA) and pharmacological and pharmacokinetic (PK) profiles of these antibody-drug conjugates (ADCs) were investigated in cynomolgus monkeys. Animals were administered anti-CD22 or anti-CD79b ADCs, respective unconjugated antibodies or vehicle. Pharmacodynamic effects on total and proliferating B cells and serum PK were then assessed. Antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) of the ADCs were evaluated in vitro. Depletion of B cells was observed after administration of either ADC or the respective unconjugated antibodies. An extended duration of depletion was observed in animals administered ADCs. Similarly, preferential depletion of proliferating B cells in blood and germinal centre B cells in spleen were only observed in animals administered ADCs. Serum PK profiles of ADCs and respective unconjugated antibodies were comparable. In vitro, anti-human CD22 and anti-human CD79b antibodies showed no or only moderate ADCC activity, respectively; neither antibody had CDC activity. The findings support the proposed MOA: initial depletion of total B cells by antibody-mediated opsonization, followed by preferential, sustained depletion of proliferating B cells by the auristatin conjugate due to its anti-mitotic action. Delivering potent anti-mitotic agents to B cells via the specificity of monoclonal antibodies provides a means to eliminate pathogenic B cells in NHL with improved risk-benefit profiles over traditional chemotherapeutics. © 2016 Genentech. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

  18. Pediatric common variable immunodeficiency: immunologic and phenotypic associations with switched memory B cells.

    PubMed

    Yong, Pierre L; Orange, Jordan S; Sullivan, Kathleen E

    2010-08-01

    Recent studies suggest that patients with common variable immunodeficiency (CVID) and low numbers of switched memory B cells have lower IgG levels and higher rates of autoimmune disease, splenomegaly, and granulomatous disease; however, no prior literature has focused exclusively on pediatric cases. We examined the relationship between switched memory B cells and clinical and immunologic manifestations of CVID in a pediatric population. Forty-five patients were evaluated. Patients were categorized as Group I (<5 switched memory B cells/ml, n = 24) or Group II (> or =5 switched memory B cells/mL, n = 21). CD3(+) T-cell counts and CD19(+) B-cell levels were lower among Group I patients. Only those in Group I had meningitis, sepsis, bronchiectasis, granulomatous lung disease, autoimmune cytopenias, or hematologic malignancies. Segregation of pediatric patients into high risk (Group I) and average risk (Group II) may assist in targeting surveillance appropriately.

  19. JAK-STAT Pathway Activation in Malignant and Non-Malignant Cells Contributes to MPN Pathogenesis and Therapeutic Response

    PubMed Central

    Kleppe, Maria; Kwak, Minsuk; Koppikar, Priya; Riester, Markus; Keller, Matthew; Bastian, Lennart; Hricik, Todd; Bhagwat, Neha; McKenney, Anna Sophia; Papalexi, Efthymia; Abdel-Wahab, Omar; Rampal, Raajit; Marubayashi, Sachie; Chen, Jonathan J.; Romanet, Vincent; Fridman, Jordan S.; Bromberg, Jacqueline; Teruya-Feldstein, Julie; Murakami, Masato; Radimerski, Thomas; Michor, Franziska; Fan, Rong; Levine, Ross L.

    2015-01-01

    The identification of JAK2/MPL mutations in patients with myeloproliferative neoplasms (MPN) led to the clinical development of JAK kinase inhibitors, including ruxolitinib. Ruxolitinib reduces splenomegaly and systemic symptoms in myelofibrosis (MF) and improves overall survival; however the mechanism by which JAK inhibitors achieve efficacy has not been delineated. MPN patients present with increased levels of circulating pro-inflammatory cytokines, which are mitigated by JAK inhibitor therapy. We sought to elucidate mechanisms by which JAK inhibitors attenuate cytokine-mediated pathophysiology. Single cell profiling demonstrated that hematopoietic cells from MF models and patient samples aberrantly secrete inflammatory cytokines. Pan-hematopoietic Stat3 deletion reduced disease severity and attenuated cytokine secretion, with similar efficacy as observed with ruxolitinib therapy. By contrast, Stat3 deletion restricted to MPN cells did not reduce disease severity or cytokine production. Consistent with these observations, we found that malignant and non-malignant cells aberrantly secrete cytokines and JAK inhibition reduces cytokine production from both populations. PMID:25572172

  20. Inhibition of Focal Adhesion Kinase (FAK) Leads to Abrogation of the Malignant Phenotype in Aggressive Pediatric Renal Malignancies

    PubMed Central

    Megison, Michael L.; Gillory, Lauren A.; Stewart, Jerry E.; Nabers, Hugh C.; Mrozcek-Musulman, Elizabeth; Beierle, Elizabeth A.

    2014-01-01

    Despite the tremendous advances in the treatment of childhood kidney tumors, there remain subsets of pediatric renal tumors that continue to pose a therapeutic challenge, mainly malignant rhabdoid kidney tumors and non-osseous renal Ewing sarcoma. Children with advanced, metastatic or relapsed disease have a disease-free survival rate under 30%. Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase that is important in many facets of tumor development and progression. FAK has been found in other pediatric solid tumors and in adult renal cellular carcinoma, leading us to hypothesize that FAK would be present in pediatric kidney tumors and would impact their cellular survival. In the current study, we showed that FAK was present and phosphorylated in pediatric kidney tumor specimens. We also examined the effects of FAK inhibition upon G401 and SK-NEP-1 cell lines utilizing a number of parallel approaches to block FAK including RNAi and small molecule FAK inhibitors. FAK inhibition resulted in decreased cellular survival, invasion and migration, and increased apoptosis. Further, small molecule inhibition of FAK led to decreased tumor growth in a nude mouse SK-NEP-1 xenograft model. The findings from this study will help to further our understanding of the regulation of tumorigenesis in rare pediatric renal tumors, and may provide desperately needed novel therapeutic strategies and targets for these rare, but difficult to treat, malignancies. PMID:24464916

  1. Effect of human cell malignancy on activity of DNA polymerase iota.

    PubMed

    Kazakov, A A; Grishina, E E; Tarantul, V Z; Gening, L V

    2010-07-01

    An increased level of mutagenesis, partially caused by imbalanced activities of error prone DNA polymerases, is a key symptom of cell malignancy. To clarify the possible role of incorrect DNA polymerase iota (Pol iota) function in increased frequency of mutations in mammalian cells, the activity of this enzyme in extracts of cells of different mouse organs and human eye (melanoma) and eyelid (basal-cell skin carcinoma) tumor cells was studied. Both Mg2+, considered as the main activator of the enzyme reaction of in vivo DNA replication, and Mn2+, that activates homogeneous Pol iota preparations in experiments in vitro more efficiently compared to all other bivalent cations, were used as cofactors of the DNA polymerase reaction in these experiments. In the presence of Mg2+, the enzyme was active only in cell extracts of mouse testicles and brain, whereas in the presence of Mn2+ the activity of Pol iota was found in all studied normal mouse organs. It was found that in cell extracts of both types of malignant tumors (basal-cell carcinoma and melanoma) Pol iota activity was observed in the presence of either Mn2+ or Mg2+. Manganese ions activated Pol iota in both cases, though to a different extent. In the presence of Mn2+ the Pol iota activity in the basal-cell carcinoma exceeded 2.5-fold that in control cells (benign tumors from the same eyelid region). In extracts of melanoma cells in the presence of either cation, the level of the enzyme activity was approximately equal to that in extracts of cells of surrounding tumor-free tissues as well as in eyes removed after traumas. The distinctive feature of tissue malignancy (in basal-cell carcinoma and in melanoma) was the change in DNA synthesis revealed as Mn2+-activated continuation of DNA synthesis after incorrect incorporation of dG opposite dT in the template by Pol iota. Among cell extracts of different normal mouse organs, only those of testicles exhibited a similar feature. This similarity can be explained by

  2. Tg737 regulates epithelial-mesenchymal transition and cancer stem cell properties via a negative feedback circuit between Snail and HNF4α during liver stem cell malignant transformation.

    PubMed

    Huang, Qike; Pu, Meng; Zhao, Ge; Dai, Bin; Bian, Zhenyuan; Tang, Haili; Chen, Chong; Liu, Wei; Qu, Xuan; Shen, Liangliang; Tao, Kaishan

    2017-08-28

    Determining the origin of liver cancer stem cells is important for treating hepatocellular carcinoma. Tg737 deficiency plays an important role in the malignant transformation of liver stem cells, but the underlying mechanism remains unclear. Here we established a chemical-induced mouse hepatoma model and found that Tg737 and hepatocyte nuclear factor 4-alpha (HNF4α) expression decreased and epithelial-mesenchymal transition (EMT)-related marker expression increased during liver cancer development. To investigate the underlying mechanism, we knocked down Tg737 in WB-F344 (WB) rat hepatic oval cells. Loss of Tg737 resulted in nuclear β-catenin accumulation and activation of the Wnt/β-catenin pathway, which further promoted EMT and the malignant phenotype. XAV939, a β-catenin inhibitor, attenuated WB cell malignant transformation due to Tg737 knockdown. To clarify the relationships of Tg737, the β-catenin pathway, and HNF4α, we inhibited Snail and overexpressed HNF4α after Tg737 knockdown in WB cells and found that Snail and HNF4α comprise a negative feedback circuit. Taken together, the results showed that Tg737 regulates a Wnt/β-catenin/Snail-HNF4α negative feedback circuit, thereby blocking EMT and the malignant transformation of liver stem cells to liver cancer stem cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The microRNA expression signature of small cell lung cancer: tumor suppressors of miR-27a-5p and miR-34b-3p and their targeted oncogenes.

    PubMed

    Mizuno, Keiko; Mataki, Hiroko; Arai, Takayuki; Okato, Atsushi; Kamikawaji, Kazuto; Kumamoto, Tomohiro; Hiraki, Tsubasa; Hatanaka, Kazuhito; Inoue, Hiromasa; Seki, Naohiko

    2017-07-01

    Small cell lung cancer (SCLC) constitutes approximately 15% of all diagnosed lung cancers. SCLC is a particularly lethal malignancy, as the 2-year survival rate after appropriate treatment is less than 5%. The patients with SCLC have not been received a benefit of the recently developed molecular targeted treatment. Therefore, a new treatment strategy is necessary for the patients. The molecular mechanisms underlying the aggressiveness of SCLC cells and their development of treatment-resistance are still ambiguous. In this study, we newly constructed a microRNA (miRNA) expression signature of SCLC by analysis of autopsy specimens. Based on the resultant signature, four miRNAs (miR-27a-5p, miR-485-3p, miR-34-5p and miR-574-3p) were found to be candidate anti-tumor miRNAs. To investigate their functional importance, we first validated the downregulation of miR-27a-5p and miR-34b-3p in SCLC clinical specimens. Next, we demonstrated that ectopic expression of both miR-27a-5p and miR-34b-3p significantly inhibited cancer cell aggressiveness. Our in silico analyses showed that four genes (topoisomerase 2 alpha (TOP2A), maternal embryonic leucine zipper kinase (MELK), centromere protein F (CENPF) and SRY-box 1 (SOX1) were identified as miR-27a-5p- and miR-34b-3p-regulated genes. Based on immunohistochemical analysis, TOP2A, MELK and CENPF were involved in SCLC pathogenesis. These genes might contribute to high proliferation and early metastatic spread of SCLC cells. Elucidation of differentially expressed miRNA-mediated cancer pathways based on SCLC signature may provide new insights into the mechanisms of SCLC pathogenesis.

  4. Anti-cancer activity of withaferin A in B-cell lymphoma

    PubMed Central

    McKenna, MK; Gachuki, BW; Alhakeem, SS; Oben, KN; Rangnekar, VM; Gupta, RC; Bondada, S

    2015-01-01

    Withaferin A (WA), a withanolide from the plant, Ashwagandha (Withania somnifera) used in Ayurvedic medicine, has been found to be valuable in the treatment of several medical ailments. WA has been found to have anticancer activity against various solid tumors, but its effects on hematological malignancies have not been studied in detail. WA strongly inhibited the survival of several human and murine B cell lymphoma cell lines. Additionally, in vivo studies with syngeneic-graft lymphoma cells suggest that WA inhibits the growth of tumor but does not affect other proliferative tissues. We demonstrate that WA inhibits the efficiency of NF-κB nuclear translocation in diffuse large B cell lymphomas and found that WA treatment resulted in a significant decrease in protein levels involved in B cell receptor signaling and cell cycle regulation. WA inhibited the activity of heat shock protein (Hsp) 90 as reflected by a sharp increase in Hsp70 expression levels. Hence, we propose that the anti-cancer effects of WA in lymphomas are likely due to its ability to inhibit Hsp90 function and subsequent reduction of critical kinases and cell cycle regulators that are clients of Hsp90. PMID:26020511

  5. Anti-cancer activity of withaferin A in B-cell lymphoma.

    PubMed

    McKenna, M K; Gachuki, B W; Alhakeem, S S; Oben, K N; Rangnekar, V M; Gupta, R C; Bondada, S

    2015-01-01

    Withaferin A (WA), a withanolide from the plant, Ashwagandha (Withania somnifera) used in Ayurvedic medicine, has been found to be valuable in the treatment of several medical ailments. WA has been found to have anticancer activity against various solid tumors, but its effects on hematological malignancies have not been studied in detail. WA strongly inhibited the survival of several human and murine B cell lymphoma cell lines. Additionally, in vivo studies with syngeneic-graft lymphoma cells suggest that WA inhibits the growth of tumor but does not affect other proliferative tissues. We demonstrate that WA inhibits the efficiency of NF-κB nuclear translocation in diffuse large B cell lymphomas and found that WA treatment resulted in a significant decrease in protein levels involved in B cell receptor signaling and cell cycle regulation. WA inhibited the activity of heat shock protein (Hsp) 90 as reflected by a sharp increase in Hsp70 expression levels. Hence, we propose that the anti-cancer effects of WA in lymphomas are likely due to its ability to inhibit Hsp90 function and subsequent reduction of critical kinases and cell cycle regulators that are clients of Hsp90.

  6. High-Dose Y-90-Ibritumomab Tiuxetan Added to Reduced-Intensity Allogeneic Stem Cell Transplant Regimen for Relapsed or Refractory Aggressive B-Cell Lymphoma

    ClinicalTrials.gov

    2017-12-04

    Post-Transplant Lymphoproliferative Disorder; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent B-Cell Non-Hodgkin Lymphoma; Recurrent Burkitt Lymphoma; Refractory B-Cell Non-Hodgkin Lymphoma; Refractory Burkitt Lymphoma; Refractory Diffuse Large B-Cell Lymphoma

  7. Ovarian malignant mixed germ cell tumor with clear cell carcinoma in a postmenopausal woman.

    PubMed

    Yu, Xiu-Jie; Zhang, Lin; Liu, Zai-Ping; Shi, Yi-Quan; Liu, Yi-Xin

    2014-01-01

    Malignant germ cell tumors of the ovary are very rare and account for about 2-5% of all ovarian tumors of germ origin. Most patients are adolescent and young women, approximately two-thirds of them are under 20 years of age, occasionally in postmenopausal women. But clear cell carcinoma usually occurs in older patients (median age: 57-year old), and closely related with endometriosis. Here we report a case of a 55-year old woman with right ovarian mass that discovered by B ultrasonic. Her serum levels of human chorionic gonadotropin (hCG) and α-fetoprotein (AFP) were elevated. Pathological examination revealed the tumor to be a mixed germ cell tumor (yolk sac tumor, embryonal carcinoma and mature teratoma) with clear cell carcinoma in a background of endometriosis. Immunohistochemical staining showed SALL4 and PLAP were positive in germ cell tumor area, hCG, CD30 and OCT4 were positive in epithelial-like cells and giant synctiotrophoblastic cells, AFP, AAT, CD117 and Glyp3 were positive in yolk sac component, EMA and CK7 were positive in clear cell carcinoma, CD10 was positive in endometrial cells of endometriotic area. She was treated with surgery followed by seven courses of chemotherapy. She is well and serum levels of hCG and AFP have been decreased to normal levels.

  8. Inflammatory myofibroblastic tumor: an entity of CT and MR imaging to differentiate from malignant tumors of the sinonasal cavity.

    PubMed

    Yan, Zhongyu; Wang, Yongzhe; Zhang, Zhengyu

    2014-01-01

    Inflammatory myofibroblastic tumor (IMT) is chronic inflammatory lesions of unknown origins. The preoperative diagnosis for tumors in the sinonasal cavity is difficult to distinguish between IMT and aggressive malignancy in most cases. The purpose of this study was to evaluate the imaging features of IMT distinguishing the 2 types of tumors. Computed tomography and magnetic resonance imaging were identified retrospectively with IMT in 14 cases and with aggressive malignancy in 38 cases in the sinonasal cavity proven by pathology. Imaging findings were evaluated, including the configuration, extent, margin, calcification, bone involvement, T1WI and T2WI signal intensity, and degree of enhancement. There was a significant difference between IMT and aggressive malignancy regarding the configuration, extension, calcification, bone change, signal intensity and homogeneous on T2-weighted imaging, and degree of enhancement (P < 0.05). Inflammatory myofibroblastic tumor and aggressive malignancy have some different imaging features that could be helpful in the differentiation between the lesions. Bone erosion with sclerosis, calcification when present, typically homogenous and never hyperintense of T2 appearance, and mild enhancement played an important role in differentiating sinonasal IMT from malignancies.

  9. Specific Detection of CD56 (NCAM) Isoforms for the Identification of Aggressive Malignant Neoplasms with Progressive Development

    PubMed Central

    Gattenlöhner, Stefan; Stühmer, Thorsten; Leich, Ellen; Reinhard, Matthias; Etschmann, Benjamin; Völker, Hans-Ulrich; Rosenwald, Andreas; Serfling, Edgar; Christian Bargou, Ralf; Ertl, Georg; Einsele, Hermann; Müller-Hermelink, Hans-Konrad

    2009-01-01

    Alternative splicing of transcripts from many cancer-associated genes is believed to play a major role in carcinogenesis as well as in tumor progression. Alternative splicing of one such gene, the neural cell adhesion molecule CD56 (NCAM), impacts the progression, inadequate therapeutic response, and reduced total survival of patients who suffer from numerous malignant neoplasms. Although previous investigations have determined that CD56 exists in three major isoforms (CD56120kD, CD56140kD, and CD56180kD) with individual structural and functional properties, neither the expression profiles nor the functional relevance of these isoforms in malignant tumors have been consistently investigated. Using new quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) strategies and novel CD56 isoform-specific antibodies, CD56140kD was shown to be exclusively expressed in a number of highly malignant CD56+ neoplasms and was associated with the progression of CD56+ precursor lesions of unclear malignant potential. Moreover, only CD56140kD induced antiapoptotic/proliferative pathways and specifically phosphorylated calcium-dependent kinases that are relevant for tumorigenesis. We conclude, therefore, that the specific detection of CD56 isoforms will help to elucidate their individual functions in the pathogenesis and progression of malignant neoplasms and may have a positive impact on the development of CD56-based immunotherapeutic strategies. PMID:19246644

  10. MiR-135 post-transcriptionally regulates FOXO1 expression and promotes cell proliferation in human malignant melanoma cells.

    PubMed

    Ren, Jian-Wen; Li, Zhang-Jun; Tu, Chen

    2015-01-01

    Malignant melanoma is the deadliest form of all skin cancers. Recently, microRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression by targeted repression of transcription and translation and play essential roles during cancer development. Our study showed that miR-135a is upregulated in malignant melanoma tissues and cell lines by using Real-time PCR assay. Enforced expression of miR-135a in malignant melanoma cells promotes cell proliferation, tumorigenicity, and cell cycle progression, whereas inhibition of miR-135a reverses the function. Additionally, we demonstrated FOXO1 is a direct target of miR-135a and transcriptionally down-regulated by miR-135a. Ectopic expression of miR-135a led to downregulation of the FOXO1 protein, resulting in upregulation of Cyclin D1, and downregulation of P21(Cip1) and P27(Kip1) through AKT pathway. Our findings suggested that miR-135a represents a potential onco-miRNA and plays an important role in malignant melanoma progression by suppressing FOXO1 expression.

  11. Surgical implications of B-RafV600E mutation in fine-needle aspiration of thyroid nodules

    PubMed Central

    Mekel, Michal; Nucera, Carmelo; Hodin, Richard A.; Parangi, Sareh

    2013-01-01

    BACKGROUND Management of patients with thyroid nodules is based on establishing an accurate diagnosis; however, differentiating benign from malignant lesions preoperatively is not always possible using current cytological techniques. Novel molecular testing on cytological material could lead to clearer treatment algorithms. B-RafV600E mutation is the most common genetic alteration in thyroid cancer, specifically found in papillary thyroid cancer (PTC), and usually reported to be associated with aggressive disease. DATA SOURCE A literature search using PubMed identified all the pertinent literature on the identification and utilization of the B-RafV600E mutation in thyroid cancer. CONCLUSIONS The utility of using B-Raf mutation testing for nodules with indeterminate cytology is limited since many of those nodules (benign and malignant) do not harbor B-Raf mutations. However, when the pathologist sees cytological features suspicious for PTC, B-RafV600E mutation analysis may enhance the assessment of preoperative risks for PTC, directing a more aggressive initial surgical management when appropriate. PMID:20637346

  12. Metformin inhibits cell cycle progression of B-cell chronic lymphocytic leukemia cells.

    PubMed

    Bruno, Silvia; Ledda, Bernardetta; Tenca, Claudya; Ravera, Silvia; Orengo, Anna Maria; Mazzarello, Andrea Nicola; Pesenti, Elisa; Casciaro, Salvatore; Racchi, Omar; Ghiotto, Fabio; Marini, Cecilia; Sambuceti, Gianmario; DeCensi, Andrea; Fais, Franco

    2015-09-08

    B-cell chronic lymphocytic leukemia (CLL) was believed to result from clonal accumulation of resting apoptosis-resistant malignant B lymphocytes. However, it became increasingly clear that CLL cells undergo, during their life, iterative cycles of re-activation and subsequent clonal expansion. Drugs interfering with CLL cell cycle entry would be greatly beneficial in the treatment of this disease. 1, 1-Dimethylbiguanide hydrochloride (metformin), the most widely prescribed oral hypoglycemic agent, inexpensive and well tolerated, has recently received increased attention for its potential antitumor activity. We wondered whether metformin has apoptotic and anti-proliferative activity on leukemic cells derived from CLL patients. Metformin was administered in vitro either to quiescent cells or during CLL cell activation stimuli, provided by classical co-culturing with CD40L-expressing fibroblasts. At doses that were totally ineffective on normal lymphocytes, metformin induced apoptosis of quiescent CLL cells and inhibition of cell cycle entry when CLL were stimulated by CD40-CD40L ligation. This cytostatic effect was accompanied by decreased expression of survival- and proliferation-associated proteins, inhibition of signaling pathways involved in CLL disease progression and decreased intracellular glucose available for glycolysis. In drug combination experiments, metformin lowered the apoptotic threshold and potentiated the cytotoxic effects of classical and novel antitumor molecules. Our results indicate that, while CLL cells after stimulation are in the process of building their full survival and cycling armamentarium, the presence of metformin affects this process.

  13. Symptomatic Hypercalcemia in a Patient with B-cell Chronic Lymphocytic Leukemia - A Case Report and Review of the Literature.

    PubMed

    Koutroumpakis, Efstratios; Lobe, Montgomery; McCarthy, Lezah; Mehdi, Syed

    Hypercalcemia due to malignancy is well described in the literature and a common paraneoplastic finding in certain solid tumors. Hematologic malignancies, however, are less frequently associated with hypercalcemia with the exception of myelomas and T-cell lymphomas. This case report describes a patient with B-cell chronic lymphocytic leukemia (B-CLL) who developed symptomatic hypercalcemia. None of the pathogenetic mechanisms of malignancy-associated hypercalcemia already described in the literature could explain the pathogenesis of hypercalcemia in our patient. Calcium levels were normalized after initial treatment and remained within normal limits following treatment of the underlying B-CLL. The follow-up period was 26 months. The normalization of calcium levels was closely associated with the drop in the absolute lymphocyte count. Symptomatic hypercalcemia in B-CLL is exceedingly rare and only documented a few times in the literature. Hypercalcemia, in the present case, was not caused by any of the mechanisms already described in the literature and responded well to treatment of the underlying B-CLL. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  14. Distinct homotypic B-cell receptor interactions shape the outcome of chronic lymphocytic leukaemia

    PubMed Central

    Minici, Claudia; Gounari, Maria; Übelhart, Rudolf; Scarfò, Lydia; Dühren-von Minden, Marcus; Schneider, Dunja; Tasdogan, Alpaslan; Alkhatib, Alabbas; Agathangelidis, Andreas; Ntoufa, Stavroula; Chiorazzi, Nicholas; Jumaa, Hassan; Stamatopoulos, Kostas; Ghia, Paolo; Degano, Massimo

    2017-01-01

    Cell-autonomous B-cell receptor (BcR)-mediated signalling is a hallmark feature of the neoplastic B lymphocytes in chronic lymphocytic leukaemia (CLL). Here we elucidate the structural basis of autonomous activation of CLL B cells, showing that BcR immunoglobulins initiate intracellular signalling through homotypic interactions between epitopes that are specific for each subgroup of patients with homogeneous clinicobiological profiles. The molecular details of the BcR–BcR interactions apparently dictate the clinical course of disease, with stronger affinities and longer half-lives in indolent cases, and weaker, short-lived contacts mediating the aggressive ones. The diversity of homotypic BcR contacts leading to cell-autonomous signalling reconciles the existence of a shared pathogenic mechanism with the biological and clinical heterogeneity of CLL and offers opportunities for innovative treatment strategies. PMID:28598442

  15. Prognostic role of the CDNK1B V109G polymorphism in multiple endocrine neoplasia type 1

    PubMed Central

    Circelli, Luisa; Ramundo, Valeria; Marotta, Vincenzo; Sciammarella, Concetta; Marciello, Francesca; Del Prete, Michela; Sabatino, Lina; Pasquali, Daniela; Izzo, Francesco; Scala, Stefania; Colao, Annamaria; Faggiano, Antongiulio; Colantuoni, Vittorio

    2015-01-01

    CDKN1B encodes the cyclin-dependent kinase inhibitor p27/Kip1. CDKN1B mutations and polymorphisms are involved in tumorigenesis; specifically, the V109G single nucleotide polymorphism has been linked to different tumours with controversial results. Multiple endocrine neoplasia type 1 (MEN1) is a rare autosomal dominant syndrome, characterized by the development of different types of neuroendocrine tumours and increased incidence of other malignancies. A clear genotype–phenotype correlation in MEN1 has not been established yet. In this study, we assessed whether the CDKN1B V109G polymorphism was associated with the development of aggressive tumours in 55 consecutive patients affected by MEN1. The polymorphism was investigated by PCR amplification of germline DNA followed by direct sequencing. Baseline and follow-up data of tumour types and their severity were collected and associated with the genetic data. MEN1-related aggressive and other malignant tumours of any origin were detected in 16.1% of wild-type and 33.3% of polymorphism allele-bearing patients (P = NS). The time interval between birth and the first aggressive tumour was significantly shorter in patients with the CDKN1B V109G polymorphism (median 46 years) than in those without (median not reached; P = 0.03). Similarly, shorter was the time interval between MEN1 diagnosis and age of the first aggressive tumour (P = 0.02). Overall survival could not be estimated as 96% patients were still alive at the time of the study. In conclusion, CDKN1B V109G polymorphism seems to play a role in the development of aggressive tumours in MEN1. PMID:25824098

  16. Expression of Cyclophilin B is Associated with Malignant Progression and Regulation of Genes Implicated in the Pathogenesis of Breast Cancer

    PubMed Central

    Fang, Feng; Flegler, Ayanna J.; Du, Pan; Lin, Simon; Clevenger, Charles V.

    2009-01-01

    Cyclophilin B (CypB) is a 21-kDa protein with peptidyl-prolyl cis-trans isomerase activity that functions as a transcriptional inducer for Stat5 and as a ligand for CD147. To better understand the global function of CypB in breast cancer, T47D cells with a small interfering RNA-mediated knockdown of CypB were generated. Subsequent expression profiling analysis showed that 663 transcripts were regulated by CypB knockdown, and that many of these gene products contributed to cell proliferation, cell motility, and tumorigenesis. Real-time PCR confirmed that STMN3, S100A4, S100A6, c-Myb, estrogen receptor α, growth hormone receptor, and progesterone receptor were all down-regulated in si-CypB cells. A linkage analysis of these array data to protein networks resulted in the identification of 27 different protein networks that were impacted by CypB knockdown. Functional assays demonstrated that CypB knockdown also decreased cell growth, proliferation, and motility. Immunohistochemical and immunofluorescent analyses of a matched breast cancer progression tissue microarray that was labeled with an anti-CypB antibody demonstrated a highly significant increase in CypB protein levels as a function of breast cancer progression. Taken together, these results suggest that the enhanced expression of CypB in malignant breast epithelium may contribute to the pathogenesis of this disease through its regulation of the expression of hormone receptors and gene products that are involved in cell proliferation and motility. PMID:19056847

  17. Estrogen Enhances Malignant Phenotypes in Human Salivary Adenoid Cystic Carcinoma Cells.

    PubMed

    Sumida, Tomoki; Ishikawa, Akiko; Kamata, Y U; Nakano, Hiroyuki; Yamada, Tomohiro; Mori, Yoshihide

    2016-06-01

    Adenoid cystic carcinoma (SGC) is a common type of salivary gland cancer (SGC). Surgery is the first treatment choice because chemoradiotherapy is usually not effective. Therefore, new treatment modalities are urgently needed. In this study, it was investigated whether the estrogen axis could be a treatment target or not. Adenoid cystic carcinoma (ACC) ACCM cells, were used. The specific cell line lacks estrogen receptor (ER). ER was introduced in ACCM cells, and the effect of 17β-estradiol (E2) was investigated on cell proliferation, cell-cycle distribution, and cell motility. E2 induced cell proliferation, and the S-phase fraction increased in a dose-dependent manner. Cell motility was also up-regulated compared to control cells. The estrogen/ER system up-regulated malignant phenotypes in ER-positive ACC, and hormone therapy may have a potential as effective treatment for this malignancy. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  18. A rare case of hepatic T-cell rich B-cell lymphoma (TCRBCL) in a juvenile dog.

    PubMed

    Chung, Tae-Ho; Lamm, Catherine; Choi, Young-Chul; Lee, Jung-Woo; Yu, Dohyeon; Choi, Ul-Soo

    2014-10-01

    A 7-month-old castrated male French Bull dog was presented with vomiting, lethargy, anorexia and weight loss of 2 weeks duration. The patient's history and clinical manifestations of suspected hepatopathy were subjected to ultrasonography, radiography, biochemical investigations and cytology of hepatic lesion. The cytologic impression was hepatic lymphoma, which was later confirmed by histopathology. The neoplastic cells were strongly diffusely immunoreactive for PAX5, but not immunoreactive for CD3, and B lymphocyte specific clonal proliferation was detected using by assay of antigen receptor rearrangement. Large numbers of immunoreactive mature non-neoplastic lymphocytes were admixed with the neoplastic cell population. Therefore, the immunohistochemical results were definitively consistent with a T-cell rich B-cell lymphoma (TCRBCL). This is the first description of a hepatic TCRBCL in a juvenile dog showing a poor response to aggressive chemotherapy.

  19. A Rare Case of Hepatic T-Cell Rich B-Cell Lymphoma (TCRBCL) in a Juvenile Dog

    PubMed Central

    CHUNG, Tae-Ho; LAMM, Catherine; CHOI, Young-Chul; LEE, Jung-Woo; YU, Dohyeon; CHOI, Ul-Soo

    2014-01-01

    ABSTRACT A 7-month-old castrated male French Bull dog was presented with vomiting, lethargy, anorexia and weight loss of 2 weeks duration. The patient’s history and clinical manifestations of suspected hepatopathy were subjected to ultrasonography, radiography, biochemical investigations and cytology of hepatic lesion. The cytologic impression was hepatic lymphoma, which was later confirmed by histopathology. The neoplastic cells were strongly diffusely immunoreactive for PAX5, but not immunoreactive for CD3, and B lymphocyte specific clonal proliferation was detected using by assay of antigen receptor rearrangement. Large numbers of immunoreactive mature non-neoplastic lymphocytes were admixed with the neoplastic cell population. Therefore, the immunohistochemical results were definitively consistent with a T-cell rich B-cell lymphoma (TCRBCL). This is the first description of a hepatic TCRBCL in a juvenile dog showing a poor response to aggressive chemotherapy. PMID:25283946

  20. Fertility-sparing surgery in advanced stage malignant ovarian germ cell tumor: a case report.

    PubMed

    Ghalleb, Montassar; Bouzaiene, Hatem; Slim, Skander; Hadiji, Achraf; Hechiche, Monia; Ben Hassouna, Jamel; Rahal, Khaled

    2017-12-17

    Malignant ovarian germ cell tumor is a rare type of disease, which generally has a good prognosis due to the high chemosensitivity of this type of tumor. Fertility preservation is an important issue because malignant ovarian germ cell tumor commonly affects young women. Although conservation is the standard for early stage, it becomes more debatable as the disease progresses to more advanced stages. Report the case of a patient with an International Federation of Gynecology and Obstetrics Stage IIIc malignant ovarian germ cell tumor, who had conservative surgery and chemotherapy with a good fertility outcome. A 23-year-old North African woman with a left malignant ovarian germ cell tumor stage IIIc was treated by left adnexectomy and omentectomy followed by chemotherapy. A 15-year follow-up showed no signs of relapse, and she completed three full-term natural pregnancies. Malignant ovarian germ cell tumor is a rare ovarian tumor with a good prognosis. It is usually associated with a good fertility outcome in early stages. However, due to the rarity of the disease in advanced stages, the fertility outcome for this group of patients is not clear. This lack of data surrounding advanced stages points to the need for a meta-analysis of all published cases.