Science.gov

Sample records for aggressive brain tumors

  1. Brain Tumors

    MedlinePlus

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are ...

  2. Traumatic Brain Injury and Aggression.

    ERIC Educational Resources Information Center

    Miller, Laurence

    1994-01-01

    Persons who have suffered traumatic injury to the brain may subsequently display aggressive behavior. Three main syndromes of aggression following traumatic brain injury are described: (1) episodic dyscontrol; (2) frontal lobe disinhibition; and (3) exacerbation of premorbid antisociality. The neuropsychological substrates of these syndromes are…

  3. Brain tumor - primary - adults

    MedlinePlus

    ... Vestibular schwannoma (acoustic neuroma) - adults; Meningioma - adults; Cancer - brain tumor (adults) ... Primary brain tumors include any tumor that starts in the brain. Primary brain tumors can start from brain cells, ...

  4. Understanding Brain Tumors

    MedlinePlus

    ... to Know About Brain Tumors . What is a Brain Tumor? A brain tumor is an abnormal growth
 ... Tumors” from Frankly Speaking Frankly Speaking About Cancer: Brain Tumors Download the full book Questions to ask ...

  5. Brain tumor - children

    MedlinePlus

    ... children; Neuroglioma - children; Oligodendroglioma - children; Meningioma - children; Cancer - brain tumor (children) ... The cause of primary brain tumors is unknown. Primary brain tumors may ... (spread to nearby areas) Cancerous (malignant) Brain tumors ...

  6. Brain Tumor Diagnosis

    MedlinePlus

    ... Types of Brain Scans X-rays Laboratory Tests DNA Profiling Biopsy Procedure Malignant and Benign Brain Tumors Tumor ... Types of Brain Scans X-rays Laboratory Tests DNA Profiling Biopsy Procedure Malignant and Benign Brain Tumors Tumor ...

  7. Brain Tumors (For Parents)

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Brain Tumors KidsHealth > For Parents > Brain Tumors Print A ... radiation therapy or chemotherapy, or both. Types of Brain Tumors There are many different types of brain ...

  8. Brain Tumors (For Parents)

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Brain Tumors KidsHealth > For Parents > Brain Tumors A A ... radiation therapy or chemotherapy, or both. Types of Brain Tumors There are many different types of brain ...

  9. Pediatric Brain Tumor Foundation

    MedlinePlus

    ... you insights into your child's treatment. LEARN MORE Brain tumors and their treatment can be deadly so ... Pediatric Brain Tumor Foundation Board Read more >> Pediatric Brain Tumor Foundation 302 Ridgefield Court, Asheville, NC 28806 ...

  10. Tumor Types: Understanding Brain Tumors

    MedlinePlus

    ... Resources Tools & Publications Tumor Types: Understanding Brain Tumors World Health Organization (WHO) Updates Official Classification of Tumors ... Central Nervous System On May 9, 2016, the World Health Organization (WHO) published an official reclassification of ...

  11. Childhood Brain Tumors

    MedlinePlus

    Brain tumors are abnormal growths inside the skull. They are among the most common types of childhood ... still be serious. Malignant tumors are cancerous. Childhood brain and spinal cord tumors can cause headaches and ...

  12. American Brain Tumor Association

    MedlinePlus

    ... Molecule Read More ABTA News April 6, 2017 Chicago-Based American Brain Tumor Association’s Breakthrough for Brain ... Association 8550 W. Bryn Mawr Ave. Ste 550 Chicago, IL 60631 © 2014 American Brain Tumor Association Phone: ...

  13. Epidemiology of Brain Tumors.

    PubMed

    McNeill, Katharine A

    2016-11-01

    Brain tumors are the commonest solid tumor in children, leading to significant cancer-related mortality. Several hereditary syndromes associated with brain tumors are nonfamilial. Ionizing radiation is a well-recognized risk factor for brain tumors. Several industrial exposures have been evaluated for a causal association with brain tumor formation but the results are inconclusive. A casual association between the common mutagens of tobacco, alcohol, or dietary factors has not yet been established. There is no clear evidence that the incidence of brain tumors has changed over time. This article presents the descriptive epidemiology of the commonest brain tumors of children and adults.

  14. Children's Brain Tumor Foundation

    MedlinePlus

    ... CBTF Justin's Hope Fund Grant Recipients Grants Children’s Brain Tumor Foundation, A non-profit organization, was founded ... and the long term outlook for children with brain and spinal cord tumors through research, support, education, ...

  15. Radioresistance of Brain Tumors

    PubMed Central

    Kelley, Kevin; Knisely, Jonathan; Symons, Marc; Ruggieri, Rosamaria

    2016-01-01

    Radiation therapy (RT) is frequently used as part of the standard of care treatment of the majority of brain tumors. The efficacy of RT is limited by radioresistance and by normal tissue radiation tolerance. This is highlighted in pediatric brain tumors where the use of radiation is limited by the excessive toxicity to the developing brain. For these reasons, radiosensitization of tumor cells would be beneficial. In this review, we focus on radioresistance mechanisms intrinsic to tumor cells. We also evaluate existing approaches to induce radiosensitization and explore future avenues of investigation. PMID:27043632

  16. Immunology of brain tumors.

    PubMed

    Roth, Patrick; Eisele, Günter; Weller, Michael

    2012-01-01

    Brain tumors of different origin, but notably malignant gliomas, are characterized by their immunosuppressive properties which allow them to escape the host's immune surveillance. The activating immune cell ligands that are expressed by tumor cells, together with potentially immunogenic antigens, are overridden by numerous immune inhibitory signals, with TGF-3 as the master immunosuppressive molecule (Figure 4.1).The ongoing investigation of mechanisms of tumor-derived immunosuppression allows for an increasing understanding of brain tumor immunology. Targeting different mechanisms of tumor-derived immunosuppression, such as inhibition of TGF-[, may represent a promising strategy for future immunotherapeutic approaches.

  17. Familiality in brain tumors

    PubMed Central

    Blumenthal, Deborah T.; Cannon-Albright, Lisa A.

    2008-01-01

    Background: Familiality in brain tumors is not definitively substantiated. Methods: We used the Utah Population Data Base (UPDB), a genealogy representing the Utah pioneers and their descendants, record-linked to statewide cancer records, to describe the familial nature of primary brain cancer. We examined the familial clustering of primary brain tumors, including subgroups defined by histologic type and age at diagnosis. The UPDB includes 1,401 primary brain tumor cases defined as astrocytoma or glioblastoma, all with at least three generations of genealogy data. We tested the hypothesis of excess relatedness of brain tumor cases using the Genealogical Index of Familiality method. We estimated relative risks for brain tumors in relatives using rates of brain tumors estimated internally. Results: Significant excess relatedness was observed for astrocytomas and glioblastomas considered as a group (n = 1,401), for astrocytomas considered separately (n = 744), but not for glioblastomas considered separately (n = 658). Significantly increased risks to first- and second-degree relatives for astrocytomas were identified for relatives of astrocytomas considered separately. Significantly increased risks to first-degree relatives, but not second degree, were observed for astrocytoma and glioblastoma cases considered together, and for glioblastoma cases considered separately. Conclusions: This study provides strong evidence for a familial contribution to primary brain cancer risk. There is evidence that this familial aspect includes not only shared environment, but also a heritable component. Extended high-risk brain tumor pedigrees identified in the UPDB may provide the opportunity to identify predisposition genes responsible for familial brain tumors. GLOSSARY GBM = glioblastoma; GIF = Genealogical Index of Familiality; HGG = high-grade gliomas; ICD-O = International Classification of Disease–Oncology; LGG = low-grade gliomas; RR = relative risks; SEER = Surveillance

  18. Metastatic brain tumor

    MedlinePlus

    ... them create an advance directive and power of attorney for health care. Support Groups You can ease ... surgery Brain tumor - children Breast cancer Increased intracranial pressure Lung cancer - small cell Melanoma Renal cell carcinoma ...

  19. Brain Tumor Statistics

    MedlinePlus

    ... About Us Our Founders Board of Directors Staff Leadership Strategic Plan Financials News Press Releases Headlines Newsletter ... About Us Our Founders Board of Directors Staff Leadership Strategic Plan Financials News Careers Brain Tumor Information ...

  20. Pediatric brain tumor cell lines.

    PubMed

    Xu, Jingying; Margol, Ashley; Asgharzadeh, Shahab; Erdreich-Epstein, Anat

    2015-02-01

    Pediatric brain tumors as a group, including medulloblastomas, gliomas, and atypical teratoid rhabdoid tumors (ATRT) are the most common solid tumors in children and the leading cause of death from childhood cancer. Brain tumor-derived cell lines are critical for studying the biology of pediatric brain tumors and can be useful for initial screening of new therapies. Use of appropriate brain tumor cell lines for experiments is important, as results may differ depending on tumor properties, and can thus affect the conclusions and applicability of the model. Despite reports in the literature of over 60 pediatric brain tumor cell lines, the majority of published papers utilize only a small number of these cell lines. Here we list the approximately 60 currently-published pediatric brain tumor cell lines and summarize some of their central features as a resource for scientists seeking pediatric brain tumor cell lines for their research.

  1. Aquaporins and Brain Tumors

    PubMed Central

    Maugeri, Rosario; Schiera, Gabriella; Di Liegro, Carlo Maria; Fricano, Anna; Iacopino, Domenico Gerardo; Di Liegro, Italia

    2016-01-01

    Brain primary tumors are among the most diverse and complex human cancers, and they are normally classified on the basis of the cell-type and/or the grade of malignancy (the most malignant being glioblastoma multiforme (GBM), grade IV). Glioma cells are able to migrate throughout the brain and to stimulate angiogenesis, by inducing brain capillary endothelial cell proliferation. This in turn causes loss of tight junctions and fragility of the blood–brain barrier, which becomes leaky. As a consequence, the most serious clinical complication of glioblastoma is the vasogenic brain edema. Both glioma cell migration and edema have been correlated with modification of the expression/localization of different isoforms of aquaporins (AQPs), a family of water channels, some of which are also involved in the transport of other small molecules, such as glycerol and urea. In this review, we discuss relationships among expression/localization of AQPs and brain tumors/edema, also focusing on the possible role of these molecules as both diagnostic biomarkers of cancer progression, and therapeutic targets. Finally, we will discuss the possibility that AQPs, together with other cancer promoting factors, can be exchanged among brain cells via extracellular vesicles (EVs). PMID:27367682

  2. Drugs Approved for Brain Tumors

    MedlinePlus

    ... Ask about Your Treatment Research Drugs Approved for Brain Tumors This page lists cancer drugs approved by ... that are not listed here. Drugs Approved for Brain Tumors Afinitor (Everolimus) Afinitor Disperz (Everolimus) Avastin (Bevacizumab) ...

  3. Brain tumors in infants

    PubMed Central

    Ghodsi, Seyyed Mohammad; Habibi, Zohreh; Hanaei, Sara; Moradi, Ehsan; Nejat, Farideh

    2015-01-01

    Background: Brain tumors in infants have different clinical presentations, anatomical distribution, histopathological diagnosis, and clinical prognosis compared with older children. Materials and Methods: A retrospective analysis was done in patients <12 months old who were operated on for primary brain tumor in Children's Hospital Medical Center since 2008 to 2014. Results: Thirty-one infants, 20 males and 11 females, with the mean age of 7.13 months (0.5–12) were enrolled. There were 16 supratentorial and 15 infratentorial tumors. The presenting symptoms included increased head circumference (16); bulge fontanel (15); vomiting (15); developmental regression (11); sunset eye (7); seizure (4); loss of consciousness (4); irritability (3); nystagmus (2); visual loss (2); hemiparesis (2); torticollis (2); VI palsy (3); VII, IX, X nerve palsy (each 2); and ptosis (1). Gross total and subtotal resection were performed in 19 and 11 cases, respectively. Fourteen patients needed external ventricular drainage in the perioperative period, from whom four infants required a ventriculoperitoneal shunt. One patient underwent ventriculoperitoneal shunting without tumor resection. The most common histological diagnoses were primitive neuroectodermal tumor (7), followed by anaplastic ependymoma (6) and grade II ependymoma. The rate of 30-day mortality was 19.3%. Eighteen patients are now well-controlled with or without adjuvant therapy (overall survival; 58%), from whom 13 cases are tumor free (disease free survival; 41.9%), 3 cases have residual masses with fixed or decreased size (progression-free survival; 9.6%), and 2 cases are still on chemotherapy. Conclusion: Brain tumors in infants should be treated with surgical resection, followed by chemotherapy when necessary. PMID:26962338

  4. MMSET is overexpressed in cancers: Link with tumor aggressiveness

    SciTech Connect

    Kassambara, Alboukadel; Klein, Bernard Moreaux, Jerome

    2009-02-20

    MMSET is expressed ubiquitously in early development and its deletion is associated with the malformation syndrome called Wolf-Hirschhorn syndrome. It is involved in the t(4; 14) (p16; q32) chromosomal translocation, which is the second most common translocation in multiple myeloma (MM) and is associated with the worst prognosis. MMSET expression has been shown to promote cellular adhesion, clonogenic growth and tumorigenicity in multiple myeloma. MMSET expression has been recently shown to increase with ascending tumor proliferation activity in glioblastoma multiforme. These data demonstrate that MMSET could be implicated in tumor emergence and/or progression. Therefore, we compared the expression of MMSET in 40 human tumor types - brain, epithelial, lymphoid - to that of their normal tissue counterparts using publicly available gene expression data, including the Oncomine Cancer Microarray database. We found significant overexpression of MMSET in 15 cancers compared to their normal counterparts. Furthermore MMSET is associated with tumor aggressiveness or prognosis in many types of these aforementioned cancers. Taken together, these data suggest that MMSET potentially acts as a pathogenic agent in many cancers. The identification of the targets of MMSET and their role in cell growth and survival will be key to understand how MMSET is associated with tumor development.

  5. Tumor Tension Induces Persistent Inflammation and Promotes Breast Cancer Aggression

    DTIC Science & Technology

    2015-10-01

    Award Number: W81XWH-14-1-0056 TITLE: Tumor Tension Induces Persistent Inflammation and Promotes Breast Cancer Aggression PRINCIPAL INVESTIGATOR...Breast Cancer Aggression 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Ori Maller and Valerie M. Weaver email...ECM stiffening cooperate with inflammatory signaling to facilitate immune evasion and promote breast cancer aggression . In this progress report, I

  6. [Radiation-induces increased tumor cell aggressiveness of tumors of the glioblastomas?].

    PubMed

    Falk, Alexander T; Moncharmont, Coralie; Guilbert, Matthieu; Guy, Jean-Baptiste; Alphonse, Gersende; Trone, Jane-Chloé; Rivoirard, Romain; Gilormini, Marion; Toillon, Robert-Alain; Rodriguez-Lafrasse, Claire; Magné, Nicolas

    2014-09-01

    Glioblastoma multiform is the most common and aggressive brain tumor with a worse prognostic. Ionizing radiation is a cornerstone in the treatment of glioblastome with chemo-radiation association being the actual standard. As a paradoxal effect, it has been suggested that radiotherapy could have a deleterious effect on local recurrence of cancer. In vivo studies have studied the effect of radiotherapy on biological modification and pathogenous effect of cancer cells. It seems that ionizing radiations with photon could activate oncogenic pathways in glioblastoma cell lines. We realized a review of the literature of photon-enhanced effect on invasion and migration of glioblastoma cells by radiotherapy.

  7. Reducing proactive aggression through non-invasive brain stimulation.

    PubMed

    Dambacher, Franziska; Schuhmann, Teresa; Lobbestael, Jill; Arntz, Arnoud; Brugman, Suzanne; Sack, Alexander T

    2015-10-01

    Aggressive behavior poses a threat to human collaboration and social safety. It is of utmost importance to identify the functional mechanisms underlying aggression and to develop potential interventions capable of reducing dysfunctional aggressive behavior already at a brain level. We here experimentally shifted fronto-cortical asymmetry to manipulate the underlying motivational emotional states in both male and female participants while assessing the behavioral effects on proactive and reactive aggression. Thirty-two healthy volunteers received either anodal transcranial direct current stimulation to increase neural activity within right dorsolateral prefrontal cortex, or sham stimulation. Aggressive behavior was measured with the Taylor Aggression Paradigm. We revealed a general gender effect, showing that men displayed more behavioral aggression than women. After the induction of right fronto-hemispheric dominance, proactive aggression was reduced in men. This study demonstrates that non-invasive brain stimulation can reduce aggression in men. This is a relevant and promising step to better understand how cortical brain states connect to impulsive actions and to examine the causal role of the prefrontal cortex in aggression. Ultimately, such findings could help to examine whether the brain can be a direct target for potential supportive interventions in clinical settings dealing with overly aggressive patients and/or violent offenders.

  8. Adolescent and Pediatric Brain Tumors

    MedlinePlus

    ... a child you love is diagnosed with a brain tumor, it is difficult to think about anything else. There are often more questions than answers. Your life can feel as though it has been turned upside ... Brain Tumor Association for information, insight and support. Our ...

  9. Brain Tumor Epidemiology Consortium (BTEC)

    Cancer.gov

    The Brain Tumor Epidemiology Consortium is an open scientific forum organized to foster the development of multi-center, international and inter-disciplinary collaborations that will lead to a better understanding of the etiology, outcomes, and prevention of brain tumors.

  10. Childhood Brain Tumor Epidemiology: A Brain Tumor Epidemiology Consortium Review

    PubMed Central

    Johnson, Kimberly J.; Cullen, Jennifer; Barnholtz-Sloan, Jill S.; Ostrom, Quinn T.; Langer, Chelsea E.; Turner, Michelle C.; McKean-Cowdin, Roberta; Fisher, James L.; Lupo, Philip J.; Partap, Sonia; Schwartzbaum, Judith A.; Scheurer, Michael E.

    2014-01-01

    Childhood brain tumors are the most common pediatric solid tumor and include several histological subtypes. Although progress has been made in improving survival rates for some subtypes, understanding of risk factors for childhood brain tumors remains limited to a few genetic syndromes and ionizing radiation to the head and neck. In this report, we review descriptive and analytical epidemiology childhood brain tumor studies from the past decade and highlight priority areas for future epidemiology investigations and methodological work that is needed to advance our understanding of childhood brain tumor causes. Specifically, we summarize the results of a review of studies published since 2004 that have analyzed incidence and survival in different international regions and that have examined potential genetic, immune system, developmental and birth characteristics, and environmental risk factors. PMID:25192704

  11. Precision radiotherapy for brain tumors

    PubMed Central

    Yan, Ying; Guo, Zhanwen; Zhang, Haibo; Wang, Ning; Xu, Ying

    2012-01-01

    OBJECTIVE: Precision radiotherapy plays an important role in the management of brain tumors. This study aimed to identify global research trends in precision radiotherapy for brain tumors using a bibliometric analysis of the Web of Science. DATA RETRIEVAL: We performed a bibliometric analysis of data retrievals for precision radiotherapy for brain tumors containing the key words cerebral tumor, brain tumor, intensity-modulated radiotherapy, stereotactic body radiation therapy, stereotactic ablative radiotherapy, imaging-guided radiotherapy, dose-guided radiotherapy, stereotactic brachytherapy, and stereotactic radiotherapy using the Web of Science. SELECTION CRITERIA: Inclusion criteria: (a) peer-reviewed articles on precision radiotherapy for brain tumors which were published and indexed in the Web of Science; (b) type of articles: original research articles and reviews; (c) year of publication: 2002-2011. Exclusion criteria: (a) articles that required manual searching or telephone access; (b) Corrected papers or book chapters. MAIN OUTCOME MEASURES: (1) Annual publication output; (2) distribution according to country; (3) distribution according to institution; (4) top cited publications; (5) distribution according to journals; and (6) comparison of study results on precision radiotherapy for brain tumors. RESULTS: The stereotactic radiotherapy, intensity-modulated radiotherapy, and imaging-guided radiotherapy are three major methods of precision radiotherapy for brain tumors. There were 260 research articles addressing precision radiotherapy for brain tumors found within the Web of Science. The USA published the most papers on precision radiotherapy for brain tumors, followed by Germany and France. European Synchrotron Radiation Facility, German Cancer Research Center and Heidelberg University were the most prolific research institutes for publications on precision radiotherapy for brain tumors. Among the top 13 research institutes publishing in this field, seven

  12. Photonic Breast Tomography and Tumor Aggressiveness Assessment

    DTIC Science & Technology

    2008-07-01

    component involved application and further refinement of optical tomographic imaging using independent component analysis ( OPTICA ) for locating and cross...section imaging of a tumor in a model cancerous breast assembled using ex vivo breast tissue specimens. The OPTICA approach was able to detect...infrared imaging, optical tomography using independent component analysis ( OPTICA ), training, molecular imaging, cancer biology 16. SECURITY

  13. Quetiapine modulates functional connectivity in brain aggression networks.

    PubMed

    Klasen, Martin; Zvyagintsev, Mikhail; Schwenzer, Michael; Mathiak, Krystyna A; Sarkheil, Pegah; Weber, René; Mathiak, Klaus

    2013-07-15

    Aggressive behavior is associated with dysfunctions in an affective regulation network encompassing amygdala and prefrontal areas such as orbitofrontal (OFC), anterior cingulate (ACC), and dorsolateral prefrontal cortex (DLPFC). In particular, prefrontal regions have been postulated to control amygdala activity by inhibitory projections, and this process may be disrupted in aggressive individuals. The atypical antipsychotic quetiapine successfully attenuates aggressive behavior in various disorders; the underlying neural processes, however, are unknown. A strengthened functional coupling in the prefrontal-amygdala system may account for these anti-aggressive effects. An inhibition of this network has been reported for virtual aggression in violent video games as well. However, there have been so far no in-vivo observations of pharmacological influences on corticolimbic projections during human aggressive behavior. In a double-blind, placebo-controlled study, quetiapine and placebo were administered for three successive days prior to an fMRI experiment. In this experiment, functional brain connectivity was assessed during virtual aggressive behavior in a violent video game and an aggression-free control task in a non-violent modification. Quetiapine increased the functional connectivity of ACC and DLPFC with the amygdala during virtual aggression, whereas OFC-amygdala coupling was attenuated. These effects were observed neither for placebo nor for the non-violent control. These results demonstrate for the first time a pharmacological modification of aggression-related human brain networks in a naturalistic setting. The violence-specific modulation of prefrontal-amygdala networks appears to control aggressive behavior and provides a neurobiological model for the anti-aggressive effects of quetiapine.

  14. Photonic Breast Tomography and Tumor Aggressiveness Assessment

    DTIC Science & Technology

    2013-09-01

    Magnetic Resonance Spectroscopic Imaging Optical Techniques for Actuation, Sensing , and Imaging of Biological Systems Multi-functional tumor...Time Reversal Optical Tomography Non-negative Matrix Factorization- based Optical Tomography Optical Tomography based on Principal Component...of the two targets 3.9. Estimated size and absorption coefficient of the targets 4.1. Positions and optical strengths retrieved using ICA, PCA and

  15. Photonic Breast Tomography and Tumor Aggressiveness Assessment

    DTIC Science & Technology

    2012-07-01

    approaches for detection of breast tumors in early stages of growth when those are more amenable to treatment; and (b) training of CCNY researchers at...classification method of Multiple Signal Classification ( MUSIC ). It provided the locations of small absorptive and scattering targets within a turbid...targets, the locations are determined using the MUSIC pseudo spectrum [11]     2 22 ( ) ( ) j T s p s p s p j s pP g g v g    X X X X

  16. Spectroscopic-guided brain tumor resection

    NASA Astrophysics Data System (ADS)

    Lin, Wei-Chiang; Toms, Steven A.; Jansen, E. Duco; Mahadevan-Jansen, Anita

    2000-05-01

    A pilot in vivo study was conducted to investigate the feasibility of using optical spectroscopy for brain tumor margin detection. Fluorescence and diffuse reflectance spectra were acquired using a portable clinical spectroscopic system from normal brain tissues, tumors, and tumor margins in 21 brain tumor patients undergoing craniotomy. Results form this study show the potential of optical spectroscopy in detecting infiltrating tumor margins of primary brain tumors.

  17. Brain Tumor Symptoms

    MedlinePlus

    ... be associated with the type, size, and/or location of the tumor, as well as the treatments used to manage it. Surgery, radiation, chemotherapy, and other treatments all have the potential to ... American ...

  18. Gene therapeutics: the future of brain tumor therapy?

    PubMed

    Cutter, Jennifer L; Kurozumi, Kazuhiko; Chiocca, E Antonio; Kaur, Balveen

    2006-07-01

    Primary glioblastoma multiforme is an aggressive brain tumor that has no cure. Current treatments include gross resection of the tumor, radiation and chemotherapy. Despite valiant efforts, prognosis remains dismal. A promising new technique involves the use of oncolytic viruses that can specifically replicate and lyse in cancers, without spreading to normal tissues. Currently, these are being tested in relevant preclinical models and clinical trials as a therapeutic modality for many types of cancer. Results from recent clinical trials with oncolytic viruses have revealed the safety of this approach, although evidence for efficacy remains elusive. Oncolytic viral strategies are summarized in this review, with a focus on therapies used in brain tumors.

  19. Aggressive tumor recurrence after radiofrequency ablation for hepatocellular carcinoma.

    PubMed

    Kang, Tae Wook; Lim, Hyo Keun; Cha, Dong Ik

    2017-03-01

    Image-guided radiofrequency ablation (RFA) is an evolving and growing treatment option for patients with hepatocellular carcinoma (HCC) and hepatic metastasis. RFA offers significant advantages as it is less invasive than surgery and carries a low risk of major complications. However, serious complications, including aggressive tumor recurrence, may be observed during follow-up, and recently, mechanical or thermal damage during RFA has been proposed to be one of the causes of this kind of recurrence. Although the exact mechanism of this still remains unclear, physicians should be familiar with the imaging features of aggressive tumor recurrence after RFA for HCC and its risk factors. In addition, in order to prevent or minimize this newly recognized tumor recurrence, a modified RFA technique, combined RFA treatments with transarterial chemoembolization, and cryoablation can be used as alternative treatments. Ultimately, combining an understanding of this potential complication of RFA with an understanding of the possible risk factors for aggressive tumor recurrence and choosing alternative treatments are crucial to optimize clinical outcomes in each patient with HCC.

  20. Aggressive tumor recurrence after radiofrequency ablation for hepatocellular carcinoma

    PubMed Central

    Kang, Tae Wook; Lim, Hyo Keun; Cha, Dong Ik

    2017-01-01

    Image-guided radiofrequency ablation (RFA) is an evolving and growing treatment option for patients with hepatocellular carcinoma (HCC) and hepatic metastasis. RFA offers significant advantages as it is less invasive than surgery and carries a low risk of major complications. However, serious complications, including aggressive tumor recurrence, may be observed during follow-up, and recently, mechanical or thermal damage during RFA has been proposed to be one of the causes of this kind of recurrence. Although the exact mechanism of this still remains unclear, physicians should be familiar with the imaging features of aggressive tumor recurrence after RFA for HCC and its risk factors. In addition, in order to prevent or minimize this newly recognized tumor recurrence, a modified RFA technique, combined RFA treatments with transarterial chemoembolization, and cryoablation can be used as alternative treatments. Ultimately, combining an understanding of this potential complication of RFA with an understanding of the possible risk factors for aggressive tumor recurrence and choosing alternative treatments are crucial to optimize clinical outcomes in each patient with HCC. PMID:28349677

  1. Cytogenetics of human brain tumors

    SciTech Connect

    Finkernagel, S.W.; Kletz, T.; Day-Salvatore, D.L.

    1994-09-01

    Chromosome studies of 55 brain tumors, including meningiomas, gliomas, astrocyomas and pituatary adenomas, were performed. Primary and first passage cultures were successfully obtained in 75% of these samples with an average of 18 G-banded metaphases analyzed per tumor. 44% of all the brain tumors showed numerical and or structural abnormalities. 46% of the primary and 38% of the first passage cultures showed similar numerical gains/losses and complex karyotypic changes. The most frequent numerical abnormalities (n {ge} 5) included loss of chromosomes 10, 22, and Y. The structural abnormalities most often seen involved 1p, 2, 5, 7, 17q and 19. This is an ongoing study which will attempt to correlate tumor type with specific karyotypic changes and to see if any of the observed chromosomal abnormalities provide prognostic indicators.

  2. Brain tumors in irradiated monkeys.

    NASA Technical Reports Server (NTRS)

    Haymaker, W.; Miquel, J.; Rubinstein, L. J.

    1972-01-01

    A study was made of 32 monkeys which survived one to seven years after total body exposure to protons or to high-energy X rays. Among these 32 monkeys there were 21 which survived two years or longer after exposure to 200 to 800 rad. Glioblastoma multiforme developed in 3 of the 10 monkeys surviving three to five years after receiving 600 or 800 rad 55-MeV protons. Thus, the incidence of tumor development in the present series was far higher than the incidence of spontaneously developing brain tumors in monkeys cited in the literature. This suggests that the tumors in the present series may have been radiation-induced.

  3. Prefrontal brain asymmetry and aggression in imprisoned violent offenders.

    PubMed

    Keune, Philipp M; van der Heiden, Linda; Várkuti, Bálint; Konicar, Lilian; Veit, Ralf; Birbaumer, Niels

    2012-05-02

    Anterior brain asymmetry, assessed through the alpha and beta band in resting-state electroencephalogram (EEG) is associated with approach-related behavioral dispositions, particularly with aggression in the general population. To date, the association between frontal asymmetry and aggression has not been examined in highly aggressive groups. We examined the topographic characteristics of alpha and beta activity, the relation of both asymmetry metrics to trait aggression, and whether alpha asymmetry was extreme in anterior regions according to clinical standards in a group of imprisoned violent offenders. As expected, these individuals were characterized by stronger right than left-hemispheric alpha activity, which was putatively extreme in anterior regions in one third of the cases. We also report that in line with observations made in the general population, aggression was associated with stronger right-frontal alpha activity in these violent individuals. This suggests that frontal alpha asymmetry, as a correlate of trait aggression, might be utilizable as an outcome measure in studies which assess the effects of anti-aggressiveness training in violent offenders.

  4. Brain and Spinal Cord Tumors in Adults

    MedlinePlus

    ... Search Search En Español Category Cancer A-Z Brain and Spinal Cord Tumors in Adults If you have a brain or spinal cord tumor or are close to ... cope. Here you can find out all about brain and spinal cord tumors in adults, including risk ...

  5. Tumor reactive stroma in cholangiocarcinoma: The fuel behind cancer aggressiveness

    PubMed Central

    Brivio, Simone; Cadamuro, Massimiliano; Strazzabosco, Mario; Fabris, Luca

    2017-01-01

    Cholangiocarcinoma (CCA) is a highly aggressive epithelial malignancy still carrying a dismal prognosis, owing to early lymph node metastatic dissemination and striking resistance to conventional chemotherapy. Although mechanisms underpinning CCA progression are still a conundrum, it is now increasingly recognized that the desmoplastic microenvironment developing in conjunction with biliary carcinogenesis, recently renamed tumor reactive stroma (TRS), behaves as a paramount tumor-promoting driver. Indeed, once being recruited, activated and dangerously co-opted by neoplastic cells, the cellular components of the TRS (myofibroblasts, macrophages, endothelial cells and mesenchymal stem cells) continuously rekindle malignancy by secreting a huge variety of soluble factors (cyto/chemokines, growth factors, morphogens and proteinases). Furthermore, these factors are long-term stored within an abnormally remodeled extracellular matrix (ECM), which in turn can deleteriously mold cancer cell behavior. In this review, we will highlight evidence for the active role played by reactive stromal cells (as well as by the TRS-associated ECM) in CCA progression, including an overview of the most relevant TRS-derived signals possibly fueling CCA cell aggressiveness. Hopefully, a deeper knowledge of the paracrine communications reciprocally exchanged between cancer and stromal cells will steer the development of innovative, combinatorial therapies, which can finally hinder the progression of CCA, as well as of other cancer types with abundant TRS, such as pancreatic and breast carcinomas.

  6. Emerging Insights into Barriers to Effective Brain Tumor Therapeutics

    PubMed Central

    Woodworth, Graeme F.; Dunn, Gavin P.; Nance, Elizabeth A.; Hanes, Justin; Brem, Henry

    2014-01-01

    There is great promise that ongoing advances in the delivery of therapeutics to the central nervous system (CNS) combined with rapidly expanding knowledge of brain tumor patho-biology will provide new, more effective therapies. Brain tumors that form from brain cells, as opposed to those that come from other parts of the body, rarely metastasize outside of the CNS. Instead, the tumor cells invade deep into the brain itself, causing disruption in brain circuits, blood vessel and blood flow changes, and tissue swelling. Patients with the most common and deadly form, glioblastoma (GBM) rarely live more than 2 years even with the most aggressive treatments and often with devastating neurological consequences. Current treatments include maximal safe surgical removal or biopsy followed by radiation and chemotherapy to address the residual tumor mass and invading tumor cells. However, delivering effective and sustained treatments to these invading cells without damaging healthy brain tissue is a major challenge and focus of the emerging fields of nanomedicine and viral and cell-based therapies. New treatment strategies, particularly those directed against the invasive component of this devastating CNS disease, are sorely needed. In this review, we (1) discuss the history and evolution of treatments for GBM, (2) define and explore three critical barriers to improving therapeutic delivery to invasive brain tumors, specifically, the neuro-vascular unit as it relates to the blood brain barrier, the extra-cellular space in regard to the brain penetration barrier, and the tumor genetic heterogeneity and instability in association with the treatment efficacy barrier, and (3) identify promising new therapeutic delivery approaches that have the potential to address these barriers and create sustained, meaningful efficacy against GBM. PMID:25101239

  7. Survival Rates for Selected Childhood Brain and Spinal Cord Tumors

    MedlinePlus

    ... Diagnosis, and Staging Survival Rates for Selected Childhood Brain and Spinal Cord Tumors Survival rates are often ... Childhood Brain and Spinal Cord Tumors More In Brain and Spinal Cord Tumors in Children About Brain ...

  8. Stereotaxic interstitial irradiation of malignant brain tumors

    SciTech Connect

    Gutin, P.H.; Leibel, S.A.

    1985-11-01

    The authors discuss the feasibility of treatment of malignant tumors with brachytherapy. The history of brain tumor brachytherapy, its present day use, and future directions are detailed. 24 references.

  9. Brain Tumor-Related Epilepsy

    PubMed Central

    Maschio, Marta

    2012-01-01

    In patients with brain tumor (BT), seizures are the onset symptom in 20-40% of patients, while a further 20-45% of patients will present them during the course of the disease. These patients present a complex therapeutic profile and require a unique and multidisciplinary approach. The choice of antiepileptic drugs is challenging for this particular patient population because brain tumor-related epilepsy (BTRE) is often drug-resistant, has a strong impact on the quality of life and weighs heavily on public health expenditures. In BT patients, the presence of epilepsy is considered the most important risk factor for long-term disability. For this reason, the problem of the proper administration of medications and their potential side effects is of great importance, because good seizure control can significantly improve the patient’s psychological and relational sphere. In these patients, new generation drugs such as gabapentin, lacosamide, levetiracetam, oxcarbazepine, pregabalin, topiramate, zonisamide are preferred because they have fewer drug interactions and cause fewer side effects. Among the recently marketed drugs, lacosamide has demonstrated promising results and should be considered a possible treatment option. Therefore, it is necessary to develop a customized treatment plan for each individual patient with BTRE. This requires a vision of patient management concerned not only with medical therapies (pharmacological, surgical, radiological, etc.) but also with emotional and psychological support for the individual as well as his or her family throughout all stages of the illness. PMID:23204982

  10. Drug delivery systems for brain tumor therapy.

    PubMed

    Rautioa, Jarkko; Chikhale, Prashant J

    2004-01-01

    Brain tumors are one of the most lethal forms of cancer. They are extremely difficult to treat. Although, the rate of brain tumor incidence is relatively low, the field clearly lacks therapeutic strategies capable of overcoming barriers for effective delivery of drugs to brain tumors. Clinical failure of many potentially effective therapeutics for the treatment of brain tumors is usually not due to a lack of drug potency, but rather can be attributed to shortcomings in the methods by which a drug is delivered to the brain and into brain tumors. In response to the lack of efficacy of conventional drug delivery methods, extensive efforts have been made to develop novel strategies to overcome the obstacles for brain tumor drug delivery. The challenge is to design therapeutic strategies that deliver drugs to brain tumors in a safe and effective manner. This review provides some insight into several potential techniques that have been developed to improve drug delivery to brain tumors, and it should be helpful to clinicians and research scientists as well.

  11. The Microenvironmental Landscape of Brain Tumors.

    PubMed

    Quail, Daniela F; Joyce, Johanna A

    2017-03-13

    The brain tumor microenvironment (TME) is emerging as a critical regulator of cancer progression in primary and metastatic brain malignancies. The unique properties of this organ require a specific framework for designing TME-targeted interventions. Here, we discuss a number of these distinct features, including brain-resident cell types, the blood-brain barrier, and various aspects of the immune-suppressive environment. We also highlight recent advances in therapeutically targeting the brain TME in cancer. By developing a comprehensive understanding of the complex and interconnected microenvironmental landscape of brain malignancies we will greatly expand the range of therapeutic strategies available to target these deadly diseases.

  12. Dexamethasone alleviates tumor-associated brain damage and angiogenesis.

    PubMed

    Fan, Zheng; Sehm, Tina; Rauh, Manfred; Buchfelder, Michael; Eyupoglu, Ilker Y; Savaskan, Nicolai E

    2014-01-01

    Children and adults with the most aggressive form of brain cancer, malignant gliomas or glioblastoma, often develop cerebral edema as a life-threatening complication. This complication is routinely treated with dexamethasone (DEXA), a steroidal anti-inflammatory drug with pleiotropic action profile. Here we show that dexamethasone reduces murine and rodent glioma tumor growth in a concentration-dependent manner. Low concentrations of DEXA are already capable of inhibiting glioma cell proliferation and at higher levels induce cell death. Further, the expression of the glutamate antiporter xCT (system Xc-; SLC7a11) and VEGFA is up-regulated after DEXA treatment indicating early cellular stress responses. However, in human gliomas DEXA exerts differential cytotoxic effects, with some human glioma cells (U251, T98G) resistant to DEXA, a finding corroborated by clinical data of dexamethasone non-responders. Moreover, DEXA-resistant gliomas did not show any xCT alterations, indicating that these gene expressions are associated with DEXA-induced cellular stress. Hence, siRNA-mediated xCT knockdown in glioma cells increased the susceptibility to DEXA. Interestingly, cell viability of primary human astrocytes and primary rodent neurons is not affected by DEXA. We further tested the pharmacological effects of DEXA on brain tissue and showed that DEXA reduces tumor-induced disturbances of the microenvironment such as neuronal cell death and tumor-induced angiogenesis. In conclusion, we demonstrate that DEXA inhibits glioma cell growth in a concentration and species-dependent manner. Further, DEXA executes neuroprotective effects in brains and reduces tumor-induced angiogenesis. Thus, our investigations reveal that DEXA acts pleiotropically and impacts tumor growth, tumor vasculature and tumor-associated brain damage.

  13. Dexamethasone Alleviates Tumor-Associated Brain Damage and Angiogenesis

    PubMed Central

    Fan, Zheng; Sehm, Tina; Rauh, Manfred; Buchfelder, Michael

    2014-01-01

    Children and adults with the most aggressive form of brain cancer, malignant gliomas or glioblastoma, often develop cerebral edema as a life-threatening complication. This complication is routinely treated with dexamethasone (DEXA), a steroidal anti-inflammatory drug with pleiotropic action profile. Here we show that dexamethasone reduces murine and rodent glioma tumor growth in a concentration-dependent manner. Low concentrations of DEXA are already capable of inhibiting glioma cell proliferation and at higher levels induce cell death. Further, the expression of the glutamate antiporter xCT (system Xc−; SLC7a11) and VEGFA is up-regulated after DEXA treatment indicating early cellular stress responses. However, in human gliomas DEXA exerts differential cytotoxic effects, with some human glioma cells (U251, T98G) resistant to DEXA, a finding corroborated by clinical data of dexamethasone non-responders. Moreover, DEXA-resistant gliomas did not show any xCT alterations, indicating that these gene expressions are associated with DEXA-induced cellular stress. Hence, siRNA-mediated xCT knockdown in glioma cells increased the susceptibility to DEXA. Interestingly, cell viability of primary human astrocytes and primary rodent neurons is not affected by DEXA. We further tested the pharmacological effects of DEXA on brain tissue and showed that DEXA reduces tumor-induced disturbances of the microenvironment such as neuronal cell death and tumor-induced angiogenesis. In conclusion, we demonstrate that DEXA inhibits glioma cell growth in a concentration and species-dependent manner. Further, DEXA executes neuroprotective effects in brains and reduces tumor-induced angiogenesis. Thus, our investigations reveal that DEXA acts pleiotropically and impacts tumor growth, tumor vasculature and tumor-associated brain damage. PMID:24714627

  14. Hyperpolarized 13C MR Markers of Renal Tumor Aggressiveness

    DTIC Science & Technology

    2013-10-01

    reliably distinguish renal cancer aggressiveness for optimal triage of therapies . Hyperpolarized (HP) 13C magnetic resonance spectroscopic imaging (MRSI...reliably distinguish renal cancer aggressiveness for optimal triage of therapies . Hyperpolarized (HP) 13C magnetic resonance spectroscopic imaging (MRSI) is... cancer and normal tissues were obtained from nephrectomy specimens and sliced using Krumdieck slicer. With a precision gauge micrometer, the slice

  15. Brain tumor immunotherapy: an immunologist's perspective.

    PubMed

    Lampson, Lois A

    2003-01-01

    Key concepts in brain tumor immunotherapy are reviewed. "Immunotherapy" can refer to a fully-developed, tumor-specific immune response, or to its individual cellular or molecular mediators. The immune response is initiated most efficiently in organized lymphoid tissue. After initiation, antigen-specific T lymphocytes (T cells) survey the tissues--including the brain. If the T cells re-encounter their antigen at a tumor site, they can be triggered to carry out their effector functions. T cells can attack tumor in many ways, directly and indirectly, through cell-cell contact, secreted factors, and attraction and activation of other cells, endogenous or blood-borne. Recent work expands the list of candidate tumor antigens: they are not limited to cell surface proteins and need not be absolutely tumor-specific. Once identified, tumor antigens can be targeted immunologically, or in novel ways. The immune response is under complex regulatory control. Most current work aims to enhance initiation of the response (for example, with tumor vaccines), rather than enhancing the effector phase at the tumor site. The effector phase includes a rich, interactive set of cells and mediators; some that are not usually stressed are of particular interest against tumor in the brain. Within the brain, immune regulation varies from site to site, and local neurochemicals (such as substance P or glutamate) can contribute to local control. Given the complexity of a tumor, the brain, and the immune response, animal models are essential, but more emphasis should be given to their limitations and to step-by-step analysis, rather than animal "cures".

  16. Embryonal brain tumors and developmental control genes

    SciTech Connect

    Aguzzi, A.

    1995-12-31

    Cell proliferation in embryogenesis and neoplastic transformation is thought to be controlled by similar sets of regulatory genes. This is certainly true for tumors of embryonic origin, such as Ewing sarcoma, Wilms` tumor and retinoblastoma, in which developmental control genes are either activated as oncogenes to promote proliferation, or are inactivated to eliminate their growth suppressing function. However, to date little is known about the genetic events underlying the pathogenesis of medulloblastoma, the most common brain tumor in children, which still carries an unfavourable prognosis. None of the common genetic alterations identified in other neuroectodermal tumors, such as mutation of the p53 gene or amplification of tyrosine kinase receptor genes, could be uncovered as key events in the formation of medulloblastoma. The identification of regulatory genes which are expressed in this pediatric brain tumor may provide an alternative approach to gain insight into the molecular aspects of tumor formation.

  17. Parotid gland solitary fibrous tumor with mandibular bone destruction and aggressive behavior

    PubMed Central

    González-Otero, Teresa; Castro-Calvo, Alejandro; Ruiz-Bravo, Elena; Burgueño, Miguel

    2014-01-01

    Introduction: Solitary fibrous tumor is associated with serosal surfaces. Location in the salivary glands is extremely unusual. Extrathoracic tumors have an excellent prognosis associated with their benign clinical behavior. We report an aggressive and recurrent case of this tumor. We review the clinical presentation, inmunohistochemical profiles and therapeutic approaches. Case Report: A 73-years-old woman presented a mass in her right parotid gland. She had a past history of right superficial parotidectomy due to a neurilemoma. FNAB and magnetic resonance were non-specific. After a tumor resection, microscopic findings were spindled tumor cells with reactivity to CD34, bcl-2 and CD99 and the tumor was diagnosed as Solitary Fibrous Tumor. The patient suffered two recurrences and the tumor had a histological aggressive behavior and a destruction of the cortical bone of the mandible adjacent to the mass. A marginal mandibulectomy with an alveolar inferior nerve lateralization was performed. Conclusions: Solitary fibrous tumor is a very rare tumor. Usually, they are benign, but occasionally they can be aggressive. Complete resection is the most important prognostic factor and no evidence supports the efficacy of any therapy different to surgery. Due to the unknown prognosis and to the small number of cases reported, a long-term follow-up is guaranteed. Key words:Solitary fibrous tumor, parotid mass, parotid gland, salivary gland, rare tumors. PMID:25136435

  18. The proteomics of pediatric brain tumors.

    PubMed

    Anagnostopoulos, Athanasios K; Tsangaris, George T

    2014-10-01

    Pediatric tumors of the CNS are the leading cause of cancer-related mortality in children. In pediatric pathology, brain tumors constitute the most frequent solid malignancy. An unparalleled outburst of information in pediatric neuro-oncology research has been witnessed over the last few years, largely due to increased use of high-throughput technologies such as genomics, proteomics and meta-analysis tools. Input from these technologies gives scientists the advantage of early prognosis assessment, more accurate diagnosis and prospective curative intent in the pediatric brain tumor clinical setting. The present review aims to summarize current knowledge on research applying proteomics techniques or proteomics-based approaches performed on pediatric brain tumors. Proteins that can be used as potential disease markers or molecular targets, and their biological significance, are herein listed and discussed. Furthermore, future perspectives that proteomics technologies may offer regarding this devastating disorder are presented.

  19. How Are Brain and Spinal Cord Tumors in Children Diagnosed?

    MedlinePlus

    ... Children Early Detection, Diagnosis, and Staging How Are Brain and Spinal Cord Tumors Diagnosed in Children? Brain ... resonance angiography (MRA) or computerized tomographic angiography (CTA). Brain or spinal cord tumor biopsy Imaging tests such ...

  20. Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images.

    PubMed

    Pereira, Sergio; Pinto, Adriano; Alves, Victor; Silva, Carlos A

    2016-05-01

    Among brain tumors, gliomas are the most common and aggressive, leading to a very short life expectancy in their highest grade. Thus, treatment planning is a key stage to improve the quality of life of oncological patients. Magnetic resonance imaging (MRI) is a widely used imaging technique to assess these tumors, but the large amount of data produced by MRI prevents manual segmentation in a reasonable time, limiting the use of precise quantitative measurements in the clinical practice. So, automatic and reliable segmentation methods are required; however, the large spatial and structural variability among brain tumors make automatic segmentation a challenging problem. In this paper, we propose an automatic segmentation method based on Convolutional Neural Networks (CNN), exploring small 3 ×3 kernels. The use of small kernels allows designing a deeper architecture, besides having a positive effect against overfitting, given the fewer number of weights in the network. We also investigated the use of intensity normalization as a pre-processing step, which though not common in CNN-based segmentation methods, proved together with data augmentation to be very effective for brain tumor segmentation in MRI images. Our proposal was validated in the Brain Tumor Segmentation Challenge 2013 database (BRATS 2013), obtaining simultaneously the first position for the complete, core, and enhancing regions in Dice Similarity Coefficient metric (0.88, 0.83, 0.77) for the Challenge data set. Also, it obtained the overall first position by the online evaluation platform. We also participated in the on-site BRATS 2015 Challenge using the same model, obtaining the second place, with Dice Similarity Coefficient metric of 0.78, 0.65, and 0.75 for the complete, core, and enhancing regions, respectively.

  1. Brain Tumor Segmentation using Convolutional Neural Networks in MRI Images.

    PubMed

    Pereira, Sergio; Pinto, Adriano; Alves, Victor; Silva, Carlos A

    2016-03-04

    Among brain tumors, gliomas are the most common and aggressive, leading to a very short life expectancy in their highest grade. Thus, treatment planning is a key stage to improve the quality of life of oncological patients. Magnetic Resonance Imaging (MRI) is a widely used imaging technique to assess these tumors, but the large amount of data produced by MRI prevents manual segmentation in a reasonable time, limiting the use of precise quantitative measurements in the clinical practice. So, automatic and reliable segmentation methods are required; however, the large spatial and structural variability among brain tumors make automatic segmentation a challenging problem. In this paper, we propose an automatic segmentation method based on Convolutional Neural Networks (CNN), exploring small 33 kernels. The use of small kernels allows designing a deeper architecture, besides having a positive effect against overfitting, given the fewer number of weights in the network. We also investigated the use of intensity normalization as a pre-processing step, which though not common in CNN-based segmentation methods, proved together with data augmentation to be very effective for brain tumor segmentation in MRI images. Our proposal was validated in the Brain Tumor Segmentation Challenge 2013 database (BRATS 2013), obtaining simultaneously the first position for the complete, core, and enhancing regions in Dice Similarity Coefficient metric (0:88, 0:83, 0:77) for the Challenge data set. Also, it obtained the overall first position by the online evaluation platform. We also participated in the on-site BRATS 2015 Challenge using the same model, obtaining the second place, with Dice Similarity Coefficient metric of 0:78, 0:65, and 0:75 for the complete, core, and enhancing regions, respectively.

  2. DNMTs as potential therapeutic targets in high-risk pediatric embryonal brain tumors.

    PubMed

    Sin-Chan, Patrick; Huang, Annie

    2014-10-01

    Malignant brain tumors, which are the leading cause of cancer-related morbidity and mortality in children, span a wide spectrum of diseases with distinct clinical phenotypes but may share remarkably similar morphologic features. Until recently, few molecular markers of childhood brain tumors have been identified, which has limited therapeutic advances. Recent global genomic studies have enabled robust molecular classification of childhood brain tumors and the identification and consolidation of rare, seemingly disparate clinical entities. It is now increasingly evident that deregulation of epigenetic processes contributes substantially to heterogeneity in tumor phenotypes and comprise significant drivers of cancer initiation and progression. Specifically, DNA hypermethylation and silencing of critical tumor suppressor genes by DNA methyltransferases (DNMT) has emerged as an important and fundamental mechanism in brain tumor pathogenesis. These observations have been underscored by the recent discovery of TTYH1-C19MC gene fusions in an aggressive pediatric embryonal brain tumor, which results in deregulation and increased expression of a neural-specific DNMT3B isoform in C19MC-associated brain tumors. Our observations that pharmacological inhibitors of DNMTs and histone deacetylases significantly inhibit growth of cells derived from C19MC-associated tumors indicate targeting of epigenomic modifiers as a novel therapeutic approach for these highly treatment-resistant tumors.

  3. The nested variant of urothelial carcinoma: an aggressive tumor closely simulating benign lesions.

    PubMed

    Dundar, Emine; Acikalin, Mustafa Fuat; Can, Cavit

    2006-01-01

    The "nested" variant is a rare form of urothelial carcinoma and its biologic behavior is highly aggressive. Herein two new cases of nested variant of urothelial carcinoma with immunohistochemical examination are presented. In one of the cases, the tumor extended through the bladder wall into the perivesicular soft tissue, prostatic urethra and left vesicula seminalis, and metastasized to obturator lymph nodes. In the other case, invasion of muscular layer was observed and three recurrences were developed during a follow-up period of 23 months. Both tumors of our study demonstrated high p53 and Ki-67 indices, supporting the aggressive nature of such tumors.

  4. 5′-AMP-activated Protein Kinase (AMPK) Supports the Growth of Aggressive Experimental Human Breast Cancer Tumors*

    PubMed Central

    Laderoute, Keith R.; Calaoagan, Joy M.; Chao, Wan-ru; Dinh, Dominc; Denko, Nicholas; Duellman, Sarah; Kalra, Jessica; Liu, Xiaohe; Papandreou, Ioanna; Sambucetti, Lidia; Boros, Laszlo G.

    2014-01-01

    Rapid tumor growth can establish metabolically stressed microenvironments that activate 5′-AMP-activated protein kinase (AMPK), a ubiquitous regulator of ATP homeostasis. Previously, we investigated the importance of AMPK for the growth of experimental tumors prepared from HRAS-transformed mouse embryo fibroblasts and for primary brain tumor development in a rat model of neurocarcinogenesis. Here, we used triple-negative human breast cancer cells in which AMPK activity had been knocked down to investigate the contribution of AMPK to experimental tumor growth and core glucose metabolism. We found that AMPK supports the growth of fast-growing orthotopic tumors prepared from MDA-MB-231 and DU4475 breast cancer cells but had no effect on the proliferation or survival of these cells in culture. We used in vitro and in vivo metabolic profiling with [13C]glucose tracers to investigate the contribution of AMPK to core glucose metabolism in MDA-MB-231 cells, which have a Warburg metabolic phenotype; these experiments indicated that AMPK supports tumor glucose metabolism in part through positive regulation of glycolysis and the nonoxidative pentose phosphate cycle. We also found that AMPK activity in the MDA-MB-231 tumors could systemically perturb glucose homeostasis in sensitive normal tissues (liver and pancreas). Overall, our findings suggest that the contribution of AMPK to the growth of aggressive experimental tumors has a critical microenvironmental component that involves specific regulation of core glucose metabolism. PMID:24993821

  5. Metabolic brain imaging correlated with clinical features of brain tumors

    SciTech Connect

    Alavi, J.; Alavi, A.; Dann, R.; Kushner, M.; Chawluk, J.; Powlis, W.; Reivich, M.

    1985-05-01

    Nineteen adults with brain tumors have been studied with positron emission tomography utilizing FDG. Fourteen had biopsy proven cerebral malignant glioma, one each had meningioma, hemangiopericytoma, primitive neuroectodermal tumor (PNET), two had unbiopsied lesions, and one patient had an area of biopsy proven radiation necrosis. Three different patterns of glucose metabolism are observed: marked increase in metabolism at the site of the known tumor in (10 high grade gliomas and the PNET), lower than normal metabolism at the tumor (in 1 grade II glioma, 3 grade III gliomas, 2 unbiopsied low density nonenhancing lesions, and the meningioma), no abnormality (1 enhancing glioma, the hemangiopericytoma and the radiation necrosis.) The metabolic rate of the tumor or the surrounding brain did not appear to be correlated with the history of previous irradiation or chemotherapy. Decreased metabolism was frequently observed in the rest of the affected hemisphere and in the contralateral cerebellum. Tumors of high grade or with enhancing CT characteristics were more likely to show increased metabolism. Among the patients with proven gliomas, survival after PETT scan tended to be longer for those with low metabolic activity tumors than for those with highly active tumors. The authors conclude that PETT may help to predict the malignant potential of tumors, and may add useful clinical information to the CT scan.

  6. Psychiatric aspects of brain tumors: A review

    PubMed Central

    Madhusoodanan, Subramoniam; Ting, Mark Bryan; Farah, Tara; Ugur, Umran

    2015-01-01

    Infrequently, psychiatric symptoms may be the only manifestation of brain tumors. They may present with mood symptoms, psychosis, memory problems, personality changes, anxiety, or anorexia. Symptoms may be misleading, complicating the clinical picture. A comprehensive review of the literature was conducted regarding reports of brain tumors and psychiatric symptoms from 1956-2014. Search engines used include PubMed, Ovid, Psych Info, MEDLINE, and MedScape. Search terms included psychiatric manifestations/symptoms, brain tumors/neoplasms. Our literature search yielded case reports, case studies, and case series. There are no double blind studies except for post-diagnosis/-surgery studies. Early diagnosis is critical for improved quality of life. Symptoms that suggest work-up with neuroimaging include: new-onset psychosis, mood/memory symptoms, occurrence of new or atypical symptoms, personality changes, and anorexia without body dysmorphic symptoms. This article reviews the existing literature regarding the diagnosis and management of this clinically complex condition. PMID:26425442

  7. Psychiatric aspects of brain tumors: A review.

    PubMed

    Madhusoodanan, Subramoniam; Ting, Mark Bryan; Farah, Tara; Ugur, Umran

    2015-09-22

    Infrequently, psychiatric symptoms may be the only manifestation of brain tumors. They may present with mood symptoms, psychosis, memory problems, personality changes, anxiety, or anorexia. Symptoms may be misleading, complicating the clinical picture. A comprehensive review of the literature was conducted regarding reports of brain tumors and psychiatric symptoms from 1956-2014. Search engines used include PubMed, Ovid, Psych Info, MEDLINE, and MedScape. Search terms included psychiatric manifestations/symptoms, brain tumors/neoplasms. Our literature search yielded case reports, case studies, and case series. There are no double blind studies except for post-diagnosis/-surgery studies. Early diagnosis is critical for improved quality of life. Symptoms that suggest work-up with neuroimaging include: new-onset psychosis, mood/memory symptoms, occurrence of new or atypical symptoms, personality changes, and anorexia without body dysmorphic symptoms. This article reviews the existing literature regarding the diagnosis and management of this clinically complex condition.

  8. Confronting pediatric brain tumors: parent stories.

    PubMed

    McMillan, Gigi

    2014-01-01

    This narrative symposium brings to light the extreme difficulties faced by parents of children diagnosed with brain tumors. NIB editorial staff and narrative symposium editors, Gigi McMillan and Christy A. Rentmeester, developed a call for stories that was distributed on several list serves and posted on Narrative Inquiry in Bioethics' website. The call asks parents to share their personal experience of diagnosis, treatment, long-term effects of treatment, social issues and the doctor-patient-parent dynamic that develops during this process. Thirteen stories are found in the print version of the journal and an additional six supplemental stories are published online only through Project MUSE. One change readers may notice is that the story authors are not listed in alphabetical order. The symposium editors had a vision for this issue that included leading readers through the timeline of this topic: diagnosis-treatment-acute recovery-recurrence-treatment (again)-acute recovery (again)-long-term quality of life-(possibly) end of life. Stories are arranged to help lead the reader through this timeline.Gigi McMillan is a patient and research subject advocate, co-founder of We Can, Pediatric Brain Tumor Network, as well as, the mother of a child who suffered from a pediatric brain tumor. She also authored the introduction for this symposium. Christy Rentmeester is an Associate Professor of Health Policy and Ethics in the Creighton University School of Medicine. She served as a commentator for this issue. Other commentators for this issue are Michael Barraza, a clinical psychologist and board member of We Can, Pediatric Brain Tumor Network; Lisa Stern, a pediatrician who has diagnosed six children with brain tumors in her 20 years of practice; and Katie Rose, a pediatric brain tumor patient who shares her special insights about this world.

  9. Neurologic sequelae of brain tumors in children.

    PubMed

    Ullrich, Nicole J

    2009-11-01

    Neurologic signs and symptoms are often the initial presenting features of a primary brain tumor and may also emerge during the course of therapy or as late effects of the tumor and its treatment. Variables that influence the development of such neurologic complications include the type, size, and location of the tumor, the patient's age at diagnosis, and the treatment modalities used. Heightened surveillance and improved neuroimaging modalities have been instrumental in detecting and addressing such complications, which are often not appreciated until many years after completion of therapy. As current brain tumor therapies are continually refined and newer targeted therapies are developed, it will be important for future cooperative group studies to include systematic assessments to determine the incidence of neurologic complications and to provide a framework for the development of novel strategies for prevention and intervention.

  10. Comparative analysis of the brain transcriptome in a hyper-aggressive fruit fly, Drosophila prolongata.

    PubMed

    Kudo, Ayumi; Shigenobu, Shuji; Kadota, Koji; Nozawa, Masafumi; Shibata, Tomoko F; Ishikawa, Yukio; Matsuo, Takashi

    2017-03-01

    Aggressive behavior is observed in many animals, but its intensity differs between species. In a model animal of genetics, Drosophila melanogaster, genetic basis of aggressive behavior has been studied intensively, including transcriptome analyses to identify genes whose expression level was associated with intra-species variation in aggressiveness. However, whether these genes are also involved in the evolution of aggressiveness among different species has not been examined. In this study, we performed de novo transcriptome analysis in the brain of Drosophila prolongata to identify genes associated with the evolution of aggressiveness. Males of D. prolongata were hyper-aggressive compared with closely related species. Comparison of the brain transcriptomes identified 21 differentially expressed genes in males of D. prolongata. They did not overlap with the list of aggression-related genes identified in D. melanogaster, suggesting that genes involved in the evolution of aggressiveness were independent of those associated with the intra-species variation in aggressiveness in Drosophila. Although females of D. prolongata were not aggressive as the males, expression levels of the 21 genes identified in this study were more similar between sexes than between species.

  11. Tumor Metabolism, the Ketogenic Diet and β-Hydroxybutyrate: Novel Approaches to Adjuvant Brain Tumor Therapy

    PubMed Central

    Woolf, Eric C.; Syed, Nelofer; Scheck, Adrienne C.

    2016-01-01

    Malignant brain tumors are devastating despite aggressive treatments such as surgical resection, chemotherapy and radiation therapy. The average life expectancy of patients with newly diagnosed glioblastoma is approximately ~18 months. It is clear that increased survival of brain tumor patients requires the design of new therapeutic modalities, especially those that enhance currently available treatments and/or limit tumor growth. One novel therapeutic arena is the metabolic dysregulation that results in an increased need for glucose in tumor cells. This phenomenon suggests that a reduction in tumor growth could be achieved by decreasing glucose availability, which can be accomplished through pharmacological means or through the use of a high-fat, low-carbohydrate ketogenic diet (KD). The KD, as the name implies, also provides increased blood ketones to support the energy needs of normal tissues. Preclinical work from a number of laboratories has shown that the KD does indeed reduce tumor growth in vivo. In addition, the KD has been shown to reduce angiogenesis, inflammation, peri-tumoral edema, migration and invasion. Furthermore, this diet can enhance the activity of radiation and chemotherapy in a mouse model of glioma, thus increasing survival. Additional studies in vitro have indicated that increasing ketones such as β-hydroxybutyrate (βHB) in the absence of glucose reduction can also inhibit cell growth and potentiate the effects of chemotherapy and radiation. Thus, while we are only beginning to understand the pluripotent mechanisms through which the KD affects tumor growth and response to conventional therapies, the emerging data provide strong support for the use of a KD in the treatment of malignant gliomas. This has led to a limited number of clinical trials investigating the use of a KD in patients with primary and recurrent glioma. PMID:27899882

  12. Manipulation of colony environment modulates honey bee aggression and brain gene expression

    PubMed Central

    Rittschof, Clare C.; Robinson, Gene E.

    2013-01-01

    The social environment plays an essential role in shaping behavior for most animals. Social effects on behavior are often linked to changes in brain gene expression (Robinson et al., 2008). In the honey bee (Apis mellifera L.), social modulation of individual aggression allows colonies to adjust the intensity with which they defend their hive in response to predation threat (Alaux & Robinson, 2007, Couvillon et al., 2008, Hunt et al., 2003). Previous research has demonstrated social effects on both aggression and aggression-related brain gene expression in honey bees, caused by alarm pheromone and unknown factors related to colony genotype (Alaux et al., 2009b). For example, some bees from less aggressive genetic stock reared in colonies with genetic predispositions toward increased aggression show both increased aggression and more aggressive-like brain gene expression profiles (Alaux et al., 2009b, Guzmán-Novoa et al., 2004). We tested the hypothesis that exposure to a colony environment influenced by high levels of predation threat results in increased aggression and aggressive-like gene expression patterns in individual bees. We assessed gene expression using four marker genes. Experimentally induced predation threats modified behavior, but the effect was opposite of our predictions: disturbed colonies showed decreased aggression. Disturbed colonies also decreased foraging activity, suggesting that they did not habituate to threats; other explanations for this finding are discussed. Bees in disturbed colonies also showed changes in brain gene expression, some of which paralleled behavioral findings. These results demonstrate that bee aggression, and associated molecular processes, are subject to complex social influences. PMID:24034579

  13. Environmental Influences, the Developing Brain, and Aggressive Behavior

    ERIC Educational Resources Information Center

    Hudley, Cynthia; Novac, Andrei

    2007-01-01

    In this article the authors review research on highly stressful environments that are known to support the development and display of aggressive behavior in childhood, adolescence, and beyond. They also examine some of the mechanisms through which such stressful environments may influence adolescents' aggressive behavior. The review concentrates…

  14. Temozolomide (Temodar®) and capecitabine (Xeloda®) treatment of an aggressive corticotroph pituitary tumor.

    PubMed

    Thearle, Marie S; Freda, Pamela U; Bruce, Jeffrey N; Isaacson, Steven R; Lee, Yoomi; Fine, Robert L

    2011-12-01

    Only rarely do corticotroph pituitary tumors become invasive leading to symptoms caused by compression of cranial nerves and other local structures. When aggressive pituitary neuroendocrine tumors do develop, conventional treatment options are of limited success. A 50-year-old man developed a giant invasive corticotroph pituitary tumor 2 years after initial presentation. His tumor and symptoms failed to respond to maximal surgical, radio-surgical, radiation and medical therapy and a bilateral adrenalectomy was done. He subsequently developed rapid growth of his tumor leading to multiple cranial nerve deficits. He was administered salvage chemotherapy with capecitabine and temozolomide (CAPTEM), a novel oral chemotherapy regimen developed at our institution for treatment of neuroendocrine tumors. After two cycles of CAPTEM, his tumor markedly decreased in size and ACTH levels fell by almost 90%. Despite further decreases in ACTH levels, his tumor recurred after 5 months with increased avidity on PET scan suggesting a transformation to a more aggressive phenotype. Temozolomide had been reported to be effective against other pituitary tumors and this case adds to this literature demonstrating its use along with capecitabine (CAPTEM) against a corticotroph tumor. Further evaluation of the CAPTEM regimen in patients with pituitary neuroendocrine tumors which fail to respond to classic treatments is warranted.

  15. Metabolism of steroids by human brain tumors.

    PubMed

    Weidenfeld, J; Schiller, H

    1984-01-01

    Hormonal steroids or their precursors can be metabolized in the CNS to products with altered hormonal activity. The importance of the intracerebral transformation of steroids has been demonstrated, particularly with regard to neuroendocrine regulation and sexual behavior. These studies were carried out on normal brain tissues, but the ability of neoplastic tissues of CNS origin to metabolize steroids is unknown. We investigated the in vitro metabolism of tritiated pregnenolone, testosterone, and estradiol-17 beta by homogenates of four brain tumors defined as astrocytomas. In three tumors of cortical origin, removed from adult patients, the only enzymic activity found was the conversion of estradiol to estrone. In one tumor of cerebellar origin removed from an 11-year-old boy, the following conversions were found: pregnenolone to progesterone, testosterone to either androstenedione or estradiol, and estradiol to estrone. These results demonstrate that human astrocytomas can transform steroids to compounds with modified hormonal activity. These compounds formed by the tumorous tissue can affect brain function, which may be of clinical significance. Furthermore, these results may add important parameters for biochemical characterization of neoplastic brain tissues.

  16. Hyperpolarized 13C MR Markers of Renal Tumor Aggressiveness

    DTIC Science & Technology

    2014-10-01

    lactate in the media. We observed three fold higher rate of lactate secreted into the media by the ccRCC tissue compared to the normal kidney (figure...imaging sequences with higher spatial resolution as well as sensitivity to generate contrast between the mouse kidney and the tumor grafts. This will...signal in the tumor grafts compared to the high background signal arising from the mouse kidney , several optimizations were explored, such as diffusion

  17. Ion transporters in brain tumors

    PubMed Central

    Cong, Damin; Zhu, Wen; Kuo, John S.; Hu, Shaoshan; Sun, Dandan

    2015-01-01

    Ion transporters are important in regulation of ionic homeostasis, cell volume, and cellular signal transduction under physiological conditions. They have recently emerged as important players in cancer progression. In this review, we discussed two important ion transporter proteins, sodium-potassium-chloride cotransporter isoform 1 (NKCC-1) and sodium-hydrogen exchanger isoform 1 (NHE-1) in Glioblastoma multiforme (GBM) and other malignant tumors. NKCC-1 is a Na+-dependent Cl− transporter that mediates the movement of Na+, K+, and Cl− ions across the plasma membrane and maintains cell volume and intracellular K+ and Cl− homeostasis. NHE-1 is a ubiquitously expressed cell membrane protein which regulates intracellular pH (pHi) and extracellular microdomain pH (pHe) homeostasis and cell volume. Here, we summarized recent pre-clinical experimental studies on NKCC-1 and NHE-1 in GBM and other malignant tumors, such as breast cancer, hepatocellular carcinoma, and lung cancer. These studies illustrated that pharmacological inhibition or down-regulation of these ion transporter proteins reduces proliferation, increases apoptosis, and suppresses migration and invasion of cancer cells. These new findings reveal the potentials of these ion transporters as new targets for cancer diagnosis and/or treatment. PMID:25620102

  18. A pharmacological evidence of positive association between mouse intermale aggression and brain serotonin metabolism.

    PubMed

    Kulikov, A V; Osipova, D V; Naumenko, V S; Terenina, E; Mormède, P; Popova, N K

    2012-07-15

    The neurotransmitter serotonin (5-HT) is involved in the regulation of mouse intermale aggression. Previously, it was shown that intensity of mouse intermale aggression was positively associated with activity of the key enzyme of 5-HT synthesis - tryptophan hydroxylase 2 (TPH2) in mouse brain. The aim of the present study was to investigate the effect of pharmacological activation or inhibition of 5-HT synthesis in the brain on intermale aggression in two mouse strains differing in the TPH2 activity: C57BL/6J (B6, high TPH2 activity, high aggressiveness) and CC57BR/Mv (BR, low TPH2 activity, low aggressiveness). Administration of 5-HT precursor L-tryptophan (300 mg/kg, i.p.) to BR mice significantly increased the 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) levels in the midbrain as well as the number of attacks and their duration in the resident-intruder test. And vice versa, administration of TPH2 inhibitor p-chlorophenylalanine (pCPA) (300 mg/kg, i.p., for 3 consecutive days) to B6 mice dramatically reduced the 5-HT and 5-HIAA contents in brain structures and attenuated the frequency and the duration of aggressive attacks. At the same time, L-tryptophan or pCPA did not influence the percentage of aggressive mice and the attack latency reflecting the threshold of aggressive reaction. This result indicated that the intensity of intermale aggression, but not the threshold of aggressive reaction is positively dependent on 5-HT metabolism in mouse brain.

  19. Brain tumors: Special characters for research and banking

    PubMed Central

    Kheirollahi, Majid; Dashti, Sepideh; Khalaj, Zahra; Nazemroaia, Fatemeh; Mahzouni, Parvin

    2015-01-01

    A brain tumor is an intracranial neoplasm within the brain or in the central spinal canal. Primary malignant brain tumors affect about 200,000 people worldwide every year. Brain cells have special characters. Due to the specific properties of brain tumors, including epidemiology, growth, and division, investigation of brain tumors and the interpretation of results is not simple. Research to identify the genetic alterations of human tumors improves our knowledge of tumor biology, genetic interactions, progression, and preclinical therapeutic assessment. Obtaining data for prevention, diagnosis, and therapy requires sufficient samples, and brain tumors have a wide range. As a result, establishing the bank of brain tumors is very important and essential. PMID:25625110

  20. Neurocutaneous Syndromes and Brain Tumors.

    PubMed

    Ullrich, Nicole J

    2016-10-01

    The etiology of most childhood cancer remains largely unknown, but is likely attributable to random or induced genetic aberrations in somatic tissue. However, a subset of children develops cancer in the setting of an underlying inheritable condition involving a germline genetic mutation or chromosomal aberration. The term "neurocutaneous syndrome" encompasses a group of multisystem, hereditary disorders that are associated with skin manifestations as well as central and/or peripheral nervous system lesions of variable severity. This review outlines the central nervous system tumors associated with underlying neurocutaneous disorders, including neurofibromatosis type 1, neurofibromatosis type 2, schwannomatosis, tuberous sclerosis complex, Von Hippel Lindau, and nevoid basal cell carcinoma syndrome. Recognizing the presence of an underlying syndrome is critically important to both optimizing clinical care and treatment as well as genetic counseling and monitoring of these affected patients and their families.

  1. Unusual aggressive breast cancer: metastatic malignant phyllodes tumor.

    PubMed

    Singer, Adam; Tresley, Jonathan; Velazquez-Vega, Jose; Yepes, Monica

    2013-02-01

    For the year of 2012, it has been estimated that breast cancer will account for the greatest number of newly diagnosed cancers and the second highest proportion of cancer related deaths among women. Breast cancer, while often lumped together as one disease, represents a diverse group of malignancies with different imaging findings, histological appearances and behavior. While most invasive primary breast cancers are epithelial derived adenocarcinomas, rare neoplasms such as the phyllodes tumor may arise from mesenchymal tissue. Compared to the breast adenocarcinoma, the phyllodes tumor tends to affect a younger population, follows a different clinical course, is associated with different imaging and histological findings and is managed distinctively. There may be difficulty in differentiating the phyllodes tumor from a large fibroadenoma, but the mammographer plays a key role in reviewing the clinical and imaging data in order to arrive at the correct diagnosis. Early diagnosis with proper surgical management can often cure non-metastatic phyllodes tumors. However, in rare cases where metastasis occurs, prognosis tends to be poor. This report describes the presentation, imaging findings and management of a metastatic malignant phyllodes tumor.

  2. 3D Silicon Microstructures: A New Tool for Evaluating Biological Aggressiveness of Tumor Cells.

    PubMed

    Mazzini, Giuliano; Carpignano, Francesca; Surdo, Salvatore; Aredia, Francesca; Panini, Nicolò; Torchio, Martina; Erba, Eugenio; Danova, Marco; Scovassi, Anna Ivana; Barillaro, Giuseppe; Merlo, Sabina

    2015-10-01

    In this work, silicon micromachined structures (SMS), consisting of arrays of 3- μ m-thick silicon walls separated by 50- μm-deep, 5- μ m-wide gaps, were applied to investigate the behavior of eight tumor cell lines, with different origins and biological aggressiveness, in a three-dimensional (3D) microenvironment. Several cell culture experiments were performed on 3D-SMS and cells grown on silicon were stained for fluorescence microscopy analyses. Most of the tumor cell lines recognized in the literature as highly aggressive (OVCAR-5, A375, MDA-MB-231, and RPMI-7951) exhibited a great ability to enter and colonize the narrow deep gaps of the SMS, whereas less aggressive cell lines (OVCAR-3, Capan-1, MCF7, and NCI-H2126) demonstrated less penetration capability and tended to remain on top of the SMS. Quantitative image analyses of several fluorescence microscopy fields of silicon samples were performed for automatic cell recognition and count, in order to quantify the fraction of cells inside the gaps, with respect to the total number of cells in the examined field. Our results show that higher fractions of cells in the gaps are obtained with more aggressive cell lines, thus supporting in a quantitative way the observation that the behavior of tumor cells on the 3D-SMS depends on their aggressiveness level.

  3. Vascular patterns provide therapeutic targets in aggressive neuroblastic tumors

    PubMed Central

    Tadeo, Irene; Bueno, Gloria; Berbegall, Ana P.; Fernández-Carrobles, M. Milagro; Castel, Victoria; García-Rojo, Marcial; Navarro, Samuel; Noguera, Rosa

    2016-01-01

    Angiogenesis is essential for tumor growth and metastasis, nevertheless, in NB, results between different studies on angiogenesis have yielded contradictory results. An image analysis tool was developed to characterize the density, size and shape of total blood vessels and vascular segments in 458 primary neuroblastic tumors contained in tissue microarrays. The results were correlated with clinical and biological features of known prognostic value and with risk of progression to establish histological vascular patterns associated with different degrees of malignancy. Total blood vessels were larger, more abundant and more irregularly-shaped in tumors of patients with associated poor prognostic factors than in the favorable cohort. Tumor capillaries were less abundant and sinusoids more abundant in the patient cohort with unfavorable prognostic factors. Additionally, size of post-capillaries & metarterioles as well as higher sinusoid density can be included as predictive factors for survival. These patterns may therefore help to provide more accurate pre-treatment risk stratification, and could provide candidate targets for novel therapies. PMID:26918726

  4. The role of temozolomide in the treatment of aggressive pituitary tumors.

    PubMed

    Liu, James K; Patel, Jimmy; Eloy, Jean Anderson

    2015-06-01

    Pituitary tumors are amongst the most common intracranial neoplasms and are generally benign. However, some pituitary tumors exhibit clinically aggressive behavior that is characterized by tumor recurrence and continued progression despite repeated treatments with conventional surgical, radiation and medical therapies. More recently, temozolomide, a second generation oral alkylating agent, has shown therapeutic promise for aggressive pituitary adenomas and carcinomas with favorable clinical and radiographic responses. Temozolomide causes DNA damage by methylation of the O(6) position of guanine, which results in potent cytotoxic DNA adducts and consequently, tumor cell apoptosis. The degree of MGMT expression appears to be inversely related to therapeutic responsiveness to temozolomide with a significant number of temozolomide-sensitive pituitary tumors exhibiting low MGMT expression. The presence of high MGMT expression appears to mitigate the effectiveness of temozolomide and this has been used as a marker in several studies to predict the efficacy of temozolomide. Recent evidence also suggests that mutations in mismatch repair proteins such as MSH6 could render pituitary tumors resistant to temozolomide. In this article, the authors review the development of temozolomide, its biochemistry and interaction with O(6)-methylguanine-DNA methyltransferase (MGMT), its role in adjuvant treatment of aggressive pituitary neoplasms, and future works that could influence the efficacy of temozolomide therapy.

  5. Gastric type endocervical adenocarcinoma: an aggressive tumor with unusual metastatic patterns and poor prognosis

    PubMed Central

    Karamurzin, Yevgeniy S.; Kiyokawa, Takako; Parkash, Vinita; Jotwani, Anjali R.; Patel, Prusha; Pike, Malcolm C.; Soslow, Robert A.; Park, Kay J.

    2016-01-01

    Gastric type adenocarcinoma of the uterine cervix (GAS) is a rare variant of mucinous endocervical adenocarcinoma not etiologically associated with human papillomavirus (HPV) infection, with minimal deviation adenocarcinoma (MDA) at the well-differentiated end of the morphologic spectrum. These tumors are reported to have worse prognosis than usual HPV-associated endocervical adenocarcinoma (UEA). A retrospective review of GAS was performed from the pathology databases of three institutions spanning 20 years. Stage, metastatic patterns, and overall survival were documented. Forty GAS cases were identified, with clinical follow-up data available for 38. The tumors were subclassified as MDA (n=13) and non-MDA GAS (n=27). Two patients were syndromic (one Li-Fraumeni, one Peutz-Jeghers). At presentation, 59% were advanced stage (FIGO II–IV), 50% had lymph node metastases, 35% had ovarian involvement, 20% had abdominal disease, 39% had at least one site of metastasis at the time of initial surgery, and 12% of patients experienced distant recurrence. The metastatic sites included lymph nodes, adnexa, omentum, bowel, peritoneum, diaphragm, abdominal wall, bladder, vagina, appendix, and brain. Follow-up ranged from 1.4 to 136.0 months (mean, 33.9 months); 20/38 (52.6%) had no evidence of disease, 3/38 (7.9%) were alive with disease, and 15/38 (39.5%) died of disease. Disease specific survival at 5 years was 42% for GAS vs. 91% for UEA. There were no survival differences between MDA and non-MDA GAS. GAS represents a distinct, biologically aggressive type of endocervical adenocarcinoma. The majority of patients present at advanced stage and pelvic, abdominal, and distant metastases are not uncommon. PMID:26457350

  6. Brain Tumor Epidemiology: Consensus from the Brain Tumor Epidemiology Consortium (BTEC)

    PubMed Central

    Bondy, Melissa L.; Scheurer, Michael E.; Malmer, Beatrice; Barnholtz-Sloan, Jill S.; Davis, Faith G.; Il’yasova, Dora; Kruchko, Carol; McCarthy, Bridget J.; Rajaraman, Preetha; Schwartzbaum, Judith A.; Sadetzki, Siegal; Schlehofer, Brigitte; Tihan, Tarik; Wiemels, Joseph L.; Wrensch, Margaret; Buffler, Patricia A.

    2010-01-01

    Epidemiologists in the Brain Tumor Epidemiology Consortium (BTEC) have prioritized areas for further research. Although many risk factors have been examined over the past several decades, there are few consistent findings possibly due to small sample sizes in individual studies and differences between studies in subjects, tumor types, and methods of classification. Individual studies have generally lacked sufficient sample size to examine interactions. A major priority based on available evidence and technologies includes expanding research in genetics and molecular epidemiology of brain tumors. BTEC has taken an active role in promoting understudied groups such as pediatric brain tumors, the etiology of rare glioma subtypes, such as oligodendroglioma, and meningioma, which not uncommon, has only recently been systematically registered in the US. There is also a pressing need to bring more researchers, especially junior investigators, to study brain tumor epidemiology. However, relatively poor funding for brain tumor research has made it difficult to encourage careers in this area. We review the group’s consensus on the current state of scientific findings and present a consensus on research priorities to identify the important areas the science should move to address. PMID:18798534

  7. Tumor-initiating cell frequency is relevant for glioblastoma aggressiveness

    PubMed Central

    Richichi, Cristina; Osti, Daniela; Del Bene, Massimiliano; Fornasari, Lorenzo; Patanè, Monica; Pollo, Bianca; DiMeco, Francesco; Pelicci, Giuliana

    2016-01-01

    Glioblastoma (GBM) is maintained by a small subpopulation of tumor-initiating cells (TICs). The arduous assessment of TIC frequencies challenges the prognostic role of TICs in predicting the clinical outcome in GBM patients. We estimated the TIC frequency in human GBM injecting intracerebrally in mice dissociated cells without any passage in culture. All GBMs contained rare TICsand were tumorigenic in vivo but only 54% of them grew in vitro as neurospheres. We demonstrated that neurosphere formation in vitro did not foretell tumorigenic ability in vivo and frequencies calculated in vitro overestimated the TIC content. Our findings assert the pathological significance of GBM TICs. TIC number correlated positively with tumor incidence and inversely with survival of tumor-bearing mice. Stratification of GBM patients according to TIC content revealed that patients with low TIC frequency experienced a trend towards a longer progression free survival. The expression of either putative stem-cell markers or markers associated with different GBM molecular subtypes did not associate with either TIC content or neurosphere formation underlying the limitations of TIC identification based on the expression of some putative stem cell-markers. PMID:27582543

  8. Expression Profiling of Primary and Metastatic Ovarian Tumors Reveals Differences Indicative of Aggressive Disease

    PubMed Central

    Brodsky, Alexander S.; Fischer, Andrew; Miller, Daniel H.; Vang, Souriya; MacLaughlan, Shannon; Wu, Hsin-Ta; Yu, Jovian; Steinhoff, Margaret; Collins, Colin; Smith, Peter J. S.; Raphael, Benjamin J.; Brard, Laurent

    2014-01-01

    The behavior and genetics of serous epithelial ovarian cancer (EOC) metastasis, the form of the disease lethal to patients, is poorly understood. The unique properties of metastases are critical to understand to improve treatments of the disease that remains in patients after debulking surgery. We sought to identify the genetic and phenotypic landscape of metastatic progression of EOC to understand how metastases compare to primary tumors. DNA copy number and mRNA expression differences between matched primary human tumors and omental metastases, collected at the same time during debulking surgery before chemotherapy, were measured using microarrays. qPCR and immunohistochemistry validated findings. Pathway analysis of mRNA expression revealed metastatic cancer cells are more proliferative and less apoptotic than primary tumors, perhaps explaining the aggressive nature of these lesions. Most cases had copy number aberrations (CNAs) that differed between primary and metastatic tumors, but we did not detect CNAs that are recurrent across cases. A six gene expression signature distinguishes primary from metastatic tumors and predicts overall survival in independent datasets. The genetic differences between primary and metastatic tumors, yet common expression changes, suggest that the major clone in metastases is not the same as in primary tumors, but the cancer cells adapt to the omentum similarly. Together, these data highlight how ovarian tumors develop into a distinct, more aggressive metastatic state that should be considered for therapy development. PMID:24732363

  9. Differences in brain circuitry for appetitive and reactive aggression as revealed by realistic auditory scripts

    PubMed Central

    Moran, James K.; Weierstall, Roland; Elbert, Thomas

    2014-01-01

    Aggressive behavior is thought to divide into two motivational elements: The first being a self-defensively motivated aggression against threat and a second, hedonically motivated “appetitive” aggression. Appetitive aggression is the less understood of the two, often only researched within abnormal psychology. Our approach is to understand it as a universal and adaptive response, and examine the functional neural activity of ordinary men (N = 50) presented with an imaginative listening task involving a murderer describing a kill. We manipulated motivational context in a between-subjects design to evoke appetitive or reactive aggression, against a neutral control, measuring activity with Magnetoencephalography (MEG). Results show differences in left frontal regions in delta (2–5 Hz) and alpha band (8–12 Hz) for aggressive conditions and right parietal delta activity differentiating appetitive and reactive aggression. These results validate the distinction of reward-driven appetitive aggression from reactive aggression in ordinary populations at the level of functional neural brain circuitry. PMID:25538590

  10. Unarmed, tumor-specific monoclonal antibody effectively treats brain tumors

    PubMed Central

    Sampson, John H.; Crotty, Laura E.; Lee, Samson; Archer, Gary E.; Ashley, David M.; Wikstrand, Carol J.; Hale, Laura P.; Small, Clayton; Dranoff, Glenn; Friedman, Allan H.; Friedman, Henry S.; Bigner, Darell D.

    2000-01-01

    The epidermal growth factor receptor (EGFR) is often amplified and rearranged structurally in tumors of the brain, breast, lung, and ovary. The most common mutation, EGFRvIII, is characterized by an in-frame deletion of 801 base pairs, resulting in the generation of a novel tumor-specific epitope at the fusion junction. A murine homologue of the human EGFRvIII mutation was created, and an IgG2a murine mAb, Y10, was generated that recognizes the human and murine equivalents of this tumor-specific antigen. In vitro, Y10 was found to inhibit DNA synthesis and cellular proliferation and to induce autonomous, complement-mediated, and antibodydependent cell-mediated cytotoxicity. Systemic treatment with i.p. Y10 of s.c. B16 melanomas transfected to express stably the murine EGFRvIII led to long-term survival in all mice treated (n = 20; P < 0.001). Similar therapy with i.p. Y10 failed to increase median survival of mice with EGFRvIII-expressing B16 melanomas in the brain; however, treatment with a single intratumoral injection of Y10 increased median survival by an average 286%, with 26% long-term survivors (n = 117; P < 0.001). The mechanism of action of Y10 in vivo was shown to be independent of complement, granulocytes, natural killer cells, and T lymphocytes through in vivo complement and cell subset depletions. Treatment with Y10 in Fc receptor knockout mice demonstrated the mechanism of Y10 to be Fc receptor-dependent. These data indicate that an unarmed, tumor-specific mAb may be an effective immunotherapy against human tumors and potentially other pathologic processes in the “immunologically privileged” central nervous system. PMID:10852962

  11. Perspectives on Dual Targeting Delivery Systems for Brain Tumors.

    PubMed

    Gao, Huile

    2017-03-01

    Brain tumor remains one of the most serious threats to human beings. Different from peripheral tumors, drug delivery to brain tumor is largely restricted by the blood brain barrier (BBB). To fully conquer this barrier and specifically deliver drugs to brain tumor, dual targeting delivery systems were explored, which are functionalized with two active targeting ligands: one to the BBB and the other to the brain tumor. The development of dual targeting delivery system is still in its early stage, and attentions need to be paid to issues and concerns that remain unresolved in future studies.

  12. Brain Tumors - Multiple Languages: MedlinePlus

    MedlinePlus

    ... List of All Topics All Brain Tumors - Multiple Languages To use the sharing features on this page, please enable JavaScript. French (français) Japanese (日本語) Korean (한국어) Russian (Русский) Somali (af Soomaali) Spanish (español) Ukrainian (Українська) ...

  13. Novel roles of the unfolded protein response in the control of tumor development and aggressiveness.

    PubMed

    Dejeans, Nicolas; Barroso, Kim; Fernandez-Zapico, Martin E; Samali, Afshin; Chevet, Eric

    2015-08-01

    The hallmarks of cancer currently define the molecular mechanisms responsible for conferring specific tumor phenotypes. Recently, these characteristics were also connected to the status of the secretory pathway, thereby linking the functionality of this cellular machinery to the acquisition of cancer cell features. The secretory pathway ensures the biogenesis of proteins that are membrane-bound or secreted into the extracellular milieu and can control its own homeostasis through an adaptive signaling pathway named the unfolded protein response (UPR). In the present review, we discuss the specific features of the UPR in various tumor types and the impact of the selective activation of this pathway on cell transformation, tumor development and aggressiveness.

  14. Gene expression profiles of metabolic aggressiveness and tumor recurrence in benign meningioma.

    PubMed

    Serna, Eva; Morales, José Manuel; Mata, Manuel; Gonzalez-Darder, José; San Miguel, Teresa; Gil-Benso, Rosario; Lopez-Gines, Concha; Cerda-Nicolas, Miguel; Monleon, Daniel

    2013-01-01

    Around 20% of meningiomas histologically benign may be clinically aggressive and recur. This strongly affects management of meningioma patients. There is a need to evaluate the potential aggressiveness of an individual meningioma. Additional criteria for better classification of meningiomas will improve clinical decisions as well as patient follow up strategy after surgery. The aim of this study was to determine the relationship between gene expression profiles and new metabolic subgroups of benign meningioma with potential clinical relevance. Forty benign and fourteen atypical meningioma tissue samples were included in the study. We obtained metabolic profiles by NMR and recurrence after surgery information for all of them. We measured gene expression by oligonucleotide microarray measurements on 19 of them. To our knowledge, this is the first time that distinct gene expression profiles are reported for benign meningioma molecular subgroups with clinical correlation. Our results show that metabolic aggressiveness in otherwise histological benign meningioma proceeds mostly through alterations in the expression of genes involved in the regulation of transcription, mainly the LMO3 gene. Genes involved in tumor metabolism, like IGF1R, are also differentially expressed in those meningioma subgroups with higher rates of membrane turnover, higher energy demand and increased resistance to apoptosis. These new subgroups of benign meningiomas exhibit different rates of recurrence. This work shows that benign meningioma with metabolic aggressiveness constitute a subgroup of potentially recurrent tumors in which alterations in genes regulating critical features of aggressiveness, like increased angiogenesis or cell invasion, are still no predominant. The determination of these gene expression biosignatures may allow the early detection of clinically aggressive tumors.

  15. [Chemotherapy of brain tumors in aduts].

    PubMed

    Roth, P; Weller, M

    2015-04-01

    The treatment of patients with brain tumors has long been the domain of neurosurgery and radiotherapy but chemotherapy is now well established as an additional treatment option for many tumor entities in neuro-oncology. This is particularly true for patients with newly diagnosed and relapsing glioblastoma and anaplastic glioma as well as the treatment of medulloblastoma and primary lymphoma of the central nervous system (CNS). In addition to purely histopathological features, treatment decisions including those for chemotherapy are now based increasingly more on molecular tumor profiling. Within the group of gliomas these markers include the methylation status of the O-6-methylguanine-DNA methyltransferase (MGMT) promoter and the 1p/19q status, which reflects the loss of genetic material on chromosome arms 1p and 19q. The presence of a 1p/19q codeletion is associated with a better prognosis and increased sensitivity to alkylating chemotherapy in patients with anaplastic gliomas.

  16. Resection replantation of the upper limb for aggressive malignant tumors.

    PubMed

    El-Gammal, Tarek Abdalla; El-Sayed, Amr; Kotb, Mohamed Mostafa

    2002-04-01

    Stage IIB malignant tumors of the upper limb have been traditionally treated by amputation or disarticulation. There have been isolated reports on the technique of segmental resection of the tumor-bearing segment complete with the skin, and replanting the distal arm or forearm with or without neurovascular repair. The present paper describes four cases in which a wide resection margin was achieved in all by resecting the affected cylinder of the limb. Functional reconstruction was performed by appropriate tendon transfer. The main vessels and nerves were dealt with according to the findings revealed by preoperative investigations. If they had to be sacrificed, end-to-end suture was performed, but if the main nerves could be spared, it greatly enhanced the functional outcome. Local and systemic recurrences occurred in one case, and systemic recurrence occurred in another case. The other two cases remained disease-free at more than 4 years' follow-up. This operation is as radical as amputation, while the esthetic and functional results are equivalent to those of resection-arthrodesis.

  17. Relationships Between Traumatic Brain Injury and Illicit Drug Use and Their Association With Aggression in Inmates.

    PubMed

    Fishbein, Diana; Dariotis, Jacinda K; Ferguson, Pamela L; Pickelsimer, E Elisabeth

    2016-04-01

    Extensive interviews of correctional inmates in South Carolina (2009-2010) were conducted under a Center for Disease Control and Prevention (CDC) grant. We evaluated the extent to which early traumatic brain injury (TBI) and subsequent illicit drug abuse may conjointly influence development of aggression, controlling for alcohol use, and whether cognitive or emotional dysregulation mediated this relationship. Early TBI predicted greater severity and earlier onset of drug use, and an earlier age at first use predicted greater aggression regardless of the age of TBI. Emotional dysregulation mediated effects of TBI on aggression. The potential to design more targeted treatments for this susceptible population are discussed.

  18. Rat Prostate Tumor Cells Progress in the Bone Microenvironment to a Highly Aggressive Phenotype1

    PubMed Central

    Bergström, Sofia Halin; Rudolfsson, Stina H; Bergh, Anders

    2016-01-01

    Prostate cancer generally metastasizes to bone, and most patients have tumor cells in their bone marrow already at diagnosis. Tumor cells at the metastatic site may therefore progress in parallel with those in the primary tumor. Androgen deprivation therapy is often the first-line treatment for clinically detectable prostate cancer bone metastases. Although the treatment is effective, most metastases progress to a castration-resistant and lethal state. To examine metastatic progression in the bone microenvironment, we implanted androgen-sensitive, androgen receptor–positive, and relatively slow-growing Dunning G (G) rat prostate tumor cells into the tibial bone marrow of fully immune-competent Copenhagen rats. We show that tumor establishment in the bone marrow was reduced compared with the prostate, and whereas androgen deprivation did not affect tumor establishment or growth in the bone, this was markedly reduced in the prostate. Moreover, we found that, with time, G tumor cells in the bone microenvironment progress to a more aggressive phenotype with increased growth rate, reduced androgen sensitivity, and increased metastatic capacity. Tumor cells in the bone marrow encounter lower androgen levels and a higher degree of hypoxia than at the primary site, which may cause high selective pressures and eventually contribute to the development of a new and highly aggressive tumor cell phenotype. It is therefore important to specifically study progression in bone metastases. This tumor model could be used to increase our understanding of how tumor cells adapt in the bone microenvironment and may subsequently improve therapy strategies for prostate metastases in bone. PMID:26992916

  19. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse, human glioblastomas in the mouse brain in vivo

    PubMed Central

    Marin-Valencia, Isaac; Yang, Chendong; Mashimo, Tomoyuki; Cho, Steve; Baek, Hyeonman; Yang, Xiao-Li; Rajagopalan, Kartik N.; Maddie, Melissa; Vemireddy, Vamsidhara; Zhao, Zhenze; Cai, Ling; Good, Levi; Tu, Benjamin P.; Hatanpaa, Kimmo J.; Mickey, Bruce E.; Matés, José M.; Pascual, Juan M.; Maher, Elizabeth A.; Malloy, Craig R.; DeBerardinis, Ralph J.; Bachoo, Robert M.

    2012-01-01

    SUMMARY Dysregulated metabolism is a hallmark of cancer cell lines, but little is known about the fate of glucose and other nutrients in tumors growing in their native microenvironment. To study tumor metabolism in vivo, we used an orthotopic mouse model of primary human glioblastoma (GBM). We infused 13C-labeled nutrients into mice bearing three independent GBM lines, each with a distinct set of mutations. All three lines displayed glycolysis, as expected for aggressive tumors. They also displayed unexpected metabolic complexity, oxidizing glucose via pyruvate dehydrogenase and the citric acid cycle, and using glucose to supply anaplerosis and other biosynthetic activities. Comparing the tumors to surrounding brain revealed obvious metabolic differences, notably the accumulation of a large glutamine pool within the tumors. Many of these same activities were conserved in cells cultured ex vivo from the tumors. Thus GBM cells utilize mitochondrial glucose oxidation during aggressive tumor growth in vivo. PMID:22682223

  20. Subacute brain atrophy after radiation therapy for malignant brain tumor

    SciTech Connect

    Asai, A.; Matsutani, M.; Kohno, T.; Nakamura, O.; Tanaka, H.; Fujimaki, T.; Funada, N.; Matsuda, T.; Nagata, K.; Takakura, K.

    1989-05-15

    Brain atrophy with mental and neurologic deterioration developing a few months after radiation therapy in patients without residual or recurrent brain tumors has been recognized. Two illustrative case reports of this pathologic entity are presented. Six autopsy cases with this entity including the two cases were reviewed neurologically, radiographically, and histopathologically. All patients presented progressive disturbances of mental status and consciousness, akinesia, and tremor-like involuntary movement. Computerized tomography (CT) demonstrated marked enlargement of the ventricles, moderate widening of the cortical sulci, and a moderately attenuated CT number for the white matter in all six patients. Four of the six patients had CSF drainage (ventriculoperitoneal shunt or continuous lumbar drainage), however, none of them improved. Histologic examination demonstrated swelling and loss of the myelin sheath in the white matter in all patients, and reactive astrocytosis in three of the six patients. Neither prominent neuronal loss in the cerebral cortex or basal ganglia, nor axonal loss in the white matter was generally identified. The blood vessels of the cerebral cortex and white matter were normal. Ependymal layer and the surrounding brain tissue were normal in all patients. These findings suggested that this pathologic condition results from demyelination secondary to direct neurotoxic effect of irradiation. The authors' previous report was reviewed and the differential diagnoses, the risk factors for this pathologic entity, and the indication for radiation therapy in aged patients with a malignant brain tumor are discussed.

  1. Brain Serotonin Receptors and Transporters: Initiation vs. Termination of Escalated Aggression

    PubMed Central

    Takahashi, Aki; Quadros, Isabel M.; de Almeida, Rosa M. M.; Miczek, Klaus A.

    2013-01-01

    Rationale Recent findings have shown a complexly regulated 5-HT system as it is linked to different kinds of aggression. Objective We focus on (1) phasic and tonic changes of 5-HT and (2) state and trait of aggression, and emphasize the different receptor subtypes, their role in specific brain regions, feed-back regulation and modulation by other amines, acids and peptides. Results New pharmacological tools differentiate the first three 5-HT receptor families and their modulation by GABA, glutamate and CRF. Activation of 5-HT1A, 5-HT1B and 5-HT2A/2C receptors in mesocorticolimbic areas, reduce species-typical and other aggressive behaviors. In contrast, agonists at 5-HT1A and 5-HT1B receptors in the medial prefrontal cortex or septal area can increase aggressive behavior under specific conditions. Activation of serotonin transporters reduce mainly pathological aggression. Genetic analyses of aggressive individuals have identified several molecules that affect the 5-HT system directly (e.g., Tph2, 5-HT1B, 5-HT transporter, Pet1, MAOA) or indirectly (e.g., Neuropeptide Y, αCaMKII, NOS, BDNF). Dysfunction in genes for MAOA escalates pathological aggression in rodents and humans, particularly in interaction with specific experiences. Conclusions Feedback to autoreceptors of the 5-HT1 family and modulation via heteroreceptors are important in the expression of aggressive behavior. Tonic increase of the 5-HT2 family expression may cause escalated aggression, whereas the phasic increase of 5-HT2 receptors inhibits aggressive behaviors. Polymorphisms in the genes of 5-HT transporters or rate-limiting synthetic and metabolic enzymes of 5-HT modulate aggression, often requiring interaction with the rearing environment. PMID:20938650

  2. Impulsivity and aggression mediate regional brain responses in Borderline Personality Disorder: An fMRI study.

    PubMed

    Soloff, Paul H; Abraham, Kristy; Burgess, Ashley; Ramaseshan, Karthik; Chowdury, Asadur; Diwadkar, Vaibhav A

    2017-02-28

    Fronto-limbic brain networks involved in regulation of impulsivity and aggression are abnormal in Borderline Personality Disorder (BPD). However, it is unclear whether, or to what extent, these personality traits actually modulate brain responses during cognitive processing. Using fMRI, we examined the effects of trait impulsivity, aggression, and depressed mood on regional brain responses in 31 female BPD and 25 control subjects during a Go No-Go task using Ekman faces as targets. First-level contrasts modeled effects of negative emotional context. Second-level regression models used trait impulsivity, aggression and depressed mood as predictor variables of regional brain activations. In BPD, trait impulsivity was positively correlated with activation in the dorsal anterior cingulate cortex, orbital frontal cortex (OFC), basal ganglia (BG), and dorsolateral prefrontal cortex, with no areas of negative correlation. In contrast, aggression was negatively correlated with activation in OFC, hippocampus, and BG, with no areas of positive correlation. Depressed mood had a generally dampening effect on activations. Effects of trait impulsivity on healthy controls differed from effects in BPD, suggesting a disorder-specific response. Negative emotional context and trait impulsivity, but not aggression or depression, diminished task performance across both groups. Negative emotional context may interfere with cognitive functioning in BPD through interaction with the neurobiology of personality traits.

  3. Brain Tumor Database, a free relational database for collection and analysis of brain tumor patient information.

    PubMed

    Bergamino, Maurizio; Hamilton, David J; Castelletti, Lara; Barletta, Laura; Castellan, Lucio

    2015-03-01

    In this study, we describe the development and utilization of a relational database designed to manage the clinical and radiological data of patients with brain tumors. The Brain Tumor Database was implemented using MySQL v.5.0, while the graphical user interface was created using PHP and HTML, thus making it easily accessible through a web browser. This web-based approach allows for multiple institutions to potentially access the database. The BT Database can record brain tumor patient information (e.g. clinical features, anatomical attributes, and radiological characteristics) and be used for clinical and research purposes. Analytic tools to automatically generate statistics and different plots are provided. The BT Database is a free and powerful user-friendly tool with a wide range of possible clinical and research applications in neurology and neurosurgery. The BT Database graphical user interface source code and manual are freely available at http://tumorsdatabase.altervista.org.

  4. Brain tumor segmentation with Deep Neural Networks.

    PubMed

    Havaei, Mohammad; Davy, Axel; Warde-Farley, David; Biard, Antoine; Courville, Aaron; Bengio, Yoshua; Pal, Chris; Jodoin, Pierre-Marc; Larochelle, Hugo

    2017-01-01

    In this paper, we present a fully automatic brain tumor segmentation method based on Deep Neural Networks (DNNs). The proposed networks are tailored to glioblastomas (both low and high grade) pictured in MR images. By their very nature, these tumors can appear anywhere in the brain and have almost any kind of shape, size, and contrast. These reasons motivate our exploration of a machine learning solution that exploits a flexible, high capacity DNN while being extremely efficient. Here, we give a description of different model choices that we've found to be necessary for obtaining competitive performance. We explore in particular different architectures based on Convolutional Neural Networks (CNN), i.e. DNNs specifically adapted to image data. We present a novel CNN architecture which differs from those traditionally used in computer vision. Our CNN exploits both local features as well as more global contextual features simultaneously. Also, different from most traditional uses of CNNs, our networks use a final layer that is a convolutional implementation of a fully connected layer which allows a 40 fold speed up. We also describe a 2-phase training procedure that allows us to tackle difficulties related to the imbalance of tumor labels. Finally, we explore a cascade architecture in which the output of a basic CNN is treated as an additional source of information for a subsequent CNN. Results reported on the 2013 BRATS test data-set reveal that our architecture improves over the currently published state-of-the-art while being over 30 times faster.

  5. Stereotactic Radiosurgery in Treating Patients With Brain Tumors

    ClinicalTrials.gov

    2012-03-21

    Adult Central Nervous System Germ Cell Tumor; Adult Malignant Meningioma; Adult Medulloblastoma; Adult Noninfiltrating Astrocytoma; Adult Oligodendroglioma; Adult Craniopharyngioma; Adult Meningioma; Brain Metastases; Adult Ependymoma; Adult Pineal Parenchymal Tumor; Adult Brain Stem Glioma; Adult Infiltrating Astrocytoma; Mixed Gliomas; Stage IV Peripheral Primitive Neuroectodermal Tumor

  6. Inflammatory myofibroblastic tumor of the uterus: clinical and pathologic review of 10 cases including a subset with aggressive clinical course.

    PubMed

    Parra-Herran, Carlos; Quick, Charles M; Howitt, Brooke E; Dal Cin, Paola; Quade, Bradley J; Nucci, Marisa R

    2015-02-01

    Inflammatory myofibroblastic tumor is currently regarded as a neoplasm with intermediate biological potential and a wide anatomic distribution. Inflammatory myofibroblastic tumors of the female genital tract are rare, and to date reported cases behaved indolently. We describe, herein, 10 cases of uterine inflammatory myofibroblastic tumor, 3 of which had an aggressive clinical course. Subject age ranged from 29 to 73 years. Tumors were composed of spindle and epithelioid myofibroblastic cells admixed with lymphoplasmacytic infiltrates in a variably myxoid stroma. Two growth patterns, myxoid and fascicular (leiomyoma-like), were noted. All tumors were positive for ALK expression by immunohistochemistry, which was stronger in the myxoid areas. Smooth muscle marker and CD10 expression was variable in extent, but typically positive. Fluorescence in situ hybridization for ALK rearrangements was positive in both fascicular and myxoid areas in all 8 cases tested. Three subjects showed clinical evidence of tumor aggressiveness as defined by extrauterine spread, local recurrence, or distant metastasis. Aggressive tumors were larger, had a higher proportion of myxoid stroma, and higher mitotic activity than indolent tumors. Tumor cell necrosis was seen only in cases with adverse outcome. This is the first report to describe aggressive biological behavior in uterine inflammatory myofibroblastic tumor. This diagnosis is often underappreciated and merits inclusion in the differential diagnosis of myxoid mesenchymal lesions of the uterus, particularly because patients with an aggressive course may benefit from targeted therapy.

  7. 'Salvage Treatment' of Aggressive Giant Cell Tumor of Bones with Denosumab.

    PubMed

    Vaishya, Raju; Agarwal, Amit Kumar; Vijay, Vipul

    2015-07-01

    Giant cell tumor of the bone (GCTB) presents as a lytic lesion of epiphyseometaphyseal regions of the long bones usually during the second to the fourth decade with female predilection. Histologically, they are formed of neoplastic mononuclear cells with a higher receptor activator of nuclear factor kappa-B ligand (RANKL) expression responsible for the aggressive osteolytic nature of the tumour. RANKL helps in the formation and functioning of osteoclasts. A newer molecule, Denosumab, is a monoclonal antibody directed against RANKL and thus prevents the formation and function of osteoclasts. Management of refractory, multicentric, recurrent, or metastatic GCTB remains challenging as achieving a tumor-free margin surgically is not always possible. Denosumab may play a crucial role, especially in the management of such difficult lesions. We present three cases of locally aggressive GCTB (involving proximal humerus, sacrum, and proximal femur) that were treated and responded very well to Denosumab therapy.

  8. 'Salvage Treatment' of Aggressive Giant Cell Tumor of Bones with Denosumab

    PubMed Central

    Vaishya, Raju; Vijay, Vipul

    2015-01-01

    Giant cell tumor of the bone (GCTB) presents as a lytic lesion of epiphyseometaphyseal regions of the long bones usually during the second to the fourth decade with female predilection. Histologically, they are formed of neoplastic mononuclear cells with a higher receptor activator of nuclear factor kappa-B ligand (RANKL) expression responsible for the aggressive osteolytic nature of the tumour. RANKL helps in the formation and functioning of osteoclasts. A newer molecule, Denosumab, is a monoclonal antibody directed against RANKL and thus prevents the formation and function of osteoclasts. Management of refractory, multicentric, recurrent, or metastatic GCTB remains challenging as achieving a tumor-free margin surgically is not always possible. Denosumab may play a crucial role, especially in the management of such difficult lesions. We present three cases of locally aggressive GCTB (involving proximal humerus, sacrum, and proximal femur) that were treated and responded very well to Denosumab therapy. PMID:26251767

  9. Yes-associated protein 1 is widely expressed in human brain tumors and promotes glioblastoma growth.

    PubMed

    Orr, Brent A; Bai, Haibo; Odia, Yazmin; Jain, Deepali; Anders, Robert A; Eberhart, Charles G

    2011-07-01

    The hippo pathway and its downstream mediator yes-associated protein 1 (YAP1) regulate mammalian organ size in part through modulating progenitor cell numbers. YAP1 has also been implicated as an oncogene in multiple human cancers. Currently, little is known about the expression of YAP1 either in normal human brain tissue or in central nervous system neoplasms. We used immunohistochemistry to evaluate nuclear YAP1 expression in the fetal and normal adult human brains and in 264 brain tumors. YAP1 was expressed in fetal and adult brain regions known to harbor neural progenitor cells, but there was little YAP1 immunoreactivity in the adult cerebral cortex. YAP1 protein was also readily detected in the nuclei of human brain tumors. In medulloblastoma, the expression varied between histologic subtypes and was most prominent in nodular/desmoplastic tumors. In gliomas, it was frequently expressed in infiltrating astrocytomas and oligodendrogliomas but rarely in pilocytic astrocytomas. Using a loss-of-function approach, we show that YAP1 promoted growth of glioblastoma cell lines in vitro. High levels of YAP1 messenger RNA expression were associated with aggressive molecular subsets of glioblastoma and with a nonsignificant trend toward reduced mean survival in human astrocytoma patients. These findings suggest that YAP1 may play an important role in normal human brain development and that it could represent a new target in human brain tumors.

  10. Metabolic coupling in urothelial bladder cancer compartments and its correlation to tumor aggressiveness

    PubMed Central

    Afonso, Julieta; Santos, Lúcio L.; Morais, António; Amaro, Teresina; Longatto-Filho, Adhemar; Baltazar, Fátima

    2016-01-01

    abstract Monocarboxylate transporters (MCTs) are vital for intracellular pH homeostasis by extruding lactate from highly glycolytic cells. These molecules are key players of the metabolic reprogramming of cancer cells, and evidence indicates a potential contribution in urothelial bladder cancer (UBC) aggressiveness and chemoresistance. However, the specific role of MCTs in the metabolic compartmentalization within bladder tumors, namely their preponderance on the tumor stroma, remains to be elucidated. Thus, we evaluated the immunoexpression of MCTs in the different compartments of UBC tissue samples (n = 111), assessing the correlations among them and with the clinical and prognostic parameters. A significant decrease in positivity for MCT1 and MCT4 occurred from normoxic toward hypoxic regions. Significant associations were found between the expression of MCT4 in hypoxic tumor cells and in the tumor stroma. MCT1 staining in normoxic tumor areas, and MCT4 staining in hypoxic regions, in the tumor stroma and in the blood vessels were significantly associated with UBC aggressiveness. MCT4 concomitant positivity in hypoxic tumor cells and in the tumor stroma, as well as positivity in each of these regions concomitant with MCT1 positivity in normoxic tumor cells, was significantly associated with an unfavourable clinicopathological profile, and predicted lower overall survival rates among patients receiving platinum-based chemotherapy. Our results point to the existence of a multi-compartment metabolic model in UBC, providing evidence of a metabolic coupling between catabolic stromal and cancer cells’ compartments, and the anabolic cancer cells. It is urgent to further explore the involvement of this metabolic coupling in UBC progression and chemoresistance. PMID:26636903

  11. Aggression is associated with aerobic glycolysis in the honey bee brain(1).

    PubMed

    Chandrasekaran, S; Rittschof, C C; Djukovic, D; Gu, H; Raftery, D; Price, N D; Robinson, G E

    2015-02-01

    Aerobic glycolysis involves increased glycolysis and decreased oxidative catabolism of glucose even in the presence of an ample oxygen supply. Aerobic glycolysis, a common metabolic pattern in cancer cells, was recently discovered in both the healthy and diseased human brain, but its functional significance is not understood. This metabolic pattern in the brain is surprising because it results in decreased efficiency of adenosine triphosphate (ATP) production in a tissue with high energetic demands. We report that highly aggressive honey bees (Apis mellifera) show a brain transcriptomic and metabolic state consistent with aerobic glycolysis, i.e. increased glycolysis in combination with decreased oxidative phosphorylation. Furthermore, exposure to alarm pheromone, which provokes aggression, causes a metabolic shift to aerobic glycolysis in the bee brain. We hypothesize that this metabolic state, which is associated with altered neurotransmitter levels, increased glycolytically derived ATP and a reduced cellular redox state, may lead to increased neuronal excitability and oxidative stress in the brain. Our analysis provides evidence for a robust, distinct and persistent brain metabolic response to aggression-inducing social cues. This finding for the first time associates aerobic glycolysis with naturally occurring behavioral plasticity, which has important implications for understanding both healthy and diseased brain function.

  12. Aggression is associated with aerobic glycolysis in the honey bee brain1

    PubMed Central

    Chandrasekaran, S.; Rittschof, C. C.; Djukovic, D.; Gu, H.; Raftery, D.; Price, N. D.; Robinson, G. E.

    2015-01-01

    Aerobic glycolysis involves increased glycolysis and decreased oxidative catabolism of glucose even in the presence of an ample oxygen supply. Aerobic glycolysis, a common metabolic pattern in cancer cells, was recently discovered in both the healthy and diseased human brain, but its functional significance is not understood. This metabolic pattern in the brain is surprising because it results in decreased efficiency of adenosine triphosphate (ATP) production in a tissue with high energetic demands. We report that highly aggressive honey bees (Apis mellifera) show a brain transcriptomic and metabolic state consistent with aerobic glycolysis, i.e. increased glycolysis in combination with decreased oxidative phosphorylation. Furthermore, exposure to alarm pheromone, which provokes aggression, causes a metabolic shift to aerobic glycolysis in the bee brain. We hypothesize that this metabolic state, which is associated with altered neurotransmitter levels, increased glycolytically derived ATP and a reduced cellular redox state, may lead to increased neuronal excitability and oxidative stress in the brain. Our analysis provides evidence for a robust, distinct and persistent brain metabolic response to aggression-inducing social cues. This finding for the first time associates aerobic glycolysis with naturally occurring behavioral plasticity, which has important implications for understanding both healthy and diseased brain function. PMID:25640316

  13. The effect of observers on behavior and the brain during aggressive encounters

    PubMed Central

    Desjardins, Julie K.; Becker, Lisa; Fernald, Russell D.

    2015-01-01

    What effect does an audience have on an animal’s behavior and where is this influence registered in the brain? To answer these questions, we analyzed male cichlid fish fighting in the presence of audiences of various compositions and measured expression of immediate early genes in the brain as a proxy for neural activity. We hypothesized their behavior would change depending on who was watching them. We measured behavioral responses from both the “watchers” and the “watched” during aggressive encounters and found that males fighting in the presence of an audience were more aggressive than males fighting without an audience. Depending on the nature of the audience, immediate early gene expression in key brain nuclei was differentially influenced. Both when an audience of larger males watched fighting males, and when they were watching larger males fighting, nuclei in the brain considered homologous with mammalian nuclei known to be associated with anxiety showed increased activity. When males were in the presence of any audience or when males saw any other males fighting, nuclei in the brain known to be involved in reproduction and aggression were differentially activated relative to control animals. In all cases, there was a close relationship between patterns of brain gene expression between fighters and observers. This suggests that the network of brain regions known as the social behavior network, common across vertebrates, are activated not only in association with the expression of social behavior but also by the reception of social information. PMID:26097004

  14. Photodynamic Therapy for Malignant Brain Tumors.

    PubMed

    Akimoto, Jiro

    2016-01-01

    Photodynamic therapy (PDT) using talaporfin sodium together with a semiconductor laser was approved in Japan in October 2003 as a less invasive therapy for early-stage lung cancer. The author believes that the principle of PDT would be applicable for controlling the invading front of malignant brain tumors and verified its efficacy through experiments using glioma cell lines and glioma xenograft models. An investigator-initiated clinical study was jointly conducted with Tokyo Women's Medical University with the support of the Japan Medical Association. Patient enrollment was started in May 2009 and a total of 27 patients were enrolled by March 2012. Of 22 patients included in efficacy analysis, 13 patients with newly diagnosed glioblastoma showed progression-free survival of 12 months, progression-free survival at the site of laser irradiation of 20 months, 1-year survival of 100%, and overall survival of 24.8 months. In addition, the safety analysis of the 27 patients showed that adverse events directly related to PDT were mild. PDT was approved in Japan for health insurance coverage as a new intraoperative therapy with the indication for malignant brain tumors in September 2013. Currently, the post-marketing investigation in the accumulated patients has been conducted, and the preparation of guidelines, holding training courses, and dissemination of information on the safe implementation of PDT using web sites and videos, have been promoted. PDT is expected to be a breakthrough for the treatment of malignant glioma as a tumor cell-selective less invasive therapy for the infiltrated functional brain area.

  15. Positron Scanner for Locating Brain Tumors

    DOE R&D Accomplishments Database

    Rankowitz, S.; Robertson, J. S.; Higinbotham, W. A.; Rosenblum, M. J.

    1962-03-01

    A system is described that makes use of positron emitting isotopes for locating brain tumors. This system inherently provides more information about the distribution of radioactivity in the head in less time than existing scanners which use one or two detectors. A stationary circular array of 32 scintillation detectors scans a horizontal layer of the head from many directions simultaneously. The data, consisting of the number of counts in all possible coincidence pairs, are coded and stored in the memory of a Two-Dimensional Pulse-Height Analyzer. A unique method of displaying and interpreting the data is described that enables rapid approximate analysis of complex source distribution patterns. (auth)

  16. Differential reinforcement of other behavior (DRO) to reduce aggressive behavior following traumatic brain injury.

    PubMed

    Hegel, M T; Ferguson, R J

    2000-01-01

    Severe brain injury can result in significant neurobehavioral and social functioning impairment. In rehabilitation settings, behavioral problems of aggression and nonadherence to therapeutic activities can pose barriers to maximal recovery of function. Behavioral interventions seem to be effective in reducing problem behavior among individuals recovering from severe brain trauma, but well-controlled studies examining the efficacy of such interventions are sparse. This article presents a single-case, multiple-baseline study of a differential reinforcement of other behavior (DRO) procedure in a 28-year-old, brain-injured male with aggressive behavior problems. The procedure successfully reduced the frequency of problem behavior by up to 74%, maintained at 1-month follow-up. Implications of this intervention for individuals with brain injury are discussed, and testing of this procedure using a between-group design seems indicated.

  17. Multifunctional Nanoparticles for Brain Tumor Diagnosis and Therapy

    PubMed Central

    Cheng, Yu; Morshed, Ramin; Auffinger, Brenda; Tobias, Alex L.; Lesniak, Maciej S.

    2013-01-01

    Brain tumors are a diverse group of neoplasms that often carry a poor prognosis for patients. Despite tremendous efforts to develop diagnostic tools and therapeutic avenues, the treatment of brain tumors remains a formidable challenge in the field of neuro-oncology. Physiological barriers including the blood-brain barrier result in insufficient accumulation of therapeutic agents at the site of a tumor, preventing adequate destruction of malignant cells. Furthermore, there is a need for improvements in brain tumor imaging to allow for better characterization and delineation of tumors, visualization of malignant tissue during surgery, and tracking of response to chemotherapy and radiotherapy. Multifunctional nanoparticles offer the potential to improve upon many of these issues and may lead to breakthroughs in brain tumor management. In this review, we discuss the diagnostic and therapeutic applications of nanoparticles for brain tumors with an emphasis on innovative approaches in tumor targeting, tumor imaging, and therapeutic agent delivery. Clinically feasible nanoparticle administration strategies for brain tumor patients are also examined. Furthermore, we address the barriers towards clinical implementation of multifunctional nanoparticles in the context of brain tumor management. PMID:24060923

  18. Biallelic BRCA2 Mutations Shape the Somatic Mutational Landscape of Aggressive Prostate Tumors

    PubMed Central

    Decker, Brennan; Karyadi, Danielle M.; Davis, Brian W.; Karlins, Eric; Tillmans, Lori S.; Stanford, Janet L.; Thibodeau, Stephen N.; Ostrander, Elaine A.

    2016-01-01

    To identify clinically important molecular subtypes of prostate cancer (PCa), we characterized the somatic landscape of aggressive tumors via deep, whole-genome sequencing. In our discovery set of ten tumor/normal subject pairs with Gleason scores of 8–10 at diagnosis, coordinated analysis of germline and somatic variants, including single-nucleotide variants, indels, and structural variants, revealed biallelic BRCA2 disruptions in a subset of samples. Compared to the other samples, the PCa BRCA2-deficient tumors exhibited a complex and highly specific mutation signature, featuring a 2.88-fold increased somatic mutation rate, depletion of context-specific C>T substitutions, and an enrichment for deletions, especially those longer than 10 bp. We next performed a BRCA2 deficiency-targeted reanalysis of 150 metastatic PCa tumors, and each of the 18 BRCA2-mutated samples recapitulated the BRCA2 deficiency-associated mutation signature, underscoring the potent influence of these lesions on somatic mutagenesis and tumor evolution. Among all 21 individuals with BRCA2-deficient tumors, only about half carried deleterious germline alleles. Importantly, the somatic mutation signature in tumors with one germline and one somatic risk allele was indistinguishable from those with purely somatic mutations. Our observations clearly demonstrate that BRCA2-disrupted tumors represent a unique and clinically relevant molecular subtype of aggressive PCa, highlighting both the promise and utility of this mutation signature as a prognostic and treatment-selection biomarker. Further, any test designed to leverage BRCA2 status as a biomarker for PCa must consider both germline and somatic mutations and all types of deleterious mutations. PMID:27087322

  19. Brain tumor imaging: imaging brain metastasis using a brain-metastasizing breast adenocarcinoma.

    PubMed

    Madden, Kelley S; Zettel, Martha L; Majewska, Ania K; Brown, Edward B

    2013-03-01

    Brain metastases from primary or secondary breast tumors are difficult to model in the mouse. When metastatic breast cancer cell lines are injected directly into the arterial circulation, only a small fraction of cells enter the brain to form metastatic foci. To study the molecular and cellular mechanisms of brain metastasis, we have transfected MB-231BR, a brain-homing derivative of a human breast adenocarcinoma line MDA-MB-231, with the yellow fluorescent protein (YFP) variant Venus. MB-231BR selectively enters the brain after intracardiac injection into the arterial circulation, resulting in accumulation of fluorescent foci of cells in the brain that can be viewed by standard fluorescence imaging procedures. We describe how to perform the intracardiac injection and the parameters used to quantify brain metastasis in brain sections by standard one-photon fluorescence imaging. The disadvantage of this model is that the kinetics of growth over time cannot be determined in the same animal. In addition, the injection technique does not permit precise placement of tumor cells within the brain. This model is useful for determining the molecular determinants of brain tumor metastasis.

  20. Expression of the HOX genes and HOTAIR in atypical teratoid rhabdoid tumors and other pediatric brain tumors.

    PubMed

    Chakravadhanula, Madhavi; Ozols, Victor V; Hampton, Chris N; Zhou, Li; Catchpoole, Daniel; Bhardwaj, Ratan D

    2014-09-01

    Pediatric brain tumors such as atypical teratoid rhabdoid tumors (ATRTs) are highly aggressive and predominantly occur in young children. A characteristic feature of ATRT is aberrations of the SMARCB1 (hSNF5/INI1) gene. Developmental gene defects may play an important role in the biology of pediatric brain tumors. HOX genes are transcription factors that play a pivotal role in anterior-posterior body axis patterning and are misexpressed in tumors such as lung carcinoma, neuroblastoma, and glioma. HOX genes are also known to be associated with long noncoding RNAs (lncRNAs) such as HOTAIR, which induces transcriptional silencing of the HOXD locus by recruiting polycomb repressive complex 2 to the HOXD locus. In this study, transcriptome analysis using the nanoString platform was performed, and expression of the HOX and HOTAIR genes was studied in pediatric tumors: 20 ATRTs, 10 ependymomas, 10 medulloblastomas, six glioblastoma multiforme, and nine juvenile pilocytic astrocytomas (JPAs). Results indicate that in ATRTs, medulloblastomas, and JPAs, the HOTAIR and HOXC genes are highly expressed; however, HOXD8-10 genes are not silenced. In ependymomas, there is low expression of the HOXC, HOTAIR, and HOXD8-10 genes. These interesting results need to be elucidated further so that the functions of these genes in pediatric tumors is understood.

  1. Brain Tumor Cells in Circulation are Enriched for Mesenchymal Gene Expression

    PubMed Central

    Sullivan, James P.; Nahed, Brian V.; Madden, Marissa W.; Oliveira, Samantha M.; Springer, Simeon; Bhere, Deepak; Chi, Andrew S.; Wakimoto, Hiroaki; Rothenberg, S. Michael; Sequist, Lecia V.; Kapur, Ravi; Shah, Khalid; Iafrate, A. John; Curry, William T.; Loeffler, Jay S.; Batchelor, Tracy T.; Louis, David N.; Toner, Mehmet; Maheswaran, Shyamala; Haber, Daniel A.

    2014-01-01

    Glioblastoma (GBM) is a highly aggressive brain cancer characterized by local invasion and angiogenic recruitment, yet metastatic dissemination is extremely rare. Here, we adapted a microfluidic device to deplete hematopoietic cells from blood specimens of patients with GBM, uncovering evidence of circulating brain tumor cells (CTCs). Staining and scoring criteria for GBM CTCs were first established using orthotopic patient-derived xenografts (PDX), and then applied clinically: CTCs were identified in at least one blood specimen from 13/33 patients (39%; 26/87 samples). Single GBM CTCs isolated from both patients and mouse PDX models demonstrated enrichment for mesenchymal over neural differentiation markers, compared with primary GBMs. Within primary GBMs, RNA-in-situ hybridization identifies a subpopulation of highly migratory mesenchymal tumor cells, and in a rare patient with disseminated GBM, systemic lesions were exclusively mesenchymal. Thus, a mesenchymal subset of GBM cells invades into the vasculature, and may proliferate outside the brain. PMID:25139148

  2. Brain tumors in man and animals: report of a workshop.

    PubMed Central

    1986-01-01

    This report summarizes the results of a workshop on brain tumors in man and animals. Animals, especially rodents are often used as surrogates for man to detect chemicals that have the potential to induce brain tumors in man. Therefore, the workshop was focused mainly on brain tumors in the F344 rat and B6C3F1 mouse because of the frequent use of these strains in long-term carcinogenesis studies. Over 100 brain tumors in F344 rats and more than 50 brain tumors in B6C3F1 mice were reviewed and compared to tumors found in man and domestic or companion animals. In the F344 rat, spontaneous brain tumors are uncommon, most are of glial origin, and the highly undifferentiated glioblastoma multiforme, a frequent tumor of man was not found. In the B6C3F1 mouse, brain tumors are exceedingly rare. Lipomas of the choroid plexus and meningiomas together account for more than 50% of the tumors found. Both rodent strains examined have low background rates and very little variability between control groups. Images FIGURE 1. FIGURE 2. FIGURE 3. FIGURE 4. FIGURE 5. PMID:3536473

  3. Oncogenic Properties of Apoptotic Tumor Cells in Aggressive B Cell Lymphoma

    PubMed Central

    Ford, Catriona A.; Petrova, Sofia; Pound, John D.; Voss, Jorine J.L.P.; Melville, Lynsey; Paterson, Margaret; Farnworth, Sarah L.; Gallimore, Awen M.; Cuff, Simone; Wheadon, Helen; Dobbin, Edwina; Ogden, Carol Anne; Dumitriu, Ingrid E.; Dunbar, Donald R.; Murray, Paul G.; Ruckerl, Dominik; Allen, Judith E.; Hume, David A.; van Rooijen, Nico; Goodlad, John R.; Freeman, Tom C.; Gregory, Christopher D.

    2015-01-01

    Summary Background Cells undergoing apoptosis are known to modulate their tissue microenvironments. By acting on phagocytes, notably macrophages, apoptotic cells inhibit immunological and inflammatory responses and promote trophic signaling pathways. Paradoxically, because of their potential to cause death of tumor cells and thereby militate against malignant disease progression, both apoptosis and tumor-associated macrophages (TAMs) are often associated with poor prognosis in cancer. We hypothesized that, in progression of malignant disease, constitutive loss of a fraction of the tumor cell population through apoptosis could yield tumor-promoting effects. Results Here, we demonstrate that apoptotic tumor cells promote coordinated tumor growth, angiogenesis, and accumulation of TAMs in aggressive B cell lymphomas. Through unbiased “in situ transcriptomics” analysis—gene expression profiling of laser-captured TAMs to establish their activation signature in situ—we show that these cells are activated to signal via multiple tumor-promoting reparatory, trophic, angiogenic, tissue remodeling, and anti-inflammatory pathways. Our results also suggest that apoptotic lymphoma cells help drive this signature. Furthermore, we demonstrate that, upon induction of apoptosis, lymphoma cells not only activate expression of the tumor-promoting matrix metalloproteinases MMP2 and MMP12 in macrophages but also express and process these MMPs directly. Finally, using a model of malignant melanoma, we show that the oncogenic potential of apoptotic tumor cells extends beyond lymphoma. Conclusions In addition to its profound tumor-suppressive role, apoptosis can potentiate cancer progression. These results have important implications for understanding the fundamental biology of cell death, its roles in malignant disease, and the broader consequences of apoptosis-inducing anti-cancer therapy. PMID:25702581

  4. Growth patterns of microscopic brain tumors

    NASA Astrophysics Data System (ADS)

    Sander, Leonard M.; Deisboeck, Thomas S.

    2002-11-01

    Highly malignant brain tumors such as glioblastoma multiforme form complex growth patterns in vitro in which invasive cells organize in tenuous branches. Here, we formulate a chemotaxis model for this sort of growth. A key element controlling the pattern is homotype attraction, i.e., the tendency for invasive cells to follow pathways previously explored. We investigate this in two ways: we show that there is an intrinsic instability in the model, which leads to branch formation. We also give a discrete description for the expansion of the invasive zone, and a continuum model for the nutrient supply. The results indicate that both strong heterotype chemotaxis and strong homotype chemoattraction are required for branch formation within the invasive zone. Our model thus can give a way to assess the importance of the various processes, and a way to explore and analyze transitions between different growth regimes.

  5. Fractal analysis of tumoral lesions in brain.

    PubMed

    Martín-Landrove, Miguel; Pereira, Demian; Caldeira, María E; Itriago, Salvador; Juliac, María

    2007-01-01

    In this work, it is proposed a method for supervised characterization and classification of tumoral lesions in brain, based on the analysis of irregularities at the lesion contour on T2-weighted MR images. After the choice of a specific image, a segmentation procedure with a threshold selected from the histogram of intensity levels is applied to isolate the lesion, the contour is detected through the application of a gradient operator followed by a conversion to a "time series" using a chain code procedure. The correlation dimension is calculated and analyzed to discriminate between normal or malignant structures. The results found showed that it is possible to detect a differentiation between benign (cysts) and malignant (gliomas) lesions suggesting the potential of this method as a diagnostic tool.

  6. Neural stem cell-based gene therapy for brain tumors.

    PubMed

    Kim, Seung U

    2011-03-01

    Advances in gene-based medicine since 1990s have ushered in new therapeutic strategy of gene therapy for inborn error genetic diseases and cancer. Malignant brain tumors such as glioblastoma multiforme and medulloblastoma remain virtually untreatable and lethal. Currently available treatment for brain tumors including radical surgical resection followed by radiation and chemotherapy, have substantially improved the survival rate in patients suffering from these brain tumors; however, it remains incurable in large proportion of patients. Therefore, there is substantial need for effective, low-toxicity therapies for patients with malignant brain tumors, and gene therapy targeting brain tumors should fulfill this requirement. Gene therapy for brain tumors includes many therapeutic strategies and these strategies can be grouped in two major categories: molecular and immunologic. The widely used molecular gene therapy approach is suicide gene therapy based on the conversion of non-toxic prodrugs into active anticancer agents via introduction of enzymes and genetic immunotherapy involves the gene transfer of immune-stimulating cytokines including IL-4, IL-12 and TRAIL. For both molecular and immune gene therapy, neural stem cells (NSCs) can be used as delivery vehicle of therapeutic genes. NSCs possess an inherent tumor tropism that supports their use as a reliable delivery vehicle to target therapeutic gene products to primary brain tumors and metastatic cancers throughout the brain. Significance of the NSC-based gene therapy for brain tumor is that it is possible to exploit the tumor-tropic property of NSCs to mediate effective, tumor-selective therapy for primary and metastatic cancers in the brain and outside, for which no tolerated curative treatments are currently available.

  7. Study Casts Doubt on A Brain Cancer's Link to Herpes

    MedlinePlus

    ... between a common type of herpes virus and aggressive brain cancers, according to a new study that ... researchers analyzed tumor tissue from 125 patients with aggressive brain cancers called gliomas. Ninety-nine of the ...

  8. Thermal imaging of brain tumors in a rat glioma model

    NASA Astrophysics Data System (ADS)

    Papaioannou, Thanassis; Thompson, Reid C.; Kateb, Babak; Sorokoumov, Oleg; Grundfest, Warren S.; Black, Keith L.

    2002-05-01

    We have explored the capability of thermal imaging for the detection of brain tumors in a rat glioma mode. Fourteen Wistar rats were injected stereotactically with 100,000 C6 glioma cells. Approximately one and two weeks post implantation, the rats underwent bilateral craniotomy and the exposed brain surface was imaged with a short wave thermal camera. Thermal images were obtained at both low (approximately 28.7 degree(s)C) and high (approximately 38 degree(s)C) core temperatures. Temperature gradients between the tumor site and the contralateral normal brain were calculated. Overall, the tumors appeared cooler than normal brain, for both high and low core temperatures. Average temperature difference between tumor and normal brain were maximal in more advanced tumors (two weeks) and at higher core temperatures. At one week (N equals 6), the average temperature gradient between tumor and normal sites was 0.1 degree(s)C and 0.2 degree(s)C at low and high core temperatures respectively (P(greater than)0.05). At two weeks (N equals 8), the average temperature gradient was 0.3 degree(s)C and 0.7 degree(s)C at low and high core temperatures respectively (P<0.05). We conclude that thermal imaging can detect temperature differences between tumor and normal brain tissue in this model, particularly in more advanced tumors. Thermal imaging may provide a novel means to identify brain tumors intraoperatively.

  9. May bone cement be used to treat benign aggressive bone tumors of the feet with confidence?

    PubMed

    Özer, Devrim; Er, Turgay; Aycan, Osman Emre; Öke, Ramadan; Coşkun, Mehmet; Kabukçuoğlu, Yavuz Selim

    2014-03-01

    Using bone cement for the reconstruction of defects created after curettage of benign aggressive bone tumors is among acceptable methods. The study aimed to assess the effect of bone cement used in aggressive bone tumors in the feet on the function of the feet. Five patients were reviewed. They were treated between 2004 and 2010. Three cases were female and two male. Their age ranged from 16 to 55 with an average of 34.8. Follow up period ranged from 14 to 86 months with an average of 34. Two cases were giant cell tumor of bone located in calcaneus and 3 were solid variant aneurysmal bone cyst located in talus, navicular and first proximal phalanx. None had any previous treatment. A biopsy was done in all cases. Treatment was curettage, high speed burring (except phalanx case), and filling the cavity with bone cement. The case located in talus recurred and re-operated 1 year later doing the same procedure. Final evaluation included physical examination, X-ray and Maryland Foot Score. No recurrence was present in the final evaluation. No problems were detected related to bone cement. Maryland Foot Scores ranged 84-100, average of 94. Cement integrity was not disturbed. The procedure is found not to effect foot functions adversely.

  10. A Testosterone-Related Structural Brain Phenotype Predicts Aggressive Behavior From Childhood to Adulthood

    PubMed Central

    Nguyen, Tuong-Vi; McCracken, James T; Albaugh, Matthew D; Botteron, Kelly N.; Hudziak, James J; Ducharme, Simon

    2015-01-01

    Structural covariance, the examination of anatomic correlations between brain regions, has emerged recently as a valid and useful measure of developmental brain changes. Yet the exact biological processes leading to changes in covariance, and the relation between such covariance and behavior, remain largely unexplored. The steroid hormone testosterone represents a compelling mechanism through which this structural covariance may be developmentally regulated in humans. Although steroid hormone receptors can be found throughout the central nervous system, the amygdala represents a key target for testosterone-specific effects, given its high density of androgen receptors. In addition, testosterone has been found to impact cortical thickness (CTh) across the whole brain, suggesting that it may also regulate the structural relationship, or covariance, between the amygdala and CTh. Here we examined testosterone-related covariance between amygdala volumes and whole-brain CTh, as well as its relationship to aggression levels, in a longitudinal sample of children, adolescents, and young adults 6 to 22 years old. We found: (1) testosterone-specific modulation of the covariance between the amygdala and medial prefrontal cortex (mPFC); (2) a significant relationship between amygdala-mPFC covariance and levels of aggression; and (3) mediation effects of amygdala-mPFC covariance on the relationship between testosterone and aggression. These effects were independent of sex, age, pubertal stage, estradiol levels and anxious-depressed symptoms. These findings are consistent with prior evidence that testosterone targets the neural circuits regulating affect and impulse regulation, and show, for the first time in humans, how androgen-dependent organizational effects may regulate a very specific, aggression-related structural brain phenotype from childhood to young adulthood. PMID:26431805

  11. Parallel optimization of tumor model parameters for fast registration of brain tumor images

    NASA Astrophysics Data System (ADS)

    Zacharaki, Evangelia I.; Hogea, Cosmina S.; Shen, Dinggang; Biros, George; Davatzikos, Christos

    2008-03-01

    The motivation of this work is to register MR brain tumor images with a brain atlas. Such a registration method can make possible the pooling of data from different brain tumor patients into a common stereotaxic space, thereby enabling the construction of statistical brain tumor atlases. Moreover, it allows the mapping of neuroanatomical brain atlases into the patient's space, for segmenting brains and thus facilitating surgical or radiotherapy treatment planning. However, the methods developed for registration of normal brain images are not directly applicable to the registration of a normal atlas with a tumor-bearing image, due to substantial dissimilarity and lack of equivalent image content between the two images, as well as severe deformation or shift of anatomical structures around the tumor. Accordingly, a model that can simulate brain tissue death and deformation induced by the tumor is considered to facilitate the registration. Such tumor growth simulation models are usually initialized by placing a small seed in the normal atlas. The shape, size and location of the initial seed are critical for achieving topological equivalence between the atlas and patient's images. In this study, we focus on the automatic estimation of these parameters, pertaining to tumor simulation. In particular, we propose an objective function reflecting feature-based similarity and elastic stretching energy and optimize it with APPSPACK (Asynchronous Parallel Pattern Search), for achieving significant reduction of the computational cost. The results indicate that the registration accuracy is high in areas around the tumor, as well as in the healthy portion of the brain.

  12. Brain necrosis after radiotherapy for primary intracerebral tumor.

    PubMed

    Hohwieler, M L; Lo, T C; Silverman, M L; Freidberg, S R

    1986-01-01

    Radiotherapy is a standard postoperative treatment for cerebral glioma. We have observed the onset of symptoms related to brain necrosis, as opposed to recurrent tumor, in surviving patients. This has been manifest as dementia with a computed tomographic pattern of low density in the frontal lobe uninvolved with tumor, but within the field of radiotherapy. Two patients presented with mass lesions also unrelated to recurrent tumor. We question the necessity of full brain irradiation and suggest that radiotherapy techniques be altered to target the tumor and not encompass the entire brain.

  13. Yoga Therapy in Treating Patients With Malignant Brain Tumors

    ClinicalTrials.gov

    2017-01-17

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Meningioma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Choroid Plexus Tumor; Adult Diffuse Astrocytoma; Adult Ependymoblastoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Grade II Meningioma; Adult Medulloblastoma; Adult Meningeal Hemangiopericytoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Papillary Meningioma; Adult Pineal Gland Astrocytoma; Adult Pineoblastoma; Adult Pineocytoma; Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Recurrent Adult Brain Tumor

  14. Impulsivity, aggression and brain structure in high and low lethality suicide attempters with borderline personality disorder

    PubMed Central

    Soloff, Paul; White, Richard; Diwadkar, Vaibhav A.

    2014-01-01

    Impulsivity and aggressiveness are trait dispositions associated with the vulnerability to suicidal behavior across diagnoses. They are associated with structural and functional abnormalities in brain networks involved in regulation of mood, impulse and behavior. They are also core characteristics of borderline personality disorder (BPD), a disorder defined, in part, by recurrent suicidal behavior. We assessed the relationships between personality traits, brain structure and lethality of suicide attempts in 51 BPD attempters using multiple regression analyses on structural MRI data. BPD was diagnosed by the Diagnostic Interview for Borderline Patients-revised, impulsivity by the Barratt Impulsiveness Scale (BIS), aggression by the Brown-Goodwin Lifetime History of Aggression (LHA), and high lethality by a score of 4 or more on the Lethality Rating Scale (LRS). Sixteen High Lethality attempters were compared to 35 Low Lethality attempters, with no significant differences noted in gender, co-morbidity, childhood abuse, BIS or LHA scores. Degree of medical lethality (LRS) was negatively related to gray matter volumes across multiple fronto-temporal-limbic regions. Effects of impulsivity and aggression on gray matter volumes discriminated High from Low Lethality attempters and differed markedly within lethality groups. Lethality of suicide attempts in BPD may be related to the mediation of these personality traits by specific neural networks. PMID:24656768

  15. Expression of EGFR Under Tumor Hypoxia: Identification of a Subpopulation of Tumor Cells Responsible for Aggressiveness and Treatment Resistance

    SciTech Connect

    Hoogsteen, Ilse J.; Marres, Henri A.M.; Hoogen, Franciscus J.A. van den

    2012-11-01

    Purpose: Overexpression of epidermal growth factor receptor (EGFR) and tumor hypoxia have been shown to correlate with worse outcome in several types of cancer including head-and-neck squamous cell carcinoma. Little is known about the combination and possible interactions between the two phenomena. Methods and Materials: In this study, 45 cases of histologically confirmed squamous cell carcinomas of the head and neck were analyzed. All patients received intravenous infusions of the exogenous hypoxia marker pimonidazole prior to biopsy. Presence of EGFR, pimonidazole binding, and colocalization between EGFR and tumor hypoxia were examined using immunohistochemistry. Results: Of all biopsies examined, respectively, 91% and 60% demonstrated EGFR- and pimonidazole-positive areas. A weak but significant association was found between the hypoxic fractions of pimonidazole (HFpimo) and EGFR fractions (F-EGFR) and between F-EGFR and relative vascular area. Various degrees of colocalization between hypoxia and EGFR were found, increasing with distance from the vasculature. A high fraction of EGFR was correlated with better disease-free and metastasis-free survival, whereas a high degree of colocalization correlated with poor outcome. Conclusions: Colocalization of hypoxia and EGFR was demonstrated in head-and-neck squamous cell carcinomas, predominantly at longer distances from vessels. A large amount of colocalization was associated with poor outcome, which points to a survival advantage of hypoxic cells that are also able to express EGFR. This subpopulation of tumor cells might be indicative of tumor aggressiveness and be partly responsible for treatment resistance.

  16. Chemosensory danger detection in the human brain: Body odor communicating aggression modulates limbic system activation.

    PubMed

    Mutic, Smiljana; Brünner, Yvonne F; Rodriguez-Raecke, Rea; Wiesmann, Martin; Freiherr, Jessica

    2017-02-28

    Although the sense of smell is involved in numerous survival functions, the processing of body odor emitted by dangerous individuals is far from understood. The aim of the study was to explore how human fight chemosignals communicating aggression can alter brain activation related to an attentional bias and danger detection. While the anterior cingulate cortex (ACC) was seen involved in processing threat-related emotional information, danger detection and error evaluation, it still remains unknown whether human chemosignals communicating aggression can potentially modulate this activation. In the fMRI experiment, healthy male and female normosmic odor recipients (n=18) completed a higher-order processing task (emotional Stroop task with the word categories anger, anxiety, happiness and neutral) while exposed to aggression and exercise chemosignals (collected from a different group of healthy male donors; n=16). Our results provide first evidence that aggression chemosignals induce a time-sensitive attentional bias in chemosensory danger detection and modulate limbic system activation. During exposure to aggression chemosignals compared to exercise chemosignals, functional imaging data indicates an enhancement of thalamus, hypothalamus and insula activation (p<.05, FWE-corrected). Together with the thalamus, the ACC was seen activated in response to threat-related words (p<.001). Chemosensory priming and habituation to body odor signals are discussed.

  17. Patients With Brain Tumors: Who Receives Postacute Occupational Therapy Services?

    PubMed

    Chan, Vincy; Xiong, Chen; Colantonio, Angela

    2015-01-01

    Data on the utilization of occupational therapy among patients with brain tumors have been limited to those with malignant tumors and small samples of patients outside North America in specialized palliative care settings. We built on this research by examining the characteristics of patients with brain tumors who received postacute occupational therapy services in Ontario, Canada, using health care administrative data. Between fiscal years 2004-2005 and 2008-2009, 3,199 patients with brain tumors received occupational therapy services in the home care setting after hospital discharge; 12.4% had benign brain tumors, 78.2% had malignant brain tumors, and 9.4% had unspecified brain tumors. However, patients with benign brain tumors were older (mean age=63.3 yr), and a higher percentage were female (65.2%). More than 90% of patients received in-home occupational therapy services. Additional research is needed to examine the significance of these differences and to identify factors that influence access to occupational therapy services in the home care setting.

  18. Brain tumors in children with neurofibromatosis: additional neuropsychological morbidity?

    PubMed Central

    De Winter, A. E.; Moore, B. D.; Slopis, J. M.; Ater, J. L.; Copeland, D. R.

    1999-01-01

    Neurofibromatosis type 1 is a common autosomal dominant genetic disorder associated with numerous physical anomalies and an increased incidence of neuropsychological impairment. Tumors of the CNS occur in approximately 15% of children with neurofibromatosis, presenting additional risk for cognitive impairment. This study examines the impact of an additional diagnosis of brain tumor on the cognitive profile of children with neurofibromatosis. A comprehensive battery of neuropsychological tests was administered to 149 children with neurofibromatosis. Thirty-six of these children had a codiagnosis of brain tumor. A subset of 36 children with neurofibromatosis alone was matched with the group of children diagnosed with neurofibromatosis and brain tumor. Although mean scores of the neurofibromatosis plus brain tumor group were, in general, lower than those of the neurofibromatosis alone group, these differences were not statistically significant. Children in the neurofibromatosis plus brain tumor group who received cranial irradiation (n = 9) demonstrated weaker academic abilities than did children with brain tumor who had not received that treatment. These results suggest that neurofibromatosis is associated with impairments in cognitive functioning, but the severity of the problems is not significantly exacerbated by the codiagnosis of a brain tumor unless treatment includes cranial irradiation. PMID:11550319

  19. Lassa-Vesicular Stomatitis Chimeric Virus Safely Destroys Brain Tumors

    PubMed Central

    Wollmann, Guido; Drokhlyansky, Eugene; Davis, John N.; Cepko, Connie

    2015-01-01

    ABSTRACT High-grade tumors in the brain are among the deadliest of cancers. Here, we took a promising oncolytic virus, vesicular stomatitis virus (VSV), and tested the hypothesis that the neurotoxicity associated with the virus could be eliminated without blocking its oncolytic potential in the brain by replacing the neurotropic VSV glycoprotein with the glycoprotein from one of five different viruses, including Ebola virus, Marburg virus, lymphocytic choriomeningitis virus (LCMV), rabies virus, and Lassa virus. Based on in vitro infections of normal and tumor cells, we selected two viruses to test in vivo. Wild-type VSV was lethal when injected directly into the brain. In contrast, a novel chimeric virus (VSV-LASV-GPC) containing genes from both the Lassa virus glycoprotein precursor (GPC) and VSV showed no adverse actions within or outside the brain and targeted and completely destroyed brain cancer, including high-grade glioblastoma and melanoma, even in metastatic cancer models. When mice had two brain tumors, intratumoral VSV-LASV-GPC injection in one tumor (glioma or melanoma) led to complete tumor destruction; importantly, the virus moved contralaterally within the brain to selectively infect the second noninjected tumor. A chimeric virus combining VSV genes with the gene coding for the Ebola virus glycoprotein was safe in the brain and also selectively targeted brain tumors but was substantially less effective in destroying brain tumors and prolonging survival of tumor-bearing mice. A tropism for multiple cancer types combined with an exquisite tumor specificity opens a new door to widespread application of VSV-LASV-GPC as a safe and efficacious oncolytic chimeric virus within the brain. IMPORTANCE Many viruses have been tested for their ability to target and kill cancer cells. Vesicular stomatitis virus (VSV) has shown substantial promise, but a key problem is that if it enters the brain, it can generate adverse neurologic consequences, including death. We

  20. Loss of RasGAP Tumor Suppressors Underlies the Aggressive Nature of Luminal B Breast Cancers.

    PubMed

    Olsen, Sarah Naomi; Wronski, Ania; Castaño, Zafira; Dake, Benjamin; Malone, Clare; De Raedt, Thomas; Enos, Miriam; DeRose, Yoko S; Zhou, Wenhui; Guerra, Stephanie; Loda, Massimo; Welm, Alana; Partridge, Ann H; McAllister, Sandra S; Kuperwasser, Charlotte; Cichowski, Karen

    2017-02-01

    Luminal breast cancers are typically estrogen receptor-positive and generally have the best prognosis. However, a subset of luminal tumors, namely luminal B cancers, frequently metastasize and recur. Unfortunately, the causal events that drive their progression are unknown, and therefore it is difficult to identify individuals who are likely to relapse and should receive escalated treatment. Here, we identify a bifunctional RasGAP tumor suppressor whose expression is lost in almost 50% of luminal B tumors. Moreover, we show that two RasGAP genes are concomitantly suppressed in the most aggressive luminal malignancies. Importantly, these genes cooperatively regulate two major oncogenic pathways, RAS and NF-κB, through distinct domains, and when inactivated drive the metastasis of luminal tumors in vivo Finally, although the cooperative effects on RAS drive invasion, NF-κB activation triggers epithelial-to-mesenchymal transition and is required for metastasis. Collectively, these studies reveal important mechanistic insight into the pathogenesis of luminal B tumors and provide functionally relevant prognostic biomarkers that may guide treatment decisions.

  1. RB loss contributes to aggressive tumor phenotypes in MYC-driven triple negative breast cancer.

    PubMed

    Knudsen, Erik S; McClendon, A Kathleen; Franco, Jorge; Ertel, Adam; Fortina, Paolo; Witkiewicz, Agnieszka K

    2015-01-01

    Triple negative breast cancer (TNBC) is characterized by multiple genetic events occurring in concert to drive pathogenic features of the disease. Here we interrogated the coordinate impact of p53, RB, and MYC in a genetic model of TNBC, in parallel with the analysis of clinical specimens. Primary mouse mammary epithelial cells (mMEC) with defined genetic features were used to delineate the combined action of RB and/or p53 in the genesis of TNBC. In this context, the deletion of either RB or p53 alone and in combination increased the proliferation of mMEC; however, the cells did not have the capacity to invade in matrigel. Gene expression profiling revealed that loss of each tumor suppressor has effects related to proliferation, but RB loss in particular leads to alterations in gene expression associated with the epithelial-to-mesenchymal transition. The overexpression of MYC in combination with p53 loss or combined RB/p53 loss drove rapid cell growth. While the effects of MYC overexpression had a dominant impact on gene expression, loss of RB further enhanced the deregulation of a gene expression signature associated with invasion. Specific RB loss lead to enhanced invasion in boyden chambers assays and gave rise to tumors with minimal epithelial characteristics relative to RB-proficient models. Therapeutic screening revealed that RB-deficient cells were particularly resistant to agents targeting PI3K and MEK pathway. Consistent with the aggressive behavior of the preclinical models of MYC overexpression and RB loss, human TNBC tumors that express high levels of MYC and are devoid of RB have a particularly poor outcome. Together these results underscore the potency of tumor suppressor pathways in specifying the biology of breast cancer. Further, they demonstrate that MYC overexpression in concert with RB can promote a particularly aggressive form of TNBC.

  2. Brain Ischemia in Patients with Intracranial Hemorrhage: Pathophysiological Reasoning for Aggressive Diagnostic Management

    PubMed Central

    Naranjo, Daniel; Arkuszewski, Michal; Rudzinski, Wojciech; Melhem, Elias R.; Krejza, Jaroslaw

    2013-01-01

    Summary Patients with intracranial hemorrhage have to be managed aggressively to avoid or minimize secondary brain damage due to ischemia, which contributes to high morbidity and mortality. The risk of brain ischemia, however, is not the same in every patient. The risk of complications associated with an aggressive prophylactic therapy in patients with a low risk of brain ischemia can outweigh the benefits of therapy. Accurate and timely identification of patients at highest risk is a diagnostic challenge. Despite the availability of many diagnostic tools, stroke is common in this population, mostly because the pathogenesis of stroke is frequently multifactorial whereas diagnosticians tend to focus on one or two risk factors. The pathophysiological mechanisms of brain ischemia in patients with intracranial hemorrhage are not yet fully elucidated and there are several important areas of ongoing research. Therefore, this review describes physiological and pathophysiological aspects associated with the development of brain ischemia such as the mechanism of oxygen and carbon dioxide effects on the cerebrovascular system, neurovascular coupling and respiratory and cardiovascular factors influencing cerebral hemodynamics. Consequently, we review investigations of cerebral blood flow disturbances relevant to various hemodynamic states associated with high intracranial pressure, cerebral embolism, and cerebral vasospasm along with current treatment options. PMID:24355179

  3. Pediatric Brain Tumors: Genomics and Epigenomics Pave the Way.

    PubMed

    Fontebasso, Adam M; Jabado, Nada

    2015-01-01

    Primary malignant brain tumors remain a disproportionate cause of morbidity and mortality in humans. A number of studies exploring the cancer genome of brain tumors across ages using integrated genetics and epigenetics and next-generation sequencing technologies have recently emerged. This has led to considerable advances in the understanding of the basic biology and pathogenesis of brain tumors, including the most malignant and common variants in children: gliomas and medulloblastoma. Notably, studies of pediatric brain tumors have identified unexpected oncogenic pathways implicated in tumorigenesis. These range from a single pathway/molecule defect such as abnormalities of the mitogen-activated protein kinase pathway, considered to be a hallmark of pilocytic astrocytomas, to alterations in the epigenome as a critical component altered in many subgroups of high-grade brain tumors. Importantly, the type, timing, and spatial clustering of these molecular alterations provide a better understanding of the pathogenesis of the respective brain tumor they target and critical markers for therapy that will help refine pathological grading. We summarize these novel findings in pediatric brain tumors, which also are put in the context of the evolving notion of molecular pathology, now a mandated tool for proper classification and therapy assignment in the clinical setting.

  4. High Toxoplasma gondii Seropositivity among Brain Tumor Patients in Korea

    PubMed Central

    Jung, Bong-Kwang; Song, Hyemi; Kim, Min-Jae; Cho, Jaeeun; Shin, Eun-Hee; Chai, Jong-Yil

    2016-01-01

    Toxoplasma gondii is an intracellular protozoan that can modulate the environment of the infected host. An unfavorable environment modulated by T. gondii in the brain includes tumor microenvironment. Literature has suggested that T. gondii infection is associated with development of brain tumors. However, in Korea, epidemiological data regarding this correlation have been scarce. In this study, in order to investigate the relationship between T. gondii infection and brain tumor development, we investigated the seroprevalence of T. gondii among 93 confirmed brain tumor patients (various histological types, including meningioma and astrocytoma) in Korea using ELISA. The results revealed that T. gondii seropositivity among brain tumor patients (18.3%) was significantly (P<0.05) higher compared with that of healthy controls (8.6%). The seropositivity of brain tumor patients showed a significant age-tendency, i.e., higher in younger age group, compared with age-matched healthy controls (P<0.05). In conclusion, this study supports the close relationship between T. gondii infection and incidence of brain tumors. PMID:27180580

  5. Novel treatment strategies for brain tumors and metastases

    PubMed Central

    El-Habashy, Salma E.; Nazief, Alaa M.; Adkins, Chris E.; Wen, Ming Ming; El-Kamel, Amal H.; Hamdan, Ahmed M.; Hanafy, Amira S.; Terrell, Tori O.; Mohammad, Afroz S.; Lockman, Paul R.; Nounou, Mohamed Ismail

    2015-01-01

    This review summarizes patent applications in the past 5 years for the management of brain tumors and metastases. Most of the recent patents discuss one of the following strategies: the development of new drug entities that specifically target the brain cells, the blood–brain barrier and the tumor cells, tailor-designing a novel carrier system that is able to perform multitasks and multifunction as a drug carrier, targeting vehicle and even as a diagnostic tool, direct conjugation of a US FDA approved drug with a targeting moiety, diagnostic moiety or PK modifying moiety, or the use of innovative nontraditional approaches such as genetic engineering, stem cells and vaccinations. Until now, there has been no optimal strategy to deliver therapeutic agents to the CNS for the treatment of brain tumors and metastases. Intensive research efforts are actively ongoing to take brain tumor targeting, and novel and targeted CNS delivery systems to potential clinical application. PMID:24998288

  6. MEK Inhibitors Reverse Growth of Embryonal Brain Tumors Derived from Oligoneural Precursor Cells.

    PubMed

    Modzelewska, Katarzyna; Boer, Elena F; Mosbruger, Timothy L; Picard, Daniel; Anderson, Daniela; Miles, Rodney R; Kroll, Mitchell; Oslund, William; Pysher, Theodore J; Schiffman, Joshua D; Jensen, Randy; Jette, Cicely A; Huang, Annie; Stewart, Rodney A

    2016-10-25

    Malignant brain tumors are the leading cause of cancer-related deaths in children. Primitive neuroectodermal tumors of the CNS (CNS-PNETs) are particularly aggressive embryonal tumors of unknown cellular origin. Recent genomic studies have classified CNS-PNETs into molecularly distinct subgroups that promise to improve diagnosis and treatment; however, the lack of cell- or animal-based models for these subgroups prevents testing of rationally designed therapies. Here, we show that a subset of CNS-PNETs co-express oligoneural precursor cell (OPC) markers OLIG2 and SOX10 with coincident activation of the RAS/MAPK (mitogen-activated protein kinase) pathway. Modeling NRAS activation in embryonic OPCs generated malignant brain tumors in zebrafish that closely mimic the human oligoneural/NB-FOXR2 CNS-PNET subgroup by histology and comparative oncogenomics. The zebrafish CNS-PNET model was used to show that MEK inhibitors selectively eliminate Olig2(+)/Sox10(+) CNS-PNET tumors in vivo without impacting normal brain development. Thus, MEK inhibitors represent a promising rationally designed therapy for children afflicted with oligoneural/NB-FOXR2 CNS-PNETs.

  7. Brain tumor classification of microscopy images using deep residual learning

    NASA Astrophysics Data System (ADS)

    Ishikawa, Yota; Washiya, Kiyotada; Aoki, Kota; Nagahashi, Hiroshi

    2016-12-01

    The crisis rate of brain tumor is about one point four in ten thousands. In general, cytotechnologists take charge of cytologic diagnosis. However, the number of cytotechnologists who can diagnose brain tumors is not sufficient, because of the necessity of highly specialized skill. Computer-Aided Diagnosis by computational image analysis may dissolve the shortage of experts and support objective pathological examinations. Our purpose is to support a diagnosis from a microscopy image of brain cortex and to identify brain tumor by medical image processing. In this study, we analyze Astrocytes that is a type of glia cell of central nerve system. It is not easy for an expert to discriminate brain tumor correctly since the difference between astrocytes and low grade astrocytoma (tumors formed from Astrocyte) is very slight. In this study, we present a novel method to segment cell regions robustly using BING objectness estimation and to classify brain tumors using deep convolutional neural networks (CNNs) constructed by deep residual learning. BING is a fast object detection method and we use pretrained BING model to detect brain cells. After that, we apply a sequence of post-processing like Voronoi diagram, binarization, watershed transform to obtain fine segmentation. For classification using CNNs, a usual way of data argumentation is applied to brain cells database. Experimental results showed 98.5% accuracy of classification and 98.2% accuracy of segmentation.

  8. Efficacy of cabazitaxel in mouse models of pediatric brain tumors

    PubMed Central

    Girard, Emily; Ditzler, Sally; Lee, Donghoon; Richards, Andrew; Yagle, Kevin; Park, Joshua; Eslamy, Hedieh; Bobilev, Dmitri; Vrignaud, Patricia; Olson, James

    2015-01-01

    Background There is an unmet need in the treatment of pediatric brain tumors for chemotherapy that is efficacious, avoids damage to the developing brain, and crosses the blood-brain barrier. These experiments evaluated the efficacy of cabazitaxel in mouse models of pediatric brain tumors. Methods The antitumor activity of cabazitaxel and docetaxel were compared in flank and orthotopic xenograft models of patient-derived atypical teratoid rhabdoid tumor (ATRT), medulloblastoma, and central nervous system primitive neuroectodermal tumor (CNS-PNET). Efficacy of cabazitaxel and docetaxel were also assessed in the Smo/Smo spontaneous mouse medulloblastoma tumor model. Results This study observed significant tumor growth inhibition in pediatric patient-derived flank xenograft tumor models of ATRT, medulloblastoma, and CNS-PNET after treatment with either cabazitaxel or docetaxel. Cabazitaxel, but not docetaxel, treatment resulted in sustained tumor growth inhibition in the ATRT and medulloblastoma flank xenograft models. Patient-derived orthotopic xenograft models of ATRT, medulloblastoma, and CNS-PNET showed significantly improved survival with treatment of cabazitaxel. Conclusion These data support further testing of cabazitaxel as a therapy for treating human pediatric brain tumors. PMID:25140037

  9. Cytogenetics and molecular genetics of childhood brain tumors.

    PubMed Central

    Biegel, J. A.

    1999-01-01

    Considerable progress has been made toward improving survival for children with brain tumors, and yet there is still relatively little known regarding the molecular genetic events that contribute to tumor initiation or progression. Nonrandom patterns of chromosomal deletions in several types of childhood brain tumors suggest that the loss or inactivation of tumor suppressor genes are critical events in tumorigenesis. Deletions of chromosomal regions 10q, 11 and 17p, and example, are frequent events in medulloblastoma, whereas loss of a region within 22q11.2, which contains the INI1 gene, is involved in the development of atypical teratoid and rhabdoid tumors. A review of the cytogenetic and molecular genetic changes identified to date in childhood brain tumors will be presented. PMID:11550309

  10. Computational modeling of brain tumors: discrete, continuum or hybrid?

    NASA Astrophysics Data System (ADS)

    Wang, Zhihui; Deisboeck, Thomas S.

    In spite of all efforts, patients diagnosed with highly malignant brain tumors (gliomas), continue to face a grim prognosis. Achieving significant therapeutic advances will also require a more detailed quantitative understanding of the dynamic interactions among tumor cells, and between these cells and their biological microenvironment. Data-driven computational brain tumor models have the potential to provide experimental tumor biologists with such quantitative and cost-efficient tools to generate and test hypotheses on tumor progression, and to infer fundamental operating principles governing bidirectional signal propagation in multicellular cancer systems. This review highlights the modeling objectives of and challenges with developing such in silico brain tumor models by outlining two distinct computational approaches: discrete and continuum, each with representative examples. Future directions of this integrative computational neuro-oncology field, such as hybrid multiscale multiresolution modeling are discussed.

  11. Novel combined fluorescence/reflectance spectroscopy system for guiding brain tumor resections: hardware considerations

    NASA Astrophysics Data System (ADS)

    Xie, Zhiyuan; Xie, Haiyan; Mousavi, Monirehalsadat; Brydegaard, Mikkel; Axelsson, Johan; Andersson-Engels, Stefan

    2013-11-01

    Glioblastoma multiforme (GBM) has long been known as the most common and aggressive form of brain malignancy. The morphological similarities of the malignant and surrounding tissue cause difficulties to distinct the tumors during surgery. In order to achieve better results in resecting malignant brain tumors, a fiber based optical system which can be used intraoperative is developed in this project. In this context, the system hardware details, system controlling interfaces and laboratory testing results are presented. Based on the results obtained from various tests with tissue-equivalent phantoms, the system is proved to have stable performance, robust structure, and have good linearity as well as high sensitivity to low PpIX concentration under strong ambient light conditions.

  12. Increased brain edema following 5-aminolevulinic acid mediated photodynamic in normal and tumor bearing rats

    NASA Astrophysics Data System (ADS)

    Hirschberg, Henry; Angell-Petersen, Even; Spetalen, Signe; Mathews, Marlon; Madsen, Steen J.

    2007-02-01

    Introduction: Failure of treatment for high grade gliomas is usually due to local recurrence at the site of surgical resection indicating that a more aggressive form of local therapy, such as PDT, could be of benefit. PDT causes damage to both tumor cells as well as cerebral blood vessels leading to degradation of the blood brain barrier with subsequent increase of brain edema. The increase in brain edema following ALA-PDT was evaluated in terms of animal survival, histopatological changes in normal brain and tumor tissue and MRI scanning. The effect of steroid treatment, to reduce post-treatment PDT induced edema, was also examined. Methods:Tumors were established in the brains of inbred BD-IX and Fisher rats. At various times following tumor induction the animals were injected with ALA ip. and four hours later light treatment at escalating fluences and fluence rates were given. Nontumor bearing control animals were also exposed to ALA-PDT in a similar manner to evaluate damage to normal brain and degree of blood brain barrier (BBB) disruption. Results: Despite a very low level of PpIX production in normal brain, with a 200:1 tumor to normal tissue selectivity ratio measured at a distance of 2 mm from the tumor border, many animals succumbed shortly after treatment. A total radiant energy of 54 J to non-tumor bearing animals resulted in 50% mortality within 5 days of treatment. Treatment of tumor bearing animals with moderate fluence levels produced similar brain edema compared to higher fluence levels. ALA PDT in nontumor bearing animals produced edema that was light dose dependent. PDT appeared to open the BBB for a period of 24-48 hrs after which it was restored. The addition of post operative steroid treatment reduced the incident of post treatment morbidity and mortality. Conclusions: T2 and contrast enhanced T1 MRI scanning proved to be a highly effective and non-evasive modality in following the development of the edema reaction and the degree and time

  13. Prolactinoma ErbB receptor expression and targeted therapy for aggressive tumors.

    PubMed

    Cooper, Odelia; Mamelak, Adam; Bannykh, Serguei; Carmichael, John; Bonert, Vivien; Lim, Stephen; Cook-Wiens, Galen; Ben-Shlomo, Anat

    2014-06-01

    As ErbB signaling is a determinant of prolactin synthesis, role of ErbB receptors was tested for prolactinoma outcomes and therapy. The objective of this study was to characterize ErbB receptor expression in prolactinomas and then perform a pilot study treating resistant prolactinomas with a targeted tyrosine kinase inhibitor (TKI). Retrospective analysis of prolactinomas and pilot study for dopamine agonist resistant prolactinomas in tertiary referral center. We performed immunofluorescent staining of a tissue array of 29 resected prolactinoma tissues for EGFR, ErbB2, ErbB3, and ErbB4 correlated with clinical features. Two patients with aggressive resistant prolactinomas enrolled and completed trial. They received lapatinib 1,250 mg daily for 6 months with tumor and hormone assessments. Main outcome measures were positive tumor staining of respective ErbB receptors, therapeutic reduction of prolactin levels and tumor shrinkage. Treated PRL levels and tumor volumes were suppressed in both subjects treated with TKI. EGFR expression was positive in 82 % of adenomas, ErbB2 in 92 %, ErbB3 in 25 %, and ErbB4 in 71 %, with ErbB2 score > EGFR > ErbB4 > ErbB3. Higher ErbB3 expression was associated with optic chiasm compression (p = 0.03), suprasellar extension (p = 0.04), and carotid artery encasement (p = 0.01). Higher DA response rates were observed in tumors with higher ErbB3 expression. Prolactinoma expression of specific ErbB receptors is associated with tumor invasion, symptoms, and response to dopamine agonists. Targeting ErbB receptors may be effective therapy in patients with resistant prolactinomas.

  14. Role of miR-139 as a surrogate marker for tumor aggression in breast cancer.

    PubMed

    Dai, Hongyan; Gallagher, Dan; Schmitt, Sarah; Pessetto, Ziyan Y; Fan, Fang; Godwin, Andrew K; Tawfik, Ossama

    2017-03-01

    MicroRNAs are non-protein coding molecules that play a key role in oncogenesis, tumor progression, and metastasis in many types of malignancies including breast cancer. In the current study, we studied the expression of microRNA-139-5p (miR-139) in invasive ductal carcinoma (IDC) of the breast and correlated its expression with tumor grade, molecular subtype, hormonal status, human epidermal growth factor receptor 2 status, proliferation index, tumor size, lymph node status, patient's age, and overall survival in 74 IDC cases. In addition, we compared and correlated miR-139 expression in 18 paired serum and tissue samples from patients with IDC to assess its value as a serum marker. Our data showed that miR-139 was down-regulated in all tumor tissue samples compared with control. More pronounced down-regulation was seen in tumors that were higher grade, estrogen receptor negative, progesterone receptor negative, more proliferative, or larger in size (P < .05). Although not statistically significant, lower miR-139 level was frequently associated with human epidermal growth factor receptor 2 overexpression. In addition, significantly lower miR-139 tissue level was seen in patients who were deceased (P = .027), although older age (>50 years) and positive local nodal disease did not adversely affect miR-139 expression. In contrast, serum miR-139 profile of the patients appeared similar to that of normal control. In conclusion, our study demonstrated that down-regulation of miR-139 was associated with aggressive tumor behavior and disease progression in breast cancer. miR-139 may serve as a risk assessment biomarker in tailoring treatment options.

  15. Cilengitide in Treating Children With Refractory Primary Brain Tumors

    ClinicalTrials.gov

    2013-09-27

    Childhood Central Nervous System Germ Cell Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Childhood Mixed Glioma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Brain Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma

  16. Labeled Putrescine as a Probe in Brain Tumors

    NASA Astrophysics Data System (ADS)

    Volkow, Nora; Goldman, Stephen S.; Flamm, Eugene S.; Cravioto, Humberto; Wolf, Alfred P.; Brodie, Jonathan D.

    1983-08-01

    The polyamine metabolism of transplanted N-nitrosomethylurea-derived rat glioma was determined with radiolabeled putrescine used as a marker for malignancy. The uptake of putrescine in vivo was complete within 5 minutes and was specific for tumor tissue. The conversion of putrescine to spermine and other metabolites by the tumor was rapid, in contrast to the case for adjacent normal brain. These results suggest that putrescine labeled with carbon-11 may be used as a positron-emission tomographic tracer for the selective metabolic imaging of brain tumor and may be used in an appropriate model as a marker for tumor growth rate.

  17. Applications of nanotechnology to imaging and therapy of brain tumors.

    PubMed

    Mohs, Aaron M; Provenzale, James M

    2010-08-01

    In the past decade, numerous advances in the understanding of brain tumor physiology, tumor imaging, and tumor therapy have been attained. In some cases, these advances have resulted from refinements of pre-existing technologies (eg, improvements of contrast-enhanced magnetic resonance imaging). In other instances, advances have resulted from development of novel technologies. The development of nanomedicine (ie, applications of nanotechnology to the field of medicine) is an example of the latter. In this review, the authors explain the principles that underlay nanoparticle design and function as well as the means by which nanoparticles can be used for imaging and therapy of brain tumors.

  18. Phenotypic changes of acid adapted cancer cells push them toward aggressiveness in their evolution in the tumor microenvironment.

    PubMed

    Damaghi, Mehdi; Gillies, Robert

    2016-09-16

    The inter- and intra-tumoral metabolic phenotypes of tumors are heterogeneous, and this is related to microenvironments that select for increased glycolysis. Increased glycolysis leads to decreased pH, and these local microenvironment effects lead to further selection. Hence, heterogeneity of phenotypes is an indirect consequence of altering microenvironments during carcinogenesis. In early stages of growth, tumors are stratified, with the most aggressive cells developing within the acidic interior of the tumor. However, these cells eventually find themselves at the tumor edge, where they invade into the normal tissue via acid-mediated invasion. We believe acid adaptation during the evolution of cancer cells in their niche is a Rubicon that, once crossed, allows cells to invade into and outcompete normal stromal tissue. In this study, we illustrate some acid-induced phenotypic changes due to acidosis resulting in more aggressiveness and invasiveness of cancer cells.

  19. Giant cell tumor of the bone: aggressive case initially treated with denosumab and intralesional surgery.

    PubMed

    von Borstel, Donald; A Taguibao, Roberto; A Strle, Nicholas; E Burns, Joseph

    2017-04-01

    Giant cell tumor of the bone (GCTB) is a locally aggressive benign tumor, which has historically been treated with wide surgical excision. We report a case of a 29-year-old male with histology-proven GCTB of the distal ulna. The initial imaging study was a contrast-enhanced magnetic resonance imaging (MRI) examination of the left wrist, which was from an outside facility performed before presenting to our institution. On the initial MRI, the lesion had homogenous T2-hyperintense and T1-hypointense signal with expansive remodeling of the osseous contour. A radiographic study performed upon presentation to our institution 1 month later showed progression of the lesion with atypical imaging characteristics. After confirming the diagnosis, denosumab therapy was implemented allowing for reconstitution of bone and intralesional treatment. The patient was treated with five doses of denosumab over the duration of 7 weeks. Therapeutic changes of the GCTB were evaluated by radiography and a post-treatment MRI. This MRI was interpreted as suspicious for worsening disease due to the imaging appearance of intralesional signal heterogeneity, increased perilesional fluid-like signal, and circumferential cortical irregularity. However, on subsequent intralesional curettage and bone autografting 6 weeks later, no giant cells were seen on the specimen. Thus, the appearance on the MRI, rather than representing a manifestation of lesion aggressiveness or a non-responding tumor, conversely represented the imaging appearance of a positive response to denosumab therapy. On follow-up evaluation, 5 months after intralesional treatment, the patient had recurrent disease and is now scheduled for wide-excision with joint prosthesis.

  20. Fractal analysis of microvascular networks in malignant brain tumors.

    PubMed

    Di Ieva, Antonio

    2012-01-01

    Brain tumors are characterized by a microvascular network which differs from normal brain vascularity. Different tumors show individual angiogenic patterns. Microvascular heterogeneity can also be observed within a neoplastic histotype. It has been shown that quantification of neoplastic microvascular patterns could be used in combination with the histological grade for tumor characterization and to refine clinical prognoses, even if no objective parameters have yet been validated. To overcome the limits of the Euclidean approach, we employ fractal geometry to analyze the geometric complexity underlying the microangioarchitectural networks in brain tumors. We have developed a computer-aided fractal-based analysis for the quantification of the microvascular patterns in histological specimens and ultra-high-field (7-Tesla) magnetic resonance images. We demonstrate that the fractal parameters are valid estimators of microvascular geometrical complexity. Furthermore, our analysis allows us to demonstrate the high geometrical variability underlying the angioarchitecture of glioblastoma multiforme and to differentiate low-grade from malignant tumors in histological specimens and radiological images. Based on the results of this study, we speculate the existence of a gradient in the geometrical complexity of microvascular networks from those in the normal brain to those in malignant brain tumors. Here, we summarize a new methodology for the application of fractal analysis to the study of the microangioarchitecture of brain tumors; we further suggest this approach as a tool for quantifying and categorizing different neoplastic microvascular patterns and as a potential morphometric biomarker for use in clinical practice.

  1. Clinical applications of choline PET/CT in brain tumors.

    PubMed

    Giovannini, Elisabetta; Lazzeri, Patrizia; Milano, Amalia; Gaeta, Maria Chiara; Ciarmiello, Andrea

    2015-01-01

    Malignant gliomas and metastatic tumors are the most common forms of brain tumors. From a clinical perspective, neuroimaging plays a significant role, in diagnosis, treatment planning, and follow-up. To date MRI is considered the current clinical gold standard for imaging, however, despite providing superior structural detail it features poor specificity in identifying viable tumors in brain treated with surgery, radiation, or chemotherapy. In the last years functional neuroimaging has become largely widespread thanks to the use of molecular tracers employed in cellular metabolism which has significantly improved the management of patients with brain tumors, especially in the post-treatment phase. Despite the considerable progress of molecular imaging in oncology its use in the diagnosis of brain tumors is still limited by a few wellknown technical problems. Because 18F-FDG, the most common radiotracer used in oncology, is avidly accumulated by normal cortex, the low tumor/background signal ratio makes it difficult to distinguish the tumor from normal surrounding tissues. By contrast, radiotracers with higher specificity for the tumor are labeled with a short half-life isotopes which restricts their use to those centers equipped with a cyclotron and radiopharmacy facility. 11C-choline has been reported as a suitable tracer for neuroimaging application. The recent availability of choline labeled with a long half-life radioisotope as 18F increases the possibility of studying this tracer's potential role in the staging of brain tumors. The present review focuses on the possible clinical applications of PET/CT with choline tracers in malignant brain tumors and brain metastases, with a special focus on malignant gliomas.

  2. Genetic Influences on Brain Gene Expression in Rats Selected for Tameness and Aggression

    PubMed Central

    Heyne, Henrike O.; Lautenschläger, Susann; Nelson, Ronald; Besnier, François; Rotival, Maxime; Cagan, Alexander; Kozhemyakina, Rimma; Plyusnina, Irina Z.; Trut, Lyudmila; Carlborg, Örjan; Petretto, Enrico; Kruglyak, Leonid; Pääbo, Svante; Schöneberg, Torsten; Albert, Frank W.

    2014-01-01

    Interindividual differences in many behaviors are partly due to genetic differences, but the identification of the genes and variants that influence behavior remains challenging. Here, we studied an F2 intercross of two outbred lines of rats selected for tame and aggressive behavior toward humans for >64 generations. By using a mapping approach that is able to identify genetic loci segregating within the lines, we identified four times more loci influencing tameness and aggression than by an approach that assumes fixation of causative alleles, suggesting that many causative loci were not driven to fixation by the selection. We used RNA sequencing in 150 F2 animals to identify hundreds of loci that influence brain gene expression. Several of these loci colocalize with tameness loci and may reflect the same genetic variants. Through analyses of correlations between allele effects on behavior and gene expression, differential expression between the tame and aggressive rat selection lines, and correlations between gene expression and tameness in F2 animals, we identify the genes Gltscr2, Lgi4, Zfp40, and Slc17a7 as candidate contributors to the strikingly different behavior of the tame and aggressive animals. PMID:25189874

  3. Sex steroids in human brain tumors and breast cancer.

    PubMed

    von Schoultz, E; Bixo, M; Bäckström, T; Silfvenius, H; Wilking, N; Henriksson, R

    1990-02-15

    The concentrations of three sex steroids, estradiol, progesterone and testosterone, were analyzed by radioimmunoassay after celite chromatography in brain tumor and breast cancer tissues. The concentrations in malignant gliomas and breast cancers showed interindividual variations, especially evident with regard to estradiol. High estradiol concentrations were recorded in two patients with malignant astrocytoma. The concentrations of 1.00 pg/mg and 3.32 pg/mg were 10 to 30 times as high as in normal female brain. In five of ten astrocytomas the estradiol concentration was higher than the lowest breast cancer value. The distribution of progesterone seemed more even, and the level was significantly lower in brain tumors and breast cancers as compared with female brain, perhaps indicating an increased metabolism. Testosterone levels were somewhat higher in brain tumors, as compared with breast cancers, but not different from values in brain tissue. There were no significant age or sex correlation or differences in the concentrations of steroids in the brain tumors. The results suggest that manipulation of sex steroid metabolism in malignant brain tumors can be of beneficial therapeutic value as has been shown for breast cancer and prostatic carcinoma.

  4. Glial brain tumor detection by using symmetry analysis

    NASA Astrophysics Data System (ADS)

    Pedoia, Valentina; Binaghi, Elisabetta; Balbi, Sergio; De Benedictis, Alessandro; Monti, Emanuele; Minotto, Renzo

    2012-02-01

    In this work a fully automatic algorithm to detect brain tumors by using symmetry analysis is proposed. In recent years a great effort of the research in field of medical imaging was focused on brain tumors segmentation. The quantitative analysis of MRI brain tumor allows to obtain useful key indicators of disease progression. The complex problem of segmenting tumor in MRI can be successfully addressed by considering modular and multi-step approaches mimicking the human visual inspection process. The tumor detection is often an essential preliminary phase to solvethe segmentation problem successfully. In visual analysis of the MRI, the first step of the experts cognitive process, is the detection of an anomaly respect the normal tissue, whatever its nature. An healthy brain has a strong sagittal symmetry, that is weakened by the presence of tumor. The comparison between the healthy and ill hemisphere, considering that tumors are generally not symmetrically placed in both hemispheres, was used to detect the anomaly. A clustering method based on energy minimization through Graph-Cut is applied on the volume computed as a difference between the left hemisphere and the right hemisphere mirrored across the symmetry plane. Differential analysis involves the loss the knowledge of the tumor side. Through an histogram analysis the ill hemisphere is recognized. Many experiments are performed to assess the performance of the detection strategy on MRI volumes in presence of tumors varied in terms of shapes positions and intensity levels. The experiments showed good results also in complex situations.

  5. Current state of our knowledge on brain tumor epidemiology.

    PubMed

    Ostrom, Quinn T; Barnholtz-Sloan, Jill S

    2011-06-01

    The overall incidence of brain tumors for benign and malignant tumors combined is 18.71 per 100,000 person-years; 11.52 per 100,000 person-years for benign tumors and 7.19 per 100,000 person-years for malignant tumors. Incidence, response to treatment, and survival after diagnosis vary greatly by age at diagnosis, histologic type of tumor, and degree of neurologic compromise. The only established environmental risk factor for brain tumors is ionizing radiation exposure. Exposure to radiofrequency electromagnetic fields via cell phone use has gained a lot of attention as a potential risk factor for brain tumor development. However, studies have been inconsistent and inconclusive due to systematic differences in study designs and difficulty of accurately measuring cell phone use. Recently studies of genetic risk factors for brain tumors have expanded to genome-wide association studies. In addition, genome-wide studies of somatic genetic changes in tumors show correlation with clinical outcomes.

  6. Chemo Drug May Combat Serious Brain Tumor After All

    MedlinePlus

    ... Chemo Drug May Combat Serious Brain Tumor After All Certain glioblastomas respond to anti-angiogenic compounds, study ... Dec. 22, 2016 HealthDay Copyright (c) 2016 HealthDay . All rights reserved. News stories are written and provided ...

  7. Uranyl phthalocyanines show promise in the treatment of brain tumors

    NASA Technical Reports Server (NTRS)

    Frigerio, N. A.

    1967-01-01

    Processes synthesize sulfonated and nonsulfonated uranyl phthalocyanines for application in neutron therapy of brain tumors. Tests indicate that the compounds are advantageous over the previously used boron and lithium compounds.

  8. Childhood Brain and Spinal Cord Tumors Treatment Overview

    MedlinePlus

    ... before the cancer is diagnosed and continue for months or years. Childhood brain and spinal cord tumors ... after treatment. Some cancer treatments cause side effects months or years after treatment has ended. These are ...

  9. General Information about Childhood Brain and Spinal Cord Tumors

    MedlinePlus

    ... before the cancer is diagnosed and continue for months or years. Childhood brain and spinal cord tumors ... after treatment. Some cancer treatments cause side effects months or years after treatment has ended. These are ...

  10. FDTD analysis of a noninvasive hyperthermia system for brain tumors

    PubMed Central

    2012-01-01

    Background Hyperthermia is considered one of the new therapeutic modalities for cancer treatment and is based on the difference in thermal sensitivity between healthy tissues and tumors. During hyperthermia treatment, the temperature of the tumor is raised to 40–45°C for a definite period resulting in the destruction of cancer cells. This paper investigates design, modeling and simulation of a new non-invasive hyperthermia applicator system capable of effectively heating deep seated as well as superficial brain tumors using inexpensive, simple, and easy to fabricate components without harming surrounding healthy brain tissues. Methods The proposed hyperthermia applicator system is composed of an air filled partial half ellipsoidal chamber, a patch antenna, and a head model with an embedded tumor at an arbitrary location. The irradiating antenna is placed at one of the foci of the hyperthermia chamber while the center of the brain tumor is placed at the other focus. The finite difference time domain (FDTD) method is used to compute both the SAR patterns and the temperature distribution in three different head models due to two different patch antennas at a frequency of 915 MHz. Results The obtained results suggest that by using the proposed noninvasive hyperthermia system it is feasible to achieve sufficient and focused energy deposition and temperature rise to therapeutic values in deep seated as well as superficial brain tumors without harming surrounding healthy tissue. Conclusions The proposed noninvasive hyperthermia system proved suitable for raising the temperature in tumors embedded in the brain to therapeutic values by carefully selecting the systems components. The operator of the system only needs to place the center of the brain tumor at a pre-specified location and excite the antenna at a single frequency of 915 MHz. Our study may provide a basis for a clinical applicator prototype capable of heating brain tumors. PMID:22891953

  11. Challenges for the functional diffusion map in pediatric brain tumors

    PubMed Central

    Grech-Sollars, Matthew; Saunders, Dawn E.; Phipps, Kim P.; Kaur, Ramneek; Paine, Simon M.L.; Jacques, Thomas S.; Clayden, Jonathan D.; Clark, Chris A.

    2014-01-01

    Background The functional diffusion map (fDM) has been suggested as a tool for early detection of tumor treatment efficacy. We aim to study 3 factors that could act as potential confounders in the fDM: areas of necrosis, tumor grade, and change in tumor size. Methods Thirty-four pediatric patients with brain tumors were enrolled in a retrospective study, approved by the local ethics committee, to examine the fDM. Tumors were selected to encompass a range of types and grades. A qualitative analysis was carried out to compare how fDM findings may be affected by each of the 3 confounders by comparing fDM findings to clinical image reports. Results Results show that the fDM in areas of necrosis do not discriminate between treatment response and tumor progression. Furthermore, tumor grade alters the behavior of the fDM: a decrease in apparent diffusion coefficient (ADC) is a sign of tumor progression in high-grade tumors and treatment response in low-grade tumors. Our results also suggest using only tumor area overlap between the 2 time points analyzed for the fDM in tumors of varying size. Conclusions Interpretation of fDM results needs to take into account the underlying biology of both tumor and healthy tissue. Careful interpretation of the results is required with due consideration to areas of necrosis, tumor grade, and change in tumor size. PMID:24305721

  12. Characterization of distinct immunophenotypes across pediatric brain tumor types.

    PubMed

    Griesinger, Andrea M; Birks, Diane K; Donson, Andrew M; Amani, Vladimir; Hoffman, Lindsey M; Waziri, Allen; Wang, Michael; Handler, Michael H; Foreman, Nicholas K

    2013-11-01

    Despite increasing evidence that antitumor immune control exists in the pediatric brain, these findings have yet to be exploited successfully in the clinic. A barrier to development of immunotherapeutic strategies in pediatric brain tumors is that the immunophenotype of these tumors' microenvironment has not been defined. To address this, the current study used multicolor FACS of disaggregated tumor to systematically characterize the frequency and phenotype of infiltrating immune cells in the most common pediatric brain tumor types. The initial study cohort consisted of 7 pilocytic astrocytoma (PA), 19 ependymoma (EPN), 5 glioblastoma (GBM), 6 medulloblastoma (MED), and 5 nontumor brain (NT) control samples obtained from epilepsy surgery. Immune cell types analyzed included both myeloid and T cell lineages and respective markers of activated or suppressed functional phenotypes. Immune parameters that distinguished each of the tumor types were identified. PA and EPN demonstrated significantly higher infiltrating myeloid and lymphoid cells compared with GBM, MED, or NT. Additionally, PA and EPN conveyed a comparatively activated/classically activated myeloid cell-skewed functional phenotype denoted in particular by HLA-DR and CD64 expression. In contrast, GBM and MED contained progressively fewer infiltrating leukocytes and more muted functional phenotypes similar to that of NT. These findings were recapitulated using whole tumor expression of corresponding immune marker genes in a large gene expression microarray cohort of pediatric brain tumors. The results of this cross-tumor comparative analysis demonstrate that different pediatric brain tumor types exhibit distinct immunophenotypes, implying that specific immunotherapeutic approaches may be most effective for each tumor type.

  13. Social self-perception among pediatric brain tumor survivors compared to peers

    PubMed Central

    Salley, Christina G.; Gerhardt, Cynthia A.; Fairclough, Diane L.; Patenaude, Andrea Farkas; Kupst, Mary Jo; Barrera, Maru; Vannatta, Kathryn

    2014-01-01

    Objective: To assess self-perceptions of social behavior among children treated for a brain tumor and comparison children. To investigate group differences in the accuracy of children’s self-perceptions as measured by discrepancies between self and peer reports of social behavior and to understand if these phenomena differ by gender. Method: Self and peer report of social behavior were obtained in the classrooms of 116 children who were treated for an intracranial tumor. Social behaviors were assessed utilizing the Revised Class Play (RCP) which generates indices for 5 behavioral subscales: Leadership-popularity, Prosocial, Aggressive-disruptive, Sensitive-isolated, and Victimization. A child matched for gender, race, and age, was selected from each survivor’s classroom to serve as a comparison. Abbreviated IQ scores were obtained in participants’ homes. Results: Relative to comparison children, those who had undergone treatment for a brain tumor overestimated their level of Leadership-popularity and underestimated levels of Sensitive-isolated behaviors and Victimization by peers. Female survivors were more likely to underestimate Sensitive-isolated behaviors and Victimization than male survivors. Conclusion: Following treatment for a brain tumor, children (particularly girls) may be more likely to underestimate peer relationship difficulties than healthy children. These discrepancies should be considered when obtaining self-report from survivors and developing interventions to improve social functioning. PMID:25127341

  14. Brain tumor locating in 3D MR volume using symmetry

    NASA Astrophysics Data System (ADS)

    Dvorak, Pavel; Bartusek, Karel

    2014-03-01

    This work deals with the automatic determination of a brain tumor location in 3D magnetic resonance volumes. The aim of this work is not the precise segmentation of the tumor and its parts but only the detection of its location. This work is the first step in the tumor segmentation process, an important topic in neuro-image processing. The algorithm expects 3D magnetic resonance volumes of brain containing a tumor. The detection is based on locating the area that breaks the left-right symmetry of the brain. This is done by multi-resolution comparing of corresponding regions in left and right hemisphere. The output of the computation is the probabilistic map of the tumor location. The created algorithm was tested on 80 volumes from publicly available BRATS databases containing 3D brain volumes afflicted by a brain tumor. These pathological structures had various sizes and shapes and were located in various parts of the brain. The locating performance of the algorithm was 85% for T1-weighted volumes, 91% for T1-weighted contrast enhanced volumes, 96% for FLAIR and T2-wieghted volumes and 95% for their combinations.

  15. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Sayuri; Fukushi, Yasuko; Kubota, Oichi; Itsuji, Takeaki; Ouchi, Toshihiko; Yamamoto, Seiji

    2016-07-01

    Tumor imaging by terahertz spectroscopy of fresh tissue without dye is demonstrated using samples from a rat glioma model. The complex refractive index spectrum obtained by a reflection terahertz time-domain spectroscopy system can discriminate between normal and tumor tissues. Both the refractive index and absorption coefficient of tumor tissues are higher than those of normal tissues and can be attributed to the higher cell density and water content of the tumor region. The results of this study indicate that terahertz technology is useful for detecting brain tumor tissue.

  16. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy

    PubMed Central

    Yamaguchi, Sayuri; Fukushi, Yasuko; Kubota, Oichi; Itsuji, Takeaki; Ouchi, Toshihiko; Yamamoto, Seiji

    2016-01-01

    Tumor imaging by terahertz spectroscopy of fresh tissue without dye is demonstrated using samples from a rat glioma model. The complex refractive index spectrum obtained by a reflection terahertz time-domain spectroscopy system can discriminate between normal and tumor tissues. Both the refractive index and absorption coefficient of tumor tissues are higher than those of normal tissues and can be attributed to the higher cell density and water content of the tumor region. The results of this study indicate that terahertz technology is useful for detecting brain tumor tissue. PMID:27456312

  17. Sports and childhood brain tumors: Can I play?

    PubMed Central

    Perreault, Sébastien; Lober, Robert M.; Davis, Carissa; Stave, Christopher; Partap, Sonia; Fisher, Paul G.

    2014-01-01

    Background It is unknown whether children with brain tumors have a higher risk of complications while participating in sports. We sought to estimate the prevalence of such events by conducting a systematic review of the literature, and we surveyed providers involved with pediatric central nervous system (CNS) tumor patients. Methods A systematic review of the literature in the PubMed, Scopus, and Cochrane databases was conducted for original articles addressing sport-related complications in the brain-tumor population. An online questionnaire was created to survey providers involved with pediatric CNS tumor patients about their current recommendations and experience regarding sports and brain tumors. Results We retrieved 32 subjects, including 19 pediatric cases from the literature. Most lesions associated with sport complications were arachnoid cysts (n = 21), followed by glioma (n = 5). The sports in which symptom onset most commonly occurred were soccer (n = 7), football (n = 5), and running (n = 5). We surveyed 111 pediatric neuro-oncology providers. Sport restriction varied greatly from none to 14 sports. Time to return to play in sports with contact also varied considerably between providers. Rationales for limiting sports activities were partly related to subspecialty. Responders reported 9 sport-related adverse events in patients with brain tumor. Conclusions Sport-related complications are uncommon in children with brain tumors. Patients might not be at a significantly higher risk and should not need to be excluded from most sports activities. PMID:26034627

  18. Multiscale modeling for image analysis of brain tumor studies.

    PubMed

    Bauer, Stefan; May, Christian; Dionysiou, Dimitra; Stamatakos, Georgios; Büchler, Philippe; Reyes, Mauricio

    2012-01-01

    Image-based modeling of tumor growth combines methods from cancer simulation and medical imaging. In this context, we present a novel approach to adapt a healthy brain atlas to MR images of tumor patients. In order to establish correspondence between a healthy atlas and a pathologic patient image, tumor growth modeling in combination with registration algorithms is employed. In a first step, the tumor is grown in the atlas based on a new multiscale, multiphysics model including growth simulation from the cellular level up to the biomechanical level, accounting for cell proliferation and tissue deformations. Large-scale deformations are handled with an Eulerian approach for finite element computations, which can operate directly on the image voxel mesh. Subsequently, dense correspondence between the modified atlas and patient image is established using nonrigid registration. The method offers opportunities in atlas-based segmentation of tumor-bearing brain images as well as for improved patient-specific simulation and prognosis of tumor progression.

  19. Current status of gene therapy for brain tumors.

    PubMed

    Murphy, Andrea M; Rabkin, Samuel D

    2013-04-01

    Glioblastoma (GBM) is the most common and deadliest primary brain tumor in adults, with current treatments having limited impact on disease progression. Therefore the development of alternative treatment options is greatly needed. Gene therapy is a treatment strategy that relies on the delivery of genetic material, usually transgenes or viruses, into cells for therapeutic purposes, and has been applied to GBM with increasing promise. We have included selectively replication-competent oncolytic viruses within this strategy, although the virus acts directly as a complex biologic anti-tumor agent rather than as a classic gene delivery vehicle. GBM is a good candidate for gene therapy because tumors remain locally within the brain and only rarely metastasize to other tissues; the majority of cells in the brain are post-mitotic, which allows for specific targeting of dividing tumor cells; and tumors can often be accessed neurosurgically for administration of therapy. Delivery vehicles used for brain tumors include nonreplicating viral vectors, normal adult stem/progenitor cells, and oncolytic viruses. The therapeutic transgenes or viruses are typically cytotoxic or express prodrug activating suicide genes to kill glioma cells, immunostimulatory to induce or amplify anti-tumor immune responses, and/or modify the tumor microenvironment such as blocking angiogenesis. This review describes current preclinical and clinical gene therapy strategies for the treatment of glioma.

  20. Current status of gene therapy for brain tumors

    PubMed Central

    MURPHY, ANDREA M.; RABKIN, SAMUEL D.

    2013-01-01

    Glioblastoma (GBM) is the most common and deadliest primary brain tumor in adults, with current treatments having limited impact on disease progression. Therefore the development of alternative treatment options is greatly needed. Gene therapy is a treatment strategy that relies on the delivery of genetic material, usually transgenes or viruses, into cells for therapeutic purposes, and has been applied to GBM with increasing promise. We have included selectively replication-competent oncolytic viruses within this strategy, although the virus acts directly as a complex biologic anti-tumor agent rather than as a classic gene delivery vehicle. GBM is a good candidate for gene therapy because tumors remain locally within the brain and only rarely metastasize to other tissues; the majority of cells in the brain are post-mitotic, which allows for specific targeting of dividing tumor cells; and tumors can often be accessed neurosurgically for administration of therapy. Delivery vehicles used for brain tumors include nonreplicating viral vectors, normal adult stem/progenitor cells, and oncolytic viruses. The therapeutic transgenes or viruses are typically cytotoxic or express prodrug activating suicide genes to kill glioma cells, immunostimulatory to induce or amplify anti-tumor immune responses, and/or modify the tumor microenvironment such as blocking angiogenesis. This review describes current preclinical and clinical gene therapy strategies for the treatment of glioma. PMID:23246627

  1. Maternal aggression in rodents: brain oxytocin and vasopressin mediate pup defence

    PubMed Central

    Bosch, Oliver J.

    2013-01-01

    The most significant social behaviour of the lactating mother is maternal behaviour, which comprises maternal care and maternal aggression (MA). The latter is a protective behaviour of the mother serving to defend the offspring against a potentially dangerous intruder. The extent to which the mother shows aggressive behaviour depends on extrinsic and intrinsic factors, as we have learned from studies in laboratory rodents. Among the extrinsic factors are the pups’ presence and age, as well as the intruders’ sex and age. With respect to intrinsic factors, the mothers’ innate anxiety and the prosocial brain neuropeptides oxytocin (OXT) and arginine vasopressin (AVP) play important roles. While OXT is well known as a maternal neuropeptide, AVP has only recently been described in this context. The increased activities of these neuropeptides in lactation are the result of remarkable brain adaptations peripartum and are a prerequisite for the mother to become maternal. Consequently, OXT and AVP are significantly involved in mediating the fine-tuned regulation of MA depending on the brain regions. Importantly, both neuropeptides are also modulators of anxiety, which determines the extent of MA. This review provides a detailed overview of the role of OXT and AVP in MA and the link to anxiety. PMID:24167315

  2. Aldehyde dehydrogenase 1 positive glioblastoma cells show brain tumor stem cell capacity.

    PubMed

    Rasper, Michael; Schäfer, Andrea; Piontek, Guido; Teufel, Julian; Brockhoff, Gero; Ringel, Florian; Heindl, Stefan; Zimmer, Claus; Schlegel, Jürgen

    2010-10-01

    Glioblastoma (GBM) is the most aggressive primary brain tumor and is resistant to all therapeutic regimens. Relapse occurs regularly and might be caused by a poorly characterized tumor stem cell (TSC) subpopulation escaping therapy. We suggest aldehyde dehydrogenase 1 (ALDH1) as a novel stem cell marker in human GBM. Using the neurosphere formation assay as a functional method to identify brain TSCs, we show that high protein levels of ALDH1 facilitate neurosphere formation in established GBM cell lines. Even single ALDH1 positive cells give rise to colonies and neurospheres. Consequently, the inhibition of ALDH1 in vitro decreases both the number of neurospheres and their size. Cell lines without expression of ALDH1 do not form tumor spheroids under the same culturing conditions. High levels of ALDH1 seem to keep tumor cells in an undifferentiated, stem cell-like state indicated by the low expression of beta-III-tubulin. In contrast, ALDH1 inhibition induces premature cellular differentiation and reduces clonogenic capacity. Primary cell cultures obtained from fresh tumor samples approve the established GBM cell line results.

  3. An epigenetic gateway to brain tumor cell identity.

    PubMed

    Mack, Stephen C; Hubert, Christopher G; Miller, Tyler E; Taylor, Michael D; Rich, Jeremy N

    2016-01-01

    Precise targeting of genetic lesions alone has been insufficient to extend brain tumor patient survival. Brain cancer cells are diverse in their genetic, metabolic and microenvironmental compositions, accounting for their phenotypic heterogeneity and disparate responses to therapy. These factors converge at the level of the epigenome, representing a unified node that can be disrupted by pharmacologic inhibition. Aberrant epigenomes define many childhood and adult brain cancers, as demonstrated by widespread changes to DNA methylation patterns, redistribution of histone marks and disruption of chromatin structure. In this Review, we describe the convergence of genetic, metabolic and microenvironmental factors on mechanisms of epigenetic deregulation in brain cancer. We discuss how aberrant epigenetic pathways identified in brain tumors affect cell identity, cell state and neoplastic transformation, as well as addressing the potential to exploit these alterations as new therapeutic strategies for the treatment of brain cancer.

  4. Irinotecan and Whole-Brain Radiation Therapy in Treating Patients With Brain Metastases From Solid Tumors

    ClinicalTrials.gov

    2010-03-15

    Brain and Central Nervous System Tumors; Cognitive/Functional Effects; Long-term Effects Secondary to Cancer Therapy in Adults; Long-term Effects Secondary to Cancer Therapy in Children; Poor Performance Status; Unspecified Adult Solid Tumor, Protocol Specific; Unspecified Childhood Solid Tumor, Protocol Specific

  5. Brain-derived neurotrophic factor (BDNF) and its precursor (proBDNF) in genetically defined fear-induced aggression.

    PubMed

    Ilchibaeva, Tatiana V; Kondaurova, Elena M; Tsybko, Anton S; Kozhemyakina, Rimma V; Popova, Nina K; Naumenko, Vladimir S

    2015-09-01

    The brain-derived neurotrophic factor (BDNF), its precursor (proBDNF) and BDNF mRNA levels were studied in the brain of wild rats selectively bred for more than 70 generations for either high level or for the lack of affective aggressiveness towards man. Significant increase of BDNF mRNA level in the frontal cortex and increase of BDNF level in the hippocampus of aggressive rats was revealed. In the midbrain and hippocampus of aggressive rats proBDNF level was increased, whereas BDNF/proBDNF ratio was reduced suggesting the prevalence and increased influence of proBDNF in highly aggressive rats. In the frontal cortex, proBDNF level in aggressive rats was decreased. Thus, considerable structure-specific differences in BDNF and proBDNF levels as well as in BDNF gene expression between highly aggressive and nonaggressive rats were shown. The data suggested the implication of BDNF and its precursor proBDNF in the mechanism of aggressiveness and in the creation of either aggressive or nonaggressive phenotype.

  6. No role of IFITM3 in brain tumor formation in vivo

    PubMed Central

    Kim, Ella L.; Bros, Matthias; Giese, Alf

    2016-01-01

    Glioblastoma multiforme (GBM) is one of the most lethal solid tumors in adults. Despite aggressive treatment approaches for patients, GBM recurrence is inevitable, in part due to the existence of stem-like brain tumor-propagating cells (BTPCs), which produce factors rendering them resistant to radio- and chemotherapy. Comparative transcriptome analysis of irradiated, patient-derived BTPCs revealed a significant upregulation of the interferon-inducible transmembrane protein 3 (IFITM3), suggesting the protein as a factor mediating radio resistance. Previously, IFITM3 has been described to affect glioma cells; therefore, the role of IFITM3 in the formation and progression of brain tumors has been investigated in vivo. Intracranial implantation studies using radio-selected BTPCs alongside non-irradiated parental BTPCs in immunodeficient mice displayed no influence of irradiation on animal survival. Furthermore, gain and loss of function studies using BTPCs ectopically expressing IFITM3 or having IFITM3 down-modulated by a shRNA approach, did affect neither tumor growth nor animal survival. Additionally, a syngeneic model based on the mouse glioma cell line GL261 was applied in order to consider the possibility that IFITM3 relies on an intact immune system to unfold its tumorigenic potential. GL261 cells ectopically expressing IFITM3 were implanted into the striatum of immunocompetent mice without influencing the survival of glioma-bearing animals. Lastly, the vasculature and the extent of microglia/macrophage invasion into the tumor were studied in BTPC and GL261 tumors but neither parameter was altered by IFITM3. This report presents for the first time that IFITM3 is upregulated in patient-derived BTPCs upon irradiation but does not affect brain tumor formation or progression in vivo. PMID:27835870

  7. AT9283, a novel aurora kinase inhibitor, suppresses tumor growth in aggressive B-cell lymphomas.

    PubMed

    Qi, Wenqing; Liu, Xiaobing; Cooke, Laurence S; Persky, Daniel O; Miller, Thomas P; Squires, Matthew; Mahadevan, Daruka

    2012-06-15

    Aurora kinases are oncogenic serine/threonine kinases that play key roles in regulating the mitotic phase of the eukaryotic cell cycle. Auroras are overexpressed in numerous tumors including B-cell non-Hodgkin's lymphomas and are validated oncology targets. AT9283, a pan-aurora inhibitor inhibited growth and survival of multiple solid tumors in vitro and in vivo. In this study, we demonstrated that AT9283 had potent activity against Aurora B in a variety of aggressive B-(non-Hodgkin lymphoma) B-NHL cell lines. Cells treated with AT9283 exhibited endoreduplication confirming the mechanism of action of an Aurora B inhibitor. Also, treatment of B-NHL cell lines with AT9283 induced apoptosis in a dose and time dependent manner and inhibited cell proliferation with an IC(50) < 1 μM. It is well known that inhibition of auroras (A or B) synergistically enhances the effects of microtubule targeting agents such as taxanes and vinca alkaloids to induce antiproliferation and apoptosis. We evaluated whether AT9283 in combination with docetaxel is more efficient in inducing apoptosis than AT9283 or docetaxel alone. At very low doses (5 nM) apoptosis was doubled in the combination (23%) compared to AT9283 or docetaxel alone (10%). A mouse xenograft model of mantle cell lymphoma demonstrated that AT9283 at 15 mg/kg and docetaxel (10 mg/kg) alone had modest anti-tumor activity. However, AT9283 at 20 mg/kg and AT9283 (15 or 20 mg/kg) plus docetaxel (10 mg/kg) demonstrated a statistically significant tumor growth inhibition and enhanced survival. Together, our results suggest that AT9283 plus docetaxel may represent a novel therapeutic strategy in B-cell NHL and warrant early phase clinical trial evaluation.

  8. Doublecortin is preferentially expressed in invasive human brain tumors.

    PubMed

    Daou, Marie-Claire; Smith, Thomas W; Litofsky, N Scott; Hsieh, Chung C; Ross, Alonzo H

    2005-11-01

    Doublecortin (DCX) is required for neuroblastic migration during the development of the cerebral cortex. DCX is a microtubule-associated protein that plays a role in cellular motility. These facts led us to hypothesize that DCX is increased in invasive brain tumors. DCX expression was assessed in 69 paraffin-embedded brain tumors of neuroepithelial origin. In addition, mouse brain sections of the subventricular zone and dentate gyrus were used as positive controls for immunostaining, and specificity of antibody staining was demonstrated by peptide neutralization. DCX was highly expressed in both high-grade invasive tumors (glioblastoma, n=11; anaplastic astrocytoma/oligoastrocytoma, n=7; and medulloblastoma/PNET, n=6) and low-grade invasive tumors (oligodendroglioma, n=3; and astrocytoma/oligoastrocytoma, n=5). However, DCX was less intensely expressed in the circumscribed group of tumors (pilocytic astrocytoma, n=6; ependymoma/subependymoma, n=7; dysembryoplastic neuroepithelial tumor, n=4; ganglioglioma, n=2; meningioma, n=9; and schwannoma, n=9). By the Cochran-Mantel-Haenszel statistical test, the circumscribed group was significantly different from both the high-grade invasive group (P<0.0001) and the low-grade invasive group (P<0.0001). We conclude that DCX is preferentially expressed in invasive brain tumors. In addition, DCX immunostaining was stronger at the margin of the tumor than at the center. For a subset of these tumors, we also detected DCX mRNA and protein by Northern and Western blotting. DCX mRNA and protein was detected in glioma cell lines by Northern blotting, immunofluorescence microscopy and Western blotting. Collectively, the immunohistochemistry, Western blots and Northern blots conclusively demonstrate expression of DCX by human brain tumors.

  9. Medical management of brain tumors and the sequelae of treatment

    PubMed Central

    Schiff, David; Lee, Eudocia Q.; Nayak, Lakshmi; Norden, Andrew D.; Reardon, David A.; Wen, Patrick Y.

    2015-01-01

    Patients with malignant brain tumors are prone to complications that negatively impact their quality of life and sometimes their overall survival as well. Tumors may directly provoke seizures, hypercoagulable states with resultant venous thromboembolism, and mood and cognitive disorders. Antitumor treatments and supportive therapies also produce side effects. In this review, we discuss major aspects of supportive care for patients with malignant brain tumors, with particular attention to management of seizures, venous thromboembolism, corticosteroids and their complications, chemotherapy including bevacizumab, and fatigue, mood, and cognitive dysfunction. PMID:25358508

  10. The roles of viruses in brain tumor initiation and oncomodulation

    PubMed Central

    Kofman, Alexander; Marcinkiewicz, Lucasz; Dupart, Evan; Lyshchev, Anton; Martynov, Boris; Ryndin, Anatolii; Kotelevskaya, Elena; Brown, Jay; Schiff, David

    2012-01-01

    While some avian retroviruses have been shown to induce gliomas in animal models, human herpesviruses, specifically, the most extensively studied cytomegalovirus, and the much less studied roseolovirus HHV-6, and Herpes simplex viruses 1 and 2, currently attract more and more attention as possible contributing or initiating factors in the development of human brain tumors. The aim of this review is to summarize and highlight the most provoking findings indicating a potential causative link between brain tumors, specifically malignant gliomas, and viruses in the context of the concepts of viral oncomodulation and the tumor stem cell origin. PMID:21720806

  11. An evaluative tool for preoperative planning of brain tumor resection

    NASA Astrophysics Data System (ADS)

    Coffey, Aaron M.; Garg, Ishita; Miga, Michael I.; Thompson, Reid C.

    2010-02-01

    A patient specific finite element biphasic brain model has been utilized to codify a surgeon's experience by establishing quantifiable biomechanical measures to score orientations for optimal planning of brain tumor resection. When faced with evaluating several potential approaches to tumor removal during preoperative planning, the goal of this work is to facilitate the surgeon's selection of a patient head orientation such that tumor presentation and resection is assisted via favorable brain shift conditions rather than trying to allay confounding ones. Displacement-based measures consisting of area classification of the brain surface shifting in the craniotomy region and lateral displacement of the tumor center relative to an approach vector defined by the surgeon were calculated over a range of orientations and used to form an objective function. The objective function was used in conjunction with Levenberg-Marquardt optimization to find the ideal patient orientation. For a frontal lobe tumor presentation the model predicts an ideal orientation that indicates the patient should be placed in a lateral decubitus position on the side contralateral to the tumor in order to minimize unfavorable brain shift.

  12. [Surgery of metastatic brain tumors with new surgical instruments].

    PubMed

    Nomura, K; Shibui, S; Matsuoka, K; Watanabe, T; Nakamura, O

    1987-05-01

    The risk of damages of neurological function by the operation of metastatic brain tumors was reduced considerably after introduction of neurosurgical apparatuses, such as ultrasonograph, ultrasonic surgical aspirator and laser scalpel. Of these, ultrasonograph is useful to indicate the exact location of brain tumor at real time during the operation. Ultrasonic surgical aspirator reduced the risk of damage on important brain structures due to the selectivity of fragmentation and the safety of the dissection in the vicinity of important vessels and nerve tissues. Laser scalpel is also useful to extirpate the hemorrhagic tumor with hard consistency. Cases introduced in this paper were: case 1, brain metastasis from lung cancer located just under the left motor area in brain; case 2, metastasis with abundant neovascularization from renal cancer to orbital cavity which showed invasion to orbital roof and frontal bone; case 3, radiation induced sarcoma after the treatment of retinoblastoma; case 4, a large cerebellar metastatic tumor; case 5, neurogenic sarcoma which were successfully removed by using one of or combination of ultrasonograph, ultrasonic aspirator and laser scalpel. Advantage of these new instruments for the surgery on metastatic brain tumor was mentioned here. However, it is necessarily to get a custom before we use these apparatuses at operation efficiently.

  13. Brain tumor modeling: glioma growth and interaction with chemotherapy

    NASA Astrophysics Data System (ADS)

    Banaem, Hossein Y.; Ahmadian, Alireza; Saberi, Hooshangh; Daneshmehr, Alireza; Khodadad, Davood

    2011-10-01

    In last decade increasingly mathematical models of tumor growths have been studied, particularly on solid tumors which growth mainly caused by cellular proliferation. In this paper we propose a modified model to simulate the growth of gliomas in different stages. Glioma growth is modeled by a reaction-advection-diffusion. We begin with a model of untreated gliomas and continue with models of polyclonal glioma following chemotherapy. From relatively simple assumptions involving homogeneous brain tissue bounded by a few gross anatomical landmarks (ventricles and skull) the models have been expanded to include heterogeneous brain tissue with different motilities of glioma cells in grey and white matter. Tumor growth is characterized by a dangerous change in the control mechanisms, which normally maintain a balance between the rate of proliferation and the rate of apoptosis (controlled cell death). Result shows that this model closes to clinical finding and can simulate brain tumor behavior properly.

  14. Factors affecting intellectual outcome in pediatric brain tumor patients

    SciTech Connect

    Ellenberg, L.; McComb, J.G.; Siegel, S.E.; Stowe, S.

    1987-11-01

    A prospective study utilizing repeated intellectual testing was undertaken in 73 children with brain tumors consecutively admitted to Childrens Hospital of Los Angeles over a 3-year period to determine the effect of tumor location, extent of surgical resection, hydrocephalus, age of the child, radiation therapy, and chemotherapy on cognitive outcome. Forty-three patients were followed for at least two sequential intellectual assessments and provide the data for this study. Children with hemispheric tumors had the most general cognitive impairment. The degree of tumor resection, adequately treated hydrocephalus, and chemotherapy had no bearing on intellectual outcome. Age of the child affected outcome mainly as it related to radiation. Whole brain radiation therapy was associated with cognitive decline. This was especially true in children below 7 years of age, who experienced a very significant loss of function after whole brain radiation therapy.

  15. Critical Care Management of Cerebral Edema in Brain Tumors.

    PubMed

    Esquenazi, Yoshua; Lo, Victor P; Lee, Kiwon

    2017-01-01

    Cerebral edema associated with brain tumors is extremely common and can occur in both primary and metastatic tumors. The edema surrounding brain tumors results from leakage of plasma across the vessel wall into the parenchyma secondary to disruption of the blood-brain barrier. The clinical signs of brain tumor edema depend on the location of the tumor as well as the extent of the edema, which often exceeds the mass effect induced by the tumor itself. Uncontrolled cerebral edema may result in increased intracranial pressure and acute herniation syndromes that can result in permanent neurological dysfunction and potentially fatal herniation. Treatment strategies for elevated intracranial pressure consist of general measures, medical interventions, and surgery. Alhough the definitive treatment for the edema may ultimately be surgical resection of the tumor, the impact of the critical care management cannot be underestimated and thus patients must be vigilantly monitored in the intensive care unit. In this review, we discuss the pathology, pathophysiology, and clinical features of patients presenting with cerebral edema. Imaging findings and treatment modalities used in the intensive care unit are also discussed.

  16. Neuromorphometry of primary brain tumors by magnetic resonance imaging

    PubMed Central

    Hevia-Montiel, Nidiyare; Rodriguez-Perez, Pedro I.; Lamothe-Molina, Paul J.; Arellano-Reynoso, Alfonso; Bribiesca, Ernesto; Alegria-Loyola, Marco A.

    2015-01-01

    Abstract. Magnetic resonance imaging is a technique for the diagnosis and classification of brain tumors. Discrete compactness is a morphological feature of two-dimensional and three-dimensional objects. This measure determines the compactness of a discretized object depending on the sum of the areas of the connected voxels and has been used for understanding the morphology of nonbrain tumors. We hypothesized that regarding brain tumors, we may improve the malignancy grade classification. We analyzed the values in 20 patients with different subtypes of primary brain tumors: astrocytoma, oligodendroglioma, and glioblastoma multiforme subdivided into the contrast-enhanced and the necrotic tumor regions. The preliminary results show an inverse relationship between the compactness value and the malignancy grade of gliomas. Astrocytomas exhibit a mean of 973±14, whereas oligodendrogliomas exhibit a mean of 942±21. In contrast, the contrast-enhanced region of the glioblastoma presented a mean of 919±43, and the necrotic region presented a mean of 869±66. However, the volume and area of the enclosing surface did not show a relationship with the malignancy grade of the gliomas. Discrete compactness appears to be a stable characteristic between primary brain tumors of different malignancy grades, because similar values were obtained from different patients with the same type of tumor. PMID:26158107

  17. GAD1 Upregulation Programs Aggressive Features of Cancer Cell Metabolism in the Brain Metastatic Microenvironment.

    PubMed

    Schnepp, Patricia M; Lee, Dennis D; Guldner, Ian H; O'Tighearnaigh, Treasa K; Howe, Erin N; Palakurthi, Bhavana; Eckert, Kaitlyn E; Toni, Tiffany A; Ashfeld, Brandon L; Zhang, Siyuan

    2017-04-11

    The impact of altered amino acid metabolism on cancer progression is not fully understood. We hypothesized that a metabolic transcriptome shift during metastatic evolution is crucial for brain metastasis. Here we report a powerful impact in this setting caused by epigenetic upregulation of glutamate decarboxylase 1 (GAD1), a regulator of the GABA neurotransmitter metabolic pathway. In cell-based culture and brain metastasis models, we found that downegulation of the DNA methyltransferase DNMT1 induced by the brain microenvironment-derived clusterin resulted in decreased GAD1 promoter methylation and subsequent upregulation of GAD1 expression in brain metastatic tumor cells. In a system to dynamically visualize cellular metabolic responses mediated by GAD1, we monitored the cytosolic NADH:NAD+ equilibrium in tumor cells. Reducing GAD1 in metastatic cells by primary glia cell co-culture abolished the capacity of metastatic cells to utilize extracellular glutamine, leading to cytosolic accumulation of NADH and increased oxidative status. Similarly, genetic or pharmacological disruption of the GABA metabolic pathway decreased the incidence of brain metastasis in vivo. Taken together, our results show how epigenetic changes in GAD1 expression alter local glutamate metabolism in the brain metastatic microenvironment, contributing to a metabolic adaption that facilitates metastasis outgrowth in that setting.

  18. Rare Aggressive Behavior of MDM2-Amplified Retroperitoneal Dedifferentiated Liposarcoma, with Brain, Lung and Subcutaneous Metastases

    PubMed Central

    Ben Salha, Imen; Zaidi, Shane; Noujaim, Jonathan; Miah, Aisha B.; Fisher, Cyril; Jones, Robin L.; Thway, Khin

    2016-01-01

    Dedifferentiated liposarcoma (DDL) is a histologically pleomorphic sarcoma, traditionally defined as well-differentiated liposarcoma with abrupt transition to high grade, non-lipogenic sarcoma. It can occur as part of recurrent well-differentiated liposarcoma, or may arise de novo. DDL most frequently occurs within the retroperitoneum, and while it is prone to local recurrence, it usually has a lower rate of metastasis than other pleomorphic sarcomas. We describe a case of retroperitoneal dedifferentiated liposarcoma in a 63-year-old male, who showed MDM2 amplification with fluorescence in situ hybridization, which displayed unusually aggressive behavior, with brain, lung and subcutaneous soft tissue metastases. As previous reports of metastatic liposarcoma have largely grouped DDL in with other (genetically and clinically distinct) liposarcoma subtypes, we highlight and discuss the rare occurrence of brain metastasis in MDM2-amplified retroperitoneal liposarcoma. PMID:27746879

  19. Research of the multimodal brain-tumor segmentation algorithm

    NASA Astrophysics Data System (ADS)

    Lu, Yisu; Chen, Wufan

    2015-12-01

    It is well-known that the number of clusters is one of the most important parameters for automatic segmentation. However, it is difficult to define owing to the high diversity in appearance of tumor tissue among different patients and the ambiguous boundaries of lesions. In this study, a nonparametric mixture of Dirichlet process (MDP) model is applied to segment the tumor images, and the MDP segmentation can be performed without the initialization of the number of clusters. A new nonparametric segmentation algorithm combined with anisotropic diffusion and a Markov random field (MRF) smooth constraint is proposed in this study. Besides the segmentation of single modal brain tumor images, we developed the algorithm to segment multimodal brain tumor images by the magnetic resonance (MR) multimodal features and obtain the active tumor and edema in the same time. The proposed algorithm is evaluated and compared with other approaches. The accuracy and computation time of our algorithm demonstrates very impressive performance.

  20. The therapy of infantile malignant brain tumors: current status?

    PubMed

    Kalifa, Chantal; Grill, Jacques

    2005-12-01

    Malignant brain tumors are not uncommon in infants as their occurrence before the age of three represents 20-25% of all malignant brain tumors in childhood [1]. Genetic predisposition to infantile malignant brain tumors are known in Gorlin syndrome for example who present with desmoplastic medulloblastoma in about 5% of the affected patients. In addition, sequelae from tumor and its treatment are more severe at this age [2]. Thus, malignant brain tumors represent a true therapeutic challenge in neuro-oncology. Before the era of modern imaging and modern neurosurgery these malignant brain tumors were misdiagnosed or could not benefit of the surgical procedures as well as older children because of increased risks in this age group. Since the end of the 80s, noninvasive imaging procedures produce accurate diagnosis of brain tumors and improvement in neurosurgery, neuroanesthesia and perioperative intensive care permit safe tumor resections or at least biopsies. Consequently, the pediatric oncologists are more often confronted with very young children who need a complementary treatment. Before the development of specific approaches for this age group, these children received the same kind of treatment than the older children did, but their survival and quality of life were significantly worse. The reasons of these poor results were probably due in part to the fear of late effects induced by radiation therapy, leading to decrease the necessary doses of irradiation which increased treatment failures without avoiding treatment related complications [3]. At the end of the 80s, pilot studies were performed using postoperative chemotherapy in young medulloblastoma patients. Van Eys treated 12 selected children with medulloblastoma with MOPP regimen and without irradiation; 8 of them were reported to be long term survivors [4]. Subsequently, the pediatric oncology cooperative groups studies have designed therapeutic trials for very young children with malignant brain tumors

  1. Molecular apocrine breast cancers are aggressive estrogen receptor negative tumors overexpressing either HER2 or GCDFP15

    PubMed Central

    2013-01-01

    Introduction Molecular apocrine (MA) tumors are estrogen receptor (ER) negative breast cancers characterized by androgen receptor (AR) expression. We analyzed a group of 58 transcriptionally defined MA tumors and proposed a new tool to identify these tumors. Methods We performed quantitative reverse transcription PCR (qRT-PCR) for ESR1, AR, FOXA1 and AR-related genes, and immunohistochemistry (IHC) for ER, PR, Human Epidermal Growth Factor Receptor 2 (HER2), CK5/6, CK17, EGFR, Ki67, AR, FOXA1 and GCDFP15 and we analyzed clinical features. Results MA tumors were all characterized by ESR1(-) AR(+) FOXA1(+) and AR-related genes positive mRNA profile. IHC staining on these tumors showed 93% ER(-), only 58% AR(+) and 90% FOXA1(+). 67% and 57% MA tumors were HER2(3+) and GCDFP15(+), respectively. Almost all MA tumors (94%) had the IHC signature HER2(3+) or GCDFP15(+) but none of the 13 control basal-like (BL) tumors did. Clinically, MA tumors were rather aggressive, with poor prognostic factors. Conclusion MA tumors could be better defined by their qRT-PCR-AR profile than by AR IHC. In addition, we found that HER2 or GCDFP15 protein overexpression is a sensitive and specific tool to differentiate MA from BL in the context of ER negative tumors. A composite molecular and IHC signature could, therefore, help to identify MA tumors in daily practice. PMID:23663520

  2. Blood Brain Barrier: A Challenge for Effectual Therapy of Brain Tumors

    PubMed Central

    Bhowmik, Arijit; Ghosh, Mrinal Kanti

    2015-01-01

    Brain tumors are one of the most formidable diseases of mankind. They have only a fair to poor prognosis and high relapse rate. One of the major causes of extreme difficulty in brain tumor treatment is the presence of blood brain barrier (BBB). BBB comprises different molecular components and transport systems, which in turn create efflux machinery or hindrance for the entry of several drugs in brain. Thus, along with the conventional techniques, successful modification of drug delivery and novel therapeutic strategies are needed to overcome this obstacle for treatment of brain tumors. In this review, we have elucidated some critical insights into the composition and function of BBB and along with it we have discussed the effective methods for delivery of drugs to the brain and therapeutic strategies overcoming the barrier. PMID:25866775

  3. An unusually large aggressive adenomatoid odontogenic tumor of maxilla involving the third molar: A clinical case report

    PubMed Central

    Dhupar, Vikas; Akkara, Francis; Khandelwal, Pulkit

    2016-01-01

    Adenomatoid odontogenic tumor (AOT) is a rare tumor comprising only 3% of all odontogenic tumors. It is a benign, encapsulated, noninvasive, nonaggressive, slowly growing odontogenic lesion associated with an impacted tooth. These lesions may go unnoticed for years. The usual treatment is enucleation and curettage, and the lesion does not recur. Here, we present a rare case of an unusually large aggressive AOT of maxilla associated with impacted third molar. The authors also discuss clinical, radiographic, histopathologic, and therapeutic features of the case. Subtotal maxillectomy with simultaneous reconstruction of the surgical defect with temporalis myofascial flap was planned and carried out. PMID:27095910

  4. Proposed therapeutic strategy for adult low-grade glioma based on aggressive tumor resection.

    PubMed

    Nitta, Masayuki; Muragaki, Yoshihiro; Maruyama, Takashi; Ikuta, Soko; Komori, Takashi; Maebayashi, Katsuya; Iseki, Hiroshi; Tamura, Manabu; Saito, Taiichi; Okamoto, Saori; Chernov, Mikhail; Hayashi, Motohiro; Okada, Yoshikazu

    2015-01-01

    significantly correlated with patient survival; thus, one should aim for maximum tumor resection. In addition, patients with a higher EOR can be safely observed without adjuvant therapy. For patients with partial resection, postoperative chemotherapy should be administered for those with oligodendroglial subtypes, and repeat resection should be considered for those with astrocytic tumors. More aggressive treatment with RT and chemotherapy may be required for patients with a poor prognosis, such as those with diffuse astrocytoma, 1p/19q nondeleted tumors, or IDH1 wild-type oligodendroglial tumors with partial resection.

  5. Exosomes as Tools to Suppress Primary Brain Tumor.

    PubMed

    Katakowski, Mark; Chopp, Michael

    2016-04-01

    Exosomes are small microvesicles released by cells that efficiently transfer their molecular cargo to other cells, including tumor. Exosomes may pass the blood-brain barrier and have been demonstrated to deliver RNAs contained within to brain. As they are non-viable, the risk profile of exosomes is thought to be less than that of cellular therapies. Exosomes can be manufactured at scale in culture, and exosomes can be engineered to incorporate therapeutic miRNAs, siRNAs, or chemotherapeutic molecules. As natural biological delivery vehicles, interest in the use of exosomes as therapeutic delivery agents is growing. We previously demonstrated a novel treatment whereby mesenchymal stromal cells were employed to package tumor-suppressing miR-146b into exosomes, which were then used to reduce malignant glioma growth in rat. The use of exosomes to raise the immune system against tumor is also drawing interest. Exosomes from dendritic cells which are antigen-presenting, and have been used for treatment of brain tumor may be divided into three categories: (1) exosomes for immunomodulation-based therapy, (2) exosomes as delivery vehicles for anti-tumor nucleotides, and (3) exosomes as drug delivery vehicles. Here, we will provide an overview of these three applications of exosomes to treat brain tumor, and examine their prospects on the long road to clinical use.

  6. Telomerase activity in human brain tumors: astrocytoma and meningioma.

    PubMed

    Kheirollahi, Majid; Mehrazin, Masoud; Kamalian, Naser; Mohammadi-asl, Javad; Mehdipour, Parvin

    2013-05-01

    Somatic cells do not have telomerase activity but immortalized cell lines and more than 85 % of the cancer cells show telomerase activation to prevent the telomere from progressive shortening. The activation of this enzyme has been found in a variety of human tumors and tumor-derived cell lines, but only few studies on telomerase activity in human brain tumors have been reported. Here, we evaluated telomerase activity in different grades of human astrocytoma and meningioma brain tumors. In this study, assay for telomerase activity performed on 50 eligible cases consisted of 26 meningioma, 24 astrocytoma according to the standard protocols. In the brain tissues, telomerase activity was positive in 39 (65 %) of 50 patients. One sample t test showed that the telomerase activity in meningioma and astrocytoma tumors was significantly positive entirely (P < 0.001). Also, grade I of meningioma and low grades of astrocytoma (grades I and II) significantly showed telomerase activity. According to our results, we suggest that activation of telomerase is an event that starts mostly at low grades of brain including meningioma and astrocytoma tumors.

  7. Factors affecting the cerebral network in brain tumor patients.

    PubMed

    Heimans, Jan J; Reijneveld, Jaap C

    2012-06-01

    Brain functions, including cognitive functions, are frequently disturbed in brain tumor patients. These disturbances may result from the tumor itself, but also from the treatment directed against the tumor. Surgery, radiotherapy and chemotherapy all may affect cerebral functioning, both in a positive as well as in a negative way. Apart from the anti-tumor treatment, glioma patients often receive glucocorticoids and anti-epileptic drugs, which both also have influence on brain functioning. The effect of a brain tumor on cerebral functioning is often more global than should be expected on the basis of the local character of the disease, and this is thought to be a consequence of disturbance of the cerebral network as a whole. Any network, whether it be a neural, a social or an electronic network, can be described in parameters assessing the topological characteristics of that particular network. Repeated assessment of neural network characteristics in brain tumor patients during their disease course enables study of the dynamics of neural networks and provides more insight into the plasticity of the diseased brain. Functional MRI, electroencephalography and especially magnetoencephalography are used to measure brain function and the signals that are being registered with these techniques can be analyzed with respect to network characteristics such as "synchronization" and "clustering". Evidence accumulates that loss of optimal neural network architecture negatively impacts complex cerebral functioning and also decreases the threshold to develop epileptic seizures. Future research should be focused on both plasticity of neural networks and the factors that have impact on that plasticity as well as the possible role of assessment of neural network characteristics in the determination of cerebral function during the disease course.

  8. Brain mapping in tumors: intraoperative or extraoperative?

    PubMed

    Duffau, Hugues

    2013-12-01

    In nontumoral epilepsy surgery, the main goal for all preoperative investigation is to first determine the epileptogenic zone, and then to analyze its relation to eloquent cortex, in order to control seizures while avoiding adverse postoperative neurologic outcome. To this end, in addition to neuropsychological assessment, functional neuroimaging and scalp electroencephalography, extraoperative recording, and electrical mapping, especially using subdural strip- or grid-electrodes, has been reported extensively. Nonetheless, in tumoral epilepsy surgery, the rationale is different. Indeed, the first aim is rather to maximize the extent of tumor resection while minimizing postsurgical morbidity, in order to increase the median survival as well as to preserve quality of life. As a consequence, as frequently seen in infiltrating tumors such as gliomas, where these lesions not only grow but also migrate along white matter tracts, the resection should be performed according to functional boundaries both at cortical and subcortical levels. With this in mind, extraoperative mapping by strips/grids is often not sufficient in tumoral surgery, since in essence, it allows study of the cortex but cannot map subcortical pathways. Therefore, intraoperative electrostimulation mapping, especially in awake patients, is more appropriate in tumor surgery, because this technique allows real-time detection of areas crucial for cerebral functions--eloquent cortex and fibers--throughout the resection. In summary, rather than choosing one or the other of different mapping techniques, methodology should be adapted to each pathology, that is, extraoperative mapping in nontumoral epilepsy surgery and intraoperative mapping in tumoral surgery.

  9. Application of SLT contact laser in resection of brain tumors

    NASA Astrophysics Data System (ADS)

    Li, Han-Jie; Li, Zhi-Qiang; Li, Chan-Yuan

    1998-11-01

    28 cases of brain tumors were operated by SLT contact Nd:YAG laser from October 1995 to May 1997 in our hospital. Among these, 14 are menin-giomas, 5 are astrocytomas. Others are tumors such as acoustic neuromas, craniopharyngiomas, etc 21 cases underwent common craniotomy, 3, laser endoscopy operation; and 4, laser therapy under microscopy. Method of tumor resection: firstly, cutting and separating the tumor from brain tissues with GRP by 5-15w; secondly, vaporizing parenchyma of tumor with MTRL and sucking it, again, cutting and separating and so on, lastly removing the tumor entirely. The power of vaporization for glioma or tumors in ventricles is about 20-30w, but for meningiomas, 30-60w. MT was used on power of 15-20w to coagulate and homeostate the left cavity of tumor. According to our experience, laser operation can make bleeding reduced markedly, tumor resection become more thorough, and postoperative response and complications decrease obviously.

  10. Growth inhibition, tumor maturation, and extended survival in experimental brain tumors in rats treated with phenylacetate.

    PubMed

    Ram, Z; Samid, D; Walbridge, S; Oshiro, E M; Viola, J J; Tao-Cheng, J H; Shack, S; Thibault, A; Myers, C E; Oldfield, E H

    1994-06-01

    Phenylacetate is a naturally occurring plasma component that suppresses the growth of tumor cells and induces differentiation in vitro. To evaluate the in vivo potential and preventive and therapeutic antitumor efficacy of sodium phenylacetate against malignant brain tumors, Fischer 344 rats (n = 50) bearing cerebral 9L gliosarcomas received phenylacetate by continuous s.c. release starting on the day of tumor inoculation (n = 10) using s.c. osmotic minipumps (550 mg/kg/day for 28 days). Rats with established brain tumors (n = 12) received continuous s.c. phenylacetate supplemented with additional daily i.p. dose (300 mg/kg). Control rats (n = 25) were treated in a similar way with saline. Rats were sacrificed during treatment for electron microscopic studies of their tumors, in vivo proliferation assays, and measurement of phenylacetate levels in the serum and cerebrospinal fluid. Treatment with phenylacetate extended survival when started on the day of tumor inoculation (P < 0.01) or 7 days after inoculation (P < 0.03) without any associated adverse effects. In the latter group, phenylacetate levels in pooled serum and cerebrospinal fluid samples after 7 days of treatment were in the therapeutic range as determined in vitro (2.45 mM in serum and 3.1 mM in cerebrospinal fluid). Electron microscopy of treated tumors demonstrated marked hypertrophy and organization of the rough endoplasmic reticulum, indicating cell differentiation, in contrast to the scant and randomly distributed endoplasmic reticulum in tumors from untreated animals. In addition, in vitro studies demonstrated dose-dependent inhibition of the rate of tumor proliferation and restoration of anchorage dependency, a marker of phenotypic reversion. Phenylacetate, used at clinically achievable concentrations, prolongs survival of rats with malignant brain tumors through induction of tumor differentiation. Its role in the treatment of brain tumors and other cancers should be explored further.

  11. Culture and Isolation of Brain Tumor Initiating Cells.

    PubMed

    Vora, Parvez; Venugopal, Chitra; McFarlane, Nicole; Singh, Sheila K

    2015-08-03

    Brain tumors are typically composed of heterogeneous cells that exhibit distinct phenotypic characteristics and proliferative potentials. Only a relatively small fraction of cells in the tumor with stem cell properties, termed brain tumor initiating cells (BTICs), possess an ability to differentiate along multiple lineages, self-renew, and initiate tumors in vivo. This unit describes protocols for the culture and isolation BTICs. We applied culture conditions and assays originally used for normal neural stem cells (NSCs) in vitro to a variety of brain tumors. Using fluorescence-activated cell sorting for the neural precursor cell surface marker CD133/CD15, BTICs can be isolated and studied prospectively. Isolation of BTICs from GBM bulk tumor will enable examination of dissimilar morphologies, self-renewal capacities, tumorigenicity, and therapeutic sensitivities. As cancer is also considered a disease of unregulated self-renewal and differentiation, an understanding of BTICs is fundamental to understanding tumor growth. Ultimately, it will lead to novel drug discovery approaches that strategically target the functionally relevant BTIC population.

  12. Circulating biomarker panels for targeted therapy in brain tumors.

    PubMed

    Tanase, Cristiana; Albulescu, Radu; Codrici, Elena; Popescu, Ionela Daniela; Mihai, Simona; Enciu, Ana Maria; Cruceru, Maria Linda; Popa, Adrian Claudiu; Neagu, Ana Iulia; Necula, Laura Georgiana; Mambet, Cristina; Neagu, Monica

    2015-01-01

    An important goal of oncology is the development of cancer risk-identifier biomarkers that aid early detection and target therapy. High-throughput profiling represents a major concern for cancer research, including brain tumors. A promising approach for efficacious monitoring of disease progression and therapy could be circulating biomarker panels using molecular proteomic patterns. Tailoring treatment by targeting specific protein-protein interactions and signaling networks, microRNA and cancer stem cell signaling in accordance with tumor phenotype or patient clustering based on biomarker panels represents the future of personalized medicine for brain tumors. Gathering current data regarding biomarker candidates, we address the major challenges surrounding the biomarker field of this devastating tumor type, exploring potential perspectives for the development of more effective predictive biomarker panels.

  13. Delayed Contrast Extravasation MRI for Depicting Tumor and Non-Tumoral Tissues in Primary and Metastatic Brain Tumors

    PubMed Central

    Zach, Leor; Guez, David; Last, David; Daniels, Dianne; Grober, Yuval; Nissim, Ouzi; Hoffmann, Chen; Nass, Dvora; Talianski, Alisa; Spiegelmann, Roberto; Cohen, Zvi R.; Mardor, Yael

    2012-01-01

    The current standard of care for newly diagnosed glioblastoma multiforme (GBM) is resection followed by radiotherapy with concomitant and adjuvant temozolomide. Recent studies suggest that nearly half of the patients with early radiological deterioration post treatment do not suffer from tumor recurrence but from pseudoprogression. Similarly, a significant number of patients with brain metastases suffer from radiation necrosis following radiation treatments. Conventional MRI is currently unable to differentiate tumor progression from treatment-induced effects. The ability to clearly differentiate tumor from non-tumoral tissues is crucial for appropriate patient management. Ten patients with primary brain tumors and 10 patients with brain metastases were scanned by delayed contrast extravasation MRI prior to surgery. Enhancement subtraction maps calculated from high resolution MR images acquired up to 75 min after contrast administration were used for obtaining stereotactic biopsies. Histological assessment was then compared with the pre-surgical calculated maps. In addition, the application of our maps for prediction of progression was studied in a small cohort of 13 newly diagnosed GBM patients undergoing standard chemoradiation and followed up to 19.7 months post therapy. The maps showed two primary enhancement populations: the slow population where contrast clearance from the tissue was slower than contrast accumulation and the fast population where clearance was faster than accumulation. Comparison with histology confirmed the fast population to consist of morphologically active tumor and the slow population to consist of non-tumoral tissues. Our maps demonstrated significant correlation with perfusion-weighted MR data acquired simultaneously, although contradicting examples were shown. Preliminary results suggest that early changes in the fast volumes may serve as a predictor for time to progression. These preliminary results suggest that our high resolution

  14. Computer-Aided Image Analysis and Fractal Synthesis in the Quantitative Evaluation of Tumor Aggressiveness in Prostate Carcinomas.

    PubMed

    Waliszewski, Przemyslaw

    2016-01-01

    The subjective evaluation of tumor aggressiveness is a cornerstone of the contemporary tumor pathology. A large intra- and interobserver variability is a known limiting factor of this approach. This fundamental weakness influences the statistical deterministic models of progression risk assessment. It is unlikely that the recent modification of tumor grading according to Gleason criteria for prostate carcinoma will cause a qualitative change and improve significantly the accuracy. The Gleason system does not allow the identification of low aggressive carcinomas by some precise criteria. The ontological dichotomy implies the application of an objective, quantitative approach for the evaluation of tumor aggressiveness as an alternative. That novel approach must be developed and validated in a manner that is independent of the results of any subjective evaluation. For example, computer-aided image analysis can provide information about geometry of the spatial distribution of cancer cell nuclei. A series of the interrelated complexity measures characterizes unequivocally the complex tumor images. Using those measures, carcinomas can be classified into the classes of equivalence and compared with each other. Furthermore, those measures define the quantitative criteria for the identification of low- and high-aggressive prostate carcinomas, the information that the subjective approach is not able to provide. The co-application of those complexity measures in cluster analysis leads to the conclusion that either the subjective or objective classification of tumor aggressiveness for prostate carcinomas should comprise maximal three grades (or classes). Finally, this set of the global fractal dimensions enables a look into dynamics of the underlying cellular system of interacting cells and the reconstruction of the temporal-spatial attractor based on the Taken's embedding theorem. Both computer-aided image analysis and the subsequent fractal synthesis could be performed

  15. Computer-Aided Image Analysis and Fractal Synthesis in the Quantitative Evaluation of Tumor Aggressiveness in Prostate Carcinomas

    PubMed Central

    Waliszewski, Przemyslaw

    2016-01-01

    The subjective evaluation of tumor aggressiveness is a cornerstone of the contemporary tumor pathology. A large intra- and interobserver variability is a known limiting factor of this approach. This fundamental weakness influences the statistical deterministic models of progression risk assessment. It is unlikely that the recent modification of tumor grading according to Gleason criteria for prostate carcinoma will cause a qualitative change and improve significantly the accuracy. The Gleason system does not allow the identification of low aggressive carcinomas by some precise criteria. The ontological dichotomy implies the application of an objective, quantitative approach for the evaluation of tumor aggressiveness as an alternative. That novel approach must be developed and validated in a manner that is independent of the results of any subjective evaluation. For example, computer-aided image analysis can provide information about geometry of the spatial distribution of cancer cell nuclei. A series of the interrelated complexity measures characterizes unequivocally the complex tumor images. Using those measures, carcinomas can be classified into the classes of equivalence and compared with each other. Furthermore, those measures define the quantitative criteria for the identification of low- and high-aggressive prostate carcinomas, the information that the subjective approach is not able to provide. The co-application of those complexity measures in cluster analysis leads to the conclusion that either the subjective or objective classification of tumor aggressiveness for prostate carcinomas should comprise maximal three grades (or classes). Finally, this set of the global fractal dimensions enables a look into dynamics of the underlying cellular system of interacting cells and the reconstruction of the temporal-spatial attractor based on the Taken’s embedding theorem. Both computer-aided image analysis and the subsequent fractal synthesis could be performed

  16. Remote Postoperative Epidural Hematoma after Brain Tumor Surgery

    PubMed Central

    Chung, Ho-Jung; Park, Jae-Sung; Jeun, Sin-Soo

    2015-01-01

    A postoperative epidural hematoma (EDH) is a serious and embarrassing complication, which usually occurs at the site of operation after intracranial surgery. However, remote EDH is relatively rare. We report three cases of remote EDH after brain tumor surgery. All three cases seemed to have different causes of remote postoperative EDH; however, all patients were managed promptly and showed excellent outcomes. Although the exact mechanism of remote postoperative EDH is unknown, surgeons should be cautious of the speed of lowering intracranial pressure and implement basic procedures to prevent this hazardous complication of brain tumor surgery. PMID:26605271

  17. Interpreting WAIS-III performance after primary brain tumor surgery.

    PubMed

    Gonçalves, Marta de A; Simões, Mário R; Castro-Caldas, Alexandre

    2017-01-01

    The literature lacks information on the performance of patients with brain tumors on the Wechsler Intelligence Scales. This study aimed to explore the Wechsler Adult Intelligence Scale-Third Edition (WAIS-III) performance profile of 23 consecutive patients with brain tumors and 23 matched controls selected from the Portuguese WAIS-III standardization sample, using the technical manual steps recommended for score interpretation. The control group was demographically matched to the tumor group regarding gender, age, education, profession, and geographic region. The technical manual steps recommended for score interpretation were applied. Patients with brain tumors had significantly lower performances on the Performance IQ, Full-Scale IQ, Perceptual Organization Index, Working Memory Index, Processing Speed Index, Arithmetic, Object Assembly, and Picture Arrangement, though all scaled scores were within the normal range according to the manual tables. Only Vocabulary and Comprehension scatter scores were statistically different between groups. No strengths or weaknesses were found for either group. The mean discrepancy scores do not appear to have clinical value for this population. In conclusion, the study results did not reveal a specific profile for patients with brain tumors on the WAIS-III.

  18. Training stem cells for treatment of malignant brain tumors.

    PubMed

    Li, Shengwen Calvin; Kabeer, Mustafa H; Vu, Long T; Keschrumrus, Vic; Yin, Hong Zhen; Dethlefs, Brent A; Zhong, Jiang F; Weiss, John H; Loudon, William G

    2014-09-26

    The treatment of malignant brain tumors remains a challenge. Stem cell technology has been applied in the treatment of brain tumors largely because of the ability of some stem cells to infiltrate into regions within the brain where tumor cells migrate as shown in preclinical studies. However, not all of these efforts can translate in the effective treatment that improves the quality of life for patients. Here, we perform a literature review to identify the problems in the field. Given the lack of efficacy of most stem cell-based agents used in the treatment of malignant brain tumors, we found that stem cell distribution (i.e., only a fraction of stem cells applied capable of targeting tumors) are among the limiting factors. We provide guidelines for potential improvements in stem cell distribution. Specifically, we use an engineered tissue graft platform that replicates the in vivo microenvironment, and provide our data to validate that this culture platform is viable for producing stem cells that have better stem cell distribution than with the Petri dish culture system.

  19. Diffusion in the extracellular space in brain and tumors

    NASA Astrophysics Data System (ADS)

    Verkman, A. S.

    2013-08-01

    Diffusion of solutes and macromolecules in the extracellular space (ECS) in brain is important for non-synaptic intercellular communication, extracellular ionic buffering, and delivery of drugs and metabolites. Diffusion in tumor ECS is important for delivery of anti-tumor drugs. The ECS in brain comprises ˜20% of brain parenchymal volume and contains cell-cell gaps down to ˜50 nm. We have developed fluorescence methods to quantify solute diffusion in the ECS, allowing measurements deep in solid tissues using microfiberoptics with micron tip size. Diffusion through the tortuous ECS in brain is generally slowed by ˜3-5-fold compared with that in water, with approximately half of the slowing due to tortuous ECS geometry and half due to the mildly viscous extracellular matrix (ECM). Mathematical modeling of slowed diffusion in an ECS with reasonable anatomical accuracy is in good agreement with experiment. In tumor tissue, diffusion of small macromolecules is only mildly slowed (<3-fold slower than in water) in superficial tumor, but is greatly slowed (>10-fold) at a depth of few millimeters as the tumor tissue becomes more compact. Slowing by ECM components such as collagen contribute to the slowed diffusion. Therefore, as found within cells, cellular crowding and highly tortuous transport can produce only minor slowing of diffusion in the ECS.

  20. Mucinous micropapillary carcinoma of the breast: an aggressive counterpart to conventional pure mucinous tumors.

    PubMed

    Barbashina, Violetta; Corben, Adriana D; Akram, Muzaffar; Vallejo, Christina; Tan, Lee K

    2013-08-01

    Mucinous micropapillary carcinoma of the breast, also described as "pure mucinous carcinoma with micropapillary pattern," has recently come to attention as an unusual form of invasive breast cancer exhibiting dual mucinous and micropapillary differentiation. Despite increasing awareness of this morphologic variant, its clinical significance has not yet been elucidated. Here, we present 15 additional examples of these rare tumors to highlight some important differences between mucinous micropapillary carcinoma of the breast and ordinary pure mucinous carcinomas. The key features of mucinous micropapillary carcinoma of the breast included (a) largely or entirely mucinous appearance (>90% mucinous morphology), (b) distinctive micropapillary arrangement of the neoplastic cells, (c) intermediate to high nuclear grade, (d) "hobnail" cells, and (e) frequent psammomatous calcifications. In contrast to ordinary pure mucinous carcinomas, 20% of mucinous micropapillary carcinomas of the breast were characterized by human epidermal growth factor receptor 2 positivity, and 23% were p53 positive. More than half of mucinous micropapillary carcinomas of the breast (60%) demonstrated lymphovascular invasion, sometimes extensive. Synchronous axillary lymph node metastases were detected in 33% of patients and, on 2 occasions, involved more than 10 nodes. With a median follow-up of 4.5 years, we identified 1 patient (7%) with chest wall recurrence of mucinous micropapillary carcinoma of the breast after mastectomy. We conclude that mucinous micropapillary carcinomas of the breast constitute a clinically aggressive subset of mucin-producing breast carcinomas characterized by an increased capacity for lymphatic invasion and regional lymph node metastasis, reflective of their dual phenotype. Recognition of the morphologic and biologic heterogeneity within breast cancer subtypes should allow for a more accurate classification of the individual tumors and better patient stratification for

  1. Progress on the diagnosis and evaluation of brain tumors

    PubMed Central

    Gao, Huile

    2013-01-01

    Abstract Brain tumors are one of the most challenging disorders encountered, and early and accurate diagnosis is essential for the management and treatment of these tumors. In this article, diagnostic modalities including single-photon emission computed tomography, positron emission tomography, magnetic resonance imaging, and optical imaging are reviewed. We mainly focus on the newly emerging, specific imaging probes, and their potential use in animal models and clinical settings. PMID:24334439

  2. Agnosias: recognition disorders in patients with brain tumors.

    PubMed

    Gainotti, Guido

    2012-06-01

    Two main varieties of recognition disorders are distinguished in neuropsychology: agnosias and semantic disorders. The term agnosias is generally used to denote recognition defects limited to a single perceptual modality (which is itself apparently intact), whereas the term semantic disorders is used to denote recognition defects involving all the sensory modalities in a roughly similar manner. Brain tumors can be one of the aetiologies underlying agnosias and semantic disorders. However, due to the heterogeneity and the rarity of recognition disorders, their investigation can be useful only to suggest or exclude the oncological nature of a brain lesion, but not to systematically monitor the clinical outcome in tumor patients. Furthermore, the relevance of recognition disorders as a hint toward a diagnosis of brain tumor varies according to the type of agnosia and of semantic disorder and the localization of the underlying brain pathology. The hypothesis that a variety of agnosia (or of semantic disorder) may be due to a neoplastic lesion can, therefore, be advanced if it is consistent with our knowledge about the usual localization and the growing patterns of different types of brain tumors.

  3. Enhanced Performance of Brain Tumor Classification via Tumor Region Augmentation and Partition.

    PubMed

    Cheng, Jun; Huang, Wei; Cao, Shuangliang; Yang, Ru; Yang, Wei; Yun, Zhaoqiang; Wang, Zhijian; Feng, Qianjin

    2015-01-01

    Automatic classification of tissue types of region of interest (ROI) plays an important role in computer-aided diagnosis. In the current study, we focus on the classification of three types of brain tumors (i.e., meningioma, glioma, and pituitary tumor) in T1-weighted contrast-enhanced MRI (CE-MRI) images. Spatial pyramid matching (SPM), which splits the image into increasingly fine rectangular subregions and computes histograms of local features from each subregion, exhibits excellent results for natural scene classification. However, this approach is not applicable for brain tumors, because of the great variations in tumor shape and size. In this paper, we propose a method to enhance the classification performance. First, the augmented tumor region via image dilation is used as the ROI instead of the original tumor region because tumor surrounding tissues can also offer important clues for tumor types. Second, the augmented tumor region is split into increasingly fine ring-form subregions. We evaluate the efficacy of the proposed method on a large dataset with three feature extraction methods, namely, intensity histogram, gray level co-occurrence matrix (GLCM), and bag-of-words (BoW) model. Compared with using tumor region as ROI, using augmented tumor region as ROI improves the accuracies to 82.31% from 71.39%, 84.75% from 78.18%, and 88.19% from 83.54% for intensity histogram, GLCM, and BoW model, respectively. In addition to region augmentation, ring-form partition can further improve the accuracies up to 87.54%, 89.72%, and 91.28%. These experimental results demonstrate that the proposed method is feasible and effective for the classification of brain tumors in T1-weighted CE-MRI.

  4. Enhanced Performance of Brain Tumor Classification via Tumor Region Augmentation and Partition

    PubMed Central

    Cheng, Jun; Huang, Wei; Cao, Shuangliang; Yang, Ru; Yang, Wei; Yun, Zhaoqiang; Wang, Zhijian; Feng, Qianjin

    2015-01-01

    Automatic classification of tissue types of region of interest (ROI) plays an important role in computer-aided diagnosis. In the current study, we focus on the classification of three types of brain tumors (i.e., meningioma, glioma, and pituitary tumor) in T1-weighted contrast-enhanced MRI (CE-MRI) images. Spatial pyramid matching (SPM), which splits the image into increasingly fine rectangular subregions and computes histograms of local features from each subregion, exhibits excellent results for natural scene classification. However, this approach is not applicable for brain tumors, because of the great variations in tumor shape and size. In this paper, we propose a method to enhance the classification performance. First, the augmented tumor region via image dilation is used as the ROI instead of the original tumor region because tumor surrounding tissues can also offer important clues for tumor types. Second, the augmented tumor region is split into increasingly fine ring-form subregions. We evaluate the efficacy of the proposed method on a large dataset with three feature extraction methods, namely, intensity histogram, gray level co-occurrence matrix (GLCM), and bag-of-words (BoW) model. Compared with using tumor region as ROI, using augmented tumor region as ROI improves the accuracies to 82.31% from 71.39%, 84.75% from 78.18%, and 88.19% from 83.54% for intensity histogram, GLCM, and BoW model, respectively. In addition to region augmentation, ring-form partition can further improve the accuracies up to 87.54%, 89.72%, and 91.28%. These experimental results demonstrate that the proposed method is feasible and effective for the classification of brain tumors in T1-weighted CE-MRI. PMID:26447861

  5. A Brain Tumor/Organotypic Slice Co-culture System for Studying Tumor Microenvironment and Targeted Drug Therapies.

    PubMed

    Chadwick, Emily J; Yang, David P; Filbin, Mariella G; Mazzola, Emanuele; Sun, Yu; Behar, Oded; Pazyra-Murphy, Maria F; Goumnerova, Liliana; Ligon, Keith L; Stiles, Charles D; Segal, Rosalind A

    2015-11-07

    Brain tumors are a major cause of cancer-related morbidity and mortality. Developing new therapeutics for these cancers is difficult, as many of these tumors are not easily grown in standard culture conditions. Neurosphere cultures under serum-free conditions and orthotopic xenografts have expanded the range of tumors that can be maintained. However, many types of brain tumors remain difficult to propagate or study. This is particularly true for pediatric brain tumors such as pilocytic astrocytomas and medulloblastomas. This protocol describes a system that allows primary human brain tumors to be grown in culture. This quantitative assay can be used to investigate the effect of microenvironment on tumor growth, and to test new drug therapies. This protocol describes a system where fluorescently labeled brain tumor cells are grown on an organotypic brain slice from a juvenile mouse. The response of tumor cells to drug treatments can be studied in this assay, by analyzing changes in the number of cells on the slice over time. In addition, this system can address the nature of the microenvironment that normally fosters growth of brain tumors. This brain tumor organotypic slice co-culture assay provides a propitious system for testing new drugs on human tumor cells within a brain microenvironment.

  6. A Brain Tumor/Organotypic Slice Co-culture System for Studying Tumor Microenvironment and Targeted Drug Therapies

    PubMed Central

    Chadwick, Emily J.; Yang, David P.; Filbin, Mariella G.; Mazzola, Emanuele; Sun, Yu; Behar, Oded; Pazyra-Murphy, Maria F.; Goumnerova, Liliana; Ligon, Keith L.; Stiles, Charles D.; Segal, Rosalind A.

    2015-01-01

    Brain tumors are a major cause of cancer-related morbidity and mortality. Developing new therapeutics for these cancers is difficult, as many of these tumors are not easily grown in standard culture conditions. Neurosphere cultures under serum-free conditions and orthotopic xenografts have expanded the range of tumors that can be maintained. However, many types of brain tumors remain difficult to propagate or study. This is particularly true for pediatric brain tumors such as pilocytic astrocytomas and medulloblastomas. This protocol describes a system that allows primary human brain tumors to be grown in culture. This quantitative assay can be used to investigate the effect of microenvironment on tumor growth, and to test new drug therapies. This protocol describes a system where fluorescently labeled brain tumor cells are grown on an organotypic brain slice from a juvenile mouse. The response of tumor cells to drug treatments can be studied in this assay, by analyzing changes in the number of cells on the slice over time. In addition, this system can address the nature of the microenvironment that normally fosters growth of brain tumors. This brain tumor organotypic slice co-culture assay provides a propitious system for testing new drugs on human tumor cells within a brain microenvironment. PMID:26575352

  7. The tumoral A genotype of the MGMT rs34180180 single-nucleotide polymorphism in aggressive gliomas is associated with shorter patients' survival.

    PubMed

    Fogli, Anne; Chautard, Emmanuel; Vaurs-Barrière, Catherine; Pereira, Bruno; Müller-Barthélémy, Mélanie; Court, Franck; Biau, Julian; Pinto, Afonso Almeida; Kémény, Jean-Louis; Khalil, Toufic; Karayan-Tapon, Lucie; Verrelle, Pierre; Costa, Bruno Marques; Arnaud, Philippe

    2016-02-01

    Malignant gliomas are the most common primary brain tumors. Grade III and IV gliomas harboring wild-type IDH1/2 are the most aggressive. In addition to surgery and radiotherapy, concomitant and adjuvant chemotherapy with temozolomide (TMZ) significantly improves overall survival (OS). The methylation status of the O(6)-methylguanine-DNA methyltransferase (MGMT) promoter is predictive of TMZ response and a prognostic marker of cancer outcome. However, the promoter regions the methylation of which correlates best with survival in aggressive glioma and whether the promoter methylation status predictive value could be refined or improved by other MGMT-associated molecular markers are not precisely known. In a cohort of 87 malignant gliomas treated with radiotherapy and TMZ-based chemotherapy, we retrospectively determined the MGMT promoter methylation status, genotyped single nucleotide polymorphisms (SNPs) in the promoter region and quantified MGMT mRNA expression level. Each of these variables was correlated with each other and with the patients' OS. We found that methylation of the CpG sites within MGMT exon 1 best correlated with OS and MGMT expression levels, and confirmed MGMT methylation as a stronger independent prognostic factor compared to MGMT transcription levels. Our main finding is that the presence of only the A allele at the rs34180180 SNP in the tumor was significantly associated with shorter OS, independently of the MGMT methylation status. In conclusion, in the clinic, rs34180180 SNP genotyping could improve the prognostic value of the MGMT promoter methylation assay in patients with aggressive glioma treated with TMZ.

  8. Intracranial foreign body granuloma simulating brain tumor: a case report

    PubMed Central

    Saeidiborojeni, Hamid Reza; Fakheri, Taravat; Iizadi, Babak

    2011-01-01

    Intracranial foreign body granulomas are rarely reported. Clinical symptoms caused by foreign body granulomas can be noticed from months to many years after surgical procedure. The most common reported etiology is suture material. A 45-year-old woman was presented with grand mal epilepsy. She was operated for brain tumor 19 years ago. In CT scan, a round radio-dense mass resembling a tumor at anterior fossa was seen. She underwent craniotomy and resected a granuloma with cotton fibers surrounded by yellow capsule without residual or recurrent tumor. Granuloma can mimic intracranial meningioma and special attention should be paid not to leave cotton pledgets during operations. PMID:22091258

  9. Development of multifunctional nanoparticles for brain tumor diagnosis and therapy

    NASA Astrophysics Data System (ADS)

    Veiseh, Omid

    Magnetic nanoparticles (MNPs) represent a class of non-invasive imaging agents developed for magnetic resonance (MR) imaging and drug delivery. MNPs have traditionally been developed for disease imaging via passive targeting, but recent advances in nanotechnology have enabled cellular-specific targeting, drug delivery and multi-modal imaging using these nanoparticles. Opportunities now exist to engineer MNP with designated features (e.g., size, coatings, and molecular functionalizations) for specific biomedical applications. The goal of this interdisciplinary research project is to develop targeting multifunctional nanoparticles, serving as both contrast agents and drug carriers that can effectively pass biological barriers, for diagnosis, staging and treatment of brain tumors. The developed nanoparticle system consists of a superparamagnetic iron oxide nanoparticle core (NP) and a shell comprised of biodegradable polymers such as polyethylene glycol (PEG) and chitosan. Additionally, near-infrared fluorescing (NIRF) molecules were integrated onto the NP shell to enable optical detection. Tumor targeting was achieved by the addition of chlorotoxin, a peptide with that has high affinity to 74 out of the 79 classifications of primary brain tumors and ability to illicit a therapeutic effect. This novel NP system was tested both in vitro and in vivo and was shown to specifically target gliomas in tissue culture and medulloblastomas in transgenic mice with an intact blood brain barriers (BBB), and delineate tumor boundaries in both MR and optical imaging. Additionally, the therapeutic potential of this NP system was explored in vitro, which revealed a unique nanoparticle-enabled pathway that enhances the therapeutic potential of bound peptides by promoting the internalization of membrane bound cell surface receptors. This NP system was further modified with siRNA and evaluated as a carrier for brain tumor targeted gene therapy. Most significantly, the evaluation of

  10. American brain tumor patients treated with BNCT in Japan

    SciTech Connect

    Laramore, G.E.; Griffin, B.R.; Spence, A.

    1995-11-01

    The purpose of this work is to establish and maintain a database for patients from the United States who have received BNCT in Japan for malignant gliomas of the brain. This database will serve as a resource for the DOE to aid in decisions relating to BNCT research in the United States, as well as assisting the design and implementation of clinical trials of BNCT for brain cancer patients in this country. The database will also serve as an information resource for patients with brain tumors and their families who are considering this form of therapy.

  11. MRI virtual biopsy and treatment of brain metastatic tumors with targeted nanobioconjugates: nanoclinic in the brain.

    PubMed

    Patil, Rameshwar; Ljubimov, Alexander V; Gangalum, Pallavi R; Ding, Hui; Portilla-Arias, Jose; Wagner, Shawn; Inoue, Satoshi; Konda, Bindu; Rekechenetskiy, Arthur; Chesnokova, Alexandra; Markman, Janet L; Ljubimov, Vladimir A; Li, Debiao; Prasad, Ravi S; Black, Keith L; Holler, Eggehard; Ljubimova, Julia Y

    2015-05-26

    Differential diagnosis of brain magnetic resonance imaging (MRI) enhancement(s) remains a significant problem, which may be difficult to resolve without biopsy, which can be often dangerous or even impossible. Such MRI enhancement(s) can result from metastasis of primary tumors such as lung or breast, radiation necrosis, infections, or a new primary brain tumor (glioma, meningioma). Neurological symptoms are often the same on initial presentation. To develop a more precise noninvasive MRI diagnostic method, we have engineered a new class of poly(β-l-malic acid) polymeric nanoimaging agents (NIAs). The NIAs carrying attached MRI tracer are able to pass through the blood-brain barrier (BBB) and specifically target cancer cells for efficient imaging. A qualitative/quantitative "MRI virtual biopsy" method is based on a nanoconjugate carrying MRI contrast agent gadolinium-DOTA and antibodies recognizing tumor-specific markers and extravasating through the BBB. In newly developed double tumor xenogeneic mouse models of brain metastasis this noninvasive method allowed differential diagnosis of HER2- and EGFR-expressing brain tumors. After MRI diagnosis, breast and lung cancer brain metastases were successfully treated with similar tumor-targeted nanoconjugates carrying molecular inhibitors of EGFR or HER2 instead of imaging contrast agent. The treatment resulted in a significant increase in animal survival and markedly reduced immunostaining for several cancer stem cell markers. Novel NIAs could be useful for brain diagnostic MRI in the clinic without currently performed brain biopsies. This technology shows promise for differential MRI diagnosis and treatment of brain metastases and other pathologies when biopsies are difficult to perform.

  12. Glucocorticoid receptor blockade inhibits brain cell addition and aggressive signaling in electric fish, Apteronotus leptorhynchus.

    PubMed

    Dunlap, Kent D; Jashari, Denisa; Pappas, Kristina M

    2011-08-01

    When animals are under stress, glucocorticoids commonly inhibit adult neurogenesis by acting through glucocorticoid receptors (GRs). However, in some cases, conditions that elevate glucocorticoids promote adult neurogenesis, and the role of glucocorticoid receptors in these circumstances is not well understood. We examined the involvement of GRs in social enhancement of brain cell addition and aggressive signaling in electric fish, Apteronotus leptorhynchus. In this species, long-term social interaction simultaneously elevates plasma cortisol, enhances brain cell addition and increases production of aggressive electrocommunication signals ("chirps"). We implanted isolated and paired fish with capsules containing nothing (controls) or the GR antagonist, RU486, recorded chirp production and locomotion for 7d, and measured the density of newborn cells in the periventricular zone. Compared to isolated controls, paired controls showed elevated chirping in two phases: much higher chirp rates in the first 5h and moderately higher nocturnal rates thereafter. Treating paired fish with RU486 reduced chirp rates in both phases to those of isolated fish, demonstrating that GR activation is crucial for socially induced chirping. Neither RU486 nor social interaction affected locomotion. RU486 treatment to paired fish had a partial effect on cell addition: paired RU486 fish had less cell addition than paired control fish but more than isolated fish. This suggests that cortisol activation of GRs contributes to social enhancement of cell addition but works in parallel with another GR-independent mechanism. RU486 also reduced cell addition in isolated fish, indicating that GRs participate in the regulation of cell addition even when cortisol levels are low.

  13. Rapid increase in aggressive behavior precedes the decrease in brain aromatase activity during socially mediated sex change in Lythrypnus dalli.

    PubMed

    Black, Michael P; Balthazart, Jacques; Baillien, Michelle; Grober, Matthew S

    2011-01-01

    In the bluebanded goby, Lythrypnus dalli, removal of the male from a social group results in a rapid behavioral response where one female becomes dominant and changes sex to male. In a previous study, within hours of male removal, aromatase activity in the brain (bAA) of dominant females was almost 50% lower than that of control females from a group in which the male had not been removed. For those females that displayed increased aggressive behavior after the male was removed, the larger the increase in aggressive behavior, the greater the reduction in bAA. To investigate whether decreased bAA leads to increased aggression, the present study used a more rapid time course of behavioral profiling and bAA assay, looking within minutes of male removal from the group. There were no significant differences in bAA between control females (large females from groups with the male still present), females that doubled their aggressive behavior by 10 or 20 min after male removal, or females that did not double their aggressive behavior within 30 min after male removal. Further, individual variation in bAA and aggressive behavior were not correlated in these fish. Whole brain decreases in aromatase activity thus appear to follow, rather than precede, rapid increases in aggressive behavior, which provides one potential mechanism underlying the rapid increase in androgens that follows aggressive interactions in many vertebrate species. For fish species that change sex from female to male, this increase in androgens could subsequently facilitate sex change.

  14. Learning Profiles of Survivors of Pediatric Brain Tumors

    ERIC Educational Resources Information Center

    Barkon, Beverly

    2009-01-01

    By 2010 it is predicted that one in 900 adults will be survivors of some form of pediatric cancer. The numbers are somewhat lower for survivors of brain tumors, though their numbers are increasing. Schools mistakenly believe that these children easily fit pre-existing categories of disability. Though these students share some of the…

  15. Life Satisfaction in Adult Survivors of Childhood Brain Tumors

    PubMed Central

    Crom, Deborah B.; Li, Zhenghong; Brinkman, Tara M.; Hudson, Melissa M.; Armstrong, Gregory T.; Neglia, Joseph; Ness, Kirsten K.

    2014-01-01

    Adult survivors of childhood brain tumors experience multiple, significant, life-long deficits as a consequence of their malignancy and therapy. Current survivorship literature documents the substantial impact such impairments have on survivors’ physical health and quality of life. Psychosocial reports detail educational, cognitive, and emotional limitations characterizing survivors as especially fragile, often incompetent, and unreliable in evaluating their circumstances. Anecdotal data suggests some survivors report life experiences similar to those of healthy controls. The aim of our investigation was to determine whether life satisfaction in adult survivors of childhood brain tumors differs from that of healthy controls and to identify potential predictors of life satisfaction in survivors. This cross-sectional study compared 78 brain tumor survivors with population–based matched controls. Chi-square tests, t-tests, and linear regression models were used to investigate patterns of life satisfaction and identify potential correlates. Results indicated life satisfaction of adult survivors of childhood brain tumors was similar to that of healthy controls. Survivors’ general health expectations emerged as the primary correlate of life satisfaction. Understanding life satisfaction as an important variable will optimize the design of strategies to enhance participation in follow-up care, reduce suffering, and optimize quality of life in this vulnerable population. PMID:25027187

  16. Life satisfaction in adult survivors of childhood brain tumors.

    PubMed

    Crom, Deborah B; Li, Zhenghong; Brinkman, Tara M; Hudson, Melissa M; Armstrong, Gregory T; Neglia, Joseph; Ness, Kirsten K

    2014-01-01

    Adult survivors of childhood brain tumors experience multiple, significant, lifelong deficits as a consequence of their malignancy and therapy. Current survivorship literature documents the substantial impact such impairments have on survivors' physical health and quality of life. Psychosocial reports detail educational, cognitive, and emotional limitations characterizing survivors as especially fragile, often incompetent, and unreliable in evaluating their circumstances. Anecdotal data suggest some survivors report life experiences similar to those of healthy controls. The aim of our investigation was to determine whether life satisfaction in adult survivors of childhood brain tumors differs from that of healthy controls and to identify potential predictors of life satisfaction in survivors. This cross-sectional study compared 78 brain tumor survivors with population-based matched controls. Chi-square tests, t tests, and linear regression models were used to investigate patterns of life satisfaction and identify potential correlates. Results indicated that life satisfaction of adult survivors of childhood brain tumors was similar to that of healthy controls. Survivors' general health expectations emerged as the primary correlate of life satisfaction. Understanding life satisfaction as an important variable will optimize the design of strategies to enhance participation in follow-up care, reduce suffering, and optimize quality of life in this vulnerable population.

  17. Genetic abnormality predicts benefit for a rare brain tumor

    Cancer.gov

    A clinical trial has shown that addition of chemotherapy to radiation therapy leads to a near doubling of median survival time in patients with a form of brain tumor (oligodendroglioma) that carries a chromosomal abnormality called the 1p19q co-deletion.

  18. Gene therapy for brain tumors: basic developments and clinical implementation.

    PubMed

    Assi, Hikmat; Candolfi, Marianela; Baker, Gregory; Mineharu, Yohei; Lowenstein, Pedro R; Castro, Maria G

    2012-10-11

    Glioblastoma multiforme (GBM) is the most common and deadliest of adult primary brain tumors. Due to its invasive nature and sensitive location, complete resection remains virtually impossible. The resistance of GBM against chemotherapy and radiotherapy necessitate the development of novel therapies. Gene therapy is proposed for the treatment of brain tumors and has demonstrated pre-clinical efficacy in animal models. Here we review the various experimental therapies that have been developed for GBM including both cytotoxic and immune stimulatory approaches. We also review the combined conditional cytotoxic immune stimulatory therapy that our lab has developed which is dependent on the adenovirus mediated expression of the conditional cytotoxic gene, Herpes Simplex Type 1 Thymidine Kinase (TK) and the powerful DC growth factor Fms-like tyrosine kinase 3 ligand (Flt3L). Combined delivery of these vectors elicits tumor cell death and an anti-tumor adaptive immune response that requires TLR2 activation. The implications of our studies indicate that the combined cytotoxic and immunotherapeutic strategies are effective strategies to combat deadly brain tumors and warrant their implementation in human Phase I clinical trials for GBM.

  19. Gene Therapy for Brain Tumors: Basic Developments and Clinical Implementation

    PubMed Central

    Assi, Hikmat; Candolfi, Marianela; Baker, Gregory; Mineharu, Yohei; Lowenstein, Pedro R; Castro, Maria G

    2012-01-01

    Glioblastoma multiforme (GBM) is the most common and deadliest of adult primary brain tumors. Due to its invasive nature and sensitive location, complete resection remains virtually impossible. The resistance of GBM against chemotherapy and radiotherapy necessitate the development of novel therapies. Gene therapy is proposed for the treatment of brain tumors and has demonstrated pre-clinical efficacy in animal models. Here we review the various experimental therapies that have been developed for GBM including both cytotoxic and immune stimulatory approaches. We also review the combined conditional cytotoxic immune stimulatory therapy that our lab has developed which is dependent on the adenovirus mediated expression of the conditional cytotoxic gene, Herpes Simplex Type 1 Thymidine Kinase (TK) and the powerful DC growth factor Fms-like tyrosine kinase 3 ligand (Flt3L). Combined delivery of these vectors elicits tumor cell death and an anti-tumor adaptive immune response that requires TLR2 activation. The implications of our studies indicate that the combined cytotoxic and immunotherapeutic strategies are effective strategies to combat deadly brain tumors and warrant their implementation in human Phase I clinical trials for GBM. PMID:22906921

  20. Antiangiogenic (metronomic) chemotherapy for brain tumors: current and future perspectives.

    PubMed

    Samuel, David P; Wen, Patrick Y; Kieran, Mark W

    2009-07-01

    Significant advances in the diagnosis and treatment of brain tumors have been made through better imaging, surgical techniques and advances in radiation therapy. However, the cure rate for most adult and pediatric brain tumor patients has not mirrored this success. Angiogenesis, the development of neovascularization, provides the required nutrients and oxygen to an expanding tumor and is controlled by a complex balance of proangiogenic cytokines and antiangiogenic factors. A series of new inhibitors of angiogenesis are now in clinical trials. Most of these rely on inhibiting tumor cell-mediated cytokines or blocking the activation of their cognate receptors. Cytotoxic chemotherapy, by contrast, targets dividing cells but can be modulated to attack dividing endothelial cells. This review will focus on the use of low-dose antiangiogenic (also called metronomic) chemotherapy to inhibit endothelial cell function and resultant neovascularization in the treatment of adult and pediatric brain tumors. By examining the biology and preclinical findings that led to the development of antiangiogenic/metronomic chemotherapy, clinical studies have been undertaken that support the role of this approach in the clinic, and have led to the introduction of a number of markers being used to better predict active combinations and appropriate patient populations.

  1. Effects of ractopamine feeding, gender and social rank on aggressiveness and monoamine concentrations in different brain areas of finishing pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated the effects of the feed additive ractopamine (RAC), gender and social rank on aggressiveness and brain monoamines levels of serotonin (5HT), dopamine (DA), their metabolites, norepinephrine (NE) and epinephrine (EP) in finishing pigs. Thirty-two pigs (16 barrows/16 gilts) were a...

  2. Sub-100 nm Gold Nanomatryoshkas Improve Photo-thermal Therapy Efficacy in Large and Highly Aggressive Triple Negative Breast Tumors

    PubMed Central

    Bishnoi, Sandra; Urban, Alexander; Charron, Heather; Mitchell, Tamika; Shea, Martin; Nanda, Sarmistha; Schiff, Rachel; Halas, Naomi; Joshi, Amit

    2014-01-01

    There is an unmet need for efficient near-infrared photothermal transducers for the treatment of highly aggressive cancers and large tumors where the penetration of light can be substantially reduced, and the intra-tumoral nanoparticle transport is restricted due to the presence of hypoxic or nectrotic regions. We report the performance advantages obtained by sub 100 nm gold nanomatryushkas, comprising of concentric gold-silica-gold layers compared to conventional ~150 nm silica core gold nanoshells for photothermal therapy of triple negative breast cancer. We demonstrate that a 33% reduction in silica-core-gold-shell nanoparticle size, while retaining near-infrared plasmon resonance, and keeping the nanoparticle surface charge constant, results in a four to five fold tumor accumulation of nanoparticles following equal dose of injected gold for both sizes. The survival time of mice bearing large (>1000 mm3) and highly aggressive triple negative breast tumors is doubled for the nanomatryushka treatment group under identical photo-thermal therapy conditions. The higher absorption cross-section of a nanomatryoshka results in a higher efficiency of photonic to thermal energy conversion and coupled with 4-5X accumulation within large tumors results in superior therapy efficacy. PMID:25051221

  3. Sub-100nm gold nanomatryoshkas improve photo-thermal therapy efficacy in large and highly aggressive triple negative breast tumors.

    PubMed

    Ayala-Orozco, Ciceron; Urban, Cordula; Bishnoi, Sandra; Urban, Alexander; Charron, Heather; Mitchell, Tamika; Shea, Martin; Nanda, Sarmistha; Schiff, Rachel; Halas, Naomi; Joshi, Amit

    2014-10-10

    There is an unmet need for efficient near-infrared photothermal transducers for the treatment of highly aggressive cancers and large tumors where the penetration of light can be substantially reduced, and the intra-tumoral nanoparticle transport is restricted due to the presence of hypoxic or necrotic regions. We report the performance advantages obtained by sub 100nm gold nanomatryushkas, comprising concentric gold-silica-gold layers compared to conventional ~150nm silica core gold nanoshells for photothermal therapy of triple negative breast cancer. We demonstrate that a 33% reduction in silica-core-gold-shell nanoparticle size, while retaining near-infrared plasmon resonance, and keeping the nanoparticle surface charge constant, results in a four to five fold tumor accumulation of nanoparticles following equal dose of injected gold for both sizes. The survival time of mice bearing large (>1000mm(3)) and highly aggressive triple negative breast tumors is doubled for the nanomatryushka treatment group under identical photo-thermal therapy conditions. The higher absorption cross-section of a nanomatryoshka results in a higher efficiency of photonic to thermal energy conversion and coupled with 4-5× accumulation within large tumors results in superior therapy efficacy.

  4. Cerenkov and radioluminescence imaging of brain tumor specimens during neurosurgery

    NASA Astrophysics Data System (ADS)

    Spinelli, Antonello Enrico; Schiariti, Marco P.; Grana, Chiara M.; Ferrari, Mahila; Cremonesi, Marta; Boschi, Federico

    2016-05-01

    We presented the first example of Cerenkov luminescence imaging (CLI) and radioluminescence imaging (RLI) of human tumor specimens. A patient with a brain meningioma localized in the left parietal region was injected with 166 MBq of Y90-DOTATOC the day before neurosurgery. The specimens of the tumor removed during surgery were imaged using both CLI and RLI using an optical imager prototype developed in our laboratory. The system is based on a cooled electron multiplied charge coupled device coupled with an f/0.95 17-mm C-mount lens. We showed for the first time the possibility of obtaining CLI and RLI images of fresh human brain tumor specimens removed during neurosurgery.

  5. Unsupervised measurement of brain tumor volume on MR images.

    PubMed

    Velthuizen, R P; Clarke, L P; Phuphanich, S; Hall, L O; Bensaid, A M; Arrington, J A; Greenberg, H M; Silbiger, M L

    1995-01-01

    We examined unsupervised methods of segmentation of MR images of the brain for measuring tumor volume in response to treatment. Two clustering methods were used: fuzzy c-means and a nonfuzzy clustering algorithm. Results were compared with volume segmentations by two supervised methods, k-nearest neighbors and region growing, and all results were compared with manual labelings. Results of individual segmentations are presented as well as comparisons on the application of the different methods with 10 data sets of patients with brain tumors. Unsupervised segmentation is preferred for measuring tumor volumes in response to treatment, as it eliminates operator dependency and may be adequate for delineation of the target volume in radiation therapy. Some obstacles need to be overcome, in particular regarding the detection of anatomically relevant tissue classes. This study shows that these improvements are possible.

  6. Alterations of telomere length in human brain tumors.

    PubMed

    Kheirollahi, Majid; Mehrazin, Masoud; Kamalian, Naser; Mehdipour, Parvin

    2011-09-01

    Telomeres at the ends of human chromosomes consist of tandem hexametric (TTAGGG)n repeats, which protect them from degradation. At each cycle of cell division, most normal somatic cells lose approximately 50-100 bp of the terminal telomeric repeat DNA. Precise prediction of growth and estimation of the malignant potential of brain tumors require additional markers. DNA extraction was performed from the 51 frozen tissues, and a non-radioactive chemiluminescent assay was used for Southern blotting. One sample t-test shows highly significant difference in telomere length in meningioma and astrocytoma with normal range. According to our results, higher grades of meningioma and astrocytoma tumors show more heterogeneity in telomere length, and also it seems shortening process of telomeres is an early event in brain tumors.

  7. Therapeutic Potential of Curcumin for the Treatment of Brain Tumors

    PubMed Central

    Klinger, Neil V.

    2016-01-01

    Brain malignancies currently carry a poor prognosis despite the current multimodal standard of care that includes surgical resection and adjuvant chemotherapy and radiation. As new therapies are desperately needed, naturally occurring chemical compounds have been studied for their potential chemotherapeutic benefits and low toxicity profile. Curcumin, found in the rhizome of turmeric, has extensive therapeutic promise via its antioxidant, anti-inflammatory, and antiproliferative properties. Preclinical in vitro and in vivo data have shown it to be an effective treatment for brain tumors including glioblastoma multiforme. These effects are potentiated by curcumin's ability to induce G2/M cell cycle arrest, activation of apoptotic pathways, induction of autophagy, disruption of molecular signaling, inhibition of invasion, and metastasis and by increasing the efficacy of existing chemotherapeutics. Further, clinical data suggest that it has low toxicity in humans even at large doses. Curcumin is a promising nutraceutical compound that should be evaluated in clinical trials for the treatment of human brain tumors. PMID:27807473

  8. Clinical Activity of the γ-Secretase Inhibitor PF-03084014 in Adults With Desmoid Tumors (Aggressive Fibromatosis).

    PubMed

    Kummar, Shivaani; O'Sullivan Coyne, Geraldine; Do, Khanh T; Turkbey, Baris; Meltzer, Paul S; Polley, Eric; Choyke, Peter L; Meehan, Robert; Vilimas, Rasa; Horneffer, Yvonne; Juwara, Lamin; Lih, Ann; Choudhary, Amul; Mitchell, Sandra A; Helman, Lee J; Doroshow, James H; Chen, Alice P

    2017-03-28

    Purpose Desmoid tumors (aggressive fibromatosis) arise from connective tissue cells or fibroblasts. In general, they are slow growing and do not metastasize; however, locally aggressive desmoid tumors can cause severe morbidity and loss of function. Disease recurrence after surgery and/or radiation and diagnosis of multifocal desmoid tumors highlight the need to develop effective systemic treatments for this disease. In this study, we evaluate objective response rate after therapy with the γ-secretase inhibitor PF-03084014 in patients with recurrent, refractory, progressive desmoid tumors. Patients and Methods Seventeen patients with desmoid tumors received PF-03084014 150 mg orally twice a day in 3-week cycles. Response to treatment was evaluated at cycle 1 and every six cycles, that is, 18 weeks, by RECIST (Response Evaluation Criteria in Solid Tumors) version 1.1. Patient-reported outcomes were measured at baseline and at every restaging visit by using the MD Anderson Symptoms Inventory. Archival tumor and blood samples were genotyped for somatic and germline mutations in APC and CTNNB1. Results Of 17 patients accrued to the study, 15 had mutations in APC or CTNNB1 genes. Sixteen patients (94%) were evaluable for response; five (29%) experienced a confirmed partial response and have been on study for more than 2 years. Another five patients with prolonged stable disease as their best response remain on study. Patient-reported outcomes confirmed clinician reporting that the investigational agent was well tolerated and, in subgroup analyses, participants who demonstrated partial response also experienced clinically meaningful and statistically significant improvements in symptom burden. Conclusion PF-03084014 was well tolerated and demonstrated promising clinical benefit in patients with refractory, progressive desmoid tumors who receive long-term treatment.

  9. Simulation of brain tumor resection in image-guided neurosurgery

    NASA Astrophysics Data System (ADS)

    Fan, Xiaoyao; Ji, Songbai; Fontaine, Kathryn; Hartov, Alex; Roberts, David; Paulsen, Keith

    2011-03-01

    Preoperative magnetic resonance images are typically used for neuronavigation in image-guided neurosurgery. However, intraoperative brain deformation (e.g., as a result of gravitation, loss of cerebrospinal fluid, retraction, resection, etc.) significantly degrades the accuracy in image guidance, and must be compensated for in order to maintain sufficient accuracy for navigation. Biomechanical finite element models are effective techniques that assimilate intraoperative data and compute whole-brain deformation from which to generate model-updated MR images (uMR) to improve accuracy in intraoperative guidance. To date, most studies have focused on early surgical stages (i.e., after craniotomy and durotomy), whereas simulation of more complex events at later surgical stages has remained to be a challenge using biomechanical models. We have developed a method to simulate partial or complete tumor resection that incorporates intraoperative volumetric ultrasound (US) and stereovision (SV), and the resulting whole-brain deformation was used to generate uMR. The 3D ultrasound and stereovision systems are complimentary to each other because they capture features deeper in the brain beneath the craniotomy and at the exposed cortical surface, respectively. In this paper, we illustrate the application of the proposed method to simulate brain tumor resection at three temporally distinct surgical stages throughout a clinical surgery case using sparse displacement data obtained from both the US and SV systems. We demonstrate that our technique is feasible to produce uMR that agrees well with intraoperative US and SV images after dural opening, after partial tumor resection, and after complete tumor resection. Currently, the computational cost to simulate tumor resection can be up to 30 min because of the need for re-meshing and the trial-and-error approach to refine the amount of tissue resection. However, this approach introduces minimal interruption to the surgical workflow

  10. Dosimetry in brain tumor phantom at 15 MV 3D conformal radiation therapy

    PubMed Central

    2013-01-01

    Glioblastoma multiforme (GBM) is the most common, aggressive, highly malignant and infiltrative of all brain tumors with low rate of control. The main goal of this work was to evaluate the spatial dose distribution into a GBM simulator inside a head phantom exposed to a 15 MV 3D conformal radiation therapy in order to validate internal doses. A head and neck phantom developed by the Ionizing Radiation Research Group (NRI) was used on the experiments. Such phantom holds the following synthetic structures: brain and spinal cord, skull, cervical and thoracic vertebrae, jaw, hyoid bone, laryngeal cartilages, head and neck muscles and skin. Computer tomography (CT) of the simulator was taken, capturing a set of contrasted references. Therapy Radiation planning (TPS) was performed based on those CT images, satisfying a 200 cGy prescribed dose split in three irradiation fields. The TPS assumed 97% of prescribed dose cover the prescribed treatment volume (PTV). Radiochromic films in a solid water phantom provided dose response as a function of optical density. Spatial dosimetric distribution was generated by radiochromic film samples at coronal, sagittal-anterior and sagittal-posterior positions, inserted into tumor simulator and brain. The spatial dose profiles held 70 to 120% of the prescribed dose. In spite of the stratified profile, as opposed to the smooth dose profile from TPS, the tumor internal doses were within a 5% deviation from 214.4 cGy evaluated by TPS. 83.2% of the points with a gamma value of less than 1 (3%/3mm) for TPS and experimental values, respectively. At the tumor, measured at coronal section, a few dark spots in the film caused the appearance of outlier points in 13-15% of dose deviation percentage. And, as final conclusion, such dosimeter choice and the physical anthropomorphic and anthropometric phantom provided an efficient method for validating radiotherapy protocols. PMID:23829593

  11. Banking Brain Tumor Specimens Using a University Core Facility.

    PubMed

    Bregy, Amade; Papadimitriou, Kyriakos; Faber, David A; Shah, Ashish H; Gomez, Carmen R; Komotar, Ricardo J; Egea, Sophie C

    2015-08-01

    Within the past three decades, the significance of banking human cancer tissue for the advancement of cancer research has grown exponentially. The purpose of this article is to detail our experience in collecting brain tumor specimens in collaboration with the University of Miami/Sylvester Tissue Bank Core Facility (UM-TBCF), to ensure the availability of high-quality samples of central nervous system tumor tissue for research. Successful tissue collection begins with obtaining informed consent from patients following institutional IRB and federal HIPAA guidelines, and it needs a well-trained professional staff and continued maintenance of high ethical standards and record keeping. Since starting in 2011, we have successfully banked 225 brain tumor specimens for research. Thus far, the most common tumor histology identified among those specimens has been glioblastoma (22.1%), followed by meningioma (18.1%). The majority of patients were White, non-Hispanics accounting for 45.1% of the patient population; Hispanic/Latinos accounted for 23%, and Black/African Americans accounted for 14%, which represent the particular population of the State of Florida according to the 2010 census data. The most common tumors found in each subgroup were as follows: Black/African American, glioblastoma and meningioma; Hispanic, metastasis and glioblastoma; White, glioblastoma and meningioma. The UM-TBCF is a valuable repository, offering high-quality tumor samples from a unique patient population.

  12. What Are the Risk Factors for Brain and Spinal Cord Tumors in Children?

    MedlinePlus

    ... and Prevention What Are the Risk Factors for Brain and Spinal Cord Tumors in Children? A risk ... Factors with uncertain, controversial, or unproven effects on brain tumor risk Cell phone use Cell phones give ...

  13. Advanced MRI for Pediatric Brain Tumors with Emphasis on Clinical Benefits

    PubMed Central

    Ra, Young-Shin

    2017-01-01

    Conventional anatomic brain MRI is often limited in evaluating pediatric brain tumors, the most common solid tumors and a leading cause of death in children. Advanced brain MRI techniques have great potential to improve diagnostic performance in children with brain tumors and overcome diagnostic pitfalls resulting from diverse tumor pathologies as well as nonspecific or overlapped imaging findings. Advanced MRI techniques used for evaluating pediatric brain tumors include diffusion-weighted imaging, diffusion tensor imaging, functional MRI, perfusion imaging, spectroscopy, susceptibility-weighted imaging, and chemical exchange saturation transfer imaging. Because pediatric brain tumors differ from adult counterparts in various aspects, MRI protocols should be designed to achieve maximal clinical benefits in pediatric brain tumors. In this study, we review advanced MRI techniques and interpretation algorithms for pediatric brain tumors. PMID:28096729

  14. Imaging of brain tumor proliferative activity with iodine-131-iododeoxyuridine

    SciTech Connect

    Tjuvajev, J.G.; Macapinlac, H.A.; Daghighian, F.

    1994-09-01

    Iodine-131-iododeoxyuridine (IUdR) uptake and retention was imaged with SPECT at 2 and 24 hr after administering a 10-mCi dose to six patients with primary brain tumors. The SPECT images were directly compared to gadolinium contrast-enhanced MR images as well as to ({sup 18}F) fluorodeoxyglucose (FDG) PET scans and {sup 201}Tl SPECT scans. Localized uptake and retention of IUdR-derived radioactivity was observed in five of six patients. The plasma half-life of ({sup 131}I) IUdR was short (1.5 min) in comparison to the half-life of total plasma radioactivity (6.4 hr). The pattern of ({sup 131}I)IUdR-derived radioactivity was markedly different in the 2-hr compared to 24-hr images. Radioactivity was localized along the periphery of the tumor and extended beyond the margin of tumor identified by contrast enhancement on MRI. The estimated levels of tumor radioactivity at 24 hr, based on semiquantitative phantom studies, ranged between <0.1 and 0.2 {mu}Ci/cc (<0.001% and 0.002% dose/cc); brain levels were not measurable. Iodine-131-IUdR SPECT imaging of brain tumor proliferation has low (marginal) sensitivity due to low count rates and can detect only the most active regions of tumor growth. Imaging at 24 hr represents a washout strategy to reduce {sup 131}I-labeled metabolites contributing to background activity in the tumors, and is more likely to show the pattern of ({sup 131}I)IUdR-DNA incorporation and thereby increase image specificity. Iodine-123-IUdR SPECT imaging at 12 hr and the use of ({sup 124}I)IUdR and PET will improve count acquisitions and image quality. 74 refs., 6 figs., 2 tabs.

  15. Radiation treatment of brain tumors: Concepts and strategies

    SciTech Connect

    Marks, J.E. )

    1989-01-01

    Ionizing radiation has demonstrated clinical value for a multitude of CNS tumors. Application of the different physical modalities available has made it possible for the radiotherapist to concentrate the radiation in the region of the tumor with relative sparing of the surrounding normal tissues. Correlation of radiation dose with effect on cranial soft tissues, normal brain, and tumor has shown increasing effect with increasing dose. By using different physical modalities to alter the distribution of radiation dose, it is possible to increase the dose to the tumor and reduce the dose to the normal tissues. Alteration of the volume irradiated and the dose delivered to cranial soft tissues, normal brain, and tumor are strategies that have been effective in improving survival and decreasing complications. The quest for therapeutic gain using hyperbaric oxygen, neutrons, radiation sensitizers, chemotherapeutic agents, and BNCT has met with limited success. Both neoplastic and normal cells are affected simultaneously by all modalities of treatment, including ionizing radiation. Consequently, one is unable to totally depopulate a tumor without irreversibly damaging the normal tissues. In the case of radiation, it is the brain that limits delivery of curative doses, and in the case of chemical additives, it is other organ systems, such as bone marrow, liver, lung, kidneys, and peripheral nerves. Thus, the major obstacle in the treatment of malignant gliomas is our inability to preferentially affect the tumor with the modalities available. Until it is possible to directly target the neoplastic cell without affecting so many of the adjacent normal cells, the quest for therapeutic gain will go unrealized.72 references.

  16. The transcriptional network for mesenchymal transformation of brain tumors

    PubMed Central

    Carro, Maria Stella; Lim, Wei Keat; Alvarez, Mariano Javier; Bollo, Robert J.; Zhao, Xudong; Snyder, Evan Y.; Sulman, Erik P.; Anne, Sandrine L.; Doetsch, Fiona; Colman, Howard; Lasorella, Anna; Aldape, Ken; Califano, Andrea; Iavarone, Antonio

    2013-01-01

    Inference of transcriptional networks that regulate transitions into physiologic or pathologic cellular states remains a central challenge in systems biology. A mesenchymal phenotype is the hallmark of tumor aggressiveness in human malignant glioma but the regulatory programs responsible for implementing the associated molecular signature are largely unknown. Here, we show that reverse-engineering and unbiased interrogation of a glioma-specific regulatory network reveal the transcriptional module that activates expression of mesenchymal genes in malignant glioma. Two transcription factors (C/EBPβ and Stat3) emerge as synergistic initiators and master regulators of mesenchymal transformation. Ectopic co-expression of C/EBPβ and Stat3 reprograms neural stem cells along the aberrant mesenchymal lineage whereas elimination of the two factors in glioma cells leads to collapse of the mesenchymal signature and reduces tumor aggressiveness. In human glioma, expression of C/EBPβ and Stat3 correlates with mesenchymal differentiation and predicts poor clinical outcome. These results reveal that activation of a small regulatory module is necessary and sufficient to initiate and maintain an aberrant phenotypic state in cancer cells. PMID:20032975

  17. Emerging techniques and technologies in brain tumor imaging

    PubMed Central

    Ellingson, Benjamin M.; Bendszus, Martin; Sorensen, A. Gregory; Pope, Whitney B.

    2014-01-01

    The purpose of this report is to describe the state of imaging techniques and technologies for detecting response of brain tumors to treatment in the setting of multicenter clinical trials. Within currently used technologies, implementation of standardized image acquisition and the use of volumetric estimates and subtraction maps are likely to help to improve tumor visualization, delineation, and quantification. Upon further development, refinement, and standardization, imaging technologies such as diffusion and perfusion MRI and amino acid PET may contribute to the detection of tumor response to treatment, particularly in specific treatment settings. Over the next few years, new technologies such as 23Na MRI and CEST imaging technologies will be explored for their use in expanding the ability to quantitatively image tumor response to therapies in a clinical trial setting. PMID:25313234

  18. Postictal Magnetic Resonance Imaging Changes Masquerading as Brain Tumor Progression: A Case Series

    PubMed Central

    Dunn-Pirio, Anastasie M.; Billakota, Santoshi; Peters, Katherine B.

    2016-01-01

    Seizures are common among patients with brain tumors. Transient, postictal magnetic resonance imaging abnormalities are a long recognized phenomenon. However, these radiographic changes are not as well studied in the brain tumor population. Moreover, reversible neuroimaging abnormalities following seizure activity may be misinterpreted for tumor progression and could consequently result in unnecessary tumor-directed treatment. Here, we describe two cases of patients with brain tumors who developed peri-ictal pseudoprogression and review the relevant literature. PMID:27462237

  19. The pattern of epidermal growth factor receptor variation with disease progression and aggressiveness in colorectal cancer depends on tumor location

    PubMed Central

    PAPAGIORGIS, PETROS C.; ZIZI, ADAMANTIA E.; TSELENI, SOPHIA; OIKONOMAKIS, IOANNIS N.; NIKITEAS, NIKOLAOS I.

    2012-01-01

    The role of epidermal growth factor receptor (EGFR) in colorectal cancer (CRC) prognosis remains unclear despite the recent development of anti-EGFR treatments for metastatic disease. The heterogeneity of CRC may account for this discrepancy; proximal and distal CRC has been found to be genetically and clinicopathologically different. The aim of this study was to investigate the effect of tumor location on the association of EGFR with the conventional prognostic indicators (stage and grade) in CRC. Immunohistochemical assessment of EGFR was retrospectively performed in 119 primary CRC specimens and data were correlated with tumor stage and grade in the proximal and distal tumor subset. The molecular combination of EGFR with p53 (previously assessed in this sample) was similarly analyzed. EGFR positivity was detected in 34, 30 and 35% of the entire cohort, proximal and distal tumors, respectively. The pattern of EGFR clinicopathological correlation was found to differ by site. A reduction in the frequency of EGFR(+) with progression of stage and/or worsening of grade was observed proximally, whereas an opposite trend was recorded distally. Proximal tumors with stage I or with indolent features (stage I, well-differentiated) exhibited a significantly higher proportion of EGFR positivity than other tumors of this location (p=0.023 and p=0.022, respectively) or corresponding distal tumors (p=0.018 and p=0.035, respectively). Moreover, the co-existence of EGFR and high p53 staining (accounting for 11% of cases) was found in a significantly higher proportion of stage IV tumors compared to other stages (p=0.004), although only for the distal subset. Proximal and distal tumors showed various patterns of EGFR variation with disease progression and aggressiveness. This disparity provides further support to the hypothesis that these particular subsets of CRC are distinct tumor entities. It may also be suggestive of a potentially different therapeutic approach according to

  20. History and evolution of brain tumor imaging: insights through radiology.

    PubMed

    Castillo, Mauricio

    2014-11-01

    This review recounts the history of brain tumor diagnosis from antiquity to the present and, indirectly, the history of neuroradiology. Imaging of the brain has from the beginning held an enormous interest because of the inherent difficulty of this endeavor due to the presence of the skull. Because of this, most techniques when newly developed have always been used in neuroradiology and, although some have proved to be inappropriate for this purpose, many were easily incorporated into the specialty. The first major advance in modern neuroimaging was contrast agent-enhanced computed tomography, which permitted accurate anatomic localization of brain tumors and, by virtue of contrast enhancement, malignant ones. The most important advances in neuroimaging occurred with the development of magnetic resonance imaging and diffusion-weighted sequences that allowed an indirect estimation of tumor cellularity; this was further refined by the development of perfusion and permeability mapping. From its beginnings with indirect and purely anatomic imaging techniques, neuroradiology now uses a combination of anatomic and physiologic techniques that will play a critical role in biologic tumor imaging and radiologic genomics.

  1. Receptor-Independent Ectopic Activity of Prolactin Predicts Aggressive Lung Tumors and Indicates HDACi-Based Therapeutic Strategies

    PubMed Central

    Le Bescont, Aurore; Vitte, Anne-Laure; Debernardi, Alexandra; Curtet, Sandrine; Buchou, Thierry; Vayr, Jessica; de Reyniès, Aurélien; Ito, Akihiro; Guardiola, Philippe; Brambilla, Christian; Yoshida, Minoru; Brambilla, Elisabeth

    2015-01-01

    Abstract Aims: Ectopic activation of tissue-specific genes accompanies malignant transformation in many cancers. Prolactin (PRL) aberrant activation in lung cancer was investigated here to highlight its value as a biomarker. Results: PRL is ectopically activated in a subset of very aggressive lung tumors, associated with a rapid fatal outcome, in our cohort of 293 lung tumor patients and in an external independent series of patients. Surprisingly PRL receptor expression was not detected in the vast majority of PRL-expressing lung tumors. Additionally, the analysis of the PRL transcripts in lung tumors and cell lines revealed systematic truncations of their 5′ regions, including the signal peptide-encoding portions. PRL expression was found to sustain cancer-specific gene expression circuits encompassing genes that are normally responsive to hypoxia. Interestingly, this analysis also indicated that histone deacetylase (HDAC) inhibitors could counteract the PRL-associated transcriptional activity. Innovation and Conclusion: Altogether, this work not only unravels a yet unknown oncogenic mechanism but also indicates that the specific category of PRL-expressing aggressive lung cancers could be particularly responsive to an HDAC inhibitor-based treatment. Antioxid. Redox Signal. 23, 1–14. PMID:24512221

  2. Independent benzodiazepine and beta-carboline binding sites in the brain of aggressive and timid-defensive mice

    SciTech Connect

    Sukhotina, I.A.; Rozhanets, V.V.; Poshivalov, V.P.

    1987-11-01

    The authors study the distribution of specific binding sites of labeled benzodiazepine and beta-carboline derivatives in parts of the brain of intact aggressive and timid-defensive mice, and also of animals subjected to subchronic administration of diazepam. The concentrations of /sup 3/H-flunitrazepam and /sup 3/H-beta-carboline-3-carboxylate ethyl ester in the incubation mixture for binding are given. Analysis of their specific binding with brain membranes of animals not receiving diazepam showed that the concentration of specific binding sites for both ligands in both types of mice was significantly higher in the cortex than in other brain regions.

  3. Electroretinography and Visual Evoked Potentials in Childhood Brain Tumor Survivors.

    PubMed

    Pietilä, Sari; Lenko, Hanna L; Oja, Sakari; Koivisto, Anna-Maija; Pietilä, Timo; Mäkipernaa, Anne

    2016-07-01

    This population-based cross-sectional study evaluates the clinical value of electroretinography and visual evoked potentials in childhood brain tumor survivors. A flash electroretinography and a checkerboard reversal pattern visual evoked potential (or alternatively a flash visual evoked potential) were done for 51 survivors (age 3.8-28.7 years) after a mean follow-up time of 7.6 (1.5-15.1) years. Abnormal electroretinography was obtained in 1 case, bilaterally delayed abnormal visual evoked potentials in 22/51 (43%) cases. Nine of 25 patients with infratentorial tumor location, and altogether 12 out of 31 (39%) patients who did not have tumors involving the visual pathways, had abnormal visual evoked potentials. Abnormal electroretinographies are rarely observed, but abnormal visual evoked potentials are common even without evident anatomic lesions in the visual pathway. Bilateral changes suggest a general and possibly multifactorial toxic/adverse effect on the visual pathway. Electroretinography and visual evoked potential may have clinical and scientific value while evaluating long-term effects of childhood brain tumors and tumor treatment.

  4. Neurodegeneration in the Brain Tumor Microenvironment: Glutamate in the Limelight

    PubMed Central

    Savaskan, Nicolai E.; Fan, Zheng; Broggini, Thomas; Buchfelder, Michael; Eyüpoglu, Ilker Y.

    2015-01-01

    Malignant brain tumors are characterized by destructive growth and neuronal cell death making them one of the most devastating diseases. Neurodegenerative actions of malignant gliomas resemble mechanisms also found in many neurodegenerative diseases such as Alzheimer's and Parkinson's diseases and amyotrophic lateral sclerosis. Recent data demonstrate that gliomas seize neuronal glutamate signaling for their own growth advantage. Excessive glutamate release via the glutamate/cystine antiporter xCT (system xc-, SLC7a11) renders cancer cells resistant to chemotherapeutics and create the tumor microenvironment toxic for neurons. In particular the glutamate/cystine antiporter xCT takes center stage in neurodegenerative processes and sets this transporter a potential prime target for cancer therapy. Noteworthy is the finding, that reactive oxygen species (ROS) activate transient receptor potential (TRP) channels and thereby TRP channels can potentiate glutamate release. Yet another important biological feature of the xCT/glutamate system is its modulatory effect on the tumor microenvironment with impact on host cells and the cancer stem cell niche. The EMA and FDA-approved drug sulfasalazine (SAS) presents a lead compound for xCT inhibition, although so far clinical trials on glioblastomas with SAS were ambiguous. Here, we critically analyze the mechanisms of action of xCT antiporter on malignant gliomas and in the tumor microenvironment. Deciphering the impact of xCT and glutamate and its relation to TRP channels in brain tumors pave the way for developing important cancer microenvironmental modulators and drugable lead targets. PMID:26411769

  5. Developmental effects of aggressive behavior in male adolescents assessed with structural and functional brain imaging

    PubMed Central

    Strenziok, Maren; Krueger, Frank; Heinecke, Armin; Lenroot, Rhoshel K.; Knutson, Kristine M.; van der Meer, Elke

    2011-01-01

    Aggressive behavior is common during adolescence. Although aggression-related functional changes in the ventromedial prefrontal cortex (vmPFC) and frontopolar cortex (FPC) have been reported in adults, the neural correlates of aggressive behavior in adolescents, particularly in the context of structural neurodevelopment, are obscure. We used functional and structural magnetic resonance imaging (MRI) to measure the blood oxygenation level-depended signal and cortical thickness. In a block-designed experiment, 14–17-year old adolescents imagined aggressive and non-aggressive interactions with a peer. We show reduced vmPFC activation associated with imagined aggressive behavior as well as enhanced aggression-related activation and cortical thinning in the FPC with increasing age. Changes in FPC activation were also associated with judgments of the severity of aggressive acts. Reduced vmPFC activation was associated with greater aggression indicating its normal function is to exert inhibitory control over aggressive impulses. Concurrent FPC activation likely reflects foresight of harmful consequences that result from aggressive acts. The correlation of age-dependent activation changes and cortical thinning demonstrates ongoing maturation of the FPC during adolescence towards a refinement of social and cognitive information processing that can potentially facilitate mature social behavior in aggressive contexts. PMID:19770220

  6. Numerical simulations of MREIT conductivity imaging for brain tumor detection.

    PubMed

    Meng, Zi Jun; Sajib, Saurav Z K; Chauhan, Munish; Sadleir, Rosalind J; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2013-01-01

    Magnetic resonance electrical impedance tomography (MREIT) is a new modality capable of imaging the electrical properties of human body using MRI phase information in conjunction with external current injection. Recent in vivo animal and human MREIT studies have revealed unique conductivity contrasts related to different physiological and pathological conditions of tissues or organs. When performing in vivo brain imaging, small imaging currents must be injected so as not to stimulate peripheral nerves in the skin, while delivery of imaging currents to the brain is relatively small due to the skull's low conductivity. As a result, injected imaging currents may induce small phase signals and the overall low phase SNR in brain tissues. In this study, we present numerical simulation results of the use of head MREIT for brain tumor detection. We used a realistic three-dimensional head model to compute signal levels produced as a consequence of a predicted doubling of conductivity occurring within simulated tumorous brain tissues. We determined the feasibility of measuring these changes in a time acceptable to human subjects by adding realistic noise levels measured from a candidate 3 T system. We also reconstructed conductivity contrast images, showing that such conductivity differences can be both detected and imaged.

  7. Advanced MR Imaging in Pediatric Brain Tumors, Clinical Applications.

    PubMed

    Lequin, Maarten; Hendrikse, Jeroen

    2017-02-01

    Advanced MR imaging techniques, such as spectroscopy, perfusion, diffusion, and functional imaging, have improved the diagnosis of brain tumors in children and also play an important role in defining surgical as well as therapeutic responses in these patients. In addition to the anatomic or structural information gained with conventional MR imaging sequences, advanced MR imaging techniques also provide physiologic information about tumor morphology, metabolism, and hemodynamics. This article reviews the physiology, techniques, and clinical applications of diffusion-weighted and diffusion tensor imaging, MR spectroscopy, perfusion MR imaging, susceptibility-weighted imaging, and functional MR imaging in the setting of neuro-oncology.

  8. Collecting and Storing Blood and Brain Tumor Tissue Samples From Children With Brain Tumors

    ClinicalTrials.gov

    2016-11-21

    Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Newly Diagnosed Childhood Ependymoma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma

  9. Cellular phones and risk of brain tumors.

    PubMed

    Frumkin, H; Jacobson, A; Gansler, T; Thun, M J

    2001-01-01

    As cellular telephones are a relatively new technology, we do not yet have long-term follow-up on their possible biological effects. However, the lack of ionizing radiation and the low energy level emitted from cell phones and absorbed by human tissues make it unlikely that these devices cause cancer. Moreover, several well-designed epidemiologic studies find no consistent association between cell phone use and brain cancer. It is impossible to prove that any product or exposure is absolutely safe, especially in the absence of very long-term follow-up. Accordingly, the following summary from the Food and Drug Administration Center for Devices and Radiological Health offers advice to people concerned about their risk: If there is a risk from these products--and at this point we do not know that there is--it is probably very small. But if people are concerned about avoiding even potential risks, there are simple steps they can take to do so. People who must conduct extended conversations in their cars every day could switch to a type of mobile phone that places more distance between their bodies and the source of the RF, since the exposure level drops off dramatically with distance. For example, they could switch to: a mobile phone in which the antenna is located outside the vehicle, a hand-held phone with a built-in antenna connected to a different antenna mounted on the outside of the car or built into a separate package, or a headset with a remote antenna to a mobile phone carried at the waist. Again the scientific data do not demonstrate that mobile phones are harmful. But if people are concerned about the radiofrequency energy from these products, taking the simple precautions outlined above can reduce any possible risk. In addition, people who are concerned might choose digital rather than analog telephones, since the former use lower RF levels.

  10. Modeling Aggressive Medulloblastoma Using Human-Induced Pluripotent Stem Cells

    DTIC Science & Technology

    2015-07-01

    AWARD NUMBER: W81XWH-14-1-0176 TITLE: Modeling Aggressive Medulloblastoma Using Human-Induced Pluripotent Stem Cells PRINCIPAL INVESTIGATOR...Prescribed by ANSI Std. Z39.18 July 2015 Annual 01-July 2014 -- 30 Jun 2015 Modeling Aggressive Medulloblastoma Using Human-Induced Pluripotent Stem...induced pluripotent stem cells by Atoh1 induction can be efficiently transformed by MYC oncogene to form aggressive brain tumors that recapitulate human

  11. Efficient multilevel brain tumor segmentation with integrated bayesian model classification.

    PubMed

    Corso, J J; Sharon, E; Dube, S; El-Saden, S; Sinha, U; Yuille, A

    2008-05-01

    We present a new method for automatic segmentation of heterogeneous image data that takes a step toward bridging the gap between bottom-up affinity-based segmentation methods and top-down generative model based approaches. The main contribution of the paper is a Bayesian formulation for incorporating soft model assignments into the calculation of affinities, which are conventionally model free. We integrate the resulting model-aware affinities into the multilevel segmentation by weighted aggregation algorithm, and apply the technique to the task of detecting and segmenting brain tumor and edema in multichannel magnetic resonance (MR) volumes. The computationally efficient method runs orders of magnitude faster than current state-of-the-art techniques giving comparable or improved results. Our quantitative results indicate the benefit of incorporating model-aware affinities into the segmentation process for the difficult case of glioblastoma multiforme brain tumor.

  12. Late sequelae in children treated for brain tumors and leukemia.

    PubMed

    Jereb, B; Korenjak, R; Krzisnik, C; Petric-Grabnar, G; Zadravec-Zaletel, L; Anzic, J; Stare, J

    1994-01-01

    Forty-two survivors treated at an age of 2-16 years for brain tumors or leukemia were, 4-21 years after treatment, subjected to an extensive follow-up investigation, including physical examination and interview; 35 of them also had endocrinological and 33 psychological evaluation. Hormonal deficiencies were found in about two-thirds of patients and were most common in those treated for brain tumors. The great majority had verbal intelligence quotient (VIQ) within normal range. Also, the performance intelligence quotients (PIQ) were normal in most patients. However, the results suggested that the primary intellectual capacity in children treated for cancer was not being fully utilized, their PIQ being on the average higher than their VIQ; this tendency was especially pronounced in the leukemia patients.

  13. Management of children with brain tumors in Paraguay

    PubMed Central

    Baskin, Jacquelyn L.; Lezcano, Eva; Kim, Bo Sung; Figueredo, Diego; Lassaletta, Alvaro; Perez-Martinez, Antonio; Madero, Luis; Caniza, Miguela A.; Howard, Scott C.; Samudio, Angelica; Finlay, Jonathan L.

    2013-01-01

    Background Cure rates among children with brain tumors differ between low-income and high-income countries. To evaluate causes of these differences, we analyzed aspects of care provided to pediatric neuro-oncology patients in a low middle-income South American country. Methods Three methods were used to evaluate treatment of children with brain tumors in Paraguay: (1) a quantitative needs assessment questionnaire for local treating physicians, (2) site visits to assess 3 tertiary care centers in Asunción and a satellite clinic in an underdeveloped area, and (3) interviews with health care workers from relevant disciplines to determine their perceptions of available resources. Treatment failure was defined as abandonment of therapy, relapse, or death. Results All 3 tertiary care facilities have access to chemotherapy and pediatric oncologists but lack training and tools for neuropathology and optimal neurosurgery. The 2 public hospitals also lack access to appropriate radiological tests and timely radiotherapy. These results demonstrate disparities in Paraguay, with rates of treatment failure ranging from 37% to 83% among the 3 facilities. Conclusions National and center-specific deficiencies in resources to manage pediatric brain tumors contribute to poor outcomes in Paraguay and suggest that both national and center-specific interventions are warranted to improve care. Disparities in Paraguay reflect different levels of governmental and philanthropic support, program development, and socio-economic status of patients and families, which must be considered when developing targeted strategies to improve management. Effective targeted interventions can serve as a model to develop pediatric brain tumor programs in other low- and middle-income countries. PMID:23197688

  14. Automatic brain tumor detection in MRI: methodology and statistical validation

    NASA Astrophysics Data System (ADS)

    Iftekharuddin, Khan M.; Islam, Mohammad A.; Shaik, Jahangheer; Parra, Carlos; Ogg, Robert

    2005-04-01

    Automated brain tumor segmentation and detection are immensely important in medical diagnostics because it provides information associated to anatomical structures as well as potential abnormal tissue necessary to delineate appropriate surgical planning. In this work, we propose a novel automated brain tumor segmentation technique based on multiresolution texture information that combines fractal Brownian motion (fBm) and wavelet multiresolution analysis. Our wavelet-fractal technique combines the excellent multiresolution localization property of wavelets to texture extraction of fractal. We prove the efficacy of our technique by successfully segmenting pediatric brain MR images (MRIs) from St. Jude Children"s Research Hospital. We use self-organizing map (SOM) as our clustering tool wherein we exploit both pixel intensity and multiresolution texture features to obtain segmented tumor. Our test results show that our technique successfully segments abnormal brain tissues in a set of T1 images. In the next step, we design a classifier using Feed-Forward (FF) neural network to statistically validate the presence of tumor in MRI using both the multiresolution texture and the pixel intensity features. We estimate the corresponding receiver operating curve (ROC) based on the findings of true positive fractions and false positive fractions estimated from our classifier at different threshold values. An ROC, which can be considered as a gold standard to prove the competence of a classifier, is obtained to ascertain the sensitivity and specificity of our classifier. We observe that at threshold 0.4 we achieve true positive value of 1.0 (100%) sacrificing only 0.16 (16%) false positive value for the set of 50 T1 MRI analyzed in this experiment.

  15. Handling of solid brain tumor tissue for protein analysis.

    PubMed

    Ericsson, Christer; Nistér, Monica

    2011-01-01

    Optimal protein analysis requires unfixed tissue samples. We suggest handling the brain tumor tissue sterilely and coldly (on ice) for as short time as possible prior to processing, but for no more than 8 h. This simple protocol results in apparently intact morphology, immunoreactivity, protein integrity, and protein phosphorylation with the criteria we apply. Sample handling for Pathological Anatomical Diagnosis (PAD) and for protein analysis can be one and the same.

  16. ERK-dependent downregulation of the atypical chemokine receptor D6 drives tumor aggressiveness in Kaposi sarcoma.

    PubMed

    Savino, Benedetta; Caronni, Nicoletta; Anselmo, Achille; Pasqualini, Fabio; Borroni, Elena Monica; Basso, Gianluca; Celesti, Giuseppe; Laghi, Luigi; Tourlaki, Athanasia; Boneschi, Vinicio; Brambilla, Lucia; Nebuloni, Manuela; Vago, Gianluca; Mantovani, Alberto; Locati, Massimo; Bonecchi, Raffaella

    2014-07-01

    D6 is an atypical chemokine receptor acting as a decoy and scavenger for inflammatory CC chemokines expressed in lymphatic endothelial cells. Here, we report that D6 is expressed in Kaposi sarcoma (KS), a tumor ontogenetically related to the lymphatic endothelium. Both in human tumors and in an experimental model, D6 expression levels were inversely correlated with tumor aggressiveness and increased infiltration of proangiogenic macrophages. Inhibition of monocyte recruitment reduced the growth of tumors, while adoptive transfer of wild-type, but not CCR2(-/-) macrophages, increased the growth rate of D6-competent neoplasms. In the KS model with the B-Raf V600E-activating mutation, inhibition of B-Raf or the downstream ERK pathway induced D6 expression; in progressing human KS tumors, the activation of ERK correlates with reduced levels of D6 expression. These results indicate that activation of the K-Ras-B-Raf-ERK pathway during KS progression downregulates D6 expression, which unleashes chemokine-mediated macrophage recruitment and their acquisition of an M2-like phenotype supporting angiogenesis and tumor growth. Combined targeting of CCR2 and the ERK pathway should be considered as a therapeutic option for patients with KS.

  17. Liposomally formulated phospholipid-conjugated indocyanine green for intra-operative brain tumor detection and resection.

    PubMed

    Suganami, Akiko; Iwadate, Yasuo; Shibata, Sayaka; Yamashita, Masamichi; Tanaka, Tsutomu; Shinozaki, Natsuki; Aoki, Ichio; Saeki, Naokatsu; Shirasawa, Hiroshi; Okamoto, Yoshiharu; Tamura, Yutaka

    2015-12-30

    Some tumor-specific near-infrared (NIR) fluorescent dyes such as indocyanine green (ICG), IDRye800CW, and 5-aminolevulinic acid have been used clinically for detecting tumor margins or micro-cancer lesions. In this study, we evaluated the physicochemical properties of liposomally formulated phospholipid-conjugated ICG, denoted by LP-iDOPE, as a clinically translatable NIR imaging nanoparticle for brain tumors. We also confirmed its brain-tumor-specific biodistribution and its characteristics as the intra-operative NIR imaging nanoparticles for brain tumor surgery. These properties of LP-iDOPE may enable neurosurgeons to achieve more accurate identification and more complete resection of brain tumor.

  18. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment.

    PubMed

    van Tellingen, O; Yetkin-Arik, B; de Gooijer, M C; Wesseling, P; Wurdinger, T; de Vries, H E

    2015-03-01

    Gliomas are the most common primary brain tumors. Particularly in adult patients, the vast majority of gliomas belongs to the heterogeneous group of diffuse gliomas, i.e. glial tumors characterized by diffuse infiltrative growth in the preexistent brain tissue. Unfortunately, glioblastoma, the most aggressive (WHO grade IV) diffuse glioma is also by far the most frequent one. After standard treatment, the 2-year overall survival of glioblastoma patients is approximately only 25%. Advanced knowledge in the molecular pathology underlying malignant transformation has offered new handles and better treatments for several cancer types. Unfortunately, glioblastoma multiforme (GBM) patients have not yet profited as although numerous experimental drugs have been tested in clinical trials, all failed miserably. This grim prognosis for GBM is at least partly due to the lack of successful drug delivery across the blood-brain tumor barrier (BBTB). The human brain comprises over 100 billion capillaries with a total length of 400 miles, a total surface area of 20 m(2) and a median inter-capillary distance of about 50 μm, making it the best perfused organ in the body. The BBTB encompasses existing and newly formed blood vessels that contribute to the delivery of nutrients and oxygen to the tumor and facilitate glioma cell migration to other parts of the brain. The high metabolic demands of high-grade glioma create hypoxic areas that trigger increased expression of VEGF and angiogenesis, leading to the formation of abnormal vessels and a dysfunctional BBTB. Even though the BBTB is considered 'leaky' in the core part of glioblastomas, in large parts of glioblastomas and, even more so, in lower grade diffuse gliomas the BBTB more closely resembles the intact blood-brain barrier (BBB) and prevents efficient passage of cancer therapeutics, including small molecules and antibodies. Thus, many drugs can still be blocked from reaching the many infiltrative glioblastoma cells that

  19. Sigma and opioid receptors in human brain tumors

    SciTech Connect

    Thomas, G.E.; Szuecs, M.; Mamone, J.Y.; Bem, W.T.; Rush, M.D.; Johnson, F.E.; Coscia, C.J. )

    1990-01-01

    Human brain tumors and nude mouse-borne human neuroblastomas and gliomas were analyzed for sigma and opioid receptor content. Sigma binding was assessed using ({sup 3}H) 1, 3-di-o-tolylguanidine (DTG), whereas opioid receptor subtypes were measured with tritiated forms of the following: {mu}, (D-ala{sup 2}, mePhe{sup 4}, gly-ol{sup 5}) enkephalin (DAMGE); {kappa}, ethylketocyclazocine (EKC) or U69,593; {delta}, (D-pen{sup 2}, D-pen{sup 5}) enkephalin (DPDPE) or (D-ala{sup 2}, D-leu{sup 5}) enkephalin (DADLE) with {mu} suppressor present. Binding parameters were estimated by homologous displacement assays followed by analysis using the LIGAND program. Sigma binding was detected in 15 of 16 tumors examined with very high levels found in a brain metastasis from an adenocarcinoma of lung and a human neuroblastoma (SK-N-MC) passaged in nude mice. {kappa} opioid receptor binding was detected in 4 of 4 glioblastoma multiforme specimens and 2 of 2 human astrocytoma cell lines tested but not in the other brain tumors analyzed.

  20. Heavy Metals and Epigenetic Alterations in Brain Tumors

    PubMed Central

    Caffo, Maria; Caruso, Gerardo; Fata, Giuseppe La; Barresi, Valeria; Visalli, Maria; Venza, Mario; Venza, Isabella

    2014-01-01

    Heavy metals and their derivatives can cause various diseases. Numerous studies have evaluated the possible link between exposure to heavy metals and various cancers. Recent data show a correlation between heavy metals and aberration of genetic and epigenetic patterns. From a literature search we noticed few experimental and epidemiological studies that evaluate a possible correlation between heavy metals and brain tumors. Gliomas arise due to genetic and epigenetic alterations of glial cells. Changes in gene expression result in the alteration of the cellular division process. Epigenetic alterations in brain tumors include the hypermethylation of CpG group, hypomethylation of specific genes, aberrant activation of genes, and changes in the position of various histones. Heavy metals are capable of generating reactive oxygen assumes that key functions in various pathological mechanisms. Alteration of homeostasis of metals could cause the overproduction of reactive oxygen species and induce DNA damage, lipid peroxidation, and alteration of proteins. In this study we summarize the possible correlation between heavy metals, epigenetic alterations and brain tumors. We report, moreover, the review of relevant literature. PMID:25646073

  1. Gene markers in brain tumors: what the epileptologist should know.

    PubMed

    Ostrom, Quinn; Cohen, Mark L; Ondracek, Annie; Sloan, Andrew; Barnholtz-Sloan, Jill

    2013-12-01

    Gene markers or biomarkers can be used for diagnostic or prognostic purposes for all different types of complex disease, including brain tumors. Prognostic markers can be useful to explain differences not only in overall survival but also in response to treatment and for development of targeted therapies. Multiple genes with specific types of alterations have now been identified that are associated with improved response to chemotherapy and radiotherapy, such as O(6)-methylguanine methyltranferase (MGMT) or loss of chromosomes 1p and/or 19q. Other alterations have been identified that are associated with improved overall survival, such as mutations in isocitrate dehydrogenase 1 (IDH1) and/or isocitrate dehydrogenase 2 (IDH2) or having the glioma CpG island DNA methylator phenotype (G-CIMP). There are many biomarkers that may have relevance in brain tumor-associated epilepsy that do not respond to treatment. Given the rapidly changing landscape of high throughput "omics" technologies, there is significant potential for gaining further knowledge via integration of multiple different types of high genome-wide data. This knowledge can be translated into improved therapies and clinical outcomes for patients with brain tumors.

  2. Childhood brain tumors and paternal occupation in the aerospace industry.

    PubMed

    Olshan, A F; Breslow, N E; Daling, J R; Weiss, N S; Leviton, A

    1986-07-01

    Data from a case-control study of childhood brain tumors were analyzed to examine the possibility that paternal occupation in the aerospace industry is related to the development of a brain tumor in offspring. Parents of 51 children with brain tumors diagnosed in western Washington State during 1978-81 were interviewed, and their responses were compared to those of parents of 142 children selected at random from this population. Among all children, proportions of case and control fathers who had ever been employed in the aerospace industry were nearly identical [relative risk (RR) = 0.94; 95% confidence interval (CI) = 0.40-2.19]. Employment in the aerospace industry during the period from 1 year prior to birth to the time of diagnosis and any employment in the manufacturing part of the industry were not associated with increased risk. However, stratification by age at diagnosis revealed an increased risk associated with father's ever-employment in the industry (RR = 2.10; 95% CI = 0.79-5.60) for children under 10 years old. A corresponding decreased risk (RR = 0.12; 95% CI = 0.01-1.08) was found for children over 10 years old. Because of the relatively small number of cases with a positive paternal occupational history, interpretations of the difference in the direction of the association according to age at diagnosis must remain tentative ones.

  3. The p53 gene and protein in human brain tumors

    SciTech Connect

    Louis, D.N. )

    1994-01-01

    Because p53 gene alterations are commonplace in human tumors and because p53 protein is involved in a number of important cellular pathways, p53 has become a topic of intensive investigation, both by basic scientists and clinicians. p53 was initially identified by two independent laboratories in 1979 as a 53 kilodalton (kD) protein that complexes with the large T antigen of SV40 virus. Shortly thereafter, it was shown that the E1B oncoprotein of adenovirus also binds p53. The binding of two different oncogenic viral tumor proteins to the same cellular protein suggested that p53 might be integral to tumorigenesis. The human p53 cDNA and gene were subsequently cloned in the mid-1980s, and analysis of p53 gene alterations in human tumors followed a few year later. During these 10 years, researchers grappling with the vagaries of p53 first characterized the gene as an oncogene, then as a tumor suppressor gene, and most recently as both a tumor suppressor gene and a so-called [open quotes]dominant negative[close quotes] oncogene. The last few years have seen an explosion in work on this single gene and its protein product. A review of a computerized medical database revealed approximately 650 articles on p53 in 1992 alone. p53 has assumed importance in neuro-oncology because p53 mutations and protein alterations are frequent in the common diffuse, fibrillary astrocytic tumors of adults. p53 mutations in astrocytomas were first described in 1989 and were followed by more extensive analyses of gene mutations and protein alterations in adult astrocytomas. The gene has also been studied in less common brain tumors. Elucidating the role of p53 in brain tumorigenesis will not only enhance understanding of brain tumor biology but may also contribute to improved diagnosis and therapy. This discussion reviews key aspects of the p53 gene and protein, and describe their emerging roles in central nervous system neoplasia. 102 refs., 6 figs., 1 tab.

  4. Sex differences in structural brain asymmetry predict overt aggression in early adolescents

    PubMed Central

    Visser, Troy A. W.; Ohan, Jeneva L.; Whittle, Sarah; Yücel, Murat; Simmons, Julian G.; Allen, Nicholas B.

    2014-01-01

    The devastating social, emotional and economic consequences of human aggression are laid bare nightly on newscasts around the world. Aggression is principally mediated by neural circuitry comprising multiple areas of the prefrontal cortex and limbic system, including the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), amygdala and hippocampus. A striking characteristic of these regions is their structural asymmetry about the midline (i.e. left vs right hemisphere). Variations in these asymmetries have been linked to clinical disorders characterized by aggression and the rate of aggressive behavior in psychiatric patients. Here, we show for the first time that structural asymmetries in prefrontal cortical areas are also linked to aggression in a normal population of early adolescents. Our findings indicate a relationship between parent reports of aggressive behavior in adolescents and structural asymmetries in the limbic and paralimbic ACC and OFC, and moreover, that this relationship varies by sex. Furthermore, while there was no relationship between aggression and structural asymmetries in the amygdala or hippocampus, hippocampal volumes did predict aggression in females. Taken together, the results suggest that structural asymmetries in the prefrontal cortex may influence human aggression, and that the anatomical basis of aggression varies substantially by sex. PMID:23446839

  5. Sex differences in structural brain asymmetry predict overt aggression in early adolescents.

    PubMed

    Visser, Troy A W; Ohan, Jeneva L; Whittle, Sarah; Yücel, Murat; Simmons, Julian G; Allen, Nicholas B

    2014-04-01

    The devastating social, emotional and economic consequences of human aggression are laid bare nightly on newscasts around the world. Aggression is principally mediated by neural circuitry comprising multiple areas of the prefrontal cortex and limbic system, including the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), amygdala and hippocampus. A striking characteristic of these regions is their structural asymmetry about the midline (i.e. left vs right hemisphere). Variations in these asymmetries have been linked to clinical disorders characterized by aggression and the rate of aggressive behavior in psychiatric patients. Here, we show for the first time that structural asymmetries in prefrontal cortical areas are also linked to aggression in a normal population of early adolescents. Our findings indicate a relationship between parent reports of aggressive behavior in adolescents and structural asymmetries in the limbic and paralimbic ACC and OFC, and moreover, that this relationship varies by sex. Furthermore, while there was no relationship between aggression and structural asymmetries in the amygdala or hippocampus, hippocampal volumes did predict aggression in females. Taken together, the results suggest that structural asymmetries in the prefrontal cortex may influence human aggression, and that the anatomical basis of aggression varies substantially by sex.

  6. Monitoring brain tumor response to therapy using MRI segmentation.

    PubMed

    Vaidyanathan, M; Clarke, L P; Hall, L O; Heidtman, C; Velthuizen, R; Gosche, K; Phuphanich, S; Wagner, H; Greenberg, H; Silbiger, M L

    1997-01-01

    The performance evaluation of a semi-supervised fuzzy c-means (SFCM) clustering method for monitoring brain tumor volume changes during the course of routine clinical radiation-therapeutic and chemo-therapeutic regimens is presented. The tumor volume determined using the SFCM method was compared with the volume estimates obtained using three other methods: (a) a k nearest neighbor (kNN) classifier, b) a grey level thresholding and seed growing (ISG-SG) method and c) a manual pixel labeling (GT) method for ground truth estimation. The SFCM and kNN methods are applied to the multispectral, contrast enhanced T1, proton density, and T2 weighted, magnetic resonance images (MRI) whereas the ISG-SG and GT methods are applied only to the contrast enhanced T1 weighted image. Estimations of tumor volume were made on eight patient cases with follow-up MRI scans performed over a 32 week interval during treatment. The tumor cases studied include one meningioma, two brain metastases and five gliomas. Comparisons with manually labeled ground truth estimations showed that there is a limited agreement between the segmentation methods for absolute tumor volume measurements when using images of patients after treatment. The average intraobserver reproducibility for the SFCM, kNN and ISG-SG methods was found to be 5.8%, 6.6% and 8.9%, respectively. The average of the interobserver reproducibility of these methods was found to be 5.5%, 6.5% and 11.4%, respectively. For the measurement of relative change of tumor volume as required for the response assessment, the multi-spectral methods kNN and SFCM are therefore preferred over the seedgrowing method.

  7. βIII-tubulin overexpression is linked to aggressive tumor features and genetic instability in urinary bladder cancer.

    PubMed

    Hinsch, Andrea; Chaker, Aref; Burdelski, Christian; Koop, Christina; Tsourlakis, Maria Christina; Steurer, Stefan; Rink, Michael; Eichenauer, Till Simon; Wilczak, Waldemar; Wittmer, Corinna; Fisch, Margit; Simon, Ronald; Sauter, Guido; Büschek, Franziska; Clauditz, Till; Minner, Sarah; Jacobsen, Frank

    2017-03-01

    Development of genetic instability is a hallmark of tumor progression. Type III β-tubulin (TUBB3) is a component of microtubules involved in chromosome segregation. Its overexpression has been linked to adverse features of urinary bladder cancer. To investigate the role of TUBB3 for development of genetic instability, we compared TUBB3 expression with histopathological features and surrogate markers of genetic instability and tumor aggressiveness; copy number changes of HER2, TOP2A, CCND1, RAF1, and FGFR1; nuclear accumulation of p53, and cell proliferation in a tissue microarray (TMA) with more than 700 bladder cancers. TUBB3 expression was linked to high-grade and advanced-stage cancers (P<.0001), rapid cell proliferation (P<.0001), presence of multiple gene copy number alterations (P=.0008), and nuclear accumulation of p53 (P=.0008). Strong TUBB3 staining was found in 43% of urothelial cancers harboring copy number alterations as compared with 28% of genetically stable cancers, and in 50% of p53-positive cancers as compared with 30% of p53-negative tumors. The fraction of tumors with concomitant TUBB3 and p53 positivity increased with tumor stage and grade: 2% in pTaG1-2, 11% in pTaG3, 17% in pT1G2, 23% in pT1G3, and 32% in pT2-4 cancers (P<.0001). Importantly, strong TUBB3 overexpression was detectable in about 20% of low-grade, noninvasive cancers. In summary, our study demonstrates that TUBB3 overexpression is linked to an aggressive subtype of urinary bladder cancers, which is characterized by increased genetic instability, p53 alterations, and rapid cell proliferation. Detection of TUBB3 overexpression in genetically stable, low-grade, and noninvasive bladder cancers may be clinically useful to identify patients requiring particular close monitoring.

  8. Radiomics in Brain Tumors: An Emerging Technique for Characterization of Tumor Environment.

    PubMed

    Kotrotsou, Aikaterini; Zinn, Pascal O; Colen, Rivka R

    2016-11-01

    The role of radiomics in the diagnosis, monitoring, and therapy planning of brain tumors is becoming increasingly clear. Incorporation of quantitative approaches in radiology, in combination with increased computer power, offers unique insights into macroscopic tumor characteristics and their direct association with the underlying pathophysiology. This article presents the most recent findings in radiomics and radiogenomics with respect to identifying potential imaging biomarkers with prognostic value that can lead to individualized therapy. In addition, a brief introduction to the concept of big data and its significance in medicine is presented.

  9. Multi-parametric analysis and registration of brain tumors: constructing statistical atlases and diagnostic tools of predictive value.

    PubMed

    Davatzikos, Christos; Zacharaki, Evangelia I; Gooya, Ali; Clark, Vanessa

    2011-01-01

    We discuss computer-based image analysis algorithms of multi-parametric MRI of brain tumors, aiming to assist in early diagnosis of infiltrating brain tumors, and to construct statistical atlases summarizing population-based characteristics of brain tumors. These methods combine machine learning, deformable registration, multi-parametric segmentation, and biophysical modeling of brain tumors.

  10. Image updating for brain deformation compensation in tumor resection

    NASA Astrophysics Data System (ADS)

    Fan, Xiaoyao; Ji, Songbai; Olson, Jonathan D.; Roberts, David W.; Hartov, Alex; Paulsen, Keith D.

    2016-03-01

    Preoperative magnetic resonance images (pMR) are typically used for intraoperative guidance in image-guided neurosurgery, the accuracy of which can be significantly compromised by brain deformation. Biomechanical finite element models (FEM) have been developed to estimate whole-brain deformation and produce model-updated MR (uMR) that compensates for brain deformation at different surgical stages. Early stages of surgery, such as after craniotomy and after dural opening, have been well studied, whereas later stages after tumor resection begins remain challenging. In this paper, we present a method to simulate tumor resection by incorporating data from intraoperative stereovision (iSV). The amount of tissue resection was estimated from iSV using a "trial-and-error" approach, and the cortical shift was measured from iSV through a surface registration method using projected images and an optical flow (OF) motion tracking algorithm. The measured displacements were employed to drive the biomechanical brain deformation model, and the estimated whole-brain deformation was subsequently used to deform pMR and produce uMR. We illustrate the method using one patient example. The results show that the uMR aligned well with iSV and the overall misfit between model estimates and measured displacements was 1.46 mm. The overall computational time was ~5 min, including iSV image acquisition after resection, surface registration, modeling, and image warping, with minimal interruption to the surgical flow. Furthermore, we compare uMR against intraoperative MR (iMR) that was acquired following iSV acquisition.

  11. Magnetic nanoparticles: an emerging technology for malignant brain tumor imaging and therapy.

    PubMed

    Wankhede, Mamta; Bouras, Alexandros; Kaluzova, Milota; Hadjipanayis, Costas G

    2012-03-01

    Magnetic nanoparticles (MNPs) represent a promising nanomaterial for the targeted therapy and imaging of malignant brain tumors. Conjugation of peptides or antibodies to the surface of MNPs allows direct targeting of the tumor cell surface and potential disruption of active signaling pathways present in tumor cells. Delivery of nanoparticles to malignant brain tumors represents a formidable challenge due to the presence of the blood-brain barrier and infiltrating cancer cells in the normal brain. Newer strategies permit better delivery of MNPs systemically and by direct convection-enhanced delivery to the brain. Completion of a human clinical trial involving direct injection of MNPs into recurrent malignant brain tumors for thermotherapy has established their feasibility, safety and efficacy in patients. Future translational studies are in progress to understand the promising impact of MNPs in the treatment of malignant brain tumors.

  12. The biology of radiosurgery and its clinical applications for brain tumors

    PubMed Central

    Kondziolka, Douglas; Shin, Samuel M.; Brunswick, Andrew; Kim, Irene; Silverman, Joshua S.

    2015-01-01

    Stereotactic radiosurgery (SRS) was developed decades ago but only began to impact brain tumor care when it was coupled with high-resolution brain imaging techniques such as computed tomography and magnetic resonance imaging. The technique has played a key role in the management of virtually all forms of brain tumor. We reviewed the radiobiological principles of SRS on tissue and how they pertain to different brain tumor disorders. We reviewed the clinical outcomes on the most common indications. This review found that outcomes are well documented for safety and efficacy and show increasing long-term outcomes for benign tumors. Brain metastases SRS is common, and its clinical utility remains in evolution. The role of SRS in brain tumor care is established. Together with surgical resection, conventional radiotherapy, and medical therapies, patients have an expanding list of options for their care. Clinicians should be familiar with radiosurgical principles and expected outcomes that may pertain to different brain tumor scenarios. PMID:25267803

  13. Magnetic nanoparticles: an emerging technology for malignant brain tumor imaging and therapy

    PubMed Central

    Wankhede, Mamta; Bouras, Alexandros; Kaluzova, Milota; Hadjipanayis, Costas G

    2012-01-01

    Magnetic nanoparticles (MNPs) represent a promising nanomaterial for the targeted therapy and imaging of malignant brain tumors. Conjugation of peptides or antibodies to the surface of MNPs allows direct targeting of the tumor cell surface and potential disruption of active signaling pathways present in tumor cells. Delivery of nanoparticles to malignant brain tumors represents a formidable challenge due to the presence of the blood–brain barrier and infiltrating cancer cells in the normal brain. Newer strategies permit better delivery of MNPs systemically and by direct convection-enhanced delivery to the brain. Completion of a human clinical trial involving direct injection of MNPs into recurrent malignant brain tumors for thermotherapy has established their feasibility, safety and efficacy in patients. Future translational studies are in progress to understand the promising impact of MNPs in the treatment of malignant brain tumors. PMID:22390560

  14. Boron Neutron Capture Therapy for Malignant Brain Tumors

    PubMed Central

    MIYATAKE, Shin-Ichi; KAWABATA, Shinji; HIRAMATSU, Ryo; KUROIWA, Toshihiko; SUZUKI, Minoru; KONDO, Natsuko; ONO, Koji

    2016-01-01

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting. PMID:27250576

  15. Boron Neutron Capture Therapy for Malignant Brain Tumors.

    PubMed

    Miyatake, Shin-Ichi; Kawabata, Shinji; Hiramatsu, Ryo; Kuroiwa, Toshihiko; Suzuki, Minoru; Kondo, Natsuko; Ono, Koji

    2016-07-15

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting.

  16. Radiopotentiation of human brain tumor cells by sodium phenylacetate.

    PubMed

    Ozawa, T; Lu, R M; Hu, L J; Lamborn, K R; Prados, M D; Deen, D F

    1999-08-03

    Phenylacetate (PA) inhibits the growth of tumor cells in vitro and in vivo and shows promise as a relatively nontoxic agent for cancer treatment. A recent report shows that prolonged exposure of cells to low concentrations of PA can enhance the radiation response of brain tumor cells in vitro, opening up the possibility of using this drug to improve the radiation therapy of brain tumor patients. We investigated the cytotoxicity produced by sodium phenylacetate (NaPA) alone and in combination with X-rays in SF-767 human glioblastoma cells and in two medulloblastoma cell lines, Masden and Daoy. Exposure of all three cell lines to relatively low concentrations of NaPA for up to 5 days did not enhance the subsequent cell killing produced by X-irradiation. However, enhanced cell killing was achieved by exposing either oxic or hypoxic cells to relatively high drug concentrations ( > 50-70 mM) for 1 h immediately before X-irradiation. Because central nervous system toxicity can occur in humans at serum concentrations of approximately 6 mM PA, translation of these results into clinical trials will likely require local drug-delivery strategies to achieve drug concentrations that can enhance the radiation response. The safety of such an approach with this drug has not been demonstrated.

  17. Nuclear maspin expression correlates with the CpG island methylator phenotype and tumor aggressiveness in colorectal cancer.

    PubMed

    Kim, Jung Ho; Cho, Nam-Yun; Bae, Jeong Mo; Kim, Kyung-Ju; Rhee, Ye-Young; Lee, Hye Seung; Kang, Gyeong Hoon

    2015-01-01

    It has been suggested that nuclear expression of maspin (mammary serine protease inhibitor; also known as SERPINB5) in colorectal cancer (CRC) is associated with proximal colonic tumor location, mucinous and poorly differentiated histology, microsatellite instability-high (MSI-H), and poor prognosis. Based on these findings, there may be a potential association between nuclear maspin expression and the CpG island methylator phenotype (CIMP) in CRC, but no study has elucidated this issue. Here, we evaluated maspin protein expression status by immunohistochemistry in 216 MSI-H CRCs. CIMP status was also determined by methylation-specific quantitative PCR method (MethyLight) using eight CIMP markers (MLH1, NEUROG1, CRABP1, CACNA1G, CDKN2A (p16), IGF2, SOCS1, and RUNX3) in 216 MSI-H CRCs. Associations between maspin expression status and various pathological, molecular, and survival data were statistically analyzed. Among the 216 MSI-H CRCs, 111 (51%) cases presented nuclear maspin-positive tumors. Nuclear maspin-positive MSI-H CRCs were significantly associated with proximal tumor location (P = 0.003), tumor budding (P < 0.001), lymphovascular invasion (P = 0.001), perineural invasion (P = 0.008), absence of peritumoral lymphoid reaction (P = 0.045), lymph node metastasis (P = 0.003), distant metastasis (P = 0.005), advanced AJCC/UICC stage (stage III/IV) (P = 0.001), and CIMP-high (CIMP-H) status (P < 0.001). Patients with nuclear maspin-positive tumors showed worse disease-free survival than patients with nuclear maspin-negative tumors (log-rank P = 0.025). In conclusion, nuclear maspin expression is molecularly associated with CIMP-H rather than MSI-H, and clinicopathologically correlates with tumor aggressiveness in CRC.

  18. Adaptive Intuitionistic Fuzzy Enhancement of Brain Tumor MR Images

    NASA Astrophysics Data System (ADS)

    Deng, He; Deng, Wankai; Sun, Xianping; Ye, Chaohui; Zhou, Xin

    2016-10-01

    Image enhancement techniques are able to improve the contrast and visual quality of magnetic resonance (MR) images. However, conventional methods cannot make up some deficiencies encountered by respective brain tumor MR imaging modes. In this paper, we propose an adaptive intuitionistic fuzzy sets-based scheme, called as AIFE, which takes information provided from different MR acquisitions and tries to enhance the normal and abnormal structural regions of the brain while displaying the enhanced results as a single image. The AIFE scheme firstly separates an input image into several sub images, then divides each sub image into object and background areas. After that, different novel fuzzification, hyperbolization and defuzzification operations are implemented on each object/background area, and finally an enhanced result is achieved via nonlinear fusion operators. The fuzzy implementations can be processed in parallel. Real data experiments demonstrate that the AIFE scheme is not only effectively useful to have information from images acquired with different MR sequences fused in a single image, but also has better enhancement performance when compared to conventional baseline algorithms. This indicates that the proposed AIFE scheme has potential for improving the detection and diagnosis of brain tumors.

  19. Adaptive Intuitionistic Fuzzy Enhancement of Brain Tumor MR Images

    PubMed Central

    Deng, He; Deng, Wankai; Sun, Xianping; Ye, Chaohui; Zhou, Xin

    2016-01-01

    Image enhancement techniques are able to improve the contrast and visual quality of magnetic resonance (MR) images. However, conventional methods cannot make up some deficiencies encountered by respective brain tumor MR imaging modes. In this paper, we propose an adaptive intuitionistic fuzzy sets-based scheme, called as AIFE, which takes information provided from different MR acquisitions and tries to enhance the normal and abnormal structural regions of the brain while displaying the enhanced results as a single image. The AIFE scheme firstly separates an input image into several sub images, then divides each sub image into object and background areas. After that, different novel fuzzification, hyperbolization and defuzzification operations are implemented on each object/background area, and finally an enhanced result is achieved via nonlinear fusion operators. The fuzzy implementations can be processed in parallel. Real data experiments demonstrate that the AIFE scheme is not only effectively useful to have information from images acquired with different MR sequences fused in a single image, but also has better enhancement performance when compared to conventional baseline algorithms. This indicates that the proposed AIFE scheme has potential for improving the detection and diagnosis of brain tumors. PMID:27786240

  20. Round Randomized Learning Vector Quantization for Brain Tumor Imaging

    PubMed Central

    2016-01-01

    Brain magnetic resonance imaging (MRI) classification into normal and abnormal is a critical and challenging task. Owing to that, several medical imaging classification techniques have been devised in which Learning Vector Quantization (LVQ) is amongst the potential. The main goal of this paper is to enhance the performance of LVQ technique in order to gain higher accuracy detection for brain tumor in MRIs. The classical way of selecting the winner code vector in LVQ is to measure the distance between the input vector and the codebook vectors using Euclidean distance function. In order to improve the winner selection technique, round off function is employed along with the Euclidean distance function. Moreover, in competitive learning classifiers, the fitting model is highly dependent on the class distribution. Therefore this paper proposed a multiresampling technique for which better class distribution can be achieved. This multiresampling is executed by using random selection via preclassification. The test data sample used are the brain tumor magnetic resonance images collected from Universiti Kebangsaan Malaysia Medical Center and UCI benchmark data sets. Comparative studies showed that the proposed methods with promising results are LVQ1, Multipass LVQ, Hierarchical LVQ, Multilayer Perceptron, and Radial Basis Function. PMID:27516807

  1. MR Vascular Fingerprinting in Stroke and Brain Tumors Models

    NASA Astrophysics Data System (ADS)

    Lemasson, B.; Pannetier, N.; Coquery, N.; Boisserand, Ligia S. B.; Collomb, Nora; Schuff, N.; Moseley, M.; Zaharchuk, G.; Barbier, E. L.; Christen, T.

    2016-11-01

    In this study, we evaluated an MRI fingerprinting approach (MRvF) designed to provide high-resolution parametric maps of the microvascular architecture (i.e., blood volume fraction, vessel diameter) and function (blood oxygenation) simultaneously. The method was tested in rats (n = 115), divided in 3 models: brain tumors (9 L, C6, F98), permanent stroke, and a control group of healthy animals. We showed that fingerprinting can robustly distinguish between healthy and pathological brain tissues with different behaviors in tumor and stroke models. In particular, fingerprinting revealed that C6 and F98 glioma models have similar signatures while 9 L present a distinct evolution. We also showed that it is possible to improve the results of MRvF and obtain supplemental information by changing the numerical representation of the vascular network. Finally, good agreement was found between MRvF and conventional MR approaches in healthy tissues and in the C6, F98, and permanent stroke models. For the 9 L glioma model, fingerprinting showed blood oxygenation measurements that contradict results obtained with a quantitative BOLD approach. In conclusion, MR vascular fingerprinting seems to be an efficient technique to study microvascular properties in vivo. Multiple technical improvements are feasible and might improve diagnosis and management of brain diseases.

  2. MR Vascular Fingerprinting in Stroke and Brain Tumors Models

    PubMed Central

    Lemasson, B.; Pannetier, N.; Coquery, N.; Boisserand, Ligia S. B.; Collomb, Nora; Schuff, N.; Moseley, M.; Zaharchuk, G.; Barbier, E. L.; Christen, T.

    2016-01-01

    In this study, we evaluated an MRI fingerprinting approach (MRvF) designed to provide high-resolution parametric maps of the microvascular architecture (i.e., blood volume fraction, vessel diameter) and function (blood oxygenation) simultaneously. The method was tested in rats (n = 115), divided in 3 models: brain tumors (9 L, C6, F98), permanent stroke, and a control group of healthy animals. We showed that fingerprinting can robustly distinguish between healthy and pathological brain tissues with different behaviors in tumor and stroke models. In particular, fingerprinting revealed that C6 and F98 glioma models have similar signatures while 9 L present a distinct evolution. We also showed that it is possible to improve the results of MRvF and obtain supplemental information by changing the numerical representation of the vascular network. Finally, good agreement was found between MRvF and conventional MR approaches in healthy tissues and in the C6, F98, and permanent stroke models. For the 9 L glioma model, fingerprinting showed blood oxygenation measurements that contradict results obtained with a quantitative BOLD approach. In conclusion, MR vascular fingerprinting seems to be an efficient technique to study microvascular properties in vivo. Multiple technical improvements are feasible and might improve diagnosis and management of brain diseases. PMID:27883015

  3. MR Vascular Fingerprinting in Stroke and Brain Tumors Models.

    PubMed

    Lemasson, B; Pannetier, N; Coquery, N; Boisserand, Ligia S B; Collomb, Nora; Schuff, N; Moseley, M; Zaharchuk, G; Barbier, E L; Christen, T

    2016-11-24

    In this study, we evaluated an MRI fingerprinting approach (MRvF) designed to provide high-resolution parametric maps of the microvascular architecture (i.e., blood volume fraction, vessel diameter) and function (blood oxygenation) simultaneously. The method was tested in rats (n = 115), divided in 3 models: brain tumors (9 L, C6, F98), permanent stroke, and a control group of healthy animals. We showed that fingerprinting can robustly distinguish between healthy and pathological brain tissues with different behaviors in tumor and stroke models. In particular, fingerprinting revealed that C6 and F98 glioma models have similar signatures while 9 L present a distinct evolution. We also showed that it is possible to improve the results of MRvF and obtain supplemental information by changing the numerical representation of the vascular network. Finally, good agreement was found between MRvF and conventional MR approaches in healthy tissues and in the C6, F98, and permanent stroke models. For the 9 L glioma model, fingerprinting showed blood oxygenation measurements that contradict results obtained with a quantitative BOLD approach. In conclusion, MR vascular fingerprinting seems to be an efficient technique to study microvascular properties in vivo. Multiple technical improvements are feasible and might improve diagnosis and management of brain diseases.

  4. Adaptive Intuitionistic Fuzzy Enhancement of Brain Tumor MR Images.

    PubMed

    Deng, He; Deng, Wankai; Sun, Xianping; Ye, Chaohui; Zhou, Xin

    2016-10-27

    Image enhancement techniques are able to improve the contrast and visual quality of magnetic resonance (MR) images. However, conventional methods cannot make up some deficiencies encountered by respective brain tumor MR imaging modes. In this paper, we propose an adaptive intuitionistic fuzzy sets-based scheme, called as AIFE, which takes information provided from different MR acquisitions and tries to enhance the normal and abnormal structural regions of the brain while displaying the enhanced results as a single image. The AIFE scheme firstly separates an input image into several sub images, then divides each sub image into object and background areas. After that, different novel fuzzification, hyperbolization and defuzzification operations are implemented on each object/background area, and finally an enhanced result is achieved via nonlinear fusion operators. The fuzzy implementations can be processed in parallel. Real data experiments demonstrate that the AIFE scheme is not only effectively useful to have information from images acquired with different MR sequences fused in a single image, but also has better enhancement performance when compared to conventional baseline algorithms. This indicates that the proposed AIFE scheme has potential for improving the detection and diagnosis of brain tumors.

  5. Altered PTEN, ATRX, CHGA, CHGB & TP53 Expression are Associated with Aggressive VHL-Associated Pancreatic Neuroendocrine Tumors

    PubMed Central

    Weisbrod, Allison B.; Zhang, Lisa; Jain, Meenu; Barak, Stephanie; Quezado, Martha M.; Kebebew, Electron

    2013-01-01

    Von Hippel-Lindau (VHL) syndrome is an inherited cancer syndrome in which 8-17% of germline mutation carriers develop pancreatic neuroendocrine tumors (PNETs). There is limited data on prognostic markers for PNETs other than Ki-67, which is included in the World Health Organization classification system. Recently, specific genes and pathways have been identified by whole exome sequencing which may be involved in the tumorigenesis of PNETs and may be markers of disease aggressiveness. The objective of this study was to identify molecular markers of aggressive disease in VHL-associated PNETs. The protein expression of 8 genes (PTEN, CHGA, CHGB, ATRX, DAXX, CC-3, VEGF, TP53) was analyzed in PNETs by immunohistochemistry and compared to clinical data, VHL genotype, functional imaging results, and pathologic findings. Subcellular distribution of PTEN, CHGA and ATRX were significantly different by WHO classifications (p<0.05). There was decreased PTEN nuclear to cytoplasmic ratio (p<0.01) and decreased CHGA nuclear expression (p=0.03) in malignant samples as compared to benign. Lower cytoplasmic CHGB expression (p=0.03) was associated with malignant tumors and metastasis. Higher nuclear expression of PTEN was associated with VHL mutations in exon 3 (p=0.04). Higher PTEN and CHGB expression was associated with higher FDG-PET avidity (p<0.05). Cytoplasmic expression of CC-3 was associated with higher serum Chromogranin A levels (σ=0.72, p= 0.02). Lastly, greater cytoplasmic expression of p53 was associated with metastasis. Our findings suggest that altered PTEN, ATRX, CHGA and CHGB expression are associated with aggressive PNET phenotype in VHL and may serve as useful adjunct prognostic markers to Ki-67 in PNETs. PMID:23361940

  6. Disulfiram modulates stemness and metabolism of brain tumor initiating cells in atypical teratoid/rhabdoid tumors

    PubMed Central

    Choi, Seung Ah; Choi, Jung Won; Wang, Kyu-Chang; Phi, Ji Hoon; Lee, Ji Yeoun; Park, Kyung Duk; Eum, Dayoung; Park, Sung-Hye; Kim, Il Han; Kim, Seung-Ki

    2015-01-01

    Background Atypical teratoid/rhabdoid tumors (AT/RT) are among the most malignant pediatric brain tumors. Cells from brain tumors with high aldehyde dehydrogenase (ALDH) activity have a number of characteristics that are similar to brain tumor initiating cells (BTICs). This study aimed to evaluate the therapeutic potential of ALDH inhibition using disulfiram (DSF) against BTICs from AT/RT. Methods Primary cultured BTICs from AT/RT were stained with Aldefluor and isolated by fluorescence activated cell sorting. The therapeutic effect of DSF against BTICs from AT/RT was confirmed in vitro and in vivo. Results AT/RT cells displayed a high expression of ALDH. DSF demonstrated a more potent cytotoxic effect on ALDH+ AT/RT cells compared with standard anticancer agents. Notably, treatment with DSF did not have a considerable effect on normal neural stem cells or fibroblasts. DSF significantly inhibited the ALDH enzyme activity of AT/RT cells. DSF decreased self-renewal ability, cell viability, and proliferation potential and induced apoptosis and cell cycle arrest in ALDH+ AT/RT cells. Importantly, DSF reduced the metabolism of ALDH+ AT/RT cells by increasing the nicotinamide adenine dinucleotide ratio of NAD+/NADH and regulating Silent mating type Information Regulator 2 homolog 1 (SIRT1), nuclear factor-kappaB, Lin28A/B, and miRNA let-7g. Animals in the DSF-treated group demonstrated a reduction of tumor volume (P < .05) and a significant survival benefit (P = .02). Conclusion Our study demonstrated the therapeutic potential of DSF against BTICs from AT/RT and suggested the possibility of ALDH inhibition for clinical application. PMID:25378634

  7. A neuropathology-based approach to epilepsy surgery in brain tumors and proposal for a new terminology use for long-term epilepsy-associated brain tumors.

    PubMed

    Blumcke, Ingmar; Aronica, Eleonora; Urbach, Horst; Alexopoulos, Andreas; Gonzalez-Martinez, Jorge A

    2014-07-01

    Every fourth patient submitted to epilepsy surgery suffers from a brain tumor. Microscopically, these neoplasms present with a wide-ranging spectrum of glial or glio-neuronal tumor subtypes. Gangliogliomas (GG) and dysembryoplastic neuroepithelial tumors (DNTs) are the most frequently recognized entities accounting for 65 % of 1,551 tumors collected at the European Epilepsy Brain Bank (n = 5,842 epilepsy surgery samples). These tumors often present with early seizure onset at a mean age of 16.5 years, with 77 % of neoplasms affecting the temporal lobe. Relapse and malignant progression are rare events in this particular group of brain tumors. Surgical resection should be regarded, therefore, also as important treatment strategy to prevent epilepsy progression as well as seizure- and medication-related comorbidities. The characteristic clinical presentation and broad histopathological spectrum of these highly epileptogenic brain tumors will herein be classified as "long-term epilepsy associated tumors-LEATs". LEATs differ from most other brain tumors by early onset of spontaneous seizures, and conceptually are regarded as developmental tumors to explain their pleomorphic microscopic appearance and frequent association with Focal Cortical Dysplasia Type IIIb. However, the broad neuropathologic spectrum and lack of reliable histopathological signatures make these tumors difficult to classify using the WHO system of brain tumors. As another consequence from poor agreement in published LEAT series, molecular diagnostic data remain ambiguous. Availability of surgical tissue specimens from patients which have been well characterized during their presurgical evaluation should open the possibility to systematically address the origin and epileptogenicity of LEATs, and will be further discussed herein. As a conclusion, the authors propose a novel A-B-C terminology of epileptogenic brain tumors ("epileptomas") which hopefully promote the discussion between neuropathologists

  8. Tumor treating fields: a novel treatment modality and its use in brain tumors

    PubMed Central

    Pacheco, Patricia

    2016-01-01

    Tumor treating fields (TTFields) are low-intensity electric fields alternating at an intermediate frequency (200kHz), which have been demonstrated to block cell division and interfere with organelle assembly. This novel treatment modality has shown promise in a variety of tumor types. It has been evaluated in randomized phase 3 trials in glioblastoma (GBM) and demonstrated to prolong progression-free survival (PFS) and overall survival (OS) when administered together with standard maintenance temozolomide (TMZ) chemotherapy in patients with newly diagnosed GBM. TTFields are continuously delivered by 4 transducer arrays consisting each of 9 insulated electrodes that are placed on the patient’s shaved scalp and connected to a portable device. Here we summarize the preclinical data and mechanism of action, the available clinical data, and further outlook of this treatment modality in brain tumors and other cancer indications. PMID:27664860

  9. Regional brain glucose metabolism in patients with brain tumors before and after radiotherapy

    SciTech Connect

    Wang, G.J.; Volkow, N.D.; Lau, Y.H.

    1994-05-01

    This study was performed to measure regional glucose metabolism in nonaffected brain regions of patients with primary or metastatic brain tumors. Seven female and four male patients (mean age 51.5{plus_minus}14.0 years old) were compared with eleven age and sex matched normal subjects. None of the patients had hydrocephalus and/or increased intracranial pressure. Brain glucose metabolism was measured using FDG-PET scan. Five of the patients were reevaluated one week after receiving radiation treatment (RT) to the brain. Patients were on Decadron and/or Dilantin at the time of both scan. PET images were analyzed with a template of 115 nonoverlapping regions of interest and then grouped into eight gray matter regions on each hemisphere. Brain regions with tumors and edema shown in MR imaging were excluded. Z scores were used to compare individual patients` regional values with those of normal subjects. The number of regional values with Z scores of less than - 3.0 were considered abnormal and were quantified. The mean global glucose metabolic rate (mean of all regions) in nonaffected brain regions of patients was significantly lower than that of normal controls (32.1{plus_minus}9.0 versus 44.8{plus_minus}6.3 {mu}mol/100g/min, p<0.001). Analyses of individual subjects revealed that none of the controls and 8 of the 11 patients had at least one abnormal region. In these 8 patients the regions which were abnormal were most frequently localized in right (n=5) and left occipital (n=6) and right orbital frontal cortex (n=7) whereas the basal ganglia was not affected. Five of the patients who had repeated scans following RT showed decrements in tumor metabolism (41{plus_minus}20.5%) and a significant increase in whole brain metabolism (8.6{plus_minus}5.3%, p<0.001). The improvement in whole brain metabolism after RT suggests that the brain metabolic decrements in the patients were related to the presence of tumoral tissue and not just a medication effect.

  10. Statistical feature selection for enhanced detection of brain tumor

    NASA Astrophysics Data System (ADS)

    Chaddad, Ahmad; Colen, Rivka R.

    2014-09-01

    Feature-based methods are widely used in the brain tumor recognition system. Robust of early cancer detection is one of the most powerful image processing tools. Specifically, statistical features, such as geometric mean, harmonic mean, mean excluding outliers, median, percentiles, skewness and kurtosis, have been extracted from brain tumor glioma to aid in discriminating two levels namely, Level I and Level II using fluid attenuated inversion recovery (FLAIR) sequence in the diagnosis of brain tumor. Statistical feature describes the major characteristics of each level from glioma which is an important step to evaluate heterogeneity of cancer area pixels. In this paper, we address the task of feature selection to identify the relevant subset of features in the statistical domain, while discarding those that are either redundant or confusing, thereby improving the performance of feature-based scheme to distinguish between Level I and Level II. We apply a Decision Structure algorithm to find the optimal combination of nonhomogeneity based statistical features for the problem at hand. We employ a Naïve Bayes classifier to evaluate the performance of the optimal statistical feature based scheme in terms of its glioma Level I and Level II discrimination capability and use real-data collected from 17 patients have a glioblastoma multiforme (GBM). Dataset provided from 3 Tesla MR imaging system by MD Anderson Cancer Center. For the specific data analyzed, it is shown that the identified dominant features yield higher classification accuracy, with lower number of false alarms and missed detections, compared to the full statistical based feature set. This work has been proposed and analyzed specific GBM types which Level I and Level II and the dominant features were considered as feature aid to prognostic indicators. These features were selected automatically to be better able to determine prognosis from classical imaging studies.

  11. Spatial organization and correlations of cell nuclei in brain tumors.

    PubMed

    Jiao, Yang; Berman, Hal; Kiehl, Tim-Rasmus; Torquato, Salvatore

    2011-01-01

    Accepting the hypothesis that cancers are self-organizing, opportunistic systems, it is crucial to understand the collective behavior of cancer cells in their tumorous heterogeneous environment. In the present paper, we ask the following basic question: Is this self-organization of tumor evolution reflected in the manner in which malignant cells are spatially distributed in their heterogeneous environment? We employ a variety of nontrivial statistical microstructural descriptors that arise in the theory of heterogeneous media to characterize the spatial distributions of the nuclei of both benign brain white matter cells and brain glioma cells as obtained from histological images. These descriptors, which include the pair correlation function, structure factor and various nearest neighbor functions, quantify how pairs of cell nuclei are correlated in space in various ways. We map the centroids of the cell nuclei into point distributions to show that while commonly used local spatial statistics (e.g., cell areas and number of neighboring cells) cannot clearly distinguish spatial correlations in distributions of normal and abnormal cell nuclei, their salient structural features are captured very well by the aforementioned microstructural descriptors. We show that the tumorous cells pack more densely than normal cells and exhibit stronger effective repulsions between any pair of cells. Moreover, we demonstrate that brain gliomas are organized in a collective way rather than randomly on intermediate and large length scales. The existence of nontrivial spatial correlations between the abnormal cells strongly supports the view that cancer is not an unorganized collection of malignant cells but rather a complex emergent integrated system.

  12. Confidence-based ensemble for GBM brain tumor segmentation

    NASA Astrophysics Data System (ADS)

    Huo, Jing; van Rikxoort, Eva M.; Okada, Kazunori; Kim, Hyun J.; Pope, Whitney; Goldin, Jonathan; Brown, Matthew

    2011-03-01

    It is a challenging task to automatically segment glioblastoma multiforme (GBM) brain tumors on T1w post-contrast isotropic MR images. A semi-automated system using fuzzy connectedness has recently been developed for computing the tumor volume that reduces the cost of manual annotation. In this study, we propose a an ensemble method that combines multiple segmentation results into a final ensemble one. The method is evaluated on a dataset of 20 cases from a multi-center pharmaceutical drug trial and compared to the fuzzy connectedness method. Three individual methods were used in the framework: fuzzy connectedness, GrowCut, and voxel classification. The combination method is a confidence map averaging (CMA) method. The CMA method shows an improved ROC curve compared to the fuzzy connectedness method (p < 0.001). The CMA ensemble result is more robust compared to the three individual methods.

  13. The biological kinship of hypoxia with CSC and EMT and their relationship with deregulated expression of miRNAs and tumor aggressiveness

    PubMed Central

    Bao, Bin; Azmi, Asfar S.; Ali, Shadan; Ahmad, Aamir; Li, Yiwei; Banerjee, Sanjeev; Kong, Dejuan; Sarkar, Fazlul H.

    2013-01-01

    Hypoxia is one of the fundamental biological phenomena that are intricately associated with the development and aggressiveness of a variety of solid tumors. Hypoxia-inducible factors (HIF) function as a master transcription factor, which regulates hypoxia responsive genes and has been recognized to play critical roles in tumor invasion, metastasis, and chemo-radiation resistance, and contributes to increased cell proliferation, survival, angiogenesis and metastasis. Therefore, tumor hypoxia with deregulated expression of HIF and its biological consequence lead to poor prognosis of patients diagnosed with solid tumors, resulting in higher mortality, suggesting that understanding of the molecular relationship of hypoxia with other cellular features of tumor aggressiveness would be invaluable for developing newer targeted therapy for solid tumors. It has been well recognized that cancer stem cells (CSCs) and epithelial-to-mesenchymal transition (EMT) phenotypic cells are associated with therapeutic resistance and contribute to aggressive tumor growth, invasion, metastasis and believed to be the cause of tumor recurrence. Interestingly, hypoxia and HIF signaling pathway are known to play an important role in the regulation and sustenance of CSCs and EMT phenotype. However, the molecular relationship between HIF signaling pathway with the biology of CSCs and EMT remains unclear although NF-κB, PI3K/Akt/mTOR, Notch, Wnt/β-catenin, and Hedgehog signaling pathways have been recognized as important regulators of CSCs and EMT. In this article, we will discuss the state of our knowledge on the role of HIF-hypoxia signaling pathway and its kinship with CSCs and EMT within the tumor microenvironment. We will also discuss the potential role of hypoxia-induced microRNAs (miRNAs) in tumor development and aggressiveness, and finally discuss the potential effects of nutraceuticals on the biology of CSCs and EMT in the context of tumor hypoxia. PMID:22579961

  14. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)

    PubMed Central

    Jakab, Andras; Bauer, Stefan; Kalpathy-Cramer, Jayashree; Farahani, Keyvan; Kirby, Justin; Burren, Yuliya; Porz, Nicole; Slotboom, Johannes; Wiest, Roland; Lanczi, Levente; Gerstner, Elizabeth; Weber, Marc-André; Arbel, Tal; Avants, Brian B.; Ayache, Nicholas; Buendia, Patricia; Collins, D. Louis; Cordier, Nicolas; Corso, Jason J.; Criminisi, Antonio; Das, Tilak; Delingette, Hervé; Demiralp, Çağatay; Durst, Christopher R.; Dojat, Michel; Doyle, Senan; Festa, Joana; Forbes, Florence; Geremia, Ezequiel; Glocker, Ben; Golland, Polina; Guo, Xiaotao; Hamamci, Andac; Iftekharuddin, Khan M.; Jena, Raj; John, Nigel M.; Konukoglu, Ender; Lashkari, Danial; Mariz, José António; Meier, Raphael; Pereira, Sérgio; Precup, Doina; Price, Stephen J.; Raviv, Tammy Riklin; Reza, Syed M. S.; Ryan, Michael; Sarikaya, Duygu; Schwartz, Lawrence; Shin, Hoo-Chang; Shotton, Jamie; Silva, Carlos A.; Sousa, Nuno; Subbanna, Nagesh K.; Szekely, Gabor; Taylor, Thomas J.; Thomas, Owen M.; Tustison, Nicholas J.; Unal, Gozde; Vasseur, Flor; Wintermark, Max; Ye, Dong Hye; Zhao, Liang; Zhao, Binsheng; Zikic, Darko; Prastawa, Marcel; Reyes, Mauricio; Van Leemput, Koen

    2016-01-01

    In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients—manually annotated by up to four raters—and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%–85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource. PMID:25494501

  15. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS).

    PubMed

    Menze, Bjoern H; Jakab, Andras; Bauer, Stefan; Kalpathy-Cramer, Jayashree; Farahani, Keyvan; Kirby, Justin; Burren, Yuliya; Porz, Nicole; Slotboom, Johannes; Wiest, Roland; Lanczi, Levente; Gerstner, Elizabeth; Weber, Marc-André; Arbel, Tal; Avants, Brian B; Ayache, Nicholas; Buendia, Patricia; Collins, D Louis; Cordier, Nicolas; Corso, Jason J; Criminisi, Antonio; Das, Tilak; Delingette, Hervé; Demiralp, Çağatay; Durst, Christopher R; Dojat, Michel; Doyle, Senan; Festa, Joana; Forbes, Florence; Geremia, Ezequiel; Glocker, Ben; Golland, Polina; Guo, Xiaotao; Hamamci, Andac; Iftekharuddin, Khan M; Jena, Raj; John, Nigel M; Konukoglu, Ender; Lashkari, Danial; Mariz, José Antonió; Meier, Raphael; Pereira, Sérgio; Precup, Doina; Price, Stephen J; Raviv, Tammy Riklin; Reza, Syed M S; Ryan, Michael; Sarikaya, Duygu; Schwartz, Lawrence; Shin, Hoo-Chang; Shotton, Jamie; Silva, Carlos A; Sousa, Nuno; Subbanna, Nagesh K; Szekely, Gabor; Taylor, Thomas J; Thomas, Owen M; Tustison, Nicholas J; Unal, Gozde; Vasseur, Flor; Wintermark, Max; Ye, Dong Hye; Zhao, Liang; Zhao, Binsheng; Zikic, Darko; Prastawa, Marcel; Reyes, Mauricio; Van Leemput, Koen

    2015-10-01

    In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients-manually annotated by up to four raters-and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%-85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.

  16. Absence of human cytomegalovirus infection in childhood brain tumors

    PubMed Central

    Sardi, Iacopo; Lucchesi, Maurizio; Becciani, Sabrina; Facchini, Ludovica; Guidi, Milena; Buccoliero, Anna Maria; Moriondo, Maria; Baroni, Gianna; Stival, Alessia; Farina, Silvia; Genitori, Lorenzo; de Martino, Maurizio

    2015-01-01

    Human cytomegalovirus (HCMV) is a common human pathogen which induces different clinical manifestations related to the age and the immune conditions of the host. HCMV infection seems to be involved in the pathogenesis of adult glioblastomas. The aim of our study was to detect the presence of HCMV in high grade gliomas and other pediatric brain tumors. This hypothesis might have important therapeutic implications, offering a new target for adjuvant therapies. Among 106 pediatric patients affected by CNS tumors we selected 27 patients with a positive HCMV serology. The serological analysis revealed 7 patients with positive HCMV IGG (≥14 U/mL), whom had also a high HCMV IgG avidity, suggesting a more than 6 months-dated infection. Furthermore, HCMV IGM were positive (≥22 U/mL) in 20 patients. Molecular and immunohistochemical analyses were performed in all the 27 samples. Despite a positive HCMV serology, confirmed by ELISA, no viral DNA was shown at the PCR analysis in the patients’ neoplastic cells. At immunohistochemistry, no expression of HCMV antigens was observed in tumoral cells. Our results are in agreement with recent results in adults which did not evidence the presence of HCMV genome in glioblastoma lesions. We did not find any correlation between HCMV infection and pediatric CNS tumors. PMID:26396923

  17. Brain Penetration and Efficacy of Different Mebendazole Polymorphs in a Mouse Brain Tumor Model

    PubMed Central

    Wanjiku, Teresia; Rudek, Michelle A; Joshi, Avadhut; Gallia, Gary L.; Riggins, Gregory J.

    2015-01-01

    Purpose Mebendazole (MBZ), first used as an antiparasitic drug, shows preclinical efficacy in models of glioblastoma and medulloblastoma. Three different MBZ polymorphs (A, B and C) exist and a detailed assessment of the brain penetration, pharmacokinetics and anti-tumor properties of each individual MBZ polymorph is necessary to improve mebendazole-based brain cancer therapy. Experimental Design and Results In this study, various marketed and custom-formulated MBZ tablets were analyzed for their polymorph content by IR spectroscopy and subsequently tested in orthotopic GL261 mouse glioma model for efficacy and tolerability. The pharmacokinetics and brain concentration of MBZ polymorphs and two main metabolites were analyzed by LC-MS. We found that polymorph B and C both increased survival in a GL261 glioma model, as B exhibited greater toxicity. Polymorph A showed no benefit. Both, polymorph B and C, reached concentrations in the brain that exceeded the IC50 in GL261 cells 29-fold. In addition, polymorph C demonstrated an AUC0-24h brain-to-plasma (B/P) ratio of 0.82, whereas B showed higher plasma AUC and lower B/P ratio. In contrast, polymorph A presented markedly lower levels in the plasma and brain. Furthermore, the combination with elacridar was able to significantly improve the efficacy of polymorph C in GL261 glioma and D425 medulloblastoma models in mice. Conclusion Among MBZ polymorphs, C reaches therapeutically effective concentrations in the brain tissue and tumor with less side effects and is the better choice for brain cancer therapy. Its efficacy can be further enhanced by combination with elacridar. PMID:25862759

  18. Phenylalanine-coupled solid lipid nanoparticles for brain tumor targeting

    NASA Astrophysics Data System (ADS)

    Kharya, Parul; Jain, Ashish; Gulbake, Arvind; Shilpi, Satish; Jain, Ankit; Hurkat, Pooja; Majumdar, Subrata; Jain, Sanjay K.

    2013-11-01

    The purpose of this study is to investigate the targeting potential of amino acid (phenylalanine)-coupled solid lipid nanoparticles (SLN) loaded with ionically complexed doxorubicin HCl (Dox). Ionic complexation was used to enhance the loading efficiency and release characteristics of water soluble form of Dox. l-Type amino acid transporters (LAT1) are highly expressed on blood brain barrier as well as on many brain cancer cells, thus targeting LAT1 using phenylalanine improved anticancer activity of prepared nanocarrier. The phenylalanine-coupled SLN were characterized by fourier transform infrared spectroscopy, scanning electron microscope, transmission electron microscopy, particle size, zeta potential, entrapment efficiency and in vitro release. The particle size of the resulting SLN was found to be in the range of 163.3 ± 5.2 to 113.0 ± 2.6 nm, with a slightly negative surface charge. In ex vivo study on C6 glioma cell lines, the cellular cytotoxicity of the SLN was highly increased when coupled with phenylalanine. In addition, stealthing sheath of PEG present on the surface of the SLN enhanced the cellular uptake of the SLN on C6 glioma cell line. Results of biodistribution and fluorescence studies clearly revealed that phenylalanine-coupled SLN could deliver high amount of drug into the brain tumor cells and showed the brain-targeting potential.

  19. REPEATED ANABOLIC/ANDROGENIC STEROID EXPOSURE DURING ADOLESCENCE ALTERS PHOSPHATE-ACTIVATED GLUTAMINASE AND GLUTAMATE RECEPTOR 1 SUBUNIT IMMUNOREACTIVITY IN HAMSTER BRAIN: CORRELATION WITH OFFENSIVE AGGRESSION

    PubMed Central

    Fischer, Shannon G.; Ricci, Lesley A.; Melloni, Richard H.

    2007-01-01

    Male Syrian hamsters (Mesocricetus auratus) treated with moderately high doses (5.0mg/kg/day) of anabolic/androgenic steroids (AAS) during adolescence (P27–P56) display highly escalated offensive aggression. The current study examined whether adolescent AAS-exposure influenced the immunohistochemical localization of phosphate-activated glutaminase (PAG), the rate-limiting enzyme in the synthesis of glutamate, a fast-acting neurotransmitter implicated in the modulation of aggression in various species and models of aggression, as well as glutamate receptor 1 subunit (GluR1). Hamsters were administered AAS during adolescence, scored for offensive aggression using the resident-intruder paradigm, and then examined for changes in PAG and GluR1 immunoreactivity in areas of the brain implicated in aggression control. When compared with sesame oil-treated control animals, aggressive AAS-treated hamsters displayed a significant increase in the number of PAG- and area density of GluR1- containing neurons in several notable aggression regions, although the differential pattern of expression did not appear to overlap across brain regions. Together, these results suggest that altered glutamate synthesis and GluR1 receptor expression in specific aggression areas may be involved in adolescent AAS-induced offensive aggression. PMID:17418431

  20. Staff-reported antecedents to aggression in a post-acute brain injury treatment programme: What are they and what implications do they have for treatment?

    PubMed Central

    Giles, Gordon Muir; Scott, Karen; Manchester, David

    2013-01-01

    Research in psychiatric settings has found that staff attribute the majority of inpatient aggression to immediate environmental stressors. We sought to determine if staff working with persons with brain injury-related severe and chronic impairment make similar causal attributions. If immediate environmental stressors precipitate the majority of aggressive incidents in this client group, it is possible an increased focus on the management of factors that initiate client aggression may be helpful. The research was conducted in a low-demand treatment programme for individuals with chronic cognitive impairment due to acquired brain injury. Over a six-week period, 63 staff and a research assistant reported on 508 aggressive incidents. Staff views as to the causes of client aggression were elicited within 72 hours of observing an aggressive incident. Staff descriptions of causes were categorised using qualitative methods and analysed both qualitatively and quantitatively. Aggression towards staff was predominantly preceded by (a) actions that interrupted or redirected a client behaviour, (b) an activity demand, or (c) a physical intrusion. The majority of aggressive incidents appeared hostile/angry in nature and were not considered by staff to be pre-meditated. Common treatment approaches can be usefully augmented by a renewed focus on interventions aimed at reducing antecedents that provoke aggression. Possible approaches for achieving this are considered. PMID:23782342

  1. Three-Staged Stereotactic Radiotherapy Without Whole Brain Irradiation for Large Metastatic Brain Tumors

    SciTech Connect

    Higuchi, Yoshinori Serizawa, Toru; Nagano, Osamu; Matsuda, Shinji; Ono, Junichi; Sato, Makoto; Iwadate, Yasuo; Saeki, Naokatsu

    2009-08-01

    Purpose: To evaluate the efficacy and toxicity of staged stereotactic radiotherapy with a 2-week interfraction interval for unresectable brain metastases more than 10 cm{sup 3} in volume. Patients and Methods: Subjects included 43 patients (24 men and 19 women), ranging in age from 41 to 84 years, who had large brain metastases (> 10 cc in volume). Primary tumors were in the colon in 14 patients, lung in 12, breast in 11, and other in 6. The peripheral dose was 10 Gy in three fractions. The interval between fractions was 2 weeks. The mean tumor volume before treatment was 17.6 {+-} 6.3 cm{sup 3} (mean {+-} SD). Mean follow-up interval was 7.8 months. The local tumor control rate, as well as overall, neurological, and qualitative survivals, were calculated using the Kaplan-Meier method. Results: At the time of the second and third fractions, mean tumor volumes were 14.3 {+-} 6.5 (18.8% reduction) and 10.6 {+-} 6.1 cm{sup 3} (39.8% reduction), respectively, showing significant reductions. The median overall survival period was 8.8 months. Neurological and qualitative survivals at 12 months were 81.8% and 76.2%, respectively. Local tumor control rates were 89.8% and 75.9% at 6 and 12 months, respectively. Tumor recurrence-free and symptomatic edema-free rates at 12 months were 80.7% and 84.4%, respectively. Conclusions: The 2-week interval allowed significant reduction of the treatment volume. Our results suggest staged stereotactic radiotherapy using our protocol to be a possible alternative for treating large brain metastases.

  2. Oxytocin-Induced Changes in Monoamine Level in Symmetric Brain Structures of Isolated Aggressive C57Bl/6 Mice.

    PubMed

    Karpova, I V; Mikheev, V V; Marysheva, V V; Bychkov, E R; Proshin, S N

    2016-03-01

    Changes in activity of monoaminergic systems of the left and right brain hemispheres after administration of saline and oxytocin were studied in male C57Bl/6 mice subjected to social isolation. The concentrations of dopamine, norepinephrine, serotonin, and their metabolites dihydroxyphenylacetic, homovanillic, and 5-hydroxyindoleacetic acids were measured in the cerebral cortex, hippocampus, olfactory tubercle, and striatum of the left and right brain hemispheres by HPLC. In isolated aggressive males treated intranasally with saline, the content of serotonin and 5-hydroxyindoleacetic acid was significantly higher in the right hippocampus. Oxytocin reduces aggression caused by long-term social isolation, but has no absolute ability to suppress this type of behavior. Oxytocin reduced dopamine content in the left cortex and serotonin content in the right hippocampus and left striatum. Furthermore, oxytocin evened the revealed asymmetry in serotonin and 5-hydroxyindoleacetic acid concentrations in the hippocampus. At the same time, asymmetry in dopamine concentration appeared in the cortex with predominance of this transmitter in the right hemisphere. The data are discussed in the context of lateralization of neurotransmitter systems responsible for intraspecific aggression caused by long-term social isolation.

  3. Aggression and flight behaviour of the marmoset monkey Callithrix jacchus: an ethogram for brain stimulation studies.

    PubMed

    Lipp, H P

    1978-01-01

    The aggressive and flight behaviour of the common marmoset monkey (Callithrix jacchus) is described and split into behavioural units, allowing analysis of agonistic behaviour evoked by electrical stimulation of the hypothalamus. The social context of the described units is also considered. C. jacchus shows clearly recognizable behavioural patterns. Free-born animals are very timid and show typical flight reactions. Within aggressive behaviour, two types of aggression can be distinguished: very violent attacks causing severe injuries, often accompanied by particular threat displays and observed during dominance and territorial encounters, and, on the other hand, relatively harmless short attacks, together with a noisy vocalization, for defensive purposes or keeping group members at a distance.

  4. Tumor growth model for atlas based registration of pathological brain MR images

    NASA Astrophysics Data System (ADS)

    Moualhi, Wafa; Ezzeddine, Zagrouba

    2015-02-01

    The motivation of this work is to register a tumor brain magnetic resonance (MR) image with a normal brain atlas. A normal brain atlas is deformed in order to take account of the presence of a large space occupying tumor. The method use a priori model of tumor growth assuming that the tumor grows in a radial way from a starting point. First, an affine transformation is used in order to bring the patient image and the brain atlas in a global correspondence. Second, the seeding of a synthetic tumor into the brain atlas provides a template for the lesion. Finally, the seeded atlas is deformed combining a method derived from optical flow principles and a model for tumor growth (MTG). Results show that an automatic segmentation method of brain structures in the presence of large deformation can be provided.

  5. Small molecule epigenetic screen identifies novel EZH2 and HDAC inhibitors that target glioblastoma brain tumor-initiating cells

    PubMed Central

    Grinshtein, Natalie; Rioseco, Constanza C.; Marcellus, Richard; Uehling, David; Aman, Ahmed; Lun, Xueqing; Muto, Osamu; Podmore, Lauren; Lever, Jake; Shen, Yaoqing; Blough, Michael D.; Cairncross, Greg J.; Robbins, Stephen M.; Jones, Steven J.; Marra, Marco A.; Al-Awar, Rima; Senger, Donna L.; Kaplan, David R.

    2016-01-01

    Glioblastoma (GBM) is the most lethal and aggressive adult brain tumor, requiring the development of efficacious therapeutics. Towards this goal, we screened five genetically distinct patient-derived brain-tumor initiating cell lines (BTIC) with a unique collection of small molecule epigenetic modulators from the Structural Genomics Consortium (SGC). We identified multiple hits that inhibited the growth of BTICs in vitro, and further evaluated the therapeutic potential of EZH2 and HDAC inhibitors due to the high relevance of these targets for GBM. We found that the novel SAM-competitive EZH2 inhibitor UNC1999 exhibited low micromolar cytotoxicity in vitro on a diverse collection of BTIC lines, synergized with dexamethasone (DEX) and suppressed tumor growth in vivo in combination with DEX. In addition, a unique brain-penetrant class I HDAC inhibitor exhibited cytotoxicity in vitro on a panel of BTIC lines and extended survival in combination with TMZ in an orthotopic BTIC model in vivo. Finally, a combination of EZH2 and HDAC inhibitors demonstrated synergy in vitro by augmenting apoptosis and increasing DNA damage. Our findings identify key epigenetic modulators in GBM that regulate BTIC growth and survival and highlight promising combination therapies. PMID:27449082

  6. The relationship between brain behavioral systems and the characteristics of the five factor model of personality with aggression among Iranian students

    PubMed Central

    Komasi, Saeid; Saeidi, Mozhgan; Soroush, Ali; Zakiei, Ali

    2016-01-01

    Abstract: Background: Aggression is one of the negative components of emotion and it is usually considered to be the outcome of the activity of the Behavioral Inhibition and the Behavioral Activation System (BIS/BAS): components which can be considered as predisposing factors for personality differences. Therefore, the purpose of this study was to investigate the relationship between brain behavioral systems and the characteristics of the five factor model of personality with aggression among students. Methods: The present study has a correlation descriptive design. The research population included all of the Razi University students in the academic year of 2012-2013. The sampling was carried out with a random stratified method and 360 people (308 female and 52 male) were studied according to a table of Morgan. The study instruments were Buss and Perry Aggression Questionnaire, NEO Personality Inventory (Short Form), and Carver and White scale for BAS/BIS. Finally, SPSS20 was utilized to analyze the data using Pearson correlation, regression analysis, and canonical correlation. Results: The data showed a significant positive relationship between the neurosis and agreeableness personality factors with aggression; but there is a significant negative relationship between the extroversion, openness, and conscientiousness personality factors with aggression. Furthermore, there is a significant positive relationship between all the components of brain behavioral systems (impulsivity, novelty seeking, sensitivity, tender) and aggression. The results of regression analysis indicated the personality characteristics and the brain behavioral systems which can predict 29 percent of the changes to aggression, simultaneously. Conclusions: According to a predictable level of aggressiveness by the personality characteristics and brain behavioral systems, it is possible to identify the personality characteristics and template patterns of brain behavioral systems for the students

  7. Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy.

    PubMed

    Ji, Minbiao; Lewis, Spencer; Camelo-Piragua, Sandra; Ramkissoon, Shakti H; Snuderl, Matija; Venneti, Sriram; Fisher-Hubbard, Amanda; Garrard, Mia; Fu, Dan; Wang, Anthony C; Heth, Jason A; Maher, Cormac O; Sanai, Nader; Johnson, Timothy D; Freudiger, Christian W; Sagher, Oren; Xie, Xiaoliang Sunney; Orringer, Daniel A

    2015-10-14

    Differentiating tumor from normal brain is a major barrier to achieving optimal outcome in brain tumor surgery. New imaging techniques for visualizing tumor margins during surgery are needed to improve surgical results. We recently demonstrated the ability of stimulated Raman scattering (SRS) microscopy, a nondestructive, label-free optical method, to reveal glioma infiltration in animal models. We show that SRS reveals human brain tumor infiltration in fresh, unprocessed surgical specimens from 22 neurosurgical patients. SRS detects tumor infiltration in near-perfect agreement with standard hematoxylin and eosin light microscopy (κ = 0.86). The unique chemical contrast specific to SRS microscopy enables tumor detection by revealing quantifiable alterations in tissue cellularity, axonal density, and protein/lipid ratio in tumor-infiltrated tissues. To ensure that SRS microscopic data can be easily used in brain tumor surgery, without the need for expert interpretation, we created a classifier based on cellularity, axonal density, and protein/lipid ratio in SRS images capable of detecting tumor infiltration with 97.5% sensitivity and 98.5% specificity. Quantitative SRS microscopy detects the spread of tumor cells, even in brain tissue surrounding a tumor that appears grossly normal. By accurately revealing tumor infiltration, quantitative SRS microscopy holds potential for improving the accuracy of brain tumor surgery.

  8. Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy

    PubMed Central

    Ji, Minbiao; Lewis, Spencer; Camelo-Piragua, Sandra; Ramkissoon, Shakti H.; Snuderl, Matija; Venneti, Sriram; Fisher-Hubbard, Amanda; Garrard, Mia; Fu, Dan; Wang, Anthony C.; Heth, Jason A.; Maher, Cormac O.; Sanai, Nader; Johnson, Timothy D.; Freudiger, Christian W.; Sagher, Oren; Xie, Xiaoliang Sunney; Orringer, Daniel A.

    2016-01-01

    Differentiating tumor from normal brain is a major barrier to achieving optimal outcome in brain tumor surgery. New imaging techniques for visualizing tumor margins during surgery are needed to improve surgical results. We recently demonstrated the ability of stimulated Raman scattering (SRS) microscopy, a non-destructive, label-free optical method, to reveal glioma infiltration in animal models. Here we show that SRS reveals human brain tumor infiltration in fresh, unprocessed surgical specimens from 22 neurosurgical patients. SRS detects tumor infiltration in near-perfect agreement with standard hematoxylin and eosin light microscopy (κ=0.86). The unique chemical contrast specific to SRS microscopy enables tumor detection by revealing quantifiable alterations in tissue cellularity, axonal density and protein:lipid ratio in tumor-infiltrated tissues. To ensure that SRS microscopic data can be easily used in brain tumor surgery, without the need for expert interpretation, we created a classifier based on cellularity, axonal density and protein:lipid ratio in SRS images capable of detecting tumor infiltration with 97.5% sensitivity and 98.5% specificity. Importantly, quantitative SRS microscopy detects the spread of tumor cells, even in brain tissue surrounding a tumor that appears grossly normal. By accurately revealing tumor infiltration, quantitative SRS microscopy holds potential for improving the accuracy of brain tumor surgery. PMID:26468325

  9. Targeting BRAF V600E and Autophagy in Pediatric Brain Tumors

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0414 TITLE: Targeting BRAF V600E and Autophagy in Pediatric Brain Tumors PRINCIPAL INVESTIGATOR: Jean Mulcahy...29 Sep 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-14-1-0414 Targeting BRAF V600E and Autophagy in Pediatric Brain Tumors 5b. GRANT...ABSTRACT 200 words most significant findings 15. SUBJECT TERMS autophagy, BRAF, brain tumor. pediatric 16. SECURITY CLASSIFICATION OF: 17

  10. Consensus Conference on Brain Tumor Definition for registration. November 10, 2000.

    PubMed Central

    McCarthy, Bridget J.; Surawicz, Tanya; Bruner, Janet M.; Kruchko, Carol; Davis, Faith

    2002-01-01

    The Consensus Conference on Brain Tumor Definition was facilitated by the Central Brain Tumor Registry of the United States and held on November 10, 2000, in Chicago, Illinois, to reach multidisciplinary agreement on a standard definition of brain tumors for collecting and comparing data in the U.S. The Brain Tumor Working Group, convened in 1998 to determine the status of brain tumor collection in the U.S., outlined 4 recommendations of which the first 2 guided the discussion for the Consensus Conference: (1) standardization of a definition of primary brain tumors that is based on site alone, rather than on site and behavior, and that can be used by surveillance organizations in collecting these tumors; and (2) development of a reporting scheme that can be used for comparing estimates of primary brain tumors across registries. Consensus was reached on the collection of all primary brain tumor histologies found and reported in the brain or CNS ICD-O site codes (C70.0-C72.9 and C75.1-C75.3), including those coded benign and uncertain as well as those coded malignant. In addition, a comprehensive listing of histologies occurring in the brain and CNS, based on the CBTRUS grouping scheme, was formulated to provide a template for reporting in accordance with the second recommendation of the Brain Tumor Working Group. With consensus achieved on the first 2 recommendations, the stage is set to move forward in estimating additional resources necessary for the collection of these tumors, including funding, training for cancer registrars, identifying quality control measures, and developing computerized edit checks, as outlined in the last 2 recommendations of the Brain Tumor Working Group. PMID:11916506

  11. Validation of IR-spectroscopic brain tumor classification

    NASA Astrophysics Data System (ADS)

    Beleites, C.; Steiner, G.; Sobottka, S.; Schackert, G.; Salzer, R.

    2006-02-01

    As a molecular probe of tissue composition, infrared spectroscopic imaging serves as an adjunct to histopathology in detecting and diagnosing disease. In the past it was demonstrated that the IR spectra of brain tumors can be discriminated from one another according to their grade of malignancy. Although classification success rates up to 93% were observed one problem consists in the variation of the models depending on the number of samples used for the development of the classification model. In order to open the path for clinical trials the classification has to be validated. A series of classification models were built using a k-fold cross validation scheme and the classification predictions from the various models were combined to provide an aggregated prediction. The validation highlights instabilities in the models, error rates, sensitivity as well as specificity of the classification and allows the determination of confidence intervals. Better classification models could be achieved by an aggregated prediction. The validation shows that brain tumors can be classified by infrared spectroscopy and the grade of malignancy corresponds reasonably to the histopathological assignment.

  12. "Armed" oncolytic herpes simplex viruses for brain tumor therapy.

    PubMed

    Todo, Tomoki

    2008-01-01

    Genetically engineered, conditionally replicating herpes simplex viruses type 1 (HSV-1) are promising therapeutic agents for brain tumors and other solid cancers. They can replicate in situ, spread and exhibit oncolytic activity via a direct cytocidal effect. One of the advantages of HSV-1 is the capacity to incorporate large and/or multiple transgenes within the viral genome. Oncolytic HSV-1 can therefore be "armed" to add certain functions. Recently, the field of armed oncolytic HSV-1 has drastically advanced, due to development of recombinant HSV-1 generation systems that utilize bacterial artificial chromosome and multiple DNA recombinases. Because antitumor immunity is induced in the course of oncolytic activities of HSV-1, transgenes encoding immunomodulatory molecules have been most frequently used for arming. Other armed oncolytic HSV-1 include those that express antiangiogenic factors, fusogenic membrane glycoproteins, suicide gene products, and proapoptotic proteins. Provided that the transgene product does not interfere with viral replication, such arming of oncolytic HSV-1 results in augmentation of antitumor efficacy. Immediate-early viral promoters are often used to control the arming transgenes, but strict-late viral promoters have been shown useful to restrict the expression in the late stage of viral replication when desirable. Some armed oncolytic HSV-1 have been created for the purpose of noninvasive in vivo imaging of viral infection and replication. Development of a wide variety of armed oncolytic HSV-1 will lead to an establishment of a new genre of therapy for brain tumors as well as other cancers.

  13. Cognitive Remediation Therapy for Brain Tumor Survivors with Cognitive Deficits

    PubMed Central

    Sacks-Zimmerman, Amanda; Liberta, Taylor

    2015-01-01

    Cognitive deficits have been widely observed in patients with primary brain tumors consequent to diagnosis and treatment. Given the early onset and the relatively long survival rate of patients, it seems pertinent to study and refine the techniques used to treat these deficits. The purpose of this article is to discuss cognitive deficits that follow neurosurgical treatment for low-grade gliomas as well as to outline a neuropsychological intervention to treat these deficits, specifically working memory and attention. Cognitive remediation therapy is a neuropsychological intervention that aims to enhance attention, working memory, and executive functioning, thereby diminishing the impact of these deficits on daily functioning. Computerized cognitive remediation training programs facilitate access to treatment through providing online participation. The authors include preliminary results of three participants who have completed the computerized training program as part of an ongoing study that is investigating the efficacy of this program in patients who have undergone treatment for low-grade gliomas. The results so far suggest some improvement in working memory and attention from baseline scores. It is the hope of the present authors to highlight the importance of this treatment in the continuity of care of brain tumor survivors. PMID:26623205

  14. What's New in Research and Treatment for Brain Tumors in Children?

    MedlinePlus

    ... Brain and Spinal Cord Tumors in Children What’s New in Research and Treatment for Brain and Spinal ... an investigational method, and studies are continuing. Other new treatment strategies Researchers are also testing some newer ...

  15. Analysis of plasma free amino acid profiles in canine brain tumors

    PubMed Central

    Utsugi, Shinichi; Azuma, Kazuo; Osaki, Tomohiro; Murahata, Yusuke; Tsuka, Takeshi; Ito, Norihiko; Imagawa, Tomohiro; Okamoto, Yoshiharu

    2017-01-01

    Canine brain tumors are best diagnosed using magnetic resonance imaging (MRI). However, opportunities of MRI examination are restricted due to its limited availability in veterinary facilities; thus, numerous canine brain tumors are diagnosed at an advanced stage. Therefore, development of a noninvasive diagnostic biomarker is required for the early detection of brain tumors. In the present study, plasma free amino acid (PFAA) profiles between dogs with and without brain tumors were compared. A total of 12 dogs with brain tumors, diagnosed based on clinical signs, and on the results of intracranial MRI and/or pathological examination were evaluated. In addition, eight dogs diagnosed with idiopathic epilepsy and 16 healthy dogs were also included. A liquid chromatography system with automated pre-column derivatization functionality was used to measure the levels of 20 amino acids. As a result, the levels of three amino acids (alanine, proline and isoleucine) were increased significantly (1.6-, 1.5- and 1.6-fold, respectively) in the plasma of dogs with brain tumors as compared with the levels in control dogs (all P<0.05). Thus, the PFAA levels of dogs with brain tumors differed from those of healthy dogs. The present study demonstrated that analysis of PFAA levels of dogs with brain tumors may serve as a useful biomarker for the early detection of canine brain tumors. PMID:28357072

  16. Automatic metastatic brain tumor segmentation for stereotactic radiosurgery applications

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Stojadinovic, Strahinja; Hrycushko, Brian; Wardak, Zabi; Lu, Weiguo; Yan, Yulong; Jiang, Steve B.; Timmerman, Robert; Abdulrahman, Ramzi; Nedzi, Lucien; Gu, Xuejun

    2016-12-01

    The objective of this study is to develop an automatic segmentation strategy for efficient and accurate metastatic brain tumor delineation on contrast-enhanced T1-weighted (T1c) magnetic resonance images (MRI) for stereotactic radiosurgery (SRS) applications. The proposed four-step automatic brain metastases segmentation strategy is comprised of pre-processing, initial contouring, contour evolution, and contour triage. First, T1c brain images are preprocessed to remove the skull. Second, an initial tumor contour is created using a multi-scaled adaptive threshold-based bounding box and a super-voxel clustering technique. Third, the initial contours are evolved to the tumor boundary using a regional active contour technique. Fourth, all detected false-positive contours are removed with geometric characterization. The segmentation process was validated on a realistic virtual phantom containing Gaussian or Rician noise. For each type of noise distribution, five different noise levels were tested. Twenty-one cases from the multimodal brain tumor image segmentation (BRATS) challenge dataset and fifteen clinical metastases cases were also included in validation. Segmentation performance was quantified by the Dice coefficient (DC), normalized mutual information (NMI), structural similarity (SSIM), Hausdorff distance (HD), mean value of surface-to-surface distance (MSSD) and standard deviation of surface-to-surface distance (SDSSD). In the numerical phantom study, the evaluation yielded a DC of 0.98  ±  0.01, an NMI of 0.97  ±  0.01, an SSIM of 0.999  ±  0.001, an HD of 2.2  ±  0.8 mm, an MSSD of 0.1  ±  0.1 mm, and an SDSSD of 0.3  ±  0.1 mm. The validation on the BRATS data resulted in a DC of 0.89  ±  0.08, which outperform the BRATS challenge algorithms. Evaluation on clinical datasets gave a DC of 0.86  ±  0.09, an NMI of 0.80  ±  0.11, an SSIM of 0.999  ±  0.001, an HD of 8

  17. Automatic metastatic brain tumor segmentation for stereotactic radiosurgery applications.

    PubMed

    Liu, Yan; Stojadinovic, Strahinja; Hrycushko, Brian; Wardak, Zabi; Lu, Weiguo; Yan, Yulong; Jiang, Steve B; Timmerman, Robert; Abdulrahman, Ramzi; Nedzi, Lucien; Gu, Xuejun

    2016-12-21

    The objective of this study is to develop an automatic segmentation strategy for efficient and accurate metastatic brain tumor delineation on contrast-enhanced T1-weighted (T1c) magnetic resonance images (MRI) for stereotactic radiosurgery (SRS) applications. The proposed four-step automatic brain metastases segmentation strategy is comprised of pre-processing, initial contouring, contour evolution, and contour triage. First, T1c brain images are preprocessed to remove the skull. Second, an initial tumor contour is created using a multi-scaled adaptive threshold-based bounding box and a super-voxel clustering technique. Third, the initial contours are evolved to the tumor boundary using a regional active contour technique. Fourth, all detected false-positive contours are removed with geometric characterization. The segmentation process was validated on a realistic virtual phantom containing Gaussian or Rician noise. For each type of noise distribution, five different noise levels were tested. Twenty-one cases from the multimodal brain tumor image segmentation (BRATS) challenge dataset and fifteen clinical metastases cases were also included in validation. Segmentation performance was quantified by the Dice coefficient (DC), normalized mutual information (NMI), structural similarity (SSIM), Hausdorff distance (HD), mean value of surface-to-surface distance (MSSD) and standard deviation of surface-to-surface distance (SDSSD). In the numerical phantom study, the evaluation yielded a DC of 0.98  ±  0.01, an NMI of 0.97  ±  0.01, an SSIM of 0.999  ±  0.001, an HD of 2.2  ±  0.8 mm, an MSSD of 0.1  ±  0.1 mm, and an SDSSD of 0.3  ±  0.1 mm. The validation on the BRATS data resulted in a DC of 0.89  ±  0.08, which outperform the BRATS challenge algorithms. Evaluation on clinical datasets gave a DC of 0.86  ±  0.09, an NMI of 0.80  ±  0.11, an SSIM of 0.999  ±  0.001, an HD of 8

  18. Clinical value of digital image analysis in the diagnosis of urinary bladder cancer, particularly in aggressive tumors: a preliminary report.

    PubMed

    Borkowski, T; Monika Dulewicz, A; Borkowski, A; Piętka, D; Radziszewski, P

    2016-06-01

    The aim of the project was to evaluate the clinical value of a computer analysis of cytological specimen images obtained from urine and bladder washing samples. Three sample types (voided urine, catheterized urine and bladder washing) from 59 patients with primary or recurrent tumor were analyzed. All patients underwent cystoscopy and biopsy or resection. The histological results were compared with the results of the image analyzing computer system of collected urine samples. The consistency between the computer diagnosis and the clinical or histological diagnosis both in the presence and absence of cancer was as follows: 77% for voided urine samples, 72.5% for catheterized urine samples and 78% for bladder washing samples. The specificity of the method at the standard pathology level was 71%, and the sensitivity was 83%. The positive and negative predictive values (PPV and NPV) were 87.5% and 63% respectively. The sensitivity for G3 or CIS or T2 or T3 tumors reached nearly 100%. Computer analysis of urine provided correct diagnoses in cancer and control patients with the sensitivity of 83% and specificity of 71% and gave excellent results in aggressive tumors such as T2, T3, G3 and in CIS.

  19. Pregnane X receptor activation induces FGF19-dependent tumor aggressiveness in humans and mice.

    PubMed

    Wang, Hongwei; Venkatesh, Madhukumar; Li, Hao; Goetz, Regina; Mukherjee, Subhajit; Biswas, Arunima; Zhu, Liang; Kaubisch, Andreas; Wang, Lei; Pullman, James; Whitney, Kathleen; Kuro-o, Makoto; Roig, Andres I; Shay, Jerry W; Mohammadi, Moosa; Mani, Sridhar

    2011-08-01

    The nuclear receptor pregnane X receptor (PXR) is activated by a range of xenochemicals, including chemotherapeutic drugs, and has been suggested to play a role in the development of tumor cell resistance to anticancer drugs. PXR also has been implicated as a regulator of the growth and apoptosis of colon tumors. Here, we have used a xenograft model of colon cancer to define a molecular mechanism that might underlie PXR-driven colon tumor growth and malignancy. Activation of PXR was found to be sufficient to enhance the neoplastic characteristics, including cell growth, invasion, and metastasis, of both human colon tumor cell lines and primary human colon cancer tissue xenografted into immunodeficient mice. Furthermore, we were able to show that this PXR-mediated phenotype required FGF19 signaling. PXR bound to the FGF19 promoter in both human colon tumor cells and "normal" intestinal crypt cells. However, while both cell types proliferated in response to PXR ligands, the FGF19 promoter was activated by PXR only in cancer cells. Taken together, these data indicate that colon cancer growth in the presence of a specific PXR ligand results from tumor-specific induction of FGF19. These observations may lead to improved therapeutic regimens for colon carcinomas.

  20. Long-term mobile phone use and brain tumor risk.

    PubMed

    Lönn, Stefan; Ahlbom, Anders; Hall, Per; Feychting, Maria

    2005-03-15

    Handheld mobile phones were introduced in Sweden during the late 1980s. The purpose of this population-based, case-control study was to test the hypothesis that long-term mobile phone use increases the risk of brain tumors. The authors identified all cases aged 20-69 years who were diagnosed with glioma or meningioma during 2000-2002 in certain parts of Sweden. Randomly selected controls were stratified on age, gender, and residential area. Detailed information about mobile phone use was collected from 371 (74%) glioma and 273 (85%) meningioma cases and 674 (71%) controls. For regular mobile phone use, the odds ratio was 0.8 (95% confidence interval: 0.6, 1.0) for glioma and 0.7 (95% confidence interval: 0.5, 0.9) for meningioma. Similar results were found for more than 10 years' duration of mobile phone use. No risk increase was found for ipsilateral phone use for tumors located in the temporal and parietal lobes. Furthermore, the odds ratio did not increase, regardless of tumor histology, type of phone, and amount of use. This study includes a large number of long-term mobile phone users, and the authors conclude that the data do not support the hypothesis that mobile phone use is related to an increased risk of glioma or meningioma.

  1. [Factors significant for cerebral circulacion in patients with supratentorial brain tumors].

    PubMed

    Sboev, A Yu; Dolgih, V T; Larkin, V I

    2013-01-01

    Using the Doppler ultrasonography method the condition of brain blood circulation of 90 patients with supratentorial brain tumors (gliomas--43, meningiomas--34, metastasis--9) during pre-surgical period was studied. The factors changing brain blood circulation at patients with with supratentorial brain tumors were brain displacement, increase of intracranial pressure, histologic structure and the first symptoms duration of illness. Localization (for an exception of an occipital lobe) and the size of a tumor directly didn't render influence on blood circulation parameters.

  2. Central nervous system recurrence of desmoplastic small round cell tumor following aggressive multimodal therapy: A case report

    PubMed Central

    UMEDA, KATSUTSUGU; SAIDA, SATOSHI; YAMAGUCHI, HIDEKI; OKAMOTO, SHINYA; OKAMOTO, TAKESHI; KATO, ITARU; HIRAMATSU, HIDEFUMI; IMAI, TSUYOSHI; KODAIRA, TAKESHI; HEIKE, TOSHIO; ADACHI, SOUICHI; WATANABE, KEN-ICHIRO

    2016-01-01

    Patients with desmoplastic small round cell tumors (DSRCTs) have an extremely poor outcome despite the use of aggressive therapy. The current study presents the case of 16-year-old male with metastatic DSRCT, in which multimodal therapy, including intensive chemotherapies using frequent autologous stem cell support, gross resection of primary and metastatic lesions, and whole abdominopelvic intensity-modulated radiation therapy, was administered. Subsequent to these treatments, there was no evidence of active disease. However, cerebellar and pineal body lesions, and bone metastasis to the left humerus were detected 1 year and 2 months after the initial diagnosis. Combination chemotherapy with irinotecan and temozolomide was initially effective against the central nervous system (CNS) metastatic lesions; however, the patient succumbed due to progressive CNS disease after seven courses of combination chemotherapy. Additional studies are required to accumulate information regarding CNS recurrence of DSRCT. PMID:26870296

  3. Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake.

    PubMed

    Flavahan, William A; Wu, Qiulian; Hitomi, Masahiro; Rahim, Nasiha; Kim, Youngmi; Sloan, Andrew E; Weil, Robert J; Nakano, Ichiro; Sarkaria, Jann N; Stringer, Brett W; Day, Bryan W; Li, Meizhang; Lathia, Justin D; Rich, Jeremy N; Hjelmeland, Anita B

    2013-10-01

    Like all cancers, brain tumors require a continuous source of energy and molecular resources for new cell production. In normal brain, glucose is an essential neuronal fuel, but the blood-brain barrier limits its delivery. We now report that nutrient restriction contributes to tumor progression by enriching for brain tumor initiating cells (BTICs) owing to preferential BTIC survival and to adaptation of non-BTICs through acquisition of BTIC features. BTICs outcompete for glucose uptake by co-opting the high affinity neuronal glucose transporter, type 3 (Glut3, SLC2A3). BTICs preferentially express Glut3, and targeting Glut3 inhibits BTIC growth and tumorigenic potential. Glut3, but not Glut1, correlates with poor survival in brain tumors and other cancers; thus, tumor initiating cells may extract nutrients with high affinity. As altered metabolism represents a cancer hallmark, metabolic reprogramming may maintain the tumor hierarchy and portend poor prognosis.

  4. Aggressive tumor growth and clinical evolution in a patient with X-linked acro-gigantism syndrome.

    PubMed

    Naves, Luciana A; Daly, Adrian F; Dias, Luiz Augusto; Yuan, Bo; Zakir, Juliano Coelho Oliveira; Barra, Gustavo Barcellos; Palmeira, Leonor; Villa, Chiara; Trivellin, Giampaolo; Júnior, Armindo Jreige; Neto, Florêncio Figueiredo Cavalcante; Liu, Pengfei; Pellegata, Natalia S; Stratakis, Constantine A; Lupski, James R; Beckers, Albert

    2016-02-01

    X-linked acro-gigantism (X-LAG) syndrome is a newly described disease caused by microduplications on chromosome Xq26.3 leading to copy number gain of GPR101. We describe the clinical progress of a sporadic male X-LAG syndrome patient with an Xq26.3 microduplication, highlighting the aggressive natural history of pituitary tumor growth in the absence of treatment. The patient first presented elsewhere aged 5 years 8 months with a history of excessive growth for >2 years. His height was 163 cm, his weight was 36 kg, and he had markedly elevated GH and IGF-1. MRI showed a non-invasive sellar mass measuring 32.5 × 23.9 × 29.1 mm. Treatment was declined and the family was lost to follow-up. At the age of 10 years and 7 months, he presented again with headaches, seizures, and visual disturbance. His height had increased to 197 cm. MRI showed an invasive mass measuring 56.2 × 58.1 × 45.0 mm, with compression of optic chiasma, bilateral cavernous sinus invasion, and hydrocephalus. His thyrotrope, corticotrope, and gonadotrope axes were deficient. Surgery, somatostatin analogs, and cabergoline did not control vertical growth and pegvisomant was added, although vertical growth continues (currently 207 cm at 11 years 7 months of age). X-LAG syndrome is a new genomic disorder in which early-onset pituitary tumorigenesis can lead to marked overgrowth and gigantism. This case illustrates the aggressive nature of tumor evolution and the challenging clinical management in X-LAG syndrome.

  5. Using Ferumoxytol-Enhanced MRI to Measure Inflammation in Patients With Brain Tumors or Other Conditions of the CNS

    ClinicalTrials.gov

    2017-02-21

    Brain Injury; Central Nervous System Degenerative Disorder; Central Nervous System Infectious Disorder; Central Nervous System Vascular Malformation; Hemorrhagic Cerebrovascular Accident; Ischemic Cerebrovascular Accident; Primary Brain Neoplasm; Brain Cancer; Brain Tumors

  6. Simulating Brain Tumor Heterogeneity with a Multiscale Agent-Based Model: Linking Molecular Signatures, Phenotypes and Expansion Rate

    PubMed Central

    Zhang, Le; Strouthos, Costas G.; Wang, Zhihui; Deisboeck, Thomas S.

    2008-01-01

    We have extended our previously developed 3D multi-scale agent-based brain tumor model to simulate cancer heterogeneity and to analyze its impact across the scales of interest. While our algorithm continues to employ an epidermal growth factor receptor (EGFR) gene-protein interaction network to determine the cells’ phenotype, it now adds an implicit treatment of tumor cell adhesion related to the model’s biochemical microenvironment. We simulate a simplified tumor progression pathway that leads to the emergence of five distinct glioma cell clones with different EGFR density and cell ‘search precisions’. The in silico results show that microscopic tumor heterogeneity can impact the tumor system’s multicellular growth patterns. Our findings further confirm that EGFR density results in the more aggressive clonal populations switching earlier from proliferation-dominated to a more migratory phenotype. Moreover, analyzing the dynamic molecular profile that triggers the phenotypic switch between proliferation and migration, our in silico oncogenomics data display spatial and temporal diversity in documenting the regional impact of tumorigenesis, and thus support the added value of multi-site and repeated assessments in vitro and in vivo. Potential implications from this in silico work for experimental and computational studies are discussed. PMID:20047002

  7. Brain Magnetic Resonance Imaging After High-Dose Chemotherapy and Radiotherapy for Childhood Brain Tumors

    SciTech Connect

    Spreafico, Filippo Gandola, Lorenza; Marchiano, Alfonso; Simonetti, Fabio; Poggi, Geraldina; Adduci, Anna; Clerici, Carlo Alfredo; Luksch, Roberto; Biassoni, Veronica; Meazza, Cristina; Catania, Serena; Terenziani, Monica; Musumeci, Renato; Fossati-Bellani, Franca; Massimino, Maura

    2008-03-15

    Purpose: Brain necrosis or other subacute iatrogenic reactions has been recognized as a potential complication of radiotherapy (RT), although the possible synergistic effects of high-dose chemotherapy and RT might have been underestimated. Methods and Materials: We reviewed the clinical and radiologic data of 49 consecutive children with malignant brain tumors treated with high-dose thiotepa and autologous hematopoietic stem cell rescue, preceded or followed by RT. The patients were assessed for neurocognitive tests to identify any correlation with magnetic resonance imaging (MRI) anomalies. Results: Of the 49 children, 18 (6 of 25 with high-grade gliomas and 12 of 24 with primitive neuroectodermal tumors) had abnormal brain MRI findings occurring a median of 8 months (range, 2-39 months) after RT and beginning to regress a median of 13 months (range, 2-26 months) after onset. The most common lesion pattern involved multiple pseudonodular, millimeter-size, T{sub 1}-weighted unevenly enhancing, and T{sub 2}-weighted hyperintense foci. Four patients with primitive neuroectodermal tumors also had subdural fluid leaks, with meningeal enhancement over the effusion. One-half of the patients had symptoms relating to the new radiographic findings. The MRI lesion-free survival rate was 74% {+-} 6% at 1 year and 57% {+-} 8% at 2 years. The number of marrow ablative courses correlated significantly to the incidence of radiographic anomalies. No significant difference was found in intelligent quotient scores between children with and without radiographic changes. Conclusion: Multiple enhancing cerebral lesions were frequently seen on MRI scans soon after high-dose chemotherapy and RT. Such findings pose a major diagnostic challenge in terms of their differential diagnosis vis-a-vis recurrent tumor. Their correlation with neurocognitive results deserves further investigation.

  8. Sexual Conspecific Aggressive Response (SCAR): A Model of Sexual Trauma that Disrupts Maternal Learning and Plasticity in the Female Brain

    PubMed Central

    Shors, Tracey J.; Tobόn, Krishna; DiFeo, Gina; Durham, Demetrius M.; Chang, Han Yan M.

    2016-01-01

    Sexual aggression can disrupt processes related to learning as females emerge from puberty into young adulthood. To model these experiences in laboratory studies, we developed SCAR, which stands for Sexual Conspecific Aggressive Response. During puberty, a rodent female is paired daily for 30-min with a sexually-experienced adult male. During the SCAR experience, the male tracks the anogenital region of the female as she escapes from pins. Concentrations of the stress hormone corticosterone were significantly elevated during and after the experience. Moreover, females that were exposed to the adult male throughout puberty did not perform well during training with an associative learning task nor did they learn well to express maternal behaviors during maternal sensitization. Most females that were exposed to the adult male did not learn to care for offspring over the course of 17 days. Finally, females that did not express maternal behaviors retained fewer newly-generated cells in their hippocampus whereas those that did express maternal behaviors retained more cells, most of which would differentiate into neurons within weeks. Together these data support SCAR as a useful laboratory model for studying the potential consequences of sexual aggression and trauma for the female brain during puberty and young adulthood. PMID:26804826

  9. Poorly Differentiated Neuroendocrine Tumor of the Esophagus with Hypertrophic Osteoarthropathy and Brain Metastasis: A Success Story

    PubMed Central

    Vethody, Chandra

    2016-01-01

    Neuroendocrine carcinomas (NECs) of the esophagus are very rare. The majority of the patients with NECs present with metastasis. Paraneoplastic syndromes, such as syndrome of inappropriate secretion of anti-diuretic hormone and watery diarrhea-hypokalemia-achlorhydria syndrome, have been reported in previous reports. Esophageal NECs are related to a poor prognosis. A 38-year-old male with the histologic diagnosis of esophageal NEC, which initially manifested as hypertrophic osteoarthropathy (HOA), later developed brain metastases. He was initially treated with neoadjuvant chemotherapy consisting of cisplatin and etoposide followed by a partial esophagectomy in November 2009. At follow-up in February 2010, he complained of a headache that prompted imaging. MRI of the brain revealed a left frontal lobe lesion. Subsequently, he underwent a craniotomy and resection of the lesion. Pathological analysis revealed that the lesion was consistent with metastatic disease from the primary esophageal NEC. The patient underwent 40 Gy whole brain radiotherapy (WBRT), followed by two weeks of stereotactic radiation (SRS) to the tumor bed for an additional 12 Gy. During this time, his tumor marker neuron-specific enolase (NSE) initially dropped but later increased, which led us to offer him radiotherapy to the remaining esophagus to be followed by localized radiation to areas immediately adjacent to the surgical site, followed by six cycles of systemic chemotherapy consisting of cisplatin and irinotecan. Finally, his NSE normalized around the end of systemic chemotherapy. Surveillance imaging in 2015 - six years from initial diagnosis - showed no evidence of cancer. Of interest, treatment of the esophageal NEC also led to clinical resolution of his musculoskeletal symptoms, including his HOA. High-grade esophageal NECs are rare, aggressive, and have a poor prognosis. HOA can be a presenting sign associated with a high-grade esophageal NEC. The predominant site of metastatic

  10. Isolated angiitis in the hypothalamus mimicking brain tumor.

    PubMed

    Tsutsumi, Satoshi; Ito, Masanori; Yasumoto, Yukimasa; Kaneda, Kazuhiko

    2008-01-01

    A 64-year-old female presented with exaggerating somnolence without contributory medical and lifestyle histories. She was not aware of any preceding infection or headache. Cerebral magnetic resonance imaging demonstrated an isolated enhanced mass in the hypothalamus without meningeal enhancement. Blood and cerebrospinal fluid examinations showed no significant findings except for hypernatremia and hyperprolactinemia. She underwent an open biopsy via the interhemispheric route. Histological examination revealed marked perivascular lymphocytic aggregation with polyclonal immunostaining both for B and T lymphocytes. No findings suggestive of underlying malignancy were recognized. Extensive work-up aiming at systemic vasculitis and lymphoma revealed no signs of extracranial lesion, so the most probable diagnosis was isolated angiitis in the hypothalamus. Angiitis may originate from the hypothalamus and should be considered in the differential diagnosis of hypothalamic lesion mimicking brain tumor on neuroimaging.

  11. Brain Tumor Epidemiology - A Hub within Multidisciplinary Neuro-oncology. Report on the 15th Brain Tumor Epidemiology Consortium (BTEC) Annual Meeting, Vienna, 2014.

    PubMed

    Woehrer, Adelheid; Lau, Ching C; Prayer, Daniela; Bauchet, Luc; Rosenfeld, Myrna; Capper, David; Fisher, Paul G; Kool, Marcel; Müller, Martin; Kros, Johan M; Kruchko, Carol; Wiemels, Joseph; Wrensch, Margaret; Danysh, Heather E; Zouaoui, Sonia; Heck, Julia E; Johnson, Kimberly J; Qi, Xiaoyang; O'Neill, Brian P; Afzal, Samina; Scheurer, Michael E; Bainbridge, Matthew N; Nousome, Darryl; Bahassi, El Mustapha; Hainfellner, Johannes A; Barnholtz-Sloan, Jill S

    2015-01-01

    The Brain Tumor Epidemiology Consortium (BTEC) is an open scientific forum, which fosters the development of multi-center, international and inter-disciplinary collaborations. BTEC aims to develop a better understanding of the etiology, outcomes, and prevention of brain tumors (http://epi.grants.cancer.gov/btec/). The 15th annual Brain Tumor Epidemiology Consortium Meeting, hosted by the Austrian Societies of Neuropathology and Neuro-oncology, was held on September 9 - 11, 2014 in Vienna, Austria. The meeting focused on the central role of brain tumor epidemiology within multidisciplinary neuro-oncology. Knowledge of disease incidence, outcomes, as well as risk factors is fundamental to all fields involved in research and treatment of patients with brain tumors; thus, epidemiology constitutes an important link between disciplines, indeed the very hub. This was reflected by the scientific program, which included various sessions linking brain tumor epidemiology with clinical neuro-oncology, tissue-based research, and cancer registration. Renowned experts from Europe and the United States contributed their personal perspectives stimulating further group discussions. Several concrete action plans evolved for the group to move forward until next year's meeting, which will be held at the Mayo Clinic at Rochester, MN, USA.

  12. Significant predictors of patients' uncertainty in primary brain tumors.

    PubMed

    Lin, Lin; Chien, Lung-Chang; Acquaye, Alvina A; Vera-Bolanos, Elizabeth; Gilbert, Mark R; Armstrong, Terri S

    2015-05-01

    Patients with primary brain tumors (PBT) face uncertainty related to prognosis, symptoms and treatment response and toxicity. Uncertainty is correlated to negative mood states and symptom severity and interference. This study identified predictors of uncertainty during different treatment stages (newly-diagnosed, on treatment, followed-up without active treatment). One hundred eighty six patients with PBT were accrued at various points in the illness trajectory. Data collection tools included: a clinical checklist/a demographic data sheet/the Mishel Uncertainty in Illness Scale-Brain Tumor Form. The structured additive regression model was used to identify significant demographic and clinical predictors of illness-related uncertainty. Participants were primarily white (80 %) males (53 %). They ranged in age from 19-80 (mean = 44.2 ± 12.6). Thirty-two of the 186 patients were newly-diagnosed, 64 were on treatment at the time of clinical visit with MRI evaluation, 21 were without MRI, and 69 were not on active treatment. Three subscales (ambiguity/inconsistency; unpredictability-disease prognoses; unpredictability-symptoms and other triggers) were different amongst the treatment groups (P < .01). However, patients' uncertainty during active treatment was as high as in newly-diagnosed period. Other than treatment stages, change of employment status due to the illness was the most significant predictor of illness-related uncertainty. The illness trajectory of PBT remains ambiguous, complex, and unpredictable, leading to a high incidence of uncertainty. There was variation in the subscales of uncertainty depending on treatment status. Although patients who are newly diagnosed reported the highest scores on most of the subscales, patients on treatment felt more uncertain about unpredictability of symptoms than other groups. Due to the complexity and impact of the disease, associated symptoms, and interference with functional status, comprehensive assessment of patients

  13. Household pesticides and risk of pediatric brain tumors.

    PubMed Central

    Pogoda, J M; Preston-Martin, S

    1997-01-01

    A follow-up to a population-based case-control study of pediatric brain tumors in Los Angeles County, California, involving mothers of 224 cases and 218 controls, investigated the risk of household pesticide use from pregnancy to diagnosis. Risk was significantly elevated for prenatal exposure to flea/tick pesticides -odds ratio (OR) = 1.7; 95% confidence interval (CI), 1.1-2.6-, particularly among subjects less than 5 years old at diagnosis (OR = 2.5; CI, 1. 2-5.5). Prenatal risk was highest for mothers who prepared, applied, or cleaned up flea/tick products themselves (OR = 2.2; CI, 1.1-4.2; for subjects <5 years of age, OR = 5.4; CI, 1.3-22.3). A significant trend of increased risk with increased exposure was observed for number of pets treated (p = 0.04). Multivariate analysis of types of flea/tick products indicated that sprays/foggers were the only products significantly related to risk (OR =10.8; CI, 1.3-89.1). Elevated risks were not observed for termite or lice treatments, pesticides for nuisance pests, or yard and garden insecticides, herbicides, fungicides, or snail killer. Certain precautions,if ignored, were associated with significant increased risk: evacuating the house after spraying or dusting for pests (OR = 1.6; CI, 1.0-2.6), delaying the harvest of food after pesticide treatment (OR = 3.6; CI, 1.0-13.7), and following instructions on pesticide labels (OR = 3. 7;CI, 1.5-9.6). These findings indicate that chemicals used in flea/tick products may increase risk of pediatric brain tumors and suggest that further research be done to pinpoint specific chemicals involved. PMID:9370522

  14. Drug-Resistant Brain Metastases: A Role for Pharmacology, Tumor Evolution, and Too-Late Therapy.

    PubMed

    Stricker, Thomas; Arteaga, Carlos L

    2015-11-01

    Two recent studies report deep molecular profiling of matched brain metastases and primary tumors. In both studies, somatic alterations in the brain metastases were frequently discordant with those in the primary tumor, suggesting divergent evolution at metastatic sites and raising questions about the use of biomarkers in patients in clinical trials with targeted therapies.

  15. The exciting potential of nanotherapy in brain-tumor targeted drug delivery approaches

    PubMed Central

    Agrahari, Vivek

    2017-01-01

    Delivering therapeutics to the central nervous system (CNS) and brain-tumor has been a major challenge. The current standard treatment approaches for the brain-tumor comprise of surgical resection followed by immunotherapy, radiotherapy, and chemotherapy. However, the current treatments are limited in providing significant benefits to the patients and despite recent technological advancements; brain-tumor is still challenging to treat. Brain-tumor therapy is limited by the lack of effective and targeted strategies to deliver chemotherapeutic agents across the blood-brain barrier (BBB). The BBB is the main obstacle that must be overcome to allow compounds to reach their targets in the brain. Recent advances have boosted the nanotherapeutic approaches in providing an attractive strategy in improving the drug delivery across the BBB and into the CNS. Compared to conventional formulations, nanoformulations offer significant advantages in CNS drug delivery approaches. Considering the above facts, in this review, the physiological/anatomical features of the brain-tumor and the BBB are briefly discussed. The drug transport mechanisms at the BBB are outlined. The approaches to deliver chemotherapeutic drugs across the CNS into the brain-tumor using nanocarriers are summarized. In addition, the challenges that need to be addressed in nanotherapeutic approaches for their enhanced clinical application in brain-tumor therapy are discussed.

  16. Alternative Lengthening of Telomeres in Primary Pancreatic Neuroendocrine Tumors Is Associated with Aggressive Clinical Behavior and Poor Survival.

    PubMed

    Kim, Joo Young; Brosnan-Cashman, Jacqueline A; An, Soyeon; Kim, Sung Joo; Song, Ki-Byung; Kim, Min-Sun; Kim, Mi-Ju; Hwang, Dae Wook; Meeker, Alan K; Yu, Eunsil; Kim, Song Cheol; Hruban, Ralph H; Heaphy, Christopher M; Hong, Seung-Mo

    2017-03-15

    Purpose: Alternative lengthening of telomeres (ALT), a telomerase-independent telomere maintenance mechanism, is strongly associated with ATRX and DAXX alterations and occurs frequently in pancreatic neuroendocrine tumors (PanNET).Experimental Design: In a Korean cohort of 269 surgically resected primary PanNETs and 19 sporadic microadenomas, ALT status and nuclear ATRX and DAXX protein expression were assessed and compared with clinicopathologic factors.Results: In PanNETs, ALT or loss of ATRX/DAXX nuclear expression was observed in 20.8% and 19.3%, respectively, whereas microadenomas were not altered. ALT-positive PanNETs displayed a significantly higher grade, size, and pT classification (all, P < 0.001). ALT also strongly correlated with lymphovascular (P < 0.001) and perineural invasion (P = 0.001) and the presence of lymph node (P < 0.001) and distant metastases (P = 0.002). Furthermore, patients with ALT-positive primary PanNETs had a shorter recurrence-free survival [HR = 3.38; 95% confidence interval (CI), 1.83-6.27; P < 0.001]. Interestingly, when limiting to patients with distant metastases, those with ALT-positive primary tumors had significantly better overall survival (HR = 0.23; 95% CI, 0.08-0.68; P = 0.008). Similarly, tumors with loss of ATRX/DAXX expression were significantly associated with ALT (P < 0.001), aggressive clinical behavior, and reduced recurrence-free survival (P < 0.001). However, similar to ALT, when limiting to patients with distant metastases, loss of ATRX/DAXX expression was associated with better overall survival (P = 0.003).Conclusions: Both primary ALT-positive and ATRX/DAXX-negative PanNETs are independently associated with aggressive clinicopathologic behavior and displayed reduced recurrence-free survival. In contrast, ALT activation and loss of ATRX/DAXX are both associated with better overall survival in patients with metastases. Therefore, these biomarkers may be used as prognostic markers depending on the context of

  17. The incidence of second brain tumors related to cranial irradiation.

    PubMed

    Marta, Gustavo Nader; Murphy, Erin; Chao, Samuel; Yu, Jennifer S; Suh, John H

    2015-03-01

    Secondary brain tumor (SBT) is a devastating complication of cranial irradiation (CI). We reviewed the literature to determine the incidence of SBT as related to specific radiation therapy (RT) treatment modalities. The relative risk of radiation-associated SBT after conventional and conformal RT is well established and ranges from 5.65 to 10.9; latent time to develop second tumor ranges from 5.8 to 22.4 years, depending on radiation dose and primary disease. Theories and dosimetric models suggest that intensity-modulated radiation therapy may result in an increased risk of SBT, but clinical evidence is limited. The incidence of stereotactic radiosurgery-related SBT is low. Initial data suggest that no increased risk from proton therapy and dosimetric models predict a lower incidence of SBT compared with photons. In conclusion, the incidence of SBT related to CI is low. Longer follow-up is needed to clarify the impact of intensity-modulated radiation therapy, proton therapy and other developing technologies.

  18. Aptamer for imaging and therapeutic targeting of brain tumor glioblastoma.

    PubMed

    Delač, Mateja; Motaln, Helena; Ulrich, Henning; Lah, Tamara T

    2015-09-01

    Aptamers are short single-stranded nucleic acids (RNA or ssDNA), identified by an in vitro selection process, denominated SELEX, from a partially random oligonucleotide library. They bind to a molecular target, a protein or other complex macromolecular structures of interest with high affinity and specificity, comparable to those of antibodies. Recently, aptamer selection protocols were developed for targeting living cells, including tumors. Chemical modifications of the aptamers and modalities of their detection and delivery systems are already available with high selectivity and targeting ability for the desired cancer cell type, making them promising for diagnosis and therapy. Glioblastoma multiformae represents the most malignant and fatal stage of glioma, and is also the most frequent brain tumor. Glioblastoma-specific aptamers were developed by either targeting the whole cell surface or known glioma biomarkers. These aptamers may gain importance for imaging, tumor cell isolation from biopsies and drug delivery. In biomedical imaging techniques, aptamers coupled with radionuclide or fluorescent labels, bioconjugates and nanoparticles offer an advanced, noninvasive manner for defining the glioblastoma tissue border. Though single modality aptamer imaging probes have some limitations, these are overcome by the use of multimodal probes. Due to selectivity and chemical characteristics, aptamers can be coupled to functionalized nanoparticles and loaded with a drug, appeared promising for in vivo targeting of glioblastoma. Finally, aptamers are effective mediators for gene silencing when coupled to small interfering RNA and a viral vector, thus providing a novel tool with enhanced targeting capability in drug delivery, designed for tailored treatment of glioblastoma patients.

  19. A Mathematical Model to Elucidate Brain Tumor Abrogation by Immunotherapy with T11 Target Structure

    PubMed Central

    Chaudhuri, Swapna

    2015-01-01

    T11 Target structure (T11TS), a membrane glycoprotein isolated from sheep erythrocytes, reverses the immune suppressed state of brain tumor induced animals by boosting the functional status of the immune cells. This study aims at aiding in the design of more efficacious brain tumor therapies with T11 target structure. We propose a mathematical model for brain tumor (glioma) and the immune system interactions, which aims in designing efficacious brain tumor therapy. The model encompasses considerations of the interactive dynamics of glioma cells, macrophages, cytotoxic T-lymphocytes (CD8+ T-cells), TGF-β, IFN-γ and the T11TS. The system undergoes sensitivity analysis, that determines which state variables are sensitive to the given parameters and the parameters are estimated from the published data. Computer simulations were used for model verification and validation, which highlight the importance of T11 target structure in brain tumor therapy. PMID:25955428

  20. Occupational exposure to electromagnetic fields and the occurrence of brain tumors. An analysis of possible associations

    SciTech Connect

    Lin, R.S.; Dischinger, P.C.; Conde, J.; Farrell, K.P.

    1985-06-01

    To explore the association between occupation and the occurrence of brain tumor, an epidemiologic study was conducted using data from the death certificates of 951 adult white male Maryland residents who died of brain tumor during the period 1969 through 1982. Compared with the controls, men employed in electricity-related occupations, such as electrician, electric or electronic engineer, and utility company serviceman, were found to experience a significantly higher proportion of primary brain tumors. An increase in the odds ratio for brain tumor was found to be positively related to electromagnetic (EM) field exposure levels. Furthermore, the mean age at death was found to be significantly younger among cases in the presumed high EM-exposure group. These findings suggest that EM exposure may be associated with the pathogenesis of brain tumors, particularly in the promoting stage.

  1. Sex and species differences in plasma testosterone and in counts of androgen receptor-positive cells in key brain regions of Sceloporus lizard species that differ in aggression

    PubMed Central

    Hews, Diana K.; Hara, Erina; Anderson, Maurice C.

    2012-01-01

    We studied neuroendocrine correlates of aggression differences in adults of two Sceloporus lizard species. These species differ in the degree of sex difference in aggressive color signals (belly patches) and in aggression: S. undulatus (males blue, high aggression; females white, low aggression) and S. virgatus (both sexes white, lower aggression). We measured plasma testosterone and counted cells expressing androgen receptor-like immunoreactivity to the affinity-purified polyclonal AR antibody, PG-21, in three brain regions of breeding season adults. Male S. undulatus had the highest mean plasma testosterone and differed significantly from conspecific females. In contrast, there was no sex difference in plasma testosterone concentrations in S. virgatus. Male S. undulatus also had the highest mean number of AR-positive cells in the preoptic area: the sexes differed in S. undulatus but not in S. virgatus, and females of the two species did not differ. In the ventral medial hypothalamus, S. undulatus males had higher mean AR cell counts compared to females, but again there was no sex difference in S. virgatus. In the habenula, a control brain region, the sexes did not differ, and although the sex by species interaction significant was not significant, there was a trend (p = 0.050) for S. virgatus to have higher mean AR cell counts than S. undulatus. Thus hypothalamic AR cell counts paralleled sex and species differences in aggression, as did mean plasma testosterone levels in these breeding-season animals. PMID:22230767

  2. Donepezil in Treating Young Patients With Primary Brain Tumors Previously Treated With Radiation Therapy to the Brain

    ClinicalTrials.gov

    2016-07-26

    Brain and Central Nervous System Tumors; Cognitive/Functional Effects; Long-term Effects Secondary to Cancer Therapy in Children; Neurotoxicity; Psychosocial Effects of Cancer and Its Treatment; Radiation Toxicity

  3. Fotemustine in the treatment of brain primary tumors and metastases.

    PubMed

    Khayat, D; Giroux, B; Berille, J; Cour, V; Gerard, B; Sarkany, M; Bertrand, P; Bizzari, J P

    1994-01-01

    Fotemustine is a new chloroethylnitrosourea characterized by the grafting of a phosphonoalanine group onto a nitrosourea radical. Clinical studies using fotemustine have been conducted in malignant glioma, brain metastasis of non-small cell lung cancer, and disseminated malignant melanoma. In recurrent malignant glioma, fotemustine has been used as a single agent: assessed by computed tomography scan, after 8 weeks, the objective response rate was 26.3% among 38 evaluable patients. Median duration of response was 33 weeks. The main toxicity was hematological (thrombocytopenia and leucopenia). A trial with high-dose fotemustine and autologous bone marrow rescue in newly diagnosed glioma was conducted in 26 patients, and 6 showed a partial response. The median overall survival was approximately 11 months. Myelosuppression was noted in all patients except 1, and other toxicity reported was central nervous system toxicity and epigastric pain. Combined with radiotherapy in 55 patients, a 29% response rate was observed, and this combination was well tolerated and easily manageable on an outpatient basis. Finally, fotemustine has been used intraarterially, with 10 objective responses observed among 26 evaluable patients. In brain metastases of non-small cell lung cancer, fotemustine proved to be active with a response rate of 16.7%. Combined with cisplatinum, fotemustine is still under study, but preliminary results are promising. In cerebral metastases of disseminated malignant melanoma, fotemustine has been evaluated in a total of 140 patients in the various studies: median response rate is 24.3%, ranging from 8.3% to 60.0%. Fotemustine appears to be a good candidate in the treatment of primary brain tumors and metastases.

  4. Laser interstitial thermal therapy in treatment of brain tumors--the NeuroBlate System.

    PubMed

    Mohammadi, Alireza M; Schroeder, Jason L

    2014-03-01

    Treatment of brain tumors remains challenging. Cytoreductive surgery is used as the first line treatment for most brain tumors. However complete, curative, resection is not achievable in many tumors leading to the need for adjuvant chemotherapy and radiation therapy. Laser interstitial thermal therapy (LITT) is a minimally invasive cytoreductive treatment. A low voltage laser is used to induce hyperthermia and to kill tumor cells. The extent of thermal damage is controlled through use of real-time MR-thermography guidance. Initial results have shown the feasibility of LITT for a variety of brain pathologies. LITT can be considered as an alternative type of surgery for difficult to access brain tumors and also for tumors in patients who are deemed high risk for more traditional surgery. Randomized trials are currently planned to continue assessing the efficacy of LITT and long-term follow-up data are awaited.

  5. Apoptosis imaging for monitoring DR5 antibody accumulation and pharmacodynamics in brain tumors non-invasively

    PubMed Central

    Weber, Thomas G.; Osl, Franz; Renner, Anja; Pöschinger, Thomas; Galbán, Stefanie; Rehemtulla, Alnawaz; Scheuer, Werner

    2014-01-01

    High grade gliomas often possess an impaired blood-brain barrier (BBB) which allows delivery of large molecules to brain tumors. However, achieving optimal drug concentrations in brain tumors remains a significant hurdle for treating patients successfully. Thus, detailed investigations of drug activities in gliomas are needed. To investigate BBB penetration, pharmacodynamics and tumor retention kinetics, we studied an agonistic DR5 antibody in a brain tumor xenograft model to investigate a non-invasive imaging method for longitudinal monitoring of apoptosis induction by this antibody. Brain tumors were induced by intracranial (i.c.) implantation of a luciferase-expressing tumor cell line as a reporter. To quantify accumulation of anti-DR5 in brain tumors, we generated a dose response curve for apoptosis induction after i.c. delivery of fluorescence-labeled anti-DR5 at different dosages. Assuming 100% drug delivery after i.c. application, the amount of accumulated antibody after i.v. application was calculated relative to its apoptosis induction. We found that up to 0.20–0.97% of antibody delivered i.v. reached the brain tumor, but that apoptosis induction declined quickly within 24 hours. These results were confirmed by 3D fluorescence microscopy of antibody accumulation in explanted brains. Nonetheless, significant antitumor efficacy was documented after anti-DR5 delivery. We further demonstrated that antibody crossing the BBB was facilitated its impairment in brain tumors. These imaging methods enable the quantification of antibody accumulation and pharmacodynamics in brain tumors, offering a holistic approach for assessment of CNS targeting drugs. PMID:24509903

  6. Halofuginone inhibits angiogenesis and growth in implanted metastatic rat brain tumor model--an MRI study.

    PubMed

    Abramovitch, Rinat; Itzik, Anna; Harel, Hila; Nagler, Arnon; Vlodavsky, Israel; Siegal, Tali

    2004-01-01

    Tumor growth and metastasis depend on angiogenesis; therefore, efforts are made to develop specific angiogenic inhibitors. Halofuginone (HF) is a potent inhibitor of collagen type alpha1(I). In solid tumor models, HF has a potent antitumor and antiangiogenic effect in vivo, but its effect on brain tumors has not yet been evaluated. By employing magnetic resonance imaging (MRI), we monitored the effect of HF on tumor progression and vascularization by utilizing an implanted malignant fibrous histiocytoma metastatic rat brain tumor model. Here we demonstrate that treatment with HF effectively and dose-dependently reduced tumor growth and angiogenesis. On day 13, HF-treated tumors were fivefold smaller than control (P < .001). Treatment with HF significantly prolonged survival of treated animals (142%; P = .001). In HF-treated rats, tumor vascularization was inhibited by 30% on day 13 and by 37% on day 19 (P < .05). Additionally, HF treatment inhibited vessel maturation (P = .03). Finally, in HF-treated rats, we noticed the appearance of a few clusters of satellite tumors, which were distinct from the primary tumor and usually contained vessel cores. This phenomenon was relatively moderate when compared to previous reports of other antiangiogenic agents used to treat brain tumors. We therefore conclude that HF is effective for treatment of metastatic brain tumors.

  7. Biphasic modeling of brain tumor biomechanics and response to radiation treatment.

    PubMed

    Angeli, Stelios; Stylianopoulos, Triantafyllos

    2016-06-14

    Biomechanical forces are central in tumor progression and response to treatment. This becomes more important in brain cancers where tumors are surrounded by tissues with different mechanical properties. Existing mathematical models ignore direct mechanical interactions of the tumor with the normal brain. Here, we developed a clinically relevant model, which predicts tumor growth accounting directly for mechanical interactions. A three-dimensional model of the gray and white matter and the cerebrospinal fluid was constructed from magnetic resonance images of a normal brain. Subsequently, a biphasic tissue growth theory for an initial tumor seed was employed, incorporating the effects of radiotherapy. Additionally, three different sets of brain tissue properties taken from the literature were used to investigate their effect on tumor growth. Results show the evolution of solid stress and interstitial fluid pressure within the tumor and the normal brain. Heterogeneous distribution of the solid stress exerted on the tumor resulted in a 35% spatial variation in cancer cell proliferation. Interestingly, the model predicted that distant from the tumor, normal tissues still undergo significant deformations while it was found that intratumoral fluid pressure is elevated. Our predictions relate to clinical symptoms of brain cancers and present useful tools for therapy planning.

  8. Vorinostat and Temozolomide in Treating Young Patients With Relapsed or Refractory Primary Brain Tumors or Spinal Cord Tumors

    ClinicalTrials.gov

    2013-05-01

    Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Embryonal Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Childhood Mixed Glioma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Extra-adrenal Paraganglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Spinal Cord Neoplasm; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma

  9. [Interdisciplinary neuro-oncology: part 2: systemic therapy of primary brain tumors].

    PubMed

    Tabatabai, G; Hattingen, E; Schlegel, J; Stummer, W; Schlegel, U

    2014-08-01

    By combining the expertise of clinical neuroscience, the aim of neuro-oncology is to optimize diagnostic planning and therapy of primary brain tumors in an interdisciplinary setting together with radio-oncology and medical oncology. High-end imaging frequently allows brain tumors to be diagnosed preoperatively with respect to tumor entity and even tumor malignancy grade. Moreover, neuroimaging is indispensable for guidance of biopsy resection and monitoring of therapy. Surgical resection of intracranial lesions with preservation of neurological function has become dramatically more extensive. Tools to achieve this goal are, for example neuronavigation, functional magnetic resonance imaging (fMRI), tractography, intraoperative cortical stimulation and precise intraoperative definition of tumor margins by virtue of various techniques. In addition to classical histopathological diagnosis and tumor classification, modern neuropathology is supplemented by molecular characterization of brain tumors in order to provide clinicians with prognostic and predictive (of therapy) markers, such as codeletion of chromosomes 1p and 19q in anaplastic gliomas and O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation in glioblastomas. Although this is not yet individualized tumor therapy, the increasingly more detailed analysis of the molecular pathogenesis of an individual glioma will eventually lead to specific pharmacological blockade of disturbed intracellular pathways in individual patients. This article gives an overview of the state of the art of interdisciplinary neuro-oncology whereby part 1 deals with the diagnostics and surgical therapy of primary brain tumors and part 2 describes the medical therapy of primary brain tumors.

  10. [Interdisciplinary neuro-oncology: part 1: diagnostics and operative therapy of primary brain tumors].

    PubMed

    Tabatabai, G; Hattingen, E; Schlegel, J; Stummer, W; Schlegel, U

    2014-08-01

    By combining the expertise of clinical neuroscience, the aim of neuro-oncology is to optimize diagnostic planning and therapy of primary brain tumors in an interdisciplinary setting together with radio-oncology and medical oncology. High-end imaging frequently allows brain tumors to be diagnosed preoperatively with respect to tumor entity and even tumor malignancy grade. Moreover, neuroimaging is indispensable for guidance of biopsy resection and monitoring of therapy. Surgical resection of intracranial lesions with preservation of neurological function is increasingly feasible. Tools to achieve this goal are, for example neuronavigation, functional magnetic resonance imaging (fMRI), tractography, intraoperative cortical stimulation and precise intraoperative definition of tumor margins by virtue of various techniques. In addition to classical histopathological diagnosis and tumor classification, modern neuropathology is supplemented by molecular characterization of brain tumors in order to provide clinicians with prognostic and predictive (of therapy) markers, such as codeletion of chromosomes 1p and 19q in anaplastic gliomas and O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation in glioblastomas. Although this is not yet individualized tumor therapy, the increasingly more detailed analysis of the molecular pathogenesis of an individual glioma will eventually lead to specific pharmacological blockade of disturbed intracellular pathways in individual patients. This article gives an overview of the state of the art of interdisciplinary neuro-oncology whereby part 1 deals with the diagnostics and surgical therapy of primary brain tumors and part 2 describes the medical therapy of primary brain tumors.

  11. Single-unit analysis of the human posterior hypothalamus and red nucleus during deep brain stimulation for aggressivity.

    PubMed

    Micieli, Robert; Rios, Adriana Lucia Lopez; Aguilar, Ricardo Plata; Posada, Luis Fernando Botero; Hutchison, William D

    2017-04-01

    OBJECTIVE Deep brain stimulation (DBS) of the posterior hypothalamus (PH) has been reported to be effective for aggressive behavior in a number of isolated cases. Few of these case studies have analyzed single-unit recordings in the human PH and none have quantitatively analyzed single units in the red nucleus (RN). The authors report on the properties of ongoing neuronal discharges in bilateral trajectories targeting the PH and the effectiveness of DBS of the PH as a treatment for aggressive behavior. METHODS DBS electrodes were surgically implanted in the PH of 1 awake patient with Sotos syndrome and 3 other anesthetized patients with treatment-resistant aggressivity. Intraoperative extracellular recordings were obtained from the ventral thalamus, PH, and RN and analyzed offline to discriminate single units and measure firing rates and firing patterns. Target location was based on the stereotactic coordinates used by Sano et al. in their 1970 study and the location of the dorsal border of the RN. RESULTS A total of 138 units were analyzed from the 4 patients. Most of the PH units had a slow, irregular discharge (mean [± SD] 4.5 ± 2.7 Hz, n = 68) but some units also had a higher discharge rate (16.7 ± 4.7 Hz, n = 15). Two populations of neurons were observed in the ventral thalamic region as well, one with a high firing rate (mean 16.5 ± 6.5 Hz, n = 5) and one with a low firing rate (mean 4.6 ± 2.8 Hz, n = 6). RN units had a regular firing rate with a mean of 20.4 ± 9.9 Hz and displayed periods of oscillatory activity in the beta range. PH units displayed a prolonged period of inhibition following microstimulation compared with RN units that were not inhibited. Patients under anesthesia showed a trend for lower firing rates in the PH but not in the RN. All 4 patients displayed a reduction in their aggressive behavior after surgery. CONCLUSIONS During PH DBS, microelectrode recordings can provide an additional mechanism to help identify the PH target and

  12. Invited review--neuroimaging response assessment criteria for brain tumors in veterinary patients.

    PubMed

    Rossmeisl, John H; Garcia, Paulo A; Daniel, Gregory B; Bourland, John Daniel; Debinski, Waldemar; Dervisis, Nikolaos; Klahn, Shawna

    2014-01-01

    The evaluation of therapeutic response using cross-sectional imaging techniques, particularly gadolinium-enhanced MRI, is an integral part of the clinical management of brain tumors in veterinary patients. Spontaneous canine brain tumors are increasingly recognized and utilized as a translational model for the study of human brain tumors. However, no standardized neuroimaging response assessment criteria have been formulated for use in veterinary clinical trials. Previous studies have found that the pathophysiologic features inherent to brain tumors and the surrounding brain complicate the use of the response evaluation criteria in solid tumors (RECIST) assessment system. Objectives of this review are to describe strengths and limitations of published imaging-based brain tumor response criteria and propose a system for use in veterinary patients. The widely used human Macdonald and response assessment in neuro-oncology (RANO) criteria are reviewed and described as to how they can be applied to veterinary brain tumors. Discussion points will include current challenges associated with the interpretation of brain tumor therapeutic responses such as imaging pseudophenomena and treatment-induced necrosis, and how advancements in perfusion imaging, positron emission tomography, and magnetic resonance spectroscopy have shown promise in differentiating tumor progression from therapy-induced changes. Finally, although objective endpoints such as MR imaging and survival estimates will likely continue to comprise the foundations for outcome measures in veterinary brain tumor clinical trials, we propose that in order to provide a more relevant therapeutic response metric for veterinary patients, composite response systems should be formulated and validated that combine imaging and clinical assessment criteria.

  13. INVITED REVIEW – NEUROIMAGING RESPONSE ASSESSMENT CRITERIA FOR BRAIN TUMORS IN VETERINARY PATIENTS

    PubMed Central

    Rossmeisl, John H.; Garcia, Paulo A.; Daniel, Gregory B.; Bourland, John Daniel; Debinski, Waldemar; Dervisis, Nikolaos; Klahn, Shawna

    2013-01-01

    The evaluation of therapeutic response using cross-sectional imaging techniques, particularly gadolinium-enhanced MRI, is an integral part of the clinical management of brain tumors in veterinary patients. Spontaneous canine brain tumors are increasingly recognized and utilized as a translational model for the study of human brain tumors. However, no standardized neuroimaging response assessment criteria have been formulated for use in veterinary clinical trials. Previous studies have found that the pathophysiologic features inherent to brain tumors and the surrounding brain complicate the use of the Response Evaluation Criteria in Solid Tumors (RECIST) assessment system. Objectives of this review are to describe strengths and limitations of published imaging-based brain tumor response criteria and propose a system for use in veterinary patients. The widely used human Macdonald and Response Assessment in Neuro-oncology (RANO) criteria are reviewed and described as to how they can be applied to veterinary brain tumors. Discussion points will include current challenges associated with the interpretation of brain tumor therapeutic responses such as imaging pseudophenomena and treatment-induced necrosis, and how advancements in perfusion imaging, positron emission tomography, and magnetic resonance spectroscopy have shown promise in differentiating tumor progression from therapy-induced changes. Finally, although objective endpoints such as MR-imaging and survival estimates will likely continue to comprise the foundations for outcome measures in veterinary brain tumor clinical trials, we propose that in order to provide a more relevant therapeutic response metric for veterinary patients, composite response systems should be formulated and validated that combine imaging and clinical assessment criteria. PMID:24219161

  14. What Are Brain and Spinal Cord Tumors in Children?

    MedlinePlus

    ... brain stem. Each area has a special function. Cerebrum: The cerebrum is the large, outer part of the brain. ... other senses Cerebellum: The cerebellum lies under the cerebrum at the back part of the brain. It ...

  15. A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors.

    PubMed

    Rubin, Joshua B; Kung, Andrew L; Klein, Robyn S; Chan, Jennifer A; Sun, YanPing; Schmidt, Karl; Kieran, Mark W; Luster, Andrew D; Segal, Rosalind A

    2003-11-11

    The vast majority of brain tumors in adults exhibit glial characteristics. Brain tumors in children are diverse: Many have neuronal characteristics, whereas others have glial features. Here we show that activation of the Gi protein-coupled receptor CXCR4 is critical for the growth of both malignant neuronal and glial tumors. Systemic administration of CXCR4 antagonist AMD 3100 inhibits growth of intracranial glioblastoma and medulloblastoma xenografts by increasing apoptosis and decreasing the proliferation of tumor cells. This reflects the ability of AMD 3100 to reduce the activation of extracellular signal-regulated kinases 1 and 2 and Akt, all of which are pathways downstream of CXCR4 that promote survival, proliferation, and migration. These studies (i) demonstrate that CXCR4 is critical to the progression of diverse brain malignances and (ii) provide a scientific rationale for clinical evaluation of AMD 3100 in treating both adults and children with malignant brain tumors.

  16. Quantitative assessment of Cerenkov luminescence for radioguided brain tumor resection surgery.

    PubMed

    Klein, Justin S; Mitchell, Gregory; Cherry, Simon

    2017-03-13

    Cerenkov luminescence imaging (CLI) is a developing imaging modality that detects radiolabeled molecules via visible light emitted during the radioactive decay process. We used a Monte Carlo based computer simulation to quantitatively investigate CLI compared to direct detection of the ionizing radiation itself as an intraoperative imaging tool for assessment of brain tumor margins. Our brain tumor model consisted of a 1 mm spherical tumor remnant embedded up to 5 mm in depth below the surface of normal brain tissue. Tumor to background contrast ranging from 2:1 to 10:1 were considered. We quantified all decay signals (e+/-, gamma photon, Cerenkov photons) reaching the brain volume surface. CLI proved to be the most sensitive method for detecting the tumor volume in both imaging and non-imaging strategies as assessed by contrast-to-noise ratio and by receiver operating characteristic output of a channelized Hotelling observer.

  17. Metastasis Infiltration: An Investigation of the Postoperative Brain-Tumor Interface

    SciTech Connect

    Raore, Bethwel; Schniederjan, Matthew; Prabhu, Roshan; Brat, Daniel J.; Shu, Hui-Kuo; Olson, Jeffrey J.

    2011-11-15

    Purpose: This study aims to evaluate brain infiltration of metastatic tumor cells past the main tumor resection margin to assess the biological basis for the use of stereotactic radiosurgery treatment of the tumor resection cavity and visualized resection edge or clinical target volume. Methods and Materials: Resection margin tissue was obtained after gross total resection of a small group of metastatic lesions from a variety of primary sources. The tissue at the border of the tumor and brain tissue was carefully oriented and processed to evaluate the presence of tumor cells within brain tissue and their distance from the resection margin. Results: Microscopic assessment of the radially oriented tissue samples showed no tumor cells infiltrating the surrounding brain tissue. Among the positive findings were reactive astrocytosis observed on the brain tissue immediately adjacent to the tumor resection bed margin. Conclusions: The lack of evidence of metastatic tumor cell infiltration into surrounding brain suggests the need to target only a narrow depth of the resection cavity margin to minimize normal tissue injury and prevent treatment size-dependent stereotactic radiosurgery complications.

  18. Prognostic Significance of Hyperglycemia in Patients with Brain Tumors: a Meta-Analysis.

    PubMed

    Liu, Hongwei; Liu, Zhixiong; Jiang, Bing; Ding, Xiping; Huo, Lei; Wan, Xin; Liu, Jinfang; Xia, Zhenyun

    2016-04-01

    Hyperglycemia has been associated with poor outcomes of patients with various diseases. There were several studies published to assess the association between hyperglycemia and prognosis of patients with brain tumors, but no consistent conclusion was available. We therefore performed a meta-analysis of available studies to evaluate the prognostic role of hyperglycemia in brain tumors. Several common databases were searched for eligible studies on the association between hyperglycemia and survival of patients with brain tumors. Two investigators used a set of predefined inclusion criteria to assess eligible studies independently. The pooled hazard ratios (HRs) with 95% confidence intervals (95% CIs) were used to assess the prognostic role of hyperglycemia. Finally, seven studies with a total of 2168 patients with brain tumors were included into the meta-analysis. Meta-analysis of total seven studies showed that hyperglycemia was significantly associated with shorter overall survival of brain tumors (HR = 2.04, 95% CI 1.51-2.76, P < 0.001). Meta-analysis of studies focusing on hyperglycemia showed that hyperglycemia was still significantly associated with shorter overall survival of brain tumors (HR = 1.82, 95% CI 1.29-2.59, P = 0.001). Meta-analysis of three studies on diabetes showed that diabetes was significantly associated with shorter overall survival of brain tumors (HR = 2.09, 95% CI 1.22-3.57, P = 0.007). Meta-regression analysis showed that there was no obvious difference in the roles of between hyperglycemia caused by glucocorticoids and hyperglycemia from diabetes (P = 0.25). Thus, hyperglycemia has an obvious prognostic significance in patients with brain tumors, and hyperglycemia is significantly associated with shorter overall survival of brain tumors.

  19. Removal of a malignant cystic brain tumor utilizing pyoktanin blue and fibrin glue: Technical note

    PubMed Central

    Hayashi, Nobuhide; Sasaki, Takahiro; Tomura, Nagatsuki; Okada, Hideo; Kuwata, Toshikazu

    2017-01-01

    Background: The leakage of cystic fluid during metastatic cystic brain tumor resection may cause tumor dissemination. When the cyst wall is thin, excision without removing the wall is often difficult. Methods: We were able to perform an en bloc resection of a cystic malignant brain tumor after aspirating the cystic fluid, injecting pyoktanin blue into the cyst to stain the cyst walls, and solidifying the empty cyst cavity by filling it with fibrin glue. Results: Pyoktanin blue readily stained the thin cystic walls and enabled visualization of mural damage. Solidification of the tumor made it easier to grasp and facilitated the dissection of tumor margins. Conclusions: This method has the potential to become a useful technique for the resection of malignant cystic brain tumors. PMID:28303204

  20. The diagnostic accuracy of multiparametric MRI to determine pediatric brain tumor grades and types.

    PubMed

    Koob, Mériam; Girard, Nadine; Ghattas, Badih; Fellah, Slim; Confort-Gouny, Sylviane; Figarella-Branger, Dominique; Scavarda, Didier

    2016-04-01

    Childhood brain tumors show great histological variability. The goal of this retrospective study was to assess the diagnostic accuracy of multimodal MR imaging (diffusion, perfusion, MR spectroscopy) in the distinction of pediatric brain tumor grades and types. Seventy-six patients (range 1 month to 18 years) with brain tumors underwent multimodal MR imaging. Tumors were categorized by grade (I-IV) and by histological type (A-H). Multivariate statistical analysis was performed to evaluate the diagnostic accuracy of single and combined MR modalities, and of single imaging parameters to distinguish the different groups. The highest diagnostic accuracy for tumor grading was obtained with diffusion-perfusion (73.24%) and for tumor typing with diffusion-perfusion-MR spectroscopy (55.76%). The best diagnostic accuracy was obtained for tumor grading in I and IV and for tumor typing in embryonal tumor and pilocytic astrocytoma. Poor accuracy was seen in other grades and types. ADC and rADC were the best parameters for tumor grading and typing followed by choline level with an intermediate echo time, CBV for grading and Tmax for typing. Multiparametric MR imaging can be accurate in determining tumor grades (primarily grades I and IV) and types (mainly pilocytic astrocytomas and embryonal tumors) in children.

  1. Targeting the Metabolic Reprogramming That Controls Epithelial-to-Mesenchymal Transition in Aggressive Tumors

    PubMed Central

    Morandi, Andrea; Taddei, Maria Letizia; Chiarugi, Paola; Giannoni, Elisa

    2017-01-01

    The epithelial-to-mesenchymal transition (EMT) process allows the trans-differentiation of a cell with epithelial features into a cell with mesenchymal characteristics. This process has been reported to be a key priming event for tumor development and therefore EMT activation is now considered an established trait of malignancy. The transcriptional and epigenetic reprogramming that governs EMT has been extensively characterized and reviewed in the last decade. However, increasing evidence demonstrates a correlation between metabolic reprogramming and EMT execution. The aim of the current review is to gather the recent findings that illustrate this correlation to help deciphering whether metabolic changes are causative or just a bystander effect of EMT activation. The review is divided accordingly to the catabolic and anabolic pathways that characterize carbohydrate, aminoacid, and lipid metabolism. Moreover, at the end of each part, we have discussed a series of potential metabolic targets involved in EMT promotion and execution for which drugs are either available or that could be further investigated for therapeutic intervention. PMID:28352611

  2. NTPDase5/PCPH as a New Target in Highly Aggressive Tumors: A Systematic Review

    PubMed Central

    Bracco, Paula Andreghetto; Bertoni, Ana Paula Santin; Wink, Márcia Rosângela

    2014-01-01

    The protooncogene PCPH was recently identified as being the ectonucleoside triphosphate diphosphohydrolase 5 (ENTPD5). This protooncogene is converted into an oncogene by a single base pair deletion, resulting in frame change and producing a premature stop codon, leading to a mutated protein (mt-PCPH) with only 27 kDa, which is much smaller than the original 47 kDa protein. Overexpression of the PCPH as well as the mutated PCPH increases the cellular resistance to stress and apoptosis. This is intriguing considering that the active form, that is, the oncogene, is the mutated PCPH. Several studies analyzed the expression of NTPDase5/mt-PCPH in a wide range of tumor cells and evaluated its role and mechanisms in cancer and other pathogenic processes. The main point of this review is to integrate the findings and proposed theories about the role played by NTPDase5/mt-PCPH in cancer progression, considering that these proteins have been suggested as potential early diagnostic tools and therapy targets. PMID:25045656

  3. Social networking in tumor cell communities is associated with increased aggressiveness

    PubMed Central

    Lodillinsky, Catalina; Podsypanina, Katrina; Chavrier, Philippe

    2016-01-01

    ABSTRACT Extracellular vesicles (EVs) are lipid-bilayer-enclosed vesicles that contain proteins, lipids and nucleic acids. EVs produced by cells from healthy tissues circulate in the blood and body fluids, and can be taken up by unrelated cells. As they have the capacity to transfer cargo proteins, lipids and nucleic acids (mostly mRNAs and miRNAs) between different cells in the body, EVs are emerging as mediators of intercellular communication that could modulate cell behavior, tissue homeostasis and regulation of physiological functions. EV-mediated cell-cell communications are also proposed to play a role in disease, for example, cancer, where they could contribute to transfer of traits required for tumor progression and metastasis. However, direct evidence for EV-mediated mRNA transfer to individual cells and for its biological consequences in vivo has been missing until recently. Recent studies have reported elegant experiments using genetic tracing with the Cre recombinase system and intravital imaging that visualize and quantify functional transfer of mRNA mediated by EVs in the context of cancer and metastasis. PMID:28243516

  4. Targeting the Metabolic Reprogramming That Controls Epithelial-to-Mesenchymal Transition in Aggressive Tumors.

    PubMed

    Morandi, Andrea; Taddei, Maria Letizia; Chiarugi, Paola; Giannoni, Elisa

    2017-01-01

    The epithelial-to-mesenchymal transition (EMT) process allows the trans-differentiation of a cell with epithelial features into a cell with mesenchymal characteristics. This process has been reported to be a key priming event for tumor development and therefore EMT activation is now considered an established trait of malignancy. The transcriptional and epigenetic reprogramming that governs EMT has been extensively characterized and reviewed in the last decade. However, increasing evidence demonstrates a correlation between metabolic reprogramming and EMT execution. The aim of the current review is to gather the recent findings that illustrate this correlation to help deciphering whether metabolic changes are causative or just a bystander effect of EMT activation. The review is divided accordingly to the catabolic and anabolic pathways that characterize carbohydrate, aminoacid, and lipid metabolism. Moreover, at the end of each part, we have discussed a series of potential metabolic targets involved in EMT promotion and execution for which drugs are either available or that could be further investigated for therapeutic intervention.

  5. Determination of intra-axial brain tumors cellularity through the analysis of T2 Relaxation time of brain tumors before surgery using MATLAB software

    PubMed Central

    Abdolmohammadi, Jamil; Shafiee, Mohsen; Faeghi, Fariborz; Arefan, Douman; Zali, Alireza; Motiei-Langroudi, Rouzbeh; Farshidfar, Zahra; Nazarlou, Ali Kiani; Tavakkoli, Ali; Yarham, Mohammad

    2016-01-01

    Introduction Timely diagnosis of brain tumors could considerably affect the process of patient treatment. To do so, para-clinical methods, particularly MRI, cannot be ignored. MRI has so far answered significant questions regarding tumor characteristics, as well as helping neurosurgeons. In order to detect the tumor cellularity, neuro-surgeons currently have to sample specimens by biopsy and then send them to the pathology unit. The aim of this study is to determine the tumor cellularity in the brain. Methods In this cross-sectional study, 32 patients (18 males and 14 females from 18–77 y/o) were admitted to the neurosurgery department of Shohada-E Tajrish Hospital in Tehran, Iran from April 2012 to February 2014. In addition to routine pulse sequences, T2W Multi echo pulse sequences were taken and the images were analyzed using the MATLAB software to determine the brain tumor cellularity, compared with the biopsy Results These findings illustrate the need for more T2 relaxation time decreases, the higher classes of tumors will stand out in the designed table. In this study, the results show T2 relaxation time with a 85% diagnostic weight, compared with the biopsy, to determine the brain tumor cellularity (p<0.05). Conclusion Our results indicate that the T2 relaxation time feature is the best method to distinguish and present the degree of intra-axial brain tumors cellularity (85% accuracy compared to biopsy). The use of more data is recommended in order to increase the percent accuracy of this techniques. PMID:27757181

  6. Radiation Dose to the Brain and Subsequent Risk of Developing Brain Tumors in Pediatric Patients Undergoing Interventional Neuroradiology Procedures

    PubMed Central

    Thierry-Chef; Simon, S. L.; Land, C. E.; Miller, D. L.

    2014-01-01

    Radiation dose to the brain and subsequent lifetime risk of diagnosis of radiation-related brain tumors were estimated for pediatric patients undergoing intracranial embolization. Average dose to the whole brain was calculated using dosimetric data from the Radiation Doses in Interventional Radiology Study for 49 pediatric patients who underwent neuroradiological procedures, and lifetime risk of developing radiation-related brain tumors was estimated using published algorithms based on A-bomb survivor data. The distribution of absorbed dose within the brain can vary significantly depending on field size and movement during procedures. Depending on the exposure conditions and age of the patient, organ-averaged brain dose was estimated to vary from 6 to 1600 mGy. The lifetime risk of brain tumor diagnosis was estimated to be increased over the normal background rates (57 cases per 10,000) by 3 to 40% depending on the dose received, age at exposure, and gender. While significant uncertainties are associated with these estimates, we have quantified the range of possible dose and propagated the uncertainty to derive a credible range of estimated lifetime risk for each subject. Collimation and limiting fluoroscopy time and dose rate are the most effective means to minimize dose and risk of future induction of radiation-related tumors. PMID:18959462

  7. Astrocyte Elevated Gene 1 Interacts with Acetyltransferase p300 and c-Jun To Promote Tumor Aggressiveness.

    PubMed

    Liu, Liping; Guan, Hongyu; Li, Yun; Ying, Zhe; Wu, Jueheng; Zhu, Xun; Song, Libing; Li, Jun; Li, Mengfeng

    2017-03-01

    Astrocyte elevated gene 1 (AEG-1) is an oncoprotein that strongly promotes the development and progression of cancers. However, the detailed underlying mechanisms through which AEG-1 enhances tumor development and progression remain to be determined. In this study, we identified c-Jun and p300 to be novel interacting partners of AEG-1 in gliomas. AEG-1 promoted c-Jun transcriptional activity by interacting with the c-Jun/p300 complex and inducing c-Jun acetylation. Furthermore, the AEG-1/c-Jun/p300 complex was found to bind the promoter of c-Jun downstream targeted genes, consequently establishing an acetylated chromatin state that favors transcriptional activation. Importantly, AEG-1/p300-mediated c-Jun acetylation resulted in the development of a more aggressive malignant phenotype in gliomas through a drastic increase in glioma cell proliferation and angiogenesis in vitro and in vivo Consistently, the AEG-1 expression levels in clinical glioma specimens correlated with the status of c-Jun activation. Taken together, our results suggest that AEG-1 mediates a novel epigenetic mechanism that enhances c-Jun transcriptional activity to induce glioma progression and that AEG-1 might be a novel, potential target for the treatment of gliomas.

  8. Targeting brain serotonin synthesis: insights into neurodevelopmental disorders with long-term outcomes related to negative emotionality, aggression and antisocial behaviour.

    PubMed

    Lesch, Klaus-Peter; Araragi, Naozumi; Waider, Jonas; van den Hove, Daniel; Gutknecht, Lise

    2012-09-05

    Aggression, which comprises multi-faceted traits ranging from negative emotionality to antisocial behaviour, is influenced by an interaction of biological, psychological and social variables. Failure in social adjustment, aggressiveness and violence represent the most detrimental long-term outcome of neurodevelopmental disorders. With the exception of brain-specific tryptophan hydroxylase-2 (Tph2), which generates serotonin (5-HT) in raphe neurons, the contribution of gene variation to aggression-related behaviour in genetically modified mouse models has been previously appraised (Lesch 2005 Novartis Found Symp. 268, 111-140; Lesch & Merschdorf 2000 Behav. Sci. Law 18, 581-604). Genetic inactivation of Tph2 function in mice led to the identification of phenotypic changes, ranging from growth retardation and late-onset obesity, to enhanced conditioned fear response, increased aggression and depression-like behaviour. This spectrum of consequences, which are amplified by stress-related epigenetic interactions, are attributable to deficient brain 5-HT synthesis during development and adulthood. Human data relating altered TPH2 function to personality traits of negative emotionality and neurodevelopmental disorders characterized by deficits in cognitive control and emotion regulation are based on genetic association and are therefore not as robust as the experimental mouse results. Mouse models in conjunction with approaches focusing on TPH2 variants in humans provide unexpected views of 5-HT's role in brain development and in disorders related to negative emotionality, aggression and antisocial behaviour.

  9. Targeting brain serotonin synthesis: insights into neurodevelopmental disorders with long-term outcomes related to negative emotionality, aggression and antisocial behaviour

    PubMed Central

    Lesch, Klaus-Peter; Araragi, Naozumi; Waider, Jonas; van den Hove, Daniel; Gutknecht, Lise

    2012-01-01

    Aggression, which comprises multi-faceted traits ranging from negative emotionality to antisocial behaviour, is influenced by an interaction of biological, psychological and social variables. Failure in social adjustment, aggressiveness and violence represent the most detrimental long-term outcome of neurodevelopmental disorders. With the exception of brain-specific tryptophan hydroxylase-2 (Tph2), which generates serotonin (5-HT) in raphe neurons, the contribution of gene variation to aggression-related behaviour in genetically modified mouse models has been previously appraised (Lesch 2005 Novartis Found Symp. 268, 111–140; Lesch & Merschdorf 2000 Behav. Sci. Law 18, 581–604). Genetic inactivation of Tph2 function in mice led to the identification of phenotypic changes, ranging from growth retardation and late-onset obesity, to enhanced conditioned fear response, increased aggression and depression-like behaviour. This spectrum of consequences, which are amplified by stress-related epigenetic interactions, are attributable to deficient brain 5-HT synthesis during development and adulthood. Human data relating altered TPH2 function to personality traits of negative emotionality and neurodevelopmental disorders characterized by deficits in cognitive control and emotion regulation are based on genetic association and are therefore not as robust as the experimental mouse results. Mouse models in conjunction with approaches focusing on TPH2 variants in humans provide unexpected views of 5-HT's role in brain development and in disorders related to negative emotionality, aggression and antisocial behaviour. PMID:22826343

  10. The interacting role of media violence exposure and aggressive-disruptive behavior in adolescent brain activation during an emotional Stroop task.

    PubMed

    Kalnin, Andrew J; Edwards, Chad R; Wang, Yang; Kronenberger, William G; Hummer, Tom A; Mosier, Kristine M; Dunn, David W; Mathews, Vincent P

    2011-04-30

    Only recently have investigations of the relationship between media violence exposure (MVE) and aggressive behavior focused on brain functioning. In this study, we examined the relationship between brain activation and history of media violence exposure in adolescents, using functional magnetic resonance imaging (fMRI). Samples of adolescents with no psychiatric diagnosis or with disruptive behavior disorder (DBD) with aggression were compared to investigate whether the association of MVE history and brain activation is moderated by aggressive behavior/personality. Twenty-two adolescents with a history of aggressive behavior and diagnosis of either conduct disorder or oppositional-defiant disorder (DBD sample) and 22 controls completed an emotional Stroop task during fMRI. Primary imaging results indicated that controls with a history of low MVE demonstrated greater activity in the right inferior frontal gyrus and rostral anterior cingulate during the violent word condition. In contrast, in adolescents with DBD, those with high MVE exhibited decreased activation in the right amygdala, compared with those with low MVE. These findings are consistent with research demonstrating the importance of fronto-limbic structures for processing emotional stimuli, and with research suggesting that media violence may affect individuals in different ways depending on the presence of aggressive traits.

  11. Systematic Review of Brain Tumor Treatment in Dogs.

    PubMed

    Hu, H; Barker, A; Harcourt-Brown, T; Jeffery, N

    2015-01-01

    Intracranial neoplasia is commonly diagnosed in dogs and can be treated by a variety of methods, but formal comparisons of treatment efficacy are currently unavailable. This review was undertaken to summarize the current state of knowledge regarding outcome after the treatment of intracranial masses in dogs, with the aim of defining optimal recommendations for owners. This review summarizes data from 794 cases in 22 previously published reports and follows PRISMA guidelines for systematic review. A Pubmed search was used to identify suitable articles. These then were analyzed for quality and interstudy variability of inclusion and exclusion criteria and the outcome data extracted for summary in graphs and tables. There was a high degree of heterogeneity among studies with respect to inclusion and exclusion criteria, definition of survival periods, and cases lost to follow-up making comparisons among modalities troublesome. There is a need for standardized design and reporting of outcomes of treatment for brain tumors in dogs. The available data do not support lomustine as an effective treatment, but also do not show a clear difference in outcome between radiotherapy and surgery for those cases in which the choice is available.

  12. Cellular microenvironment modulates the galvanotaxis of brain tumor initiating cells.

    PubMed

    Huang, Yu-Ja; Hoffmann, Gwendolyn; Wheeler, Benjamin; Schiapparelli, Paula; Quinones-Hinojosa, Alfredo; Searson, Peter

    2016-02-22

    Galvanotaxis is a complex process that represents the collective outcome of various contributing mechanisms, including asymmetric ion influxes, preferential activation of voltage-gated channels, and electrophoretic redistribution of membrane components. While a large number of studies have focused on various up- and downstream signaling pathways, little is known about how the surrounding microenvironment may interact and contribute to the directional response. Using a customized galvanotaxis chip capable of carrying out experiments in both two- and three-dimensional microenvironments, we show that cell-extracellular matrix (ECM) interactions modulate the galvanotaxis of brain tumor initiating cells (BTICs). Five different BTICs across three different glioblastoma subtypes were examined and shown to all migrate toward the anode in the presence of a direct-current electric field (dcEF) when cultured on a poly-L-ornithine/laminin coated surface, while the fetal-derived neural progenitor cells (fNPCs) migrated toward the cathode. Interestingly, when embedded in a 3D ECM composed of hyaluronic acid and collagen, BTICs exhibited opposite directional response and migrated toward the cathode. Pharmacological inhibition against a panel of key molecules involved in galvanotaxis further revealed the mechanistic differences between 2- and 3D galvanotaxis in BTICs. Both myosin II and phosphoinositide 3-kinase (PI3K) were found to hold strikingly different roles in different microenvironments.

  13. Ex vivo brain tumor analysis using spectroscopic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lenz, Marcel; Krug, Robin; Welp, Hubert; Schmieder, Kirsten; Hofmann, Martin R.

    2016-03-01

    A big challenge during neurosurgeries is to distinguish between healthy tissue and cancerous tissue, but currently a suitable non-invasive real time imaging modality is not available. Optical Coherence Tomography (OCT) is a potential technique for such a modality. OCT has a penetration depth of 1-2 mm and a resolution of 1-15 μm which is sufficient to illustrate structural differences between healthy tissue and brain tumor. Therefore, we investigated gray and white matter of healthy central nervous system and meningioma samples with a Spectral Domain OCT System (Thorlabs Callisto). Additional OCT images were generated after paraffin embedding and after the samples were cut into 10 μm thin slices for histological investigation with a bright field microscope. All samples were stained with Hematoxylin and Eosin. In all cases B-scans and 3D images were made. Furthermore, a camera image of the investigated area was made by the built-in video camera of our OCT system. For orientation, the backsides of all samples were marked with blue ink. The structural differences between healthy tissue and meningioma samples were most pronounced directly after removal. After paraffin embedding these differences diminished. A correlation between OCT en face images and microscopy images can be seen. In order to increase contrast, post processing algorithms were applied. Hence we employed Spectroscopic OCT, pattern recognition algorithms and machine learning algorithms such as k-means Clustering and Principal Component Analysis.

  14. Perceived social competency in children with brain tumors: comparison between children on and off therapy.

    PubMed

    Hardy, Kristina K; Willard, Victoria W; Watral, Melody Ann; Bonner, Melanie J

    2010-01-01

    Children with brain tumors are at risk for a number of cognitive, academic, and social difficulties as a consequence of their illness and its treatment. Of these, the least is known about social functioning, particularly over the course of the illness. Thirty children with brain tumors were evaluated using neurocognitive and psychological measures, including a measure of perceived competency. Results indicated that off-therapy brain tumor patients reported more concerns about their social competence than both a normative sample and children on treatment. Findings highlight the need for more research aimed at helping survivors cope with long-term stressors associated with their illness.

  15. Overexpression of TMPRSS4 promotes tumor proliferation and aggressiveness in breast cancer

    PubMed Central

    Li, Xiao-Mei; Liu, Wen-Lou; Chen, Xu; Wang, Ya-Wen; Shi, Duan-Bo; Zhang, Hui; Ma, Ran-Ran; Liu, Hai-Ting; Guo, Xiang-Yu; Hou, Feng; Li, Ming; Gao, Peng

    2017-01-01

    Transmembrane protease serine 4 (TMPRSS4) is a novel type II transmembrane serine protease that is overexpressed in various types of human cancers and has an important function in cancer progression. However, there is a paucity of data available regarding the biological effects of TMPRSS4 on breast cancer (BC) cells and the underlying mechanisms. In this study, expression of TMPRSS4 in BC tissues was detected by immunohistochemistry. The relationship between TMPRSS4 expression and clinicopathological characteristics as well as prognosis was evaluated. The effects of TMPRSS4 on cell proliferation, migration and invasion were investigated in BC cell lines in vitro. Additionally, RT-qPCR and western blot analysis were used to determine the expressions of epithelial-mesenchymal transition (EMT) biomarkers and TMPRSS4 in BC cell lines. We found that TMPRSS4 was overexpressed in BC tissues and its expression level was closely correlated with tumor size, histological grade, lymph node metastasis, clinical stage as well as poor survival (all P<0.05) and could be recognized as an independent prognostic factor for BC patients. Overexpression of TMPRSS4 promoted the proliferation, migration and invasion of BC cells in vitro. Moreover, TMPRSS4 knockdown significantly enhanced the expression of E-cadherin and claudin-1 and inhibited the expression of vimentin and Slug, indicating suppression of EMT. Our results suggest that TMPRSS4 plays a crucial role in the progression of BC. Moreover, TMPRSS4 overexpression promoted the proliferation, invasion and migration of BC cells by possibly inducing EMT. To conclude, TMPRSS4 may be a potential therapeutic target for cancer treatment. PMID:28259959

  16. Targeted Doxorubicin Delivery to Brain Tumors via Minicells: Proof of Principle Using Dogs with Spontaneously Occurring Tumors as a Model

    PubMed Central

    MacDiarmid, Jennifer A.; Langova, Veronika; Bailey, Dale; Pattison, Scott T.; Pattison, Stacey L.; Christensen, Neil; Armstrong, Luke R.; Brahmbhatt, Vatsala N.; Smolarczyk, Katarzyna; Harrison, Matthew T.; Costa, Marylia; Mugridge, Nancy B.; Sedliarou, Ilya; Grimes, Nicholas A.; Kiss, Debra L.; Stillman, Bruce; Hann, Christine L.; Gallia, Gary L.; Graham, Robert M.; Brahmbhatt, Himanshu

    2016-01-01

    Background Cytotoxic chemotherapy can be very effective for the treatment of cancer but toxicity on normal tissues often limits patient tolerance and often causes long-term adverse effects. The objective of this study was to assist in the preclinical development of using modified, non-living bacterially-derived minicells to deliver the potent chemotherapeutic doxorubicin via epidermal growth factor receptor (EGFR) targeting. Specifically, this study sought to evaluate the safety and efficacy of EGFR targeted, doxorubicin loaded minicells (designated EGFRminicellsDox) to deliver doxorubicin to spontaneous brain tumors in 17 companion dogs; a comparative oncology model of human brain cancers. Methodology/Principle Findings EGFRminicellsDox were administered weekly via intravenous injection to 17 dogs with late-stage brain cancers. Biodistribution was assessed using single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI). Anti-tumor response was determined using MRI, and blood samples were subject to toxicology (hematology, biochemistry) and inflammatory marker analysis. Targeted, doxorubicin-loaded minicells rapidly localized to the core of brain tumors. Complete resolution or marked tumor regression (>90% reduction in tumor volume) were observed in 23.53% of the cohort, with lasting anti-tumor responses characterized by remission in three dogs for more than two years. The median overall survival was 264 days (range 49 to 973). No adverse clinical, hematological or biochemical effects were observed with repeated administration of EGFRminicellsDox (30 to 98 doses administered in 10 of the 17 dogs). Conclusions/Significance Targeted minicells loaded with doxorubicin were safely administered to dogs with late stage brain cancer and clinical activity was observed. These findings demonstrate the strong potential for clinical applications of targeted, doxorubicin-loaded minicells for the effective treatment of patients with brain cancer. On

  17. [Cognitive functions and personality traits in patients with brain tumors: the role of lesion localization].

    PubMed

    Razumnikova, O M; Perfil'ev, A M; Stupak, V V

    2014-01-01

    Personality traits and cognitive functions were studied depending on a tumor localization in the brain in 21 neurosurgical patients and the results were compared with a control group. In patients with brain damage, mostly affected were personality traits associated with emotion regulation and social interaction (neuroticism, psychoticism and social conformity). Increases in psychoticism and decreases in neuroticism were more expressed in patients with a left-hemisphere localization of tumors. The tumor-induced decrease in cognitive abilities was more presented in performing figurative tasks and less in verbal ones. Verbal functions were more decreased in the group with frontal localization of tumor compared to that with parietal localization.

  18. Third harmonic generation imaging for fast, label-free pathology of human brain tumors

    PubMed Central

    Kuzmin, N. V.; Wesseling, P.; Hamer, P. C. de Witt; Noske, D. P.; Galgano, G. D.; Mansvelder, H. D.; Baayen, J. C.; Groot, M. L.

    2016-01-01

    In brain tumor surgery, recognition of tumor boundaries is key. However, intraoperative assessment of tumor boundaries by the neurosurgeon is difficult. Therefore, there is an urgent need for tools that provide the neurosurgeon with pathological information during the operation. We show that third harmonic generation (THG) microscopy provides label-free, real-time images of histopathological quality; increased cellularity, nuclear pleomorphism, and rarefaction of neuropil in fresh, unstained human brain tissue could be clearly recognized. We further demonstrate THG images taken with a GRIN objective, as a step toward in situ THG microendoscopy of tumor boundaries. THG imaging is thus a promising tool for optical biopsies. PMID:27231629

  19. Dietary Selenium Supplementation Modulates Growth of Brain Metastatic Tumors and Changes the Expression of Adhesion Molecules in Brain Microvessels.

    PubMed

    Wrobel, Jagoda K; Wolff, Gretchen; Xiao, Rijin; Power, Ronan F; Toborek, Michal

    2016-08-01

    Various dietary agents can modulate tumor invasiveness. The current study explored whether selenoglycoproteins (SeGPs) extracted from selenium-enriched yeast affect tumor cell homing and growth in the brain. Mice were fed diets enriched with specific SeGPs (SeGP40 or SeGP65, 1 mg/kg Se each), glycoproteins (GP40 or GP65, 0.2-0.3 mg/kg Se each) or a control diet (0.2-0.3 mg/kg Se) for 12 weeks. Then, murine Lewis lung carcinoma cells were infused into the brain circulation. Analyses were performed at early (48 h) and late stages (3 weeks) post tumor cell infusion. Imaging of tumor progression in the brain revealed that mice fed SeGP65-enriched diet displayed diminished metastatic tumor growth, fewer extravasating tumor cells and smaller metastatic lesions. While administration of tumor cells resulted in a significant upregulation of adhesion molecules in the early stage of tumor progression, overexpression of VCAM-1 (vascular call adhesion molecule-1) and ALCAM (activated leukocyte cell adhesion molecule) messenger RNA (mRNA) was diminished in SeGP65 supplemented mice. Additionally, mice fed SeGP65 showed decreased expression of acetylated NF-κB p65, 48 h post tumor cell infusion. The results indicate that tumor progression in the brain can be modulated by specific SeGPs. Selenium-containing compounds were more effective than their glycoprotein controls, implicating selenium as a potential negative regulator of metastatic process.

  20. Monitoring of /sup 57/Co-bleomycin delivery to brain metastases and their tumors of origin

    SciTech Connect

    Front, D.; Even-Sapir, E.; Iosilevsky, G.; Israel, O.; Frenkel, A.; Kolodny, G.M.; Feinsud, M.

    1987-10-01

    The concentration of cobalt-57 (/sup 57/Co)-labeled bleomycin delivered to three brain metastases and to their tumors of origin in the lungs was measured using a single-photon emission computerized tomography technique. In two brain metastases the /sup 57/Co-bleomycin concentration measured at different times after the intravenous injection was significantly lower than that in the originating lung tumors (p less than 0.01 and p less than 0.001). In these two patients, the tumor cumulative concentration (TCC) of drug in the brain neoplasm compared to the lung carcinoma was 12.92 versus 15.12 and 10.30 versus 19.74 micrograms/cc/min. In the third patient there was no significant difference in drug concentration between the tumor in the brain and in the lung (TCC 16.02 vs. 15.09 micrograms/cc/min). There was a significant difference in the drug TCC between the three brain metastases: the difference between the lowest and highest concentrations was more than 50% (10.3 vs. 16.02 micrograms/cc/min). When the concentration in the tumor over time (CT(t)) of the /sup 57/Co-bleomycin was compared in the brain and lung tumors, a good correlation was found in each of the three cases (r = 0.93, 0.99, and 0.97). This suggests that the difference in drug uptake between brain metastases and their originating lung tumor is a quantitative rather than a qualitative phenomenon. The results show that the amount of drug to which brain metastases are exposed varies and may be very low in some tumors; therefore, effectiveness of drug delivery may play a role in the nonresponsiveness of brain metastases to treatment.

  1. Anosmin-1 contributes to brain tumor malignancy through integrin signal pathways

    PubMed Central

    Choy, Catherine T; Kim, Haseong; Lee, Ji-Young; Williams, David M; Palethorpe, David; Fellows, Greg; Wright, Alan J; Laing, Ken; Bridges, Leslie R; Howe, Franklyn A; Kim, Soo-Hyun

    2014-01-01

    Anosmin-1, encoded by the KAL1 gene, is an extracellular matrix (ECM)-associated protein which plays essential roles in the establishment of olfactory and GNRH neurons during early brain development. Loss-of-function mutations of KAL1 results in Kallmann syndrome with delayed puberty and anosmia. There is, however, little comprehension of its role in the developed brain. As reactivation of developmental signal pathways often takes part in tumorigenesis, we investigated if anosmin-1-mediated cellular mechanisms associated with brain tumors. Our meta-analysis of gene expression profiles of patients' samples and public microarray datasets indicated that KAL1 mRNA was significantly upregulated in high-grade primary brain tumors compared with the normal brain and low-grade tumors. The tumor-promoting capacity of anosmin-1 was demonstrated in the glioblastoma cell lines, where anosmin-1 enhanced cell motility and proliferation. Notably, anosmin-1 formed a part of active β1 integrin complex, inducing downstream signaling pathways. ShRNA-mediated knockdown of anosmin-1 attenuated motility and growth of tumor cells and induced apoptosis. Anosmin-1 may also enhance the invasion of tumor cells within the ECM by modulating cell adhesion and activating extracellular proteases. In a mouse xenograft model, anosmin-1-expressing tumors grew faster, indicating the role of anosmin-1 in tumor microenvironment in vivo. Combined, these data suggest that anosmin-1 can facilitate tumor cell proliferation, migration, invasion, and survival. Therefore, although the normal function of anosmin-1 is required in the proper development of GNRH neurons, overexpression of anosmin-1 in the developed brain may be an underlying mechanism for some brain tumors. PMID:24189182

  2. A survey of MRI-based medical image analysis for brain tumor studies.

    PubMed

    Bauer, Stefan; Wiest, Roland; Nolte, Lutz-P; Reyes, Mauricio

    2013-07-07

    MRI-based medical image analysis for brain tumor studies is gaining attention in recent times due to an increased need for efficient and objective evaluation of large amounts of data. While the pioneering approaches applying automated methods for the analysis of brain tumor images date back almost two decades, the current methods are becoming more mature and coming closer to routine clinical application. This review aims to provide a comprehensive overview by giving a brief introduction to brain tumors and imaging of brain tumors first. Then, we review the state of the art in segmentation, registration and modeling related to tumor-bearing brain images with a focus on gliomas. The objective in the segmentation is outlining the tumor including its sub-compartments and surrounding tissues, while the main challenge in registration and modeling is the handling of morphological changes caused by the tumor. The qualities of different approaches are discussed with a focus on methods that can be applied on standard clinical imaging protocols. Finally, a critical assessment of the current state is performed and future developments and trends are addressed, giving special attention to recent developments in radiological tumor assessment guidelines.

  3. A survey of MRI-based medical image analysis for brain tumor studies

    NASA Astrophysics Data System (ADS)

    Bauer, Stefan; Wiest, Roland; Nolte, Lutz-P.; Reyes, Mauricio

    2013-07-01

    MRI-based medical image analysis for brain tumor studies is gaining attention in recent times due to an increased need for efficient and objective evaluation of large amounts of data. While the pioneering approaches applying automated methods for the analysis of brain tumor images date back almost two decades, the current methods are becoming more mature and coming closer to routine clinical application. This review aims to provide a comprehensive overview by giving a brief introduction to brain tumors and imaging of brain tumors first. Then, we review the state of the art in segmentation, registration and modeling related to tumor-bearing brain images with a focus on gliomas. The objective in the segmentation is outlining the tumor including its sub-compartments and surrounding tissues, while the main challenge in registration and modeling is the handling of morphological changes caused by the tumor. The qualities of different approaches are discussed with a focus on methods that can be applied on standard clinical imaging protocols. Finally, a critical assessment of the current state is performed and future developments and trends are addressed, giving special attention to recent developments in radiological tumor assessment guidelines.

  4. Molecular genetics of pediatric brain stem gliomas. Application of PCR techniques to small and archival brain tumor specimens

    SciTech Connect

    Louis, D.N.; Rubio, M.P.; Correa, K.M.; Gusella, J.F.; Deimling, A. von )

    1993-09-01

    Brain stem gliomas are pediatric astrocytomas that histologically resemble adult supratentorial astrocytomas such as gliobastomas multiforme (GBM). The molecular genetic studies have suggested that adult GBM can be divided into two genetic subsets: Tumors with p53 tumor suppressor gene mutations and chromosome 17p loss that occur more commonly in younger patients; and tumors with epidermal growth factor receptor (EGFR) gene amplification that occur more commonly in older patients. Brain stem gliomas have not been studied since biopsies of these tumors are rare and extremely small. The authors investigated the molecular genetic composition of seven brain stem glioblastomas (two small biopsies, five autopsies) using polymerase chain reaction (PCR) assays for chromosomal loss, gene mutation and gene amplification. Four cases lost portions of chromosome 17p that included the 53p gene. These four cases and one additional case had mutations in the p53 gene. None of the cases showed amplification of the EGFR gene. Allelic losses of the long arm of chromosome 10 were noted in four cases. These results suggest similarities between pediatric brain stem glioblastomas and those GBM that occur in younger adult patients, and confirm the utility of PCR-based means of studying small and archival brain tumor specimens. 47 refs., 7 figs., 2 tabs.

  5. Is primary prevention with antiepileptic drugs effective in brain tumors or brain metastases?

    PubMed

    Lobos-Urbina, Diego; Kittsteiner-Manubens, Lucas; Peña, José

    2017-03-21

    Patients with brain tumors –primary or metastatic- have an increased risk of presenting seizures during the course of their disease. So, prophylactic antiepileptic drugs have been proposed. However, the effects of this intervention are not yet clear. To answer this question, we searched in Epistemonikos database, which is maintained by screening multiple databases. We identified 12 systematic reviews including 80 studies overall. Twelve corresponded to randomized trials, but only two answered the question of interest. We extracted data, conducted a meta-analysis and generated a summary of findings table using the GRADE method. We concluded primary prevention with antiepileptic drugs might not reduce the risk of seizures, and it is associated to frequent adverse effects.

  6. Coffee and green tea consumption in relation to brain tumor risk in a Japanese population.

    PubMed

    Ogawa, Takahiro; Sawada, Norie; Iwasaki, Motoki; Budhathoki, Sanjeev; Hidaka, Akihisa; Yamaji, Taiki; Shimazu, Taichi; Sasazuki, Shizuka; Narita, Yoshitaka; Tsugane, Shoichiro

    2016-12-15

    Few prospective studies have investigated the etiology of brain tumor, especially among Asian populations. Both coffee and green tea are popular beverages, but their relation with brain tumor risk, particularly with glioma, has been inconsistent in epidemiological studies. In this study, we evaluated the association between coffee and greed tea intake and brain tumor risk in a Japanese population. We evaluated a cohort of 106,324 subjects (50,438 men and 55,886 women) in the Japan Public Health Center-Based Prospective Study (JPHC Study). Subjects were followed from 1990 for Cohort I and 1993 for Cohort II until December 31, 2012. One hundred and fifty-seven (70 men and 87 women) newly diagnosed cases of brain tumor were identified during the study period. Hazard ratio (HR) and 95% confidence intervals (95%CIs) for the association between coffee or green tea consumption and brain tumor risk were assessed using a Cox proportional hazards regression model. We found a significant inverse association between coffee consumption and brain tumor risk in both total subjects (≥3 cups/day; HR = 0.47, 95%CI = 0.22-0.98) and in women (≥3 cups/day; HR = 0.24, 95%CI = 0.06-0.99), although the number of cases in the highest category was small. Furthermore, glioma risk tended to decrease with higher coffee consumption (≥3 cups/day; HR = 0.54, 95%CI = 0.16-1.80). No association was seen between green tea and brain tumor risk. In conclusion, our study suggested that coffee consumption might reduce the risk of brain tumor, including that of glioma, in the Japanese population.

  7. Magnetic resonance microscopy at 14 Tesla and correlative histopathology of human brain tumor tissue.

    PubMed

    Gonzalez-Segura, Ana; Morales, Jose Manuel; Gonzalez-Darder, Jose Manuel; Cardona-Marsal, Ramon; Lopez-Gines, Concepcion; Cerda-Nicolas, Miguel; Monleon, Daniel

    2011-01-01

    Magnetic Resonance Microscopy (MRM) can provide high microstructural detail in excised human lesions. Previous MRM images on some experimental models and a few human samples suggest the large potential of the technique. The aim of this study was the characterization of specific morphological features of human brain tumor samples by MRM and correlative histopathology. We performed MRM imaging and correlative histopathology in 19 meningioma and 11 glioma human brain tumor samples obtained at surgery. To our knowledge, this is the first MRM direct structural characterization of human brain tumor samples. MRM of brain tumor tissue provided images with 35 to 40 µm spatial resolution. The use of MRM to study human brain tumor samples provides new microstructural information on brain tumors for better classification and characterization. The correlation between MRM and histopathology images allowed the determination of image parameters for critical microstructures of the tumor, like collagen patterns, necrotic foci, calcifications and/or psammoma bodies, vascular distribution and hemorrhage among others. Therefore, MRM may help in interpreting the Clinical Magnetic Resonance images in terms of cell biology processes and tissue patterns. Finally, and most importantly for clinical diagnosis purposes, it provides three-dimensional information in intact samples which may help in selecting a preferential orientation for the histopathology slicing which contains most of the informative elements of the biopsy. Overall, the findings reported here provide a new and unique microstructural view of intact human brain tumor tissue. At this point, our approach and results allow the identification of specific tissue types and pathological features in unprocessed tumor samples.

  8. Magnetic Resonance Microscopy at 14 Tesla and Correlative Histopathology of Human Brain Tumor Tissue

    PubMed Central

    Gonzalez-Segura, Ana; Morales, Jose Manuel; Gonzalez-Darder, Jose Manuel; Cardona-Marsal, Ramon; Lopez-Gines, Concepcion; Cerda-Nicolas, Miguel; Monleon, Daniel

    2011-01-01

    Magnetic Resonance Microscopy (MRM) can provide high microstructural detail in excised human lesions. Previous MRM images on some experimental models and a few human samples suggest the large potential of the technique. The aim of this study was the characterization of specific morphological features of human brain tumor samples by MRM and correlative histopathology. We performed MRM imaging and correlative histopathology in 19 meningioma and 11 glioma human brain tumor samples obtained at surgery. To our knowledge, this is the first MRM direct structural characterization of human brain tumor samples. MRM of brain tumor tissue provided images with 35 to 40 µm spatial resolution. The use of MRM to study human brain tumor samples provides new microstructural information on brain tumors for better classification and characterization. The correlation between MRM and histopathology images allowed the determination of image parameters for critical microstructures of the tumor, like collagen patterns, necrotic foci, calcifications and/or psammoma bodies, vascular distribution and hemorrhage among others. Therefore, MRM may help in interpreting the Clinical Magnetic Resonance images in terms of cell biology processes and tissue patterns. Finally, and most importantly for clinical diagnosis purposes, it provides three-dimensional information in intact samples which may help in selecting a preferential orientation for the histopathology slicing which contains most of the informative elements of the biopsy. Overall, the findings reported here provide a new and unique microstructural view of intact human brain tumor tissue. At this point, our approach and results allow the identification of specific tissue types and pathological features in unprocessed tumor samples. PMID:22110653

  9. Preclinical studies of 5-fluoro-2'-deoxycytidine and tetrahydrouridine in pediatric brain tumors.

    PubMed

    Morfouace, Marie; Nimmervoll, Birgit; Boulos, Nidal; Patel, Yogesh T; Shelat, Anang; Freeman, Burgess B; Robinson, Giles W; Wright, Karen; Gajjar, Amar; Stewart, Clinton F; Gilbertson, Richard J; Roussel, Martine F

    2016-01-01

    Chemotherapies active in preclinical studies frequently fail in the clinic due to lack of efficacy, which limits progress for rare cancers since only small numbers of patients are available for clinical trials. Thus, a preclinical drug development pipeline was developed to prioritize potentially active regimens for pediatric brain tumors spanning from in vitro drug screening, through intracranial and intra-tumoral pharmacokinetics to in vivo efficacy studies. Here, as an example of the pipeline, data are presented for the combination of 5-fluoro-2'-deoxycytidine and tetrahydrouridine in three pediatric brain tumor models. The in vitro activity of nine novel therapies was tested against tumor spheres derived from faithful mouse models of Group 3 medulloblastoma, ependymoma, and choroid plexus carcinoma. Agents with the greatest in vitro potency were then subjected to a comprehensive series of in vivo pharmacokinetic (PK) and pharmacodynamic (PD) studies culminating in preclinical efficacy trials in mice harboring brain tumors. The nucleoside analog 5-fluoro-2'-deoxycytidine (FdCyd) markedly reduced the proliferation in vitro of all three brain tumor cell types at nanomolar concentrations. Detailed intracranial PK studies confirmed that systemically administered FdCyd exceeded concentrations in brain tumors necessary to inhibit tumor cell proliferation, but no tumor displayed a significant in vivo therapeutic response. Despite promising in vitro activity and in vivo PK properties, FdCyd is unlikely to be an effective treatment of pediatric brain tumors, and therefore was deprioritized for the clinic. Our comprehensive and integrated preclinical drug development pipeline should reduce the attrition of drugs in clinical trials.

  10. In-vivo optical detection of brain tumor and tumor margin: a combined auto-fluorescence and diffuse reflectance spectroscopic study

    NASA Astrophysics Data System (ADS)

    Majumder, Shovan K.; Gebhart, Steven; Thompson, Reid; Weaver, Kyle D.; Johnson, Mahlon D.; Lin, Wei-Chiang; Mahadevan-Jansen, Anita

    2007-02-01

    Recently, optical spectroscopy has shown considerable promise to be used as a potential clinical tool for human brain tumor detection and therapeutic guidance. Our group showed for the first time the possibility of using combined autofluorescence and diffuse reflectance spectroscopy and established its applicability for human brain tumor demarcation in previous in vitro and in vivo studies. We report in this paper the results of a clinical study designed to further evaluate the efficacy of the approach for demarcation of brain tumors and tumor margins from normal brain tissues in intra-operative clinical setting. Using a portable system, optical spectra were collected from the brain of 110 patients undergoing craniotomy at the Vanderbilt University Medical Center. Spectral measurements were taken from multiple sites of tumor core, tumor margin and normal areas of brain tissues and the resulting spectra were correlated with the corresponding histopathologic diagnosis. Using histology as the gold standard, a probabilistic multi-class diagnostic algorithm was developed to simultaneously distinguish tumor core and tumor margin from normal brain tissue sites using independent training and validation sets of data. An unbiased estimate of the accuracy of the model indicates that combined autofluorescence and diffuse reflectance spectroscopy was able to distinguish tumor core and tumor margin from normal brain tissues with an average predictive accuracy of ~88%.

  11. Automatic Brain Tumor Detection in T2-weighted Magnetic Resonance Images

    NASA Astrophysics Data System (ADS)

    Dvořák, P.; Kropatsch, W. G.; Bartušek, K.

    2013-10-01

    This work focuses on fully automatic detection of brain tumors. The first aim is to determine, whether the image contains a brain with a tumor, and if it does, localize it. The goal of this work is not the exact segmentation of tumors, but the localization of their approximate position. The test database contains 203 T2-weighted images of which 131 are images of healthy brain and the remaining 72 images contain brain with pathological area. The estimation, whether the image shows an afflicted brain and where a pathological area is, is done by multi resolution symmetry analysis. The first goal was tested by five-fold cross-validation technique with 100 repetitions to avoid the result dependency on sample order. This part of the proposed method reaches the true positive rate of 87.52% and the true negative rate of 93.14% for an afflicted brain detection. The evaluation of the second part of the algorithm was carried out by comparing the estimated location to the true tumor location. The detection of the tumor location reaches the rate of 95.83% of correct anomaly detection and the rate 87.5% of correct tumor location.

  12. Detection of brain tumors using fluorescence diffuse optical tomography and nanoparticles as contrast agents

    NASA Astrophysics Data System (ADS)

    Fortin, Pierre-Yves; Genevois, Coralie; Koenig, Anne; Heinrich, Emilie; Texier, Isabelle; Couillaud, Franck

    2012-12-01

    Near-infrared fluorescence-enhanced diffuse optical tomography (fDOT) is used to localize tumors in mice using fluorescent nanoparticles as a blood pool contrast agent. The infrared dye DiR is loaded in the lipid core of nontargeted nanoparticles (DiR-lipidots) and injected systemically via the tail vein in mice bearing U87 tumors. Distribution and time-course of DiR-lipidots are followed using in vivo fluorescence reflectance imaging and reveal enhanced fluorescent signal within the subcutaneous tumors up to seven days due to the enhanced permeability and retention effect. Tumor growth into the brain is followed using bioluminescent imaging, and tumor localization is further determined by magnetic resonance imaging. The fDOT provides three-dimensional fluorescent maps that allow for consistent localization for both subcutaneous and brain tumors.

  13. Long-term consumption of sugar-sweetened beverage during the growth period promotes social aggression in adult mice with proinflammatory responses in the brain.

    PubMed

    Choi, Jung-Yun; Park, Mi-Na; Kim, Chong-Su; Lee, Young-Kwan; Choi, Eun Young; Chun, Woo Young; Shin, Dong-Mi

    2017-04-10

    Overconsumption of sugar-sweetened beverages (SSBs) is known to be a key contributor to the obesity epidemic; however, its effects on behavioral changes are yet to be fully studied. In the present study, we examined the long-term effects of SSB on social aggression in mice. Three-week-old weaned mice started to drink either a 30 w/v% sucrose solution (S30), plain water (CT), or an aspartame solution with sweetness equivalent to the sucrose solution (A30) and continued to drink until they were 11-week-old adults. Aggressive behaviors were assessed by the resident-intruder test. We found that SSB significantly promoted social aggression, accompanied by heightened serum corticosterone and reduced body weight. To understand the underlying mechanism, we performed transcriptome analyses of brain. The profiles of mice on S30 were dramatically different from those on CT or A30. Transcriptional networks related to immunological function were significantly dysregulated by SSB. FACS analysis of mice on S30 revealed increased numbers of inflammatory cells in peripheral blood. Interestingly, the artificial sweetener failed to mimic the effects of sugar on social aggression and inflammatory responses. These results demonstrate that SSB promotes aggressive behaviors and provide evidence that sugar reduction strategies may be useful in efforts to prevent social aggression.

  14. Long-term consumption of sugar-sweetened beverage during the growth period promotes social aggression in adult mice with proinflammatory responses in the brain

    PubMed Central

    Choi, Jung-Yun; Park, Mi-Na; Kim, Chong-Su; Lee, Young-Kwan; Choi, Eun Young; Chun, Woo Young; Shin, Dong-Mi

    2017-01-01

    Overconsumption of sugar-sweetened beverages (SSBs) is known to be a key contributor to the obesity epidemic; however, its effects on behavioral changes are yet to be fully studied. In the present study, we examined the long-term effects of SSB on social aggression in mice. Three-week-old weaned mice started to drink either a 30 w/v% sucrose solution (S30), plain water (CT), or an aspartame solution with sweetness equivalent to the sucrose solution (A30) and continued to drink until they were 11-week-old adults. Aggressive behaviors were assessed by the resident-intruder test. We found that SSB significantly promoted social aggression, accompanied by heightened serum corticosterone and reduced body weight. To understand the underlying mechanism, we performed transcriptome analyses of brain. The profiles of mice on S30 were dramatically different from those on CT or A30. Transcriptional networks related to immunological function were significantly dysregulated by SSB. FACS analysis of mice on S30 revealed increased numbers of inflammatory cells in peripheral blood. Interestingly, the artificial sweetener failed to mimic the effects of sugar on social aggression and inflammatory responses. These results demonstrate that SSB promotes aggressive behaviors and provide evidence that sugar reduction strategies may be useful in efforts to prevent social aggression. PMID:28393871

  15. Structural Brain Alterations in Children an Average of 5 Years after Surgery and Chemotherapy for Brain Tumors

    PubMed Central

    Nelson, Mary Baron; Macey, Paul M.; Harper, Ronald M.; Jacob, Eufemia; Patel, Sunita K.; Finlay, Jonathan L.; Nelson, Marvin D.; Compton, Peggy

    2014-01-01

    Background Young children with brain tumors are often treated with high-dose chemotherapy after surgery to avoid brain tissue injury associated with irradiation. The effects of systemic chemotherapy on healthy brain tissue in this population, however, are unclear. Our objective was to compare gray and white matter integrity using MRI procedures in children with brain tumors (n=7, mean age 8.3 years), treated with surgery and high-dose chemotherapy followed by autologous hematopoietic cell rescue (AuHCR) an average of 5.4 years earlier, to age- and gender-matched healthy controls (n=9, mean age 9.3 years). Methods Diffusion tensor imaging data were collected to evaluate tissue integrity throughout the brain, as measured by mean diffusivity (MD), a marker of glial, neuronal, and axonal status, and fractional anisotropy (FA), an index of axonal health. Individual MD and FA maps were calculated, normalized, smoothed, and compared between groups using analysis of covariance, with age and sex as covariates. Results Higher mean diffusivity values, indicative of injury, emerged in patients compared with controls (p<0.05, corrected for multiple comparisons), and were especially apparent in the central thalamus, external capsule, putamen, globus pallidus and pons. Reduced FA values in some regions did not reach significance after correction for multiple comparisons. Conclusions Children treated with surgery and high-dose chemotherapy with AuHCR for brain tumors an average of 5.4 years earlier show alterations in white and gray matter in multiple brain areas distant from the tumor site, raising the possibility for long-term consequences of the tumor or treatment. PMID:24830985

  16. Non-invasive monitoring of hemodynamic changes in orthotropic brain tumor

    NASA Astrophysics Data System (ADS)

    Kashyap, Dheerendra; Sharma, Vikrant; Liu, Hanli

    2007-02-01

    Radio surgical interventions such as Gamma Knife and Cyberknife have become attractive as therapeutic interventions. However, one of the drawbacks of cyberknife is radionecrosis, which is caused by excessive radiation to surrounding normal tissues. Radionecrosis occurs in about 10-15% of cases and could have adverse effects leading to death. Currently available imaging techniques have failed to reliably distinguish radionecrosis from tumor growth. Development of imaging techniques that could provide distinction between tumor growth and radionecrosis would give us ability to monitor effects of radiation therapy non-invasively. This paper investigates the use of near infrared spectroscopy (NIRS) as a new technique to monitor the growth of brain tumors. Brain tumors (9L glioma cell line) were implanted in right caudate nucleus of rats (250-300 gms, Male Fisher C) through a guide screw. A new algorithm was developed, which used broadband steady-state reflectance measurements made using a single source-detector pair, to quantify absolute concentrations of hemoglobin derivatives and reduced scattering coefficients. Preliminary results from the brain tumors indicated decreases in oxygen saturation, oxygenated hemoglobin concentrations and increases in deoxygenated hemoglobin concentrations with tumor growth. The study demonstrates that NIRS technology could provide an efficient, noninvasive means of monitoring vascular oxygenation dynamics of brain tumors and further facilitate investigations of efficacy of tumor treatments.

  17. Plasmonics-enhanced and optically modulated delivery of gold nanostars into brain tumor.

    PubMed

    Yuan, Hsiangkuo; Wilson, Christy M; Xia, Jun; Doyle, Sarah L; Li, Shuqin; Fales, Andrew M; Liu, Yang; Ozaki, Ema; Mulfaul, Kelly; Hanna, Gabi; Palmer, Gregory M; Wang, Lihong V; Grant, Gerald A; Vo-Dinh, Tuan

    2014-04-21

    Plasmonics-active gold nanostars exhibiting strong imaging contrast and efficient photothermal transduction were synthesized for a novel pulsed laser-modulated plasmonics-enhanced brain tumor microvascular permeabilization. We demonstrate a selective, optically modulated delivery of nanoprobes into the tumor parenchyma with minimal off-target distribution.

  18. Plasmonics-enhanced and optically modulated delivery of gold nanostars into brain tumor

    PubMed Central

    Yuan, Hsiangkuo; Wilson, Christy M.; Xia, Jun; Doyle, Sarah L.; Li, Shuqin; Fales, Andrew M; Liu, Yang; Ozaki, Ema; Mulfaul, Kelly; Hanna, Gabi; Palmer, Gregory M.; Wang, Lihong V.; Grant, Gerald A.

    2014-01-01

    Plasmonics-active gold nanostars exhibiting strong imaging contrast and efficient photothermal transduction were synthesized for a novel pulsed laser-modulated plasmonics-enhanced brain tumor microvascular permeabilization. We demonstrate a selective, optically modulated delivery of nanoprobes into the tumor parenchyma with minimal off-target distribution. PMID:24619405

  19. Direct cortical stimulation but not transcranial electrical stimulation motor evoked potentials detect brain ischemia during brain tumor resection.

    PubMed

    Li, Fenghua; Deshaies, Eric M; Allott, Geoffrey; Canute, Gregory; Gorji, Reza

    2011-09-01

    Motor evoked potentials (MEPs) elicited by both direct cortical stimulation (DCS) and transcranial electrical stimulation are used during brain tumor resection. Parallel use of direct cortical stimulation motor evoked potentials (DCS-MEPs) and transcranial electrical stimulation motor evoked potentials (TCeMEPs) has been practiced during brain tumor resection. We report that DCS-MEPs elicited by direct subdural grid stimulation, but not TCeMEPs, detected brain ischemia during brain tumor resection. Following resection of a brainstem high-grade glioma in a 21-year-old, the threshold of cortical motor-evoked-potentials (cMEPs) increased from 13 mA to 20 mA while amplitudes decreased. No changes were noted in transcranial motor evoked potentials (TCMEPs), somatosensory evoked potentials (SSEPs), auditory evoked potentials (AEPs), anesthetics, or hemodynamic parameters. Our case showed the loss of cMEPs and SSEPs, but not TCeMEPs. Permanent loss of DCS-MEPs and SSEPs was correlated with permanent left hemiplegia in our patient even when appropriate action was taken. Parallel use of DCS- and TCeMEPs with SSEPs improves sensitivity of intraoperative detection of motor impairment. DCS may be superior to TCeMEPs during brain tumor resection.

  20. The Influence of Neuronal Activity on Breast Tumor Metastasis to the Brain

    DTIC Science & Technology

    2009-09-01

    drugs to alter brain activity: caffeine, methylphenidate and modafinil . While the smallest effect may be expected from caffeine which is not as potent...caffeine, we have initiated experiments to test the effects of modafinil on breast tumor metastasis to the brain in our model. Unfortunately, we have had

  1. Targeted delivery of nano-PTX to the brain tumor-associated macrophages

    PubMed Central

    Zou, Lei; Tao, Youhua; Payne, Gregory; Do, Linh; Thomas, Tima; Rodriguez, Juan; Dou, Huanyu

    2017-01-01

    Nanoparticles containing mixed lipid monolayer shell, biodegradable polymer core and rabies virus glycoprotein (RVG) peptide as brain targeting ligand, were developed for brain targeted delivery of paclitaxel (PTX) to treat malignant glioma. RVG conjugated PTX loaded NPs (RVG-PTX-NPs) had the desirable size (~140 nm), narrow size distribution and spherical shape. RVG-PTX-NPs showed poor uptake by neurons and selective targeting to the brain tumor associated macrophages (TAMs) with controlled release and tumor specific toxicity. In vivo studies revealed that RVG-PTX-NPs were significant to cross the blood-brain barrier (BBB) and had specific targeting to the brain. Most importantly, RVG-PTX-NPs showed effectiveness for anti-glioma therapy on human glioma of mice model. We concluded that RVG-PTX-NPs provided an effective approach for brain-TAMs targeted delivery for the treatment of glioma. PMID:28036254

  2. Recognition of Transmembrane Protein 39A as a Tumor-Specific Marker in Brain Tumor

    PubMed Central

    Park, Jisoo; Lee, Hyunji; Tran, Quangdon; Mun, Kisun; Kim, Dohoon; Hong, Youngeun; Kwon, So Hee; Brazil, Derek; Park, Jongsun; Kim, Seon-Hwan

    2017-01-01

    Transmembrane protein 39A (TMEM39A) belongs to the TMEM39 family. TMEM39A gene is a susceptibility locus for multiple sclerosis. In addition, TMEM39A seems to be implicated in systemic lupus erythematosus. However, any possible involvement of TMEM39A in cancer remains largely unknown. In the present report, we provide evidence that TMEM39A may play a role in brain tumors. Western blotting using an anti-TMEM39A antibody indicated that TMEM39A was overexpressed in glioblastoma cell lines, including U87-MG and U251-MG. Deep-sequencing transcriptomic profiling of U87-MG and U251-MG cells revealed that TMEM39A transcripts were upregulated in such cells compared with those of the cerebral cortex. Confocal microscopic analysis of U251-MG cells stained with anti-TMEM39A antibody showed that TMEM39A was located in dot-like structures lying close to the nucleus. TMEM39A probably located to mitochondria or to endosomes. Immunohistochemical analysis of glioma tissue specimens indicated that TMEM39A was markedly upregulated in such samples. Bioinformatic analysis of the Rembrandt knowledge base also supported upregulation of TMEM39A mRNA levels in glioma patients. Together, the results afford strong evidence that TMEM39A is upregulated in glioma cell lines and glioma tissue specimens. Therefore, TMEM39A may serve as a novel diagnostic marker of, and a therapeutic target for, gliomas and other cancers. PMID:28133515

  3. Overexpression of the growth-hormone-releasing hormone gene in acromegaly-associated pituitary tumors. An event associated with neoplastic progression and aggressive behavior.

    PubMed Central

    Thapar, K.; Kovacs, K.; Stefaneanu, L.; Scheithauer, B.; Killinger, D. W.; Lioyd, R. V.; Smyth, H. S.; Barr, A.; Thorner, M. O.; Gaylinn, B.; Laws, E. R.

    1997-01-01

    The clinical behavior of growth hormone (GH)-producing pituitary tumors is known to vary greatly; however, the events underlying this variability remain poorly understood. Herein we demonstrate that tumor overexpression of the GH-releasing hormone (GHRH) gene is one prognostically informative event associated with the clinical aggressiveness of somatotroph pituitary tumors. Accumulation of GHRH mRNA transcripts was demonstrated in 91 of a consecutive series of 100 somatotroph tumors by in situ hybridization; these findings were corroborated by Northern analysis and reverse transcriptase polymerase chain reaction, and protein translation was confirmed by Western blotting. By comparison, transcript accumulation was absent or negligibly low in 30 normal pituitary glands. GHRH transcripts were found to preferentially accumulate among clinically aggressive tumors. Specifically, GHRH mRNA signal intensity was 1) linearly correlated with Ki-67 tumor growth fractions (r = 0.71; P < 0.001), 2) linearly correlated with preoperative serum GH levels (r = 0.56; p = 0.01), 3) higher among invasive tumors (P < 0.001), and 4) highest in those tumors in which post-operative remission was not achieved (P < 0.001). Using multivariate logistic regression, a model of postoperative remission likelihood was derived wherein remission was defined by the single criterion of suppressibility of GH levels to less than 2 ng/ml during an oral glucose tolerance test. In this outcome model, GHRH mRNA signal intensity proved to be the most important explanatory variable overall, eclipsing any and all conventional clinicopathological predictors as the single most significant predictor of postoperative remission; increases in GHRH mRNA signal were associated with marked declines in remission likelihood. The generalizability of this outcome model was further validated by the model's significant performance in predicting postoperative remission in a random sample of 30 somatotroph tumors treated at

  4. The Relationship between Parkinson Disease and Brain Tumor: A Meta-Analysis

    PubMed Central

    Ye, Rong; Shen, Ting; Jiang, Yasi; Xu, Lingjia; Si, Xiaoli; Zhang, Baorong

    2016-01-01

    Objective Epidemiological studies have investigated the association between Parkinson disease (PD) occurrence and the risk of brain tumors, while the results remain controversial. We performed a meta-analysis to clarify the exact relationship between PD and brain tumors. Methods A systematic literature search was conducted using PubMed, Embase, ScienceDirect and CBM (China Biology Medicine Disc) before February 2016. Eligible studies were those that reported risk estimates of brain tumors among patients with PD or vice versa. A random-effects model was used to calculate the pooled odds ratio (OR) of the outcomes. Subgroup analyses and sensitivity analysis were conducted to explore the potential sources of heterogeneity. Results In total, eight studies involving 329,276 participants met our inclusion criteria. The pooled OR was 1.51 (95%CI 1.21–1.89), indicating that PD carried a higher risk of brain tumor. Analyses by temporal relationship found that the occurrence of brain tumor was significantly higher after the diagnosis of PD (OR 1.55, 95% CI 1.18–2.05), but not statistically significant before PD diagnosis (OR 1.21, 95%CI 0.93–1.58). Subgroup analysis showed that gender differences, ethnicity differences and the characteristic of the tumor (benign or malignant) did not make much change in the association between brain tumor and PD. Conclusions Our meta-analysis collecting epidemiological studies suggested a positive association of PD with brain tumors, while the influence of anti-parkinson drugs and ascertainment bias could not be excluded. Further studies with larger sample size and more strict inclusion criteria should be conducted in the future. PMID:27764145

  5. Estimating the risk of brain tumors from cellphone use: Published case-control studies.

    PubMed

    Morgan, L Lloyd

    2009-08-01

    This paper reviews the results of early cellphone studies, where exposure duration was too short to expect tumorigenesis, as well as two sets of more recent studies with longer exposure duration: the Interphone studies and the Swedish studies led by Dr. Lennart Hardell. The recent studies reach very different conclusions. With four exceptions the industry-funded Interphone studies found no increased risk of brain tumors from cellphone use, while the Swedish studies, independent of industry funding, reported numerous findings of significant increased brain tumor risk from cellphone and cordless phone use. An analysis of the data from the Interphone studies suggests that either the use of a cellphone protects the user from a brain tumor, or the studies had serious design flaws. Eleven flaws are identified: (1) selection bias, (2) insufficient latency time, (3) definition of 'regular' cellphone user, (4) exclusion of young adults and children, (5) brain tumor risk from cellphones radiating higher power levels in rural areas were not investigated, (6) exposure to other transmitting sources are excluded, (7) exclusion of brain tumor types, (8) tumors outside the cellphone radiation plume are treated as exposed, (9) exclusion of brain tumor cases because of death or illness, (10) recall accuracy of cellphone use, and (11) funding bias. The Interphone studies have all 11 flaws, and the Swedish studies have 3 flaws (8, 9 and 10). The data from the Swedish studies are consistent with what would be expected if cellphone use were a risk for brain tumors, while the Interphone studies data are incredulous. If a risk does exist, the public health cost will be large. These are the circumstances where application of the Precautionary Principle is indicated, especially if low-cost options could reduce the absorbed cellphone radiation by several orders of magnitude.

  6. Quality of life and symptoms in pediatric brain tumor survivors: a systematic review.

    PubMed

    Macartney, Gail; Harrison, Margaret B; VanDenKerkhof, Elizabeth; Stacey, Dawn; McCarthy, Patricia

    2014-01-01

    Little is known about the quality of life of children and youth under the age of 20 who have completed treatment for a pediatric brain tumor. This systematic review was conducted to (a) describe the health-related quality of life (HRQL) outcomes in pediatric brain tumor survivors, (b) identify instruments used to measure HRQL, and (c) determine the relationship between symptoms and HRQL. Using a systematic search and review methodology, databases searched included CINAHL, Medline, Embase, and PsycInfo. No date restrictions were used. Search results elicited 485 articles, of which16 met the inclusion criteria. Compared with their healthy peers, pediatric brain tumor survivors did worse on most measures of physical, psychosocial, social, and cognitive domains of HRQL. Compared with other cancer patients, survivors scored themselves significantly lower on the Pediatric Quality of Life Inventory (PedsQL) social functioning scale, and parents of brain tumor survivors reported lower PedsQL social and total functioning scores for their children. Other variables that were associated with decreased HRQL were degree of hypothalamic tumor involvement, osteopenia, need for special education, older age at diagnosis, greater than 1 year since treatment, and radiation treatment. In these studies, pediatric brain tumor survivors fared worse compared with other cancer survivors or healthy peers on several HRQL domains. Only 3 studies explored the relationship between symptoms, including pain or fatigue, and HRQL in pediatric brain tumor survivors. The relationship between symptoms and HRQL was not well elucidated. More research is needed to explore the multidimensional symptom experience and HRQL outcomes in pediatric brain tumor survivors.

  7. EARLY POSTOPERATIVE MAGNETIC RESONANCE IMAGING FINDINGS IN FIVE DOGS WITH CONFIRMED AND SUSPECTED BRAIN TUMORS.

    PubMed

    Chow, Kathleen Ella; Tyrrell, Dayle; Long, Sam Nicholas

    2015-01-01

    Early postoperative neuroimaging has been performed in people for over 20 years to detect residual brain tumor tissue and surgical complications. The purpose of this retrospective study was to describe characteristics observed using early postoperative magnetic resonance imaging in a group of dogs undergoing craniotomy for brain tumor removal. Two independent observers came to a consensus opinion for presence/absence of the following MRI characteristics: residual tumor tissue; hemorrhage and ischemic lesions; abnormal enhancement (including the margins of the resection cavity, choroid plexus, meninges) and signal intensity changes on diffusion-weighted imaging. Five dogs were included in the study, having had preoperative and early postoperative MRI acquired within four days after surgery. The most commonly observed characteristics were abnormal meningeal enhancement, linear enhancement at margins of the resection cavity, hemorrhage, and a thin rim of hyperintensity surrounding the resection cavity on diffusion-weighted imaging. Residual tumor tissue was detected in one case of an enhancing tumor and in one case of a tumor containing areas of hemorrhage preoperatively. Residual tumor tissue was suspected but could not be confirmed when tumors were nonenhancing. Findings supported the use of early postoperative MRI as a method for detecting residual brain tumor tissue in dogs.

  8. Management of childhood brain tumors: consensus report by the Pediatric Hematology Oncology (PHO) Chapter of Indian Academy of Pediatrics (IAP).

    PubMed

    Bhat, Sunil; Yadav, Satya Prakash; Suri, Vaishali; Patir, Rana; Kurkure, Purna; Kellie, Stewart; Sachdeva, Anupam

    2011-12-01

    Brain tumors are the second most common childhood tumors and remain the leading cause of cancer related deaths in children. Appropriate diagnosis and management of these tumors are essential to improve survival. There are no clinical practical guidelines available for the management of brain tumors in India. This document is a consensus report prepared after a National Consultation on Pediatric Brain Tumors held in Delhi on 06 Nov 2008. The meeting was attended by eminent experts from all over the country, in the fields of Neurosurgery, Radiation Oncology, Pediatric Oncology, Neuropathology, Diagnostic Imaging, Pediatric Endocrinology and Allied Health Professionals. This article highlights that physicians looking after children with brain tumors should work as part of a multidisciplinary team to improve the survival, quality of life, neuro-cognitive outcomes and standards of care for children with brain tumors. Recommendations for when to suspect, diagnostic workup, initial management, long-term follow up and specific management of individual tumors are outlined.

  9. In1-ghrelin, a splice variant of ghrelin gene, is associated with the evolution and aggressiveness of human neuroendocrine tumors: Evidence from clinical, cellular and molecular parameters.

    PubMed

    Luque, Raul M; Sampedro-Nuñez, Miguel; Gahete, Manuel D; Ramos-Levi, Ana; Ibáñez-Costa, Alejandro; Rivero-Cortés, Esther; Serrano-Somavilla, Ana; Adrados, Magdalena; Culler, Michael D; Castaño, Justo P; Marazuela, Mónica

    2015-08-14

    Ghrelin system comprises a complex family of peptides, receptors (GHSRs), and modifying enzymes [e.g. ghrelin-O-acyl-transferase (GOAT)] that control multiple pathophysiological processes. Aberrant alternative splicing is an emerging cancer hallmark that generates altered proteins with tumorigenic capacity. Indeed, In1-ghrelin and truncated-GHSR1b splicing variants can promote development/progression of certain endocrine-related cancers. Here, we determined the expression levels of key ghrelin system components in neuroendocrine tumor (NETs) and explored their potential functional role. Twenty-six patients with NETs were prospectively/retrospectively studied [72 samples from primary and metastatic tissues (30 normal/42 tumors)] and clinical data were obtained. The role of In1-ghrelin in aggressiveness was studied in vitro using NET cell lines (BON-1/QGP-1). In1-ghrelin, GOAT and GHSR1a/1b expression levels were elevated in tumoral compared to normal/adjacent tissues. Moreover, In1-ghrelin, GOAT, and GHSR1b expression levels were positively correlated within tumoral, but not within normal/adjacent samples, and were higher in patients with progressive vs. with stable/cured disease. Finally, In1-ghrelin increased aggressiveness (e.g. proliferation/migration) of NET cells. Altogether, our data strongly suggests a potential implication of ghrelin system in the pathogenesis and/or clinical outcome of NETs, and warrant further studies on their possible value for the future development of molecular biomarkers with diagnostic/prognostic/therapeutic value.

  10. In1-ghrelin, a splice variant of ghrelin gene, is associated with the evolution and aggressiveness of human neuroendocrine tumors: Evidence from clinical, cellular and molecular parameters

    PubMed Central

    Gahete, Manuel D.; Ramos-Levi, Ana; Ibáñez-Costa, Alejandro; Rivero-Cortés, Esther; Serrano-Somavilla, Ana; Adrados, Magdalena; Culler, Michael D.; Castaño, Justo P.; Marazuela, Mónica

    2015-01-01

    Ghrelin system comprises a complex family of peptides, receptors (GHSRs), and modifying enzymes [e.g. ghrelin-O-acyl-transferase (GOAT)] that control multiple pathophysiological processes. Aberrant alternative splicing is an emerging cancer hallmark that generates altered proteins with tumorigenic capacity. Indeed, In1-ghrelin and truncated-GHSR1b splicing variants can promote development/progression of certain endocrine-related cancers. Here, we determined the expression levels of key ghrelin system components in neuroendocrine tumor (NETs) and explored their potential functional role. Twenty-six patients with NETs were prospectively/retrospectively studied [72 samples from primary and metastatic tissues (30 normal/42 tumors)] and clinical data were obtained. The role of In1-ghrelin in aggressiveness was studied in vitro using NET cell lines (BON-1/QGP-1). In1-ghrelin, GOAT and GHSR1a/1b expression levels were elevated in tumoral compared to normal/adjacent tissues. Moreover, In1-ghrelin, GOAT, and GHSR1b expression levels were positively correlated within tumoral, but not within normal/adjacent samples, and were higher in patients with progressive vs. with stable/cured disease. Finally, In1-ghrelin increased aggressiveness (e.g. proliferation/migration) of NET cells. Altogether, our data strongly suggests a potential implication of ghrelin system in the pathogenesis and/or clinical outcome of NETs, and warrant further studies on their possible value for the future development of molecular biomarkers with diagnostic/prognostic/therapeutic value. PMID:26124083

  11. Improving the accuracy of brain tumor surgery via Raman-based technology.

    PubMed

    Hollon, Todd; Lewis, Spencer; Freudiger, Christian W; Sunney Xie, X; Orringer, Daniel A

    2016-03-01

    Despite advances in the surgical management of brain tumors, achieving optimal surgical results and identification of tumor remains a challenge. Raman spectroscopy, a laser-based technique that can be used to nondestructively differentiate molecules based on the inelastic scattering of light, is being applied toward improving the accuracy of brain tumor surgery. Here, the authors systematically review the application of Raman spectroscopy for guidance during brain tumor surgery. Raman spectroscopy can differentiate normal brain from necrotic and vital glioma tissue in human specimens based on chemical differences, and has recently been shown to differentiate tumor-infiltrated tissues from noninfiltrated tissues during surgery. Raman spectroscopy also forms the basis for coherent Raman scattering (CRS) microscopy, a technique that amplifies spontaneous Raman signals by 10,000-fold, enabling real-time histological imaging without the need for tissue processing, sectioning, or staining. The authors review the relevant basic and translational studies on CRS microscopy as a means of providing real-time intraoperative guidance. Recent studies have demonstrated how CRS can be used to differentiate tumor-infiltrated tissues from noninfiltrated tissues and that it has excellent agreement with traditional histology. Under simulated operative conditions, CRS has been shown to identify tumor margins that would be undetectable using standard bright-field microscopy. In addition, CRS microscopy has been shown to detect tumor in human surgical specimens with near-perfect agreement to standard H & E microscopy. The authors suggest that as the intraoperative application and instrumentation for Raman spectroscopy and imaging matures, it will become an essential component in the neurosurgical armamentarium for identifying residual tumor and improving the surgical management of brain tumors.

  12. Detection of tumor-derived DNA in cerebrospinal fluid of patients with primary tumors of the brain and spinal cord

    PubMed Central

    Wang, Yuxuan; Springer, Simeon; Zhang, Ming; McMahon, K. Wyatt; Kinde, Isaac; Dobbyn, Lisa; Ptak, Janine; Brem, Henry; Chaichana, Kaisorn; Gallia, Gary L.; Gokaslan, Ziya L.; Groves, Mari L.; Jallo, George I.; Lim, Michael; Olivi, Alessandro; Quinones-Hinojosa, Alfredo; Rigamonti, Daniele; Riggins, Greg J.; Sciubba, Daniel M.; Weingart, Jon D.; Wolinsky, Jean-Paul; Ye, Xiaobu; Oba-Shinjo, Sueli Mieko; Marie, Suely K. N.; Holdhoff, Matthias; Agrawal, Nishant; Diaz, Luis A.; Papadopoulos, Nickolas; Kinzler, Kenneth W.; Vogelstein, Bert; Bettegowda, Chetan

    2015-01-01

    Cell-free DNA shed by cancer cells has been shown to be a rich source of putative tumor-specific biomarkers. Because cell-free DNA from brain and spinal cord tumors cannot usually be detected in the blood, we studied whether the cerebrospinal fluid (CSF) that bathes the CNS is enriched for tumor DNA, here termed CSF-tDNA. We analyzed 35 primary CNS malignancies and found at least one mutation in each tumor using targeted or genome-wide sequencing. Using these patient-specific mutations as biomarkers, we identified detectable levels of CSF-tDNA in 74% [95% confidence interval (95% CI) = 57–88%] of cases. All medulloblastomas, ependymomas, and high-grade gliomas that abutted a CSF space were detectable (100% of 21 cases; 95% CI = 88–100%), whereas no CSF-tDNA was detected in patients whose tumors were not directly adjacent to a CSF reservoir (P < 0.0001, Fisher’s exact test). These results suggest that CSF-tDNA could be useful for the management of patients with primary tumors of the brain or spinal cord. PMID:26195750

  13. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs.

    PubMed

    Sturm, Dominik; Orr, Brent A; Toprak, Umut H; Hovestadt, Volker; Jones, David T W; Capper, David; Sill, Martin; Buchhalter, Ivo; Northcott, Paul A; Leis, Irina; Ryzhova, Marina; Koelsche, Christian; Pfaff, Elke; Allen, Sariah J; Balasubramanian, Gnanaprakash; Worst, Barbara C; Pajtler, Kristian W; Brabetz, Sebastian; Johann, Pascal D; Sahm, Felix; Reimand, Jüri; Mackay, Alan; Carvalho, Diana M; Remke, Marc; Phillips, Joanna J; Perry, Arie; Cowdrey, Cynthia; Drissi, Rachid; Fouladi, Maryam; Giangaspero, Felice; Łastowska, Maria; Grajkowska, Wiesława; Scheurlen, Wolfram; Pietsch, Torsten; Hagel, Christian; Gojo, Johannes; Lötsch, Daniela; Berger, Walter; Slavc, Irene; Haberler, Christine; Jouvet, Anne; Holm, Stefan; Hofer, Silvia; Prinz, Marco; Keohane, Catherine; Fried, Iris; Mawrin, Christian; Scheie, David; Mobley, Bret C; Schniederjan, Matthew J; Santi, Mariarita; Buccoliero, Anna M; Dahiya, Sonika; Kramm, Christof M; von Bueren, André O; von Hoff, Katja; Rutkowski, Stefan; Herold-Mende, Christel; Frühwald, Michael C; Milde, Till; Hasselblatt, Martin; Wesseling, Pieter; Rößler, Jochen; Schüller, Ulrich; Ebinger, Martin; Schittenhelm, Jens; Frank, Stephan; Grobholz, Rainer; Vajtai, Istvan; Hans, Volkmar; Schneppenheim, Reinhard; Zitterbart, Karel; Collins, V Peter; Aronica, Eleonora; Varlet, Pascale; Puget, Stephanie; Dufour, Christelle; Grill, Jacques; Figarella-Branger, Dominique; Wolter, Marietta; Schuhmann, Martin U; Shalaby, Tarek; Grotzer, Michael; van Meter, Timothy; Monoranu, Camelia-Maria; Felsberg, Jörg; Reifenberger, Guido; Snuderl, Matija; Forrester, Lynn Ann; Koster, Jan; Versteeg, Rogier; Volckmann, Richard; van Sluis, Peter; Wolf, Stephan; Mikkelsen, Tom; Gajjar, Amar; Aldape, Kenneth; Moore, Andrew S; Taylor, Michael D; Jones, Chris; Jabado, Nada; Karajannis, Matthias A; Eils, Roland; Schlesner, Matthias; Lichter, Peter; von Deimling, Andreas; Pfister, Stefan M; Ellison, David W; Korshunov, Andrey; Kool, Marcel

    2016-02-25

    Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of institutionally diagnosed CNS-PNETs display molecular profiles indistinguishable from those of various other well-defined CNS tumor entities, facilitating diagnosis and appropriate therapy for patients with these tumors. From the remaining fraction of CNS-PNETs, we identify four new CNS tumor entities, each associated with a recurrent genetic alteration and distinct histopathological and clinical features. These new molecular entities, designated "CNS neuroblastoma with FOXR2 activation (CNS NB-FOXR2)," "CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT-CIC)," "CNS high-grade neuroepithelial tumor with MN1 alteration (CNS HGNET-MN1)," and "CNS high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR)," will enable meaningful clinical trials and the development of therapeutic strategies for patients affected by poorly differentiated CNS tumors.

  14. Violence, mental illness, and the brain - A brief history of psychosurgery: Part 3 - From deep brain stimulation to amygdalotomy for violent behavior, seizures, and pathological aggression in humans.

    PubMed

    Faria, Miguel A

    2013-01-01

    In the final installment to this three-part, essay-editorial on psychosurgery, we relate the history of deep brain stimulation (DBS) in humans and glimpse the phenomenal body of work conducted by Dr. Jose Delgado at Yale University from the 1950s to the 1970s. The inception of the National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research (1974-1978) is briefly discussed as it pertains to the "determination of the Secretary of Health, Education and Welfare regarding the recommendations and guidelines on psychosurgery." The controversial work - namely recording of brain activity, DBS, and amygdalotomy for intractable psychomotor seizures in patients with uncontrolled violence - conducted by Drs. Vernon H. Mark and Frank Ervin is recounted. This final chapter recapitulates advances in neuroscience and neuroradiology in the evaluation of violent individuals and ends with a brief discussion of the problem of uncontrolled rage and "pathologic aggression" in today's modern society - as violence persists, and in response, we move toward authoritarianism, with less freedom and even less dignity.

  15. Rationale and Design of a Phase I Clinical Trial to Evaluate HSV G207 Alone or with a Single Radiation Dose in Children with Progressive or Recurrent Malignant Supratentorial Brain Tumors.

    PubMed

    Waters, Alicia M; Johnston, James M; Reddy, Alyssa T; Fiveash, John; Madan-Swain, Avi; Kachurak, Kara; Bag, Asim K; Gillespie, G Yancey; Markert, James M; Friedman, Gregory K

    2017-02-24

    Primary central nervous system tumors are the most common solid neoplasm of childhood and the leading cause of cancer related death in pediatric patients. Survival rates for children with malignant supratentorial brain tumors are poor despite aggressive treatment with combinations of surgery, radiation, and chemotherapy; and survivors often suffer from damaging lifelong sequelae from current therapies. Novel innovative treatments are greatly needed. One promising new approach is the use of a genetically engineered, conditionally replicating herpes simplex virus (HSV) that has shown tumor specific tropism and potential efficacy in the treatment of malignant brain tumors. G207 is a genetically engineered HSV-1 lacking genes essential for replication in normal brain cells. Safety has been established in preclinical investigations involving intracranial inoculation in the highly HSV-sensitive owl monkey (Aotus nancymai), and in three adult phase I trials in recurrent/progressive high-grade gliomas. No dose-limiting toxicities were seen in the adult studies and a maximum tolerated dose was not reached. Approximately half of the 35 treated adults had radiographic or neuropathologic evidence of response at a minimum of one time point. Preclinical studies in pediatric brain tumor models indicate that a variety of pediatric tumor types are highly sensitive to killing by G207. This clinical protocol outlines a first in human children study of intratumoral inoculation of an oncolytic virus via catheters placed directly into recurrent or progressive supratentorial malignant tumors.

  16. Rationale and Design of a Phase 1 Clinical Trial to Evaluate HSV G207 Alone or with a Single Radiation Dose in Children with Progressive or Recurrent Malignant Supratentorial Brain Tumors.

    PubMed

    Waters, Alicia M; Johnston, James M; Reddy, Alyssa T; Fiveash, John; Madan-Swain, Avi; Kachurak, Kara; Bag, Asim K; Gillespie, G Yancey; Markert, James M; Friedman, Gregory K

    2017-03-01

    Primary central nervous system tumors are the most common solid neoplasm of childhood and the leading cause of cancer-related death in pediatric patients. Survival rates for children with malignant supratentorial brain tumors are poor despite aggressive treatment with combinations of surgery, radiation, and chemotherapy, and survivors often suffer from damaging lifelong sequelae from current therapies. Novel innovative treatments are greatly needed. One promising new approach is the use of a genetically engineered, conditionally replicating herpes simplex virus (HSV) that has shown tumor-specific tropism and potential efficacy in the treatment of malignant brain tumors. G207 is a genetically engineered HSV-1 lacking genes essential for replication in normal brain cells. Safety has been established in preclinical investigations involving intracranial inoculation in the highly HSV-sensitive owl monkey (Aotus nancymai), and in three adult phase 1 trials in recurrent/progressive high-grade gliomas. No dose-limiting toxicities were seen in the adult studies and a maximum tolerated dose was not reached. Approximately half of the 35 treated adults had radiographic or neuropathologic evidence of response at a minimum of one time point. Preclinical studies in pediatric brain tumor models indicate that a variety of pediatric tumor types are highly sensitive to killing by G207. This clinical protocol outlines a first in human children study of intratumoral inoculation of an oncolytic virus via catheters placed directly into recurrent or progressive supratentorial malignant tumors.

  17. Childhood Brain Tumors, Residential Insecticide Exposure, and Pesticide Metabolism Genes

    PubMed Central

    Nielsen, Susan Searles; McKean-Cowdin, Roberta; Farin, Federico M.; Holly, Elizabeth A.; Preston-Martin, Susan; Mueller, Beth A.

    2010-01-01

    Background Insecticides that target the nervous system may play a role in the development of childhood brain tumors (CBTs). Constitutive genetic variation affects metabolism of these chemicals. Methods We analyzed population-based case–control data to examine whether CBT is associated with the functional genetic polymorphisms PON1C–108T, PON1Q192R, PON1L55M, BCHEA539T, FMO1C–9536A, FMO3E158K, ALDH3A1S134A, and GSTT1 (null). DNA was obtained from newborn screening archives for 201 cases and 285 controls, ≤ 10 years of age, and born in California or Washington State between 1978 and 1990. Conception-to-diagnosis home insecticide treatment history was ascertained by interview. Results We observed no biologically plausible main effects for any of the metabolic polymorphisms with CBT risk. However, we observed strong interactions between genotype and insecticide exposure during childhood. Among exposed children, CBT risk increased per PON1–108T allele [odds ratio (OR) = 1.8; 95% confidence interval (CI), 1.1–3.0] and FMO1–9536A (*6) allele (OR = 2.7; 95% CI, 1.2–5.9), whereas among children never exposed, CBT risk was not increased (PON1: OR = 0.7; 95% CI, 0.5–1.0, interaction p = 0.005; FMO1: OR = 1.0; 95% CI, 0.6–1.6, interaction p = 0.009). We observed a similar but statistically nonsignificant interaction between childhood exposure and BCHEA539T (interaction p = 0.08). These interactions were present among both Hispanic and non-Hispanic white children. Conclusion Based on known effects of these variants, these results suggest that exposure in childhood to organophosphorus and perhaps to carbamate insecticides in combination with a reduced ability to detoxify them may be associated with CBT. Confirmation in other studies is required. PMID:20056567

  18. Blood flow in an experimental rat brain tumor by tissue equilibration and indicator fractionation.

    PubMed

    Graham, M M; Spence, A M; Abbott, G L; O'Gorman, L; Muzi, M

    1987-01-01

    The tissue equilibration technique (Kety) was compared with the indicator fractionation technique for the measurement of blood flow to normal brain and an experimental brain tumor in the rat. The tumor was a cloned astrocytic glioma implanted in the cerebral hemisphere of F-344 rats. I-125 Iodoantipyrine, using a rising infusion for one minute, was used for the tissue equilibration technique. C-14 butanol, injected as a bolus 8 seconds before sacrifice, was used for the indicator fractionation technique. Samples were assayed using liquid scintillation counting and the iodoantipyrine results were regressed against the butanol results. For normal tissue R = 0.832, SEE = 0.115 ml/g/min, and Slope = 0.626. For tumor R = 0.796, SEE = 0.070 ml/g/min, and Slope = 0.441. The iodoantipyrine tissue/blood partition coefficient for normal hemisphere (gray and white matter) was 0.861 +/-0.037 (SD) and for tumor was 0.876 +/-0.042. The indicator fractionation technique with C-14 butanol underestimated blood flow in a consistent manner, probably because of incomplete extraction, early washout of activity from tissue and from evaporation of butanol during processing. Our experiments revealed no differences between tumor and normal brain tissue that might invalidate the comparison of iodoantipyrine blood flow results in brain tumors and surrounding normal brain.

  19. Support after Brain Tumor Means Different Things: Family Caregivers’ Experiences of Support and Relationship Changes

    PubMed Central

    Ownsworth, Tamara; Goadby, Elizabeth; Chambers, Suzanne Kathleen

    2015-01-01

    Shorter hospital stays and greater emphasis on outpatient care means that family members have the primary responsibility for supporting a person with brain tumor to manage the physical, cognitive, behavioral, and emotional effects of the illness and its treatment. Given the integral role of family caregivers, it is essential to understand their experience of the impact of brain tumor and their own support needs. Accordingly, this qualitative study aimed to investigate family caregivers’ experiences of support and relationship changes in the context of brain tumor. In-depth interviews were conducted with 11 family caregivers (8 spouse/partner, 3 parents) of people with malignant or benign tumor. A thematic analysis of interview transcripts identified two major themes, namely, “Meanings of Support” and “Relationship Impacts.” The Meanings of Support theme was characterized by intertwined and distinct support needs, varied expectations of support and factors influencing support expectations. The Relationship Impacts theme depicted mixed experiences of strengthened, maintained, and strained relations with the person with brain tumor. Overall, the findings highlight that there is considerable variability in caregivers’ experiences and expectations of support and the impact of brain tumor on relationships. The implications of these findings for the provision of caregiver support are discussed. PMID:25729740

  20. Neuroimaging and Aggression.

    ERIC Educational Resources Information Center

    Mills, Shari; Raine, Adrian

    1994-01-01

    Brain imaging research allows direct assessment of structural and functional brain abnormalities, and thereby provides an improved methodology for studying neurobiological factors predisposing to violent and aggressive behavior. This paper reviews 20 brain imaging studies using four different types of neuroimaging techniques that were conducted in…

  1. Biodistribution of ultra small gadolinium-based nanoparticles as theranostic agent: application to brain tumors.

    PubMed

    Miladi, Imen; Duc, Géraldine Le; Kryza, David; Berniard, Aurélie; Mowat, Pierre; Roux, Stéphane; Taleb, Jacqueline; Bonazza, Pauline; Perriat, Pascal; Lux, François; Tillement, Olivier; Billotey, Claire; Janier, Marc

    2013-09-01

    Gadolinium-based nanoparticles are novel objects with interesting physical properties, allowing their use for diagnostic and therapeutic applications. Gadolinium-based nanoparticles were imaged following intravenous injection in healthy rats and rats grafted with 9L gliosarcoma tumors using magnetic resonance imaging and scintigraphic imaging. Quantitative biodistribution using gamma-counting of each sampled organ confirmed that these nanoparticles were rapidly cleared essentially by renal excretion. Accumulation of these nanoparticles in 9L gliosarcoma tumors implanted in the rat brain was quantitated. This passive and long-duration accumulation of gadolinium-based nanoparticles in tumor, which is related to disruption of the blood-brain barrier, is in good agreement with the use of these nanoparticles as radiosensitizers for brain tumors.

  2. Postoperative Stereotactic Radiosurgery Without Whole-Brain Radiation Therapy for Brain Metastases: Potential Role of Preoperative Tumor Size

    SciTech Connect

    Hartford, Alan C.; Paravati, Anthony J.; Spire, William J.; Li, Zhongze; Jarvis, Lesley A.; Fadul, Camilo E.; Erkmen, Kadir; Friedman, Jonathan; Gladstone, David J.; Hug, Eugen B.; Roberts, David W.; Simmons, Nathan E.

    2013-03-01

    Purpose: Radiation therapy following resection of a brain metastasis increases the probability of disease control at the surgical site. We analyzed our experience with postoperative stereotactic radiosurgery (SRS) as an alternative to whole-brain radiotherapy (WBRT), with an emphasis on identifying factors that might predict intracranial disease control and overall survival (OS). Methods and Materials: We retrospectively reviewed all patients through December 2008, who, after surgical resection, underwent SRS to the tumor bed, deferring WBRT. Multiple factors were analyzed for time to intracranial recurrence (ICR), whether local recurrence (LR) at the surgical bed or “distant” recurrence (DR) in the brain, for time to WBRT, and for OS. Results: A total of 49 lesions in 47 patients were treated with postoperative SRS. With median follow-up of 9.3 months (range, 1.1-61.4 months), local control rates at the resection cavity were 85.5% at 1 year and 66.9% at 2 years. OS rates at 1 and 2 years were 52.5% and 31.7%, respectively. On univariate analysis (preoperative) tumors larger than 3.0 cm exhibited a significantly shorter time to LR. At a cutoff of 2.0 cm, larger tumors resulted in significantly shorter times not only for LR but also for DR, ICR, and salvage WBRT. While multivariate Cox regressions showed preoperative size to be significant for times to DR, ICR, and WBRT, in similar multivariate analysis for OS, only the graded prognostic assessment proved to be significant. However, the number of intracranial metastases at presentation was not significantly associated with OS nor with other outcome variables. Conclusions: Larger tumor size was associated with shorter time to recurrence and with shorter time to salvage WBRT; however, larger tumors were not associated with decrements in OS, suggesting successful salvage. SRS to the tumor bed without WBRT is an effective treatment for resected brain metastases, achieving local control particularly for tumors up to

  3. Distribution of anionic sites on the capillary endothelium in an experimental brain tumor model.

    PubMed

    Vincent, S; DePace, D; Finkelstein, S

    1988-02-01

    The distribution of anionic domains on the capillary endothelium of experimental brain tumors was determined using cationic ferritin (CF) in order to ascertain whether the pattern of these domains is different from that on normal cerebral capillaries. Tumors were induced by stereotaxic injection of cultured neoplastic glial cells, A15A5, into the caudate nucleus of Sprague-Dawley rats. Following a 14-21 day growth period tumors appeared as vascularized, sharply circumscribed masses which caused compression of the surrounding brain tissue. Anionic domains were distributed in a patchy and irregular pattern on the luminal plasma membrane of the endothelia of blood vessels in the tumors. Some variability in this pattern was observed infrequently in limited regions of the tumor where there was either a continuous layer of CF or an absence of CF binding. Plasmalemmal vesicles, coated vesicles, coated pits, multivesicular bodies, and some junctional complexes showed varying degrees of labeling with the probe. Capillaries in the tumor periphery and normal cerebral vessels showed a uniform distribution of anionic groups. These results indicate that there is an altered surface charge on the endothelial luminal plasma membrane of blood vessels in brain tumors. A correlation may exist between the altered surface charge and the degree to which the blood-brain barrier is impaired in these vessels.

  4. Autophagy inhibition overcomes multiple mechanisms of resistance to BRAF inhibition in brain tumors

    PubMed Central

    Mulcahy Levy, Jean M; Zahedi, Shadi; Griesinger, Andrea M; Morin, Andrew; Davies, Kurtis D; Aisner, Dara L; Kleinschmidt-DeMasters, BK; Fitzwalter, Brent E; Goodall, Megan L; Thorburn, Jacqueline; Amani, Vladimir; Donson, Andrew M; Birks, Diane K; Mirsky, David M; Hankinson, Todd C; Handler, Michael H; Green, Adam L; Vibhakar, Rajeev; Foreman, Nicholas K; Thorburn, Andrew

    2017-01-01

    Kinase inhibitors are effective cancer therapies, but tumors frequently develop resistance. Current strategies to circumvent resistance target the same or parallel pathways. We report here that targeting a completely different process, autophagy, can overcome multiple BRAF inhibitor resistance mechanisms in brain tumors. BRAFV600Emutations occur in many pediatric brain tumors. We previously reported that these tumors are autophagy-dependent and a patient was successfully treated with the autophagy inhibitor chloroquine after failure of the BRAFV600E inhibitor vemurafenib, suggesting autophagy inhibition overcame the kinase inhibitor resistance. We tested this hypothesis in vemurafenib-resistant brain tumors. Genetic and pharmacological autophagy inhibition overcame molecularly distinct resistance mechanisms, inhibited tumor cell growth, and increased cell death. Patients with resistance had favorable clinical responses when chloroquine was added to vemurafenib. This provides a fundamentally different strategy to circumvent multiple mechanisms of kinase inhibitor resistance that could be rapidly tested in clinical trials in patients with BRAFV600E brain tumors. DOI: http://dx.doi.org/10.7554/eLife.19671.001 PMID:28094001

  5. Differentiating histologic malignancy of primary brain tumors: Pentavalent Technetium-99m-DMSA

    SciTech Connect

    Hirano, Tsuneo; Otake, Hidenori; Shibasaki, Takashi

    1997-01-01

    This study assessed pentavalent {sup 99m}Tc-DMSA uptake in primary brain tumors and evaluated the relationship between retention and histologic malignancy. SPECT images of the brain were obtained at 30 min and 3 hr after intravenous administration of approximately 555 MBq {sup 99m}Tc(V)-DMSA in patients with brain tumors. Sixty studies were performed in 57 patients and 63 lesions were demonstrated: 11 glioblastomas, 13 anaplastic astrocytomas (Grade 3), 11 astrocytomas (Grade 2), 18 meningiomas and 10 schwannomas. Uptake ratios, retention ratio and retention index were calculated and compared with tumor histology and malignancy grade. Approximately 95% of both benign and malignant primary brain tumors were demonstrated by {sup 99m}Tc(V)-DMSA SPECT images. False negative was noted in three cases. The early uptake ratios were closely related to the tumor vascularity but had no statistically significant difference in the tumor vascularity but had no statistically significant difference in the tumor histology or histologic malignancy. 16 refs., 6 figs., 2 tabs.

  6. Epigenetic clustering of gastric carcinomas based on DNA methylation profiles at the precancerous stage: its correlation with tumor aggressiveness and patient outcome

    PubMed Central

    Yamanoi, Kazuhiro; Arai, Eri; Tian, Ying; Takahashi, Yoriko; Miyata, Sayaka; Sasaki, Hiroki; Chiwaki, Fumiko; Ichikawa, Hitoshi; Sakamoto, Hiromi; Kushima, Ryoji; Katai, Hitoshi; Yoshida, Teruhiko; Sakamoto, Michiie; Kanai, Yae

    2015-01-01

    The aim of this study was to clarify the significance of DNA methylation alterations during gastric carcinogenesis. Single-CpG resolution genome-wide DNA methylation analysis using the Infinium assay was performed on 109 samples of non-cancerous gastric mucosa (N) and 105 samples of tumorous tissue (T). DNA methylation alterations in T samples relative to N samples were evident for 3861 probes. Since N can be at the precancerous stage according to the field cancerization concept, unsupervised hierarchical clustering based on DNA methylation levels was performed on N samples (βN) using the 3861 probes. This divided the 109 patients into three clusters: A (n = 20), B1 (n = 20), and B2 (n = 69). Gastric carcinomas belonging to Cluster B1 showed tumor aggressiveness more frequently than those belonging to Clusters A and B2. The recurrence-free and overall survival rates of patients in Cluster B1 were lower than those of patients in Clusters A and B2. Sixty hallmark genes for which βN characterized the epigenetic clustering were identified. We then focused on DNA methylation levels in T samples (βT) of the 60 hallmark genes. In 48 of them, including the ADAM23, OLFM4, AMER2, GPSM1, CCL28, DTX1 and COL23A1 genes, βT was again significantly correlated with tumor aggressiveness, and the recurrence-free and/or overall survival rates. Multivariate analyses revealed that βT was a significant prognostic factor, being independent of clinicopathological parameters. These data indicate that DNA methylation profiles at the precancerous stage may be inherited by gastric carcinomas themselves, thus determining tumor aggressiveness and patient outcome. PMID:25740824

  7. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels.

    PubMed

    Wang, Christine; Tong, Xinming; Yang, Fan

    2014-07-07

    Glioblastoma (GBM) is the most common and aggressive form of primary brain tumor with a median survival of 12-15 months, and the mechanisms underlying GBM tumor progression remain largely elusive. Given the importance of tumor niche signaling in driving GBM progression, there is a strong need to develop in vitro models to facilitate analysis of brain tumor cell-niche interactions in a physiologically relevant and controllable manner. Here we report the development of a bioengineered 3D brain tumor model to help elucidate the effects of matrix stiffness on GBM cell fate using poly(ethylene-glycol) (PEG)-based hydrogels with brain-mimicking biochemical and mechanical properties. We have chosen PEG given its bioinert nature and tunable physical property, and the resulting hydrogels allow tunable matrix stiffness without changing the biochemical contents. To facilitate cell proliferation and migration, CRGDS and a MMP-cleavable peptide were chemically incorporated. Hyaluronic acid (HA) was also incorporated to mimic the concentration in the brain extracellular matrix. Using U87 cells as a model GBM cell line, we demonstrate that such biomimetic hydrogels support U87 cell growth, spreading, and migration in 3D over the course of 3 weeks in culture. Gene expression analyses showed U87 cells actively deposited extracellular matrix and continued to upregulate matrix remodeling genes. To examine the effects of matrix stiffness on GBM cell fate in 3D, we encapsulated U87 cells in soft (1 kPa) or stiff (26 kPa) hydrogels, which respectively mimics the matrix stiffness of normal brain or GBM tumor tissues. Our results suggest that changes in matrix stiffness induce differential GBM cell proliferation, morphology, and migration modes in 3D. Increasing matrix stiffness led to delayed U87 cell proliferation inside hydrogels, but cells formed denser spheroids with extended cell protrusions. Cells cultured in stiff hydrogels also showed upregulation of HA synthase 1 and matrix

  8. Neovascularization and tumor growth in the rabbit brain. A model for experimental studies of angiogenesis and the blood-brain barrier.

    PubMed Central

    Zagzag, D.; Brem, S.; Robert, F.

    1988-01-01

    A model for the study of tumor angiogenesis within the rabbit brain is presented. Implantation of the VX2 carcinoma provides a reproducible tumor accompanied by angiogenesis. The authors report the sequential growth, histology, tumor neovascularization, and vascular permeability of this tumor following its intracerebral implantation. Tumor angiogenesis correlates with the rapid and logarithmic intracerebral tumor growth. The proliferation of blood vessels in the tumor and the organization of tumor cells around tumor vessels are described. Breakdown of the blood-brain barrier (detected by Evans blue leakage) starts in the early stages of tumor development and becomes prominent as the tumor vasculature and size increase. This model is useful for experimental studies of angiogenesis. Images Figure 2 Figure 3 Figure 6 Figure 4 Figure 5 Figure 7 Figure 8 Figure 10 Figure 12 Figure 13 Figure 15 PMID:2451889

  9. A dynamic in vivo-like organotypic blood-brain barrier model to probe metastatic brain tumors

    PubMed Central

    Xu, Hui; Li, Zhongyu; Yu, Yue; Sizdahkhani, Saman; Ho, Winson S.; Yin, Fangchao; Wang, Li; Zhu, Guoli; Zhang, Min; Jiang, Lei; Zhuang, Zhengping; Qin, Jianhua

    2016-01-01

    The blood-brain barrier (BBB) restricts the uptake of many neuro-therapeutic molecules, presenting a formidable hurdle to drug development in brain diseases. We proposed a new and dynamic in vivo-like three-dimensional microfluidic system that replicates the key structural, functional and mechanical properties of the blood-brain barrier in vivo. Multiple factors in this system work synergistically to accentuate BBB-specific attributes–permitting the analysis of complex organ-level responses in both normal and pathological microenvironments in brain tumors. The complex BBB microenvironment is reproduced in this system via physical cell-cell interaction, vascular mechanical cues and cell migration. This model possesses the unique capability to examine brain metastasis of human lung, breast and melanoma cells and their therapeutic responses to chemotherapy. The results suggest that the interactions between cancer cells and astrocytes in BBB microenvironment might affect the ability of malignant brain tumors to traverse between brain and vascular compartments. Furthermore, quantification of spatially resolved barrier functions exists within a single assay, providing a versatile and valuable platform for pharmaceutical development, drug testing and neuroscientific research. PMID:27830712

  10. A dynamic in vivo-like organotypic blood-brain barrier model to probe metastatic brain tumors

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Li, Zhongyu; Yu, Yue; Sizdahkhani, Saman; Ho, Winson S.; Yin, Fangchao; Wang, Li; Zhu, Guoli; Zhang, Min; Jiang, Lei; Zhuang, Zhengping; Qin, Jianhua

    2016-11-01

    The blood-brain barrier (BBB) restricts the uptake of many neuro-therapeutic molecules, presenting a formidable hurdle to drug development in brain diseases. We proposed a new and dynamic in vivo-like three-dimensional microfluidic system that replicates the key structural, functional and mechanical properties of the blood-brain barrier in vivo. Multiple factors in this system work synergistically to accentuate BBB-specific attributes–permitting the analysis of complex organ-level responses in both normal and pathological microenvironments in brain tumors. The complex BBB microenvironment is reproduced in this system via physical cell-cell interaction, vascular mechanical cues and cell migration. This model possesses the unique capability to examine brain metastasis of human lung, breast and melanoma cells and their therapeutic responses to chemotherapy. The results suggest that the interactions between cancer cells and astrocytes in BBB microenvironment might affect the ability of malignant brain tumors to traverse between brain and vascular compartments. Furthermore, quantification of spatially resolved barrier functions exists within a single assay, providing a versatile and valuable platform for pharmaceutical development, drug testing and neuroscientific research.

  11. Effect of barrier opening on brain edema in human brain tumors.

    PubMed

    Sato, S; Suga, S; Yunoki, K; Mihara, B

    1994-01-01

    Blood-brain barrier (BBB) opening was carried out in 10 patients with cerebral lesions, and the MRI findings were evaluated following the barrier opening. An intra-arterial injection of 10% glycerol (4 ml/kg, 1 approximately 2 ml/s) was given as a hyperosmotic solution. T2-weighted MRI was undertaken using a TOSHIBA 22A at 30 minutes after BBB opening. Barrier-opening MRI was performed 10 times in 10 patients, including 5 cases of glioblastoma multiforme, 2 cases of astrocytoma, 1 case of malignant lymphoma, 1 case of cerebral contusion and 1 case of neurinoma. The high-intensity area (HIA) was compared with that in MRI without barrier opening. Three types of changes of HIA in MRI were observed after BBB opening as follows. Type 1: Expansion of the HIA was noted in 4 of 5 cases of glioblastoma multiforme, the 1 case of malignant lymphoma and the 1 case of cerebral contusion. Type 2: Almost no change was observed in the 1 case of neuronoma. Type 3: A decrease in HIA was noted in the 2 cases of astrocytoma and in 1 case of glioblastoma multiforme. The MRI following BBB opening evidently showed 3 types of changes according to the degree of BBB disruption. Glioblastoma multiforme or contusion with a severely disrupted BBB revealed an increase in HIA following barrier opening. Benign posterior fossa neurinoma showed no change in HIA after barrier opening. Moderate malignant tumors exhibited a decrease in HIA on barrier-opening MRI. It was concluded that malignant tumors have a severely damaged BBB, which is readily disrupted by osmotic barrier opening.

  12. Dimethyl sulfoxide (DMSO) as a potential contrast agent for brain tumors.

    PubMed

    Delgado-Goñi, T; Martín-Sitjar, J; Simões, R V; Acosta, M; Lope-Piedrafita, S; Arús, C

    2013-02-01

    Dimethyl sulfoxide (DMSO) is commonly used in preclinical studies of animal models of high-grade glioma as a solvent for chemotherapeutic agents. A strong DMSO signal was detected by single-voxel MRS in the brain of three C57BL/6 control mice during a pilot study of DMSO tolerance after intragastric administration. This led us to investigate the accumulation and wash-out kinetics of DMSO in both normal brain parenchyma (n=3 control mice) by single-voxel MRS, and in 12 GL261 glioblastomas (GBMs) by single-voxel MRS (n=3) and MRSI (n=9). DMSO accumulated differently in each tissue type, reaching its highest concentration in tumors: 6.18 ± 0.85 µmol/g water, 1.5-fold higher than in control mouse brain (p<0.05). A faster wash-out was detected in normal brain parenchyma with respect to GBM tissue: half-lives of 2.06 ± 0.58 and 4.57 ± 1.15 h, respectively. MRSI maps of time-course DMSO changes revealed clear hotspots of differential spatial accumulation in GL261 tumors. Additional MRSI studies with four mice bearing oligodendrogliomas (ODs) revealed similar results as in GBM tumors. The lack of T(1) contrast enhancement post-gadolinium (gadopentetate dimeglumine, Gd-DTPA) in control mouse brain and mice with ODs suggested that DMSO was fully able to cross the intact blood-brain barrier in both normal brain parenchyma and in low-grade tumors. Our results indicate a potential role for DMSO as a contrast agent for brain tumor detection, even in those tumors 'invisible' to standard gadolinium-enhanced MRI, and possibly for monitoring heterogeneities associated with progression or with therapeutic response.

  13. Absorption edge subtraction imaging for volumetric measurement in an animal model of malignant brain tumor

    NASA Astrophysics Data System (ADS)

    Rigley, S.; Rigon, L.; Ataelmannan, K.; Chapman, D.; Doucette, R.; Griebel, R.; Juurlink, B.; Arfelli, F.; Menk, R.-H.; Tromba, G.; Barroso, R. C.; Beveridge, T.; Lewis, R.; Pavlov, K.; Siu, K.; Hall, C.; Schültke, E.

    2005-08-01

    The goal of this project is to determine the feasibility of utilizing colloidal gold as a marker for C6 glioblastoma cells implanted into rat brain as an appropriate model for volumetric measurements of tumors using absorption edge subtraction (AES). Phase sensitive X-ray imaging is combined with KES to give good soft tissue contrast. Current methods for volumetric measurements of implanted C6 glioblastoma tumors in rat brains using MRI technology are inadequate due to the small size of the tumor (2.5-4 mm in diameter) and the thickness of the MRI slice (1-1.5 mm). Previously, our group has shown that AES detection of colloidal gold labeled C6 glioblastoma cells implanted into a rat brains may be feasible. The long-term goal for this project is to establish a method, which would allow the researcher to monitor the development of a tumor over time. Most importantly, this technique should allow researchers to accurately determine the potency of a treatment on the size and growth rate for a C6 implanted tumors. In addition, we plan to challenge the hypothesis that tumors of the glioma type do not metastasize outside of the brain. A sensitive technique for the detection of C6 cells, such as that using colloidal gold and AES/DEI, should enable researchers to detect C6 cells, which have metastasized and migrated to different areas of the body. The ability to detect implanted C6 cells followed by the development of the tumor, the possible migration of the cells and the ability to accurately measure the effects of treatments on the volume of the tumor would be of the utmost importance to brain tumor research.

  14. Inflammatory infiltrates and natural killer cell presence in human brain tumors.

    PubMed

    Stevens, A; Klöter, I; Roggendorf, W

    1988-02-15

    Immunohistochemical analysis of subpopulations of inflammatory cells in 81 primary and secondary human brain tumors was done. Natural killer (NK) cells, representing non-major histocompatibility complex-restricted, spontaneous cytotoxicity and monocytic cells are virtually absent in infiltrates of gliomas and account only for a minor percentage of inflammatory cells in brain metastases of carcinoma and in craniopharyngeomas. Infiltrates in gliomas consist almost exclusively of T-cells of the suppressor/cytotoxic type whereas infiltrates in carcinoma metastases and craniopharyngeomas contain considerable numbers of T-helper/inducer cells and B-cells. From this the authors conclude (1) that NK cells do not play a major role in tumor rejection, and (2) that the kind of inflammatory reaction does not depend upon the tumor site but more likely on the tumor type. No correlation between tumor differentiation and infiltrate composition is evident.

  15. Novel polyomavirus associated with brain tumors in free-ranging raccoons, western United States.

    PubMed

    Dela Cruz, Florante N; Giannitti, Federico; Li, Linlin; Woods, Leslie W; Del Valle, Luis; Delwart, Eric; Pesavento, Patricia A

    2013-01-01

    Tumors of any type are exceedingly rare in raccoons. High-grade brain tumors, consistently located in the frontal lobes and olfactory tracts, were detected in 10 raccoons during March 2010-May 2012 in California and Oregon, suggesting an emerging, infectious origin. We have identified a candidate etiologic agent, dubbed raccoon polyomavirus, that was present in the tumor tissue of all affected animals but not in tissues from 20 unaffected animals. Southern blot hybridization and rolling circle amplification showed the episomal viral genome in the tumors. The multifunctional nuclear protein large T-antigen was detectable by immunohistochemical analyses in a subset of neoplastic cells. Raccoon polyomavirus may contribute to the development of malignant brain tumors of raccoons.

  16. Notch1 and notch2 have opposite effects on embryonal brain tumor growth.

    PubMed

    Fan, Xing; Mikolaenko, Irina; Elhassan, Ihab; Ni, Xingzhi; Wang, Yunyue; Ball, Douglas; Brat, Daniel J; Perry, Arie; Eberhart, Charles G

    2004-11-01

    The role of Notch signaling in tumorigenesis can vary; Notch1 acts as an oncogene in some neoplasms, and a tumor suppressor in others. Here, we show that different Notch receptors can have opposite effects in a single tumor type. Expression of truncated, constitutively active Notch1 or Notch2 in embryonal brain tumor cell lines caused antagonistic effects on tumor growth. Cell proliferation, soft agar colony formation, and xenograft growth were all promoted by Notch2 and inhibited by Notch1. We also found that Notch2 receptor transcripts are highly expressed in progenitor cell-derived brain tumors such as medulloblastomas, whereas Notch1 is scarce or undetectable. This parallels normal cerebellar development, during which Notch2 is predominantly expressed in proliferating progenitors and Notch1 in postmitotic differentiating cells. Given the oncogenic effects of Notch2, we analyzed its gene dosage in 40 embryonal brain tumors, detecting an increased copy number in 15% of cases. Notch2 gene amplification was confirmed by fluorescence in situ hybridization in one case with extremely high Notch2 mRNA levels. In addition, expression of the Notch pathway target gene Hes1 in medulloblastomas was associated with significantly shorter patient survival (P = 0.01). Finally, pharmacological inhibition of Notch signaling suppresses growth of medulloblastoma cells. Our data indicate that Notch1 and Notch2 can have opposite effects on the growth of a single tumor type, and show that Notch2 can be overexpressed after gene amplification in human tumors.

  17. Imaging diagnosis and fundamental knowledge of common brain tumors in adults.

    PubMed

    Tanaka, Akio

    2006-07-01

    The most common primary brain tumors in Japanese adults are meningiomas, gliomas, pituitary adenomas, and schwannomas, which together account for 84.0% of all primary brain tumors. The typical imaging findings of these tumors are well known by radiologists; therefore, the clinical and pathological issues, including terminology, genetics, and relation to hormones are discussed in this article. Other diseases important for the differential diagnoses are also mentioned. The molecular genetic analysis of brain tumors has recently become important. For instance, genetic analysis is important for differentiating oligodendroglial tumors from astrocytic tumors, and the gene mutation predicts response to chemotherapy for anaplastic oligodendrogliomas. Background factors such as hormones, history of cranial irradiation, and medications influence oncogenesis, tumor growth, and tumor appearances as seen by imaging modalities. A differential diagnosis with knowledge of the above may have some advantages over diagnoses based on imaging findings alone. Nonneoplastic diseases such as abscesses and demyelinating diseases may mimic gliomas. Pituitary adenomas may be confused with nonneoplastic conditions such as physiological hypertrophy and Rathke's cleft cyst. Such misdiagnoses would result in a treatment protocol very different from what would be suitable. Such conditions should be carefully distinguished from neoplasms.

  18. Immunotherapy of Malignant Tumors in the Brain: How Different from Other Sites?

    PubMed Central

    Dutoit, Valérie; Migliorini, Denis; Dietrich, Pierre-Yves; Walker, Paul R.

    2016-01-01

    Immunotherapy is now advancing at remarkable pace for tumors located in various tissues, including the brain. Strategies launched decades ago, such as tumor antigen-specific therapeutic vaccines and adoptive transfer of tumor-infiltrating lymphocytes are being complemented by molecular engineering approaches allowing the development of tumor-specific TCR transgenic and chimeric antigen receptor T cells. In addition, the spectacular results obtained in the last years with immune checkpoint inhibitors are transfiguring immunotherapy, these agents being used both as single molecules, but also in combination with other immunotherapeutic modalities. Implementation of these various strategies is ongoing for more and more malignancies, including tumors located in the brain, raising the question of the immunological particularities of this site. This may necessitate cautious selection of tumor antigens, minimizing the immunosuppressive environment and promoting efficient T cell trafficking to the tumor. Once these aspects are taken into account, we might efficiently design immunotherapy for patients suffering from tumors located in the brain, with beneficial clinical outcome. PMID:28003994

  19. Targeted delivery of antibody-based therapeutic and imaging agents to CNS tumors: Crossing the blood-brain-barrier divide

    PubMed Central

    Chacko, Ann-Marie; Li, Chunsheng; Pryma, Daniel A.; Brem, Steven; Coukos, George; Muzykantov, Vladimir R.

    2014-01-01

    Introduction Brain tumors are inherently difficult to treat in large part due to the cellular blood-brain barriers (BBB) that limit the delivery of therapeutics to the tumor tissue from the systemic circulation. Virtually no large-molecules, including antibody-based proteins, can penetrate the BBB. With antibodies fast becoming attractive ligands for highly specific molecular targeting to tumor antigens, a variety of methods are being investigated to enhance the access of these agents to intracranial tumors for imaging or therapeutic applications. Areas covered This review describes the characteristics of the BBB and the vasculature in brain tumors, described as the blood-brain tumor barrier (BBTB). Antibodies targeted to molecular markers of CNS tumors will be highlighted, and current strategies for enhancing the delivery of antibodies across these cellular barriers into the brain parenchyma to the tumor will be discussed. Non-invasive imaging approaches to assess BBB/BBTB permeability and/or antibody targeting will be presented as a means of guiding the optimal delivery of targeted agents to brain tumors. Expert Opinion Pre-clinical and clinical studies highlight the potential of several approaches in increasing brain tumor delivery across the blood-brain barrier divide. However, each carries its own risks and challenges. There is tremendous potential in using neuroimaging strategies to assist in understanding and defining the challenges to translating and optimizing molecularly-targeted antibody delivery to CNS tumors to improve clinical outcomes. PMID:23751126

  20. Beauty product-related exposures and childhood brain tumors in seven countries: results from the SEARCH International Brain Tumor Study.

    PubMed

    Efird, J T; Holly, E A; Cordier, S; Mueller, B A; Lubin, F; Filippini, G; Peris-Bonet, R; McCredie, M; Arslan, A; Bracci, P; Preston-Martin, S

    2005-04-01

    Data from 1218 cases of childhood brain tumors (CBT) diagnosed between 1976 and 1994 and 2223 matched controls from the general population were included in an analysis of maternal beauty product exposure and beauty-related employment in 9 centers in 7 countries. A 50% increased odds ratio (OR) [95% confidence interval (CI) = 1.0-2.1] for CBT was observed among children of mothers who were exposed via personal use of and/or possible ambient contact with beauty products during the 5 years preceding the index child's birth compared with children of mothers never exposed to beauty products during this time period. Overall maternal personal use of hair-coloring agents in the month before or during the pregnancy of the index child's birth was not associated with CBT (OR = 1.0, CI = 0.83-1.3) or with astroglial (OR = 1.1, CI = 0.85-1.4), PNET (OR = 1.0, CI = 0.71-1.5) and other glial subtypes (OR = 1.0, CI = 0.62-1.0). Similarly, no statistically increased ORs or discernable pattern of risk estimates were observed for period of use or for number of applications per year for maternal personal use of hair-coloring agents overall or by histologic type. Among children born on or after 1980, increased ORs for CBT were associated with maternal non-work-related exposure to any beauty products (OR = 2.6, CI = 1.2-5.9), hair-dyes (OR = 11, CI = 1.2-90), and hair sprays (OR = 3.4, CI = 1.0-11). No overall increased OR for CBT was observed among children of mothers employed in beauty-related jobs during the 5 years preceding the index child's birth compared with those who reported no beauty-related employment. In general, other specific beauty product-related exposures were not associated with increased ORs for CBT. Data from our study provide little evidence of an increased risk for CBT with mothers' exposures to beauty products.