Sample records for aggressive brain tumors

  1. A non-aggressive, highly efficient, enzymatic method for dissociation of human brain-tumors and brain-tissues to viable single-cells.

    PubMed

    Volovitz, Ilan; Shapira, Netanel; Ezer, Haim; Gafni, Aviv; Lustgarten, Merav; Alter, Tal; Ben-Horin, Idan; Barzilai, Ori; Shahar, Tal; Kanner, Andrew; Fried, Itzhak; Veshchev, Igor; Grossman, Rachel; Ram, Zvi

    2016-06-01

    Conducting research on the molecular biology, immunology, and physiology of brain tumors (BTs) and primary brain tissues requires the use of viably dissociated single cells. Inadequate methods for tissue dissociation generate considerable loss in the quantity of single cells produced and in the produced cells' viability. Improper dissociation may also demote the quality of data attained in functional and molecular assays due to the presence of large quantities cellular debris containing immune-activatory danger associated molecular patterns, and due to the increased quantities of degraded proteins and RNA. Over 40 resected BTs and non-tumorous brain tissue samples were dissociated into single cells by mechanical dissociation or by mechanical and enzymatic dissociation. The quality of dissociation was compared for all frequently used dissociation enzymes (collagenase, DNase, hyaluronidase, papain, dispase) and for neutral protease (NP) from Clostridium histolyticum. Single-cell-dissociated cell mixtures were evaluated for cellular viability and for the cell-mixture dissociation quality. Dissociation quality was graded by the quantity of subcellular debris, non-dissociated cell clumps, and DNA released from dead cells. Of all enzymes or enzyme combinations examined, NP (an enzyme previously not evaluated on brain tissues) produced dissociated cell mixtures with the highest mean cellular viability: 93 % in gliomas, 85 % in brain metastases, and 89 % in non-tumorous brain tissue. NP also produced cell mixtures with significantly less cellular debris than other enzymes tested. Dissociation using NP was non-aggressive over time-no changes in cell viability or dissociation quality were found when comparing 2-h dissociation at 37 °C to overnight dissociation at ambient temperature. The use of NP allows for the most effective dissociation of viable single cells from human BTs or brain tissue. Its non-aggressive dissociative capacity may enable ambient

  2. Biodegradable brain-penetrating DNA nanocomplexes and their use to treat malignant brain tumors

    PubMed Central

    Mastorakos, Panagiotis; Zhang, Clark; Song, Eric; Kim, Young Eun; Park, Hee Won; Berry, Sneha; Choi, Won Kyu; Hanes, Justin; Suk, Jung Soo

    2018-01-01

    The discovery of powerful genetic targets has spurred clinical development of gene therapy approaches to treat patients with malignant brain tumors. However, lack of success in the clinic has been attributed to the inability of conventional gene vectors to achieve gene transfer throughout highly disseminated primary brain tumors. Here, we demonstrate ex vivo that small nanocomplexes composed of DNA condensed by a blend of biodegradable polymer, poly(β-amino ester) (PBAE), with PBAE conjugated with 5 kDa polyethylene glycol (PEG) molecules (PBAE-PEG) rapidly penetrate healthy brain parenchyma and orthotopic brain tumor tissues in rats. Rapid diffusion of these DNA-loaded nanocomplexes observed in fresh tissues ex vivo demonstrated that they avoided adhesive trapping in the brain owing to their dense PEG coating, which was critical to achieving widespread transgene expression throughout orthotopic rat brain tumors in vivo following administration by convection enhanced delivery. Transgene expression with the PBAE/PBAE-PEG blended nanocomplexes (DNA-loaded brain-penetrating nanocomplexes, or DNA-BPN) was uniform throughout the tumor core compared to nanocomplexes composed of DNA with PBAE only (DNA-loaded conventional nanocomplexes, or DNA-CN), and transgene expression reached beyond the tumor edge, where infiltrative cancer cells are found, only for the DNA-BPN formulation. Finally, DNA-BPN loaded with anti-cancer plasmid DNA provided significantly enhanced survival compared to the same plasmid DNA loaded in DNA-CN in two aggressive orthotopic brain tumor models in rats. These findings underscore the importance of achieving widespread delivery of therapeutic nucleic acids within brain tumors and provide a promising new delivery platform for localized gene therapy in the brain. PMID:28694032

  3. Aggressive behaviour of inpatients with acquired brain injury.

    PubMed

    Visscher, Ada J M; van Meijel, Berno; Stolker, Joost J; Wiersma, Jan; Nijman, Henk

    2011-12-01

    To study the prevalence, nature and determinants of aggression among inpatients with acquired brain injury. Patients with acquired brain injury often have difficulty in controlling their aggressive impulses. A prospective observational study design. By means of the Staff Observation Aggression Scale-Revised, the prevalence, nature and severity of aggressive behaviour of inpatients with acquired brain injury was assessed on a neuropsychiatric treatment ward with 45 beds. Additional data on patient-related variables were gathered from the patients' files. In total, 388 aggressive incidents were recorded over 17 weeks. Of a total of 57 patients included, 24 (42%) patients had engaged in aggressive behaviour on one or more occasions. A relatively small proportion of patients (n=8; 14%) was found to be responsible for the majority of incidents (n=332; 86%). The vast majority of aggression incidents (n=270; 70%) were directly preceded by interactions between patients and nursing staff. In line with this, most incidents occurred at times of high contact intensity. Aggressive behaviour was associated with male gender, length of stay at the ward, legal status and hypoxia as the cause of brain injury. Aggression was found to be highly prevalent among inpatients with acquired brain injury. The results suggest that for the prevention of aggression on the ward, it may be highly effective to develop individually tailored interventions for the subgroup with serious aggression problems. Insight into the frequency, nature and determinants of aggressive behaviour in inpatients with acquired brain injury provides nurses with tools for the prevention and treatment of aggressive behaviour. © 2011 Blackwell Publishing Ltd.

  4. Clinical correlates of verbal aggression, physical aggression and inappropriate sexual behaviour after brain injury.

    PubMed

    James, Andrew I W; Young, Andrew W

    2013-01-01

    To explore the relationships between verbal aggression, physical aggression and inappropriate sexual behaviour following acquired brain injury. Multivariate statistical modelling of observed verbal aggression, physical aggression and inappropriate sexual behaviour utilizing demographic, pre-morbid, injury-related and neurocognitive predictors. Clinical records of 152 participants with acquired brain injury were reviewed, providing an important data set as disordered behaviours had been recorded at the time of occurrence with the Brain Injury Rehabilitation Trust (BIRT) Aggression Rating Scale and complementary measures of inappropriate sexual behaviour. Three behavioural components (verbal aggression, physical aggression and inappropriate sexual behaviour) were identified and subjected to separate logistical regression modelling in a sub-set of 77 participants. Successful modelling was achieved for both verbal and physical aggression (correctly classifying 74% and 65% of participants, respectively), with use of psychotropic medication and poorer verbal function increasing the odds of aggression occurring. Pre-morbid history of aggression predicted verbal but not physical aggression. No variables predicted inappropriate sexual behaviour. Verbal aggression, physical aggression and inappropriate sexual behaviour following acquired brain injury appear to reflect separate clinical phenomena rather than general behavioural dysregulation. Clinical markers that indicate an increased risk of post-injury aggression were not related to inappropriate sexual behaviour.

  5. Brain Tumors

    MedlinePlus

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are ...

  6. Reducing proactive aggression through non-invasive brain stimulation

    PubMed Central

    Schuhmann, Teresa; Lobbestael, Jill; Arntz, Arnoud; Brugman, Suzanne; Sack, Alexander T.

    2015-01-01

    Aggressive behavior poses a threat to human collaboration and social safety. It is of utmost importance to identify the functional mechanisms underlying aggression and to develop potential interventions capable of reducing dysfunctional aggressive behavior already at a brain level. We here experimentally shifted fronto-cortical asymmetry to manipulate the underlying motivational emotional states in both male and female participants while assessing the behavioral effects on proactive and reactive aggression. Thirty-two healthy volunteers received either anodal transcranial direct current stimulation to increase neural activity within right dorsolateral prefrontal cortex, or sham stimulation. Aggressive behavior was measured with the Taylor Aggression Paradigm. We revealed a general gender effect, showing that men displayed more behavioral aggression than women. After the induction of right fronto-hemispheric dominance, proactive aggression was reduced in men. This study demonstrates that non-invasive brain stimulation can reduce aggression in men. This is a relevant and promising step to better understand how cortical brain states connect to impulsive actions and to examine the causal role of the prefrontal cortex in aggression. Ultimately, such findings could help to examine whether the brain can be a direct target for potential supportive interventions in clinical settings dealing with overly aggressive patients and/or violent offenders. PMID:25680991

  7. Reducing proactive aggression through non-invasive brain stimulation.

    PubMed

    Dambacher, Franziska; Schuhmann, Teresa; Lobbestael, Jill; Arntz, Arnoud; Brugman, Suzanne; Sack, Alexander T

    2015-10-01

    Aggressive behavior poses a threat to human collaboration and social safety. It is of utmost importance to identify the functional mechanisms underlying aggression and to develop potential interventions capable of reducing dysfunctional aggressive behavior already at a brain level. We here experimentally shifted fronto-cortical asymmetry to manipulate the underlying motivational emotional states in both male and female participants while assessing the behavioral effects on proactive and reactive aggression. Thirty-two healthy volunteers received either anodal transcranial direct current stimulation to increase neural activity within right dorsolateral prefrontal cortex, or sham stimulation. Aggressive behavior was measured with the Taylor Aggression Paradigm. We revealed a general gender effect, showing that men displayed more behavioral aggression than women. After the induction of right fronto-hemispheric dominance, proactive aggression was reduced in men. This study demonstrates that non-invasive brain stimulation can reduce aggression in men. This is a relevant and promising step to better understand how cortical brain states connect to impulsive actions and to examine the causal role of the prefrontal cortex in aggression. Ultimately, such findings could help to examine whether the brain can be a direct target for potential supportive interventions in clinical settings dealing with overly aggressive patients and/or violent offenders. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  8. Emerging insights into barriers to effective brain tumor therapeutics.

    PubMed

    Woodworth, Graeme F; Dunn, Gavin P; Nance, Elizabeth A; Hanes, Justin; Brem, Henry

    2014-01-01

    There is great promise that ongoing advances in the delivery of therapeutics to the central nervous system (CNS) combined with rapidly expanding knowledge of brain tumor patho-biology will provide new, more effective therapies. Brain tumors that form from brain cells, as opposed to those that come from other parts of the body, rarely metastasize outside of the CNS. Instead, the tumor cells invade deep into the brain itself, causing disruption in brain circuits, blood vessel and blood flow changes, and tissue swelling. Patients with the most common and deadly form, glioblastoma (GBM) rarely live more than 2 years even with the most aggressive treatments and often with devastating neurological consequences. Current treatments include maximal safe surgical removal or biopsy followed by radiation and chemotherapy to address the residual tumor mass and invading tumor cells. However, delivering effective and sustained treatments to these invading cells without damaging healthy brain tissue is a major challenge and focus of the emerging fields of nanomedicine and viral and cell-based therapies. New treatment strategies, particularly those directed against the invasive component of this devastating CNS disease, are sorely needed. In this review, we (1) discuss the history and evolution of treatments for GBM, (2) define and explore three critical barriers to improving therapeutic delivery to invasive brain tumors, specifically, the neuro-vascular unit as it relates to the blood brain barrier, the extra-cellular space in regard to the brain penetration barrier, and the tumor genetic heterogeneity and instability in association with the treatment efficacy barrier, and (3) identify promising new therapeutic delivery approaches that have the potential to address these barriers and create sustained, meaningful efficacy against GBM.

  9. Brain Tumor Symptoms

    MedlinePlus

    ... Fatigue Other Symptoms Diagnosis Types of Tumors Risk Factors Brain Tumor Statistics Brain Tumor Dictionary Webinars Anytime Learning About Us Our Founders Board of Directors Staff Leadership Strategic Plan Financials News Careers Brain Tumor Information Brain Anatomy Brain ...

  10. Brain tumor - children

    MedlinePlus

    ... children; Neuroglioma - children; Oligodendroglioma - children; Meningioma - children; Cancer - brain tumor (children) ... The cause of primary brain tumors is unknown. Primary brain tumors may ... (spread to nearby areas) Cancerous (malignant) Brain tumors ...

  11. Understanding Brain Tumors

    MedlinePlus

    ... to Know About Brain Tumors . What is a Brain Tumor? A brain tumor is an abnormal growth
 ... Tumors” from Frankly Speaking Frankly Speaking About Cancer: Brain Tumors Download the full book Questions to ask ...

  12. Brain Tumor Risk Factors

    MedlinePlus

    ... Factors Brain Tumor Statistics ABTA Publications Brain Tumor Dictionary Upcoming Webinars Anytime Learning Brain Tumor Educational Presentations ... Factors Brain Tumor Statistics ABTA Publications Brain Tumor Dictionary Upcoming Webinars Anytime Learning Brain Tumor Educational Presentations ...

  13. Brain Tumor Diagnosis

    MedlinePlus

    ... updates Please leave this field empty Brain Tumor Diagnosis SHARE Home > Brain Tumor Information > Diagnosis Listen In cases where a brain tumor is ... to help the doctor reach a brain tumor diagnosis. These tests may also be able help the ...

  14. Zika Virus Selectively Kills Aggressive Human Embryonal CNS Tumor Cells In Vitro and In Vivo.

    PubMed

    Kaid, Carolini; Goulart, Ernesto; Caires-Júnior, Luiz C; Araujo, Bruno H S; Soares-Schanoski, Alessandra; Bueno, Heloisa M S; Telles-Silva, Kayque A; Astray, Renato M; Assoni, Amanda F; Júnior, Antônio F R; Ventini, Daniella C; Puglia, Ana L P; Gomes, Roselane P; Zatz, Mayana; Okamoto, Oswaldo K

    2018-06-15

    Zika virus (ZIKV) is largely known for causing brain abnormalities due to its ability to infect neural progenitor stem cells during early development. Here, we show that ZIKV is also capable of infecting and destroying stem-like cancer cells from aggressive human embryonal tumors of the central nervous system (CNS). When evaluating the oncolytic properties of Brazilian Zika virus strain (ZIKV BR ) against human breast, prostate, colorectal, and embryonal CNS tumor cell lines, we verified a selective infection of CNS tumor cells followed by massive tumor cell death. ZIKV BR was more efficient in destroying embryonal CNS tumorspheres than normal stem cell neurospheres. A single intracerebroventricular injection of ZIKV BR in BALB/c nude mice bearing orthotopic human embryonal CNS tumor xenografts resulted in a significantly longer survival, decreased tumor burden, fewer metastasis, and complete remission in some animals. Tumor cells closely resembling neural stem cells at the molecular level with activated Wnt signaling were more susceptible to the oncolytic effects of ZIKV BR Furthermore, modulation of Wnt signaling pathway significantly affected ZIKV BR -induced tumor cell death and viral shedding. Altogether, these preclinical findings indicate that ZIKV BR could be an efficient agent to treat aggressive forms of embryonal CNS tumors and could provide mechanistic insights regarding its oncolytic effects. Significance: Brazilian Zika virus strain kills aggressive metastatic forms of human CNS tumors and could be a potential oncolytic agent for cancer therapy. Cancer Res; 78(12); 3363-74. ©2018 AACR . ©2018 American Association for Cancer Research.

  15. Brain tumor - primary - adults

    MedlinePlus

    ... Vestibular schwannoma (acoustic neuroma) - adults; Meningioma - adults; Cancer - brain tumor (adults) ... Primary brain tumors include any tumor that starts in the brain. Primary brain tumors can start from brain cells, ...

  16. Brain Monoamine Oxidase-A Activity Predicts Trait Aggression

    PubMed Central

    Alia-Klein, Nelly; Goldstein, Rita Z.; Kriplani, Aarti; Logan, Jean; Tomasi, Dardo; Williams, Benjamin; Telang, Frank; Shumay, Elena; Biegon, Anat; Craig, Ian W.; Henn, Fritz; Wang, Gene-Jack; Volkow, Nora D.; Fowler, Joanna S.

    2008-01-01

    The genetic deletion of monoamine oxidase A (MAO A, an enzyme which breaks down the monoamine neurotransmitters norepinephrine, serotonin and dopamine) produces aggressive phenotypes across species. Therefore, a common polymorphism in the MAO A gene (MAOA, MIM 309850, referred to as high or low based on transcription in non-neuronal cells) has been investigated in a number of externalizing behavioral and clinical phenotypes. These studies provide evidence linking the low MAOA genotype and violent behavior but only through interaction with severe environmental stressors during childhood. Here, we hypothesized that in healthy adult males the gene product of MAO A in the brain, rather than the gene per se, would be associated with regulating the concentration of brain amines involved in trait aggression. Brain MAO A activity was measured in-vivo in healthy non-smoking men with positron emission tomography using a radioligand specific for MAO A (clorgyline labeled with carbon 11). Trait aggression was measured with the Multidimensional Personality Questionnaire (MPQ). Here we report for the first time that brain MAO A correlates inversely with the MPQ trait measure of aggression (but not with other personality traits) such that the lower the MAO A activity in cortical and subcortical brain regions the higher the self-reported aggression (in both MAOA genotype groups) contributing to more than a third of the variability. Since trait aggression is a measure used to predict antisocial behavior, these results underscore the relevance of MAO A as a neurochemical substrate of aberrant aggression. PMID:18463263

  17. Dexamethasone Alleviates Tumor-Associated Brain Damage and Angiogenesis

    PubMed Central

    Fan, Zheng; Sehm, Tina; Rauh, Manfred; Buchfelder, Michael

    2014-01-01

    Children and adults with the most aggressive form of brain cancer, malignant gliomas or glioblastoma, often develop cerebral edema as a life-threatening complication. This complication is routinely treated with dexamethasone (DEXA), a steroidal anti-inflammatory drug with pleiotropic action profile. Here we show that dexamethasone reduces murine and rodent glioma tumor growth in a concentration-dependent manner. Low concentrations of DEXA are already capable of inhibiting glioma cell proliferation and at higher levels induce cell death. Further, the expression of the glutamate antiporter xCT (system Xc −; SLC7a11) and VEGFA is up-regulated after DEXA treatment indicating early cellular stress responses. However, in human gliomas DEXA exerts differential cytotoxic effects, with some human glioma cells (U251, T98G) resistant to DEXA, a finding corroborated by clinical data of dexamethasone non-responders. Moreover, DEXA-resistant gliomas did not show any xCT alterations, indicating that these gene expressions are associated with DEXA-induced cellular stress. Hence, siRNA-mediated xCT knockdown in glioma cells increased the susceptibility to DEXA. Interestingly, cell viability of primary human astrocytes and primary rodent neurons is not affected by DEXA. We further tested the pharmacological effects of DEXA on brain tissue and showed that DEXA reduces tumor-induced disturbances of the microenvironment such as neuronal cell death and tumor-induced angiogenesis. In conclusion, we demonstrate that DEXA inhibits glioma cell growth in a concentration and species-dependent manner. Further, DEXA executes neuroprotective effects in brains and reduces tumor-induced angiogenesis. Thus, our investigations reveal that DEXA acts pleiotropically and impacts tumor growth, tumor vasculature and tumor-associated brain damage. PMID:24714627

  18. Modelling verbal aggression, physical aggression and inappropriate sexual behaviour after acquired brain injury

    PubMed Central

    James, Andrew I. W.; Böhnke, Jan R.; Young, Andrew W.; Lewis, Gary J.

    2015-01-01

    Understanding the underpinnings of behavioural disturbances following brain injury is of considerable importance, but little at present is known about the relationships between different types of behavioural disturbances. Here, we take a novel approach to this issue by using confirmatory factor analysis to elucidate the architecture of verbal aggression, physical aggression and inappropriate sexual behaviour using systematic records made across an eight-week observation period for a large sample (n = 301) of individuals with a range of brain injuries. This approach offers a powerful test of the architecture of these behavioural disturbances by testing the fit between observed behaviours and different theoretical models. We chose models that reflected alternative theoretical perspectives based on generalized disinhibition (Model 1), a difference between aggression and inappropriate sexual behaviour (Model 2), or on the idea that verbal aggression, physical aggression and inappropriate sexual behaviour reflect broadly distinct but correlated clinical phenomena (Model 3). Model 3 provided the best fit to the data indicating that these behaviours can be viewed as distinct, but with substantial overlap. These data are important both for developing models concerning the architecture of behaviour as well as for clinical management in individuals with brain injury. PMID:26136449

  19. Combination radiotherapy in an orthotopic mouse brain tumor model.

    PubMed

    Kramp, Tamalee R; Camphausen, Kevin

    2012-03-06

    Glioblastoma multiforme (GBM) are the most common and aggressive adult primary brain tumors. In recent years there has been substantial progress in the understanding of the mechanics of tumor invasion, and direct intracerebral inoculation of tumor provides the opportunity of observing the invasive process in a physiologically appropriate environment. As far as human brain tumors are concerned, the orthotopic models currently available are established either by stereotaxic injection of cell suspensions or implantation of a solid piece of tumor through a complicated craniotomy procedure. In our technique we harvest cells from tissue culture to create a cell suspension used to implant directly into the brain. The duration of the surgery is approximately 30 minutes, and as the mouse needs to be in a constant surgical plane, an injectable anesthetic is used. The mouse is placed in a stereotaxic jig made by Stoetling (figure 1). After the surgical area is cleaned and prepared, an incision is made; and the bregma is located to determine the location of the craniotomy. The location of the craniotomy is 2 mm to the right and 1 mm rostral to the bregma. The depth is 3 mm from the surface of the skull, and cells are injected at a rate of 2 μl every 2 minutes. The skin is sutured with 5-0 PDS, and the mouse is allowed to wake up on a heating pad. From our experience, depending on the cell line, treatment can take place from 7-10 days after surgery. Drug delivery is dependent on the drug composition. For radiation treatment the mice are anesthetized, and put into a custom made jig. Lead covers the mouse's body and exposes only the brain of the mouse. The study of tumorigenesis and the evaluation of new therapies for GBM require accurate and reproducible brain tumor animal models. Thus we use this orthotopic brain model to study the interaction of the microenvironment of the brain and the tumor, to test the effectiveness of different therapeutic agents with and without

  20. Childhood Brain Tumor Epidemiology: A Brain Tumor Epidemiology Consortium Review

    PubMed Central

    Johnson, Kimberly J.; Cullen, Jennifer; Barnholtz-Sloan, Jill S.; Ostrom, Quinn T.; Langer, Chelsea E.; Turner, Michelle C.; McKean-Cowdin, Roberta; Fisher, James L.; Lupo, Philip J.; Partap, Sonia; Schwartzbaum, Judith A.; Scheurer, Michael E.

    2014-01-01

    Childhood brain tumors are the most common pediatric solid tumor and include several histological subtypes. Although progress has been made in improving survival rates for some subtypes, understanding of risk factors for childhood brain tumors remains limited to a few genetic syndromes and ionizing radiation to the head and neck. In this report, we review descriptive and analytical epidemiology childhood brain tumor studies from the past decade and highlight priority areas for future epidemiology investigations and methodological work that is needed to advance our understanding of childhood brain tumor causes. Specifically, we summarize the results of a review of studies published since 2004 that have analyzed incidence and survival in different international regions and that have examined potential genetic, immune system, developmental and birth characteristics, and environmental risk factors. PMID:25192704

  1. Brain Tumors (For Parents)

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Brain Tumors KidsHealth / For Parents / Brain Tumors What's in ... radiation therapy or chemotherapy, or both. Types of Brain Tumors There are many different types of brain ...

  2. Childhood Brain Tumors

    MedlinePlus

    Brain tumors are abnormal growths inside the skull. They are among the most common types of childhood ... still be serious. Malignant tumors are cancerous. Childhood brain and spinal cord tumors can cause headaches and ...

  3. Rhabdoid glioblastoma: an aggressive variaty of astrocytic tumor.

    PubMed

    Hiroyuki, Momota; Ogino, Jiro; Takahashi, Akira; Hasegawa, Tadashi; Wakabayashi, Toshihiko

    2015-02-01

    Rhabdoid glioblastoma (RGBM) is rare, but the most malignant among astrocytic tumors. Accumulating evidence indicates its highly aggressive nature and distinct histopathological features. Here, we report a new case of RGBM and review previously reported cases of astrocytic tumors with rhabdoid components. We describe a 58-year-old man who presented with aphasia and right-sided weakness. Magnetic resonance imaging revealed a well-delineated intramedullary tumor in the left cerebral hemisphere. Partial resection of the tumor was performed. The tumor was histologically found to contain two distinct areas: a typical glioblastoma, and a rhabdoid component. Immunohistochemical analyses revealed expression of glial fibrillary acidic protein (GFAP) and focal loss of the INI1 protein in rhabdoid cells, although fluorescence in situ hybridization analysis showed no loss of the INI1 gene. Despite subsequent radiochemotherapy for the glioblastoma, the patient died 4.3 months after surgery. Our literature review illustrates the aggressive clinical course and histopathological features of these tumors with GFAP and INI1 expression. INI1 protein dysfunction may be a possible cause of the rhabdoid phenotype. Gross total resection of the tumor and intensive radiochemotherapy may lead to better survival outcomes.

  4. Pediatric Brain Tumor Foundation

    MedlinePlus

    ... navigate their brain tumor diagnosis. WATCH AND SHARE Brain tumors and their treatment can be deadly so ... Pediatric Central Nervous System Cancers Read more >> Pediatric Brain Tumor Foundation 302 Ridgefield Court, Asheville, NC 28806 ...

  5. Aggression after traumatic brain injury: analysing socially desirable responses and the nature of aggressive traits.

    PubMed

    Dyer, Kevin F W; Bell, Rob; McCann, John; Rauch, Robert

    2006-10-01

    To compare patients with traumatic brain injury (TBI) with controls on sub-types of aggression and explore the role of social desirability. Quasi-experimental, matched-participants design. Sixty-nine participants were included in the study. The sample comprised a TBI group (n = 24), a spinal cord injury (SCI) group (n = 21) and an uninjured (UI) group of matched healthy volunteers (n = 24). Participants were given self-report measures of aggression, social desirability and impulsivity. Sixty-one independent 'other-raters' were nominated, who rated participant pre-morbid and post-morbid aggression. Using standardized norms, 25-39% of participants with TBI were classified as high average-very high on anger and 35-38% as high average-very high on verbal aggression. Other-raters rated participants with TBI as significantly higher on verbal aggression than SCI and UI participants. There were no differences between the groups on physical aggression. The TBI group also had higher levels of impulsivity than SCI and UI groups. Social desirability was a highly significant predictor of self-reported aggression for the entire sample. Impulsive verbal aggression and anger are the principal aggressive traits after brain injury. Physical aggression may present in extreme cases after TBI, but appears less prominent overall in this population. Social desirability, previously overlooked in research examining TBI aggression, emerged as an influential variable that should be considered in future TBI research.

  6. Quetiapine modulates functional connectivity in brain aggression networks.

    PubMed

    Klasen, Martin; Zvyagintsev, Mikhail; Schwenzer, Michael; Mathiak, Krystyna A; Sarkheil, Pegah; Weber, René; Mathiak, Klaus

    2013-07-15

    Aggressive behavior is associated with dysfunctions in an affective regulation network encompassing amygdala and prefrontal areas such as orbitofrontal (OFC), anterior cingulate (ACC), and dorsolateral prefrontal cortex (DLPFC). In particular, prefrontal regions have been postulated to control amygdala activity by inhibitory projections, and this process may be disrupted in aggressive individuals. The atypical antipsychotic quetiapine successfully attenuates aggressive behavior in various disorders; the underlying neural processes, however, are unknown. A strengthened functional coupling in the prefrontal-amygdala system may account for these anti-aggressive effects. An inhibition of this network has been reported for virtual aggression in violent video games as well. However, there have been so far no in-vivo observations of pharmacological influences on corticolimbic projections during human aggressive behavior. In a double-blind, placebo-controlled study, quetiapine and placebo were administered for three successive days prior to an fMRI experiment. In this experiment, functional brain connectivity was assessed during virtual aggressive behavior in a violent video game and an aggression-free control task in a non-violent modification. Quetiapine increased the functional connectivity of ACC and DLPFC with the amygdala during virtual aggression, whereas OFC-amygdala coupling was attenuated. These effects were observed neither for placebo nor for the non-violent control. These results demonstrate for the first time a pharmacological modification of aggression-related human brain networks in a naturalistic setting. The violence-specific modulation of prefrontal-amygdala networks appears to control aggressive behavior and provides a neurobiological model for the anti-aggressive effects of quetiapine. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Brain Tumor Epidemiology: Consensus from the Brain Tumor Epidemiology Consortium (BTEC)

    PubMed Central

    Bondy, Melissa L.; Scheurer, Michael E.; Malmer, Beatrice; Barnholtz-Sloan, Jill S.; Davis, Faith G.; Il’yasova, Dora; Kruchko, Carol; McCarthy, Bridget J.; Rajaraman, Preetha; Schwartzbaum, Judith A.; Sadetzki, Siegal; Schlehofer, Brigitte; Tihan, Tarik; Wiemels, Joseph L.; Wrensch, Margaret; Buffler, Patricia A.

    2010-01-01

    Epidemiologists in the Brain Tumor Epidemiology Consortium (BTEC) have prioritized areas for further research. Although many risk factors have been examined over the past several decades, there are few consistent findings possibly due to small sample sizes in individual studies and differences between studies in subjects, tumor types, and methods of classification. Individual studies have generally lacked sufficient sample size to examine interactions. A major priority based on available evidence and technologies includes expanding research in genetics and molecular epidemiology of brain tumors. BTEC has taken an active role in promoting understudied groups such as pediatric brain tumors, the etiology of rare glioma subtypes, such as oligodendroglioma, and meningioma, which not uncommon, has only recently been systematically registered in the US. There is also a pressing need to bring more researchers, especially junior investigators, to study brain tumor epidemiology. However, relatively poor funding for brain tumor research has made it difficult to encourage careers in this area. We review the group’s consensus on the current state of scientific findings and present a consensus on research priorities to identify the important areas the science should move to address. PMID:18798534

  8. Locally aggressive and multifocal phosphaturic mesenchymal tumors: two unusual cases of tumor-induced osteomalacia.

    PubMed

    Higley, Meghan; Beckett, Brooke; Schmahmann, Sandra; Dacey, Elizabeth; Foss, Erik

    2015-12-01

    Tumor-induced osteomalacia (TIO) has long been recognized as a clinical paraneoplastic syndrome. The identification of a unique histopathologic entity, the phosphaturic mesenchymal tumor (PMT), as a distinct etiology for TIO has been a more recent discovery. The majority of published cases describe a solitary, non-aggressive appearing soft tissue or osseous lesions in patients with osteomalacia; aggressive appearing or multifocal lesions appear to be exceedingly rare. These tumors characteristically secrete fibroblast growth factor 23 (FGF23). Elevated serum levels of FGF23 result in phosphate wasting and osteomalacia. In the majority of cases, laboratory abnormalities and clinical signs and symptoms of osteomalacia precede identification of the causative lesion by years. Following diagnosis, complete resection with wide margins to prevent local recurrence is most often curative. Imaging characteristics of PMT are diverse and remain incompletely defined, as the majority of previous publications are outside of the radiologic literature. We present multiple imaging modalities in two cases of patients with debilitating osteomalacia and unusual appearing PMTs: one with a locally aggressive lesion leading to pathologic fracture, the second presenting with exceedingly rare multifocal PMT.

  9. Neuropharmacology of brain-stimulation-evoked aggression.

    PubMed

    Siegel, A; Roeling, T A; Gregg, T R; Kruk, M R

    1999-01-01

    Evidence is reviewed concerning the brain areas and neurotransmitters involved in aggressive behavior in the cat and rodent. In the cat, two distinct neural circuits involving the hypothalamus and PAG subserve two different kinds of aggression: defensive rage and predatory (quiet-biting) attack. The roles played by the neurotransmitters serotonin, GABA, glutamate, opioids, cholecystokinin, substance P, norepinephrine, dopamine, and acetylcholine in the modulation and expression of aggression are discussed. For the rat, a single area, largely coincident with the intermediate hypothalamic area, is crucial for the expression of attack; variations in the rat attack response in natural settings are due largely to environmental variables. Experimental evidence emphasizing the roles of serotonin and GABA in modulating hypothalamically evoked attack in the rat is discussed. It is concluded that significant progress has been made concerning our knowledge of the circuitry underlying the neural basis of aggression. Although new and important insights have been made concerning neurotransmitter regulation of aggressive behavior, wide gaps in our knowledge remain.

  10. Manipulation of colony environment modulates honey bee aggression and brain gene expression.

    PubMed

    Rittschof, C C; Robinson, G E

    2013-11-01

    The social environment plays an essential role in shaping behavior for most animals. Social effects on behavior are often linked to changes in brain gene expression. In the honey bee (Apis mellifera L.), social modulation of individual aggression allows colonies to adjust the intensity with which they defend their hive in response to predation threat. Previous research has showed social effects on both aggression and aggression-related brain gene expression in honey bees, caused by alarm pheromone and unknown factors related to colony genotype. For example, some bees from less aggressive genetic stock reared in colonies with genetic predispositions toward increased aggression show both increased aggression and more aggressive-like brain gene expression profiles. We tested the hypothesis that exposure to a colony environment influenced by high levels of predation threat results in increased aggression and aggressive-like gene expression patterns in individual bees. We assessed gene expression using four marker genes. Experimentally induced predation threats modified behavior, but the effect was opposite of our predictions: disturbed colonies showed decreased aggression. Disturbed colonies also decreased foraging activity, suggesting that they did not habituate to threats; other explanations for this finding are discussed. Bees in disturbed colonies also showed changes in brain gene expression, some of which paralleled behavioral findings. These results show that bee aggression and associated molecular processes are subject to complex social influences. © 2013 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  11. Pleiotropic Contribution of MECOM and AVPR1A to Aggression and Subcortical Brain Volumes

    PubMed Central

    van Donkelaar, Marjolein M. J.; Hoogman, Martine; Pappa, Irene; Tiemeier, Henning; Buitelaar, Jan K.; Franke, Barbara; Bralten, Janita

    2018-01-01

    Reactive and proactive subtypes of aggression have been recognized to help parse etiological heterogeneity of this complex phenotype. With a heritability of about 50%, genetic factors play a role in the development of aggressive behavior. Imaging studies implicate brain structures related to social behavior in aggression etiology, most notably the amygdala and striatum. This study aimed to gain more insight into the pathways from genetic risk factors for aggression to aggression phenotypes. To this end, we conducted genome-wide gene-based cross-trait meta-analyses of aggression with the volumes of amygdala, nucleus accumbens and caudate nucleus to identify genes influencing both aggression and aggression-related brain volumes. We used data of large-scale genome-wide association studies (GWAS) of: (a) aggressive behavior in children and adolescents (EAGLE, N = 18,988); and (b) Magnetic Resonance Imaging (MRI)-based volume measures of aggression-relevant subcortical brain regions (ENIGMA2, N = 13,171). Second, the identified genes were further investigated in a sample of healthy adults (mean age (SD) = 25.28 (4.62) years; 43% male) who had genome-wide genotyping data and questionnaire data on aggression subtypes available (Brain Imaging Genetics, BIG, N = 501) to study their effect on reactive and proactive subtypes of aggression. Our meta-analysis identified two genes, MECOM and AVPR1A, significantly associated with both aggression risk and nucleus accumbens (MECOM) and amygdala (AVPR1A) brain volume. Subsequent in-depth analysis of these genes in healthy adults (BIG), including sex as an interaction term in the model, revealed no significant subtype-specific gene-wide associations. Using cross-trait meta-analysis of brain measures and psychiatric phenotypes, this study generated new hypotheses about specific links between genes, the brain and behavior. Results indicate that MECOM and AVPR1A may exert an effect on aggression through mechanisms involving nucleus

  12. Aggression in Women: Behavior, Brain and Hormones.

    PubMed

    Denson, Thomas F; O'Dean, Siobhan M; Blake, Khandis R; Beames, Joanne R

    2018-01-01

    We review the literature on aggression in women with an emphasis on laboratory experimentation and hormonal and brain mechanisms. Women tend to engage in more indirect forms of aggression (e.g., spreading rumors) than other types of aggression. In laboratory studies, women are less aggressive than men, but provocation attenuates this difference. In the real world, women are just as likely to aggress against their romantic partner as men are, but men cause more serious physical and psychological harm. A very small minority of women are also sexually violent. Women are susceptible to alcohol-related aggression, but this type of aggression may be limited to women high in trait aggression. Fear of being harmed is a robust inhibitor of direct aggression in women. There are too few studies and most are underpowered to detect unique neural mechanisms associated with aggression in women. Testosterone shows the same small, positive relationship with aggression in women as in men. The role of cortisol is unclear, although some evidence suggests that women who are high in testosterone and low in cortisol show heightened aggression. Under some circumstances, oxytocin may increase aggression by enhancing reactivity to provocation and simultaneously lowering perceptions of danger that normally inhibit many women from retaliating. There is some evidence that high levels of estradiol and progesterone are associated with low levels of aggression. We highlight that more gender-specific theory-driven hypothesis testing is needed with larger samples of women and aggression paradigms relevant to women.

  13. Brain tumor segmentation with Vander Lugt correlator based active contour.

    PubMed

    Essadike, Abdelaziz; Ouabida, Elhoussaine; Bouzid, Abdenbi

    2018-07-01

    The manual segmentation of brain tumors from medical images is an error-prone, sensitive, and time-absorbing process. This paper presents an automatic and fast method of brain tumor segmentation. In the proposed method, a numerical simulation of the optical Vander Lugt correlator is used for automatically detecting the abnormal tissue region. The tumor filter, used in the simulated optical correlation, is tailored to all the brain tumor types and especially to the Glioblastoma, which considered to be the most aggressive cancer. The simulated optical correlation, computed between Magnetic Resonance Images (MRI) and this filter, estimates precisely and automatically the initial contour inside the tumorous tissue. Further, in the segmentation part, the detected initial contour is used to define an active contour model and presenting the problematic as an energy minimization problem. As a result, this initial contour assists the algorithm to evolve an active contour model towards the exact tumor boundaries. Equally important, for a comparison purposes, we considered different active contour models and investigated their impact on the performance of the segmentation task. Several images from BRATS database with tumors anywhere in images and having different sizes, contrast, and shape, are used to test the proposed system. Furthermore, several performance metrics are computed to present an aggregate overview of the proposed method advantages. The proposed method achieves a high accuracy in detecting the tumorous tissue by a parameter returned by the simulated optical correlation. In addition, the proposed method yields better performance compared to the active contour based methods with the averages of Sensitivity=0.9733, Dice coefficient = 0.9663, Hausdroff distance = 2.6540, Specificity = 0.9994, and faster with a computational time average of 0.4119 s per image. Results reported on BRATS database reveal that our proposed system improves over the recently published

  14. Aggression in Women: Behavior, Brain and Hormones

    PubMed Central

    Denson, Thomas F.; O’Dean, Siobhan M.; Blake, Khandis R.; Beames, Joanne R.

    2018-01-01

    We review the literature on aggression in women with an emphasis on laboratory experimentation and hormonal and brain mechanisms. Women tend to engage in more indirect forms of aggression (e.g., spreading rumors) than other types of aggression. In laboratory studies, women are less aggressive than men, but provocation attenuates this difference. In the real world, women are just as likely to aggress against their romantic partner as men are, but men cause more serious physical and psychological harm. A very small minority of women are also sexually violent. Women are susceptible to alcohol-related aggression, but this type of aggression may be limited to women high in trait aggression. Fear of being harmed is a robust inhibitor of direct aggression in women. There are too few studies and most are underpowered to detect unique neural mechanisms associated with aggression in women. Testosterone shows the same small, positive relationship with aggression in women as in men. The role of cortisol is unclear, although some evidence suggests that women who are high in testosterone and low in cortisol show heightened aggression. Under some circumstances, oxytocin may increase aggression by enhancing reactivity to provocation and simultaneously lowering perceptions of danger that normally inhibit many women from retaliating. There is some evidence that high levels of estradiol and progesterone are associated with low levels of aggression. We highlight that more gender-specific theory-driven hypothesis testing is needed with larger samples of women and aggression paradigms relevant to women. PMID:29770113

  15. Emotional Labour of Caregivers Confronted With Aggressive Brain-injured Patients.

    PubMed

    Huet, Magali; Dany, Lionel; Apostolidis, Thémistoklis

    2018-06-01

    Aggressive behaviours are common with people who have suffered brain injuries and induce difficult emotions among certified nursing assistants and medical-psychological assistants who take care of them. These caregivers carry out emotional labour whose content and strategies are little known. The study explores the emotional labour of certified nursing assistants and medical-psychological assistants faced with the aggressive behaviours of brain-injured patients. Semi-structured interviews were conducted with 37 caregivers. Interviews were analysed via a thematic content analysis. The analysis shows that the emotional labour of caregivers varies in accordance with the state of "consciousness" or "non-consciousness" that they attribute to the brain-injured patient with regard to this aggressive behaviour. This is a deep acting strategy. Moreover, caregivers shut off their emotions in order not to transmit them to the patient. This surface acting has the first objective for the caregiver of maintaining control of the situation and a second objective of protecting the patient emotionally and therefore of being perceived as a "good" caregiver. Emotional labour also meets a need to preserve the professional self-image and professional status negatively affected in the interaction with the aggressive brain-injured patient. Our study specifies the different strategies of the emotional labour of caregivers and their circumstances of use when they are confronted with aggressive behaviour by brain-injured patients. Targeted support for this emotional labour, such as training and practical analysis, is essential for the development of care practices promoting a caring relationship. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Gene expression changes in rat brain after short and long exposures to particulate matter in Los Angeles basin air: Comparison with human brain tumors.

    PubMed

    Ljubimova, Julia Y; Kleinman, Michael T; Karabalin, Natalya M; Inoue, Satoshi; Konda, Bindu; Gangalum, Pallavi; Markman, Janet L; Ljubimov, Alexander V; Black, Keith L

    2013-11-01

    Air pollution negatively impacts pulmonary, cardiovascular, and central nervous systems. Although its influence on brain cancer is unclear, toxic pollutants can cause blood-brain barrier disruption, enabling them to reach the brain and cause alterations leading to tumor development. By gene microarray analysis validated by quantitative RT-PCR and immunostaining we examined whether rat (n=104) inhalation exposure to air pollution particulate matter (PM) resulted in brain molecular changes similar to those associated with human brain tumors. Global brain gene expression was analyzed after exposure to PM (coarse, 2.5-10μm; fine, <2.5μm; or ultrafine, <0.15μm) and purified air for different times, short (0.5, 1, and 3 months) and chronic (10 months), for 5h per day, four days per week. Expression of select gene products was also studied in human brain (n=7) and in tumors (n=83). Arc/Arg3.1 and Rac1 genes, and their protein products were selected for further examination. Arc was elevated upon two-week to three-month exposure to coarse PM and declined after 10-month exposure. Rac1 was significantly elevated upon 10-month coarse PM exposure. On human brain tumor sections, Arc was expressed in benign meningiomas and low-grade gliomas but was much lower in high-grade tumors. Conversely, Rac1 was elevated in high-grade vs. low-grade gliomas. Arc is thus associated with early brain changes and low-grade tumors, whereas Rac1 is associated with long-term PM exposure and highly aggressive tumors. In summary, exposure to air PM leads to distinct changes in rodent brain gene expression similar to those observed in human brain tumors. Copyright © 2013 Elsevier GmbH. All rights reserved.

  17. A Retrospective Analysis of Complication Rates in Mohs Micrographic Surgery Patients With Clinically Large Tumors and Tumors With Aggressive Subclinical Extension.

    PubMed

    Cowan, Natasha; Goldenberg, Alina; Basu, Pallavi; Eilers, Robert; Hau, Jennifer; I Brian Jiang, Shang

    2018-05-01

    Clinically large cutaneous tumors and those with aggressive subclinical extension (ASE) often require wider margins and increased operative time during Mohs micrographic surgery (MMS). Our goal is to improve dermatologic surgeons' counseling information on complication risks for aggressive tumors. To examine the incidence of postoperative complications in MMS patients, with a focus on differences between aggressive and non-aggressive tumors. We performed a retrospective cross-sectional chart review of 4151 MMS cases at the University of California, San Diego. A postoperative complication was defined as an adverse event directly related to MMS reported within 6 weeks of the procedure. Clinically, large tumors had 50 times the odds of postoperative complication as compared to all other tumors (P less than 0.001). ASE was not found to be significantly associated with higher rates of postoperative complications when controlled for other factors. Clinically, large tumors may be at higher risk for complications following MMS due to their increased size and need for repair with methods other than linear closures. Tumors with ASE were not found to be at higher risk for postoperative complications. J Drugs Dermatol. 2018;17(5):511-515.

  18. [Immunotherapy in brain tumors].

    PubMed

    De Carli, Emilie; Delion, Matthieu; Rousseau, Audrey

    2017-02-01

    Diffuse gliomas represent the most common primary central nervous system (CNS) tumors in adults and children alike. Glioblastoma is the most frequent and malignant form of diffuse glioma with a median overall survival of 15 months despite aggressive treatments. New therapeutic approaches are needed to prolong survival in this always fatal disease. The CNS has been considered for a long time as an immune privileged organ, in part because of the existence of the blood-brain barrier. Nonetheless, immunotherapy is a novel approach in the therapeutic management of glioma patients, which has shown promising results in several clinical trials, especially in the adult population. Vaccination, with or without dendritic cells, blockade of the immune checkpoints, and adoptive T cell transfer are the most studied modalities of diffuse glioma immunotherapy. The future most likely resides in combinatorial approaches, with administration of conventional treatments (surgery, radiochemotherapy) and immunotherapy following yet to determine schedules. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Children's Brain Tumor Foundation

    MedlinePlus

    ... 2 Family Donate Volunteer Justin's Hope Fund Children’s Brain Tumor Foundation, A non-profit organization, was founded ... and the long term outlook for children with brain and spinal cord tumors through research, support, education, ...

  20. American Brain Tumor Association

    MedlinePlus

    ... Brain Tumor Association Names Leslie M. Stokes Interim Chief Executive Officer and Begins Search for Permanent CEO September 7, ... American Brain Tumor Association Names Kelly Sitkin as Chief Advancement Officer Read More ABTA Live ABTA Facebook Follow @theabta ...

  1. Brain Tumor Image Segmentation in MRI Image

    NASA Astrophysics Data System (ADS)

    Peni Agustin Tjahyaningtijas, Hapsari

    2018-04-01

    Brain tumor segmentation plays an important role in medical image processing. Treatment of patients with brain tumors is highly dependent on early detection of these tumors. Early detection of brain tumors will improve the patient’s life chances. Diagnosis of brain tumors by experts usually use a manual segmentation that is difficult and time consuming because of the necessary automatic segmentation. Nowadays automatic segmentation is very populer and can be a solution to the problem of tumor brain segmentation with better performance. The purpose of this paper is to provide a review of MRI-based brain tumor segmentation methods. There are number of existing review papers, focusing on traditional methods for MRI-based brain tumor image segmentation. this paper, we focus on the recent trend of automatic segmentation in this field. First, an introduction to brain tumors and methods for brain tumor segmentation is given. Then, the state-of-the-art algorithms with a focus on recent trend of full automatic segmentaion are discussed. Finally, an assessment of the current state is presented and future developments to standardize MRI-based brain tumor segmentation methods into daily clinical routine are addressed.

  2. Find a Brain Tumor Center

    MedlinePlus

    ... Ways to Give Charitable Shopping Close Find a Brain Tumor Center Below is a listing of brain ... center is in your insurance plan’s covered network Brain Tumor Treatment Centers: Filter: Mayo Clinic Arizona Mayo ...

  3. Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images.

    PubMed

    Pereira, Sergio; Pinto, Adriano; Alves, Victor; Silva, Carlos A

    2016-05-01

    Among brain tumors, gliomas are the most common and aggressive, leading to a very short life expectancy in their highest grade. Thus, treatment planning is a key stage to improve the quality of life of oncological patients. Magnetic resonance imaging (MRI) is a widely used imaging technique to assess these tumors, but the large amount of data produced by MRI prevents manual segmentation in a reasonable time, limiting the use of precise quantitative measurements in the clinical practice. So, automatic and reliable segmentation methods are required; however, the large spatial and structural variability among brain tumors make automatic segmentation a challenging problem. In this paper, we propose an automatic segmentation method based on Convolutional Neural Networks (CNN), exploring small 3 ×3 kernels. The use of small kernels allows designing a deeper architecture, besides having a positive effect against overfitting, given the fewer number of weights in the network. We also investigated the use of intensity normalization as a pre-processing step, which though not common in CNN-based segmentation methods, proved together with data augmentation to be very effective for brain tumor segmentation in MRI images. Our proposal was validated in the Brain Tumor Segmentation Challenge 2013 database (BRATS 2013), obtaining simultaneously the first position for the complete, core, and enhancing regions in Dice Similarity Coefficient metric (0.88, 0.83, 0.77) for the Challenge data set. Also, it obtained the overall first position by the online evaluation platform. We also participated in the on-site BRATS 2015 Challenge using the same model, obtaining the second place, with Dice Similarity Coefficient metric of 0.78, 0.65, and 0.75 for the complete, core, and enhancing regions, respectively.

  4. Psychological aspects in brain tumor patients: A prospective study.

    PubMed

    Seddighi, Afsoun; Seddighi, Amir Saied; Nikouei, Amir; Ashrafi, Farzad; Nohesara, Shabnam

    2015-01-01

    Very few studies have utilized specific criteria to assess mental disorders in brain tumor patients, and from them, they are mainly descriptive. The purpose of this study is to examine mental disorders in relation to tumor characteristics and patients' psychosocial factors using DSM-IV (depression, sleep and mood) criteria, among brain tumor patients. From March 2009 to July 2011, 98 patients who surgically treated with intracranial neoplasm were included in this prospective study. The mean age of the patient group was 42.2 years with a range of 18-60 years with a male to female ratio of 1.2. The most common tumor type was glioblastoma multiform (30.3%), followed by meningioma (16.8%) and anaplastic glioma (12.3%). In our study, the prevalence of mild depression was about 30% for males and 38% for females before surgery; however at 3 months after surgery, this amount decreased to the amount of 25.6% and 26% for male and female patients respectively. Before tumor operation, the prevalence of major depression was 10.4% for males and 19.7% for females. At 3 months after operation the prevalence of major depression was 12.8% for males, and 6.7% for females. Aggression or suicide attempts were not seen related to depression. Before operative intervention, severe anxiousness as well as severe Obsessive Compulsive Disorder (OCD) symptoms was present in 14.7% of males while at 3 months after operation, prevalence of severe anxiousness and severe OCD symptoms decreased to 4% and 9.3% respectively. In females, 28.7% of the subjects had reported to have severe anxiousness and 25.6% severe OCD symptoms. Three months after surgery, these amounts were 17.6% and 38.7% respectively. Depressive symptoms as well as anxious and OCD psychopathology were shown to be prevalent signs among patients with brain tumor. Diagnosis of the previous mentioned symptoms were totally based on DSM-IV criteria and these disorders and the percentiles don't seem to be related to each other. Due to high

  5. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse, human glioblastomas in the mouse brain in vivo

    PubMed Central

    Marin-Valencia, Isaac; Yang, Chendong; Mashimo, Tomoyuki; Cho, Steve; Baek, Hyeonman; Yang, Xiao-Li; Rajagopalan, Kartik N.; Maddie, Melissa; Vemireddy, Vamsidhara; Zhao, Zhenze; Cai, Ling; Good, Levi; Tu, Benjamin P.; Hatanpaa, Kimmo J.; Mickey, Bruce E.; Matés, José M.; Pascual, Juan M.; Maher, Elizabeth A.; Malloy, Craig R.; DeBerardinis, Ralph J.; Bachoo, Robert M.

    2012-01-01

    SUMMARY Dysregulated metabolism is a hallmark of cancer cell lines, but little is known about the fate of glucose and other nutrients in tumors growing in their native microenvironment. To study tumor metabolism in vivo, we used an orthotopic mouse model of primary human glioblastoma (GBM). We infused 13C-labeled nutrients into mice bearing three independent GBM lines, each with a distinct set of mutations. All three lines displayed glycolysis, as expected for aggressive tumors. They also displayed unexpected metabolic complexity, oxidizing glucose via pyruvate dehydrogenase and the citric acid cycle, and using glucose to supply anaplerosis and other biosynthetic activities. Comparing the tumors to surrounding brain revealed obvious metabolic differences, notably the accumulation of a large glutamine pool within the tumors. Many of these same activities were conserved in cells cultured ex vivo from the tumors. Thus GBM cells utilize mitochondrial glucose oxidation during aggressive tumor growth in vivo. PMID:22682223

  6. Increased brain edema following 5-aminolevulinic acid mediated photodynamic in normal and tumor bearing rats

    NASA Astrophysics Data System (ADS)

    Hirschberg, Henry; Angell-Petersen, Even; Spetalen, Signe; Mathews, Marlon; Madsen, Steen J.

    2007-02-01

    Introduction: Failure of treatment for high grade gliomas is usually due to local recurrence at the site of surgical resection indicating that a more aggressive form of local therapy, such as PDT, could be of benefit. PDT causes damage to both tumor cells as well as cerebral blood vessels leading to degradation of the blood brain barrier with subsequent increase of brain edema. The increase in brain edema following ALA-PDT was evaluated in terms of animal survival, histopatological changes in normal brain and tumor tissue and MRI scanning. The effect of steroid treatment, to reduce post-treatment PDT induced edema, was also examined. Methods:Tumors were established in the brains of inbred BD-IX and Fisher rats. At various times following tumor induction the animals were injected with ALA ip. and four hours later light treatment at escalating fluences and fluence rates were given. Nontumor bearing control animals were also exposed to ALA-PDT in a similar manner to evaluate damage to normal brain and degree of blood brain barrier (BBB) disruption. Results: Despite a very low level of PpIX production in normal brain, with a 200:1 tumor to normal tissue selectivity ratio measured at a distance of 2 mm from the tumor border, many animals succumbed shortly after treatment. A total radiant energy of 54 J to non-tumor bearing animals resulted in 50% mortality within 5 days of treatment. Treatment of tumor bearing animals with moderate fluence levels produced similar brain edema compared to higher fluence levels. ALA PDT in nontumor bearing animals produced edema that was light dose dependent. PDT appeared to open the BBB for a period of 24-48 hrs after which it was restored. The addition of post operative steroid treatment reduced the incident of post treatment morbidity and mortality. Conclusions: T2 and contrast enhanced T1 MRI scanning proved to be a highly effective and non-evasive modality in following the development of the edema reaction and the degree and time

  7. Novel mechanisms and approaches in immunotherapy for brain tumors.

    PubMed

    Finocchiaro, Gaetano; Pellegatta, Serena

    2015-01-01

    Converging data indicate that the immune system is able to recognize cancer epitopes as non-self and mount an immune reaction that may erase, or temporarily block, tumor growth. The immune pressure supports the amplification of immune resistant tumor clones, creating an immune suppressive environment that leads to the formation of a clinically relevant tumor. These general observations also apply to brain tumors and specifically to gliomas. Cancer immunotherapy strategies are aimed at reverting such immune suppression. Two approaches are already used in the clinics. The first one, peptide immunotherapy, has been oriented to the most aggressive glioma, glioblastoma (GBM) where, in the context of EGFR (epidermal growth factor receptor) amplification, a large deletion arises and creates a novel, cancer-specific antigen, EGFRvIII. The second one is dendritic cell immunotherapy. Dendritic cells are potent antigen presenting cells that can be pulsed with autologous tumor lysate or peptide pp65 from cytomegalovirus (CMV) that is present in GBM but not in normal brain. Antigen presentation by dendritic cells is bolstered by preconditioning their injection site with the tetanus/diphtheria toxoid. The third approach is adoptive cell therapy (ACT) in which tumor-specific T cells can be amplified ex vivo and subsequently re-injected to the patient to lyse cells expressing tumor antigens, increasing survival durably in a fraction of melanoma patients. ACT may also be based on T cell transduction of tumor specific receptors or chimeric antigen receptors (CARs). CARs are powerful tools for immunotherapy but off-target toxicity may be an issue as they do not request MHC presentation for activation. Upcoming clinical trial results will clarify the most effective direction for cancer immunotherapy in gliomas and other cancers with poor prognosis.

  8. Modeling Brain Dynamics in Brain Tumor Patients Using the Virtual Brain.

    PubMed

    Aerts, Hannelore; Schirner, Michael; Jeurissen, Ben; Van Roost, Dirk; Achten, Eric; Ritter, Petra; Marinazzo, Daniele

    2018-01-01

    Presurgical planning for brain tumor resection aims at delineating eloquent tissue in the vicinity of the lesion to spare during surgery. To this end, noninvasive neuroimaging techniques such as functional MRI and diffusion-weighted imaging fiber tracking are currently employed. However, taking into account this information is often still insufficient, as the complex nonlinear dynamics of the brain impede straightforward prediction of functional outcome after surgical intervention. Large-scale brain network modeling carries the potential to bridge this gap by integrating neuroimaging data with biophysically based models to predict collective brain dynamics. As a first step in this direction, an appropriate computational model has to be selected, after which suitable model parameter values have to be determined. To this end, we simulated large-scale brain dynamics in 25 human brain tumor patients and 11 human control participants using The Virtual Brain, an open-source neuroinformatics platform. Local and global model parameters of the Reduced Wong-Wang model were individually optimized and compared between brain tumor patients and control subjects. In addition, the relationship between model parameters and structural network topology and cognitive performance was assessed. Results showed (1) significantly improved prediction accuracy of individual functional connectivity when using individually optimized model parameters; (2) local model parameters that can differentiate between regions directly affected by a tumor, regions distant from a tumor, and regions in a healthy brain; and (3) interesting associations between individually optimized model parameters and structural network topology and cognitive performance.

  9. Interplay between aggression, brain monoamines and fur color mutation in the American mink.

    PubMed

    Kulikov, A V; Bazhenova, E Y; Kulikova, E A; Fursenko, D V; Trapezova, L I; Terenina, E E; Mormede, P; Popova, N K; Trapezov, O V

    2016-11-01

    Domestication of wild animals alters the aggression towards humans, brain monoamines and coat pigmentation. Our aim is the interplay between aggression, brain monoamines and depigmentation. The Hedlund white mutation in the American mink is an extreme case of depigmentation observed in domesticated animals. The aggressive (-2.06 ± 0.03) and tame (+3.5 ± 0.1) populations of wild-type dark brown color (standard) minks were bred during 17 successive generations for aggressive or tame reaction towards humans, respectively. The Hedlund mutation was transferred to the aggressive and tame backgrounds to generate aggressive (-1.2 ± 0.1) and tame (+3.0 ± 0.2) Hedlund minks. Four groups of 10 males with equal expression of aggressive (-2) or tame (+5) behavior, standard or with the Hedlund mutation, were selected to study biogenic amines in the brain. Decreased levels of noradrenaline in the hypothalamus, but increased concentrations of the serotonin metabolite, 5-hydroxyindoleacetic acid and dopamine metabolite, homovanillic acid, in the striatum were measured in the tame compared with the aggressive standard minks. The Hedlund mutation increased noradrenaline level in the hypothalamus and substantia nigra, serotonin level in the substantia nigra and striatum and decreased dopamine concentration in the hypothalamus and striatum. Significant interaction effects were found between the Hedlund mutation and aggressive behavior on serotonin metabolism in the substantia nigra (P < 0.001), dopamine level in the midbrain (P < 0.01) and its metabolism in the striatum (P < 0.05). These results provide the first experimental evidence of the interplay between aggression, brain monoamines and the Hedlund mutation in the American minks. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  10. Brain Tumor Statistics

    MedlinePlus

    ... Scientific Advisory Council & Reviewers The International Low Grade Glioma Registry Get Involved Advocacy Breakthrough for Brain Tumors ... an estimated 29,320 new cases in 2018. Gliomas , a broad term which includes all tumors arising ...

  11. Epilepsy and brain tumors

    PubMed Central

    ENGLOT, DARIO J.; CHANG, EDWARD F.; VECHT, CHARLES J.

    2016-01-01

    Seizures are common in patients with brain tumors, and epilepsy can significantly impact patient quality of life. Therefore, a thorough understanding of rates and predictors of seizures, and the likelihood of seizure freedom after resection, is critical in the treatment of brain tumors. Among all tumor types, seizures are most common with glioneuronal tumors (70–80%), particularly in patients with frontotemporal or insular lesions. Seizures are also common in individuals with glioma, with the highest rates of epilepsy (60–75%) observed in patients with low-grade gliomas located in superficial cortical or insular regions. Approximately 20–50% of patients with meningioma and 20–35% of those with brain metastases also suffer from seizures. After tumor resection, approximately 60–90% are rendered seizure-free, with most favorable seizure outcomes seen in individuals with glioneuronal tumors. Gross total resection, earlier surgical therapy, and a lack of generalized seizures are common predictors of a favorable seizure outcome. With regard to anticonvulsant medication selection, evidence-based guidelines for the treatment of focal epilepsy should be followed, and individual patient factors should also be considered, including patient age, sex, organ dysfunction, comorbidity, or cotherapy. As concomitant chemotherapy commonly forms an essential part of glioma treatment, enzyme-inducing anticonvulsants should be avoided when possible. Seizure freedom is the ultimate goal in the treatment of brain tumor patients with epilepsy, given the adverse effects of seizures on quality of life. PMID:26948360

  12. Drugs Approved for Brain Tumors

    MedlinePlus

    ... Ask about Your Treatment Research Drugs Approved for Brain Tumors This page lists cancer drugs approved by ... that are not listed here. Drugs Approved for Brain Tumors Afinitor (Everolimus) Afinitor Disperz (Everolimus) Avastin (Bevacizumab) ...

  13. A validation framework for brain tumor segmentation.

    PubMed

    Archip, Neculai; Jolesz, Ferenc A; Warfield, Simon K

    2007-10-01

    We introduce a validation framework for the segmentation of brain tumors from magnetic resonance (MR) images. A novel unsupervised semiautomatic brain tumor segmentation algorithm is also presented. The proposed framework consists of 1) T1-weighted MR images of patients with brain tumors, 2) segmentation of brain tumors performed by four independent experts, 3) segmentation of brain tumors generated by a semiautomatic algorithm, and 4) a software tool that estimates the performance of segmentation algorithms. We demonstrate the validation of the novel segmentation algorithm within the proposed framework. We show its performance and compare it with existent segmentation. The image datasets and software are available at http://www.brain-tumor-repository.org/. We present an Internet resource that provides access to MR brain tumor image data and segmentation that can be openly used by the research community. Its purpose is to encourage the development and evaluation of segmentation methods by providing raw test and image data, human expert segmentation results, and methods for comparing segmentation results.

  14. Deregulated proliferation and differentiation in brain tumors

    PubMed Central

    Swartling, Fredrik J; Čančer, Matko; Frantz, Aaron; Weishaupt, Holger; Persson, Anders I

    2014-01-01

    Neurogenesis, the generation of new neurons, is deregulated in neural stem cell (NSC)- and progenitor-derived murine models of malignant medulloblastoma and glioma, the most common brain tumors of children and adults, respectively. Molecular characterization of human malignant brain tumors, and in particular brain tumor stem cells (BTSCs), has identified neurodevelopmental transcription factors, microRNAs, and epigenetic factors known to inhibit neuronal and glial differentiation. We are starting to understand how these factors are regulated by the major oncogenic drivers in malignant brain tumors. In this review, we will focus on the molecular switches that block normal neuronal differentiation and induce brain tumor formation. Genetic or pharmacological manipulation of these switches in BTSCs has been shown to restore the ability of tumor cells to differentiate. We will discuss potential brain tumor therapies that will promote differentiation in order to reduce treatment-resistance, suppress tumor growth, and prevent recurrence in patients. PMID:25416506

  15. Aggressive fibromatosis (desmoid tumors): definition, occurrence, pathology, diagnostic problems, clinical behavior, genetic background.

    PubMed

    Ferenc, Tomasz; Sygut, Jacek; Kopczyński, Janusz; Mayer, Magdalena; Latos-Bieleńska, Anna; Dziki, Adam; Kulig, Andrzej

    2006-01-01

    Aggressive fibromatosis, usually called desmoid tumor develops from muscle connective tissue, fasciae and aponeuroses. This neoplasm is composed of spindle (fibrocyte-like) cells. As regards the site, aggressive fibromatoses can be divided into: extra-abdominal in the area of the shoulder and pelvic girdle or chest and neck wall; abdominal in abdominal wall muscles; intra-abdominal concerning pelvis, mesentery connective tissue or retroperitoneal space. Desmoid tumor is a neoplasm which rarely turns malignant and is non-metastasizing but demonstrates ability to local infiltration into tissue and is characterized by high risk of recurrence (25-65%) after surgical treatment. Desmoid tumor etiology is uncertain. This neoplasm occurs in sporadic (idiopathic) form and is also associated with some familial neoplastic syndromes. Most sporadic cases of aggressive fibromatosis contain a somatic mutation in either the adenomatous polyposis coli (APC) or beta-catenin genes. Sporadic tumors are more frequent in women than in men from 2 : 1 to 5 : 1. In about 10-15 per cent of patients with familial adenomatous polyposis (FAP), aggressive fibromatosis is a parenteral manifestation of this familial syndrome conditioned by APC gene mutation. Abdomen injury--most frequently due to surgery is said to play an important role in the initiation of fibrous tissue proliferative process in the cases of abdominal and intra abdominal forms. High cells growth potential with relatively high local malignancy is observed in about 10% of cases with sporadic tumors as well as in those FAP-associated.

  16. The effect of combining two echo times in automatic brain tumor classification by MRS.

    PubMed

    García-Gómez, Juan M; Tortajada, Salvador; Vidal, César; Julià-Sapé, Margarida; Luts, Jan; Moreno-Torres, Angel; Van Huffel, Sabine; Arús, Carles; Robles, Montserrat

    2008-11-01

    (1)H MRS is becoming an accurate, non-invasive technique for initial examination of brain masses. We investigated if the combination of single-voxel (1)H MRS at 1.5 T at two different (TEs), short TE (PRESS or STEAM, 20-32 ms) and long TE (PRESS, 135-136 ms), improves the classification of brain tumors over using only one echo TE. A clinically validated dataset of 50 low-grade meningiomas, 105 aggressive tumors (glioblastoma and metastasis), and 30 low-grade glial tumors (astrocytomas grade II, oligodendrogliomas and oligoastrocytomas) was used to fit predictive models based on the combination of features from short-TEs and long-TE spectra. A new approach that combines the two consecutively was used to produce a single data vector from which relevant features of the two TE spectra could be extracted by means of three algorithms: stepwise, reliefF, and principal components analysis. Least squares support vector machines and linear discriminant analysis were applied to fit the pairwise and multiclass classifiers, respectively. Significant differences in performance were found when short-TE, long-TE or both spectra combined were used as input. In our dataset, to discriminate meningiomas, the combination of the two TE acquisitions produced optimal performance. To discriminate aggressive tumors from low-grade glial tumours, the use of short-TE acquisition alone was preferable. The classifier development strategy used here lends itself to automated learning and test performance processes, which may be of use for future web-based multicentric classifier development studies. Copyright (c) 2008 John Wiley & Sons, Ltd.

  17. A pharmacological evidence of positive association between mouse intermale aggression and brain serotonin metabolism.

    PubMed

    Kulikov, A V; Osipova, D V; Naumenko, V S; Terenina, E; Mormède, P; Popova, N K

    2012-07-15

    The neurotransmitter serotonin (5-HT) is involved in the regulation of mouse intermale aggression. Previously, it was shown that intensity of mouse intermale aggression was positively associated with activity of the key enzyme of 5-HT synthesis - tryptophan hydroxylase 2 (TPH2) in mouse brain. The aim of the present study was to investigate the effect of pharmacological activation or inhibition of 5-HT synthesis in the brain on intermale aggression in two mouse strains differing in the TPH2 activity: C57BL/6J (B6, high TPH2 activity, high aggressiveness) and CC57BR/Mv (BR, low TPH2 activity, low aggressiveness). Administration of 5-HT precursor L-tryptophan (300 mg/kg, i.p.) to BR mice significantly increased the 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) levels in the midbrain as well as the number of attacks and their duration in the resident-intruder test. And vice versa, administration of TPH2 inhibitor p-chlorophenylalanine (pCPA) (300 mg/kg, i.p., for 3 consecutive days) to B6 mice dramatically reduced the 5-HT and 5-HIAA contents in brain structures and attenuated the frequency and the duration of aggressive attacks. At the same time, L-tryptophan or pCPA did not influence the percentage of aggressive mice and the attack latency reflecting the threshold of aggressive reaction. This result indicated that the intensity of intermale aggression, but not the threshold of aggressive reaction is positively dependent on 5-HT metabolism in mouse brain. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Brain serotonin transporter density and aggression in abstinent methamphetamine abusers.

    PubMed

    Sekine, Yoshimoto; Ouchi, Yasuomi; Takei, Nori; Yoshikawa, Etsuji; Nakamura, Kazuhiko; Futatsubashi, Masami; Okada, Hiroyuki; Minabe, Yoshio; Suzuki, Katsuaki; Iwata, Yasuhide; Tsuchiya, Kenji J; Tsukada, Hideo; Iyo, Masaomi; Mori, Norio

    2006-01-01

    In animals, methamphetamine is known to have a neurotoxic effect on serotonin neurons, which have been implicated in the regulation of mood, anxiety, and aggression. It remains unknown whether methamphetamine damages serotonin neurons in humans. To investigate the status of brain serotonin neurons and their possible relationship with clinical characteristics in currently abstinent methamphetamine abusers. Case-control analysis. A hospital research center. Twelve currently abstinent former methamphetamine abusers (5 women and 7 men) and 12 age-, sex-, and education-matched control subjects recruited from the community. The brain regional density of the serotonin transporter, a structural component of serotonin neurons, was estimated using positron emission tomography and trans-1,2,3,5,6,10-beta-hexahydro-6-[4-(methylthio)phenyl]pyrrolo-[2,1-a]isoquinoline ([(11)C](+)McN-5652). Estimates were derived from region-of-interest and statistical parametric mapping methods, followed by within-case analysis using the measures of clinical variables. The duration of methamphetamine use, the magnitude of aggression and depressive symptoms, and changes in serotonin transporter density represented by the [(11)C](+)McN-5652 distribution volume. Methamphetamine abusers showed increased levels of aggression compared with controls. Region-of-interest and statistical parametric mapping analyses revealed that the serotonin transporter density in global brain regions (eg, the midbrain, thalamus, caudate, putamen, cerebral cortex, and cerebellum) was significantly lower in methamphetamine abusers than in control subjects, and this reduction was significantly inversely correlated with the duration of methamphetamine use. Furthermore, statistical parametric mapping analyses indicated that the density in the orbitofrontal, temporal, and anterior cingulate areas was closely associated with the magnitude of aggression in methamphetamine abusers. Protracted abuse of methamphetamine may reduce

  19. Rare angioproliferative tumors mimicking aggressive spinal hemangioma with epidural expansion.

    PubMed

    Kulcsár, Zsolt; Veres, Róbert; Hanzély, Zoltán; Berentei, Zsolt; Marosfoi, Miklós; Nyáry, István; Szikora, István

    2012-01-30

    We present two cases of angio-proliferative tumors that were misdiagnosed and treated as typical hemangiomas with epidural expansion. Two middle-aged women presented with symptoms and radiological signs characteristic for aggressive hemangioma with epidural expansion. In the first case preoperative embolization and decompressive surgery with open transpedicular vertebroplasty was performed. Within less than a year, epidural recurrence of the tumor prompted for radical excision and corpectomy. The diagnosis after the histological studies and the further clinical evolution was metastasizing leiomyomatosis. No further recurrence occured during the next 6 years. In the second case percutaneous vertebroplasty was performed and complicated by epidural polymethyl-methacrylcate (PMMA) leakage, requiring urgent decompressive surgery. Histological study of the lesion raised the possibility of myopericytoma. This was confirmed 16 months later when complete vertebrectomy was performed due to severe epidural propagation of the recurring tumor. No further recurrence occurred in next the two years. Rare angio-proliferative tumors, like benign metastasizing leiomyoma and myopericytoma radiologically may resemble aggressive vertebral hemangiomas of the spine. Unlike hemangiomas, such tumors require radical removal due to their likely recurrence. As imaging studies may not be able to completely exclude such pathologies, bone biopsy and thorough histopathological studies are warranted prior to the therapeutic decision.

  20. Primary intra-abdominal malignant fibrous histiocytoma: a highly aggressive tumor.

    PubMed

    Salemis, Nikolaos S; Gourgiotis, Stavros; Tsiambas, Evangelos; Panagiotopoulos, Nikolaos; Karameris, Andreas; Tsohataridis, Efstathios

    2010-12-01

    Malignant fibrous histiocytoma (MFH) is the most common soft-tissue sarcoma of late adult life occurring predominantly in the extremities. Primary intra-abdominal MFH is a very rare occurrence. The aim of this study is to describe a very rare case of an intra-abdominal MFH with a highly aggressive clinical course. A 67-year-old male was referred to our department with a 2-week history of dull lower abdominal pain and a gradually enlarging right lower abdominal mass, which he first noticed 2 months prior to admission. Computed tomography (CT) scan demonstrated a mass in the right iliac fossa. On exploratory laparotomy, a tumor was found in the right iliac fossa attached to the parietal lateral peritoneum without any evidence of invasion into the adjacent structures. Complete excision of the tumor with clear margins was performed. Histological and immunohistochemical examinations showed a MFH. One month after surgery, while on adjuvant chemotherapy, the patient was readmitted with dyspnea and a slightly palpable mass in the area of the previous radical resection. CT scan revealed local tumor recurrence along with multiple pulmonary metastatic deposits. Unfortunately, despite treatment, the patient died of progressive disease 5 weeks later. Primary intra-abdominal MFH is a very rare but aggressive malignancy with a high tendency of local recurrence and metastatic spread. Early detection and complete surgical excision with clear margins is the treatment of choice. In some cases, however, the tumor can exhibit a highly aggressive clinical course despite radical surgery and adjuvant therapy.

  1. (18)F-fluoromisonidazole positron emission tomography can predict pathological necrosis of brain tumors.

    PubMed

    Toyonaga, Takuya; Hirata, Kenji; Yamaguchi, Shigeru; Hatanaka, Kanako C; Yuzawa, Sayaka; Manabe, Osamu; Kobayashi, Kentaro; Watanabe, Shiro; Shiga, Tohru; Terasaka, Shunsuke; Kobayashi, Hiroyuki; Kuge, Yuji; Tamaki, Nagara

    2016-07-01

    Tumor necrosis is one of the indicators of tumor aggressiveness. (18)F-fluoromisonidazole (FMISO) is the most widely used positron emission tomography (PET) tracer to evaluate severe hypoxia in vivo. Because severe hypoxia causes necrosis, we hypothesized that intratumoral necrosis can be detected by FMISO PET in brain tumors regardless of their histopathology. We applied FMISO PET to various types of brain tumors before tumor resection and evaluated the correlation between histopathological necrosis and FMISO uptake. This study included 59 brain tumor patients who underwent FMISO PET/computed tomography before any treatments. According to the pathological diagnosis, the brain tumors were divided into three groups: astrocytomas (group 1), neuroepithelial tumors except for astrocytomas (group 2), and others (group 3). Two experienced neuropathologists evaluated the presence of necrosis in consensus. FMISO uptake in the tumor was evaluated visually and semi-quantitatively using the tumor-to-normal cerebellum ratio (TNR). In visual analyses, 26/27 cases in the FMISO-positive group presented with necrosis, whereas 28/32 cases in the FMISO-negative group did not show necrosis. Mean TNRs with and without necrosis were 3.49 ± 0.97 and 1.43 ± 0.42 (p < 0.00001) in group 1, 2.91 ± 0.83 and 1.44 ± 0.20 (p < 0.005) in group 2, and 2.63 ± 1.16 and 1.35 ± 0.23 (p < 0.05) in group 3, respectively. Using a cut-off value of TNR = 1.67, which was calculated by normal reference regions of interest, we could predict necrosis with sensitivity, specificity, and accuracy of 96.7, 93.1, and 94.9 %, respectively. FMISO uptake within the lesion indicated the presence of histological micro-necrosis. When we used a TNR of 1.67 as the cut-off value, intratumoral micro-necrosis was sufficiently predictable. Because the presence of necrosis implies a poor prognosis, our results suggest that FMISO PET could provide important information for

  2. Gene expression profiles of metabolic aggressiveness and tumor recurrence in benign meningioma.

    PubMed

    Serna, Eva; Morales, José Manuel; Mata, Manuel; Gonzalez-Darder, José; San Miguel, Teresa; Gil-Benso, Rosario; Lopez-Gines, Concha; Cerda-Nicolas, Miguel; Monleon, Daniel

    2013-01-01

    Around 20% of meningiomas histologically benign may be clinically aggressive and recur. This strongly affects management of meningioma patients. There is a need to evaluate the potential aggressiveness of an individual meningioma. Additional criteria for better classification of meningiomas will improve clinical decisions as well as patient follow up strategy after surgery. The aim of this study was to determine the relationship between gene expression profiles and new metabolic subgroups of benign meningioma with potential clinical relevance. Forty benign and fourteen atypical meningioma tissue samples were included in the study. We obtained metabolic profiles by NMR and recurrence after surgery information for all of them. We measured gene expression by oligonucleotide microarray measurements on 19 of them. To our knowledge, this is the first time that distinct gene expression profiles are reported for benign meningioma molecular subgroups with clinical correlation. Our results show that metabolic aggressiveness in otherwise histological benign meningioma proceeds mostly through alterations in the expression of genes involved in the regulation of transcription, mainly the LMO3 gene. Genes involved in tumor metabolism, like IGF1R, are also differentially expressed in those meningioma subgroups with higher rates of membrane turnover, higher energy demand and increased resistance to apoptosis. These new subgroups of benign meningiomas exhibit different rates of recurrence. This work shows that benign meningioma with metabolic aggressiveness constitute a subgroup of potentially recurrent tumors in which alterations in genes regulating critical features of aggressiveness, like increased angiogenesis or cell invasion, are still no predominant. The determination of these gene expression biosignatures may allow the early detection of clinically aggressive tumors.

  3. Brain Tumor Epidemiology Consortium (BTEC)

    Cancer.gov

    The Brain Tumor Epidemiology Consortium is an open scientific forum organized to foster the development of multi-center, international and inter-disciplinary collaborations that will lead to a better understanding of the etiology, outcomes, and prevention of brain tumors.

  4. Brain structures and neurotransmitters regulating aggression in cats: implications for human aggression.

    PubMed

    Gregg, T R; Siegel, A

    2001-01-01

    1. Violence and aggression are major public health problems. 2. The authors have used techniques of electrical brain stimulation, anatomical-immunohistochemical techniques, and behavioral pharmacology to investigate the neural systems and circuits underlying aggressive behavior in the cat. 3. The medial hypothalamus and midbrain periaqueductal gray are the most important structures mediating defensive rage behavior, and the perifornical lateral hypothalamus clearly mediates predatory attack behavior. The hippocampus, amygdala, bed nucleus of the stria terminalis, septal area, cingulate gyrus, and prefrontal cortex project to these structures directly or indirectly and thus can modulate the intensity of attack and rage. 4. Evidence suggests that several neurotransmitters facilitate defensive rage within the PAG and medial hypothalamus, including glutamate, Substance P, and cholecystokinin, and that opioid peptides suppress it; these effects usually depend on the subtype of receptor that is activated. 5. A key recent discovery was a GABAergic projection that may underlie the often-observed reciprocally inhibitory relationship between these two forms of aggression. 6. Recently, Substance P has come under scrutiny as a possible key neurotransmitter involved in defensive rage, and the mechanism by which it plays a role in aggression and rage is under investigation. 7. It is hoped that this line of research will provide a better understanding of the neural mechanisms and substrates regulating aggression and rage and thus establish a rational basis for treatment of disorders associated with these forms of aggression.

  5. What underlies the diversity of brain tumors?

    PubMed Central

    Swartling, Fredrik J.; Hede, Sanna-Maria; Weiss, William A.

    2012-01-01

    Glioma and medulloblastoma represent the most commonly occurring malignant brain tumors in adults and in children respectively. Recent genomic and transcriptional approaches present a complex group of diseases, and delineate a number of molecular subgroups within tumors that share a common histopathology. Differences in cells of origin, regional niches, developmental timing and genetic events all contribute to this heterogeneity. In an attempt to recapitulate the diversity of brain tumors, an increasing array of genetically engineered mouse models (GEMMs) has been developed. These models often utilize promoters and genetic drivers from normal brain development, and can provide insight into specific cells from which these tumors originate. GEMMs show promise in both developmental biology and developmental therapeutics. This review describes numerous murine brain tumor models in the context of normal brain development, and the potential for these animals to impact brain tumor research. PMID:23085857

  6. Rhabdoid Meningioma of Brain - A Rare Aggressive Tumor

    PubMed Central

    Mondal, Sajeeb; Pradhan, Rajashree; Pal, Subrata; Chatterjee, Sharmistha; Bandyapadhyay, Arindam; Bhattacharyya, Debosmita

    2017-01-01

    Rhabdoid meningioma is a rare aggressive variant of meningioma, regarded as WHO Grade III type. Histologically and cytologically, it is distinctive type having abundant eosinophilic cytoplasm, cytoplasmic inclusion with eccentrically placed vesicular nuclei and prominent nucleoli. High recurrence rate and poor outcome are important features. Here, we are presenting a rare case of rhabdoid meningioma found in a recurrent meningioma of the posterior fossa in a middle-aged female. We emphasized the squash cytology and histology finding of the rare neoplasm. PMID:28900335

  7. Multifunctional Nanoparticles for Brain Tumor Diagnosis and Therapy

    PubMed Central

    Cheng, Yu; Morshed, Ramin; Auffinger, Brenda; Tobias, Alex L.; Lesniak, Maciej S.

    2013-01-01

    Brain tumors are a diverse group of neoplasms that often carry a poor prognosis for patients. Despite tremendous efforts to develop diagnostic tools and therapeutic avenues, the treatment of brain tumors remains a formidable challenge in the field of neuro-oncology. Physiological barriers including the blood-brain barrier result in insufficient accumulation of therapeutic agents at the site of a tumor, preventing adequate destruction of malignant cells. Furthermore, there is a need for improvements in brain tumor imaging to allow for better characterization and delineation of tumors, visualization of malignant tissue during surgery, and tracking of response to chemotherapy and radiotherapy. Multifunctional nanoparticles offer the potential to improve upon many of these issues and may lead to breakthroughs in brain tumor management. In this review, we discuss the diagnostic and therapeutic applications of nanoparticles for brain tumors with an emphasis on innovative approaches in tumor targeting, tumor imaging, and therapeutic agent delivery. Clinically feasible nanoparticle administration strategies for brain tumor patients are also examined. Furthermore, we address the barriers towards clinical implementation of multifunctional nanoparticles in the context of brain tumor management. PMID:24060923

  8. Within-brain classification for brain tumor segmentation.

    PubMed

    Havaei, Mohammad; Larochelle, Hugo; Poulin, Philippe; Jodoin, Pierre-Marc

    2016-05-01

    In this paper, we investigate a framework for interactive brain tumor segmentation which, at its core, treats the problem of interactive brain tumor segmentation as a machine learning problem. This method has an advantage over typical machine learning methods for this task where generalization is made across brains. The problem with these methods is that they need to deal with intensity bias correction and other MRI-specific noise. In this paper, we avoid these issues by approaching the problem as one of within brain generalization. Specifically, we propose a semi-automatic method that segments a brain tumor by training and generalizing within that brain only, based on some minimum user interaction. We investigate how adding spatial feature coordinates (i.e., i, j, k) to the intensity features can significantly improve the performance of different classification methods such as SVM, kNN and random forests. This would only be possible within an interactive framework. We also investigate the use of a more appropriate kernel and the adaptation of hyper-parameters specifically for each brain. As a result of these experiments, we obtain an interactive method whose results reported on the MICCAI-BRATS 2013 dataset are the second most accurate compared to published methods, while using significantly less memory and processing power than most state-of-the-art methods.

  9. Improved brain tumor segmentation by utilizing tumor growth model in longitudinal brain MRI

    NASA Astrophysics Data System (ADS)

    Pei, Linmin; Reza, Syed M. S.; Li, Wei; Davatzikos, Christos; Iftekharuddin, Khan M.

    2017-03-01

    In this work, we propose a novel method to improve texture based tumor segmentation by fusing cell density patterns that are generated from tumor growth modeling. To model tumor growth, we solve the reaction-diffusion equation by using Lattice-Boltzmann method (LBM). Computational tumor growth modeling obtains the cell density distribution that potentially indicates the predicted tissue locations in the brain over time. The density patterns is then considered as novel features along with other texture (such as fractal, and multifractal Brownian motion (mBm)), and intensity features in MRI for improved brain tumor segmentation. We evaluate the proposed method with about one hundred longitudinal MRI scans from five patients obtained from public BRATS 2015 data set, validated by the ground truth. The result shows significant improvement of complete tumor segmentation using ANOVA analysis for five patients in longitudinal MR images.

  10. Improved brain tumor segmentation by utilizing tumor growth model in longitudinal brain MRI.

    PubMed

    Pei, Linmin; Reza, Syed M S; Li, Wei; Davatzikos, Christos; Iftekharuddin, Khan M

    2017-02-11

    In this work, we propose a novel method to improve texture based tumor segmentation by fusing cell density patterns that are generated from tumor growth modeling. In order to model tumor growth, we solve the reaction-diffusion equation by using Lattice-Boltzmann method (LBM). Computational tumor growth modeling obtains the cell density distribution that potentially indicates the predicted tissue locations in the brain over time. The density patterns is then considered as novel features along with other texture (such as fractal, and multifractal Brownian motion (mBm)), and intensity features in MRI for improved brain tumor segmentation. We evaluate the proposed method with about one hundred longitudinal MRI scans from five patients obtained from public BRATS 2015 data set, validated by the ground truth. The result shows significant improvement of complete tumor segmentation using ANOVA analysis for five patients in longitudinal MR images.

  11. Prefrontal brain asymmetry and aggression in imprisoned violent offenders.

    PubMed

    Keune, Philipp M; van der Heiden, Linda; Várkuti, Bálint; Konicar, Lilian; Veit, Ralf; Birbaumer, Niels

    2012-05-02

    Anterior brain asymmetry, assessed through the alpha and beta band in resting-state electroencephalogram (EEG) is associated with approach-related behavioral dispositions, particularly with aggression in the general population. To date, the association between frontal asymmetry and aggression has not been examined in highly aggressive groups. We examined the topographic characteristics of alpha and beta activity, the relation of both asymmetry metrics to trait aggression, and whether alpha asymmetry was extreme in anterior regions according to clinical standards in a group of imprisoned violent offenders. As expected, these individuals were characterized by stronger right than left-hemispheric alpha activity, which was putatively extreme in anterior regions in one third of the cases. We also report that in line with observations made in the general population, aggression was associated with stronger right-frontal alpha activity in these violent individuals. This suggests that frontal alpha asymmetry, as a correlate of trait aggression, might be utilizable as an outcome measure in studies which assess the effects of anti-aggressiveness training in violent offenders. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Origins of Brain Tumor Macrophages.

    PubMed

    De Palma, Michele

    2016-12-12

    The ontogeny of brain-tumor-associated macrophages is poorly understood. New findings indicate that both resident microglia and blood-derived monocytes generate the pool of macrophages that infiltrate brain tumors of either primary or metastatic origin. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. What cues do nurses use to predict aggression in people with acquired brain injury?

    PubMed

    Pryor, Julie

    2005-04-01

    There is a paucity of research on the frequent and repeated episodes of aggression and violence experienced by nurses when working with people who have an acquired brain injury. The purpose of this study was to bring this issue into focus by identifying the cues nurses use to predict aggression in people with acquired brain injury. Twenty-eight nurses from 10 different inpatient brain injury rehabilitation units in Australia participated in the study. Participants were interviewed using the Critical Decision Method on a one to one basis for up to one and one half hours on two consecutive days. Transcripts of the interviews were analysed using thematic analysis. Results revealed that nurses identified five groups of cues that predict aggression in a patient: (1) what a patient is saying; (2) changes in a patient's voice; (3) changes in a patient's face; (4) changes in a patient's behavior; and (5) a patient's emotions. Nurses reported using multiple cues to predict aggression and highlighted the importance of personal knowledge of the patient in conjunction with identified cues when predicting aggression. Nurses caring for patients with acquired brain injury can predict many episodes of aggression, though not all, by identifying cues from the patient.

  14. Issues of diagnostic review in brain tumor studies: from the Brain Tumor Epidemiology Consortium.

    PubMed

    Davis, Faith G; Malmer, Beatrice S; Aldape, Ken; Barnholtz-Sloan, Jill S; Bondy, Melissa L; Brännström, Thomas; Bruner, Janet M; Burger, Peter C; Collins, V Peter; Inskip, Peter D; Kruchko, Carol; McCarthy, Bridget J; McLendon, Roger E; Sadetzki, Siegal; Tihan, Tarik; Wrensch, Margaret R; Buffler, Patricia A

    2008-03-01

    Epidemiologists routinely conduct centralized single pathology reviews to minimize interobserver diagnostic variability, but this practice does not facilitate the combination of studies across geographic regions and institutions where diagnostic practices differ. A meeting of neuropathologists and epidemiologists focused on brain tumor classification issues in the context of protocol needs for consortial studies (http://epi.grants.cancer.gov/btec/). It resulted in recommendations relevant to brain tumors and possibly other rare disease studies. Two categories of brain tumors have enough general agreement over time, across regions, and between individual pathologists that one can consider using existing diagnostic data without further review: glioblastomas and meningiomas (as long as uniform guidelines such as those provided by the WHO are used). Prospective studies of these tumors benefit from collection of pathology reports, at a minimum recording the pathology department and classification system used in the diagnosis. Other brain tumors, such as oligodendroglioma, are less distinct and require careful histopathologic review for consistent classification across study centers. Epidemiologic study protocols must consider the study specific aims, diagnostic changes that have taken place over time, and other issues unique to the type(s) of tumor being studied. As diagnostic changes are being made rapidly, there are no readily available answers on disease classification issues. It is essential that epidemiologists and neuropathologists collaborate to develop appropriate study designs and protocols for specific hypothesis and populations.

  15. Time-resolved fluorescence spectroscopy of human brain tumors

    NASA Astrophysics Data System (ADS)

    Marcu, Laura; Thompson, Reid C.; Garde, Smita; Sedrak, Mark; Black, Keith L.; Yong, William H.

    2002-05-01

    Fluorescence spectroscopy of the endogenous emission of brain tumors has been researched as a potentially important method for the intraoperative localization of brain tumor margins. In this study, we investigate the use of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) for demarcation of primary brain tumors by studying the time-resolved spectra of gliomas of different histologic grades. Time-resolved fluorescence (3 ns, 337 nm excitation) from excised human brain tumor show differences between the time-resolved emission of malignant glioma and normal brain tissue (gray and white matter). Our findings suggest that brain tumors can be differentiated from normal brain tissue based upon unique time-resolved fluorescence signature.

  16. MALDI Imaging Analysis of Neuropeptides in Africanized Honeybee (Apis mellifera) Brain: Effect of Aggressiveness.

    PubMed

    Pratavieira, Marcel; Menegasso, Anally Ribeiro da Silva; Esteves, Franciele Grego; Sato, Kenny Umino; Malaspina, Osmar; Palma, Mario Sérgio

    2018-05-18

    The aggressiveness in honeybees seems to be regulated by multiple genes, under the influence of different factors, such as polyethism of workers, environmental factors, and response to alarm pheromones, creating a series of behavioral responses. It is suspected that neuropeptides seem to be involved with the regulation of the aggressive behavior. The role of allatostatin and tachykinin-related neuropeptides in honeybee brain during the aggressive behavior is unknown; thus, worker honeybees were stimulated to attack and to sting leather targets hanged in front of the colonies. The aggressive individuals were collected and immediately frozen in liquid nitrogen; the heads were removed, and sliced at sagittal plan. The brain slices were submitted to MALDI-Spectral-Imaging analysis, and the results of the present study reported the processing of the precursors proteins into mature forms of the neuropeptides AmAST A (59-76) (AYTYVSEYKRLPVYNFGL-NH2), AmAST A (69-76) (LPVYNFGL-NH2), AmTRP (88 - 96) (APMGFQGMR-NH2), and AmTRP (254 - 262) (ARMGFHGMR-NH2), which apparently acted in different neuropils of honeybee brain, during the aggressive behavior, possibly playing the neuromodulation of different aspects of this complex behavior. These results were biologically validated performing aggressiveness-related behavioral assays, using young honeybee workers that received 1 ng of AmAST A (69-76) or AmTRP (88 - 96) via hemocele. The young workers that were not expected to be aggressive individuals, presented a complete series of the aggressive behaviors, in presence of the neuropeptides, corroborating the hypothesis that correlates the presence of mature AmASTs A and AmTRPs in honeybee brain with the aggressiveness of this insect.

  17. Chemo brain or tumor brain - that is the question: the presence of extracranial tumors profoundly affects molecular processes in the prefrontal cortex of TumorGraft mice

    PubMed Central

    Kovalchuk, Anna; Ilnytskyy, Yaroslav; Rodriguez-Juarez, Rocio; Shpyleva, Svitlana; Melnyk, Stepan; Pogribny, Igor; Katz, Amanda; Sidransky, David; Kovalchuk, Olga; Kolb, Bryan

    2017-01-01

    Cancer chemotherapy causes numerous persistent central nervous system complications. This condition is known as chemo brain. Cognitive impairments occur even before treatment, and hence are referred to as cancer associated cognitive changes, or tumor brain. There is much yet to be learned about the mechanisms of both chemo brain and tumor brain. The frequency and timing of chemo brain and tumor brain occurrence and persistence strongly suggest they may be epigenetic in nature and associated with altered gene expression. Here we used TumorGraftTM models wherein part of a patient's tumor is removed and grafted into immune-deficient mice and conducted global gene expression and DNA methylation analysis. We show that malignant non-central nervous system tumor growth causes profound molecular alterations in the brain. Mice harbouring triple negative or progesterone positive breast cancer TumorGrafts exhibited altered gene expression, decreased levels of DNA methylation, increased levels of DNA hydroxymethylation, and oxidative stress in the prefrontal cortex. Interestingly, chemotherapy did not have any additional synergistic effects on the analyzed processes. The molecular changes observed in this study are known signs of neurodegeneration and brain aging. This study provides an important roadmap for future large-scale analysis of the molecular and cellular mechanisms of tumor brain. PMID:28758896

  18. Targeting Brain Tumors with Nanomedicines: Overcoming Challenges of Blood Brain Barrier.

    PubMed

    Ningaraj, Nagendra S; Reddy, Polluru L; Khaitan, Divya

    2018-04-12

    This review elucidates ongoing research, which show improved delivery of anticancer drugs alone and/ or enclosed in carriers collectively called nanomedicines to cross the Blood brain barrier (BBB) / blood-brain tumor barrier (BTB) to kill tumor cells and impact patient survival. We highlighted various advances in understanding the mechanism of BTB function that impact on anticancer therapeutics delivery. We discussed latest breakthroughs in developing pharmaceutical strategies, including nanomedicines and delivering them across BTB for brain tumor management and treatment. We highlight various studies on regulation of BTB permeability regulation with respect to nanotech-based nanomedicines for targeted treatment of brain tumors. We have reviewed latest literature on development of specialized molecules and nanospheres for carrying pay load of anticancer agents to brain tumor cells across the BBB/ BTB and avoid drug efflux systems. We discuss identification and development of distinctive BTB biomarkers for targeted anti-cancer drug delivery to brain tumors. In addition, we discussed nanomedicines and multimeric molecular therapeutics that were encapsulated in nanospheres for treatment and monitoring of brain tumors. In this context, we highlight our research on calcium-activated potassium channels (KCa) and ATP-sensitive potassium channels (KATP) as portals of enhanced antineoplastic drugs delivery. This review might interest both academic and drug company scientists involved in drug delivery to brain tumors. We further seek to present evidence that BTB modulators can be clinically developed as combination drug or/ and as stand-alone anticancer drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Microglia function in brain tumors.

    PubMed

    Watters, Jyoti J; Schartner, Jill M; Badie, Behnam

    2005-08-01

    Microglia play an important role in inflammatory diseases of the central nervous system (CNS). These cells have also been identified in brain neoplasms; however, as of yet their function largely remains unclear. More recent studies designed to characterize further tumor-associated microglia suggest that the immune effector function of these cells may be suppressed in CNS tumors. Furthermore, microglia and macrophages can secrete various cytokines and growth factors that may contribute to the successful immune evasion, growth, and invasion of brain neoplasms. A better understanding of microglia and macrophage function is essential for the development of immune-based treatment strategies against malignant brain tumors. (c) 2005 Wiley-Liss, Inc.

  20. Local oxytocin expression and oxytocin receptor binding in the male rat brain is associated with aggressiveness.

    PubMed

    Calcagnoli, Federica; de Boer, Sietse F; Beiderbeck, Daniela I; Althaus, Monika; Koolhaas, Jaap M; Neumann, Inga D

    2014-03-15

    We recently demonstrated in male wild-type Groningen rats that enhancing brain oxytocin (OXT) levels acutely produces marked pro-social explorative and anti-aggressive effects. Moreover, these pharmacologically-induced changes are moderated by the individual's aggressive phenotype, suggesting an inverse relationship between aggressiveness and tonic endogenous OXT signaling properties. Aim of the present study was to verify the hypothesis that variations in OXT expression and/or OXT receptor (OXTR) binding in selected brain regions are associated with different levels or forms of aggression. To this end, male resident wild-type Groningen rats that repeatedly contested and dominated intruder conspecifics were categorized as being low aggressive, highly aggressive or excessively aggressive. Their brains were subsequently collected and quantified for OXT mRNA expression and OXTR binding levels. Our results showed that OXT mRNA expression in the hypothalamic paraventricular nucleus (PVN), but not in the supraoptic nucleus (SON), negatively correlates with the level of offensiveness. In particular, the excessively aggressive group showed a significantly lower OXT mRNA expression in the PVN as compared to both low and highly aggressive groups. Further, the excessively aggressive animals showed the highest OXTR binding in the central amygdala (CeA) and bed nucleus of the stria terminalis (BNST). These findings demonstrate that male rats with excessively high levels and abnormal forms of aggressive behavior have diminished OXT transcription and enhanced OXTR binding capacities in specific nodes of the social behavioral brain circuitry. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Deep-brain stimulation for aggressive and disruptive behavior.

    PubMed

    Franzini, Angelo; Broggi, Giovanni; Cordella, Roberto; Dones, Ivano; Messina, Giuseppe

    2013-01-01

    To describe our institutional experience with deep-brain stimulation (DBS) used in the treatment of aggressive and disruptive behavior refractory to conservative treatment. With stereotactic methodology and under general anesthesia, seven patients (from 2002 to 2010) were given DBS in the posterior hypothalamic region, bilaterally, and with the aid of intraoperative microrecording. Six of seven patients presented a clear reduction in the aggression and disruptive bouts, with subsequent simplification of familiar management. DBS of the posterior hypothalamic region could be an effective treatment for patients affected by mental retardation in whom disruptive and drug-refractory aggressive behavior coexists. Although several experimental data are available on this target, further studies are necessary to confirm the long-term efficacy and safety of this procedure. Copyright © 2013. Published by Elsevier Inc.

  2. An automatic brain tumor segmentation tool.

    PubMed

    Diaz, Idanis; Boulanger, Pierre; Greiner, Russell; Hoehn, Bret; Rowe, Lindsay; Murtha, Albert

    2013-01-01

    This paper introduces an automatic brain tumor segmentation method (ABTS) for segmenting multiple components of brain tumor using four magnetic resonance image modalities. ABTS's four stages involve automatic histogram multi-thresholding and morphological operations including geodesic dilation. Our empirical results, on 16 real tumors, show that ABTS works very effectively, achieving a Dice accuracy compared to expert segmentation of 81% in segmenting edema and 85% in segmenting gross tumor volume (GTV).

  3. STRESS IN THE CLASSIFICATION OF PITUITARY TUMORS. FOCUS ON AGGRESSIVE PITUITARY ADENOMAS.

    PubMed

    Kovács, Kálmán; Rotondo, Fabio; Horváth, Eva; Syro, Luis V

    2014-03-30

    After a brief summary of the stress concept and the contribution of Dr. Hans Selye, this publication focuses on the classification of pituitary neoplasms and the difficulties to provide conclusive information on the prognosis of various pituitary tumor types. The term "aggressive pituitary tumors" was introduced. These tumors have a rapid cell proliferation rate. At present, the assessment of Ki-67 nuclear labeling index appears to be the simplest and most reliable method to evaluate tumor cell multiplication. Further studies on pituitary tumor biomarkers are needed.

  4. Dynamic perfusion CT in brain tumors.

    PubMed

    Yeung, Timothy Pok Chi; Bauman, Glenn; Yartsev, Slav; Fainardi, Enrico; Macdonald, David; Lee, Ting-Yim

    2015-12-01

    Dynamic perfusion CT (PCT) is an imaging technique for assessing the vascular supply and hemodynamics of brain tumors by measuring blood flow, blood volume, and permeability-surface area product. These PCT parameters provide information complementary to histopathologic assessments and have been used for grading brain tumors, distinguishing high-grade gliomas from other brain lesions, differentiating true progression from post-treatment effects, and predicting prognosis after treatments. In this review, the basic principles of PCT are described, and applications of PCT of brain tumors are discussed. The advantages and current challenges, along with possible solutions, of PCT are presented. Copyright © 2015. Published by Elsevier Ireland Ltd.

  5. Tumor necrosis is an important hallmark of aggressive endometrial cancer and associates with hypoxia, angiogenesis and inflammation responses

    PubMed Central

    Stefansson, Ingunn M.; Birkeland, Even; Bø, Trond Hellem; Øyan, Anne M.; Trovik, Jone; Kalland, Karl-Henning; Jonassen, Inge; Salvesen, Helga B.; Wik, Elisabeth; Akslen, Lars A.

    2015-01-01

    Aims Tumor necrosis is associated with aggressive features of endometrial cancer and poor prognosis. Here, we investigated gene expression patterns and potential treatment targets related to presence of tumor necrosis in primary endometrial cancer lesions. Methods and Results By DNA microarray analysis, expression of genes related to tumor necrosis reflected multiple tumor-microenvironment interactions like tissue hypoxia, angiogenesis and inflammation pathways. A tumor necrosis signature of 38 genes and a related patient cluster (Cluster I, 67% of the cases) were associated with features of aggressive tumors such as type II cancers, estrogen receptor negative tumors and vascular invasion. Further, the tumor necrosis signature was increased in tumor cells grown in hypoxic conditions in vitro. Multiple genes with increased expression are known to be activated by HIF1A and NF-kB. Conclusions Our findings indicate that the presence of tumor necrosis within primary tumors is associated with hypoxia, angiogenesis and inflammation responses. HIF1A, NF-kB and PI3K/mTOR might be potential treatment targets in aggressive endometrial cancers with presence of tumor necrosis. PMID:26485755

  6. Tumor necrosis is an important hallmark of aggressive endometrial cancer and associates with hypoxia, angiogenesis and inflammation responses.

    PubMed

    Bredholt, Geir; Mannelqvist, Monica; Stefansson, Ingunn M; Birkeland, Even; Bø, Trond Hellem; Øyan, Anne M; Trovik, Jone; Kalland, Karl-Henning; Jonassen, Inge; Salvesen, Helga B; Wik, Elisabeth; Akslen, Lars A

    2015-11-24

    Tumor necrosis is associated with aggressive features of endometrial cancer and poor prognosis. Here, we investigated gene expression patterns and potential treatment targets related to presence of tumor necrosis in primary endometrial cancer lesions. By DNA microarray analysis, expression of genes related to tumor necrosis reflected multiple tumor-microenvironment interactions like tissue hypoxia, angiogenesis and inflammation pathways. A tumor necrosis signature of 38 genes and a related patient cluster (Cluster I, 67% of the cases) were associated with features of aggressive tumors such as type II cancers, estrogen receptor negative tumors and vascular invasion. Further, the tumor necrosis signature was increased in tumor cells grown in hypoxic conditions in vitro. Multiple genes with increased expression are known to be activated by HIF1A and NF-kB. Our findings indicate that the presence of tumor necrosis within primary tumors is associated with hypoxia, angiogenesis and inflammation responses. HIF1A, NF-kB and PI3K/mTOR might be potential treatment targets in aggressive endometrial cancers with presence of tumor necrosis.

  7. A New Way to Treat Brain Tumors: Targeting Proteins Coded by Microcephaly Genes?: Brain tumors and microcephaly arise from opposing derangements regulating progenitor growth. Drivers of microcephaly could be attractive brain tumor targets.

    PubMed

    Lang, Patrick Y; Gershon, Timothy R

    2018-05-01

    New targets for brain tumor therapies may be identified by mutations that cause hereditary microcephaly. Brain growth depends on the repeated proliferation of stem and progenitor cells. Microcephaly syndromes result from mutations that specifically impair the ability of brain progenitor or stem cells to proliferate, by inducing either premature differentiation or apoptosis. Brain tumors that derive from brain progenitor or stem cells may share many of the specific requirements of their cells of origin. These tumors may therefore be susceptible to disruptions of the protein products of genes that are mutated in microcephaly. The potential for the products of microcephaly genes to be therapeutic targets in brain tumors are highlighted hereby reviewing research on EG5, KIF14, ASPM, CDK6, and ATR. Treatments that disrupt these proteins may open new avenues for brain tumor therapy that have increased efficacy and decreased toxicity. © 2018 WILEY Periodicals, Inc.

  8. Recent Advancement of the Molecular Diagnosis in Pediatric Brain Tumor.

    PubMed

    Bae, Jeong-Mo; Won, Jae-Kyung; Park, Sung-Hye

    2018-05-01

    Recent discoveries of brain tumor-related genes and fast advances in genomic testing technologies have led to the era of molecular diagnosis of brain tumor. Molecular profiling of brain tumor became the significant step in the diagnosis, the prediction of prognosis and the treatment of brain tumor. Because traditional molecular testing methods have limitations in time and cost for multiple gene tests, next-generation sequencing technologies are rapidly introduced into clinical practice. Targeted sequencing panels using these technologies have been developed for brain tumors. In this article, focused on pediatric brain tumor, key discoveries of brain tumor-related genes are reviewed and cancer panels used in the molecular profiling of brain tumor are discussed.

  9. Recent Advancement of the Molecular Diagnosis in Pediatric Brain Tumor

    PubMed Central

    Bae, Jeong-Mo; Won, Jae-Kyung; Park, Sung-Hye

    2018-01-01

    Recent discoveries of brain tumor-related genes and fast advances in genomic testing technologies have led to the era of molecular diagnosis of brain tumor. Molecular profiling of brain tumor became the significant step in the diagnosis, the prediction of prognosis and the treatment of brain tumor. Because traditional molecular testing methods have limitations in time and cost for multiple gene tests, next-generation sequencing technologies are rapidly introduced into clinical practice. Targeted sequencing panels using these technologies have been developed for brain tumors. In this article, focused on pediatric brain tumor, key discoveries of brain tumor-related genes are reviewed and cancer panels used in the molecular profiling of brain tumor are discussed. PMID:29742887

  10. Primary brain tumors, neural stem cell, and brain tumor cancer cells: where is the link?

    PubMed Central

    Germano, Isabelle; Swiss, Victoria; Casaccia, Patrizia

    2010-01-01

    The discovery of brain tumor-derived cells (BTSC) with the properties of stem cells has led to the formulation of the hypothesis that neural stem cells could be the cell of origin of primary brain tumors (PBT). In this review we present the most common molecular changes in PBT, define the criteria of identification of BTSC and discuss the similarities between the characteristics of these cells and those of the endogenous population of neural stem cells (NPCs) residing in germinal areas of the adult brain. Finally, we propose possible mechanisms of cancer initiation and progression and suggest a model of tumor initiation that includes intrinsic changes of resident NSC and potential changes in the microenvironment defining the niche where the NSC reside. PMID:20045420

  11. Examination of Blood-Brain Barrier (BBB) Integrity In A Mouse Brain Tumor Model

    PubMed Central

    On, Ngoc; Mitchell, Ryan; Savant, Sanjot D.; Bachmeier, Corbin. J.; Hatch, Grant M.; Miller, Donald W.

    2013-01-01

    The present study evaluates, both functionally and biochemically, brain tumor-induced alterations in brain capillary endothelial cells. Brain tumors were induced in Balb/c mice via intracranial injection of Lewis Lung carcinoma (3LL) cells into the right hemisphere of the mouse brain using stereotaxic apparatus. Blood-brain barrier (BBB) permeability was assessed at various stages of tumor development, using both radiolabeled tracer permeability and magnetic resonance imaging (MRI) with gadolinium diethylene-triamine-pentaacetate contrast enhancement (Gad-DTPA). The expression of the drug efflux transporter, P-glycoprotein (P-gp), in the BBB at various stages of tumor development was also evaluated by Western blot and immunohistochemistry. Median mouse survival following tumor cell injection was 17 days. The permeability of the BBB to 3H-mannitol was similar in both brain hemispheres at 7 and 10 days post-injection. By day 15, there was a 2-fold increase in 3H-mannitol permeability in the tumor bearing hemispheres compared to the non-tumor hemispheres. Examination of BBB permeability with Gad-DTPA contrast enhanced MRI indicated cerebral vascular permeability changes were confined to the tumor area. The permeability increase observed at the later stages of tumor development correlated with an increase in cerebral vascular volume suggesting angiogenesis within the tumor bearing hemisphere. Furthermore, the Gad-DPTA enhancement observed within the tumor area was significantly less than Gad-DPTA enhancement within the circumventricular organs not protected by the BBB. Expression of P-gp in both the tumor bearing and non-tumor bearing portions of the brain appeared similar at all time points examined. These studies suggest that although BBB integrity is altered within the tumor site at later stages of development, the BBB is still functional and limiting in terms of solute and drug permeability in and around the tumor. PMID:23184143

  12. Is aggressive treatment of traumatic brain injury cost-effective?

    PubMed

    Whitmore, Robert G; Thawani, Jayesh P; Grady, M Sean; Levine, Joshua M; Sanborn, Matthew R; Stein, Sherman C

    2012-05-01

    The object of this study was to determine whether aggressive treatment of severe traumatic brain injury (TBI), including invasive intracranial monitoring and decompressive craniectomy, is cost-effective. A decision-analytical model was created to compare costs, outcomes, and cost-effectiveness of 3 strategies for treating a patient with severe TBI. The aggressive-care approach is compared with "routine care," in which Brain Trauma Foundation guidelines are not followed. A "comfort care" category, in which a single day in the ICU is followed by routine floor care, is included for comparison only. Probabilities of each treatment resulting in various Glasgow Outcome Scale (GOS) scores were obtained from the literature. The GOS scores were converted to quality-adjusted life years (QALYs), based on expected longevity and calculated quality of life associated with each GOS category. Estimated direct (acute and long-term medical care) and indirect (loss of productivity) costs were calculated from the perspective of society. Sensitivity analyses employed a 2D Monte Carlo simulation of 1000 trials, each with 1000 patients. The model was also used to estimate these values for patients 40, 60, and 80 years of age. For the average 20-year-old, aggressive care yields 11.7 (± 1.6 [SD]) QALYs, compared with routine care (10.0 ± 1.5 QALYs). This difference is highly significant (p < 0.0001). Although the differences in effectiveness between the 2 strategies diminish with advancing age, aggressive care remains significantly better at all ages. When all costs are considered, aggressive care is also significantly less costly than routine care ($1,264,000 ± $118,000 vs $1,361,000 ± $107,000) for the average 20-year-old. Aggressive care remains significantly less costly until age 80, at which age it costs more than routine care. However, even in the 80-year-old, aggressive care is likely the more cost-effective approach. Comfort care is associated with poorer outcomes at all ages

  13. Brain Tumor Surgery

    MedlinePlus

    ... Proton Therapy Alternative & Integrative Medicine Clinical Trials GBM AGILE TTFields – Optune™ Brain Tumor Treatment Locations Treatment Side Effects & their Management Support and Resources Caregiver Resource Center Pediatric Caregiver ...

  14. 18F-Fluorocholine PET/CT, Brain MRI, and 5-Aminolevulinic Acid for the Assessment of Tumor Resection in High-Grade Glioma.

    PubMed

    García Vicente, Ana María; Jiménez Aragón, Fátima; Villena Martín, Maikal; Jiménez Londoño, German Andrés; Borrás Moreno, Jose María

    2017-06-01

    High-grade glioma is a very aggressive and infiltrative tumor in which complete resection is a chance for a better outcome. We present the case of a 57-year-old man with a brain lesion suggestive of high-grade glioma. Brain MRI and F-fluorocholine PET/CT were performed previously to plan the surgery. Surgery was microscope assisted after the administration of 5-aminolevulinic acid. Postsurgery brain MRI and PET were blind evaluated to the surgery results and reported as probably gross total resection.

  15. Blood brain barrier: a challenge for effectual therapy of brain tumors.

    PubMed

    Bhowmik, Arijit; Khan, Rajni; Ghosh, Mrinal Kanti

    2015-01-01

    Brain tumors are one of the most formidable diseases of mankind. They have only a fair to poor prognosis and high relapse rate. One of the major causes of extreme difficulty in brain tumor treatment is the presence of blood brain barrier (BBB). BBB comprises different molecular components and transport systems, which in turn create efflux machinery or hindrance for the entry of several drugs in brain. Thus, along with the conventional techniques, successful modification of drug delivery and novel therapeutic strategies are needed to overcome this obstacle for treatment of brain tumors. In this review, we have elucidated some critical insights into the composition and function of BBB and along with it we have discussed the effective methods for delivery of drugs to the brain and therapeutic strategies overcoming the barrier.

  16. [Brain tumor immunotherapy: Illusion or hope?

    PubMed

    Migliorini, Denis; Dutoit, Valérie; Walker, Paul R; Dietrich, Pierre-Yves

    2017-05-01

    Immunotherapy has proven efficient for many tumors and is now part of standard of care in many indications. What is the picture for brain tumors? The recent development of anti-CTLA-4 and PD1 immune checkpoint inhibitors, which have the ability to restore T lymphocytes activity, has gathered enthusiasm and is now paving the way towards more complex models of immune system manipulation. These models include, among others, vaccination and adoptive T cell transfer technologies. Complementary to those strategies, molecules capable of reshaping the immune tumor microenvironment are currently being investigated in early phase trials. Indeed, the tumor bed is hostile to anti-tumor immune responses due to many escape mechanisms, and this is particularly true in the context of brain tumors, a master in eliciting immunosuppressive cells and molecules. The goal of this review is to describe the hopes and challenges of brain tumors immunotherapy and to propose an inventory of the current clinical research with specific focus on the therapies targeting the tumor microenvironment. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  17. The effect of observers on behavior and the brain during aggressive encounters.

    PubMed

    Desjardins, Julie K; Becker, Lisa; Fernald, Russell D

    2015-10-01

    What effect does an audience have on an animal's behavior and where is this influence registered in the brain? To answer these questions, we analyzed male cichlid fish fighting in the presence of audiences of various compositions and measured expression of immediate early genes in the brain as a proxy for neural activity. We hypothesized their behavior would change depending on who was watching them. We measured behavioral responses from both the "watchers" and the "watched" during aggressive encounters and found that males fighting in the presence of an audience were more aggressive than males fighting without an audience. Depending on the nature of the audience, immediate early gene expression in key brain nuclei was differentially influenced. Both when an audience of larger males watched fighting males, and when they were watching larger males fighting, nuclei in the brain considered homologous with mammalian nuclei known to be associated with anxiety showed increased activity. When males were in the presence of any audience or when males saw any other males fighting, nuclei in the brain known to be involved in reproduction and aggression were differentially activated relative to control animals. In all cases, there was a close relationship between patterns of brain gene expression between fighters and observers. This suggests that the network of brain regions known as the social behavior network, common across vertebrates, are activated not only in association with the expression of social behavior but also by the reception of social information. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. The effect of observers on behavior and the brain during aggressive encounters

    PubMed Central

    Desjardins, Julie K.; Becker, Lisa; Fernald, Russell D.

    2015-01-01

    What effect does an audience have on an animal’s behavior and where is this influence registered in the brain? To answer these questions, we analyzed male cichlid fish fighting in the presence of audiences of various compositions and measured expression of immediate early genes in the brain as a proxy for neural activity. We hypothesized their behavior would change depending on who was watching them. We measured behavioral responses from both the “watchers” and the “watched” during aggressive encounters and found that males fighting in the presence of an audience were more aggressive than males fighting without an audience. Depending on the nature of the audience, immediate early gene expression in key brain nuclei was differentially influenced. Both when an audience of larger males watched fighting males, and when they were watching larger males fighting, nuclei in the brain considered homologous with mammalian nuclei known to be associated with anxiety showed increased activity. When males were in the presence of any audience or when males saw any other males fighting, nuclei in the brain known to be involved in reproduction and aggression were differentially activated relative to control animals. In all cases, there was a close relationship between patterns of brain gene expression between fighters and observers. This suggests that the network of brain regions known as the social behavior network, common across vertebrates, are activated not only in association with the expression of social behavior but also by the reception of social information. PMID:26097004

  19. Multiscale CNNs for Brain Tumor Segmentation and Diagnosis.

    PubMed

    Zhao, Liya; Jia, Kebin

    2016-01-01

    Early brain tumor detection and diagnosis are critical to clinics. Thus segmentation of focused tumor area needs to be accurate, efficient, and robust. In this paper, we propose an automatic brain tumor segmentation method based on Convolutional Neural Networks (CNNs). Traditional CNNs focus only on local features and ignore global region features, which are both important for pixel classification and recognition. Besides, brain tumor can appear in any place of the brain and be any size and shape in patients. We design a three-stream framework named as multiscale CNNs which could automatically detect the optimum top-three scales of the image sizes and combine information from different scales of the regions around that pixel. Datasets provided by Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized by MICCAI 2013 are utilized for both training and testing. The designed multiscale CNNs framework also combines multimodal features from T1, T1-enhanced, T2, and FLAIR MRI images. By comparison with traditional CNNs and the best two methods in BRATS 2012 and 2013, our framework shows advances in brain tumor segmentation accuracy and robustness.

  20. Metastatic brain tumor

    MedlinePlus

    ... the brain, the type of tissue involved, the original location of the tumor, and other factors. In rare cases, doctors do not know the original location. This is called cancer of unknown primary ( ...

  1. Multiple intraosseous inflammatory myofibroblastic tumors presenting with an aggressive clinical course: case report.

    PubMed

    Sasagawa, Yasuo; Akai, Takuya; Itou, Shoutarou; Iizuka, Hideaki

    2011-10-01

    The authors report a rare case of multiple intraosseous inflammatory myofibroblastic tumors presenting with an aggressive clinical course. A 60-year-old man presented with a 3-month history of headache and 2 weeks of jaw pain. Magnetic resonance imaging showed a homogeneously enhancing mass in the right parietal bone with subcutaneous and intracranial invasion. Bone scintigraphy revealed 4 intraosseous lesions involving the cranium, mandible, ischium, and calcaneum. After admission, the patient showed left hemiparesis and seizures caused by rapid intracranial tumor extension. The cranial and mandible tumors were resected. Histopathological examinations of both specimens revealed myofibroblastic spindle cell proliferation with inflammatory cell infiltration, and a diagnosis of inflammatory myofibroblastic tumor was made. Two days postoperatively, the patient presented with a high fever and disturbance of consciousness with swelling of the subcutaneous tissues of the head and mandibular lesions. Magnetic resonance imaging revealed a massive intracranial extension of the tumor. Corticosteroid therapy induced remarkable shrinkage of all lesions, and relief from symptoms was obtained. Radiotherapy was then performed for residual tumors. Multiple intraosseous inflammatory myofibroblastic tumors of the bone are very uncommon and may mimic malignant tumors. It is important to recognize that this entity can occur in the cranium and as multiple bony lesions. The recommended treatment is complete surgical resection with adjuvant steroid treatment. Considering the aggressive nature of this entity, additional chemo- and/or radiotherapy may be warranted.

  2. Spotlight on Brain Tumors: Do You Know the Symptoms?

    MedlinePlus

    ... Subscribe October 2017 Print this issue Spotlight on Brain Tumors Do You Know the Symptoms? En español ... at Epilepsy Wise Choices Possible Symptoms of a Brain Tumor The symptoms of a brain tumor depend ...

  3. Cellular phone use and brain tumor: a meta-analysis.

    PubMed

    Kan, Peter; Simonsen, Sara E; Lyon, Joseph L; Kestle, John R W

    2008-01-01

    The dramatic increase in the use of cellular phones has generated concerns about potential adverse effects, especially the development of brain tumors. We conducted a meta-analysis to examine the effect of cellular phone use on the risk of brain tumor development. We searched the literature using MEDLINE to locate case-control studies on cellular phone use and brain tumors. Odds ratios (ORs) for overall effect and stratified ORs associated with specific brain tumors, long-term use, and analog/digital phones were calculated for each study using its original data. A pooled estimator of each OR was then calculated using a random-effects model. Nine case-control studies containing 5,259 cases of primary brain tumors and 12,074 controls were included. All studies reported ORs according to brain tumor subtypes, and five provided ORs on patients with > or =10 years of follow up. Pooled analysis showed an overall OR of 0.90 (95% confidence interval [CI] 0.81-0.99) for cellular phone use and brain tumor development. The pooled OR for long-term users of > or =10 years (5 studies) was 1.25 (95% CI 1.01-1.54). No increased risk was observed in analog or digital cellular phone users. We found no overall increased risk of brain tumors among cellular phone users. The potential elevated risk of brain tumors after long-term cellular phone use awaits confirmation by future studies.

  4. Confronting pediatric brain tumors: parent stories.

    PubMed

    McMillan, Gigi

    2014-01-01

    This narrative symposium brings to light the extreme difficulties faced by parents of children diagnosed with brain tumors. NIB editorial staff and narrative symposium editors, Gigi McMillan and Christy A. Rentmeester, developed a call for stories that was distributed on several list serves and posted on Narrative Inquiry in Bioethics' website. The call asks parents to share their personal experience of diagnosis, treatment, long-term effects of treatment, social issues and the doctor-patient-parent dynamic that develops during this process. Thirteen stories are found in the print version of the journal and an additional six supplemental stories are published online only through Project MUSE. One change readers may notice is that the story authors are not listed in alphabetical order. The symposium editors had a vision for this issue that included leading readers through the timeline of this topic: diagnosis-treatment-acute recovery-recurrence-treatment (again)-acute recovery (again)-long-term quality of life-(possibly) end of life. Stories are arranged to help lead the reader through this timeline.Gigi McMillan is a patient and research subject advocate, co-founder of We Can, Pediatric Brain Tumor Network, as well as, the mother of a child who suffered from a pediatric brain tumor. She also authored the introduction for this symposium. Christy Rentmeester is an Associate Professor of Health Policy and Ethics in the Creighton University School of Medicine. She served as a commentator for this issue. Other commentators for this issue are Michael Barraza, a clinical psychologist and board member of We Can, Pediatric Brain Tumor Network; Lisa Stern, a pediatrician who has diagnosed six children with brain tumors in her 20 years of practice; and Katie Rose, a pediatric brain tumor patient who shares her special insights about this world.

  5. Prefrontal cortex lesions and MAO-A modulate aggression in penetrating traumatic brain injury

    PubMed Central

    Pardini, M.; Krueger, F.; Hodgkinson, C.; Raymont, V.; Ferrier, C.; Goldman, D.; Strenziok, M.; Guida, S.

    2011-01-01

    Objective: This study investigates the interaction between brain lesion location and monoamine oxidase A (MAO-A) in the genesis of aggression in patients with penetrating traumatic brain injury (PTBI). Methods: We enrolled 155 patients with PTBI and 42 controls drawn from the Vietnam Head Injury Study registry. Patients with PTBI were divided according to lesion localization (prefrontal cortex [PFC] vs non-PFC) and were genotyped for the MAO-A polymorphism linked to low and high transcriptional activity. Aggression was assessed with the aggression/agitation subscale of the Neuropsychiatric Inventory (NPI-a). Results: Patients with the highest levels of aggression preferentially presented lesions in PFC territories. A significant interaction between MAO-A transcriptional activity and lesion localization on aggression was revealed. In the control group, carriers of the low-activity allele demonstrated higher aggression than high-activity allele carriers. In the PFC lesion group, no significant differences in aggression were observed between carriers of the 2 MAO-A alleles, whereas in the non-PFC lesion group higher aggression was observed in the high-activity allele than in the low-activity allele carriers. Higher NPI-a scores were linked to more severe childhood psychological traumatic experiences and posttraumatic stress disorder symptomatology in the control and non-PFC lesion groups but not in the PFC lesion group. Conclusions: Lesion location and MAO-A genotype interact in mediating aggression in PTBI. Importantly, PFC integrity is necessary for modulation of aggressive behaviors by genetic susceptibilities and traumatic experiences. Potentially, lesion localization and MAO-A genotype data could be combined to develop risk-stratification algorithms and individualized treatments for aggression in PTBI. PMID:21422455

  6. Expression of hypoxia-inducible carbonic anhydrases in brain tumors

    PubMed Central

    Proescholdt, Martin A.; Mayer, Christina; Kubitza, Marion; Schubert, Thomas; Liao, Shu-Yuan; Stanbridge, Eric J.; Ivanov, Sergey; Oldfield, Edward H.; Brawanski, Alexander; Merrill, Marsha J.

    2005-01-01

    Malignant brain tumors exhibit distinct metabolic characteristics. Despite high levels of lactate, the intracellular pH of brain tumors is more alkaline than normal brain. Additionally, with increasing malignancy, brain tumors display intratumoral hypoxia. Carbonic anhydrase (CA) IX and XII are transmembrane isoenzymes that are induced by tissue hypoxia. They participate in regulation of pH homeostasis by catalyzing the reversible hydration of carbon dioxide. The aim of our study was to investigate whether brain tumors of different histology and grade of malignancy express elevated levels of CA IX and XII as compared to normal brain. We analyzed 120 tissue specimens from brain tumors (primary and metastatic) and normal brain for CA IX and XII expression by immunohistochemistry, Western blot, and in situ hybridization. Whereas normal brain tissue showed minimal levels of CA IX and XII expression, expression in tumors was found to be upregulated with increased level of malignancy. Hemangioblastomas, from patients with von Hippel–Lindau disease, also displayed high levels of CA IX and XII expression. Comparison of CA IX and XII staining with HIF-1α staining revealed a similar microanatomical distribution, indicating hypoxia as a major, but not the only, induction factor. The extent of CA IX and XII staining correlated with cell proliferation, as indicated by Ki67 labeling. The results demonstrate that CA IX and XII are upregulated in intrinsic and metastatic brain tumors as compared to normal brain tissue. This may contribute to the management of tumor-specific acid load and provide a therapeutic target. PMID:16212811

  7. Lassa-Vesicular Stomatitis Chimeric Virus Safely Destroys Brain Tumors

    PubMed Central

    Wollmann, Guido; Drokhlyansky, Eugene; Davis, John N.; Cepko, Connie

    2015-01-01

    ABSTRACT High-grade tumors in the brain are among the deadliest of cancers. Here, we took a promising oncolytic virus, vesicular stomatitis virus (VSV), and tested the hypothesis that the neurotoxicity associated with the virus could be eliminated without blocking its oncolytic potential in the brain by replacing the neurotropic VSV glycoprotein with the glycoprotein from one of five different viruses, including Ebola virus, Marburg virus, lymphocytic choriomeningitis virus (LCMV), rabies virus, and Lassa virus. Based on in vitro infections of normal and tumor cells, we selected two viruses to test in vivo. Wild-type VSV was lethal when injected directly into the brain. In contrast, a novel chimeric virus (VSV-LASV-GPC) containing genes from both the Lassa virus glycoprotein precursor (GPC) and VSV showed no adverse actions within or outside the brain and targeted and completely destroyed brain cancer, including high-grade glioblastoma and melanoma, even in metastatic cancer models. When mice had two brain tumors, intratumoral VSV-LASV-GPC injection in one tumor (glioma or melanoma) led to complete tumor destruction; importantly, the virus moved contralaterally within the brain to selectively infect the second noninjected tumor. A chimeric virus combining VSV genes with the gene coding for the Ebola virus glycoprotein was safe in the brain and also selectively targeted brain tumors but was substantially less effective in destroying brain tumors and prolonging survival of tumor-bearing mice. A tropism for multiple cancer types combined with an exquisite tumor specificity opens a new door to widespread application of VSV-LASV-GPC as a safe and efficacious oncolytic chimeric virus within the brain. IMPORTANCE Many viruses have been tested for their ability to target and kill cancer cells. Vesicular stomatitis virus (VSV) has shown substantial promise, but a key problem is that if it enters the brain, it can generate adverse neurologic consequences, including death. We

  8. Recruited brain tumor-derived mesenchymal stem cells contribute to brain tumor progression.

    PubMed

    Behnan, Jinan; Isakson, Pauline; Joel, Mrinal; Cilio, Corrado; Langmoen, Iver A; Vik-Mo, Einar O; Badn, Wiaam

    2014-05-01

    The identity of the cells that contribute to brain tumor structure and progression remains unclear. Mesenchymal stem cells (MSCs) have recently been isolated from normal mouse brain. Here, we report the infiltration of MSC-like cells into the GL261 murine glioma model. These brain tumor-derived mesenchymal stem cells (BT-MSCs) are defined with the phenotype (Lin-Sca-1+CD9+CD44+CD166+/-) and have multipotent differentiation capacity. We show that the infiltration of BT-MSCs correlates to tumor progression; furthermore, BT-MSCs increased the proliferation rate of GL261 cells in vitro. For the first time, we report that the majority of GL261 cells expressed mesenchymal phenotype under both adherent and sphere culture conditions in vitro and that the non-MSC population is nontumorigenic in vivo. Although the GL261 cell line expressed mesenchymal phenotype markers in vitro, most BT-MSCs are recruited cells from host origin in both wild-type GL261 inoculated into green fluorescent protein (GFP)-transgenic mice and GL261-GFP cells inoculated into wild-type mice. We show the expression of chemokine receptors CXCR4 and CXCR6 on different recruited cell populations. In vivo, the GL261 cells change marker profile and acquire a phenotype that is more similar to cells growing in sphere culture conditions. Finally, we identify a BT-MSC population in human glioblastoma that is CD44+CD9+CD166+ both in freshly isolated and culture-expanded cells. Our data indicate that cells with MSC-like phenotype infiltrate into the tumor stroma and play an important role in tumor cell growth in vitro and in vivo. Thus, we suggest that targeting BT-MSCs could be a possible strategy for treating glioblastoma patients. © 2013 AlphaMed Press.

  9. A Testosterone-Related Structural Brain Phenotype Predicts Aggressive Behavior From Childhood to Adulthood

    PubMed Central

    Nguyen, Tuong-Vi; McCracken, James T; Albaugh, Matthew D; Botteron, Kelly N.; Hudziak, James J; Ducharme, Simon

    2015-01-01

    Structural covariance, the examination of anatomic correlations between brain regions, has emerged recently as a valid and useful measure of developmental brain changes. Yet the exact biological processes leading to changes in covariance, and the relation between such covariance and behavior, remain largely unexplored. The steroid hormone testosterone represents a compelling mechanism through which this structural covariance may be developmentally regulated in humans. Although steroid hormone receptors can be found throughout the central nervous system, the amygdala represents a key target for testosterone-specific effects, given its high density of androgen receptors. In addition, testosterone has been found to impact cortical thickness (CTh) across the whole brain, suggesting that it may also regulate the structural relationship, or covariance, between the amygdala and CTh. Here we examined testosterone-related covariance between amygdala volumes and whole-brain CTh, as well as its relationship to aggression levels, in a longitudinal sample of children, adolescents, and young adults 6 to 22 years old. We found: (1) testosterone-specific modulation of the covariance between the amygdala and medial prefrontal cortex (mPFC); (2) a significant relationship between amygdala-mPFC covariance and levels of aggression; and (3) mediation effects of amygdala-mPFC covariance on the relationship between testosterone and aggression. These effects were independent of sex, age, pubertal stage, estradiol levels and anxious-depressed symptoms. These findings are consistent with prior evidence that testosterone targets the neural circuits regulating affect and impulse regulation, and show, for the first time in humans, how androgen-dependent organizational effects may regulate a very specific, aggression-related structural brain phenotype from childhood to young adulthood. PMID:26431805

  10. A testosterone-related structural brain phenotype predicts aggressive behavior from childhood to adulthood.

    PubMed

    Nguyen, Tuong-Vi; McCracken, James T; Albaugh, Matthew D; Botteron, Kelly N; Hudziak, James J; Ducharme, Simon

    2016-01-01

    Structural covariance, the examination of anatomic correlations between brain regions, has emerged recently as a valid and useful measure of developmental brain changes. Yet the exact biological processes leading to changes in covariance, and the relation between such covariance and behavior, remain largely unexplored. The steroid hormone testosterone represents a compelling mechanism through which this structural covariance may be developmentally regulated in humans. Although steroid hormone receptors can be found throughout the central nervous system, the amygdala represents a key target for testosterone-specific effects, given its high density of androgen receptors. In addition, testosterone has been found to impact cortical thickness (CTh) across the whole brain, suggesting that it may also regulate the structural relationship, or covariance, between the amygdala and CTh. Here, we examined testosterone-related covariance between amygdala volumes and whole-brain CTh, as well as its relationship to aggression levels, in a longitudinal sample of children, adolescents, and young adults 6-22 years old. We found: (1) testosterone-specific modulation of the covariance between the amygdala and medial prefrontal cortex (mPFC); (2) a significant relationship between amygdala-mPFC covariance and levels of aggression; and (3) mediation effects of amygdala-mPFC covariance on the relationship between testosterone and aggression. These effects were independent of sex, age, pubertal stage, estradiol levels and anxious-depressed symptoms. These findings are consistent with prior evidence that testosterone targets the neural circuits regulating affect and impulse regulation, and show, for the first time in humans, how androgen-dependent organizational effects may regulate a very specific, aggression-related structural brain phenotype from childhood to young adulthood. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Toward real-time tumor margin identification in image-guided robotic brain tumor resection

    NASA Astrophysics Data System (ADS)

    Hu, Danying; Jiang, Yang; Belykh, Evgenii; Gong, Yuanzheng; Preul, Mark C.; Hannaford, Blake; Seibel, Eric J.

    2017-03-01

    For patients with malignant brain tumors (glioblastomas), a safe maximal resection of tumor is critical for an increased survival rate. However, complete resection of the cancer is hard to achieve due to the invasive nature of these tumors, where the margins of the tumors become blurred from frank tumor to more normal brain tissue, but in which single cells or clusters of malignant cells may have invaded. Recent developments in fluorescence imaging techniques have shown great potential for improved surgical outcomes by providing surgeons intraoperative contrast-enhanced visual information of tumor in neurosurgery. The current near-infrared (NIR) fluorophores, such as indocyanine green (ICG), cyanine5.5 (Cy5.5), 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX), are showing clinical potential to be useful in targeting and guiding resections of such tumors. Real-time tumor margin identification in NIR imaging could be helpful to both surgeons and patients by reducing the operation time and space required by other imaging modalities such as intraoperative MRI, and has the potential to integrate with robotically assisted surgery. In this paper, a segmentation method based on the Chan-Vese model was developed for identifying the tumor boundaries in an ex-vivo mouse brain from relatively noisy fluorescence images acquired by a multimodal scanning fiber endoscope (mmSFE). Tumor contours were achieved iteratively by minimizing an energy function formed by a level set function and the segmentation model. Quantitative segmentation metrics based on tumor-to-background (T/B) ratio were evaluated. Results demonstrated feasibility in detecting the brain tumor margins at quasi-real-time and has the potential to yield improved precision brain tumor resection techniques or even robotic interventions in the future.

  12. Stereotactic Radiosurgery in Treating Patients With Brain Tumors

    ClinicalTrials.gov

    2012-03-21

    Adult Central Nervous System Germ Cell Tumor; Adult Malignant Meningioma; Adult Medulloblastoma; Adult Noninfiltrating Astrocytoma; Adult Oligodendroglioma; Adult Craniopharyngioma; Adult Meningioma; Brain Metastases; Adult Ependymoma; Adult Pineal Parenchymal Tumor; Adult Brain Stem Glioma; Adult Infiltrating Astrocytoma; Mixed Gliomas; Stage IV Peripheral Primitive Neuroectodermal Tumor

  13. Brain's tumor image processing using shearlet transform

    NASA Astrophysics Data System (ADS)

    Cadena, Luis; Espinosa, Nikolai; Cadena, Franklin; Korneeva, Anna; Kruglyakov, Alexey; Legalov, Alexander; Romanenko, Alexey; Zotin, Alexander

    2017-09-01

    Brain tumor detection is well known research area for medical and computer scientists. In last decades there has been much research done on tumor detection, segmentation, and classification. Medical imaging plays a central role in the diagnosis of brain tumors and nowadays uses methods non-invasive, high-resolution techniques, especially magnetic resonance imaging and computed tomography scans. Edge detection is a fundamental tool in image processing, particularly in the areas of feature detection and feature extraction, which aim at identifying points in a digital image at which the image has discontinuities. Shearlets is the most successful frameworks for the efficient representation of multidimensional data, capturing edges and other anisotropic features which frequently dominate multidimensional phenomena. The paper proposes an improved brain tumor detection method by automatically detecting tumor location in MR images, its features are extracted by new shearlet transform.

  14. Novel strategies of Raman imaging for brain tumor research.

    PubMed

    Anna, Imiela; Bartosz, Polis; Lech, Polis; Halina, Abramczyk

    2017-10-17

    Raman diagnostics and imaging have been shown to be an effective tool for the analysis and discrimination of human brain tumors from normal structures. Raman spectroscopic methods have potential to be applied in clinical practice as they allow for identification of tumor margins during surgery. In this study, we investigate medulloblastoma (grade IV WHO) (n= 5), low-grade astrocytoma (grades I-II WHO) (n =4), ependymoma (n=3) and metastatic brain tumors (n= 1) and the tissue from the negative margins used as normal controls. We compare a high grade medulloblastoma, low grade astrocytoma and non-tumor samples from human central nervous system (CNS) tissue. Based on the properties of the Raman vibrational features and Raman images we provide a real-time feedback method that is label-free to monitor tumor metabolism that reveals reprogramming of biosynthesis of lipids, proteins, DNA and RNA. Our results indicate marked metabolic differences between low and high grade brain tumors. We discuss molecular mechanisms causing these metabolic changes, particularly lipid alterations in malignant medulloblastoma and low grade gliomas that may shed light on the mechanisms driving tumor recurrence thereby revealing new approaches for the treatment of malignant glioma. We have found that the high-grade tumors of central nervous system (medulloblastoma) exhibit enhanced level of β-sheet conformation and down-regulated level of α-helix conformation when comparing against normal tissue. We have found that almost all tumors studied in the paper have increased Raman signals of nucleic acids. This increase can be interpreted as increased DNA/RNA turnover in brain tumors. We have shown that the ratio of Raman intensities I 2930 /I 2845 at 2930 and 2845 cm -1 is a good source of information on the ratio of lipid and protein contents. We have found that the ratio reflects the different lipid and protein contents of cancerous brain tissue compared to the non-tumor tissue. We found that

  15. Novel strategies of Raman imaging for brain tumor research

    PubMed Central

    Anna, Imiela; Bartosz, Polis; Lech, Polis; Halina, Abramczyk

    2017-01-01

    Raman diagnostics and imaging have been shown to be an effective tool for the analysis and discrimination of human brain tumors from normal structures. Raman spectroscopic methods have potential to be applied in clinical practice as they allow for identification of tumor margins during surgery. In this study, we investigate medulloblastoma (grade IV WHO) (n= 5), low-grade astrocytoma (grades I-II WHO) (n =4), ependymoma (n=3) and metastatic brain tumors (n= 1) and the tissue from the negative margins used as normal controls. We compare a high grade medulloblastoma, low grade astrocytoma and non-tumor samples from human central nervous system (CNS) tissue. Based on the properties of the Raman vibrational features and Raman images we provide a real–time feedback method that is label-free to monitor tumor metabolism that reveals reprogramming of biosynthesis of lipids, proteins, DNA and RNA. Our results indicate marked metabolic differences between low and high grade brain tumors. We discuss molecular mechanisms causing these metabolic changes, particularly lipid alterations in malignant medulloblastoma and low grade gliomas that may shed light on the mechanisms driving tumor recurrence thereby revealing new approaches for the treatment of malignant glioma. We have found that the high-grade tumors of central nervous system (medulloblastoma) exhibit enhanced level of β-sheet conformation and down-regulated level of α-helix conformation when comparing against normal tissue. We have found that almost all tumors studied in the paper have increased Raman signals of nucleic acids. This increase can be interpreted as increased DNA/RNA turnover in brain tumors. We have shown that the ratio of Raman intensities I2930/I2845 at 2930 and 2845 cm-1 is a good source of information on the ratio of lipid and protein contents. We have found that the ratio reflects the different lipid and protein contents of cancerous brain tissue compared to the non-tumor tissue. We found that

  16. Hyperpolarized 13C MR Markers of Renal Tumor Aggressiveness

    DTIC Science & Technology

    2014-10-01

    as a biomarker of tumor aggressiveness in a MR compatible 3D cell and tissue culture bioreactor ” to be presented at the ISMRM Workshop on Magnetic... Cell Carcinoma, Hyperpolarized 13C MR, Sub-renal capsule, patient derived tissue slice cultures , bioreactor 3. OVERALL PROJECT SUMMARY: Aim...grade from high grade RCCs using human TSCs cultured in a bioreactor . Aim 2:Identify HP 13C metabolic markers that discriminate low grade from

  17. Patients With Brain Tumors: Who Receives Postacute Occupational Therapy Services?

    PubMed

    Chan, Vincy; Xiong, Chen; Colantonio, Angela

    2015-01-01

    Data on the utilization of occupational therapy among patients with brain tumors have been limited to those with malignant tumors and small samples of patients outside North America in specialized palliative care settings. We built on this research by examining the characteristics of patients with brain tumors who received postacute occupational therapy services in Ontario, Canada, using health care administrative data. Between fiscal years 2004-2005 and 2008-2009, 3,199 patients with brain tumors received occupational therapy services in the home care setting after hospital discharge; 12.4% had benign brain tumors, 78.2% had malignant brain tumors, and 9.4% had unspecified brain tumors. However, patients with benign brain tumors were older (mean age=63.3 yr), and a higher percentage were female (65.2%). More than 90% of patients received in-home occupational therapy services. Additional research is needed to examine the significance of these differences and to identify factors that influence access to occupational therapy services in the home care setting. Copyright © 2015 by the American Occupational Therapy Association, Inc.

  18. Brain-derived neurotrophic factor (BDNF) and its precursor (proBDNF) in genetically defined fear-induced aggression.

    PubMed

    Ilchibaeva, Tatiana V; Kondaurova, Elena M; Tsybko, Anton S; Kozhemyakina, Rimma V; Popova, Nina K; Naumenko, Vladimir S

    2015-09-01

    The brain-derived neurotrophic factor (BDNF), its precursor (proBDNF) and BDNF mRNA levels were studied in the brain of wild rats selectively bred for more than 70 generations for either high level or for the lack of affective aggressiveness towards man. Significant increase of BDNF mRNA level in the frontal cortex and increase of BDNF level in the hippocampus of aggressive rats was revealed. In the midbrain and hippocampus of aggressive rats proBDNF level was increased, whereas BDNF/proBDNF ratio was reduced suggesting the prevalence and increased influence of proBDNF in highly aggressive rats. In the frontal cortex, proBDNF level in aggressive rats was decreased. Thus, considerable structure-specific differences in BDNF and proBDNF levels as well as in BDNF gene expression between highly aggressive and nonaggressive rats were shown. The data suggested the implication of BDNF and its precursor proBDNF in the mechanism of aggressiveness and in the creation of either aggressive or nonaggressive phenotype. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Pediatric Brain Tumors: Genomics and Epigenomics Pave the Way.

    PubMed

    Fontebasso, Adam M; Jabado, Nada

    2015-01-01

    Primary malignant brain tumors remain a disproportionate cause of morbidity and mortality in humans. A number of studies exploring the cancer genome of brain tumors across ages using integrated genetics and epigenetics and next-generation sequencing technologies have recently emerged. This has led to considerable advances in the understanding of the basic biology and pathogenesis of brain tumors, including the most malignant and common variants in children: gliomas and medulloblastoma. Notably, studies of pediatric brain tumors have identified unexpected oncogenic pathways implicated in tumorigenesis. These range from a single pathway/molecule defect such as abnormalities of the mitogen-activated protein kinase pathway, considered to be a hallmark of pilocytic astrocytomas, to alterations in the epigenome as a critical component altered in many subgroups of high-grade brain tumors. Importantly, the type, timing, and spatial clustering of these molecular alterations provide a better understanding of the pathogenesis of the respective brain tumor they target and critical markers for therapy that will help refine pathological grading. We summarize these novel findings in pediatric brain tumors, which also are put in the context of the evolving notion of molecular pathology, now a mandated tool for proper classification and therapy assignment in the clinical setting.

  20. Clarifying Relations Between Dispositional Aggression and Brain Potential Response: Overlapping and Distinct Contributions of Impulsivity and Stress Reactivity

    PubMed Central

    Venables, Noah C.; Patrick, Christopher J.; Hall, Jason R.; Bernat, Edward M.

    2011-01-01

    Impulsive-aggressive individuals exhibit deficits in amplitude of the P3 brain potential response, however, it remains unclear how separable dispositional traits account for this association. The current study sought to clarify the basis of this association by examining contributions of trait impulsiveness and stress reactivity to the observed relationship between dispositional aggression and amplitude of the P3 brain potential response in a visual novelty-oddball procedure. A significant negative association was found between aggressiveness and amplitude of P3 response to both target and novel stimuli over frontal-central scalp sites. Impulsivity showed a parallel inverse relationship with P3 amplitude, attributable to its overlap with dispositional aggression. In contrast, stress reactivity did not exhibit a zero-order association with P3 amplitude, but modestly predicted P3 in a positive direction after accounting for its overlap with aggression. Results are discussed in terms of their implications for individual difference variables and brain processes underlying impulsive-aggressive behavior. PMID:21262318

  1. Expression Profiling of Primary and Metastatic Ovarian Tumors Reveals Differences Indicative of Aggressive Disease

    PubMed Central

    Brodsky, Alexander S.; Fischer, Andrew; Miller, Daniel H.; Vang, Souriya; MacLaughlan, Shannon; Wu, Hsin-Ta; Yu, Jovian; Steinhoff, Margaret; Collins, Colin; Smith, Peter J. S.; Raphael, Benjamin J.; Brard, Laurent

    2014-01-01

    The behavior and genetics of serous epithelial ovarian cancer (EOC) metastasis, the form of the disease lethal to patients, is poorly understood. The unique properties of metastases are critical to understand to improve treatments of the disease that remains in patients after debulking surgery. We sought to identify the genetic and phenotypic landscape of metastatic progression of EOC to understand how metastases compare to primary tumors. DNA copy number and mRNA expression differences between matched primary human tumors and omental metastases, collected at the same time during debulking surgery before chemotherapy, were measured using microarrays. qPCR and immunohistochemistry validated findings. Pathway analysis of mRNA expression revealed metastatic cancer cells are more proliferative and less apoptotic than primary tumors, perhaps explaining the aggressive nature of these lesions. Most cases had copy number aberrations (CNAs) that differed between primary and metastatic tumors, but we did not detect CNAs that are recurrent across cases. A six gene expression signature distinguishes primary from metastatic tumors and predicts overall survival in independent datasets. The genetic differences between primary and metastatic tumors, yet common expression changes, suggest that the major clone in metastases is not the same as in primary tumors, but the cancer cells adapt to the omentum similarly. Together, these data highlight how ovarian tumors develop into a distinct, more aggressive metastatic state that should be considered for therapy development. PMID:24732363

  2. The relational neurobehavioral approach: can a non-aversive program manage adults with brain injury-related aggression without seclusion/restraint?

    PubMed

    Kalapatapu, Raj K; Giles, Gordon M

    2017-11-01

    The Relational Neurobehavioral Approach (RNA) is a set of non-aversive intervention methods to manage individuals with brain injury-related aggression. New data on interventions used in the RNA and on how the RNA interventions can be used with patients with acquired brain injury (ABI) who have differing levels of functional impairment are provided in this paper. The study was conducted over a 6-week period in a secure 65-bed program for individuals with ABI that is housed in two units of a skilled nursing facility (SNF). Implementation of the RNA was compared between two units that housed patients with differing levels of functional impairment (n = 65 adults). Since this was a hierarchical clustered dataset, Generalized Estimating Equations regression was used in the analyses. RNA interventions used to manage the 495 aggressive incidents included the following: Aggression ignored, Closer observation, Talking to patient, Reassurance, Physical distraction, Isolation without seclusion, Immediate medication by mouth, Holding patient. Different interventions were implemented differentially by staff based on level of functional impairment and without use of seclusion or mechanical restraint. The RNA can be used to non-aversively manage aggression in patients with brain injury and with differing levels of functional impairment. Programs adopting the RNA can potentially manage brain injury-related aggression without seclusion or mechanical restraint. Implications for Rehabilitation The Relational Neurobehavioral Approach (RNA) is a set of non-aversive intervention methods to manage individuals with brain injury-related aggression. RNA methods can be used to manage aggression in patients with brain injury who have differing levels of functional impairment. Successful implementation of the RNA may allow for the management of brain injury-related aggression without seclusion or mechanical restraint.

  3. Morbidity and mortality of aggressive resection in patients with advanced neuroendocrine tumors.

    PubMed

    Norton, Jeffrey A; Kivlen, Maryann; Li, Michelle; Schneider, Darren; Chuter, Timothy; Jensen, Robert T

    2003-08-01

    There is considerable controversy about the treatment of patients with malignant advanced neuroendocrine tumors of the pancreas and duodenum. Aggressive surgery remains a potentially efficacious antitumor therapy but is rarely performed because of its possible morbidity and mortality. Aggressive resection of advanced neuroendocrine tumors can be performed with acceptable morbidity and mortality rates and may lead to extended survival. The medical records of patients with advanced neuroendocrine tumors who underwent surgery between 1997 and 2002 by a single surgeon at the University of California, San Francisco, were reviewed in an institutional review board-approved protocol. Surgical procedure, pathologic characteristics, complications, mortality rates, and disease-free and overall survival rates were recorded. Disease-free survival was defined as no tumor identified on radiological imaging studies and no detectable abnormal hormone levels. Proportions were compared statistically using the Fisher exact test. Kaplan-Meier curves were used to estimate survival rates. Twenty patients were identified (11 men and 9 women). Of these, 10 (50%) had gastrinoma, 1 had insulinoma, and the remainder had nonfunctional tumors; 2 had multiple endocrine neoplasia type 1, and 1 had von Hippel-Lindau disease. The mean age was 55 years (range, 34-72 years). In 10 patients (50%), tumors were thought to be unresectable according to radiological imaging studies because of multiple bilobar liver metastases (n = 6), superior mesenteric vein invasion (n = 3), and extensive nodal metastases (n = 1). Tumors were completely removed in 15 patients (75%). Surgical procedures included 8 proximal pancreatectomies (pancreatoduodenectomy or whipple procedure), 3 total pancreatectomies, 9 distal pancreatectomies, and 3 tumor enucleations from the pancreatic head. Superior mesenteric vein reconstruction was done in 3 patients. Liver resections were done in 6 patients, and an extended periaortic node

  4. TMOD-05. MOLECULAR CHARACTERIZATION OF ORTHOTOPIC PATIENT-DERIVED XENOGRAFT MODELS OF PEDIATRIC BRAIN TUMORS AND THEIR USE IN PRECLINICAL EXPERIMENTS

    PubMed Central

    Brabetz, Sebastian; Schmidt, Christin; Groebner, Susanne N.; Mack, Norman; Seker-Cin, Huriye; Jones, David T.W.; Chavez, Lukas; Milde, Till; Witt, Olaf; Leary, Sarah E.; Li, Xiao-Nan; Wechsler-Reya, Robert J.; Olson, James M.; Pfister, Stefan M.; Kool, Marcel

    2017-01-01

    Abstract Genomic studies have shown that multiple molecular subtypes of pediatric brain tumors exist that are biologically and clinically highly distinct. These findings ask for novel subtype specific treatments. To develop these we need more and better preclinical models that correctly reflect the proper tumor (sub)type. Orthotopic patient-derived xenograft (PDX) models generated by intracranial injection of primary patient material into the brain of NSG mice offer the unique possibility to test novel substances in primary patient tissue in an in vivo environment. Prior to drug selection and testing, extensive molecular characterizations of PDX and matching primary tumor/blood (DNA methylation, DNA sequencing, and gene expression) are needed to see how the PDX represents the original disease and to learn about targetable oncogenic drivers in each model. In collaboration with several groups around the world we have generated and fully characterized thus far 75 PDX models reflecting 15 distinct subtypes of pediatric brain cancer. PDX models always retain their molecular subtype and in the vast majority of cases also mutations and copy number alterations compared to matching primary tumors. Most aggressive tumors, harboring MYC(N) amplifications, are overrepresented in the cohort, but also subtypes which have not been available for preclinical testing before due to lack of genetically engineered mouse models or suitable cell lines, such as Group 4 medulloblastoma, are included. All models and corresponding molecular data will become available for the community for preclinical research. Examples of such preclinical experiments will be presented. PDX models of pediatric brain tumors are still quite rare. Our repertoire of PDX models and corresponding molecular characterizations allow researchers all over the world to find the right models for their specific scientific questions. It will provide an unprecedented resource to study tumor biology and pave the way for

  5. General Information about Childhood Brain and Spinal Cord Tumors

    MedlinePlus

    ... Cord Tumors Treatment Overview (PDQ®)–Patient Version General Information About Childhood Brain and Spinal Cord Tumors Go ... types of brain and spinal cord tumors. The information from tests and procedures done to detect (find) ...

  6. Nano to micro delivery systems: targeting angiogenesis in brain tumors.

    PubMed

    Gilert, Ariel; Machluf, Marcelle

    2010-10-08

    Treating brain tumors using inhibitors of angiogenesis is extensively researched and tested in clinical trials. Although anti-angiogenic treatment holds a great potential for treating primary and secondary brain tumors, no clinical treatment is currently approved for brain tumor patients. One of the main hurdles in treating brain tumors is the blood brain barrier - a protective barrier of the brain, which prevents drugs from entering the brain parenchyma. As most therapeutics are excluded from the brain there is an urgent need to develop delivery platforms which will bypass such hurdles and enable the delivery of anti-angiogenic drugs into the tumor bed. Such delivery systems should be able to control release the drug or a combination of drugs at a therapeutic level for the desired time. In this mini-review we will discuss the latest improvements in nano and micro drug delivery platforms that were designed to deliver inhibitors of angiogenesis to the brain.

  7. Nano to micro delivery systems: targeting angiogenesis in brain tumors

    PubMed Central

    2010-01-01

    Treating brain tumors using inhibitors of angiogenesis is extensively researched and tested in clinical trials. Although anti-angiogenic treatment holds a great potential for treating primary and secondary brain tumors, no clinical treatment is currently approved for brain tumor patients. One of the main hurdles in treating brain tumors is the blood brain barrier - a protective barrier of the brain, which prevents drugs from entering the brain parenchyma. As most therapeutics are excluded from the brain there is an urgent need to develop delivery platforms which will bypass such hurdles and enable the delivery of anti-angiogenic drugs into the tumor bed. Such delivery systems should be able to control release the drug or a combination of drugs at a therapeutic level for the desired time. In this mini-review we will discuss the latest improvements in nano and micro drug delivery platforms that were designed to deliver inhibitors of angiogenesis to the brain. PMID:20932320

  8. Brain Tumors - Multiple Languages

    MedlinePlus

    ... FAQs Customer Support Health Topics Drugs & Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Brain Tumors URL of this page: https://medlineplus.gov/ ...

  9. Brain mitochondrial bioenergetics change with rapid and prolonged shifts in aggression in the honey bee, Apis mellifera.

    PubMed

    Rittschof, Clare C; Vekaria, Hemendra J; Palmer, Joseph H; Sullivan, Patrick G

    2018-04-25

    Neuronal function demands high-level energy production, and as such, a decline in mitochondrial respiration characterizes brain injury and disease. A growing number of studies, however, link brain mitochondrial function to behavioral modulation in non-diseased contexts. In the honey bee, we show for the first time that an acute social interaction, which invokes an aggressive response, may also cause a rapid decline in brain mitochondrial bioenergetics. The degree and speed of this decline has only been previously observed in the context of brain injury. Furthermore, in the honey bee, age-related increases in aggressive tendency are associated with increased baseline brain mitochondrial respiration, as well as increased plasticity in response to metabolic fuel type in vitro Similarly, diet restriction and ketone body feeding, which commonly enhance mammalian brain mitochondrial function in vivo , cause increased aggression. Thus, even in normal behavioral contexts, brain mitochondria show a surprising degree of variation in function over both rapid and prolonged time scales, with age predicting both baseline function and plasticity in function. These results suggest that mitochondrial function is integral to modulating aggression-related neuronal signaling. We hypothesize that variation in function reflects mitochondrial calcium buffering activity, and that shifts in mitochondrial function signal to the neuronal soma to regulate gene expression and neural energetic state. Modulating brain energetic state is emerging as a critical component of the regulation of behavior in non-diseased contexts. © 2018. Published by The Company of Biologists Ltd.

  10. Novel treatment strategies for brain tumors and metastases

    PubMed Central

    El-Habashy, Salma E.; Nazief, Alaa M.; Adkins, Chris E.; Wen, Ming Ming; El-Kamel, Amal H.; Hamdan, Ahmed M.; Hanafy, Amira S.; Terrell, Tori O.; Mohammad, Afroz S.; Lockman, Paul R.; Nounou, Mohamed Ismail

    2015-01-01

    This review summarizes patent applications in the past 5 years for the management of brain tumors and metastases. Most of the recent patents discuss one of the following strategies: the development of new drug entities that specifically target the brain cells, the blood–brain barrier and the tumor cells, tailor-designing a novel carrier system that is able to perform multitasks and multifunction as a drug carrier, targeting vehicle and even as a diagnostic tool, direct conjugation of a US FDA approved drug with a targeting moiety, diagnostic moiety or PK modifying moiety, or the use of innovative nontraditional approaches such as genetic engineering, stem cells and vaccinations. Until now, there has been no optimal strategy to deliver therapeutic agents to the CNS for the treatment of brain tumors and metastases. Intensive research efforts are actively ongoing to take brain tumor targeting, and novel and targeted CNS delivery systems to potential clinical application. PMID:24998288

  11. Brain Tumor Database, a free relational database for collection and analysis of brain tumor patient information.

    PubMed

    Bergamino, Maurizio; Hamilton, David J; Castelletti, Lara; Barletta, Laura; Castellan, Lucio

    2015-03-01

    In this study, we describe the development and utilization of a relational database designed to manage the clinical and radiological data of patients with brain tumors. The Brain Tumor Database was implemented using MySQL v.5.0, while the graphical user interface was created using PHP and HTML, thus making it easily accessible through a web browser. This web-based approach allows for multiple institutions to potentially access the database. The BT Database can record brain tumor patient information (e.g. clinical features, anatomical attributes, and radiological characteristics) and be used for clinical and research purposes. Analytic tools to automatically generate statistics and different plots are provided. The BT Database is a free and powerful user-friendly tool with a wide range of possible clinical and research applications in neurology and neurosurgery. The BT Database graphical user interface source code and manual are freely available at http://tumorsdatabase.altervista.org. © The Author(s) 2013.

  12. [Therapeutic strategies targeting brain tumor stem cells].

    PubMed

    Toda, Masahiro

    2009-07-01

    Progress in stem cell research reveals cancer stem cells to be present in a variety of malignant tumors. Since they exhibit resistance to anticancer drugs and radiotherapy, analysis of their properties has been rapidly carried forward as an important target for the treatment of intractable malignancies, including brain tumors. In fact, brain cancer stem cells (BCSCs) have been isolated from brain tumor tissue and brain tumor cell lines by using neural stem cell culture methods and isolation methods for side population (SP) cells, which have high drug-efflux capacity. Although the analysis of the properties of BCSCs is the most important to developing methods in treating BCSCs, the absence of BCSC purification methods should be remedied by taking it up as an important research task in the immediate future. Thus far, there are no effective treatment methods for BCSCs, and several treatment methods have been proposed based on the cell biology characteristics of BCSCs. In this article, I outline potential treatment methods damaging treatment-resistant BCSCs, including immunotherapy which is currently a topic of our research.

  13. Clarifying relations between dispositional aggression and brain potential response: overlapping and distinct contributions of impulsivity and stress reactivity.

    PubMed

    Venables, Noah C; Patrick, Christopher J; Hall, Jason R; Bernat, Edward M

    2011-03-01

    Impulsive-aggressive individuals exhibit deficits in amplitude of the P3 brain potential response, however, it remains unclear how separable dispositional traits account for this association. The current study sought to clarify the basis of this association by examining contributions of trait impulsiveness and stress reactivity to the observed relationship between dispositional aggression and amplitude of the P3 brain potential response in a visual novelty-oddball procedure. A significant negative association was found between aggressiveness and amplitude of P3 response to both target and novel stimuli over frontal-central scalp sites. Impulsivity showed a parallel inverse relationship with P3 amplitude, attributable to its overlap with dispositional aggression. In contrast, stress reactivity did not exhibit a zero-order association with P3 amplitude, but modestly predicted P3 in a positive direction after accounting for its overlap with aggression. Results are discussed in terms of their implications for individual difference variables and brain processes underlying impulsive-aggressive behavior. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Surgical management of patients with primary brain tumors.

    PubMed

    Bohan, Eileen; Glass-Macenka, Deanna

    2004-11-01

    To provide an overview of the diagnostic work-up, intraoperative technologies, postoperative treatment options, and investigational new therapies in patients with malignant brain tumors. Published textbooks and articles and other reference materials. Recent improvements in diagnostic and surgical equipment have influenced outcomes and overall quality of life for patients with central nervous system tumors. The ability to more accurately target and more safely remove brain tumors has enhanced the postoperative period and decreased hospital stays. However, malignant neoplasms continue to be refractory to current treatments, necessitating innovative surgical approaches at the time of initial diagnosis and at tumor recurrence. Nurses with an understanding of current diagnostic and surgical treatment modalities for brain tumors are able to provide accurate patient education and comprehensive care, enhancing the overall hospital and outpatient experience.

  15. Growth of Malignant Non-CNS Tumors Alters Brain Metabolome

    PubMed Central

    Kovalchuk, Anna; Nersisyan, Lilit; Mandal, Rupasri; Wishart, David; Mancini, Maria; Sidransky, David; Kolb, Bryan; Kovalchuk, Olga

    2018-01-01

    Cancer survivors experience numerous treatment side effects that negatively affect their quality of life. Cognitive side effects are especially insidious, as they affect memory, cognition, and learning. Neurocognitive deficits occur prior to cancer treatment, arising even before cancer diagnosis, and we refer to them as “tumor brain.” Metabolomics is a new area of research that focuses on metabolome profiles and provides important mechanistic insights into various human diseases, including cancer, neurodegenerative diseases, and aging. Many neurological diseases and conditions affect metabolic processes in the brain. However, the tumor brain metabolome has never been analyzed. In our study we used direct flow injection/mass spectrometry (DI-MS) analysis to establish the effects of the growth of lung cancer, pancreatic cancer, and sarcoma on the brain metabolome of TumorGraft™ mice. We found that the growth of malignant non-CNS tumors impacted metabolic processes in the brain, affecting protein biosynthesis, and amino acid and sphingolipid metabolism. The observed metabolic changes were similar to those reported for neurodegenerative diseases and brain aging, and may have potential mechanistic value for future analysis of the tumor brain phenomenon. PMID:29515623

  16. Selective Targeting of Brain Tumors with Gold Nanoparticle-Induced Radiosensitization

    PubMed Central

    Joh, Daniel Y.; Sun, Lova; Stangl, Melissa; Al Zaki, Ajlan; Murty, Surya; Santoiemma, Phillip P.; Davis, James J.; Baumann, Brian C.; Alonso-Basanta, Michelle; Bhang, Dongha; Kao, Gary D.; Tsourkas, Andrew; Dorsey, Jay F.

    2013-01-01

    Successful treatment of brain tumors such as glioblastoma multiforme (GBM) is limited in large part by the cumulative dose of Radiation Therapy (RT) that can be safely given and the blood-brain barrier (BBB), which limits the delivery of systemic anticancer agents into tumor tissue. Consequently, the overall prognosis remains grim. Herein, we report our pilot studies in cell culture experiments and in an animal model of GBM in which RT is complemented by PEGylated-gold nanoparticles (GNPs). GNPs significantly increased cellular DNA damage inflicted by ionizing radiation in human GBM-derived cell lines and resulted in reduced clonogenic survival (with dose-enhancement ratio of ∼1.3). Intriguingly, combined GNP and RT also resulted in markedly increased DNA damage to brain blood vessels. Follow-up in vitro experiments confirmed that the combination of GNP and RT resulted in considerably increased DNA damage in brain-derived endothelial cells. Finally, the combination of GNP and RT increased survival of mice with orthotopic GBM tumors. Prior treatment of mice with brain tumors resulted in increased extravasation and in-tumor deposition of GNP, suggesting that RT-induced BBB disruption can be leveraged to improve the tumor-tissue targeting of GNP and thus further optimize the radiosensitization of brain tumors by GNP. These exciting results together suggest that GNP may be usefully integrated into the RT treatment of brain tumors, with potential benefits resulting from increased tumor cell radiosensitization to preferential targeting of tumor-associated vasculature. PMID:23638079

  17. Metastasis Infiltration: An Investigation of the Postoperative Brain-Tumor Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raore, Bethwel; Schniederjan, Matthew; Prabhu, Roshan

    Purpose: This study aims to evaluate brain infiltration of metastatic tumor cells past the main tumor resection margin to assess the biological basis for the use of stereotactic radiosurgery treatment of the tumor resection cavity and visualized resection edge or clinical target volume. Methods and Materials: Resection margin tissue was obtained after gross total resection of a small group of metastatic lesions from a variety of primary sources. The tissue at the border of the tumor and brain tissue was carefully oriented and processed to evaluate the presence of tumor cells within brain tissue and their distance from the resectionmore » margin. Results: Microscopic assessment of the radially oriented tissue samples showed no tumor cells infiltrating the surrounding brain tissue. Among the positive findings were reactive astrocytosis observed on the brain tissue immediately adjacent to the tumor resection bed margin. Conclusions: The lack of evidence of metastatic tumor cell infiltration into surrounding brain suggests the need to target only a narrow depth of the resection cavity margin to minimize normal tissue injury and prevent treatment size-dependent stereotactic radiosurgery complications.« less

  18. Current status of gene therapy for brain tumors

    PubMed Central

    MURPHY, ANDREA M.; RABKIN, SAMUEL D.

    2013-01-01

    Glioblastoma (GBM) is the most common and deadliest primary brain tumor in adults, with current treatments having limited impact on disease progression. Therefore the development of alternative treatment options is greatly needed. Gene therapy is a treatment strategy that relies on the delivery of genetic material, usually transgenes or viruses, into cells for therapeutic purposes, and has been applied to GBM with increasing promise. We have included selectively replication-competent oncolytic viruses within this strategy, although the virus acts directly as a complex biologic anti-tumor agent rather than as a classic gene delivery vehicle. GBM is a good candidate for gene therapy because tumors remain locally within the brain and only rarely metastasize to other tissues; the majority of cells in the brain are post-mitotic, which allows for specific targeting of dividing tumor cells; and tumors can often be accessed neurosurgically for administration of therapy. Delivery vehicles used for brain tumors include nonreplicating viral vectors, normal adult stem/progenitor cells, and oncolytic viruses. The therapeutic transgenes or viruses are typically cytotoxic or express prodrug activating suicide genes to kill glioma cells, immunostimulatory to induce or amplify anti-tumor immune responses, and/or modify the tumor microenvironment such as blocking angiogenesis. This review describes current preclinical and clinical gene therapy strategies for the treatment of glioma. PMID:23246627

  19. Towards tailored management of malignant brain tumors with nanotheranostics.

    PubMed

    Aparicio-Blanco, Juan; Torres-Suárez, Ana-Isabel

    2018-06-01

    Malignant brain tumors still represent an unmet medical need given their rapid progression and often fatal outcome within months of diagnosis. Given their extremely heterogeneous nature, the assumption that a single therapy could be beneficial for all patients is no longer plausible. Hence, early feedback on drug accumulation at the tumor site and on tumor response to treatment would help tailor therapies to each patient's individual needs for personalized medicine. In this context, at the intersection between imaging and therapy, theranostic nanomedicine is a promising new technique for individualized management of malignant brain tumors. Although brain nanotheranostics has yet to be translated into clinical practice, this field is now a research hotspot due to the growing demand for personalized therapies. In this review, the barriers to the clinical implementation of theranostic nanomedicine for tracking tumor responses to treatment and for guiding stimulus-activated therapies and surgical resection of malignant brain tumors are discussed. Likewise, the criteria that nanotheranostic systems need to fulfil to become clinically relevant formulations are analyzed in depth, focusing on theranostic agents already tested in vivo. Currently, magnetic nanoparticles exploiting brain targeting strategies represent the first generation of preclinical theranostic nanomedicines for the management of malignant brain tumors. The development of nanocarriers that can be used both in imaging studies and the treatment of brain tumors could help identify which patients are most and least likely to respond to a given treatment. This will enable clinicians to adapt the therapy to the needs of the patient and avoid overdosing non-responders. Given the many different approaches to non-invasive techniques for imaging and treating brain tumors, it is important to focus on the strategies most likely to be implemented and to design the most feasible theranostic biomaterials that will bring

  20. State of the art survey on MRI brain tumor segmentation.

    PubMed

    Gordillo, Nelly; Montseny, Eduard; Sobrevilla, Pilar

    2013-10-01

    Brain tumor segmentation consists of separating the different tumor tissues (solid or active tumor, edema, and necrosis) from normal brain tissues: gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). In brain tumor studies, the existence of abnormal tissues may be easily detectable most of the time. However, accurate and reproducible segmentation and characterization of abnormalities are not straightforward. In the past, many researchers in the field of medical imaging and soft computing have made significant survey in the field of brain tumor segmentation. Both semiautomatic and fully automatic methods have been proposed. Clinical acceptance of segmentation techniques has depended on the simplicity of the segmentation, and the degree of user supervision. Interactive or semiautomatic methods are likely to remain dominant in practice for some time, especially in these applications where erroneous interpretations are unacceptable. This article presents an overview of the most relevant brain tumor segmentation methods, conducted after the acquisition of the image. Given the advantages of magnetic resonance imaging over other diagnostic imaging, this survey is focused on MRI brain tumor segmentation. Semiautomatic and fully automatic techniques are emphasized. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Multifractal texture estimation for detection and segmentation of brain tumors.

    PubMed

    Islam, Atiq; Reza, Syed M S; Iftekharuddin, Khan M

    2013-11-01

    A stochastic model for characterizing tumor texture in brain magnetic resonance (MR) images is proposed. The efficacy of the model is demonstrated in patient-independent brain tumor texture feature extraction and tumor segmentation in magnetic resonance images (MRIs). Due to complex appearance in MRI, brain tumor texture is formulated using a multiresolution-fractal model known as multifractional Brownian motion (mBm). Detailed mathematical derivation for mBm model and corresponding novel algorithm to extract spatially varying multifractal features are proposed. A multifractal feature-based brain tumor segmentation method is developed next. To evaluate efficacy, tumor segmentation performance using proposed multifractal feature is compared with that using Gabor-like multiscale texton feature. Furthermore, novel patient-independent tumor segmentation scheme is proposed by extending the well-known AdaBoost algorithm. The modification of AdaBoost algorithm involves assigning weights to component classifiers based on their ability to classify difficult samples and confidence in such classification. Experimental results for 14 patients with over 300 MRIs show the efficacy of the proposed technique in automatic segmentation of tumors in brain MRIs. Finally, comparison with other state-of-the art brain tumor segmentation works with publicly available low-grade glioma BRATS2012 dataset show that our segmentation results are more consistent and on the average outperforms these methods for the patients where ground truth is made available.

  2. Multifractal Texture Estimation for Detection and Segmentation of Brain Tumors

    PubMed Central

    Islam, Atiq; Reza, Syed M. S.

    2016-01-01

    A stochastic model for characterizing tumor texture in brain magnetic resonance (MR) images is proposed. The efficacy of the model is demonstrated in patient-independent brain tumor texture feature extraction and tumor segmentation in magnetic resonance images (MRIs). Due to complex appearance in MRI, brain tumor texture is formulated using a multiresolution-fractal model known as multifractional Brownian motion (mBm). Detailed mathematical derivation for mBm model and corresponding novel algorithm to extract spatially varying multifractal features are proposed. A multifractal feature-based brain tumor segmentation method is developed next. To evaluate efficacy, tumor segmentation performance using proposed multifractal feature is compared with that using Gabor-like multiscale texton feature. Furthermore, novel patient-independent tumor segmentation scheme is proposed by extending the well-known AdaBoost algorithm. The modification of AdaBoost algorithm involves assigning weights to component classifiers based on their ability to classify difficult samples and confidence in such classification. Experimental results for 14 patients with over 300 MRIs show the efficacy of the proposed technique in automatic segmentation of tumors in brain MRIs. Finally, comparison with other state-of-the art brain tumor segmentation works with publicly available low-grade glioma BRATS2012 dataset show that our segmentation results are more consistent and on the average outperforms these methods for the patients where ground truth is made available. PMID:23807424

  3. Hybrid Clustering And Boundary Value Refinement for Tumor Segmentation using Brain MRI

    NASA Astrophysics Data System (ADS)

    Gupta, Anjali; Pahuja, Gunjan

    2017-08-01

    The method of brain tumor segmentation is the separation of tumor area from Brain Magnetic Resonance (MR) images. There are number of methods already exist for segmentation of brain tumor efficiently. However it’s tedious task to identify the brain tumor from MR images. The segmentation process is extraction of different tumor tissues such as active, tumor, necrosis, and edema from the normal brain tissues such as gray matter (GM), white matter (WM), as well as cerebrospinal fluid (CSF). As per the survey study, most of time the brain tumors are detected easily from brain MR image using region based approach but required level of accuracy, abnormalities classification is not predictable. The segmentation of brain tumor consists of many stages. Manually segmenting the tumor from brain MR images is very time consuming hence there exist many challenges in manual segmentation. In this research paper, our main goal is to present the hybrid clustering which consists of Fuzzy C-Means Clustering (for accurate tumor detection) and level set method(for handling complex shapes) for the detection of exact shape of tumor in minimal computational time. using this approach we observe that for a certain set of images 0.9412 sec of time is taken to detect tumor which is very less in comparison to recent existing algorithm i.e. Hybrid clustering (Fuzzy C-Means and K Means clustering).

  4. Brain Tumor Epidemiology – A Hub within Multidisciplinary Neuro-oncology. Report on the 15th Brain Tumor Epidemiology Consortium (BTEC) Annual Meeting, Vienna, 2014

    PubMed Central

    Woehrer, Adelheid; Lau, Ching C.; Prayer, Daniela; Bauchet, Luc; Rosenfeld, Myrna; Capper, David; Fisher, Paul G.; Kool, Marcel; Müller, Martin; Kros, Johan M.; Kruchko, Carol; Wiemels, Joseph; Wrensch, Margaret; Danysh, Heather E.; Zouaoui, Sonia; Heck, Julia E.; Johnson, Kimberly J.; Qi, Xiaoyang; O’Neill, Brian P.; Afzal, Samina; Scheurer, Michael E.; Bainbridge, Matthew N.; Nousome, Darryl; El Bahassi, Mustapha; Hainfellner, Johannes A.; Barnholtz-Sloan, Jill S.

    2015-01-01

    The Brain Tumor Epidemiology Consortium (BTEC) is an open scientific forum, which fosters the development of multi-center, international and inter-disciplinary collaborations. BTEC aims to develop a better understanding of the etiology, outcomes, and prevention of brain tumors (http://epi.grants.cancer.gov/btec/). The 15th annual Brain Tumor Epidemiology Consortium Meeting, hosted by the Austrian Societies of Neuropathology and Neuro-oncology, was held on September 9 – 11, 2014 in Vienna, Austria. The meeting focused on the central role of brain tumor epidemiology within multidisciplinary neuro-oncology. Knowledge of disease incidence, outcomes, as well as risk factors is fundamental to all fields involved in research and treatment of patients with brain tumors; thus, epidemiology constitutes an important link between disciplines, indeed the very hub. This was reflected by the scientific program, which included various sessions linking brain tumor epidemiology with clinical neuro-oncology, tissue-based research, and cancer registration. Renowned experts from Europe and the United States contributed their personal perspectives stimulating further group discussions. Several concrete action plans evolved for the group to move forward until next year’s meeting, which will be held at the Mayo Clinic at Rochester, MN, USA. PMID:25518914

  5. Accuracy of Raman spectroscopy in differentiating brain tumor from normal brain tissue.

    PubMed

    Zhang, Jing; Fan, Yimeng; He, Min; Ma, Xuelei; Song, Yanlin; Liu, Ming; Xu, Jianguo

    2017-05-30

    Raman spectroscopy could be applied to distinguish tumor from normal tissues. This meta-analysis was conducted to assess the accuracy of Raman spectroscopy in differentiating brain tumor from normal brain tissue. PubMed and Embase were searched to identify suitable studies prior to Jan 1st, 2016. We estimated the pooled sensitivity, specificity, positive and negative likelihood ratios (LR), diagnostic odds ratio (DOR), and constructed summary receiver operating characteristics (SROC) curves to identity the accuracy of Raman spectroscopy in differentiating brain tumor from normal brain tissue. A total of six studies with 1951 spectra were included. For glioma, the pooled sensitivity and specificity of Raman spectroscopy were 0.96 (95% CI 0.94-0.97) and 0.99 (95% CI 0.98-0.99), respectively. The area under the curve (AUC) was 0.9831. For meningioma, the pooled sensitivity and specificity were 0.98 (95% CI 0.94-1.00) and 1.00 (95% CI 0.98-1.00), respectively. The AUC was 0.9955. This meta-analysis suggested that Raman spectroscopy could be an effective and accurate tool for differentiating glioma and meningioma from normal brain tissue, which would help us both avoid removal of normal tissue and minimize the volume of residual tumor.

  6. Glial brain tumor detection by using symmetry analysis

    NASA Astrophysics Data System (ADS)

    Pedoia, Valentina; Binaghi, Elisabetta; Balbi, Sergio; De Benedictis, Alessandro; Monti, Emanuele; Minotto, Renzo

    2012-02-01

    In this work a fully automatic algorithm to detect brain tumors by using symmetry analysis is proposed. In recent years a great effort of the research in field of medical imaging was focused on brain tumors segmentation. The quantitative analysis of MRI brain tumor allows to obtain useful key indicators of disease progression. The complex problem of segmenting tumor in MRI can be successfully addressed by considering modular and multi-step approaches mimicking the human visual inspection process. The tumor detection is often an essential preliminary phase to solvethe segmentation problem successfully. In visual analysis of the MRI, the first step of the experts cognitive process, is the detection of an anomaly respect the normal tissue, whatever its nature. An healthy brain has a strong sagittal symmetry, that is weakened by the presence of tumor. The comparison between the healthy and ill hemisphere, considering that tumors are generally not symmetrically placed in both hemispheres, was used to detect the anomaly. A clustering method based on energy minimization through Graph-Cut is applied on the volume computed as a difference between the left hemisphere and the right hemisphere mirrored across the symmetry plane. Differential analysis involves the loss the knowledge of the tumor side. Through an histogram analysis the ill hemisphere is recognized. Many experiments are performed to assess the performance of the detection strategy on MRI volumes in presence of tumors varied in terms of shapes positions and intensity levels. The experiments showed good results also in complex situations.

  7. Metabolic brain imaging correlated with clinical features of brain tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alavi, J.; Alavi, A.; Dann, R.

    1985-05-01

    Nineteen adults with brain tumors have been studied with positron emission tomography utilizing FDG. Fourteen had biopsy proven cerebral malignant glioma, one each had meningioma, hemangiopericytoma, primitive neuroectodermal tumor (PNET), two had unbiopsied lesions, and one patient had an area of biopsy proven radiation necrosis. Three different patterns of glucose metabolism are observed: marked increase in metabolism at the site of the known tumor in (10 high grade gliomas and the PNET), lower than normal metabolism at the tumor (in 1 grade II glioma, 3 grade III gliomas, 2 unbiopsied low density nonenhancing lesions, and the meningioma), no abnormality (1more » enhancing glioma, the hemangiopericytoma and the radiation necrosis.) The metabolic rate of the tumor or the surrounding brain did not appear to be correlated with the history of previous irradiation or chemotherapy. Decreased metabolism was frequently observed in the rest of the affected hemisphere and in the contralateral cerebellum. Tumors of high grade or with enhancing CT characteristics were more likely to show increased metabolism. Among the patients with proven gliomas, survival after PETT scan tended to be longer for those with low metabolic activity tumors than for those with highly active tumors. The authors conclude that PETT may help to predict the malignant potential of tumors, and may add useful clinical information to the CT scan.« less

  8. Adult Brain and Spine Tumor Research and Development

    Cancer.gov

    Chief, Dr. Mark Gilbert and Senior Investigator, Dr. Terri Armstrong, of the NCI Center for Cancer Research, Neuro-Oncology Branch, will be joined by moderator and Chief Executive Officer, David Arons of the National Brain Tumor Society led a discussion on adult brain and spine tumor research and treatment.

  9. Types of Brain Tumors

    MedlinePlus

    ... already registered, you will receive periodic updates and communications from American Brain Tumor Association. Keep me logged in. What's this? Remembers your login information for your convenience. Use only on trusted, private computers. Privacy Policy Spam Control Text: Please leave this ...

  10. Recurrence of Brain Tumors

    MedlinePlus

    ... already registered, you will receive periodic updates and communications from American Brain Tumor Association. Keep me logged in. What's this? Remembers your login information for your convenience. Use only on trusted, private computers. Privacy Policy Spam Control Text: Please leave this ...

  11. Plasma Levels of Glucose and Insulin in Patients with Brain Tumors

    PubMed Central

    ALEXANDRU, OANA; ENE, L.; PURCARU, OANA STEFANA; TACHE, DANIELA ELISE; POPESCU, ALISA; NEAMTU, OANA MARIA; TATARANU, LIGIA GABRIELA; GEORGESCU, ADA MARIA; TUDORICA, VALERICA; ZAHARIA, CORNELIA; DRICU, ANICA

    2014-01-01

    In the last years there were many authors that suggest the existence of an association between different components of metabolic syndrome and various cancers. Two important components of metabolic syndrome are hyperglycemia and hyperinsulinemia. Both of them had already been linked with the increased risk of pancreatic, breast, endometrial or prostate cancer. However the correlation of the level of the glucose and insulin with various types and grades of brain tumors remains unclear. In this article we have analysed the values of plasma glucose and insulin in 267 patients, consecutively diagnosed with various types of brain tumors. Our results showed no correlation between the glycemia and brain tumor types or grades. High plasma levels of insulin were found in brain metastasis and astrocytomas while the other types of brain tumors (meningiomas and glioblastomas) had lower levels of the peptide. The levels of insulin were also higher in brain metastasis and grade 3 brain tumors when compared with grade 1, grade 2 and grade 4 brain tumors. PMID:24791202

  12. Brain Serotonin Receptors and Transporters: Initiation vs. Termination of Escalated Aggression

    PubMed Central

    Takahashi, Aki; Quadros, Isabel M.; de Almeida, Rosa M. M.; Miczek, Klaus A.

    2013-01-01

    Rationale Recent findings have shown a complexly regulated 5-HT system as it is linked to different kinds of aggression. Objective We focus on (1) phasic and tonic changes of 5-HT and (2) state and trait of aggression, and emphasize the different receptor subtypes, their role in specific brain regions, feed-back regulation and modulation by other amines, acids and peptides. Results New pharmacological tools differentiate the first three 5-HT receptor families and their modulation by GABA, glutamate and CRF. Activation of 5-HT1A, 5-HT1B and 5-HT2A/2C receptors in mesocorticolimbic areas, reduce species-typical and other aggressive behaviors. In contrast, agonists at 5-HT1A and 5-HT1B receptors in the medial prefrontal cortex or septal area can increase aggressive behavior under specific conditions. Activation of serotonin transporters reduce mainly pathological aggression. Genetic analyses of aggressive individuals have identified several molecules that affect the 5-HT system directly (e.g., Tph2, 5-HT1B, 5-HT transporter, Pet1, MAOA) or indirectly (e.g., Neuropeptide Y, αCaMKII, NOS, BDNF). Dysfunction in genes for MAOA escalates pathological aggression in rodents and humans, particularly in interaction with specific experiences. Conclusions Feedback to autoreceptors of the 5-HT1 family and modulation via heteroreceptors are important in the expression of aggressive behavior. Tonic increase of the 5-HT2 family expression may cause escalated aggression, whereas the phasic increase of 5-HT2 receptors inhibits aggressive behaviors. Polymorphisms in the genes of 5-HT transporters or rate-limiting synthetic and metabolic enzymes of 5-HT modulate aggression, often requiring interaction with the rearing environment. PMID:20938650

  13. Semi-automated brain tumor and edema segmentation using MRI.

    PubMed

    Xie, Kai; Yang, Jie; Zhang, Z G; Zhu, Y M

    2005-10-01

    Manual segmentation of brain tumors from magnetic resonance images is a challenging and time-consuming task. A semi-automated method has been developed for brain tumor and edema segmentation that will provide objective, reproducible segmentations that are close to the manual results. Additionally, the method segments non-enhancing brain tumor and edema from healthy tissues in magnetic resonance images. In this study, a semi-automated method was developed for brain tumor and edema segmentation and volume measurement using magnetic resonance imaging (MRI). Some novel algorithms for tumor segmentation from MRI were integrated in this medical diagnosis system. We exploit a hybrid level set (HLS) segmentation method driven by region and boundary information simultaneously, region information serves as a propagation force which is robust and boundary information serves as a stopping functional which is accurate. Ten different patients with brain tumors of different size, shape and location were selected, a total of 246 axial tumor-containing slices obtained from 10 patients were used to evaluate the effectiveness of segmentation methods. This method was applied to 10 non-enhancing brain tumors and satisfactory results were achieved. Two quantitative measures for tumor segmentation quality estimation, namely, correspondence ratio (CR) and percent matching (PM), were performed. For the segmentation of brain tumor, the volume total PM varies from 79.12 to 93.25% with the mean of 85.67+/-4.38% while the volume total CR varies from 0.74 to 0.91 with the mean of 0.84+/-0.07. For the segmentation of edema, the volume total PM varies from 72.86 to 87.29% with the mean of 79.54+/-4.18% while the volume total CR varies from 0.69 to 0.85 with the mean of 0.79+/-0.08. The HLS segmentation method perform better than the classical level sets (LS) segmentation method in PM and CR. The results of this research may have potential applications, both as a staging procedure and a method of

  14. Brain Tumor Trials Collaborative | Center for Cancer Research

    Cancer.gov

    Brain Tumor Trials Collaborative In Pursuit of a Cure The mission of the BTTC is to develop and perform state-of-the-art clinical trials in a collaborative and collegial environment, advancing treatments for patients with brain tumors, merging good scientific method with concern for patient well-being and outcome.

  15. Brain tumor classification of microscopy images using deep residual learning

    NASA Astrophysics Data System (ADS)

    Ishikawa, Yota; Washiya, Kiyotada; Aoki, Kota; Nagahashi, Hiroshi

    2016-12-01

    The crisis rate of brain tumor is about one point four in ten thousands. In general, cytotechnologists take charge of cytologic diagnosis. However, the number of cytotechnologists who can diagnose brain tumors is not sufficient, because of the necessity of highly specialized skill. Computer-Aided Diagnosis by computational image analysis may dissolve the shortage of experts and support objective pathological examinations. Our purpose is to support a diagnosis from a microscopy image of brain cortex and to identify brain tumor by medical image processing. In this study, we analyze Astrocytes that is a type of glia cell of central nerve system. It is not easy for an expert to discriminate brain tumor correctly since the difference between astrocytes and low grade astrocytoma (tumors formed from Astrocyte) is very slight. In this study, we present a novel method to segment cell regions robustly using BING objectness estimation and to classify brain tumors using deep convolutional neural networks (CNNs) constructed by deep residual learning. BING is a fast object detection method and we use pretrained BING model to detect brain cells. After that, we apply a sequence of post-processing like Voronoi diagram, binarization, watershed transform to obtain fine segmentation. For classification using CNNs, a usual way of data argumentation is applied to brain cells database. Experimental results showed 98.5% accuracy of classification and 98.2% accuracy of segmentation.

  16. A Proteogenomic Approach to Understanding MYC Function in Metastatic Medulloblastoma Tumors.

    PubMed

    Staal, Jerome A; Pei, Yanxin; Rood, Brian R

    2016-10-19

    Brain tumors are the leading cause of cancer-related deaths in children, and medulloblastoma is the most prevalent malignant childhood/pediatric brain tumor. Providing effective treatment for these cancers, with minimal damage to the still-developing brain, remains one of the greatest challenges faced by clinicians. Understanding the diverse events driving tumor formation, maintenance, progression, and recurrence is necessary for identifying novel targeted therapeutics and improving survival of patients with this disease. Genomic copy number alteration data, together with clinical studies, identifies c-MYC amplification as an important risk factor associated with the most aggressive forms of medulloblastoma with marked metastatic potential. Yet despite this, very little is known regarding the impact of such genomic abnormalities upon the functional biology of the tumor cell. We discuss here how recent advances in quantitative proteomic techniques are now providing new insights into the functional biology of these aggressive tumors, as illustrated by the use of proteomics to bridge the gap between the genotype and phenotype in the case of c-MYC -amplified/associated medulloblastoma. These integrated proteogenomic approaches now provide a new platform for understanding cancer biology by providing a functional context to frame genomic abnormalities.

  17. Computational modeling of brain tumors: discrete, continuum or hybrid?

    NASA Astrophysics Data System (ADS)

    Wang, Zhihui; Deisboeck, Thomas S.

    In spite of all efforts, patients diagnosed with highly malignant brain tumors (gliomas), continue to face a grim prognosis. Achieving significant therapeutic advances will also require a more detailed quantitative understanding of the dynamic interactions among tumor cells, and between these cells and their biological microenvironment. Data-driven computational brain tumor models have the potential to provide experimental tumor biologists with such quantitative and cost-efficient tools to generate and test hypotheses on tumor progression, and to infer fundamental operating principles governing bidirectional signal propagation in multicellular cancer systems. This review highlights the modeling objectives of and challenges with developing such in silico brain tumor models by outlining two distinct computational approaches: discrete and continuum, each with representative examples. Future directions of this integrative computational neuro-oncology field, such as hybrid multiscale multiresolution modeling are discussed.

  18. Brain tumor locating in 3D MR volume using symmetry

    NASA Astrophysics Data System (ADS)

    Dvorak, Pavel; Bartusek, Karel

    2014-03-01

    This work deals with the automatic determination of a brain tumor location in 3D magnetic resonance volumes. The aim of this work is not the precise segmentation of the tumor and its parts but only the detection of its location. This work is the first step in the tumor segmentation process, an important topic in neuro-image processing. The algorithm expects 3D magnetic resonance volumes of brain containing a tumor. The detection is based on locating the area that breaks the left-right symmetry of the brain. This is done by multi-resolution comparing of corresponding regions in left and right hemisphere. The output of the computation is the probabilistic map of the tumor location. The created algorithm was tested on 80 volumes from publicly available BRATS databases containing 3D brain volumes afflicted by a brain tumor. These pathological structures had various sizes and shapes and were located in various parts of the brain. The locating performance of the algorithm was 85% for T1-weighted volumes, 91% for T1-weighted contrast enhanced volumes, 96% for FLAIR and T2-wieghted volumes and 95% for their combinations.

  19. Biologically Targeted Therapeutics in Pediatric Brain Tumors

    PubMed Central

    Nageswara Rao, Amulya A.; Scafidi, Joseph; Wells, Elizabeth M.; Packer, Roger J.

    2013-01-01

    Pediatric brain tumors are often difficult to cure and involve significant morbidity when treated with traditional treatment modalities, including neurosurgery, conventional chemotherapy, and radiotherapy. During the past two decades, a clearer understanding of tumorigenesis, molecular growth pathways, and immune mechanisms in the pathogenesis of cancer has opened up promising avenues for therapy. Pediatric clinical trials with novel biologic agents are underway to treat various pediatric brain tumors, including high and low grade gliomas and embryonal tumors. As the therapeutic potential of these agents undergoes evaluation, their toxicity profiles are also becoming better understood. These agents have potentially better central nervous system penetration and lower toxicity profiles compared with conventional chemotherapy. In infants and younger children, biologic agents may prove to be of equal or greater efficacy compared with traditional chemotherapy and radiation therapy, and may reduce the deleterious side effects of traditional therapeutics on the developing brain. Molecular pathways implicated in pediatric brain tumors, agents that target these pathways, and current clinical trials are reviewed. Associated neurologic toxicities will be discussed subsequently. Considerable work is needed to establish the efficacy of these agents alone and in combination, but pediatric neurologists should be aware of these agents and their rationale. PMID:22490764

  20. Biologically targeted therapeutics in pediatric brain tumors.

    PubMed

    Nageswara Rao, Amulya A; Scafidi, Joseph; Wells, Elizabeth M; Packer, Roger J

    2012-04-01

    Pediatric brain tumors are often difficult to cure and involve significant morbidity when treated with traditional treatment modalities, including neurosurgery, conventional chemotherapy, and radiotherapy. During the past two decades, a clearer understanding of tumorigenesis, molecular growth pathways, and immune mechanisms in the pathogenesis of cancer has opened up promising avenues for therapy. Pediatric clinical trials with novel biologic agents are underway to treat various pediatric brain tumors, including high and low grade gliomas and embryonal tumors. As the therapeutic potential of these agents undergoes evaluation, their toxicity profiles are also becoming better understood. These agents have potentially better central nervous system penetration and lower toxicity profiles compared with conventional chemotherapy. In infants and younger children, biologic agents may prove to be of equal or greater efficacy compared with traditional chemotherapy and radiation therapy, and may reduce the deleterious side effects of traditional therapeutics on the developing brain. Molecular pathways implicated in pediatric brain tumors, agents that target these pathways, and current clinical trials are reviewed. Associated neurologic toxicities will be discussed subsequently. Considerable work is needed to establish the efficacy of these agents alone and in combination, but pediatric neurologists should be aware of these agents and their rationale. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Molecular Testing of Brain Tumor

    PubMed Central

    Park, Sung-Hye; Won, Jaekyung; Kim, Seong-Ik; Lee, Yujin; Park, Chul-Kee; Kim, Seung-Ki; Choi, Seung-Hong

    2017-01-01

    The World Health Organization (WHO) classification of central nervous system (CNS) tumors was revised in 2016 with a basis on the integrated diagnosis of molecular genetics. We herein provide the guidelines for using molecular genetic tests in routine pathological practice for an accurate diagnosis and appropriate management. While astrocytomas and IDH-mutant (secondary) glioblastomas are characterized by the mutational status of IDH, TP53, and ATRX, oligodendrogliomas have a 1p/19q codeletion and mutations in IDH, CIC, FUBP1, and the promoter region of telomerase reverse transcriptase (TERTp). IDH-wildtype (primary) glioblastomas typically lack mutations in IDH, but are characterized by copy number variations of EGFR, PTEN, CDKN2A/B, PDGFRA, and NF1 as well as mutations of TERTp. High-grade pediatric gliomas differ from those of adult gliomas, consisting of mutations in H3F3A, ATRX, and DAXX, but not in IDH genes. In contrast, well-circumscribed low-grade neuroepithelial tumors in children, such as pilocytic astrocytoma, pleomorphic xanthoastrocytoma, and ganglioglioma, often have mutations or activating rearrangements in the BRAF, FGFR1, and MYB genes. Other CNS tumors, such as ependymomas, neuronal and glioneuronal tumors, embryonal tumors, meningothelial, and other mesenchymal tumors have important genetic alterations, many of which are diagnostic, prognostic, and predictive markers and therapeutic targets. Therefore, the neuropathological evaluation of brain tumors is increasingly dependent on molecular genetic tests for proper classification, prediction of biological behavior and patient management. Identifying these gene abnormalities requires cost-effective and high-throughput testing, such as next-generation sequencing. Overall, this paper reviews the global guidelines and diagnostic algorithms for molecular genetic testing of brain tumors. PMID:28535583

  2. Gold nanoparticle imaging and radiotherapy of brain tumors in mice

    PubMed Central

    Hainfeld, James F; Smilowitz, Henry M; O'Connor, Michael J; Dilmanian, Farrokh Avraham; Slatkin, Daniel N

    2013-01-01

    Aim To test intravenously injected gold nanoparticles for x-ray imaging and radiotherapy enhancement of large, imminently lethal, intracerebral malignant gliomas. Materials & methods Gold nanoparticles approximately 11 nm in size were injected intravenously and brains imaged using microcomputed tomography. A total of 15 h after an intravenous dose of 4 g Au/kg was administered, brains were irradiated with 30 Gy 100 kVp x-rays. Results Gold uptake gave a 19:1 tumor-to-normal brain ratio with 1.5% w/w gold in tumor, calculated to increase local radiation dose by approximately 300%. Mice receiving gold and radiation (30 Gy) demonstrated 50% long term (>1 year) tumor-free survival, whereas all mice receiving radiation only died. Conclusion Intravenously injected gold nanoparticles cross the blood–tumor barrier, but are largely blocked by the normal blood–brain barrier, enabling high-resolution computed tomography tumor imaging. Gold radiation enhancement significantly improved long-term survival compared with radiotherapy alone. This approach holds promise to improve therapy of human brain tumors and other cancers. PMID:23265347

  3. Differences in brain circuitry for appetitive and reactive aggression as revealed by realistic auditory scripts

    PubMed Central

    Moran, James K.; Weierstall, Roland; Elbert, Thomas

    2014-01-01

    Aggressive behavior is thought to divide into two motivational elements: The first being a self-defensively motivated aggression against threat and a second, hedonically motivated “appetitive” aggression. Appetitive aggression is the less understood of the two, often only researched within abnormal psychology. Our approach is to understand it as a universal and adaptive response, and examine the functional neural activity of ordinary men (N = 50) presented with an imaginative listening task involving a murderer describing a kill. We manipulated motivational context in a between-subjects design to evoke appetitive or reactive aggression, against a neutral control, measuring activity with Magnetoencephalography (MEG). Results show differences in left frontal regions in delta (2–5 Hz) and alpha band (8–12 Hz) for aggressive conditions and right parietal delta activity differentiating appetitive and reactive aggression. These results validate the distinction of reward-driven appetitive aggression from reactive aggression in ordinary populations at the level of functional neural brain circuitry. PMID:25538590

  4. The biological kinship of hypoxia with CSC and EMT and their relationship with deregulated expression of miRNAs and tumor aggressiveness

    PubMed Central

    Bao, Bin; Azmi, Asfar S.; Ali, Shadan; Ahmad, Aamir; Li, Yiwei; Banerjee, Sanjeev; Kong, Dejuan; Sarkar, Fazlul H.

    2013-01-01

    Hypoxia is one of the fundamental biological phenomena that are intricately associated with the development and aggressiveness of a variety of solid tumors. Hypoxia-inducible factors (HIF) function as a master transcription factor, which regulates hypoxia responsive genes and has been recognized to play critical roles in tumor invasion, metastasis, and chemo-radiation resistance, and contributes to increased cell proliferation, survival, angiogenesis and metastasis. Therefore, tumor hypoxia with deregulated expression of HIF and its biological consequence lead to poor prognosis of patients diagnosed with solid tumors, resulting in higher mortality, suggesting that understanding of the molecular relationship of hypoxia with other cellular features of tumor aggressiveness would be invaluable for developing newer targeted therapy for solid tumors. It has been well recognized that cancer stem cells (CSCs) and epithelial-to-mesenchymal transition (EMT) phenotypic cells are associated with therapeutic resistance and contribute to aggressive tumor growth, invasion, metastasis and believed to be the cause of tumor recurrence. Interestingly, hypoxia and HIF signaling pathway are known to play an important role in the regulation and sustenance of CSCs and EMT phenotype. However, the molecular relationship between HIF signaling pathway with the biology of CSCs and EMT remains unclear although NF-κB, PI3K/Akt/mTOR, Notch, Wnt/β-catenin, and Hedgehog signaling pathways have been recognized as important regulators of CSCs and EMT. In this article, we will discuss the state of our knowledge on the role of HIF-hypoxia signaling pathway and its kinship with CSCs and EMT within the tumor microenvironment. We will also discuss the potential role of hypoxia-induced microRNAs (miRNAs) in tumor development and aggressiveness, and finally discuss the potential effects of nutraceuticals on the biology of CSCs and EMT in the context of tumor hypoxia. PMID:22579961

  5. FDTD analysis of a noninvasive hyperthermia system for brain tumors

    PubMed Central

    2012-01-01

    Background Hyperthermia is considered one of the new therapeutic modalities for cancer treatment and is based on the difference in thermal sensitivity between healthy tissues and tumors. During hyperthermia treatment, the temperature of the tumor is raised to 40–45°C for a definite period resulting in the destruction of cancer cells. This paper investigates design, modeling and simulation of a new non-invasive hyperthermia applicator system capable of effectively heating deep seated as well as superficial brain tumors using inexpensive, simple, and easy to fabricate components without harming surrounding healthy brain tissues. Methods The proposed hyperthermia applicator system is composed of an air filled partial half ellipsoidal chamber, a patch antenna, and a head model with an embedded tumor at an arbitrary location. The irradiating antenna is placed at one of the foci of the hyperthermia chamber while the center of the brain tumor is placed at the other focus. The finite difference time domain (FDTD) method is used to compute both the SAR patterns and the temperature distribution in three different head models due to two different patch antennas at a frequency of 915 MHz. Results The obtained results suggest that by using the proposed noninvasive hyperthermia system it is feasible to achieve sufficient and focused energy deposition and temperature rise to therapeutic values in deep seated as well as superficial brain tumors without harming surrounding healthy tissue. Conclusions The proposed noninvasive hyperthermia system proved suitable for raising the temperature in tumors embedded in the brain to therapeutic values by carefully selecting the systems components. The operator of the system only needs to place the center of the brain tumor at a pre-specified location and excite the antenna at a single frequency of 915 MHz. Our study may provide a basis for a clinical applicator prototype capable of heating brain tumors. PMID:22891953

  6. FDTD analysis of a noninvasive hyperthermia system for brain tumors.

    PubMed

    Yacoob, Sulafa M; Hassan, Noha S

    2012-08-14

    Hyperthermia is considered one of the new therapeutic modalities for cancer treatment and is based on the difference in thermal sensitivity between healthy tissues and tumors. During hyperthermia treatment, the temperature of the tumor is raised to 40-45°C for a definite period resulting in the destruction of cancer cells. This paper investigates design, modeling and simulation of a new non-invasive hyperthermia applicator system capable of effectively heating deep seated as well as superficial brain tumors using inexpensive, simple, and easy to fabricate components without harming surrounding healthy brain tissues. The proposed hyperthermia applicator system is composed of an air filled partial half ellipsoidal chamber, a patch antenna, and a head model with an embedded tumor at an arbitrary location. The irradiating antenna is placed at one of the foci of the hyperthermia chamber while the center of the brain tumor is placed at the other focus. The finite difference time domain (FDTD) method is used to compute both the SAR patterns and the temperature distribution in three different head models due to two different patch antennas at a frequency of 915 MHz. The obtained results suggest that by using the proposed noninvasive hyperthermia system it is feasible to achieve sufficient and focused energy deposition and temperature rise to therapeutic values in deep seated as well as superficial brain tumors without harming surrounding healthy tissue. The proposed noninvasive hyperthermia system proved suitable for raising the temperature in tumors embedded in the brain to therapeutic values by carefully selecting the systems components. The operator of the system only needs to place the center of the brain tumor at a pre-specified location and excite the antenna at a single frequency of 915 MHz. Our study may provide a basis for a clinical applicator prototype capable of heating brain tumors.

  7. Episodic Memory Impairments in Primary Brain Tumor Patients.

    PubMed

    Durand, Thomas; Berzero, Giulia; Bompaire, Flavie; Hoffmann, Sabine; Léger, Isabelle; Jego, Virginie; Baruteau, Marie; Delgadillo, Daniel; Taillia, Hervé; Psimaras, Dimitri; Ricard, Damien

    2018-01-04

    Cognitive investigations in brain tumor patients have mostly explored episodic memory without differentiating between encoding, storage, and retrieval deficits. The aim of this study is to offer insight into the memory sub-processes affected in primary brain tumor patients and propose an appropriate assessment method. We retrospectively reviewed the clinical and memory assessments of 158 patients with primary brain tumors who had presented to our departments with cognitive complaints and were investigated using the Free and Cued Selective Reminding Test. Retrieval was the process of episodic memory most frequently affected, with deficits in this domain detected in 92% of patients with episodic memory impairments. Storage and encoding deficits were less prevalent, with impairments, respectively, detected in 41% and 23% of memory-impaired patients. The pattern of episodic memory impairment was similar across different tumor histologies and treatment modalities. Although all processes of episodic memory were found to be impaired, retrieval was by far the most widely affected function. A thorough assessment of all three components of episodic memory should be part of the regular neuropsychological evaluation in patients with primary brain tumors. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Determination of intra-axial brain tumors cellularity through the analysis of T2 Relaxation time of brain tumors before surgery using MATLAB software.

    PubMed

    Abdolmohammadi, Jamil; Shafiee, Mohsen; Faeghi, Fariborz; Arefan, Douman; Zali, Alireza; Motiei-Langroudi, Rouzbeh; Farshidfar, Zahra; Nazarlou, Ali Kiani; Tavakkoli, Ali; Yarham, Mohammad

    2016-08-01

    Timely diagnosis of brain tumors could considerably affect the process of patient treatment. To do so, para-clinical methods, particularly MRI, cannot be ignored. MRI has so far answered significant questions regarding tumor characteristics, as well as helping neurosurgeons. In order to detect the tumor cellularity, neuro-surgeons currently have to sample specimens by biopsy and then send them to the pathology unit. The aim of this study is to determine the tumor cellularity in the brain. In this cross-sectional study, 32 patients (18 males and 14 females from 18-77 y/o) were admitted to the neurosurgery department of Shohada-E Tajrish Hospital in Tehran, Iran from April 2012 to February 2014. In addition to routine pulse sequences, T2W Multi echo pulse sequences were taken and the images were analyzed using the MATLAB software to determine the brain tumor cellularity, compared with the biopsy. These findings illustrate the need for more T2 relaxation time decreases, the higher classes of tumors will stand out in the designed table. In this study, the results show T2 relaxation time with a 85% diagnostic weight, compared with the biopsy, to determine the brain tumor cellularity (p<0.05). Our results indicate that the T2 relaxation time feature is the best method to distinguish and present the degree of intra-axial brain tumors cellularity (85% accuracy compared to biopsy). The use of more data is recommended in order to increase the percent accuracy of this techniques.

  9. Phosphatidylserine-Targeted Nanotheranostics for Brain Tumor Imaging and Therapeutic Potential

    PubMed Central

    Wang, Lulu; Habib, Amyn A.; Mintz, Akiva; Li, King C.; Zhao, Dawen

    2017-01-01

    Phosphatidylserine (PS), the most abundant anionic phospholipid in cell membrane, is strictly confined to the inner leaflet in normal cells. However, this PS asymmetry is found disruptive in many tumor vascular endothelial cells. We discuss the underlying mechanisms for PS asymmetry maintenance in normal cells and its loss in tumor cells. The specificity of PS exposure in tumor vasculature but not normal blood vessels may establish it a useful biomarker for cancer molecular imaging. Indeed, utilizing PS-targeting antibodies, multiple imaging probes have been developed and multimodal imaging data have shown their high tumor-selective targeting in various cancers. There is a critical need for improved diagnosis and therapy for brain tumors. We have recently established PS-targeted nanoplatforms, aiming to enhance delivery of imaging contrast agents across the blood–brain barrier to facilitate imaging of brain tumors. Advantages of using the nanodelivery system, in particular, lipid-based nanocarriers, are discussed here. We also describe our recent research interest in developing PS-targeted nanotheranostics for potential image-guided drug delivery to treat brain tumors. PMID:28654387

  10. Phosphatidylserine-Targeted Nanotheranostics for Brain Tumor Imaging and Therapeutic Potential.

    PubMed

    Wang, Lulu; Habib, Amyn A; Mintz, Akiva; Li, King C; Zhao, Dawen

    2017-01-01

    Phosphatidylserine (PS), the most abundant anionic phospholipid in cell membrane, is strictly confined to the inner leaflet in normal cells. However, this PS asymmetry is found disruptive in many tumor vascular endothelial cells. We discuss the underlying mechanisms for PS asymmetry maintenance in normal cells and its loss in tumor cells. The specificity of PS exposure in tumor vasculature but not normal blood vessels may establish it a useful biomarker for cancer molecular imaging. Indeed, utilizing PS-targeting antibodies, multiple imaging probes have been developed and multimodal imaging data have shown their high tumor-selective targeting in various cancers. There is a critical need for improved diagnosis and therapy for brain tumors. We have recently established PS-targeted nanoplatforms, aiming to enhance delivery of imaging contrast agents across the blood-brain barrier to facilitate imaging of brain tumors. Advantages of using the nanodelivery system, in particular, lipid-based nanocarriers, are discussed here. We also describe our recent research interest in developing PS-targeted nanotheranostics for potential image-guided drug delivery to treat brain tumors.

  11. Training stem cells for treatment of malignant brain tumors

    PubMed Central

    Li, Shengwen Calvin; Kabeer, Mustafa H; Vu, Long T; Keschrumrus, Vic; Yin, Hong Zhen; Dethlefs, Brent A; Zhong, Jiang F; Weiss, John H; Loudon, William G

    2014-01-01

    The treatment of malignant brain tumors remains a challenge. Stem cell technology has been applied in the treatment of brain tumors largely because of the ability of some stem cells to infiltrate into regions within the brain where tumor cells migrate as shown in preclinical studies. However, not all of these efforts can translate in the effective treatment that improves the quality of life for patients. Here, we perform a literature review to identify the problems in the field. Given the lack of efficacy of most stem cell-based agents used in the treatment of malignant brain tumors, we found that stem cell distribution (i.e., only a fraction of stem cells applied capable of targeting tumors) are among the limiting factors. We provide guidelines for potential improvements in stem cell distribution. Specifically, we use an engineered tissue graft platform that replicates the in vivo microenvironment, and provide our data to validate that this culture platform is viable for producing stem cells that have better stem cell distribution than with the Petri dish culture system. PMID:25258664

  12. The relationship between brain behavioral systems and the characteristics of the five factor model of personality with aggression among Iranian students.

    PubMed

    Komasi, Saeid; Saeidi, Mozhgan; Soroush, Ali; Zakiei, Ali

    2016-07-01

    Aggression is one of the negative components of emotion and it is usually considered to be the outcome of the activity of the Behavioral Inhibition and the Behavioral Activation System (BIS/BAS): components which can be considered as predisposing factors for personality differences. Therefore, the purpose of this study was to investigate the relationship between brain behavioral systems and the characteristics of the five factor model of personality with aggression among students. The present study has a correlation descriptive design. The research population included all of the Razi University students in the academic year of 2012-2013. The sampling was carried out with a random stratified method and 360 people (308 female and 52 male) were studied according to a table of Morgan. The study instruments were Buss and Perry Aggression Questionnaire, NEO Personality Inventory (Short Form), and Carver and White scale for BAS/BIS. Finally, SPSS20 was utilized to analyze the data using Pearson correlation, regression analysis, and canonical correlation. The data showed a significant positive relationship between the neurosis and agreeableness personality factors with aggression; but there is a significant negative relationship between the extroversion, openness, and conscientiousness personality factors with aggression. Furthermore, there is a significant positive relationship between all the components of brain behavioral systems (impulsivity, novelty seeking, sensitivity, tender) and aggression. The results of regression analysis indicated the personality characteristics and the brain behavioral systems which can predict 29 percent of the changes to aggression, simultaneously. According to a predictable level of aggressiveness by the personality characteristics and brain behavioral systems, it is possible to identify the personality characteristics and template patterns of brain behavioral systems for the students which be presented to them as a necessary training in

  13. Tumor growth model for atlas based registration of pathological brain MR images

    NASA Astrophysics Data System (ADS)

    Moualhi, Wafa; Ezzeddine, Zagrouba

    2015-02-01

    The motivation of this work is to register a tumor brain magnetic resonance (MR) image with a normal brain atlas. A normal brain atlas is deformed in order to take account of the presence of a large space occupying tumor. The method use a priori model of tumor growth assuming that the tumor grows in a radial way from a starting point. First, an affine transformation is used in order to bring the patient image and the brain atlas in a global correspondence. Second, the seeding of a synthetic tumor into the brain atlas provides a template for the lesion. Finally, the seeded atlas is deformed combining a method derived from optical flow principles and a model for tumor growth (MTG). Results show that an automatic segmentation method of brain structures in the presence of large deformation can be provided.

  14. Groupwise registration of MR brain images with tumors.

    PubMed

    Tang, Zhenyu; Wu, Yihong; Fan, Yong

    2017-08-04

    A novel groupwise image registration framework is developed for registering MR brain images with tumors. Our method iteratively estimates a normal-appearance counterpart for each tumor image to be registered and constructs a directed graph (digraph) of normal-appearance images to guide the groupwise image registration. Particularly, our method maps each tumor image to its normal appearance counterpart by identifying and inpainting brain tumor regions with intensity information estimated using a low-rank plus sparse matrix decomposition based image representation technique. The estimated normal-appearance images are groupwisely registered to a group center image guided by a digraph of images so that the total length of 'image registration paths' to be the minimum, and then the original tumor images are warped to the group center image using the resulting deformation fields. We have evaluated our method based on both simulated and real MR brain tumor images. The registration results were evaluated with overlap measures of corresponding brain regions and average entropy of image intensity information, and Wilcoxon signed rank tests were adopted to compare different methods with respect to their regional overlap measures. Compared with a groupwise image registration method that is applied to normal-appearance images estimated using the traditional low-rank plus sparse matrix decomposition based image inpainting, our method achieved higher image registration accuracy with statistical significance (p  =  7.02  ×  10 -9 ).

  15. Convection-enhanced delivery for the treatment of brain tumors

    PubMed Central

    Debinski, Waldemar; Tatter, Stephen B

    2013-01-01

    The brain is highly accessible for nutrients and oxygen, however delivery of drugs to malignant brain tumors is a very challenging task. Convection-enhanced delivery (CED) has been designed to overcome some of the difficulties so that pharmacological agents that would not normally cross the BBB can be used for treatment. Drugs are delivered through one to several catheters placed stereotactically directly within the tumor mass or around the tumor or the resection cavity. Several classes of drugs are amenable to this technology including standard chemotherapeutics or novel experimental targeted drugs. The first Phase III trial for CED-delivered, molecularly targeted cytotoxin in the treatment of recurrent glioblastoma multiforme has been accomplished and demonstrated objective clinical efficacy. The lessons learned from more than a decade of attempts at exploiting CED for brain cancer treatment weigh critically for its future clinical applications. The main issues center around the type of catheters used, number of catheters and their exact placement; pharmacological formulation of drugs, prescreening patients undergoing treatment and monitoring the distribution of drugs in tumors and the tumor-infiltrated brain. It is expected that optimizing CED will make this technology a permanent addition to clinical management of brain malignancies. PMID:19831841

  16. Gamma Knife Surgery for Metastatic Brain Tumors from Gynecologic Cancer.

    PubMed

    Matsunaga, Shigeo; Shuto, Takashi; Sato, Mitsuru

    2016-05-01

    The incidences of metastatic brain tumors from gynecologic cancer have increased. The results of Gamma Knife surgery (GKS) for the treatment of patients with brain metastases from gynecologic cancer (ovarian, endometrial, and uterine cervical cancers) were retrospectively analyzed to identify the efficacy and prognostic factors for local tumor control and survival. The medical records were retrospectively reviewed of 70 patients with 306 tumors who underwent GKS for brain metastases from gynecologic cancer between January 1995 and December 2013 in our institution. The primary cancers were ovarian in 33 patients with 147 tumors and uterine in 37 patients with 159 tumors. Median tumor volume was 0.3 cm(3). Median marginal prescription dose was 20 Gy. The local tumor control rates were 96.4% at 6 months and 89.9% at 1 year. There was no statistically significant difference between ovarian and uterine cancers. Higher prescription dose and smaller tumor volume were significantly correlated with local tumor control. Median overall survival time was 8 months. Primary ovarian cancer, controlled extracranial metastases, and solitary brain metastasis were significantly correlated with satisfactory overall survival. Median activities of daily living (ADL) preservation survival time was 8 months. Primary ovarian cancer, controlled extracranial metastases, and higher Karnofsky Performance Status score were significantly correlated with better ADL preservation. GKS is effective for control of tumor progression in patients with brain metastases from gynecologic cancer, and may provide neurologic benefits and preservation of the quality of life. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Assisted Care Options (Brain Tumors)

    MedlinePlus

    ... Home Care & Hospice National Agency Locator Assisted Living Facilities and Nursing Homes For brain tumor patients who ... activities of daily living (ADLs), an assisted living facility can be a viable option. Your family member ...

  18. The microenvironmental landscape of brain tumors

    PubMed Central

    Quail, Daniela F.; Joyce, Johanna A.

    2017-01-01

    The brain tumor microenvironment (TME) is emerging as a critical regulator of cancer progression in primary and metastatic brain malignancies. The unique properties of this organ require a specific framework for designing TME-targeted interventions. Here we discuss a number of these distinct features, including brain-resident cell types, the blood-brain barrier, and various aspects of the immune-suppressive environment. We also highlight recent advances in therapeutically targeting the brain TME in cancer. By developing a comprehensive understanding of the complex and interconnected microenvironmental landscape of brain malignancies we will greatly expand the range of therapeutic strategies available to target these deadly diseases. PMID:28292436

  19. Yoga Therapy in Treating Patients With Malignant Brain Tumors

    ClinicalTrials.gov

    2017-07-27

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Meningioma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Choroid Plexus Tumor; Adult Diffuse Astrocytoma; Adult Ependymoblastoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Grade II Meningioma; Adult Medulloblastoma; Adult Meningeal Hemangiopericytoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Papillary Meningioma; Adult Pineal Gland Astrocytoma; Adult Pineoblastoma; Adult Pineocytoma; Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Recurrent Adult Brain Tumor

  20. RNAi therapeutics for brain cancer: current advancements in RNAi delivery strategies.

    PubMed

    Malhotra, Meenakshi; Toulouse, André; Godinho, Bruno M D C; Mc Carthy, David John; Cryan, John F; O'Driscoll, Caitriona M

    2015-10-01

    Malignant primary brain tumors are aggressive cancerous cells that invade the surrounding tissues of the central nervous system. The current treatment options for malignant brain tumors are limited due to the inability to cross the blood-brain barrier. The advancements in current research has identified and characterized certain molecular markers that are essential for tumor survival, progression, metastasis and angiogenesis. These molecular markers have served as therapeutic targets for the RNAi based therapies, which enable site-specific silencing of the gene responsible for tumor proliferation. However, to bring about therapeutic success, an efficient delivery carrier that can cross the blood-brain barrier and reach the targeted site is essential. The current review focuses on the potential of targeted, non-viral and viral particles containing RNAi therapeutic molecules as delivery strategies specifically for brain tumors.

  1. Brain Cancer Stem Cells in Adults and Children: Cell Biology and Therapeutic Implications.

    PubMed

    Abou-Antoun, Tamara J; Hale, James S; Lathia, Justin D; Dombrowski, Stephen M

    2017-04-01

    Brain tumors represent some of the most malignant cancers in both children and adults. Current treatment options target the majority of tumor cells but do not adequately target self-renewing cancer stem cells (CSCs). CSCs have been reported to resist the most aggressive radiation and chemotherapies, and give rise to recurrent, treatment-resistant secondary malignancies. With advancing technologies, we now have a better understanding of the genetic, epigenetic and molecular signatures and microenvironmental influences which are useful in distinguishing between distinctly different tumor subtypes. As a result, efforts are now underway to identify and target CSCs within various tumor subtypes based on this foundation. This review discusses progress in CSC biology as it relates to targeted therapies which may be uniquely different between pediatric and adult brain tumors. Studies to date suggest that pediatric brain tumors may benefit more from genetic and epigenetic targeted therapies, while combination treatments aimed specifically at multiple molecular pathways may be more effective in treating adult brain tumors which seem to have a greater propensity towards microenvironmental interactions. Ultimately, CSC targeting approaches in combination with current clinical therapies have the potential to be more effective owing to their ability to compromise CSCs maintenance and the mechanisms which underlie their highly aggressive and deadly nature.

  2. "Facilitated" amino acid transport is upregulated in brain tumors.

    PubMed

    Miyagawa, T; Oku, T; Uehara, H; Desai, R; Beattie, B; Tjuvajev, J; Blasberg, R

    1998-05-01

    The goal of this study was to determine the magnitude of "facilitated" amino acid transport across tumor and brain capillaries and to evaluate whether amino acid transporter expression is "upregulated" in tumor vessels compared to capillaries in contralateral brain tissue. Aminocyclopentane carboxylic acid (ACPC), a non-metabolized [14C]-labeled amino acid, and a reference molecule for passive vascular permeability, [67Ga]-gallium-diethylenetriaminepentaacetic acid (Ga-DTPA), were used in these studies. Two experimental rat gliomas were studied (C6 and RG2). Brain tissue was rapidly processed for double label quantitative autoradiography 10 minutes after intravenous injection of ACPC and Ga-DTPA. Parametric images of blood-to-brain transport (K1ACPC and K1Ga-DTPA, microL/min/g) produced from the autoradiograms and the histology were obtained from the same tissue section. These three images were registered in an image array processor; regions of interest in tumor and contralateral brain were defined on morphologic criteria (histology) and were transferred to the autoradiographic images to obtain mean values. The facilitated component of ACPC transport (deltaK1ACPC) was calculated from the K1ACPC and K1Ga-DTPA data, and paired comparisons between tumor and contralateral brain were performed. ACPC flux, K1ACPC, across normal brain capillaries (22.6 +/- 8.1 microL/g/min) was >200-fold greater than that of Ga-DTPA (0.09 +/- 0.04 microL/g/min), and this difference was largely (approximately 90%) due to facilitated ACPC transport. Substantially higher K1ACPC values compared to corresponding K1DTPA values were also measured in C6 and RG2 gliomas. The deltaK1ACPC values for C6 glioma were more than twice that of contralateral brain cortex. K1ACPC and deltaK1ACPC values for RG2 gliomas was not significantly higher than that of contralateral cortex, although a approximately 2-fold difference in facilitated transport is obtained after normalization for differences in capillary

  3. Transcriptional Analysis of Aggressiveness and Heterogeneity across Grades of Astrocytomas

    PubMed Central

    Wang, Chunjing; Funk, Cory C.; Eddy, James A.; Price, Nathan D.

    2013-01-01

    Astrocytoma is the most common glioma, accounting for half of all primary brain and spinal cord tumors. Late detection and the aggressive nature of high-grade astrocytomas contribute to high mortality rates. Though many studies identify candidate biomarkers using high-throughput transcriptomic profiling to stratify grades and subtypes, few have resulted in clinically actionable results. This shortcoming can be attributed, in part, to pronounced lab effects that reduce signature robustness and varied individual gene expression among patients with the same tumor. We addressed these issues by uniformly preprocessing publicly available transcriptomic data, comprising 306 tumor samples from three astrocytoma grades (Grade 2, 3, and 4) and 30 non-tumor samples (normal brain as control tissues). Utilizing Differential Rank Conservation (DIRAC), a network-based classification approach, we examined the global and individual patterns of network regulation across tumor grades. Additionally, we applied gene-based approaches to identify genes whose expression changed consistently with increasing tumor grade and evaluated their robustness across multiple studies using statistical sampling. Applying DIRAC, we observed a global trend of greater network dysregulation with increasing tumor aggressiveness. Individual networks displaying greater differences in regulation between adjacent grades play well-known roles in calcium/PKC, EGF, and transcription signaling. Interestingly, many of the 90 individual genes found to monotonically increase or decrease with astrocytoma grade are implicated in cancer-affected processes such as calcium signaling, mitochondrial metabolism, and apoptosis. The fact that specific genes monotonically increase or decrease with increasing astrocytoma grade may reflect shared oncogenic mechanisms among phenotypically similar tumors. This work presents statistically significant results that enable better characterization of different human astrocytoma grades

  4. Transcriptional analysis of aggressiveness and heterogeneity across grades of astrocytomas.

    PubMed

    Wang, Chunjing; Funk, Cory C; Eddy, James A; Price, Nathan D

    2013-01-01

    Astrocytoma is the most common glioma, accounting for half of all primary brain and spinal cord tumors. Late detection and the aggressive nature of high-grade astrocytomas contribute to high mortality rates. Though many studies identify candidate biomarkers using high-throughput transcriptomic profiling to stratify grades and subtypes, few have resulted in clinically actionable results. This shortcoming can be attributed, in part, to pronounced lab effects that reduce signature robustness and varied individual gene expression among patients with the same tumor. We addressed these issues by uniformly preprocessing publicly available transcriptomic data, comprising 306 tumor samples from three astrocytoma grades (Grade 2, 3, and 4) and 30 non-tumor samples (normal brain as control tissues). Utilizing Differential Rank Conservation (DIRAC), a network-based classification approach, we examined the global and individual patterns of network regulation across tumor grades. Additionally, we applied gene-based approaches to identify genes whose expression changed consistently with increasing tumor grade and evaluated their robustness across multiple studies using statistical sampling. Applying DIRAC, we observed a global trend of greater network dysregulation with increasing tumor aggressiveness. Individual networks displaying greater differences in regulation between adjacent grades play well-known roles in calcium/PKC, EGF, and transcription signaling. Interestingly, many of the 90 individual genes found to monotonically increase or decrease with astrocytoma grade are implicated in cancer-affected processes such as calcium signaling, mitochondrial metabolism, and apoptosis. The fact that specific genes monotonically increase or decrease with increasing astrocytoma grade may reflect shared oncogenic mechanisms among phenotypically similar tumors. This work presents statistically significant results that enable better characterization of different human astrocytoma grades

  5. TuMore: generation of synthetic brain tumor MRI data for deep learning based segmentation approaches

    NASA Astrophysics Data System (ADS)

    Lindner, Lydia; Pfarrkirchner, Birgit; Gsaxner, Christina; Schmalstieg, Dieter; Egger, Jan

    2018-03-01

    Accurate segmentation and measurement of brain tumors plays an important role in clinical practice and research, as it is critical for treatment planning and monitoring of tumor growth. However, brain tumor segmentation is one of the most challenging tasks in medical image analysis. Since manual segmentations are subjective, time consuming and neither accurate nor reliable, there exists a need for objective, robust and fast automated segmentation methods that provide competitive performance. Therefore, deep learning based approaches are gaining interest in the field of medical image segmentation. When the training data set is large enough, deep learning approaches can be extremely effective, but in domains like medicine, only limited data is available in the majority of cases. Due to this reason, we propose a method that allows to create a large dataset of brain MRI (Magnetic Resonance Imaging) images containing synthetic brain tumors - glioblastomas more specifically - and the corresponding ground truth, that can be subsequently used to train deep neural networks.

  6. Distribution of polymer nanoparticles by convection-enhanced delivery to brain tumors.

    PubMed

    Saucier-Sawyer, Jennifer K; Seo, Young-Eun; Gaudin, Alice; Quijano, Elias; Song, Eric; Sawyer, Andrew J; Deng, Yang; Huttner, Anita; Saltzman, W Mark

    2016-06-28

    Glioblastoma multiforme (GBM) is a fatal brain tumor characterized by infiltration beyond the margins of the main tumor mass and local recurrence after surgery. The blood-brain barrier (BBB) poses the most significant hurdle to brain tumor treatment. Convection-enhanced delivery (CED) allows for local administration of agents, overcoming the restrictions of the BBB. Recently, polymer nanoparticles have been demonstrated to penetrate readily through the healthy brain when delivered by CED, and size has been shown to be a critical factor for nanoparticle penetration. Because these brain-penetrating nanoparticles (BPNPs) have high potential for treatment of intracranial tumors since they offer the potential for cell targeting and controlled drug release after administration, here we investigated the intratumoral CED infusions of PLGA BPNPs in animals bearing either U87 or RG2 intracranial tumors. We demonstrate that the overall volume of distribution of these BPNPs was similar to that observed in healthy brains; however, the presence of tumors resulted in asymmetric and heterogeneous distribution patterns, with substantial leakage into the peritumoral tissue. Together, our results suggest that CED of BPNPs should be optimized by accounting for tumor geometry, in terms of location, size and presence of necrotic regions, to determine the ideal infusion site and parameters for individual tumors. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Adult Brain and Spine Tumor Research - Facebook Live Event

    Cancer.gov

    Chief, Dr. Mark Gilbert and Senior Investigator, Dr. Terri Armstrong, of the NCI Center for Cancer Research, Neuro-Oncology Branch, will be joined by moderator and Chief Executive Officer, David Arons of the National Brain Tumor Society led a discussion on adult brain and spine tumor research and treatment.

  8. Awake Craniotomy for Tumor Resection: Further Optimizing Therapy of Brain Tumors.

    PubMed

    Mehdorn, H Maximilian; Schwartz, Felix; Becker, Juliane

    2017-01-01

    In recent years more and more data have emerged linking the most radical resection to prolonged survival in patients harboring brain tumors. Since total tumor resection could increase postoperative morbidity, many methods have been suggested to reduce the risk of postoperative neurological deficits: awake craniotomy with the possibility of continuous patient-surgeon communication is one of the possibilities of finding out how radical a tumor resection can possibly be without causing permanent harm to the patient.In 1994 we started to perform awake craniotomy for glioma resection. In 2005 the use of intraoperative high-field magnetic resonance imaging (MRI) was included in the standard tumor therapy protocol. Here we review our experience in performing awake surgery for gliomas, gained in 219 patients.Patient selection by the operating surgeon and a neuropsychologist is of primary importance: the patient should feel as if they are part of the surgical team fighting against the tumor. The patient will undergo extensive neuropsychological testing, functional MRI, and fiber tractography in order to define the relationship between the tumor and the functionally relevant brain areas. Attention needs to be given at which particular time during surgery the intraoperative MRI is performed. Results from part of our series (without and with ioMRI scan) are presented.

  9. Brain tumor segmentation based on local independent projection-based classification.

    PubMed

    Huang, Meiyan; Yang, Wei; Wu, Yao; Jiang, Jun; Chen, Wufan; Feng, Qianjin

    2014-10-01

    Brain tumor segmentation is an important procedure for early tumor diagnosis and radiotherapy planning. Although numerous brain tumor segmentation methods have been presented, enhancing tumor segmentation methods is still challenging because brain tumor MRI images exhibit complex characteristics, such as high diversity in tumor appearance and ambiguous tumor boundaries. To address this problem, we propose a novel automatic tumor segmentation method for MRI images. This method treats tumor segmentation as a classification problem. Additionally, the local independent projection-based classification (LIPC) method is used to classify each voxel into different classes. A novel classification framework is derived by introducing the local independent projection into the classical classification model. Locality is important in the calculation of local independent projections for LIPC. Locality is also considered in determining whether local anchor embedding is more applicable in solving linear projection weights compared with other coding methods. Moreover, LIPC considers the data distribution of different classes by learning a softmax regression model, which can further improve classification performance. In this study, 80 brain tumor MRI images with ground truth data are used as training data and 40 images without ground truth data are used as testing data. The segmentation results of testing data are evaluated by an online evaluation tool. The average dice similarities of the proposed method for segmenting complete tumor, tumor core, and contrast-enhancing tumor on real patient data are 0.84, 0.685, and 0.585, respectively. These results are comparable to other state-of-the-art methods.

  10. Effects of a novel anti-aggressive agent upon two types of brain stimulated emotional behavior.

    PubMed

    Katz, R J; Thomas, E

    1976-07-09

    The effects of anti-aggressive agent Sch 12679 were evaluated upon stable baselines of rage and predation elicited by electrical stimulation of the hypothalamus in cats. Sch 12679 depressed approach and terminal aspects of both forms of attack. This is consistent with previous reports, and suggests the drug is effective in reducing many forms of aggression including brain stimulated emotional behavior.

  11. Automatic Brain Tumor Detection in T2-weighted Magnetic Resonance Images

    NASA Astrophysics Data System (ADS)

    Dvořák, P.; Kropatsch, W. G.; Bartušek, K.

    2013-10-01

    This work focuses on fully automatic detection of brain tumors. The first aim is to determine, whether the image contains a brain with a tumor, and if it does, localize it. The goal of this work is not the exact segmentation of tumors, but the localization of their approximate position. The test database contains 203 T2-weighted images of which 131 are images of healthy brain and the remaining 72 images contain brain with pathological area. The estimation, whether the image shows an afflicted brain and where a pathological area is, is done by multi resolution symmetry analysis. The first goal was tested by five-fold cross-validation technique with 100 repetitions to avoid the result dependency on sample order. This part of the proposed method reaches the true positive rate of 87.52% and the true negative rate of 93.14% for an afflicted brain detection. The evaluation of the second part of the algorithm was carried out by comparing the estimated location to the true tumor location. The detection of the tumor location reaches the rate of 95.83% of correct anomaly detection and the rate 87.5% of correct tumor location.

  12. Family History of Cancer in Benign Brain Tumor Subtypes Versus Gliomas

    PubMed Central

    Ostrom, Quinn T.; McCulloh, Christopher; Chen, Yanwen; Devine, Karen; Wolinsky, Yingli; Davitkov, Perica; Robbins, Sarah; Cherukuri, Rajesh; Patel, Ashokkumar; Gupta, Rajnish; Cohen, Mark; Barrios, Jaime Vengoechea; Brewer, Cathy; Schilero, Cathy; Smolenski, Kathy; McGraw, Mary; Denk, Barbara; Naska, Theresa; Laube, Frances; Steele, Ruth; Greene, Dale; Kastl, Alison; Bell, Susan; Aziz, Dina; Chiocca, E. A.; McPherson, Christopher; Warnick, Ronald; Barnett, Gene H.; Sloan, Andrew E.; Barnholtz-Sloan, Jill S.

    2012-01-01

    Purpose: Family history is associated with gliomas, but this association has not been established for benign brain tumors. Using information from newly diagnosed primary brain tumor patients, we describe patterns of family cancer histories in patients with benign brain tumors and compare those to patients with gliomas. Methods: Newly diagnosed primary brain tumor patients were identified as part of the Ohio Brain Tumor Study. Each patient was asked to participate in a telephone interview about personal medical history, family history of cancer, and other exposures. Information was available from 33 acoustic neuroma (65%), 78 meningioma (65%), 49 pituitary adenoma (73.1%), and 152 glioma patients (58.2%). The association between family history of cancer and each subtype was compared with gliomas using unconditional logistic regression models generating odds ratios (ORs) and 95% confidence intervals. Results: There was no significant difference in family history of cancer between patients with glioma and benign subtypes. Conclusion: The results suggest that benign brain tumor may have an association with family history of cancer. More studies are warranted to disentangle the potential genetic and/or environmental causes for these diseases. PMID:22649779

  13. Correlates and Prevalence of Aggression at Six Months and One Year After First-Time Traumatic Brain Injury.

    PubMed

    Roy, Durga; Vaishnavi, Sandeep; Han, Dingfen; Rao, Vani

    2017-01-01

    Few studies have examined clinical correlates of aggression after first-time traumatic brain injury (TBI) within the first year after injury. The authors aimed to identify the rates of aggression at 6 and 12 months post-TBI and establish clinical and demographic correlates. A total of 103 subjects with first-time TBI were seen within 12 months postinjury and evaluated for aggression. Post-TBI social functioning and new-onset depression (within 3 months of the TBI) may serve as particularly important predictors for aggression within the first year of TBI, as these factors may afford intervention and subsequent decreased risk of aggression.

  14. Aggressive Behavior and Altered Amounts of Brain Serotonin and Norepinephrine in Mice Lacking MAOA

    PubMed Central

    Cases, Olivier; Grimsby, Joseph; Gaspar, Patricia; Chen, Kevin; Pournin, Sandrine; Müller, Ulrike; Aguet, Michel; Babinet, Charles; Shih, Jean Chen; De Maeyer, Edward

    2010-01-01

    Deficiency in monoamine oxidase A (MAOA), an enzyme that degrades serotonin and norepinephrine, has recently been shown to be associated with aggressive behavior in men of a Dutch family. A line of transgenic mice was isolated in which transgene integration caused a deletion in the gene encoding MAOA, providing an animal model of MAOA deficiency. In pup brains, serotonin concentrations were increased up to ninefold, and serotonin-like immunoreactivity was present in catecholaminergic neurons. In pup and adult brains, norepinephrine concentrations were increased up to twofold, and cytoarchitectural changes were observed in the somatosensory cortex. Pup behavioral alterations, including trembling, difficulty in righting, and fearfulness were reversed by the serotonin synthesis inhibitor parachlorophenylalanine. Adults manifested a distinct behavioral syndrome, including enhanced aggression in males. PMID:7792602

  15. The Relations of Self-Reported Aggression to Alexithymia, Depression, and Anxiety After Traumatic Brain Injury.

    PubMed

    Neumann, Dawn; Malec, James F; Hammond, Flora M

    To compare self-reported aggression in people with and without traumatic brain injury (TBI) and examine the relations of aggression to alexithymia (poor emotional insight), depression, and anxiety. Rehabilitation hospital. Forty-six adults with moderate to severe TBI who were at least 3 months postinjury; 49 healthy controls (HCs); groups were frequency matched for age and gender. Cross-sectional study using a quasi-experimental design. Aggression (Buss-Perry Aggression Questionnaire); alexithymia (Toronto Alexithymia Scale-20); depression (Patient Health Questionnaire-9); and trait anxiety (State-Trait Anxiety Inventory). Participants with TBI had significantly higher aggression scores than HCs. For participants with TBI, 34.2% of the adjusted variance of aggression was significantly explained by alexithymia, depression, and anxiety; alexithymia accounted for the largest unique portion of the variance in this model (16.2%). Alexithymia, depression, and anxiety explained 46% of the adjusted variance of aggression in HCs; in contrast to participants with TBI, depression was the largest unique contributor to aggression (15.9%). This was the first empirical study showing that poor emotional insight (alexithymia) significantly contributes to aggression after TBI. This relation, and the potential clinical implications it may have for the treatment of aggression, warrants further investigation.

  16. An Epigenetic Gateway to Brain Tumor Cell Identity

    PubMed Central

    Mack, Stephen C.; Hubert, Christopher G.; Miller, Tyler E.; Taylor, Michael D.; Rich, Jeremy N.

    2017-01-01

    Precise targeting of genetic lesions alone has been insufficient to extend brain tumor patient survival. Brain cancer cells are diverse in their genetic, metabolic, and microenvironmental compositions, accounting for their phenotypic heterogeneity and disparate responses to therapy. These factors converge at the level of the epigenome, representing a unified node that can be disrupted by pharmacologic inhibition. Aberrant epigenomes define many childhood and adult brain cancers, as demonstrated by widespread changes to DNA methylation patterns, redistribution of histone marks, and disruption of chromatin structure. In this review, we describe the convergence of genetic, metabolic, and micro-environmental factors upon mechanisms of epigenetic deregulation in brain cancer. We discuss how aberrant epigenetic pathways identified in brain tumors affect cell identity, cell state, and neoplastic transformation, in addition to the potential to exploit these alterations as novel therapeutic strategies for the treatment of brain cancer. PMID:26713744

  17. Penetration of intra-arterially administered vincristine in experimental brain tumor1,2

    PubMed Central

    Boyle, Frances M.; Eller, Susan L.; Grossman, Stuart A.

    2004-01-01

    Vincristine is an integral part of the “PCV” regimen that is commonly administered to treat primary brain tumors. The efficacy of vincristine as a single agent in these tumors has been poorly studied. This study was designed to determine whether vincristine enters normal rat brain or an intracranially or subcutaneously implanted glioma and to assess the presence of the efflux pump P-glycoprotein (P-gp) on tumor and vascular endothelial cells. The 9L rat gliosarcoma was implanted intracranially and subcutaneously in three Fischer 344 rats. On day 7, [3H]vincristine (50 μCi, 4.8 μg) was injected into the carotid artery, and the animals were euthanized 10 or 20 min later. Quantitative autoradiography revealed that vincristine levels in the liver were 6- to 11-fold greater than in the i.c. tumor, and 15- to 37-fold greater than in normal brain, the reverse of the expected pattern with intra-arterial delivery. Vincristine levels in the s.c. tumor were 2-fold higher than levels in the i.c. tumor. P-gp was detected with JSB1 antibody in vascular endothelium of both normal brain and the i.c. tumor, but not in the tumor cells in either location, or in endothelial cells in the s.c. tumor. These results demonstrate that vincristine has negligible penetration of normal rat brain or i.c. 9L glioma despite intra-arterial delivery and the presence of blood-brain barrier dysfunction as demonstrated by Evan’s blue. Furthermore, this study suggests that P-gp-mediated efflux from endothelium may explain these findings. The lack of penetration of vincristine into brain tumor and the paucity of single-agent activity studies suggest that vincristine should not be used in the treatment of primary brain tumors. PMID:15494097

  18. Clinical presentation, diagnosis, and pharmacotherapy of patients with primary brain tumors.

    PubMed

    Newton, H B; Turowski, R C; Stroup, T J; McCoy, L K

    1999-01-01

    To briefly review the clinical presentation and diagnosis of patients with primary brain tumors, followed by an in-depth survey of the pertinent pharmacotherapy. A detailed search of the neurologic, neurosurgical, and oncologic literature for basic science research, clinical studies, and review articles related to chemotherapy and pharmacotherapy of primary brain tumors. Relevant studies on tissue culture systems, animals, and humans examining the mechanisms of action, pharmacokinetics, clinical pharmacology, and treatment results of chemotherapeutic agents for primary brain tumors. In addition, studies of pharmacologic agents administered for supportive care and symptom control are reviewed. Primary brain tumors derive from cells within the intracranial cavity and generally present with headache, seizure activity, cognitive changes, and weakness. They are diagnosed most efficiently with magnetic resonance imaging. After diagnosis, the most common supportive medications include corticosteroids, gastric acid inhibitors, and anticonvulsants. Chemotherapy is adjunctive treatment for patients with malignant tumors and selected recurrent or progressive benign neoplasms. In general, the most effective chemotherapeutic drugs are alkylating agents such as the nitrosoureas, procarbazine, cisplatin, and carboplatin. Other agents used include cyclophosphamide, methotrexate, vincristine, and etoposide. Angiogenesis inhibitors and gene therapy comprise some of the novel therapeutic strategies under investigation. The efficacy of chemotherapy for primary brain tumors remains modest. Novel agents must be discovered that are more specific and attack tumor cells at the molecular level of tumorigenesis. Furthermore, strategies must be developed to counteract the pervasive problem of brain tumor chemoresistance.

  19. Patient-specific semi-supervised learning for postoperative brain tumor segmentation.

    PubMed

    Meier, Raphael; Bauer, Stefan; Slotboom, Johannes; Wiest, Roland; Reyes, Mauricio

    2014-01-01

    In contrast to preoperative brain tumor segmentation, the problem of postoperative brain tumor segmentation has been rarely approached so far. We present a fully-automatic segmentation method using multimodal magnetic resonance image data and patient-specific semi-supervised learning. The idea behind our semi-supervised approach is to effectively fuse information from both pre- and postoperative image data of the same patient to improve segmentation of the postoperative image. We pose image segmentation as a classification problem and solve it by adopting a semi-supervised decision forest. The method is evaluated on a cohort of 10 high-grade glioma patients, with segmentation performance and computation time comparable or superior to a state-of-the-art brain tumor segmentation method. Moreover, our results confirm that the inclusion of preoperative MR images lead to a better performance regarding postoperative brain tumor segmentation.

  20. Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake.

    PubMed

    Flavahan, William A; Wu, Qiulian; Hitomi, Masahiro; Rahim, Nasiha; Kim, Youngmi; Sloan, Andrew E; Weil, Robert J; Nakano, Ichiro; Sarkaria, Jann N; Stringer, Brett W; Day, Bryan W; Li, Meizhang; Lathia, Justin D; Rich, Jeremy N; Hjelmeland, Anita B

    2013-10-01

    Like all cancers, brain tumors require a continuous source of energy and molecular resources for new cell production. In normal brain, glucose is an essential neuronal fuel, but the blood-brain barrier limits its delivery. We now report that nutrient restriction contributes to tumor progression by enriching for brain tumor initiating cells (BTICs) owing to preferential BTIC survival and to adaptation of non-BTICs through acquisition of BTIC features. BTICs outcompete for glucose uptake by co-opting the high affinity neuronal glucose transporter, type 3 (Glut3, SLC2A3). BTICs preferentially express Glut3, and targeting Glut3 inhibits BTIC growth and tumorigenic potential. Glut3, but not Glut1, correlates with poor survival in brain tumors and other cancers; thus, tumor initiating cells may extract nutrients with high affinity. As altered metabolism represents a cancer hallmark, metabolic reprogramming may maintain the tumor hierarchy and portend poor prognosis.

  1. Regional brain glucose metabolism in patients with brain tumors before and after radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, G.J.; Volkow, N.D.; Lau, Y.H.

    1994-05-01

    This study was performed to measure regional glucose metabolism in nonaffected brain regions of patients with primary or metastatic brain tumors. Seven female and four male patients (mean age 51.5{plus_minus}14.0 years old) were compared with eleven age and sex matched normal subjects. None of the patients had hydrocephalus and/or increased intracranial pressure. Brain glucose metabolism was measured using FDG-PET scan. Five of the patients were reevaluated one week after receiving radiation treatment (RT) to the brain. Patients were on Decadron and/or Dilantin at the time of both scan. PET images were analyzed with a template of 115 nonoverlapping regions ofmore » interest and then grouped into eight gray matter regions on each hemisphere. Brain regions with tumors and edema shown in MR imaging were excluded. Z scores were used to compare individual patients` regional values with those of normal subjects. The number of regional values with Z scores of less than - 3.0 were considered abnormal and were quantified. The mean global glucose metabolic rate (mean of all regions) in nonaffected brain regions of patients was significantly lower than that of normal controls (32.1{plus_minus}9.0 versus 44.8{plus_minus}6.3 {mu}mol/100g/min, p<0.001). Analyses of individual subjects revealed that none of the controls and 8 of the 11 patients had at least one abnormal region. In these 8 patients the regions which were abnormal were most frequently localized in right (n=5) and left occipital (n=6) and right orbital frontal cortex (n=7) whereas the basal ganglia was not affected. Five of the patients who had repeated scans following RT showed decrements in tumor metabolism (41{plus_minus}20.5%) and a significant increase in whole brain metabolism (8.6{plus_minus}5.3%, p<0.001). The improvement in whole brain metabolism after RT suggests that the brain metabolic decrements in the patients were related to the presence of tumoral tissue and not just a medication effect.« less

  2. Non-invasive monitoring of hemodynamic changes in orthotropic brain tumor

    NASA Astrophysics Data System (ADS)

    Kashyap, Dheerendra; Sharma, Vikrant; Liu, Hanli

    2007-02-01

    Radio surgical interventions such as Gamma Knife and Cyberknife have become attractive as therapeutic interventions. However, one of the drawbacks of cyberknife is radionecrosis, which is caused by excessive radiation to surrounding normal tissues. Radionecrosis occurs in about 10-15% of cases and could have adverse effects leading to death. Currently available imaging techniques have failed to reliably distinguish radionecrosis from tumor growth. Development of imaging techniques that could provide distinction between tumor growth and radionecrosis would give us ability to monitor effects of radiation therapy non-invasively. This paper investigates the use of near infrared spectroscopy (NIRS) as a new technique to monitor the growth of brain tumors. Brain tumors (9L glioma cell line) were implanted in right caudate nucleus of rats (250-300 gms, Male Fisher C) through a guide screw. A new algorithm was developed, which used broadband steady-state reflectance measurements made using a single source-detector pair, to quantify absolute concentrations of hemoglobin derivatives and reduced scattering coefficients. Preliminary results from the brain tumors indicated decreases in oxygen saturation, oxygenated hemoglobin concentrations and increases in deoxygenated hemoglobin concentrations with tumor growth. The study demonstrates that NIRS technology could provide an efficient, noninvasive means of monitoring vascular oxygenation dynamics of brain tumors and further facilitate investigations of efficacy of tumor treatments.

  3. Gold Nanoparticles for Brain Tumor Imaging: A Systematic Review.

    PubMed

    Meola, Antonio; Rao, Jianghong; Chaudhary, Navjot; Sharma, Mayur; Chang, Steven D

    2018-01-01

    Demarcation of malignant brain tumor boundaries is critical to achieve complete resection and to improve patient survival. Contrast-enhanced brain magnetic resonance imaging (MRI) is the gold standard for diagnosis and pre-surgical planning, despite limitations of gadolinium (Gd)-based contrast agents to depict tumor margins. Recently, solid metal-based nanoparticles (NPs) have shown potential as diagnostic probes for brain tumors. Gold nanoparticles (GNPs) emerged among those, because of their unique physical and chemical properties and biocompatibility. The aim of the present study is to review the application of GNPs for in vitro and in vivo brain tumor diagnosis. We performed a PubMed search of reports exploring the application of GNPs in the diagnosis of brain tumors in biological models including cells, animals, primates, and humans. The search words were "gold" AND "NP" AND "brain tumor." Two reviewers performed eligibility assessment independently in an unblinded standardized manner. The following data were extracted from each paper: first author, year of publication, animal/cellular model, GNP geometry, GNP size, GNP coating [i.e., polyethylene glycol (PEG) and Gd], blood-brain barrier (BBB) crossing aids, imaging modalities, and therapeutic agents conjugated to the GNPs. The PubMed search provided 100 items. A total of 16 studies, published between the 2011 and 2017, were included in our review. No studies on humans were found. Thirteen studies were conducted in vivo on rodent models. The most common shape was a nanosphere (12 studies). The size of GNPs ranged between 20 and 120 nm. In eight studies, the GNPs were covered in PEG. The BBB penetration was increased by surface molecules (nine studies) or by means of external energy sources (in two studies). The most commonly used imaging modalities were MRI (four studies), surface-enhanced Raman scattering (three studies), and fluorescent microscopy (three studies). In two studies, the GNPs were conjugated

  4. INVITED REVIEW – NEUROIMAGING RESPONSE ASSESSMENT CRITERIA FOR BRAIN TUMORS IN VETERINARY PATIENTS

    PubMed Central

    Rossmeisl, John H.; Garcia, Paulo A.; Daniel, Gregory B.; Bourland, John Daniel; Debinski, Waldemar; Dervisis, Nikolaos; Klahn, Shawna

    2013-01-01

    The evaluation of therapeutic response using cross-sectional imaging techniques, particularly gadolinium-enhanced MRI, is an integral part of the clinical management of brain tumors in veterinary patients. Spontaneous canine brain tumors are increasingly recognized and utilized as a translational model for the study of human brain tumors. However, no standardized neuroimaging response assessment criteria have been formulated for use in veterinary clinical trials. Previous studies have found that the pathophysiologic features inherent to brain tumors and the surrounding brain complicate the use of the Response Evaluation Criteria in Solid Tumors (RECIST) assessment system. Objectives of this review are to describe strengths and limitations of published imaging-based brain tumor response criteria and propose a system for use in veterinary patients. The widely used human Macdonald and Response Assessment in Neuro-oncology (RANO) criteria are reviewed and described as to how they can be applied to veterinary brain tumors. Discussion points will include current challenges associated with the interpretation of brain tumor therapeutic responses such as imaging pseudophenomena and treatment-induced necrosis, and how advancements in perfusion imaging, positron emission tomography, and magnetic resonance spectroscopy have shown promise in differentiating tumor progression from therapy-induced changes. Finally, although objective endpoints such as MR-imaging and survival estimates will likely continue to comprise the foundations for outcome measures in veterinary brain tumor clinical trials, we propose that in order to provide a more relevant therapeutic response metric for veterinary patients, composite response systems should be formulated and validated that combine imaging and clinical assessment criteria. PMID:24219161

  5. Targeting BRAF V600E and Autophagy in Pediatric Brain Tumors

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0414 TITLE: Targeting BRAF V600E and Autophagy in Pediatric Brain Tumors PRINCIPAL INVESTIGATOR: Jean Mulcahy...29 Sep 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-14-1-0414 Targeting BRAF V600E and Autophagy in Pediatric Brain Tumors 5b. GRANT...ABSTRACT 200 words most significant findings 15. SUBJECT TERMS autophagy , BRAF, brain tumor. pediatric 16. SECURITY CLASSIFICATION OF: 17

  6. Oncogenic Properties of Apoptotic Tumor Cells in Aggressive B Cell Lymphoma

    PubMed Central

    Ford, Catriona A.; Petrova, Sofia; Pound, John D.; Voss, Jorine J.L.P.; Melville, Lynsey; Paterson, Margaret; Farnworth, Sarah L.; Gallimore, Awen M.; Cuff, Simone; Wheadon, Helen; Dobbin, Edwina; Ogden, Carol Anne; Dumitriu, Ingrid E.; Dunbar, Donald R.; Murray, Paul G.; Ruckerl, Dominik; Allen, Judith E.; Hume, David A.; van Rooijen, Nico; Goodlad, John R.; Freeman, Tom C.; Gregory, Christopher D.

    2015-01-01

    Summary Background Cells undergoing apoptosis are known to modulate their tissue microenvironments. By acting on phagocytes, notably macrophages, apoptotic cells inhibit immunological and inflammatory responses and promote trophic signaling pathways. Paradoxically, because of their potential to cause death of tumor cells and thereby militate against malignant disease progression, both apoptosis and tumor-associated macrophages (TAMs) are often associated with poor prognosis in cancer. We hypothesized that, in progression of malignant disease, constitutive loss of a fraction of the tumor cell population through apoptosis could yield tumor-promoting effects. Results Here, we demonstrate that apoptotic tumor cells promote coordinated tumor growth, angiogenesis, and accumulation of TAMs in aggressive B cell lymphomas. Through unbiased “in situ transcriptomics” analysis—gene expression profiling of laser-captured TAMs to establish their activation signature in situ—we show that these cells are activated to signal via multiple tumor-promoting reparatory, trophic, angiogenic, tissue remodeling, and anti-inflammatory pathways. Our results also suggest that apoptotic lymphoma cells help drive this signature. Furthermore, we demonstrate that, upon induction of apoptosis, lymphoma cells not only activate expression of the tumor-promoting matrix metalloproteinases MMP2 and MMP12 in macrophages but also express and process these MMPs directly. Finally, using a model of malignant melanoma, we show that the oncogenic potential of apoptotic tumor cells extends beyond lymphoma. Conclusions In addition to its profound tumor-suppressive role, apoptosis can potentiate cancer progression. These results have important implications for understanding the fundamental biology of cell death, its roles in malignant disease, and the broader consequences of apoptosis-inducing anti-cancer therapy. PMID:25702581

  7. Oncogenic properties of apoptotic tumor cells in aggressive B cell lymphoma.

    PubMed

    Ford, Catriona A; Petrova, Sofia; Pound, John D; Voss, Jorine J L P; Melville, Lynsey; Paterson, Margaret; Farnworth, Sarah L; Gallimore, Awen M; Cuff, Simone; Wheadon, Helen; Dobbin, Edwina; Ogden, Carol Anne; Dumitriu, Ingrid E; Dunbar, Donald R; Murray, Paul G; Ruckerl, Dominik; Allen, Judith E; Hume, David A; van Rooijen, Nico; Goodlad, John R; Freeman, Tom C; Gregory, Christopher D

    2015-03-02

    Cells undergoing apoptosis are known to modulate their tissue microenvironments. By acting on phagocytes, notably macrophages, apoptotic cells inhibit immunological and inflammatory responses and promote trophic signaling pathways. Paradoxically, because of their potential to cause death of tumor cells and thereby militate against malignant disease progression, both apoptosis and tumor-associated macrophages (TAMs) are often associated with poor prognosis in cancer. We hypothesized that, in progression of malignant disease, constitutive loss of a fraction of the tumor cell population through apoptosis could yield tumor-promoting effects. Here, we demonstrate that apoptotic tumor cells promote coordinated tumor growth, angiogenesis, and accumulation of TAMs in aggressive B cell lymphomas. Through unbiased "in situ transcriptomics" analysis-gene expression profiling of laser-captured TAMs to establish their activation signature in situ-we show that these cells are activated to signal via multiple tumor-promoting reparatory, trophic, angiogenic, tissue remodeling, and anti-inflammatory pathways. Our results also suggest that apoptotic lymphoma cells help drive this signature. Furthermore, we demonstrate that, upon induction of apoptosis, lymphoma cells not only activate expression of the tumor-promoting matrix metalloproteinases MMP2 and MMP12 in macrophages but also express and process these MMPs directly. Finally, using a model of malignant melanoma, we show that the oncogenic potential of apoptotic tumor cells extends beyond lymphoma. In addition to its profound tumor-suppressive role, apoptosis can potentiate cancer progression. These results have important implications for understanding the fundamental biology of cell death, its roles in malignant disease, and the broader consequences of apoptosis-inducing anti-cancer therapy. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Computational modeling of brain tumors: discrete, continuum or hybrid?

    NASA Astrophysics Data System (ADS)

    Wang, Zhihui; Deisboeck, Thomas S.

    2008-04-01

    In spite of all efforts, patients diagnosed with highly malignant brain tumors (gliomas), continue to face a grim prognosis. Achieving significant therapeutic advances will also require a more detailed quantitative understanding of the dynamic interactions among tumor cells, and between these cells and their biological microenvironment. Data-driven computational brain tumor models have the potential to provide experimental tumor biologists with such quantitative and cost-efficient tools to generate and test hypotheses on tumor progression, and to infer fundamental operating principles governing bidirectional signal propagation in multicellular cancer systems. This review highlights the modeling objectives of and challenges with developing such in silicobrain tumor models by outlining two distinct computational approaches: discrete and continuum, each with representative examples. Future directions of this integrative computational neuro-oncology field, such as hybrid multiscale multiresolution modeling are discussed.

  9. Cognitive Screening in Brain Tumors: Short but Sensitive Enough?

    PubMed Central

    Robinson, Gail A.; Biggs, Vivien; Walker, David G.

    2015-01-01

    Cognitive deficits in brain tumors are generally thought to be relatively mild and non-specific, although recent evidence challenges this notion. One possibility is that cognitive screening tools are being used to assess cognitive functions but their sensitivity to detect cognitive impairment may be limited. For improved sensitivity to recognize mild and/or focal cognitive deficits in brain tumors, neuropsychological evaluation tailored to detect specific impairments has been thought crucial. This study investigates the sensitivity of a cognitive screening tool, the Montreal Cognitive Assessment (MoCA), compared to a brief but tailored cognitive assessment (CA) for identifying cognitive deficits in an unselected primary brain tumor sample (i.e., low/high-grade gliomas, meningiomas). Performance is compared on broad measures of impairment: (a) number of patients impaired on the global screening measure or in any cognitive domain; and (b) number of cognitive domains impaired and specific analyses of MoCA-Intact and MoCA-Impaired patients on specific cognitive tests. The MoCA-Impaired group obtained lower naming and word fluency scores than the MoCA-Intact group, but otherwise performed comparably on cognitive tests. Overall, based on our results from patients with brain tumor, the MoCA has extremely poor sensitivity for detecting cognitive impairments and a brief but tailored CA is necessary. These findings will be discussed in relation to broader issues for clinical management and planning, as well as specific considerations for neuropsychological assessment of brain tumor patients. PMID:25815273

  10. Brain tumor modeling: glioma growth and interaction with chemotherapy

    NASA Astrophysics Data System (ADS)

    Banaem, Hossein Y.; Ahmadian, Alireza; Saberi, Hooshangh; Daneshmehr, Alireza; Khodadad, Davood

    2011-10-01

    In last decade increasingly mathematical models of tumor growths have been studied, particularly on solid tumors which growth mainly caused by cellular proliferation. In this paper we propose a modified model to simulate the growth of gliomas in different stages. Glioma growth is modeled by a reaction-advection-diffusion. We begin with a model of untreated gliomas and continue with models of polyclonal glioma following chemotherapy. From relatively simple assumptions involving homogeneous brain tissue bounded by a few gross anatomical landmarks (ventricles and skull) the models have been expanded to include heterogeneous brain tissue with different motilities of glioma cells in grey and white matter. Tumor growth is characterized by a dangerous change in the control mechanisms, which normally maintain a balance between the rate of proliferation and the rate of apoptosis (controlled cell death). Result shows that this model closes to clinical finding and can simulate brain tumor behavior properly.

  11. Cilengitide in Treating Children With Refractory Primary Brain Tumors

    ClinicalTrials.gov

    2013-09-27

    Childhood Central Nervous System Germ Cell Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Childhood Mixed Glioma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Brain Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma

  12. Neuropathological biomarker candidates in brain tumors: key issues for translational efficiency.

    PubMed

    Hainfellner, J A; Heinzl, H

    2010-01-01

    Brain tumors comprise a large spectrum of rare malignancies in children and adults that are often associated with severe neurological symptoms and fatal outcome. Neuropathological tumor typing provides both prognostic and predictive tissue information which is the basis for optimal postoperative patient management and therapy. Molecular biomarkers may extend and refine prognostic and predictive information in a brain tumor case, providing more individualized and optimized treatment options. In the recent past a few neuropathological brain tumor biomarkers have translated smoothly into clinical use whereas many candidates show protracted translation. We investigated the causes of protracted translation of candidate brain tumor biomarkers. Considering the research environment from personal, social and systemic perspectives we identified eight determinants of translational success: methodology, funding, statistics, organization, phases of research, cooperation, self-reflection, and scientific progeny. Smoothly translating biomarkers are associated with low degrees of translational complexity whereas biomarkers with protracted translation are associated with high degrees. Key issues for translational efficiency of neuropathological brain tumor biomarker research seem to be related to (i) the strict orientation to the mission of medical research, that is the improval of medical practice as primordial purpose of research, (ii) definition of research priorities according to clinical needs, and (iii) absorption of translational complexities by means of operatively beneficial standards. To this end, concrete actions should comprise adequate scientific education of young investigators, and shaping of integrative diagnostics and therapy research both on the local level and the level of influential international brain tumor research platforms.

  13. A survey of MRI-based medical image analysis for brain tumor studies

    NASA Astrophysics Data System (ADS)

    Bauer, Stefan; Wiest, Roland; Nolte, Lutz-P.; Reyes, Mauricio

    2013-07-01

    MRI-based medical image analysis for brain tumor studies is gaining attention in recent times due to an increased need for efficient and objective evaluation of large amounts of data. While the pioneering approaches applying automated methods for the analysis of brain tumor images date back almost two decades, the current methods are becoming more mature and coming closer to routine clinical application. This review aims to provide a comprehensive overview by giving a brief introduction to brain tumors and imaging of brain tumors first. Then, we review the state of the art in segmentation, registration and modeling related to tumor-bearing brain images with a focus on gliomas. The objective in the segmentation is outlining the tumor including its sub-compartments and surrounding tissues, while the main challenge in registration and modeling is the handling of morphological changes caused by the tumor. The qualities of different approaches are discussed with a focus on methods that can be applied on standard clinical imaging protocols. Finally, a critical assessment of the current state is performed and future developments and trends are addressed, giving special attention to recent developments in radiological tumor assessment guidelines.

  14. Growth of melanoma brain tumors monitored by photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Staley, Jacob; Grogan, Patrick; Samadi, Abbas K.; Cui, Huizhong; Cohen, Mark S.; Yang, Xinmai

    2010-07-01

    Melanoma is a primary malignancy that is known to metastasize to the brain and often causes death. The ability to image the growth of brain melanoma in vivo can provide new insights into its evolution and response to therapies. In our study, we use a reflection mode photoacoustic microscopy (PAM) system to detect the growth of melanoma brain tumor in a small animal model. The melanoma tumor cells are implanted in the brain of a mouse at the beginning of the test. Then, PAM is used to scan the region of implantation in the mouse brain, and the growth of the melanoma is monitored until the death of the animal. It is demonstrated that PAM is capable of detecting and monitoring the brain melanoma growth noninvasively in vivo.

  15. [Tumor segmentation of brain MRI with adaptive bandwidth mean shift].

    PubMed

    Hou, Xiaowen; Liu, Qi

    2014-10-01

    In order to get the adaptive bandwidth of mean shift to make the tumor segmentation of brain magnetic resonance imaging (MRI) to be more accurate, we in this paper present an advanced mean shift method. Firstly, we made use of the space characteristics of brain image to eliminate the impact on segmentation of skull; and then, based on the characteristics of spatial agglomeration of different tissues of brain (includes tumor), we applied edge points to get the optimal initial mean value and the respectively adaptive bandwidth, in order to improve the accuracy of tumor segmentation. The results of experiment showed that, contrast to the fixed bandwidth mean shift method, the method in this paper could segment the tumor more accurately.

  16. 3-D in vivo brain tumor geometry study by scaling analysis

    NASA Astrophysics Data System (ADS)

    Torres Hoyos, F.; Martín-Landrove, M.

    2012-02-01

    A new method, based on scaling analysis, is used to calculate fractal dimension and local roughness exponents to characterize in vivo 3-D tumor growth in the brain. Image acquisition was made according to the standard protocol used for brain radiotherapy and radiosurgery, i.e., axial, coronal and sagittal magnetic resonance T1-weighted images, and comprising the brain volume for image registration. Image segmentation was performed by the application of the k-means procedure upon contrasted images. We analyzed glioblastomas, astrocytomas, metastases and benign brain tumors. The results show significant variations of the parameters depending on the tumor stage and histological origin.

  17. Brain tumor segmentation using holistically nested neural networks in MRI images.

    PubMed

    Zhuge, Ying; Krauze, Andra V; Ning, Holly; Cheng, Jason Y; Arora, Barbara C; Camphausen, Kevin; Miller, Robert W

    2017-10-01

    Gliomas are rapidly progressive, neurologically devastating, largely fatal brain tumors. Magnetic resonance imaging (MRI) is a widely used technique employed in the diagnosis and management of gliomas in clinical practice. MRI is also the standard imaging modality used to delineate the brain tumor target as part of treatment planning for the administration of radiation therapy. Despite more than 20 yr of research and development, computational brain tumor segmentation in MRI images remains a challenging task. We are presenting a novel method of automatic image segmentation based on holistically nested neural networks that could be employed for brain tumor segmentation of MRI images. Two preprocessing techniques were applied to MRI images. The N4ITK method was employed for correction of bias field distortion. A novel landmark-based intensity normalization method was developed so that tissue types have a similar intensity scale in images of different subjects for the same MRI protocol. The holistically nested neural networks (HNN), which extend from the convolutional neural networks (CNN) with a deep supervision through an additional weighted-fusion output layer, was trained to learn the multiscale and multilevel hierarchical appearance representation of the brain tumor in MRI images and was subsequently applied to produce a prediction map of the brain tumor on test images. Finally, the brain tumor was obtained through an optimum thresholding on the prediction map. The proposed method was evaluated on both the Multimodal Brain Tumor Image Segmentation (BRATS) Benchmark 2013 training datasets, and clinical data from our institute. A dice similarity coefficient (DSC) and sensitivity of 0.78 and 0.81 were achieved on 20 BRATS 2013 training datasets with high-grade gliomas (HGG), based on a two-fold cross-validation. The HNN model built on the BRATS 2013 training data was applied to ten clinical datasets with HGG from a locally developed database. DSC and sensitivity of

  18. Aggressive rat prostate tumors reprogram the benign parts of the prostate and regional lymph nodes prior to metastasis

    PubMed Central

    Thysell, Elin; Halin Bergström, Sofia; Bergh, Anders

    2017-01-01

    In order to grow and spread tumors need to interact with adjacent tissues. We therefore hypothesized that small but aggressive prostate cancers influence the rest of the prostate and regional lymph nodes differently than tumors that are more indolent. Poorly metastatic (Dunning AT1) or highly metastatic (Dunning MLL) rat prostate tumor cells were injected into the ventral prostate lobe of immunocompetent rats. After 10 days—when the tumors occupied about 30% of the prostate lobe and lymph node metastases were undetectable—the global gene expression in tumors, benign parts of the prostate, and regional iliac lymph nodes were examined to define tumor-induced changes related to preparation for future metastasis. The tumors induced profound effects on the gene expression profiles in the benign parts of the prostate and these were strikingly different in the two tumor models. Gene ontology enrichment analysis suggested that tumors with high metastatic capacity were more successful than less metastatic tumors in inducing tumor-promoting changes and suppressing anti-tumor immune responses in the entire prostate. Some of these differences such as altered angiogenesis, nerve density, accumulation of T-cells and macrophages were verified by immunohistochemistry. Gene expression alterations in the regional lymph nodes suggested decreased quantity and activation of immune cells in MLL-lymph nodes that were also verified by immunostaining. In summary, even when small highly metastatic prostate tumors can affect the entire tumor-bearing organ and pre-metastatic lymph nodes differently than less metastatic tumors. When the kinetics of these extratumoral influences (by us named TINT = tumor instructed normal tissue) are more precisely defined they could potentially be used as markers of disease aggressiveness and become therapeutic targets. PMID:28472073

  19. Quantitative assessment of Cerenkov luminescence for radioguided brain tumor resection surgery

    NASA Astrophysics Data System (ADS)

    Klein, Justin S.; Mitchell, Gregory S.; Cherry, Simon R.

    2017-05-01

    Cerenkov luminescence imaging (CLI) is a developing imaging modality that detects radiolabeled molecules via visible light emitted during the radioactive decay process. We used a Monte Carlo based computer simulation to quantitatively investigate CLI compared to direct detection of the ionizing radiation itself as an intraoperative imaging tool for assessment of brain tumor margins. Our brain tumor model consisted of a 1 mm spherical tumor remnant embedded up to 5 mm in depth below the surface of normal brain tissue. Tumor to background contrast ranging from 2:1 to 10:1 were considered. We quantified all decay signals (e±, gamma photon, Cerenkov photons) reaching the brain volume surface. CLI proved to be the most sensitive method for detecting the tumor volume in both imaging and non-imaging strategies as assessed by contrast-to-noise ratio and by receiver operating characteristic output of a channelized Hotelling observer.

  20. Trend of brain tumor incidence by histological subtypes in Japan: estimation from the Brain Tumor Registry of Japan, 1973-1993.

    PubMed

    Kaneko, Satoshi; Nomura, Kazuhiro; Yoshimura, Takesumi; Yamaguchi, Naohito

    2002-10-01

    In order to estimate the risk of primary brain tumor (PBT), we attempted to estimate the national incidence rates of PBT by histological subtypes using the Brain Tumor Registry of Japan (BTR). The number of deaths due to PBT in a certain year is the sum of the deaths among patients diagnosed in different years. Registered cases in the BTR represent incident cases of PBT in the whole country multiplied by a cover rate. The cover rate is defined as the proportions of PBT cases that the Registry counts in relation to all the cases in the country in a given year. If the survival experience among the registered cases represents the survival experience of all cases, then the rate of registered deaths represents all deaths due to PBT in Japan. By this logic, we estimated the cover rates and incidence rates from 1973 to 1993 using the BTR and National Vital Statistics data. Our estimates showed three patterns of time trends: (1) a gradual linear increasing trend before the 1980s followed by a plateau (total PBT, gliomas, meningioma, and hemangioblastoma), (2) a trend with a step-up increase in the 1980s followed by a plateau (germ cell tumor and pituitary tumor), and (3) a linear increasing trend throughout the observation period with no plateau (malignant lymphoma and neurinoma). Furthermore, obvious sex differences in time trends were observed in rates of meningioma, germ cell tumor, and pituitary tumor. The results of this study demonstrated several distinctive patterns in time trends, which give us insight into the possible etiologies of brain tumors. Further epidemiological study is needed to elucidate these findings.

  1. Research of the multimodal brain-tumor segmentation algorithm

    NASA Astrophysics Data System (ADS)

    Lu, Yisu; Chen, Wufan

    2015-12-01

    It is well-known that the number of clusters is one of the most important parameters for automatic segmentation. However, it is difficult to define owing to the high diversity in appearance of tumor tissue among different patients and the ambiguous boundaries of lesions. In this study, a nonparametric mixture of Dirichlet process (MDP) model is applied to segment the tumor images, and the MDP segmentation can be performed without the initialization of the number of clusters. A new nonparametric segmentation algorithm combined with anisotropic diffusion and a Markov random field (MRF) smooth constraint is proposed in this study. Besides the segmentation of single modal brain tumor images, we developed the algorithm to segment multimodal brain tumor images by the magnetic resonance (MR) multimodal features and obtain the active tumor and edema in the same time. The proposed algorithm is evaluated and compared with other approaches. The accuracy and computation time of our algorithm demonstrates very impressive performance.

  2. Brain Tumor Initiating Cells Adapt to Restricted Nutrition through Preferential Glucose Uptake

    PubMed Central

    Flavahan, William A.; Wu, Qiulian; Hitomi, Masahiro; Rahim, Nasiha; Kim, Youngmi; Sloan, Andrew E.; Weil, Robert J.; Nakano, Ichiro; Sarkaria, Jann N.; Stringer, Brett W.; Day, Bryan W.; Li, Meizhang; Lathia, Justin D.; Rich, Jeremy N.; Hjelmeland, Anita B.

    2013-01-01

    Like all cancers, brain tumors require a continuous source of energy and molecular resources for new cell production. In normal brain, glucose is an essential neuronal fuel, but the blood-brain barrier limits its delivery. We now report that nutrient restriction contributes to tumor progression by enriching for brain tumor initiating cells (BTICs) due to preferential BTIC survival and adaptation of non-BTICs through acquisition of BTIC features. BTICs outcompete for glucose uptake by co-opting the high affinity neuronal glucose transporter, type 3 (Glut3, SLC2A3). BTICs preferentially express Glut3 and targeting Glut3 inhibits BTIC growth and tumorigenic potential. Glut3, but not Glut1, correlates with poor survival in brain tumors and other cancers; thus, TICs may extract nutrients with high affinity. As altered metabolism represents a cancer hallmark, metabolic reprogramming may instruct the tumor hierarchy and portend poor prognosis. PMID:23995067

  3. Ultrastructural findings in transplanted experimental brain tumors and their significance for the cytogenesis of such tumors.

    PubMed

    Mennel, H D

    1988-01-01

    Tumors induced by transplacental action in the spinal cord of rats were transplanted into the brains of the same rat strain. They were followed up by electron microscopy during the first ten passages. Three architectural features were detected: First pure tumor parts, second myelin breakdown and phagocytosis, and third the resulting accumulation of resting macrophages. Architecture two and three were interpreted as result of considerable phagocytotic activity of tumor cells localized within the white substance of the brain and spinal cord. Only architecture one was considered to represent proper tumor. Since this was low differentiated and partial astrocytic differentiation only occurred around vessels to remarkable extent, the thesis is put forward that these transplacentally induced tumors correspond to human primitive neuroectodermal tumors.

  4. [The aggressive child (author's transl)].

    PubMed

    Harbauer, H

    1978-08-01

    In children a "normal" aggressiveness should be distinguished from "hostile" and "inhibited" aggression; the latter usually become apparent as heteroaggressive or autoaggressive behaviour. Autoaggression is more common with younger children. Different hypotheses about the origin of aggressiveness are discussed. In the younger child nail biting, trichotillomania, rocking, an intensified phase of contrariness and enkopresis may have components of aggressiveness. In older children and adolescents dissocial forms of development, drug taking, attempted suicid, and anorexia nervosa may be parts of aggressive behaviour. Minimal brain dysfunction, autism, and postencephalitic syndromes predominate amongst organic alterations of the brain as causes for aggressive behaviour. Particularly the Lesch-Nyhan-syndrome, but equally the Cornelia de Lange-syndrome show autoaggressive tendencies.

  5. Fine-tuning convolutional deep features for MRI based brain tumor classification

    NASA Astrophysics Data System (ADS)

    Ahmed, Kaoutar B.; Hall, Lawrence O.; Goldgof, Dmitry B.; Liu, Renhao; Gatenby, Robert A.

    2017-03-01

    Prediction of survival time from brain tumor magnetic resonance images (MRI) is not commonly performed and would ordinarily be a time consuming process. However, current cross-sectional imaging techniques, particularly MRI, can be used to generate many features that may provide information on the patient's prognosis, including survival. This information can potentially be used to identify individuals who would benefit from more aggressive therapy. Rather than using pre-defined and hand-engineered features as with current radiomics methods, we investigated the use of deep features extracted from pre-trained convolutional neural networks (CNNs) in predicting survival time. We also provide evidence for the power of domain specific fine-tuning in improving the performance of a pre-trained CNN's, even though our data set is small. We fine-tuned a CNN initially trained on a large natural image recognition dataset (Imagenet ILSVRC) and transferred the learned feature representations to the survival time prediction task, obtaining over 81% accuracy in a leave one out cross validation.

  6. Low-grade prostate tumors can harbor signs of aggressive cancer | Center for Cancer Research

    Cancer.gov

    In a new study, Center for Cancer Research investigators found that low-grade and high-grade regions of prostate tumor tissue shared mutations typically linked to aggressive cancer. Testing for mutations to specific genes could help clinicians decide whether a patient with an initial low-grade result should undergo a follow-up biopsy. Learn more...

  7. Working memory brain activity and capacity link MAOA polymorphism to aggressive behavior during development.

    PubMed

    Ziermans, T; Dumontheil, I; Roggeman, C; Peyrard-Janvid, M; Matsson, H; Kere, J; Klingberg, T

    2012-02-28

    A developmental increase in working memory capacity is an important part of cognitive development, and low working memory (WM) capacity is a risk factor for developing psychopathology. Brain activity represents a promising endophenotype for linking genes to behavior and for improving our understanding of the neurobiology of WM development. We investigated gene-brain-behavior relationships by focusing on 18 single-nucleotide polymorphisms (SNPs) located in six dopaminergic candidate genes (COMT, SLC6A3/DAT1, DBH, DRD4, DRD5, MAOA). Visuospatial WM (VSWM) brain activity, measured with functional magnetic resonance imaging, and VSWM capacity were assessed in a longitudinal study of typically developing children and adolescents. Behavioral problems were evaluated using the Child Behavior Checklist (CBCL). One SNP (rs6609257), located ~6.6 kb downstream of the monoamine oxidase A gene (MAOA) on human chromosome X, significantly affected brain activity in a network of frontal, parietal and occipital regions. Increased activity in this network, but not in caudate nucleus or anterior prefrontal regions, was correlated with VSWM capacity, which in turn predicted externalizing (aggressive/oppositional) symptoms, with higher WM capacity associated with fewer externalizing symptoms. There were no direct significant correlations between rs6609257 and behavioral symptoms. These results suggest a mediating role of WM brain activity and capacity in linking the MAOA gene to aggressive behavior during development.

  8. A multicenter study of primary brain tumor incidence in Australia (2000–2008)

    PubMed Central

    Dobes, Martin; Shadbolt, Bruce; Khurana, Vini G.; Jain, Sanjiv; Smith, Sarah F.; Smee, Robert; Dexter, Mark; Cook, Raymond

    2011-01-01

    There are conflicting reports from Europe and North America regarding trends in the incidence of primary brain tumor, whereas the incidence of primary brain tumors in Australia is currently unknown. We aimed to determine the incidence in Australia with age-, sex-, and benign-versus-malignant histology-specific analyses. A multicenter study was performed in the state of New South Wales (NSW) and the Australian Capital Territory (ACT), which has a combined population of >7 million with >97% rate of population retention for medical care. We retrospectively mined pathology databases servicing neurosurgical centers in NSW and ACT for histologically confirmed primary brain tumors diagnosed from January 2000 through December 2008. Data were weighted for patient outflow and data completeness. Incidence rates were age standardized and trends analyzed using joinpoint analysis. A weighted total of 7651 primary brain tumors were analyzed. The overall US-standardized incidence of primary brain tumors was 11.3 cases 100 000 person-years (±0.13; 95% confidence interval, 9.8–12.3) during the study period with no significant linear increase. A significant increase in primary malignant brain tumors from 2000 to 2008 was observed; this appears to be largely due to an increase in malignant tumor incidence in the ≥65-year age group. This collection represents the most contemporary data on primary brain tumor incidence in Australia. Whether the observed increase in malignant primary brain tumors, particularly in persons aged ≥65 years, is due to improved detection, diagnosis, and care delivery or a true change in incidence remains undetermined. We recommend a direct, uniform, and centralized approach to monitoring primary brain tumor incidence that can be independent of multiple interstate cancer registries. PMID:21727214

  9. Vascular Gene Expression in Nonneoplastic and Malignant Brain

    PubMed Central

    Madden, Stephen L.; Cook, Brian P.; Nacht, Mariana; Weber, William D.; Callahan, Michelle R.; Jiang, Yide; Dufault, Michael R.; Zhang, Xiaoming; Zhang, Wen; Walter-Yohrling, Jennifer; Rouleau, Cecile; Akmaev, Viatcheslav R.; Wang, Clarence J.; Cao, Xiaohong; St. Martin, Thia B.; Roberts, Bruce L.; Teicher, Beverly A.; Klinger, Katherine W.; Stan, Radu-Virgil; Lucey, Brenden; Carson-Walter, Eleanor B.; Laterra, John; Walter, Kevin A.

    2004-01-01

    Malignant gliomas are uniformly lethal tumors whose morbidity is mediated in large part by the angiogenic response of the brain to the invading tumor. This profound angiogenic response leads to aggressive tumor invasion and destruction of surrounding brain tissue as well as blood-brain barrier breakdown and life-threatening cerebral edema. To investigate the molecular mechanisms governing the proliferation of abnormal microvasculature in malignant brain tumor patients, we have undertaken a cell-specific transcriptome analysis from surgically harvested nonneoplastic and tumor-associated endothelial cells. SAGE-derived endothelial cell gene expression patterns from glioma and nonneoplastic brain tissue reveal distinct gene expression patterns and consistent up-regulation of certain glioma endothelial marker genes across patient samples. We define the G-protein-coupled receptor RDC1 as a tumor endothelial marker whose expression is distinctly induced in tumor endothelial cells of both brain and peripheral vasculature. Further, we demonstrate that the glioma-induced gene, PV1, shows expression both restricted to endothelial cells and coincident with endothelial cell tube formation. As PV1 provides a framework for endothelial cell caveolar diaphragms, this protein may serve to enhance glioma-induced disruption of the blood-brain barrier and transendothelial exchange. Additional characterization of this extensive brain endothelial cell gene expression database will provide unique molecular insights into vascular gene expression. PMID:15277233

  10. Intelligence deficits in Chinese patients with brain tumor: the impact of tumor resection.

    PubMed

    Shen, Chao; Xie, Rong; Cao, Xiaoyun; Bao, Weimin; Yang, Bojie; Mao, Ying; Gao, Chao

    2013-01-01

    Intelligence is much important for brain tumor patients after their operation, while the reports about surgical related intelligence deficits are not frequent. It is not only theoretically important but also meaningful for clinical practice. Wechsler Adult Intelligence Scale was employed to evaluate the intelligence of 103 patients with intracranial tumor and to compare the intelligence quotient (IQ), verbal IQ (VIQ), and performance IQ (PIQ) between the intracerebral and extracerebral subgroups. Although preoperative intelligence deficits appeared in all subgroups, IQ, VIQ, and PIQ were not found to have any significant difference between the intracerebral and extracerebral subgroups, but with VIQ lower than PIQ in all the subgroups. An immediate postoperative follow-up demonstrated a decline of IQ and PIQ in the extracerebral subgroup, but an improvement of VIQ in the right intracerebral subgroup. Pituitary adenoma resection exerted no effect on intelligence. In addition, age, years of education, and tumor size were found to play important roles. Brain tumors will impair IQ, VIQ, and PIQ. The extracerebral tumor resection can deteriorate IQ and PIQ. However, right intracerebral tumor resection is beneficial to VIQ, and transsphenoidal pituitary adenoma resection performs no effect on intelligence.

  11. Multiclass feature selection for improved pediatric brain tumor segmentation

    NASA Astrophysics Data System (ADS)

    Ahmed, Shaheen; Iftekharuddin, Khan M.

    2012-03-01

    In our previous work, we showed that fractal-based texture features are effective in detection, segmentation and classification of posterior-fossa (PF) pediatric brain tumor in multimodality MRI. We exploited an information theoretic approach such as Kullback-Leibler Divergence (KLD) for feature selection and ranking different texture features. We further incorporated the feature selection technique with segmentation method such as Expectation Maximization (EM) for segmentation of tumor T and non tumor (NT) tissues. In this work, we extend the two class KLD technique to multiclass for effectively selecting the best features for brain tumor (T), cyst (C) and non tumor (NT). We further obtain segmentation robustness for each tissue types by computing Bay's posterior probabilities and corresponding number of pixels for each tissue segments in MRI patient images. We evaluate improved tumor segmentation robustness using different similarity metric for 5 patients in T1, T2 and FLAIR modalities.

  12. MR Fingerprinting of Adult Brain Tumors: Initial Experience.

    PubMed

    Badve, C; Yu, A; Dastmalchian, S; Rogers, M; Ma, D; Jiang, Y; Margevicius, S; Pahwa, S; Lu, Z; Schluchter, M; Sunshine, J; Griswold, M; Sloan, A; Gulani, V

    2017-03-01

    MR fingerprinting allows rapid simultaneous quantification of T1 and T2 relaxation times. This study assessed the utility of MR fingerprinting in differentiating common types of adult intra-axial brain tumors. MR fingerprinting acquisition was performed in 31 patients with untreated intra-axial brain tumors: 17 glioblastomas, 6 World Health Organization grade II lower grade gliomas, and 8 metastases. T1, T2 of the solid tumor, immediate peritumoral white matter, and contralateral white matter were summarized within each ROI. Statistical comparisons on mean, SD, skewness, and kurtosis were performed by using the univariate Wilcoxon rank sum test across various tumor types. Bonferroni correction was used to correct for multiple-comparison testing. Multivariable logistic regression analysis was performed for discrimination between glioblastomas and metastases, and area under the receiver operator curve was calculated. Mean T2 values could differentiate solid tumor regions of lower grade gliomas from metastases (mean, 172 ± 53 ms, and 105 ± 27 ms, respectively; P = .004, significant after Bonferroni correction). The mean T1 of peritumoral white matter surrounding lower grade gliomas differed from peritumoral white matter around glioblastomas (mean, 1066 ± 218 ms, and 1578 ± 331 ms, respectively; P = .004, significant after Bonferroni correction). Logistic regression analysis revealed that the mean T2 of solid tumor offered the best separation between glioblastomas and metastases with an area under the curve of 0.86 (95% CI, 0.69-1.00; P < .0001). MR fingerprinting allows rapid simultaneous T1 and T2 measurement in brain tumors and surrounding tissues. MR fingerprinting-based relaxometry can identify quantitative differences between solid tumor regions of lower grade gliomas and metastases and between peritumoral regions of glioblastomas and lower grade gliomas. © 2017 by American Journal of Neuroradiology.

  13. C/EBPα-dependent preneoplastic tumor foci are the origin of hepatocellular carcinoma and aggressive pediatric liver cancer.

    PubMed

    Cast, Ashley; Valanejad, Leila; Wright, Mary; Nguyen, Phuong; Gupta, Anita; Zhu, Liqin; Shin, Soona; Timchenko, Nikolai

    2018-05-01

    Recent publications show that classic hepatoblastoma (HBL) is the result of failure of hepatic stem cells to differentiate into hepatocytes, while hepatocellular carcinoma (HCC) is caused by the dedifferentiation of hepatocytes into cancer stem cells. However, the mechanisms of aggressive HBL and the mechanisms that cause dedifferentiation of hepatocytes into cancer stem cells are unknown. We found that, similar to HCC but opposite to classic HBL, aggressive HBL is the result of dedifferentiation of hepatocytes into cancer stem cells. In both cases of liver cancer, the dephosphorylation of tumor suppressor protein CCAAT/enhancer binding protein α (C/EBPα) at Ser193 (Ser190 in human protein) or mutation of Ser193 to Ala results in a modified protein with oncogenic activities. We have investigated liver cancer in a mouse model C/EBPα-S193A, in a large cohort of human HBL samples, and in Pten/p53 double knockout mice and found that these cancers are characterized by elevation of C/EBPα that is dephosphorylated at Ser190/193. We found that dephosphorylated C/EBPα creates preneoplastic foci with cancer stem cells that give rise to HCC and aggressive HBL. C/EBPα-dependent dedifferentiation of hepatocytes into cancer stem cells includes increased proliferation of hepatocytes, followed by generation of multinucleated hepatocytes and subsequent appearance of hepatocytes with delta-like 1 homolog-positive intranuclear inclusions. We further isolated C/EBPα-dependent multinucleated hepatocytes and found that they possess characteristics of tumor-initiating cells, including elevation of stem cell markers. C/EBPα-dependent cancer stem cells are observed in patients with aggressive HBL and in patients with a predisposition for liver cancer. The earliest steps of adult HCC and aggressive pediatric liver cancer have identical features that include conversion of the tumor suppressor C/EBPα into an oncogenic isoform, which further creates preneoplastic foci where

  14. Dimethyl sulfoxide (DMSO) as a potential contrast agent for brain tumors.

    PubMed

    Delgado-Goñi, T; Martín-Sitjar, J; Simões, R V; Acosta, M; Lope-Piedrafita, S; Arús, C

    2013-02-01

    Dimethyl sulfoxide (DMSO) is commonly used in preclinical studies of animal models of high-grade glioma as a solvent for chemotherapeutic agents. A strong DMSO signal was detected by single-voxel MRS in the brain of three C57BL/6 control mice during a pilot study of DMSO tolerance after intragastric administration. This led us to investigate the accumulation and wash-out kinetics of DMSO in both normal brain parenchyma (n=3 control mice) by single-voxel MRS, and in 12 GL261 glioblastomas (GBMs) by single-voxel MRS (n=3) and MRSI (n=9). DMSO accumulated differently in each tissue type, reaching its highest concentration in tumors: 6.18 ± 0.85 µmol/g water, 1.5-fold higher than in control mouse brain (p<0.05). A faster wash-out was detected in normal brain parenchyma with respect to GBM tissue: half-lives of 2.06 ± 0.58 and 4.57 ± 1.15 h, respectively. MRSI maps of time-course DMSO changes revealed clear hotspots of differential spatial accumulation in GL261 tumors. Additional MRSI studies with four mice bearing oligodendrogliomas (ODs) revealed similar results as in GBM tumors. The lack of T(1) contrast enhancement post-gadolinium (gadopentetate dimeglumine, Gd-DTPA) in control mouse brain and mice with ODs suggested that DMSO was fully able to cross the intact blood-brain barrier in both normal brain parenchyma and in low-grade tumors. Our results indicate a potential role for DMSO as a contrast agent for brain tumor detection, even in those tumors 'invisible' to standard gadolinium-enhanced MRI, and possibly for monitoring heterogeneities associated with progression or with therapeutic response. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Recent technological advances in pediatric brain tumor surgery.

    PubMed

    Zebian, Bassel; Vergani, Francesco; Lavrador, José Pedro; Mukherjee, Soumya; Kitchen, William John; Stagno, Vita; Chamilos, Christos; Pettorini, Benedetta; Mallucci, Conor

    2017-01-01

    X-rays and ventriculograms were the first imaging modalities used to localize intracranial lesions including brain tumors as far back as the 1880s. Subsequent advances in preoperative radiological localization included computed tomography (CT; 1971) and MRI (1977). Since then, other imaging modalities have been developed for clinical application although none as pivotal as CT and MRI. Intraoperative technological advances include the microscope, which has allowed precise surgery under magnification and improved lighting, and the endoscope, which has improved the treatment of hydrocephalus and allowed biopsy and complete resection of intraventricular, pituitary and pineal region tumors through a minimally invasive approach. Neuronavigation, intraoperative MRI, CT and ultrasound have increased the ability of the neurosurgeon to perform safe and maximal tumor resection. This may be facilitated by the use of fluorescing agents, which help define the tumor margin, and intraoperative neurophysiological monitoring, which helps identify and protect eloquent brain.

  16. Life satisfaction in adult survivors of childhood brain tumors.

    PubMed

    Crom, Deborah B; Li, Zhenghong; Brinkman, Tara M; Hudson, Melissa M; Armstrong, Gregory T; Neglia, Joseph; Ness, Kirsten K

    2014-01-01

    Adult survivors of childhood brain tumors experience multiple, significant, lifelong deficits as a consequence of their malignancy and therapy. Current survivorship literature documents the substantial impact such impairments have on survivors' physical health and quality of life. Psychosocial reports detail educational, cognitive, and emotional limitations characterizing survivors as especially fragile, often incompetent, and unreliable in evaluating their circumstances. Anecdotal data suggest some survivors report life experiences similar to those of healthy controls. The aim of our investigation was to determine whether life satisfaction in adult survivors of childhood brain tumors differs from that of healthy controls and to identify potential predictors of life satisfaction in survivors. This cross-sectional study compared 78 brain tumor survivors with population-based matched controls. Chi-square tests, t tests, and linear regression models were used to investigate patterns of life satisfaction and identify potential correlates. Results indicated that life satisfaction of adult survivors of childhood brain tumors was similar to that of healthy controls. Survivors' general health expectations emerged as the primary correlate of life satisfaction. Understanding life satisfaction as an important variable will optimize the design of strategies to enhance participation in follow-up care, reduce suffering, and optimize quality of life in this vulnerable population. © 2014 by Association of Pediatric Hematology/Oncology Nurses.

  17. Diffusion and perfusion weighted magnetic resonance imaging for tumor volume definition in radiotherapy of brain tumors.

    PubMed

    Guo, Lu; Wang, Gang; Feng, Yuanming; Yu, Tonggang; Guo, Yu; Bai, Xu; Ye, Zhaoxiang

    2016-09-21

    Accurate target volume delineation is crucial for the radiotherapy of tumors. Diffusion and perfusion magnetic resonance imaging (MRI) can provide functional information about brain tumors, and they are able to detect tumor volume and physiological changes beyond the lesions shown on conventional MRI. This review examines recent studies that utilized diffusion and perfusion MRI for tumor volume definition in radiotherapy of brain tumors, and it presents the opportunities and challenges in the integration of multimodal functional MRI into clinical practice. The results indicate that specialized and robust post-processing algorithms and tools are needed for the precise alignment of targets on the images, and comprehensive validations with more clinical data are important for the improvement of the correlation between histopathologic results and MRI parameter images.

  18. Quantitative imaging of magnesium distribution at single-cell resolution in brain tumors and infiltrating tumor cells with secondary ion mass spectrometry (SIMS)

    PubMed Central

    Chandra, Subhash; Parker, Dylan J.; Barth, Rolf F.; Pannullo, Susan C.

    2016-01-01

    Glioblastoma multiforme (GBM) is one of the deadliest forms of human brain tumors. The infiltrative pattern of growth of these tumors includes the spread of individual and/or clusters of tumor cells at some distance from the main tumor mass in parts of the brain protected by an intact blood-brain-barrier. Pathophysiological studies of GBM could be greatly enhanced by analytical techniques capable of in situ single-cell resolution measurements of infiltrating tumor cells. Magnesium homeostasis is an area of active investigation in high grade gliomas. In the present study, we have used the F98 rat glioma as a model of human GBM and an elemental/isotopic imaging technique of secondary ion mass spectrometry (SIMS), a CAMECA IMS-3f ion microscope, for studying Mg distributions with single-cell resolution in freeze-dried brain tissue cryosections. Quantitative observations were made on tumor cells in the main tumor mass, contiguous brain tissue, and infiltrating tumor cells in adjacent normal brain. The brain tissue contained a significantly lower total Mg concentration of 4.70 ± 0.93 mmol/Kg wet weight (mean ± SD) in comparison to 11.64 ± 1.96 mmol/Kg wet weight in tumor cells of the main tumor mass and 10.72 ± 1.76 mmol/Kg wet weight in infiltrating tumor cells (p<0.05). The nucleus of individual tumor cells contained elevated levels of bound Mg. These observations demonstrate enhanced Mg-influx and increased binding of Mg in tumor cells and provide strong support for further investigation of GBMs for altered Mg homeostasis and activation of Mg-transporting channels as possible therapeutic targets. PMID:26703785

  19. [Positron emission tomography in the diagnosis of recurrent growth of brain tumors].

    PubMed

    Skvortsova, T Iu; Brodskaia, Z L; Rudas, M S; Mozhaev, S V; Gurchin, A F; Medvedev, S V

    2005-01-01

    The authors analyzed the results of 11C-methionine positron emission tomography (PET) in 101 patients with suspected recurrent brain tumor. The diagnosis was confirmed in 72 patients. The increased 11C-methionine uptake in the initial tumor area is considered to be a crucial PET evidence of a recurrent tumor. On the other hand, brain tissue histological changes associated with surgery, radiation, and chemotherapy were characterized by the low uptake of the tracer. The sensitivity and specificity of PET scanning in detecting tumor recurrence were found to be 95.8 and 96.5%, respectively. 11C-methionine PET is proposed as a reliable technique for early differentiating between a recurrent brain tumor and treatment-induced nonneoplastic changes.

  20. Chronic enhancement of brain oxytocin levels causes enduring anti-aggressive and pro-social explorative behavioral effects in male rats.

    PubMed

    Calcagnoli, Federica; Meyer, Neele; de Boer, Sietse F; Althaus, Monika; Koolhaas, Jaap M

    2014-04-01

    Oxytocin (OXT) has been implicated in the regulation of social behaviors, including intermale offensive aggression. Recently, we showed that acute enhancement of brain OXT levels markedly suppressed offensive aggression and increased social exploration in resident rats confronted with an intruder in their home territory. Moreover, a different responsivity to the exogenous OXTergic manipulation was observed among individuals based on their baseline aggression. In this study we aimed at evaluating the behavioral response to chronically enhancing or attenuating central OXT levels, and at scrutinizing whether the trait-aggression moderates the treatment-induced behavioral changes. To this end, resident male wild-type Groningen rats were continuously (via osmotic minipumps) intracerebroventricularly infused with synthetic OXT or a selective OXT receptor (OXTR) antagonist for 7days. Changes in behavior were assessed performing a resident-intruder test before and at the end of the treatment period, as well as after 7days of withdrawal. Chronic infusion of OXT was found to selectively suppress aggression and enhance social exploration. Chronic blockage of OXTRs instead increased introductory aggressive behavior (i.e. lateral threat), yet without affecting the total duration of the aggression. The magnitude of the anti-aggressive changes correlated positively with the level of baseline aggression. Interestingly, OXT-induced behavioral changes persisted 7days after cessation of the treatment. In conclusion, these findings provide further evidence that enhanced functional activity of the central OXTergic system decreases social offensive aggression while it increases social explorative behavior. The data also indicate that chronically enhancing brain OXT levels may cause enduring anti-aggressive and pro-social explorative behavioral effects. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. NF-κB-Induced IL-6 Ensures STAT3 Activation and Tumor Aggressiveness in Glioblastoma

    PubMed Central

    McFarland, Braden C.; Hong, Suk W.; Rajbhandari, Rajani; Twitty, George B.; Gray, G. Kenneth; Yu, Hao; Benveniste, Etty N.; Nozell, Susan E.

    2013-01-01

    Glioblastoma (GBM) is the most aggressive, neurologically destructive and deadly tumor of the central nervous system (CNS). In GBM, the transcription factors NF-κB and STAT3 are aberrantly activated and associated with tumor cell proliferation, survival, invasion and chemoresistance. In addition, common activators of NF-κB and STAT3, including TNF-α and IL-6, respectively, are abundantly expressed in GBM tumors. Herein, we sought to elucidate the signaling crosstalk that occurs between the NF-κB and STAT3 pathways in GBM tumors. Using cultured GBM cell lines as well as primary human GBM xenografts, we elucidated the signaling crosstalk between the NF-κB and STAT3 pathways utilizing approaches that either a) reduce NF-κB p65 expression, b) inhibit NF-κB activation, c) interfere with IL-6 signaling, or d) inhibit STAT3 activation. Using the clinically relevant human GBM xenograft model, we assessed the efficacy of inhibiting NF-κB and/or STAT3 alone or in combination in mice bearing intracranial xenograft tumors in vivo. We demonstrate that TNF-α-induced activation of NF-κB is sufficient to induce IL-6 expression, activate STAT3, and elevate STAT3 target gene expression in GBM cell lines and human GBM xenografts in vitro. Moreover, the combined inhibition of NF-κB and STAT3 signaling significantly increases survival of mice bearing intracranial tumors. We propose that in GBM, the activation of NF-κB ensures subsequent STAT3 activation through the expression of IL-6. These data verify that pharmacological interventions to effectively inhibit the activity of both NF-κB and STAT3 transcription factors must be used in order to reduce glioma size and aggressiveness. PMID:24244348

  2. NF-κB-induced IL-6 ensures STAT3 activation and tumor aggressiveness in glioblastoma.

    PubMed

    McFarland, Braden C; Hong, Suk W; Rajbhandari, Rajani; Twitty, George B; Gray, G Kenneth; Yu, Hao; Benveniste, Etty N; Nozell, Susan E

    2013-01-01

    Glioblastoma (GBM) is the most aggressive, neurologically destructive and deadly tumor of the central nervous system (CNS). In GBM, the transcription factors NF-κB and STAT3 are aberrantly activated and associated with tumor cell proliferation, survival, invasion and chemoresistance. In addition, common activators of NF-κB and STAT3, including TNF-α and IL-6, respectively, are abundantly expressed in GBM tumors. Herein, we sought to elucidate the signaling crosstalk that occurs between the NF-κB and STAT3 pathways in GBM tumors. Using cultured GBM cell lines as well as primary human GBM xenografts, we elucidated the signaling crosstalk between the NF-κB and STAT3 pathways utilizing approaches that either a) reduce NF-κB p65 expression, b) inhibit NF-κB activation, c) interfere with IL-6 signaling, or d) inhibit STAT3 activation. Using the clinically relevant human GBM xenograft model, we assessed the efficacy of inhibiting NF-κB and/or STAT3 alone or in combination in mice bearing intracranial xenograft tumors in vivo. We demonstrate that TNF-α-induced activation of NF-κB is sufficient to induce IL-6 expression, activate STAT3, and elevate STAT3 target gene expression in GBM cell lines and human GBM xenografts in vitro. Moreover, the combined inhibition of NF-κB and STAT3 signaling significantly increases survival of mice bearing intracranial tumors. We propose that in GBM, the activation of NF-κB ensures subsequent STAT3 activation through the expression of IL-6. These data verify that pharmacological interventions to effectively inhibit the activity of both NF-κB and STAT3 transcription factors must be used in order to reduce glioma size and aggressiveness.

  3. Nanoparticle-assisted photothermal ablation of brain tumor in an orthotopic canine model

    NASA Astrophysics Data System (ADS)

    Schwartz, Jon A.; Shetty, Anil M.; Price, Roger E.; Stafford, R. Jason; Wang, James C.; Uthamanthil, Rajesh K.; Pham, Kevin; McNichols, Roger J.; Coleman, Chris L.; Payne, J. Donald

    2009-02-01

    We report on a pilot study demonstrating a proof of concept for the passive delivery of nanoshells to an orthotopic tumor where they induce a local, confined therapeutic response distinct from that of normal brain resulting in the photo-thermal ablation of canine Transmissible Venereal Tumor (cTVT) in a canine brain model. cTVT fragments grown in SCID mice were successfully inoculated in the parietal lobe of immuno-suppressed, mixed-breed hound dogs. A single dose of near-infrared absorbing, 150 nm nanoshells was infused intravenously and allowed time to passively accumulate in the intracranial tumors which served as a proxy for an orthotopic brain metastasis. The nanoshells accumulated within the intracranial cTVT suggesting that its neo-vasculature represented an interruption of the normal blood-brain barrier. Tumors were thermally ablated by percutaneous, optical fiber-delivered, near-infrared radiation using a 3.5 W average, 3-minute laser dose at 808 nm that selectively elevated the temperature of tumor tissue to 65.8+/-4.1ºC. Identical laser doses applied to normal white and gray matter on the contralateral side of the brain yielded sub-lethal temperatures of 48.6+/-1.1ºC. The laser dose was designed to minimize thermal damage to normal brain tissue in the absence of nanoshells and compensate for variability in the accumulation of nanoshells in tumor. Post-mortem histopathology of treated brain sections demonstrated the effectiveness and selectivity of the nanoshell-assisted thermal ablation.

  4. On complexity and homogeneity measures in predicting biological aggressiveness of prostate cancer; Implication of the cellular automata model of tumor growth.

    PubMed

    Tanase, Mihai; Waliszewski, Przemyslaw

    2015-12-01

    We propose a novel approach for the quantitative evaluation of aggressiveness in prostate carcinomas. The spatial distribution of cancer cell nuclei was characterized by the global spatial fractal dimensions D0, D1, and D2. Two hundred eighteen prostate carcinomas were stratified into the classes of equivalence using results of ROC analysis. A simulation of the cellular automata mix defined a theoretical frame for a specific geometric representation of the cell nuclei distribution called a local structure correlation diagram (LSCD). The LSCD and dispersion Hd were computed for each carcinoma. Data mining generated some quantitative criteria describing tumor aggressiveness. Alterations in tumor architecture along progression were associated with some changes in both shape and the quantitative characteristics of the LSCD consistent with those in the automata mix model. Low-grade prostate carcinomas with low complexity and very low biological aggressiveness are defined by the condition D0 < 1.545 and Hd < 38. High-grade carcinomas with high complexity and very high biological aggressiveness are defined by the condition D0 > 1.764 and Hd < 38. The novel homogeneity measure Hd identifies carcinomas with very low aggressiveness within the class of complexity C1 or carcinomas with very high aggressiveness in the class C7. © 2015 Wiley Periodicals, Inc.

  5. [Benign metastasizing leiomyoma: An unusual cause of aggressive femoral bone tumor].

    PubMed

    Alexandre, L; Taillieu, F; Arlet, J-B; Passeron, A; Michon, A; Bats, A-S; Pouchot, J; Ranque, B

    2018-06-01

    Benign metastasizing leiomyoma (BML) is a rare condition characterized by histologically benign "metastatic" smooth muscle tumors, which can affect women with history of uterine surgery. We report the case of a patient with bone metastases of BML. A 78-year-old woman who had undergone uterine surgery six years before hospital admission, was diagnosed with large pulmonary and pleural metastases that necessitated surgical removal. Pathological examination allowed the diagnosis of BML with positive staining for estrogen and progesterone receptors. Three years later, a BML metastasis in the right femoral diaphysis was unexpectedly discovered and treated by osteosynthesis because of a high risk of fracture. Despite an aromatase-inhibitor treatment, new lungs lesions appeared in the next few months. BML is a potential cause of aggressive, although histologically benign, bone tumor in women with a history of uterine surgery. Copyright © 2018. Published by Elsevier SAS.

  6. The brain-penetrant clinical ATM inhibitor AZD1390 radiosensitizes and improves survival of preclinical brain tumor models

    PubMed Central

    Wang, Yingchun; Chen, Kan; Zhang, Lingli; Zhang, Tianwei; Yang, Zhenfan; Riches, Lucy; Trinidad, Antonio G.; Pike, Kurt G.; Wilson, Joanne; Smith, Aaron; Colclough, Nicola; Johnström, Peter; Varnäs, Katarina; Takano, Akihiro; Ling, Stephanie; Orme, Jonathan; Stott, Jonathan; Barrett, Ian; Jones, Gemma; Allen, Jasmine; Kahn, Jenna; Sule, Amrita; Cronin, Anna; Chapman, Melissa; Illingworth, Ruth; Pass, Martin

    2018-01-01

    Poor survival rates of patients with tumors arising from or disseminating into the brain are attributed to an inability to excise all tumor tissue (if operable), a lack of blood-brain barrier (BBB) penetration of chemotherapies/targeted agents, and an intrinsic tumor radio-/chemo-resistance. Ataxia-telangiectasia mutated (ATM) protein orchestrates the cellular DNA damage response (DDR) to cytotoxic DNA double-strand breaks induced by ionizing radiation (IR). ATM genetic ablation or pharmacological inhibition results in tumor cell hypersensitivity to IR. We report the primary pharmacology of the clinical-grade, exquisitely potent (cell IC50, 0.78 nM), highly selective [>10,000-fold over kinases within the same phosphatidylinositol 3-kinase–related kinase (PIKK) family], orally bioavailable ATM inhibitor AZD1390 specifically optimized for BBB penetration confirmed in cynomolgus monkey brain positron emission tomography (PET) imaging of microdosed 11C-labeled AZD1390 (Kp,uu, 0.33). AZD1390 blocks ATM-dependent DDR pathway activity and combines with radiation to induce G2 cell cycle phase accumulation, micronuclei, and apoptosis. AZD1390 radiosensitizes glioma and lung cancer cell lines, with p53 mutant glioma cells generally being more radiosensitized than wild type. In in vivo syngeneic and patient-derived glioma as well as orthotopic lung-brain metastatic models, AZD1390 dosed in combination with daily fractions of IR (whole-brain or stereotactic radiotherapy) significantly induced tumor regressions and increased animal survival compared to IR treatment alone. We established a pharmacokinetic-pharmacodynamic-efficacy relationship by correlating free brain concentrations, tumor phospho-ATM/phospho-Rad50 inhibition, apoptotic biomarker (cleaved caspase-3) induction, tumor regression, and survival. On the basis of the data presented here, AZD1390 is now in early clinical development for use as a radiosensitizer in central nervous system malignancies. PMID:29938225

  7. The brain-penetrant clinical ATM inhibitor AZD1390 radiosensitizes and improves survival of preclinical brain tumor models.

    PubMed

    Durant, Stephen T; Zheng, Li; Wang, Yingchun; Chen, Kan; Zhang, Lingli; Zhang, Tianwei; Yang, Zhenfan; Riches, Lucy; Trinidad, Antonio G; Fok, Jacqueline H L; Hunt, Tom; Pike, Kurt G; Wilson, Joanne; Smith, Aaron; Colclough, Nicola; Reddy, Venkatesh Pilla; Sykes, Andrew; Janefeldt, Annika; Johnström, Peter; Varnäs, Katarina; Takano, Akihiro; Ling, Stephanie; Orme, Jonathan; Stott, Jonathan; Roberts, Caroline; Barrett, Ian; Jones, Gemma; Roudier, Martine; Pierce, Andrew; Allen, Jasmine; Kahn, Jenna; Sule, Amrita; Karlin, Jeremy; Cronin, Anna; Chapman, Melissa; Valerie, Kristoffer; Illingworth, Ruth; Pass, Martin

    2018-06-01

    Poor survival rates of patients with tumors arising from or disseminating into the brain are attributed to an inability to excise all tumor tissue (if operable), a lack of blood-brain barrier (BBB) penetration of chemotherapies/targeted agents, and an intrinsic tumor radio-/chemo-resistance. Ataxia-telangiectasia mutated (ATM) protein orchestrates the cellular DNA damage response (DDR) to cytotoxic DNA double-strand breaks induced by ionizing radiation (IR). ATM genetic ablation or pharmacological inhibition results in tumor cell hypersensitivity to IR. We report the primary pharmacology of the clinical-grade, exquisitely potent (cell IC 50 , 0.78 nM), highly selective [>10,000-fold over kinases within the same phosphatidylinositol 3-kinase-related kinase (PIKK) family], orally bioavailable ATM inhibitor AZD1390 specifically optimized for BBB penetration confirmed in cynomolgus monkey brain positron emission tomography (PET) imaging of microdosed 11 C-labeled AZD1390 ( K p,uu , 0.33). AZD1390 blocks ATM-dependent DDR pathway activity and combines with radiation to induce G 2 cell cycle phase accumulation, micronuclei, and apoptosis. AZD1390 radiosensitizes glioma and lung cancer cell lines, with p53 mutant glioma cells generally being more radiosensitized than wild type. In in vivo syngeneic and patient-derived glioma as well as orthotopic lung-brain metastatic models, AZD1390 dosed in combination with daily fractions of IR (whole-brain or stereotactic radiotherapy) significantly induced tumor regressions and increased animal survival compared to IR treatment alone. We established a pharmacokinetic-pharmacodynamic-efficacy relationship by correlating free brain concentrations, tumor phospho-ATM/phospho-Rad50 inhibition, apoptotic biomarker (cleaved caspase-3) induction, tumor regression, and survival. On the basis of the data presented here, AZD1390 is now in early clinical development for use as a radiosensitizer in central nervous system malignancies.

  8. Mobile phones, brain tumors, and the interphone study: where are we now?

    PubMed

    Swerdlow, Anthony J; Feychting, Maria; Green, Adele C; Leeka Kheifets, Leeka Kheifets; Savitz, David A

    2011-11-01

    In the past 15 years, mobile telephone use has evolved from an uncommon activity to one with > 4.6 billion subscriptions worldwide. However, there is public concern about the possibility that mobile phones might cause cancer, especially brain tumors. We reviewed the evidence on whether mobile phone use raises the risk of the main types of brain tumor—glioma and meningioma—with a particular focus on the recent publication of the largest epidemiologic study yet: the 13-country Interphone Study. Methodological defcits limit the conclusions that can be drawn from the Interphone study, but its results, along with those from other epidemiologic, biological, and animal studies and brain tumor incidence trends, suggest that within about 10–15 years after first use of mobile phones there is unlikely to be a material increase in the risk of brain tumors in adults. Data for childhood tumors and for periods beyond 15 years are currently lacking. Although there remains some uncertainty, the trend in the accumulating evidence is increasingly against the hypothesis that mobile phone use can cause brain tumors in adults.

  9. Brain tumor segmentation in multi-spectral MRI using convolutional neural networks (CNN).

    PubMed

    Iqbal, Sajid; Ghani, M Usman; Saba, Tanzila; Rehman, Amjad

    2018-04-01

    A tumor could be found in any area of the brain and could be of any size, shape, and contrast. There may exist multiple tumors of different types in a human brain at the same time. Accurate tumor area segmentation is considered primary step for treatment of brain tumors. Deep Learning is a set of promising techniques that could provide better results as compared to nondeep learning techniques for segmenting timorous part inside a brain. This article presents a deep convolutional neural network (CNN) to segment brain tumors in MRIs. The proposed network uses BRATS segmentation challenge dataset which is composed of images obtained through four different modalities. Accordingly, we present an extended version of existing network to solve segmentation problem. The network architecture consists of multiple neural network layers connected in sequential order with the feeding of Convolutional feature maps at the peer level. Experimental results on BRATS 2015 benchmark data thus show the usability of the proposed approach and its superiority over the other approaches in this area of research. © 2018 Wiley Periodicals, Inc.

  10. Segmentation, feature extraction, and multiclass brain tumor classification.

    PubMed

    Sachdeva, Jainy; Kumar, Vinod; Gupta, Indra; Khandelwal, Niranjan; Ahuja, Chirag Kamal

    2013-12-01

    Multiclass brain tumor classification is performed by using a diversified dataset of 428 post-contrast T1-weighted MR images from 55 patients. These images are of primary brain tumors namely astrocytoma (AS), glioblastoma multiforme (GBM), childhood tumor-medulloblastoma (MED), meningioma (MEN), secondary tumor-metastatic (MET), and normal regions (NR). Eight hundred fifty-six regions of interest (SROIs) are extracted by a content-based active contour model. Two hundred eighteen intensity and texture features are extracted from these SROIs. In this study, principal component analysis (PCA) is used for reduction of dimensionality of the feature space. These six classes are then classified by artificial neural network (ANN). Hence, this approach is named as PCA-ANN approach. Three sets of experiments have been performed. In the first experiment, classification accuracy by ANN approach is performed. In the second experiment, PCA-ANN approach with random sub-sampling has been used in which the SROIs from the same patient may get repeated during testing. It is observed that the classification accuracy has increased from 77 to 91 %. PCA-ANN has delivered high accuracy for each class: AS-90.74 %, GBM-88.46 %, MED-85 %, MEN-90.70 %, MET-96.67 %, and NR-93.78 %. In the third experiment, to remove bias and to test the robustness of the proposed system, data is partitioned in a manner such that the SROIs from the same patient are not common for training and testing sets. In this case also, the proposed system has performed well by delivering an overall accuracy of 85.23 %. The individual class accuracy for each class is: AS-86.15 %, GBM-65.1 %, MED-63.36 %, MEN-91.5 %, MET-65.21 %, and NR-93.3 %. A computer-aided diagnostic system comprising of developed methods for segmentation, feature extraction, and classification of brain tumors can be beneficial to radiologists for precise localization, diagnosis, and interpretation of brain tumors on MR images.

  11. Rationale and Design of a Phase 1 Clinical Trial to Evaluate HSV G207 Alone or with a Single Radiation Dose in Children with Progressive or Recurrent Malignant Supratentorial Brain Tumors.

    PubMed

    Waters, Alicia M; Johnston, James M; Reddy, Alyssa T; Fiveash, John; Madan-Swain, Avi; Kachurak, Kara; Bag, Asim K; Gillespie, G Yancey; Markert, James M; Friedman, Gregory K

    2017-03-01

    Primary central nervous system tumors are the most common solid neoplasm of childhood and the leading cause of cancer-related death in pediatric patients. Survival rates for children with malignant supratentorial brain tumors are poor despite aggressive treatment with combinations of surgery, radiation, and chemotherapy, and survivors often suffer from damaging lifelong sequelae from current therapies. Novel innovative treatments are greatly needed. One promising new approach is the use of a genetically engineered, conditionally replicating herpes simplex virus (HSV) that has shown tumor-specific tropism and potential efficacy in the treatment of malignant brain tumors. G207 is a genetically engineered HSV-1 lacking genes essential for replication in normal brain cells. Safety has been established in preclinical investigations involving intracranial inoculation in the highly HSV-sensitive owl monkey (Aotus nancymai), and in three adult phase 1 trials in recurrent/progressive high-grade gliomas. No dose-limiting toxicities were seen in the adult studies and a maximum tolerated dose was not reached. Approximately half of the 35 treated adults had radiographic or neuropathologic evidence of response at a minimum of one time point. Preclinical studies in pediatric brain tumor models indicate that a variety of pediatric tumor types are highly sensitive to killing by G207. This clinical protocol outlines a first in human children study of intratumoral inoculation of an oncolytic virus via catheters placed directly into recurrent or progressive supratentorial malignant tumors.

  12. Deep learning for brain tumor classification

    NASA Astrophysics Data System (ADS)

    Paul, Justin S.; Plassard, Andrew J.; Landman, Bennett A.; Fabbri, Daniel

    2017-03-01

    Recent research has shown that deep learning methods have performed well on supervised machine learning, image classification tasks. The purpose of this study is to apply deep learning methods to classify brain images with different tumor types: meningioma, glioma, and pituitary. A dataset was publicly released containing 3,064 T1-weighted contrast enhanced MRI (CE-MRI) brain images from 233 patients with either meningioma, glioma, or pituitary tumors split across axial, coronal, or sagittal planes. This research focuses on the 989 axial images from 191 patients in order to avoid confusing the neural networks with three different planes containing the same diagnosis. Two types of neural networks were used in classification: fully connected and convolutional neural networks. Within these two categories, further tests were computed via the augmentation of the original 512×512 axial images. Training neural networks over the axial data has proven to be accurate in its classifications with an average five-fold cross validation of 91.43% on the best trained neural network. This result demonstrates that a more general method (i.e. deep learning) can outperform specialized methods that require image dilation and ring-forming subregions on tumors.

  13. Awake craniotomy for brain tumor: indications, technique and benefits.

    PubMed

    Dziedzic, Tomasz; Bernstein, Mark

    2014-12-01

    Increasing interest in the quality of life of patients after treatment of brain tumors has led to the exploration of methods that can improve intraoperative assessment of neurological status to avoid neurological deficits. The only method that can provide assessment of all eloquent areas of cerebral cortex and white matter is brain mapping during awake craniotomy. This method helps ensure that the quality of life and the neuro-oncological result of treatment are not compromised. Apart from the medical aspects of awake surgery, its economic issues are also favorable. Here, we review the main aspects of awake brain tumor surgery. Neurosurgical, neuropsychological, neurophysiological and anesthetic issues are briefly discussed.

  14. Multiresolution texture models for brain tumor segmentation in MRI.

    PubMed

    Iftekharuddin, Khan M; Ahmed, Shaheen; Hossen, Jakir

    2011-01-01

    In this study we discuss different types of texture features such as Fractal Dimension (FD) and Multifractional Brownian Motion (mBm) for estimating random structures and varying appearance of brain tissues and tumors in magnetic resonance images (MRI). We use different selection techniques including KullBack - Leibler Divergence (KLD) for ranking different texture and intensity features. We then exploit graph cut, self organizing maps (SOM) and expectation maximization (EM) techniques to fuse selected features for brain tumors segmentation in multimodality T1, T2, and FLAIR MRI. We use different similarity metrics to evaluate quality and robustness of these selected features for tumor segmentation in MRI for real pediatric patients. We also demonstrate a non-patient-specific automated tumor prediction scheme by using improved AdaBoost classification based on these image features.

  15. Label-free imaging of brain and brain tumor specimens with combined two-photon excited fluorescence and second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Liwei; Wang, Xingfu; Wu, Zanyi; Du, Huiping; Wang, Shu; Li, Lianhuang; Fang, Na; Lin, Peihua; Chen, Jianxin; Kang, Dezhi; Zhuo, Shuangmu

    2017-10-01

    Label-free imaging techniques are gaining acceptance within the medical imaging field, including brain imaging, because they have the potential to be applied to intraoperative in situ identifications of pathological conditions. In this paper, we describe the use of two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) microscopy in combination for the label-free detection of brain and brain tumor specimens; gliomas. Two independently detecting channels were chosen to subsequently collect TPEF/SHG signals from the specimen to increase TPEF/SHG image contrasts. Our results indicate that the combined TPEF/SHG microscopic techniques can provide similar rat brain structural information and produce a similar resolution like conventional H&E staining in neuropathology; including meninges, cerebral cortex, white-matter structure corpus callosum, choroid plexus, hippocampus, striatum, and cerebellar cortex. It can simultaneously detect infiltrating human brain tumor cells, the extracellular matrix collagen fiber of connective stroma within brain vessels and collagen depostion in tumor microenvironments. The nuclear-to-cytoplasmic ratio and collagen content can be extracted as quantitative indicators for differentiating brain gliomas from healthy brain tissues. With the development of two-photon fiberscopes and microendoscope probes and their clinical applications, the combined TPEF and SHG microcopy may become an important multimodal, nonlinear optical imaging approach for real-time intraoperative histological diagnostics of residual brain tumors. These occur in various brain regions during ongoing surgeries through the method of simultaneously identifying tumor cells, and the change of tumor microenvironments, without the need for the removal biopsies and without the need for tissue labelling or fluorescent markers.

  16. Sub-100 nm Gold Nanomatryoshkas Improve Photo-thermal Therapy Efficacy in Large and Highly Aggressive Triple Negative Breast Tumors

    PubMed Central

    Bishnoi, Sandra; Urban, Alexander; Charron, Heather; Mitchell, Tamika; Shea, Martin; Nanda, Sarmistha; Schiff, Rachel; Halas, Naomi; Joshi, Amit

    2014-01-01

    There is an unmet need for efficient near-infrared photothermal transducers for the treatment of highly aggressive cancers and large tumors where the penetration of light can be substantially reduced, and the intra-tumoral nanoparticle transport is restricted due to the presence of hypoxic or nectrotic regions. We report the performance advantages obtained by sub 100 nm gold nanomatryushkas, comprising of concentric gold-silica-gold layers compared to conventional ~150 nm silica core gold nanoshells for photothermal therapy of triple negative breast cancer. We demonstrate that a 33% reduction in silica-core-gold-shell nanoparticle size, while retaining near-infrared plasmon resonance, and keeping the nanoparticle surface charge constant, results in a four to five fold tumor accumulation of nanoparticles following equal dose of injected gold for both sizes. The survival time of mice bearing large (>1000 mm3) and highly aggressive triple negative breast tumors is doubled for the nanomatryushka treatment group under identical photo-thermal therapy conditions. The higher absorption cross-section of a nanomatryoshka results in a higher efficiency of photonic to thermal energy conversion and coupled with 4-5X accumulation within large tumors results in superior therapy efficacy. PMID:25051221

  17. Deep learning and texture-based semantic label fusion for brain tumor segmentation

    NASA Astrophysics Data System (ADS)

    Vidyaratne, L.; Alam, M.; Shboul, Z.; Iftekharuddin, K. M.

    2018-02-01

    Brain tumor segmentation is a fundamental step in surgical treatment and therapy. Many hand-crafted and learning based methods have been proposed for automatic brain tumor segmentation from MRI. Studies have shown that these approaches have their inherent advantages and limitations. This work proposes a semantic label fusion algorithm by combining two representative state-of-the-art segmentation algorithms: texture based hand-crafted, and deep learning based methods to obtain robust tumor segmentation. We evaluate the proposed method using publicly available BRATS 2017 brain tumor segmentation challenge dataset. The results show that the proposed method offers improved segmentation by alleviating inherent weaknesses: extensive false positives in texture based method, and the false tumor tissue classification problem in deep learning method, respectively. Furthermore, we investigate the effect of patient's gender on the segmentation performance using a subset of validation dataset. Note the substantial improvement in brain tumor segmentation performance proposed in this work has recently enabled us to secure the first place by our group in overall patient survival prediction task at the BRATS 2017 challenge.

  18. Deep Learning and Texture-Based Semantic Label Fusion for Brain Tumor Segmentation.

    PubMed

    Vidyaratne, L; Alam, M; Shboul, Z; Iftekharuddin, K M

    2018-01-01

    Brain tumor segmentation is a fundamental step in surgical treatment and therapy. Many hand-crafted and learning based methods have been proposed for automatic brain tumor segmentation from MRI. Studies have shown that these approaches have their inherent advantages and limitations. This work proposes a semantic label fusion algorithm by combining two representative state-of-the-art segmentation algorithms: texture based hand-crafted, and deep learning based methods to obtain robust tumor segmentation. We evaluate the proposed method using publicly available BRATS 2017 brain tumor segmentation challenge dataset. The results show that the proposed method offers improved segmentation by alleviating inherent weaknesses: extensive false positives in texture based method, and the false tumor tissue classification problem in deep learning method, respectively. Furthermore, we investigate the effect of patient's gender on the segmentation performance using a subset of validation dataset. Note the substantial improvement in brain tumor segmentation performance proposed in this work has recently enabled us to secure the first place by our group in overall patient survival prediction task at the BRATS 2017 challenge.

  19. Medical management of brain tumors and the sequelae of treatment

    PubMed Central

    Schiff, David; Lee, Eudocia Q.; Nayak, Lakshmi; Norden, Andrew D.; Reardon, David A.; Wen, Patrick Y.

    2015-01-01

    Patients with malignant brain tumors are prone to complications that negatively impact their quality of life and sometimes their overall survival as well. Tumors may directly provoke seizures, hypercoagulable states with resultant venous thromboembolism, and mood and cognitive disorders. Antitumor treatments and supportive therapies also produce side effects. In this review, we discuss major aspects of supportive care for patients with malignant brain tumors, with particular attention to management of seizures, venous thromboembolism, corticosteroids and their complications, chemotherapy including bevacizumab, and fatigue, mood, and cognitive dysfunction. PMID:25358508

  20. Working memory brain activity and capacity link MAOA polymorphism to aggressive behavior during development

    PubMed Central

    Ziermans, T; Dumontheil, I; Roggeman, C; Peyrard-Janvid, M; Matsson, H; Kere, J; Klingberg, T

    2012-01-01

    A developmental increase in working memory capacity is an important part of cognitive development, and low working memory (WM) capacity is a risk factor for developing psychopathology. Brain activity represents a promising endophenotype for linking genes to behavior and for improving our understanding of the neurobiology of WM development. We investigated gene–brain–behavior relationships by focusing on 18 single-nucleotide polymorphisms (SNPs) located in six dopaminergic candidate genes (COMT, SLC6A3/DAT1, DBH, DRD4, DRD5, MAOA). Visuospatial WM (VSWM) brain activity, measured with functional magnetic resonance imaging, and VSWM capacity were assessed in a longitudinal study of typically developing children and adolescents. Behavioral problems were evaluated using the Child Behavior Checklist (CBCL). One SNP (rs6609257), located ∼6.6 kb downstream of the monoamine oxidase A gene (MAOA) on human chromosome X, significantly affected brain activity in a network of frontal, parietal and occipital regions. Increased activity in this network, but not in caudate nucleus or anterior prefrontal regions, was correlated with VSWM capacity, which in turn predicted externalizing (aggressive/oppositional) symptoms, with higher WM capacity associated with fewer externalizing symptoms. There were no direct significant correlations between rs6609257 and behavioral symptoms. These results suggest a mediating role of WM brain activity and capacity in linking the MAOA gene to aggressive behavior during development. PMID:22832821

  1. Epidemiology of primary brain tumors: current concepts and review of the literature.

    PubMed Central

    Wrensch, Margaret; Minn, Yuriko; Chew, Terri; Bondy, Melissa; Berger, Mitchel S.

    2002-01-01

    The purpose of this review is to provide a sufficiently detailed perspective on epidemiologic studies of primary brain tumors to encourage multidisciplinary etiologic and prognostic studies among surgeons, neuro-oncologists, epidemiologists, and molecular scientists. Molecular tumor markers that predict survival and treatment response are being identified with hope of even greater gains in this area from emerging array technologies. Regarding risk factors, studies of inherited susceptibility and constitutive polymorphisms in genes pertinent to carcinogenesis (for example, DNA repair and detoxification genes and mutagen sensitivity) have revealed provocative findings. Inverse associations of the history of allergies with glioma risk observed in 3 large studies and reports of inverse associations of glioma with common infections suggest a possible role of immune factors in glioma genesis or progression. Studies continue to suggest that brain tumors might result from workplace, dietary, and other personal and residential exposures, but studies of cell phone use and power frequency electromagnetic fields have found little to support a causal connection with brain tumors; caveats remain. The only proven causes of brain tumors (that is, rare hereditary syndromes, therapeutic radiation, and immune suppression giving rise to brain lymphomas) account for a small proportion of cases. Progress in understanding primary brain tumors might result from studies of well-defined histologic and molecular tumor types incorporating assessment of potentially relevant information on subject susceptibility and environmental and noninherited endogenous factors (viruses, radiation, and carcinogenic or protective chemical exposures through diet, workplace, oxidative metabolism, or other sources). Such studies will require the cooperation of researchers from many disciplines. PMID:12356358

  2. Heterogeneous data fusion for brain tumor classification.

    PubMed

    Metsis, Vangelis; Huang, Heng; Andronesi, Ovidiu C; Makedon, Fillia; Tzika, Aria

    2012-10-01

    Current research in biomedical informatics involves analysis of multiple heterogeneous data sets. This includes patient demographics, clinical and pathology data, treatment history, patient outcomes as well as gene expression, DNA sequences and other information sources such as gene ontology. Analysis of these data sets could lead to better disease diagnosis, prognosis, treatment and drug discovery. In this report, we present a novel machine learning framework for brain tumor classification based on heterogeneous data fusion of metabolic and molecular datasets, including state-of-the-art high-resolution magic angle spinning (HRMAS) proton (1H) magnetic resonance spectroscopy and gene transcriptome profiling, obtained from intact brain tumor biopsies. Our experimental results show that our novel framework outperforms any analysis using individual dataset.

  3. Employment status and termination among survivors of pediatric brain tumors: a cross-sectional survey.

    PubMed

    Sato, Iori; Higuchi, Akiko; Yanagisawa, Takaaki; Murayama, Shiho; Kumabe, Toshihiro; Sugiyama, Kazuhiko; Mukasa, Akitake; Saito, Nobuhito; Sawamura, Yutaka; Terasaki, Mizuhiko; Shibui, Soichiro; Takahashi, Jun; Nishikawa, Ryo; Ishida, Yasushi; Kamibeppu, Kiyoko

    2018-04-30

    Some childhood cancer survivors experience employment difficulties. This study aimed to describe pediatric brain-tumor survivors' employment status. A cross-sectional, observational study was conducted, with questionnaires distributed to 101 pediatric brain-tumor survivors (aged 15 years or older) and their attending physicians from nine institutions in Japan. We compared category and time-series histories for participants' first-time employment using national census information. Factors related to delayed employment or early employment termination were examined using survival-time analyses. Excluding students and homemakers, 38 brain-tumor survivors (median age 27 years, with 15 years since diagnosis) were of working age. Of these, 12 (32%) were unemployed and 9 (24%) had never been employed. First-time employment occurred later for brain-tumor survivors than the general population, particularly in those with lower educational levels. The number of brain-tumor survivors whose first job was terminated within the first year was higher than that for the general population, particularly in male survivors and germ cell-tumor survivors. Brain-tumor survivors described their working patterns (irregular), job types (specialist or professional), reasons for early termination (unsuitable job), and thoughts about working (they wished to serve their communities but lacked confidence). Brain-tumor survivors are associated with high unemployment rates and multiple unemployment-related factors. Education and welfare systems should identify individual methods of social participation for this group.

  4. Targeting brain serotonin synthesis: insights into neurodevelopmental disorders with long-term outcomes related to negative emotionality, aggression and antisocial behaviour.

    PubMed

    Lesch, Klaus-Peter; Araragi, Naozumi; Waider, Jonas; van den Hove, Daniel; Gutknecht, Lise

    2012-09-05

    Aggression, which comprises multi-faceted traits ranging from negative emotionality to antisocial behaviour, is influenced by an interaction of biological, psychological and social variables. Failure in social adjustment, aggressiveness and violence represent the most detrimental long-term outcome of neurodevelopmental disorders. With the exception of brain-specific tryptophan hydroxylase-2 (Tph2), which generates serotonin (5-HT) in raphe neurons, the contribution of gene variation to aggression-related behaviour in genetically modified mouse models has been previously appraised (Lesch 2005 Novartis Found Symp. 268, 111-140; Lesch & Merschdorf 2000 Behav. Sci. Law 18, 581-604). Genetic inactivation of Tph2 function in mice led to the identification of phenotypic changes, ranging from growth retardation and late-onset obesity, to enhanced conditioned fear response, increased aggression and depression-like behaviour. This spectrum of consequences, which are amplified by stress-related epigenetic interactions, are attributable to deficient brain 5-HT synthesis during development and adulthood. Human data relating altered TPH2 function to personality traits of negative emotionality and neurodevelopmental disorders characterized by deficits in cognitive control and emotion regulation are based on genetic association and are therefore not as robust as the experimental mouse results. Mouse models in conjunction with approaches focusing on TPH2 variants in humans provide unexpected views of 5-HT's role in brain development and in disorders related to negative emotionality, aggression and antisocial behaviour.

  5. Photodynamic Therapy for Malignant Brain Tumors.

    PubMed

    Akimoto, Jiro

    2016-01-01

    Photodynamic therapy (PDT) using talaporfin sodium together with a semiconductor laser was approved in Japan in October 2003 as a less invasive therapy for early-stage lung cancer. The author believes that the principle of PDT would be applicable for controlling the invading front of malignant brain tumors and verified its efficacy through experiments using glioma cell lines and glioma xenograft models. An investigator-initiated clinical study was jointly conducted with Tokyo Women's Medical University with the support of the Japan Medical Association. Patient enrollment was started in May 2009 and a total of 27 patients were enrolled by March 2012. Of 22 patients included in efficacy analysis, 13 patients with newly diagnosed glioblastoma showed progression-free survival of 12 months, progression-free survival at the site of laser irradiation of 20 months, 1-year survival of 100%, and overall survival of 24.8 months. In addition, the safety analysis of the 27 patients showed that adverse events directly related to PDT were mild. PDT was approved in Japan for health insurance coverage as a new intraoperative therapy with the indication for malignant brain tumors in September 2013. Currently, the post-marketing investigation in the accumulated patients has been conducted, and the preparation of guidelines, holding training courses, and dissemination of information on the safe implementation of PDT using web sites and videos, have been promoted. PDT is expected to be a breakthrough for the treatment of malignant glioma as a tumor cell-selective less invasive therapy for the infiltrated functional brain area.

  6. Performance analysis of unsupervised optimal fuzzy clustering algorithm for MRI brain tumor segmentation.

    PubMed

    Blessy, S A Praylin Selva; Sulochana, C Helen

    2015-01-01

    Segmentation of brain tumor from Magnetic Resonance Imaging (MRI) becomes very complicated due to the structural complexities of human brain and the presence of intensity inhomogeneities. To propose a method that effectively segments brain tumor from MR images and to evaluate the performance of unsupervised optimal fuzzy clustering (UOFC) algorithm for segmentation of brain tumor from MR images. Segmentation is done by preprocessing the MR image to standardize intensity inhomogeneities followed by feature extraction, feature fusion and clustering. Different validation measures are used to evaluate the performance of the proposed method using different clustering algorithms. The proposed method using UOFC algorithm produces high sensitivity (96%) and low specificity (4%) compared to other clustering methods. Validation results clearly show that the proposed method with UOFC algorithm effectively segments brain tumor from MR images.

  7. Implications of neurovascular uncoupling in functional magnetic resonance imaging (fMRI) of brain tumors.

    PubMed

    Pak, Rebecca W; Hadjiabadi, Darian H; Senarathna, Janaka; Agarwal, Shruti; Thakor, Nitish V; Pillai, Jay J; Pathak, Arvind P

    2017-11-01

    Functional magnetic resonance imaging (fMRI) serves as a critical tool for presurgical mapping of eloquent cortex and changes in neurological function in patients diagnosed with brain tumors. However, the blood-oxygen-level-dependent (BOLD) contrast mechanism underlying fMRI assumes that neurovascular coupling remains intact during brain tumor progression, and that measured changes in cerebral blood flow (CBF) are correlated with neuronal function. Recent preclinical and clinical studies have demonstrated that even low-grade brain tumors can exhibit neurovascular uncoupling (NVU), which can confound interpretation of fMRI data. Therefore, to avoid neurosurgical complications, it is crucial to understand the biophysical basis of NVU and its impact on fMRI. Here we review the physiology of the neurovascular unit, how it is remodeled, and functionally altered by brain cancer cells. We first discuss the latest findings about the components of the neurovascular unit. Next, we synthesize results from preclinical and clinical studies to illustrate how brain tumor induced NVU affects fMRI data interpretation. We examine advances in functional imaging methods that permit the clinical evaluation of brain tumors with NVU. Finally, we discuss how the suppression of anomalous tumor blood vessel formation with antiangiogenic therapies can "normalize" the brain tumor vasculature, and potentially restore neurovascular coupling.

  8. Advanced age negatively impacts survival in an experimental brain tumor model.

    PubMed

    Ladomersky, Erik; Zhai, Lijie; Gritsina, Galina; Genet, Matthew; Lauing, Kristen L; Wu, Meijing; James, C David; Wainwright, Derek A

    2016-09-06

    Glioblastoma (GBM) is the most common primary malignant brain tumor in adults, with an average age of 64 years at the time of diagnosis. To study GBM, a number of mouse brain tumor models have been utilized. In these animal models, subjects tend to range from 6 to 12 weeks of age, which is analogous to that of a human teenager. Here, we examined the impact of age on host immunity and the gene expression associated with immune evasion in immunocompetent mice engrafted with syngeneic intracranial GL261. The data indicate that, in mice with brain tumors, youth conveys an advantage to survival. While age did not affect the tumor-infiltrating T cell phenotype or quantity, we discovered that old mice express higher levels of the immunoevasion enzyme, IDO1, which was decreased by the presence of brain tumor. Interestingly, other genes associated with promoting immunosuppression including CTLA-4, PD-L1 and FoxP3, were unaffected by age. These data highlight the possibility that IDO1 contributes to faster GBM outgrowth with advanced age, providing rationale for future investigation into immunotherapeutic targeting in the future. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Optical spectroscopy for stereotactic biopsy of brain tumors

    NASA Astrophysics Data System (ADS)

    Markwardt, Niklas; von Berg, Anna; Fiedler, Sebastian; Goetz, Marcus; Haj-Hosseini, Neda; Polzer, Christoph; Stepp, Herbert; Zelenkov, Petr; Rühm, Adrian

    2015-07-01

    Stereotactic biopsy procedure is performed to obtain a tissue sample for diagnosis purposes. Currently, a fiber-based mechano-optical device for stereotactic biopsies of brain tumors is developed. Two different fluorophores are employed to improve the safety and reliability of this procedure: The fluorescence of intravenously applied indocyanine green (ICG) facilitates the recognition of blood vessels and thus helps minimize the risk of cerebral hemorrhages. 5- aminolevulinic-acid-induced protoporphyrin IX (PpIX) fluorescence is used to localize vital tumor tissue. ICG fluorescence detection using a 2-fiber probe turned out to be an applicable method to recognize blood vessels about 1.5 mm ahead of the fiber tip during a brain tumor biopsy. Moreover, the suitability of two different PpIX excitation wavelengths regarding practical aspects was investigated: While PpIX excitation in the violet region (at 405 nm) allows for higher sensitivity, red excitation (at 633 nm) is noticeably superior with regard to blood layers obscuring the fluorescence signal. Contact measurements on brain simulating agar phantoms demonstrated that a typical blood coverage of the tumor reduces the PpIX signal to about 75% and nearly 0% for 633 nm and 405 nm excitation, respectively. As a result, 633 nm seems to be the wavelength of choice for PpIX-assisted detection of high-grade gliomas in stereotactic biopsy.

  10. Brain tumor classification and segmentation using sparse coding and dictionary learning.

    PubMed

    Salman Al-Shaikhli, Saif Dawood; Yang, Michael Ying; Rosenhahn, Bodo

    2016-08-01

    This paper presents a novel fully automatic framework for multi-class brain tumor classification and segmentation using a sparse coding and dictionary learning method. The proposed framework consists of two steps: classification and segmentation. The classification of the brain tumors is based on brain topology and texture. The segmentation is based on voxel values of the image data. Using K-SVD, two types of dictionaries are learned from the training data and their associated ground truth segmentation: feature dictionary and voxel-wise coupled dictionaries. The feature dictionary consists of global image features (topological and texture features). The coupled dictionaries consist of coupled information: gray scale voxel values of the training image data and their associated label voxel values of the ground truth segmentation of the training data. For quantitative evaluation, the proposed framework is evaluated using different metrics. The segmentation results of the brain tumor segmentation (MICCAI-BraTS-2013) database are evaluated using five different metric scores, which are computed using the online evaluation tool provided by the BraTS-2013 challenge organizers. Experimental results demonstrate that the proposed approach achieves an accurate brain tumor classification and segmentation and outperforms the state-of-the-art methods.

  11. Childhood Brain and Spinal Cord Tumors Treatment Overview (PDQ®)—Health Professional Version

    Cancer.gov

    Pediatric primary brain and CNS tumors are a diverse group of diseases that together constitute the most common solid tumor of childhood. Get detailed information about the diagnosis, classification, prognosis, and treatment of childhood brain and spinal cord tumors in this comprehensive summary for clinicians.

  12. 3D variational brain tumor segmentation using Dirichlet priors on a clustered feature set.

    PubMed

    Popuri, Karteek; Cobzas, Dana; Murtha, Albert; Jägersand, Martin

    2012-07-01

    Brain tumor segmentation is a required step before any radiation treatment or surgery. When performed manually, segmentation is time consuming and prone to human errors. Therefore, there have been significant efforts to automate the process. But, automatic tumor segmentation from MRI data is a particularly challenging task. Tumors have a large diversity in shape and appearance with intensities overlapping the normal brain tissues. In addition, an expanding tumor can also deflect and deform nearby tissue. In our work, we propose an automatic brain tumor segmentation method that addresses these last two difficult problems. We use the available MRI modalities (T1, T1c, T2) and their texture characteristics to construct a multidimensional feature set. Then, we extract clusters which provide a compact representation of the essential information in these features. The main idea in this work is to incorporate these clustered features into the 3D variational segmentation framework. In contrast to previous variational approaches, we propose a segmentation method that evolves the contour in a supervised fashion. The segmentation boundary is driven by the learned region statistics in the cluster space. We incorporate prior knowledge about the normal brain tissue appearance during the estimation of these region statistics. In particular, we use a Dirichlet prior that discourages the clusters from the normal brain region to be in the tumor region. This leads to a better disambiguation of the tumor from brain tissue. We evaluated the performance of our automatic segmentation method on 15 real MRI scans of brain tumor patients, with tumors that are inhomogeneous in appearance, small in size and in proximity to the major structures in the brain. Validation with the expert segmentation labels yielded encouraging results: Jaccard (58%), Precision (81%), Recall (67%), Hausdorff distance (24 mm). Using priors on the brain/tumor appearance, our proposed automatic 3D variational

  13. Semi-automatic segmentation of brain tumors using population and individual information.

    PubMed

    Wu, Yao; Yang, Wei; Jiang, Jun; Li, Shuanqian; Feng, Qianjin; Chen, Wufan

    2013-08-01

    Efficient segmentation of tumors in medical images is of great practical importance in early diagnosis and radiation plan. This paper proposes a novel semi-automatic segmentation method based on population and individual statistical information to segment brain tumors in magnetic resonance (MR) images. First, high-dimensional image features are extracted. Neighborhood components analysis is proposed to learn two optimal distance metrics, which contain population and patient-specific information, respectively. The probability of each pixel belonging to the foreground (tumor) and the background is estimated by the k-nearest neighborhood classifier under the learned optimal distance metrics. A cost function for segmentation is constructed through these probabilities and is optimized using graph cuts. Finally, some morphological operations are performed to improve the achieved segmentation results. Our dataset consists of 137 brain MR images, including 68 for training and 69 for testing. The proposed method overcomes segmentation difficulties caused by the uneven gray level distribution of the tumors and even can get satisfactory results if the tumors have fuzzy edges. Experimental results demonstrate that the proposed method is robust to brain tumor segmentation.

  14. NG2 expression in glioblastoma identifies an actively proliferating population with an aggressive molecular signature

    PubMed Central

    Al-Mayhani, M. Talal F.; Grenfell, Richard; Narita, Masashi; Piccirillo, Sara; Kenney-Herbert, Emma; Fawcett, James W.; Collins, V. Peter; Ichimura, Koichi; Watts, Colin

    2011-01-01

    Glioblastoma multiforme (GBM) is the most common type of primary brain tumor and a highly malignant and heterogeneous cancer. Current conventional therapies fail to eradicate or curb GBM cell growth. Hence, exploring the cellular and molecular basis of GBM cell growth is vital to develop novel therapeutic approaches. Neuroglia (NG)-2 is a transmembrane proteoglycan expressed by NG2+ progenitors and is strongly linked to cell proliferation in the normal brain. By using NG2 as a biomarker we identify a GBM cell population (GBM NG2+ cells) with robust proliferative, clonogenic, and tumorigenic capacity. We show that a significant proportion (mean 83%) of cells proliferating in the tumor mass express NG2 and that over 50% of GBM NG2+ cells are proliferating. Compared with the GBM NG2− cells from the same tumor, the GBM of NG2+ cells overexpress genes associated with aggressive tumorigenicity, including overexpression of Mitosis and Cell Cycling Module genes (e.g., MELK, CDC, MCM, E2F), which have been previously shown to correlate with poor survival in GBM. We also show that the coexpression pattern of NG2 with other glial progenitor markers in GBM does not recapitulate that described in the normal brain. The expression of NG2 by such an aggressive and actively cycling GBM population combined with its location on the cell surface identifies this cell population as a potential therapeutic target in a subset of patients with GBM. PMID:21798846

  15. Nanobiotechnology-based delivery strategies: New frontiers in brain tumor targeted therapies.

    PubMed

    Mangraviti, Antonella; Gullotti, David; Tyler, Betty; Brem, Henry

    2016-10-28

    Despite recent technological advancements and promising preclinical experiments, brain tumor patients are still met with limited treatment options. Some of the barriers to clinical improvements include the systemic toxicity of cytotoxic compounds, the impedance of the blood brain barrier (BBB), and the lack of therapeutic agents that can selectively target the intracranial tumor environment. To overcome such barriers, a number of chemotherapeutic agents and nucleic acid-based therapies are rapidly being synthesized and tested as new brain tumor-targeted delivery strategies. Novel carriers include liposomal and polymeric nanoparticles, wafers, microchips, microparticle-based nanoplatforms and cells-based vectors. Strong preclinical results suggest that these nanotechnologies are set to transform the therapeutic paradigm for brain tumor treatment. In addition to new tumoricidal agents, parallel work is also being conducted on the BBB front. Preclinical testing of chemical and physical modulation strategies is yielding improved intracranial concentrations. New diagnostic and therapeutic imaging techniques, such as high-intensity focused ultrasound and MRI-guided focused ultrasound, are being used to modulate the BBB in a more precise and non-invasive manner. This review details some of the tremendous advances that are being explored in current brain tumor targeted therapies, including local implant development, nanobiotechnology-based delivery strategies, and techniques of BBB manipulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Intra-operative visualization of brain tumors with 5-aminolevulinic acid-induced fluorescence.

    PubMed

    Widhalm, Georg

    2014-01-01

    Precise histopathological diagnosis of brain tumors is essential for the correct patient management. Furthermore, complete resection of brain tumors is associated with an improved patient prognosis. However, histopathological undergrading and incomplete tumor removal are not uncommon, especially due to insufficient intra-operative visualization of brain tumor tissue. The fluorescent dye 5-aminolevulinic acid (5-ALA) is currently applied for fluorescence-guided resections of high-grade gliomas. The value of 5-ALA-induced protoporphyrin (PpIX) fluorescence for intra-operative visualization of other tumors than high-grade gliomas remains unclear. Within the frame of this thesis, we found a significantly higher rate of complete resections of our high-grade gliomas as compared to control cases by using the newly established 5-ALA fluorescence technology at our department. Additionally, we showed that MRI spectroscopy-based chemical shift imaging (CSI) is capable to identify intratumoral high-grade glioma areas (= anaplastic foci) during navigation guided resections to avoid histopathological undergrading. However, the accuracy of navigation systems with integrated pre-operative imaging data such as CSI declines during resections due to intra-operative brainshift. In two further studies, we found that 5-ALA induced PpIX fluorescence is capable as a novel intra-operative marker to detect anaplastic foci within initially suspected low-grade gliomas independent of brainshift. Finally, we showed that the application of 5-ALA is also of relevance in needle biopsies for intra-operative identification of representative brain tumor tissue. These data indicate that 5-ALA is not only of major importance for resection of high-grade gliomas, but also for intra-operative visualization of anaplastic foci as well as representative brain tumor tissue in needle biopsies unaffected by brainshift. Consequently, this new technique might become a novel standard in brain tumor surgery that

  17. Toward effective immunotherapy for the treatment of malignant brain tumors.

    PubMed

    Mitchell, Duane A; Sampson, John H

    2009-07-01

    The immunologic treatment of cancer has long been heralded as a targeted molecular therapeutic with the promise of eradicating tumor cells with minimal damage to surrounding normal tissues. However, a demonstrative example of the efficacy of immunotherapy in modulating cancer progression is still lacking for most human cancers. Recent breakthroughs in our understanding of the mechanisms leading to full T-cell activation, and recognition of the importance of overcoming tumor-induced immunosuppressive mechanisms, have shed new light on how to generate effective anti-tumor immune responses in humans, and sparked a renewed and enthusiastic effort to realize the full potential of cancer immunotherapy. The immunologic treatment of invasive malignant brain tumors has not escaped this re-invigorated endeavor, and promising therapies are currently under active investigation in dozens of clinical trials at several institutions worldwide. This review will focus on some of the most important breakthroughs in our understanding of how to generate potent anti-tumor immune responses, and some of the clear challenges that lie ahead in achieving effective immunotherapy for the majority of patients with malignant brain tumors. A review of immunotherapeutic strategies currently under clinical evaluation, as well as an outline of promising novel approaches on the horizon, is included to provide perspective on the active and stalwart progress toward effective immunotherapy for the treatment of malignant brain tumors.

  18. Mobile Phones, Brain Tumors, and the Interphone Study: Where Are We Now?

    PubMed Central

    Feychting, Maria; Green, Adele C.; Kheifets, Leeka; Savitz, David A.

    2011-01-01

    Background: In the past 15 years, mobile telephone use has evolved from an uncommon activity to one with > 4.6 billion subscriptions worldwide. However, there is public concern about the possibility that mobile phones might cause cancer, especially brain tumors. Objectives: We reviewed the evidence on whether mobile phone use raises the risk of the main types of brain tumor—glioma and meningioma—with a particular focus on the recent publication of the largest epidemiologic study yet: the 13-country Interphone Study. Discussion: Methodological deficits limit the conclusions that can be drawn from the Interphone study, but its results, along with those from other epidemiologic, biological, and animal studies and brain tumor incidence trends, suggest that within about 10–15 years after first use of mobile phones there is unlikely to be a material increase in the risk of brain tumors in adults. Data for childhood tumors and for periods beyond 15 years are currently lacking. Conclusions: Although there remains some uncertainty, the trend in the accumulating evidence is increasingly against the hypothesis that mobile phone use can cause brain tumors in adults. PMID:22171384

  19. Mechanical characterization of human brain tumors from patients and comparison to potential surgical phantoms

    PubMed Central

    Rubiano, Andrés; Dyson, Kyle; Simmons, Chelsey S.

    2017-01-01

    While mechanical properties of the brain have been investigated thoroughly, the mechanical properties of human brain tumors rarely have been directly quantified due to the complexities of acquiring human tissue. Quantifying the mechanical properties of brain tumors is a necessary prerequisite, though, to identify appropriate materials for surgical tool testing and to define target parameters for cell biology and tissue engineering applications. Since characterization methods vary widely for soft biological and synthetic materials, here, we have developed a characterization method compatible with abnormally shaped human brain tumors, mouse tumors, animal tissue and common hydrogels, which enables direct comparison among samples. Samples were tested using a custom-built millimeter-scale indenter, and resulting force-displacement data is analyzed to quantify the steady-state modulus of each sample. We have directly quantified the quasi-static mechanical properties of human brain tumors with effective moduli ranging from 0.17–16.06 kPa for various pathologies. Of the readily available and inexpensive animal tissues tested, chicken liver (steady-state modulus 0.44 ± 0.13 kPa) has similar mechanical properties to normal human brain tissue while chicken crassus gizzard muscle (steady-state modulus 3.00 ± 0.65 kPa) has similar mechanical properties to human brain tumors. Other materials frequently used to mimic brain tissue in mechanical tests, like ballistic gel and chicken breast, were found to be significantly stiffer than both normal and diseased brain tissue. We have directly compared quasi-static properties of brain tissue, brain tumors, and common mechanical surrogates, though additional tests would be required to determine more complex constitutive models. PMID:28582392

  20. Mechanical characterization of human brain tumors from patients and comparison to potential surgical phantoms.

    PubMed

    Stewart, Daniel C; Rubiano, Andrés; Dyson, Kyle; Simmons, Chelsey S

    2017-01-01

    While mechanical properties of the brain have been investigated thoroughly, the mechanical properties of human brain tumors rarely have been directly quantified due to the complexities of acquiring human tissue. Quantifying the mechanical properties of brain tumors is a necessary prerequisite, though, to identify appropriate materials for surgical tool testing and to define target parameters for cell biology and tissue engineering applications. Since characterization methods vary widely for soft biological and synthetic materials, here, we have developed a characterization method compatible with abnormally shaped human brain tumors, mouse tumors, animal tissue and common hydrogels, which enables direct comparison among samples. Samples were tested using a custom-built millimeter-scale indenter, and resulting force-displacement data is analyzed to quantify the steady-state modulus of each sample. We have directly quantified the quasi-static mechanical properties of human brain tumors with effective moduli ranging from 0.17-16.06 kPa for various pathologies. Of the readily available and inexpensive animal tissues tested, chicken liver (steady-state modulus 0.44 ± 0.13 kPa) has similar mechanical properties to normal human brain tissue while chicken crassus gizzard muscle (steady-state modulus 3.00 ± 0.65 kPa) has similar mechanical properties to human brain tumors. Other materials frequently used to mimic brain tissue in mechanical tests, like ballistic gel and chicken breast, were found to be significantly stiffer than both normal and diseased brain tissue. We have directly compared quasi-static properties of brain tissue, brain tumors, and common mechanical surrogates, though additional tests would be required to determine more complex constitutive models.

  1. Advances in evaluation of primary brain tumors.

    PubMed

    Chen, Wei; Silverman, Daniel H S

    2008-07-01

    The evaluation of primary brain tumor is challenging. Neuroimaging plays a significant role. At diagnosis, imaging is needed to establish a differential diagnosis, provide prognostic information, as well as direct biopsy. After the initial treatment, imaging is needed to distinguish recurrent disease from treatment-related changes such as radiation necrosis. In low-grade gliomas, this also includes monitoring anaplastic transformation into high-grade tumors. Recently, targeted treatments have been an extremely active area of research. Evaluation in clinical trials of such targeted treatments demands advanced roles of imaging such as treatment planning, monitoring response, and predicting treatment outcomes. Current clinical gold standard magnetic resonance imaging provides superior structural detail but poor specificity in identifying viable tumors in treated brain with surgery/radiation/chemotherapy. (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) is capable of identifying anaplastic transformation and has prognostic value. The sensitivity and specificity of FDG in evaluating recurrent tumor and treatment-induced changes can be significantly improved by coregistration with magnetic resonance imaging and potentially by delayed imaging 3 to 8 hours after injection. Amino acid PET tracers can be more sensitive than FDG in imaging some recurrent tumors, in particular recurrent low-grade tumors. They are also promising for differentiating between recurrent tumors and treatment-induced changes. Newer PET tracers to image important aspects of tumor biology have been actively studied. Tracers for imaging membrane transport such as (18)F-choline have shown promise in differential diagnosis. (18)F-labeled nucleotide analogs such as 3'-deoxy-3'-[(18)F]-fluorothymidine (FLT) and (18)F-FMAU have been developed to image proliferation. The use of FLT has demonstrated prognostic power in predicting treatment response in patients treated with an antiangiogenic

  2. Childhood Brain and Spinal Cord Tumors Treatment Overview (PDQ®)—Health Professional Version

    Cancer.gov

    Treatment for children with brain and spinal cord tumors is based on histology and location within the brain. For most of these tumors, an optimal regimen has not been determined, and enrollment onto clinical trials is encouraged. Get detailed information about these tumors in this clinician summary.

  3. Coloring brain tumor with multi-potent micellar nanoscale drug delivery system

    NASA Astrophysics Data System (ADS)

    Chong, Kyuha; Choi, Kyungsun; Kim, EunSoo; Han, Eun Chun; Lee, Jungsul; Cha, Junghwa; Ku, Taeyun; Yoon, Jonghee; Park, Ji Ho; Choi, Chulhee

    2012-10-01

    Brain tumor, especially glioblastoma multiforme (GBM), is one of the most malignant tumors, which not only demands perplexing treatment approaches but also requires potent and effective treatment modality to deal with recurrence of the tumor. Photodynamic therapy (PDT) is a treatment which has been recommended as a third-level treatment. We are trying to investigate possibility of the PDT as an efficient adjuvant therapeutic modality for the treatment of brain tumor. Inhibition of tumor progression with photosensitizer was verified, in vitro. With micellar nanoscale drug delivery system, localization of the tumor was identified, in vivo, which is able to be referred as photodynamic diagnosis. With consequent results, we are suggesting photodynamic diagnosis and therapy is able to be performed simultaneously with our nanoscale drug delivery system.

  4. ALA-induced PpIX spectroscopy for brain tumor image-guided surgery

    NASA Astrophysics Data System (ADS)

    Valdes, Pablo A.; Leblond, Frederic; Kim, Anthony; Harris, Brent T.; Wilson, Brian C.; Paulsen, Keith D.; Roberts, David W.

    2011-03-01

    Maximizing the extent of brain tumor resection correlates with improved survival and quality of life outcomes in patients. Optimal surgical resection requires accurate discrimination between normal and abnormal, cancerous tissue. We present our recent experience using quantitative optical spectroscopy in 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) fluorescence-guided resection. Exogenous administration of ALA leads to preferential accumulation in tumor tissue of the fluorescent compound, PpIX, which can be used for in vivo surgical guidance. Using the state of the art approach with a fluorescence surgical microscope, we have been able to visualize a subset of brain tumors, but the sensitivity and accuracy of fluorescence detection for tumor tissue with this system are low. To take full advantage of the biological selectivity of PpIX accumulation in brain tumors, we used a quantitative optical spectroscopy system for in vivo measurements of PpIX tissue concentrations. We have shown that, using our quantitative approach for determination of biomarker concentrations, ALA-induced PpIX fluorescence-guidance can achieve accuracies of greater than 90% for most tumor histologies. Here we show multivariate analysis of fluorescence and diffuse reflectance signals in brain tumors with comparable diagnostic performance to our previously reported quantitative approach. These results are promising, since they show that technological improvements in current fluorescence-guided surgical technologies and more biologically relevant approaches are required to take full advantage of fluorescent biomarkers, achieve better tumor identification, increase extent of resection, and subsequently, lead to improve survival and quality of life in patients.

  5. The utilization of fluorescein in brain tumor surgery: a systematic review.

    PubMed

    Cavallo, Claudio; De Laurentis, Camilla; Vetrano, Ignazio G; Falco, Jacopo; Broggi, Morgan; Schiariti, Marco; Ferroli, Paolo; Acerbi, Francesco

    2018-05-22

    Sodium Fluorescein (SF) is a green, water-soluble dye with the capacity to accumulate in cerebral areas as a result of damaged blood-brain barrier (BBB); this property allows SF to concentrate specifically at the tumor site of various types of brain neoplasms, making the tumor tissue more clearly visible. A literature search (1947-2018) was conducted with the keywords "fluorescein neurosurgery", "YELLOW neurosurgery", "fluorescein brain tumor", "YELLOW brain tumor". We included clinical studies, clinical trials, observational studies, only conducted on humans and concerning surgery; in addition, we have included 3 articles derived from the analysis of the references of other papers. Ultimately, 57 articles were included for further analysis. Fluorescein as a fluorescent tracer in neuro-oncology is gaining a wider acceptance in the neurosurgical literature: until February 1st, 2018, at least 1099 neuro-oncological patients have been operated through fluorescein-assistance, mostly only after 2012. The most important application remains the aim to improve tumor visualization and extent of resection for high-grade gliomas (HGG), but the nonspecific mechanism of action is the theoretical base for its use also for tumors different from HGG. Nevertheless, no homogenous protocol of fluorescein utilization in neurosurgical oncology can be found in literature. Fluorescein-guided surgery is a safe and effective technique to improve visualization and resection of different CNS tumors and conditions, based on BBB alteration, with a growing evidence-based background.

  6. Detection of experimental brain tumors using time-resolved laser-induced fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Thompson, Reid C.; Black, Keith L.; Kateb, Babak; Marcu, Laura

    2002-05-01

    Time-Resolved Laser-Induced Fluorescence Spectroscopy (TR-LIFS) has the potential to provide a non- invasive characterization and detection of tumors. We utilized TR-LIFS to detect gliomas in-vivo in the rat C6 glioma model. Time-resolved emission spectra of both normal brain and tumor were analyzed to determine if unique fluorescence signatures could be used to distinguish the two. Fluorescence parameters derived from both spectral and time domain were used for tissue characterization. Our results show that in the rat C6 glioma model, TR-LIFS can be used to differentiate brain tumors from normal tissue (gray and white mater) based upon time- resolved fluorescence signatures seen in brain tumors.

  7. Brain tumor segmentation from multimodal magnetic resonance images via sparse representation.

    PubMed

    Li, Yuhong; Jia, Fucang; Qin, Jing

    2016-10-01

    Accurately segmenting and quantifying brain gliomas from magnetic resonance (MR) images remains a challenging task because of the large spatial and structural variability among brain tumors. To develop a fully automatic and accurate brain tumor segmentation algorithm, we present a probabilistic model of multimodal MR brain tumor segmentation. This model combines sparse representation and the Markov random field (MRF) to solve the spatial and structural variability problem. We formulate the tumor segmentation problem as a multi-classification task by labeling each voxel as the maximum posterior probability. We estimate the maximum a posteriori (MAP) probability by introducing the sparse representation into a likelihood probability and a MRF into the prior probability. Considering the MAP as an NP-hard problem, we convert the maximum posterior probability estimation into a minimum energy optimization problem and employ graph cuts to find the solution to the MAP estimation. Our method is evaluated using the Brain Tumor Segmentation Challenge 2013 database (BRATS 2013) and obtained Dice coefficient metric values of 0.85, 0.75, and 0.69 on the high-grade Challenge data set, 0.73, 0.56, and 0.54 on the high-grade Challenge LeaderBoard data set, and 0.84, 0.54, and 0.57 on the low-grade Challenge data set for the complete, core, and enhancing regions. The experimental results show that the proposed algorithm is valid and ranks 2nd compared with the state-of-the-art tumor segmentation algorithms in the MICCAI BRATS 2013 challenge. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Autophagy inhibition overcomes multiple mechanisms of resistance to BRAF inhibition in brain tumors

    PubMed Central

    Mulcahy Levy, Jean M; Zahedi, Shadi; Griesinger, Andrea M; Morin, Andrew; Davies, Kurtis D; Aisner, Dara L; Kleinschmidt-DeMasters, BK; Fitzwalter, Brent E; Goodall, Megan L; Thorburn, Jacqueline; Amani, Vladimir; Donson, Andrew M; Birks, Diane K; Mirsky, David M; Hankinson, Todd C; Handler, Michael H; Green, Adam L; Vibhakar, Rajeev; Foreman, Nicholas K; Thorburn, Andrew

    2017-01-01

    Kinase inhibitors are effective cancer therapies, but tumors frequently develop resistance. Current strategies to circumvent resistance target the same or parallel pathways. We report here that targeting a completely different process, autophagy, can overcome multiple BRAF inhibitor resistance mechanisms in brain tumors. BRAFV600Emutations occur in many pediatric brain tumors. We previously reported that these tumors are autophagy-dependent and a patient was successfully treated with the autophagy inhibitor chloroquine after failure of the BRAFV600E inhibitor vemurafenib, suggesting autophagy inhibition overcame the kinase inhibitor resistance. We tested this hypothesis in vemurafenib-resistant brain tumors. Genetic and pharmacological autophagy inhibition overcame molecularly distinct resistance mechanisms, inhibited tumor cell growth, and increased cell death. Patients with resistance had favorable clinical responses when chloroquine was added to vemurafenib. This provides a fundamentally different strategy to circumvent multiple mechanisms of kinase inhibitor resistance that could be rapidly tested in clinical trials in patients with BRAFV600E brain tumors. DOI: http://dx.doi.org/10.7554/eLife.19671.001 PMID:28094001

  9. The modern brain tumor operating room: from standard essentials to current state-of-the-art.

    PubMed

    Barnett, Gene H; Nathoo, Narendra

    2004-01-01

    It is just over a century since successful brain tumor resection. Since then the diagnosis, imaging, and management of brain tumors have improved, in large part due to technological advances. Similarly, the operating room (OR) for brain tumor surgery has increased in complexity and specificity with multiple forms of equipment now considered necessary as technical adjuncts. It is evident that the theme of minimalism in combination with advanced image-guidance techniques and a cohort of sophisticated technologies (e.g., robotics and nanotechnology) will drive changes in the current OR environment for the foreseeable future. In this report we describe what may be regarded today as standard essentials in an operating room for the surgical management of brain tumors and what we believe to be the current 'state-of-the-art' brain tumor OR. Also, we speculate on the additional capabilities of the brain tumor OR of the near future.

  10. A dynamic in vivo-like organotypic blood-brain barrier model to probe metastatic brain tumors

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Li, Zhongyu; Yu, Yue; Sizdahkhani, Saman; Ho, Winson S.; Yin, Fangchao; Wang, Li; Zhu, Guoli; Zhang, Min; Jiang, Lei; Zhuang, Zhengping; Qin, Jianhua

    2016-11-01

    The blood-brain barrier (BBB) restricts the uptake of many neuro-therapeutic molecules, presenting a formidable hurdle to drug development in brain diseases. We proposed a new and dynamic in vivo-like three-dimensional microfluidic system that replicates the key structural, functional and mechanical properties of the blood-brain barrier in vivo. Multiple factors in this system work synergistically to accentuate BBB-specific attributes-permitting the analysis of complex organ-level responses in both normal and pathological microenvironments in brain tumors. The complex BBB microenvironment is reproduced in this system via physical cell-cell interaction, vascular mechanical cues and cell migration. This model possesses the unique capability to examine brain metastasis of human lung, breast and melanoma cells and their therapeutic responses to chemotherapy. The results suggest that the interactions between cancer cells and astrocytes in BBB microenvironment might affect the ability of malignant brain tumors to traverse between brain and vascular compartments. Furthermore, quantification of spatially resolved barrier functions exists within a single assay, providing a versatile and valuable platform for pharmaceutical development, drug testing and neuroscientific research.

  11. An automatic method of brain tumor segmentation from MRI volume based on the symmetry of brain and level set method

    NASA Astrophysics Data System (ADS)

    Li, Xiaobing; Qiu, Tianshuang; Lebonvallet, Stephane; Ruan, Su

    2010-02-01

    This paper presents a brain tumor segmentation method which automatically segments tumors from human brain MRI image volume. The presented model is based on the symmetry of human brain and level set method. Firstly, the midsagittal plane of an MRI volume is searched, the slices with potential tumor of the volume are checked out according to their symmetries, and an initial boundary of the tumor in the slice, in which the tumor is in the largest size, is determined meanwhile by watershed and morphological algorithms; Secondly, the level set method is applied to the initial boundary to drive the curve evolving and stopping to the appropriate tumor boundary; Lastly, the tumor boundary is projected one by one to its adjacent slices as initial boundaries through the volume for the whole tumor. The experiment results are compared with hand tracking of the expert and show relatively good accordance between both.

  12. Estimation of salivary tumor necrosis factor-alpha in chronic and aggressive periodontitis patients.

    PubMed

    Varghese, Sheeja S; Thomas, Hima; Jayakumar, N D; Sankari, M; Lakshmanan, Reema

    2015-09-01

    Periodontitis is a chronic bacterial infection characterized by persistent inflammation, connective tissue breakdown and alveolar bone destruction mediated by pro-inflammatory mediators. Tumor necrosis factor-alpha (TNF-α) is an important pro-inflammatory mediator that produced causes destruction of periodontal tissues. The aim of the study is to estimate the salivary TNF-α in chronic and aggressive periodontitis and control participants and further correlate the levels with clinical parameter such as gingival index (GI), plaque index (PI), probing pocket depth (PPD) and clinical attachment loss. The study population consisted of 75 subjects age ranging from 25 to 55 years attending the outpatient section of Department of Periodontics, Saveetha Dental College and Hospital. The study groups included Groups 1, 2, and 3 with participants with healthy periodontium (n = 25), generalized chronic periodontitis (n = 25) and generalized aggressive periodontitis (n = 25), respectively. Salivary samples from the participants were used to assess the TNF-α levels using enzyme-linked immunosorbent assay. GI and PI were found to be significantly higher in chronic and aggressive periodontitis compared to the controls. The mean TNF-α value in chronic periodontitis patients (12.92 ± 17.21 pg/ml) was significantly higher than in control subjects (2.15 ± 3.60 pg/ml). Whereas, in aggressive periodontitis patients the mean TNF-α (7.23 ± 7.67) were not significantly different from chronic periodontitis or healthy subjects. Among periodontitis participants, aggressive periodontitis subjects exhibited a significant positive correlation between the salivary TNF-α and PPD. Salivary TNF-α levels are significantly higher in chronic periodontitis than in healthy subjects, but there was no significant correlation with the clinical parameters.

  13. Impulsivity, aggression and brain structure in high and low lethality suicide attempters with borderline personality disorder.

    PubMed

    Soloff, Paul; White, Richard; Diwadkar, Vaibhav A

    2014-06-30

    Impulsivity and aggressiveness are trait dispositions associated with the vulnerability to suicidal behavior across diagnoses. They are associated with structural and functional abnormalities in brain networks involved in regulation of mood, impulse and behavior. They are also core characteristics of borderline personality disorder (BPD), a disorder defined, in part, by recurrent suicidal behavior. We assessed the relationships between personality traits, brain structure and lethality of suicide attempts in 51 BPD attempters using multiple regression analyses on structural MRI data. BPD was diagnosed by the Diagnostic Interview for Borderline Patients-revised, impulsivity by the Barratt Impulsiveness Scale (BIS), aggression by the Brown-Goodwin Lifetime History of Aggression (LHA), and high lethality by a score of 4 or more on the Lethality Rating Scale (LRS). Sixteen High Lethality attempters were compared to 35 Low Lethality attempters, with no significant differences noted in gender, co-morbidity, childhood abuse, BIS or LHA scores. Degree of medical lethality (LRS) was negatively related to gray matter volumes across multiple fronto-temporal-limbic regions. Effects of impulsivity and aggression on gray matter volumes discriminated High from Low Lethality attempters and differed markedly within lethality groups. Lethality of suicide attempts in BPD may be related to the mediation of these personality traits by specific neural networks. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. RB loss contributes to aggressive tumor phenotypes in MYC-driven triple negative breast cancer

    PubMed Central

    Knudsen, Erik S; McClendon, A Kathleen; Franco, Jorge; Ertel, Adam; Fortina, Paolo; Witkiewicz, Agnieszka K

    2015-01-01

    Triple negative breast cancer (TNBC) is characterized by multiple genetic events occurring in concert to drive pathogenic features of the disease. Here we interrogated the coordinate impact of p53, RB, and MYC in a genetic model of TNBC, in parallel with the analysis of clinical specimens. Primary mouse mammary epithelial cells (mMEC) with defined genetic features were used to delineate the combined action of RB and/or p53 in the genesis of TNBC. In this context, the deletion of either RB or p53 alone and in combination increased the proliferation of mMEC; however, the cells did not have the capacity to invade in matrigel. Gene expression profiling revealed that loss of each tumor suppressor has effects related to proliferation, but RB loss in particular leads to alterations in gene expression associated with the epithelial-to-mesenchymal transition. The overexpression of MYC in combination with p53 loss or combined RB/p53 loss drove rapid cell growth. While the effects of MYC overexpression had a dominant impact on gene expression, loss of RB further enhanced the deregulation of a gene expression signature associated with invasion. Specific RB loss lead to enhanced invasion in boyden chambers assays and gave rise to tumors with minimal epithelial characteristics relative to RB-proficient models. Therapeutic screening revealed that RB-deficient cells were particularly resistant to agents targeting PI3K and MEK pathway. Consistent with the aggressive behavior of the preclinical models of MYC overexpression and RB loss, human TNBC tumors that express high levels of MYC and are devoid of RB have a particularly poor outcome. Together these results underscore the potency of tumor suppressor pathways in specifying the biology of breast cancer. Further, they demonstrate that MYC overexpression in concert with RB can promote a particularly aggressive form of TNBC. PMID:25602521

  15. Multi-fractal detrended texture feature for brain tumor classification

    NASA Astrophysics Data System (ADS)

    Reza, Syed M. S.; Mays, Randall; Iftekharuddin, Khan M.

    2015-03-01

    We propose a novel non-invasive brain tumor type classification using Multi-fractal Detrended Fluctuation Analysis (MFDFA) [1] in structural magnetic resonance (MR) images. This preliminary work investigates the efficacy of the MFDFA features along with our novel texture feature known as multifractional Brownian motion (mBm) [2] in classifying (grading) brain tumors as High Grade (HG) and Low Grade (LG). Based on prior performance, Random Forest (RF) [3] is employed for tumor grading using two different datasets such as BRATS-2013 [4] and BRATS-2014 [5]. Quantitative scores such as precision, recall, accuracy are obtained using the confusion matrix. On an average 90% precision and 85% recall from the inter-dataset cross-validation confirm the efficacy of the proposed method.

  16. Fluorescence lifetime spectroscopy for guided therapy of brain tumors.

    PubMed

    Butte, Pramod V; Mamelak, Adam N; Nuno, Miriam; Bannykh, Serguei I; Black, Keith L; Marcu, Laura

    2011-01-01

    This study evaluates the potential of time-resolved laser induced fluorescence spectroscopy (TR-LIFS) as intra-operative tool for the delineation of brain tumor from normal brain. Forty two patients undergoing glioma (WHO grade I-IV) surgery were enrolled in this study. A TR-LIFS prototype apparatus (gated detection, fast digitizer) was used to induce in-vivo fluorescence using a pulsed N2 laser (337 nm excitation, 0.7 ns pulse width) and to record the time-resolved spectrum (360-550 nm range, 10 nm interval). The sites of TR-LIFS measurement were validated by conventional histopathology (H&E staining). Parameters derived from the TR-LIFS data including intensity values and time-resolved intensity decay features (average fluorescence lifetime and Laguerre coefficients values) were used for tissue characterization and classification. 71 areas of tumor and normal brain were analyzed. Several parameters allowed for the differentiation of distinct tissue types. For example, normal cortex (N=35) and normal white matter (N=12) exhibit a longer-lasting fluorescence emission at 390 nm (τ390=2.12±0.10 ns) when compared with 460 nm (τ460=1.16±0.08 ns). High grade glioma (grades III and IV) samples (N=17) demonstrate emission peaks at 460 nm, with large variation at 390 nm while low grade glioma (I and II) samples (N=7) demonstrated a peak fluorescence emission at 460 nm. A linear discriminant algorithm allowed for the classification of low-grade gliomas with 100% sensitivity and 98% specificity. High-grade glioma demonstrated a high degree of heterogeneity thus reducing the discrimination accuracy of these tumors to 47% sensitivity and 94% specificity. Current findings demonstrate that TR-LIFS holds the potential to diagnose brain tumors intra-operatively and to provide a valuable tool for aiding the neurosurgeon-neuropathologist team in to rapidly distinguish between tumor and normal brain during surgery. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Neuronavigation in the surgical management of brain tumors: current and future trends

    PubMed Central

    Orringer, Daniel A; Golby, Alexandra; Jolesz, Ferenc

    2013-01-01

    Neuronavigation has become an ubiquitous tool in the surgical management of brain tumors. This review describes the use and limitations of current neuronavigational systems for brain tumor biopsy and resection. Methods for integrating intraoperative imaging into neuronavigational datasets developed to address the diminishing accuracy of positional information that occurs over the course of brain tumor resection are discussed. In addition, the process of integration of functional MRI and tractography into navigational models is reviewed. Finally, emerging concepts and future challenges relating to the development and implementation of experimental imaging technologies in the navigational environment are explored. PMID:23116076

  18. Social instigation and repeated aggressive confrontations in male Swiss mice: analysis of plasma corticosterone, CRF and BDNF levels in limbic brain areas.

    PubMed

    Fortes, Paula Madeira; Albrechet-Souza, Lucas; Vasconcelos, Mailton; Ascoli, Bruna Maria; Menegolla, Ana Paula; de Almeida, Rosa Maria M

    2017-01-01

    Agonistic behaviors help to ensure survival, provide advantage in competition, and communicate social status. The resident-intruder paradigm, an animal model based on male intraspecific confrontations, can be an ethologically relevant tool to investigate the neurobiology of aggressive behavior. To examine behavioral and neurobiological mechanisms of aggressive behavior in male Swiss mice exposed to repeated confrontations in the resident intruder paradigm. Behavioral analysis was performed in association with measurements of plasma corticosterone of mice repeatedly exposed to a potential rival nearby, but inaccessible (social instigation), or to 10 sessions of social instigation followed by direct aggressive encounters. Moreover, corticotropin-releasing factor (CRF) and brain-derived neurotrophic factor (BNDF) were measured in the brain of these animals. Control mice were exposed to neither social instigation nor aggressive confrontations. Mice exposed to aggressive confrontations exhibited a similar pattern of species-typical aggressive and non-aggressive behaviors on the first and the last session. Moreover, in contrast to social instigation only, repeated aggressive confrontations promoted an increase in plasma corticosterone. After 10 aggressive confrontation sessions, mice presented a non-significant trend toward reducing hippocampal levels of CRF, which inversely correlated with plasma corticosterone levels. Conversely, repeated sessions of social instigation or aggressive confrontation did not alter BDNF concentrations at the prefrontal cortex and hippocampus. Exposure to repeated episodes of aggressive encounters did not promote habituation over time. Additionally, CRF seems to be involved in physiological responses to social stressors.

  19. Testosterone and aggressive behavior in man.

    PubMed

    Batrinos, Menelaos L

    2012-01-01

    Atavistic residues of aggressive behavior prevailing in animal life, determined by testosterone, remain attenuated in man and suppressed through familial and social inhibitions. However, it still manifests itself in various intensities and forms from; thoughts, anger, verbal aggressiveness, competition, dominance behavior, to physical violence. Testosterone plays a significant role in the arousal of these behavioral manifestations in the brain centers involved in aggression and on the development of the muscular system that enables their realization. There is evidence that testosterone levels are higher in individuals with aggressive behavior, such as prisoners who have committed violent crimes. Several field studies have also shown that testosterone levels increase during the aggressive phases of sports games. In more sensitive laboratory paradigms, it has been observed that participant's testosterone rises in the winners of; competitions, dominance trials or in confrontations with factitious opponents. Aggressive behavior arises in the brain through interplay between subcortical structures in the amygdala and the hypothalamus in which emotions are born and the prefrontal cognitive centers where emotions are perceived and controlled. The action of testosterone on the brain begins in the embryonic stage. Earlier in development at the DNA level, the number of CAG repeats in the androgen receptor gene seems to play a role in the expression of aggressive behavior. Neuroimaging techniques in adult males have shown that testosterone activates the amygdala enhancing its emotional activity and its resistance to prefrontal restraining control. This effect is opposed by the action of cortisol which facilitates prefrontal area cognitive control on impulsive tendencies aroused in the subcortical structures. The degree of impulsivity is regulated by serotonin inhibiting receptors, and with the intervention of this neurotransmitter the major agents of the neuroendocrine

  20. Endoscopic and minimally invasive microsurgical approaches for treating brain tumor patients.

    PubMed

    Badie, Behnam; Brooks, Nathaniel; Souweidane, Mark M

    2004-01-01

    Recent developments in neuroendoscopy and minimally invasive procedures have greatly impacted the diagnosis and treatment of brain tumors. In this paper, we will review these innovations and discuss how they have influenced our approach to the treatment of intraventricular and pituitary tumors. Finally, the concept of keyhole neurosurgery is illustrated by discussing 'eyebrow orbitotomy' approach as an example. As noninvasive therapeutic alternative become available, future neurosurgeons will be challenged to develop effective and less invasive surgical approaches for the diagnosis and treatment of patients will brain tumors.

  1. Childhood Brain and Spinal Cord Tumors Treatment Overview (PDQ®)—Patient Version

    Cancer.gov

    Brain and spinal cord tumors may be benign (not cancer) or malignant (cancer). Both types cause signs or symptoms and need treatment. Get information about the many kinds of brain and spinal cord tumors, signs and symptoms, tests to diagnose, and treatment in this expert-reviewed summary.

  2. Brain tumor segmentation in MR slices using improved GrowCut algorithm

    NASA Astrophysics Data System (ADS)

    Ji, Chunhong; Yu, Jinhua; Wang, Yuanyuan; Chen, Liang; Shi, Zhifeng; Mao, Ying

    2015-12-01

    The detection of brain tumor from MR images is very significant for medical diagnosis and treatment. However, the existing methods are mostly based on manual or semiautomatic segmentation which are awkward when dealing with a large amount of MR slices. In this paper, a new fully automatic method for the segmentation of brain tumors in MR slices is presented. Based on the hypothesis of the symmetric brain structure, the method improves the interactive GrowCut algorithm by further using the bounding box algorithm in the pre-processing step. More importantly, local reflectional symmetry is used to make up the deficiency of the bounding box method. After segmentation, 3D tumor image is reconstructed. We evaluate the accuracy of the proposed method on MR slices with synthetic tumors and actual clinical MR images. Result of the proposed method is compared with the actual position of simulated 3D tumor qualitatively and quantitatively. In addition, our automatic method produces equivalent performance as manual segmentation and the interactive GrowCut with manual interference while providing fully automatic segmentation.

  3. Automatic segmentation of multimodal brain tumor images based on classification of super-voxels.

    PubMed

    Kadkhodaei, M; Samavi, S; Karimi, N; Mohaghegh, H; Soroushmehr, S M R; Ward, K; All, A; Najarian, K

    2016-08-01

    Despite the rapid growth in brain tumor segmentation approaches, there are still many challenges in this field. Automatic segmentation of brain images has a critical role in decreasing the burden of manual labeling and increasing robustness of brain tumor diagnosis. We consider segmentation of glioma tumors, which have a wide variation in size, shape and appearance properties. In this paper images are enhanced and normalized to same scale in a preprocessing step. The enhanced images are then segmented based on their intensities using 3D super-voxels. Usually in images a tumor region can be regarded as a salient object. Inspired by this observation, we propose a new feature which uses a saliency detection algorithm. An edge-aware filtering technique is employed to align edges of the original image to the saliency map which enhances the boundaries of the tumor. Then, for classification of tumors in brain images, a set of robust texture features are extracted from super-voxels. Experimental results indicate that our proposed method outperforms a comparable state-of-the-art algorithm in term of dice score.

  4. Fully automated tumor segmentation based on improved fuzzy connectedness algorithm in brain MR images.

    PubMed

    Harati, Vida; Khayati, Rasoul; Farzan, Abdolreza

    2011-07-01

    Uncontrollable and unlimited cell growth leads to tumor genesis in the brain. If brain tumors are not diagnosed early and cured properly, they could cause permanent brain damage or even death to patients. As in all methods of treatments, any information about tumor position and size is important for successful treatment; hence, finding an accurate and a fully automated method to give information to physicians is necessary. A fully automatic and accurate method for tumor region detection and segmentation in brain magnetic resonance (MR) images is suggested. The presented approach is an improved fuzzy connectedness (FC) algorithm based on a scale in which the seed point is selected automatically. This algorithm is independent of the tumor type in terms of its pixels intensity. Tumor segmentation evaluation results based on similarity criteria (similarity index (SI), overlap fraction (OF), and extra fraction (EF) are 92.89%, 91.75%, and 3.95%, respectively) indicate a higher performance of the proposed approach compared to the conventional methods, especially in MR images, in tumor regions with low contrast. Thus, the suggested method is useful for increasing the ability of automatic estimation of tumor size and position in brain tissues, which provides more accurate investigation of the required surgery, chemotherapy, and radiotherapy procedures. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Dietary Selenium Supplementation Modulates Growth of Brain Metastatic Tumors and Changes the Expression of Adhesion Molecules in Brain Microvessels.

    PubMed

    Wrobel, Jagoda K; Wolff, Gretchen; Xiao, Rijin; Power, Ronan F; Toborek, Michal

    2016-08-01

    Various dietary agents can modulate tumor invasiveness. The current study explored whether selenoglycoproteins (SeGPs) extracted from selenium-enriched yeast affect tumor cell homing and growth in the brain. Mice were fed diets enriched with specific SeGPs (SeGP40 or SeGP65, 1 mg/kg Se each), glycoproteins (GP40 or GP65, 0.2-0.3 mg/kg Se each) or a control diet (0.2-0.3 mg/kg Se) for 12 weeks. Then, murine Lewis lung carcinoma cells were infused into the brain circulation. Analyses were performed at early (48 h) and late stages (3 weeks) post tumor cell infusion. Imaging of tumor progression in the brain revealed that mice fed SeGP65-enriched diet displayed diminished metastatic tumor growth, fewer extravasating tumor cells and smaller metastatic lesions. While administration of tumor cells resulted in a significant upregulation of adhesion molecules in the early stage of tumor progression, overexpression of VCAM-1 (vascular call adhesion molecule-1) and ALCAM (activated leukocyte cell adhesion molecule) messenger RNA (mRNA) was diminished in SeGP65 supplemented mice. Additionally, mice fed SeGP65 showed decreased expression of acetylated NF-κB p65, 48 h post tumor cell infusion. The results indicate that tumor progression in the brain can be modulated by specific SeGPs. Selenium-containing compounds were more effective than their glycoprotein controls, implicating selenium as a potential negative regulator of metastatic process.

  6. 3D variational brain tumor segmentation on a clustered feature set

    NASA Astrophysics Data System (ADS)

    Popuri, Karteek; Cobzas, Dana; Jagersand, Martin; Shah, Sirish L.; Murtha, Albert

    2009-02-01

    Tumor segmentation from MRI data is a particularly challenging and time consuming task. Tumors have a large diversity in shape and appearance with intensities overlapping the normal brain tissues. In addition, an expanding tumor can also deflect and deform nearby tissue. Our work addresses these last two difficult problems. We use the available MRI modalities (T1, T1c, T2) and their texture characteristics to construct a multi-dimensional feature set. Further, we extract clusters which provide a compact representation of the essential information in these features. The main idea in this paper is to incorporate these clustered features into the 3D variational segmentation framework. In contrast to the previous variational approaches, we propose a segmentation method that evolves the contour in a supervised fashion. The segmentation boundary is driven by the learned inside and outside region voxel probabilities in the cluster space. We incorporate prior knowledge about the normal brain tissue appearance, during the estimation of these region statistics. In particular, we use a Dirichlet prior that discourages the clusters in the ventricles to be in the tumor and hence better disambiguate the tumor from brain tissue. We show the performance of our method on real MRI scans. The experimental dataset includes MRI scans, from patients with difficult instances, with tumors that are inhomogeneous in appearance, small in size and in proximity to the major structures in the brain. Our method shows good results on these test cases.

  7. Calcium Sensor, NCS-1, Promotes Tumor Aggressiveness and Predicts Patient Survival.

    PubMed

    Moore, Lauren M; England, Allison; Ehrlich, Barbara E; Rimm, David L

    2017-07-01

    Neuronal Calcium Sensor 1 (NCS-1) is a multi-functional Ca 2+ -binding protein that affects a range of cellular processes beyond those related to neurons. Functional characterization of NCS-1 in neuronal model systems suggests that NCS-1 may influence oncogenic processes. To this end, the biological role of NCS-1 was investigated by altering its endogenous expression in MCF-7 and MB-231 breast cancer cells. Overexpression of NCS-1 resulted in a more aggressive tumor phenotype demonstrated by a marked increase in invasion and motility, and a decrease in cell-matrix adhesion to collagen IV. Overexpression of NCS-1 was also shown to increase the efficacy of paclitaxel-induced cell death in a manner that was independent of cellular proliferation. To determine the association between NCS-1 and clinical outcome, NCS-1 expression was measured in two independent breast cancer cohorts by the Automated Quantitative Analysis method of quantitative immunofluorescence. Elevated levels of NCS-1 were significantly correlated with shorter survival rates. Furthermore, multivariate analysis demonstrated that NCS-1 status was prognostic, independent of estrogen receptor, progesterone receptor, HER2, and lymph node status. These findings indicate that NCS-1 plays a role in the aggressive behavior of a subset of breast cancers and has therapeutic or biomarker potential. Implications: NCS-1, a calcium-binding protein, is associated with clinicopathologic features of aggressiveness in breast cancer cells and worse outcome in two breast cancer patient cohorts. Mol Cancer Res; 15(7); 942-52. ©2017 AACR . ©2017 American Association for Cancer Research.

  8. Magnetic Resonance Fingerprinting of Adult Brain Tumors: Initial Experience

    PubMed Central

    Badve, Chaitra; Yu, Alice; Dastmalchian, Sara; Rogers, Matthew; Ma, Dan; Jiang, Yun; Margevicius, Seunghee; Pahwa, Shivani; Lu, Ziang; Schluchter, Mark; Sunshine, Jeffrey; Griswold, Mark; Sloan, Andrew; Gulani, Vikas

    2016-01-01

    Background Magnetic resonance fingerprinting (MRF) allows rapid simultaneous quantification of T1 and T2 relaxation times. This study assesses the utility of MRF in differentiating between common types of adult intra-axial brain tumors. Methods MRF acquisition was performed in 31 patients with untreated intra-axial brain tumors: 17 glioblastomas, 6 WHO grade II lower-grade gliomas and 8 metastases. T1, T2 of the solid tumor (ST), immediate peritumoral white matter (PW), and contralateral white matter (CW) were summarized within each region of interest. Statistical comparisons on mean, standard deviation, skewness and kurtosis were performed using univariate Wilcoxon rank sum test across various tumor types. Bonferroni correction was used to correct for multiple comparisons testing. Multivariable logistic regression analysis was performed for discrimination between glioblastomas and metastases and area under the receiver operator curve (AUC) was calculated. Results Mean T2 values could differentiate solid tumor regions of lower-grade gliomas from metastases (mean±sd: 172±53ms and 105±27ms respectively, p =0.004, significant after Bonferroni correction). Mean T1 of PW surrounding lower-grade gliomas differed from PW around glioblastomas (mean±sd: 1066±218ms and 1578±331ms respectively, p=0.004, significant after Bonferroni correction). Logistic regression analysis revealed that mean T2 of ST offered best separation between glioblastomas and metastases with AUC of 0.86 (95% CI 0.69–1.00, p<0.0001). Conclusion MRF allows rapid simultaneous T1, T2 measurement in brain tumors and surrounding tissues. MRF based relaxometry can identify quantitative differences between solid-tumor regions of lower grade gliomas and metastases and between peritumoral regions of glioblastomas and lower grade gliomas. PMID:28034994

  9. Applications of Ultrasound in the Resection of Brain Tumors

    PubMed Central

    Sastry, Rahul; Bi, Wenya Linda; Pieper, Steve; Frisken, Sarah; Kapur, Tina; Wells, William; Golby, Alexandra J.

    2016-01-01

    Neurosurgery makes use of pre-operative imaging to visualize pathology, inform surgical planning, and evaluate the safety of selected approaches. The utility of pre-operative imaging for neuronavigation, however, is diminished by the well characterized phenomenon of brain shift, in which the brain deforms intraoperatively as a result of craniotomy, swelling, gravity, tumor resection, cerebrospinal fluid (CSF) drainage, and many other factors. As such, there is a need for updated intraoperative information that accurately reflects intraoperative conditions. Since 1982, intraoperative ultrasound has allowed neurosurgeons to craft and update operative plans without ionizing radiation exposure or major workflow interruption. Continued evolution of ultrasound technology since its introduction has resulted in superior imaging quality, smaller probes, and more seamless integration with neuronavigation systems. Furthermore, the introduction of related imaging modalities, such as 3-dimensional ultrasound, contrast-enhanced ultrasound, high-frequency ultrasound, and ultrasound elastography have dramatically expanded the options available to the neurosurgeon intraoperatively. In the context of these advances, we review the current state, potential, and challenges of intraoperative ultrasound for brain tumor resection. We begin by evaluating these ultrasound technologies and their relative advantages and disadvantages. We then review three specific applications of these ultrasound technologies to brain tumor resection: (1) intraoperative navigation, (2) assessment of extent of resection, and (3) brain shift monitoring and compensation. We conclude by identifying opportunities for future directions in the development of ultrasound technologies. PMID:27541694

  10. Cancer-specific health-related quality of life in children with brain tumors.

    PubMed

    Sato, Iori; Higuchi, Akiko; Yanagisawa, Takaaki; Mukasa, Akitake; Ida, Kohmei; Sawamura, Yutaka; Sugiyama, Kazuhiko; Saito, Nobuhito; Kumabe, Toshihiro; Terasaki, Mizuhiko; Nishikawa, Ryo; Ishida, Yasushi; Kamibeppu, Kiyoko

    2014-05-01

    To understand the influence of disease and treatment on the health-related quality of life (HRQOL) of children with brain tumors, compared to the HRQOL of children with other cancers, from the viewpoints of children and parents. A total of 133 children aged 5-18 years and 165 parents of children aged 2-18 completed questionnaires of the Pediatric Quality of Life Inventory Cancer Module (Pain and Hurt, Nausea, Procedural Anxiety, Treatment Anxiety, Worry, Cognitive Problems, Perceived Physical Appearance, and Communication scales); higher scores indicate a better HRQOL. The Cancer Module scores, weighted by age and treatment status, were compared to those obtained in a previous study of children with other cancers (mostly leukemia). The weighted mean scores for Pain and Hurt (effect size d = 0.26) and Nausea (d = 0.23) from child reports and the scores for Nausea (d = 0.28) from parent reports were higher for children with brain tumors than scores for children with other cancers. The scores for Procedural Anxiety (d = -0.22) and Treatment Anxiety (d = -0.32) from parent reports were lower for parents of children with brain tumors than the scores for parents of children with other cancers. The child-reported Pain and Hurt score of the Cancer Module was higher (d = 0.29) and in less agreement (intraclass correlation coefficient = 0.43) with scores from the Brain Tumor Module, indicating that assessments completed with the Cancer Module misesteem pain and hurt problems in children with brain tumors. The profiles of cancer-specific HRQOL in children with brain tumors differ from those of children with other cancers; we therefore suggest that these children receive specific psychological support.

  11. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs.

    PubMed

    Sturm, Dominik; Orr, Brent A; Toprak, Umut H; Hovestadt, Volker; Jones, David T W; Capper, David; Sill, Martin; Buchhalter, Ivo; Northcott, Paul A; Leis, Irina; Ryzhova, Marina; Koelsche, Christian; Pfaff, Elke; Allen, Sariah J; Balasubramanian, Gnanaprakash; Worst, Barbara C; Pajtler, Kristian W; Brabetz, Sebastian; Johann, Pascal D; Sahm, Felix; Reimand, Jüri; Mackay, Alan; Carvalho, Diana M; Remke, Marc; Phillips, Joanna J; Perry, Arie; Cowdrey, Cynthia; Drissi, Rachid; Fouladi, Maryam; Giangaspero, Felice; Łastowska, Maria; Grajkowska, Wiesława; Scheurlen, Wolfram; Pietsch, Torsten; Hagel, Christian; Gojo, Johannes; Lötsch, Daniela; Berger, Walter; Slavc, Irene; Haberler, Christine; Jouvet, Anne; Holm, Stefan; Hofer, Silvia; Prinz, Marco; Keohane, Catherine; Fried, Iris; Mawrin, Christian; Scheie, David; Mobley, Bret C; Schniederjan, Matthew J; Santi, Mariarita; Buccoliero, Anna M; Dahiya, Sonika; Kramm, Christof M; von Bueren, André O; von Hoff, Katja; Rutkowski, Stefan; Herold-Mende, Christel; Frühwald, Michael C; Milde, Till; Hasselblatt, Martin; Wesseling, Pieter; Rößler, Jochen; Schüller, Ulrich; Ebinger, Martin; Schittenhelm, Jens; Frank, Stephan; Grobholz, Rainer; Vajtai, Istvan; Hans, Volkmar; Schneppenheim, Reinhard; Zitterbart, Karel; Collins, V Peter; Aronica, Eleonora; Varlet, Pascale; Puget, Stephanie; Dufour, Christelle; Grill, Jacques; Figarella-Branger, Dominique; Wolter, Marietta; Schuhmann, Martin U; Shalaby, Tarek; Grotzer, Michael; van Meter, Timothy; Monoranu, Camelia-Maria; Felsberg, Jörg; Reifenberger, Guido; Snuderl, Matija; Forrester, Lynn Ann; Koster, Jan; Versteeg, Rogier; Volckmann, Richard; van Sluis, Peter; Wolf, Stephan; Mikkelsen, Tom; Gajjar, Amar; Aldape, Kenneth; Moore, Andrew S; Taylor, Michael D; Jones, Chris; Jabado, Nada; Karajannis, Matthias A; Eils, Roland; Schlesner, Matthias; Lichter, Peter; von Deimling, Andreas; Pfister, Stefan M; Ellison, David W; Korshunov, Andrey; Kool, Marcel

    2016-02-25

    Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of institutionally diagnosed CNS-PNETs display molecular profiles indistinguishable from those of various other well-defined CNS tumor entities, facilitating diagnosis and appropriate therapy for patients with these tumors. From the remaining fraction of CNS-PNETs, we identify four new CNS tumor entities, each associated with a recurrent genetic alteration and distinct histopathological and clinical features. These new molecular entities, designated "CNS neuroblastoma with FOXR2 activation (CNS NB-FOXR2)," "CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT-CIC)," "CNS high-grade neuroepithelial tumor with MN1 alteration (CNS HGNET-MN1)," and "CNS high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR)," will enable meaningful clinical trials and the development of therapeutic strategies for patients affected by poorly differentiated CNS tumors. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Dye-enhanced multimodal confocal imaging as a novel approach to intraoperative diagnosis of brain tumors.

    PubMed

    Snuderl, Matija; Wirth, Dennis; Sheth, Sameer A; Bourne, Sarah K; Kwon, Churl-Su; Ancukiewicz, Marek; Curry, William T; Frosch, Matthew P; Yaroslavsky, Anna N

    2013-01-01

    Intraoperative diagnosis plays an important role in accurate sampling of brain tumors, limiting the number of biopsies required and improving the distinction between brain and tumor. The goal of this study was to evaluate dye-enhanced multimodal confocal imaging for discriminating gliomas from nonglial brain tumors and from normal brain tissue for diagnostic use. We investigated a total of 37 samples including glioma (13), meningioma (7), metastatic tumors (9) and normal brain removed for nontumoral indications (8). Tissue was stained in 0.05 mg/mL aqueous solution of methylene blue (MB) for 2-5 minutes and multimodal confocal images were acquired using a custom-built microscope. After imaging, tissue was formalin fixed and paraffin embedded for standard neuropathologic evaluation. Thirteen pathologists provided diagnoses based on the multimodal confocal images. The investigated tumor types exhibited distinctive and complimentary characteristics in both the reflectance and fluorescence responses. Images showed distinct morphological features similar to standard histology. Pathologists were able to distinguish gliomas from normal brain tissue and nonglial brain tumors, and to render diagnoses from the images in a manner comparable to haematoxylin and eosin (H&E) slides. These results confirm the feasibility of multimodal confocal imaging for intravital intraoperative diagnosis. © 2012 The Authors; Brain Pathology © 2012 International Society of Neuropathology.

  13. [Disorders of endocrine function after brain tumor therapy in childhood].

    PubMed

    Marx, M; Langer, T; Beck, J D; Dörr, H G

    1999-07-01

    Advances in the therapy of malignant brain tumors in children have led to a significant improvement in survival rates over the last few decades. As a result, the recognition and treatment of late effects have become more important. In addition to secondary tumors and deficiencies in cognitive and intellectual skills, the resulting endocrine disturbances play an important role. Own data and literature review. Deviations from the normal growth hormone secretion are usually recognized first and are most common, and have already been observed after conventional whole brain irradiation with 18 Gy. With some delay, other hypothalamo-pituitary deficiencies may occur, including panhypopituitarism. Puberty may come too early or too late or may not appear at all. Girls in particular, frequently experience an early and rapid pubertal development after brain tumor therapy, which may lead to further reduction in height due to an accelerated bone maturation. Functional disturbances of the thyroid and adrenal glands due to hypothalamic or pituitary deficiency are less common, and usually seen only after a radiation dose of over 40 Gy. Survivors of childhood brain tumors must be considered as long-term survivors, in whom the first therapy-induced long-term side effects appear almost immediately after the end of therapy. Maximum quality of life for the individual patient can only be achieved by long-term care and close cooperation of specialists in the different medical disciplines involved.

  14. Raman spectroscopic imaging as complementary tool for histopathologic assessment of brain tumors

    NASA Astrophysics Data System (ADS)

    Krafft, Christoph; Bergner, Norbert; Romeike, Bernd; Reichart, Rupert; Kalff, Rolf; Geiger, Kathrin; Kirsch, Matthias; Schackert, Gabriele; Popp, Jürgen

    2012-02-01

    Raman spectroscopy enables label-free assessment of brain tissues and tumors based on their biochemical composition. Combination of the Raman spectra with the lateral information allows grading of tumors, determining the primary tumor of brain metastases and delineating tumor margins - even during surgery after coupling with fiber optic probes. This contribution presents exemplary Raman spectra and images collected from low grade and high grade regions of astrocytic gliomas and brain metastases. A region of interest in dried tissue sections encompassed slightly increased cell density. Spectral unmixing by vertex component analysis (VCA) and N-FINDR resolved cell nuclei in score plots and revealed the spectral contributions of nucleic acids, cholesterol, cholesterol ester and proteins in endmember signatures. The results correlated with the histopathological analysis after staining the specimens by hematoxylin and eosin. For a region of interest in non-dried, buffer immersed tissue sections image processing was not affected by drying artifacts such as denaturation of biomolecules and crystallization of cholesterol. Consequently, the results correspond better to in vivo situations. Raman spectroscopic imaging of a brain metastases from renal cell carcinoma showed an endmember with spectral contributions of glycogen which can be considered as a marker for this primary tumor.

  15. Toward a preoperative planning tool for brain tumor resection therapies.

    PubMed

    Coffey, Aaron M; Miga, Michael I; Chen, Ishita; Thompson, Reid C

    2013-01-01

    Neurosurgical procedures involving tumor resection require surgical planning such that the surgical path to the tumor is determined to minimize the impact on healthy tissue and brain function. This work demonstrates a predictive tool to aid neurosurgeons in planning tumor resection therapies by finding an optimal model-selected patient orientation that minimizes lateral brain shift in the field of view. Such orientations may facilitate tumor access and removal, possibly reduce the need for retraction, and could minimize the impact of brain shift on image-guided procedures. In this study, preoperative magnetic resonance images were utilized in conjunction with pre- and post-resection laser range scans of the craniotomy and cortical surface to produce patient-specific finite element models of intraoperative shift for 6 cases. These cases were used to calibrate a model (i.e., provide general rules for the application of patient positioning parameters) as well as determine the current model-based framework predictive capabilities. Finally, an objective function is proposed that minimizes shift subject to patient position parameters. Patient positioning parameters were then optimized and compared to our neurosurgeon as a preliminary study. The proposed model-driven brain shift minimization objective function suggests an overall reduction of brain shift by 23 % over experiential methods. This work recasts surgical simulation from a trial-and-error process to one where options are presented to the surgeon arising from an optimization of surgical goals. To our knowledge, this is the first realization of an evaluative tool for surgical planning that attempts to optimize surgical approach by means of shift minimization in this manner.

  16. Photon spectrum and absorbed dose in brain tumor.

    PubMed

    Vega-Carrillo, Hector Rene; Silva-Sanchez, Angeles; Rivera-Montalvo, Teodoro

    2016-11-01

    Using Monte Carlo methods a BOMAB phantom inside a treatment hall with a brain tumor nearby the pituitary gland was treated with photons produced by a Varian 6MV linac. The photon spectrum and the absorbed dose were calculated in the tumor, pituitary gland and the head. The treatment beam was collimated to illuminate only the tumor volume; however photons were noticed in the gland. Photon fluence reaching the tumor is and 15.7 times larger than the fluence in the pituitary gland, on the other hand the absorbed dose in the tumor is 37.1 times larger than the dose in the gland because photons that reach the pituitary gland are scattered, by the head and the tumor, through Compton effect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Aggressive Renal Angiomyolipoma in a Patient with Tuberous Sclerosis Resulting in Pulmonary Tumor Embolus and Pulmonary Infarction.

    PubMed

    Mettler, John; Al-Katib, Sayf

    2018-06-07

    Renal angiomyolipoma (AML) is the most commonly encountered mesenchymal tumor of the kidney which can present spontaneously or in association with tuberous sclerosis complex. Rarely, renal AMLs may demonstrate aggressive features such as renal vein invasion. This common entity and its uncommon complications are diagnosed based on physical examination and computed tomography results. Here we report imaging findings of a renal AML with renal vein and inferior vena cava invasion resulting in pulmonary tumor embolus and pulmonary infarction. Copyright © 2018. Published by Elsevier Inc.

  18. Mitochondrial control by DRP1 in brain tumor initiating cells.

    PubMed

    Xie, Qi; Wu, Qiulian; Horbinski, Craig M; Flavahan, William A; Yang, Kailin; Zhou, Wenchao; Dombrowski, Stephen M; Huang, Zhi; Fang, Xiaoguang; Shi, Yu; Ferguson, Ashley N; Kashatus, David F; Bao, Shideng; Rich, Jeremy N

    2015-04-01

    Brain tumor initiating cells (BTICs) co-opt the neuronal high affinity glucose transporter, GLUT3, to withstand metabolic stress. We investigated another mechanism critical to brain metabolism, mitochondrial morphology, in BTICs. BTIC mitochondria were fragmented relative to non-BTIC tumor cell mitochondria, suggesting that BTICs increase mitochondrial fission. The essential mediator of mitochondrial fission, dynamin-related protein 1 (DRP1), showed activating phosphorylation in BTICs and inhibitory phosphorylation in non-BTIC tumor cells. Targeting DRP1 using RNA interference or pharmacologic inhibition induced BTIC apoptosis and inhibited tumor growth. Downstream, DRP1 activity regulated the essential metabolic stress sensor, AMP-activated protein kinase (AMPK), and targeting AMPK rescued the effects of DRP1 disruption. Cyclin-dependent kinase 5 (CDK5) phosphorylated DRP1 to increase its activity in BTICs, whereas Ca(2+)-calmodulin-dependent protein kinase 2 (CAMK2) inhibited DRP1 in non-BTIC tumor cells, suggesting that tumor cell differentiation induces a regulatory switch in mitochondrial morphology. DRP1 activation correlated with poor prognosis in glioblastoma, suggesting that mitochondrial dynamics may represent a therapeutic target for BTICs.

  19. Cerenkov and radioluminescence imaging of brain tumor specimens during neurosurgery

    NASA Astrophysics Data System (ADS)

    Spinelli, Antonello Enrico; Schiariti, Marco P.; Grana, Chiara M.; Ferrari, Mahila; Cremonesi, Marta; Boschi, Federico

    2016-05-01

    We presented the first example of Cerenkov luminescence imaging (CLI) and radioluminescence imaging (RLI) of human tumor specimens. A patient with a brain meningioma localized in the left parietal region was injected with 166 MBq of Y90-DOTATOC the day before neurosurgery. The specimens of the tumor removed during surgery were imaged using both CLI and RLI using an optical imager prototype developed in our laboratory. The system is based on a cooled electron multiplied charge coupled device coupled with an f/0.95 17-mm C-mount lens. We showed for the first time the possibility of obtaining CLI and RLI images of fresh human brain tumor specimens removed during neurosurgery.

  20. Neoadjuvant chemotherapy for brain tumors in infants and young children.

    PubMed

    Iwama, Junya; Ogiwara, Hideki; Kiyotani, Chikako; Terashima, Keita; Matsuoka, Kentaro; Iwafuchi, Hideto; Morota, Nobuhito

    2015-05-01

    Because of their large size and high vascularity, complete removal of brain tumors in infants and young children is often difficult. In most cases the degree of resection is associated with prognosis. Neoadjuvant chemotherapy may facilitate resection by reducing the vascularity of the tumor. The authors evaluated the effectiveness of neoadjuvant chemotherapy in the management of these tumors. The authors performed a retrospective review of infants and young children who underwent tumor removal after neoadjuvant chemotherapy. Nine consecutive patients underwent resection after neoadjuvant chemotherapy during the period February 2004 to December 2012. The mean age at diagnosis was 18 months (range 2-50 months). The average largest tumor diameter was 71 mm (range 30-130 mm) at initial surgery. Five patients underwent partial resection, and 4 underwent biopsy as the initial surgery. The histopathological diagnoses were ependymoma in 2 patients, anaplastic ependymoma in 1, primitive neuroectodermal tumor (PNET) in 2, choroid plexus carcinoma in 1, atypical teratoid/rhabdoid tumor (AT/RT) in 1, glioblastoma in 1, and embryonal tumor with abundant neuropil and true rosettes in 1. After 2-4 courses of multiagent chemotherapy (mainly with vincristine, cyclophosphamide, etoposide, and cisplatin), the second-look surgery was performed. In 1 patient with a PNET, intratumoral hemorrhage was observed after 2 courses of chemotherapy. The mean interval between the initial and the second-look surgery was 3 months. The tumor volume was reduced to varying degrees in 5 patients (56%) after chemotherapy. Intraoperatively, the vascularity of the tumor was considerably reduced, and the tumor was more circumscribed in all cases. Gross-total resection was achieved in 8 patients (89%) and neartotal resection in 1 (11%). Histopathological examination demonstrated fibrotic tissue circumscribing the tumor in 6 of 9 cases (67%). The average blood loss was 20% of the estimated blood volume, and

  1. Effective treatment of glioblastoma requires crossing the blood–brain barrier and targeting tumors including cancer stem cells: The promise of nanomedicine

    PubMed Central

    Kim, Sang-Soo; Harford, Joe B.; Pirollo, Kathleen F.; Chang, Esther H.

    2015-01-01

    Glioblastoma multiforme (GBM) is the most aggressive and lethal type of brain tumor. Both therapeutic resistance and restricted permeation of drugs across the blood–brain barrier (BBB) play a major role in the poor prognosis of GBM patients. Accumulated evidence suggests that in many human cancers, including GBM, therapeutic resistance can be attributed to a small fraction of cancer cells known as cancer stem cells (CSCs). CSCs have been shown to have stem cell-like properties that enable them to evade traditional cytotoxic therapies, and so new CSC-directed anti-cancer therapies are needed. Nanoparticles have been designed to selectively deliver payloads to relevant target cells in the body, and there is considerable interest in the use of nanoparticles for CSC-directed anti-cancer therapies. Recent advances in the field of nanomedicine offer new possibilities for overcoming CSC-mediated therapeutic resistance and thus significantly improving management of GBM. In this review, we will examine the current nanomedicine approaches for targeting CSCs and their therapeutic implications. The inhibitory effect of various nanoparticle-based drug delivery system towards CSCs in GBM tumors is the primary focus of this review. PMID:26116770

  2. Optically enhanced blood-brain-barrier crossing of plasmonic-active nanoparticles in preclinical brain tumor animal models

    NASA Astrophysics Data System (ADS)

    Yuan, Hsiangkuo; Wilson, Christy M.; Li, Shuqin; Fales, Andrew M.; Liu, Yang; Grant, Gerald; Vo-Dinh, Tuan

    2014-02-01

    Nanotechnology provides tremendous biomedical opportunities for cancer diagnosis, imaging, and therapy. In contrast to conventional chemotherapeutic agents where their actual target delivery cannot be easily imaged, integrating imaging and therapeutic properties into one platform facilitates the understanding of pharmacokinetic profiles, and enables monitoring of the therapeutic process in each individual. Such a concept dubbed "theranostics" potentiates translational research and improves precision medicine. One particular challenging application of theranostics involves imaging and controlled delivery of nanoplatforms across blood-brain-barrier (BBB) into brain tissues. Typically, the BBB hinders paracellular flux of drug molecules into brain parenchyma. BBB disrupting agents (e.g. mannitol, focused ultrasound), however, suffer from poor spatial confinement. It has been a challenge to design a nanoplatform not only acts as a contrast agent but also improves the BBB permeation. In this study, we demonstrated the feasibility of plasmonic gold nanoparticles as both high-resolution optical contrast agent and focalized tumor BBB permeation-inducing agent. We specifically examined the microscopic distribution of nanoparticles in tumor brain animal models. We observed that most nanoparticles accumulated at the tumor periphery or perivascular spaces. Nanoparticles were present in both endothelial cells and interstitial matrices. This study also demonstrated a novel photothermal-induced BBB permeation. Fine-tuning the irradiating energy induced gentle disruption of the vascular integrity, causing short-term extravasation of nanomaterials but without hemorrhage. We conclude that our gold nanoparticles are a powerful biocompatible contrast agent capable of inducing focal BBB permeation, and therefore envision a strong potential of plasmonic gold nanoparticle in future brain tumor imaging and therapy.

  3. Sequential social experiences interact to modulate aggression but not brain gene expression in the honey bee (Apis mellifera).

    PubMed

    Rittschof, Clare C

    2017-01-01

    In highly structured societies, individuals behave flexibly and cooperatively in order to achieve a particular group-level outcome. However, even in social species, environmental inputs can have long lasting effects on individual behavior, and variable experiences can even result in consistent individual differences and constrained behavioral flexibility. Despite the fact that such constraints on behavior could have implications for behavioral optimization at the social group level, few studies have explored how social experiences accumulate over time, and the mechanistic basis of these effects. In the current study, I evaluate how sequential social experiences affect individual and group level aggressive phenotypes, and individual brain gene expression, in the highly social honey bee ( Apis mellifera ). To do this, I combine a whole colony chronic predator disturbance treatment with a lab-based manipulation of social group composition. Compared to the undisturbed control, chronically disturbed individuals show lower aggression levels overall, but also enhanced behavioral flexibility in the second, lab-based social context. Disturbed bees display aggression levels that decline with increasing numbers of more aggressive, undisturbed group members. However, group level aggressive phenotypes are similar regardless of the behavioral tendencies of the individuals that make up the group, suggesting a combination of underlying behavioral tendency and negative social feedback influences the aggressive behaviors displayed, particularly in the case of disturbed individuals. An analysis of brain gene expression showed that aggression related biomarker genes reflect an individual's disturbance history, but not subsequent social group experience or behavioral outcomes. In highly social animals with collective behavioral phenotypes, social context may mask underlying variation in individual behavioral tendencies. Moreover, gene expression patterns may reflect

  4. Ventromedial Hypothalamus and the Generation of Aggression

    PubMed Central

    Hashikawa, Yoshiko; Hashikawa, Koichi; Falkner, Annegret L.; Lin, Dayu

    2017-01-01

    Aggression is a costly behavior, sometimes with severe consequences including death. Yet aggression is prevalent across animal species ranging from insects to humans, demonstrating its essential role in the survival of individuals and groups. The question of how the brain decides when to generate this costly behavior has intrigued neuroscientists for over a century and has led to the identification of relevant neural substrates. Various lesion and electric stimulation experiments have revealed that the hypothalamus, an ancient structure situated deep in the brain, is essential for expressing aggressive behaviors. More recently, studies using precise circuit manipulation tools have identified a small subnucleus in the medial hypothalamus, the ventrolateral part of the ventromedial hypothalamus (VMHvl), as a key structure for driving both aggression and aggression-seeking behaviors. Here, we provide an updated summary of the evidence that supports a role of the VMHvl in aggressive behaviors. We will consider our recent findings detailing the physiological response properties of populations of VMHvl cells during aggressive behaviors and provide new understanding regarding the role of the VMHvl embedded within the larger whole-brain circuit for social sensation and action. PMID:29375329

  5. Brain tumor modeling using the CRISPR/Cas9 system: state of the art and view to the future.

    PubMed

    Mao, Xiao-Yuan; Dai, Jin-Xiang; Zhou, Hong-Hao; Liu, Zhao-Qian; Jin, Wei-Lin

    2016-05-31

    Although brain tumors have been known tremendously over the past decade, there are still many problems to be solved. The etiology of brain tumors is not well understood and the treatment remains modest. There is in great need to develop a suitable brain tumor models that faithfully mirror the etiology of human brain neoplasm and subsequently get more efficient therapeutic approaches for these disorders. In this review, we described the current status of animal models of brain tumors and analyzed their advantages and disadvantages. Additionally, prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), a versatile genome editing technology for investigating the functions of target genes, and its application were also introduced in our present work. We firstly proposed that brain tumor modeling could be well established via CRISPR/Cas9 techniques. And CRISPR/Cas9-mediated brain tumor modeling was likely to be more suitable for figuring out the pathogenesis of brain tumors, as CRISPR/Cas9 platform was a simple and more efficient biological toolbox for implementing mutagenesis of oncogenes or tumor suppressors that were closely linked with brain tumors.

  6. Brain tumor modeling using the CRISPR/Cas9 system: state of the art and view to the future

    PubMed Central

    Mao, Xiao-Yuan; Dai, Jin-Xiang; Zhou, Hong-Hao; Liu, Zhao-Qian; Jin, Wei-Lin

    2016-01-01

    Although brain tumors have been known tremendously over the past decade, there are still many problems to be solved. The etiology of brain tumors is not well understood and the treatment remains modest. There is in great need to develop a suitable brain tumor models that faithfully mirror the etiology of human brain neoplasm and subsequently get more efficient therapeutic approaches for these disorders. In this review, we described the current status of animal models of brain tumors and analyzed their advantages and disadvantages. Additionally, prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), a versatile genome editing technology for investigating the functions of target genes, and its application were also introduced in our present work. We firstly proposed that brain tumor modeling could be well established via CRISPR/Cas9 techniques. And CRISPR/Cas9-mediated brain tumor modeling was likely to be more suitable for figuring out the pathogenesis of brain tumors, as CRISPR/Cas9 platform was a simple and more efficient biological toolbox for implementing mutagenesis of oncogenes or tumor suppressors that were closely linked with brain tumors. PMID:26993776

  7. Brain tumor recurrence in children treated with growth hormone: the National Cooperative Growth Study experience.

    PubMed

    Moshang, T; Rundle, A C; Graves, D A; Nickas, J; Johanson, A; Meadows, A

    1996-05-01

    As of October 1993 the National Cooperative Growth Study included 1262 children with brain tumor who were treated with growth hormone. The type of brain tumor was specified in 947 (75%) of these children. The most common types were glioma, medulloblastoma, and craniopharyngioma, accounting for 91.3% of all those for which type was specified. Brain tumor recurred in 83 (6.6%) of the 1262 children over a total of 6115 patient-years at risk. The frequencies of tumor recurrence in children with low-grade glioma (18.1%), medulloblastoma (7.2%), and craniopharyngioma (6.4%) are lower than those in published reports of tumor recurrence in the general pediatric population with the same types of tumors. The analysis cannot conclusively show that no increased risk of tumor recurrence exists, however, because of the potential incompleteness of data reporting in the National Cooperative Growth Study. Nevertheless the findings are reassuring that children with the more common types of brain tumor who are treated with growth hormone do not seem to be at excessive risk for tumor recurrence.

  8. Techniques in the management of juxta-articular aggressive and recurrent giant cell tumors around the knee.

    PubMed

    Vidyadhara, S; Rao, S K

    2007-03-01

    Juxta-articular aggressive and recurrent giant cell tumors around the knee pose difficulties in management. This article reviews current problems and options in the management of these giant cell tumors. A systematic search was performed on juxta-articular aggressive and recurrent giant cell tumor. Additional information was retrieved from hand searching the literature and from relevant congress proceedings. We addressed the following issues: general consensus on early diagnosis and techniques in its management. In particular, we describe our results with resection arthrodesis performed combining the benefits of both interlocking intramedullary nail and Ilizarov fixator in the management of these tumors around the knee. Mean operative age of the 22 patients undergoing resection arthrodesis was 35.63 years. Seven lesions were in the tibia and fifteen in the femur. Mean length of the bone defect was 12.34 cm. The mean external fixator index was 7.44 days/cm and the distraction index was 7.88 days/cm. Mean period of follow-up for the patients was 64.5 months. The function of the affected limb was rated excellent in 10 and good and fair in six patients each as per Enneking criteria. No local recurrence of tumor was seen. Seven complications occurred in five patients. Two-ring construct, bifocal bone transport, and early definite plate osteosynthesis with additional bone grafting of the docking site at the end of distraction even before consolidation of the regenerate helps to reduce the problems of pin tract infections drastically. Thin-diameter long intramedullary nail in addition to preserving the endosteal blood supply also prevents mal-alignment of the regenerate. Thus resection arthrodesis using interlocking intramedullary nail and bone transport using Ilizarov fixator is cost effective and effective in achieving the desired goals of reconstruction with least complications in selected patients with specific indications.

  9. Hypothalamic tumor

    MedlinePlus

    ... occur at any age. They are often more aggressive in adults than in children. In adults, tumors ... The treatment depends on how aggressive the tumor is, and whether it is a glioma or another type of cancer. Treatment may involve combinations of surgery, radiation , ...

  10. 3D brain tumor localization and parameter estimation using thermographic approach on GPU.

    PubMed

    Bousselham, Abdelmajid; Bouattane, Omar; Youssfi, Mohamed; Raihani, Abdelhadi

    2018-01-01

    The aim of this paper is to present a GPU parallel algorithm for brain tumor detection to estimate its size and location from surface temperature distribution obtained by thermography. The normal brain tissue is modeled as a rectangular cube including spherical tumor. The temperature distribution is calculated using forward three dimensional Pennes bioheat transfer equation, it's solved using massively parallel Finite Difference Method (FDM) and implemented on Graphics Processing Unit (GPU). Genetic Algorithm (GA) was used to solve the inverse problem and estimate the tumor size and location by minimizing an objective function involving measured temperature on the surface to those obtained by numerical simulation. The parallel implementation of Finite Difference Method reduces significantly the time of bioheat transfer and greatly accelerates the inverse identification of brain tumor thermophysical and geometrical properties. Experimental results show significant gains in the computational speed on GPU and achieve a speedup of around 41 compared to the CPU. The analysis performance of the estimation based on tumor size inside brain tissue also presented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Quantitative MRI study of the permeability of peritumoral brain edema in lung cancer patients with brain metastases.

    PubMed

    Wang, Dan; Wang, Ming-Liang; Li, Yue-Hua

    2017-08-15

    To use Ktrans to evaluate the aggressiveness and vascular permeability of peritumoral edema in cases of lung cancer brain metastases. A total of 68 lung cancer patients with 92 metastatic brain lesions were enrolled (20 metastatic lesions only in the gray matter - group 1; and 72 metastatic lesions located in the gray and white matter junction - group 2). All patients underwent MRI examination, which involved a dual angle (2° and 15°) enhanced T1W-VIBE (volume interpolated breath-hold examination) sequence to calculate the T1 parameter map. We used the enhanced T1-3D sequence to measure the tumor volume. The vascular permeability coefficient (Ktrans) was calculated using the single-compartment Tofts model, motion registration, and quick input mode. We examined the correlations of Ktrans with the edema index (EI), Ktrans with the tumor volume, and Ktrans with the histological expression of MMP-9 or VEGF in the original lung tumor using Pearson's' correlation analysis. Ktrans and EI were highly correlated in group 2 (r=0.66687; P<0.001) and not correlated in group 1 (r=0.33096; P=0.15405). Ktrans was also moderately related to the positive expression of MMP-9 (r=0.50912; P<0.001) and VEGF (r=0.36995; P=0.00138) There is statistical correlation between Ktrans and EI for group 2, and no statistical correlation between Ktrans and EI for group 1. The Ktrans of the peritumoral brain edema may be used to indicate the aggressiveness and vascular permeability of brain metastases in patients with lung cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effect of tumor resection on the characteristics of functional brain networks.

    PubMed

    Wang, H; Douw, L; Hernández, J M; Reijneveld, J C; Stam, C J; Van Mieghem, P

    2010-08-01

    Brain functioning such as cognitive performance depends on the functional interactions between brain areas, namely, the functional brain networks. The functional brain networks of a group of patients with brain tumors are measured before and after tumor resection. In this work, we perform a weighted network analysis to understand the effect of neurosurgery on the characteristics of functional brain networks. Statistically significant changes in network features have been discovered in the beta (13-30 Hz) band after neurosurgery: the link weight correlation around nodes and within triangles increases which implies improvement in local efficiency of information transfer and robustness; the clustering of high link weights in a subgraph becomes stronger, which enhances the global transport capability; and the decrease in the synchronization or virus spreading threshold, revealed by the increase in the largest eigenvalue of the adjacency matrix, which suggests again the improvement of information dissemination.

  13. Coffee and green tea consumption in relation to brain tumor risk in a Japanese population.

    PubMed

    Ogawa, Takahiro; Sawada, Norie; Iwasaki, Motoki; Budhathoki, Sanjeev; Hidaka, Akihisa; Yamaji, Taiki; Shimazu, Taichi; Sasazuki, Shizuka; Narita, Yoshitaka; Tsugane, Shoichiro

    2016-12-15

    Few prospective studies have investigated the etiology of brain tumor, especially among Asian populations. Both coffee and green tea are popular beverages, but their relation with brain tumor risk, particularly with glioma, has been inconsistent in epidemiological studies. In this study, we evaluated the association between coffee and greed tea intake and brain tumor risk in a Japanese population. We evaluated a cohort of 106,324 subjects (50,438 men and 55,886 women) in the Japan Public Health Center-Based Prospective Study (JPHC Study). Subjects were followed from 1990 for Cohort I and 1993 for Cohort II until December 31, 2012. One hundred and fifty-seven (70 men and 87 women) newly diagnosed cases of brain tumor were identified during the study period. Hazard ratio (HR) and 95% confidence intervals (95%CIs) for the association between coffee or green tea consumption and brain tumor risk were assessed using a Cox proportional hazards regression model. We found a significant inverse association between coffee consumption and brain tumor risk in both total subjects (≥3 cups/day; HR = 0.47, 95%CI = 0.22-0.98) and in women (≥3 cups/day; HR = 0.24, 95%CI = 0.06-0.99), although the number of cases in the highest category was small. Furthermore, glioma risk tended to decrease with higher coffee consumption (≥3 cups/day; HR = 0.54, 95%CI = 0.16-1.80). No association was seen between green tea and brain tumor risk. In conclusion, our study suggested that coffee consumption might reduce the risk of brain tumor, including that of glioma, in the Japanese population. © 2016 UICC.

  14. A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors

    NASA Astrophysics Data System (ADS)

    Rubin, Joshua B.; Kung, Andrew L.; Klein, Robyn S.; Chan, Jennifer A.; Sun, Yanping; Schmidt, Karl; Kieran, Mark W.; Luster, Andrew D.; Segal, Rosalind A.

    2003-11-01

    The vast majority of brain tumors in adults exhibit glial characteristics. Brain tumors in children are diverse: Many have neuronal characteristics, whereas others have glial features. Here we show that activation of the Gi protein-coupled receptor CXCR4 is critical for the growth of both malignant neuronal and glial tumors. Systemic administration of CXCR4 antagonist AMD 3100 inhibits growth of intracranial glioblastoma and medulloblastoma xenografts by increasing apoptosis and decreasing the proliferation of tumor cells. This reflects the ability of AMD 3100 to reduce the activation of extracellular signal-regulated kinases 1 and 2 and Akt, all of which are pathways downstream of CXCR4 that promote survival, proliferation, and migration. These studies (i) demonstrate that CXCR4 is critical to the progression of diverse brain malignances and (ii) provide a scientific rationale for clinical evaluation of AMD 3100 in treating both adults and children with malignant brain tumors.

  15. Staff-reported antecedents to aggression in a post-acute brain injury treatment programme: what are they and what implications do they have for treatment?

    PubMed

    Giles, Gordon Muir; Scott, Karen; Manchester, David

    2013-01-01

    Research in psychiatric settings has found that staff attribute the majority of in-patient aggression to immediate environmental stressors. We sought to determine if staff working with persons with brain injury-related severe and chronic impairment make similar causal attributions. If immediate environmental stressors precipitate the majority of aggressive incidents in this client group, it is possible an increased focus on the management of factors that initiate client aggression may be helpful. The research was conducted in a low-demand treatment programme for individuals with chronic cognitive impairment due to acquired brain injury. Over a six-week period, 63 staff and a research assistant reported on 508 aggressive incidents. Staff views as to the causes of client aggression were elicited within 72 hours of observing an aggressive incident. Staff descriptions of causes were categorised using qualitative methods and analysed both qualitatively and quantitatively. Aggression towards staff was predominantly preceded by (a) actions that interrupted or redirected a client behaviour, (b) an activity demand, or (c) a physical intrusion. The majority of aggressive incidents appeared hostile/angry in nature and were not considered by staff to be pre-meditated. Common treatment approaches can be usefully augmented by a renewed focus on interventions aimed at reducing antecedents that provoke aggression. Possible approaches for achieving this are considered.

  16. Magnetic resonance spectroscopy for detection of choline kinase inhibition in the treatment of brain tumors

    PubMed Central

    Kumar, Manoj; Arlauckas, Sean P.; Saksena, Sona; Verma, Gaurav; Ittyerah, Ranjit; Pickup, Stephen; Popov, Anatoliy V.; Delikatny, Edward J.; Poptani, Harish

    2015-01-01

    Abnormal choline metabolism is a hallmark of cancer and is associated with oncogenesis and tumor progression. Increased choline is consistently observed in both pre-clinical tumor models and in human brain tumors by proton magnetic resonance spectroscopy (MRS). Thus, inhibition of choline metabolism using specific choline kinase inhibitors such as MN58b may be a promising new strategy for treatment of brain tumors. We demonstrate the efficacy of MN58b in suppressing phosphocholine production in three brain tumor cell lines. In vivo MRS studies of rats with intra-cranial F98-derived brain tumors showed a significant decrease in tumor total choline concentration after treatment with MN58b. High resolution MRS of tissue extracts confirmed that this decrease was due to a significant reduction in phosphocholine. Concomitantly, a significant increase in poly-unsaturated lipid resonances was also observed in treated tumors, indicating apoptotic cell death. Magnetic resonance imaging (MRI) based volume measurements demonstrated a significant growth arrest in the MN58b-treated tumors in comparison to saline-treated controls. Histologically, MN58b-treated tumors showed decreased cell density, as well as increased apoptotic cells. These results suggest that inhibition of choline kinase can be used as an adjuvant to chemotherapy in the treatment of brain tumors and that decreases in total choline observed by MRS can be used as an effective phamacodynamic biomarker of treatment response. PMID:25657334

  17. High risk of brain tumors in military personnel: a case control study.

    PubMed

    Fallahi, P; Elia, G; Foddis, R; Cristaudo, A; Antonelli, A

    2017-01-01

    Scientific literature suggests a relationship between military occupation and the development of brain tumors, but no italian study has investigated on the impact of this job on the brain cancer morbidity. In this a study information were obtained from patients recruited in the Neurosurgical Department of the University-Hospital of Pisa, Italy, from 1990 to 1999. The study has been conducted as a case-control study. 161, newly diagnosed cases of brain tumors (glioma and meningiomas, histologically confirmed), were recruited, such as 483 controls (with other non tumoral neurologic diseases: trauma, hemorrhagic brain disorders, aneurism, etc), by matching cases and controls (1:3), for age (± 5 years) and gender. Cases and controls were interviewed in the Neurosurgical Department, University-Hospital of Pisa, Italy, and the occupational histories of cases and controls were compared. Cases and controls have showed a statistically significant difference, based on their occupation (military vs. non-military occupation). A statistically significant association was seen between brain tumors and military occupation among evaluated patients (p=0.013). Further studies regarding this population group are needed, to determine the causes for the increased risk of this cancer. Furthermore, a subsequent reevaluation in other patients collected in more recent years will be needed to evaluate the trend of this association.

  18. Neural mechanisms of the rejection-aggression link.

    PubMed

    Chester, David S; Lynam, Donald R; Milich, Richard; DeWall, C Nathan

    2018-05-01

    Social rejection is a painful event that often increases aggression. However, the neural mechanisms of this rejection-aggression link remain unclear. A potential clue may be that rejected people often recruit the ventrolateral prefrontal cortex's (VLPFC) self-regulatory processes to manage the pain of rejection. Using functional MRI, we replicated previous links between rejection and activity in the brain's mentalizing network, social pain network and VLPFC. VLPFC recruitment during rejection was associated with greater activity in the brain's reward network (i.e. the ventral striatum) when individuals were given an opportunity to retaliate. This retaliation-related striatal response was associated with greater levels of retaliatory aggression. Dispositionally aggressive individuals exhibited less functional connectivity between the ventral striatum and the right VLPFC during aggression. This connectivity exerted a suppressing effect on dispositionally aggressive individuals' greater aggressive responses to rejection. These results help explain how the pain of rejection and reward of revenge motivate rejected people to behave aggressively.

  19. Simulation of brain tumors in MR images for evaluation of segmentation efficacy.

    PubMed

    Prastawa, Marcel; Bullitt, Elizabeth; Gerig, Guido

    2009-04-01

    Obtaining validation data and comparison metrics for segmentation of magnetic resonance images (MRI) are difficult tasks due to the lack of reliable ground truth. This problem is even more evident for images presenting pathology, which can both alter tissue appearance through infiltration and cause geometric distortions. Systems for generating synthetic images with user-defined degradation by noise and intensity inhomogeneity offer the possibility for testing and comparison of segmentation methods. Such systems do not yet offer simulation of sufficiently realistic looking pathology. This paper presents a system that combines physical and statistical modeling to generate synthetic multi-modal 3D brain MRI with tumor and edema, along with the underlying anatomical ground truth, Main emphasis is placed on simulation of the major effects known for tumor MRI, such as contrast enhancement, local distortion of healthy tissue, infiltrating edema adjacent to tumors, destruction and deformation of fiber tracts, and multi-modal MRI contrast of healthy tissue and pathology. The new method synthesizes pathology in multi-modal MRI and diffusion tensor imaging (DTI) by simulating mass effect, warping and destruction of white matter fibers, and infiltration of brain tissues by tumor cells. We generate synthetic contrast enhanced MR images by simulating the accumulation of contrast agent within the brain. The appearance of the the brain tissue and tumor in MRI is simulated by synthesizing texture images from real MR images. The proposed method is able to generate synthetic ground truth and synthesized MR images with tumor and edema that exhibit comparable segmentation challenges to real tumor MRI. Such image data sets will find use in segmentation reliability studies, comparison and validation of different segmentation methods, training and teaching, or even in evaluating standards for tumor size like the RECIST criteria (response evaluation criteria in solid tumors).

  20. Histogram analysis of ADC in brain tumor patients

    NASA Astrophysics Data System (ADS)

    Banerjee, Debrup; Wang, Jihong; Li, Jiang

    2011-03-01

    At various stage of progression, most brain tumors are not homogenous. In this presentation, we retrospectively studied the distribution of ADC values inside tumor volume during the course of tumor treatment and progression for a selective group of patients who underwent an anti-VEGF trial. Complete MRI studies were obtained for this selected group of patients including pre- and multiple follow-up, post-treatment imaging studies. In each MRI imaging study, multiple scan series were obtained as a standard protocol which includes T1, T2, T1-post contrast, FLAIR and DTI derived images (ADC, FA etc.) for each visit. All scan series (T1, T2, FLAIR, post-contrast T1) were registered to the corresponding DTI scan at patient's first visit. Conventionally, hyper-intensity regions on T1-post contrast images are believed to represent the core tumor region while regions highlighted by FLAIR may overestimate tumor size. Thus we annotated tumor regions on the T1-post contrast scans and ADC intensity values for pixels were extracted inside tumor regions as defined on T1-post scans. We fit a mixture Gaussian (MG) model for the extracted pixels using the Expectation-Maximization (EM) algorithm, which produced a set of parameters (mean, various and mixture coefficients) for the MG model. This procedure was performed for each visits resulting in a series of GM parameters. We studied the parameters fitted for ADC and see if they can be used as indicators for tumor progression. Additionally, we studied the ADC characteristics in the peri-tumoral region as identified by hyper-intensity on FLAIR scans. The results show that ADC histogram analysis of the tumor region supports the two compartment model that suggests the low ADC value subregion corresponding to densely packed cancer cell while the higher ADC value region corresponding to a mixture of viable and necrotic cells with superimposed edema. Careful studies of the composition and relative volume of the two compartments in tumor

  1. Targeted Doxorubicin Delivery to Brain Tumors via Minicells: Proof of Principle Using Dogs with Spontaneously Occurring Tumors as a Model.

    PubMed

    MacDiarmid, Jennifer A; Langova, Veronika; Bailey, Dale; Pattison, Scott T; Pattison, Stacey L; Christensen, Neil; Armstrong, Luke R; Brahmbhatt, Vatsala N; Smolarczyk, Katarzyna; Harrison, Matthew T; Costa, Marylia; Mugridge, Nancy B; Sedliarou, Ilya; Grimes, Nicholas A; Kiss, Debra L; Stillman, Bruce; Hann, Christine L; Gallia, Gary L; Graham, Robert M; Brahmbhatt, Himanshu

    2016-01-01

    Cytotoxic chemotherapy can be very effective for the treatment of cancer but toxicity on normal tissues often limits patient tolerance and often causes long-term adverse effects. The objective of this study was to assist in the preclinical development of using modified, non-living bacterially-derived minicells to deliver the potent chemotherapeutic doxorubicin via epidermal growth factor receptor (EGFR) targeting. Specifically, this study sought to evaluate the safety and efficacy of EGFR targeted, doxorubicin loaded minicells (designated EGFRminicellsDox) to deliver doxorubicin to spontaneous brain tumors in 17 companion dogs; a comparative oncology model of human brain cancers. EGFRminicellsDox were administered weekly via intravenous injection to 17 dogs with late-stage brain cancers. Biodistribution was assessed using single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI). Anti-tumor response was determined using MRI, and blood samples were subject to toxicology (hematology, biochemistry) and inflammatory marker analysis. Targeted, doxorubicin-loaded minicells rapidly localized to the core of brain tumors. Complete resolution or marked tumor regression (>90% reduction in tumor volume) were observed in 23.53% of the cohort, with lasting anti-tumor responses characterized by remission in three dogs for more than two years. The median overall survival was 264 days (range 49 to 973). No adverse clinical, hematological or biochemical effects were observed with repeated administration of EGFRminicellsDox (30 to 98 doses administered in 10 of the 17 dogs). Targeted minicells loaded with doxorubicin were safely administered to dogs with late stage brain cancer and clinical activity was observed. These findings demonstrate the strong potential for clinical applications of targeted, doxorubicin-loaded minicells for the effective treatment of patients with brain cancer. On this basis, we have designed a Phase 1 clinical study of EGFR

  2. Targeted Doxorubicin Delivery to Brain Tumors via Minicells: Proof of Principle Using Dogs with Spontaneously Occurring Tumors as a Model

    PubMed Central

    MacDiarmid, Jennifer A.; Langova, Veronika; Bailey, Dale; Pattison, Scott T.; Pattison, Stacey L.; Christensen, Neil; Armstrong, Luke R.; Brahmbhatt, Vatsala N.; Smolarczyk, Katarzyna; Harrison, Matthew T.; Costa, Marylia; Mugridge, Nancy B.; Sedliarou, Ilya; Grimes, Nicholas A.; Kiss, Debra L.; Stillman, Bruce; Hann, Christine L.; Gallia, Gary L.; Graham, Robert M.; Brahmbhatt, Himanshu

    2016-01-01

    Background Cytotoxic chemotherapy can be very effective for the treatment of cancer but toxicity on normal tissues often limits patient tolerance and often causes long-term adverse effects. The objective of this study was to assist in the preclinical development of using modified, non-living bacterially-derived minicells to deliver the potent chemotherapeutic doxorubicin via epidermal growth factor receptor (EGFR) targeting. Specifically, this study sought to evaluate the safety and efficacy of EGFR targeted, doxorubicin loaded minicells (designated EGFRminicellsDox) to deliver doxorubicin to spontaneous brain tumors in 17 companion dogs; a comparative oncology model of human brain cancers. Methodology/Principle Findings EGFRminicellsDox were administered weekly via intravenous injection to 17 dogs with late-stage brain cancers. Biodistribution was assessed using single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI). Anti-tumor response was determined using MRI, and blood samples were subject to toxicology (hematology, biochemistry) and inflammatory marker analysis. Targeted, doxorubicin-loaded minicells rapidly localized to the core of brain tumors. Complete resolution or marked tumor regression (>90% reduction in tumor volume) were observed in 23.53% of the cohort, with lasting anti-tumor responses characterized by remission in three dogs for more than two years. The median overall survival was 264 days (range 49 to 973). No adverse clinical, hematological or biochemical effects were observed with repeated administration of EGFRminicellsDox (30 to 98 doses administered in 10 of the 17 dogs). Conclusions/Significance Targeted minicells loaded with doxorubicin were safely administered to dogs with late stage brain cancer and clinical activity was observed. These findings demonstrate the strong potential for clinical applications of targeted, doxorubicin-loaded minicells for the effective treatment of patients with brain cancer. On

  3. Multi-fractal texture features for brain tumor and edema segmentation

    NASA Astrophysics Data System (ADS)

    Reza, S.; Iftekharuddin, K. M.

    2014-03-01

    In this work, we propose a fully automatic brain tumor and edema segmentation technique in brain magnetic resonance (MR) images. Different brain tissues are characterized using the novel texture features such as piece-wise triangular prism surface area (PTPSA), multi-fractional Brownian motion (mBm) and Gabor-like textons, along with regular intensity and intensity difference features. Classical Random Forest (RF) classifier is used to formulate the segmentation task as classification of these features in multi-modal MRIs. The segmentation performance is compared with other state-of-art works using a publicly available dataset known as Brain Tumor Segmentation (BRATS) 2012 [1]. Quantitative evaluation is done using the online evaluation tool from Kitware/MIDAS website [2]. The results show that our segmentation performance is more consistent and, on the average, outperforms other state-of-the art works in both training and challenge cases in the BRATS competition.

  4. Electroretinography and Visual Evoked Potentials in Childhood Brain Tumor Survivors.

    PubMed

    Pietilä, Sari; Lenko, Hanna L; Oja, Sakari; Koivisto, Anna-Maija; Pietilä, Timo; Mäkipernaa, Anne

    2016-07-01

    This population-based cross-sectional study evaluates the clinical value of electroretinography and visual evoked potentials in childhood brain tumor survivors. A flash electroretinography and a checkerboard reversal pattern visual evoked potential (or alternatively a flash visual evoked potential) were done for 51 survivors (age 3.8-28.7 years) after a mean follow-up time of 7.6 (1.5-15.1) years. Abnormal electroretinography was obtained in 1 case, bilaterally delayed abnormal visual evoked potentials in 22/51 (43%) cases. Nine of 25 patients with infratentorial tumor location, and altogether 12 out of 31 (39%) patients who did not have tumors involving the visual pathways, had abnormal visual evoked potentials. Abnormal electroretinographies are rarely observed, but abnormal visual evoked potentials are common even without evident anatomic lesions in the visual pathway. Bilateral changes suggest a general and possibly multifactorial toxic/adverse effect on the visual pathway. Electroretinography and visual evoked potential may have clinical and scientific value while evaluating long-term effects of childhood brain tumors and tumor treatment. © The Author(s) 2016.

  5. Social Competence in Childhood Brain Tumor Survivors: Feasibility and Preliminary Outcomes of a Peer-Mediated Intervention

    PubMed Central

    Devine, Katie A.; Bukowski, William M.; Sahler, Olle Jane Z.; Ohman-Strickland, Pamela; Smith, Tristram H.; Lown, E. Anne; Patenaude, Andrea Farkas; Korones, David N.; Noll, Robert B.

    2016-01-01

    Objective Evaluate the acceptability, feasibility, and preliminary outcomes of a peer-mediated intervention to improve social competence of brain tumor survivors and classmates. Methods Twelve childhood brain tumor survivors and 217 classroom peers in intervention (n = 8) or comparison (n = 4) classrooms completed measures of social acceptance and reputation at two time points in the year. The intervention (5–8 sessions over 4–6 weeks) taught peer leaders skills for engaging classmates. Individual and classroom outcomes were analyzed with ANCOVA. Results Recruitment rates of families of brain tumor survivors (81%) and schools (100%) were adequate. Peer leaders reported satisfaction with the intervention. Preliminary outcome data trended toward some benefit in increasing the number of friend nominations for survivors of brain tumors but no changes in other peer-reported metrics. Preliminary results also suggested some positive effects on classroom levels of victimization and rejection. Conclusions A peer-mediated intervention was acceptable to families of brain tumor survivors and feasible to implement in schools. Findings warrant a larger trial to evaluate improvements for children with brain tumors and their peers. PMID:27355881

  6. An accurate segmentation method for volumetry of brain tumor in 3D MRI

    NASA Astrophysics Data System (ADS)

    Wang, Jiahui; Li, Qiang; Hirai, Toshinori; Katsuragawa, Shigehiko; Li, Feng; Doi, Kunio

    2008-03-01

    Accurate volumetry of brain tumors in magnetic resonance imaging (MRI) is important for evaluating the interval changes in tumor volumes during and after treatment, and also for planning of radiation therapy. In this study, an automated volumetry method for brain tumors in MRI was developed by use of a new three-dimensional (3-D) image segmentation technique. First, the central location of a tumor was identified by a radiologist, and then a volume of interest (VOI) was determined automatically. To substantially simplify tumor segmentation, we transformed the 3-D image of the tumor into a two-dimensional (2-D) image by use of a "spiral-scanning" technique, in which a radial line originating from the center of the tumor scanned the 3-D image spirally from the "north pole" to the "south pole". The voxels scanned by the radial line provided a transformed 2-D image. We employed dynamic programming to delineate an "optimal" outline of the tumor in the transformed 2-D image. We then transformed the optimal outline back into 3-D image space to determine the volume of the tumor. The volumetry method was trained and evaluated by use of 16 cases with 35 brain tumors. The agreement between tumor volumes provided by computer and a radiologist was employed as a performance metric. Our method provided relatively accurate results with a mean agreement value of 88%.

  7. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Sayuri; Fukushi, Yasuko; Kubota, Oichi; Itsuji, Takeaki; Ouchi, Toshihiko; Yamamoto, Seiji

    2016-07-01

    Tumor imaging by terahertz spectroscopy of fresh tissue without dye is demonstrated using samples from a rat glioma model. The complex refractive index spectrum obtained by a reflection terahertz time-domain spectroscopy system can discriminate between normal and tumor tissues. Both the refractive index and absorption coefficient of tumor tissues are higher than those of normal tissues and can be attributed to the higher cell density and water content of the tumor region. The results of this study indicate that terahertz technology is useful for detecting brain tumor tissue.

  8. Creation of an NCI comparative brain tumor consortium: informing the translation of new knowledge from canine to human brain tumor patients

    PubMed Central

    Mazcko, Christina; Brown, Diane E.; Koehler, Jennifer W.; Miller, Andrew D.; Miller, C. Ryan; Bentley, R. Timothy; Packer, Rebecca A.; Breen, Matthew; Boudreau, C. Elizabeth; Levine, Jonathan M.; Simpson, R. Mark; Halsey, Charles; Kisseberth, William; Rossmeisl, John H.; Dickinson, Peter J.; Fan, Timothy M.; Corps, Kara; Aldape, Kenneth; Puduvalli, Vinay; Pluhar, G. Elizabeth; Gilbert, Mark R.

    2016-01-01

    On September 14–15, 2015, a meeting of clinicians and investigators in the fields of veterinary and human neuro-oncology, clinical trials, neuropathology, and drug development was convened at the National Institutes of Health campus in Bethesda, Maryland. This meeting served as the inaugural event launching a new consortium focused on improving the knowledge, development of, and access to naturally occurring canine brain cancer, specifically glioma, as a model for human disease. Within the meeting, a SWOT (strengths, weaknesses, opportunities, and threats) assessment was undertaken to critically evaluate the role that naturally occurring canine brain tumors could have in advancing this aspect of comparative oncology aimed at improving outcomes for dogs and human beings. A summary of this meeting and subsequent discussion are provided to inform the scientific and clinical community of the potential for this initiative. Canine and human comparisons represent an unprecedented opportunity to complement conventional brain tumor research paradigms, addressing a devastating disease for which innovative diagnostic and treatment strategies are clearly needed. PMID:27179361

  9. Stem cell-based therapies for tumors in the brain: are we there yet?

    PubMed Central

    Shah, Khalid

    2016-01-01

    Advances in understanding adult stem cell biology have facilitated the development of novel cell-based therapies for cancer. Recent developments in conventional therapies (eg, tumor resection techniques, chemotherapy strategies, and radiation therapy) for treating both metastatic and primary tumors in the brain, particularly glioblastoma have not resulted in a marked increase in patient survival. Preclinical studies have shown that multiple stem cell types exhibit inherent tropism and migrate to the sites of malignancy. Recent studies have validated the feasibility potential of using engineered stem cells as therapeutic agents to target and eliminate malignant tumor cells in the brain. This review will discuss the recent progress in the therapeutic potential of stem cells for tumors in the brain and also provide perspectives for future preclinical studies and clinical translation. PMID:27282399

  10. The YAP1/SIX2 axis is required for DDX3-mediated tumor aggressiveness and cetuximab resistance in KRAS-wild-type colorectal cancer

    PubMed Central

    Wu, De-Wei; Lin, Po-Lin; Wang, Lee; Huang, Chi-Chou; Lee, Huei

    2017-01-01

    The mechanism underlying tumor aggressiveness and cetuximab (CTX) resistance in KRAS-wild-type (KRAS -WT) colorectal cancer remains obscure. We here provide evidence that DDX3 promoted soft agar growth and invasiveness of KRAS-WT cells, as already confirmed in KRAS-mutated cells. Mechanistically, increased KRAS expression induced ROS production, which elevated HIF-1α and YAP1 expression. Increased HIF-1α persistently promoted DDX3 expression via a KRAS/ROS/HIF-1α feedback loop. DDX3-mediated aggressiveness and CTX resistance were regulated by the YAP1/SIX2 axis in KRAS-WT cells and further confirmed in animal models. Kaplan-Meier and Cox regression analysis indicated that DDX3, KRAS, and YAP1 expression had prognostic value for OS and RFS in KRAS-WT and KRAS-mutated tumors, but SIX2 and YAP1/SIX2 were prognostic value only in KRAS-WT patients. The observation from patients seemed to support the mechanistic action of cell and animal models. We therefore suggest that combining YAP1 inhibitors with CTX may therefore suppress DDX3-mediated tumor aggressiveness and enhance CTX sensitivity in KRAS-WT colorectal cancer. PMID:28435452

  11. The Role of Surgery, Radiosurgery and Whole Brain Radiation Therapy in the Management of Patients with Metastatic Brain Tumors

    PubMed Central

    Ellis, Thomas L.; Neal, Matthew T.; Chan, Michael D.

    2012-01-01

    Brain tumors constitute the most common intracranial tumor. Management of brain metastases has become increasingly complex as patients with brain metastases are living longer and more treatment options develop. The goal of this paper is to review the role of stereotactic radiosurgery (SRS), whole brain radiation therapy (WBRT), and surgery, in isolation and in combination, in the contemporary treatment of brain metastases. Surgery and SRS both offer management options that may help to optimize therapy in selected patients. WBRT is another option but can lead to late toxicity and suboptimal local control in longer term survivors. Improved prognostic indices will be critical for selecting the best therapies. Further prospective trials are necessary to continue to elucidate factors that will help triage patients to the proper brain-directed therapy for their cancer. PMID:22312545

  12. The diagnostic accuracy of multiparametric MRI to determine pediatric brain tumor grades and types.

    PubMed

    Koob, Mériam; Girard, Nadine; Ghattas, Badih; Fellah, Slim; Confort-Gouny, Sylviane; Figarella-Branger, Dominique; Scavarda, Didier

    2016-04-01

    Childhood brain tumors show great histological variability. The goal of this retrospective study was to assess the diagnostic accuracy of multimodal MR imaging (diffusion, perfusion, MR spectroscopy) in the distinction of pediatric brain tumor grades and types. Seventy-six patients (range 1 month to 18 years) with brain tumors underwent multimodal MR imaging. Tumors were categorized by grade (I-IV) and by histological type (A-H). Multivariate statistical analysis was performed to evaluate the diagnostic accuracy of single and combined MR modalities, and of single imaging parameters to distinguish the different groups. The highest diagnostic accuracy for tumor grading was obtained with diffusion-perfusion (73.24%) and for tumor typing with diffusion-perfusion-MR spectroscopy (55.76%). The best diagnostic accuracy was obtained for tumor grading in I and IV and for tumor typing in embryonal tumor and pilocytic astrocytoma. Poor accuracy was seen in other grades and types. ADC and rADC were the best parameters for tumor grading and typing followed by choline level with an intermediate echo time, CBV for grading and Tmax for typing. Multiparametric MR imaging can be accurate in determining tumor grades (primarily grades I and IV) and types (mainly pilocytic astrocytomas and embryonal tumors) in children.

  13. Neurocognitive status in patients with newly-diagnosed brain tumors in good neurological condition: The impact of tumor type, volume, and location.

    PubMed

    Hendrix, Philipp; Hans, Elisa; Griessenauer, Christoph J; Simgen, Andreas; Oertel, Joachim; Karbach, Julia

    2017-05-01

    Neurocognitive function is of great importance in patients with brain tumors. Even patients in good neurological condition may suffer from neurocognitive dysfunction that affects their daily living. The purpose of the present study was to identify risk factors for neurocognitive dysfunction in patients suffering from common supratentorial brain tumors with minor neurological deficits. A prospective study evaluating neurocognitive dysfunction in patients with a newly-diagnosed brain tumor in good neurological condition was performed at a major German academic institution. Patients underwent extensive neurocognitive testing assessing perceptual speed, executive function, visual-spatial and verbal working memory, short- and long-term memory, verbal fluency, fluid intelligence, anxiety, and depression. For each patient, a healthy control was pair-matched based on age, sex, handedness, and profession. A total of 46 patients and 46 healthy controls underwent neurocognitive testing. Patients suffered from glioblastoma multiforme (10), cerebral metastasis (10), pituitary adenoma (13), or meningioma (13). There was neither any difference in age, educational level, fluid intelligence, neurological deficits, and anxiety nor in any depression scores between tumor subgroups. Overall, neurocognitive performance was significantly worse in patients compared to healthy controls. Larger tumor volume, frontal location, and left/dominant hemisphere were associated with worse executive functioning and verbal fluency. Additionally, larger tumors and left/dominant location correlated with impairments on perceptual speed tasks. Frontal tumor location was related to worse performance in visual-spatial and short- and long-term memory. Tumor type, clinical presentation, and patient self-awareness were not associated with specific neurocognitive impairments. Patients suffering from newly-diagnosed brain tumors presenting in good neurological condition display neurocognitive impairments in

  14. Targeted delivery of antibody-based therapeutic and imaging agents to CNS tumors: Crossing the blood-brain-barrier divide

    PubMed Central

    Chacko, Ann-Marie; Li, Chunsheng; Pryma, Daniel A.; Brem, Steven; Coukos, George; Muzykantov, Vladimir R.

    2014-01-01

    Introduction Brain tumors are inherently difficult to treat in large part due to the cellular blood-brain barriers (BBB) that limit the delivery of therapeutics to the tumor tissue from the systemic circulation. Virtually no large-molecules, including antibody-based proteins, can penetrate the BBB. With antibodies fast becoming attractive ligands for highly specific molecular targeting to tumor antigens, a variety of methods are being investigated to enhance the access of these agents to intracranial tumors for imaging or therapeutic applications. Areas covered This review describes the characteristics of the BBB and the vasculature in brain tumors, described as the blood-brain tumor barrier (BBTB). Antibodies targeted to molecular markers of CNS tumors will be highlighted, and current strategies for enhancing the delivery of antibodies across these cellular barriers into the brain parenchyma to the tumor will be discussed. Non-invasive imaging approaches to assess BBB/BBTB permeability and/or antibody targeting will be presented as a means of guiding the optimal delivery of targeted agents to brain tumors. Expert Opinion Pre-clinical and clinical studies highlight the potential of several approaches in increasing brain tumor delivery across the blood-brain barrier divide. However, each carries its own risks and challenges. There is tremendous potential in using neuroimaging strategies to assist in understanding and defining the challenges to translating and optimizing molecularly-targeted antibody delivery to CNS tumors to improve clinical outcomes. PMID:23751126

  15. Staff-reported antecedents to aggression in a post-acute brain injury treatment programme: What are they and what implications do they have for treatment?

    PubMed Central

    Giles, Gordon Muir; Scott, Karen; Manchester, David

    2013-01-01

    Research in psychiatric settings has found that staff attribute the majority of inpatient aggression to immediate environmental stressors. We sought to determine if staff working with persons with brain injury-related severe and chronic impairment make similar causal attributions. If immediate environmental stressors precipitate the majority of aggressive incidents in this client group, it is possible an increased focus on the management of factors that initiate client aggression may be helpful. The research was conducted in a low-demand treatment programme for individuals with chronic cognitive impairment due to acquired brain injury. Over a six-week period, 63 staff and a research assistant reported on 508 aggressive incidents. Staff views as to the causes of client aggression were elicited within 72 hours of observing an aggressive incident. Staff descriptions of causes were categorised using qualitative methods and analysed both qualitatively and quantitatively. Aggression towards staff was predominantly preceded by (a) actions that interrupted or redirected a client behaviour, (b) an activity demand, or (c) a physical intrusion. The majority of aggressive incidents appeared hostile/angry in nature and were not considered by staff to be pre-meditated. Common treatment approaches can be usefully augmented by a renewed focus on interventions aimed at reducing antecedents that provoke aggression. Possible approaches for achieving this are considered. PMID:23782342

  16. Ribosome Profiling Reveals a Cell-Type-Specific Translational Landscape in Brain Tumors

    PubMed Central

    Gonzalez, Christian; Sims, Jennifer S.; Hornstein, Nicholas; Mela, Angeliki; Garcia, Franklin; Lei, Liang; Gass, David A.; Amendolara, Benjamin; Bruce, Jeffrey N.

    2014-01-01

    Glioma growth is driven by signaling that ultimately regulates protein synthesis. Gliomas are also complex at the cellular level and involve multiple cell types, including transformed and reactive cells in the brain tumor microenvironment. The distinct functions of the various cell types likely lead to different requirements and regulatory paradigms for protein synthesis. Proneural gliomas can arise from transformation of glial progenitors that are driven to proliferate via mitogenic signaling that affects translation. To investigate translational regulation in this system, we developed a RiboTag glioma mouse model that enables cell-type-specific, genome-wide ribosome profiling of tumor tissue. Infecting glial progenitors with Cre-recombinant retrovirus simultaneously activates expression of tagged ribosomes and delivers a tumor-initiating mutation. Remarkably, we find that although genes specific to transformed cells are highly translated, their translation efficiencies are low compared with normal brain. Ribosome positioning reveals sequence-dependent regulation of ribosomal activity in 5′-leaders upstream of annotated start codons, leading to differential translation in glioma compared with normal brain. Additionally, although transformed cells express a proneural signature, untransformed tumor-associated cells, including reactive astrocytes and microglia, express a mesenchymal signature. Finally, we observe the same phenomena in human disease by combining ribosome profiling of human proneural tumor and non-neoplastic brain tissue with computational deconvolution to assess cell-type-specific translational regulation. PMID:25122893

  17. 718F-FDG PET/CT metabolic tumor parameters and radiomics features in aggressive non-Hodgkin's lymphoma as predictors of treatment outcome and survival.

    PubMed

    Parvez, Aatif; Tau, Noam; Hussey, Douglas; Maganti, Manjula; Metser, Ur

    2018-05-12

    To determine whether metabolic tumor parameters and radiomic features extracted from 18 F-FDG PET/CT (PET) can predict response to therapy and outcome in patients with aggressive B-cell lymphoma. This institutional ethics board-approved retrospective study included 82 patients undergoing PET for aggressive B-cell lymphoma staging. Whole-body metabolic tumor volume (MTV) using various thresholds and tumor radiomic features were assessed on representative tumor sites. The extracted features were correlated with treatment response, disease-free survival (DFS) and overall survival (OS). At the end of therapy, 66 patients (80.5%) had shown complete response to therapy. The parameters correlating with response to therapy were bulky disease > 6 cm at baseline (p = 0.026), absence of a residual mass > 1.5 cm at the end of therapy CT (p = 0.028) and whole-body MTV with best performance using an SUV threshold of 3 and 6 (p = 0.015 and 0.009, respectively). None of the tumor texture features were predictive of first-line therapy response, while a few of them including GLNU correlated with disease-free survival (p = 0.013) and kurtosis correlated with overall survival (p = 0.035). Whole-body MTV correlates with response to therapy in patient with aggressive B-cell lymphoma. Tumor texture features could not predict therapy response, although several features correlated with the presence of a residual mass at the end of therapy CT and others correlated with disease-free and overall survival. These parameters should be prospectively validated in a larger cohort to confirm clinical prognostication.

  18. Application of an enhanced fuzzy algorithm for MR brain tumor image segmentation

    NASA Astrophysics Data System (ADS)

    Hemanth, D. Jude; Vijila, C. Kezi Selva; Anitha, J.

    2010-02-01

    Image segmentation is one of the significant digital image processing techniques commonly used in the medical field. One of the specific applications is tumor detection in abnormal Magnetic Resonance (MR) brain images. Fuzzy approaches are widely preferred for tumor segmentation which generally yields superior results in terms of accuracy. But most of the fuzzy algorithms suffer from the drawback of slow convergence rate which makes the system practically non-feasible. In this work, the application of modified Fuzzy C-means (FCM) algorithm to tackle the convergence problem is explored in the context of brain image segmentation. This modified FCM algorithm employs the concept of quantization to improve the convergence rate besides yielding excellent segmentation efficiency. This algorithm is experimented on real time abnormal MR brain images collected from the radiologists. A comprehensive feature vector is extracted from these images and used for the segmentation technique. An extensive feature selection process is performed which reduces the convergence time period and improve the segmentation efficiency. After segmentation, the tumor portion is extracted from the segmented image. Comparative analysis in terms of segmentation efficiency and convergence rate is performed between the conventional FCM and the modified FCM. Experimental results show superior results for the modified FCM algorithm in terms of the performance measures. Thus, this work highlights the application of the modified algorithm for brain tumor detection in abnormal MR brain images.

  19. Combining Cytotoxic and Immune-Mediated Gene Therapy to Treat Brain Tumors

    PubMed Central

    Curtin, James F.; King, Gwendalyn D.; Candolfi, Marianela; Greeno, Remy B.; Kroeger, Kurt M.; Lowenstein, Pedro R.; Castro, Maria G.

    2006-01-01

    Glioblastoma (GBM) is a type of intracranial brain tumor, for which there is no cure. In spite of advances in surgery, chemotherapy and radiotherapy, patients die within a year of diagnosis. Therefore, there is a critical need to develop novel therapeutic approaches for this disease. Gene therapy, which is the use of genes or other nucleic acids as drugs, is a powerful new treatment strategy which can be developed to treat GBM. Several treatment modalities are amenable for gene therapy implementation, e.g. conditional cytotoxic approaches, targeted delivery of toxins into the tumor mass, immune stimulatory strategies, and these will all be the focus of this review. Both conditional cytotoxicity and targeted toxin mediated tumor death, are aimed at eliminating an established tumor mass and preventing further growth. Tumors employ several defensive strategies that suppress and inhibit anti-tumor immune responses. A better understanding of the mechanisms involved in eliciting anti-tumor immune responses has identified promising targets for immunotherapy. Immunotherapy is designed to aid the immune system to recognize and destroy tumor cells in order to eliminate the tumor burden. Also, immune-therapeutic strategies have the added advantage that an activated immune system has the capability of recognizing tumor cells at distant sites from the primary tumor, therefore targeting metastasis distant from the primary tumor locale. Pre-clinical models and clinical trials have demonstrated that in spite of their location within the central nervous system (CNS), a tissue described as ‘immune privileged’, brain tumors can be effectively targeted by the activated immune system following various immunotherapeutic strategies. This review will highlight recent advances in brain tumor immunotherapy, with particular emphasis on advances made using gene therapy strategies, as well as reviewing other novel therapies that can be used in combination with immunotherapy. Another

  20. Focused ultrasound delivery of Raman nanoparticles across the blood-brain barrier: Potential for targeting experimental brain tumors

    PubMed Central

    Diaz, Roberto Jose; McVeigh, Patrick Z.; O’Reilly, Meaghan A.; Burrell, Kelly; Bebenek, Matthew; Smith, Christian; Etame, Arnold; Zadeh, Gelareh; Hynynen, Kullervo; Wilson, Brian C.; Rutka, James T.

    2014-01-01

    Spectral mapping of nanoparticles with surface enhanced Raman scattering (SERS) capability in the near-infrared range is an emerging molecular imaging technique. We used magnetic resonance image-guided transcranial focused ultrasound (TcMRgFUS) to reversibly disrupt the blood-brain barrier (BBB) adjacent to brain tumor margins in rats. Glioma cells were found to internalize SERS capable nanoparticles of 50 nm or 120 nm physical diameter. Surface coating with anti-epidermal growth factor receptor antibody or non-specific human immunoglobulin G, resulted in enhanced cell uptake of nanoparticles in-vitro compared to nanoparticles with methyl terminated 12-unit polyethylene glycol surface. BBB disruption permitted the delivery of SERS capable spherical 50 or 120 nm gold nanoparticles to the tumor margins. Thus, nanoparticles with SERS imaging capability can be delivered across the BBB non-invasively using TcMRgFUS and have the potential to be used as optical tracking agents at the invasive front of malignant brain tumors. PMID:24374363

  1. Significant anti-tumor effect of bevacizumab in treatment of pineal gland glioblastoma multiforme.

    PubMed

    Mansour, Joshua; Fields, Braxton; Macomson, Samuel; Rixe, Olivier

    2014-12-01

    Glioblastoma multiforme (GBM) is the most aggressive subtype of malignant gliomas. Current standard treatment for GBM involves a combination of cytoreduction through surgical resection, followed by radiation with concomitant and adjuvant chemotherapy (temozolomide). The role of bevacizumab in the treatment of GBM continues to be a topic of ongoing research and debate. Despite aggressive treatment, these tumors remain undoubtedly fatal, especially in the elderly. Furthermore, tumors present in the pineal gland are extremely rare, accounting for only 0.1-0.4 % of all adult brain tumors, with this location adding to the complexity of treatment. We present a case of GBM, at the rare location of pineal gland, in an elderly patient who was refractory to initial standard of care treatment with radiation and concomitant and adjuvant temozolomide, but who developed a significant response to anti-angiogenic therapy using bevacizumab.

  2. Stress-induced changes in brain serotonergic activity, plasma cortisol and aggressive behavior in Arctic charr (Salvelinus alpinus) is counteracted by L-DOPA.

    PubMed

    Höglund, E; Kolm, N; Winberg, S

    2001-10-01

    Arctic charr (Salvelinus alpinus) were tested for aggressive behavior using intruder tests, before and after 2 days of dyadic social interaction. Following social interaction, half of the dominant and half of the subordinate fish were given L-DOPA (10 mg/kg, orally), whereas the remaining dominant and subordinate fish were given vehicle. One hour following drug treatment, the fish were tested for aggressive behavior again in a third and final intruder test, after which blood plasma and brain tissue were sampled for analysis of plasma cortisol concentrations and brain levels of monoamines and monoamine metabolites. Subordinate fish showed a reduction in the number of attacks launched against the intruder, as well as an increase in attack latency, as compared to prior to dyadic social interactions. Social subordination also resulted in an elevation of brain serotonergic activity. Fish receiving L-DOPA prior to the final intruder test showed shorter attack latency than vehicle controls. Drug treatment was a stressful experience and vehicle controls showed elevated plasma cortisol levels and longer attack latency as compared to before treatment. L-DOPA-treated fish showed lower plasma levels of cortisol and lower serotonergic activity in certain brain areas than vehicle controls. These results suggest that L-DOPA counteracts the stress-induced inhibition of aggressive behavior, and at the same time inhibits stress-induced effects on brain serotonergic activity and plasma cortisol concentrations.

  3. Chemosensory danger detection in the human brain: Body odor communicating aggression modulates limbic system activation.

    PubMed

    Mutic, Smiljana; Brünner, Yvonne F; Rodriguez-Raecke, Rea; Wiesmann, Martin; Freiherr, Jessica

    2017-05-01

    Although the sense of smell is involved in numerous survival functions, the processing of body odor emitted by dangerous individuals is far from understood. The aim of the study was to explore how human fight chemosignals communicating aggression can alter brain activation related to an attentional bias and danger detection. While the anterior cingulate cortex (ACC) was seen involved in processing threat-related emotional information, danger detection and error evaluation, it still remains unknown whether human chemosignals communicating aggression can potentially modulate this activation. In the fMRI experiment, healthy male and female normosmic odor recipients (n=18) completed a higher-order processing task (emotional Stroop task with the word categories anger, anxiety, happiness and neutral) while exposed to aggression and exercise chemosignals (collected from a different group of healthy male donors; n=16). Our results provide first evidence that aggression chemosignals induce a time-sensitive attentional bias in chemosensory danger detection and modulate limbic system activation. During exposure to aggression chemosignals compared to exercise chemosignals, functional imaging data indicates an enhancement of thalamus, hypothalamus and insula activation (p<.05, FWE-corrected). Together with the thalamus, the ACC was seen activated in response to threat-related words (p<.001). Chemosensory priming and habituation to body odor signals are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Postoperative Stereotactic Radiosurgery Without Whole-Brain Radiation Therapy for Brain Metastases: Potential Role of Preoperative Tumor Size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartford, Alan C., E-mail: Alan.C.Hartford@Hitchcock.org; Paravati, Anthony J.; Spire, William J.

    2013-03-01

    Purpose: Radiation therapy following resection of a brain metastasis increases the probability of disease control at the surgical site. We analyzed our experience with postoperative stereotactic radiosurgery (SRS) as an alternative to whole-brain radiotherapy (WBRT), with an emphasis on identifying factors that might predict intracranial disease control and overall survival (OS). Methods and Materials: We retrospectively reviewed all patients through December 2008, who, after surgical resection, underwent SRS to the tumor bed, deferring WBRT. Multiple factors were analyzed for time to intracranial recurrence (ICR), whether local recurrence (LR) at the surgical bed or “distant” recurrence (DR) in the brain, formore » time to WBRT, and for OS. Results: A total of 49 lesions in 47 patients were treated with postoperative SRS. With median follow-up of 9.3 months (range, 1.1-61.4 months), local control rates at the resection cavity were 85.5% at 1 year and 66.9% at 2 years. OS rates at 1 and 2 years were 52.5% and 31.7%, respectively. On univariate analysis (preoperative) tumors larger than 3.0 cm exhibited a significantly shorter time to LR. At a cutoff of 2.0 cm, larger tumors resulted in significantly shorter times not only for LR but also for DR, ICR, and salvage WBRT. While multivariate Cox regressions showed preoperative size to be significant for times to DR, ICR, and WBRT, in similar multivariate analysis for OS, only the graded prognostic assessment proved to be significant. However, the number of intracranial metastases at presentation was not significantly associated with OS nor with other outcome variables. Conclusions: Larger tumor size was associated with shorter time to recurrence and with shorter time to salvage WBRT; however, larger tumors were not associated with decrements in OS, suggesting successful salvage. SRS to the tumor bed without WBRT is an effective treatment for resected brain metastases, achieving local control particularly for

  5. Mobile phone use and brain tumors in children and adolescents: a multicenter case-control study.

    PubMed

    Aydin, Denis; Feychting, Maria; Schüz, Joachim; Tynes, Tore; Andersen, Tina Veje; Schmidt, Lisbeth Samsø; Poulsen, Aslak Harbo; Johansen, Christoffer; Prochazka, Michaela; Lannering, Birgitta; Klæboe, Lars; Eggen, Tone; Jenni, Daniela; Grotzer, Michael; Von der Weid, Nicolas; Kuehni, Claudia E; Röösli, Martin

    2011-08-17

    It has been hypothesized that children and adolescents might be more vulnerable to possible health effects from mobile phone exposure than adults. We investigated whether mobile phone use is associated with brain tumor risk among children and adolescents. CEFALO is a multicenter case-control study conducted in Denmark, Sweden, Norway, and Switzerland that includes all children and adolescents aged 7-19 years who were diagnosed with a brain tumor between 2004 and 2008. We conducted interviews, in person, with 352 case patients (participation rate: 83%) and 646 control subjects (participation rate: 71%) and their parents. Control subjects were randomly selected from population registries and matched by age, sex, and geographical region. We asked about mobile phone use and included mobile phone operator records when available. Odds ratios (ORs) for brain tumor risk and 95% confidence intervals (CIs) were calculated using conditional logistic regression models. Regular users of mobile phones were not statistically significantly more likely to have been diagnosed with brain tumors compared with nonusers (OR = 1.36; 95% CI = 0.92 to 2.02). Children who started to use mobile phones at least 5 years ago were not at increased risk compared with those who had never regularly used mobile phones (OR = 1.26, 95% CI = 0.70 to 2.28). In a subset of study participants for whom operator recorded data were available, brain tumor risk was related to the time elapsed since the mobile phone subscription was started but not to amount of use. No increased risk of brain tumors was observed for brain areas receiving the highest amount of exposure. The absence of an exposure-response relationship either in terms of the amount of mobile phone use or by localization of the brain tumor argues against a causal association.

  6. Targeted Delivery of Drugs to Brain Tumors (LBNL Summer Lecture Series)

    ScienceCinema

    Forte, Trudy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Division; Children’s Hospital Oakland Research Inst. (CHORI), Oakland, CA (United States)

    2017-12-15

    Summer Lecture Series 2007: Trudy Forte of Berkeley Lab's Life Sciences Division will discuss her work developing nano-sized low-density lipoprotein (LDL) particles that can be used as a safe and effective means of delivering anticancer drugs to brain tumors, particularly glioblastoma multiforme. This is the most common malignant brain tumor in adults and one of the deadliest forms of cancer. Her research team found that the synthetic LDL particles can target and kill such tumors cells in vitro. The nanoparticles are composed of a lipid core surrounded by a peptide. The peptide contains an amino acid sequence that recognizes the LDL receptor, and the lipid core has the ability to accumulate anti-cancer drugs.

  7. Metabolism of [U-13C]glucose in Human Brain Tumors In Vivo

    PubMed Central

    Maher, Elizabeth A.; Marin-Valencia, Isaac; Bachoo, Robert M.; Mashimo, Tomoyuki; Raisanen, Jack; Hatanpaa, Kimmo J.; Jindal, Ashish; Jeffrey, F. Mark; Choi, Changho; Madden, Christopher; Mathews, Dana; Pascual, Juan M.; Mickey, Bruce E.; Malloy, Craig R.; DeBerardinis, Ralph J.

    2012-01-01

    Glioblastomas (GBMs) and brain metastases demonstrate avid uptake of 18fluoro-2-deoxyglucose (FDG) by positron emission tomography (PET) and display perturbations of intracellular metabolite pools by 1H magnetic resonance spectroscopy (MRS). These observations suggest that metabolic reprogramming contributes to brain tumor growth in vivo. The Warburg effect, excess metabolism of glucose to lactate in the presence of oxygen, is a hallmark of cancer cells in culture. FDG-positive tumors are assumed to metabolize glucose in a similar manner, with high rates of lactate formation compared to mitochondrial glucose oxidation, but few studies have specifically examined the metabolic fates of glucose in vivo. In particular, the capacity of human brain malignancies to oxidize glucose in the tricarboxylic acid cycle is unknown. Here we studied the metabolism of human brain tumors in situ. [U-13C]glucose was infused during surgical resection, and tumor samples were subsequently subjected to 13C NMR spectroscopy. Analysis of tumor metabolites revealed lactate production, as expected. We also determined that pyruvate dehydrogenase, turnover of the TCA cycle, anaplerosis and de novo glutamine and glycine synthesis contributed significantly to the ultimate disposition of glucose carbon. Surprisingly, less than 50% of the acetyl-CoA pool was derived from blood-borne glucose, suggesting that additional substrates contribute to tumor bioenergetics. This study illustrates a convenient approach that capitalizes on the high information content of 13C NMR spectroscopy and enables the analysis of intermediary metabolism in diverse malignancies growing in their native microenvironment. PMID:22419606

  8. Development of stereotactic mass spectrometry for brain tumor surgery.

    PubMed

    Agar, Nathalie Y R; Golby, Alexandra J; Ligon, Keith L; Norton, Isaiah; Mohan, Vandana; Wiseman, Justin M; Tannenbaum, Allen; Jolesz, Ferenc A

    2011-02-01

    Surgery remains the first and most important treatment modality for the majority of solid tumors. Across a range of brain tumor types and grades, postoperative residual tumor has a great impact on prognosis. The principal challenge and objective of neurosurgical intervention is therefore to maximize tumor resection while minimizing the potential for neurological deficit by preserving critical tissue. To introduce the integration of desorption electrospray ionization mass spectrometry into surgery for in vivo molecular tissue characterization and intraoperative definition of tumor boundaries without systemic injection of contrast agents. Using a frameless stereotactic sampling approach and by integrating a 3-dimensional navigation system with an ultrasonic surgical probe, we obtained image-registered surgical specimens. The samples were analyzed with ambient desorption/ionization mass spectrometry and validated against standard histopathology. This new approach will enable neurosurgeons to detect tumor infiltration of the normal brain intraoperatively with mass spectrometry and to obtain spatially resolved molecular tissue characterization without any exogenous agent and with high sensitivity and specificity. Proof of concept is presented in using mass spectrometry intraoperatively for real-time measurement of molecular structure and using that tissue characterization method to detect tumor boundaries. Multiple sampling sites within the tumor mass were defined for a patient with a recurrent left frontal oligodendroglioma, World Health Organization grade II with chromosome 1p/19q codeletion, and mass spectrometry data indicated a correlation between lipid constitution and tumor cell prevalence. The mass spectrometry measurements reflect a complex molecular structure and are integrated with frameless stereotaxy and imaging, providing 3-dimensional molecular imaging without systemic injection of any agents, which can be implemented for surgical margins delineation of

  9. Semi-automatic brain tumor segmentation by constrained MRFs using structural trajectories.

    PubMed

    Zhao, Liang; Wu, Wei; Corso, Jason J

    2013-01-01

    Quantifying volume and growth of a brain tumor is a primary prognostic measure and hence has received much attention in the medical imaging community. Most methods have sought a fully automatic segmentation, but the variability in shape and appearance of brain tumor has limited their success and further adoption in the clinic. In reaction, we present a semi-automatic brain tumor segmentation framework for multi-channel magnetic resonance (MR) images. This framework does not require prior model construction and only requires manual labels on one automatically selected slice. All other slices are labeled by an iterative multi-label Markov random field optimization with hard constraints. Structural trajectories-the medical image analog to optical flow and 3D image over-segmentation are used to capture pixel correspondences between consecutive slices for pixel labeling. We show robustness and effectiveness through an evaluation on the 2012 MICCAI BRATS Challenge Dataset; our results indicate superior performance to baselines and demonstrate the utility of the constrained MRF formulation.

  10. Novel Polyomavirus associated with Brain Tumors in Free-Ranging Raccoons, Western United States

    PubMed Central

    Dela Cruz, Florante N.; Giannitti, Federico; Li, Linlin; Woods, Leslie W.; Del Valle, Luis; Delwart, Eric

    2013-01-01

    Tumors of any type are exceedingly rare in raccoons. High-grade brain tumors, consistently located in the frontal lobes and olfactory tracts, were detected in 10 raccoons during March 2010–May 2012 in California and Oregon, suggesting an emerging, infectious origin. We have identified a candidate etiologic agent, dubbed raccoon polyomavirus, that was present in the tumor tissue of all affected animals but not in tissues from 20 unaffected animals. Southern blot hybridization and rolling circle amplification showed the episomal viral genome in the tumors. The multifunctional nuclear protein large T-antigen was detectable by immunohistochemical analyses in a subset of neoplastic cells. Raccoon polyomavirus may contribute to the development of malignant brain tumors of raccoons. PMID:23260029

  11. Novel polyomavirus associated with brain tumors in free-ranging raccoons, western United States.

    PubMed

    Dela Cruz, Florante N; Giannitti, Federico; Li, Linlin; Woods, Leslie W; Del Valle, Luis; Delwart, Eric; Pesavento, Patricia A

    2013-01-01

    Tumors of any type are exceedingly rare in raccoons. High-grade brain tumors, consistently located in the frontal lobes and olfactory tracts, were detected in 10 raccoons during March 2010-May 2012 in California and Oregon, suggesting an emerging, infectious origin. We have identified a candidate etiologic agent, dubbed raccoon polyomavirus, that was present in the tumor tissue of all affected animals but not in tissues from 20 unaffected animals. Southern blot hybridization and rolling circle amplification showed the episomal viral genome in the tumors. The multifunctional nuclear protein large T-antigen was detectable by immunohistochemical analyses in a subset of neoplastic cells. Raccoon polyomavirus may contribute to the development of malignant brain tumors of raccoons.

  12. The new WHO 2016 classification of brain tumors-what neurosurgeons need to know.

    PubMed

    Banan, Rouzbeh; Hartmann, Christian

    2017-03-01

    The understanding of molecular alterations of tumors has severely changed the concept of classification in all fields of pathology. The availability of high-throughput technologies such as next-generation sequencing allows for a much more precise definition of tumor entities. Also in the field of brain tumors a dramatic increase of knowledge has occurred over the last years partially calling into question the purely morphologically based concepts that were used as exclusive defining criteria in the WHO 2007 classification. Review of the WHO 2016 classification of brain tumors as well as a search and review of publications in the literature relevant for brain tumor classification from 2007 up to now. The idea of incorporating the molecular features in classifying tumors of the central nervous system led the authors of the new WHO 2016 classification to encounter inevitable conceptual problems, particularly with respect to linking morphology to molecular alterations. As a solution they introduced the concept of a "layered diagnosis" to the classification of brain tumors that still allows at a lower level a purely morphologically based diagnosis while partially forcing the incorporation of molecular characteristics for an "integrated diagnosis" at the highest diagnostic level. In this context the broad availability of molecular assays was debated. On the one hand molecular antibodies specifically targeting mutated proteins should be available in nearly all neuropathological laboratories. On the other hand, different high-throughput assays are accessible only in few first-world neuropathological institutions. As examples oligodendrogliomas are now primarily defined by molecular characteristics since the required assays are generally established, whereas molecular grouping of ependymomas, found to clearly outperform morphologically based tumor interpretation, was rejected from inclusion in the WHO 2016 classification because the required assays are currently only

  13. Photodynamic therapy stimulates anti-tumor immune response in mouse models: the role of regulatory Tcells, anti-tumor antibodies, and immune attacks on brain metastases

    NASA Astrophysics Data System (ADS)

    Vatansever, Fatma; Kawakubo, Masayoshi; Chung, Hoon; Hamblin, Michael R.

    2013-02-01

    We have previously shown that photodynamic therapy mediated by a vascular regimen of benzoporphyrin derivative and 690nm light is capable of inducing a robust immune response in the mouse CT26.CL25 tumor model that contains a tumor-rejection antigen, beta-galactosidase (β-gal). For the first time we show that PDT can stimulate the production of serum IgG antibodies against the β-gal antigen. It is known that a common cause of death from cancer, particularly lung cancer, is brain metastases; especially the inoperable ones that do not respond to traditional cytotoxic therapies either. We asked whether PDT of a primary tumor could stimulate immune response that could attack the distant brain metastases. We have developed a mouse model of generating brain metastases by injecting CT26.CL25 tumor cells into the brain as well as injecting the same cancer cells under the skin at the same time. When the subcutaneous tumor was treated with PDT, we observed a survival advantage compared to mice that had untreated brain metastases alone.

  14. Systems biology of human epilepsy applied to patients with brain tumors.

    PubMed

    Mittal, Sandeep; Shah, Aashit K; Barkmeier, Daniel T; Loeb, Jeffrey A

    2013-12-01

    Epilepsy is a disease of recurrent seizures that can be associated with a wide variety of acquired and developmental brain lesions. Current medications for patients with epilepsy can suppress seizures; they do not cure or modify the underlying disease process. On the other hand, surgical removal of focal brain regions that produce seizures can be curative. This surgical procedure can be more precise with the placement of intracranial recording electrodes to identify brain regions that generate seizure activity as well as those that are critical for normal brain function. The detail that goes into these surgeries includes extensive neuroimaging, electrophysiology, and clinical data. Combined with precisely localized tissues removed, these data provide an unparalleled opportunity to learn about the interrelationships of many "systems" in the human brain not possible in just about any other human brain disorder. Herein, we describe a systems biology approach developed to study patients who undergo brain surgery for epilepsy and how we have begun to apply these methods to patients whose seizures are associated with brain tumors. A central goal of this clinical and translational research program is to improve our understanding of epilepsy and brain tumors and to improve diagnosis and treatment outcomes of both. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  15. Boron Neutron Capture Therapy for Malignant Brain Tumors

    PubMed Central

    MIYATAKE, Shin-Ichi; KAWABATA, Shinji; HIRAMATSU, Ryo; KUROIWA, Toshihiko; SUZUKI, Minoru; KONDO, Natsuko; ONO, Koji

    2016-01-01

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting. PMID:27250576

  16. Boron Neutron Capture Therapy for Malignant Brain Tumors.

    PubMed

    Miyatake, Shin-Ichi; Kawabata, Shinji; Hiramatsu, Ryo; Kuroiwa, Toshihiko; Suzuki, Minoru; Kondo, Natsuko; Ono, Koji

    2016-07-15

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting.

  17. Neuromodulation can reduce aggressive behavior elicited by violent video games.

    PubMed

    Riva, Paolo; Gabbiadini, Alessandro; Romero Lauro, Leonor J; Andrighetto, Luca; Volpato, Chiara; Bushman, Brad J

    2017-04-01

    Research has shown that exposure to violent media increases aggression. However, the neural underpinnings of violent-media-related aggression are poorly understood. Additionally, few experiments have tested hypotheses concerning how to reduce violent-media-related aggression. In this experiment, we focused on a brain area involved in the regulation of aggressive impulses-the right ventrolateral prefrontal cortex (rVLPFC). We tested the hypothesis that brain polarization through anodal transcranial direct current stimulation (tDCS) over rVLPFC reduces aggression related to violent video games. Participants (N = 79) were randomly assigned to play a violent or a nonviolent video game while receiving anodal or sham stimulation. Afterward, participants aggressed against an ostensible partner using the Taylor aggression paradigm (Taylor Journal of Personality, 35, 297-310, 1967), which measures both unprovoked and provoked aggression. Among those who received sham stimulation, unprovoked aggression was significantly higher for violent-game players than for nonviolent-game players. Among those who received anodal stimulation, unprovoked aggression did not differ for violent- and nonviolent-game players. Thus, anodal stimulation reduced unprovoked aggression in violent-game players. No significant effects were found for provoked aggression, suggesting tit-for-tat responding. This experiment sheds light on one possible neural underpinning of violent-media-related aggression-the rVLPFC, a brain area involved in regulating negative feelings and aggressive impulses.

  18. Oxytocin-Induced Changes in Monoamine Level in Symmetric Brain Structures of Isolated Aggressive C57Bl/6 Mice.

    PubMed

    Karpova, I V; Mikheev, V V; Marysheva, V V; Bychkov, E R; Proshin, S N

    2016-03-01

    Changes in activity of monoaminergic systems of the left and right brain hemispheres after administration of saline and oxytocin were studied in male C57Bl/6 mice subjected to social isolation. The concentrations of dopamine, norepinephrine, serotonin, and their metabolites dihydroxyphenylacetic, homovanillic, and 5-hydroxyindoleacetic acids were measured in the cerebral cortex, hippocampus, olfactory tubercle, and striatum of the left and right brain hemispheres by HPLC. In isolated aggressive males treated intranasally with saline, the content of serotonin and 5-hydroxyindoleacetic acid was significantly higher in the right hippocampus. Oxytocin reduces aggression caused by long-term social isolation, but has no absolute ability to suppress this type of behavior. Oxytocin reduced dopamine content in the left cortex and serotonin content in the right hippocampus and left striatum. Furthermore, oxytocin evened the revealed asymmetry in serotonin and 5-hydroxyindoleacetic acid concentrations in the hippocampus. At the same time, asymmetry in dopamine concentration appeared in the cortex with predominance of this transmitter in the right hemisphere. The data are discussed in the context of lateralization of neurotransmitter systems responsible for intraspecific aggression caused by long-term social isolation.

  19. Digit ratio (2D:4D) in primary brain tumor patients: A case-control study.

    PubMed

    Bunevicius, Adomas; Tamasauskas, Sarunas; Deltuva, Vytenis Pranas; Tamasauskas, Arimantas; Sliauzys, Albertas; Bunevicius, Robertas

    2016-12-01

    The second-to-fourth digit ratio (2D:4D) reflects prenatal estrogen and testosterone exposure, and is established in utero. Sex steroids are implicated in development and progression of primary brain tumors. To investigate whether there is a link between 2D:4D ratio and primary brain tumors, and age at presentation. Digital images of the right and left palms of 85 primary brain tumor patients (age 56.96±13.68years; 71% women) and 106 (age 54.31±13.68years; 68% women) gender and age matched controls were obtained. The most common brain tumor diagnoses were meningioma (41%), glioblastoma (20%) and pituitary adenoma (16%). Right and left 2D:4D ratios, and right minus left 2D:4D (D r-l ) were compared between patients and controls, and were correlated with age. Right and left 2D:4D ratios were significantly lower in primary brain tumor patients relative to controls (t=-4.28, p<0.001 and t=-3.69, p<0.001, respectively). The D r-l was not different between brain tumor patients and controls (p=0.27). In meningioma and glioma patients, age at presentation correlated negatively with left 2D:4D ratio (rho=-0.42, p=0.01 and rho=-0.36, p=0.02, respectively) and positively with D r-l (rho=0.45, p=0.009 and rho=0.65, p=0.04, respectively). Right and left hand 2D:4D ratios are lower in primary brain tumor patients relative to healthy individuals suggesting greater prenatal testosterone and lower prenatal estrogen exposure in brain tumor patients. Greater age at presentation is associated with greater D r-l and with lower left 2D:4D ratio of meningioma and glioma patients. Due to small sample size our results should be considered preliminary and interpreted with caution. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Automated Processing of Dynamic Contrast-Enhanced MRI: Correlation of Advanced Pharmacokinetic Metrics with Tumor Grade in Pediatric Brain Tumors.

    PubMed

    Vajapeyam, S; Stamoulis, C; Ricci, K; Kieran, M; Poussaint, T Young

    2017-01-01

    Pharmacokinetic parameters from dynamic contrast-enhanced MR imaging have proved useful for differentiating brain tumor grades in adults. In this study, we retrospectively reviewed dynamic contrast-enhanced perfusion data from children with newly diagnosed brain tumors and analyzed the pharmacokinetic parameters correlating with tumor grade. Dynamic contrast-enhanced MR imaging data from 38 patients were analyzed by using commercially available software. Subjects were categorized into 2 groups based on pathologic analyses consisting of low-grade (World Health Organization I and II) and high-grade (World Health Organization III and IV) tumors. Pharmacokinetic parameters were compared between the 2 groups by using linear regression models. For parameters that were statistically distinct between the 2 groups, sensitivity and specificity were also estimated. Eighteen tumors were classified as low-grade, and 20, as high-grade. Transfer constant from the blood plasma into the extracellular extravascular space (K trans ), rate constant from extracellular extravascular space back into blood plasma (K ep ), and extracellular extravascular volume fraction (V e ) were all significantly correlated with tumor grade; high-grade tumors showed higher K trans , higher K ep , and lower V e . Although all 3 parameters had high specificity (range, 82%-100%), K ep had the highest specificity for both grades. Optimal sensitivity was achieved for V e , with a combined sensitivity of 76% (compared with 71% for K trans and K ep ). Pharmacokinetic parameters derived from dynamic contrast-enhanced MR imaging can effectively discriminate low- and high-grade pediatric brain tumors. © 2017 by American Journal of Neuroradiology.

  1. Antisecretory Factor-mediated Inhibition of Cell Volume Dynamics Produces Anti-tumor Activity in Glioblastoma. | Office of Cancer Genomics

    Cancer.gov

    Interstitial fluid pressure (IFP) presents a barrier to drug uptake in solid tumors, including the aggressive primary brain tumor glioblastoma multiforme (GBM). It remains unclear how fluid dynamics impacts tumor progression and can be targeted therapeutically. To address this issue, a novel telemetry-based approach was developed to measure changes in IFP during progression of GBM xenografts. Antisecretory factor (AF) is an endogenous protein that displays anti-secretory effects in animals and patients.

  2. Detecting brain tumor in computed tomography images using Markov random fields and fuzzy C-means clustering techniques

    NASA Astrophysics Data System (ADS)

    Abdulbaqi, Hayder Saad; Jafri, Mohd Zubir Mat; Omar, Ahmad Fairuz; Mustafa, Iskandar Shahrim Bin; Abood, Loay Kadom

    2015-04-01

    Brain tumors, are an abnormal growth of tissues in the brain. They may arise in people of any age. They must be detected early, diagnosed accurately, monitored carefully, and treated effectively in order to optimize patient outcomes regarding both survival and quality of life. Manual segmentation of brain tumors from CT scan images is a challenging and time consuming task. Size and location accurate detection of brain tumor plays a vital role in the successful diagnosis and treatment of tumors. Brain tumor detection is considered a challenging mission in medical image processing. The aim of this paper is to introduce a scheme for tumor detection in CT scan images using two different techniques Hidden Markov Random Fields (HMRF) and Fuzzy C-means (FCM). The proposed method has been developed in this research in order to construct hybrid method between (HMRF) and threshold. These methods have been applied on 4 different patient data sets. The result of comparison among these methods shows that the proposed method gives good results for brain tissue detection, and is more robust and effective compared with (FCM) techniques.

  3. Intraoperative delineation of primary brain tumors using time-resolved fluorescence spectroscopy.

    PubMed

    Butte, Pramod V; Fang, Qiyin; Jo, Javier A; Yong, William H; Pikul, Brian K; Black, Keith L; Marcu, Laura

    2010-01-01

    The goal of this study is to determine the potential of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as an adjunctive tool for delineation of brain tumor from surrounding normal tissue in order to assist the neurosurgeon in near-complete tumor excision. A time-domain TR-LIFS prototype apparatus (gated photomultiplier detection, fast digitizer) was used for recording tissue autofluorescence in normal cortex (NC), normal white matter (NWM), and various grades of gliomas intraoperatively. Tissue fluorescence was induced with a pulsed nitrogen laser (337 nm, 700 ps), and the intensity decay profiles were recorded in the 360- to 550-nm spectral range (10-nm interval). Histopathological analysis (hematoxylin & eosin) of the biopsy samples taken from the site of TR-LIFS measurements was used for validation of spectroscopic results. Preliminary results on 17 patients demonstrate that normal cortex (N=16) and normal white matter (N=3) show two peaks of fluorescence emission at 390 nm (lifetime=1.8+/-0.3 ns) and 460 nm (lifetime=0.8+/-0.1 ns). The 390-nm emission peak is absent in low-grade glioma (N=5; lifetime=1.1 ns) and reduced in high-grade glioma (N=9; lifetime=1.7+/-0.4 ns). The emission characteristics at 460 nm in all tissues correlated with the nicotinamide adenine dinucleotide fluorescence (peak: 440 to 460 nm; lifetime: 0.8 to 1.0 ns). These findings demonstrate the potential of using TR-LIFS as a tool for enhanced delineation of brain tumors during surgery. In addition, this study evaluates similarities and differences between TR-LIFS signatures of brain tumors obtained in vivo and those previously reported in ex vivo brain tumor specimens.

  4. Intraoperative delineation of primary brain tumors using time-resolved fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Butte, Pramod V.; Fang, Qiyin; Jo, Javier A.; Yong, William H.; Pikul, Brian K.; Black, Keith L.; Marcu, Laura

    2010-03-01

    The goal of this study is to determine the potential of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as an adjunctive tool for delineation of brain tumor from surrounding normal tissue in order to assist the neurosurgeon in near-complete tumor excision. A time-domain TR-LIFS prototype apparatus (gated photomultiplier detection, fast digitizer) was used for recording tissue autofluorescence in normal cortex (NC), normal white matter (NWM), and various grades of gliomas intraoperatively. Tissue fluorescence was induced with a pulsed nitrogen laser (337 nm, 700 ps), and the intensity decay profiles were recorded in the 360- to 550-nm spectral range (10-nm interval). Histopathological analysis (hematoxylin & eosin) of the biopsy samples taken from the site of TR-LIFS measurements was used for validation of spectroscopic results. Preliminary results on 17 patients demonstrate that normal cortex (N=16) and normal white matter (N=3) show two peaks of fluorescence emission at 390 nm (lifetime=1.8+/-0.3 ns) and 460 nm (lifetime=0.8+/-0.1 ns). The 390-nm emission peak is absent in low-grade glioma (N=5; lifetime=1.1 ns) and reduced in high-grade glioma (N=9; lifetime=1.7+/-0.4 ns). The emission characteristics at 460 nm in all tissues correlated with the nicotinamide adenine dinucleotide fluorescence (peak: 440 to 460 nm lifetime: 0.8 to 1.0 ns). These findings demonstrate the potential of using TR-LIFS as a tool for enhanced delineation of brain tumors during surgery. In addition, this study evaluates similarities and differences between TR-LIFS signatures of brain tumors obtained in vivo and those previously reported in ex vivo brain tumor specimens.

  5. A correlative optical microscopy and scanning electron microscopy approach to locating nanoparticles in brain tumors.

    PubMed

    Kempen, Paul J; Kircher, Moritz F; de la Zerda, Adam; Zavaleta, Cristina L; Jokerst, Jesse V; Mellinghoff, Ingo K; Gambhir, Sanjiv S; Sinclair, Robert

    2015-01-01

    The growing use of nanoparticles in biomedical applications, including cancer diagnosis and treatment, demands the capability to exactly locate them within complex biological systems. In this work a correlative optical and scanning electron microscopy technique was developed to locate and observe multi-modal gold core nanoparticle accumulation in brain tumor models. Entire brain sections from mice containing orthotopic brain tumors injected intravenously with nanoparticles were imaged using both optical microscopy to identify the brain tumor, and scanning electron microscopy to identify the individual nanoparticles. Gold-based nanoparticles were readily identified in the scanning electron microscope using backscattered electron imaging as bright spots against a darker background. This information was then correlated to determine the exact location of the nanoparticles within the brain tissue. The nanoparticles were located only in areas that contained tumor cells, and not in the surrounding healthy brain tissue. This correlative technique provides a powerful method to relate the macro- and micro-scale features visible in light microscopy with the nanoscale features resolvable in scanning electron microscopy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Automatic brain tumor detection in MRI: methodology and statistical validation

    NASA Astrophysics Data System (ADS)

    Iftekharuddin, Khan M.; Islam, Mohammad A.; Shaik, Jahangheer; Parra, Carlos; Ogg, Robert

    2005-04-01

    Automated brain tumor segmentation and detection are immensely important in medical diagnostics because it provides information associated to anatomical structures as well as potential abnormal tissue necessary to delineate appropriate surgical planning. In this work, we propose a novel automated brain tumor segmentation technique based on multiresolution texture information that combines fractal Brownian motion (fBm) and wavelet multiresolution analysis. Our wavelet-fractal technique combines the excellent multiresolution localization property of wavelets to texture extraction of fractal. We prove the efficacy of our technique by successfully segmenting pediatric brain MR images (MRIs) from St. Jude Children"s Research Hospital. We use self-organizing map (SOM) as our clustering tool wherein we exploit both pixel intensity and multiresolution texture features to obtain segmented tumor. Our test results show that our technique successfully segments abnormal brain tissues in a set of T1 images. In the next step, we design a classifier using Feed-Forward (FF) neural network to statistically validate the presence of tumor in MRI using both the multiresolution texture and the pixel intensity features. We estimate the corresponding receiver operating curve (ROC) based on the findings of true positive fractions and false positive fractions estimated from our classifier at different threshold values. An ROC, which can be considered as a gold standard to prove the competence of a classifier, is obtained to ascertain the sensitivity and specificity of our classifier. We observe that at threshold 0.4 we achieve true positive value of 1.0 (100%) sacrificing only 0.16 (16%) false positive value for the set of 50 T1 MRI analyzed in this experiment.

  7. Association between number of cell phone contracts and brain tumor incidence in nineteen U.S. States.

    PubMed

    Lehrer, Steven; Green, Sheryl; Stock, Richard G

    2011-02-01

    Some concern has arisen about adverse health effects of cell phones, especially the possibility that the low power microwave-frequency signal transmitted by the antennas on handsets might cause brain tumors or accelerate the growth of subclinical tumors. We analyzed data from the Statistical Report: Primary Brain Tumors in the United States, 2000-2004 and 2007 cell phone subscription data from the Governing State and Local Sourcebook. There was a significant correlation between number of cell phone subscriptions and brain tumors in nineteen US states (r = 0.950, P < 0.001). Because increased numbers of both cell phone subscriptions and brain tumors could be due solely to the fact that some states, such as New York, have much larger populations than other states, such as North Dakota, multiple linear regression was performed with number of brain tumors as the dependent variable, cell phone subscriptions, population, mean family income and mean age as independent variables. The effect of cell phone subscriptions was significant (P = 0.017), and independent of the effect of mean family income (P = 0.894), population (P = 0.003) and age (0.499). The very linear relationship between cell phone usage and brain tumor incidence is disturbing and certainly needs further epidemiological evaluation. In the meantime, it would be prudent to limit exposure to all sources of electro-magnetic radiation.

  8. Executive Functions and Social Skills in Survivors of Pediatric Brain Tumor

    PubMed Central

    Wolfe, Kelly R.; Walsh, Karin S.; Reynolds, Nina C.; Mitchell, Frances; Reddy, Alyssa T.; Paltin, Iris; Madan-Swain, Avi

    2012-01-01

    Medical advances have resulted in increased survival rates for children with brain tumors. Consequently, issues related to survivorship have become more critical. The use of multimodal treatment, in particular cranial radiation therapy, has been associated with subsequent cognitive decline. Specifically, deficits in executive functions have been reported in survivors of various types of pediatric brain tumor. Survivors are left with difficulties, particularly in self-monitoring, initiation, inhibition, and planning, to name a few. Another domain in which survivors of pediatric brain tumor have been reported to show difficulty is that of social skills. Parents, teachers, and survivors themselves have reported decreased social functioning following treatment. Deficits in executive functions and social skills are likely interrelated in this population, as executive skills are needed to navigate various aspects of social interaction; however, this has yet to be studied empirically. Twenty-four survivors of pediatric brain tumor were assessed using a computerized task of executive functions, as well as paper and pencil measures of social skills and real world executive skills. Social functioning was related to a specific aspect of executive functions, i.e., the survivors’ variability in response time, such that inconsistent responding was associated with better parent-report and survivor-report social skills, independent of intellectual abilities. Additionally, parent-reported real-world global executive abilities predicted parent-reported social skills. The implications of these findings for social skills interventions and future research are discussed. PMID:22420326

  9. p14(ARF) nuclear overexpression in aggressive B-cell lymphomas is a sensor of malfunction of the common tumor suppressor pathways.

    PubMed

    Sánchez-Aguilera, Abel; Sánchez-Beato, Margarita; García, Juan F; Prieto, Ignacio; Pollan, Marina; Piris, Miguel A

    2002-02-15

    p14(ARF), the alternative product from the human INK4a/ARF locus, antagonizes Hdm2 and mediates p53 activation in response to oncogenic stimuli. An immunohistochemical study of p14(ARF) expression in 74 samples of aggressive B-cell lymphomas was performed, demonstrating an array of different abnormalities. A distinct nucleolar expression pattern was detected in nontumoral tissue and a subset of lymphomas (50/74). In contrast, a group of cases (8/74) showed absence of p14(ARF) expression, dependent either on promoter hypermethylation or gene loss. Additionally, 16 out of 74 cases displayed an abnormal nuclear p14(ARF) overexpression not confined to the nucleoli, as confirmed by confocal microscopy, and that was associated with high levels of p53 and Hdm2. A genetic study of these cases failed to show any alteration in the p14(ARF) gene, but revealed the presence of p53 mutations in over 50% of these cases. An increased growth fraction and a more aggressive clinical course, with a shortened survival time, also characterized the group of tumors with p14(ARF) nuclear overexpression. Moreover, this p14(ARF) expression pattern was more frequent in tumors displaying accumulated alterations in the p53, p16(INK4a), and p27(KIP1) tumor supressors. These observations, together with the consideration of the central role of p14(ARF) in cell cycle control, suggest that p14(ARF) abnormal nuclear overexpression is a sensor of malfunction of the major cell cycle regulatory pathways, and consequently a marker of a high tumor aggressivity.

  10. A deep learning model integrating FCNNs and CRFs for brain tumor segmentation.

    PubMed

    Zhao, Xiaomei; Wu, Yihong; Song, Guidong; Li, Zhenye; Zhang, Yazhuo; Fan, Yong

    2018-01-01

    Accurate and reliable brain tumor segmentation is a critical component in cancer diagnosis, treatment planning, and treatment outcome evaluation. Build upon successful deep learning techniques, a novel brain tumor segmentation method is developed by integrating fully convolutional neural networks (FCNNs) and Conditional Random Fields (CRFs) in a unified framework to obtain segmentation results with appearance and spatial consistency. We train a deep learning based segmentation model using 2D image patches and image slices in following steps: 1) training FCNNs using image patches; 2) training CRFs as Recurrent Neural Networks (CRF-RNN) using image slices with parameters of FCNNs fixed; and 3) fine-tuning the FCNNs and the CRF-RNN using image slices. Particularly, we train 3 segmentation models using 2D image patches and slices obtained in axial, coronal and sagittal views respectively, and combine them to segment brain tumors using a voting based fusion strategy. Our method could segment brain images slice-by-slice, much faster than those based on image patches. We have evaluated our method based on imaging data provided by the Multimodal Brain Tumor Image Segmentation Challenge (BRATS) 2013, BRATS 2015 and BRATS 2016. The experimental results have demonstrated that our method could build a segmentation model with Flair, T1c, and T2 scans and achieve competitive performance as those built with Flair, T1, T1c, and T2 scans. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Automated brain tumor segmentation in magnetic resonance imaging based on sliding-window technique and symmetry analysis.

    PubMed

    Lian, Yanyun; Song, Zhijian

    2014-01-01

    Brain tumor segmentation from magnetic resonance imaging (MRI) is an important step toward surgical planning, treatment planning, monitoring of therapy. However, manual tumor segmentation commonly used in clinic is time-consuming and challenging, and none of the existed automated methods are highly robust, reliable and efficient in clinic application. An accurate and automated tumor segmentation method has been developed for brain tumor segmentation that will provide reproducible and objective results close to manual segmentation results. Based on the symmetry of human brain, we employed sliding-window technique and correlation coefficient to locate the tumor position. At first, the image to be segmented was normalized, rotated, denoised, and bisected. Subsequently, through vertical and horizontal sliding-windows technique in turn, that is, two windows in the left and the right part of brain image moving simultaneously pixel by pixel in two parts of brain image, along with calculating of correlation coefficient of two windows, two windows with minimal correlation coefficient were obtained, and the window with bigger average gray value is the location of tumor and the pixel with biggest gray value is the locating point of tumor. At last, the segmentation threshold was decided by the average gray value of the pixels in the square with center at the locating point and 10 pixels of side length, and threshold segmentation and morphological operations were used to acquire the final tumor region. The method was evaluated on 3D FSPGR brain MR images of 10 patients. As a result, the average ratio of correct location was 93.4% for 575 slices containing tumor, the average Dice similarity coefficient was 0.77 for one scan, and the average time spent on one scan was 40 seconds. An fully automated, simple and efficient segmentation method for brain tumor is proposed and promising for future clinic use. Correlation coefficient is a new and effective feature for tumor location.

  12. Biomarkers to Distinguish Aggressive Cancers from Non-aggressive or Non-progressing Cancer — EDRN Public Portal

    Cancer.gov

    Distinguishing aggressive cancers from non-aggressive or non-progressing cancers is an issue of both clinical and public health importance particularly for those cancers with an available screening test. With respect to breast cancer, mammographic screening has been shown in randomized trials to reduce breast cancer mortality, but given the limitations of its sensitivity and specificity some breast cancers are missed by screening. These so called interval detected breast cancers diagnosed between regular screenings are known to have a more aggressive clinical profile. In addition, of those cancers detected by mammography some are indolent while others are more likely to recur despite treatment. The pilot study proposed herein is highly responsive to the EDRN supplement titled “Biomarkers to Distinguish Aggressive Cancers from Nonaggressive or Non-progressing Cancers” in that it addresses both of the research objectives related to these issues outlined in the notice for this supplement: Aim 1: To identify biomarkers in tumor tissue related to risk of interval detected vs. mammography screen detected breast cancer focusing on early stage invasive disease. We will compare gene expression profiles using the whole genome-cDNA-mediated Annealing, Selection, extension and Ligation (DASL) assay of 50 screen detected cancers to those of 50 interval detected cancers. Through this approach we will advance our understanding of the molecular characteristics of interval vs. screen detected breast cancers and discover novel biomarkers that distinguish between them. Aim 2: To identify biomarkers in tumor tissue related to risk of cancer recurrence among patients with screen detected early stage invasive breast cancer. Using the DASL assay we will compare gene expression profiles from screen detected early stage breast cancer that either recurred within five years or never recurred within five years. These two groups of patients will be matched on multiple factors including

  13. Automated brain tumor segmentation using spatial accuracy-weighted hidden Markov Random Field.

    PubMed

    Nie, Jingxin; Xue, Zhong; Liu, Tianming; Young, Geoffrey S; Setayesh, Kian; Guo, Lei; Wong, Stephen T C

    2009-09-01

    A variety of algorithms have been proposed for brain tumor segmentation from multi-channel sequences, however, most of them require isotropic or pseudo-isotropic resolution of the MR images. Although co-registration and interpolation of low-resolution sequences, such as T2-weighted images, onto the space of the high-resolution image, such as T1-weighted image, can be performed prior to the segmentation, the results are usually limited by partial volume effects due to interpolation of low-resolution images. To improve the quality of tumor segmentation in clinical applications where low-resolution sequences are commonly used together with high-resolution images, we propose the algorithm based on Spatial accuracy-weighted Hidden Markov random field and Expectation maximization (SHE) approach for both automated tumor and enhanced-tumor segmentation. SHE incorporates the spatial interpolation accuracy of low-resolution images into the optimization procedure of the Hidden Markov Random Field (HMRF) to segment tumor using multi-channel MR images with different resolutions, e.g., high-resolution T1-weighted and low-resolution T2-weighted images. In experiments, we evaluated this algorithm using a set of simulated multi-channel brain MR images with known ground-truth tissue segmentation and also applied it to a dataset of MR images obtained during clinical trials of brain tumor chemotherapy. The results show that more accurate tumor segmentation results can be obtained by comparing with conventional multi-channel segmentation algorithms.

  14. Progress on the diagnosis and evaluation of brain tumors

    PubMed Central

    Gao, Huile

    2013-01-01

    Abstract Brain tumors are one of the most challenging disorders encountered, and early and accurate diagnosis is essential for the management and treatment of these tumors. In this article, diagnostic modalities including single-photon emission computed tomography, positron emission tomography, magnetic resonance imaging, and optical imaging are reviewed. We mainly focus on the newly emerging, specific imaging probes, and their potential use in animal models and clinical settings. PMID:24334439

  15. Emergence of Convolutional Neural Network in Future Medicine: Why and How. A Review on Brain Tumor Segmentation

    NASA Astrophysics Data System (ADS)

    Alizadeh Savareh, Behrouz; Emami, Hassan; Hajiabadi, Mohamadreza; Ghafoori, Mahyar; Majid Azimi, Seyed

    2018-03-01

    Manual analysis of brain tumors magnetic resonance images is usually accompanied by some problem. Several techniques have been proposed for the brain tumor segmentation. This study will be focused on searching popular databases for related studies, theoretical and practical aspects of Convolutional Neural Network surveyed in brain tumor segmentation. Based on our findings, details about related studies including the datasets used, evaluation parameters, preferred architectures and complementary steps analyzed. Deep learning as a revolutionary idea in image processing, achieved brilliant results in brain tumor segmentation too. This can be continuing until the next revolutionary idea emerging.

  16. Adult Brain Tumors and Pseudotumors: Interesting (Bizarre) Cases.

    PubMed

    Causil, Lazaro D; Ames, Romy; Puac, Paulo; Castillo, Mauricio

    2016-11-01

    Some brain tumors results are interesting due to their rarity at presentation and overwhelming imaging characteristics, posing a diagnostic challenge in the eyes of any experienced neuroradiologist. This article focuses on the most important features regarding epidemiology, location, clinical presentation, histopathology, and imaging findings of cases considered "bizarre." A review of the most recent literature dealing with these unusual tumors and pseudotumors is presented, highlighting key points related to the diagnosis, treatments, outcomes, and differential diagnosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Covalent nano delivery systems for selective imaging and treatment of brain tumors.

    PubMed

    Ljubimova, Julia Y; Sun, Tao; Mashouf, Leila; Ljubimov, Alexander V; Israel, Liron L; Ljubimov, Vladimir A; Falahatian, Vida; Holler, Eggehard

    2017-04-01

    Nanomedicine is a rapidly evolving form of therapy that holds a great promise for superior drug delivery efficiency and therapeutic efficacy than conventional cancer treatment. In this review, we attempt to cover the benefits and the limitations of current nanomedicines with special attention to covalent nano conjugates for imaging and drug delivery in the brain. The improvement in brain tumor treatment remains dismal despite decades of efforts in drug development and patient care. One of the major obstacles in brain cancer treatment is the poor drug delivery efficiency owing to the unique blood-brain barrier (BBB) in the CNS. Although various anti-cancer agents are available to treat tumors outside of the CNS, the majority fails to cross the BBB. In this regard, nanomedicines have increasingly drawn attention due to their multi-functionality and versatility. Nano drugs can penetrate BBB and other biological barriers, and selectively accumulate in tumor cells, while concurrently decreasing systemic toxicity. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Educational level of childhood brain tumor survivors: results from a German survey.

    PubMed

    Pfitzer, C; Zynda, A; Hohmann, C; Keil, T; Borgmann-Staudt, A

    2013-05-01

    Among adult survivors of childhood brain tumors in Germany, we assessed their educational level and examined potentially influencing factors. A questionnaire was sent to 505 childhood brain tumor survivors listed in the German Childhood Cancer Registry. 203/505 (40.2%) patients with treatment and educational data were included in the analysis.Of the included brain tumor survivors 54.7% (111/203) were male, the median age was 11.0 (1-15) years at diagnosis and 22.0 (19-37) years at the time of the survey. 34.8% (95%-CI 25.1-44.5) of female and 34.9% (26.0-43.8) of male survivors achieved a high school diploma. Survivors who had received irradiation had less likely obtained a high school diploma compared to those without irradiation. However, this association was statistically not significant: for either craniospinal or tumor irradiation adjusted odds ratio was 0.54 (0.08-3.76); for those with a combination of craniospinal and tumor irradiation 0.51 (0.07-3.59). Participants aged 6-10 years at diagnosis achieved a higher educational level 2.24 (0.45-11.25) compared to younger patients. A third of the childhood brain tumor survivors who participated in our survey obtained the highest school leaving certificate. This may be biased by an overrepresentation of well-educated survivors without major cancer-related late effects. The influence of the patients' strong motivation following a severe illness combined with the intensive psychosocial and/or pedagogical support on education needs to be examined in future studies. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Focused ultrasound delivery of Raman nanoparticles across the blood-brain barrier: potential for targeting experimental brain tumors.

    PubMed

    Diaz, Roberto Jose; McVeigh, Patrick Z; O'Reilly, Meaghan A; Burrell, Kelly; Bebenek, Matthew; Smith, Christian; Etame, Arnold B; Zadeh, Gelareh; Hynynen, Kullervo; Wilson, Brian C; Rutka, James T

    2014-07-01

    Spectral mapping of nanoparticles with surface enhanced Raman scattering (SERS) capability in the near-infrared range is an emerging molecular imaging technique. We used magnetic resonance image-guided transcranial focused ultrasound (TcMRgFUS) to reversibly disrupt the blood-brain barrier (BBB) adjacent to brain tumor margins in rats. Glioma cells were found to internalize SERS capable nanoparticles of 50nm or 120nm physical diameter. Surface coating with anti-epidermal growth factor receptor antibody or non-specific human immunoglobulin G, resulted in enhanced cell uptake of nanoparticles in-vitro compared to nanoparticles with methyl terminated 12-unit polyethylene glycol surface. BBB disruption permitted the delivery of SERS capable spherical 50 or 120nm gold nanoparticles to the tumor margins. Thus, nanoparticles with SERS imaging capability can be delivered across the BBB non-invasively using TcMRgFUS and have the potential to be used as optical tracking agents at the invasive front of malignant brain tumors. This study demonstrates the use of magnetic resonance image-guided transcranial focused ultrasound to open the BBB and enable spectral mapping of nanoparticles with surface enhanced Raman scattering (SERS)-based molecular imaging for experimental tumor tracking. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Patient-specific model-based segmentation of brain tumors in 3D intraoperative ultrasound images.

    PubMed

    Ilunga-Mbuyamba, Elisee; Avina-Cervantes, Juan Gabriel; Lindner, Dirk; Arlt, Felix; Ituna-Yudonago, Jean Fulbert; Chalopin, Claire

    2018-03-01

    Intraoperative ultrasound (iUS) imaging is commonly used to support brain tumor operation. The tumor segmentation in the iUS images is a difficult task and still under improvement because of the low signal-to-noise ratio. The success of automatic methods is also limited due to the high noise sensibility. Therefore, an alternative brain tumor segmentation method in 3D-iUS data using a tumor model obtained from magnetic resonance (MR) data for local MR-iUS registration is presented in this paper. The aim is to enhance the visualization of the brain tumor contours in iUS. A multistep approach is proposed. First, a region of interest (ROI) based on the specific patient tumor model is defined. Second, hyperechogenic structures, mainly tumor tissues, are extracted from the ROI of both modalities by using automatic thresholding techniques. Third, the registration is performed over the extracted binary sub-volumes using a similarity measure based on gradient values, and rigid and affine transformations. Finally, the tumor model is aligned with the 3D-iUS data, and its contours are represented. Experiments were successfully conducted on a dataset of 33 patients. The method was evaluated by comparing the tumor segmentation with expert manual delineations using two binary metrics: contour mean distance and Dice index. The proposed segmentation method using local and binary registration was compared with two grayscale-based approaches. The outcomes showed that our approach reached better results in terms of computational time and accuracy than the comparative methods. The proposed approach requires limited interaction and reduced computation time, making it relevant for intraoperative use. Experimental results and evaluations were performed offline. The developed tool could be useful for brain tumor resection supporting neurosurgeons to improve tumor border visualization in the iUS volumes.

  1. Semiquantitative Analysis Using Thallium-201 SPECT for Differential Diagnosis Between Tumor Recurrence and Radiation Necrosis After Gamma Knife Surgery for Malignant Brain Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsunaga, Shigeo, E-mail: shigeo-m@mui.biglobe.ne.jp; Shuto, Takashi; Takase, Hajime

    Purpose: Semiquantitative analysis of thallium-201 chloride single photon emission computed tomography ({sup 201}Tl SPECT) was evaluated for the discrimination between recurrent brain tumor and delayed radiation necrosis after gamma knife surgery (GKS) for metastatic brain tumors and high-grade gliomas. Methods and Materials: The medical records were reviewed of 75 patients, including 48 patients with metastatic brain tumor and 27 patients with high-grade glioma who underwent GKS in our institution, and had suspected tumor recurrence or radiation necrosis on follow-up neuroimaging and deteriorating clinical status after GKS. Analysis of {sup 201}Tl SPECT data used the early ratio (ER) and the delayedmore » ratio (DR) calculated as tumor/normal average counts on the early and delayed images, and the retention index (RI) as the ratio of DR to ER. Results: A total of 107 tumors were analyzed with {sup 201}Tl SPECT. Nineteen lesions were removed surgically and histological diagnoses established, and the other lesions were evaluated with follow-up clinical and neuroimaging examinations after GKS. The final diagnosis was considered to be recurrent tumor in 65 lesions and radiation necrosis in 42 lesions. Semiquantitative analysis demonstrated significant differences in DR (P=.002) and RI (P<.0001), but not in ER (P=.372), between the tumor recurrence and radiation necrosis groups, and no significant differences between metastatic brain tumors and high-grade gliomas in all indices (P=.926 for ER, P=.263 for DR, and P=.826 for RI). Receiver operating characteristics analysis indicated that RI was the most informative index with the optimum threshold of 0.775, which provided 82.8% sensitivity, 83.7% specificity, and 82.8% accuracy. Conclusions: Semiquantitative analysis of {sup 201}Tl SPECT provides useful information for the differentiation between tumor recurrence and radiation necrosis in metastatic brain tumors and high-grade gliomas after GKS, and the RI may be the

  2. A fractional motion diffusion model for grading pediatric brain tumors.

    PubMed

    Karaman, M Muge; Wang, He; Sui, Yi; Engelhard, Herbert H; Li, Yuhua; Zhou, Xiaohong Joe

    2016-01-01

    To demonstrate the feasibility of a novel fractional motion (FM) diffusion model for distinguishing low- versus high-grade pediatric brain tumors; and to investigate its possible advantage over apparent diffusion coefficient (ADC) and/or a previously reported continuous-time random-walk (CTRW) diffusion model. With approval from the institutional review board and written informed consents from the legal guardians of all participating patients, this study involved 70 children with histopathologically-proven brain tumors (30 low-grade and 40 high-grade). Multi- b -value diffusion images were acquired and analyzed using the FM, CTRW, and mono-exponential diffusion models. The FM parameters, D fm , φ , ψ (non-Gaussian diffusion statistical measures), and the CTRW parameters, D m , α , β (non-Gaussian temporal and spatial diffusion heterogeneity measures) were compared between the low- and high-grade tumor groups by using a Mann-Whitney-Wilcoxon U test. The performance of the FM model for differentiating between low- and high-grade tumors was evaluated and compared with that of the CTRW and the mono-exponential models using a receiver operating characteristic (ROC) analysis. The FM parameters were significantly lower ( p  < 0.0001) in the high-grade ( D fm : 0.81 ± 0.26, φ : 1.40 ± 0.10, ψ : 0.42 ± 0.11) than in the low-grade ( D fm : 1.52 ± 0.52, φ : 1.64 ± 0.13, ψ : 0.67 ± 0.13) tumor groups. The ROC analysis showed that the FM parameters offered better specificity (88% versus 73%), sensitivity (90% versus 82%), accuracy (88% versus 78%), and area under the curve (AUC, 93% versus 80%) in discriminating tumor malignancy compared to the conventional ADC. The performance of the FM model was similar to that of the CTRW model. Similar to the CTRW model, the FM model can improve differentiation between low- and high-grade pediatric brain tumors over ADC.

  3. Non-invasive intraoperative optical coherence tomography of the resection cavity during surgery of intrinsic brain tumors

    NASA Astrophysics Data System (ADS)

    Giese, A.; Böhringer, H. J.; Leppert, J.; Kantelhardt, S. R.; Lankenau, E.; Koch, P.; Birngruber, R.; Hüttmann, G.

    2006-02-01

    Optical coherence tomography (OCT) is a non-invasive imaging technique with a micrometer resolution. It allows non-contact / non-invasive analysis of central nervous system tissues with a penetration depth of 1-3,5 mm reaching a spatial resolution of approximately 4-15 μm. We have adapted spectral-domain OCT (SD-OCT) and time-domain OCT (TD-OCT) for intraoperative detection of residual tumor during brain tumor surgery. Human brain tumor tissue and areas of the resection cavity were analyzed during the resection of gliomas using this new technology. The site of analysis was registered using a neuronavigation system and biopsies were taken and submitted to routine histology. We have used post image acquisition processing to compensate for movements of the brain and to realign A-scan images for calculation of a light attenuation factor. OCT imaging of normal cortex and white matter showed a typical light attenuation profile. Tumor tissue depending on the cellularity of the specimen showed a loss of the normal light attenuation profile resulting in altered light attenuation coefficients compared to normal brain. Based on this parameter and the microstructure of the tumor tissue, which was entirely absent in normal tissue, OCT analysis allowed the discrimination of normal brain tissue, invaded brain, solid tumor tissue, and necrosis. Following macroscopically complete resections OCT analysis of the resection cavity displayed the typical microstructure and light attenuation profile of tumor tissue in some specimens, which in routine histology contained microscopic residual tumor tissue. We have demonstrated that this technology may be applied to the intraoperative detection of residual tumor during resection of human gliomas.

  4. Automatic metastatic brain tumor segmentation for stereotactic radiosurgery applications.

    PubMed

    Liu, Yan; Stojadinovic, Strahinja; Hrycushko, Brian; Wardak, Zabi; Lu, Weiguo; Yan, Yulong; Jiang, Steve B; Timmerman, Robert; Abdulrahman, Ramzi; Nedzi, Lucien; Gu, Xuejun

    2016-12-21

    The objective of this study is to develop an automatic segmentation strategy for efficient and accurate metastatic brain tumor delineation on contrast-enhanced T1-weighted (T1c) magnetic resonance images (MRI) for stereotactic radiosurgery (SRS) applications. The proposed four-step automatic brain metastases segmentation strategy is comprised of pre-processing, initial contouring, contour evolution, and contour triage. First, T1c brain images are preprocessed to remove the skull. Second, an initial tumor contour is created using a multi-scaled adaptive threshold-based bounding box and a super-voxel clustering technique. Third, the initial contours are evolved to the tumor boundary using a regional active contour technique. Fourth, all detected false-positive contours are removed with geometric characterization. The segmentation process was validated on a realistic virtual phantom containing Gaussian or Rician noise. For each type of noise distribution, five different noise levels were tested. Twenty-one cases from the multimodal brain tumor image segmentation (BRATS) challenge dataset and fifteen clinical metastases cases were also included in validation. Segmentation performance was quantified by the Dice coefficient (DC), normalized mutual information (NMI), structural similarity (SSIM), Hausdorff distance (HD), mean value of surface-to-surface distance (MSSD) and standard deviation of surface-to-surface distance (SDSSD). In the numerical phantom study, the evaluation yielded a DC of 0.98  ±  0.01, an NMI of 0.97  ±  0.01, an SSIM of 0.999  ±  0.001, an HD of 2.2  ±  0.8 mm, an MSSD of 0.1  ±  0.1 mm, and an SDSSD of 0.3  ±  0.1 mm. The validation on the BRATS data resulted in a DC of 0.89  ±  0.08, which outperform the BRATS challenge algorithms. Evaluation on clinical datasets gave a DC of 0.86  ±  0.09, an NMI of 0.80  ±  0.11, an SSIM of 0.999  ±  0.001, an HD of 8

  5. Automatic metastatic brain tumor segmentation for stereotactic radiosurgery applications

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Stojadinovic, Strahinja; Hrycushko, Brian; Wardak, Zabi; Lu, Weiguo; Yan, Yulong; Jiang, Steve B.; Timmerman, Robert; Abdulrahman, Ramzi; Nedzi, Lucien; Gu, Xuejun

    2016-12-01

    The objective of this study is to develop an automatic segmentation strategy for efficient and accurate metastatic brain tumor delineation on contrast-enhanced T1-weighted (T1c) magnetic resonance images (MRI) for stereotactic radiosurgery (SRS) applications. The proposed four-step automatic brain metastases segmentation strategy is comprised of pre-processing, initial contouring, contour evolution, and contour triage. First, T1c brain images are preprocessed to remove the skull. Second, an initial tumor contour is created using a multi-scaled adaptive threshold-based bounding box and a super-voxel clustering technique. Third, the initial contours are evolved to the tumor boundary using a regional active contour technique. Fourth, all detected false-positive contours are removed with geometric characterization. The segmentation process was validated on a realistic virtual phantom containing Gaussian or Rician noise. For each type of noise distribution, five different noise levels were tested. Twenty-one cases from the multimodal brain tumor image segmentation (BRATS) challenge dataset and fifteen clinical metastases cases were also included in validation. Segmentation performance was quantified by the Dice coefficient (DC), normalized mutual information (NMI), structural similarity (SSIM), Hausdorff distance (HD), mean value of surface-to-surface distance (MSSD) and standard deviation of surface-to-surface distance (SDSSD). In the numerical phantom study, the evaluation yielded a DC of 0.98  ±  0.01, an NMI of 0.97  ±  0.01, an SSIM of 0.999  ±  0.001, an HD of 2.2  ±  0.8 mm, an MSSD of 0.1  ±  0.1 mm, and an SDSSD of 0.3  ±  0.1 mm. The validation on the BRATS data resulted in a DC of 0.89  ±  0.08, which outperform the BRATS challenge algorithms. Evaluation on clinical datasets gave a DC of 0.86  ±  0.09, an NMI of 0.80  ±  0.11, an SSIM of 0.999  ±  0.001, an HD of 8

  6. Detecting brain tumor in pathological slides using hyperspectral imaging

    PubMed Central

    Ortega, Samuel; Fabelo, Himar; Camacho, Rafael; de la Luz Plaza, María; Callicó, Gustavo M.; Sarmiento, Roberto

    2018-01-01

    Hyperspectral imaging (HSI) is an emerging technology for medical diagnosis. This research work presents a proof-of-concept on the use of HSI data to automatically detect human brain tumor tissue in pathological slides. The samples, consisting of hyperspectral cubes collected from 400 nm to 1000 nm, were acquired from ten different patients diagnosed with high-grade glioma. Based on the diagnosis provided by pathologists, a spectral library of normal and tumor tissues was created and processed using three different supervised classification algorithms. Results prove that HSI is a suitable technique to automatically detect high-grade tumors from pathological slides. PMID:29552415

  7. Detecting brain tumor in pathological slides using hyperspectral imaging.

    PubMed

    Ortega, Samuel; Fabelo, Himar; Camacho, Rafael; de la Luz Plaza, María; Callicó, Gustavo M; Sarmiento, Roberto

    2018-02-01

    Hyperspectral imaging (HSI) is an emerging technology for medical diagnosis. This research work presents a proof-of-concept on the use of HSI data to automatically detect human brain tumor tissue in pathological slides. The samples, consisting of hyperspectral cubes collected from 400 nm to 1000 nm, were acquired from ten different patients diagnosed with high-grade glioma. Based on the diagnosis provided by pathologists, a spectral library of normal and tumor tissues was created and processed using three different supervised classification algorithms. Results prove that HSI is a suitable technique to automatically detect high-grade tumors from pathological slides.

  8. Intra-Arterial Chemotherapy with Osmotic Blood-Brain Barrier Disruption for Aggressive Oligodendroglial tumors: Results of a Phase I Study

    PubMed Central

    Guillaume, Daniel J.; Doolittle, Nancy D.; Gahramanov, Seymur; Hedrick, Nancy A.; Delashaw, Johnny B.; Neuwelt, Edward A.

    2009-01-01

    Objective Refractory anaplastic oligodendroglioma (AO) and oligoastrocytoma (OA) tumors are challenging to treat. This trial primarily evaluated toxicity and estimated the maximum tolerated dose (MTD) of intra-arterial (IA) melphalan, IA carboplatin and intravenous (IV) etoposide phosphate in conjunction with blood-brain barrier disruption (BBBD) in these tumors. The secondary measure was efficacy. Methods Thirteen subjects with temozolomide (TMZ) - refractory AO (11) or OA (2) underwent BBBD with carboplatin (IA, 200 mg/m2/day), etoposide phosphate (IV, 200 mg/m2/day), and melphalan (IA, dose escalation) every 4 weeks, for up to 1 year. Subjects underwent melphalan dose escalation (4, 8, 12, 16, and 20 mg/m2/day) until the MTD (one level below that producing grade 4 toxicity) was determined. Toxicity and efficacy were assessed. Results Two of four subjects receiving IA melphalan at 8 mg/m2/day developed grade 4 thrombocytopenia, thus the melphalan MTD was 4 mg/m2/day. Adverse events included asymptomatic subintimal tear (1 subject) and grade 4 thrombocytopenia (3 subjects). Two subjects demonstrated complete response, 3 had partial responses, 5 demonstrated stable disease and 3 progressed. Median overall PFS was 11 months. Subjects with complete or partial response demonstrated deletion of chromosomes 1p and 19q. In the 5 subjects with stable disease, 2 demonstrated 1p and 19q deletion and 3 demonstrated 19q deletion only. Conclusion In these patients with AO or OA tumors who failed TMZ, osmotic BBBD with IA carboplatin, IV etoposide phosphate, and IA melphalan (4mg/m2/day for 2 days) shows acceptable toxicity and encouraging efficacy, especially in subjects demonstrating 1p and/or 19q deletion. PMID:20023537

  9. Stem cell-based therapies for tumors in the brain: are we there yet?

    PubMed

    Shah, Khalid

    2016-08-01

    Advances in understanding adult stem cell biology have facilitated the development of novel cell-based therapies for cancer. Recent developments in conventional therapies (eg, tumor resection techniques, chemotherapy strategies, and radiation therapy) for treating both metastatic and primary tumors in the brain, particularly glioblastoma have not resulted in a marked increase in patient survival. Preclinical studies have shown that multiple stem cell types exhibit inherent tropism and migrate to the sites of malignancy. Recent studies have validated the feasibility potential of using engineered stem cells as therapeutic agents to target and eliminate malignant tumor cells in the brain. This review will discuss the recent progress in the therapeutic potential of stem cells for tumors in the brain and also provide perspectives for future preclinical studies and clinical translation. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. A novel pre-clinical in vivo mouse model for malignant brain tumor growth and invasion.

    PubMed

    Shelton, Laura M; Mukherjee, Purna; Huysentruyt, Leanne C; Urits, Ivan; Rosenberg, Joshua A; Seyfried, Thomas N

    2010-09-01

    Glioblastoma multiforme (GBM) is a rapidly progressive disease of morbidity and mortality and is the most common form of primary brain cancer in adults. Lack of appropriate in vivo models has been a major roadblock to developing effective therapies for GBM. A new highly invasive in vivo GBM model is described that was derived from a spontaneous brain tumor (VM-M3) in the VM mouse strain. Highly invasive tumor cells could be identified histologically on the hemisphere contralateral to the hemisphere implanted with tumor cells or tissue. Tumor cells were highly expressive for the chemokine receptor CXCR4 and the proliferation marker Ki-67 and could be identified invading through the pia mater, the vascular system, the ventricular system, around neurons, and over white matter tracts including the corpus callosum. In addition, the brain tumor cells were labeled with the firefly luciferase gene, allowing for non-invasive detection and quantitation through bioluminescent imaging. The VM-M3 tumor has a short incubation time with mortality occurring in 100% of the animals within approximately 15 days. The VM-M3 brain tumor model therefore can be used in a pre-clinical setting for the rapid evaluation of novel anti-invasive therapies.

  11. Cell phones and brain tumors: a review including the long-term epidemiologic data.

    PubMed

    Khurana, Vini G; Teo, Charles; Kundi, Michael; Hardell, Lennart; Carlberg, Michael

    2009-09-01

    The debate regarding the health effects of low-intensity electromagnetic radiation from sources such as power lines, base stations, and cell phones has recently been reignited. In the present review, the authors attempt to address the following question: is there epidemiologic evidence for an association between long-term cell phone usage and the risk of developing a brain tumor? Included with this meta-analysis of the long-term epidemiologic data are a brief overview of cell phone technology and discussion of laboratory data, biological mechanisms, and brain tumor incidence. In order to be included in the present meta-analysis, studies were required to have met all of the following criteria: (i) publication in a peer-reviewed journal; (ii) inclusion of participants using cell phones for > or = 10 years (ie, minimum 10-year "latency"); and (iii) incorporation of a "laterality" analysis of long-term users (ie, analysis of the side of the brain tumor relative to the side of the head preferred for cell phone usage). This is a meta-analysis incorporating all 11 long-term epidemiologic studies in this field. The results indicate that using a cell phone for > or = 10 years approximately doubles the risk of being diagnosed with a brain tumor on the same ("ipsilateral") side of the head as that preferred for cell phone use. The data achieve statistical significance for glioma and acoustic neuroma but not for meningioma. The authors conclude that there is adequate epidemiologic evidence to suggest a link between prolonged cell phone usage and the development of an ipsilateral brain tumor.

  12. Detecting brain tumor in computed tomography images using Markov random fields and fuzzy C-means clustering techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdulbaqi, Hayder Saad; Department of Physics, College of Education, University of Al-Qadisiya, Al-Qadisiya; Jafri, Mohd Zubir Mat

    Brain tumors, are an abnormal growth of tissues in the brain. They may arise in people of any age. They must be detected early, diagnosed accurately, monitored carefully, and treated effectively in order to optimize patient outcomes regarding both survival and quality of life. Manual segmentation of brain tumors from CT scan images is a challenging and time consuming task. Size and location accurate detection of brain tumor plays a vital role in the successful diagnosis and treatment of tumors. Brain tumor detection is considered a challenging mission in medical image processing. The aim of this paper is to introducemore » a scheme for tumor detection in CT scan images using two different techniques Hidden Markov Random Fields (HMRF) and Fuzzy C-means (FCM). The proposed method has been developed in this research in order to construct hybrid method between (HMRF) and threshold. These methods have been applied on 4 different patient data sets. The result of comparison among these methods shows that the proposed method gives good results for brain tissue detection, and is more robust and effective compared with (FCM) techniques.« less

  13. Intraoperative delineation of primary brain tumors using time-resolved fluorescence spectroscopy

    PubMed Central

    Butte, Pramod V.; Fang, Qiyin; Jo, Javier A.; Yong, William H.; Pikul, Brian K.; Black, Keith L.; Marcu, Laura

    2010-01-01

    The goal of this study is to determine the potential of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as an adjunctive tool for delineation of brain tumor from surrounding normal tissue in order to assist the neurosurgeon in near-complete tumor excision. A time-domain TR-LIFS prototype apparatus (gated photomultiplier detection, fast digitizer) was used for recording tissue autofluorescence in normal cortex (NC), normal white matter (NWM), and various grades of gliomas intraoperatively. Tissue fluorescence was induced with a pulsed nitrogen laser (337nm, 700ps), and the intensity decay profiles were recorded in the 360-to550-nm spectral range (10-nm interval). Histopathological analysis (hematoxylin & eosin) of the biopsy samples taken from the site of TR-LIFS measurements was used for validation of spectroscopic results. Preliminary results on 17 patients demonstrate that normal cortex (N=16) and normal white matter (N=3) show two peaks of fluorescence emission at 390nm(lifetime=1.8±0.3ns) and 460nm(lifetime=0.8±0.1ns). The 390-nm emission peak is absent in low-grade glioma (N=5; lifetime=1.1ns) and reduced in high-grade glioma (N=9; lifetime=1.7±0.4ns). The emission characteristics at 460nm in all tissues correlated with the nicotinamide adenine dinucleotide fluorescence (peak: 440to460nm; lifetime: 0.8to1.0ns). These findings demonstrate the potential of using TR-LIFS as a tool for enhanced delineation of brain tumors during surgery. In addition, this study evaluates similarities and differences between TR-LIFS signatures of brain tumors obtained in vivo and those previously reported in ex vivo brain tumor specimens. PMID:20459282

  14. ¹H MRS characterization of neurochemical profiles in orthotopic mouse models of human brain tumors.

    PubMed

    Hulsey, Keith M; Mashimo, Tomoyuki; Banerjee, Abhishek; Soesbe, Todd C; Spence, Jeffrey S; Vemireddy, Vamsidhara; Maher, Elizabeth A; Bachoo, Robert M; Choi, Changho

    2015-01-01

    Glioblastoma (GBM), the most common primary brain tumor, is resistant to currently available treatments. The development of mouse models of human GBM has provided a tool for studying mechanisms involved in tumor initiation and growth as well as a platform for preclinical investigation of new drugs. In this study we used (1) H MR spectroscopy to study the neurochemical profile of a human orthotopic tumor (HOT) mouse model of human GBM. The goal of this study was to evaluate differences in metabolite concentrations in the GBM HOT mice when compared with normal mouse brain in order to determine if MRS could reliably differentiate tumor from normal brain. A TE =19 ms PRESS sequence at 9.4 T was used for measuring metabolite levels in 12 GBM mice and 8 healthy mice. Levels for 12 metabolites and for lipids/macromolecules at 0.9 ppm and at 1.3 ppm were reliably detected in all mouse spectra. The tumors had significantly lower concentrations of total creatine, GABA, glutamate, total N-acetylaspartate, aspartate, lipids/macromolecules at 0.9 ppm, and lipids/macromolecules at 1.3 ppm than did the brains of normal mice. The concentrations of glycine and lactate, however, were significantly higher in tumors than in normal brain. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Atopic conditions and brain tumor risk in children and adolescents--an international case-control study (CEFALO).

    PubMed

    Shu, X; Prochazka, M; Lannering, B; Schüz, J; Röösli, M; Tynes, T; Kuehni, C E; Andersen, T V; Infanger, D; Schmidt, L S; Poulsen, A H; Klaeboe, L; Eggen, T; Feychting, M

    2014-04-01

    A number of epidemiological studies indicate an inverse association between atopy and brain tumors in adults, particularly gliomas. We investigated the association between atopic disorders and intracranial brain tumors in children and adolescents, using international collaborative CEFALO data. CEFALO is a population-based case-control study conducted in Denmark, Norway, Sweden, and Switzerland, including all children and adolescents in the age range 7-19 years diagnosed with a primary brain tumor between 2004 and 2008. Two controls per case were randomly selected from population registers matched on age, sex, and geographic region. Information about atopic conditions and potential confounders was collected through personal interviews. In total, 352 cases (83%) and 646 controls (71%) participated in the study. For all brain tumors combined, there was no association between ever having had an atopic disorder and brain tumor risk [odds ratio 1.03; 95% confidence interval (CI) 0.70-1.34]. The OR was 0.76 (95% CI 0.53-1.11) for a current atopic condition (in the year before diagnosis) and 1.22 (95% CI 0.86-1.74) for an atopic condition in the past. Similar results were observed for glioma. There was no association between atopic conditions and risk of all brain tumors combined or of glioma in particular. Stratification on current or past atopic conditions suggested the possibility of reverse causality, but may also the result of random variation because of small numbers in subgroups. In addition, an ongoing tumor treatment may affect the manifestation of atopic conditions, which could possibly affect recall when reporting about a history of atopic diseases. Only a few studies on atopic conditions and pediatric brain tumors are currently available, and the evidence is conflicting.

  16. Neurobiological factors in aggressive behavior.

    PubMed

    Garza-Treviño, E S

    1994-07-01

    The author's aim was to review literature in the neurosciences and psychiatric clinical research reports about biological factors in aggression and the pathophysiological mechanisms that accompany aggression in neuropsychiatric syndromes. Studies were located through computer searches of relevant experimental reports and review articles mainly from the last 25 years. Several studies using neuroimaging and neurophysiological and neuropathological research techniques have identified lesions in the limbic structures, temporal lobes, and frontal lobes of the brain in abnormally aggressive individuals. Several reports have associated deficiency or dysregulation of serotonin with homicidal, suicidal, and impulsive behavior. However, few studies have focused on polypeptides or second messenger systems, although abnormalities in these systems have been reported in patients with neuropsychiatric syndromes who have shown aggressive behavior. Even fewer studies focus on the correlation of brain structures and metabolic markers. The understanding of aggressive behavior in psychiatric patients is fragmented. Some explanations are speculative and extrapolated to clinical psychiatric syndromes from experimental data on the neurophysiology of cats, rats, and other mammals. Identification of biochemical markers that can be used in predicting patients' response to pharmacological interventions may be the next step in developing more rational treatment of violent patients.

  17. Impact of Blood-Brain Barrier Integrity on Tumor Growth and Therapy Response in Brain Metastases.

    PubMed

    Osswald, Matthias; Blaes, Jonas; Liao, Yunxiang; Solecki, Gergely; Gömmel, Miriam; Berghoff, Anna S; Salphati, Laurent; Wallin, Jeffrey J; Phillips, Heidi S; Wick, Wolfgang; Winkler, Frank

    2016-12-15

    The role of blood-brain barrier (BBB) integrity for brain tumor biology and therapy is a matter of debate. We developed a new experimental approach using in vivo two-photon imaging of mouse brain metastases originating from a melanoma cell line to investigate the growth kinetics of individual tumor cells in response to systemic delivery of two PI3K/mTOR inhibitors over time, and to study the impact of microregional vascular permeability. The two drugs are closely related but differ regarding a minor chemical modification that greatly increases brain penetration of one drug. Both inhibitors demonstrated a comparable inhibition of downstream targets and melanoma growth in vitro In vivo, increased BBB permeability to sodium fluorescein was associated with accelerated growth of individual brain metastases. Melanoma metastases with permeable microvessels responded similarly to equivalent doses of both inhibitors. In contrast, metastases with an intact BBB showed an exclusive response to the brain-penetrating inhibitor. The latter was true for macro- and micrometastases, and even single dormant melanoma cells. Nuclear morphology changes and single-cell regression patterns implied that both inhibitors, if extravasated, target not only perivascular melanoma cells but also those distant to blood vessels. Our study provides the first direct evidence that nonpermeable brain micro- and macrometastases can effectively be targeted by a drug designed to cross the BBB. Small-molecule inhibitors with these optimized properties are promising agents in preventing or treating brain metastases in patients. Clin Cancer Res; 22(24); 6078-87. ©2016 AACRSee related commentary by Steeg et al., p. 5953. ©2016 American Association for Cancer Research.

  18. Coagulation Alteration and Deep Vein Thrombosis in Brain Tumor Patients During the Perioperative Period.

    PubMed

    Guo, Xiaopeng; Zhang, Fa; Wu, Yue; Gao, Lu; Wang, Qiang; Wang, Zihao; Feng, Chenzhe; Yang, Yi; Xing, Bing; Xu, Zhiqin

    2018-06-01

    To explore coagulation function in patients with brain tumors before and after craniotomy and tumor resection and to analyze its correlation with deep vein thrombosis (DVT). This study enrolled 133 consecutive patients with brain tumors. Coagulation evaluation and limb venous ultrasonography were performed before and after surgery. Clinical characteristics and dynamic changes in coagulation parameters were recorded, and their correlations with DVT were analyzed. The incidence of postoperative DVT in patients with brain tumors was 10.5%. The average age of patients with DVT was older compared with patients without DVT (63.21 ± 11.21 years vs. 50.24 ± 11.95 years, P < 0.001), and the incidence of hepatitis B (21% vs. 4%, P = 0.035) was higher in patients with DVT compared with patients without DVT. D-dimer and fibrinogen were the most variable parameters during the perioperative period. In patients with DVT, D-dimer levels displayed a "zigzagging-rise" trend and were significantly higher than levels in patients without DVT. Platelet levels displayed a "first-descend-then-rise" trend and were significantly lower in patients with DVT on the second and third postoperative days. In patients with brain tumors, D-dimer and fibrinogen were elevated postoperatively, manifesting as hypercoagulability. Postoperative DVT was correlated with aging and hepatitis B. A "zigzagging-rise" trend of D-dimer and a "sharp-descent" trend of platelets in the early postoperative period might predict DVT in patients with brain tumors. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Metabolomic signatures of aggressive prostate cancer.

    PubMed

    McDunn, Jonathan E; Li, Zhen; Adam, Klaus-Peter; Neri, Bruce P; Wolfert, Robert L; Milburn, Michael V; Lotan, Yair; Wheeler, Thomas M

    2013-10-01

    Current diagnostic techniques have increased the detection of prostate cancer; however, these tools inadequately stratify patients to minimize mortality. Recent studies have identified a biochemical signature of prostate cancer metastasis, including increased sarcosine abundance. This study examined the association of tissue metabolites with other clinically significant findings. A state of the art metabolomics platform analyzed prostatectomy tissues (331 prostate tumor, 178 cancer-free prostate tissues) from two independent sites. Biochemicals were analyzed by gas chromatography-mass spectrometry and ultrahigh performance liquid chromatography-tandem mass spectrometry. Statistical analyses identified metabolites associated with cancer aggressiveness: Gleason score, extracapsular extension, and seminal vesicle and lymph node involvement. Prostate tumors had significantly altered metabolite profiles compared to cancer-free prostate tissues, including biochemicals associated with cell growth, energetics, stress, and loss of prostate-specific biochemistry. Many metabolites were further associated with clinical findings of aggressive disease. Aggressiveness-associated metabolites stratified prostate tumor tissues with high abundances of compounds associated with normal prostate function (e.g., citrate and polyamines) from more clinically advanced prostate tumors. These aggressive prostate tumors were further subdivided by abundance profiles of metabolites including NAD+ and kynurenine. When added to multiparametric nomograms, metabolites improved prediction of organ confinement (AUROC from 0.53 to 0.62) and 5-year recurrence (AUROC from 0.53 to 0.64). These findings support and extend earlier metabolomic studies in prostate cancer and studies where metabolic enzymes have been associated with carcinogenesis and/or outcome. Furthermore, these data suggest that panels of analytes may be valuable to translate metabolomic findings to clinically useful diagnostic tests

  20. The case for DNA methylation based molecular profiling to improve diagnostic accuracy for central nervous system embryonal tumors (not otherwise specified) in adults.

    PubMed

    Halliday, Gail C; Junckerstorff, Reimar C; Bentel, Jacqueline M; Miles, Andrew; Jones, David T W; Hovestadt, Volker; Capper, David; Endersby, Raelene; Cole, Catherine H; van Hagen, Tom; Gottardo, Nicholas G

    2018-01-01

    Central nervous system primitive neuro-ectodermal tumors (CNS-PNETs), have recently been re-classified in the most recent 2016 WHO Classification into a standby catch all category, "CNS Embryonal Tumor, not otherwise specified" (CNS embryonal tumor, NOS) based on epigenetic, biologic and histopathologic criteria. CNS embryonal tumors (NOS) are a rare, histologically and molecularly heterogeneous group of tumors that predominantly affect children, and occasionally adults. Diagnosis of this entity continues to be challenging and the ramifications of misdiagnosis of this aggressive class of brain tumors are significant. We report the case of a 45-year-old woman who was diagnosed with a central nervous system embryonal tumor (NOS) based on immunohistochemical analysis of the patient's tumor at diagnosis. However, later genome-wide methylation profiling of the diagnostic tumor undertaken to guide treatment, revealed characteristics most consistent with IDH-mutant astrocytoma. DNA sequencing and immunohistochemistry confirmed the presence of IDH1 and ATRX mutations resulting in a revised diagnosis of high-grade small cell astrocytoma, and the implementation of a less aggressive treatment regime tailored more appropriately to the patient's tumor type. This case highlights the inadequacy of histology alone for the diagnosis of brain tumours and the utility of methylation profiling and integrated genomic analysis for the diagnostic verification of adults with suspected CNS embryonal tumor (NOS), and is consistent with the increasing realization in the field that a combined diagnostic approach based on clinical, histopathological and molecular data is required to more accurately distinguish brain tumor subtypes and inform more effective therapy. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. [Lorenz was right, or does aggressive energy accumulate?].

    PubMed

    Kudriavtseva, N N

    2004-06-01

    Evidence supporting the fact that inherited mechanisms of regulation of aggressive behavior as a result of a repeated experience of aggression ending in victories are transformed into pathological mechanisms based on accumulation of neurochemical shifts in the brain, enhancing aggressiveness, and forming aggressive motivation in aggressive winners. This confirms the concept by Lorenz on the existence of a mechanism (but not instinct) of a spontaneous accumulation of aggressive energy that needs a discharge and formation of permanent attraction to manifestation of aggression.

  2. Traumatic brain injury shows better functional recovery than brain tumor: a rehabilitative perspective.

    PubMed

    Bilgin, S; Kose, N; Karakaya, J; Mut, M

    2014-02-01

    The similar symptoms seen in the brain tumor (BT) and traumatic brain injury (TBI) population. However, functional comparisons between these two diagnostic groups have been limited. To compare functional outcomes in patients with supratentorial BT and TBI after early rehabilitation. This was a retrospective database analysis. Setting. Patients admitted to an Acute Care Unit as inpatient (Hacettepe Hospital, Ankara-Turkey). Population. The population included patients with BT and TBI. Thirty-four patients with BT and TBI were matched one-to-one by lesion side and sex. The Barthel Index was used to assess functional status at the pre- and postrehabilitation. The change rate and efficiency in BI were also calculated. The time between injury onset and admission to rehabilitation (the onset to admission interval, OAI) and length of stay in rehabilitation (LOS rehab) were recorded. In addition, the influence of lesion side (left and right) and age on functional outcome were analyzed. The functional level was significantly lower in TBI patients than in patients BT before rehabilitation (P<0.05). The post-rehabilitation BI score was similar in patients with BT and TBI (P>0.05). Patients with TBI had greater the change rate and efficiency in BI (P<0.05). The OAI and LOS rehab was longer in patients with TBI (P<0.05). In terms of lesion side comparisons, no differences were found (P>0.05). The age had no effect on functional outcome in patients with TBI and BT (P>0.05), expect the age group 45-59 (P<0.05). The early rehabilitation program improved functional ability of patients with brain tumors, as well as patients with traumatic brain injury. Despite the lower functional status, patients with TBI displayed better functional recovery than patients with BT. Lesion side had no effect on functional outcome in patients with TBI and BT. Differences in functional status begin to appear even in patients with TBI between 45 and 59 years. Further investigations with more detailed

  3. Brain tumor classification using the diffusion tensor image segmentation (D-SEG) technique.

    PubMed

    Jones, Timothy L; Byrnes, Tiernan J; Yang, Guang; Howe, Franklyn A; Bell, B Anthony; Barrick, Thomas R

    2015-03-01

    There is an increasing demand for noninvasive brain tumor biomarkers to guide surgery and subsequent oncotherapy. We present a novel whole-brain diffusion tensor imaging (DTI) segmentation (D-SEG) to delineate tumor volumes of interest (VOIs) for subsequent classification of tumor type. D-SEG uses isotropic (p) and anisotropic (q) components of the diffusion tensor to segment regions with similar diffusion characteristics. DTI scans were acquired from 95 patients with low- and high-grade glioma, metastases, and meningioma and from 29 healthy subjects. D-SEG uses k-means clustering of the 2D (p,q) space to generate segments with different isotropic and anisotropic diffusion characteristics. Our results are visualized using a novel RGB color scheme incorporating p, q and T2-weighted information within each segment. The volumetric contribution of each segment to gray matter, white matter, and cerebrospinal fluid spaces was used to generate healthy tissue D-SEG spectra. Tumor VOIs were extracted using a semiautomated flood-filling technique and D-SEG spectra were computed within the VOI. Classification of tumor type using D-SEG spectra was performed using support vector machines. D-SEG was computationally fast and stable and delineated regions of healthy tissue from tumor and edema. D-SEG spectra were consistent for each tumor type, with constituent diffusion characteristics potentially reflecting regional differences in tissue microstructure. Support vector machines classified tumor type with an overall accuracy of 94.7%, providing better classification than previously reported. D-SEG presents a user-friendly, semiautomated biomarker that may provide a valuable adjunct in noninvasive brain tumor diagnosis and treatment planning. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Neuro-Oncology.

  4. Changes in Signal Intensity of the Dentate Nucleus and Globus Pallidus in Pediatric Patients: Impact of Brain Irradiation and Presence of Primary Brain Tumors Independent of Linear Gadolinium-based Contrast Agent Administration.

    PubMed

    Tamrazi, Benita; Nguyen, Binh; Liu, Chia-Shang J; Azen, Colleen G; Nelson, Mary B; Dhall, Girish; Nelson, Marvin D

    2018-05-01

    Purpose To determine whether whole-brain irradiation, chemotherapy, and primary brain pathologic conditions affect magnetic resonance (MR) imaging signal changes in pediatric patients independent of the administration of gadolinium-based contrast agents (GBCAs). Materials and Methods This institutional review board-approved, HIPAA-compliant study included 144 pediatric patients who underwent intravenous GBCA-enhanced MR imaging examinations (55 patients with primary brain tumors and whole-brain irradiation, 19 with primary brain tumors and chemotherapy only, 52 with primary brain tumors without any treatment, and 18 with neuroblastoma without brain metastatic disease). The signal intensities (SIs) in the globus pallidus (GP), thalamus (T), dentate nucleus (DN), and pons (P) were measured on unenhanced T1-weighted images. GP:T and DN:P SI ratios were compared between groups by using the analysis of variance and were analyzed relative to group, total cumulative number of doses of GBCA, age, and sex by using multivariable linear models. Results DN:P ratio for the radiation therapy group was greater than that for the other groups except for the group of brain tumors treated with chemotherapy (P < .05). The number of GBCA doses was correlated with the DN:P ratio for the nontreated brain tumor group (P < .0001). The radiation therapy-treated brain tumor group demonstrated higher DN:P ratios than the nontreated brain tumor group for number of doses less than or equal to 10 (P < .0001), whereas ratios in the nontreated brain tumor group were higher than those in the radiation therapy-treated brain tumor group for doses greater than 20 (P = .05). The GP:T ratios for the brain tumor groups were greater than that for the neuroblastoma group (P = .01). Conclusion Changes in SI of the DN and GP that are independent of the administration of GBCA occur in patients with brain tumors undergoing brain irradiation, as well as in patients with untreated primary brain tumors. © RSNA

  5. Prevalence estimates for primary brain tumors in the United States by age, gender, behavior, and histology.

    PubMed

    Porter, Kimberly R; McCarthy, Bridget J; Freels, Sally; Kim, Yoonsang; Davis, Faith G

    2010-06-01

    Prevalence is the best indicator of cancer survivorship in the population, but few studies have focused on brain tumor prevalence because of previous data limitations. Hence, the full impact of primary brain tumors on the healthcare system in the United States is not completely described. The present study provides an estimate of the prevalence of disease in the United States, updating an earlier prevalence study. Incidence data for 2004 and survival data for 1985-2005 were obtained by the Central Brain Tumor Registry of the United States from selected regions, modeled under 2 different survival assumptions, to estimate prevalence rates for the year 2004 and projected estimates for 2010. The overall incidence rate for primary brain tumors was 18.1 per 100 000 person-years with 2-, 5-, 10-, and 20-year observed survival rates of 62%, 54%, 45%, and 30%, respectively. On the basis of the sum of nonmalignant and averaged malignant estimates, the overall prevalence rate of individuals with a brain tumor was estimated to be 209.0 per 100 000 in 2004 and 221.8 per 100 000 in 2010. The female prevalence rate (264.8 per 100 000) was higher than that in males (158.7 per 100 000). The averaged prevalence rate for malignant tumors (42.5 per 100 000) was lower than the prevalence for nonmalignant tumors (166.5 per 100 000). This study provides estimates of the 2004 (n = 612 770) and 2010 (n = 688 096) expected number of individuals living with primary brain tumor diagnoses in the United States, providing more current and robust estimates for aiding healthcare planning and patient advocacy for an aging US population.

  6. Therapeutic Potential of Curcumin for the Treatment of Brain Tumors

    PubMed Central

    Klinger, Neil V.

    2016-01-01

    Brain malignancies currently carry a poor prognosis despite the current multimodal standard of care that includes surgical resection and adjuvant chemotherapy and radiation. As new therapies are desperately needed, naturally occurring chemical compounds have been studied for their potential chemotherapeutic benefits and low toxicity profile. Curcumin, found in the rhizome of turmeric, has extensive therapeutic promise via its antioxidant, anti-inflammatory, and antiproliferative properties. Preclinical in vitro and in vivo data have shown it to be an effective treatment for brain tumors including glioblastoma multiforme. These effects are potentiated by curcumin's ability to induce G2/M cell cycle arrest, activation of apoptotic pathways, induction of autophagy, disruption of molecular signaling, inhibition of invasion, and metastasis and by increasing the efficacy of existing chemotherapeutics. Further, clinical data suggest that it has low toxicity in humans even at large doses. Curcumin is a promising nutraceutical compound that should be evaluated in clinical trials for the treatment of human brain tumors. PMID:27807473

  7. Improving Care in Pediatric Neuro-oncology Patients: An Overview of the Unique Needs of Children With Brain Tumors.

    PubMed

    Fischer, Cheryl; Petriccione, Mary; Donzelli, Maria; Pottenger, Elaine

    2016-03-01

    Brain tumors represent the most common solid tumors in childhood, accounting for almost 25% of all childhood cancer, second only to leukemia. Pediatric central nervous system tumors encompass a wide variety of diagnoses, from benign to malignant. Any brain tumor can be associated with significant morbidity, even when low grade, and mortality from pediatric central nervous system tumors is disproportionately high compared to other childhood malignancies. Management of children with central nervous system tumors requires knowledge of the unique aspects of care associated with this particular patient population, beyond general oncology care. Pediatric brain tumor patients have unique needs during treatment, as cancer survivors, and at end of life. A multidisciplinary team approach, including advanced practice nurses with a specialty in neuro-oncology, allows for better supportive care. Knowledge of the unique aspects of care for children with brain tumors, and the appropriate interventions required, allows for improved quality of life. © The Author(s) 2015.

  8. Expression of EGFR Under Tumor Hypoxia: Identification of a Subpopulation of Tumor Cells Responsible for Aggressiveness and Treatment Resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoogsteen, Ilse J., E-mail: i.hoogsteen@rther.umcn.nl; Marres, Henri A.M.; Hoogen, Franciscus J.A. van den

    2012-11-01

    Purpose: Overexpression of epidermal growth factor receptor (EGFR) and tumor hypoxia have been shown to correlate with worse outcome in several types of cancer including head-and-neck squamous cell carcinoma. Little is known about the combination and possible interactions between the two phenomena. Methods and Materials: In this study, 45 cases of histologically confirmed squamous cell carcinomas of the head and neck were analyzed. All patients received intravenous infusions of the exogenous hypoxia marker pimonidazole prior to biopsy. Presence of EGFR, pimonidazole binding, and colocalization between EGFR and tumor hypoxia were examined using immunohistochemistry. Results: Of all biopsies examined, respectively, 91%more » and 60% demonstrated EGFR- and pimonidazole-positive areas. A weak but significant association was found between the hypoxic fractions of pimonidazole (HFpimo) and EGFR fractions (F-EGFR) and between F-EGFR and relative vascular area. Various degrees of colocalization between hypoxia and EGFR were found, increasing with distance from the vasculature. A high fraction of EGFR was correlated with better disease-free and metastasis-free survival, whereas a high degree of colocalization correlated with poor outcome. Conclusions: Colocalization of hypoxia and EGFR was demonstrated in head-and-neck squamous cell carcinomas, predominantly at longer distances from vessels. A large amount of colocalization was associated with poor outcome, which points to a survival advantage of hypoxic cells that are also able to express EGFR. This subpopulation of tumor cells might be indicative of tumor aggressiveness and be partly responsible for treatment resistance.« less

  9. Phosphatidylserine-selective targeting and anticancer effects of SapC-DOPS nanovesicles on brain tumors.

    PubMed

    Blanco, Víctor M; Chu, Zhengtao; Vallabhapurapu, Subrahmanya D; Sulaiman, Mahaboob K; Kendler, Ady; Rixe, Olivier; Warnick, Ronald E; Franco, Robert S; Qi, Xiaoyang

    2014-08-30

    Brain tumors, either primary (e.g., glioblastoma multiforme) or secondary (metastatic), remain among the most intractable and fatal of all cancers. We have shown that nanovesicles consisting of Saposin C (SapC) and dioleylphosphatidylserine (DOPS) are able to effectively target and kill cancer cells both in vitro and in vivo. These actions are a consequence of the affinity of SapC-DOPS for phosphatidylserine, an acidic phospholipid abundantly present in the outer membrane of a variety of tumor cells and tumor-associated vasculature. In this study, we first characterize SapC-DOPS bioavailability and antitumor effects on human glioblastoma xenografts, and confirm SapC-DOPS specificity towards phosphatidylserine by showing that glioblastoma targeting is abrogated after in vivo exposure to lactadherin, which binds phosphatidylserine with high affinity. Second, we demonstrate that SapC-DOPS selectively targets brain metastases-forming cancer cells both in vitro, in co-cultures with human astrocytes, and in vivo, in mouse models of brain metastases derived from human breast or lung cancer cells. Third, we demonstrate that SapC-DOPS have cytotoxic activity against metastatic breast cancer cells in vitro, and prolong the survival of mice harboring brain metastases. Taken together, these results support the potential of SapC-DOPS for the diagnosis and therapy of primary and metastatic brain tumors.

  10. [Application of diffusion tensor imaging fractography in minimally invasive surgery of brain tumors].

    PubMed

    Yang, Lei; Zhang, Mao-zhi; Zhang, Wei; Zhao, Yuan-li; Zhao, Ji-zong

    2006-05-23

    To investigate the effects and prospect of application of diffusion tensor imaging (DTI) fractography in minimally invasive surgery of brain tumors. DTI fractography was performed in 52 patients with malignant brain tumors. Based on the DTI fractography results, 34 of the 52 patients underwent operation under neuro-navigation, and 18 of the 52 patients underwent operation routine minimally invasive craniotomy and tumor resection without neuro-navigation. The rate of total tumor resection was 86.5% (45/52). The mortality was 1.9% (1/52). The disability rate was 11.5% (6/52). No case needed the second operation. DTI fractography has raised the minimally invasive neurosurgery to the level of protecting the nuclei and nerve tracts and guiding intra-operative management of infiltration of deep-seated tumors, especially when combined with neuro-navigation and interventional MRI.

  11. A noninvasive multimodal technique to monitor brain tumor vascularization

    NASA Astrophysics Data System (ADS)

    Saxena, Vishal; Gonzalez-Gomez, Ignacio; Laug, Walter E.

    2007-09-01

    Determination of tumor oxygenation at the microvascular level will provide important insight into tumor growth, angiogenesis, necrosis and therapeutic response and will facilitate to develop protocols for studying tumor behavior. The non-ionizing near infrared spectroscopy (NIRS) technique has the potential to differentiate lesion and hemoglobin dynamics; however, it has a limited spatial resolution. On the other hand, magnetic resonance imaging (MRI) has achieved high spatial resolution with excellent tissue discrimination but is more susceptible to limited ability to monitor the hemoglobin dynamics. In the present work, the vascular status and the pathophysiological changes that occur during tumor vascularization are studied in an orthotopic brain tumor model. A noninvasive multimodal approach based on the NIRS technique, namely steady state diffuse optical spectroscopy (SSDOS) along with MRI, is applied for monitoring the concentrations of oxyhemoglobin, deoxyhemoglobin and water within tumor region. The concentrations of oxyhemoglobin, deoxyhemoglobin and water within tumor vasculature are extracted at 15 discrete wavelengths in a spectral window of 675-780 nm. We found a direct correlation between tumor size, intratumoral microvessel density and tumor oxygenation. The relative decrease in tumor oxygenation with growth indicates that though blood vessels infiltrate and proliferate the tumor region, a hypoxic trend is clearly present.

  12. Through the patient's eyes: the value of a comprehensive brain tumor center.

    PubMed

    Robin, Adam M; Walbert, Tobias; Mikkelsen, Tom; Kalkanis, Steven N; Rock, Jack; Lee, Ian; Rosenblum, Mark L

    2014-09-01

    Since the founding of the Tumor Section of the American Association of Neurological Surgeons (AANS) and the Congress of Neurological Surgeons (CNS) in 1984 much in neurosurgical oncology has changed. More than 40,000 papers have been published on glioma since the arrival of the AANS/CNS Tumor Section. Increasingly, research is focusing on more patient-centered care and quality of life. Preliminary work suggests that a greater emphasis on the patient and caregiver's experience of disease is crucial. Also, the provision of hope and appropriate information and communication with health care providers helps to lessen anxiety and promote improved quality of life. Lastly, our patients need a mechanism for continued symptom control and psychosocial support throughout their experience of this disease. An excellent venue for providing these facets of neurooncological patient care is the multidisciplinary brain tumor board and symptom management team. Herein, we present the philosophy and practice of the Hermelin Brain Tumor Center at the Henry Ford Health System as one type of approach to caring for the patient with a malignant glioma. The authors are aware of several brain tumor centers that share our philosophy and approach to patient care. Our comments are not meant to be exclusive to our experience and should be interpreted as representative of the growing movement in neurosurgery to provide comprehensive, multidisciplinary, patient-centered care.

  13. [Peritumoral hemorrhage immediately after radiosurgery for metastatic brain tumor].

    PubMed

    Uchino, Masafumi; Kitajima, Satoru; Miyazaki, Chikao; Otsuka, Takashi; Seiki, Yoshikatsu; Shibata, Iekado

    2003-08-01

    We report a case of a 44-year-old woman with metastatic brain tumors who suffered peri-tumoral hemorrhage soon after stereotactic radiosurgery (SRS). She had been suffering from breast cancer with multiple systemic metastasis. She started to have headache, nausea, dizziness and speech disturbance 1 month before admission. There was no bleeding tendency in the hematological examination and the patient was normotensive. Neurological examination disclosed headache and slightly aphasia. Magnetic resonance imaging showed a large round mass lesion in the left temporal lobe. It was a well-demarcated, highly enhanced mass, 45 mm in diameter. SRS was performed on four lesions in a single session (Main mass: maximum dose was 30 Gy in the center and 20 Gy in the margin of the tumor. Others: maximum 25 Gy margin 20 Gy). After radiosurgery, she had severe headache, nausea and vomiting and showed progression of aphasia. CT scan revealed a peritumoral hemorrhage. Conservative therapy was undertaken and the patient's symptoms improved. After 7 days, she was discharged, able to walk. The patient died of extensive distant metastasis 5 months after SRS. Acute transient swelling following conventional radiotherapy is a well-documented phenomenon. However, the present case indicates that such an occurrence is also possible in SRS. We have hypothesized that acute reactions such as brain swelling occur due to breakdown of the fragile vessels of the tumor or surrounding tissue.

  14. In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue.

    PubMed

    Kantelhardt, Sven R; Kalasauskas, Darius; König, Karsten; Kim, Ella; Weinigel, Martin; Uchugonova, Aisada; Giese, Alf

    2016-05-01

    High resolution multiphoton tomography and fluorescence lifetime imaging differentiates glioma from adjacent brain in native tissue samples ex vivo. Presently, multiphoton tomography is applied in clinical dermatology and experimentally. We here present the first application of multiphoton and fluorescence lifetime imaging for in vivo imaging on humans during a neurosurgical procedure. We used a MPTflex™ Multiphoton Laser Tomograph (JenLab, Germany). We examined cultured glioma cells in an orthotopic mouse tumor model and native human tissue samples. Finally the multiphoton tomograph was applied to provide optical biopsies during resection of a clinical case of glioblastoma. All tissues imaged by multiphoton tomography were sampled and processed for conventional histopathology. The multiphoton tomograph allowed fluorescence intensity- and fluorescence lifetime imaging with submicron spatial resolution and 200 picosecond temporal resolution. Morphological fluorescence intensity imaging and fluorescence lifetime imaging of tumor-bearing mouse brains and native human tissue samples clearly differentiated tumor and adjacent brain tissue. Intraoperative imaging was found to be technically feasible. Intraoperative image quality was comparable to ex vivo examinations. To our knowledge we here present the first intraoperative application of high resolution multiphoton tomography and fluorescence lifetime imaging of human brain tumors in situ. It allowed in vivo identification and determination of cell density of tumor tissue on a cellular and subcellular level within seconds. The technology shows the potential of rapid intraoperative identification of native glioma tissue without need for tissue processing or staining.

  15. Alpha shape theory for 3D visualization and volumetric measurement of brain tumor progression using magnetic resonance images.

    PubMed

    Hamoud Al-Tamimi, Mohammed Sabbih; Sulong, Ghazali; Shuaib, Ibrahim Lutfi

    2015-07-01

    Resection of brain tumors is a tricky task in surgery due to its direct influence on the patients' survival rate. Determining the tumor resection extent for its complete information via-à-vis volume and dimensions in pre- and post-operative Magnetic Resonance Images (MRI) requires accurate estimation and comparison. The active contour segmentation technique is used to segment brain tumors on pre-operative MR images using self-developed software. Tumor volume is acquired from its contours via alpha shape theory. The graphical user interface is developed for rendering, visualizing and estimating the volume of a brain tumor. Internet Brain Segmentation Repository dataset (IBSR) is employed to analyze and determine the repeatability and reproducibility of tumor volume. Accuracy of the method is validated by comparing the estimated volume using the proposed method with that of gold-standard. Segmentation by active contour technique is found to be capable of detecting the brain tumor boundaries. Furthermore, the volume description and visualization enable an interactive examination of tumor tissue and its surrounding. Admirable features of our results demonstrate that alpha shape theory in comparison to other existing standard methods is superior for precise volumetric measurement of tumor. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. In Vivo Follow-up of Brain Tumor Growth via Bioluminescence Imaging and Fluorescence Tomography

    PubMed Central

    Genevois, Coralie; Loiseau, Hugues; Couillaud, Franck

    2016-01-01

    Reporter gene-based strategies are widely used in experimental oncology. Bioluminescence imaging (BLI) using the firefly luciferase (Fluc) as a reporter gene and d-luciferin as a substrate is currently the most widely employed technique. The present paper compares the performances of BLI imaging with fluorescence imaging using the near infrared fluorescent protein (iRFP) to monitor brain tumor growth in mice. Fluorescence imaging includes fluorescence reflectance imaging (FRI), fluorescence diffuse optical tomography (fDOT), and fluorescence molecular Imaging (FMT®). A U87 cell line was genetically modified for constitutive expression of both the encoding Fluc and iRFP reporter genes and assayed for cell, subcutaneous tumor and brain tumor imaging. On cultured cells, BLI was more sensitive than FRI; in vivo, tumors were first detected by BLI. Fluorescence of iRFP provided convenient tools such as flux cytometry, direct detection of the fluorescent protein on histological slices, and fluorescent tomography that allowed for 3D localization and absolute quantification of the fluorescent signal in brain tumors. PMID:27809256

  17. In Vivo Follow-up of Brain Tumor Growth via Bioluminescence Imaging and Fluorescence Tomography.

    PubMed

    Genevois, Coralie; Loiseau, Hugues; Couillaud, Franck

    2016-10-31

    Reporter gene-based strategies are widely used in experimental oncology. Bioluminescence imaging (BLI) using the firefly luciferase (Fluc) as a reporter gene and d-luciferin as a substrate is currently the most widely employed technique. The present paper compares the performances of BLI imaging with fluorescence imaging using the near infrared fluorescent protein (iRFP) to monitor brain tumor growth in mice. Fluorescence imaging includes fluorescence reflectance imaging (FRI), fluorescence diffuse optical tomography (fDOT), and fluorescence molecular Imaging (FMT ® ). A U87 cell line was genetically modified for constitutive expression of both the encoding Fluc and iRFP reporter genes and assayed for cell, subcutaneous tumor and brain tumor imaging. On cultured cells, BLI was more sensitive than FRI; in vivo, tumors were first detected by BLI. Fluorescence of iRFP provided convenient tools such as flux cytometry, direct detection of the fluorescent protein on histological slices, and fluorescent tomography that allowed for 3D localization and absolute quantification of the fluorescent signal in brain tumors.

  18. The Potential Benefits of Awake Craniotomy for Brain Tumor Resection: An Anesthesiologist's Perspective.

    PubMed

    Meng, Lingzhong; Berger, Mitchel S; Gelb, Adrian W

    2015-10-01

    Awake craniotomy for brain tumor resection is becoming a standard of care for lesions residing within or in close proximity to regions presumed to have language or sensorimotor function. Evidence shows an improved outcome including greater extent of resection, fewer late neurological deficits, shorter hospital stay, and longer survival after awake brain tumor resection compared with surgery under general anesthesia. The surgeon's ability to maximize tumor resection within the constraint of preserving neurological function by intraoperative stimulation mapping in an awake patient is credited for this advantageous result. It is possible that the care provided by anesthesiologists, especially the avoidance of certain components of general endotracheal anesthesia, may also be important in the outcome of awake brain tumor resection. We present our interpretation of the evidence that we believe substantiates this proposition. However, due to the lack of direct evidence based on randomized-controlled trials and the heterogeneity of anesthetic techniques used for awake craniotomy, our perspective is largely speculative and hypothesis generating that needs to be validated or refuted by future quality research.

  19. Caring for the brain tumor patient: family caregiver burden and unmet needs.

    PubMed

    Schubart, Jane R; Kinzie, Mable B; Farace, Elana

    2008-02-01

    The rapid onset and progression of a brain tumor, cognitive and behavioral changes, and uncertainty surrounding prognosis are issues well known to health practitioners in neuro-oncology. We studied the specific challenges that family caregivers face when caring for patients experiencing the significant neurocognitive and neurobehavioral disorders associated with brain tumors. We selected 25 family caregivers of adult brain tumor patients to represent the brain tumor illness trajectory (crisis, chronic, and terminal phases). Interviews documented caregiving tasks and decision-making and information and support needs. Themes were permitted to emerge from the data in qualitative analysis. We found that the family caregivers in this study provided extraordinary uncompensated care involving significant amounts of time and energy for months or years and requiring the performance of tasks that were often physically, emotionally, socially, or financially demanding. They were constantly challenged to solve problems and make decisions as care needs changed, yet they felt untrained and unprepared as they struggled to adjust to new roles and responsibilities. Because the focus was on the patient, their own needs were neglected. Because caregiver information needs are emergent, they are not always known at the time of a clinic visit. Physicians are frequently unable to address caregiver questions, a situation compounded by time constraints and cultural barriers. We provide specific recommendations for (1) improving the delivery of information; (2) enhancing communication among patients, families, and health care providers; and (3) providing psychosocial support for family caregivers.

  20. Caring for the brain tumor patient: Family caregiver burden and unmet needs

    PubMed Central

    Schubart, Jane R.; Kinzie, Mable B.; Farace, Elana

    2008-01-01

    The rapid onset and progression of a brain tumor, cognitive and behavioral changes, and uncertainty surrounding prognosis are issues well known to health practitioners in neuro-oncology. We studied the specific challenges that family caregivers face when caring for patients experiencing the significant neurocognitive and neurobehavioral disorders associated with brain tumors. We selected 25 family caregivers of adult brain tumor patients to represent the brain tumor illness trajectory (crisis, chronic, and terminal phases). Interviews documented caregiving tasks and decision-making and information and support needs. Themes were permitted to emerge from the data in qualitative analysis. We found that the family caregivers in this study provided extraordinary uncompensated care involving significant amounts of time and energy for months or years and requiring the performance of tasks that were often physically, emotionally, socially, or financially demanding. They were constantly challenged to solve problems and make decisions as care needs changed, yet they felt untrained and unprepared as they struggled to adjust to new roles and responsibilities. Because the focus was on the patient, their own needs were neglected. Because caregiver information needs are emergent, they are not always known at the time of a clinic visit. Physicians are frequently unable to address caregiver questions, a situation compounded by time constraints and cultural barriers. We provide specific recommendations for (1) improving the delivery of information; (2) enhancing communication among patients, families, and health care providers; and (3) providing psychosocial support for family caregivers. PMID:17993635

  1. Growth hormone treatment and risk of recurrence or progression of brain tumors in children: a review.

    PubMed

    Bogarin, Roberto; Steinbok, Paul

    2009-03-01

    Brain tumors are one of the most common types of solid neoplasm in children. As life expectancy of these patients has increased with new and improved therapies, the morbidities associated with the treatments and the tumor itself have become more important. One of the most common morbidities is growth hormone deficiency, and since recombinant growth hormone (GH) became available, its use has increased exponentially. There is concern that in the population of children with brain tumors, GH treatment might increase the risk of tumor recurrence or progression or the appearance of a second neoplasm. In the light of this ongoing concern, the current literature has been reviewed to provide an update on the risk of tumor recurrence, tumor progression, or new intracranial tumor formation when GH is used to treat GH deficiency in children, who have had or have intracranial tumors. On the basis of this review, the authors conclude that the use of GH in patients with brain tumor is safe. GH therapy is not associated with an increased risk of central nervous system tumor progression or recurrence, leukemia (de novo or relapse), or extracranial non-leukemic neoplasms.

  2. Late sequelae in children treated for brain tumors and leukemia.

    PubMed

    Jereb, B; Korenjak, R; Krzisnik, C; Petric-Grabnar, G; Zadravec-Zaletel, L; Anzic, J; Stare, J

    1994-01-01

    Forty-two survivors treated at an age of 2-16 years for brain tumors or leukemia were, 4-21 years after treatment, subjected to an extensive follow-up investigation, including physical examination and interview; 35 of them also had endocrinological and 33 psychological evaluation. Hormonal deficiencies were found in about two-thirds of patients and were most common in those treated for brain tumors. The great majority had verbal intelligence quotient (VIQ) within normal range. Also, the performance intelligence quotients (PIQ) were normal in most patients. However, the results suggested that the primary intellectual capacity in children treated for cancer was not being fully utilized, their PIQ being on the average higher than their VIQ; this tendency was especially pronounced in the leukemia patients.

  3. Enhancement of brain tumor MR images based on intuitionistic fuzzy sets

    NASA Astrophysics Data System (ADS)

    Deng, Wankai; Deng, He; Cheng, Lifang

    2015-12-01

    Brain tumor is one of the most fatal cancers, especially high-grade gliomas are among the most deadly. However, brain tumor MR images usually have the disadvantages of low resolution and contrast when compared with the optical images. Consequently, we present a novel adaptive intuitionistic fuzzy enhancement scheme by combining a nonlinear fuzzy filtering operation with fusion operators, for the enhancement of brain tumor MR images in this paper. The presented scheme consists of the following six steps: Firstly, the image is divided into several sub-images. Secondly, for each sub-image, object and background areas are separated by a simple threshold. Thirdly, respective intuitionistic fuzzy generators of object and background areas are constructed based on the modified restricted equivalence function. Fourthly, different suitable operations are performed on respective membership functions of object and background areas. Fifthly, the membership plane is inversely transformed into the image plane. Finally, an enhanced image is obtained through fusion operators. The comparison and evaluation of enhancement performance demonstrate that the presented scheme is helpful to determine the abnormal functional areas, guide the operation, judge the prognosis, and plan the radiotherapy by enhancing the fine detail of MR images.

  4. Novel delivery methods bypassing the blood-brain and blood-tumor barriers.

    PubMed

    Hendricks, Benjamin K; Cohen-Gadol, Aaron A; Miller, James C

    2015-03-01

    Glioblastoma (GBM) is the most common primary brain tumor and carries a grave prognosis. Despite years of research investigating potentially new therapies for GBM, the median survival rate of individuals with this disease has remained fairly stagnant. Delivery of drugs to the tumor site is hampered by various barriers posed by the GBM pathological process and by the complex physiology of the blood-brain and blood-cerebrospinal fluid barriers. These anatomical and physiological barriers serve as a natural protection for the brain and preserve brain homeostasis, but they also have significantly limited the reach of intraparenchymal treatments in patients with GBM. In this article, the authors review the functional capabilities of the physical and physiological barriers that impede chemotherapy for GBM, with a specific focus on the pathological alterations of the blood-brain barrier (BBB) in this disease. They also provide an overview of current and future methods for circumventing these barriers in therapeutic interventions. Although ongoing research has yielded some potential options for future GBM therapies, delivery of chemotherapy medications across the BBB remains elusive and has limited the efficacy of these medications.

  5. Brain tumor segmentation with Deep Neural Networks.

    PubMed

    Havaei, Mohammad; Davy, Axel; Warde-Farley, David; Biard, Antoine; Courville, Aaron; Bengio, Yoshua; Pal, Chris; Jodoin, Pierre-Marc; Larochelle, Hugo

    2017-01-01

    In this paper, we present a fully automatic brain tumor segmentation method based on Deep Neural Networks (DNNs). The proposed networks are tailored to glioblastomas (both low and high grade) pictured in MR images. By their very nature, these tumors can appear anywhere in the brain and have almost any kind of shape, size, and contrast. These reasons motivate our exploration of a machine learning solution that exploits a flexible, high capacity DNN while being extremely efficient. Here, we give a description of different model choices that we've found to be necessary for obtaining competitive performance. We explore in particular different architectures based on Convolutional Neural Networks (CNN), i.e. DNNs specifically adapted to image data. We present a novel CNN architecture which differs from those traditionally used in computer vision. Our CNN exploits both local features as well as more global contextual features simultaneously. Also, different from most traditional uses of CNNs, our networks use a final layer that is a convolutional implementation of a fully connected layer which allows a 40 fold speed up. We also describe a 2-phase training procedure that allows us to tackle difficulties related to the imbalance of tumor labels. Finally, we explore a cascade architecture in which the output of a basic CNN is treated as an additional source of information for a subsequent CNN. Results reported on the 2013 BRATS test data-set reveal that our architecture improves over the currently published state-of-the-art while being over 30 times faster. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Comparative Approach of MRI-Based Brain Tumor Segmentation and Classification Using Genetic Algorithm.

    PubMed

    Bahadure, Nilesh Bhaskarrao; Ray, Arun Kumar; Thethi, Har Pal

    2018-01-17

    The detection of a brain tumor and its classification from modern imaging modalities is a primary concern, but a time-consuming and tedious work was performed by radiologists or clinical supervisors. The accuracy of detection and classification of tumor stages performed by radiologists is depended on their experience only, so the computer-aided technology is very important to aid with the diagnosis accuracy. In this study, to improve the performance of tumor detection, we investigated comparative approach of different segmentation techniques and selected the best one by comparing their segmentation score. Further, to improve the classification accuracy, the genetic algorithm is employed for the automatic classification of tumor stage. The decision of classification stage is supported by extracting relevant features and area calculation. The experimental results of proposed technique are evaluated and validated for performance and quality analysis on magnetic resonance brain images, based on segmentation score, accuracy, sensitivity, specificity, and dice similarity index coefficient. The experimental results achieved 92.03% accuracy, 91.42% specificity, 92.36% sensitivity, and an average segmentation score between 0.82 and 0.93 demonstrating the effectiveness of the proposed technique for identifying normal and abnormal tissues from brain MR images. The experimental results also obtained an average of 93.79% dice similarity index coefficient, which indicates better overlap between the automated extracted tumor regions with manually extracted tumor region by radiologists.

  7. Adaptive Intuitionistic Fuzzy Enhancement of Brain Tumor MR Images

    NASA Astrophysics Data System (ADS)

    Deng, He; Deng, Wankai; Sun, Xianping; Ye, Chaohui; Zhou, Xin

    2016-10-01

    Image enhancement techniques are able to improve the contrast and visual quality of magnetic resonance (MR) images. However, conventional methods cannot make up some deficiencies encountered by respective brain tumor MR imaging modes. In this paper, we propose an adaptive intuitionistic fuzzy sets-based scheme, called as AIFE, which takes information provided from different MR acquisitions and tries to enhance the normal and abnormal structural regions of the brain while displaying the enhanced results as a single image. The AIFE scheme firstly separates an input image into several sub images, then divides each sub image into object and background areas. After that, different novel fuzzification, hyperbolization and defuzzification operations are implemented on each object/background area, and finally an enhanced result is achieved via nonlinear fusion operators. The fuzzy implementations can be processed in parallel. Real data experiments demonstrate that the AIFE scheme is not only effectively useful to have information from images acquired with different MR sequences fused in a single image, but also has better enhancement performance when compared to conventional baseline algorithms. This indicates that the proposed AIFE scheme has potential for improving the detection and diagnosis of brain tumors.

  8. Brain tumor segmentation in MRI by using the fuzzy connectedness method

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Guo; Udupa, Jayaram K.; Hackney, David; Moonis, Gul

    2001-07-01

    The aim of this paper is the precise and accurate quantification of brain tumor via MRI. This is very useful in evaluating disease progression, response to therapy, and the need for changes in treatment plans. We use multiple MRI protocols including FLAIR, T1, and T1 with Gd enhancement to gather information about different aspects of the tumor and its vicinity- edema, active regions, and scar left over due to surgical intervention. We have adapted the fuzzy connectedness framework to segment tumor and to measure its volume. The method requires only limited user interaction in routine clinical MRI. The first step in the process is to apply an intensity normalization method to the images so that the same body region has the same tissue meaning independent of the scanner and patient. Subsequently, a fuzzy connectedness algorithm is utilized to segment the different aspects of the tumor. The system has been tested, for its precision, accuracy, and efficiency, utilizing 40 patient studies. The percent coefficient of variation (% CV) in volume due to operator subjectivity in specifying seeds for fuzzy connectedness segmentation is less than 1%. The mean operator and computer time taken per study is 3 minutes. The package is designed to run under operator supervision. Delineation has been found to agree with the operators' visual inspection most of the time except in some cases when the tumor is close to the boundary of the brain. In the latter case, the scalp is included in the delineation and an operator has to exclude this manually. The methodology is rapid, robust, consistent, yielding highly reproducible measurements, and is likely to become part of the routine evaluation of brain tumor patients in our health system.

  9. Paratesticular aggressive angiomyxoma: A rare case.

    PubMed

    Ismail, Muhamad Izwan; Wong, Yin Ping; Tan, Guan Hee; Fam, Xeng Inn

    2017-01-01

    Aggressive angiomyxoma (AAM) particularly testicular origin is a rare benign mesenchymal myxoid tumor which is locally aggressive, blatant for local recurrence, and may metastasize. It occurs mostly in females of childbearing age and extremely rare in males. AMM particular testicular origin is not reported in literature yet. This is a 65-year-old man who had a right scrotal swelling. Ultrasound scrotum showed a soft tissue tumor of the right testis. The patient underwent radical right orchidectomy of which histopathologically confirmed to be a paratesticular AAM with clear resection margins. There were no signs of local recurrence or metastasis 2 years postsurgical resection.

  10. Improved tumor identification using dual tracer molecular imaging in fluorescence guided brain surgery

    NASA Astrophysics Data System (ADS)

    Xu, Xiaochun; Torres, Veronica; Straus, David; Brey, Eric M.; Byrne, Richard W.; Tichauer, Kenneth M.

    2015-03-01

    Brain tumors represent a leading cause of cancer death for people under the age of 40 and the probability complete surgical resection of brain tumors remains low owing to the invasive nature of these tumors and the consequences of damaging healthy brain tissue. Molecular imaging is an emerging approach that has the potential to improve the ability for surgeons to correctly discriminate between healthy and cancerous tissue; however, conventional molecular imaging approaches in brain suffer from significant background signal in healthy tissue or an inability target more invasive sections of the tumor. This work presents initial studies investigating the ability of novel dual-tracer molecular imaging strategies to be used to overcome the major limitations of conventional "single-tracer" molecular imaging. The approach is evaluated in simulations and in an in vivo mice study with animals inoculated orthotopically using fluorescent human glioma cells. An epidermal growth factor receptor (EGFR) targeted Affibody-fluorescent marker was employed as a targeted imaging agent, and the suitability of various FDA approved untargeted fluorescent tracers (e.g. fluorescein & indocyanine green) were evaluated in terms of their ability to account for nonspecific uptake and retention of the targeted imaging agent. Signal-to-background ratio was used to measure and compare the amount of reporter in the tissue between targeted and untargeted tracer. The initial findings suggest that FDA-approved fluorescent imaging agents are ill-suited to act as untargeted imaging agents for dual-tracer fluorescent guided brain surgery as they suffer from poor delivery to the healthy brain tissue and therefore cannot be used to identify nonspecific vs. specific uptake of the targeted imaging agent where current surgery is most limited.

  11. Optical guidance for stereotactic brain tumor biopsy procedures: preliminary clinical evaluation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Haj-Hosseini, Neda; Richter, Johan; Milos, Peter; Hallbeck, Martin; Wârdell, Karin

    2017-02-01

    In the routine of stereotactic biopsy on suspected tumors located deep in the brain or patients with multiple lesions, tissue samples are harvested to determine the type of malignancy. Biopsies are taken from pre-calculated positions based on the preoperative radiologic images susceptible to brain shift. In such cases the biopsy procedure may need to be repeated leading to a longer operation time. To provide guidance for targeting diagnostic tumor tissue and to avoid vessel rupture on the insertion path of the tumor, an application specific fiber optic probe was developed. The setup incorporated spectroscopy for 5-aminolevulinic acid induced protopophyrin IX (PpIX) fluorescence in the tumor and laser Doppler for measuring microvascular blood flow which recorded backscattered light (TLI) at 780 nm and blood perfusion. The recorded signals were compared to the histopathologic diagnosis of the tissue samples (n=16) and to the preoperative radiologic images. All together 146 fluorescence and 276 laser Doppler signals were recorded along 5 trajectories in 4 patients. On all occasions strong PpIX fluorescence peaks were visible during real-time guidance. Comparing the gliotic tumor marginal zone with the tumor, the PpIX (51 vs. 528 a.u., [0-1790], p < 0.05) was higher and TLI (2.9 vs. 2.0 a.u., [0-4.1], p < 0.05) was lower in tumor. The autofluorescence (104 vs.70 a.u., [0-442], p > 0.05) and blood perfusion (8.3 vs. 17 a.u., [0-254], p > 0.05) were not significantly different. In conclusion, the optical guidance probe made real-time tumor detection and vessel tracking possible during the stereotactic biopsy procedures. Moreover, the fluorescence and blood perfusion in the tumor could be studied at controlled positions in the brain and the tumor.

  12. Self-Assembly of Gold Nanoparticles Shows Microenvironment-Mediated Dynamic Switching and Enhanced Brain Tumor Targeting.

    PubMed

    Feng, Qishuai; Shen, Yajing; Fu, Yingjie; Muroski, Megan E; Zhang, Peng; Wang, Qiaoyue; Xu, Chang; Lesniak, Maciej S; Li, Gang; Cheng, Yu

    2017-01-01

    Inorganic nanoparticles with unique physical properties have been explored as nanomedicines for brain tumor treatment. However, the clinical applications of the inorganic formulations are often hindered by the biological barriers and failure to be bioeliminated. The size of the nanoparticle is an essential design parameter which plays a significant role to affect the tumor targeting and biodistribution. Here, we report a feasible approach for the assembly of gold nanoparticles into ~80 nm nanospheres as a drug delivery platform for enhanced retention in brain tumors with the ability to be dynamically switched into the single formulation for excretion. These nanoassemblies can target epidermal growth factor receptors on cancer cells and are responsive to tumor microenvironmental characteristics, including high vascular permeability and acidic and redox conditions. Anticancer drug release was controlled by a pH-responsive mechanism. Intracellular L-glutathione (GSH) triggered the complete breakdown of nanoassemblies to single gold nanoparticles. Furthermore, in vivo studies have shown that nanospheres display enhanced tumor-targeting efficiency and therapeutic effects relative to single-nanoparticle formulations. Hence, gold nanoassemblies present an effective targeting strategy for brain tumor treatment.

  13. The Process and Regulatory Components of Inflammation in Brain Oncogenesis

    PubMed Central

    Mostofa, A.G.M.; Punganuru, Surendra R.; Madala, Hanumantha Rao; Al-Obaide, Mohammad; Srivenugopal, Kalkunte S.

    2017-01-01

    Central nervous system tumors comprising the primary cancers and brain metastases remain the most lethal neoplasms and challenging to treat. Substantial evidence points to a paramount role for inflammation in the pathology leading to gliomagenesis, malignant progression and tumor aggressiveness in the central nervous system (CNS) microenvironment. This review summarizes the salient contributions of oxidative stress, interleukins, tumor necrosis factor-α(TNF-α), cyclooxygenases, and transcription factors such as signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) and the associated cross-talks to the inflammatory signaling in CNS cancers. The roles of reactive astrocytes, tumor associated microglia and macrophages, metabolic alterations, microsatellite instability, O6-methylguanine DNA methyltransferase (MGMT) DNA repair and epigenetic alterations mediated by the isocitrate dehydrogenase 1 (IDH1) mutations have been discussed. The inflammatory pathways with relevance to the brain cancer treatments have been highlighted. PMID:28346397

  14. Neurotensin inversely modulates maternal aggression

    PubMed Central

    Gammie, Stephen C.; D’Anna, Kimberly L.; Gerstein, Hilary; Stevenson, Sharon A.

    2008-01-01

    Neurotensin (NT) is a versatile neuropeptide involved in analgesia, hypothermia, and schizophrenia. Although NT is released from and acts upon brain regions involved in social behaviors, it has not been linked to a social behavior. We previously selected mice for high maternal aggression (maternal defense), an important social behavior that protects offspring, and found significantly lower NT expression in the CNS of highly protective females. Our current study directly tested NT’s role in maternal defense. Intracerebroventricular (icv) injections of NT significantly impaired defense in terms of time aggressive and number of attacks at all doses tested (0.05, 0.1, 1.0, and 3.0 μg). Other maternal behaviors, including pup retrieval, were unaltered following NT injections (0.05 μg) relative to vehicle, suggesting specificity of NT action on defense. Further, icv injections of the NT receptor 1 (NT1) antagonist, SR 48692 (30 μg), significantly elevated maternal aggression in terms of time aggressive and attack number. To understand where NT may regulate aggression, we examined Fos following injection of either 0.1 μg NT or vehicle. 13 of 26 brain regions examined exhibited significant Fos increases with NT, including regions expressing NT1 and previously implicated in maternal aggression, such as lateral septum, bed nucleus of stria terminalis, paraventricular nucleus, and central amygdala. Together, our results indicate that NT inversely regulates maternal aggression and provide the first direct evidence that lowering of NT signaling can be a mechanism for maternal aggression. To our knowledge, this is the first study to directly link NT to a social behavior. PMID:19118604

  15. Genetic abnormality predicts benefit for a rare brain tumor

    Cancer.gov

    A clinical trial has shown that addition of chemotherapy to radiation therapy leads to a near doubling of median survival time in patients with a form of brain tumor (oligodendroglioma) that carries a chromosomal abnormality called the 1p19q co-deletion.

  16. Psychophysiological correlates of aggression and violence: an integrative review.

    PubMed

    Patrick, Christopher J

    2008-08-12

    This paper reviews existing psychophysiological studies of aggression and violent behaviour including research employing autonomic, electrocortical and neuroimaging measures. Robust physiological correlates of persistent aggressive behaviour evident in this literature include low baseline heart rate, enhanced autonomic reactivity to stressful or aversive stimuli, enhanced EEG slow wave activity, reduced P300 brain potential response and indications from structural and functional neuroimaging studies of dysfunction in frontocortical and limbic brain regions that mediate emotional processing and regulation. The findings are interpreted within a conceptual framework that draws on two integrative models in the literature. The first is a recently developed hierarchical model of impulse control (externalizing) problems, in which various disinhibitory syndromes including aggressive and addictive behaviours of different kinds are seen as arising from common as well as distinctive aetiologic factors. This model represents an approach to organizing these various interrelated phenotypes and investigating their common and distinctive aetiologic substrates. The other is a neurobiological model that posits impairments in affective regulatory circuits in the brain as a key mechanism for impulsive aggressive behaviour. This model provides a perspective for integrating findings from studies employing different measures that have implicated varying brain structures and physiological systems in violent and aggressive behaviour.

  17. Atypical teratoid rhabdoid tumor in a 65-year-old man presenting with disseminated leptomeningeal disease: A case report and review of the literature.

    PubMed

    Babi, Marc-Alain; Fecci, Peter; Luedke, Matthew; Pineda, Olinda; O'Keefe, Yasmin Ali

    2018-01-01

    Central nervous system atypical teratoid rhabdoid tumors are very rare aggressive tumor of childhood, primarily occurring at age of less than 3 years old. The prognosis of these tumors is very poor, with a reported median survival of 6-12 months in most cases. Treatment typically consists of aggressive chemotherapy and radiotherapy. We present the case of a 65-year-old man who presented with progressive encephalopathy and change in personality over 3 months period. The patient had further accelerated decline over 3 weeks. The diagnosis of atypical teratoid rhabdoid tumor initially remained elusive despite very extensive workup, but was eventually confirmed via open brain biopsy. To the best of our knowledge, this is the oldest reported case of atypical teratoid rhabdoid tumor in the literature. We further extend the spectrum of this rare disease.

  18. Learning Profiles of Survivors of Pediatric Brain Tumors

    ERIC Educational Resources Information Center

    Barkon, Beverly

    2009-01-01

    By 2010 it is predicted that one in 900 adults will be survivors of some form of pediatric cancer. The numbers are somewhat lower for survivors of brain tumors, though their numbers are increasing. Schools mistakenly believe that these children easily fit pre-existing categories of disability. Though these students share some of the…

  19. Image updating for brain deformation compensation in tumor resection

    NASA Astrophysics Data System (ADS)

    Fan, Xiaoyao; Ji, Songbai; Olson, Jonathan D.; Roberts, David W.; Hartov, Alex; Paulsen, Keith D.

    2016-03-01

    Preoperative magnetic resonance images (pMR) are typically used for intraoperative guidance in image-guided neurosurgery, the accuracy of which can be significantly compromised by brain deformation. Biomechanical finite element models (FEM) have been developed to estimate whole-brain deformation and produce model-updated MR (uMR) that compensates for brain deformation at different surgical stages. Early stages of surgery, such as after craniotomy and after dural opening, have been well studied, whereas later stages after tumor resection begins remain challenging. In this paper, we present a method to simulate tumor resection by incorporating data from intraoperative stereovision (iSV). The amount of tissue resection was estimated from iSV using a "trial-and-error" approach, and the cortical shift was measured from iSV through a surface registration method using projected images and an optical flow (OF) motion tracking algorithm. The measured displacements were employed to drive the biomechanical brain deformation model, and the estimated whole-brain deformation was subsequently used to deform pMR and produce uMR. We illustrate the method using one patient example. The results show that the uMR aligned well with iSV and the overall misfit between model estimates and measured displacements was 1.46 mm. The overall computational time was ~5 min, including iSV image acquisition after resection, surface registration, modeling, and image warping, with minimal interruption to the surgical flow. Furthermore, we compare uMR against intraoperative MR (iMR) that was acquired following iSV acquisition.

  20. Brain Tumor’s Radioresistance: The Neighborhood Helps | Center for Cancer Research

    Cancer.gov

    Glioblastoma (GBM) is the most common and most aggressive form of brain cancer. The primary treatment for GBM is radiation therapy. Unfortunately, while some patients initially respond, the vast majority of GBM patients fail radiotherapy, and the tumor usually grows back within two years. To gain a better understanding of the biological basis for GBM resistance to radiation,

  1. Genetically defined fear-induced aggression: Focus on BDNF and its receptors.

    PubMed

    Ilchibaeva, Tatiana V; Tsybko, Anton S; Kozhemyakina, Rimma V; Kondaurova, Elena M; Popova, Nina K; Naumenko, Vladimir S

    2018-05-02

    Brain-derived neurotrophic factor (BDNF), its precursor proBDNF, BDNF pro-peptide, BDNF mRNA levels, as well as TrkB and p75 NTR receptors mRNA and protein levels, were studied in the brain of rats, selectively bred for more than 85 generations for either the high level or the lack of fear-induced aggressive behavior. Furthermore, we have found that rats of aggressive strain demonstrated both high level of aggression toward humans and increased amplitude of acoustic startle response compared to rats selectively bred for the lack of fear-induced aggression. Significant increase in the BDNF mRNA, mature BDNF and proBDNF protein levels in the raphe nuclei (RN), hippocampus (Hc), nucleus accumbens (NAcc), amygdala, striatum and hypothalamus (Ht) of aggressive rats was revealed. The BDNF/proBDNF ratio was significantly reduced in the Hc and NAcc of highly aggressive rats suggesting prevalence of the proBDNF in these structures. In the Hc and frontal cortex (FC) of aggressive rats, the level of the full-length TrkB (TrkB-FL) receptor form was decreased, whereas the truncated TrkB (TrkB-T) protein level was increased in the RN, FC, substantia nigra and Ht. The TrkB-FL/TrkB-T ratio was significantly decreased in highly aggressive rats suggesting TrkB-T is predominant in highly aggressive rats. The p75 NTR expression was slightly changed in majority of studied brain structures of aggressive rats. The data indicate the BDNF system in the brain of aggressive and nonaggressive animals is extremely different at all levels, from transcription to reception, suggesting significant role of BDNF system in the development of highly aggressive phenotype. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. A novel content-based active contour model for brain tumor segmentation.

    PubMed

    Sachdeva, Jainy; Kumar, Vinod; Gupta, Indra; Khandelwal, Niranjan; Ahuja, Chirag Kamal

    2012-06-01

    Brain tumor segmentation is a crucial step in surgical and treatment planning. Intensity-based active contour models such as gradient vector flow (GVF), magneto static active contour (MAC) and fluid vector flow (FVF) have been proposed to segment homogeneous objects/tumors in medical images. In this study, extensive experiments are done to analyze the performance of intensity-based techniques for homogeneous tumors on brain magnetic resonance (MR) images. The analysis shows that the state-of-art methods fail to segment homogeneous tumors against similar background or when these tumors show partial diversity toward the background. They also have preconvergence problem in case of false edges/saddle points. However, the presence of weak edges and diffused edges (due to edema around the tumor) leads to oversegmentation by intensity-based techniques. Therefore, the proposed method content-based active contour (CBAC) uses both intensity and texture information present within the active contour to overcome above-stated problems capturing large range in an image. It also proposes a novel use of Gray-Level Co-occurrence Matrix to define texture space for tumor segmentation. The effectiveness of this method is tested on two different real data sets (55 patients - more than 600 images) containing five different types of homogeneous, heterogeneous, diffused tumors and synthetic images (non-MR benchmark images). Remarkable results are obtained in segmenting homogeneous tumors of uniform intensity, complex content heterogeneous, diffused tumors on MR images (T1-weighted, postcontrast T1-weighted and T2-weighted) and synthetic images (non-MR benchmark images of varying intensity, texture, noise content and false edges). Further, tumor volume is efficiently extracted from 2-dimensional slices and is named as 2.5-dimensional segmentation. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Treatment of Invasive Brain Tumors Using a Chain-like Nanoparticle.

    PubMed

    Peiris, Pubudu M; Abramowski, Aaron; Mcginnity, James; Doolittle, Elizabeth; Toy, Randall; Gopalakrishnan, Ramamurthy; Shah, Shruti; Bauer, Lisa; Ghaghada, Ketan B; Hoimes, Christopher; Brady-Kalnay, Susann M; Basilion, James P; Griswold, Mark A; Karathanasis, Efstathios

    2015-04-01

    Glioblastoma multiforme is generally recalcitrant to current surgical and local radiotherapeutic approaches. Moreover, systemic chemotherapeutic approaches are impeded by the blood-tumor barrier. To circumvent limitations in the latter area, we developed a multicomponent, chain-like nanoparticle that can penetrate brain tumors, composed of three iron oxide nanospheres and one drug-loaded liposome linked chemically into a linear chain-like assembly. Unlike traditional small-molecule drugs or spherical nanotherapeutics, this oblong-shaped, flexible nanochain particle possessed a unique ability to gain access to and accumulate at glioma sites. Vascular targeting of nanochains to the αvβ3 integrin receptor resulted in a 18.6-fold greater drug dose administered to brain tumors than standard chemotherapy. By 2 hours after injection, when nanochains had exited the blood stream and docked at vascular beds in the brain, the application of an external low-power radiofrequency field was sufficient to remotely trigger rapid drug release. This effect was produced by mechanically induced defects in the liposomal membrane caused by the oscillation of the iron oxide portion of the nanochain. In vivo efficacy studies conducted in two different mouse orthotopic models of glioblastoma illustrated how enhanced targeting by the nanochain facilitates widespread site-specific drug delivery. Our findings offer preclinical proof-of-concept for a broadly improved method for glioblastoma treatment. ©2015 American Association for Cancer Research.

  4. Volumetric multimodality neural network for brain tumor segmentation

    NASA Astrophysics Data System (ADS)

    Silvana Castillo, Laura; Alexandra Daza, Laura; Carlos Rivera, Luis; Arbeláez, Pablo

    2017-11-01

    Brain lesion segmentation is one of the hardest tasks to be solved in computer vision with an emphasis on the medical field. We present a convolutional neural network that produces a semantic segmentation of brain tumors, capable of processing volumetric data along with information from multiple MRI modalities at the same time. This results in the ability to learn from small training datasets and highly imbalanced data. Our method is based on DeepMedic, the state of the art in brain lesion segmentation. We develop a new architecture with more convolutional layers, organized in three parallel pathways with different input resolution, and additional fully connected layers. We tested our method over the 2015 BraTS Challenge dataset, reaching an average dice coefficient of 84%, while the standard DeepMedic implementation reached 74%.

  5. Prenatal alcohol exposure increases the susceptibility to develop aggressive prolactinomas in the pituitary gland.

    PubMed

    Jabbar, Shaima; Reuhl, Kenneth; Sarkar, Dipak K

    2018-05-16

    Excess alcohol use is known to promote development of aggressive tumors in various tissues in human patients, but the cause of alcohol promotion of tumor aggressiveness is not clearly understood. We used an animals model of fetal alcohol exposure that is known to promote tumor development and determined if alcohol programs the pituitary to acquire aggressive prolactin-secreting tumors. Our results show that pituitaries of fetal alcohol-exposed rats produced increased levels of intra-pituitary aromatase protein and plasma estrogen, enhanced pituitary tissue growth, and upon estrogen challenge developed prolactin-secreting tumors (prolactinomas) that were hemorrhagic and often penetrated into the surrounding tissue. Pituitary tumors of fetal alcohol-exposed rats produced higher levels of hemorrhage-associated genes and proteins and multipotency genes and proteins. Cells of pituitary tumor of fetal alcohol exposed rat grew into tumor spheres in ultra-low attachment plate, expressed multipotency genes, formed an increased number of colonies, showed enhanced cell migration, and induced solid tumors following inoculation in immunodeficient mice. These data suggest that fetal alcohol exposure programs the pituitary to develop aggressive prolactinoma after estrogen treatment possibly due to increase in stem cell niche within the tumor microenvironment.

  6. Neuroimaging and neuropsychological follow-up study in a pediatric brain tumor patient treated with surgery and radiation.

    PubMed

    Schmidt, Adam T; Martin, Rebecca B; Ozturk, Arzu; Kates, Wendy R; Wharam, Moody D; Mahone, E Mark; Horska, Alena

    2010-02-01

    Intracranial tumors are the most common neoplasms of childhood, accounting for approximately 20% of all pediatric malignancies. Radiation therapy has led directly to significant increases in survival of children with certain types of intracranial tumors; however, given the aggressive nature of this therapy, children are at risk for exhibiting changes in brain structure, neuronal biochemistry, and neurocognitive functioning. In this case report, we present neuropsychological, magnetic resonance imaging, proton magnetic resonance spectroscopic imaging, and diffusion tensor imaging data for two adolescents (one patient with ependymal spinal cord tumor with intracranial metastases, and one healthy, typically developing control) from three time points as defined by the patient's radiation schedule (baseline before the patient's radiation therapy, 6 months following completion of the patient's radiation, and 27 months following the patient's radiation). In the patient, there were progressive decreases in gray and white matter volumes as well as early decreases in mean N-acetyl aspartate/choline (NAA/Cho) ratios and fractional anisotropy (FA) in regions with normal appearance on conventional MRI. At the last follow-up, NAA/Cho and FA tended to change in the direction to normal values in selected regions. At the same time, the patient had initial reduction in language and motor skills, followed by return to baseline, but later onset delay in visuospatial and visual perceptual skills. Results are discussed in terms of sensitivity of the four techniques to early and late effects of treatment, and avenues for future investigations.

  7. Phosphatidylserine-selective targeting and anticancer effects of SapC-DOPS nanovesicles on brain tumors

    PubMed Central

    Blanco, Víctor M.; Chu, Zhengtao; Vallabhapurapu, Subrahmanya D.; Sulaiman, Mahaboob K.; Kendler, Ady; Rixe, Olivier; Warnick, Ronald E.; Franco, Robert S.; Qi, Xiaoyang

    2014-01-01

    Brain tumors, either primary (e.g., glioblastoma multiforme) or secondary (metastatic), remain among the most intractable and fatal of all cancers. We have shown that nanovesicles consisting of Saposin C (SapC) and dioleylphosphatidylserine (DOPS) are able to effectively target and kill cancer cells both in vitro and in vivo. These actions are a consequence of the affinity of SapC-DOPS for phosphatidylserine, an acidic phospholipid abundantly present in the outer membrane of a variety of tumor cells and tumor-associated vasculature. In this study, we first characterize SapC-DOPS bioavailability and antitumor effects on human glioblastoma xenografts, and confirm SapC-DOPS specificity towards phosphatidylserine by showing that glioblastoma targeting is abrogated after in vivo exposure to lactadherin, which binds phosphatidylserine with high affinity. Second, we demonstrate that SapC-DOPS selectively targets brain metastases-forming cancer cells both in vitro, in co-cultures with human astrocytes, and in vivo, in mouse models of brain metastases derived from human breast or lung cancer cells. Third, we demonstrate that SapC-DOPS nanovesicles have cytotoxic activity against metastatic breast cancer cells in vitro, and prolong the survival of mice harboring brain metastases. Taken together, these results support the potential of SapC-DOPS for the diagnosis and therapy of primary and metastatic brain tumors. PMID:25051370

  8. Trans sodium crocetinate: functional neuroimaging studies in a hypoxic brain tumor.

    PubMed

    Sheehan, Jason P; Popp, Britney; Monteith, Stephen; Toulmin, Sushila; Tomlinson, Jennifer; Martin, Jessica; Cifarelli, Christopher P; Lee, Dae-Hee; Park, Deric M

    2011-10-01

    Intratumoral hypoxia is believed to be exhibited in high-grade gliomas. Trans sodium crocetinate (TSC) has been shown to increase oxygen diffusion to hypoxic tissues. In this research, the authors use oxygen-sensitive PET studies to evaluate the extent of hypoxia in vivo in a glioblastoma model and the effect of TSC on the baseline oxygenation of the tumor. The C6 glioma cells were stereotactically implanted in the right frontal region of rat brains. Formation of intracranial tumors was confirmed on MR imaging. Animals were injected with Copper(II) diacetyl-di(N4-methylthiosemicarbazone) (Cu-ATSM) and then either TSC or saline (6 rats each). Positron emission tomography imaging was performed, and relative uptake values were computed to determine oxygenation within the tumor and normal brain parenchyma. Additionally, TSC or saline was infused into the animals, and carbonic anhydrase 9 (CA9) and hypoxia-inducing factor-1α (HIF-1α) protein expression were measured 1 day afterward. On PET imaging, all glioblastoma tumors demonstrated a statistically significant decrease in uptake of Cu-ATSM compared with the contralateral cerebral hemisphere (p = 0.000002). The mean relative uptake value of the tumor was 3900 (range 2203-6836), and that of the contralateral brain tissue was 1017 (range 488-2304). The mean relative hypoxic tumor volume for the saline group and TSC group (6 rats each) was 1.01 ± 0.063 and 0.69 ± 0.062, respectively (mean ± SEM, p = 0.002). Infusion of TSC resulted in a 31% decrease in hypoxic volume. Immunoblot analysis revealed expression of HIF-1α and CA9 in all tumor specimens. Some glioblastomas exhibit hypoxia that is demonstrable on oxygen-specific PET imaging. It appears that TSC lessens intratumoral hypoxia on functional imaging. Further studies should explore relative hypoxia in glioblastoma and the potential therapeutic gains that can be achieved by lessening hypoxia during delivery of adjuvant treatment.

  9. Distinct Neural Stem Cell Populations Give Rise to Disparate Brain Tumors in Response to N-MYC

    PubMed Central

    Swartling, Fredrik J.; Savov, Vasil; Persson, Anders I.; Chen, Justin; Hackett, Christopher S.; Northcott, Paul A.; Grimmer, Matthew R.; Lau, Jasmine; Chesler, Louis; Perry, Arie; Phillips, Joanna J.; Taylor, Michael D.; Weiss, William A.

    2012-01-01

    SUMMARY The proto-oncogene MYCN is mis-expressed in various types of human brain tumors. To clarify how developmental and regional differences influence transformation, we transduced wild-type or mutationally-stabilized murine N-mycT58A into neural stem cells (NSCs) from perinatal murine cerebellum, brain stem and forebrain. Transplantation of N-mycWT NSCs was insufficient for tumor formation. N-mycT58A cerebellar and brain stem NSCs generated medulloblastoma/primitive neuroectodermal tumors, whereas forebrain NSCs developed diffuse glioma. Expression analyses distinguished tumors generated from these different regions, with tumors from embryonic versus postnatal cerebellar NSCs demonstrating SHH-dependence and SHH-independence, respectively. These differences were regulated in-part by the transcription factor SOX9, activated in the SHH subclass of human medulloblastoma. Our results demonstrate context-dependent transformation of NSCs in response to a common oncogenic signal. PMID:22624711

  10. MRI Brain Tumor Segmentation and Necrosis Detection Using Adaptive Sobolev Snakes.

    PubMed

    Nakhmani, Arie; Kikinis, Ron; Tannenbaum, Allen

    2014-03-21

    Brain tumor segmentation in brain MRI volumes is used in neurosurgical planning and illness staging. It is important to explore the tumor shape and necrosis regions at different points of time to evaluate the disease progression. We propose an algorithm for semi-automatic tumor segmentation and necrosis detection. Our algorithm consists of three parts: conversion of MRI volume to a probability space based on the on-line learned model, tumor probability density estimation, and adaptive segmentation in the probability space. We use manually selected acceptance and rejection classes on a single MRI slice to learn the background and foreground statistical models. Then, we propagate this model to all MRI slices to compute the most probable regions of the tumor. Anisotropic 3D diffusion is used to estimate the probability density. Finally, the estimated density is segmented by the Sobolev active contour (snake) algorithm to select smoothed regions of the maximum tumor probability. The segmentation approach is robust to noise and not very sensitive to the manual initialization in the volumes tested. Also, it is appropriate for low contrast imagery. The irregular necrosis regions are detected by using the outliers of the probability distribution inside the segmented region. The necrosis regions of small width are removed due to a high probability of noisy measurements. The MRI volume segmentation results obtained by our algorithm are very similar to expert manual segmentation.

  11. MRI brain tumor segmentation and necrosis detection using adaptive Sobolev snakes

    NASA Astrophysics Data System (ADS)

    Nakhmani, Arie; Kikinis, Ron; Tannenbaum, Allen

    2014-03-01

    Brain tumor segmentation in brain MRI volumes is used in neurosurgical planning and illness staging. It is important to explore the tumor shape and necrosis regions at di erent points of time to evaluate the disease progression. We propose an algorithm for semi-automatic tumor segmentation and necrosis detection. Our algorithm consists of three parts: conversion of MRI volume to a probability space based on the on-line learned model, tumor probability density estimation, and adaptive segmentation in the probability space. We use manually selected acceptance and rejection classes on a single MRI slice to learn the background and foreground statistical models. Then, we propagate this model to all MRI slices to compute the most probable regions of the tumor. Anisotropic 3D di usion is used to estimate the probability density. Finally, the estimated density is segmented by the Sobolev active contour (snake) algorithm to select smoothed regions of the maximum tumor probability. The segmentation approach is robust to noise and not very sensitive to the manual initialization in the volumes tested. Also, it is appropriate for low contrast imagery. The irregular necrosis regions are detected by using the outliers of the probability distribution inside the segmented region. The necrosis regions of small width are removed due to a high probability of noisy measurements. The MRI volume segmentation results obtained by our algorithm are very similar to expert manual segmentation.

  12. Confocal laser endomicroscopy for brain tumor surgery: a milestone journey from microscopy to cellular surgery (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Charalampaki, Cleopatra

    2017-02-01

    The aim in brain tumor surgery is maximal tumor resection with minimal damage of normal neuronal tissue. Today diagnosis of tumor and definition of tumor borders intraoperatively is based on various visualization methods as well as on the histopathologic examination of a limited number of biopsy specimens via frozen sections. Unfortunately, intraoperative histopathology bears several shortcomings, and many biopsies are inconclusive. Therefore, the desirable treatment could be to have the ability to identify intraoperative cellular structures, and differentiate tumor from normal functional brain tissue on a cellular level. To achieve this goal new technological equipment integrated with new surgical concepts is needed.Confocal Laser Endomicroscopy (CLE) is an imaging technique which provides microscopic information of tissue in real-time. We are able to use these technique to perform intraoperative "optical biopsies" in bringing the microscope inside to the patients brain through miniaturized fiber-optic probes, and allow real-time histopathology. In our knowledge we are worldwide the only one neurosurgical group using CLE intraoperative for brain tumor surgery. We can detect and characterize intraoperative tumor cells, providing immediate online diagnosis without the need for frozen sections. It also provides delineation of borders between tumor and normal tissue on a cellular level, making surgical margins more accurate than ever before. The applications of CLE-assisted neurosurgery help to accurate the therapy by extending the resection borders and protecting the functionality of normal brain tissue in critical eloquent areas.

  13. Repurposing Mebendazole as a Replacement for Vincristine for the Treatment of Brain Tumors

    PubMed Central

    De Witt, Michelle; Gamble, Alexander; Hanson, Derek; Markowitz, Daniel; Powell, Caitlin; Al Dimassi, Saleh; Atlas, Mark; Boockvar, John; Ruggieri, Rosamaria; Symons, Marc

    2017-01-01

    The microtubule inhibitor vincristine is currently used to treat a variety of brain tumors, including low-grade glioma and anaplastic oligodendroglioma. Vincristine, however, does not penetrate well into brain tumor tissue, and moreover, it displays dose-limiting toxicities, including peripheral neuropathy. Mebendazole, a Food and Drug Administration–approved anthelmintic drug with a favorable safety profile, has recently been shown to display strong therapeutic efficacy in animal models of both glioma and medulloblastoma. Importantly, appropriate formulations of mebendazole yield therapeutically effective concentrations in the brain. Mebendazole has been shown to inhibit microtubule formation, but it is not known whether its potency against tumor cells is mediated by this inhibitory effect. To investigate this, we examined the effects of mebendazole on GL261 glioblastoma cell viability, microtubule polymerization and metaphase arrest, and found that the effective concentrations to inhibit these functions are very similar. In addition, using mebendazole as a seed for the National Cancer Institute (NCI) COMPARE program revealed that the top-scoring drugs were highly enriched in microtubule-targeting drugs. Taken together, these results indicate that the cell toxicity of mebendazole is indeed caused by inhibiting microtubule formation. We also compared the therapeutic efficacy of mebendazole and vincristine against GL261 orthotopic tumors. We found that mebendazole showed a significant increase in animal survival time, whereas vincristine, even at a dose close to its maximum tolerated dose, failed to show any efficacy. In conclusion, our results strongly support the clinical use of mebendazole as a replacement for vincristine for the treatment of brain tumors. PMID:28386621

  14. SU-D-207A-03: Potential Role of BOLD MRI in Discrimination of Aggressive Tumor Habitat in Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, J; Lopez, C; Tschudi, Y

    Purpose: To determine whether blood oxygenation level dependent (BOLD) MRI signal measured in prostate cancer patients, in addition to quantitative diffusion and perfusion parameters from multiparametric (mp)MRI exams, can help discriminate aggressive and/or radioresistant lesions. Methods: Several ongoing clinical trials in our institution require mpMRI exam to determine eligibility (presence of identifiable tumor lesion on mpMRI) and prostate volumes for dose escalation. Upon consent, patients undergo fiducial markers placement and a T2*-weighted imaging at the time of CT sim to facilitate the fusion. In a retrospective analysis eleven clinical trial patients were identified who had undergone mpMRI on GE 3Tmore » magnet, followed by T2*-weighted imaging (time-period mean±SD = 48±20 days) using a consistent protocol (gradient echo, TR/TE=30/11.8ms, flip angle=12, matrix=256×256×75, voxel size=1.25×1.25×2.5mm). ROIs for prostate tumor lesions were automatically determined using ADC threshold ≤1200 µm2/s. Although the MR protocol was not intended for BOLD analysis, we utilized the T2*-weighted signal normalized to that in nearby muscle; likewise, T2-weighted lesion signal was normalized to muscle, following rigid registration of the T2 to T2* images. The ratio of these normalized signals, T2*/T2, is a measure of BOLD effect in the prostate tumors. Perfusion parameters (Ktrans, ve, kep) were also calculated. Results: T2*/T2 (mean±SE) was found to be substantially lower for Gleason score (GS) 8&9 (0.82±0.04) compared to GS 7 (1.08±0.07). A k-means cluster analysis of T2*/T2 versus kep = Ktrans/ve revealed two distinct clusters, one with higher T2*/T2 and lower kep, containing only GS 7 lesions, and another with lower T2*/T2 and higher kep, associated with tumor aggressiveness. This latter cluster contained all GS 8&9 lesions, as well as some GS 7. Conclusion: BOLD MRI, in addition to ADC and kep, may play a role (perhaps orthogonal to Gleason score) in

  15. The isoform A of reticulon-4 (Nogo-A) in cerebrospinal fluid of primary brain tumor patients: influencing factors.

    PubMed

    Koper, Olga Martyna; Kamińska, Joanna; Milewska, Anna; Sawicki, Karol; Mariak, Zenon; Kemona, Halina; Matowicka-Karna, Joanna

    2018-05-18

    The influence of isoform A of reticulon-4 (Nogo-A), also known as neurite outgrowth inhibitor, on primary brain tumor development was reported. Therefore the aim was the evaluation of Nogo-A concentrations in cerebrospinal fluid (CSF) and serum of brain tumor patients compared with non-tumoral individuals. All serum results, except for two cases, obtained both in brain tumors and non-tumoral individuals, were below the lower limit of ELISA detection. Cerebrospinal fluid Nogo-A concentrations were significantly lower in primary brain tumor patients compared to non-tumoral individuals. The univariate linear regression analysis found that if white blood cell count increases by 1 × 10 3 /μL, the mean cerebrospinal fluid Nogo-A concentration value decreases 1.12 times. In the model of multiple linear regression analysis predictor variables influencing cerebrospinal fluid Nogo-A concentrations included: diagnosis, sex, and sodium level. The mean cerebrospinal fluid Nogo-A concentration value was 1.9 times higher for women in comparison to men. In the astrocytic brain tumor group higher sodium level occurs with lower cerebrospinal fluid Nogo-A concentrations. We found the opposite situation in non-tumoral individuals. Univariate linear regression analysis revealed, that cerebrospinal fluid Nogo-A concentrations change in relation to white blood cell count. In the created model of multiple linear regression analysis we found, that within predictor variables influencing CSF Nogo-A concentrations were diagnosis, sex, and sodium level. Results may be relevant to the search for cerebrospinal fluid biomarkers and potential therapeutic targets in primary brain tumor patients. Nogo-A concentrations were tested by means of enzyme-linked immunosorbent assay (ELISA).

  16. Perspectives of boron-neutron capture therapy of malignant brain tumors

    NASA Astrophysics Data System (ADS)

    Kanygin, V. V.; Kichigin, A. I.; Krivoshapkin, A. L.; Taskaev, S. Yu.

    2017-09-01

    Boron neutron capture therapy (BNCT) is characterized by a selective effect directly on the cells of malignant tumors. The carried out research showed the perspective of the given kind of therapy concerning malignant tumors of the brain. However, the introduction of BNCT into clinical practice is hampered by the lack of a single protocol for the treatment of patients and the difficulty in using nuclear reactors to produce a neutron beam. This problem can be solved by using a compact accelerator as a source of neutrons, with the possibility of installation in a medical institution. Such a neutron accelerator for BNCT was developed at Budker Institute of Nuclear Physics, Novosibirsk. A neutron beam was obtained on this accelerator, which fully complies with the requirements of BNCT, as confirmed by studies on cell cultures and experiments with laboratory animals. The conducted experiments showed the relative safety of the method with the absence of negative effects on cell cultures and living organisms, and also confirmed the effectiveness of BNCT for malignant brain tumors.

  17. Mitochondrial Control by DRP1 in Brain Tumor Initiating Cells

    PubMed Central

    Xie, Qi; Wu, Qiulian; Horbinski, Craig M.; Flavahan, William A.; Yang, Kailin; Zhou, Wenchao; Dombrowski, Stephen M.; Huang, Zhi; Fang, Xiaoguang; Shi, Yu; Ferguson, Ashley N.; Kashatus, David F.; Bao, Shideng; Rich, Jeremy N.

    2015-01-01

    Brain tumor initiating cells (BTICs) coopt the neuronal high affinity GLUT3 glucose transporter to withstand metabolic stress. Here, we investigated another mechanism critical to brain metabolism, mitochondrial morphology. BTICs displayed mitochondrial fragmentation relative to non-BTICs, suggesting that BTICs have increased mitochondrial fission. The essential mediator of mitochondrial fission, dynamin-related protein 1 (DRP1), was activated in BTICs and inhibited in non-BTICs. Targeting DRP1 using RNA interference or pharmacologic inhibition induced BTIC apoptosis and inhibited tumor growth. Downstream, DRP1 activity regulated the essential metabolic stress sensor, AMP-activated protein kinase (AMPK), and AMPK targeting rescued the effects of DRP1 disruption. Cyclin-dependent kinase 5 (CDK5) phosphorylated DRP1 to increase its activity in BTICs, whereas Ca2+–calmodulin-dependent protein kinase 2 (CAMK2) inhibited DRP1 in non-BTICs, suggesting tumor cell differentiation induces a regulatory switch in mitochondrial morphology. DRP1 activation correlates with poor prognosis in glioblastoma, suggesting mitochondrial dynamics may represent a therapeutic target for BTICs. PMID:25730670

  18. Neural networks underlying trait aggression depend on MAOA gene alleles.

    PubMed

    Klasen, Martin; Wolf, Dhana; Eisner, Patrick D; Habel, Ute; Repple, Jonathan; Vernaleken, Ingo; Schlüter, Thorben; Eggermann, Thomas; Zerres, Klaus; Zepf, Florian D; Mathiak, Klaus

    2018-03-01

    Low expressing alleles of the MAOA gene (MAOA-L) have been associated with an increased risk for developing an aggressive personality. This suggests an MAOA-L-specific neurobiological vulnerability associated with trait aggression. The neural networks underlying this vulnerability are unknown. The present study investigated genotype-specific associations between resting state brain networks and trait aggression (Buss-Perry Aggression Questionnaire) in 82 healthy Caucasian males. Genotype influences on aggression-related networks were studied for intrinsic and seed-based brain connectivity. Intrinsic connectivity was higher in the ventromedial prefrontal cortex (VMPFC) of MAOA-L compared to high expressing allele (MAOA-H) carriers. Seed-based connectivity analyses revealed genotype differences in the functional involvement of this region. MAOA genotype modulated the relationship between trait aggression and VMPFC connectivity with supramarginal gyrus (SMG) and areas of the default mode network (DMN). Separate analyses for the two groups were performed to better understand how the genotype modulated the relationship between aggression and brain networks. They revealed a positive correlation between VMPFC connectivity and aggression in right angular gyrus (AG) and a negative correlation in right SMG in the MAOA-L group. No such effect emerged in the MAOA-H carriers. The results indicate a particular relevance of VMPFC for aggression in MAOA-L carriers; in specific, a detachment from the DMN along with a strengthened coupling to the AG seems to go along with lower trait aggression. MAOA-L carriers may thus depend on a synchronization of emotion regulation systems (VMPFC) with core areas of empathy (SMG) to prevent aggression.

  19. Aggressive tumor growth and clinical evolution in a patient with X-linked acro-gigantism syndrome.

    PubMed

    Naves, Luciana A; Daly, Adrian F; Dias, Luiz Augusto; Yuan, Bo; Zakir, Juliano Coelho Oliveira; Barra, Gustavo Barcellos; Palmeira, Leonor; Villa, Chiara; Trivellin, Giampaolo; Júnior, Armindo Jreige; Neto, Florêncio Figueiredo Cavalcante; Liu, Pengfei; Pellegata, Natalia S; Stratakis, Constantine A; Lupski, James R; Beckers, Albert

    2016-02-01

    X-linked acro-gigantism (X-LAG) syndrome is a newly described disease caused by microduplications on chromosome Xq26.3 leading to copy number gain of GPR101. We describe the clinical progress of a sporadic male X-LAG syndrome patient with an Xq26.3 microduplication, highlighting the aggressive natural history of pituitary tumor growth in the absence of treatment. The patient first presented elsewhere aged 5 years 8 months with a history of excessive growth for >2 years. His height was 163 cm, his weight was 36 kg, and he had markedly elevated GH and IGF-1. MRI showed a non-invasive sellar mass measuring 32.5 × 23.9 × 29.1 mm. Treatment was declined and the family was lost to follow-up. At the age of 10 years and 7 months, he presented again with headaches, seizures, and visual disturbance. His height had increased to 197 cm. MRI showed an invasive mass measuring 56.2 × 58.1 × 45.0 mm, with compression of optic chiasma, bilateral cavernous sinus invasion, and hydrocephalus. His thyrotrope, corticotrope, and gonadotrope axes were deficient. Surgery, somatostatin analogs, and cabergoline did not control vertical growth and pegvisomant was added, although vertical growth continues (currently 207 cm at 11 years 7 months of age). X-LAG syndrome is a new genomic disorder in which early-onset pituitary tumorigenesis can lead to marked overgrowth and gigantism. This case illustrates the aggressive nature of tumor evolution and the challenging clinical management in X-LAG syndrome.

  20. Aggressive tumor growth and clinical evolution in a patient with X-linked acro-gigantism syndrome

    PubMed Central

    Naves, Luciana A.; Daly, Adrian F.; Dias, Luiz Augusto; Yuan, Bo; Zakir, Juliano Coelho Oliveira; Barra, Gustavo Barcellos; Palmeira, Leonor; Villa, Chiara; Trivellin, Giampaolo; Jreige, Armindo; Neto, Florêncio Figueiredo Cavalcante; Liu, Pengfei; Pellegata, Natalia S.; Stratakis, Constantine A.; Lupski, James R.

    2017-01-01

    X-linked acro-gigantism (X-LAG) syndrome is a newly described disease caused by microduplications on chromosome Xq26.3 leading to copy number gain of GPR101. We describe the clinical progress of a sporadic male X-LAG syndrome patient with an Xq26.3 microduplication, highlighting the aggressive natural history of pituitary tumor growth in the absence of treatment. The patient first presented elsewhere aged 5 years 8 months with a history of excessive growth for >2 years. His height was 163 cm, his weight was 36 kg, and he had markedly elevated GH and IGF-1. MRI showed a non-invasive sellar mass measuring 32.5 × 23.9 × 29.1 mm. Treatment was declined and the family was lost to follow-up. At the age of 10 years and 7 months, he presented again with headaches, seizures, and visual disturbance. His height had increased to 197 cm. MRI showed an invasive mass measuring 56.2 × 58.1 × 45.0 mm, with compression of optic chiasma, bilateral cavernous sinus invasion, and hydrocephalus. His thyrotrope, corticotrope, and gonadotrope axes were deficient. Surgery, somatostatin analogs, and cabergoline did not control vertical growth and pegvisomant was added, although vertical growth continues (currently 207 cm at 11 years 7 months of age). X-LAG syndrome is a new genomic disorder in which early-onset pituitary tumorigenesis can lead to marked overgrowth and gigantism. This case illustrates the aggressive nature of tumor evolution and the challenging clinical management in X-LAG syndrome. PMID:26607152

  1. The Long and Winding Road: From the High-Affinity Choline Uptake Site to Clinical Trials for Malignant Brain Tumors.

    PubMed

    Lowenstein, P R; Castro, M G

    2016-01-01

    Malignant brain tumors are one of the most lethal cancers. They originate from glial cells which infiltrate throughout the brain. Current standard of care involves surgical resection, radiotherapy, and chemotherapy; median survival is currently ~14-20 months postdiagnosis. Given that the brain immune system is deficient in priming systemic immune responses to glioma antigens, we proposed to reconstitute the brain immune system to achieve immunological priming from within the brain. Two adenoviral vectors are injected into the resection cavity or remaining tumor. One adenoviral vector expresses the HSV-1-derived thymidine kinase which converts ganciclovir into a compound only cytotoxic to dividing glioma cells. The second adenovirus expresses the cytokine fms-like tyrosine kinase 3 ligand (Flt3L). Flt3L differentiates precursors into dendritic cells and acts as a chemokine that attracts dendritic cells to the brain. HSV-1/ganciclovir killing of tumor cells releases tumor antigens that are taken up by dendritic cells within the brain tumor microenvironment. Tumor killing also releases HMGB1, an endogenous TLR2 agonist that activates dendritic cells. HMGB1-activated dendritic cells, loaded with glioma antigens, migrate to cervical lymph nodes to stimulate a systemic CD8+ T cells cytotoxic immune response against glioma. This immune response is specific to glioma tumors, induces immunological memory, and does neither cause brain toxicity nor autoimmune responses. An IND was granted by the FDA on 4/7/2011. A Phase I, first in person trial, to test whether reengineering the brain immune system is potentially therapeutic is ongoing. © 2016 Elsevier Inc. All rights reserved.

  2. Los Angeles study of residential magnetic fields and childhood brain tumors.

    PubMed

    Preston-Martin, S; Navidi, W; Thomas, D; Lee, P J; Bowman, J; Pogoda, J

    1996-01-15

    A measurement study of residential magnetic fields and brain tumors in children that was added onto an ongoing case-control interview study in Los Angeles County, California, include 298 children under age 20 years with a primary brain tumor diagnosed from 1984 to 1991 and 298 control children identified by random digit dialing. Magnetic fields were determined for all Los Angeles homes where these 596 children lived from conception to diagnosis (1,131 homes) by mapping and coding the wiring configurations outside the home and by taking a series of exterior spot and profile measurements. In addition, for a subset of subjects (35%; 211 homes) 24-hour measurements were taken in the child's room and one other room. Although measured fields are consistently highest in the highest of the five wire code categories, fields in homes in this category are much lower in Los Angeles than in Denver, where the code originated. Brain tumor risk appears not to relate to measured fields inside (p for trend for child's room = 0.98) or outside (p for trend for front wall = 0.82) the home. An apparent increase in risk among children living at diagnosis in homes with underground wiring appears to be an artifact introduced by using current controls for historical cases because this apparent excess risk disappeared in an analysis restricted to the later years of the study when cases and controls were accrued concurrently. Our study does not show an overall association of pediatric brain tumors with measured fields, with "very high" wiring configurations, or with any of several other potential sources of exposure, such as use of various electrical appliances, but the prevalence of high fields (> 2 mG) and very high fields (> 3 mG) in Los Angeles homes was too low to detect a moderate effect of the magnitude reported in other studies.

  3. First noninvasive thermal ablation of a brain tumor with MR-guided focused ultrasound

    PubMed Central

    2014-01-01

    Magnetic resonance-guided focused ultrasound surgery (MRgFUS) allows for precise thermal ablation of target tissues. While this emerging modality is increasingly used for the treatment of various types of extracranial soft tissue tumors, it has only recently been acknowledged as a modality for noninvasive neurosurgery. MRgFUS has been particularly successful for functional neurosurgery, whereas its clinical application for tumor neurosurgery has been delayed for various technical and procedural reasons. Here, we report the case of a 63-year-old patient presenting with a centrally located recurrent glioblastoma who was included in our ongoing clinical phase I study aimed at evaluating the feasibility and safety of transcranial MRgFUS for brain tumor ablation. Applying 25 high-power sonications under MR imaging guidance, partial tumor ablation could be achieved without provoking neurological deficits or other adverse effects in the patient. This proves, for the first time, the feasibility of using transcranial MR-guided focused ultrasound to safely ablate substantial volumes of brain tumor tissue. PMID:25671132

  4. Central Nervous System Injury and Neurobiobehavioral Function in Children With Brain Tumors

    PubMed Central

    Nelson, Mary Baron; Compton, Peggy; Patel, Sunita K.; Jacob, Eufemia; Harper, Ronald

    2018-01-01

    Background Children with brain tumors present a complex set of factors when considering treatment decisions, including type and location of tumor and age of the child. Two-thirds of children will survive, but historically have had poorer neurocognitive and quality-of-life outcomes when compared with survivors of other childhood cancers. Delaying or forgoing cranial radiation completely is thought to lead to improved neurobiobehavioral outcomes, but there is still relatively little research in this area. Objectives The objectives of this study were to review and consolidate what is known about the effects of cranial radiation and chemotherapy on normal brain tissue and to synthesize that information relative to neurobiobehavioral findings in children with brain tumors. Methods A literature search using PubMed and PsycINFO from 2000 to 2011 was done using a variety of terms related to childhood brain tumor treatment and outcome. A total of 70 articles were reviewed, and 40 were chosen for inclusion in the review based on most relevance to this population. Results Both cranial radiation and certain chemotherapy agents cause damage to or loss of healthy neurons, as well as a decrease in the number of progenitor cells of the hippocampus. However, in general, children treated with chemotherapy alone appear to have less of a neurobiobehavioral impact than those treated with cranial radiation. Conclusions The trend toward delaying or postponing cranial radiation when possible may improve overall neurocognitive and quality-of-life outcomes. Implications for Practice Nurses require knowledge of these issues when discussing treatment with families and with caring for long-term survivors. PMID:22781957

  5. Epidermal growth factor receptor as a novel molecular target for aggressive papillary tumors in the middle ear and temporal bone

    PubMed Central

    Kawabata, Shigeru; Christine Hollander, M; Munasinghe, Jeeva P.; Brinster, Lauren R.; Mercado-Matos, José R.; Li, Jie; Regales, Lucia; Pao, William; Jänne, Pasi A.; Wong, Kwok-Kin; Butman, John A.; Lonser, Russell R.; Hansen, Marlan R.; Gurgel, Richard K.; Vortmeyer, Alexander O.; Dennis, Phillip A.

    2015-01-01

    Adenomatous tumors in the middle ear and temporal bone are rare but highly morbid because they are difficult to detect prior to the development of audiovestibular dysfunction. Complete resection is often disfiguring and difficult because of location and the late stage at diagnosis, so identification of molecular targets and effective therapies is needed. Here, we describe a new mouse model of aggressive papillary ear tumor that was serendipitously discovered during the generation of a mouse model for mutant EGFR-driven lung cancer. Although these mice did not develop lung tumors, 43% developed head tilt and circling behavior. Magnetic resonance imaging (MRI) scans showed bilateral ear tumors located in the tympanic cavity. These tumors expressed mutant EGFR as well as active downstream targets such as Akt, mTOR and ERK1/2. EGFR-directed therapies were highly effective in eradicating the tumors and correcting the vestibular defects, suggesting these tumors are addicted to EGFR. EGFR activation was also observed in human ear neoplasms, which provides clinical relevance for this mouse model and rationale to test EGFR-targeted therapies in these rare neoplasms. PMID:26027747

  6. Epidermal growth factor receptor as a novel molecular target for aggressive papillary tumors in the middle ear and temporal bone.

    PubMed

    Kawabata, Shigeru; Hollander, M Christine; Munasinghe, Jeeva P; Brinster, Lauren R; Mercado-Matos, José R; Li, Jie; Regales, Lucia; Pao, William; Jänne, Pasi A; Wong, Kwok-Kin; Butman, John A; Lonser, Russell R; Hansen, Marlan R; Gurgel, Richard K; Vortmeyer, Alexander O; Dennis, Phillip A

    2015-05-10

    Adenomatous tumors in the middle ear and temporal bone are rare but highly morbid because they are difficult to detect prior to the development of audiovestibular dysfunction. Complete resection is often disfiguring and difficult because of location and the late stage at diagnosis, so identification of molecular targets and effective therapies is needed. Here, we describe a new mouse model of aggressive papillary ear tumor that was serendipitously discovered during the generation of a mouse model for mutant EGFR-driven lung cancer. Although these mice did not develop lung tumors, 43% developed head tilt and circling behavior. Magnetic resonance imaging (MRI) scans showed bilateral ear tumors located in the tympanic cavity. These tumors expressed mutant EGFR as well as active downstream targets such as Akt, mTOR and ERK1/2. EGFR-directed therapies were highly effective in eradicating the tumors and correcting the vestibular defects, suggesting these tumors are addicted to EGFR. EGFR activation was also observed in human ear neoplasms, which provides clinical relevance for this mouse model and rationale to test EGFR-targeted therapies in these rare neoplasms.

  7. Phosphaturic mesenchymal tumor of the brain without tumor-induced osteomalacia in an 8-year-old girl: case report.

    PubMed

    Ellis, Mark B; Gridley, Daniel; Lal, Suresh; Nair, Geetha R; Feiz-Erfan, Iman

    2016-05-01

    Phosphaturic mesenchymal tumor (mixed connective tissue variant) (PMT-MCT) are tumors that may cause tumor-induced osteomalacia and rarely appear intracranially. The authors describe the case of an 8-year-old girl who was found to have PMT-MCT with involvement of the cerebellar hemisphere and a small tumor pedicle breaching the dura mater and involving the skull. This was removed surgically in gross-total fashion without further complication. Histologically the tumor was confirmed to be a PMT-MCT. There was no evidence of tumor-induced osteomalacia. At the 42-month follow-up, the patient is doing well, has no abnormalities, and is free of recurrence. PMT-MCTs are rare tumors that may involve the brain parenchyma. A gross-total resection may be effective to cure these lesions.

  8. [Study on medical economic evaluation methods for metastatic brain tumors therapy].

    PubMed

    Takura, Tomoyuki; Hayashi, Motohiro; Muragaki, Yoshihiro; Iseki, Hiroshi; Uetsuka, Yoshio

    2010-07-01

    Treatment design for metastatic brain tumors is required to firstly care about the life and function for which the patient hopes because it is terminal care. Therefore, to discuss the value of the therapy, a viewpoint of the QOL and the socioeconomic factors other than the survival rate is important. However, examination that applies these factors to the therapy needs to be carried out more thoroughly. With this in mind, we discuss cost effectiveness of therapy for metastatic brain tumor, through a pilot study on gamma knife therapy. We studied 18 patients (mean age 61.6 years old) undergoing therapy for metastatic brain tumors. The health rate QOL was assessed by the profile-type measure SF-36 (Short-Form 36-Item Ver1.2) and the preference-based measure EQ-5D (EuroQoL-5D), before and six months after gamma knife therapy. Cost-utility-analysis (yen/Qaly) was carried out from quality adjusted life years (Qalys) and medical fee claims. In addition, we made a correlation analysis of the irradiation procedure and the gains attained. The observation by SF-36 for six months was useful for metastatic brain tumor. As a result, the QOL indicators showed increased mental health (MH: p=0.040) and role emotional (RE: p=0.029) with significant difference. In the measurement of EQ-5D, it was added only for one month based on the significant difference (p=0.022) from the pre-therapy QOL. The utilities that were analyzed became 0.052+/-0.175SD (score), and Qalys were 0.135. Because the cost was 721.4+/-5.2SD (thousand yen), the performance of cost-utility-analysis was estimated as 5, 330, 000 (yen/Qaly). In addition, positive correlation (r=0.845/p=0.034) was found between the EQ-5D utility score and the tumor irradiation energy (mJ), etc. We established a new value over and above mere survival rate concerning metastatic brain tumor therapy. The socioeconomics and efficacy of therapy are more difficult to discuss in this disease than in other diseases. We did this by clarifying

  9. Attributional bias and reactive aggression.

    PubMed

    Hudley, C; Friday, J

    1996-01-01

    This article looks at a cognitive behavioral intervention designed to reduce minority youths' (Latino and African-American boys) levels of reactive peer-directed aggression. The BrainPower Program trains aggressive boys to recognize accidental causation in ambiguous interactions with peers. The objective of this research is to evaluate the effectiveness of this attribution retraining program in reducing levels of reactive, peer-directed aggression. This research hypothesizes that aggressive young boys' tendency to attribute hostile intentions to others in ambiguous social interactions causes display of inappropriate, peer-directed aggression. A reduction in attributional bias should produce a decrease in reactive physical and verbal aggression directed toward peers. A 12-session, attributional intervention has been designed to reduce aggressive students' tendency to infer hostile intentions in peers following ambiguous peer provocations. The program trains boys to (1) accurately perceive and categorize the available social cues in interactions with peers, (2) attribute negative outcomes of ambiguous causality to accidental or uncontrollable causes, and (3) generate behaviors appropriate to these retrained attributions. African-American and Latino male elementary-school students (N = 384), in grades four-six, served as subjects in one of three groups: experimental attribution retraining program, attention training, and no-attention control group. Three broad categories of outcome data were collected: teacher and administrator reports of behavior, independent observations of behavior, and self-reports from participating students. Process measures to assess implementation fidelity include videotaped training sessions, observations of intervention sessions, student attendance records, and weekly team meetings. The baseline data indicated that students who were evenly distributed across the four sites were not significantly different on the baseline indicators: student

  10. Optical Imaging of Targeted β-Galactosidase in Brain Tumors to Detect EGFR Levels

    PubMed Central

    Broome, Ann-Marie; Ramamurthy, Gopal; Lavik, Kari; Liggett, Alexander; Kinstlinger, Ian; Basilion, James

    2015-01-01

    A current limitation in molecular imaging is that it often requires genetic manipulation of cancer cells for noninvasive imaging. Other methods to detect tumor cells in vivo using exogenously delivered and functionally active reporters, such as β-gal, are required. We report the development of a platform system for linking β-gal to any number of different ligands or antibodies for in vivo targeting to tissue or cells, without the requirement for genetic engineering of the target cells prior to imaging. Our studies demonstrate significant uptake in vitro and in vivo of an EGFR-targeted β-gal complex. We were then able to image orthotopic brain tumor accumulation and localization of the targeted enzyme when a fluorophore was added to the complex, as well as validate the internalization of the intravenously administered β-gal reporter complex ex vivo. After fluorescence imaging localized the β-gal complexes to the brain tumor, we topically applied a bioluminescent β-gal substrate to serial sections of the brain to evaluate the delivery and integrity of the enzyme. Finally, robust bioluminescence of the EGFR-targeted β-gal complex was captured within the tumor during noninvasive in vivo imaging. PMID:25775241

  11. Optical imaging of targeted β-galactosidase in brain tumors to detect EGFR levels.

    PubMed

    Broome, Ann-Marie; Ramamurthy, Gopal; Lavik, Kari; Liggett, Alexander; Kinstlinger, Ian; Basilion, James

    2015-04-15

    A current limitation in molecular imaging is that it often requires genetic manipulation of cancer cells for noninvasive imaging. Other methods to detect tumor cells in vivo using exogenously delivered and functionally active reporters, such as β-gal, are required. We report the development of a platform system for linking β-gal to any number of different ligands or antibodies for in vivo targeting to tissue or cells, without the requirement for genetic engineering of the target cells prior to imaging. Our studies demonstrate significant uptake in vitro and in vivo of an EGFR-targeted β-gal complex. We were then able to image orthotopic brain tumor accumulation and localization of the targeted enzyme when a fluorophore was added to the complex, as well as validate the internalization of the intravenously administered β-gal reporter complex ex vivo. After fluorescence imaging localized the β-gal complexes to the brain tumor, we topically applied a bioluminescent β-gal substrate to serial sections of the brain to evaluate the delivery and integrity of the enzyme. Finally, robust bioluminescence of the EGFR-targeted β-gal complex was captured within the tumor during noninvasive in vivo imaging.

  12. Permeability of PEGylated immunoarsonoliposomes through in vitro blood brain barrier-medulloblastoma co-culture models for brain tumor therapy.

    PubMed

    Al-Shehri, Abdulghani; Favretto, Marco E; Ioannou, Panayiotis V; Romero, Ignacio A; Couraud, Pierre-Olivier; Weksler, Babette Barbash; Parker, Terry L; Kallinteri, Paraskevi

    2015-03-01

    Owing to restricted access of pharmacological agents into the brain due to blood brain barrier (BBB) there is a need: 1. to develop a more representative 3-D-co-culture model of tumor-BBB interaction to investigate drug and nanoparticle transport into the brain for diagnostic and therapeutic evaluation. 2. to address the lack of new alternative methods to animal testing according to replacement-reduction-refinement principles. In this work, in vitro BBB-medulloblastoma 3-D-co-culture models were established using immortalized human primary brain endothelial cells (hCMEC/D3). hCMEC/D3 cells were cultured in presence and in absence of two human medulloblastoma cell lines on Transwell membranes. In vitro models were characterized for BBB formation, zonula occludens-1 expression and permeability to dextran. Transferrin receptors (Tfr) expressed on hCMEC/D3 were exploited to facilitate arsonoliposome (ARL) permeability through the BBB to the tumor by covalently attaching an antibody specific to human Tfr. The effect of anticancer ARLs on hCMEC/D3 was assessed. In vitro BBB and BBB-tumor co-culture models were established successfully. BBB permeability was affected by the presence of tumor aggregates as suggested by increased permeability of ARLs. There was a 6-fold and 8-fold increase in anti-Tfr-ARL uptake into VC312R and BBB-DAOY co-culture models, respectively, compared to plain ARLs. The three-dimensional models might be appropriate models to study the transport of various drugs and nanocarriers (liposomes and immunoarsonoliposomes) through the healthy and diseased BBB. The immunoarsonoliposomes can be potentially used as anticancer agents due to good tolerance of the in vitro BBB model to their toxic effect.

  13. In vitro terahertz spectroscopy of gelatin-embedded human brain tumors: a pilot study

    NASA Astrophysics Data System (ADS)

    Chernomyrdin, N. V.; Gavdush, A. A.; Beshplav, S.-I. T.; Malakhov, K. M.; Kucheryavenko, A. S.; Katyba, G. M.; Dolganova, I. N.; Goryaynov, S. A.; Karasik, V. E.; Spektor, I. E.; Kurlov, V. N.; Yurchenko, S. O.; Komandin, G. A.; Potapov, A. A.; Tuchin, V. V.; Zaytsev, K. I.

    2018-04-01

    We have performed the in vitro terahertz (THz) spectroscopy of human brain tumors. In order to fix tissues for the THz measurements, we have applied the gelatin embedding. It allows for preserving tissues from hydration/dehydration and sustaining their THz response similar to that of the freshly-excised tissues for a long time after resection. We have assembled an experimental setup for the reflection-mode measurements of human brain tissues based on the THz pulsed spectrometer. We have used this setup to study in vitro the refractive index and the amplitude absorption coefficient of 2 samples of malignant glioma (grade IV), 1 sample of meningioma (grade I), and samples of intact tissues. We have observed significant differences between the THz responses of normal and pathological tissues of the brain. The results of this paper highlight the potential of the THz technology in the intraoperative neurodiagnosis of tumors relying on the endogenous labels of tumorous tissues.

  14. Diagnostic accuracy of prostate health index to identify aggressive prostate cancer. An Institutional validation study.

    PubMed

    Morote, J; Celma, A; Planas, J; Placer, J; Ferrer, R; de Torres, I; Pacciuci, R; Olivan, M

    2016-01-01

    New generations of tumor markers used to detect prostate cancer (PCa) should be able to discriminate men with aggressive PCa of those without PCa or nonaggressive tumors. The objective of this study has been to validate Prostate Health Index (PHI) as a marker of aggressive PCa in one academic institution. PHI was assessed in 357 men scheduled to prostatic biopsy between June of 2013 and July 2014 in one academic institution. Thereafter a subset of 183 men younger than 75 years and total PSA (tPSA) between 3.0 and 10.0 ng/mL, scheduled to it first prostatic biopsy, was retrospectively selected for this study. Twelve cores TRUS guided biopsy, under local anaesthesia, was performed in all cases. Total PSA, free PSA (fPSA), and [-2] proPSA (p2PSA) and prostate volume were determined before the procedure and %fPSA, PSA density (PSAd) and PHI were calculated. Aggressive tumors were considered if any Gleason 4 pattern was found. PHI was compared to %fPSA and PSAd through their ROC curves. Thresholds to detect 90%, 95% of all tumors and 95% and 100% of aggressive tumors were estimated and rates of unnecessary avoided biopsies were calculated and compared. The rate of PCa detection was 37.2% (68) and the rate of aggressive tumors was 24.6% (45). The PHI area under the curve was higher than those of %fPSA and PSAd to detect any PCa (0.749 vs 0.606 and 0.668 respectively) or to detect only aggressive tumors (0.786 vs 0.677 and 0.708 respectively), however, significant differences were not found. The avoided biopsy rates to detect 95% of aggressive tumors were 20.2% for PHI, 14.8% for %fPSA, and 23.5% for PSAd. Even more, to detect all aggressive tumors these rates dropped to 4.9% for PHI, 9.3% for %fPSA, and 7.9% for PSAd. PHI seems a good marker to PCa diagnosis. However, PHI was not superior to %fPSA and PSAd to identify at least 95% of aggressive tumors. Copyright © 2016 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Donepezil in Treating Young Patients With Primary Brain Tumors Previously Treated With Radiation Therapy to the Brain

    ClinicalTrials.gov

    2017-07-31

    Brain and Central Nervous System Tumors; Cognitive/Functional Effects; Long-term Effects Secondary to Cancer Therapy in Children; Neurotoxicity; Psychosocial Effects of Cancer and Its Treatment; Radiation Toxicity

  16. MMP1, MMP9, and COX2 expressions in promonocytes are induced by breast cancer cells and correlate with collagen degradation, transformation-like morphological changes in MCF-10A acini, and tumor aggressiveness.

    PubMed

    Chimal-Ramírez, G K; Espinoza-Sánchez, N A; Utrera-Barillas, D; Benítez-Bribiesca, L; Velázquez, J R; Arriaga-Pizano, L A; Monroy-García, A; Reyes-Maldonado, E; Domínguez-López, M L; Piña-Sánchez, Patricia; Fuentes-Pananá, E M

    2013-01-01

    Tumor-associated immune cells often lack immune effector activities, and instead they present protumoral functions. To understand how tumors promote this immunological switch, invasive and noninvasive breast cancer cell (BRC) lines were cocultured with a promonocytic cell line in a Matrigel-based 3D system. We hypothesized that if communication exists between tumor and immune cells, coculturing would result in augmented expression of genes associated with tumor malignancy. Upregulation of proteases MMP1 and MMP9 and inflammatory COX2 genes was found likely in response to soluble factors. Interestingly, changes were more apparent in promonocytes and correlated with the aggressiveness of the BRC line. Increased gene expression was confirmed by collagen degradation assays and immunocytochemistry of prostaglandin 2, a product of COX2 activity. Untransformed MCF-10A cells were then used as a sensor of soluble factors with transformation-like capabilities, finding that acini formed in the presence of supernatants of the highly aggressive BRC/promonocyte cocultures often exhibited total loss of the normal architecture. These data support that tumor cells can modify immune cell gene expression and tumor aggressiveness may importantly reside in this capacity. Modeling interactions in the tumor stroma will allow the identification of genes useful as cancer prognostic markers and therapy targets.

  17. Self-Assembly of Gold Nanoparticles Shows Microenvironment-Mediated Dynamic Switching and Enhanced Brain Tumor Targeting

    PubMed Central

    Feng, Qishuai; Shen, Yajing; Fu, Yingjie; Muroski, Megan E.; Zhang, Peng; Wang, Qiaoyue; Xu, Chang; Lesniak, Maciej S.; Li, Gang; Cheng, Yu

    2017-01-01

    Inorganic nanoparticles with unique physical properties have been explored as nanomedicines for brain tumor treatment. However, the clinical applications of the inorganic formulations are often hindered by the biological barriers and failure to be bioeliminated. The size of the nanoparticle is an essential design parameter which plays a significant role to affect the tumor targeting and biodistribution. Here, we report a feasible approach for the assembly of gold nanoparticles into ~80 nm nanospheres as a drug delivery platform for enhanced retention in brain tumors with the ability to be dynamically switched into the single formulation for excretion. These nanoassemblies can target epidermal growth factor receptors on cancer cells and are responsive to tumor microenvironmental characteristics, including high vascular permeability and acidic and redox conditions. Anticancer drug release was controlled by a pH-responsive mechanism. Intracellular L-glutathione (GSH) triggered the complete breakdown of nanoassemblies to single gold nanoparticles. Furthermore, in vivo studies have shown that nanospheres display enhanced tumor-targeting efficiency and therapeutic effects relative to single-nanoparticle formulations. Hence, gold nanoassemblies present an effective targeting strategy for brain tumor treatment. PMID:28638474

  18. Paratesticular aggressive angiomyxoma: A rare case

    PubMed Central

    Ismail, Muhamad Izwan; Wong, Yin Ping; Tan, Guan Hee; Fam, Xeng Inn

    2017-01-01

    Aggressive angiomyxoma (AAM) particularly testicular origin is a rare benign mesenchymal myxoid tumor which is locally aggressive, blatant for local recurrence, and may metastasize. It occurs mostly in females of childbearing age and extremely rare in males. AMM particular testicular origin is not reported in literature yet. This is a 65-year-old man who had a right scrotal swelling. Ultrasound scrotum showed a soft tissue tumor of the right testis. The patient underwent radical right orchidectomy of which histopathologically confirmed to be a paratesticular AAM with clear resection margins. There were no signs of local recurrence or metastasis 2 years postsurgical resection. PMID:28479778

  19. αB-crystallin: a Novel Regulator of Breast Cancer Metastasis to the Brain

    PubMed Central

    Malin, Dmitry; Strekalova, Elena; Petrovic, Vladimir; Deal, Allison M.; Ahmad, Abraham Al; Adamo, Barbara; Miller, C. Ryan; Ugolkov, Andrey; Livasy, Chad; Fritchie, Karen; Hamilton, Erika; Blackwell, Kimberly; Geradts, Joseph; Ewend, Matt; Carey, Lisa; Shusta, Eric V.; Anders, Carey K.; Cryns, Vincent L.

    2013-01-01

    Purpose Basal-like breast tumors are typically (ER/PR/HER2) triple-negative and are associated with a high incidence of brain metastases and poor clinical outcomes. The molecular chaperone αB-crystallin is predominantly expressed in triple-negative breast cancer (TNBC) and contributes to an aggressive tumor phenotype in preclinical models. We investigated the potential role of αB-crystallin in brain metastasis in TNBC. Experimental Design αB-crystallin expression in primary breast carcinomas and brain metastases was analyzed by immunohistochemistry among breast cancer patients with brain metastases. αB-crystallin was overexpressed or silenced in two different TNBC cell lines. The effects on cell adhesion to human brain microvascular endothelial cells (HBMECs) or extracellular matrix proteins, transendothelial migration, and transmigration across a HBMEC/astrocyte co-culture blood-brain barrier (BBB) model were examined. Additionally, the effects of overexpressing or silencing αB-crystallin on brain metastasis in vivo were investigated using orthotopic TNBC models. Results In a cohort of women with breast cancer brain metastasis, αB-crystallin expression in primary breast carcinomas was associated with poor overall survival and poor survival after brain metastasis, even among TNBC patients. Stable overexpression of αB-crystallin in TNBC cells enhanced adhesion to HBMECs, transendothelial migration, and BBB transmigration in vitro, while silencing αB-crystallin inhibited these events. αB-crystallin promoted adhesion of TNBC cells to HBMECs at least in part through an α3β1 integrin-dependent mechanism. αB-crystallin overexpression promoted brain metastasis, while silencing αB-crystallin inhibited brain metastasis in orthotopic TNBC models. Conclusion αB-crystallin is a novel regulator of brain metastasis in TNBC and represents a potential biomarker and drug target for this aggressive disease. PMID:24132917

  20. αB-crystallin: a novel regulator of breast cancer metastasis to the brain.

    PubMed

    Malin, Dmitry; Strekalova, Elena; Petrovic, Vladimir; Deal, Allison M; Al Ahmad, Abraham; Adamo, Barbara; Miller, C Ryan; Ugolkov, Andrey; Livasy, Chad; Fritchie, Karen; Hamilton, Erika; Blackwell, Kimberly; Geradts, Joseph; Ewend, Matt; Carey, Lisa; Shusta, Eric V; Anders, Carey K; Cryns, Vincent L

    2014-01-01

    Basal-like breast tumors are typically (ER/PR/HER2) triple-negative and are associated with a high incidence of brain metastases and poor clinical outcomes. The molecular chaperone αB-crystallin is predominantly expressed in triple-negative breast cancer (TNBC) and contributes to an aggressive tumor phenotype in preclinical models. We investigated the potential role of αB-crystallin in brain metastasis in TNBCs. αB-crystallin expression in primary breast carcinomas and brain metastases was analyzed by immunohistochemistry among patients with breast cancer with brain metastases. αB-crystallin was overexpressed or silenced in two different TNBC cell lines. The effects on cell adhesion to human brain microvascular endothelial cells (HBMEC) or extracellular matrix proteins, transendothelial migration, and transmigration across a HBMEC/astrocyte coculture blood-brain barrier (BBB) model were examined. In addition, the effects of overexpressing or silencing αB-crystallin on brain metastasis in vivo were investigated using orthotopic TNBC models. In a cohort of women with breast cancer brain metastasis, αB-crystallin expression in primary breast carcinomas was associated with poor overall survival and poor survival after brain metastasis, even among patients with TNBC. Stable overexpression of αB-crystallin in TNBC cells enhanced adhesion to HBMECs, transendothelial migration, and BBB transmigration in vitro, whereas silencing αB-crystallin inhibited these events. αB-crystallin promoted adhesion of TNBC cells to HBMECs, at least in part, through an α3β1 integrin-dependent mechanism. αB-crystallin overexpression promoted brain metastasis, whereas silencing αB-crystallin inhibited brain metastasis in orthotopic TNBC models. αB-crystallin is a novel regulator of brain metastasis in TNBC and represents a potential biomarker and drug target for this aggressive disease.