Science.gov

Sample records for aggressive invasive species

  1. Aquatic invasive species

    USGS Publications Warehouse

    Thorsteinson, Lyman

    2005-01-01

    Invasive species are plants or animals that are present in an ecosystem beyond their native range. They may have few natural controls in their new environment and proliferate. They can threaten native species and interfere with human activities. The Western Fisheries Research Center (WFRC) has been conducting research to understand how non-native species invade and affect ecosystems, thus aiding management efforts.

  2. USGS invasive species solutions

    USGS Publications Warehouse

    Simpson, Annie

    2011-01-01

    Land managers must meet the invasive species challenge every day, starting with identification of problem species, then the collection of best practices for their control, and finally the implementation of a plan to remove the problem. At each step of the process, the availability of reliable information is essential to success. The U.S. Geological Survey (USGS) has developed a suite of resources for early detection and rapid response, along with data management and sharing.

  3. Bioterrorism and invasive species.

    PubMed

    Chomel, B B; Sun, B

    2010-08-01

    The risk of dispersing invasive species, especially human pathogens, through acts of bioterrorism, cannot be neglected. However, that risk appears quite low in comparison with the risk of dispersing animal pathogens that could dramatically burden the agricultural economy of food animal producing countries, such as Australia and countries in Europe and North and South America. Although it is not directly related to bioterrorism, the intentional release of non-native species, particularly undesired companion animals or wildlife, may also have a major economic impact on the environment and, possibly, on animal and human health, in the case of accidental release of zoonotic agents.

  4. Invasive species and climate change

    USGS Publications Warehouse

    Middleton, Beth A.

    2006-01-01

    Invasive species challenge managers in their work of conserving and managing natural areas and are one of the most serious problems these managers face. Because invasive species are likely to spread in response to changes in climate, managers may need to change their approaches to invasive species management accordingly.

  5. A neurotoxic pesticide changes the outcome of aggressive interactions between native and invasive ants.

    PubMed

    Barbieri, Rafael F; Lester, Philip J; Miller, Alexander S; Ryan, Ken G

    2013-12-01

    Neurotoxic pesticides, such as neonicotinoids, negatively affect the cognitive capacity and fitness of non-target species, and could also modify interspecific interactions. We tested whether sublethal contamination with neonicotinoid could affect foraging, colony fitness and the outcome of behavioural interactions between a native (Monomorium antarcticum) and an invasive ant species (Linepithema humile). The foraging behaviour of both ants was not affected by neonicotinoid exposure. Colonies of the invasive species exposed to the neonicotinoid produced significantly fewer brood. In interspecific confrontations, individuals of the native species exposed to the neonicotinoid lowered their aggression towards the invasive species, although their survival probability was not affected. Exposed individuals of the invasive species interacting with non-exposed native ants displayed increased aggression and had their survival probability reduced. Non-exposed individuals of the invasive species were less aggressive but more likely to survive when interacting with exposed native ants. These results suggest that non-target exposure of invaders to neonicotinoids could either increase or decrease the probability of survival according to the exposure status of the native species. Given that, in any community, different species have different food preferences, and thus different exposure to pesticides, non-target exposure could potentially change the dynamics of communities and influence invasion success.

  6. Inter- and intraspecific aggression in the invasive longlegged ant (Hymenoptera: Formicidae).

    PubMed

    Chong, Kim-Fung; Lee, Chow-Yang

    2010-10-01

    The longlegged ant, Anoplolepis gracilipes (Fr. Smith) (Hymenoptera: Formicidae), is a highly invasive species that can aggressively displace other ant species. We conducted laboratory assays to examine interspecies aggression of A. gracilipes versus 15 sympatric ant species found in the urban environment and disturbed habitat in Malaysia: Monomorium pharaonis (L.), Monomorium floricola (Jerdon), Monomorium orientale Mayr, Monomorium destructor (Jerdon), Pheidole parva Mayr, Crematogaster sp., Solenopsis geminata (F.), Tapinoma indicum (Forel), Tapinoma melanocephalum (F.), Technomyrmnex butteli Forel, Dolichoderus thoracicus (Smith), Paratrechina longicornis (Latrielle), Oecophylla smaragdina (F), Camponotus sp., and Tetraponera rufonigra (Jerdon). A. gracilipes showed aggressive behavior toward all opponent species, except the smallest M. orientale. Opponent species size (body size, head width, and mandible width) was significantly correlated with A. gracilipes aggression level and mortality rate. We also found a significant positive relationship between A. gracilipes aggression level and the mortality of the opponent species. The results suggest that invasive populations of A. gracilipes would have the greatest impact on larger ant species. In addition, we examined the intraspecific aggression of A. gracilipes. We found that A. gracilipes from different localities in Malaysia showed intraspecific aggression toward one another. This finding differs from the results of studies conducted in Christmas Island earlier. Differences in the genetic variability among populations may explain these differing results.

  7. Reducing proactive aggression through non-invasive brain stimulation.

    PubMed

    Dambacher, Franziska; Schuhmann, Teresa; Lobbestael, Jill; Arntz, Arnoud; Brugman, Suzanne; Sack, Alexander T

    2015-10-01

    Aggressive behavior poses a threat to human collaboration and social safety. It is of utmost importance to identify the functional mechanisms underlying aggression and to develop potential interventions capable of reducing dysfunctional aggressive behavior already at a brain level. We here experimentally shifted fronto-cortical asymmetry to manipulate the underlying motivational emotional states in both male and female participants while assessing the behavioral effects on proactive and reactive aggression. Thirty-two healthy volunteers received either anodal transcranial direct current stimulation to increase neural activity within right dorsolateral prefrontal cortex, or sham stimulation. Aggressive behavior was measured with the Taylor Aggression Paradigm. We revealed a general gender effect, showing that men displayed more behavioral aggression than women. After the induction of right fronto-hemispheric dominance, proactive aggression was reduced in men. This study demonstrates that non-invasive brain stimulation can reduce aggression in men. This is a relevant and promising step to better understand how cortical brain states connect to impulsive actions and to examine the causal role of the prefrontal cortex in aggression. Ultimately, such findings could help to examine whether the brain can be a direct target for potential supportive interventions in clinical settings dealing with overly aggressive patients and/or violent offenders.

  8. Interspecific Aggressive Behaviour of Invasive Pumpkinseed Lepomis gibbosus in Iberian Fresh Waters

    PubMed Central

    Almeida, David; Merino-Aguirre, Raquel; Vilizzi, Lorenzo; Copp, Gordon H.

    2014-01-01

    Pumpkinseed Lepomis gibbosus (L.) are successful invaders in Europe, where this species exerts multiple ecological effects, mainly through trophic interactions. Behavioural interference represents a potential impact for native fauna and this is of particular conservation concern in the Iberian Peninsula because of the highly valuable endemic fauna inhabiting streams of this region. However, aggressive interactions have not previously been examined under natural conditions in Iberian fresh waters. To address this gap in knowledge, the aim of the present study was to assess the effect of pumpkinseed aggression on endemic fauna of an Iberian stream, the River Bullaque (central Spain). In September 2009, we analysed the aggression and environmental contexts of these behavioural interactions by snorkelling: aggressor size, aggression type, shoal size, previous activity to aggression, recipient species, response to aggression, microhabitat structure and prey availability. Small pumpkinseed displayed more threat and fewer pursuit behaviours relative to medium and large individuals, reflecting an ontogenetic behavioural shift from low to high aggression intensity. Small aggressors came from large shoals, with bottom feeding being the most frequently observed activity prior to an aggressive interaction; whereas large pumpkinseed were less gregarious and they were mostly ambulating within the water column prior to aggression. Recipient species of aggression included non-native crayfish and fishes, and more importantly, endemic fishes and frogs. Retreat was the most common response to aggression, irrespective of aggressor size. Small pumpkinseed displayed aggressive behaviours over coarse substrata containing elevated macrobenthos biomass; whereas aggression by large individuals was observed in deeper waters. These findings suggest that small and large pumpkinseed exert a high impact on other stream residents through aggression in competition for food and territory defence

  9. Spread dynamics of invasive species

    PubMed Central

    Arim, Matías; Abades, Sebastián R.; Neill, Paula E.; Lima, Mauricio; Marquet, Pablo A.

    2006-01-01

    Species invasions are a principal component of global change, causing large losses in biodiversity as well as economic damage. Invasion theory attempts to understand and predict invasion success and patterns of spread. However, there is no consensus regarding which species or community attributes enhance invader success or explain spread dynamics. Experimental and theoretical studies suggest that regulation of spread dynamics is possible; however, the conditions for its existence have not yet been empirically demonstrated. If invasion spread is a regulated process, the structure that accounts for this regulation will be a main determinant of invasion dynamics. Here we explore the existence of regulation underlying changes in the rate of new site colonization. We employ concepts and analytical tools from the study of abundance dynamics and show that spread dynamics are, in fact, regulated processes and that the regulation structure is notably consistent among invasions occurring in widely different contexts. We base our conclusions on the analysis of the spread dynamics of 30 species invasions, including birds, amphibians, fish, invertebrates, plants, and a virus, all of which exhibited similar regulation structures. In contrast to current beliefs that species invasions are idiosyncratic phenomena, here we provide evidence that general patterns do indeed exist. PMID:16387862

  10. Aggressive interactions between the invasive Rio Grande cichlid (Herichthys cyanoguttatus) and native bluegill (Lepomis macrochirus), with notes on redspotted sunfish (Lepomis miniatus)

    USGS Publications Warehouse

    Lorenz, O. Thomas; O' Connell, Martin T.; Schofield, Pamela J.

    2010-01-01

    The Rio Grande cichlid (Herichthys cyanoguttatus) has been established in the Greater New Orleans Metropolitan area for at least 20 years, and its effect on native fishes is unknown. Behavioral trials were performed to determine if aggressive interactions occur between invasive H. cyanoguttatus and native bluegill (Lepomis macrochirus). When defending a territory as the resident, L. macrochirus were markedly aggressive, averaging 11.6 aggressive actions per lO-min behavioral trial. In contrast, L. macrochirus were extremely passive as invaders, with 0.5 aggressive actions per trial. Herichthys cyanoguttatus were equally aggressive as residents and as invaders, averaging 4.9 and 6.0 aggressive actions per trial, respectively. Herichthys cyanoguttatus interacted aggressively with native species whether they held territory or not, indicating that this invasive species may have fundamentally different strategies of aggression compared with native L. macrochirus. These differences may explain the continued success of H. cyanoguttatus as an invasive fish in southeastern Louisiana.

  11. Over-invasion by functionally equivalent invasive species.

    PubMed

    Russell, James C; Sataruddin, Nurul S; Heard, Allison D

    2014-08-01

    Multiple invasive species have now established at most locations around the world, and the rate of new species invasions and records of new invasive species continue to grow. Multiple invasive species interact in complex and unpredictable ways, altering their invasion success and impacts on biodiversity. Incumbent invasive species can be replaced by functionally similar invading species through competitive processes; however the generalized circumstances leading to such competitive displacement have not been well investigated. The likelihood of competitive displacement is a function of the incumbent advantage of the resident invasive species and the propagule pressure of the colonizing invasive species. We modeled interactions between populations of two functionally similar invasive species and indicated the circumstances under which dominance can be through propagule pressure and incumbent advantage. Under certain circumstances, a normally subordinate species can be incumbent and reject a colonizing dominant species, or successfully colonize in competition with a dominant species during simultaneous invasion. Our theoretical results are supported by empirical studies of the invasion of islands by three invasive Rattus species. Competitive displacement is prominent in invasive rats and explains the replacement of R. exulans on islands subsequently invaded by European populations of R. rattus and R. norvegicus. These competition outcomes between invasive species can be found in a broad range of taxa and biomes, and are likely to become more common. Conservation management must consider that removing an incumbent invasive species may facilitate invasion by another invasive species. Under very restricted circumstances of dominant competitive ability but lesser impact, competitive displacement may provide a novel method of biological control.

  12. Emergence and accumulation of novel pathogens suppress an invasive species.

    PubMed

    Stricker, Kerry Bohl; Harmon, Philip F; Goss, Erica M; Clay, Keith; Luke Flory, S

    2016-04-01

    Emerging pathogens are a growing threat to human health, agriculture and the diversity of ecological communities but may also help control problematic species. Here we investigated the diversity, distribution and consequences of emerging fungal pathogens infecting an aggressive invasive grass that is rapidly colonising habitats throughout the eastern USA. We document the recent emergence and accumulation over time of diverse pathogens that are members of a single fungal genus and represent multiple, recently described or undescribed species. We also show that experimental suppression of these pathogens increased host performance in the field, demonstrating the negative effects of emerging pathogens on invasive plants. Our results suggest that invasive species can facilitate pathogen emergence and amplification, raising concerns about movement of pathogens among agricultural, horticultural, and wild grasses. However, one possible benefit of pathogen accumulation is suppression of aggressive invaders over the long term, potentially abating their negative impacts on native communities.

  13. Differences in aggression, activity and boldness between native and introduced populations of an invasive crayfish

    USGS Publications Warehouse

    Pintor, L.M.; Sih, A.; Bauer, M.L.

    2008-01-01

    Aggressiveness, along with foraging voracity and boldness, are key behavioral mechanisms underlying the competitive displacement and invasion success of exotic species. However, do aggressiveness, voracity and boldness of the invader depend on the presence of an ecologically similar native competitor in the invaded community? We conducted four behavioral assays to compare aggression, foraging voracity, threat response and boldness to forage under predation risk of multiple populations of exotic signal crayfish Pacifastacus leniusculus across its native and invaded range with and without a native congener, the Shasta crayfish P. fortis. We predicted that signal crayfish from the invaded range and sympatric with a native congener (IRS) should be more aggressive to outcompete a close competitor than populations from the native range (NR) or invaded range and allopatric to a native congener (IRA). Furthermore, we predicted that IRS populations of signal crayfish should be more voracious, but less bold to forage under predation risk since native predators and prey likely possess appropriate behavioral responses to the invader. Contrary to our predictions, results indicated that IRA signal crayfish were more aggressive towards conspecifics and more voracious and active foragers, yet also bolder to forage under predation risk in comparison to NR and IRS populations, which did not differ in behavior. Higher aggression/voracity/ boldness was positively correlated with prey consumption rates, and hence potential impacts on prey. We suggest that the positive correlations between aggression/voracity/boldness are the result of an overall aggression syndrome. Results of stream surveys indicated that IRA streams have significantly lower prey biomass than in IRS streams, which may drive invading signal crayfish to be more aggressive/voracious/bold to acquire resources to establish a population. ?? 2008 The Authors.

  14. 78 FR 70317 - Invasive Species Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ... Office of the Secretary Invasive Species Advisory Committee AGENCY: Office of the Secretary, Interior. ACTION: Notice of Public Meeting (via Teleconference) of the Invasive Species Advisory Committee. SUMMARY... Invasive Species Advisory Committee. The purpose of the Advisory Committee is to provide advice to...

  15. 78 FR 11899 - Invasive Species Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-20

    ... Office of the Secretary Invasive Species Advisory Committee AGENCY: Office of the Secretary, Interior... Invasive Species Advisory Committee. The document contained incorrect dates. This document corrects those.... Meeting of the Invasive Species Advisory Committee (OPEN): Thursday, March 7, 2013 through Friday, March...

  16. The Invasive Species Forecasting System

    NASA Technical Reports Server (NTRS)

    Schnase, John; Most, Neal; Gill, Roger; Ma, Peter

    2011-01-01

    The Invasive Species Forecasting System (ISFS) provides computational support for the generic work processes found in many regional-scale ecosystem modeling applications. Decision support tools built using ISFS allow a user to load point occurrence field sample data for a plant species of interest and quickly generate habitat suitability maps for geographic regions of management concern, such as a national park, monument, forest, or refuge. This type of decision product helps resource managers plan invasive species protection, monitoring, and control strategies for the lands they manage. Until now, scientists and resource managers have lacked the data-assembly and computing capabilities to produce these maps quickly and cost efficiently. ISFS focuses on regional-scale habitat suitability modeling for invasive terrestrial plants. ISFS s component architecture emphasizes simplicity and adaptability. Its core services can be easily adapted to produce model-based decision support tools tailored to particular parks, monuments, forests, refuges, and related management units. ISFS can be used to build standalone run-time tools that require no connection to the Internet, as well as fully Internet-based decision support applications. ISFS provides the core data structures, operating system interfaces, network interfaces, and inter-component constraints comprising the canonical workflow for habitat suitability modeling. The predictors, analysis methods, and geographic extents involved in any particular model run are elements of the user space and arbitrarily configurable by the user. ISFS provides small, lightweight, readily hardened core components of general utility. These components can be adapted to unanticipated uses, are tailorable, and require at most a loosely coupled, nonproprietary connection to the Web. Users can invoke capabilities from a command line; programmers can integrate ISFS's core components into more complex systems and services. Taken together, these

  17. CONSERVATION PROGRAMS THAT PROMOTE INVASIVE SPECIES

    EPA Science Inventory

    Invasive plant species are degrading the structure and function of ecosystems throughout the world. Although most state and federal conservation agencies in the U.S. attempt to reduce the impact of invasive species, some agency activities can contribute to the spread of invasive...

  18. Evolutionary speed of species invasions.

    PubMed

    García-Ramos, Gisela; Rodríguez, Diego

    2002-04-01

    Successful invasion may depend of the capacity of a species to adjust genetically to a spatially varying environment. This research modeled a species invasion by examining the interaction between a quantitative genetic trait and population density. It assumed: (I) a quantitative genetic trait describes the adaptation of an individual to its local ecological conditions; (2) populations far from the local optimum grow more slowly than those near the optimum; and (3) the evolution of a trait depends on local population density, because differences in local population densities cause asymmetrical gene flow. This genetics-density interaction determined the propagation speed of populations. Numerical simulations showed that populations spread by advancing as two synchronic traveling waves, one for population density and one for trait adaptation. The form of the density wave was a step front that advances homogenizing populations at their carrying capacity; the adaptation wave was a curve with finite slope that homogenizes populations at full adaptation. The largest speed of population expansion, for a dimensionless analysis, corresponded to an almost homogeneous spatial environment when this model approached an ecological description such as the Fisher-Skellam's model. A large genetic response also favored faster speeds. Evolutionary speeds, in a natural scale, showed a wide range of rates that were also slower compared to models that only consider demographics. This evolutionary speed increased with high heritability, strong stabilizing selection, and high intrinsic growth rate. It decreased for steeper environmental gradients. Also indicated was an optimal dispersal rate over which evolutionary speed declined. This is expected because dispersal moves individuals further, but homogenizes populations genetically, making them maladapted. The evolutionary speed was compared to observed data. Furthermore, a moderate increase in the speed of expansion was predicted for

  19. National Institute of Invasive Species Science (NIISS)

    USGS Publications Warehouse

    Stohlgren, Tom

    2006-01-01

    The National Institute of Invasive Species Science (www.NIISS.org) is a consortium of governmental and nongovernmental partners, led by the U.S. Geological Survey (USGS), whose aim is to provide reliable information and advanced decision support tools for documenting, understanding, predicting, assessing, and addressing the threat of invasive species in the United States. The Institute coordinates the National Aeronautical and Space Administrationa??s (NASAa??s) Invasive Species National Application activities for the Department of the Interior and has al lead role in developing NASA-derived remote sensing and landscape-scale predictive modeling capabilities for the invasive species community.

  20. The Invasive Plant Species Education Guide

    ERIC Educational Resources Information Center

    Mason, Kevin; James, Krista; Carlson, Kitrina; D'Angelo, Jean

    2010-01-01

    To help high school students gain a solid understanding of invasive plant species, university faculty and students from the University of Wisconsin-Stout (UW-Stout) and a local high school teacher worked together to develop the Invasive Plant Species (IPS) Education Guide. The IPS Education Guide includes nine lessons that give students an…

  1. Ecological and evolutionary insights from species invasions.

    PubMed

    Sax, Dov F; Stachowicz, John J; Brown, James H; Bruno, John F; Dawson, Michael N; Gaines, Steven D; Grosberg, Richard K; Hastings, Alan; Holt, Robert D; Mayfield, Margaret M; O'Connor, Mary I; Rice, William R

    2007-09-01

    Species invasions provide numerous unplanned and frequently, but imperfectly, replicated experiments that can be used to better understand the natural world. Classic studies by Darwin, Grinnell, Elton and others on these species-invasion experiments provided invaluable insights for ecology and evolutionary biology. Recent studies of invasions have resulted in additional insights, six of which we discuss here; these insights highlight the utility of using exotic species as 'model organisms'. We also discuss a nascent hypothesis that might provide a more general, predictive understanding of invasions and community assembly. Finally, we emphasize how the study of invasions can help to inform our understanding of applied problems, such as extinction, ecosystem function and the response of species to climate change.

  2. Fort Collins Science Center: Invasive Species Science

    USGS Publications Warehouse

    Stohlgren, Tom

    2004-01-01

    FORT is also the administrative home of the National Institute of Invasive Species Science, a growing consortium of partnerships between government and private organizations established by the U.S. Geological Survey (USGS) and its many cooperators. The Institute was formed to develop cooperative approaches for invasive species science that meet the urgent needs of land managers and the public. Its mission is to work with others to coordinate data and research from many sources to predict and reduce the effects of harmful nonnative plants, animals, and diseases in natural areas and throughout the United States, with a strategic approach to information management, research, modeling, technical assistance, and outreach. The Institute research team will develop local-, regional-, and national- scale maps of invasive species and identify priority invasive species, vulnerable habitats, and pathways of invasion. County-level and point data on occurrence will be linked to plot-level and site-level information on species abundance and spread. FORT scientists and Institute partners are working to integrate remote sensing data and GIS-based predictive models to track the spread of invasive species across the country. This information will be linked to control and restoration efforts to evaluate their cost-effectiveness. Understanding both successes and failures will advance the science of invasive species containment and control as well as restoration of habitats and native biodiversity.

  3. Global threat to agriculture from invasive species.

    PubMed

    Paini, Dean R; Sheppard, Andy W; Cook, David C; De Barro, Paul J; Worner, Susan P; Thomas, Matthew B

    2016-07-01

    Invasive species present significant threats to global agriculture, although how the magnitude and distribution of the threats vary between countries and regions remains unclear. Here, we present an analysis of almost 1,300 known invasive insect pests and pathogens, calculating the total potential cost of these species invading each of 124 countries of the world, as well as determining which countries present the greatest threat to the rest of the world given their trading partners and incumbent pool of invasive species. We find that countries vary in terms of potential threat from invasive species and also their role as potential sources, with apparently similar countries sometimes varying markedly depending on specifics of agricultural commodities and trade patterns. Overall, the biggest agricultural producers (China and the United States) could experience the greatest absolute cost from further species invasions. However, developing countries, in particular, Sub-Saharan African countries, appear most vulnerable in relative terms. Furthermore, China and the United States represent the greatest potential sources of invasive species for the rest of the world. The analysis reveals considerable scope for ongoing redistribution of known invasive pests and highlights the need for international cooperation to slow their spread.

  4. Global threat to agriculture from invasive species.

    PubMed

    Paini, Dean R; Sheppard, Andy W; Cook, David C; De Barro, Paul J; Worner, Susan P; Thomas, Matthew B

    2016-07-01

    Invasive species present significant threats to global agriculture, although how the magnitude and distribution of the threats vary between countries and regions remains unclear. Here, we present an analysis of almost 1,300 known invasive insect pests and pathogens, calculating the total potential cost of these species invading each of 124 countries of the world, as well as determining which countries present the greatest threat to the rest of the world given their trading partners and incumbent pool of invasive species. We find that countries vary in terms of potential threat from invasive species and also their role as potential sources, with apparently similar countries sometimes varying markedly depending on specifics of agricultural commodities and trade patterns. Overall, the biggest agricultural producers (China and the United States) could experience the greatest absolute cost from further species invasions. However, developing countries, in particular, Sub-Saharan African countries, appear most vulnerable in relative terms. Furthermore, China and the United States represent the greatest potential sources of invasive species for the rest of the world. The analysis reveals considerable scope for ongoing redistribution of known invasive pests and highlights the need for international cooperation to slow their spread. PMID:27325781

  5. Global threat to agriculture from invasive species

    PubMed Central

    Paini, Dean R.; Sheppard, Andy W.; Cook, David C.; De Barro, Paul J.; Worner, Susan P.; Thomas, Matthew B.

    2016-01-01

    Invasive species present significant threats to global agriculture, although how the magnitude and distribution of the threats vary between countries and regions remains unclear. Here, we present an analysis of almost 1,300 known invasive insect pests and pathogens, calculating the total potential cost of these species invading each of 124 countries of the world, as well as determining which countries present the greatest threat to the rest of the world given their trading partners and incumbent pool of invasive species. We find that countries vary in terms of potential threat from invasive species and also their role as potential sources, with apparently similar countries sometimes varying markedly depending on specifics of agricultural commodities and trade patterns. Overall, the biggest agricultural producers (China and the United States) could experience the greatest absolute cost from further species invasions. However, developing countries, in particular, Sub-Saharan African countries, appear most vulnerable in relative terms. Furthermore, China and the United States represent the greatest potential sources of invasive species for the rest of the world. The analysis reveals considerable scope for ongoing redistribution of known invasive pests and highlights the need for international cooperation to slow their spread. PMID:27325781

  6. 76 FR 68776 - Invasive Species Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-07

    ... is to provide national leadership regarding invasive species issues. Purpose of Meeting: The meeting... will be no ISAC business conducted during the orientation session, which is closed to the public....

  7. 77 FR 23740 - Invasive Species Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-20

    ..., ecological, and human health impacts that invasive species cause. The Council is co-chaired by the Secretary... ecosystem level; or that, (2) holistically address prevention, eradication, control and...

  8. 75 FR 29359 - Invasive Species Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-25

    ... of the Interior, the Secretary of Agriculture, and the Secretary of Commerce. The duty of the Council.../coastal environments in the world, with over 50 invasive species that threaten the Bay's vibrant...

  9. Reduced genetic variation and the success of an invasive species

    PubMed Central

    Tsutsui, Neil D.; Suarez, Andrew V.; Holway, David A.; Case, Ted J.

    2000-01-01

    Despite the severe ecological and economic damage caused by introduced species, factors that allow invaders to become successful often remain elusive. Of invasive taxa, ants are among the most widespread and harmful. Highly invasive ants are often unicolonial, forming supercolonies in which workers and queens mix freely among physically separate nests. By reducing costs associated with territoriality, unicolonial species can attain high worker densities, allowing them to achieve interspecific dominance. Here we examine the behavior and population genetics of the invasive Argentine ant (Linepithema humile) in its native and introduced ranges, and we provide a mechanism to explain its success as an invader. Using microsatellite markers, we show that a population bottleneck has reduced the genetic diversity of introduced populations. This loss is associated with reduced intraspecific aggression among spatially separate nests, and leads to the formation of interspecifically dominant supercolonies. In contrast, native populations are more genetically variable and exhibit pronounced intraspecific aggression. Although reductions in genetic diversity are generally considered detrimental, these findings provide an example of how a genetic bottleneck can lead to widespread ecological success. In addition, these results provide insights into the origin and evolution of unicoloniality, which is often considered a challenge to kin selection theory. PMID:10811892

  10. Aquatic invasive species: Lessons from cancer research

    USGS Publications Warehouse

    Sepulveda, Adam; Ray, Andrew; Al-Chokhachy, Robert K.; Muhlfeld, Clint C.; Gresswell, Robert E.; Gross, Jackson A.; Kershner, Jeffrey L.

    2014-01-01

    Aquatic invasive species are disrupting ecosystems with increasing frequency. Successful control of these invasions has been rare: Biologists and managers have few tools for fighting aquatic invaders. In contrast, the medical community has long worked to develop tools for preventing and fighting cancer. Its successes are marked by a coordinated research approach with multiple steps: prevention, early detection, diagnosis, treatment options and rehabilitation. The authors discuss how these steps can be applied to aquatic invasive species, such as the American bullfrog (Lithobates catesbeianus), in the Northern Rocky Mountain region of the United States, to expedite tool development and implementation along with achievement of biodiversity conservation goals.

  11. Invasive species management and research using GIS

    USGS Publications Warehouse

    Holcombe, Tracy R.; Stohlgren, Thomas J.; Jarnevich, Catherine S.

    2007-01-01

    Geographical Information Systems (GIS) are powerful tools in the field of invasive species management. GIS can be used to create potential distribution maps for all manner of taxa, including plants, animals, and diseases. GIS also performs well in the early detection and rapid assessment of invasive species. Here, we used GIS applications to investigate species richness and invasion patterns in fish in the United States (US) at the 6-digit Hydrologic Unit Code (HUC) level. We also created maps of potential spread of the cane toad (Bufo marinus) in the southeastern US at the 8-digit HUC level using regression and environmental envelope techniques. Equipped with this potential map, resource managers can target their field surveys to areas most vulnerable to invasion. Advances in GIS technology, maps, data, and many of these techniques can be found on websites such as the National Institute of Invasive Species Science (www.NIISS.org). Such websites provide a forum for data sharing and analysis that is an invaluable service to the invasive species community.

  12. Invasive Species Science Branch: research and management tools for controlling invasive species

    USGS Publications Warehouse

    Reed, Robert N.; Walters, Katie D.

    2015-01-01

    Invasive, nonnative species of plants, animals, and disease organisms adversely affect the ecosystems they enter. Like “biological wildfires,” they can quickly spread and affect nearly all terrestrial and aquatic ecosystems. Invasive species have become one of the greatest environmental challenges of the 21st century in economic, environmental, and human health costs, with an estimated effect in the United States of more than $120 billion per year. Managers of the Department of the Interior and other public and private lands often rank invasive species as their top resource management problem. The Invasive Species Science Branch of the Fort Collins Science Center provides research and technical assistance relating to management concerns for invasive species, including understanding how these species are introduced, identifying areas vulnerable to invasion, forecasting invasions, and developing control methods. To disseminate this information, branch scientists are developing platforms to share invasive species information with DOI cooperators, other agency partners, and the public. From these and other data, branch scientists are constructing models to understand and predict invasive species distributions for more effective management. The branch also has extensive herpetological and population biology expertise that is applied to harmful reptile invaders such as the Brown Treesnake on Guam and Burmese Python in Florida.

  13. Reproductive interference explains persistence of aggression between species

    PubMed Central

    Drury, Jonathan P.; Okamoto, Kenichi W.; Anderson, Christopher N.; Grether, Gregory F.

    2015-01-01

    Interspecific territoriality occurs when individuals of different species fight over space, and may arise spontaneously when populations of closely related territorial species first come into contact. But defence of space is costly, and unless the benefits of excluding heterospecifics exceed the costs, natural selection should favour divergence in competitor recognition until the species no longer interact aggressively. Ordinarily males of different species do not compete for mates, but when males cannot distinguish females of sympatric species, females may effectively become a shared resource. We model how reproductive interference caused by undiscriminating males can prevent interspecific divergence, or even cause convergence, in traits used to recognize competitors. We then test the model in a genus of visually orienting insects and show that, as predicted by the model, differences between species pairs in the level of reproductive interference, which is causally related to species differences in female coloration, are strongly predictive of the current level of interspecific aggression. Interspecific reproductive interference is very common and we discuss how it may account for the persistence of interspecific aggression in many taxonomic groups. PMID:25740887

  14. Intercontinental chemical variation in the invasive ant Wasmannia auropunctata (Roger) (Hymenoptera Formicidae): a key to the invasive success of a tramp species

    NASA Astrophysics Data System (ADS)

    Errard, Christine; Delabie, Jacques; Jourdan, Hervé; Hefetz, Abraham

    2005-07-01

    Unicoloniality emerges as a feature that characterizes successful invasive species. Its underlying mechanism is reduced intraspecific aggression while keeping interspecific competitiveness. To that effect, we present here a comparative behavioural and chemical study of the invasive ant Wasmannia auropunctata in parts of its native and introduced ranges. We tested the hypothesis that introduced populations (New Caledonia archipelago) have reduced intraspecific aggression relative to native populations (e.g., Ilhéus area, Brazil) and that this correlates with reduced variability in cuticular hydrocarbons (CHCs). As predicted, there was high intraspecific aggression in the Brazilian populations, but no intraspecific aggression among the New Caledonian populations. However, New Caledonian worker W. auropunctata remained highly aggressive towards ants of other invasive species. The chemical data corresponded with the behaviour. While CHCs of ants from the regions of Brazil diverged, the profiles of ants from various localities in New Caledonia showed high uniformity. We suggest that in New Caledonia W. auropunctata appears to behave as a single supercolony, whereas in its native range it acts as a multicolonial species. The uniformity of recognition cues in the New Caledonia ants may reflect a process whereby recognition alleles became fixed in the population, but may also be the consequence of a single introduction event and subsequent aggressive invasion of the ecosystem. Chemical uniformity coupled with low intraspecific but high interspecific aggression, lend credence to the latter hypothesis.

  15. Human Breast Cancer Invasion and Aggression Correlates with ECM Stiffening and Immune Cell Infiltration

    PubMed Central

    Acerbi, I; Cassereau, L; Dean, I; Shi, Q; Au, A; Park, C; Chen, YY; Liphardt, J; Hwang, ES; Weaver, VM

    2015-01-01

    Tumors are stiff and data suggest that the extracellular matrix stiffening that correlates with experimental mammary malignancy drives tumor invasion and metastasis. Nevertheless, the relationship between tissue and extracellular matrix stiffness and human breast cancer progression and aggression remains unclear. We undertook a biophysical and biochemical assessment of stromal-epithelial interactions in noninvasive, invasive and normal adjacent human breast tissue and in breast cancers of increasingly aggressive subtype. Our analysis revealed that human breast cancer transformation is accompanied by an incremental increase in collagen deposition and a progressive linearization and thickening of interstitial collagen. The linearization of collagen was visualized as an overall increase in tissue birefringence and was most striking at the invasive front of the tumor where the stiffness of the stroma and cellular mechanosignaling were the highest. Amongst breast cancer subtypes we found that the stroma at the invasive region of the more aggressive Basal-like and Her2 tumor subtypes was the most heterogeneous and the stiffest when compared to the less aggressive Luminal A and B subtypes. Intriguingly, we quantified the greatest number of infiltrating macrophages and the highest level of TGF beta signaling within the cells at the invasive front. We also established that stroma stiffness and the level of cellular TGF beta signaling positively correlated with each other and with the number of infiltrating tumor-activated, macrophages, which was highest in the more aggressive tumor subtypes. These findings indicate that human breast cancer progression and aggression, collagen linearization and stromal stiffening are linked and implicate tissue inflammation and TGF beta. PMID:25959051

  16. Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration.

    PubMed

    Acerbi, I; Cassereau, L; Dean, I; Shi, Q; Au, A; Park, C; Chen, Y Y; Liphardt, J; Hwang, E S; Weaver, V M

    2015-10-01

    Tumors are stiff and data suggest that the extracellular matrix stiffening that correlates with experimental mammary malignancy drives tumor invasion and metastasis. Nevertheless, the relationship between tissue and extracellular matrix stiffness and human breast cancer progression and aggression remains unclear. We undertook a biophysical and biochemical assessment of stromal-epithelial interactions in noninvasive, invasive and normal adjacent human breast tissue and in breast cancers of increasingly aggressive subtype. Our analysis revealed that human breast cancer transformation is accompanied by an incremental increase in collagen deposition and a progressive linearization and thickening of interstitial collagen. The linearization of collagen was visualized as an overall increase in tissue birefringence and was most striking at the invasive front of the tumor where the stiffness of the stroma and cellular mechanosignaling were the highest. Amongst breast cancer subtypes we found that the stroma at the invasive region of the more aggressive Basal-like and Her2 tumor subtypes was the most heterogeneous and the stiffest when compared to the less aggressive luminal A and B subtypes. Intriguingly, we quantified the greatest number of infiltrating macrophages and the highest level of TGF beta signaling within the cells at the invasive front. We also established that stroma stiffness and the level of cellular TGF beta signaling positively correlated with each other and with the number of infiltrating tumor-activated macrophages, which was highest in the more aggressive tumor subtypes. These findings indicate that human breast cancer progression and aggression, collagen linearization and stromal stiffening are linked and implicate tissue inflammation and TGF beta. PMID:25959051

  17. Agricultural Warfare and Bioterrorism using Invasive Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chapter on Agricultural Warfare and Bioterrorism using Invasive Species is part of the book titled Pest Management and Phytosanitary Trade Barriers authored by Neil Heather (Australia) and Guy Hallman. The chapter attempts to briefly put the topic into context with phytosanitation. It presents...

  18. 75 FR 69698 - Invasive Species Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... entitled, Invasive Species and Climate Change, as drafted by the ISAC Task Team on Climate Change. DATES... of the Interior, the Secretary of Agriculture, and the Secretary of Commerce. The duty of the Council.... ADDRESSES: U.S. Department of Agriculture, Economic Research Service Conference Center, 1800 M Street,...

  19. Ensemble habitat mapping of invasive plant species.

    PubMed

    Stohlgren, Thomas J; Ma, Peter; Kumar, Sunil; Rocca, Monique; Morisette, Jeffrey T; Jarnevich, Catherine S; Benson, Nate

    2010-02-01

    Ensemble species distribution models combine the strengths of several species environmental matching models, while minimizing the weakness of any one model. Ensemble models may be particularly useful in risk analysis of recently arrived, harmful invasive species because species may not yet have spread to all suitable habitats, leaving species-environment relationships difficult to determine. We tested five individual models (logistic regression, boosted regression trees, random forest, multivariate adaptive regression splines (MARS), and maximum entropy model or Maxent) and ensemble modeling for selected nonnative plant species in Yellowstone and Grand Teton National Parks, Wyoming; Sequoia and Kings Canyon National Parks, California, and areas of interior Alaska. The models are based on field data provided by the park staffs, combined with topographic, climatic, and vegetation predictors derived from satellite data. For the four invasive plant species tested, ensemble models were the only models that ranked in the top three models for both field validation and test data. Ensemble models may be more robust than individual species-environment matching models for risk analysis.

  20. Ensemble habitat mapping of invasive plant species

    USGS Publications Warehouse

    Stohlgren, T.J.; Ma, P.; Kumar, S.; Rocca, M.; Morisette, J.T.; Jarnevich, C.S.; Benson, N.

    2010-01-01

    Ensemble species distribution models combine the strengths of several species environmental matching models, while minimizing the weakness of any one model. Ensemble models may be particularly useful in risk analysis of recently arrived, harmful invasive species because species may not yet have spread to all suitable habitats, leaving species-environment relationships difficult to determine. We tested five individual models (logistic regression, boosted regression trees, random forest, multivariate adaptive regression splines (MARS), and maximum entropy model or Maxent) and ensemble modeling for selected nonnative plant species in Yellowstone and Grand Teton National Parks, Wyoming; Sequoia and Kings Canyon National Parks, California, and areas of interior Alaska. The models are based on field data provided by the park staffs, combined with topographic, climatic, and vegetation predictors derived from satellite data. For the four invasive plant species tested, ensemble models were the only models that ranked in the top three models for both field validation and test data. Ensemble models may be more robust than individual species-environment matching models for risk analysis. ?? 2010 Society for Risk Analysis.

  1. Ensemble habitat mapping of invasive plant species.

    PubMed

    Stohlgren, Thomas J; Ma, Peter; Kumar, Sunil; Rocca, Monique; Morisette, Jeffrey T; Jarnevich, Catherine S; Benson, Nate

    2010-02-01

    Ensemble species distribution models combine the strengths of several species environmental matching models, while minimizing the weakness of any one model. Ensemble models may be particularly useful in risk analysis of recently arrived, harmful invasive species because species may not yet have spread to all suitable habitats, leaving species-environment relationships difficult to determine. We tested five individual models (logistic regression, boosted regression trees, random forest, multivariate adaptive regression splines (MARS), and maximum entropy model or Maxent) and ensemble modeling for selected nonnative plant species in Yellowstone and Grand Teton National Parks, Wyoming; Sequoia and Kings Canyon National Parks, California, and areas of interior Alaska. The models are based on field data provided by the park staffs, combined with topographic, climatic, and vegetation predictors derived from satellite data. For the four invasive plant species tested, ensemble models were the only models that ranked in the top three models for both field validation and test data. Ensemble models may be more robust than individual species-environment matching models for risk analysis. PMID:20136746

  2. Coevolution between Native and Invasive Plant Competitors: Implications for Invasive Species Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasive species may establish in communities because they are better competitors than natives, but in order to remain community dominants, the competitive advantage of invasive species must be persistent. Native species that are not extirpated when highly invasive species are introduced are likely...

  3. Kinetic models for historical processes of fast invasion and aggression

    NASA Astrophysics Data System (ADS)

    Aristov, Vladimir V.; Ilyin, Oleg V.

    2015-04-01

    In the last few decades many investigations have been devoted to theoretical models in new areas concerning description of different biological, sociological, and historical processes. In the present paper we suggest a model of the Nazi Germany invasion of Poland, France, and the USSR based on kinetic theory. We simulate this process with the Cauchy boundary problem for two-element kinetic equations. The solution of the problem is given in the form of a traveling wave. The propagation velocity of a front line depends on the quotient between initial forces concentrations. Moreover it is obtained that the general solution of the model can be expressed in terms of quadratures and elementary functions. Finally it is shown that the front-line velocities agree with the historical data.

  4. Discovery-dominance trade-off among widespread invasive ant species.

    PubMed

    Bertelsmeier, Cleo; Avril, Amaury; Blight, Olivier; Jourdan, Hervé; Courchamp, Franck

    2015-07-01

    Ants are among the most problematic invasive species. They displace numerous native species, alter ecosystem processes, and can have negative impacts on agriculture and human health. In part, their success might stem from a departure from the discovery-dominance trade-off that can promote co-existence in native ant communities, that is, invasive ants are thought to be at the same time behaviorally dominant and faster discoverers of resources, compared to native species. However, it has not yet been tested whether similar asymmetries in behavioral dominance, exploration, and recruitment abilities also exist among invasive species. Here, we establish a dominance hierarchy among four of the most problematic invasive ants (Linepithema humile, Lasius neglectus, Wasmannia auropunctata, Pheidole megacephala) that may be able to arrive and establish in the same areas in the future. To assess behavioral dominance, we used confrontation experiments, testing the aggressiveness in individual and group interactions between all species pairs. In addition, to compare discovery efficiency, we tested the species' capacity to locate a food resource in a maze, and the capacity to recruit nestmates to exploit a food resource. The four species differed greatly in their capacity to discover resources and to recruit nestmates and to dominate the other species. Our results are consistent with a discovery-dominance trade-off. The species that showed the highest level of interspecific aggressiveness and dominance during dyadic interactions.

  5. Efficient distinction of invasive aquatic plant species from non-invasive related species using DNA barcoding.

    PubMed

    Ghahramanzadeh, R; Esselink, G; Kodde, L P; Duistermaat, H; van Valkenburg, J L C H; Marashi, S H; Smulders, M J M; van de Wiel, C C M

    2013-01-01

    Biological invasions are regarded as threats to global biodiversity. Among invasive aliens, a number of plant species belonging to the genera Myriophyllum, Ludwigia and Cabomba, and to the Hydrocharitaceae family pose a particular ecological threat to water bodies. Therefore, one would try to prevent them from entering a country. However, many related species are commercially traded, and distinguishing invasive from non-invasive species based on morphology alone is often difficult for plants in a vegetative stage. In this regard, DNA barcoding could become a good alternative. In this study, 242 samples belonging to 26 species from 10 genera of aquatic plants were assessed using the chloroplast loci trnH-psbA, matK and rbcL. Despite testing a large number of primer sets and several PCR protocols, the matK locus could not be amplified or sequenced reliably and therefore was left out of the analysis. Using the other two loci, eight invasive species could be distinguished from their respective related species, a ninth one failed to produce sequences of sufficient quality. Based on the criteria of universal application, high sequence divergence and level of species discrimination, the trnH-psbA noncoding spacer was the best performing barcode in the aquatic plant species studied. Thus, DNA barcoding may be helpful with enforcing a ban on trade of such invasive species, such as is already in place in the Netherlands. This will become even more so once DNA barcoding would be turned into machinery routinely operable by a nonspecialist in botany and molecular genetics.

  6. A Landscape Approach to Invasive Species Management

    PubMed Central

    Lurgi, Miguel; Wells, Konstans; Kennedy, Malcolm; Campbell, Susan; Fordham, Damien A.

    2016-01-01

    Biological invasions are not only a major threat to biodiversity, they also have major impacts on local economies and agricultural production systems. Once established, the connection of local populations into metapopulation networks facilitates dispersal at landscape scales, generating spatial dynamics that can impact the outcome of pest-management actions. Much planning goes into landscape-scale invasive species management. However, effective management requires knowledge on the interplay between metapopulation network topology and management actions. We address this knowledge gap using simulation models to explore the effectiveness of two common management strategies, applied across different extents and according to different rules for selecting target localities in metapopulations with different network topologies. These management actions are: (i) general population reduction, and (ii) reduction of an obligate resource. The reduction of an obligate resource was generally more efficient than population reduction for depleting populations at landscape scales. However, the way in which local populations are selected for management is important when the topology of the metapopulation is heterogeneous in terms of the distribution of connections among local populations. We tested these broad findings using real-world scenarios of European rabbits (Oryctolagus cuniculus) infesting agricultural landscapes in Western Australia. Although management strategies targeting central populations were more effective in simulated heterogeneous metapopulation structures, no difference was observed in real-world metapopulation structures that are highly homogeneous. In large metapopulations with high proximity and connectivity of neighbouring populations, different spatial management strategies yield similar outcomes. Directly considering spatial attributes in pest-management actions will be most important for metapopulation networks with heterogeneously distributed links. Our

  7. A Landscape Approach to Invasive Species Management.

    PubMed

    Lurgi, Miguel; Wells, Konstans; Kennedy, Malcolm; Campbell, Susan; Fordham, Damien A

    2016-01-01

    Biological invasions are not only a major threat to biodiversity, they also have major impacts on local economies and agricultural production systems. Once established, the connection of local populations into metapopulation networks facilitates dispersal at landscape scales, generating spatial dynamics that can impact the outcome of pest-management actions. Much planning goes into landscape-scale invasive species management. However, effective management requires knowledge on the interplay between metapopulation network topology and management actions. We address this knowledge gap using simulation models to explore the effectiveness of two common management strategies, applied across different extents and according to different rules for selecting target localities in metapopulations with different network topologies. These management actions are: (i) general population reduction, and (ii) reduction of an obligate resource. The reduction of an obligate resource was generally more efficient than population reduction for depleting populations at landscape scales. However, the way in which local populations are selected for management is important when the topology of the metapopulation is heterogeneous in terms of the distribution of connections among local populations. We tested these broad findings using real-world scenarios of European rabbits (Oryctolagus cuniculus) infesting agricultural landscapes in Western Australia. Although management strategies targeting central populations were more effective in simulated heterogeneous metapopulation structures, no difference was observed in real-world metapopulation structures that are highly homogeneous. In large metapopulations with high proximity and connectivity of neighbouring populations, different spatial management strategies yield similar outcomes. Directly considering spatial attributes in pest-management actions will be most important for metapopulation networks with heterogeneously distributed links. Our

  8. A Landscape Approach to Invasive Species Management.

    PubMed

    Lurgi, Miguel; Wells, Konstans; Kennedy, Malcolm; Campbell, Susan; Fordham, Damien A

    2016-01-01

    Biological invasions are not only a major threat to biodiversity, they also have major impacts on local economies and agricultural production systems. Once established, the connection of local populations into metapopulation networks facilitates dispersal at landscape scales, generating spatial dynamics that can impact the outcome of pest-management actions. Much planning goes into landscape-scale invasive species management. However, effective management requires knowledge on the interplay between metapopulation network topology and management actions. We address this knowledge gap using simulation models to explore the effectiveness of two common management strategies, applied across different extents and according to different rules for selecting target localities in metapopulations with different network topologies. These management actions are: (i) general population reduction, and (ii) reduction of an obligate resource. The reduction of an obligate resource was generally more efficient than population reduction for depleting populations at landscape scales. However, the way in which local populations are selected for management is important when the topology of the metapopulation is heterogeneous in terms of the distribution of connections among local populations. We tested these broad findings using real-world scenarios of European rabbits (Oryctolagus cuniculus) infesting agricultural landscapes in Western Australia. Although management strategies targeting central populations were more effective in simulated heterogeneous metapopulation structures, no difference was observed in real-world metapopulation structures that are highly homogeneous. In large metapopulations with high proximity and connectivity of neighbouring populations, different spatial management strategies yield similar outcomes. Directly considering spatial attributes in pest-management actions will be most important for metapopulation networks with heterogeneously distributed links. Our

  9. 78 FR 14351 - Invasive Species Advisory Committee; Meeting Cancellation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    ... Office of the Secretary Invasive Species Advisory Committee; Meeting Cancellation AGENCY: Office of the Secretary, Interior. ACTION: Notice of meeting cancellation. SUMMARY: The meeting of the Invasive Species....gov . SUPPLEMENTARY INFORMATION: The ISAC is comprised of 31 nonfederal invasive species experts...

  10. Discovery–dominance trade-off among widespread invasive ant species

    PubMed Central

    Bertelsmeier, Cleo; Avril, Amaury; Blight, Olivier; Jourdan, Hervé; Courchamp, Franck

    2015-01-01

    Ants are among the most problematic invasive species. They displace numerous native species, alter ecosystem processes, and can have negative impacts on agriculture and human health. In part, their success might stem from a departure from the discovery–dominance trade-off that can promote co-existence in native ant communities, that is, invasive ants are thought to be at the same time behaviorally dominant and faster discoverers of resources, compared to native species. However, it has not yet been tested whether similar asymmetries in behavioral dominance, exploration, and recruitment abilities also exist among invasive species. Here, we establish a dominance hierarchy among four of the most problematic invasive ants (Linepithema humile, Lasius neglectus, Wasmannia auropunctata, Pheidole megacephala) that may be able to arrive and establish in the same areas in the future. To assess behavioral dominance, we used confrontation experiments, testing the aggressiveness in individual and group interactions between all species pairs. In addition, to compare discovery efficiency, we tested the species’ capacity to locate a food resource in a maze, and the capacity to recruit nestmates to exploit a food resource. The four species differed greatly in their capacity to discover resources and to recruit nestmates and to dominate the other species. Our results are consistent with a discovery–dominance trade-off. The species that showed the highest level of interspecific aggressiveness and dominance during dyadic interactions. PMID:26257879

  11. Invasive species information networks: Collaboration at multiple scales for prevention, early detection, and rapid response to invasive alien species

    USGS Publications Warehouse

    Simpson, A.; Jarnevich, C.; Madsen, J.; Westbrooks, R.; Fournier, C.; Mehrhoff, L.; Browne, M.; Graham, J.; Sellers, E.

    2009-01-01

    Accurate analysis of present distributions and effective modeling of future distributions of invasive alien species (IAS) are both highly dependent on the availability and accessibility of occurrence data and natural history information about the species. Invasive alien species monitoring and detection networks (such as the Invasive Plant Atlas of New England and the Invasive Plant Atlas of the MidSouth) generate occurrence data at local and regional levels within the United States, which are shared through the US National Institute of Invasive Species Science. The Inter-American Biodiversity Information Network's Invasives Information Network (I3N), facilitates cooperation on sharing invasive species occurrence data throughout the Western Hemisphere. The I3N and other national and regional networks expose their data globally via the Global Invasive Species Information Network (GISIN). International and interdisciplinary cooperation on data sharing strengthens cooperation on strategies and responses to invasions. However, limitations to effective collaboration among invasive species networks leading to successful early detection and rapid response to invasive species include: lack of interoperability; data accessibility; funding; and technical expertise. This paper proposes various solutions to these obstacles at different geographic levels and briefly describes success stories from the invasive species information networks mentioned above. Using biological informatics to facilitate global information sharing is especially critical in invasive species science, as research has shown that one of the best indicators of the invasiveness of a species is whether it has been invasive elsewhere. Data must also be shared across disciplines because natural history information (e.g. diet, predators, habitat requirements, etc.) about a species in its native range is vital for effective prevention, detection, and rapid response to an invasion. Finally, it has been our

  12. Uncertainty in invasive alien species listing.

    PubMed

    McGeoch, Melodie A; Spear, Dian; Kleynhans, Elizabeth J; Marais, Elrike

    2012-04-01

    Lists of invasive alien species (IAS) are essential for preventing, controlling, and reporting on the state of biological invasions. However, these lists suffer from a range of errors, with serious consequences for their use in science, policy, and management. Here we (1) collated and classified errors in IAS listing using a taxonomy of uncertainty; and (2) estimated the size of these errors using data from a completed listing exercise, with the purpose of better understanding, communicating, and dealing with them. Ten errors were identified. Most result from a lack of knowledge or measurement error (epistemic uncertainty), although two were a result of context dependence and vagueness (linguistic uncertainty). Estimates of the size of the effects of these errors were substantial in a number of cases and unknown in others. Most errors, and those with the largest estimated effect, result in underestimates of IAS numbers. However, there are a number of errors where the size and direction of the effect remains poorly understood. The effect of differences in opinion between specialists is potentially large, particularly for data-poor taxa and regions, and does not have a clearly directional or consistent effect on the size and composition of IAS lists. Five tactics emerged as important for reducing uncertainty in IAS lists, and while uncertainty will never be removed entirely, these approaches will significantly improve the transparency, repeatability, and comparability of IAS lists. Understanding the errors and uncertainties that occur during the process of listing invasive species, as well as the potential size and nature of their effects on IAS lists, is key to improving the value of these lists for governments, management agencies, and conservationists. Such understanding is increasingly important given positive trends in biological invasion and the associated risks to biodiversity and biosecurity.

  13. Uncertainty in invasive alien species listing.

    PubMed

    McGeoch, Melodie A; Spear, Dian; Kleynhans, Elizabeth J; Marais, Elrike

    2012-04-01

    Lists of invasive alien species (IAS) are essential for preventing, controlling, and reporting on the state of biological invasions. However, these lists suffer from a range of errors, with serious consequences for their use in science, policy, and management. Here we (1) collated and classified errors in IAS listing using a taxonomy of uncertainty; and (2) estimated the size of these errors using data from a completed listing exercise, with the purpose of better understanding, communicating, and dealing with them. Ten errors were identified. Most result from a lack of knowledge or measurement error (epistemic uncertainty), although two were a result of context dependence and vagueness (linguistic uncertainty). Estimates of the size of the effects of these errors were substantial in a number of cases and unknown in others. Most errors, and those with the largest estimated effect, result in underestimates of IAS numbers. However, there are a number of errors where the size and direction of the effect remains poorly understood. The effect of differences in opinion between specialists is potentially large, particularly for data-poor taxa and regions, and does not have a clearly directional or consistent effect on the size and composition of IAS lists. Five tactics emerged as important for reducing uncertainty in IAS lists, and while uncertainty will never be removed entirely, these approaches will significantly improve the transparency, repeatability, and comparability of IAS lists. Understanding the errors and uncertainties that occur during the process of listing invasive species, as well as the potential size and nature of their effects on IAS lists, is key to improving the value of these lists for governments, management agencies, and conservationists. Such understanding is increasingly important given positive trends in biological invasion and the associated risks to biodiversity and biosecurity. PMID:22645824

  14. Hexokinase and phosphofructokinase activity and intracellular distribution correlate with aggressiveness and invasiveness of human breast carcinoma.

    PubMed

    Coelho, Raquel G; Calaça, Isadora C; Celestrini, Deborah M; Correia-Carneiro, Ana Helena P; Costa, Mauricio M; Zancan, Patricia; Sola-Penna, Mauro

    2015-10-01

    Glycolytic enzymes, such as hexokinase and phosphofructokinase, have been reported to be upregulated in many cancer types. Here, we evaluated these two enzymes in 54 breast cancer samples collected from volunteers subjected to mastectomy, and the results were correlated with the prognosis markers commonly used. We found that both enzymes positively correlate with the major markers for invasiveness and aggressiveness. For invasiveness, the enzymes activities increase in parallel to the tumor size. Moreover, we found augmented activities for both enzymes when the samples were extirpated from patients presenting lymph node involvement or occurrence of metastasis. For aggressiveness, we stained the samples for the estrogen and progesterone receptors, HER-2, p53 and Ki-67. The enzyme activities positively correlated with all markers but Ki-67. Finally, we conclude that these enzymes are good markers for breast cancer prognosis.

  15. Hexokinase and phosphofructokinase activity and intracellular distribution correlate with aggressiveness and invasiveness of human breast carcinoma

    PubMed Central

    Coelho, Raquel G.; Calaça, Isadora C.; Celestrini, Deborah M.; Correia-Carneiro, Ana Helena P.; Costa, Mauricio M.; Zancan, Patricia; Sola-Penna, Mauro

    2015-01-01

    Glycolytic enzymes, such as hexokinase and phosphofructokinase, have been reported to be upregulated in many cancer types. Here, we evaluated these two enzymes in 54 breast cancer samples collected from volunteers subjected to mastectomy, and the results were correlated with the prognosis markers commonly used. We found that both enzymes positively correlate with the major markers for invasiveness and aggressiveness. For invasiveness, the enzymes activities increase in parallel to the tumor size. Moreover, we found augmented activities for both enzymes when the samples were extirpated from patients presenting lymph node involvement or occurrence of metastasis. For aggressiveness, we stained the samples for the estrogen and progesterone receptors, HER-2, p53 and Ki-67. The enzyme activities positively correlated with all markers but Ki-67. Finally, we conclude that these enzymes are good markers for breast cancer prognosis. PMID:26320188

  16. The stock of invasive insect species and its economic determinants.

    PubMed

    Hlasny, Vladimir

    2011-06-01

    Invasions of nonindigenous organisms have long been linked to trade, but the contribution of individual trade pathways remains poorly understood, because species are not observed immediately upon arrival and the number of species arriving annually is unknown. Species interception records may count both new arrivals and species long introduced. Furthermore, the stock of invasive insect species already present is unknown. In this study, a state-space model is used to infer the stock of detected as well as undetected invasive insect species established in the United States. A system of equations is estimated jointly to distinguish the patterns of introduction, identification, and eradication. Introductions of invasive species are modeled as dependent on the volume of trade and arrival of people. Identifications depend on the public efforts at invasive species research, as well as on the established stock of invasive species that remain undetected. Eradications of both detected and undetected invasive species depend on containment and quarantine efforts, as well as on the stock of all established invasive species. These patterns are estimated by fitting the predicted number of invasive species detections to the observed record in the North American Non-Indigenous Arthropod Database. The results indicate that agricultural imports are the most important pathway of introduction, followed by immigration of people. Expenditures by the U.S. Department of Agriculture and the Agricultural Research Service are found to explain the species identification record well. Between three and 38 invasive insect species are estimated to be established in the United States undetected.

  17. New pasture plants intensify invasive species risk.

    PubMed

    Driscoll, Don A; Catford, Jane A; Barney, Jacob N; Hulme, Philip E; Inderjit; Martin, Tara G; Pauchard, Aníbal; Pyšek, Petr; Richardson, David M; Riley, Sophie; Visser, Vernon

    2014-11-18

    Agricultural intensification is critical to meet global food demand, but intensification threatens native species and degrades ecosystems. Sustainable intensification (SI) is heralded as a new approach for enabling growth in agriculture while minimizing environmental impacts. However, the SI literature has overlooked a major environmental risk. Using data from eight countries on six continents, we show that few governments regulate conventionally bred pasture taxa to limit threats to natural areas, even though most agribusinesses promote taxa with substantial weed risk. New pasture taxa (including species, subspecies, varieties, cultivars, and plant-endophyte combinations) are bred with characteristics typical of invasive species and environmental weeds. By introducing novel genetic and endophyte variation, pasture taxa are imbued with additional capacity for invasion and environmental impact. New strategies to prevent future problems are urgently needed. We highlight opportunities for researchers, agribusiness, and consumers to reduce environmental risks associated with new pasture taxa. We also emphasize four main approaches that governments could consider as they build new policies to limit weed risks, including (i) national lists of taxa that are prohibited based on environmental risk; (ii) a weed risk assessment for all new taxa; (iii) a program to rapidly detect and control new taxa that invade natural areas; and (iv) the polluter-pays principle, so that if a taxon becomes an environmental weed, industry pays for its management. There is mounting pressure to increase livestock production. With foresight and planning, growth in agriculture can be achieved sustainably provided that the scope of SI expands to encompass environmental weed risks.

  18. Aggression and Food Resource Competition between Sympatric Hermit Crab Species

    PubMed Central

    Tran, Mark V.; O’Grady, Matthew; Colborn, Jeremiah; Van Ness, Kimberly; Hill, Richard W.

    2014-01-01

    The vertical zonation patterns of intertidal organisms have been topics of interest to marine ecologists for many years, with interspecific food competition being implicated as a contributing factor to intertidal community organization. In this study, we used behavioral bioassays to examine the potential roles that interspecific aggression and food competition have on the structuring of intertidal hermit crab assemblages. We studied two ecologically similar, sympatric hermit crab species, Clibanarius digueti [1] and Paguristes perrieri [2], which occupy adjacent zones within the intertidal region of the Gulf of California. During the search phase of foraging, C. digueti showed higher frequencies of aggressive behaviors than P. perrieri. In competition assays, C. digueti gained increased access to food resources compared to P. perrieri. The results suggest that food competition may play an important role in structuring intertidal hermit crab assemblages, and that the zonation patterns of Gulf of California hermit crab species may be the result of geographical displacement by the dominant food competitor (C. digueti). PMID:24632897

  19. Limiting invasive species in ballast water

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-06-01

    Ballast water is often intentionally loaded onto cargo ships and other vessels to provide weight necessary for safe maneuvering. However, this practice can unintentionally transport exotic organisms to parts of the world where populations of these organisms can establish themselves in new habitats as invasive and environmentally and economically disruptive species. Each year, an estimated 196 million metric tons of ballast water are discharged into U.S. coastal waters and the Great Lakes alone from an average of more than 90,000 visits of commercial ships greater than 300 metric tons, according to a 2 June report by the U.S. National Research Council (NRC) of the National Academies.

  20. INVASIVE MUSSEL SPECIES AND THE INTEGRITY OF LARGE RIVERS

    EPA Science Inventory

    Presentation is a summary of patterns of invasion and ecological risk associated with invasive mussel species in Great Rivers. Data from EMAP-GRE are included. Findings of this study can inform expectations about where and what invasive species may colonize North American River...

  1. INVASIVE SPECIES: PREDICTING GEOGRAPHIC DISTRIBUTIONS USING ECOLOGICAL NICHE MODELING

    EPA Science Inventory

    Present approaches to species invasions are reactive in nature. This scenario results in management that perpetually lags behind the most recent invasion and makes control much more difficult. In contrast, spatially explicit ecological niche modeling provides an effective solut...

  2. New pasture plants intensify invasive species risk

    PubMed Central

    Driscoll, Don A.; Catford, Jane A.; Barney, Jacob N.; Hulme, Philip E.; Inderjit; Martin, Tara G.; Pauchard, Aníbal; Pyšek, Petr; Richardson, David M.; Riley, Sophie; Visser, Vernon

    2014-01-01

    Agricultural intensification is critical to meet global food demand, but intensification threatens native species and degrades ecosystems. Sustainable intensification (SI) is heralded as a new approach for enabling growth in agriculture while minimizing environmental impacts. However, the SI literature has overlooked a major environmental risk. Using data from eight countries on six continents, we show that few governments regulate conventionally bred pasture taxa to limit threats to natural areas, even though most agribusinesses promote taxa with substantial weed risk. New pasture taxa (including species, subspecies, varieties, cultivars, and plant-endophyte combinations) are bred with characteristics typical of invasive species and environmental weeds. By introducing novel genetic and endophyte variation, pasture taxa are imbued with additional capacity for invasion and environmental impact. New strategies to prevent future problems are urgently needed. We highlight opportunities for researchers, agribusiness, and consumers to reduce environmental risks associated with new pasture taxa. We also emphasize four main approaches that governments could consider as they build new policies to limit weed risks, including (i) national lists of taxa that are prohibited based on environmental risk; (ii) a weed risk assessment for all new taxa; (iii) a program to rapidly detect and control new taxa that invade natural areas; and (iv) the polluter-pays principle, so that if a taxon becomes an environmental weed, industry pays for its management. There is mounting pressure to increase livestock production. With foresight and planning, growth in agriculture can be achieved sustainably provided that the scope of SI expands to encompass environmental weed risks. PMID:25368175

  3. New pasture plants intensify invasive species risk.

    PubMed

    Driscoll, Don A; Catford, Jane A; Barney, Jacob N; Hulme, Philip E; Inderjit; Martin, Tara G; Pauchard, Aníbal; Pyšek, Petr; Richardson, David M; Riley, Sophie; Visser, Vernon

    2014-11-18

    Agricultural intensification is critical to meet global food demand, but intensification threatens native species and degrades ecosystems. Sustainable intensification (SI) is heralded as a new approach for enabling growth in agriculture while minimizing environmental impacts. However, the SI literature has overlooked a major environmental risk. Using data from eight countries on six continents, we show that few governments regulate conventionally bred pasture taxa to limit threats to natural areas, even though most agribusinesses promote taxa with substantial weed risk. New pasture taxa (including species, subspecies, varieties, cultivars, and plant-endophyte combinations) are bred with characteristics typical of invasive species and environmental weeds. By introducing novel genetic and endophyte variation, pasture taxa are imbued with additional capacity for invasion and environmental impact. New strategies to prevent future problems are urgently needed. We highlight opportunities for researchers, agribusiness, and consumers to reduce environmental risks associated with new pasture taxa. We also emphasize four main approaches that governments could consider as they build new policies to limit weed risks, including (i) national lists of taxa that are prohibited based on environmental risk; (ii) a weed risk assessment for all new taxa; (iii) a program to rapidly detect and control new taxa that invade natural areas; and (iv) the polluter-pays principle, so that if a taxon becomes an environmental weed, industry pays for its management. There is mounting pressure to increase livestock production. With foresight and planning, growth in agriculture can be achieved sustainably provided that the scope of SI expands to encompass environmental weed risks. PMID:25368175

  4. Coevolution between native and invasive plant competitors: implications for invasive species management.

    PubMed

    Leger, Elizabeth A; Espeland, Erin K

    2010-03-01

    Invasive species may establish in communities because they are better competitors than natives, but in order to remain community dominants, the competitive advantage of invasive species must be persistent. Native species that are not extirpated when highly invasive species are introduced are likely to compete with invaders. When population sizes and genetic diversity of native species are large enough, natives may be able to evolve traits that allow them to co-occur with invasive species. Native species may also evolve to become significant competitors with invasive species, and thus affect the fitness of invaders. Invasive species may respond in turn, creating either transient or continuing coevolution between competing species. In addition to demographic factors such as population size and growth rates, a number of factors including gene flow, genetic drift, the number of selection agents, encounter rates, and genetic diversity may affect the ability of native and invasive species to evolve competitive ability against one another. We discuss how these factors may differ between populations of native and invasive plants, and how this might affect their ability to respond to selection. Management actions that maintain genetic diversity in native species while reducing population sizes and genetic diversity in invasive species could promote the ability of natives to evolve improved competitive ability.

  5. Introduced and invasive cactus species: a global review.

    PubMed

    Novoa, Ana; Le Roux, Johannes J; Robertson, Mark P; Wilson, John R U; Richardson, David M

    2014-12-03

    Understanding which species are introduced and become invasive, and why, are central questions in invasion science. Comparative studies on model taxa have provided important insights, but much more needs to be done to unravel the context dependencies of these findings. The cactus family (Cactaceae), one of the most popular horticultural plant groups, is an interesting case study. Hundreds of cactus species have been introduced outside their native ranges; a few of them are among the most damaging invasive plant species in the world. We reviewed the drivers of introductions and invasions in the family and seek insights that can be used to minimize future risks. We compiled a list of species in the family and determined which have been recorded as invasive. We also mapped current global distributions and modelled the potential global distributions based on distribution data of known invasive taxa. Finally, we identified whether invasiveness is phylogenetically clustered for cacti and whether particular traits are correlated with invasiveness. Only 57 of the 1922 cactus species recognized in this treatment have been recorded as invasive. There are three invasion hotspots: South Africa (35 invasive species recorded), Australia (26 species) and Spain (24 species). However, there are large areas of the world with climates suitable for cacti that are at risk of future invasion-in particular, parts of China, eastern Asia and central Africa. The invasive taxa represent an interesting subset of the total species pool. There is a significant phylogenetic signal: invasive species occur in 2 of the 3 major phylogenetic clades and in 13 of the 130 genera. This phylogenetic signal is not driven by human preference, i.e. horticultural trade, but all invasive species are from 5 of the 12 cactus growth forms. Finally, invasive species tend to have significantly larger native ranges than non-invasive species, and none of the invasive species are of conservation concern in their

  6. Evaluating plant invasions from both habitat and species perspectives

    USGS Publications Warehouse

    Chong, G.W.; Otsuki, Y.; Stohlgren, T.J.; Guenther, D.; Evangelista, P.; Villa, C.; Waters, A.

    2006-01-01

    We present an approach to quantitatively assess nonnative plant invasions at landscape scales from both habitat and species perspectives. Our case study included 34 nonnative species found in 142 plots (0.1 ha) in 14 vegetation types within the Grand Staircase-Escalante National Monument, Utah. A plot invasion index, based on nonnative species richness and cover, showed that only 16 of 142 plots were heavily invaded. A species invasive index, based on frequency, cover, and number of vegetation types invaded, showed that only 7 of 34 plant species were highly invasive. Multiple regressions using habitat characteristics (moisture index, elevation, soil P, native species richness, maximum crust development class, bare ground, and rock) explained 60% of variation in nonnative species richness and 46% of variation in nonnative species cover. Three mesic habitats (aspen, wet meadow, and perennial riparian types) were particularly invaded (31 of 34 nonnative species studied were found in these types). Species-specific logistic regression models for the 7 most invasive species correctly predicted occurrence 89% of the time on average (from 80% for Bromus tectorum, a habitat generalist, to 93% for Tamarix spp., a habitat specialist). Even with such a modest sampling intensity (<0.1% of the landscape), this multiscale sampling scheme was effective at evaluating habitat vulnerability to invasion and the occurrence of the 7 most invasive nonnative species. This approach could be applied in other natural areas to develop strategies to document invasive species and invaded habitats.

  7. Introduced and invasive cactus species: a global review

    PubMed Central

    Novoa, Ana; Le Roux, Johannes J.; Robertson, Mark P.; Wilson, John R.U.; Richardson, David M.

    2015-01-01

    Understanding which species are introduced and become invasive, and why, are central questions in invasion science. Comparative studies on model taxa have provided important insights, but much more needs to be done to unravel the context dependencies of these findings. The cactus family (Cactaceae), one of the most popular horticultural plant groups, is an interesting case study. Hundreds of cactus species have been introduced outside their native ranges; a few of them are among the most damaging invasive plant species in the world. We reviewed the drivers of introductions and invasions in the family and seek insights that can be used to minimize future risks. We compiled a list of species in the family and determined which have been recorded as invasive. We also mapped current global distributions and modelled the potential global distributions based on distribution data of known invasive taxa. Finally, we identified whether invasiveness is phylogenetically clustered for cacti and whether particular traits are correlated with invasiveness. Only 57 of the 1922 cactus species recognized in this treatment have been recorded as invasive. There are three invasion hotspots: South Africa (35 invasive species recorded), Australia (26 species) and Spain (24 species). However, there are large areas of the world with climates suitable for cacti that are at risk of future invasion—in particular, parts of China, eastern Asia and central Africa. The invasive taxa represent an interesting subset of the total species pool. There is a significant phylogenetic signal: invasive species occur in 2 of the 3 major phylogenetic clades and in 13 of the 130 genera. This phylogenetic signal is not driven by human preference, i.e. horticultural trade, but all invasive species are from 5 of the 12 cactus growth forms. Finally, invasive species tend to have significantly larger native ranges than non-invasive species, and none of the invasive species are of conservation concern in their

  8. Invasive clonal plant species have a greater root-foraging plasticity than non-invasive ones.

    PubMed

    Keser, Lidewij H; Dawson, Wayne; Song, Yao-Bin; Yu, Fei-Hai; Fischer, Markus; Dong, Ming; van Kleunen, Mark

    2014-03-01

    Clonality is frequently positively correlated with plant invasiveness, but which aspects of clonality make some clonal species more invasive than others is not known. Due to their spreading growth form, clonal plants are likely to experience spatial heterogeneity in nutrient availability. Plasticity in allocation of biomass to clonal growth organs and roots may allow these plants to forage for high-nutrient patches. We investigated whether this foraging response is stronger in species that have become invasive than in species that have not. We used six confamilial pairs of native European clonal plant species differing in invasion success in the USA. We grew all species in large pots under homogeneous or heterogeneous nutrient conditions in a greenhouse, and compared their nutrient-foraging response and performance. Neither invasive nor non-invasive species showed significant foraging responses to heterogeneity in clonal growth organ biomass or in aboveground biomass of clonal offspring. Invasive species had, however, a greater positive foraging response in terms of root and belowground biomass than non-invasive species. Invasive species also produced more total biomass. Our results suggest that the ability for strong root foraging is among the characteristics promoting invasiveness in clonal plants.

  9. Invasive clonal plant species have a greater root-foraging plasticity than non-invasive ones.

    PubMed

    Keser, Lidewij H; Dawson, Wayne; Song, Yao-Bin; Yu, Fei-Hai; Fischer, Markus; Dong, Ming; van Kleunen, Mark

    2014-03-01

    Clonality is frequently positively correlated with plant invasiveness, but which aspects of clonality make some clonal species more invasive than others is not known. Due to their spreading growth form, clonal plants are likely to experience spatial heterogeneity in nutrient availability. Plasticity in allocation of biomass to clonal growth organs and roots may allow these plants to forage for high-nutrient patches. We investigated whether this foraging response is stronger in species that have become invasive than in species that have not. We used six confamilial pairs of native European clonal plant species differing in invasion success in the USA. We grew all species in large pots under homogeneous or heterogeneous nutrient conditions in a greenhouse, and compared their nutrient-foraging response and performance. Neither invasive nor non-invasive species showed significant foraging responses to heterogeneity in clonal growth organ biomass or in aboveground biomass of clonal offspring. Invasive species had, however, a greater positive foraging response in terms of root and belowground biomass than non-invasive species. Invasive species also produced more total biomass. Our results suggest that the ability for strong root foraging is among the characteristics promoting invasiveness in clonal plants. PMID:24352844

  10. The role thermal physiology plays in species invasion

    PubMed Central

    Kelley, Amanda L.

    2014-01-01

    The characterization of physiological phenotypes that may play a part in the establishment of non-native species can broaden our understanding about the ecology of species invasion. Here, an assessment was carried out by comparing the responses of invasive and native species to thermal stress. The goal was to identify physiological patterns that facilitate invasion success and to investigate whether these traits are widespread among invasive ectotherms. Four hypotheses were generated and tested using a review of the literature to determine whether they could be supported across taxonomically diverse invasive organisms. The four hypotheses are as follows: (i) broad geographical temperature tolerances (thermal width) confer a higher upper thermal tolerance threshold for invasive rather than native species; (ii) the upper thermal extreme experienced in nature is more highly correlated with upper thermal tolerance threshold for invasive vs. native animals; (iii) protein chaperone expression—a cellular mechanism that underlies an organism's thermal tolerance threshold—is greater in invasive organisms than in native ones; and (iv) acclimation to higher temperatures can promote a greater range of thermal tolerance for invasive compared with native species. Each hypothesis was supported by a meta-analysis of the invasive/thermal physiology literature, providing further evidence that physiology plays a substantial role in the establishment of invasive ectotherms. PMID:27293666

  11. Sortilin is associated with breast cancer aggressiveness and contributes to tumor cell adhesion and invasion

    PubMed Central

    Roselli, Séverine; Pundavela, Jay; Demont, Yohann; Faulkner, Sam; Keene, Sheridan; Attia, John; Jiang, Chen Chen; Zhang, Xu Dong; Walker, Marjorie M.; Hondermarck, Hubert

    2015-01-01

    The neuronal membrane protein sortilin has been reported in a few cancer cell lines, but its expression and impact in human tumors is unclear. In this study, sortilin was analyzed by immunohistochemistry in a series of 318 clinically annotated breast cancers and 53 normal breast tissues. Sortilin was detected in epithelial cells, with increased levels in cancers, as compared to normal tissues (p = 0.0088). It was found in 79% of invasive ductal carcinomas and 54% of invasive lobular carcinomas (p < 0.0001). There was an association between sortilin expression and lymph node involvement (p = 0.0093), suggesting a relationship with metastatic potential. In cell culture, sortilin levels were higher in cancer cell lines compared to non-tumorigenic breast epithelial cells and siRNA knockdown of sortilin inhibited cancer cell adhesion, while proliferation and apoptosis were not affected. Breast cancer cell migration and invasion were also inhibited by sortilin knockdown, with a decrease in focal adhesion kinase and SRC phosphorylation. In conclusion, sortilin participates in breast tumor aggressiveness and may constitute a new therapeutic target against tumor cell invasion. PMID:25871389

  12. Innovative design for early detection of invasive species

    EPA Science Inventory

    Non-native aquatic species impose significant ecological impacts and rising financial costs in marine and freshwater ecosystems worldwide. Early detection of invasive species, as they enter a vulnerable ecosystem, is critical to successful containment and eradication. ORD, at t...

  13. Multidimensional approach to invasive species prevention.

    PubMed

    Briski, Elizabeta; Allinger, Lisa E; Balcer, Mary; Cangelosi, Allegra; Fanberg, Lana; Markee, Tom P; Mays, Nicole; Polkinghorne, Christine N; Prihoda, Kelsey R; Reavie, Euan D; Regan, Deanna H; Reid, Donald M; Saillard, Heidi J; Schwerdt, Tyler; Schaefer, Heidi; TenEyck, Matthew; Wiley, Chris J; Bailey, Sarah A

    2013-02-01

    Nonindigenous species (NIS) cause global biotic homogenization and extinctions, with commercial shipping being a leading vector for spread of aquatic NIS. To reduce transport of NIS by ships, regulations requiring ballast water exchange (BWE) have been implemented by numerous countries. BWE appears to effectively reduce risk for freshwater ports, but provides only moderate protection of marine ports. In the near future, ships may be required to undertake ballast water treatment (BWT) to meet numeric performance standards, and BWE may be phased out of use. However, there are concerns that BWT systems may not operate reliably in fresh or turbid water, or both. Consequently, it has been proposed that BWE could be used in combination with BWT to maximize the positive benefits of both management strategies for protection of freshwater ports. We compared the biological efficacy of "BWE plus BWT" against "BWT alone" at a ballast water treatment experimental test facility. Our comparative evaluation showed that even though BWT alone significantly reduced abundances of all tested organism groups except total heterotrophic bacteria, the BWE plus BWT strategy significantly reduced abundances for all groups and furthermore resulted in significantly lower abundances of most groups when compared to BWT alone. Our study clearly demonstrates potential benefits of combining BWE with BWT to reduce invasion risk of freshwater organisms transported in ships' ballast water, and it should be of interest to policy makers and environmental managers. PMID:23293915

  14. Soil modification by invasive plants: Effects on native and invasive species of mixed-grass prairies

    USGS Publications Warehouse

    Jordan, N.R.; Larson, D.L.; Huerd, S.C.

    2008-01-01

    Invasive plants are capable of modifying attributes of soil to facilitate further invasion by conspecifics and other invasive species. We assessed this capability in three important plant invaders of grasslands in the Great Plains region of North America: leafy spurge (Euphorbia esula), smooth brome (Bromus inermis) and crested wheatgrass (Agropyron cristatum). In a glasshouse, these three invasives or a group of native species were grown separately through three cycles of growth and soil conditioning in both steam-pasteurized and non-pasteurized soils, after which we assessed seedling growth in these soils. Two of the three invasive species, Bromus and Agropyron, exhibited significant self-facilitation via soil modification. Bromus and Agropyron also had significant facilitative effects on other invasives via soil modification, while Euphorbia had significant antagonistic effects on the other invasives. Both Agropyron and Euphorbia consistently suppressed growth of two of three native forbs, while three native grasses were generally less affected. Almost all intra- and interspecific effects of invasive soil conditioning were dependent upon presence of soil biota from field sites where these species were successful invaders. Overall, these results suggest that that invasive modification of soil microbiota can facilitate plant invasion directly or via 'cross-facilitation' of other invasive species, and moreover has potential to impede restoration of native communities after removal of an invasive species. However, certain native species that are relatively insensitive to altered soil biota (as we observed in the case of the forb Linum lewisii and the native grasses), may be valuable as 'nurse'species in restoration efforts. ?? 2007 Springer Science+Business Media B.V.

  15. Vision of a cyberinfrastructure for nonnative, invasive species management

    USGS Publications Warehouse

    2008-01-01

    Although the quantity of data on the location, status, and management of invasive species is ever increasing, invasive species data sets are often difficult to obtain and integrate. A cyberinfrastructure for such information could make these data available for Internet users. The data can be used to create regional watch lists, to send e-mail alerts when a new species enters a region, to construct models of species' current and future distributions, and to inform management. Although the exchange of environmental data over the Internet in the form of raster data is maturing, and the exchange of species occurrence data is developing quickly, there is room for improvement. In this article, we present a vision for a comprehensive invasive species cyberinfrastructure that is capable of accessing data effectively, creating models of invasive species spread, and distributing this information.

  16. Responses of native and invasive Brassicaceae species to slug herbivory

    NASA Astrophysics Data System (ADS)

    Buschmann, Holger; Edwards, Peter J.; Dietz, Hansjörg

    2006-09-01

    It has been proposed that invasive plants are often less palatable or better able to compensate for biomass losses by herbivory than related, non-invasive species growing in the same area. We hypothesised that low palatability to slugs and/or an ability to compensate for grazing damage are traits contributing to the invasiveness of perennial Brassicaceae forb species introduced to northwestern and central Europe. In common garden and glasshouse experiments we compared life-history and fitness parameters of three native and three invasive Brassicaceae species of central European provenance that were subjected to herbivory by two slug species. Using the same species we performed leaf disc preference assays and investigated the effects of slug herbivory on small plants regenerated from root fragments and seedlings in field and glasshouse experiments. We found high between-species variation in susceptibility to slug herbivory but these were not related to the native or invasive status of the species. While the proportions of seedlings damaged or killed by slug herbivory did not differ between the two groups of species, the survival of damaged root regenerates was higher than that of seedlings. Consistent with our hypothesis, the invasive species, particularly those with clonal reproduction, showed higher compensation growth after slug herbivory. Our results suggest that a high ability for compensation growth in invasive Brassicaceae species makes them more tolerant to slug damage than native congeners. The potential to regenerate from root fragments, which are less vulnerable than seedlings to herbivory, appears to be another important factor contributing to the invasiveness of some clonal species. Since many invasive plant species share these traits (though regeneration may be from plant parts other than roots), we suggest that tolerance of herbivory may be one of the characteristics of many successful invaders.

  17. Lianas as invasive species in North America: Chapter 28

    USGS Publications Warehouse

    Leicht-Young, Stacey A.; Pavlovic, Noel B.

    2015-01-01

    Liana diversity is typically low in the temperate zones; however, the influx of non-native invasive liana species in North America has increased local diversity at the expense of native habitats and species. Some of the most illustrative studies of invasive lianas in temperate North America compared the biological traits of invasive lianas with native congeners or ecological analogs. The majority of these studies focused on two species, Celastrus orbiculatus (oriental bittersweet) and Lonicera japonica (Japanese honeysuckle). Temperate zone lianas generally have higher photosynthetic rates than other early successional species and their host trees. Invasive lianas are having an increasing impact on the dynamics and trajectories of North American plant communities. They often exhibit superior growth and survival compared to their native counterparts, and in some cases, invasive lianas may directly contribute to the decline of their native correlates.

  18. Adaptive invasive species distribution models: A framework for modeling incipient invasions

    USGS Publications Warehouse

    Uden, Daniel R.; Allen, Craig R.; Angeler, David G.; Corral, Lucia; Fricke, Kent A.

    2015-01-01

    The utilization of species distribution model(s) (SDM) for approximating, explaining, and predicting changes in species’ geographic locations is increasingly promoted for proactive ecological management. Although frameworks for modeling non-invasive species distributions are relatively well developed, their counterparts for invasive species—which may not be at equilibrium within recipient environments and often exhibit rapid transformations—are lacking. Additionally, adaptive ecological management strategies address the causes and effects of biological invasions and other complex issues in social-ecological systems. We conducted a review of biological invasions, species distribution models, and adaptive practices in ecological management, and developed a framework for adaptive, niche-based, invasive species distribution model (iSDM) development and utilization. This iterative, 10-step framework promotes consistency and transparency in iSDM development, allows for changes in invasive drivers and filters, integrates mechanistic and correlative modeling techniques, balances the avoidance of type 1 and type 2 errors in predictions, encourages the linking of monitoring and management actions, and facilitates incremental improvements in models and management across space, time, and institutional boundaries. These improvements are useful for advancing coordinated invasive species modeling, management and monitoring from local scales to the regional, continental and global scales at which biological invasions occur and harm native ecosystems and economies, as well as for anticipating and responding to biological invasions under continuing global change.

  19. Placing invasive species management in a spatiotemporal context.

    PubMed

    Baker, Christopher M; Bode, Michael

    2016-04-01

    Invasive species are a worldwide issue, both ecologically and economically. A large body of work focuses on various aspects of invasive species control, including how to allocate control efforts to eradicate an invasive population as cost effectively as possible: There are a diverse range of invasive species management problems, and past mathematical analyses generally focus on isolated examples, making it hard to identify and understand parallels between the different contexts. In this study, we use a single spatiotemporal model to tackle the problem of allocating control effort for invasive species when suppressing an island invasive species, and for long-term spatial suppression projects. Using feral cat suppression as an illustrative example, we identify the optimal resource allocation for island and mainland suppression projects. Our results demonstrate how using a single model to solve different problems reveals similar characteristics of the solutions in different scenarios. As well as illustrating the insights offered by linking problems through a spatiotemporal model, we also derive novel and practically applicable results for our case studies. For temporal suppression projects on islands, we find that lengthy projects are more cost effective and that rapid control projects are only economically cost effective when population growth rates are high or diminishing returns on control effort are low. When suppressing invasive species around conservation assets (e.g., national parks or exclusion fences), we find that the size of buffer zones should depend on the ratio of the species growth and spread rate.

  20. Placing invasive species management in a spatiotemporal context.

    PubMed

    Baker, Christopher M; Bode, Michael

    2016-04-01

    Invasive species are a worldwide issue, both ecologically and economically. A large body of work focuses on various aspects of invasive species control, including how to allocate control efforts to eradicate an invasive population as cost effectively as possible: There are a diverse range of invasive species management problems, and past mathematical analyses generally focus on isolated examples, making it hard to identify and understand parallels between the different contexts. In this study, we use a single spatiotemporal model to tackle the problem of allocating control effort for invasive species when suppressing an island invasive species, and for long-term spatial suppression projects. Using feral cat suppression as an illustrative example, we identify the optimal resource allocation for island and mainland suppression projects. Our results demonstrate how using a single model to solve different problems reveals similar characteristics of the solutions in different scenarios. As well as illustrating the insights offered by linking problems through a spatiotemporal model, we also derive novel and practically applicable results for our case studies. For temporal suppression projects on islands, we find that lengthy projects are more cost effective and that rapid control projects are only economically cost effective when population growth rates are high or diminishing returns on control effort are low. When suppressing invasive species around conservation assets (e.g., national parks or exclusion fences), we find that the size of buffer zones should depend on the ratio of the species growth and spread rate. PMID:27411245

  1. Evolutionary responses to global change: lessons from invasive species.

    PubMed

    Moran, Emily V; Alexander, Jake M

    2014-05-01

    Biologists have recently devoted increasing attention to the role of rapid evolution in species' responses to environmental change. However, it is still unclear what evolutionary responses should be expected, at what rates, and whether evolution will save populations at risk of extinction. The potential of biological invasions to provide useful insights has barely been realised, despite the close analogies to species responding to global change, particularly climate change; in both cases, populations encounter novel climatic and biotic selection pressures, with expected evolutionary responses occurring over similar timescales. However, the analogy is not perfect, and invasive species are perhaps best used as an upper bound on expected change. In this article, we review what invasive species can and cannot teach us about likely evolutionary responses to global change and the constraints on those responses. We also discuss the limitations of invasive species as a model and outline directions for future research.

  2. 78 FR 9724 - Invasive Species Advisory Committee; Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-11

    ... is to provide national leadership regarding invasive species issues. Purpose of Meeting: The meeting... Ken Salazar on January 22, 2013. Note: There will be no committee business conducted during...

  3. Possibility to implement invasive species control in Swedish forests.

    PubMed

    Pettersson, Maria; Strömberg, Caroline; Keskitalo, E Carina H

    2016-02-01

    Invasive alien species constitute an increasing risk to forestry, as indeed to natural systems in general. This study reviews the legislative framework governing invasive species in the EU and Sweden, drawing upon both a legal analysis and interviews with main national level agencies responsible for implementing this framework. The study concludes that EU and Sweden are limited in how well they can act on invasive species, in particular because of the weak interpretation of the precautionary principle in the World Trade Organisation and Sanitary and Phytosanitary agreements. In the Swedish case, this interpretation also conflicts with the stronger interpretation of the precautionary principle under the Swedish Environmental Code, which could in itself provide for stronger possibilities to act on invasive species.

  4. Complex genetic patterns in closely related colonizing invasive species

    EPA Science Inventory

    Anthropogenic activities frequently result in both rapidly changing environments and translocation of species from their native ranges (i.e., biological invasions). Empirical studies suggest that many factors associated with these changes can lead to complex genetic patterns, par...

  5. Possibility to implement invasive species control in Swedish forests.

    PubMed

    Pettersson, Maria; Strömberg, Caroline; Keskitalo, E Carina H

    2016-02-01

    Invasive alien species constitute an increasing risk to forestry, as indeed to natural systems in general. This study reviews the legislative framework governing invasive species in the EU and Sweden, drawing upon both a legal analysis and interviews with main national level agencies responsible for implementing this framework. The study concludes that EU and Sweden are limited in how well they can act on invasive species, in particular because of the weak interpretation of the precautionary principle in the World Trade Organisation and Sanitary and Phytosanitary agreements. In the Swedish case, this interpretation also conflicts with the stronger interpretation of the precautionary principle under the Swedish Environmental Code, which could in itself provide for stronger possibilities to act on invasive species. PMID:26744055

  6. Unicoloniality in Reticulitermes urbis: a novel feature in a potentially invasive termite species.

    PubMed

    Leniaud, L; Pichon, A; Uva, P; Bagnères, A-G

    2009-02-01

    Social insects are among the world's most successful species at invading of new habitats. A good example of this invasive ability is Reticulitermes (Rhinotermitidae), a prominent group of subterranean termites. As a result of human intervention, i.e. transportation and creation of urban heat islands, Reticulitermes have been able to invade and thrive in cities located in areas where the natural habitat is normally too cold for colonization. They commonly infest man-made structures where they can cause extensive damage.This study was designed to evaluate the invasiveness of Reticulitermes urbis that was probably introduced in France from the Balkans. Invasive potential was assessed on the basis of features typical to invasive social insects, i.e. unicoloniality, low intraspecific aggression, high level of polygyny and colony reproduction by budding. The opportunity to study establishment and spreading processes arose after extensive sampling of an imported Reticulitermes urbis population was performed over the entire city of Domène, France (Rhône-Alpes region).For the first time, genetic analysis showed that the termites belonged to a single 'genetic entity' forming a vast colony covering about seven hectares. The colony was structured as an extended family with separate reproductive centres. We speculate that termites were introduced in a single location from which they gradually budded throughout the old town. Based on the absence of aggression among different nests within the colony, we defined this 'genetic entity' as a supercolony. PMID:18590600

  7. Acquisition of Paclitaxel Resistance Is Associated With a More Aggressive and Invasive Phenotype in Prostate Cancer

    PubMed Central

    Kim, John J.; Yin, Bo; Christudass, Christhunesa S.; Terada, Naoki; Rajagopalan, Krithika; Fabry, Ben; Lee, Danielle Y.; Shiraishi, Takumi; Getzenberg, Robert H.; Veltri, Robert W.; An, Steven S.; Mooney, Steven M.

    2014-01-01

    Drug resistance is a major limitation to the successful treatment of advanced prostate cancer (PCa). Patients who have metastatic, castration-resistant PCa (mCRPC) are treated with chemotherapeutics. However, these standard therapy modalities culminate in the development of resistance. We established paclitaxel resistance in a classic, androgen-insensitive mCRPC cell line (DU145) and, using a suite of molecular and biophysical methods, characterized the structural and functional changes in vitro and in vivo that are associated with the development of drug resistance. After acquiring paclitaxel-resistance, cells exhibited an abnormal nuclear morphology with extensive chromosomal content, an increase in stiffness, and faster cytoskeletal remodeling dynamics. Compared with the parental DU145, paclitaxel-resistant (DU145-TxR) cells became highly invasive and motile in vitro, exercised greater cell traction forces, and formed larger and rapidly growing tumors in mouse xenografts. Furthermore, DU145-TxR cells showed a discrete loss of keratins but a distinct gain of ZEB1, Vimentin and Snail, suggesting an epithelial-to-mesenchymal transition. These findings demonstrate, for the first time, that paclitaxel resistance in PCa is associated with a trans-differentiation of epithelial cell machinery that enables more aggressive and invasive phenotype and portend new strategies for developing novel biomarkers and effective treatment modalities for PCa patients. PMID:23192682

  8. Assessing the effects of climate change on aquatic invasive species.

    PubMed

    Rahel, Frank J; Olden, Julian D

    2008-06-01

    Different components of global environmental change are typically studied and managed independently, although there is a growing recognition that multiple drivers often interact in complex and nonadditive ways. We present a conceptual framework and empirical review of the interactive effects of climate change and invasive species in freshwater ecosystems. Climate change is expected to result in warmer water temperatures, shorter duration of ice cover, altered streamflow patterns, increased salinization, and increased demand for water storage and conveyance structures. These changes will alter the pathways by which non-native species enter aquatic systems by expanding fish-culture facilities and water gardens to new areas and by facilitating the spread of species during floods. Climate change will influence the likelihood of new species becoming established by eliminating cold temperatures or winter hypoxia that currently prevent survival and by increasing the construction of reservoirs that serve as hotspots for invasive species. Climate change will modify the ecological impacts of invasive species by enhancing their competitive and predatory effects on native species and by increasing the virulence of some diseases. As a result of climate change, new prevention and control strategies such as barrier construction or removal efforts may be needed to control invasive species that currently have only moderate effects or that are limited by seasonally unfavorable conditions. Although most researchers focus on how climate change will increase the number and severity of invasions, some invasive coldwater species may be unable to persist under the new climate conditions. Our findings highlight the complex interactions between climate change and invasive species that will influence how aquatic ecosystems and their biota will respond to novel environmental conditions.

  9. What can decision analysis do for invasive species management?

    PubMed

    Maguire, Lynn A

    2004-08-01

    Decisions about management of invasive species are difficult for all the reasons typically addressed by multiattribute decision analysis: uncertain outcomes, multiple and conflicting objectives, and many interested parties with differing views on both facts and values. This article illustrates how the tools of multiattribute analysis can improve management of invasive species, with an emphasis on making explicit the social values and preferences that must inform invasive species management. Risk assessment protocols developed previously for invasive species management typically suffer from two interacting flaws: (1) separating risk assessment from risk management, thus disrupting essential connections between the social values at stake in invasive species decisions and the scientific knowledge necessary to predict the likely impacts of management actions, and (2) relying on expert judgment about risk framed in qualitative and value-laden terms, inadvertently mixing the expert's judgment about what is likely to happen with personal preferences. Using the values structuring and probability-modeling elements of formal decision analysis can remedy these difficulties and make invasive species management responsive to both good science and public values. The management of feral pigs in Hawaiian ecosystems illustrates the need for such an integrated approach.

  10. What can decision analysis do for invasive species management?

    PubMed

    Maguire, Lynn A

    2004-08-01

    Decisions about management of invasive species are difficult for all the reasons typically addressed by multiattribute decision analysis: uncertain outcomes, multiple and conflicting objectives, and many interested parties with differing views on both facts and values. This article illustrates how the tools of multiattribute analysis can improve management of invasive species, with an emphasis on making explicit the social values and preferences that must inform invasive species management. Risk assessment protocols developed previously for invasive species management typically suffer from two interacting flaws: (1) separating risk assessment from risk management, thus disrupting essential connections between the social values at stake in invasive species decisions and the scientific knowledge necessary to predict the likely impacts of management actions, and (2) relying on expert judgment about risk framed in qualitative and value-laden terms, inadvertently mixing the expert's judgment about what is likely to happen with personal preferences. Using the values structuring and probability-modeling elements of formal decision analysis can remedy these difficulties and make invasive species management responsive to both good science and public values. The management of feral pigs in Hawaiian ecosystems illustrates the need for such an integrated approach. PMID:15357805

  11. Aquatic invasive species harming U.S. ecosystems, fisheries

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Biological invasions are fundamentally changing the structure and function of many ecosystems around the world, Gregory Ruiz, senior scientist with the Smithsonian Environmental Research Center in Edgewater, Maryland, told a 20 June U.S. Congressional hearing on aquatic invasive species."Not only have many [nuisance aquatic species] become established, but many communities are now dominated by [them] in terms of number or organisms, biomass, and ecological processes," Ruiz said. "In some cases, it is clear that invasions have caused dramatic shifts in food webs, chemical cycling, disease outbreaks, and commercial fisheries."

  12. Aquatic invasive species harming U.S. ecosystems, fisheries

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Biological invasions are fundamentally changing the structure and function of many ecosystems around the world, Gregory Ruiz, senior scientist with the Smithsonian Environmental Research Center in Edgewater, Maryland, told a 20 June U.S. Congressional hearing on aquatic invasive species.“Not only have many [nuisance aquatic species] become established, but many communities are now dominated by [them] in terms of number or organisms, biomass, and ecological processes,” Ruiz said. “In some cases, it is clear that invasions have caused dramatic shifts in food webs, chemical cycling, disease outbreaks, and commercial fisheries.”

  13. Understanding of evolutionary genomics of invasive species of rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red rice is an aggressive, weedy form of cultivated rice (Oryza sativa) that infests crop fields and is a primary factor limiting rice productivity in the U.S. and worldwide. As the weedy relative of a genomic model species, red rice is a model for understanding the genetic and evolutionary mechani...

  14. Ecological niche transferability using invasive species as a case study.

    PubMed

    Fernández, Miguel; Hamilton, Healy

    2015-01-01

    Species distribution modeling is widely applied to predict invasive species distributions and species range shifts under climate change. Accurate predictions depend upon meeting the assumption that ecological niches are conserved, i.e., spatially or temporally transferable. Here we present a multi-taxon comparative analysis of niche conservatism using biological invasion events well documented in natural history museum collections. Our goal is to assess spatial transferability of the climatic niche of a range of noxious terrestrial invasive species using two complementary approaches. First we compare species' native versus invasive ranges in environmental space using two distinct methods, Principal Components Analysis and Mahalanobis distance. Second we compare species' native versus invaded ranges in geographic space as estimated using the species distribution modeling technique Maxent and the comparative index Hellinger's I. We find that species exhibit a range of responses, from almost complete transferability, in which the invaded niches completely overlap with the native niches, to a complete dissociation between native and invaded ranges. Intermediate responses included expansion of dimension attributable to either temperature or precipitation derived variables, as well as niche expansion in multiple dimensions. We conclude that the ecological niche in the native range is generally a poor predictor of invaded range and, by analogy, the ecological niche may be a poor predictor of range shifts under climate change. We suggest that assessing dimensions of niche transferability prior to standard species distribution modeling may improve the understanding of species' dynamics in the invaded range.

  15. Near term climate projections for invasive species distributions

    USGS Publications Warehouse

    Jarnevich, C.S.; Stohlgren, T.J.

    2009-01-01

    Climate change and invasive species pose important conservation issues separately, and should be examined together. We used existing long term climate datasets for the US to project potential climate change into the future at a finer spatial and temporal resolution than the climate change scenarios generally available. These fine scale projections, along with new species distribution modeling techniques to forecast the potential extent of invasive species, can provide useful information to aide conservation and invasive species management efforts. We created habitat suitability maps for Pueraria montana (kudzu) under current climatic conditions and potential average conditions up to 30 years in the future. We examined how the potential distribution of this species will be affected by changing climate, and the management implications associated with these changes. Our models indicated that P. montana may increase its distribution particularly in the Northeast with climate change and may decrease in other areas. ?? 2008 Springer Science+Business Media B.V.

  16. Population-specific responses to an invasive species.

    PubMed

    Reichard, Martin; Douda, Karel; Przybyłski, Mirosław; Popa, Oana P; Karbanová, Eva; Matasová, Klára; Rylková, Kateřina; Polačik, Matej; Blažek, Radim; Smith, Carl

    2015-08-01

    Predicting the impacts of non-native species remains a challenge. As populations of a species are genetically and phenotypically variable, the impact of non-native species on local taxa could crucially depend on population-specific traits and adaptations of both native and non-native species. Bitterling fishes are brood parasites of unionid mussels and unionid mussels produce larvae that parasitize fishes. We used common garden experiments to measure three key elements in the bitterling-mussel association among two populations of an invasive mussel (Anodonta woodiana) and four populations of European bitterling (Rhodeus amarus). The impact of the invasive mussel varied between geographically distinct R. amarus lineages and between local populations within lineages. The capacity of parasitic larvae of the invasive mussel to exploit R. amarus was higher in a Danubian than in a Baltic R. amarus lineage and in allopatric than in sympatric R. amarus populations. Maladaptive oviposition by R. amarus into A. woodiana varied among populations, with significant population-specific consequences for R. amarus recruitment. We suggest that variation in coevolutionary states may predispose different populations to divergent responses. Given that coevolutionary relationships are ubiquitous, population-specific attributes of invasive and native populations may play a critical role in the outcome of invasion. We argue for a shift from a species-centred to population-centred perspective of the impacts of invasions.

  17. Population-specific responses to an invasive species

    PubMed Central

    Reichard, Martin; Douda, Karel; Przybyłski, Mirosław; Popa, Oana P.; Karbanová, Eva; Matasová, Klára; Rylková, Kateřina; Polačik, Matej; Blažek, Radim; Smith, Carl

    2015-01-01

    Predicting the impacts of non-native species remains a challenge. As populations of a species are genetically and phenotypically variable, the impact of non-native species on local taxa could crucially depend on population-specific traits and adaptations of both native and non-native species. Bitterling fishes are brood parasites of unionid mussels and unionid mussels produce larvae that parasitize fishes. We used common garden experiments to measure three key elements in the bitterling–mussel association among two populations of an invasive mussel (Anodonta woodiana) and four populations of European bitterling (Rhodeus amarus). The impact of the invasive mussel varied between geographically distinct R. amarus lineages and between local populations within lineages. The capacity of parasitic larvae of the invasive mussel to exploit R. amarus was higher in a Danubian than in a Baltic R. amarus lineage and in allopatric than in sympatric R. amarus populations. Maladaptive oviposition by R. amarus into A. woodiana varied among populations, with significant population-specific consequences for R. amarus recruitment. We suggest that variation in coevolutionary states may predispose different populations to divergent responses. Given that coevolutionary relationships are ubiquitous, population-specific attributes of invasive and native populations may play a critical role in the outcome of invasion. We argue for a shift from a species-centred to population-centred perspective of the impacts of invasions. PMID:26180070

  18. Essential elements of online information networks on invasive alien species

    USGS Publications Warehouse

    Simpson, A.; Sellers, E.; Grosse, A.; Xie, Y.

    2006-01-01

    In order to be effective, information must be placed in the proper context and organized in a manner that is logical and (preferably) standardized. Recently, invasive alien species (IAS) scientists have begun to create online networks to share their information concerning IAS prevention and control. At a special networking session at the Beijing International Symposium on Biological Invasions, an online Eastern Asia-North American IAS Information Network (EA-NA Network) was proposed. To prepare for the development of this network, and to provide models for other regional collaborations, we compare four examples of global, regional, and national online IAS information networks: the Global Invasive Species Information Network, the Invasives Information Network of the Inter-American Biodiversity Information Network, the Chinese Species Information System, and the Invasive Species Information Node of the US National Biological Information Infrastructure. We conclude that IAS networks require a common goal, dedicated leaders, effective communication, and broad endorsement, in order to obtain sustainable, long-term funding and long-term stability. They need to start small, use the experience of other networks, partner with others, and showcase benefits. Global integration and synergy among invasive species networks will succeed with contributions from both the top-down and the bottom-up. ?? 2006 Springer.

  19. Hybridization can facilitate species invasions, even without enhancing local adaptation.

    PubMed

    Mesgaran, Mohsen B; Lewis, Mark A; Ades, Peter K; Donohue, Kathleen; Ohadi, Sara; Li, Chengjun; Cousens, Roger D

    2016-09-01

    The founding population in most new species introductions, or at the leading edge of an ongoing invasion, is likely to be small. Severe Allee effects-reductions in individual fitness at low population density-may then result in a failure of the species to colonize, even if the habitat could support a much larger population. Using a simulation model for plant populations that incorporates demography, mating systems, quantitative genetics, and pollinators, we show that Allee effects can potentially be overcome by transient hybridization with a resident species or an earlier colonizer. This mechanism does not require the invocation of adaptive changes usually attributed to invasions following hybridization. We verify our result in a case study of sequential invasions by two plant species where the outcrosser Cakile maritima has replaced an earlier, inbreeding, colonizer Cakile edentula (Brassicaceae). Observed historical rates of replacement are consistent with model predictions from hybrid-alleviated Allee effects in outcrossers, although other causes cannot be ruled out.

  20. Managing aquatic species of conservation concern in the face of climate change and invasive species.

    PubMed

    Rahel, Frank J; Bierwagen, Britta; Taniguchi, Yoshinori

    2008-06-01

    The difficult task of managing species of conservation concern is likely to become even more challenging due to the interaction of climate change and invasive species. In addition to direct effects on habitat quality, climate change will foster the expansion of invasive species into new areas and magnify the effects of invasive species already present by altering competitive dominance, increasing predation rates, and enhancing the virulence of diseases. In some cases parapatric species may expand into new habitats and have detrimental effects that are similar to those of invading non-native species. The traditional strategy of isolating imperiled species in reserves may not be adequate if habitat conditions change beyond historic ranges or in ways that favor invasive species. The consequences of climate change will require a more active management paradigm that includes implementing habitat improvements that reduce the effects of climate change and creating migration barriers that prevent an influx of invasive species. Other management actions that should be considered include providing dispersal corridors that allow species to track environmental changes, translocating species to newly suitable habitats where migration is not possible, and developing action plans for the early detection and eradication of new invasive species.

  1. Managing aquatic species of conservation concern in the face of climate change and invasive species.

    PubMed

    Rahel, Frank J; Bierwagen, Britta; Taniguchi, Yoshinori

    2008-06-01

    The difficult task of managing species of conservation concern is likely to become even more challenging due to the interaction of climate change and invasive species. In addition to direct effects on habitat quality, climate change will foster the expansion of invasive species into new areas and magnify the effects of invasive species already present by altering competitive dominance, increasing predation rates, and enhancing the virulence of diseases. In some cases parapatric species may expand into new habitats and have detrimental effects that are similar to those of invading non-native species. The traditional strategy of isolating imperiled species in reserves may not be adequate if habitat conditions change beyond historic ranges or in ways that favor invasive species. The consequences of climate change will require a more active management paradigm that includes implementing habitat improvements that reduce the effects of climate change and creating migration barriers that prevent an influx of invasive species. Other management actions that should be considered include providing dispersal corridors that allow species to track environmental changes, translocating species to newly suitable habitats where migration is not possible, and developing action plans for the early detection and eradication of new invasive species. PMID:18577084

  2. Ecological Niche Transferability Using Invasive Species as a Case Study

    PubMed Central

    Fernández, Miguel; Hamilton, Healy

    2015-01-01

    Species distribution modeling is widely applied to predict invasive species distributions and species range shifts under climate change. Accurate predictions depend upon meeting the assumption that ecological niches are conserved, i.e., spatially or temporally transferable. Here we present a multi-taxon comparative analysis of niche conservatism using biological invasion events well documented in natural history museum collections. Our goal is to assess spatial transferability of the climatic niche of a range of noxious terrestrial invasive species using two complementary approaches. First we compare species’ native versus invasive ranges in environmental space using two distinct methods, Principal Components Analysis and Mahalanobis distance. Second we compare species’ native versus invaded ranges in geographic space as estimated using the species distribution modeling technique Maxent and the comparative index Hellinger’s I. We find that species exhibit a range of responses, from almost complete transferability, in which the invaded niches completely overlap with the native niches, to a complete dissociation between native and invaded ranges. Intermediate responses included expansion of dimension attributable to either temperature or precipitation derived variables, as well as niche expansion in multiple dimensions. We conclude that the ecological niche in the native range is generally a poor predictor of invaded range and, by analogy, the ecological niche may be a poor predictor of range shifts under climate change. We suggest that assessing dimensions of niche transferability prior to standard species distribution modeling may improve the understanding of species’ dynamics in the invaded range. PMID:25785858

  3. Characterising Wetland Properties in Relation to the Abundance of an Invasive Species

    NASA Astrophysics Data System (ADS)

    Yanosik, L. E.; McEnroe, N. A.

    2008-12-01

    Purple loosestrife (Lythrum salicaria) is a colorful but aggressive invasive species found at the Goodyear Swamp Sanctuary in Upstate New York. Flowering from June to September allows a large number of seeds to spread quickly throughout the growing season. This invasive species can alter can alter a wetland's functional properties by impacting the hydrology and soil properties. These modified properties are of concern to wetland scientists and wetland managers as the characterisation of wetland condition becomes more important. Control or eradication of purple loosestrife within the Goodyear Swamp has become regionally important and is carried out by a U.S. Department of Agriculture approved leaf-eating beetle Galerucella calmariensis. A study to investigate the environmental conditions in which purple loosestrife has propagated and changed the native flora of Goodyear Swamp was developed. The aim was to characterize the soil physiochemical properties and hydrological conditions under which the species occurs. These data are relevant to be able to highlight the wetland conditions under which purple loosestrife might invade and to be able to compare treated and untreated wetlands. We highlight key differences in wetland functional properties caused by the invasion of this species.

  4. Using genetic research to inform imperiled and invasive species management

    USGS Publications Warehouse

    Hunter, Margaret E.; Pawlitz, Rachel J.

    2012-01-01

    The long-term viability of species and populations is related to their potential to migrate, reproduce, and adapt to environmental changes. In the southeast United States, U.S. Geological Survey (USGS) scientists are providing resource managers with genetic information to improve the long-term survival and sustainability of the Nation's aquatic species. Research focused on native and imperiled species can assess the genetic factors influencing their survival and recovery, while work on invasive species can provide information on their proliferation, dispersal, and impacts on native species.

  5. The Human Release Hypothesis for biological invasions: human activity as a determinant of the abundance of invasive plant species.

    PubMed

    Zimmermann, Heike; Brandt, Patric; Fischer, Joern; Welk, Erik; von Wehrden, Henrik

    2014-01-01

    Research on biological invasions has increased rapidly over the past 30 years, generating numerous explanations of how species become invasive. While the mechanisms of invasive species establishment are well studied, the mechanisms driving abundance patterns (i.e. patterns of population density and population size) remain poorly understood. It is assumed that invasive species typically have higher abundances in their new environments than in their native ranges, and patterns of invasive species abundance differ between invaded regions. To explain differences in invasive species abundance, we propose the Human Release Hypothesis. In parallel to the established Enemy Release Hypothesis, this hypothesis states that the differences in abundance of invasive species are found between regions because population expansion is reduced in some regions through continuous land management and associated cutting of the invasive species. The Human Release Hypothesis does not negate other important drivers of species invasions, but rather should be considered as a potentially important complementary mechanism. We illustrate the hypothesis via a case study on an invasive rose species, and hypothesize which locations globally may be most likely to support high abundances of invasive species. We propose that more extensive empirical work on the Human Release Hypothesis could be useful to test its general applicability.

  6. The Human Release Hypothesis for biological invasions: human activity as a determinant of the abundance of invasive plant species.

    PubMed

    Zimmermann, Heike; Brandt, Patric; Fischer, Joern; Welk, Erik; von Wehrden, Henrik

    2014-01-01

    Research on biological invasions has increased rapidly over the past 30 years, generating numerous explanations of how species become invasive. While the mechanisms of invasive species establishment are well studied, the mechanisms driving abundance patterns (i.e. patterns of population density and population size) remain poorly understood. It is assumed that invasive species typically have higher abundances in their new environments than in their native ranges, and patterns of invasive species abundance differ between invaded regions. To explain differences in invasive species abundance, we propose the Human Release Hypothesis. In parallel to the established Enemy Release Hypothesis, this hypothesis states that the differences in abundance of invasive species are found between regions because population expansion is reduced in some regions through continuous land management and associated cutting of the invasive species. The Human Release Hypothesis does not negate other important drivers of species invasions, but rather should be considered as a potentially important complementary mechanism. We illustrate the hypothesis via a case study on an invasive rose species, and hypothesize which locations globally may be most likely to support high abundances of invasive species. We propose that more extensive empirical work on the Human Release Hypothesis could be useful to test its general applicability. PMID:25352979

  7. The Human Release Hypothesis for biological invasions: human activity as a determinant of the abundance of invasive plant species

    PubMed Central

    Zimmermann, Heike; Brandt, Patric; Fischer, Joern; Welk, Erik; von Wehrden, Henrik

    2014-01-01

    Research on biological invasions has increased rapidly over the past 30 years, generating numerous explanations of how species become invasive. While the mechanisms of invasive species establishment are well studied, the mechanisms driving abundance patterns (i.e. patterns of population density and population size) remain poorly understood. It is assumed that invasive species typically have higher abundances in their new environments than in their native ranges, and patterns of invasive species abundance differ between invaded regions. To explain differences in invasive species abundance, we propose the Human Release Hypothesis. In parallel to the established Enemy Release Hypothesis, this hypothesis states that the differences in abundance of invasive species are found between regions because population expansion is reduced in some regions through continuous land management and associated cutting of the invasive species. The Human Release Hypothesis does not negate other important drivers of species invasions, but rather should be considered as a potentially important complementary mechanism. We illustrate the hypothesis via a case study on an invasive rose species, and hypothesize which locations globally may be most likely to support high abundances of invasive species. We propose that more extensive empirical work on the Human Release Hypothesis could be useful to test its general applicability. PMID:25352979

  8. Non-native invasive species and novel ecosystems

    PubMed Central

    2015-01-01

    Invasions by non-native species have caused many extinctions and greatly modified many ecosystems and are among the major anthropogenic global changes transforming the earth. Beginning in the mid-1980s, a dramatic burst of research in invasion biology has revealed a plethora of previously unrecognized impacts and laid bare the scope of the phenomenon. Similarly, research on various methods of managing invasions has expanded enormously, yielding incremental improvements in traditional methods and the advent of several new approaches, including the use of species-specific genetic and pheromonal methods. This research has advanced the field of restoration ecology, of which invasion management is a key component. Amidst this research progress, a group of critics has attempted to cast doubt on the extent of damaging impacts caused by non-native invasive species, the feasibility of counteracting them and restoring ecosystems, and the motives of scientists engaged in such endeavors. The criticisms are misguided but can potentially impede management of this pressing problem. PMID:26097720

  9. Non-native invasive species and novel ecosystems.

    PubMed

    Simberloff, Daniel

    2015-01-01

    Invasions by non-native species have caused many extinctions and greatly modified many ecosystems and are among the major anthropogenic global changes transforming the earth. Beginning in the mid-1980s, a dramatic burst of research in invasion biology has revealed a plethora of previously unrecognized impacts and laid bare the scope of the phenomenon. Similarly, research on various methods of managing invasions has expanded enormously, yielding incremental improvements in traditional methods and the advent of several new approaches, including the use of species-specific genetic and pheromonal methods. This research has advanced the field of restoration ecology, of which invasion management is a key component. Amidst this research progress, a group of critics has attempted to cast doubt on the extent of damaging impacts caused by non-native invasive species, the feasibility of counteracting them and restoring ecosystems, and the motives of scientists engaged in such endeavors. The criticisms are misguided but can potentially impede management of this pressing problem. PMID:26097720

  10. The impact of native competitors on an alien invasive: temporal niche shifts to avoid interspecific aggression?

    PubMed

    Harrington, Lauren A; Harrington, Andrew L; Yamaguchi, Nobuyuki; Thom, Michael D; Ferreras, Pablo; Windham, Thomas R; Macdonald, David W

    2009-05-01

    The American mink, Neovison vison, is an established, alien invasive species in the United Kingdom that originally colonized the country at a time when two native mustelids (otters, Lutra lutra, and polecats, Mustela putorius) were largely absent. Both of these species are now recovering their populations nationally. We compared the relative abundance and the behavior of mink in the 1990s and in the 2000s in an area of southern England where both otters and polecats were absent in the 1990s but reappeared in the intervening years. We found that mink were still abundant in the 2000s in the presence of otters and polecats, but that they appeared to have altered some aspects of their behavior. In accordance with previous studies, we found that mink consumed fewer fish in the presence of otters. We also found that mink were predominantly nocturnal in the 1990s (in the absence of competitors) but were predominantly diurnal in the 2000s (in the presence of competitors). We hypothesize that this temporal shift may be an avoidance mechanism allowing the coexistence of mink with the otter and the polecat, although we are unable to attribute the shift to one or the other species. We also found that mink in the presence of competitors weighed less but remained the same size, suggesting the possibility of a competitor-mediated decline in overall body condition. This is one of very few field studies demonstrating a complete temporal shift in apparent response to competitors. The implications of this study are that recovering otter populations may not lead to significant and long-term reductions in the number of invasive mink in the United Kingdom as has been suggested in the media, although we cannot exclude the possibility of a decline in mink in the longer-term. PMID:19537542

  11. Global ecological impacts of invasive species in aquatic ecosystems.

    PubMed

    Gallardo, Belinda; Clavero, Miguel; Sánchez, Marta I; Vilà, Montserrat

    2016-01-01

    The introduction of invasive species, which often differ functionally from the components of the recipient community, generates ecological impacts that propagate along the food web. This review aims to determine how consistent the impacts of aquatic invasions are across taxa and habitats. To that end, we present a global meta-analysis from 151 publications (733 cases), covering a wide range of invaders (primary producers, filter collectors, omnivores and predators), resident aquatic community components (macrophytes, phytoplankton, zooplankton, benthic invertebrates and fish) and habitats (rivers, lakes and estuaries). Our synthesis suggests a strong negative influence of invasive species on the abundance of aquatic communities, particularly macrophytes, zooplankton and fish. In contrast, there was no general evidence for a decrease in species diversity in invaded habitats, suggesting a time lag between rapid abundance changes and local extinctions. Invaded habitats showed increased water turbidity, nitrogen and organic matter concentration, which are related to the capacity of invaders to transform habitats and increase eutrophication. The expansion of invasive macrophytes caused the largest decrease in fish abundance, the filtering activity of filter collectors depleted planktonic communities, omnivores (including both facultative and obligate herbivores) were responsible for the greatest decline in macrophyte abundance, and benthic invertebrates were most negatively affected by the introduction of new predators. These impacts were relatively consistent across habitats and experimental approaches. Based on our results, we propose a framework of positive and negative links between invasive species at four trophic positions and the five different components of recipient communities. This framework incorporates both direct biotic interactions (predation, competition, grazing) and indirect changes to the water physicochemical conditions mediated by invaders (habitat

  12. Global ecological impacts of invasive species in aquatic ecosystems.

    PubMed

    Gallardo, Belinda; Clavero, Miguel; Sánchez, Marta I; Vilà, Montserrat

    2016-01-01

    The introduction of invasive species, which often differ functionally from the components of the recipient community, generates ecological impacts that propagate along the food web. This review aims to determine how consistent the impacts of aquatic invasions are across taxa and habitats. To that end, we present a global meta-analysis from 151 publications (733 cases), covering a wide range of invaders (primary producers, filter collectors, omnivores and predators), resident aquatic community components (macrophytes, phytoplankton, zooplankton, benthic invertebrates and fish) and habitats (rivers, lakes and estuaries). Our synthesis suggests a strong negative influence of invasive species on the abundance of aquatic communities, particularly macrophytes, zooplankton and fish. In contrast, there was no general evidence for a decrease in species diversity in invaded habitats, suggesting a time lag between rapid abundance changes and local extinctions. Invaded habitats showed increased water turbidity, nitrogen and organic matter concentration, which are related to the capacity of invaders to transform habitats and increase eutrophication. The expansion of invasive macrophytes caused the largest decrease in fish abundance, the filtering activity of filter collectors depleted planktonic communities, omnivores (including both facultative and obligate herbivores) were responsible for the greatest decline in macrophyte abundance, and benthic invertebrates were most negatively affected by the introduction of new predators. These impacts were relatively consistent across habitats and experimental approaches. Based on our results, we propose a framework of positive and negative links between invasive species at four trophic positions and the five different components of recipient communities. This framework incorporates both direct biotic interactions (predation, competition, grazing) and indirect changes to the water physicochemical conditions mediated by invaders (habitat

  13. CLIMATE CHANGE AND AQUATIC INVASIVE SPECIES (Final Report)

    EPA Science Inventory

    This report reviews available literature on climate-change effects on aquatic invasive species (AIS) and examines state-level AIS management activities. Data on management activities came from publicly available information, was analyzed with respect to climate-change effects, a...

  14. Ecology of cryptic invasions: latitudinal segregation among Watersipora (Bryozoa) species

    EPA Science Inventory

    Watersipora is an invasive genus of bryozoans, easily dispersed by fouled vessels. We examined Cytochrome c oxidase subunit I haplotypes from introduced populations on the US Pacific coastline to investigate geographic segregation of species and/or haplotypes. In California, the ...

  15. The importance of education in managing invasive plant species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasive plant species can establish in diverse environments and with the increase in human mobility, they are no longer restricted to isolated pockets in remote parts of the world. Cheat grass (Bromus tectorum L.) in rangelands, purple loosestrife (Lythrum salicaria L.) in wet lands and Canada this...

  16. AIRBORNE HYPERSPECTRAL IDENTIFICATION OF INVASIVE AND OPPORTUNISTIC WETLANDS PLANT SPECIES

    EPA Science Inventory

    Coastal wetlands are among the most fragmented and disturbed ecosystems and the Great Lakes are no exception. One possible result is the observed increase in the presence and dominance of invasive and other opportunistic plant species, such as the common reed (Phragmites australi...

  17. Disruption of foraging by a dominant invasive species to decrease its competitive ability.

    PubMed

    Westermann, Fabian Ludwig; Suckling, David Maxwell; Lester, Philip John

    2014-01-01

    Invasive species are a major threat to biodiversity when dominant within their newly established habitat. The globally distributed Argentine ant Linepithema humile has been reported to break the trade-off between interference and exploitative competition, achieve high population densities, and overpower nests of many endemic ant species. We have used the sensitivity of the Argentine ant to the synthetic trail pheromone (Z)-9-hexadecanal to investigate species interactions for the first time. We predicted that disrupting Argentine ant trail following behaviour would reduce their competitive ability and create an opportunity for three other resident species to increase their foraging success. Argentine ant success in the control was reduced with increasing pheromone concentration, as predicted, but interactions varied among competing resident species. These behavioural variations provide an explanation for observed differences in foraging success of the competing resident species and how much each of these individual competitors can increase their foraging if the competitive ability of the dominant invader is decreased. The mechanism for the observed increase in resource acquisition of resident species appears to be a decrease in aggressive behaviour displayed by the Argentine ant, which may create an opportunity for other resident species to forage more successfully. Our demonstration of species interactions with trail pheromone disruption is the first known case of reduced dominance under a pheromone treatment in ants.

  18. Disruption of Foraging by a Dominant Invasive Species to Decrease Its Competitive Ability

    PubMed Central

    Westermann, Fabian Ludwig; Suckling, David Maxwell; Lester, Philip John

    2014-01-01

    Invasive species are a major threat to biodiversity when dominant within their newly established habitat. The globally distributed Argentine ant Linepithema humile has been reported to break the trade-off between interference and exploitative competition, achieve high population densities, and overpower nests of many endemic ant species. We have used the sensitivity of the Argentine ant to the synthetic trail pheromone (Z)-9-hexadecanal to investigate species interactions for the first time. We predicted that disrupting Argentine ant trail following behaviour would reduce their competitive ability and create an opportunity for three other resident species to increase their foraging success. Argentine ant success in the control was reduced with increasing pheromone concentration, as predicted, but interactions varied among competing resident species. These behavioural variations provide an explanation for observed differences in foraging success of the competing resident species and how much each of these individual competitors can increase their foraging if the competitive ability of the dominant invader is decreased. The mechanism for the observed increase in resource acquisition of resident species appears to be a decrease in aggressive behaviour displayed by the Argentine ant, which may create an opportunity for other resident species to forage more successfully. Our demonstration of species interactions with trail pheromone disruption is the first known case of reduced dominance under a pheromone treatment in ants. PMID:24594633

  19. Landscape corridors can increase invasion by an exotic species and reduce diversity of native species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although corridors have become commonplace in conservation to mitigate negative effects of habitat fragmentation, concerns persist that they may facilitate spread of invasive species. In a large-scale experiment, we measured effects of corridors on invasive fire ants, Solenopsis invicta, and on comm...

  20. Functional morphology underlies performance differences among invasive and non-invasive ruderal Rubus species.

    PubMed

    Caplan, Joshua S; Yeakley, J Alan

    2013-10-01

    The ability of some introduced plant species to outperform native species under altered resource conditions makes them highly productive in ecosystems with surplus resources. However, ruderal native species are also productive when resources are available. The differences in abundance among invasive and non-invasive ruderal plants may be related to differences in ability to maintain access to or store resources for continual use. For a group of ruderal species in the Pacific Northwest of North America (invasive Rubus armeniacus; non-invasive R. ursinus, R. parviflorus, R. spectabilis, and Rosa nutkana), we sought to determine whether differences in functional morphological traits, especially metrics of water access and storage, were consistent with differences in water conductance and growth rate. We also investigated the changes in these traits in response to abundant vs. limited water availability. Rubus armeniacus had among the largest root systems and cane cross-sectional areas, the lowest cane tissue densities, and the most plastic ratios of leaf area to plant mass and of xylem area to leaf area, often sharing its rank with R. ursinus or Rosa nutkana. These three species had the highest water conductance and relative growth rates, though Rubus armeniacus grew the most rapidly when water was not limited. Our results suggest that water access and storage abilities vary with morphology among the ruderal species investigated, and that these abilities, in combination, are greatest in the invasive. In turn, functional morphological traits allow R. armeniacus to maintain rapid gas exchange rates during the dry summers in its invaded range, conferring on it high productivity.

  1. A single ectomycorrhizal fungal species can enable a Pinus invasion.

    PubMed

    Hayward, Jeremy; Horton, Thomas R; Pauchard, Aníbal; Nuñnez, Martin A

    2015-05-01

    Like all obligately ectomycorrhizal plants, pines require ectomycorrhizal fungal symbionts to complete their life cycle. Pines introduced into regions far from their native range are typically incompatible with local ectomycorrhizal fungi, and, when they invade, coinvade with fungi from their native range. While the identities and distributions of coinvasive fungal symbionts of pine invasions are poorly known, communities that have been studied are notably depauperate. However, it is not yet clear whether any number of fungal coinvaders is able to support a Pinaceae invasion, or whether very depauperate communities are unable to invade. Here, we ask whether there is evidence for a minimum species richness of fungal symbionts necessary to support a pine/ectomycorrhizal fungus coinvasion. We sampled a Pinus contorta invasion front near Coyhaique, Chile, using molecular barcoding to identify ectomycorrhizal fungi. We report that the site has a total richness of four species, and that many invasive trees appear to be supported by only a single ectomycorrhizal fungus, Suillus luteus. We conclude that a single ectomycorrhizal (ECM) fungus can suffice to enable a pine invasion. PMID:26236856

  2. Geographical range, heat tolerance and invasion success in aquatic species

    PubMed Central

    Bates, Amanda E.; McKelvie, Catherine M.; Sorte, Cascade J. B.; Morley, Simon A.; Jones, Nicholas A. R.; Mondon, Julie A.; Bird, Tomas J.; Quinn, Gerry

    2013-01-01

    Species with broader geographical ranges are expected to be ecological generalists, while species with higher heat tolerances may be relatively competitive at more extreme and increasing temperatures. Thus, both traits are expected to relate to increased survival during transport to new regions of the globe, and once there, establishment and spread. Here, we explore these expectations using datasets of latitudinal range breadth and heat tolerance in freshwater and marine invertebrates and fishes. After accounting for the latitude and hemisphere of each species’ native range, we find that species introduced to freshwater systems have broader geographical ranges in comparison to native species. Moreover, introduced species are more heat tolerant than related native species collected from the same habitats. We further test for differences in range breadth and heat tolerance in relation to invasion success by comparing species that have established geographically restricted versus extensive introduced distributions. We find that geographical range size is positively related to invasion success in freshwater species only. However, heat tolerance is implicated as a trait correlated to widespread occurrence of introduced populations in both freshwater and marine systems. Our results emphasize the importance of formal risk assessments before moving heat tolerant species to novel locations. PMID:24266040

  3. Invasive Plant Species: Inventory, Mapping, and Monitoring - A National Strategy

    USGS Publications Warehouse

    Ludke, J. Larry; D'Erchia, Frank; Coffelt, Jan; Hanson, Leanne

    2002-01-01

    America is under siege by invasive species of plants and animals, and by diseases. The current environmental, economic, and health-related costs of invasive species could exceed $138 billion per year-more than all other natural disasters combined. Notorious examples include West Nile virus, Dutch elm disease, chestnut blight, and purple loose- strife in the Northeast; kudzu, Brazilian peppertree, water hyacinth, nutria, and fire ants in the Southeast; zebra mussels, leafy spurge, and Asian long-horn beetles in the Midwest; salt cedar, Russian olive, and Africanized bees in the Southwest; yellow star thistle, European wild oats, oak wilt disease, Asian clams, and white pine blister rust in California; cheatgrass, various knapweeds, and thistles in the Great Basin; whirling disease of salmonids in the Northwest; hundreds of invasive species from microbes to mammals in Hawaii; and the brown tree snake in Guam. Thousands of species from other countries are introduced intentionally or accidentally into the United States each year. Based on past experience, 10-15 percent can be expected to establish free-living populations and about 1 percent can be expected to cause significant impacts to ecosystems, native species, economic productivity, and (or) human health.

  4. Novel organisms: comparing invasive species, GMOs, and emerging pathogens.

    PubMed

    Jeschke, Jonathan M; Keesing, Felicia; Ostfeld, Richard S

    2013-09-01

    Invasive species, range-expanding species, genetically modified organisms (GMOs), synthetic organisms, and emerging pathogens increasingly affect the human environment. We propose a framework that allows comparison of consecutive stages that such novel organisms go through. The framework provides a common terminology for novel organisms, facilitating knowledge exchange among researchers, managers, and policy makers that work on, or have to make effective decisions about, novel organisms. The framework also indicates that knowledge about the causes and consequences of stage transitions for the better studied novel organisms, such as invasive species, can be transferred to more poorly studied ones, such as GMOs and emerging pathogens. Finally, the framework advances understanding of how climate change can affect the establishment, spread, and impacts of novel organisms, and how biodiversity affects, and is affected by, novel organisms. PMID:23456779

  5. Controlling the spread of invasive species while sampling: chapter 13

    USGS Publications Warehouse

    Jacks, Stewart; Sharon, Steve; Kinnunen, Ronald E.; Britton, David K.; Smith, Scott S.

    2009-01-01

    This chapter focuses on measures that should be taken to present, minimize, or control the spread of invasive species in the routine work we do as natural resource professionals. Inadvertently transporting potentially harmful organisms undermines our purposed as natural resource professionals. It is imperative that we understand that pathways that we create and strive to eliminate (when possible) or minimize the potential damage that may result from our actions. A combination of technologies, education, codes of conduct, and government overshot, as recommended by the Ecological Society of America, can prevent invasive species introductions from pathways that already exist (Lodge et al. 2006). In the long run, a purposeful prevention strategy for stopping unintentional species introductions will promote responsible natural resource management and will help us to acheive agency goals.

  6. Novel organisms: comparing invasive species, GMOs, and emerging pathogens.

    PubMed

    Jeschke, Jonathan M; Keesing, Felicia; Ostfeld, Richard S

    2013-09-01

    Invasive species, range-expanding species, genetically modified organisms (GMOs), synthetic organisms, and emerging pathogens increasingly affect the human environment. We propose a framework that allows comparison of consecutive stages that such novel organisms go through. The framework provides a common terminology for novel organisms, facilitating knowledge exchange among researchers, managers, and policy makers that work on, or have to make effective decisions about, novel organisms. The framework also indicates that knowledge about the causes and consequences of stage transitions for the better studied novel organisms, such as invasive species, can be transferred to more poorly studied ones, such as GMOs and emerging pathogens. Finally, the framework advances understanding of how climate change can affect the establishment, spread, and impacts of novel organisms, and how biodiversity affects, and is affected by, novel organisms.

  7. Darwin's naturalization conundrum: dissecting taxonomic patterns of species invasions.

    PubMed

    Diez, Jeffrey M; Sullivan, Jon J; Hulme, Philip E; Edwards, Grant; Duncan, Richard P

    2008-07-01

    Darwin acknowledged contrasting, plausible arguments for how species invasions are influenced by phylogenetic relatedness to the native community. These contrasting arguments persist today without clear resolution. Using data on the naturalization and abundance of exotic plants in the Auckland region, we show how different expectations can be accommodated through attention to scale, assumptions about niche overlap, and stage of invasion. Probability of naturalization was positively related to the number of native species in a genus but negatively related to native congener abundance, suggesting the importance of both niche availability and biotic resistance. Once naturalized, however, exotic abundance was not related to the number of native congeners, but positively related to native congener abundance. Changing the scale of analysis altered this outcome: within habitats exotic abundance was negatively related to native congener abundance, implying that native and exotic species respond similarly to broad scale environmental variation across habitats, with biotic resistance occurring within habitats.

  8. Seed bank survival of an invasive species, but not of two native species, declines with invasion.

    PubMed

    Orrock, John L; Christopher, Cory C; Dutra, Humberto P

    2012-04-01

    Soil-borne seed pathogens may play an important role in either hindering or facilitating the spread of invasive exotic plants. We examined whether the invasive shrub Lonicera maackii (Caprifoliaceae) affected fungi-mediated mortality of conspecific and native shrub seeds in a deciduous forest in eastern Missouri. Using a combination of L. maackii removal and fungicide treatments, we found no effect of L. maackii invasion on seed viability of the native Symphoricarpos orbiculatus (Caprifoliaceae) or Cornus drummondii (Cornaceae). In contrast, fungi were significant agents of L. maackii seed mortality in invaded habitats. Losses of L. maackii to soil fungi were also significant in invaded habitats where L. maackii had been removed, although the magnitude of the effect of fungi was lower, suggesting that changes in soil chemistry or microhabitat caused by L. maackii were responsible for affecting fungal seed pathogens. Our work suggests that apparent competition via soil pathogens is not an important factor contributing to impacts of L. maackii on native shrubs. Rather, we found that fungal seed pathogens have density-dependent effects on L. maackii seed survival. Therefore, while fungal pathogens may provide little biotic resistance to early invasion by L. maackii, our study illustrates that more work is needed to understand how changes in fungal pathogens during the course of an invasion contribute to the potential for restoration of invaded systems. More generally, our study suggests that increased rates of fungal pathogen attack may be realized by invasive plants, such as L. maackii, that change the chemical or physical environment of the habitats they invade.

  9. "Invented Invaders": An Engaging Activity to Teach Characteristics Control of Invasive Species

    ERIC Educational Resources Information Center

    Lampert, Evan

    2015-01-01

    Invasive species, defined as exotic species that reach pest status, are major threats to global biodiversity. Although invasive species can belong to any taxonomic group, general characteristics such as rapid growth and reproduction are shared by many invasive species. "Invented Invaders" is a collaborative activity in which students…

  10. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis.

    PubMed

    Davidson, Amy Michelle; Jennions, Michael; Nicotra, Adrienne B

    2011-04-01

    Do invasive plant species have greater phenotypic plasticity than non-invasive species? And, if so, how does this affect their fitness relative to native, non-invasive species? What role might this play in plant invasions? To answer these long-standing questions, we conducted a meta-analysis using data from 75 invasive/non-invasive species pairs. Our analysis shows that invasive species demonstrate significantly higher phenotypic plasticity than non-invasive species. To examine the adaptive benefit of this plasticity, we plotted fitness proxies against measures of plasticity in several growth, morphological and physiological traits to test whether greater plasticity is associated with an improvement in estimated fitness. Invasive species were nearly always more plastic in their response to greater resource availability than non-invasives but this plasticity was only sometimes associated with a fitness benefit. Intriguingly, non-invasive species maintained greater fitness homoeostasis when comparing growth between low and average resource availability. Our finding that invasive species are more plastic in a variety of traits but that non-invasive species respond just as well, if not better, when resources are limiting, has interesting implications for predicting responses to global change.

  11. Allelopathic Potential of Invasive Plantago virginica on Four Lawn Species.

    PubMed

    Wang, Huatian; Zhou, Yumei; Chen, Yang; Wang, Quanxi; Jiang, Lifen; Luo, Yiqi

    2015-01-01

    Plantago virginica L. has invaded many lawn ecosystems in the Eastern part of China. The invasion has incurred an economic cost to remove them. In order to prevent the invasion, it is critical to understand the invasive mechanisms of this species. However, few studies have been conducted on the allelopathic mechanisms of its invasion. In this study, we examined allelopathic effects of P. virginica on germination of seeds and growth of seedlings of four widely used lawn species. We found extensive allelopathic potential of P. virginica on other lawn species, which varied with species and developmental stage. While most effects of the extracts of P. virginica were inhibitory, some variables in some species were promoted by the addition of the extracts. The extracts of P. virginica significantly inhibited seed germination of Agrostis matsumurae. While the overall differences in seed germination rate of Poa annua were significant among treatments, difference between control and any of the treatments was not significant. The height of seedlings of A. matsumurae and Cynodon dactylon was significantly lower under the treatments of adding extracts of P. virginica. In contrast, growth of seedlings of Festuca elata and P. annua did not show significant differences among treatments. The root length of A. matsumurae, C. dactylon and P. annua was suppressed by the extracts of P. virginica whereas root length of F. elata was not affected. Aboveground biomass of A. matsumurae and F. elata was significantly higher than control, except for F. elata at the concentration of 50mg/mL, whereas aboveground biomass of C. dactylon and P. annua was reduced at higher concentrations of the extracts. Except for A. matsumurae, root biomass of the other three lawn species declined under the treatments with the extracts of P. virginica. Our results revealed that P. virginica had allelopathic potential on four lawn species and supported the theory of "novel weapons hypothesis". Invasion by P

  12. Allelopathic Potential of Invasive Plantago virginica on Four Lawn Species

    PubMed Central

    Wang, Huatian; Zhou, Yumei; Chen, Yang; Wang, Quanxi; Jiang, Lifen; Luo, Yiqi

    2015-01-01

    Plantago virginica L. has invaded many lawn ecosystems in the Eastern part of China. The invasion has incurred an economic cost to remove them. In order to prevent the invasion, it is critical to understand the invasive mechanisms of this species. However, few studies have been conducted on the allelopathic mechanisms of its invasion. In this study, we examined allelopathic effects of P. virginica on germination of seeds and growth of seedlings of four widely used lawn species. We found extensive allelopathic potential of P. virginica on other lawn species, which varied with species and developmental stage. While most effects of the extracts of P. virginica were inhibitory, some variables in some species were promoted by the addition of the extracts. The extracts of P. virginica significantly inhibited seed germination of Agrostis matsumurae. While the overall differences in seed germination rate of Poa annua were significant among treatments, difference between control and any of the treatments was not significant. The height of seedlings of A. matsumurae and Cynodon dactylon was significantly lower under the treatments of adding extracts of P. virginica. In contrast, growth of seedlings of Festuca elata and P. annua did not show significant differences among treatments. The root length of A. matsumurae, C. dactylon and P. annua was suppressed by the extracts of P. virginica whereas root length of F. elata was not affected. Aboveground biomass of A. matsumurae and F. elata was significantly higher than control, except for F. elata at the concentration of 50mg/mL, whereas aboveground biomass of C. dactylon and P. annua was reduced at higher concentrations of the extracts. Except for A. matsumurae, root biomass of the other three lawn species declined under the treatments with the extracts of P. virginica. Our results revealed that P. virginica had allelopathic potential on four lawn species and supported the theory of “novel weapons hypothesis”. Invasion by P

  13. Soil yeast communities under the aggressive invasion of Sosnowsky's hogweed ( Heracleum sosnowskyi)

    NASA Astrophysics Data System (ADS)

    Glushakova, A. M.; Kachalkin, A. V.; Chernov, I. Yu.

    2015-02-01

    The year-round dynamics of the number and taxonomic composition of yeast communities in the soddy-podzolic soils under invasive thickets of Heracleum sosnowskyi were investigated. The yeast groups that are formed in the soil under the continuous Sosnowsky's hogweed thickets significantly differ from the indigenous yeast communities under the adjacent meadows. In the soils of both biotopes, typical eurybiotic yeast species predominate. In the soil under Heracleum sosnowskyi, the share of the ascomycetes Candida vartiovaarae and Wickerhamomyces anomalus is much lower, and the portion of yeast-like fungi with high hydrolytic activity such as Trichosporon moniliforme and Trichosporon porosum is greater. A possible explanation for this phenomenon is that Sosnowsky's hogweed, unlike most aboriginal meadow grasses, does not hibernate with green leaves that do not gradually die out with the formation of semidecomposed plant residues—the main source of nutrients for the soil-litter microbial complex. In addition, grasses of the lower layer do not develop under Sosnowsky's hogweed due to the strong shading and allelopathic impact preventing the development of typical epiphytic copiotrophic species of yeasts.

  14. Truncated somatostatin receptor variant sst5TMD4 confers aggressive features (proliferation, invasion and reduced octreotide response) to somatotropinomas

    PubMed Central

    Luque, Raúl M.; Ibáñez-Costa, Alejandro; Neto, Leonardo Vieira; Taboada, Giselle F.; Hormaechea-Agulla, Daniel; Kasuki, Leandro; Venegas-Moreno, Eva; Moreno-Carazo, Alberto; Gálvez, María Ángeles; Soto-Moreno, Alfonso; Kineman, Rhonda D.; Culler, Michael D.; Gahete, Manuel D.; Gadelha, Mônica R.; Castaño, Justo P.

    2015-01-01

    The GH/IGF1 response of somatotropinomas to somatostatin analogues (SSA) is associated with their pattern of somatostatin receptor (sst1–sst5) expression. Recently, we demonstrated that expression of a truncated sst5-variant (sst5TMD4) can influence the secretory response of somatotropinomas to SSA-therapy; however, its potential relationship with aggressive features (e.g. invasion/proliferation) is still unknown. Here, we show that sst5TMD4 is present in 50% of non-functioning pituitary-adenomas (NFPA) (n = 30) and 89% of somatotropinomas (n = 36), its expression levels being highest in somatotropinomas > > NFPAs > > > normal pituitaries (negligible expression; n = 8). In somatotropinomas, sst5TMD4 mRNA and protein levels correlated positively, and its expression was directly associated with tumor invasiveness (cavernous/sphenoid sinus), and inversely correlated with age and GH/IGF1 reduction after 3–6 months with octreotide-LAR therapy. GNAS+ somatotropinomas expressed lower sst5TMD4 levels. ROC analysis revealed sst5TMD4 expression as the only marker, within all sst-subtypes, capable to predict tumor invasiveness in somatotropinomas. sst5TMD4 overexpression increased cell viability in cultured somatotropinoma (n = 5). Hence, presence of sst5TMD4 associates with increased aggressive features and worse prognosis in somatotropinomas, thereby providing a potentially useful tool to refine somatotropinoma diagnosis, predict outcome of clinical response to SSA-therapy and develop new therapeutic targets. PMID:25637790

  15. Hybridization can facilitate species invasions, even without enhancing local adaptation.

    PubMed

    Mesgaran, Mohsen B; Lewis, Mark A; Ades, Peter K; Donohue, Kathleen; Ohadi, Sara; Li, Chengjun; Cousens, Roger D

    2016-09-01

    The founding population in most new species introductions, or at the leading edge of an ongoing invasion, is likely to be small. Severe Allee effects-reductions in individual fitness at low population density-may then result in a failure of the species to colonize, even if the habitat could support a much larger population. Using a simulation model for plant populations that incorporates demography, mating systems, quantitative genetics, and pollinators, we show that Allee effects can potentially be overcome by transient hybridization with a resident species or an earlier colonizer. This mechanism does not require the invocation of adaptive changes usually attributed to invasions following hybridization. We verify our result in a case study of sequential invasions by two plant species where the outcrosser Cakile maritima has replaced an earlier, inbreeding, colonizer Cakile edentula (Brassicaceae). Observed historical rates of replacement are consistent with model predictions from hybrid-alleviated Allee effects in outcrossers, although other causes cannot be ruled out. PMID:27601582

  16. Introduced cryptic species of parasites exhibit different invasion pathways

    PubMed Central

    Miura, Osamu; Torchin, Mark E.; Kuris, Armand M.; Hechinger, Ryan F.; Chiba, Satoshi

    2006-01-01

    Sometimes infectious agents invade and become established in new geographic regions. Others may be introduced yet never become established because of the absence of suitable hosts in the new region. This phenomenon may be particularly true for the many parasites with complex life cycles, where various life stages require different host species. Homogenization of the world's biota through human-mediated invasions may reunite hosts and parasites, resulting in disease outbreaks in novel regions. Here we use molecular genetics to differentiate invasion pathways for two digenean trematode parasites and their exotic host, the Asian mud snail, Batillaria attramentaria. All of the snail haplotypes found in introduced populations in North America were identical to haplotypes common in the areas of Japan that provided oysters for cultivation in North America, supporting the hypothesis that the snails were introduced from Japan with seed oysters. Two cryptic trematode species were introduced to North American populations in high frequencies. We found a marked reduction of genetic variation in one of these species, suggesting it experienced a bottleneck or founder event comparable to that of the host snail. In contrast, no genetic variation was lost in the other parasite species. We hypothesize that this parasite was and is dispersed naturally by migratory shorebirds and was able to establish only after the host snail, B. attramentaria, was introduced to North America. Evaluation of the nature of invasion pathways and postinvasion consequences will aid mitigation of spreading diseases of humans, livestock, and wildlife in an increasingly globalized world. PMID:17179044

  17. Biology and invasive species in the western U.S

    USGS Publications Warehouse

    ,

    2005-01-01

    The diversity of environments that characterizes the West is responsible for the region's rich biological heritage. This ecological diversity also means that opportunities for invasive species are many, varied, and complex. Island ecosystems are notoriously vulnerable to invaders as demonstrated in Hawaii and West Coast offshore islands. Aquatic invaders impose high economic and environmental costs in systems as varied as San Francisco Bay and desert springs in the Great Basin. Although the West's arid and montane ecosystems may seem resistant to plant and animal invaders, we now know that ex-otic species have altered physical processes related to fire and hydrology in a manner favoring further expansion and persis-tence of invaders. Natural resource managers value analytical, mapping, and genetics tools developed by USGS scientists to monitor invasive species and help conserve biological systems. USGS biologists conduct research to assist land and water managers' efforts to control invasive species and restore natural systems. Throughout the West, the USGS carries out studies for early detection and rapid assessment of invaders. The following are some examples of how the USGS is making a difference in the western United States.

  18. The phosphorylation status of VASP at serine 322 can be predictive for aggressiveness of invasive ductal carcinoma

    PubMed Central

    Borges, Sahra; Geiger, Xochiquetzal; Storz, Peter

    2015-01-01

    Vasodilator-stimulated phosphoprotein (VASP) signaling is critical for dynamic actin reorganization processes that define the motile phenotype of cells. Here we show that VASP is generally highly expressed in normal breast tissue and breast cancer. We also show that the phosphorylation status of VASP at S322 can be predictive for breast cancer progression to an aggressive phenotype. Our data indicate that phosphorylation at S322 is gradually decreased from normal breast to DCIS, luminal/ER+, HER2+ and basal-like/TN phenotypes. Similarly, the expression levels of PKD2, the kinase that phosphorylates VASP at this site, are decreased in invasive ductal carcinoma samples of all three groups. Overall, the phosphorylation status of this residue may serve as an indicator of aggressiveness of breast tumors. PMID:26336132

  19. The phosphorylation status of VASP at serine 322 can be predictive for aggressiveness of invasive ductal carcinoma.

    PubMed

    Döppler, Heike; Bastea, Ligia; Borges, Sahra; Geiger, Xochiquetzal; Storz, Peter

    2015-10-01

    Vasodilator-stimulated phosphoprotein (VASP) signaling is critical for dynamic actin reorganization processes that define the motile phenotype of cells. Here we show that VASP is generally highly expressed in normal breast tissue and breast cancer. We also show that the phosphorylation status of VASP at S322 can be predictive for breast cancer progression to an aggressive phenotype. Our data indicate that phosphorylation at S322 is gradually decreased from normal breast to DCIS, luminal/ER+, HER2+ and basal-like/TN phenotypes. Similarly, the expression levels of PKD2, the kinase that phosphorylates VASP at this site, are decreased in invasive ductal carcinoma samples of all three groups. Overall, the phosphorylation status of this residue may serve as an indicator of aggressiveness of breast tumors. PMID:26336132

  20. Ecology of cryptic invasions: latitudinal segregation among Watersipora (Bryozoa) species.

    PubMed

    Mackie, Joshua A; Darling, John A; Geller, Jonathan B

    2012-01-01

    Watersipora is an invasive genus of bryozoans, easily dispersed by fouled vessels. We examined Cytochrome c oxidase subunit I haplotypes from introduced populations on the US Pacific coastline to investigate geographic segregation of species and/or haplotypes. In California, the W. subtorquata group fell into three major sub-groups: W. subtorquata clades A and B, and W. "new sp.". W. subtorquata clades A and B were common in southern California south of Point Conception, a recognized biogeographic boundary, whereas further north, W. subtorquata clade A and W. n. sp. were frequent. The southern California region also had colonies of a morphologically distinct species, W. arcuata, also found in southern Australia and Hawaii; COI variation indicates a common ancestral source(s) in these introductions. The distribution of Watersipora-complex lineages on different coastlines is shown to be temperature correlated. Accordingly, pre-exisitng temperature-based adaptations may play a key role in determining invasion patterns.

  1. Herbivore resistance of invasive Fallopia species and their hybrids.

    PubMed

    Krebs, Christine; Gerber, Esther; Matthies, Diethart; Schaffner, Urs

    2011-12-01

    Hybridization has been proposed as a mechanism by which exotic plants can increase their invasiveness. By generating novel recombinants, hybridization may result in phenotypes that are better adapted to the new environment than their parental species. We experimentally assessed the resistance of five exotic Fallopia taxa, F. japonica var. japonica, F. sachalinensis and F. baldschuanica, the two hybrids F. × bohemica and F. × conollyana, and the common European plants Rumex obtusifolius and Taraxacum officinale to four native European herbivores, the slug Arion lusitanicus, the moth Noctua pronuba, the grasshopper Metrioptera roeselii and the beetle Gastrophysa viridula. Leaf area consumed and relative growth rate of the herbivores differed significantly between the Fallopia taxa and the native species, as well as among the Fallopia taxa, and was partly influenced by interspecific variation in leaf morphology and physiology. Fallopia japonica, the most abundant Fallopia taxon in Europe, showed the highest level of resistance against all herbivores tested. The level of resistance of the hybrids compared to that of their parental species varied depending on hybrid taxon and herbivore species. Genotypes of the hybrid F. × bohemica varied significantly in herbivore resistance, but no evidence was found that hybridization has generated novel recombinants that are inherently better defended against resident herbivores than their parental species, thereby increasing the hybrid's invasion success. In general, exotic Fallopia taxa showed higher levels of herbivore resistance than the two native plant species, suggesting that both parental and hybrid Fallopia taxa largely escape from herbivory in Europe.

  2. Planting intensity, residence time, and species traits determine invasion success of alien woody species.

    PubMed

    Pysek, Petr; Krivánek, Martin; Jarosík, Vojtech

    2009-10-01

    We studied the relative importance of residence time, propagule pressure, and species traits in three stages of invasion of alien woody plants cultivated for about 150 years in the Czech Republic, Central Europe. The probability of escape from cultivation, naturalization, and invasion was assessed using classification trees. We compared 109 escaped-not-escaped congeneric pairs, 44 naturalized-not-naturalized, and 17 invasive-not-invasive congeneric pairs. We used the following predictors of the above probabilities: date of introduction to the target region as a measure of residence time; intensity of planting in the target area as a proxy for propagule pressure; the area of origin; and 21 species-specific biological and ecological traits. The misclassification rates of the naturalization and invasion model were low, at 19.3% and 11.8%, respectively, indicating that the variables used included the major determinants of these processes. The probability of escape increased with residence time in the Czech Republic, whereas the probability of naturalization increased with the residence time in Europe. This indicates that some species were already adapted to local conditions when introduced to the Czech Republic. Apart from residence time, the probability of escape depends on planting intensity (propagule pressure), and that of naturalization on the area of origin and fruit size; it is lower for species from Asia and those with small fruits. The probability of invasion is determined by a long residence time and the ability to tolerate low temperatures. These results indicate that a simple suite of factors determines, with a high probability, the invasion success of alien woody plants, and that the relative role of biological traits and other factors is stage dependent. High levels of propagule pressure as a result of planting lead to woody species eventually escaping from cultivation, regardless of biological traits. However, the biological traits play a role in later

  3. Land-use proxies for aquatic species invasions in the Laurentian Great Lakes

    EPA Science Inventory

    Aquatic invasive species adversely impact ecosystems, human health, and the economy of the Laurentian Great Lakes region. Targeted preventative and eradication efforts in response to early detection of invasive species can be both cost advantageous and effective. But where should...

  4. Current practices and future opportunities for policy on climate change and invasive species.

    PubMed

    Pyke, Christopher R; Thomas, Roxanne; Porter, Read D; Hellmann, Jessica J; Dukes, Jeffrey S; Lodge, David M; Chavarria, Gabriela

    2008-06-01

    Climate change and invasive species are often treated as important, but independent, issues. Nevertheless, they have strong connections: changes in climate and societal responses to climate change may exacerbate the impacts of invasive species, whereas invasive species may affect the magnitude, rate, and impact of climate change. We argue that the design and implementation of climate-change policy in the United States should specifically consider the implications for invasive species; conversely, invasive-species policy should address consequences for climate change. The development of such policies should be based on (1) characterization of interactions between invasive species and climate change, (2) identification of areas where climate-change policies could negatively affect invasive-species management, and (3) identification of areas where policies could benefit from synergies between climate change and invasive-species management.

  5. Bartonella species in invasive rats and indigenous rodents from Uganda.

    PubMed

    Billeter, Sarah A; Borchert, Jeff N; Atiku, Linda A; Mpanga, Joseph T; Gage, Kenneth L; Kosoy, Michael Y

    2014-03-01

    The presence of bartonellae in invasive rats (Rattus rattus) and indigenous rodents (Arvicanthis niloticus and Cricetomys gambianus) from two districts in Uganda, Arua and Zombo, was examined by PCR detection and culture. Blood from a total of 228 R. rattus, 31 A. niloticus, and 5 C. gambianus was screened using genus-specific primers targeting the 16S-23S intergenic spacer region. Furthermore, rodent blood was plated on brain heart infusion blood agar, and isolates were verified as Bartonella species using citrate synthase gene- (gltA) specific primers. One hundred and four fleas recovered from R. rattus were also tested for the presence of Bartonella species using the same gltA primer set. An overall prevalence of 1.3% (three of 228) was obtained in R. rattus, whereas 61.3% of 31 A. niloticus and 60% of five C. gambianus were positive for the presence of Bartonella species. Genotypes related to Bartonella elizabethae, a known zoonotic pathogen, were detected in three R. rattus and one C. gambianus. Bartonella strains, similar to bacteria detected in indigenous rodents from other African countries, were isolated from the blood of A. niloticus. Bartonellae, similar to bacteria initially cultured from Ornithodorus sonrai (soft tick) from Senegal, were found in two C. gambianus. Interestingly, bartonellae detected in fleas from invasive rats were similar to bacteria identified in indigenous rodents and not their rat hosts, with an overall prevalence of 6.7%. These results suggest that if fleas are competent vectors of these bartonellae, humans residing in these two districts of Uganda are potentially at greater risk for exposure to Bartonella species from native rodents than from invasive rats. The low prevalence of bartonellae in R. rattus was quite surprising, in contrast, to the detection of these organisms in a large percentage of Rattus species from other geographical areas. A possible reason for this disparity is discussed.

  6. Applying remote sensing to invasive species science—A tamarisk example

    USGS Publications Warehouse

    Morisette, Jeffrey T.

    2011-01-01

    The Invasive Species Science Branch of the Fort Collins Science Center provides research and technical assistance relating to management concerns for invasive species, including understanding how these species are introduced, identifying areas vulnerable to invasion, forecasting invasions, and developing control methods. This fact sheet considers the invasive plant species tamarisk (Tamarix spp), addressing three fundamental questions: *Where is it now? *What are the potential or realized ecological impacts of invasion? *Where can it survive and thrive if introduced? It provides peer-review examples of how the U.S. Geological Survey, working with other federal agencies and university partners, are applying remote-sensing technologies to address these key questions.

  7. NEDD9 Is a Positive Regulator of Epithelial-Mesenchymal Transition and Promotes Invasion in Aggressive Breast Cancer

    PubMed Central

    Kong, Chenfei; Wang, Changqing; Wang, Liping; Ma, Musong; Niu, Chunbo; Sun, Xiaoqian; Du, Juan; Dong, Zhixiong; Zhu, Shan; Lu, Jun; Huang, Baiqu

    2011-01-01

    Epithelial to mesenchymal transition (EMT) plays an important role in many biological processes. The latest studies revealed that aggressive breast cancer, especially the triple-negative breast cancer (TNBC) subtype was frequently associated with apparent EMT, but the mechanisms are still unclear. NEDD9/HEF1/Cas-L is a member of the Cas protein family and was identified as a metastasis marker in multiple cancer types. In this study, we wished to discern the role of NEDD9 in breast cancer progression and to investigate the molecular mechanism by which NEDD9 regulates EMT and promotes invasion in triple-negative breast cancer. We showed that expression of NEDD9 was frequently upregulated in TNBC cell lines, and in aggressive breast tumors, especially in TNBC subtype. Knockdown of endogenous NEDD9 reduced the migration, invasion and proliferation of TNBC cells. Moreover, ectopic overexpression of NEDD9 in mammary epithelial cells led to a string of events including the trigger of EMT, activation of ERK signaling, increase of several EMT-inducing transcription factors and promotion of their interactions with the E-cadherin promoter. Data presented in this report contribute to the understanding of the mechanisms by which NEDD9 promotes EMT, and provide useful clues to the evaluation of the potential of NEDD9 as a responsive molecular target for TNBC chemotherapy. PMID:21829474

  8. The Dispersal and Persistence of Invasive Marine Species

    NASA Astrophysics Data System (ADS)

    Glick, E. R.; Pringle, J.

    2007-12-01

    The spread of invasive marine species is a continuing problem throughout the world, though not entirely understood. Why do some species invade more easily than the rest? How are the range limits of these species set? Recent research (Byers & Pringle 2006, Pringle & Wares 2007) has produced retention criteria that determine whether a coastal species with a benthic adult stage and planktonic larvae can be retained within its range and invade in the direction opposite that of the mean current experienced by the larvae (i.e. upstream). These results however, are only accurate for Gaussian dispersal kernels. For kernels whose kurtosis differs from a Gaussian's, the retention criteria becomes increasingly inaccurate as the mean current increases. Using recent results of Lutscher (2006), we find an improved retention criterion which is much more accurate for non- Gaussian dispersal kernels. The importance of considering non-Gaussian kernels is illustrated for a number of commonly used dispersal kernels, and the relevance of these calculations is illustrated by considering the northward limit of invasion of Hemigrapsus sanguineus, an important invader in the Gulf of Maine.

  9. Established Population of the Invasive Mosquito Species Aedes albopictus in Romania, 2012-14.

    PubMed

    Prioteasa, Liviu F; Dinu, Sorin; Fălcuţă, Elena; Ceianu, Cornelia S

    2015-06-01

    During an entomological investigation carried out in Bucharest and surroundings in fall of 2012, 45 adult mosquitoes (38 females and 7 males) of Aedes albopictus were collected in a neighborhood from the southern area of the city. The morphological identification of the species was further confirmed by sequencing 2 mitochondrial DNA markers: the cytochrome c oxidase subunit I and NADH dehydrogenase subunit 5 genes. Aedes albopictus was collected again in 2013 in the same area from July until October. During late summer the species was found also in another location in the city, downtown Bucharest. Larvae were found in water barrels and other types of household containers, as well as in rain catch basins. In 2014, following a nuisance complaint of a Bucharest inhabitant, the entomological investigation found aggressive Ae. albopictus adults on his property that harbored many mosquito larvae in container-type breeding habitats. These findings are the 1st records of this invasive species and of its breeding population in Romania, and show maintenance of the species over 2 winter seasons. Surveillance of the species outside the area of the capital city was not performed, therefore it is not known whether Ae. albopictus has been introduced in other regions of the country. The presence of Ae. albopictus has been reported every year (2012-14) to competent public health authorities, stressing on the importance of surveillance and of implementation of control measures.

  10. Rapid protein profiling facilitates surveillance of invasive mosquito species

    PubMed Central

    2014-01-01

    Background Invasive aedine mosquito species have become a major issue in many parts of the world as most of them are recognised vectors or potentially involved in transmission of pathogens. Surveillance of these mosquitoes (e.g. Ae. aegypti, Yellow fever mosquito, Aedes albopictus, Asian tiger mosquito) is mainly done by collecting eggs using ovitraps and by identification of the larvae hatched in the laboratory. In order to replace this challenging and laborious procedure, we have evaluated matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) for easy and rapid species identification. Methods Individual protein profiles were generated using five eggs each of nine aedine species (Ae. aegypti, Ae. albopictus, Ae. atropalpus, Ae. cretinus, Ae. geniculatus, Ae. japonicus, Ae. koreicus, Ae. phoeniciae, Ae. triseriatus) from various geographical origins, and species-specific biomarker mass sets could be generated. A blinded validation using our reference data base for automated egg identification was performed. In addition, pools of 10 aedine eggs (132 two-species and 18 three-species pools) in different ratios were evaluated. Results Specific biomarker mass sets comprising 18 marker masses could be generated for eggs of nine container-inhabiting aedine species, including all the major invasive and indigenous species of Europe and North America. Two additional masses shared by all investigated aedine species are used as internal calibrators. Identification of single eggs was highly accurate (100% specificity, 98.75% sensitivity), and this method is also of value for the identification of species in pools of ten eggs. When mixing two or three species, all were identified in all pools in at least 2 or 1 of the 4 loaded replicates, respectively, if the “lesser abundant” species in the pool accounted for three or more eggs. Conclusions MALDI-TOF MS, which is widely applied for routine identification of microorganisms in clinical

  11. Linking climate change and biological invasions: Ocean warming facilitates nonindigenous species invasions.

    PubMed

    Stachowicz, John J; Terwin, Jeffrey R; Whitlatch, Robert B; Osman, Richard W

    2002-11-26

    The spread of exotic species and climate change are among the most serious global environmental threats. Each independently causes considerable ecological damage, yet few data are available to assess whether changing climate might facilitate invasions by favoring introduced over native species. Here, we compare our long-term record of weekly sessile marine invertebrate recruitment with interannual variation in water temperature to assess the likely effect of climate change on the success and spread of introduced species. For the three most abundant introduced species of ascidian (sea squirt), the timing of the initiation of recruitment was strongly negatively correlated with winter water temperature, indicating that invaders arrived earlier in the season in years with warmer winters. Total recruitment of introduced species during the following summer also was positively correlated with winter water temperature. In contrast, the magnitude of native ascidian recruitment was negatively correlated with winter temperature (more recruitment in colder years) and the timing of native recruitment was unaffected. In manipulative laboratory experiments, two introduced compound ascidians grew faster than a native species, but only at temperatures near the maximum observed in summer. These data suggest that the greatest effects of climate change on biotic communities may be due to changing maximum and minimum temperatures rather than annual means. By giving introduced species an earlier start, and increasing the magnitude of their growth and recruitment relative to natives, global warming may facilitate a shift to dominance by nonnative species, accelerating the homogenization of the global biota. PMID:12422019

  12. Linking climate change and biological invasions: Ocean warming facilitates nonindigenous species invasions.

    PubMed

    Stachowicz, John J; Terwin, Jeffrey R; Whitlatch, Robert B; Osman, Richard W

    2002-11-26

    The spread of exotic species and climate change are among the most serious global environmental threats. Each independently causes considerable ecological damage, yet few data are available to assess whether changing climate might facilitate invasions by favoring introduced over native species. Here, we compare our long-term record of weekly sessile marine invertebrate recruitment with interannual variation in water temperature to assess the likely effect of climate change on the success and spread of introduced species. For the three most abundant introduced species of ascidian (sea squirt), the timing of the initiation of recruitment was strongly negatively correlated with winter water temperature, indicating that invaders arrived earlier in the season in years with warmer winters. Total recruitment of introduced species during the following summer also was positively correlated with winter water temperature. In contrast, the magnitude of native ascidian recruitment was negatively correlated with winter temperature (more recruitment in colder years) and the timing of native recruitment was unaffected. In manipulative laboratory experiments, two introduced compound ascidians grew faster than a native species, but only at temperatures near the maximum observed in summer. These data suggest that the greatest effects of climate change on biotic communities may be due to changing maximum and minimum temperatures rather than annual means. By giving introduced species an earlier start, and increasing the magnitude of their growth and recruitment relative to natives, global warming may facilitate a shift to dominance by nonnative species, accelerating the homogenization of the global biota.

  13. A framework for spatial risk assessments: Potential impacts of nonindigenous invasive species on native species

    USGS Publications Warehouse

    Allen, C.R.; Johnson, A.R.; Parris, L.

    2006-01-01

    Many populations of wild animals and plants are declining and face increasing threats from habitat fragmentation and loss as well as exposure to stressors ranging from toxicants to diseases to invasive nonindigenous species. We describe and demonstrate a spatially explicit ecological risk assessment that allows for the incorporation of a broad array of information that may influence the distribution of an invasive species, toxicants, or other stressors, and the incorporation of landscape variables that may influence the spread of a species or substances. The first step in our analyses is to develop species models and quantify spatial overlap between stressor and target organisms. Risk is assessed as the product of spatial overlap and a hazard index based on target species vulnerabilities to the stressor of interest. We illustrate our methods with an example in which the stressor is the ecologically destructive nonindigenous ant, Solenopsis invicta, and the targets are two declining vertebrate species in the state of South Carolina, USA. A risk approach that focuses on landscapes and that is explicitly spatial is of particular relevance as remaining undeveloped lands become increasingly uncommon and isolated and more important in the management and recovery of species and ecological systems. Effective ecosystem management includes the control of multiple stressors, including invasive species with large impacts, understanding where those impacts may be the most severe, and implementing management strategies to reduce impacts. Copyright ?? 2006 by the author(s).

  14. Using habitat suitability models to target invasive plant species surveys

    USGS Publications Warehouse

    Crall, Alycia W.; Jarnevich, Catherine S.; Panke, Brendon; Young, Nick; Renz, Mark; Morisette, Jeffrey

    2013-01-01

    Managers need new tools for detecting the movement and spread of nonnative, invasive species. Habitat suitability models are a popular tool for mapping the potential distribution of current invaders, but the ability of these models to prioritize monitoring efforts has not been tested in the field. We tested the utility of an iterative sampling design (i.e., models based on field observations used to guide subsequent field data collection to improve the model), hypothesizing that model performance would increase when new data were gathered from targeted sampling using criteria based on the initial model results. We also tested the ability of habitat suitability models to predict the spread of invasive species, hypothesizing that models would accurately predict occurrences in the field, and that the use of targeted sampling would detect more species with less sampling effort than a nontargeted approach. We tested these hypotheses on two species at the state scale (Centaurea stoebe and Pastinaca sativa) in Wisconsin (USA), and one genus at the regional scale (Tamarix) in the western United States. These initial data were merged with environmental data at 30-m2 resolution for Wisconsin and 1-km2 resolution for the western United States to produce our first iteration models. We stratified these initial models to target field sampling and compared our models and success at detecting our species of interest to other surveys being conducted during the same field season (i.e., nontargeted sampling). Although more data did not always improve our models based on correct classification rate (CCR), sensitivity, specificity, kappa, or area under the curve (AUC), our models generated from targeted sampling data always performed better than models generated from nontargeted data. For Wisconsin species, the model described actual locations in the field fairly well (kappa = 0.51, 0.19, P 2) = 47.42, P < 0.01). From these findings, we conclude that habitat suitability models can be

  15. Truncated somatostatin receptor variant sst5TMD4 confers aggressive features (proliferation, invasion and reduced octreotide response) to somatotropinomas.

    PubMed

    Luque, Raúl M; Ibáñez-Costa, Alejandro; Neto, Leonardo Vieira; Taboada, Giselle F; Hormaechea-Agulla, Daniel; Kasuki, Leandro; Venegas-Moreno, Eva; Moreno-Carazo, Alberto; Gálvez, María Ángeles; Soto-Moreno, Alfonso; Kineman, Rhonda D; Culler, Michael D; Gahete, Manuel D; Gadelha, Mônica R; Castaño, Justo P

    2015-04-10

    The GH/IGF1 response of somatotropinomas to somatostatin analogues (SSA) is associated with their pattern of somatostatin receptor (sst1-sst5) expression. Recently, we demonstrated that expression of a truncated sst5-variant (sst5TMD4) can influence the secretory response of somatotropinomas to SSA-therapy; however, its potential relationship with aggressive features (e.g. invasion/proliferation) is still unknown. Here, we show that sst5TMD4 is present in 50% of non-functioning pituitary-adenomas (NFPA) (n = 30) and 89% of somatotropinomas (n = 36), its expression levels being highest in somatotropinomas > > NFPAs > > > normal pituitaries (negligible expression; n = 8). In somatotropinomas, sst5TMD4 mRNA and protein levels correlated positively, and its expression was directly associated with tumor invasiveness (cavernous/sphenoid sinus), and inversely correlated with age and GH/IGF1 reduction after 3-6 months with octreotide-LAR therapy. GNAS+ somatotropinomas expressed lower sst5TMD4 levels. ROC analysis revealed sst5TMD4 expression as the only marker, within all sst-subtypes, capable to predict tumor invasiveness in somatotropinomas. sst5TMD4 overexpression increased cell viability in cultured somatotropinoma (n = 5). Hence, presence of sst5TMD4 associates with increased aggressive features and worse prognosis in somatotropinomas, thereby providing a potentially useful tool to refine somatotropinoma diagnosis, predict outcome of clinical response to SSA-therapy and develop new therapeutic targets. PMID:25637790

  16. Evidence of qualitative differences between soil-occupancy effects of invasive vs. native grassland plant species

    USGS Publications Warehouse

    Jordan, N.R.; Larson, D.L.; Huerd, S.C.

    2011-01-01

    Diversified grasslands that contain native plant species are being recognized as important elements of agricultural landscapes and for production of biofuel feedstocks as well as a variety of other ecosystem services. Unfortunately, establishment of such grasslands is often difficult, unpredictable, and highly vulnerable to interference and invasion by weeds. Evidence suggests that soil-microbial "legacies" of invasive perennial species can inhibit growth of native grassland species. However, previous assessments of legacy effects of soil occupancy by invasive species that invade grasslands have focused on single invasive species and on responses to invasive soil occupancy in only a few species. In this study, we tested the hypothesis that legacy effects of invasive species differ qualitatively from those of native grassland species. In a glasshouse, three invasive and three native grassland perennials and a native perennial mixture were grown separately through three cycles of growth and soil conditioning in soils with and without arbuscular mycorrhizal fungi (AMF), after which we assessed seedling growth in these soils. Native species differed categorically from invasives in their response to soil conditioning by native or invasive species, but these differences depended on the presence of AMF. When AMF were present, native species largely had facilitative effects on invasive species, relative to effects of invasives on other invasives. Invasive species did not facilitate native growth; neutral effects were predominant, but strong soil-mediated inhibitory effects on certain native species occurred. Our results support the hypothesis that successful plant invaders create biological legacies in soil that inhibit native growth, but suggest also this mechanism of invasion will have nuanced effects on community dynamics, as some natives may be unaffected by such legacies. Such native species may be valuable as nurse plants that provide cost-effective restoration of

  17. Evidence of qualitative differences between soil-occupancy effects of invasive vs. native grassland plant species

    USGS Publications Warehouse

    Jordan, Nicholas R.; Larson, Diane L.; Huerd, Sheri C.

    2011-01-01

    Diversified grasslands that contain native plant species are being recognized as important elements of agricultural landscapes and for production of biofuel feedstocks as well as a variety of other ecosystem services. Unfortunately, establishment of such grasslands is often difficult, unpredictable, and highly vulnerable to interference and invasion by weeds. Evidence suggests that soil-microbial "legacies" of invasive perennial species can inhibit growth of native grassland species. However, previous assessments of legacy effects of soil occupancy by invasive species that invade grasslands have focused on single invasive species and on responses to invasive soil occupancy in only a few species. In this study, we tested the hypothesis that legacy effects of invasive species differ qualitatively from those of native grassland species. In a glasshouse, three invasive and three native grassland perennials and a native perennial mixture were grown separately through three cycles of growth and soil conditioning in soils with and without arbuscular mycorrhizal fungi (AMF), after which we assessed seedling growth in these soils. Native species differed categorically from invasives in their response to soil conditioning by native or invasive species, but these differences depended on the presence of AMF. When AMF were present, native species largely had facilitative effects on invasive species, relative to effects of invasives on other invasives. Invasive species did not facilitate native growth; neutral effects were predominant, but strong soil-mediated inhibitory effects on certain native species occurred. Our results support the hypothesis that successful plant invaders create biological legacies in soil that inhibit native growth, but suggest also this mechanism of invasion will have nuanced effects on community dynamics, as some natives may be unaffected by such legacies. Such native species may be valuable as nurse plants that provide cost-effective restoration of

  18. Loss of reproductive output caused by an invasive species.

    PubMed

    Tremblay, Maude E M; Morris, Todd J; Ackerman, Josef D

    2016-04-01

    We investigated whether Neogobius melanostomus, an invader of biodiversity 'hot-spots' in the Laurentian Great Lakes region, facilitates or inhibits unionid mussel recruitment by serving as a host or sink for their parasitic larvae (glochidia). Infestation and metamorphosis rates of four mussel species with at-risk (conservation) status (Epioblasma torulosa rangiana, Epioblasma triquetra, Lampsilis fasciola and Villosa iris) and one common species (Actinonaias ligamentina) on N. melanostomus were compared with rates on known primary and marginal hosts in the laboratory. All species successfully infested N. melanostomus, but only E. triquetra, V. iris and A. ligamentina successfully metamorphosed into juveniles, albeit at very low rates well below those seen on even the marginal hosts. Neogobius melanostomus collected from areas of unionid occurrence in the Grand and Sydenham rivers (Ontario, Canada) exhibited glochidial infection rates of 39.4% and 5.1%, respectively, with up to 30 glochidia representing as many as six unionid species per fish. A mathematical model suggests that N. melanostomus serve more as a sink for glochidia than as a host for unionids, thereby limiting recruitment success. This represents a novel method by which an invasive species affects a native species.

  19. Loss of reproductive output caused by an invasive species

    PubMed Central

    Tremblay, Maude E. M.; Morris, Todd J.; Ackerman, Josef D.

    2016-01-01

    We investigated whether Neogobius melanostomus, an invader of biodiversity ‘hot-spots’ in the Laurentian Great Lakes region, facilitates or inhibits unionid mussel recruitment by serving as a host or sink for their parasitic larvae (glochidia). Infestation and metamorphosis rates of four mussel species with at-risk (conservation) status (Epioblasma torulosa rangiana, Epioblasma triquetra, Lampsilis fasciola and Villosa iris) and one common species (Actinonaias ligamentina) on N. melanostomus were compared with rates on known primary and marginal hosts in the laboratory. All species successfully infested N. melanostomus, but only E. triquetra, V. iris and A. ligamentina successfully metamorphosed into juveniles, albeit at very low rates well below those seen on even the marginal hosts. Neogobius melanostomus collected from areas of unionid occurrence in the Grand and Sydenham rivers (Ontario, Canada) exhibited glochidial infection rates of 39.4% and 5.1%, respectively, with up to 30 glochidia representing as many as six unionid species per fish. A mathematical model suggests that N. melanostomus serve more as a sink for glochidia than as a host for unionids, thereby limiting recruitment success. This represents a novel method by which an invasive species affects a native species. PMID:27152202

  20. Founding population size of an aquatic invasive species

    USGS Publications Warehouse

    Kalinowski, Steven T.; Muhlfeld, Clint C.; Guy, Christopher S.; Benjamin Cox,

    2010-01-01

    Non-native species of fish threaten native fishes throughout North America, and in the Rocky Mountains, introduced populations of lake trout threaten native populations of bull trout. Effective management of lake trout and other exotic species require understanding the dynamics of invasion in order to either suppress non-native populations or to prevent their spread. In this study, we used microsatellite genetic data to estimate the number of lake trout that invaded a population of bull trout in Swan Lake, MT. Examination of genetic diversity and allele frequencies within the Swan Lake populations showed that most of the genes in the lake trout population are descended from two founders. This emphasizes the importance of preventing even a few lake trout from colonizing new territory.

  1. Species invasion shifts the importance of predator dependence.

    PubMed

    Griffen, Blaine D; Delaney, David G

    2007-12-01

    The strength of interference between foraging individuals can influence per capita consumption rates, with important consequences for predator and prey populations and system stability. Here we demonstrate how the replacement of a previously established invader, the predatory crab Carcinus maenas, by the recently invading predatory crab Hemigrapsus sanguineus shifts predation from a species that experiences strong predator interference (strong predator dependence) to one that experiences weak predator interference (weak predator dependence). We demonstrate using field experiments that differences in the strength of predator dependence persist for these species both when they forage on a single focal prey species only (the mussel Mytilus edulis) and when they forage more broadly across the entire prey community. This shift in predator dependence with species replacement may be altering the biomass across trophic levels, consistent with theoretical predictions, as we show that H. sanguineus populations are much larger than C. maenas populations throughout their invaded ranges. Our study highlights that predator dependence may differ among predator species and demonstrates that different predatory impacts of two conspicuous invasive predators may be explained at least in part by different strengths of predator dependence.

  2. Species invasion shifts the importance of predator dependence.

    PubMed

    Griffen, Blaine D; Delaney, David G

    2007-12-01

    The strength of interference between foraging individuals can influence per capita consumption rates, with important consequences for predator and prey populations and system stability. Here we demonstrate how the replacement of a previously established invader, the predatory crab Carcinus maenas, by the recently invading predatory crab Hemigrapsus sanguineus shifts predation from a species that experiences strong predator interference (strong predator dependence) to one that experiences weak predator interference (weak predator dependence). We demonstrate using field experiments that differences in the strength of predator dependence persist for these species both when they forage on a single focal prey species only (the mussel Mytilus edulis) and when they forage more broadly across the entire prey community. This shift in predator dependence with species replacement may be altering the biomass across trophic levels, consistent with theoretical predictions, as we show that H. sanguineus populations are much larger than C. maenas populations throughout their invaded ranges. Our study highlights that predator dependence may differ among predator species and demonstrates that different predatory impacts of two conspicuous invasive predators may be explained at least in part by different strengths of predator dependence. PMID:18229836

  3. Seed Removal Increased by Scramble Competition with an Invasive Species.

    PubMed

    Minor, Rebecca L; Koprowski, John L

    2015-01-01

    Competition for seeds has a major influence on the evolution of granivores and the plants on which they rely. The complexity of interactions and coevolutionary relationships vary across forest types. The introduction of non-native granivores has considerable potential to alter seed dispersal dynamics. Non-native species are a major cause of endangerment for native species, but the mechanisms are often unclear. As biological invasions continue to rise, it is important to understand mechanisms to build up strategies to mitigate the threat. Our field experiment quantified the impact of introduced Abert's squirrels (Sciurus aberti) on rates of seed removal within the range of critically endangered Mount Graham red squirrels (Tamiasciurus hudsonicus grahamensis), which consumes similar foods. In the presence of invasive Abert's squirrels, the time cones were removed was faster than when the invasive was excluded, accounting for a median removal time of cones available to red and Abert's squirrels that is 32.8% less than that of cones available only to the rare native red squirrels. Moreover, in the presence of Abert's squirrels, removal rates are higher at great distance from a territorial red squirrel larderhoard and in more open portions of the forest, which suggests differential patterns of seed dispersal. The impact on food availability as a result of cone removal by Abert's squirrels suggests the potential of food competition as a mechanism of endangerment for the Mount Graham red squirrel. Furthermore, the magnitude and differential spatial patterns of seed removal suggest that non-native granivores may have impacts on forest regeneration and structure. PMID:26650073

  4. Seed Removal Increased by Scramble Competition with an Invasive Species

    PubMed Central

    Minor, Rebecca L.; Koprowski, John L.

    2015-01-01

    Competition for seeds has a major influence on the evolution of granivores and the plants on which they rely. The complexity of interactions and coevolutionary relationships vary across forest types. The introduction of non-native granivores has considerable potential to alter seed dispersal dynamics. Non-native species are a major cause of endangerment for native species, but the mechanisms are often unclear. As biological invasions continue to rise, it is important to understand mechanisms to build up strategies to mitigate the threat. Our field experiment quantified the impact of introduced Abert’s squirrels (Sciurus aberti) on rates of seed removal within the range of critically endangered Mount Graham red squirrels (Tamiasciurus hudsonicus grahamensis), which consumes similar foods. In the presence of invasive Abert’s squirrels, the time cones were removed was faster than when the invasive was excluded, accounting for a median removal time of cones available to red and Abert’s squirrels that is 32.8% less than that of cones available only to the rare native red squirrels. Moreover, in the presence of Abert’s squirrels, removal rates are higher at great distance from a territorial red squirrel larderhoard and in more open portions of the forest, which suggests differential patterns of seed dispersal. The impact on food availability as a result of cone removal by Abert’s squirrels suggests the potential of food competition as a mechanism of endangerment for the Mount Graham red squirrel. Furthermore, the magnitude and differential spatial patterns of seed removal suggest that non-native granivores may have impacts on forest regeneration and structure. PMID:26650073

  5. Two invasive acacia species secure generalist pollinators in invaded communities

    NASA Astrophysics Data System (ADS)

    Montesinos, Daniel; Castro, Sílvia; Rodríguez-Echeverría, Susana

    2016-07-01

    Exotic entomophilous plants need to establish effective pollinator interactions in order to succeed after being introduced into a new community, particularly if they are obligatory outbreeders. By establishing these novel interactions in the new non-native range, invasive plants are hypothesised to drive changes in the composition and functioning of the native pollinator community, with potential impacts on the pollination biology of native co-flowering plants. We used two different sites in Portugal, each invaded by a different acacia species, to assess whether two native Australian trees, Acacia dealbata and Acacia longifolia, were able to recruit pollinators in Portugal, and whether the pollinator community visiting acacia trees differed from the pollinator communities interacting with native co-flowering plants. Our results indicate that in the invaded range of Portugal both acacia species were able to establish novel mutualistic interactions, predominantly with generalist pollinators. For each of the two studied sites, only two other co-occurring native plant species presented partially overlapping phenologies. We observed significant differences in pollinator richness and visitation rates among native and non-native plant species, although the study of β diversity indicated that only the native plant Lithodora fruticosa presented a differentiated set of pollinator species. Acacias experienced a large number of visits by numerous pollinator species, but massive acacia flowering resulted in flower visitation rates frequently lower than those of the native co-flowering species. We conclude that the establishment of mutualisms in Portugal likely contributes to the effective and profuse production of acacia seeds in Portugal. Despite the massive flowering of A. dealbata and A. longifolia, native plant species attained similar or higher visitation rates than acacias.

  6. Two invasive acacia species secure generalist pollinators in invaded communities

    NASA Astrophysics Data System (ADS)

    Montesinos, Daniel; Castro, Sílvia; Rodríguez-Echeverría, Susana

    2016-07-01

    Exotic entomophilous plants need to establish effective pollinator interactions in order to succeed after being introduced into a new community, particularly if they are obligatory outbreeders. By establishing these novel interactions in the new non-native range, invasive plants are hypothesised to drive changes in the composition and functioning of the native pollinator community, with potential impacts on the pollination biology of native co-flowering plants. We used two different sites in Portugal, each invaded by a different acacia species, to assess whether two native Australian trees, Acacia dealbata and Acacia longifolia, were able to recruit pollinators in Portugal, and whether the pollinator community visiting acacia trees differed from the pollinator communities interacting with native co-flowering plants. Our results indicate that in the invaded range of Portugal both acacia species were able to establish novel mutualistic interactions, predominantly with generalist pollinators. For each of the two studied sites, only two other co-occurring native plant species presented partially overlapping phenologies. We observed significant differences in pollinator richness and visitation rates among native and non-native plant species, although the study of β diversity indicated that only the native plant Lithodora fruticosa presented a differentiated set of pollinator species. Acacias experienced a large number of visits by numerous pollinator species, but massive acacia flowering resulted in flower visitation rates frequently lower than those of the native co-flowering species. We conclude that the establishment of mutualisms in Portugal likely contributes to the effective and profuse production of acacia seeds in Portugal. Despite the massive flowering of A. dealbata and A. longifolia, native plant species attained similar or higher visitation rates than acacias.

  7. Genetic control of invasive plants species using selfish genetic elements

    PubMed Central

    Hodgins, Kathryn A; Rieseberg, Loren; Otto, Sarah P

    2009-01-01

    Invasive plants cause substantial environmental damage and economic loss. Here, we explore the possibility that a selfish genetic element found in plants called cytoplasmic male sterility (CMS) could be exploited for weed control. CMS is caused by mutations in the mitochondrial genome that sterilize male reproductive organs. We developed an analytical model and a spatial simulation to assess the use of CMS alleles to manage weed populations. Specifically, we examined how fertility, selfing, pollen limitation and dispersal influenced extinction rate and time until extinction in populations where CMS arises. We found that the introduction of a CMS allele can cause rapid population extinction, but only under a restricted set of conditions. Both models suggest that the CMS strategy will be appropriate for species where pollen limitation is negligible, inbreeding depression is high and the fertility advantage of females over hermaphrodites is substantial. In general, spatial structure did not have a strong influence on the simulation outcome, although low pollen dispersal and intermediate levels of seed dispersal tended to reduce population extinction rates. Given these results, the introduction of CMS alleles into a population of invasive plants probably represents an effective control method for only a select number of species. PMID:25567898

  8. When can efforts to control nuisance and invasive species backfire?

    USGS Publications Warehouse

    Zipkin, E.F.; Kraft, C.E.; Cooch, E.G.; Sullivan, P.J.

    2009-01-01

    Population control through harvest has the potential to reduce the abundance of nuisance and invasive species. However, demographic structure and density-dependent processes can confound removal efforts and lead to undesirable consequences, such as overcompensation (an increase in abundance in response to harvest) and instability (population cycling or chaos). Recent empirical studies have demonstrated the potential for increased mortality (such as that caused by harvest) to lead to overcompensation and instability in plant, insect, and fish populations. We developed a general population model with juvenile and adult stages to help determine the conditions under which control harvest efforts can produce unintended outcomes. Analytical and simulation analyses of the model demonstrated that the potential for overcompensation as a result of harvest was significant for species with high fecundity, even when annual stage-specific survivorship values were fairly low. Population instability as a result of harvest occurred less frequently and was only possible with harvest strategies that targeted adults when both fecundity and adult survivorship were high. We considered these results in conjunction with current literature on nuisance and invasive species to propose general guidelines for assessing the risks associated with control harvest based on life history characteristics of target populations. Our results suggest that species with high per capita fecundity (over discrete breeding periods), short juvenile stages, and fairly constant survivorship rates are most likely to respond undesirably to harvest. It is difficult to determine the extent to which overcompensation and instability could occur during real-world removal efforts, and more empirical removal studies should be undertaken to evaluate population-level responses to control harvests. Nevertheless, our results identify key issues that have been seldom acknowledged and are potentially generic across taxa

  9. Commonly rare and rarely common: comparing population abundance of invasive and native aquatic species.

    PubMed

    Hansen, Gretchen J A; Vander Zanden, M Jake; Blum, Michael J; Clayton, Murray K; Hain, Ernie F; Hauxwell, Jennifer; Izzo, Marit; Kornis, Matthew S; McIntyre, Peter B; Mikulyuk, Alison; Nilsson, Erika; Olden, Julian D; Papeş, Monica; Sharma, Sapna

    2013-01-01

    Invasive species are leading drivers of environmental change. Their impacts are often linked to their population size, but surprisingly little is known about how frequently they achieve high abundances. A nearly universal pattern in ecology is that species are rare in most locations and abundant in a few, generating right-skewed abundance distributions. Here, we use abundance data from over 24,000 populations of 17 invasive and 104 native aquatic species to test whether invasive species differ from native counterparts in statistical patterns of abundance across multiple sites. Invasive species on average reached significantly higher densities than native species and exhibited significantly higher variance. However, invasive and native species did not differ in terms of coefficient of variation, skewness, or kurtosis. Abundance distributions of all species were highly right skewed (skewness>0), meaning both invasive and native species occurred at low densities in most locations where they were present. The average abundance of invasive and native species was 6% and 2%, respectively, of the maximum abundance observed within a taxonomic group. The biological significance of the differences between invasive and native species depends on species-specific relationships between abundance and impact. Recognition of cross-site heterogeneity in population densities brings a new dimension to invasive species management, and may help to refine optimal prevention, containment, control, and eradication strategies.

  10. Commonly Rare and Rarely Common: Comparing Population Abundance of Invasive and Native Aquatic Species

    PubMed Central

    Hansen, Gretchen J. A.; Vander Zanden, M. Jake; Blum, Michael J.; Clayton, Murray K.; Hain, Ernie F.; Hauxwell, Jennifer; Izzo, Marit; Kornis, Matthew S.; McIntyre, Peter B.; Mikulyuk, Alison; Nilsson, Erika; Olden, Julian D.; Papeş, Monica; Sharma, Sapna

    2013-01-01

    Invasive species are leading drivers of environmental change. Their impacts are often linked to their population size, but surprisingly little is known about how frequently they achieve high abundances. A nearly universal pattern in ecology is that species are rare in most locations and abundant in a few, generating right-skewed abundance distributions. Here, we use abundance data from over 24,000 populations of 17 invasive and 104 native aquatic species to test whether invasive species differ from native counterparts in statistical patterns of abundance across multiple sites. Invasive species on average reached significantly higher densities than native species and exhibited significantly higher variance. However, invasive and native species did not differ in terms of coefficient of variation, skewness, or kurtosis. Abundance distributions of all species were highly right skewed (skewness>0), meaning both invasive and native species occurred at low densities in most locations where they were present. The average abundance of invasive and native species was 6% and 2%, respectively, of the maximum abundance observed within a taxonomic group. The biological significance of the differences between invasive and native species depends on species-specific relationships between abundance and impact. Recognition of cross-site heterogeneity in population densities brings a new dimension to invasive species management, and may help to refine optimal prevention, containment, control, and eradication strategies. PMID:24194883

  11. Commonly rare and rarely common: comparing population abundance of invasive and native aquatic species.

    PubMed

    Hansen, Gretchen J A; Vander Zanden, M Jake; Blum, Michael J; Clayton, Murray K; Hain, Ernie F; Hauxwell, Jennifer; Izzo, Marit; Kornis, Matthew S; McIntyre, Peter B; Mikulyuk, Alison; Nilsson, Erika; Olden, Julian D; Papeş, Monica; Sharma, Sapna

    2013-01-01

    Invasive species are leading drivers of environmental change. Their impacts are often linked to their population size, but surprisingly little is known about how frequently they achieve high abundances. A nearly universal pattern in ecology is that species are rare in most locations and abundant in a few, generating right-skewed abundance distributions. Here, we use abundance data from over 24,000 populations of 17 invasive and 104 native aquatic species to test whether invasive species differ from native counterparts in statistical patterns of abundance across multiple sites. Invasive species on average reached significantly higher densities than native species and exhibited significantly higher variance. However, invasive and native species did not differ in terms of coefficient of variation, skewness, or kurtosis. Abundance distributions of all species were highly right skewed (skewness>0), meaning both invasive and native species occurred at low densities in most locations where they were present. The average abundance of invasive and native species was 6% and 2%, respectively, of the maximum abundance observed within a taxonomic group. The biological significance of the differences between invasive and native species depends on species-specific relationships between abundance and impact. Recognition of cross-site heterogeneity in population densities brings a new dimension to invasive species management, and may help to refine optimal prevention, containment, control, and eradication strategies. PMID:24194883

  12. Using scenarios to assess possible future impacts of invasive species in the Laurentian Great Lakes

    USGS Publications Warehouse

    Lauber, T. Bruce; Stedman, Richard C.; Connelly, Nancy A; Rudstam, Lars G.; Ready, Richard C; Poe, Gregory L; Bunnell, David; Hook, Tomas O.; Koops, Marten A.; Ludsin, Stuart A.; Rutherford, Edward S; Wittmann, Marion E.

    2016-01-01

    The expected impacts of invasive species are key considerations in selecting policy responses to potential invasions. But predicting the impacts of invasive species is daunting, particularly in large systems threatened by multiple invasive species, such as North America’s Laurentian Great Lakes. We developed and evaluated a scenario-building process that relied on an expert panel to assess possible future impacts of aquatic invasive species on recreational fishing in the Great Lakes. To maximize its usefulness to policy makers, this process was designed to be implemented relatively rapidly and consider a range of species. The expert panel developed plausible, internally-consistent invasion scenarios for 5 aquatic invasive species, along with subjective probabilities of those scenarios. We describe these scenarios and evaluate this approach for assessing future invasive species impacts. The panel held diverse opinions about the likelihood of the scenarios, and only one scenario with impacts on sportfish species was considered likely by most of the experts. These outcomes are consistent with the literature on scenario building, which advocates for developing a range of plausible scenarios in decision making because the uncertainty of future conditions makes the likelihood of any particular scenario low. We believe that this scenario-building approach could contribute to policy decisions about whether and how to address the possible impacts of invasive species. In this case, scenarios could allow policy makers to narrow the range of possible impacts on Great Lakes fisheries they consider and help set a research agenda for further refining invasive species predictions.

  13. Plant functional traits of dominant native and invasive species in mediterranean-climate ecosystems.

    PubMed

    Funk, Jennifer L; Standish, Rachel J; Stock, William D; Valladares, Fernando

    2016-01-01

    The idea that dominant invasive plant species outperform neighboring native species through higher rates of carbon assimilation and growth is supported by several analyses of global data sets. However, theory suggests that native and invasive species occurring in low-resource environments will be functionally similar, as environmental factors restrict the range of observed physiological and morphological trait values. We measured resource-use traits in native and invasive plant species across eight diverse vegetation communities distributed throughout the five mediterranean-climate regions, which are drought prone and increasingly threatened by human activities, including the introduction of exotic species. Traits differed strongly across the five regions. In regions with functional differences between native and invasive species groups, invasive species displayed traits consistent with high resource acquisition; however, these patterns were largely attributable to differences in life form. We found that species invading mediterranean-climate regions were more likely to be annual than perennial: three of the five regions were dominated by native woody species and invasive annuals. These results suggest that trait differences between native and invasive species are context dependent and will vary across vegetation communities. Native and invasive species within annual and perennial groups had similar patterns of carbon assimilation and resource use, which contradicts the widespread idea that invasive species optimize resource acquisition rather than resource conservation. . PMID:27008777

  14. Plant functional traits of dominant native and invasive species in mediterranean-climate ecosystems.

    PubMed

    Funk, Jennifer L; Standish, Rachel J; Stock, William D; Valladares, Fernando

    2016-01-01

    The idea that dominant invasive plant species outperform neighboring native species through higher rates of carbon assimilation and growth is supported by several analyses of global data sets. However, theory suggests that native and invasive species occurring in low-resource environments will be functionally similar, as environmental factors restrict the range of observed physiological and morphological trait values. We measured resource-use traits in native and invasive plant species across eight diverse vegetation communities distributed throughout the five mediterranean-climate regions, which are drought prone and increasingly threatened by human activities, including the introduction of exotic species. Traits differed strongly across the five regions. In regions with functional differences between native and invasive species groups, invasive species displayed traits consistent with high resource acquisition; however, these patterns were largely attributable to differences in life form. We found that species invading mediterranean-climate regions were more likely to be annual than perennial: three of the five regions were dominated by native woody species and invasive annuals. These results suggest that trait differences between native and invasive species are context dependent and will vary across vegetation communities. Native and invasive species within annual and perennial groups had similar patterns of carbon assimilation and resource use, which contradicts the widespread idea that invasive species optimize resource acquisition rather than resource conservation. .

  15. Sex and species differences in plasma testosterone and in counts of androgen receptor-positive cells in key brain regions of Sceloporus lizard species that differ in aggression

    PubMed Central

    Hews, Diana K.; Hara, Erina; Anderson, Maurice C.

    2012-01-01

    We studied neuroendocrine correlates of aggression differences in adults of two Sceloporus lizard species. These species differ in the degree of sex difference in aggressive color signals (belly patches) and in aggression: S. undulatus (males blue, high aggression; females white, low aggression) and S. virgatus (both sexes white, lower aggression). We measured plasma testosterone and counted cells expressing androgen receptor-like immunoreactivity to the affinity-purified polyclonal AR antibody, PG-21, in three brain regions of breeding season adults. Male S. undulatus had the highest mean plasma testosterone and differed significantly from conspecific females. In contrast, there was no sex difference in plasma testosterone concentrations in S. virgatus. Male S. undulatus also had the highest mean number of AR-positive cells in the preoptic area: the sexes differed in S. undulatus but not in S. virgatus, and females of the two species did not differ. In the ventral medial hypothalamus, S. undulatus males had higher mean AR cell counts compared to females, but again there was no sex difference in S. virgatus. In the habenula, a control brain region, the sexes did not differ, and although the sex by species interaction significant was not significant, there was a trend (p = 0.050) for S. virgatus to have higher mean AR cell counts than S. undulatus. Thus hypothalamic AR cell counts paralleled sex and species differences in aggression, as did mean plasma testosterone levels in these breeding-season animals. PMID:22230767

  16. Non-invasive administration of 17β-estradiol rapidly increases aggressive behavior in non-breeding, but not breeding, male song sparrows.

    PubMed

    Heimovics, Sarah A; Ferris, Jennifer K; Soma, Kiran K

    2015-03-01

    17β-Estradiol (E2) acts in the brain via genomic and non-genomic mechanisms to influence physiology and behavior. There is seasonal plasticity in the mechanisms by which E2 activates aggression, and non-genomic mechanisms appear to predominate during the non-breeding season. Male song sparrows (Melospiza melodia) display E2-dependent territorial aggression throughout the year. Field studies show that song sparrow aggression during a territorial intrusion is similar in the non-breeding and breeding seasons, but aggression after an intrusion ends differs seasonally. Non-breeding males stop behaving aggressively within minutes whereas breeding males remain aggressive for hours. We hypothesize that this seasonal plasticity in the persistence of aggression relates to seasonal plasticity in E2 signaling. We used a non-invasive route of E2 administration to compare the non-genomic (within 20min) effects of E2 on aggressive behavior in captive non-breeding and breeding season males. E2 rapidly increased barrier contacts (attacks) during an intrusion by 173% in non-breeding season males only. Given that these effects were observed within 20min of E2 administration, they likely occurred via a non-genomic mechanism of action. The present data, taken together with past work, suggest that environmental cues associated with the non-breeding season influence the molecular mechanisms through which E2 influences behavior. In song sparrows, transient expression of aggressive behavior during the non-breeding season is highly adaptive: it minimizes energy expenditure and maximizes the amount of time available for foraging. In all, these data suggest the intriguing possibility that aggression in the non-breeding season may be activated by a non-genomic E2 mechanism due to the fitness benefits associated with rapid and transient expression of aggression.

  17. Modeling species invasions in Ecopath with Ecosim: an evaluation using Laurentian Great Lakes models

    USGS Publications Warehouse

    Langseth, Brian J.; Rogers, Mark; Zhang, Hongyan

    2012-01-01

    Invasive species affect the structure and processes of ecosystems they invade. Invasive species have been particularly relevant to the Laurentian Great Lakes, where they have played a part in both historical and recent changes to Great Lakes food webs and the fisheries supported therein. There is increased interest in understanding the effects of ecosystem changes on fisheries within the Great Lakes, and ecosystem models provide an essential tool from which this understanding can take place. A commonly used model for exploring fisheries management questions within an ecosystem context is the Ecopath with Ecosim (EwE) modeling software. Incorporating invasive species into EwE models is a challenging process, and descriptions and comparisons of methods for modeling species invasions are lacking. We compared four methods for incorporating invasive species into EwE models for both Lake Huron and Lake Michigan based on the ability of each to reproduce patterns in observed data time series. The methods differed in whether invasive species biomass was forced in the model, the initial level of invasive species biomass at the beginning of time dynamic simulations, and the approach to cause invasive species biomass to increase at the time of invasion. The overall process of species invasion could be reproduced by all methods, but fits to observed time series varied among the methods and models considered. We recommend forcing invasive species biomass when model objectives are to understand ecosystem impacts in the past and when time series of invasive species biomass are available. Among methods where invasive species time series were not forced, mediating the strength of predator–prey interactions performed best for the Lake Huron model, but worse for the Lake Michigan model. Starting invasive species biomass at high values and then artificially removing biomass until the time of invasion performed well for both models, but was more complex than starting invasive species

  18. Impacts of invasive nonnative plant species on the rare forest herb Scutellaria montana

    NASA Astrophysics Data System (ADS)

    Sikkema, Jordan J.; Boyd, Jennifer N.

    2015-11-01

    Invasive plant species and overabundant herbivore populations have the potential to significantly impact rare plant species given their increased risk for local extirpation and extinction. We used interacting invasive species removal and grazer exclusion treatments replicated across two locations in an occurrence of rare Scutellaria montana (large-flowered skullcap) in Chattanooga, Tennessee, USA, to assess: 1) competition by invasive Ligustrum sinense (Chinese privet) and Lonicera japonica (Japanese honeysuckle) and 2) the role of invasive species in mediating Oedocoilus virginianus (white-tailed deer) grazing of S. montana. Contrary to our hypothesis that invasive species presence would suppress S. montana directly via competition, S. montana individuals experienced a seasonal increase in stem height when invasive species were intact but not when invasive species were removed. Marginally significant results indicated that invasive species may afford S. montana protection from grazers, and we suggest that invasive species also could protect S. montana from smaller herbivores and/or positively influence abiotic conditions. In contrast to growth responses, S. montana individuals protected from O. virginianus exhibited a decrease in flowering between seasons relative to unprotected plants, but invasive species did not affect this variable. Although it has been suggested that invasive plant species may negatively influence S. montana growth and fecundity, our findings do not support related concerns. As such, we suggest that invasive species eradication efforts in S. montana habitat could be more detrimental than positive due to associated disturbance. However, the low level of invasion of our study site may not be representative of potential interference in more heavily infested habitat.

  19. Landscape corridors can increase invasion by an exotic species and reduce diversity of native species.

    SciTech Connect

    Resasco, Julian; et al,

    2014-04-01

    Abstract. Landscape corridors are commonly used to mitigate negative effects of habitat fragmentation, but concerns persist that they may facilitate the spread of invasive species. In a replicated landscape experiment of open habitat, we measured effects of corridors on the invasive fire ant, Solenopsis invicta, and native ants. Fire ants have two social forms: polygyne, which tend to disperse poorly but establish at high densities, and monogyne, which disperse widely but establish at lower densities. In landscapes dominated by polygyne fire ants, fire ant abundance was higher and native ant diversity was lower in habitat patches connected by corridors than in unconnected patches. Conversely, in landscapes dominated by monogyne fire ants, connectivity had no influence on fire ant abundance and native ant diversity. Polygyne fire ants dominated recently created landscapes, suggesting that these corridor effects may be transient. Our results suggest that corridors can facilitate invasion and they highlight the importance of considering species’ traits when assessing corridor utility.

  20. Identification of targeted therapy for an aggressive subgroup of muscle-invasive bladder cancers.

    PubMed

    Lebret, Thierry; Neuzillet, Yann; Houede, Nadine; Rebouissou, Sandra; Bernard-Pierrot, Isabelle; De Reynies, Aurélien; Benhamou, Simone; Allory, Yves; Radvanyi, François

    2015-01-01

    Rebouissou et al. recently provided preclinical evidence that a subset of patients with muscle-invasive bladder cancer might benefit from anti-epidermal growth factor receptor (EGFR) therapy and reported diagnostic tools for identifying these patients in the clinical setting. This work also identified relevant experimental models that may be useful for future basic and clinical research on this subgroup of tumors. PMID:27308521

  1. The Global Invasive Species Information Network: contributing to GEO Task BI-07-01b

    NASA Astrophysics Data System (ADS)

    Graham, J.; Morisette, J. T.; Simpson, A.

    2009-12-01

    Invasive alien species (IAS) threaten biodiversity and exert a tremendous cost on society for IAS prevention and eradication. They endanger natural ecosystem functioning and seriously impact biodiversity and agricultural production. The task definition for the GEO task BI-07-01b: Invasive Species Monitoring System is to characterize, monitor, and predict changes in the distribution of invasive species. This includes characterizing the current requirements and capacity for invasive species monitoring and developing strategies for implementing cross-search functionality among existing online invasive species information systems from around the globe. The Task is being coordinated by members of the Global Invasive Species Information Network (GISIN) and their partners. Information on GISIN and a prototype of the network is available at www.gisin.org. This talk will report on the current status of GISIN and review how researchers can either contribute to or utilize data from this network.

  2. Scale-dependent effects of habitat area on species interaction networks: invasive species alter relationships

    PubMed Central

    2012-01-01

    Background The positive relationship between habitat area and species number is considered a fundamental rule in ecology. This relationship predicts that the link number of species interactions increases with habitat area, and structure is related to habitat area. Biological invasions can affect species interactions and area relationships. However, how these relationships change at different spatial scales has remained unexplored. We analysed understory plant–pollinator networks in seven temperate forest sites at 20 spatial scales (radius 120–2020 m) to clarify scale-associated relationships between forest area and plant–pollinator networks. Results The pooled data described interactions between 18 plant (including an exotic) and 89 pollinator (including an exotic) species. The total number of species and the number of interaction links between plant and pollinator species were negatively correlated with forest area, with the highest correlation coefficient at radii of 1520 and 1620 m, respectively. These results are not concordant with the pattern predicted by species–area relationships. However, when associations with exotic species were excluded, the total number of species and the number of interaction links were positively correlated with forest area (the highest correlation coefficient at a radius of 820 m). The network structure, i.e., connectance and nestedness, was also related to forest area (the highest correlation coefficients at radii of 720–820 m), when associations with exotics were excluded. In the study area, the exotic plant species Alliaria petiolata, which has invaded relatively small forest patches surrounded by agricultural fields, may have supported more native pollinator species than initially expected. Therefore, this invasive plant may have altered the original relationships between forest area and plant–pollinator networks. Conclusions Our results demonstrate scale-dependent effects of forest area on the size and

  3. The effect of light radiation and temperature variability on the invasion of marine fouling species

    NASA Astrophysics Data System (ADS)

    Kim, T.; Micheli, F.

    2009-12-01

    Climate change can alter the community structure as species which have adapted to the changed climate can compete better with other species. It can also influence the recruitment and invasion success of marine introduced species. Climate change involves not only global warming but also global dimming. However, it was not tested which of warming or dimming factors more significantly influence the invasion of marine species. To test this, we manipulated both temperature variability and light radiation by deploying different shading devices (black, white, transparent, and no treatment) for recruitment tiles in the warmer region where the species invasion rate is high. We compared the species frequency and coverage between shaded and non-shaded treatments. Interestingly, under opaque white plates where light radiation is lower than under transparent plates but the temperature is higher than under black plates, had the highest frequency and coverage of invasive fouling species. The recruitment tiles under black plates got second higher invasion of exotic species. We also deployed recruitment tiles in 14 different sites to determine if temperature influences the success of invasive species. The coverage of invasive species over native species increased significantly with increasing temperature. The results suggest that both low radiation and higher temperature facilitates the success of species invasion in the intertidal region.

  4. They're Here: A Coast-to-Coast Investigation of Invasive Species

    ERIC Educational Resources Information Center

    Hogan, Tracy; Craven, John

    2005-01-01

    According to the National Invasive Species Council, an "invasive species" is defined as a species that is (1) nonnative (or alien) to the ecosystem under consideration, and (2) whose introduction causes or is likely to cause economic or environmental harm or harm to human health. In this article, the authors describe an activity that can be…

  5. Teaching Farmers and Commercial Pesticide Applicators about Invasive Species in Pesticide Training Workshops

    ERIC Educational Resources Information Center

    Wyatt, Gary J.; Herzfeld, Dean; Haugen-Brown, Tana

    2015-01-01

    Farmers and agricultural professionals who are aware of species likely to invade agricultural landscapes can be active participants in efforts to detect invasive species. To reach this audience we created a short invasive species program and added it to the existing and required pesticide applicator recertification workshops. We highlighted four…

  6. Race to Displace: A Game to Model the Effects of Invasive Species on Plant Communities

    ERIC Educational Resources Information Center

    Hopwood, Jennifer L.; Flowers, Susan K.; Seidler, Katie J.; Hopwood, Erica L.

    2013-01-01

    Invasive species are a substantial threat to biodiversity. Educating students about invasive species introduces fundamental concepts in biology, ecology, and environmental science. In the Race to Displace game, students assume the characteristics of select native or introduced plants and experience first hand the influences of species interactions…

  7. Species displacements are common to two invasive species of leafminer fly in China, Japan and the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Under field conditions, species displacements have occurred in different directions between the same invasive species of leafminers (Diptera: Agromyzidae). Liriomyza sativae (Blanchard) was displaced by L. trifolii (Burgess) in the western USA, with evidence suggesting that lower insecticide suscept...

  8. Research on the fundamental principles of China's marine invasive species prevention legislation.

    PubMed

    Bai, Jiayu

    2014-12-15

    China's coastal area is severely damaged by marine invasive species. Traditional tort theory resolves issues relevant to property damage or personal injuries, through which plaintiffs cannot cope with the ecological damage caused by marine invasive species. Several defects exist within the current legal regimes, such as imperfect management systems, insufficient unified technical standards, and unsound legal responsibility systems. It is necessary to pass legislation to prevent the ecological damage caused by marine invasive species. This investigation probes the fundamental principles needed for the administration and legislation of an improved legal framework to combat the problem of invasive species within China's coastal waters.

  9. Getting the right traits: reproductive and dispersal characteristics predict the invasiveness of herbaceous plant species.

    PubMed

    Moravcová, Lenka; Pyšek, Petr; Jarošík, Vojtěch; Pergl, Jan

    2015-01-01

    To better understand the effect of species traits on plant invasion, we collected comparative data on 20 reproductive and dispersal traits of 93 herbaceous alien species in the Czech Republic, central Europe, introduced after 1500 A. D. We explain plant invasion success, expressed by two measures: invasiveness, i.e. whether the species is naturalized but non-invasive, or invasive; and dominance in plant communities expressed as the mean cover in vegetation plots. We also tested how important reproductive and dispersal traits are in models including other characteristics generally known to predict invasion outcome, such as plant height, life history and residence time. By using regression/classification trees we show that the biological traits affect invasion success at all life stages, from reproduction (seed production) to dispersal (propagule properties), and the ability to compete with resident species (height). By including species traits information not usually available in multispecies analyses, we provide evidence that traits do play important role in determining the outcome of invasion and can be used to distinguish between alien species that reach the final stage of the invasion process and dominate the local communities from those that do not. No effect of taxonomy ascertained in regression and classification trees indicates that the role of traits in invasiveness should be assessed primarily at the species level.

  10. Projecting future expansion of invasive species: comparing and improving methodologies for species distribution modeling.

    PubMed

    Mainali, Kumar P; Warren, Dan L; Dhileepan, Kunjithapatham; McConnachie, Andrew; Strathie, Lorraine; Hassan, Gul; Karki, Debendra; Shrestha, Bharat B; Parmesan, Camille

    2015-12-01

    Modeling the distributions of species, especially of invasive species in non-native ranges, involves multiple challenges. Here, we developed some novel approaches to species distribution modeling aimed at reducing the influences of such challenges and improving the realism of projections. We estimated species-environment relationships for Parthenium hysterophorus L. (Asteraceae) with four modeling methods run with multiple scenarios of (i) sources of occurrences and geographically isolated background ranges for absences, (ii) approaches to drawing background (absence) points, and (iii) alternate sets of predictor variables. We further tested various quantitative metrics of model evaluation against biological insight. Model projections were very sensitive to the choice of training dataset. Model accuracy was much improved using a global dataset for model training, rather than restricting data input to the species' native range. AUC score was a poor metric for model evaluation and, if used alone, was not a useful criterion for assessing model performance. Projections away from the sampled space (i.e., into areas of potential future invasion) were very different depending on the modeling methods used, raising questions about the reliability of ensemble projections. Generalized linear models gave very unrealistic projections far away from the training region. Models that efficiently fit the dominant pattern, but exclude highly local patterns in the dataset and capture interactions as they appear in data (e.g., boosted regression trees), improved generalization of the models. Biological knowledge of the species and its distribution was important in refining choices about the best set of projections. A post hoc test conducted on a new Parthenium dataset from Nepal validated excellent predictive performance of our 'best' model. We showed that vast stretches of currently uninvaded geographic areas on multiple continents harbor highly suitable habitats for parthenium

  11. Projecting future expansion of invasive species: comparing and improving methodologies for species distribution modeling.

    PubMed

    Mainali, Kumar P; Warren, Dan L; Dhileepan, Kunjithapatham; McConnachie, Andrew; Strathie, Lorraine; Hassan, Gul; Karki, Debendra; Shrestha, Bharat B; Parmesan, Camille

    2015-12-01

    Modeling the distributions of species, especially of invasive species in non-native ranges, involves multiple challenges. Here, we developed some novel approaches to species distribution modeling aimed at reducing the influences of such challenges and improving the realism of projections. We estimated species-environment relationships for Parthenium hysterophorus L. (Asteraceae) with four modeling methods run with multiple scenarios of (i) sources of occurrences and geographically isolated background ranges for absences, (ii) approaches to drawing background (absence) points, and (iii) alternate sets of predictor variables. We further tested various quantitative metrics of model evaluation against biological insight. Model projections were very sensitive to the choice of training dataset. Model accuracy was much improved using a global dataset for model training, rather than restricting data input to the species' native range. AUC score was a poor metric for model evaluation and, if used alone, was not a useful criterion for assessing model performance. Projections away from the sampled space (i.e., into areas of potential future invasion) were very different depending on the modeling methods used, raising questions about the reliability of ensemble projections. Generalized linear models gave very unrealistic projections far away from the training region. Models that efficiently fit the dominant pattern, but exclude highly local patterns in the dataset and capture interactions as they appear in data (e.g., boosted regression trees), improved generalization of the models. Biological knowledge of the species and its distribution was important in refining choices about the best set of projections. A post hoc test conducted on a new Parthenium dataset from Nepal validated excellent predictive performance of our 'best' model. We showed that vast stretches of currently uninvaded geographic areas on multiple continents harbor highly suitable habitats for parthenium

  12. Invasive species: Ocean ecosystem case studies for earth systems and environmental sciences

    USGS Publications Warehouse

    Schofield, Pam; Brown, Mary E.

    2016-01-01

    Marine species are increasingly transferred from areas where they are native to areas where they are not. Some nonnative species become invasive, causing undesirable impacts to environment, economy and/or human health. Nonnative marine species can be introduced through a variety of vectors, including shipping, trade, inland corridors (such as canals), and others. Effects of invasive marine species can be dramatic and irreversible. Case studies of four nonnative marine species are given (green crab, comb jelly, lionfish and Caulerpa algae).

  13. Invasive non-native species' provision of refugia for endangered native species.

    PubMed

    Chiba, Satoshi

    2010-08-01

    The influence of non-native species on native ecosystems is not predicted easily when interspecific interactions are complex. Species removal can result in unexpected and undesired changes to other ecosystem components. I examined whether invasive non-native species may both harm and provide refugia for endangered native species. The invasive non-native plant Casuarina stricta has damaged the native flora and caused decline of the snail fauna on the Ogasawara Islands, Japan. On Anijima in 2006 and 2009, I examined endemic land snails in the genus Ogasawarana. I compared the density of live specimens and frequency of predation scars (from black rats [Rattus rattus]) on empty shells in native vegetation and Casuarina forests. The density of land snails was greater in native vegetation than in Casuarina forests in 2006. Nevertheless, radical declines in the density of land snails occurred in native vegetation since 2006 in association with increasing predation by black rats. In contrast, abundance of Ogasawarana did not decline in the Casuarina forest, where shells with predation scars from rats were rare. As a result, the density of snails was greater in the Casuarina forest than in native vegetation. Removal of Casuarina was associated with an increased proportion of shells with predation scars from rats and a decrease in the density of Ogasawarana. The thick and dense litter of Casuarina appears to provide refugia for native land snails by protecting them from predation by rats; thus, eradication of rats should precede eradication of Casuarina. Adaptive strategies, particularly those that consider the removal order of non-native species, are crucial to minimizing the unintended effects of eradication on native species. In addition, my results suggested that in some cases a given non-native species can be used to mitigate the impacts of other non-native species on native species. PMID:20184648

  14. Invasive non-native species' provision of refugia for endangered native species.

    PubMed

    Chiba, Satoshi

    2010-08-01

    The influence of non-native species on native ecosystems is not predicted easily when interspecific interactions are complex. Species removal can result in unexpected and undesired changes to other ecosystem components. I examined whether invasive non-native species may both harm and provide refugia for endangered native species. The invasive non-native plant Casuarina stricta has damaged the native flora and caused decline of the snail fauna on the Ogasawara Islands, Japan. On Anijima in 2006 and 2009, I examined endemic land snails in the genus Ogasawarana. I compared the density of live specimens and frequency of predation scars (from black rats [Rattus rattus]) on empty shells in native vegetation and Casuarina forests. The density of land snails was greater in native vegetation than in Casuarina forests in 2006. Nevertheless, radical declines in the density of land snails occurred in native vegetation since 2006 in association with increasing predation by black rats. In contrast, abundance of Ogasawarana did not decline in the Casuarina forest, where shells with predation scars from rats were rare. As a result, the density of snails was greater in the Casuarina forest than in native vegetation. Removal of Casuarina was associated with an increased proportion of shells with predation scars from rats and a decrease in the density of Ogasawarana. The thick and dense litter of Casuarina appears to provide refugia for native land snails by protecting them from predation by rats; thus, eradication of rats should precede eradication of Casuarina. Adaptive strategies, particularly those that consider the removal order of non-native species, are crucial to minimizing the unintended effects of eradication on native species. In addition, my results suggested that in some cases a given non-native species can be used to mitigate the impacts of other non-native species on native species.

  15. Effects of macroalgal identity on epifaunal assemblages: native species versus the invasive species Sargassum muticum

    NASA Astrophysics Data System (ADS)

    Gestoso, Ignacio; Olabarria, Celia; Troncoso, Jesús S.

    2012-06-01

    Seaweeds are a refuge from stressful conditions associated with life on rocky intertidal shores, and there is evidence that different macrophytes support different assemblages of mobile epifauna. Introduction of non-indigenous macroalgae may have a great impact on associated epifaunal assemblages and ecosystem processes in coastal areas. Previous studies have reported conflicting evidences for the ability of epifauna to colonize non-indigenous species. Here, we analyzed epifaunal assemblages associated with three species of macroalgae that are very abundant on intertidal shores along the Galician coast: the two native species Bifurcaria bifurcata and Saccorhiza polyschides and the invasive species Sargassum muticum. We collected samples of each species from three different sites at three different times to test whether variability of epifaunal assemblages was consistent over space and time. Epifaunal assemblages differed between the three macroalgae. Results suggested that stability and morphology of habitat played an important role in shaping the structure of epifaunal assemblages. This study also showed that the invasive S. muticum offered a suitable habitat for many invertebrates.

  16. Evolutionary responses of native plant species to invasive plants: a review.

    PubMed

    Oduor, Ayub M O

    2013-12-01

    Strong competition from invasive plant species often leads to declines in abundances and may, in certain cases, cause localized extinctions of native plant species. Nevertheless, studies have shown that certain populations of native plant species can co-exist with invasive plant species,suggesting the possibility of adaptive evolutionary responses of those populations to the invasive plants. Empirical inference of evolutionary responses of the native plant species to invasive plants has involved experiments comparing two conspecific groups of native plants for differences in expression of growth/reproductive traits: populations that have experienced competition from the invasive plant species (i.e. experienced natives) versus populations with no known history of interactions with the invasive plant species (i.e. naıve natives). Here, I employ a meta-analysis to obtain a general pattern of inferred evolutionary responses of native plant species from 53 such studies. In general, the experienced natives had significantly higher growth/reproductive performances than naıve natives, when grown with or without competition from invasive plants.While the current results indicate that certain populations of native plant species could potentially adapt evolutionarily to invasive plant species, the ecological and evolutionary mechanisms that probably underlie such evolutionary responses remain unexplored and should be the focus of future studies.

  17. Predicting the presence and cover of management relevant invasive plant species on protected areas.

    PubMed

    Iacona, Gwenllian; Price, Franklin D; Armsworth, Paul R

    2016-01-15

    Invasive species are a management concern on protected areas worldwide. Conservation managers need to predict infestations of invasive plants they aim to treat if they want to plan for long term management. Many studies predict the presence of invasive species, but predictions of cover are more relevant for management. Here we examined how predictors of invasive plant presence and cover differ across species that vary in their management priority. To do so, we used data on management effort and cover of invasive plant species on central Florida protected areas. Using a zero-inflated multiple regression framework, we showed that protected area features can predict the presence and cover of the focal species but the same features rarely explain both. There were several predictors of either presence or cover that were important across multiple species. Protected areas with three days of frost per year or fewer were more likely to have occurrences of four of the six focal species. When invasive plants were present, their proportional cover was greater on small preserves for all species, and varied with surrounding household density for three species. None of the predictive features were clearly related to whether species were prioritized for management or not. Our results suggest that predictors of cover and presence can differ both within and across species but do not covary with management priority. We conclude that conservation managers need to select predictors of invasion with care as species identity can determine the relationship between predictors of presence and the more management relevant predictors of cover.

  18. Running a network on a shoestring: the Global Invasive Species Information Network

    USGS Publications Warehouse

    Jarnevich, Catherine S.; Simpson, Annie; Graham, James J; Newman, Gregory J.; Bargeron, Chuck T.

    2015-01-01

    The Global Invasive Species Information Network (GISIN) was conceptualized in 2004 to aggregate and disseminate invasive species data in a standardized way. A decade later the GISIN community has implemented a data portal and three of six GISIN data aggregation models in the GISIN data exchange Protocol, including invasive species status information, resource URLs, and occurrence data. The portal is based on a protocol developed by representatives from 15 countries and 27 organizations of the global invasive species information management community. The GISIN has 19 data providers sharing 34,343 species status records, 1,693,073 occurrences, and 15,601 resource URLs. While the GISIN's goal is to be global, much of its data and funding are provided by the United States. Several initiatives use the GISIN as their information backbone, such as the Great Lakes Early Detection Network (GLEDN) and the North American Invasive Species Network (NAISN). Here we share several success stories and organizational challenges that remain.

  19. A Source Area Approach Demonstrates Moderate Predictive Ability but Pronounced Variability of Invasive Species Traits.

    PubMed

    Klonner, Günther; Fischer, Stefan; Essl, Franz; Dullinger, Stefan

    2016-01-01

    The search for traits that make alien species invasive has mostly concentrated on comparing successful invaders and different comparison groups with respect to average trait values. By contrast, little attention has been paid to trait variability among invaders. Here, we combine an analysis of trait differences between invasive and non-invasive species with a comparison of multidimensional trait variability within these two species groups. We collected data on biological and distributional traits for 1402 species of the native, non-woody vascular plant flora of Austria. We then compared the subsets of species recorded and not recorded as invasive aliens anywhere in the world, respectively, first, with respect to the sampled traits using univariate and multiple regression models; and, second, with respect to their multidimensional trait diversity by calculating functional richness and dispersion metrics. Attributes related to competitiveness (strategy type, nitrogen indicator value), habitat use (agricultural and ruderal habitats, occurrence under the montane belt), and propagule pressure (frequency) were most closely associated with invasiveness. However, even the best multiple model, including interactions, only explained a moderate fraction of the differences in invasive success. In addition, multidimensional variability in trait space was even larger among invasive than among non-invasive species. This pronounced variability suggests that invasive success has a considerable idiosyncratic component and is probably highly context specific. We conclude that basing risk assessment protocols on species trait profiles will probably face hardly reducible uncertainties.

  20. A Source Area Approach Demonstrates Moderate Predictive Ability but Pronounced Variability of Invasive Species Traits

    PubMed Central

    Essl, Franz; Dullinger, Stefan

    2016-01-01

    The search for traits that make alien species invasive has mostly concentrated on comparing successful invaders and different comparison groups with respect to average trait values. By contrast, little attention has been paid to trait variability among invaders. Here, we combine an analysis of trait differences between invasive and non-invasive species with a comparison of multidimensional trait variability within these two species groups. We collected data on biological and distributional traits for 1402 species of the native, non-woody vascular plant flora of Austria. We then compared the subsets of species recorded and not recorded as invasive aliens anywhere in the world, respectively, first, with respect to the sampled traits using univariate and multiple regression models; and, second, with respect to their multidimensional trait diversity by calculating functional richness and dispersion metrics. Attributes related to competitiveness (strategy type, nitrogen indicator value), habitat use (agricultural and ruderal habitats, occurrence under the montane belt), and propagule pressure (frequency) were most closely associated with invasiveness. However, even the best multiple model, including interactions, only explained a moderate fraction of the differences in invasive success. In addition, multidimensional variability in trait space was even larger among invasive than among non-invasive species. This pronounced variability suggests that invasive success has a considerable idiosyncratic component and is probably highly context specific. We conclude that basing risk assessment protocols on species trait profiles will probably face hardly reducible uncertainties. PMID:27187616

  1. A Source Area Approach Demonstrates Moderate Predictive Ability but Pronounced Variability of Invasive Species Traits.

    PubMed

    Klonner, Günther; Fischer, Stefan; Essl, Franz; Dullinger, Stefan

    2016-01-01

    The search for traits that make alien species invasive has mostly concentrated on comparing successful invaders and different comparison groups with respect to average trait values. By contrast, little attention has been paid to trait variability among invaders. Here, we combine an analysis of trait differences between invasive and non-invasive species with a comparison of multidimensional trait variability within these two species groups. We collected data on biological and distributional traits for 1402 species of the native, non-woody vascular plant flora of Austria. We then compared the subsets of species recorded and not recorded as invasive aliens anywhere in the world, respectively, first, with respect to the sampled traits using univariate and multiple regression models; and, second, with respect to their multidimensional trait diversity by calculating functional richness and dispersion metrics. Attributes related to competitiveness (strategy type, nitrogen indicator value), habitat use (agricultural and ruderal habitats, occurrence under the montane belt), and propagule pressure (frequency) were most closely associated with invasiveness. However, even the best multiple model, including interactions, only explained a moderate fraction of the differences in invasive success. In addition, multidimensional variability in trait space was even larger among invasive than among non-invasive species. This pronounced variability suggests that invasive success has a considerable idiosyncratic component and is probably highly context specific. We conclude that basing risk assessment protocols on species trait profiles will probably face hardly reducible uncertainties. PMID:27187616

  2. Making a Bad Situation Worse: An Invasive Species Altering the Balance of Interactions between Local Species

    PubMed Central

    2016-01-01

    Biological invasions pose a significant threat to biodiversity, especially on oceanic islands. One of the primary explanations for the success of plant invaders is direct suppression of competitors. However, indirect interactions can also be important, although they are often overlooked in studies on biological invasion. The shrub Leucaena leucocephala is a widespread island invader with putative allelopathic effects on the germination and growth of other species. We quantified the impact of Leucaena on plant communities richness on an oceanic Brazilian island and, through nursery experiments, investigated the potential for allelopathic effects on the germination of Erythrina velutina, a native species that is often absent from stands of Leucaena. Additionally, in a manipulative field experiment, we examined the direct and indirect effects (mediated by the native species Capparis flexuosa) of the invader on the development of Erythrina. The species richness in invaded sites was lower than in uninvaded sites, and Capparis was the only native species that was frequently present in invaded sites. In the nursery experiments, we found no evidence that Leucaena affects the germination of Erythrina. In the field experiments, the odds of Erythrina germination were lower in the presence of Leucaena litter, but higher in the presence of Leucaena trees. However, the survival and growth of Erythrina were considerably inhibited by the presence of Leucaena trees. The isolated effect of native Capparis on the germination and growth of Erythrina varied from positive to neutral. However, when Capparis and Leucaena were both present, their combined negative effects on Erythrina were worse than the effect of Leucaena alone, which may be attributed to indirect effects. This study provides the first empirical evidence that the balance of the interactions between native species can shift from neutral/positive to negative in the presence of an exotic species. PMID:27010846

  3. Making a Bad Situation Worse: An Invasive Species Altering the Balance of Interactions between Local Species.

    PubMed

    Mello, Thayná Jeremias; Oliveira, Alexandre Adalardo de

    2016-01-01

    Biological invasions pose a significant threat to biodiversity, especially on oceanic islands. One of the primary explanations for the success of plant invaders is direct suppression of competitors. However, indirect interactions can also be important, although they are often overlooked in studies on biological invasion. The shrub Leucaena leucocephala is a widespread island invader with putative allelopathic effects on the germination and growth of other species. We quantified the impact of Leucaena on plant communities richness on an oceanic Brazilian island and, through nursery experiments, investigated the potential for allelopathic effects on the germination of Erythrina velutina, a native species that is often absent from stands of Leucaena. Additionally, in a manipulative field experiment, we examined the direct and indirect effects (mediated by the native species Capparis flexuosa) of the invader on the development of Erythrina. The species richness in invaded sites was lower than in uninvaded sites, and Capparis was the only native species that was frequently present in invaded sites. In the nursery experiments, we found no evidence that Leucaena affects the germination of Erythrina. In the field experiments, the odds of Erythrina germination were lower in the presence of Leucaena litter, but higher in the presence of Leucaena trees. However, the survival and growth of Erythrina were considerably inhibited by the presence of Leucaena trees. The isolated effect of native Capparis on the germination and growth of Erythrina varied from positive to neutral. However, when Capparis and Leucaena were both present, their combined negative effects on Erythrina were worse than the effect of Leucaena alone, which may be attributed to indirect effects. This study provides the first empirical evidence that the balance of the interactions between native species can shift from neutral/positive to negative in the presence of an exotic species. PMID:27010846

  4. Making a Bad Situation Worse: An Invasive Species Altering the Balance of Interactions between Local Species.

    PubMed

    Mello, Thayná Jeremias; Oliveira, Alexandre Adalardo de

    2016-01-01

    Biological invasions pose a significant threat to biodiversity, especially on oceanic islands. One of the primary explanations for the success of plant invaders is direct suppression of competitors. However, indirect interactions can also be important, although they are often overlooked in studies on biological invasion. The shrub Leucaena leucocephala is a widespread island invader with putative allelopathic effects on the germination and growth of other species. We quantified the impact of Leucaena on plant communities richness on an oceanic Brazilian island and, through nursery experiments, investigated the potential for allelopathic effects on the germination of Erythrina velutina, a native species that is often absent from stands of Leucaena. Additionally, in a manipulative field experiment, we examined the direct and indirect effects (mediated by the native species Capparis flexuosa) of the invader on the development of Erythrina. The species richness in invaded sites was lower than in uninvaded sites, and Capparis was the only native species that was frequently present in invaded sites. In the nursery experiments, we found no evidence that Leucaena affects the germination of Erythrina. In the field experiments, the odds of Erythrina germination were lower in the presence of Leucaena litter, but higher in the presence of Leucaena trees. However, the survival and growth of Erythrina were considerably inhibited by the presence of Leucaena trees. The isolated effect of native Capparis on the germination and growth of Erythrina varied from positive to neutral. However, when Capparis and Leucaena were both present, their combined negative effects on Erythrina were worse than the effect of Leucaena alone, which may be attributed to indirect effects. This study provides the first empirical evidence that the balance of the interactions between native species can shift from neutral/positive to negative in the presence of an exotic species.

  5. REMOTE DETENTION OF INVASIVE AND OPPORTUNISTIC PLANT SPECIES IN GREAT LAKES COASTAL WETLANDS

    EPA Science Inventory

    Invasive and opportunistic plant species have been associated with wetland disturbance. Increases in the abundance of plant species such as common reed (Phragmites australis) in coastal Great Lakes wetlands are hypothesized to occur with shifts toward drier hydrologic regimes, fr...

  6. Morphology delimits more species than molecular genetic clusters of invasive Pilosella

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Premise of the study: Reliable identifications of invasive species are essential for effective management. Several species of Pilosella (syn. Hieracium, Asteraceae) hawkweeds invade North America, where unreliable identification hinders their control. Here we ask (i) do morphological traits dependab...

  7. Ecosystem Change in California Grasslands: Impacts of Species Invasion

    NASA Astrophysics Data System (ADS)

    Koteen, L. E.; Harte, J.; Baldocchi, D. D.

    2009-12-01

    Grassland ecosystems of California have undergone dramatic changes, resulting in the almost complete replacement of native perennial grasses by non-native annuals across millions of hectares of grassland habitat. Our research investigates the effects of this community shift on carbon, water and energy cycles at two sites in northern coastal California. Our goal was to understand how changes to California’s grasslands have affected climate through 1. shifting the balance of carbon storage between terrestrial stocks and the atmosphere, and 2. altering the water and energy regimes that heat or cool the earth's surface. To compare the processes that govern material exchange before and after annual grass invasion, we made use of sites where native vegetation is found adjacent to locations that have undergone non-native invasion. In plots of each vegetation type, we monitored whole plant productivity, root and litter decay rates and soil respiration, as well as soil climatic controls on these processes. At one site, we also measured surface albedo and the components of the surface energy balance in each grass community, using the surface renewal method. Although seemingly subtle, the shift in California grassland communities from native perennial to non-native annual grass dominance has had profound consequences for ecosystem biogeochemical, radiative and hydrological cycles. Soil carbon storage was found to be significantly greater in native perennial grass communities. Across both study sites, we found that non-native grass invasion has resulted in the transfer of from 3 to 6 tons of carbon per hectare from the soil to the atmosphere, dependent on site and species. A soil density fractionation and a radiocarbon analysis also revealed the carbon to be more recalcitrant in native grass dominated locations. The primary plant traits that help explain why soil carbon losses follow annual grass invasion are: 1. differences between annual and perennial grasses in above

  8. Evolution of invasive traits in nonindigenous species: increased survival and faster growth in invasive populations of rusty crayfish (Orconectes rusticus).

    PubMed

    Sargent, Lindsey W; Lodge, David M

    2014-09-01

    The importance of evolution in enhancing the invasiveness of species is not well understood, especially in animals. To evaluate evolution in crayfish invasions, we tested for differences in growth rate, survival, and response to predators between native and invaded range populations of rusty crayfish (Orconectes rusticus). We hypothesized that low conspecific densities during introductions into lakes would select for increased investment in growth and reproduction in invasive populations. We reared crayfish from both ranges in common garden experiments in lakes and mesocosms, the latter in which we also included treatments of predatory fish presence and food quality. In both lake and mesocosm experiments, O. rusticus from invasive populations had significantly faster growth rates and higher survival than individuals from the native range, especially in mesocosms where fish were present. There was no influence of within-range collection location on growth rate. Egg size was similar between ranges and did not affect crayfish growth. Our results, therefore, suggest that growth rate, which previous work has shown contributes to strong community-level impacts of this invasive species, has diverged since O. rusticus was introduced to the invaded range. This result highlights the need to consider evolutionary dynamics in invasive species mitigation strategies.

  9. Evolution of invasive traits in nonindigenous species: increased survival and faster growth in invasive populations of rusty crayfish (Orconectes rusticus)

    PubMed Central

    Sargent, Lindsey W; Lodge, David M

    2014-01-01

    The importance of evolution in enhancing the invasiveness of species is not well understood, especially in animals. To evaluate evolution in crayfish invasions, we tested for differences in growth rate, survival, and response to predators between native and invaded range populations of rusty crayfish (Orconectes rusticus). We hypothesized that low conspecific densities during introductions into lakes would select for increased investment in growth and reproduction in invasive populations. We reared crayfish from both ranges in common garden experiments in lakes and mesocosms, the latter in which we also included treatments of predatory fish presence and food quality. In both lake and mesocosm experiments, O. rusticus from invasive populations had significantly faster growth rates and higher survival than individuals from the native range, especially in mesocosms where fish were present. There was no influence of within-range collection location on growth rate. Egg size was similar between ranges and did not affect crayfish growth. Our results, therefore, suggest that growth rate, which previous work has shown contributes to strong community-level impacts of this invasive species, has diverged since O. rusticus was introduced to the invaded range. This result highlights the need to consider evolutionary dynamics in invasive species mitigation strategies. PMID:25469173

  10. THE MILLENNIUM CHALLENGE: THE U.S. ENVIRONMENTAL PROTECTION AGENCY'S RESPONSE TO INVASIVE SPECIES

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) is responding to the scientific and regulatory challenges of invasive species in a variety of ways. One response has been to use existing programs and regulations, as appropriate, to address invasive species. A recent example is th...

  11. Invasive species change detection using artificial neural networks and CASI hyperspectral imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For monitoring and controlling the extent and intensity of an invasive species, a direct multi-date image classification method was applied in invasive species (saltcedar) change detection in the study area of Lovelock, Nevada. With multi-date Compact Airborne Spectrographic Imager (CASI) hyperspec...

  12. A Hands-On Activity to Introduce the Effects of Transmission by an Invasive Species

    ERIC Educational Resources Information Center

    May, Barbara Jean

    2013-01-01

    This activity engages students to better understand the impact of transmission by invasive species. Using dice, poker chips, and paper plates, an entire class mimics the spread of an invasive species within a geographic region. The activity can be modified and conducted at the K-16 levels.

  13. Teaching Citizen Science Skills Online: Implications for Invasive Species Training Programs

    ERIC Educational Resources Information Center

    Newman, Greg; Crall, Alycia; Laituri, Melinda; Graham, Jim; Stohlgren, Tom; Moore, John C.; Kodrich, Kris; Holfelder, Kirstin A.

    2010-01-01

    Citizen science programs are emerging as an efficient way to increase data collection and help monitor invasive species. Effective invasive species monitoring requires rigid data quality assurances if expensive control efforts are to be guided by volunteer data. To achieve data quality, effective online training is needed to improve field skills…

  14. Genetic Structure, Nestmate Recognition and Behaviour of Two Cryptic Species of the Invasive Big-Headed Ant Pheidole megacephala

    PubMed Central

    Fournier, Denis; Tindo, Maurice; Kenne, Martin; Mbenoun Masse, Paul Serge; Van Bossche, Vanessa; De Coninck, Eliane; Aron, Serge

    2012-01-01

    Background Biological invasions are recognized as a major cause of biodiversity decline and have considerable impact on the economy and human health. The African big-headed ant Pheidole megacephala is considered one of the world's most harmful invasive species. Methodology/Principal Findings To better understand its ecological and demographic features, we combined behavioural (aggression tests), chemical (quantitative and qualitative analyses of cuticular lipids) and genetic (mitochondrial divergence and polymorphism of DNA microsatellite markers) data obtained for eight populations in Cameroon. Molecular data revealed two cryptic species of P. megacephala, one inhabiting urban areas and the other rainforests. Urban populations belong to the same phylogenetic group than those introduced in Australia and in other parts of the world. Behavioural analyses show that the eight populations sampled make up four mutually aggressive supercolonies. The maximum distance between nests from the same supercolony was 49 km and the closest distance between two nests belonging to two different supercolonies was 46 m. The genetic data and chemical analyses confirmed the behavioural tests as all of the nests were correctly assigned to their supercolony. Genetic diversity appears significantly greater in Africa than in introduced populations in Australia; by contrast, urban and Australian populations are characterized by a higher chemical diversity than rainforest ones. Conclusions/Significance Overall, our study shows that populations of P. megacephala in Cameroon adopt a unicolonial social structure, like invasive populations in Australia. However, the size of the supercolonies appears several orders of magnitude smaller in Africa. This implies competition between African supercolonies and explains why they persist over evolutionary time scales. PMID:22371822

  15. Preventing species invasion: A role for integrative taxonomy?

    PubMed

    Mazzamuto, Maria V; Galimberti, Andrea; Cremonesi, Giacomo; Pisanu, Benoît; Chapuis, Jean-Louis; Stuyck, Jan; Amori, Giovanni; Su, Haijun; Aloise, Gaetano; Preatoni, Damiano G; Wauters, Lucas A; Casiraghi, Maurizio; Martinoli, Adriano

    2016-05-01

    Integrative taxonomy, a multi-disciplinary approach adding modern techniques to traditional morphology-based methods (e.g. molecular and morphological criteria), can play an important role in bioinvasion research to identify introduced taxa, discover pathways of introduction and inform authorities to control and prevent future introductions. The present study is the first on introduced populations of Callosciurus, Asiatic tree squirrels, known as potentially invasive species in Europe (Italy, Belgium and France). We combined molecular (mitochondrial DNA markers: CoxI, D-loop) and morphometric analysis on skulls, comparing them to the widest morphological and molecular datasets ever assembled for Callosciurus. Squirrels collected in Italy and Belgium share the same haplotypes and skull characteristics, but are conspicuously different from the French population in Antibes. Genetic data revealed close similarity between French squirrels and Pallas's squirrels, Callosciurus erythraeus, from Taiwan, China. Italian and Belgian squirrels formed an independent taxonomic lineage in genetic analyses, whose taxonomic rank needs further investigation. The morphological and morphometric characteristics of these 2 populations are, however, similar to known specimens assigned to Callosciurus erythraeus. These results may indicate a common origin for the populations found in Belgium and Italy. In contrast, French specimens suggest an independent introduction event of squirrels originating from Asia. PMID:26748591

  16. Composting for management and resource recovery of invasive Acacia species.

    PubMed

    Brito, Luis Miguel; Mourão, Isabel; Coutinho, João; Smith, Stephen

    2013-11-01

    The feasibility of commercial-scale composting of waste biomass from the control of invasive Acacia species was investigated. Pile temperatures exceeded 65ºC for several months, indicating that the composting process was effective at pathogen inactivation and seed destruction. Mineralisation of Acacia biomass was described by a two-component, first-order exponential model; the pool sizes for labile and recalcitrant organic matter (OM) were similar and in the approximate ranges: 360-410 g kg(-1) and 350-390 g kg(-1) of initial OM, respectively. Concentrations of conservative nutrients increased proportionally to OM mineralisation, enriching the compost as an agricultural nutrient source. Nitrogen concentrations also increased, but were more dynamic as nitrogen losses were difficult to control, although we suggest that they may be potentially minimised by restricting the turning frequency. The physicochemical characteristics of the stabilised end-product, and the high OM content and low electrical conductivity (<1.2 dS m(-1)), in particular, were suitable for soil improvement or as substrate components.

  17. Composting for management and resource recovery of invasive Acacia species.

    PubMed

    Brito, Luis Miguel; Mourão, Isabel; Coutinho, João; Smith, Stephen

    2013-11-01

    The feasibility of commercial-scale composting of waste biomass from the control of invasive Acacia species was investigated. Pile temperatures exceeded 65ºC for several months, indicating that the composting process was effective at pathogen inactivation and seed destruction. Mineralisation of Acacia biomass was described by a two-component, first-order exponential model; the pool sizes for labile and recalcitrant organic matter (OM) were similar and in the approximate ranges: 360-410 g kg(-1) and 350-390 g kg(-1) of initial OM, respectively. Concentrations of conservative nutrients increased proportionally to OM mineralisation, enriching the compost as an agricultural nutrient source. Nitrogen concentrations also increased, but were more dynamic as nitrogen losses were difficult to control, although we suggest that they may be potentially minimised by restricting the turning frequency. The physicochemical characteristics of the stabilised end-product, and the high OM content and low electrical conductivity (<1.2 dS m(-1)), in particular, were suitable for soil improvement or as substrate components. PMID:24025371

  18. Preventing species invasion: A role for integrative taxonomy?

    PubMed

    Mazzamuto, Maria V; Galimberti, Andrea; Cremonesi, Giacomo; Pisanu, Benoît; Chapuis, Jean-Louis; Stuyck, Jan; Amori, Giovanni; Su, Haijun; Aloise, Gaetano; Preatoni, Damiano G; Wauters, Lucas A; Casiraghi, Maurizio; Martinoli, Adriano

    2016-05-01

    Integrative taxonomy, a multi-disciplinary approach adding modern techniques to traditional morphology-based methods (e.g. molecular and morphological criteria), can play an important role in bioinvasion research to identify introduced taxa, discover pathways of introduction and inform authorities to control and prevent future introductions. The present study is the first on introduced populations of Callosciurus, Asiatic tree squirrels, known as potentially invasive species in Europe (Italy, Belgium and France). We combined molecular (mitochondrial DNA markers: CoxI, D-loop) and morphometric analysis on skulls, comparing them to the widest morphological and molecular datasets ever assembled for Callosciurus. Squirrels collected in Italy and Belgium share the same haplotypes and skull characteristics, but are conspicuously different from the French population in Antibes. Genetic data revealed close similarity between French squirrels and Pallas's squirrels, Callosciurus erythraeus, from Taiwan, China. Italian and Belgian squirrels formed an independent taxonomic lineage in genetic analyses, whose taxonomic rank needs further investigation. The morphological and morphometric characteristics of these 2 populations are, however, similar to known specimens assigned to Callosciurus erythraeus. These results may indicate a common origin for the populations found in Belgium and Italy. In contrast, French specimens suggest an independent introduction event of squirrels originating from Asia.

  19. Phenotypic Plasticity and Population Differentiation in an Ongoing Species Invasion

    PubMed Central

    Matesanz, Silvia; Horgan-Kobelski, Tim; Sultan, Sonia E.

    2012-01-01

    The ability to succeed in diverse conditions is a key factor allowing introduced species to successfully invade and spread across new areas. Two non-exclusive factors have been suggested to promote this ability: adaptive phenotypic plasticity of individuals, and the evolution of locally adapted populations in the new range. We investigated these individual and population-level factors in Polygonum cespitosum, an Asian annual that has recently become invasive in northeastern North America. We characterized individual fitness, life-history, and functional plasticity in response to two contrasting glasshouse habitat treatments (full sun/dry soil and understory shade/moist soil) in 165 genotypes sampled from nine geographically separate populations representing the range of light and soil moisture conditions the species inhabits in this region. Polygonum cespitosum genotypes from these introduced-range populations expressed broadly similar plasticity patterns. In response to full sun, dry conditions, genotypes from all populations increased photosynthetic rate, water use efficiency, and allocation to root tissues, dramatically increasing reproductive fitness compared to phenotypes expressed in simulated understory shade. Although there were subtle among-population differences in mean trait values as well as in the slope of plastic responses, these population differences did not reflect local adaptation to environmental conditions measured at the population sites of origin. Instead, certain populations expressed higher fitness in both glasshouse habitat treatments. We also compared the introduced-range populations to a single population from the native Asian range, and found that the native population had delayed phenology, limited functional plasticity, and lower fitness in both experimental environments compared with the introduced-range populations. Our results indicate that the future spread of P. cespitosum in its introduced range will likely be fueled by

  20. Calvarial bone cavernous hemangioma with intradural invasion: An unusual aggressive course—Case report and literature review

    PubMed Central

    Nasi, Davide; Somma, Lucia di; Iacoangeli, Maurizio; Liverotti, Valentina; Zizzi, Antonio; Dobran, Mauro; Gladi, Maurizio; Scerrati, Massimo

    2016-01-01

    Introduction Cavernous hemangioma of the skull is a rare pathological diagnosis, accounting for 0.2% of bone tumors and 7% of skull tumors. Usually calvarial bone cavernous hemangioma are associated with a benign clinical course and, despite their enlargement and subsequent erosion of the surrounding bone, the inner table of the skull remains intact and the lesion is completely extracranial. Presentation of a case The authors present the unique case of a huge left frontal bone cavernous malformation with intradural extension and brain compression determining a right hemiparesis. Discussion Calvarial cavernous hemangiomas are benign tumors. They arise from vessels in the diploic space and tend to involve the outer table of the skull with relative sparing of the inner table. More extensive involvement of the inner table and extradural space is very unusual and few cases are reported in literature. To the best of our knowledge, intradural invasion of calvarial hemangioma has not been previously reported. Conclusion Our case highlights the possibility of an aggressive course of this rare benign pathology. PMID:27061482

  1. Global threats from invasive alien species in the twenty-first century and national response capacities.

    PubMed

    Early, Regan; Bradley, Bethany A; Dukes, Jeffrey S; Lawler, Joshua J; Olden, Julian D; Blumenthal, Dana M; Gonzalez, Patrick; Grosholz, Edwin D; Ibañez, Ines; Miller, Luke P; Sorte, Cascade J B; Tatem, Andrew J

    2016-01-01

    Invasive alien species (IAS) threaten human livelihoods and biodiversity globally. Increasing globalization facilitates IAS arrival, and environmental changes, including climate change, facilitate IAS establishment. Here we provide the first global, spatial analysis of the terrestrial threat from IAS in light of twenty-first century globalization and environmental change, and evaluate national capacities to prevent and manage species invasions. We find that one-sixth of the global land surface is highly vulnerable to invasion, including substantial areas in developing economies and biodiversity hotspots. The dominant invasion vectors differ between high-income countries (imports, particularly of plants and pets) and low-income countries (air travel). Uniting data on the causes of introduction and establishment can improve early-warning and eradication schemes. Most countries have limited capacity to act against invasions. In particular, we reveal a clear need for proactive invasion strategies in areas with high poverty levels, high biodiversity and low historical levels of invasion. PMID:27549569

  2. Global threats from invasive alien species in the twenty-first century and national response capacities

    PubMed Central

    Early, Regan; Bradley, Bethany A.; Dukes, Jeffrey S.; Lawler, Joshua J.; Olden, Julian D.; Blumenthal, Dana M.; Gonzalez, Patrick; Grosholz, Edwin D.; Ibañez, Ines; Miller, Luke P.; Sorte, Cascade J. B.; Tatem, Andrew J.

    2016-01-01

    Invasive alien species (IAS) threaten human livelihoods and biodiversity globally. Increasing globalization facilitates IAS arrival, and environmental changes, including climate change, facilitate IAS establishment. Here we provide the first global, spatial analysis of the terrestrial threat from IAS in light of twenty-first century globalization and environmental change, and evaluate national capacities to prevent and manage species invasions. We find that one-sixth of the global land surface is highly vulnerable to invasion, including substantial areas in developing economies and biodiversity hotspots. The dominant invasion vectors differ between high-income countries (imports, particularly of plants and pets) and low-income countries (air travel). Uniting data on the causes of introduction and establishment can improve early-warning and eradication schemes. Most countries have limited capacity to act against invasions. In particular, we reveal a clear need for proactive invasion strategies in areas with high poverty levels, high biodiversity and low historical levels of invasion. PMID:27549569

  3. Ecology of invasive mosquitoes: effects on resident species and on human health

    PubMed Central

    Juliano, Steven A.; Lounibos, L. Philip

    2007-01-01

    Investigations of biological invasions focus on patterns and processes that are related to introduction, establishment, spread and impacts of introduced species. This review focuses on the ecological interactions operating during invasions by the most prominent group of insect vectors of disease, mosquitoes. First, we review characteristics of non-native mosquito species that have established viable populations, and those invasive species that have spread widely and had major impacts, testing whether biotic characteristics are associated with the transition from established non-native to invasive. Second, we review the roles of interspecific competition, apparent competition, predation, intraguild predation and climatic limitation as causes of impacts on residents or as barriers to invasion. We concentrate on the best-studied invasive mosquito, Aedes albopictus, evaluating the application of basic ecological theory to invasions by Aedes albopictus. We develop a model based on observations of Aedes albopictus for effects of resource competition and predation as barriers to invasion, evaluating which community and ecosystem characteristics favour invasion. Third, we evaluate the ways in which invasive mosquitoes have contributed to outbreaks of human and animal disease, considering specifically whether invasive mosquitoes create novel health threats, or modify disease transmission for existing pathogen–host systems. PMID:17637849

  4. Trait values, not trait plasticity, best explain invasive species' performance in a changing environment.

    PubMed

    Matzek, Virginia

    2012-01-01

    The question of why some introduced species become invasive and others do not is the central puzzle of invasion biology. Two of the principal explanations for this phenomenon concern functional traits: invasive species may have higher values of competitively advantageous traits than non-invasive species, or they may have greater phenotypic plasticity in traits that permits them to survive the colonization period and spread to a broad range of environments. Although there is a large body of evidence for superiority in particular traits among invasive plants, when compared to phylogenetically related non-invasive plants, it is less clear if invasive plants are more phenotypically plastic, and whether this plasticity confers a fitness advantage. In this study, I used a model group of 10 closely related Pinus species whose invader or non-invader status has been reliably characterized to test the relative contribution of high trait values and high trait plasticity to relative growth rate, a performance measure standing in as a proxy for fitness. When grown at higher nitrogen supply, invaders had a plastic RGR response, increasing their RGR to a much greater extent than non-invaders. However, invasive species did not exhibit significantly more phenotypic plasticity than non-invasive species for any of 17 functional traits, and trait plasticity indices were generally weakly correlated with RGR. Conversely, invasive species had higher values than non-invaders for 13 of the 17 traits, including higher leaf area ratio, photosynthetic capacity, photosynthetic nutrient-use efficiency, and nutrient uptake rates, and these traits were also strongly correlated with performance. I conclude that, in responding to higher N supply, superior trait values coupled with a moderate degree of trait variation explain invasive species' superior performance better than plasticity per se.

  5. 76 FR 32135 - National Forest System Invasive Species Management Policy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-03

    .... Agency procedure at 36 CFR 220.6(d)(2) (73 FR 43093) excludes from documentation in an environmental... terrestrial ecosystems from the impacts of invasive plants, pathogens, vertebrates, and invertebrates. DATES... impacts of invasive plants, pathogens, vertebrates, and invertebrates. The proposed directive applies...

  6. Do invasive species perform better in their new ranges?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A fundamental assumption in invasion biology is that successful invaders exhibit enhanced vigor following introductions to new ranges, including larger size, greater fecundity, and denser populations. This assumption of ‘increased vigour’ underlies most empirical and theoretical studies of invasion ...

  7. Species richness and interacting factors control invasibility of a marine community.

    PubMed

    Marraffini, M L; Geller, J B

    2015-08-01

    Anthropogenic vectors have moved marine species around the world leading to increased invasions and expanded species' ranges. The biotic resistance hypothesis of Elton (in The ecology of invasions by animals and plants, 1958) predicts that more diverse communities should have greater resistance to invasions, but experiments have been equivocal. We hypothesized that species richness interacts with other factors to determine experimental outcomes. We manipulated species richness, species composition (native and introduced) and availability of bare space in invertebrate assemblages in a marina in Monterey, CA. Increased species richness significantly interacted with both initial cover of native species and of all organisms to collectively decrease recruitment. Although native species decreased recruitment, introduced species had a similar effect, and we concluded that biotic resistance is conferred by total species richness. We suggest that contradictory conclusions in previous studies about the role of diversity in regulating invasions reflect uncontrolled variables in those experiments that modified the effect of species richness. Our results suggest that patches of low diversity and abundance may facilitate invasions, and that such patches, once colonized by non-indigenous species, can resist both native and non-indigenous species recruitment.

  8. Species richness and interacting factors control invasibility of a marine community

    PubMed Central

    Marraffini, M. L.; Geller, J. B.

    2015-01-01

    Anthropogenic vectors have moved marine species around the world leading to increased invasions and expanded species' ranges. The biotic resistance hypothesis of Elton (in The ecology of invasions by animals and plants, 1958) predicts that more diverse communities should have greater resistance to invasions, but experiments have been equivocal. We hypothesized that species richness interacts with other factors to determine experimental outcomes. We manipulated species richness, species composition (native and introduced) and availability of bare space in invertebrate assemblages in a marina in Monterey, CA. Increased species richness significantly interacted with both initial cover of native species and of all organisms to collectively decrease recruitment. Although native species decreased recruitment, introduced species had a similar effect, and we concluded that biotic resistance is conferred by total species richness. We suggest that contradictory conclusions in previous studies about the role of diversity in regulating invasions reflect uncontrolled variables in those experiments that modified the effect of species richness. Our results suggest that patches of low diversity and abundance may facilitate invasions, and that such patches, once colonized by non-indigenous species, can resist both native and non-indigenous species recruitment. PMID:26203005

  9. Different responses of invasive and native species to elevated CO 2 concentration

    NASA Astrophysics Data System (ADS)

    Song, Liying; Wu, Jinrong; Li, Changhan; Li, Furong; Peng, Shaolin; Chen, Baoming

    2009-01-01

    Increasing atmospheric CO 2 concentration is regarded as an important factor facilitating invasion. However, the mechanisms by which invasive plants spread at the expense of existing native plants are poorly understood. In this study, three invasive species ( Mikania micrantha, Wedelia trilobata and Ipomoea cairica) and their indigenous co-occurring species or congeners ( Paederia scandens, Wedelia chinensis and Ipomoea pescaprae) in South China were exposed to elevated CO 2 concentration (700 μmol mol -1). The invasive species showed an average increase of 67.1% in photosynthetic rate, significantly different from the native species (24.8%). On average the increase of total biomass at elevated CO 2 was greater for invasive species (70.3%) than for the natives (30.5%). Elevated CO 2 also resulted in significant changes in biomass allocation and morphology of invasive M. micrantha and W. trilobata. These results indicate a substantial variation in response to elevated CO 2 between these invasive and native plant species, which might be a potential mechanism partially explaining the success of invasion with ongoing increase in atmospheric CO 2.

  10. An invasive species facilitates the recovery of salt marsh ecosystems on Cape Cod.

    PubMed

    Bertness, Mark D; Coverdale, Tyler C

    2013-09-01

    With global increases in human impacts, invasive species have become a major threat to ecosystems worldwide. While they have been traditionally viewed as harmful, invasive species may facilitate the restoration of degraded ecosystems outside their native ranges. In New England (USA) overfishing has depleted salt marsh predators, allowing the herbivorous crab Sesarma reticulatum to denude hundreds of hectares of low marsh. Here, using multiple site surveys and field caging experiments, we show that the subsequent invasion of green crabs, Carcinus maenas, into heavily burrowed marshes partially reverses decades of cordgrass die-off. By consuming Sesarma, eliciting a nonlethal escape response, and evicting Sesarma from burrows, Carcinus reduces Sesarma herbivory and promotes cordgrass recovery. These results suggest that invasive species can contribute to restoring degraded ecosystems and underscores the potential for invasive species to return ecological functions lost to human impacts. PMID:24279265

  11. An invasive species facilitates the recovery of salt marsh ecosystems on Cape Cod.

    PubMed

    Bertness, Mark D; Coverdale, Tyler C

    2013-09-01

    With global increases in human impacts, invasive species have become a major threat to ecosystems worldwide. While they have been traditionally viewed as harmful, invasive species may facilitate the restoration of degraded ecosystems outside their native ranges. In New England (USA) overfishing has depleted salt marsh predators, allowing the herbivorous crab Sesarma reticulatum to denude hundreds of hectares of low marsh. Here, using multiple site surveys and field caging experiments, we show that the subsequent invasion of green crabs, Carcinus maenas, into heavily burrowed marshes partially reverses decades of cordgrass die-off. By consuming Sesarma, eliciting a nonlethal escape response, and evicting Sesarma from burrows, Carcinus reduces Sesarma herbivory and promotes cordgrass recovery. These results suggest that invasive species can contribute to restoring degraded ecosystems and underscores the potential for invasive species to return ecological functions lost to human impacts.

  12. Interaction of species traits and environmental disturbance predicts invasion success of aquatic microorganisms.

    PubMed

    Mächler, Elvira; Altermatt, Florian

    2012-01-01

    Factors such as increased mobility of humans, global trade and climate change are affecting the range of many species, and cause large-scale translocations of species beyond their native range. Many introduced species have a strong negative influence on the new local environment and lead to high economic costs. There is a strong interest to understand why some species are successful in invading new environments and others not. Most of our understanding and generalizations thereof, however, are based on studies of plants and animals, and little is known on invasion processes of microorganisms. We conducted a microcosm experiment to understand factors promoting the success of biological invasions of aquatic microorganisms. In a controlled lab experiment, protist and rotifer species originally isolated in North America invaded into a natural, field-collected community of microorganisms of European origin. To identify the importance of environmental disturbances on invasion success, we either repeatedly disturbed the local patches, or kept them as undisturbed controls. We measured both short-term establishment and long-term invasion success, and correlated it with species-specific life-history traits. We found that environmental disturbances significantly affected invasion success. Depending on the invading species' identity, disturbances were either promoting or decreasing invasion success. The interaction between habitat disturbance and species identity was especially pronounced for long-term invasion success. Growth rate was the most important trait promoting invasion success, especially when the species invaded into a disturbed local community. We conclude that neither species traits nor environmental factors alone conclusively predict invasion success, but an integration of both of them is necessary.

  13. Temperature Tolerance and Stress Proteins as Mechanisms of Invasive Species Success

    PubMed Central

    Zerebecki, Robyn A.; Sorte, Cascade J. B.

    2011-01-01

    Invasive species are predicted to be more successful than natives as temperatures increase with climate change. However, few studies have examined the physiological mechanisms that theoretically underlie this differential success. Because correlative evidence suggests that invasiveness is related to the width of a species' latitudinal range, it has been assumed – but largely untested – that range width predicts breadth of habitat temperatures and physiological thermotolerances. In this study, we use empirical data from a marine community as a case study to address the hypotheses that (1) geographic temperature range attributes are related to temperature tolerance, leading to greater eurythermality in invasive species, and (2) stress protein expression is a subcellular mechanism that could contribute to differences in thermotolerance. We examined three native and six invasive species common in the subtidal epibenthic communities of California, USA. We assessed thermotolerance by exposing individuals to temperatures between 14°C and 31°C and determining the temperature lethal to 50% of individuals (LT50) after a 24 hour exposure. We found a strong positive relationship between the LT50 and both maximum habitat temperatures and the breadth of temperatures experience across the species' ranges. In addition, of the species in our study, invasives tended to inhabit broader habitat temperature ranges and higher maximum temperatures. Stress protein expression may contribute to these differences: the more thermotolerant, invasive species Diplosoma listerianum expressed higher levels of a 70-kDa heat-shock protein than the less thermotolerant, native Distaplia occidentalis for which levels declined sharply above the LT50. Our data highlight differences between native and invasive species with respect to organismal and cellular temperature tolerances. Future studies should address, across a broader phylogenetic and ecosystem scope, whether this physiological mechanism

  14. Elucidation of molecular dynamics of invasive species of rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultivated rice fields are aggressively invaded by weedy rice in the U.S. and worldwide. Weedy rice results in loss of yield and seed contamination. The molecular dynamics of the evolutionary adaptive traits of weedy rice are not fully understood. To understand the molecular basis and identify the i...

  15. Mutualism between co-introduced species facilitates invasion and alters plant community structure

    PubMed Central

    Prior, Kirsten M.; Robinson, Jennifer M.; Meadley Dunphy, Shannon A.; Frederickson, Megan E.

    2015-01-01

    Generalized mutualisms are often predicted to be resilient to changes in partner identity. Variation in mutualism-related traits between native and invasive species however, can exacerbate the spread of invasive species (‘invasional meltdown’) if invasive partners strongly interact. Here we show how invasion by a seed-dispersing ant (Myrmica rubra) promotes recruitment of a co-introduced invasive over native ant-dispersed (myrmecochorous) plants. We created experimental communities of invasive (M. rubra) or native ants (Aphaenogaster rudis) and invasive and native plants and measured seed dispersal and plant recruitment. In our mesocosms, and in laboratory and field trials, M. rubra acted as a superior seed disperser relative to the native ant. By contrast, previous studies have found that invasive ants are often poor seed dispersers compared with native ants. Despite belonging to the same behavioural guild, seed-dispersing ants were not functionally redundant. Instead, native and invasive ants had strongly divergent effects on plant communities: the invasive plant dominated in the presence of the invasive ant and the native plants dominated in the presence of the native ant. Community changes were not due to preferences for coevolved partners: variation in functional traits of linked partners drove differences. Here, we show that strongly interacting introduced mutualists can be major drivers of ecological change. PMID:25540283

  16. Mutualism between co-introduced species facilitates invasion and alters plant community structure.

    PubMed

    Prior, Kirsten M; Robinson, Jennifer M; Meadley Dunphy, Shannon A; Frederickson, Megan E

    2015-02-01

    Generalized mutualisms are often predicted to be resilient to changes in partner identity. Variation in mutualism-related traits between native and invasive species however, can exacerbate the spread of invasive species ('invasional meltdown') if invasive partners strongly interact. Here we show how invasion by a seed-dispersing ant (Myrmica rubra) promotes recruitment of a co-introduced invasive over native ant-dispersed (myrmecochorous) plants. We created experimental communities of invasive (M. rubra) or native ants (Aphaenogaster rudis) and invasive and native plants and measured seed dispersal and plant recruitment. In our mesocosms, and in laboratory and field trials, M. rubra acted as a superior seed disperser relative to the native ant. By contrast, previous studies have found that invasive ants are often poor seed dispersers compared with native ants. Despite belonging to the same behavioural guild, seed-dispersing ants were not functionally redundant. Instead, native and invasive ants had strongly divergent effects on plant communities: the invasive plant dominated in the presence of the invasive ant and the native plants dominated in the presence of the native ant. Community changes were not due to preferences for coevolved partners: variation in functional traits of linked partners drove differences. Here, we show that strongly interacting introduced mutualists can be major drivers of ecological change. PMID:25540283

  17. The phytoalexin camalexin mediates cytotoxicity towards aggressive prostate cancer cells via reactive oxygen species

    PubMed Central

    Smith, Basil A.; Neal, Corey L.; Chetram, Mahandranauth; Vo, BaoHan; Mezencev, Roman; Hinton, Cimona

    2013-01-01

    Camalexin is a phytoalexin that accumulates in various cruciferous plants upon exposure to environmental stress and plant pathogens. Besides moderate antibacterial and antifungal activity, camalexin was reported to also exhibit antiproliferative and cancer chemopreventive effects in breast cancer and leukemia. We studied the cytotoxic effects of camalexin treatment on prostate cancer cell lines and whether this was mediated by reactive oxygen species (ROS) generation. As models, we utilized LNCaP and its aggressive subline, C4-2, as well as ARCaP cells stably transfected with empty vector (Neo) control or constitutively active Snail cDNA that represents an epithelial to mesenchymal transition (EMT) model and displays increased cell migration and tumorigenicity. We confirmed previous studies showing that C4-2 and ARCaP-Snail cells express more ROS than LNCaP and ARCaP-Neo, respectively. Camalexin increased ROS, decreased cell proliferation, and increased apoptosis more significantly in C4-2 and ARCaP-Snail cells as compared to LNCaP and ARCaP-Neo cells, respectively, while normal prostate epithelial cells (PrEC) were unaffected. Increased caspase-3/7 activity and increased cleaved PARP protein shown by Western blot analysis was suggestive of increased apoptosis. The ROS scavenger N-acetyl cysteine (NAC) antagonized the effects of camalexin, whereas the addition of exogenous hydrogen peroxide potentiated the effects of camalexin, showing that camalexin is mediating its effects through ROS. In conclusion, camalexin is more potent in aggressive prostate cancer cells that express high ROS levels, and this phytoalexin has a strong potential as a novel therapeutic agent for the treatment of especially metastatic prostate cancer. PMID:23179315

  18. Go forth, evolve and prosper: the genetic basis of adaptive evolution in an invasive species.

    PubMed

    Franks, Steven J; Munshi-South, Jason

    2014-05-01

    Invasive species stand accused of a familiar litany of offences, including displacing native species, disrupting ecological processes and causing billions of dollars in ecological damage (Cox 1999). Despite these transgressions, invasive species have at least one redeeming virtue--they offer us an unparalleled opportunity to investigate colonization and responses of populations to novel conditions in the invaded habitat (Elton 1958; Sakai et al. 2001). Invasive species are by definition colonists that have arrived and thrived in a new location. How they are able to thrive is of great interest, especially considering a paradox of invasion (Sax & Brown 2000): if many populations are locally adapted (Leimu & Fischer 2008), how could species introduced into new locations become so successful? One possibility is that populations adjust to the new conditions through plasticity--increasing production of allelopathic compounds (novel weapons), or taking advantage of new prey, for example. Alternatively, evolution could play a role, with the populations adapting to the novel conditions of the new habitat. There is increasing evidence, based on phenotypic data, for rapid adaptive evolution in invasive species (Franks et al. 2012; Colautti & Barrett 2013; Sultan et al. 2013). Prior studies have also demonstrated genetic changes in introduced populations using neutral markers, which generally do not provide information on adaptation. Thus, the genetic basis of adaptive evolution in invasive species has largely remained unknown. In this issue of Molecular Ecology, Vandepitte et al. (2014) provide some of the first evidence in invasive populations for molecular genetic changes directly linked to adaptation.

  19. Differential allocation to photosynthetic and non-photosynthetic nitrogen fractions among native and invasive species.

    PubMed

    Funk, Jennifer L; Glenwinkel, Lori A; Sack, Lawren

    2013-01-01

    Invasive species are expected to cluster on the "high-return" end of the leaf economic spectrum, displaying leaf traits consistent with higher carbon assimilation relative to native species. Intra-leaf nitrogen (N) allocation should support these physiological differences; however, N biochemistry has not been examined in more than a few invasive species. We measured 34 leaf traits including seven leaf N pools for five native and five invasive species from Hawaii under low irradiance to mimic the forest understory environment. We found several trait differences between native and invasive species. In particular, invasive species showed preferential N allocation to metabolism (amino acids) rather than photosynthetic light reactions (membrane-bound protein) by comparison with native species. The soluble protein concentration did not vary between groups. Under these low irradiance conditions, native species had higher light-saturated photosynthetic rates, possibly as a consequence of a greater investment in membrane-bound protein. Invasive species may succeed by employing a wide range of N allocation mechanisms, including higher amino acid production for fast growth under high irradiance or storage of N in leaves as soluble protein or amino acids.

  20. Differential Allocation to Photosynthetic and Non-Photosynthetic Nitrogen Fractions among Native and Invasive Species

    PubMed Central

    Funk, Jennifer L.; Glenwinkel, Lori A.; Sack, Lawren

    2013-01-01

    Invasive species are expected to cluster on the “high-return” end of the leaf economic spectrum, displaying leaf traits consistent with higher carbon assimilation relative to native species. Intra-leaf nitrogen (N) allocation should support these physiological differences; however, N biochemistry has not been examined in more than a few invasive species. We measured 34 leaf traits including seven leaf N pools for five native and five invasive species from Hawaii under low irradiance to mimic the forest understory environment. We found several trait differences between native and invasive species. In particular, invasive species showed preferential N allocation to metabolism (amino acids) rather than photosynthetic light reactions (membrane-bound protein) by comparison with native species. The soluble protein concentration did not vary between groups. Under these low irradiance conditions, native species had higher light-saturated photosynthetic rates, possibly as a consequence of a greater investment in membrane-bound protein. Invasive species may succeed by employing a wide range of N allocation mechanisms, including higher amino acid production for fast growth under high irradiance or storage of N in leaves as soluble protein or amino acids. PMID:23700483

  1. 77 FR 23494 - Invasive Species Advisory Committee; Request for Nominations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ... watching; hunting, boating, and angling; invasive plant or animal science; plant pathology; environmental education; science and environmental journalism and outreach; natural resource economics; tribal resource management; natural resource political science; and relevant areas of law and regulatory policy....

  2. Interaction of Species Traits and Environmental Disturbance Predicts Invasion Success of Aquatic Microorganisms

    PubMed Central

    Mächler, Elvira; Altermatt, Florian

    2012-01-01

    Factors such as increased mobility of humans, global trade and climate change are affecting the range of many species, and cause large-scale translocations of species beyond their native range. Many introduced species have a strong negative influence on the new local environment and lead to high economic costs. There is a strong interest to understand why some species are successful in invading new environments and others not. Most of our understanding and generalizations thereof, however, are based on studies of plants and animals, and little is known on invasion processes of microorganisms. We conducted a microcosm experiment to understand factors promoting the success of biological invasions of aquatic microorganisms. In a controlled lab experiment, protist and rotifer species originally isolated in North America invaded into a natural, field-collected community of microorganisms of European origin. To identify the importance of environmental disturbances on invasion success, we either repeatedly disturbed the local patches, or kept them as undisturbed controls. We measured both short-term establishment and long-term invasion success, and correlated it with species-specific life-history traits. We found that environmental disturbances significantly affected invasion success. Depending on the invading species’ identity, disturbances were either promoting or decreasing invasion success. The interaction between habitat disturbance and species identity was especially pronounced for long-term invasion success. Growth rate was the most important trait promoting invasion success, especially when the species invaded into a disturbed local community. We conclude that neither species traits nor environmental factors alone conclusively predict invasion success, but an integration of both of them is necessary. PMID:23028985

  3. Pre-adaptation or genetic shift after introduction in the invasive species Impatiens glandulifera?

    NASA Astrophysics Data System (ADS)

    Elst, Evelyne M.; Acharya, Kamal P.; Dar, Pervaiz A.; Reshi, Zafar A.; Tufto, Jarle; Nijs, Ivan; Graae, Bente J.

    2016-01-01

    Invasive exotic plants often grow fast, reproduce rapidly and display considerable phenotypic plasticity in their invasive range, which may be essential characteristics for successful invasion. However, it remains unclear whether these characteristics are already present in native populations (pre-adaptation hypothesis) or evolve after introduction (genetic shift hypothesis). To test these hypotheses we compared means and phenotypic plasticity of vegetative and reproductive traits between populations of Impatiens glandulifera collected from either the invasive (Norway) or native range (India). Seeds were sown and the resulting plants were exposed to different experimental environments in a glasshouse. We also tested whether trait means and reaction norms harbored genetic variation, as this may promote fitness in the novel environment. We did not find evidence that invasive populations of I. glandulifera grew more vigorously or produced more seeds than native populations. Phenotypic plasticity did not differ between the native and invasive range, except for the number of nodes which was more plastic in the invasive range. Genetic variation in the slope of reaction norms was absent, suggesting that the lack of change in phenotypic plasticity between native and invasive populations resulted from low genetic variation in phenotypic plasticity initially harbored by this species. Post-introduction evolution of traits thus probably did not boost the invasiveness of I. glandulifera. Instead, the species seems to be pre-adapted for invasion. We suggest that differences in habitat between the native and invasive range, more specifically the higher nutrient availability observed in the new environment, are the main factor driving the invasion of this species. Indeed, plants in the more nutrient-rich invasive range had greater seed mass, likely conferring a competitive advantage, while seed mass also responded strongly to nutrients in the glasshouse. Interactions between

  4. Can transgenerational plasticity contribute to the invasion success of annual plant species?

    PubMed

    Fenesi, Annamária; Dyer, Andrew R; Geréd, Júliánna; Sándor, Dorottya; Ruprecht, Eszter

    2014-09-01

    Adaptive transgenerational plasticity (TGP), i.e., significantly higher fitness when maternal and offspring conditions match, might contribute to the population growth of non-native species in highly variable environments. However, comparative studies that directly test this hypothesis are lacking. Therefore, we performed a reciprocal split-brood experiment to compare TGP in response to N and water availability in single populations of two invasive (Amaranthus retroflexus, Galinsoga parviflora) and two congeneric non-invasive introduced species (Amaranthus albus, Galinsoga ciliata). We hypothesized that the transgenerational effect is adaptive: (1) in invasive species compared with non-invasive adventives, and (2) in stressful conditions compared with resource-rich environments. The phenotypic variation among offspring was generated, in large part, by our experimental treatments in the maternal generation; therefore, we demonstrated a direct TGP effect on the offspring's adult fitness. We found evidence, for the first time, that invasive and non-invasive adventive species differ regarding the expression of TGP in the adult stage, as adaptive responses were found exclusively in the invasive species. The manifestation of TGP was more explicit under resource-rich conditions; therefore, it might contribute to the population dynamics of non-native species in resource-rich sites rather than to their ecological tolerance spectra.

  5. The control of invasive species on private property with neighbor-to-neighbor spillovers

    PubMed Central

    Fenichel, Eli P.; Richards, Timothy J.; Shanafelt, David W.

    2013-01-01

    Invasive pests cross property boundaries. Property managers may have private incentives to control invasive species despite not having sufficient incentive to fully internalize the external costs of their role in spreading the invasion. Each property manager has a right to future use of his own property, but his property may abut others’ properties enabling spread of an invasive species. The incentives for a foresighted property manager to control invasive species have received little attention. We consider the efforts of a foresighted property manager who has rights to future use of a property and has the ability to engage in repeated, discrete control activities. We find that higher rates of dispersal, associated with proximity to neighboring properties, reduce the private incentives for control. Controlling species at one location provides incentives to control at a neighboring location. Control at neighboring locations are strategic complements and coupled with spatial heterogeneity lead to a weaker-link public good problem, in which each property owner is unable to fully appropriate the benefits of his own control activity. Future-use rights and private costs suggest that there is scope for a series of Coase-like exchanges to internalize much of the costs associated with species invasion. Pigouvian taxes on invasive species potentially have qualitatively perverse behavioral effects. A tax with a strong income effect (e.g, failure of effective revenue recycling) can reduce the value of property assets and diminish the incentive to manage insects on one’s own property. PMID:25346573

  6. The control of invasive species on private property with neighbor-to-neighbor spillovers.

    PubMed

    Fenichel, Eli P; Richards, Timothy J; Shanafelt, David W

    2014-10-01

    Invasive pests cross property boundaries. Property managers may have private incentives to control invasive species despite not having sufficient incentive to fully internalize the external costs of their role in spreading the invasion. Each property manager has a right to future use of his own property, but his property may abut others' properties enabling spread of an invasive species. The incentives for a foresighted property manager to control invasive species have received little attention. We consider the efforts of a foresighted property manager who has rights to future use of a property and has the ability to engage in repeated, discrete control activities. We find that higher rates of dispersal, associated with proximity to neighboring properties, reduce the private incentives for control. Controlling species at one location provides incentives to control at a neighboring location. Control at neighboring locations are strategic complements and coupled with spatial heterogeneity lead to a weaker-link public good problem, in which each property owner is unable to fully appropriate the benefits of his own control activity. Future-use rights and private costs suggest that there is scope for a series of Coase-like exchanges to internalize much of the costs associated with species invasion. Pigouvian taxes on invasive species potentially have qualitatively perverse behavioral effects. A tax with a strong income effect (e.g, failure of effective revenue recycling) can reduce the value of property assets and diminish the incentive to manage insects on one's own property. PMID:25346573

  7. The control of invasive species on private property with neighbor-to-neighbor spillovers.

    PubMed

    Fenichel, Eli P; Richards, Timothy J; Shanafelt, David W

    2014-10-01

    Invasive pests cross property boundaries. Property managers may have private incentives to control invasive species despite not having sufficient incentive to fully internalize the external costs of their role in spreading the invasion. Each property manager has a right to future use of his own property, but his property may abut others' properties enabling spread of an invasive species. The incentives for a foresighted property manager to control invasive species have received little attention. We consider the efforts of a foresighted property manager who has rights to future use of a property and has the ability to engage in repeated, discrete control activities. We find that higher rates of dispersal, associated with proximity to neighboring properties, reduce the private incentives for control. Controlling species at one location provides incentives to control at a neighboring location. Control at neighboring locations are strategic complements and coupled with spatial heterogeneity lead to a weaker-link public good problem, in which each property owner is unable to fully appropriate the benefits of his own control activity. Future-use rights and private costs suggest that there is scope for a series of Coase-like exchanges to internalize much of the costs associated with species invasion. Pigouvian taxes on invasive species potentially have qualitatively perverse behavioral effects. A tax with a strong income effect (e.g, failure of effective revenue recycling) can reduce the value of property assets and diminish the incentive to manage insects on one's own property.

  8. Trait differences between naturalized and invasive plant species independent of residence time and phylogeny.

    PubMed

    Gallagher, R V; Randall, R P; Leishman, M R

    2015-04-01

    The ability to predict which alien plants will transition from naturalized to invasive prior to their introduction to novel regions is a key goal for conservation and has the potential to increase the efficacy of weed risk assessment (WRA). However, multiple factors contribute to plant invasion success (e.g., functional traits, range characteristics, residence time, phylogeny), and they all must be taken into account simultaneously in order to identify meaningful correlates of invasion success. We compiled 146 pairs of phylogenetically paired (congeneric) naturalized and invasive plant species in Australia with similar minimum residence times (i.e., time since introduction in years). These pairs were used to test for differences in 5 functional traits (flowering duration, leaf size, maximum height, specific leaf area [SLA], seed mass) and 3 characteristics of species' native ranges (biome occupancy, mean annual temperature, and rainfall breadth) between naturalized and invasive species. Invasive species, on average, had larger SLA, longer flowering periods, and were taller than their congeneric naturalized relatives. Invaders also exhibited greater tolerance for different environmental conditions in the native range, where they occupied more biomes and a wider breadth of rainfall and temperature conditions than naturalized congeners. However, neither seed mass nor leaf size differed between pairs of naturalized and invasive species. A key finding was the role of SLA in distinguishing between naturalized and invasive pairs. Species with high SLA values were typically associated with faster growth rates, more rapid turnover of leaf material, and shorter lifespans than those species with low SLA. This suite of characteristics may contribute to the ability of a species to transition from naturalized to invasive across a wide range of environmental contexts and disturbance regimes. Our findings will help in the refinement of WRA protocols, and we advocate the inclusion

  9. Plant invasions differentially affected by diversity and dominant species in native- and exotic-dominated grasslands.

    PubMed

    Xu, Xia; Polley, H Wayne; Hofmockel, Kirsten; Daneshgar, Pedram P; Wilsey, Brian J

    2015-12-01

    Plant invasions are an increasingly serious global concern, especially as the climate changes. Here, we explored how plant invasions differed between native- and novel exotic-dominated grasslands with experimental addition of summer precipitation in Texas in 2009. Exotic species greened up earlier than natives by an average of 18 days. This was associated with a lower invasion rate early in the growing season compared to native communities. However, invasion rate did not differ significantly between native and exotic communities across all sampling times. The predictors of invasion rate differed between native and exotic communities, with invasion being negatively influenced by species richness in natives and by dominant species in exotics. Interestingly, plant invasions matched the bimodal pattern of precipitation in Temple, Texas, and did not respond to the pulse of precipitation during the summer. Our results suggest that we will need to take different approaches in understanding of invasion between native and exotic grasslands. Moreover, with anticipated increasing variability in precipitation under global climate change, plant invasions may be constrained in their response if the precipitation pulses fall outside the normal growing period of invaders.

  10. Plant invasions differentially affected by diversity and dominant species in native- and exotic-dominated grasslands.

    PubMed

    Xu, Xia; Polley, H Wayne; Hofmockel, Kirsten; Daneshgar, Pedram P; Wilsey, Brian J

    2015-12-01

    Plant invasions are an increasingly serious global concern, especially as the climate changes. Here, we explored how plant invasions differed between native- and novel exotic-dominated grasslands with experimental addition of summer precipitation in Texas in 2009. Exotic species greened up earlier than natives by an average of 18 days. This was associated with a lower invasion rate early in the growing season compared to native communities. However, invasion rate did not differ significantly between native and exotic communities across all sampling times. The predictors of invasion rate differed between native and exotic communities, with invasion being negatively influenced by species richness in natives and by dominant species in exotics. Interestingly, plant invasions matched the bimodal pattern of precipitation in Temple, Texas, and did not respond to the pulse of precipitation during the summer. Our results suggest that we will need to take different approaches in understanding of invasion between native and exotic grasslands. Moreover, with anticipated increasing variability in precipitation under global climate change, plant invasions may be constrained in their response if the precipitation pulses fall outside the normal growing period of invaders. PMID:27069615

  11. Social personality polymorphism and the spread of invasive species: a model.

    PubMed

    Fogarty, Sean; Cote, Julien; Sih, Andrew

    2011-03-01

    Ecological invasions are a major worldwide problem exacting tremendous economic and ecological costs. Efforts to explain variability in invasion speed and impact by searching for combinations of ecological conditions and species traits associated with invasions have met with mixed success. We use a simulation model that integrates insights from life-history theory, animal personalities, network theory, and spatial ecology to derive a new mechanism for explaining variation in animal invasion success. We show that spread occurs most rapidly when (1) a species includes a mix of life-history or personality types that differ in density-dependent performance and dispersal tendencies, (2) the differences between types are of intermediate magnitude, and (3) patch connections are intermediate in number and widely spread. Within-species polymorphism in phenotype (e.g., life-history strategies or personality), a feature not included in previous models, is important for overcoming the fact that different traits are associated with success in different stages of the invasion process. Polymorphism in sociability (a personality type) increases the speed of the invasion front, since asocial individuals colonize empty patches and facilitate the local growth of social types that, in turn, induce faster dispersal by asocials at the invasion edge. The results hold implications for the prediction of invasion impacts and the classification of traits associated with invasiveness.

  12. Globalization and Invasive Species Issues in Hawaii: Role-Playing Some Local Perspectives

    ERIC Educational Resources Information Center

    Fox, Alison M.; Loope, Lloyd L.

    2007-01-01

    Increasingly recognized as having significant economic and ecological impacts, non-native invasive species have become an important interdisciplinary topic in biological and social science courses. Oceanic island systems like Hawaii have been particularly susceptible to invaders and efforts to prevent further invasions focus on reducing the…

  13. Insecticide-mediated apparent displacement between two invasive species of Leafminer fly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Closely related invasive species may often displace one another, but it is often difficult to determine mechanisms because of the historical nature of these events. The leafmining flies Liriomyza sativae and Liriomyza trifolii have become serious invasive agricultural pests throughout the world. W...

  14. Effect of the Internet Commerce on Dispersal Modes of Invasive Alien Species

    PubMed Central

    Lenda, Magdalena; Skórka, Piotr; Knops, Johannes M. H.; Moroń, Dawid; Sutherland, William J.; Kuszewska, Karolina; Woyciechowski, Michał

    2014-01-01

    The spread of invasive alien plants has considerable environmental and economic consequences, and is one of the most challenging ecological problems. The spread of invasive alien plant species depends largely on long-distance dispersal, which is typically linked with human activity. The increasing domination of the internet will have impacts upon almost all components of our lives, including potential consequences for the spread of invasive species. To determine whether the rise of Internet commerce has any consequences for the spread of invasive alien plant species, we studied the sale of thirteen of some of the most harmful Europe invasive alien plant species sold as decorative plants from twenty-eight large, well known gardening shops in Poland that sold both via the Internet and through traditional customer sales. We also analyzed temporal changes in the number of invasive plants sold in the largest Polish internet auction portal. When sold through the Internet invasive alien plant species were transported considerably longer distances than for traditional sales. For internet sales, seeds of invasive alien plant species were transported further than were live plants saplings; this was not the case for traditional sales. Also, with e-commerce the shape of distance distribution were flattened with low skewness comparing with traditional sale where the distributions were peaked and right-skewed. Thus, e-commerce created novel modes of long-distance dispersal, while traditional sale resembled more natural dispersal modes. Moreover, analysis of sale in the biggest Polish internet auction portal showed that the number of alien specimens sold via the internet has increased markedly over recent years. Therefore internet commerce is likely to increase the rate at which ecological communities become homogenized and increase spread of invasive species by increasing the rate of long distance dispersal. PMID:24932498

  15. Effect of the internet commerce on dispersal modes of invasive alien species.

    PubMed

    Lenda, Magdalena; Skórka, Piotr; Knops, Johannes M H; Moroń, Dawid; Sutherland, William J; Kuszewska, Karolina; Woyciechowski, Michał

    2014-01-01

    The spread of invasive alien plants has considerable environmental and economic consequences, and is one of the most challenging ecological problems. The spread of invasive alien plant species depends largely on long-distance dispersal, which is typically linked with human activity. The increasing domination of the internet will have impacts upon almost all components of our lives, including potential consequences for the spread of invasive species. To determine whether the rise of Internet commerce has any consequences for the spread of invasive alien plant species, we studied the sale of thirteen of some of the most harmful Europe invasive alien plant species sold as decorative plants from twenty-eight large, well known gardening shops in Poland that sold both via the Internet and through traditional customer sales. We also analyzed temporal changes in the number of invasive plants sold in the largest Polish internet auction portal. When sold through the Internet invasive alien plant species were transported considerably longer distances than for traditional sales. For internet sales, seeds of invasive alien plant species were transported further than were live plants saplings; this was not the case for traditional sales. Also, with e-commerce the shape of distance distribution were flattened with low skewness comparing with traditional sale where the distributions were peaked and right-skewed. Thus, e-commerce created novel modes of long-distance dispersal, while traditional sale resembled more natural dispersal modes. Moreover, analysis of sale in the biggest Polish internet auction portal showed that the number of alien specimens sold via the internet has increased markedly over recent years. Therefore internet commerce is likely to increase the rate at which ecological communities become homogenized and increase spread of invasive species by increasing the rate of long distance dispersal. PMID:24932498

  16. Effect of the internet commerce on dispersal modes of invasive alien species.

    PubMed

    Lenda, Magdalena; Skórka, Piotr; Knops, Johannes M H; Moroń, Dawid; Sutherland, William J; Kuszewska, Karolina; Woyciechowski, Michał

    2014-01-01

    The spread of invasive alien plants has considerable environmental and economic consequences, and is one of the most challenging ecological problems. The spread of invasive alien plant species depends largely on long-distance dispersal, which is typically linked with human activity. The increasing domination of the internet will have impacts upon almost all components of our lives, including potential consequences for the spread of invasive species. To determine whether the rise of Internet commerce has any consequences for the spread of invasive alien plant species, we studied the sale of thirteen of some of the most harmful Europe invasive alien plant species sold as decorative plants from twenty-eight large, well known gardening shops in Poland that sold both via the Internet and through traditional customer sales. We also analyzed temporal changes in the number of invasive plants sold in the largest Polish internet auction portal. When sold through the Internet invasive alien plant species were transported considerably longer distances than for traditional sales. For internet sales, seeds of invasive alien plant species were transported further than were live plants saplings; this was not the case for traditional sales. Also, with e-commerce the shape of distance distribution were flattened with low skewness comparing with traditional sale where the distributions were peaked and right-skewed. Thus, e-commerce created novel modes of long-distance dispersal, while traditional sale resembled more natural dispersal modes. Moreover, analysis of sale in the biggest Polish internet auction portal showed that the number of alien specimens sold via the internet has increased markedly over recent years. Therefore internet commerce is likely to increase the rate at which ecological communities become homogenized and increase spread of invasive species by increasing the rate of long distance dispersal.

  17. Does seeding after wildfires in rangelands reduce erosion or invasive species?

    USGS Publications Warehouse

    Pyke, David A.; Wirth, Troy A.; Beyers, Jan L.

    2013-01-01

    Mitigation of ecological damage caused by rangeland wildfires has historically been an issue restricted to the western United States. It has focused on conservation of ecosystem function through reducing soil erosion and spread of invasive plants. Effectiveness of mitigation treatments has been debated recently. We reviewed recent literature to conduct a meta-analysis of seeding after wildfires to determine if seedings may (1) protect ecosystems against soil erosion and (2) reduce invasion or abundance of undesirable nonnative plant species. Effectiveness of postfire seedings was examined in 8 erosion and 19 invasive species cases. Seeding has little effect on erosion during the first year after fire and is highly dependent upon initial establishment and coverage of species in successive years. Among all seeding cases, 28% reduced, 67% were neutral, and 5% increased invasive species abundance. Older seedings were more likely to show reductions in invasives than younger seedings. Seedings with high plant establishment were more likely to reduce invasives than those with low establishment. Studies are needed that examine (1) frequency of adequate establishment of postfire seedings and causal factors of success or failure, (2) long-term impacts of seeding along a range of initial establishment and concomitant plant coverage over time as it relates to erosion and abundance of invasive plant species, and (3) auxiliary treatments designed to increase likelihood of germination and establishment given the inevitable variability of environmental conditions. These studies would aid land managers in deciding when postfire treatments are required and their likely level of success.

  18. Optimal approaches for balancing invasive species eradication and endangered species management.

    PubMed

    Lampert, Adam; Hastings, Alan; Grosholz, Edwin D; Jardine, Sunny L; Sanchirico, James N

    2014-05-30

    Resolving conflicting ecosystem management goals-such as maintaining fisheries while conserving marine species or harvesting timber while preserving habitat-is a widely recognized challenge. Even more challenging may be conflicts between two conservation goals that are typically considered complementary. Here, we model a case where eradication of an invasive plant, hybrid Spartina, threatens the recovery of an endangered bird that uses Spartina for nesting. Achieving both goals requires restoration of native Spartina. We show that the optimal management entails less intensive treatment over longer time scales to fit with the time scale of natural processes. In contrast, both eradication and restoration, when considered separately, would optimally proceed as fast as possible. Thus, managers should simultaneously consider multiple, potentially conflicting goals, which may require flexibility in the timing of expenditures. PMID:24876497

  19. Modelling Favourability for Invasive Species Encroachment to Identify Areas of Native Species Vulnerability

    PubMed Central

    Báez, José C.; Ferri-Yáñez, Francisco; Bellido, Jesús J.

    2014-01-01

    We assessed the vulnerability of the native Mediterranean pond turtle to encroachment by the invasive red-eared slider in southern Spain. We first obtained an ecogeographical favourability model for the Mediterranean pond turtle. We then modelled the presence/absence of the red-eared slider in the Mediterranean pond turtle range and obtained an encroachment favourability model. We also obtained a favourability model for the red-eared slider using the ecogeographical favourability for the Mediterranean pond turtle as a predictor. When favourability for the Mediterranean pond turtle was high, favourability for the red-eared slider was low, suggesting that in these areas the Mediterranean pond turtle may resist encroachment by the red-eared slider. We also calculated favourability overlap between the two species, which is their simultaneous favourability. Grids with low overlap had higher favourability values for the Mediterranean pond turtle and, consequently, were of lesser conservation concern. A few grids had high values for both species, being potentially suitable for coexistence. Grids with intermediate overlap had similar intermediate favourability values for both species and were therefore areas where the Mediterranean pond turtle was more vulnerable to encroachment by the red-eared slider. We mapped the favourability overlap to provide a map of vulnerability of the Mediterranean pond turtle to encroachment by the red-eared slider. PMID:24719577

  20. The widespread collapse of an invasive species: Argentine ants (Linepithema humile) in New Zealand.

    PubMed

    Cooling, Meghan; Hartley, Stephen; Sim, Dalice A; Lester, Philip J

    2012-06-23

    Synergies between invasive species and climate change are widely considered to be a major biodiversity threat. However, invasive species are also hypothesized to be susceptible to population collapse, as we demonstrate for a globally important invasive species in New Zealand. We observed Argentine ant populations to have collapsed in 40 per cent of surveyed sites. Populations had a mean survival time of 14.1 years (95% CI = 12.9-15.3 years). Resident ant communities had recovered or partly recovered after their collapse. Our models suggest that climate change will delay colony collapse, as increasing temperature and decreasing rainfall significantly increased their longevity, but only by a few years. Economic and environmental costs of invasive species may be small if populations collapse on their own accord.

  1. 77 FR 37064 - Request for Nominations for the Invasive Species Advisory Committee; Extension of Submission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-20

    ... levels; develops recommendations for international cooperation in addressing invasive species... dialogue regarding the aforementioned issues. ISAC provides advice in cooperation with stakeholders and... of stakeholders to resolve complex issues and conflicts; and complying with the...

  2. 76 FR 18575 - Nominations of New Members to the Invasive Species Advisory Committee (ISAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... international cooperation in addressing invasive species; facilitates the development of a coordinated network... issues. ISAC provides advice in cooperation with stakeholders and existing organizations addressing...; coordinating diverse groups of stakeholders to resolve complex environmental issues and conflicts;...

  3. Morphological features to distinguish the larval stage of invasive Ruffe from native fish species

    EPA Science Inventory

    Larval fish surveys are used in a variety of research and monitoring activities, including identification of nursery habitat and invasive species early detection. Morphologically-based taxonomic identification of larvae collected from these surveys, however, is often challenging....

  4. Morphological features to distinguish the larval stage of invasive Ruffe (Gymnocephalus cernuus) from native fish species

    EPA Science Inventory

    Larval fish surveys are used in a variety of research and monitoring activities, including identification of nursery habitat and invasive species early detection. Morphologically-based taxonomic identification of larvae collected from these surveys, however, is often challenging....

  5. Combining local- and large-scale models to predict the distributions of invasive plant species.

    PubMed

    Jones, Chad C; Acker, Steven A; Halpern, Charles B

    2010-03-01

    Habitat distribution models are increasingly used to predict the potential distributions of invasive species and to inform monitoring. However, these models assume that species are in equilibrium with the environment, which is clearly not true for most invasive species. Although this assumption is frequently acknowledged, solutions have not been adequately addressed. There are several potential methods for improving habitat distribution models. Models that require only presence data may be more effective for invasive species, but this assumption has rarely been tested. In addition, combining modeling types to form "ensemble" models may improve the accuracy of predictions. However, even with these improvements, models developed for recently invaded areas are greatly influenced by the current distributions of species and thus reflect near- rather than long-term potential for invasion. Larger scale models from species' native and invaded ranges may better reflect long-term invasion potential, but they lack finer scale resolution. We compared logistic regression (which uses presence/absence data) and two presence-only methods for modeling the potential distributions of three invasive plant species on the Olympic Peninsula in Washington, USA. We then combined the three methods to create ensemble models. We also developed climate envelope models for the same species based on larger scale distributions and combined models from multiple scales to create an index of near- and long-term invasion risk to inform monitoring in Olympic National Park (ONP). Neither presence-only nor ensemble models were more accurate than logistic regression for any of the species. Larger scale models predicted much greater areas at risk of invasion. Our index of near- and long-term invasion risk indicates that < 4% of ONP is at high near-term risk of invasion while 67-99% of the Park is at moderate or high long-term risk of invasion. We demonstrate how modeling results can be used to guide the

  6. An invasive mosquito species Aedes albopictus found in the Czech Republic, 2012.

    PubMed

    Šebesta, O; Rudolf, I; Betášová, L; Peško, J; Hubálek, Z

    2012-01-01

    Between July and September 2012, seventeen larvae of the invasive mosquito species Aedes (Stegomyia) albopictus (Skuse) were discovered using 60 ovitraps at four study sites alongside two main road exits in South Moravia, Czech Republic. This is the first report of imported Ae. albopictus in the Czech Republic. The findings highlight the need for a regular surveillance programme to monitor this invasive species throughout western and central Europe. PMID:23137465

  7. Invasive species compendium: Salvinia molesta D.S. Mitchell

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salvinia molesta D.S. Mitchell is an invasive aquatic fern native to a small area of south-eastern Brazil. It has spread throughout the world, forming thick mats of vegetation that decrease dissolved oxygen and pH while outcompeting native vegetation. It has been introduced and established into many...

  8. The Scirtothrips dorsalis Species Complex: Endemism and Invasion in a Global Pest.

    PubMed

    Dickey, Aaron M; Kumar, Vivek; Hoddle, Mark S; Funderburk, Joe E; Morgan, J Kent; Jara-Cavieres, Antonella; Shatters, Robert G; Osborne, Lance S; McKenzie, Cindy L

    2015-01-01

    Invasive arthropods pose unique management challenges in various environments, the first of which is correct identification. This apparently mundane task is particularly difficult if multiple species are morphologically indistinguishable but accurate identification can be determined with DNA barcoding provided an adequate reference set is available. Scirtothrips dorsalis is a highly polyphagous plant pest with a rapidly expanding global distribution and this species, as currently recognized, may be comprised of cryptic species. Here we report the development of a comprehensive DNA barcode library for S. dorsalis and seven nuclear markers via next-generation sequencing for identification use within the complex. We also report the delimitation of nine cryptic species and two morphologically distinguishable species comprising the S. dorsalis species complex using histogram analysis of DNA barcodes, Bayesian phylogenetics, and the multi-species coalescent. One member of the complex, here designated the South Asia 1 cryptic species, is highly invasive, polyphagous, and likely the species implicated in tospovirus transmission. Two other species, South Asia 2, and East Asia 1 are also highly polyphagous and appear to be at an earlier stage of global invasion. The remaining members of the complex are regionally endemic, varying in their pest status and degree of polyphagy. In addition to patterns of invasion and endemism, our results provide a framework both for identifying members of the complex based on their DNA barcode, and for future species delimiting efforts.

  9. The Scirtothrips dorsalis Species Complex: Endemism and Invasion in a Global Pest.

    PubMed

    Dickey, Aaron M; Kumar, Vivek; Hoddle, Mark S; Funderburk, Joe E; Morgan, J Kent; Jara-Cavieres, Antonella; Shatters, Robert G; Osborne, Lance S; McKenzie, Cindy L

    2015-01-01

    Invasive arthropods pose unique management challenges in various environments, the first of which is correct identification. This apparently mundane task is particularly difficult if multiple species are morphologically indistinguishable but accurate identification can be determined with DNA barcoding provided an adequate reference set is available. Scirtothrips dorsalis is a highly polyphagous plant pest with a rapidly expanding global distribution and this species, as currently recognized, may be comprised of cryptic species. Here we report the development of a comprehensive DNA barcode library for S. dorsalis and seven nuclear markers via next-generation sequencing for identification use within the complex. We also report the delimitation of nine cryptic species and two morphologically distinguishable species comprising the S. dorsalis species complex using histogram analysis of DNA barcodes, Bayesian phylogenetics, and the multi-species coalescent. One member of the complex, here designated the South Asia 1 cryptic species, is highly invasive, polyphagous, and likely the species implicated in tospovirus transmission. Two other species, South Asia 2, and East Asia 1 are also highly polyphagous and appear to be at an earlier stage of global invasion. The remaining members of the complex are regionally endemic, varying in their pest status and degree of polyphagy. In addition to patterns of invasion and endemism, our results provide a framework both for identifying members of the complex based on their DNA barcode, and for future species delimiting efforts. PMID:25893251

  10. The Scirtothrips dorsalis Species Complex: Endemism and Invasion in a Global Pest

    PubMed Central

    Dickey, Aaron M.; Kumar, Vivek; Hoddle, Mark S.; Funderburk, Joe E.; Morgan, J. Kent; Jara-Cavieres, Antonella; Shatters, Robert G. Jr.; Osborne, Lance S.; McKenzie, Cindy L.

    2015-01-01

    Invasive arthropods pose unique management challenges in various environments, the first of which is correct identification. This apparently mundane task is particularly difficult if multiple species are morphologically indistinguishable but accurate identification can be determined with DNA barcoding provided an adequate reference set is available. Scirtothrips dorsalis is a highly polyphagous plant pest with a rapidly expanding global distribution and this species, as currently recognized, may be comprised of cryptic species. Here we report the development of a comprehensive DNA barcode library for S. dorsalis and seven nuclear markers via next-generation sequencing for identification use within the complex. We also report the delimitation of nine cryptic species and two morphologically distinguishable species comprising the S. dorsalis species complex using histogram analysis of DNA barcodes, Bayesian phylogenetics, and the multi-species coalescent. One member of the complex, here designated the South Asia 1 cryptic species, is highly invasive, polyphagous, and likely the species implicated in tospovirus transmission. Two other species, South Asia 2, and East Asia 1 are also highly polyphagous and appear to be at an earlier stage of global invasion. The remaining members of the complex are regionally endemic, varying in their pest status and degree of polyphagy. In addition to patterns of invasion and endemism, our results provide a framework both for identifying members of the complex based on their DNA barcode, and for future species delimiting efforts. PMID:25893251

  11. Novel chemistry of invasive plants: exotic species have more unique metabolomic profiles than native congeners.

    PubMed

    Macel, Mirka; de Vos, Ric C H; Jansen, Jeroen J; van der Putten, Wim H; van Dam, Nicole M

    2014-07-01

    It is often assumed that exotic plants can become invasive when they possess novel secondary chemistry compared with native plants in the introduced range. Using untargeted metabolomic fingerprinting, we compared a broad range of metabolites of six successful exotic plant species and their native congeners of the family Asteraceae. Our results showed that plant chemistry is highly species-specific and diverse among both exotic and native species. Nonetheless, the exotic species had on average a higher total number of metabolites and more species-unique metabolites compared with their native congeners. Herbivory led to an overall increase in metabolites in all plant species. Generalist herbivore performance was lower on most of the exotic species compared with the native species. We conclude that high chemical diversity and large phytochemical uniqueness of the exotic species could be indicative of biological invasion potential. PMID:25077026

  12. Novel chemistry of invasive plants: exotic species have more unique metabolomic profiles than native congeners

    PubMed Central

    Macel, Mirka; de Vos, Ric C H; Jansen, Jeroen J; van der Putten, Wim H; van Dam, Nicole M

    2014-01-01

    It is often assumed that exotic plants can become invasive when they possess novel secondary chemistry compared with native plants in the introduced range. Using untargeted metabolomic fingerprinting, we compared a broad range of metabolites of six successful exotic plant species and their native congeners of the family Asteraceae. Our results showed that plant chemistry is highly species-specific and diverse among both exotic and native species. Nonetheless, the exotic species had on average a higher total number of metabolites and more species-unique metabolites compared with their native congeners. Herbivory led to an overall increase in metabolites in all plant species. Generalist herbivore performance was lower on most of the exotic species compared with the native species. We conclude that high chemical diversity and large phytochemical uniqueness of the exotic species could be indicative of biological invasion potential. PMID:25077026

  13. Global phylogenetics of Diuraphis noxia (Hemiptera: Aphididae), an invasive aphid species: evidence for multiple invasions into North America.

    PubMed

    Liu, Xiang; Marshall, Jeremy L; Stary, Petr; Edwards, Owain; Puterka, Gary; Dolatti, L; El Bouhssini, Mustapha; Malinga, Joyce; Lage, Jacob; Smith, C Michael

    2010-06-01

    The Russian wheat aphid, Diruaphis noxia (Kudjumov) (Hemiptera: Aphididae), is globally one of the most devastating pests of bread wheat, Tritium aestivum L., durum wheat, Triticum turgidum L., and barley, Hordeum vulgare L. Several sources of D. noxia resistance have been incorporated in commercial wheat and barley genotypes, but up to eight virulent biotypes, defined based on their ability to damage different wheat and barley genotypes, now occur across the western United States since the first appearance of D. noxia in North America in 1986. Critical to the study of D. noxia and other invasive species is an understanding of the number and origin of invasions that have occurred, as well as the rate or potential of postinvasion adaptation and geographic range expansion. The goal of this study was to determine whether D. noxia biotypes are by-products of a single invasion or multiple invasions into North America. We used the genome-wide technique of amplified fragment length polymorphisms, in combination with 22 collections of D. noxia from around the world, to assess this question, as well as patterns of genetic divergence. We found multiple lines of evidence that there have been at least two D. noxia invasions of different origin into North America, each resulting in subsequent postinvasion diversification that has since yielded multiple biotypes.

  14. Does competition for phosphate supply explain the invasion pattern of Elodea species?

    PubMed

    Thiébaut, Gabrielle

    2005-09-01

    Two invasive aquatic plants, Elodea canadensis and Elodea nuttallii, occurred in north-eastern France. In this study, we examine the influence of phosphorus availability in soft water streams to explain the invasion pattern of exotic species (E. nuttallii and E. canadensis) compared to native plants (Callitriche platycarpa, Ranunculus peltatus). Total phosphorus was measured in these four aquatic macrophytes. Sediment total phosphorus and water-soluble reactive phosphorus were also analysed each season in 2001. Phosphorus content in the two invasive species and in R. peltatus was higher than in C. platycarpa. Elodea species are adapted to the seasonal phosphorus fluctuations as well as R. peltatus and exhibited high phosphorus storage ability. The high fluctuation availability of resources in space or/and time favoured the spread of the invasive plants and confirms the theory of invasibility of Davis et al. [2000. Fluctuating resources in plant communities: a general theory of invasibility. J. Ecol. 88, 528-534]. The eutrophication process increases the invasibility of E. nuttallii's, while inducing competition between E. nuttallii and native macrophyte species. PMID:16026814

  15. What determines positive, neutral, and negative impacts of Solidago canadensis invasion on native plant species richness?

    PubMed

    Dong, Li-Jia; Yu, Hong-Wei; He, Wei-Ming

    2015-11-17

    Whether plant invasions pose a great threat to native plant diversity is still hotly debated due to conflicting findings. More importantly, we know little about the mechanisms of invasion impacts on native plant richness. We examined how Solidago canadensis invasion influenced native plants using data from 291 pairs of invaded and uninvaded plots covering an entire invaded range, and quantified the relative contributions of climate, recipient communities, and S. canadensis to invasion impacts. There were three types of invasion consequences for native plant species richness (i.e., positive, neutral, and negative impacts). Overall, the relative contributions of recipient communities, S. canadensis and climate to invasion impacts were 71.39%, 21.46% and 7.15%, respectively; furthermore, the roles of recipient communities, S. canadensis and climate were largely ascribed to plant diversity, density and cover, and precipitation. In terms of direct effects, invasion impacts were negatively linked to temperature and native plant communities, and positively to precipitation and soil microbes. Soil microbes were crucial in the network of indirect effects on invasion impacts. These findings suggest that the characteristics of recipient communities are the most important determinants of invasion impacts and that invasion impacts may be a continuum across an entire invaded range.

  16. What determines positive, neutral, and negative impacts of Solidago canadensis invasion on native plant species richness?

    PubMed Central

    Dong, Li-Jia; Yu, Hong-Wei; He, Wei-Ming

    2015-01-01

    Whether plant invasions pose a great threat to native plant diversity is still hotly debated due to conflicting findings. More importantly, we know little about the mechanisms of invasion impacts on native plant richness. We examined how Solidago canadensis invasion influenced native plants using data from 291 pairs of invaded and uninvaded plots covering an entire invaded range, and quantified the relative contributions of climate, recipient communities, and S. canadensis to invasion impacts. There were three types of invasion consequences for native plant species richness (i.e., positive, neutral, and negative impacts). Overall, the relative contributions of recipient communities, S. canadensis and climate to invasion impacts were 71.39%, 21.46% and 7.15%, respectively; furthermore, the roles of recipient communities, S. canadensis and climate were largely ascribed to plant diversity, density and cover, and precipitation. In terms of direct effects, invasion impacts were negatively linked to temperature and native plant communities, and positively to precipitation and soil microbes. Soil microbes were crucial in the network of indirect effects on invasion impacts. These findings suggest that the characteristics of recipient communities are the most important determinants of invasion impacts and that invasion impacts may be a continuum across an entire invaded range. PMID:26573017

  17. Effects of climate change, invasive species, and disease on the distribution of native European crayfishes.

    PubMed

    Capinha, César; Larson, Eric R; Tricarico, Elena; Olden, Julian D; Gherardi, Francesca

    2013-08-01

    Climate change will require species to adapt to new conditions or follow preferred climates to higher latitudes or elevations, but many dispersal-limited freshwater species may be unable to move due to barriers imposed by watershed boundaries. In addition, invasive nonnative species may expand into new regions under future climate conditions and contribute to the decline of native species. We evaluated future distributions for the threatened European crayfish fauna in response to climate change, watershed boundaries, and the spread of invasive crayfishes, which transmit the crayfish plague, a lethal disease for native European crayfishes. We used climate projections from general circulation models and statistical models based on Mahalanobis distance to predict climate-suitable regions for native and invasive crayfishes in the middle and at the end of the 21st century. We identified these suitable regions as accessible or inaccessible on the basis of major watershed boundaries and present occurrences and evaluated potential future overlap with 3 invasive North American crayfishes. Climate-suitable areas decreased for native crayfishes by 19% to 72%, and the majority of future suitable areas for most of these species were inaccessible relative to native and current distributions. Overlap with invasive crayfish plague-transmitting species was predicted to increase. Some native crayfish species (e.g., noble crayfish [Astacus astacus]) had no future refugia that were unsuitable for the modeled nonnative species. Our results emphasize the importance of preventing additional introductions and spread of invasive crayfishes in Europe to minimize interactions between the multiple stressors of climate change and invasive species, while suggesting candidate regions for the debatable management option of assisted colonization.

  18. Antagonistic interactions between an invasive alien and a native coccinellid species may promote coexistence.

    PubMed

    Hentley, William T; Vanbergen, Adam J; Beckerman, Andrew P; Brien, Melanie N; Hails, Rosemary S; Jones, T Hefin; Johnson, Scott N

    2016-07-01

    Despite the capacity of invasive alien species to alter ecosystems, the mechanisms underlying their impact remain only partly understood. Invasive alien predators, for example, can significantly disrupt recipient communities by consuming prey species or acting as an intraguild predator (IGP). Behavioural interactions are key components of interspecific competition between predators, yet these are often overlooked invasion processes. Here, we show how behavioural, non-lethal IGP interactions might facilitate the establishment success of an invading alien species. We experimentally assessed changes in feeding behaviour (prey preference and consumption rate) of native UK coccinellid species (Adalia bipunctata and Coccinella septempunctata), whose populations are, respectively, declining and stable, when exposed to the invasive intraguild predator, Harmonia axyridis. Using a population dynamics model parameterized with these experimental data, we predicted how intraguild predation, accommodating interspecific behavioural interactions, might impact the abundance of the native and invasive alien species over time. When competing for the same aphid resource, the feeding rate of A. bipunctata significantly increased compared to the feeding in isolation, while the feeding rate of H. axyridis significantly decreased. This suggests that despite significant declines in the UK, A. bipunctata is a superior competitor to the intraguild predator H. axyridis. In contrast, the behaviour of non-declining C. septempunctata was unaltered by the presence of H. axyridis. Our experimental data show the differential behavioural plasticity of competing native and invasive alien predators, but do not explain A. bipunctata declines observed in the UK. Using behavioural plasticity as a parameter in a population dynamic model for A. bipunctata and H. axyridis, coexistence is predicted between the native and invasive alien following an initial period of decline in the native species. We

  19. Antagonistic interactions between an invasive alien and a native coccinellid species may promote coexistence.

    PubMed

    Hentley, William T; Vanbergen, Adam J; Beckerman, Andrew P; Brien, Melanie N; Hails, Rosemary S; Jones, T Hefin; Johnson, Scott N

    2016-07-01

    Despite the capacity of invasive alien species to alter ecosystems, the mechanisms underlying their impact remain only partly understood. Invasive alien predators, for example, can significantly disrupt recipient communities by consuming prey species or acting as an intraguild predator (IGP). Behavioural interactions are key components of interspecific competition between predators, yet these are often overlooked invasion processes. Here, we show how behavioural, non-lethal IGP interactions might facilitate the establishment success of an invading alien species. We experimentally assessed changes in feeding behaviour (prey preference and consumption rate) of native UK coccinellid species (Adalia bipunctata and Coccinella septempunctata), whose populations are, respectively, declining and stable, when exposed to the invasive intraguild predator, Harmonia axyridis. Using a population dynamics model parameterized with these experimental data, we predicted how intraguild predation, accommodating interspecific behavioural interactions, might impact the abundance of the native and invasive alien species over time. When competing for the same aphid resource, the feeding rate of A. bipunctata significantly increased compared to the feeding in isolation, while the feeding rate of H. axyridis significantly decreased. This suggests that despite significant declines in the UK, A. bipunctata is a superior competitor to the intraguild predator H. axyridis. In contrast, the behaviour of non-declining C. septempunctata was unaltered by the presence of H. axyridis. Our experimental data show the differential behavioural plasticity of competing native and invasive alien predators, but do not explain A. bipunctata declines observed in the UK. Using behavioural plasticity as a parameter in a population dynamic model for A. bipunctata and H. axyridis, coexistence is predicted between the native and invasive alien following an initial period of decline in the native species. We

  20. Federated or cached searches: Providing expected performance from multiple invasive species databases

    NASA Astrophysics Data System (ADS)

    Graham, Jim; Jarnevich, Catherine S.; Simpson, Annie; Newman, Gregory J.; Stohlgren, Thomas J.

    2011-06-01

    Invasive species are a universal global problem, but the information to identify them, manage them, and prevent invasions is stored around the globe in a variety of formats. The Global Invasive Species Information Network is a consortium of organizations working toward providing seamless access to these disparate databases via the Internet. A distributed network of databases can be created using the Internet and a standard web service protocol. There are two options to provide this integration. First, federated searches are being proposed to allow users to search "deep" web documents such as databases for invasive species. A second method is to create a cache of data from the databases for searching. We compare these two methods, and show that federated searches will not provide the performance and flexibility required from users and a central cache of the datum are required to improve performance.

  1. Exotic annual Bromus invasions: comparisons among species and ecoregions in the western United States

    USGS Publications Warehouse

    Brooks, Matthew L.; Brown, Cynthia S.; Chambers, Jeanne C.; D'Antonio, Carla M.; Keeley, Jon E.; Belnap, Jayne

    2016-01-01

    Exotic annual Bromus species are widely recognized for their potential to invade, dominate, and alter the structure and function of ecosystems. In this chapter, we summarize the invasion potential, ecosystem threats, and management strategies for different Bromus species within each of five ecoregions of the western United States. We characterize invasion potential and threats in terms of ecosystem resistance to Bromus invasion and ecosystem resilience to disturbance with an emphasis on the importance of fi re regimes. We also explain how soil temperature and moisture regimes can be linked to patterns of resistance and resilience and provide a conceptual framework that can be used to evaluate the relative potential for invasion and ecological impact of the dominant exotic annual Bromus species in the western United States.

  2. Federated or cached searches: providing expected performance from multiple invasive species databases

    USGS Publications Warehouse

    Graham, Jim; Jarnevich, Catherine S.; Simpson, Annie; Newman, Gregory J.; Stohlgren, Thomas J.

    2011-01-01

    Invasive species are a universal global problem, but the information to identify them, manage them, and prevent invasions is stored around the globe in a variety of formats. The Global Invasive Species Information Network is a consortium of organizations working toward providing seamless access to these disparate databases via the Internet. A distributed network of databases can be created using the Internet and a standard web service protocol. There are two options to provide this integration. First, federated searches are being proposed to allow users to search “deep” web documents such as databases for invasive species. A second method is to create a cache of data from the databases for searching. We compare these two methods, and show that federated searches will not provide the performance and flexibility required from users and a central cache of the datum are required to improve performance.

  3. NASA and USGS invest in invasive species modeling to evaluate habitat for Africanized Honey Bees

    USGS Publications Warehouse

    2009-01-01

    Invasive non-native species, such as plants, animals, and pathogens, have long been an interest to the U.S. Geological Survey (USGS) and NASA. Invasive species cause harm to our economy (around $120 B/year), the environment (e.g., replacing native biodiversity, forest pathogens negatively affecting carbon storage), and human health (e.g., plague, West Nile virus). Five years ago, the USGS and NASA formed a partnership to improve ecological forecasting capabilities for the early detection and containment of the highest priority invasive species. Scientists from NASA Goddard Space Flight Center (GSFC) and the Fort Collins Science Center developed a longterm strategy to integrate remote sensing capabilities, high-performance computing capabilities and new spatial modeling techniques to advance the science of ecological invasions [Schnase et al., 2002].

  4. Species differences in paternal behavior and aggression in peromyscus and their associations with vasopressin immunoreactivity and receptors.

    PubMed

    Bester-Meredith, J K; Young, L J; Marler, C A

    1999-08-01

    Previous comparative studies have suggested that the distribution of arginine vasopressin (AVP) pathways within the brain is associated with species-typical patterns of social behavior. In the current study, male parental behavior and aggression were compared in two species of Peromyscus. As predicted based on other studies, male mice from a monogamous species, the California mouse Peromyscus californicus, spent more time providing parental care to offspring than males from a polygamous species, the white-footed mouse Peromyscus leucopus. Sexually naive male California mice also attacked opponents more rapidly than white-footed mice during resident-intruder and neutral aggression tests. Since AVP has been shown to modulate these behaviors, we compared the distribution of vasopressinergic neurons and receptors. We predicted that greater AVP-immunoreactive (AVP-ir) staining in the bed nucleus of the stria terminalis and AVP receptor density in the lateral septum would occur in the species with low levels of paternal care because this pattern was found in similar comparisons with sexually naive monogamous and polygamous voles. In contrast, in our study, monogamous male mice showed more AVP-ir staining in the bed nucleus of the stria terminalis than the polygamous species, as well as more AVP receptors in the lateral septum. Parental behavior therefore does not appear to predict differences in patterns of AVP-ir staining and receptor distribution across species or vice versa. We propose the hypothesis that aggression may be better correlated with species patterns of AVP-ir staining density and receptor distribution. PMID:10433884

  5. Clarifying values, risk perceptions, and attitudes to resolve or avoid social conflicts in invasive species management.

    PubMed

    Estévez, Rodrigo A; Anderson, Christopher B; Pizarro, J Cristobal; Burgman, Mark A

    2015-02-01

    Decision makers and researchers recognize the need to effectively confront the social dimensions and conflicts inherent to invasive species research and management. Yet, despite numerous contentious situations that have arisen, no systematic evaluation of the literature has examined the commonalities in the patterns and types of these emergent social issues. Using social and ecological keywords, we reviewed trends in the social dimensions of invasive species research and management and the sources and potential solutions to problems and conflicts that arise around invasive species. We integrated components of cognitive hierarchy theory and risk perceptions theory to provide a conceptual framework to identify, distinguish, and provide understanding of the driving factors underlying disputes associated with invasive species. In the ISI Web of Science database, we found 15,915 peer-reviewed publications on biological invasions, 124 of which included social dimensions of this phenomenon. Of these 124, 28 studies described specific contentious situations. Social approaches to biological invasions have emerged largely in the last decade and have focused on both environmental social sciences and resource management. Despite being distributed in a range of journals, these 124 articles were concentrated mostly in ecology and conservation-oriented outlets. We found that conflicts surrounding invasive species arose based largely on differences in value systems and to a lesser extent stakeholder and decision maker's risk perceptions. To confront or avoid such situations, we suggest integrating the plurality of environmental values into invasive species research and management via structured decision making techniques, which enhance effective risk communication that promotes trust and confidence between stakeholders and decision makers.

  6. Clarifying values, risk perceptions, and attitudes to resolve or avoid social conflicts in invasive species management.

    PubMed

    Estévez, Rodrigo A; Anderson, Christopher B; Pizarro, J Cristobal; Burgman, Mark A

    2015-02-01

    Decision makers and researchers recognize the need to effectively confront the social dimensions and conflicts inherent to invasive species research and management. Yet, despite numerous contentious situations that have arisen, no systematic evaluation of the literature has examined the commonalities in the patterns and types of these emergent social issues. Using social and ecological keywords, we reviewed trends in the social dimensions of invasive species research and management and the sources and potential solutions to problems and conflicts that arise around invasive species. We integrated components of cognitive hierarchy theory and risk perceptions theory to provide a conceptual framework to identify, distinguish, and provide understanding of the driving factors underlying disputes associated with invasive species. In the ISI Web of Science database, we found 15,915 peer-reviewed publications on biological invasions, 124 of which included social dimensions of this phenomenon. Of these 124, 28 studies described specific contentious situations. Social approaches to biological invasions have emerged largely in the last decade and have focused on both environmental social sciences and resource management. Despite being distributed in a range of journals, these 124 articles were concentrated mostly in ecology and conservation-oriented outlets. We found that conflicts surrounding invasive species arose based largely on differences in value systems and to a lesser extent stakeholder and decision maker's risk perceptions. To confront or avoid such situations, we suggest integrating the plurality of environmental values into invasive species research and management via structured decision making techniques, which enhance effective risk communication that promotes trust and confidence between stakeholders and decision makers. PMID:25155068

  7. Using ABC and microsatellite data to detect multiple introductions of invasive species from a single source

    PubMed Central

    Benazzo, A; Ghirotto, S; Vilaça, S T; Hoban, S

    2015-01-01

    The introduction of invasive species to new locations (that is, biological invasions) can have major impact on biodiversity, agriculture and public health. As such, determining the routes and modality of introductions with genetic data has become a fundamental goal in molecular ecology. To assist with this goal, new statistical methods and frameworks have been developed, such as approximate Bayesian computation (ABC) for inferring invasion history. Here, we present a model of invasion accounting for multiple introductions from a single source (MISS), a heretofore largely unexplored model. We simulate microsatellite data to evaluate the power of ABC to distinguish between single and multiple introductions from the same source, under a range of demographic parameters. We also apply ABC to microsatellite data from three invasions of bumblebee in New Zealand. In addition, we assess the performance of several methods of summary statistics selection. Our simulated results suggested good ability to distinguish between one- and two-wave models over much but not all of the parameter space tested, independent of summary statistics used. Globally, parameter estimation was good except for bottleneck timing. For one of the bumblebee species, we clearly rejected the MISS model, while for the other two we found inconclusive results. Since a second wave may provide genetic reinforcement to initial colonists, help relieve inbreeding among founders, or increase the hazard of the invasion, its detection may be crucial for managing invasions; we suggest that the MISS model could be considered as a potential model in future theoretical and empirical studies of invasions. PMID:25920671

  8. Public Perception of Invasive Plant Species: Assessing the Impact of Workshop Activities to Promote Young Students' Awareness

    ERIC Educational Resources Information Center

    Schreck Reis, Catarina; Marchante, Helia; Freitas, Helena; Marchante, Elizabete

    2013-01-01

    Invasive species are one of the main threats to biodiversity worldwide. Even though they are identified and recognized as such by the Portuguese law, the majority of the population is not yet aware of this problem. Aiming to increase awareness about biological invasions among young students, a workshop on Invasive Plant Species was organized at…

  9. Species-driven changes in nitrogen cycling can provide a mechanism for plant invasions.

    PubMed

    Laungani, Ramesh; Knops, Johannes M H

    2009-07-28

    Traits that permit successful invasions have often seemed idiosyncratic, and the key biological traits identified vary widely among species. This fundamentally limits our ability to determine the invasion potential of a species. However, ultimately, successful invaders must have positive growth rates that longer term result in higher biomass accumulation than competing established species. In many terrestrial ecosystems nitrogen limits plant growth, and is a key factor determining productivity and the outcome of competition among species. Plant nitrogen use may provide a powerful framework to evaluate the invasive potential of a species in nitrogen-limiting ecosystems. Six mechanisms influence plant nitrogen use or acquisition: photosynthetic tissue allocation, photosynthetic nitrogen use efficiency, nitrogen fixation, nitrogen-leaching losses, gross nitrogen mineralization, and plant nitrogen residence time. Here we show that among these alternatives, the key mechanism allowing invasion for Pinus strobus into nitrogen limited grasslands was its higher nitrogen residence time. This higher nitrogen residence time created a positive feedback that redistributed nitrogen from the soil into the plant. This positive feedback allowed P. strobus to accumulate twice as much nitrogen in its tissues and four times as much nitrogen to photosynthetic tissues, as compared with other plant species. In turn, this larger leaf nitrogen pool increased total plant carbon gain of P. strobus two- to sevenfold as compared with other plant species. Thus our data illustrate that plant species can change internal ecosystem nitrogen cycling feedbacks and this mechanism can allow them to gain a competitive advantage over other plant species. PMID:19592506

  10. Species-driven changes in nitrogen cycling can provide a mechanism for plant invasions.

    PubMed

    Laungani, Ramesh; Knops, Johannes M H

    2009-07-28

    Traits that permit successful invasions have often seemed idiosyncratic, and the key biological traits identified vary widely among species. This fundamentally limits our ability to determine the invasion potential of a species. However, ultimately, successful invaders must have positive growth rates that longer term result in higher biomass accumulation than competing established species. In many terrestrial ecosystems nitrogen limits plant growth, and is a key factor determining productivity and the outcome of competition among species. Plant nitrogen use may provide a powerful framework to evaluate the invasive potential of a species in nitrogen-limiting ecosystems. Six mechanisms influence plant nitrogen use or acquisition: photosynthetic tissue allocation, photosynthetic nitrogen use efficiency, nitrogen fixation, nitrogen-leaching losses, gross nitrogen mineralization, and plant nitrogen residence time. Here we show that among these alternatives, the key mechanism allowing invasion for Pinus strobus into nitrogen limited grasslands was its higher nitrogen residence time. This higher nitrogen residence time created a positive feedback that redistributed nitrogen from the soil into the plant. This positive feedback allowed P. strobus to accumulate twice as much nitrogen in its tissues and four times as much nitrogen to photosynthetic tissues, as compared with other plant species. In turn, this larger leaf nitrogen pool increased total plant carbon gain of P. strobus two- to sevenfold as compared with other plant species. Thus our data illustrate that plant species can change internal ecosystem nitrogen cycling feedbacks and this mechanism can allow them to gain a competitive advantage over other plant species.

  11. Evaluation of Integrating the Invasive Species Forecasting System to Support National Park Service Decisions on Fire Management Activities and Invasive Plant Species Control

    NASA Technical Reports Server (NTRS)

    Ma, Peter; Morisette, T.; Rodman, Ann; McClure, Craig; Pedelty, Jeff; Benson, Nate; Paintner, Kara; Most, Neal; Ullah, Asad; Cai, Weijie; Rocca, Monique; Silverman, Joel; Schunase, John L.

    2007-01-01

    The USGS and NASA, in conjunction with Colorado State University, George Mason University and other partners, have developed the Invasive Species Forecasting System (ISFS), a flexible tool that capitalizes on NASA's remote sensing resource to produce dynamic habitat maps of invasive terrestrial plant species across the United States. In 2006 ISFS was adopted to generate predictive invasive habitat maps to benefit noxious plant and fire management teams in three major National Park systems: The Greater Yellowstone Area (Yellowstone / Grand Tetons National Parks), Sequoia and Kings Canyon National Park, and interior Alaskan (between Denali, Gates of The Arctic and Yukon-Charley). One of the objectives of this study is to explore how the ISFS enhances decision support apparatus in use by National Park management teams. The first step with each park system was to work closely with park managers to select top-priority invasive species. Specific species were chosen for each study area based on management priorities, availability of observational data, and their potential for invasion after fire disturbances. Once focal species were selected, sources of presence/absence data were collected from previous surveys for each species in and around the Parks. Using logistic regression to couple presence/absence points with environmental data layers, the first round of ISFS habitat suitability maps were generated for each National Park system and presented during park visits over the summer of 2006. This first engagement provided a demonstration of what the park service can expect from ISFS and initiated the ongoing dialog on how the parks can best utilized the system to enhance their decisions related to invasive species control. During the park visits it was discovered that separate "expert opinion" maps would provide a valuable baseline to compare against the ISFS model output. Opinion maps are a means of spatially representing qualitative knowledge into a quantitative two

  12. Analysis of the Trojan Y-Chromosome eradication strategy for an invasive species.

    PubMed

    Wang, Xueying; Walton, Jay R; Parshad, Rana D; Storey, Katie; Boggess, May

    2014-06-01

    The Trojan Y-Chromosome (TYC) strategy, an autocidal genetic biocontrol method, has been proposed to eliminate invasive alien species. In this work, we analyze the dynamical system model of the TYC strategy, with the aim of studying the viability of the TYC eradication and control strategy of an invasive species. In particular, because the constant introduction of sex-reversed trojan females for all time is not possible in practice, there arises the question: What happens if this injection is stopped after some time? Can the invasive species recover? To answer that question, we perform a rigorous bifurcation analysis and study the basin of attraction of the recovery state and the extinction state in both the full model and a certain reduced model. In particular, we find a theoretical condition for the eradication strategy to work. Additionally, the consideration of an Allee effect and the possibility of a Turing instability are also studied in this work. Our results show that: (1) with the inclusion of an Allee effect, the number of the invasive females is not required to be very low when the introduction of the sex-reversed trojan females is stopped, and the remaining Trojan Y-Chromosome population is sufficient to induce extinction of the invasive females; (2) incorporating diffusive spatial spread does not produce a Turing instability, which would have suggested that the TYC eradication strategy might be only partially effective, leaving a patchy distribution of the invasive species.

  13. Hurricane Activity and the Large-Scale Pattern of Spread of an Invasive Plant Species

    PubMed Central

    Bhattarai, Ganesh P.; Cronin, James T.

    2014-01-01

    Disturbances are a primary facilitator of the growth and spread of invasive species. However, the effects of large-scale disturbances, such as hurricanes and tropical storms, on the broad geographic patterns of invasive species growth and spread have not been investigated. We used historical aerial imagery to determine the growth rate of invasive Phragmites australis patches in wetlands along the Atlantic and Gulf Coasts of the United States. These were relatively undisturbed wetlands where P. australis had room for unrestricted growth. Over the past several decades, invasive P. australis stands expanded in size by 6–35% per year. Based on tropical storm and hurricane activity over that same time period, we found that the frequency of hurricane-force winds explained 81% of the variation in P. australis growth over this broad geographic range. The expansion of P. australis stands was strongly and positively correlated with hurricane frequency. In light of the many climatic models that predict an increase in the frequency and intensity of hurricanes over the next century, these results suggest a strong link between climate change and species invasion and a challenging future ahead for the management of invasive species. PMID:24878928

  14. Jack-of-all-trades: phenotypic plasticity facilitates the invasion of an alien slug species.

    PubMed

    Knop, Eva; Reusser, Nik

    2012-11-22

    Invasive alien species might benefit from phenotypic plasticity by being able to (i) maintain fitness in stressful environments ('robust'), (ii) increase fitness in favourable environments ('opportunistic'), or (iii) combine both abilities ('robust and opportunistic'). Here, we applied this framework, for the first time, to an animal, the invasive slug, Arion lusitanicus, and tested (i) whether it has a more adaptive phenotypic plasticity compared with a congeneric native slug, Arion fuscus, and (ii) whether it is robust, opportunistic or both. During one year, we exposed specimens of both species to a range of temperatures along an altitudinal gradient (700-2400 m a.s.l.) and to high and low food levels, and we compared the responsiveness of two fitness traits: survival and egg production. During summer, the invasive species had a more adaptive phenotypic plasticity, and at high temperatures and low food levels, it survived better and produced more eggs than A. fuscus, representing the robust phenotype. During winter, A. lusitanicus displayed a less adaptive phenotype than A. fuscus. We show that the framework developed for plants is also very useful for a better mechanistic understanding of animal invasions. Warmer summers and milder winters might lead to an expansion of this invasive species to higher altitudes and enhance its spread in the lowlands, supporting the concern that global climate change will increase biological invasions.

  15. Analysis of the Trojan Y-Chromosome eradication strategy for an invasive species.

    PubMed

    Wang, Xueying; Walton, Jay R; Parshad, Rana D; Storey, Katie; Boggess, May

    2014-06-01

    The Trojan Y-Chromosome (TYC) strategy, an autocidal genetic biocontrol method, has been proposed to eliminate invasive alien species. In this work, we analyze the dynamical system model of the TYC strategy, with the aim of studying the viability of the TYC eradication and control strategy of an invasive species. In particular, because the constant introduction of sex-reversed trojan females for all time is not possible in practice, there arises the question: What happens if this injection is stopped after some time? Can the invasive species recover? To answer that question, we perform a rigorous bifurcation analysis and study the basin of attraction of the recovery state and the extinction state in both the full model and a certain reduced model. In particular, we find a theoretical condition for the eradication strategy to work. Additionally, the consideration of an Allee effect and the possibility of a Turing instability are also studied in this work. Our results show that: (1) with the inclusion of an Allee effect, the number of the invasive females is not required to be very low when the introduction of the sex-reversed trojan females is stopped, and the remaining Trojan Y-Chromosome population is sufficient to induce extinction of the invasive females; (2) incorporating diffusive spatial spread does not produce a Turing instability, which would have suggested that the TYC eradication strategy might be only partially effective, leaving a patchy distribution of the invasive species. PMID:23702536

  16. Hurricane activity and the large-scale pattern of spread of an invasive plant species.

    PubMed

    Bhattarai, Ganesh P; Cronin, James T

    2014-01-01

    Disturbances are a primary facilitator of the growth and spread of invasive species. However, the effects of large-scale disturbances, such as hurricanes and tropical storms, on the broad geographic patterns of invasive species growth and spread have not been investigated. We used historical aerial imagery to determine the growth rate of invasive Phragmites australis patches in wetlands along the Atlantic and Gulf Coasts of the United States. These were relatively undisturbed wetlands where P. australis had room for unrestricted growth. Over the past several decades, invasive P. australis stands expanded in size by 6-35% per year. Based on tropical storm and hurricane activity over that same time period, we found that the frequency of hurricane-force winds explained 81% of the variation in P. australis growth over this broad geographic range. The expansion of P. australis stands was strongly and positively correlated with hurricane frequency. In light of the many climatic models that predict an increase in the frequency and intensity of hurricanes over the next century, these results suggest a strong link between climate change and species invasion and a challenging future ahead for the management of invasive species.

  17. Recent mass invasion of the North American Great Lakes by Ponto-Caspian species.

    PubMed

    Ricciardi; MacIsaac

    2000-02-01

    The North American Great Lakes have been invaded and dramatically altered by more than 145 alien species. Many invasions have occurred during the past few decades because of the release of Eurasian ballast water from transoceanic ships. Current regulations require ships to exchange foreign ballast with highly saline water before entering the Great Lakes; this procedure should prevent colonization by strictly freshwater species, but species with broad salinity tolerance might survive transport in exchanged water. A recent series of invasions by euryhaline organisms from the Black and Caspian Seas region signals a new phase in the transformation of the Great Lakes - one that supports the concept of an 'invasional meltdown'.

  18. Benthic macroinvertebrate surveys in Chequamegon Bay in support of invasive species early detection research

    EPA Science Inventory

    This presentation describes the impetus and approach for MED invasive species early detection research generally and presents preliminary results concerning benthic composition and non-native species found in the 2013 Chequamegon Bay survey. The audience is a group of researchers...

  19. Population genetics of invasive Bemisia tabaci cryptic species in the United States based on microsatellite markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Bemisia tabaci cryptic species complex of whiteflies contains two species, MEAM1 and MED, that are highly invasive in supportive climates the world over. In the U.S. MEAM1 occurs both in the field and in the greenhouse but MED is only found in the greenhouse. In order to make inferences about th...

  20. Population genetics of invasive Bemisia tabaci cryptic species in the United States based on microsatellite markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Bemisia tabaci cryptic species complex of whiteflies contains two species, MEAM1 and MED, that are highly invasive in supportive climates the world over. In the United States MEAM1 occurs both in the field and in the greenhouse, but MED is only found in the greenhouse. In order to make inference...

  1. Spatial pattern of invasion and the evolutionary responses of native plant species.

    PubMed

    Stotz, Gisela C; Gianoli, Ernesto; Cahill, James F

    2016-09-01

    Invasive plant species can have a strong negative impact on the resident native species, likely imposing new selective pressures on them. Altered selective pressures may result in evolutionary changes in some native species, reducing competitive exclusion and allowing for coexistence with the invader. Native genotypes that are able to coexist with strong invaders may represent a valuable resource for management efforts. A better understanding of the conditions under which native species are more, or less, likely to adapt to an invader is necessary to incorporate these eco-evolutionary dynamics into management strategies. We propose that the spatial structure of invasion, in particular the size and isolation of invaded patches, is one factor which can influence the evolutionary responses of native species through modifying gene flow and the strength of selection. We present a conceptual model in which large, dense, and well-connected patches result in a greater likelihood of native species adaptation. We also identify characteristics of the interacting species that may influence the evolutionary response of native species to invasion and outline potential management implications. Identifying areas of rapid evolutionary change may offer one additional tool to managers in their effort to conserve biodiversity in the face of invasion. PMID:27606003

  2. Consequences of plant invasions on compartmentalization and species' roles in plant-pollinator networks.

    PubMed

    Albrecht, Matthias; Padrón, Benigno; Bartomeus, Ignasi; Traveset, Anna

    2014-08-01

    Compartmentalization-the organization of ecological interaction networks into subsets of species that do not interact with other subsets (true compartments) or interact more frequently among themselves than with other species (modules)-has been identified as a key property for the functioning, stability and evolution of ecological communities. Invasions by entomophilous invasive plants may profoundly alter the way interaction networks are compartmentalized. We analysed a comprehensive dataset of 40 paired plant-pollinator networks (invaded versus uninvaded) to test this hypothesis. We show that invasive plants have higher generalization levels with respect to their pollinators than natives. The consequences for network topology are that-rather than displacing native species from the network-plant invaders attracting pollinators into invaded modules tend to play new important topological roles (i.e. network hubs, module hubs and connectors) and cause role shifts in native species, creating larger modules that are more connected among each other. While the number of true compartments was lower in invaded compared with uninvaded networks, the effect of invasion on modularity was contingent on the study system. Interestingly, the generalization level of the invasive plants partially explains this pattern, with more generalized invaders contributing to a lower modularity. Our findings indicate that the altered interaction structure of invaded networks makes them more robust against simulated random secondary species extinctions, but more vulnerable when the typically highly connected invasive plants go extinct first. The consequences and pathways by which biological invasions alter the interaction structure of plant-pollinator communities highlighted in this study may have important dynamical and functional implications, for example, by influencing multi-species reciprocal selection regimes and coevolutionary processes.

  3. Impact of an Alien Invasive Shrub on Ecology of Native and Alien Invasive Mosquito Species (Diptera: Culicidae).

    PubMed

    Muturi, Ephantus J; Gardner, Allison M; Bara, Jeffrey J

    2015-10-01

    We examined how leaf litter of alien invasive honeysuckle (Lonicera maackii Rupr.) either alone or in combination with leaf litter of one of two native tree species, sugar maple (Acer saccharum Marshall) and northern red oak (Quercus rubra L.), affects the ecology of Culex restuans Theobald, Ochlerotatus triseriatus Say, and Ochlerotatus japonicus Theobald. Experimental mesocosms containing single species litter or a mixture of honeysuckle and one of two native tree species litter were established at South Farms and Trelease Woods study sites in Urbana, IL, and examined for their effect on 1) oviposition site selection by the three mosquito species, and 2) adult production and body size of Oc. triseriatus and Oc. japonicus. There were no significant effects of study site and leaf treatment on Oc. japonicus and Oc. triseriatus oviposition preference and adult production. In contrast, significantly more Cx. restuans eggs rafts were collected at South Farms relative to Trelease Woods and in honeysuckle litter relative to native tree species litter. Significantly larger adult females of Oc. japonicus and Oc. triseriatus were collected at South Farms relative to Trelease Woods and in honeysuckle litter relative to native tree species litter. Combining honeysuckle litter with native tree species litter had additive effects on Cx. restuans oviposition preference and Oc. japonicus and Oc. triseriatus body size, with the exception of honeysuckle and northern red oak litter combination, which had antagonistic effects on Oc. triseriatus body size. We conclude that input of honeysuckle litter into container aquatic habitats may alter the life history traits of vector mosquito species.

  4. Invasive species cause large-scale loss of native California oyster habitat by disrupting trophic cascades.

    PubMed

    Kimbro, David L; Grosholz, Edwin D; Baukus, Adam J; Nesbitt, Nicholas J; Travis, Nicole M; Attoe, Sarikka; Coleman-Hulbert, Caitlin

    2009-06-01

    Although invasive species often resemble their native counterparts, differences in their foraging and anti-predator strategies may disrupt native food webs. In a California estuary, we showed that regions dominated by native crabs and native whelks have low mortality of native oysters (the basal prey), while regions dominated by invasive crabs and invasive whelks have high oyster mortality and are consequently losing a biologically diverse habitat. Using field experiments, we demonstrated that the invasive whelk's distribution is causally related to a large-scale pattern of oyster mortality. To determine whether predator-prey interactions between crabs (top predators) and whelks (intermediate consumers) indirectly control the pattern of oyster mortality, we manipulated the presence and invasion status of the intermediate and top trophic levels in laboratory mesocosms. Our results show that native crabs indirectly maintain a portion of the estuary's oyster habitat by both consuming native whelks (density-mediated trophic cascade) and altering their foraging behavior (trait-mediated trophic cascade). In contrast, invasive whelks are naive to crab predators and fail to avoid them, thereby inhibiting trait-mediated cascades and their invasion into areas with native crabs. Similarly, when native crabs are replaced with invasive crabs, the naive foraging strategy and smaller size of invasive crabs prevents them from efficiently consuming adult whelks, thereby inhibiting strong density-mediated cascades. Thus, while trophic cascades allow native crabs, whelks, and oysters to locally co-exist, the replacement of native crabs and whelks by functionally similar invasive species results in severe depletion of native oysters. As coastal systems become increasingly invaded, the mismatch of evolutionarily based strategies among predators and prey may lead to further losses of critical habitat that support marine biodiversity and ecosystem function.

  5. Bio-Invasions: The Spread of Exotic Species.

    ERIC Educational Resources Information Center

    Bright, Chris

    1995-01-01

    Human mobility has radically increased the rate at which large numbers of living things are moving from one ecosystem to another. Discusses how ecosystems change when "exotic" species invade natural communities and notes efforts to control adverse effects. (LZ)

  6. Correlational patterns between invertebrate species composition and the presence of an invasive plant

    NASA Astrophysics Data System (ADS)

    Palmer, Miquel; Linde, Marta; Pons, Guillem X.

    2004-12-01

    It is widely assumed that the presence of invasive exotic plants causes a negative impact on native biotas. Here, we analyse the correlational patterns between the presence of one of these invasive plants, the South African Hottentot fig, Carpobrotus acinaciformis (L.) L. Bolus (Aizoaceae), and the terrestrial invertebrate species composition of a Mediterranean rocky shore. Variations in invertebrate community were estimated by determining the presence-absence of 94 species in 30 plots along a 2.5 km shoreline. Canonical correspondence analyses revealed that three environmental variables showed significant correlation with the invertebrate presence-absence matrix. Namely, distance to the nearest urban area, soil type, and vegetation type. Presence-absence of the invasive plant was correlated with these environmental variables, but no additional effect on the invertebrate community specifically attributable to the presence of the invasive plant was detected. These facts exemplify the uncertainties in linking the presence of an invasive species with its putative outcomes because they are consistent with the hypothesis that a general gradient of anthropic influence affects the invertebrate species composition, and that the supposed effects of C. acinaciformis on the invertebrate species composition are correlated with (and therefore, indiscernible from) those derived from the existence of such general gradient of anthropic influence.

  7. Toward a comprehensive information system to assist invasive species management in Hawaii and Pacific Islands

    USGS Publications Warehouse

    Fornwall, M.; Loope, L.

    2004-01-01

    The need for coordinated regional and global electronic databases to assist prevention, early detection, rapid response, and control of biological invasions is well accepted. The Pacific Basin Information Node (PBIN), a node of the National Biological Information Infrastructure, has been increasingly engaged in the invasive species enterprise since its establishment in 2001. Since this time, PBIN has sought to support frontline efforts at combating invasions, through working with stakeholders in conservation, agriculture, forestry, health, and commerce to support joint information needs. Although initial emphasis has been on Hawaii, cooperative work with other Pacific islands and countries of the Pacific Rim is already underway and planned.

  8. Colloquium paper: species invasions and extinction: the future of native biodiversity on islands.

    PubMed

    Sax, Dov F; Gaines, Steven D

    2008-08-12

    Predation by exotic species has caused the extinction of many native animal species on islands, whereas competition from exotic plants has caused few native plant extinctions. Exotic plant addition to islands is highly nonrandom, with an almost perfect 1 to 1 match between the number of naturalized and native plant species on oceanic islands. Here, we evaluate several alternative implications of these findings. Does the consistency of increase in plant richness across islands imply that a saturation point in species richness has been reached? If not, should we expect total plant richness to continue to increase as new species are added? Finally, is the rarity of native plant extinctions to date a misleading measure of the impact of past invasions, one that hides an extinction debt that will be paid in the future? By analyzing historical records, we show that the number of naturalized plant species has increased linearly over time on many individual islands. Further, the mean ratio of naturalized to native plant species across islands has changed steadily for nearly two centuries. These patterns suggest that many more species will become naturalized on islands in the future. We also discuss how dynamics of invasion bear upon alternative saturation scenarios and the implications these scenarios have for the future retention or extinction of native plant species. Finally, we identify invasion-motivated research gaps (propagule pressure, time-lags to extinction, abundance shifts, and loss of area) that can aid in forecasting extinction and in developing a more comprehensive theory of species extinctions. PMID:18695231

  9. Interactions between environment, species traits, and human uses describe patterns of plant invasions.

    PubMed

    Thuiller, Wilfried; Richardson, David M; Rouget, Mathieu; Procheş, Serban; Wilson, John R U

    2006-07-01

    Although invasive alien species (IAS) are a major threat to biodiversity, human health, and economy, our understanding of the factors controlling their distribution and abundance is limited. Here, we determine how environmental factors, land use, life-history traits of the invaders, residence time, origin, and human usage interact to shape the spatial pattern of invasive alien plant species in South Africa. Relationships between the environmental factors and the extrinsic and intrinsic attributes of species were investigated using RLQ analysis, a multivariate method for relating a species-attribute table to an environmental table by way of a species presence/absence table. We then clustered species according to their position on the RLQ axes, and tested these groups for phylogenetic independence. The first three axes of the RLQ explained 99% of the variation and were strongly related to the species attributes. The clustering showed that, after accounting for environmental factors, the spatial pattern of IAS in South Africa was driven by human uses, life forms, and reproductive traits. The seven clusters of species strongly reflected geographical distribution, but also intrinsic species attributes and patterns of human use. Two of the clusters, centered on the genera Acacia and Opuntia, were phylogenetically non-independent. The remaining clusters comprised species of diverse taxonomic affinities, but sharing traits facilitating invasion in particular habitats. This information is useful for assessing the extent to which the potential spread of recent introductions can be predicted by considering the interaction of their biological attributes, region of origin, and human use.

  10. Using the Maxent program for species distribution modelling to assess invasion risk

    USGS Publications Warehouse

    Jarnevich, Catherine S.; Young, Nicholas E.; Venette, R.C

    2015-01-01

    MAXENT is a software package used to relate known species occurrences to information describing the environment, such as climate, topography, anthropogenic features or soil data, and forecast the presence or absence of a species at unsampled locations. This particular method is one of the most popular species distribution modelling techniques because of its consistent strong predictive performance and its ease to implement. This chapter discusses the decisions and techniques needed to prepare a correlative climate matching model for the native range of an invasive alien species and use this model to predict the potential distribution of this species in a potentially invaded range (i.e. a novel environment) by using MAXENT for the Burmese python (Python molurus bivittatus) as a case study. The chapter discusses and demonstrates the challenges that are associated with this approach and examines the inherent limitations that come with using MAXENT to forecast distributions of invasive alien species.

  11. Rapid Species Diagnosis for Invasive Candidiasis Using Mass Spectrometry

    PubMed Central

    Marinach-Patrice, Carine; Fekkar, Arnaud; Atanasova, Ralitsa; Gomes, Johanna; Djamdjian, Laura; Brossas, Jean-Yves; Meyer, Isabelle; Buffet, Pierre; Snounou, Georges; Datry, Annick; Hennequin, Christophe

    2010-01-01

    Background Matrix-assisted laser desorption ionisation time of flight mass spectrometry (MALDI TOF-MS) allows the identification of most bacteria and an increasing number of fungi. The potential for the highest clinical benefit of such methods would be in severe acute infections that require prompt treatment adapted to the infecting species. Our objective was to determine whether yeasts could be identified directly from a positive blood culture, avoiding the 1–3 days subculture step currently required before any therapeutic adjustments can be made. Methodology/Principal Findings Using human blood spiked with Candida albicans to simulate blood cultures, we optimized protocols to obtain MALDI TOF-MS fingerprints where signals from blood proteins are reduced. Simulated cultures elaborated using a set of 12 strains belonging to 6 different species were then tested. Quantifiable spectral differences in the 5000–7400 Da mass range allowed to discriminate between these species and to build a reference database. The validation of the method and the statistical approach to spectral analysis were conducted using individual simulated blood cultures of 36 additional strains (six for each species). Correct identification of the species of these strains was obtained. Conclusions/Significance Direct MALDI TOF-MS analysis of aliquots from positive blood cultures allowed rapid and accurate identification of the main Candida species, thus obviating the need for sub-culturing on specific media. Subsequent to this proof-of-principle demonstration, the method can be extended to other clinically relevant yeast species, and applied to an adequate number of clinical samples in order to establish its potential to improve antimicrobial management of patients with fungemia. PMID:20111603

  12. Ectotherms in Variable Thermal Landscapes: A Physiological Evaluation of the Invasive Potential of Fruit Flies Species.

    PubMed

    Boher, Francisca; Trefault, Nicole; Estay, Sergio A; Bozinovic, Francisco

    2016-01-01

    Climate change and biological invasions pose one of the greatest threats to biodiversity. Most analyses of the potential biological impacts have focused on changes in mean temperature, but changes in thermal variance may also impact native and invasive organisms, although differentially. We assessed the combined effects of the mean and the variance of temperature on the expression of heat shock protein (hsp90) in adults of the invasive fruit fly Drosophila melanogaster and the native Drosophila gaucha in Mediterranean habitats of central Chile. We observed that, under these experimental conditions, hsp90 mRNA expression was higher in the invasive species but absent in the native one. Apparently, the biogeographic origin and niche conservatisms are playing a role in the heat shock response of these species under different putative scenarios of climate change. We suggest that in order to develop more realistic predictions about the biological impact of climate change and biological invasions, one must consider the interactions between the mean and variance of climatic variables, as well as the evolutionary original conditions of the native and invasive species. PMID:27486407

  13. Ectotherms in Variable Thermal Landscapes: A Physiological Evaluation of the Invasive Potential of Fruit Flies Species.

    PubMed

    Boher, Francisca; Trefault, Nicole; Estay, Sergio A; Bozinovic, Francisco

    2016-01-01

    Climate change and biological invasions pose one of the greatest threats to biodiversity. Most analyses of the potential biological impacts have focused on changes in mean temperature, but changes in thermal variance may also impact native and invasive organisms, although differentially. We assessed the combined effects of the mean and the variance of temperature on the expression of heat shock protein (hsp90) in adults of the invasive fruit fly Drosophila melanogaster and the native Drosophila gaucha in Mediterranean habitats of central Chile. We observed that, under these experimental conditions, hsp90 mRNA expression was higher in the invasive species but absent in the native one. Apparently, the biogeographic origin and niche conservatisms are playing a role in the heat shock response of these species under different putative scenarios of climate change. We suggest that in order to develop more realistic predictions about the biological impact of climate change and biological invasions, one must consider the interactions between the mean and variance of climatic variables, as well as the evolutionary original conditions of the native and invasive species.

  14. Ectotherms in Variable Thermal Landscapes: A Physiological Evaluation of the Invasive Potential of Fruit Flies Species

    PubMed Central

    Boher, Francisca; Trefault, Nicole; Estay, Sergio A.; Bozinovic, Francisco

    2016-01-01

    Climate change and biological invasions pose one of the greatest threats to biodiversity. Most analyses of the potential biological impacts have focused on changes in mean temperature, but changes in thermal variance may also impact native and invasive organisms, although differentially. We assessed the combined effects of the mean and the variance of temperature on the expression of heat shock protein (hsp90) in adults of the invasive fruit fly Drosophila melanogaster and the native Drosophila gaucha in Mediterranean habitats of central Chile. We observed that, under these experimental conditions, hsp90 mRNA expression was higher in the invasive species but absent in the native one. Apparently, the biogeographic origin and niche conservatisms are playing a role in the heat shock response of these species under different putative scenarios of climate change. We suggest that in order to develop more realistic predictions about the biological impact of climate change and biological invasions, one must consider the interactions between the mean and variance of climatic variables, as well as the evolutionary original conditions of the native and invasive species. PMID:27486407

  15. Economic impacts of invasive species in forests: past, present, and future.

    PubMed

    Holmes, Thomas P; Aukema, Juliann E; Von Holle, Betsy; Liebhold, Andrew; Sills, Erin

    2009-04-01

    Biological invasions by nonnative species are a by-product of economic activities, with the vast majority of nonnative species introduced by trade and transport of products and people. Although most introduced species are relatively innocuous, a few species ultimately cause irreversible economic and ecological impacts, such as the chestnut blight that functionally eradicated the American chestnut across eastern North America. Assessments of the economic costs and losses induced by nonnative forest pests are required for policy development and need to adequately account for all of the economic impacts induced by rare, highly damaging pests. To date, countrywide economic evaluations of forest-invasive species have proceeded by multiplying a unit value (price) by a physical quantity (volume of forest products damaged) to arrive at aggregate estimates of economic impacts. This approach is inadequate for policy development because (1) it ignores the dynamic impacts of biological invasions on the evolution of prices, quantities, and market behavior, and (2) it fails to account for the loss in the economic value of nonmarket ecosystem services, such as landscape aesthetics, outdoor recreation, and the knowledge that healthy forest ecosystems exist. A review of the literature leads one to anticipate that the greatest economic impacts of invasive species in forests are due to the loss of nonmarket values. We proposed that new methods for evaluating aggregate economic damages from forest-invasive species need to be developed that quantify market and nonmarket impacts at microscales that are then extended using spatially explicit models to provide aggregate estimates of impacts. Finally, policies that shift the burden of economic impacts from taxpayers and forest landowners onto parties responsible for introducing or spreading invasives, whether through the imposition of tariffs on products suspected of imposing unacceptable risks on native forest ecosystems or by requiring

  16. Are Photosynthetic Characteristics and Energetic Cost Important Invasive Traits for Alien Sonneratia Species in South China?

    PubMed

    Li, Feng-Lan; Zan, Qi-Jie; Hu, Zheng-Yu; Shin, Paul-K S; Cheung, Siu-Gin; Wong, Yuk-Shan; Tam, Nora Fung-Yee; Lei, An-Ping

    2016-01-01

    A higher photosynthesis and lower energetic cost are recognized as important characteristics for invasive species, but whether these traits are also important for the ability of alien mangrove species to become invasive has seldom been reported. A microcosm study was conducted to compare the photosynthetic characteristics, energetic cost indices and other growth traits between two alien species (Sonneratia apetala and S. caseolaris) and four native mangrove species over four seasons in a subtropical mangrove nature reserve in Shenzhen, South China. The aim of the study was to evaluate the invasive potential of Sonneratia based on these physiological responses. The annual average net photosynthetic rate (Pn), stomatal conductance (Gs) and total carbon assimilation per unit leaf area (Atotal) of the two alien Sonneratia species were significantly higher than the values of the native mangroves. In contrast, the opposite results were obtained for the leaf construction cost (CC) per unit dry mass (CCM) and CC per unit area (CCA) values. The higher Atotal and lower CC values resulted in a 72% higher photosynthetic energy-use efficiency (PEUE) for Sonneratia compared to native mangroves, leading to a higher relative growth rate (RGR) of the biomass and height of Sonneratia with the respective values being 51% and 119% higher than those of the native species. Higher photosynthetic indices for Sonneratia compared to native species were found in all seasons except winter, whereas lower CC values were found in all four seasons. The present findings reveal that alien Sonneratia species may adapt well and become invasive in subtropical mangrove wetlands in Shenzhen due to their higher photosynthetic characteristics coupled with lower costs in energy use, leading to a higher PEUE. The comparison of these physiological responses between S. apetala and S. caseolaris reveal that the former species is more invasive than the latter one, thus requiring more attention in future.

  17. Are Photosynthetic Characteristics and Energetic Cost Important Invasive Traits for Alien Sonneratia Species in South China?

    PubMed Central

    Li, Feng-Lan; Zan, Qi-Jie; Hu, Zheng-Yu; Shin, Paul-K. S.; Cheung, Siu-Gin; Wong, Yuk-Shan; Tam, Nora Fung-Yee; Lei, An-Ping

    2016-01-01

    A higher photosynthesis and lower energetic cost are recognized as important characteristics for invasive species, but whether these traits are also important for the ability of alien mangrove species to become invasive has seldom been reported. A microcosm study was conducted to compare the photosynthetic characteristics, energetic cost indices and other growth traits between two alien species (Sonneratia apetala and S. caseolaris) and four native mangrove species over four seasons in a subtropical mangrove nature reserve in Shenzhen, South China. The aim of the study was to evaluate the invasive potential of Sonneratia based on these physiological responses. The annual average net photosynthetic rate (Pn), stomatal conductance (Gs) and total carbon assimilation per unit leaf area (Atotal) of the two alien Sonneratia species were significantly higher than the values of the native mangroves. In contrast, the opposite results were obtained for the leaf construction cost (CC) per unit dry mass (CCM) and CC per unit area (CCA) values. The higher Atotal and lower CC values resulted in a 72% higher photosynthetic energy-use efficiency (PEUE) for Sonneratia compared to native mangroves, leading to a higher relative growth rate (RGR) of the biomass and height of Sonneratia with the respective values being 51% and 119% higher than those of the native species. Higher photosynthetic indices for Sonneratia compared to native species were found in all seasons except winter, whereas lower CC values were found in all four seasons. The present findings reveal that alien Sonneratia species may adapt well and become invasive in subtropical mangrove wetlands in Shenzhen due to their higher photosynthetic characteristics coupled with lower costs in energy use, leading to a higher PEUE. The comparison of these physiological responses between S. apetala and S. caseolaris reveal that the former species is more invasive than the latter one, thus requiring more attention in future. PMID

  18. Mapping invasive species and spectral mixture relationships with neotropical woody formations in southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Amaral, Cibele H.; Roberts, Dar A.; Almeida, Teodoro I. R.; Souza Filho, Carlos R.

    2015-10-01

    Biological invasion substantially contributes to the increasing extinction rates of native vegetative species. The remote detection and mapping of invasive species is critical for environmental monitoring. This study aims to assess the performance of a Multiple Endmember Spectral Mixture Analysis (MESMA) applied to imaging spectroscopy data for mapping Dendrocalamus sp. (bamboo) and Pinus elliottii L. (slash pine), which are invasive plant species, in a Brazilian neotropical landscape within the tropical Brazilian savanna biome. The work also investigates the spectral mixture between these exotic species and the native woody formations, including woodland savanna, submontane and alluvial seasonal semideciduous forests (SSF). Visible to Shortwave Infrared (VSWIR) imaging spectroscopy data at one-meter spatial resolution were atmospherically corrected and subset into the different spectral ranges (VIS-NIR1: 530-919 nm; and NIR2-SWIR: 1141-2352 nm). The data were further normalized via continuum removal (CR). Multiple endmember selection methods, including Interactive Endmember Selection (IES), Endmember average root mean square error (EAR), Minimum average spectral angle (MASA) and Count-based (CoB) (collectively called EMC), were employed to create endmember libraries for the targeted vegetation classes. The performance of the MESMA was assessed at the pixel and crown scales. Statistically significant differences (α = 0.05) were observed between overall accuracies that were obtained at various spectral ranges. The infrared region (IR) was critical for detecting the vegetation classes using spectral data. The invasive species endmembers exhibited spectral patterns in the IR that were not observed in the native formations. Bamboo was characterized as having a high green vegetation (GV) fraction, lower non-photosynthetic vegetation (NPV) and a low shade fraction, while pine exhibited higher NPV and shade fractions. The invasive species showed a statistically

  19. Structural complexity of macroalgae influences epifaunal assemblages associated with native and invasive species.

    PubMed

    Veiga, Puri; Rubal, Marcos; Sousa-Pinto, Isabel

    2014-10-01

    Habitat structure is a primary factor determining the organism distribution. Here, two native and one invasive macroalgal species, apparently different in morphology, were sampled to examine the effects of habitat complexity on the abundance (N), taxon richness (S) and structure of their associated epifaunal assemblages by means of univariate and multivariate techniques. Dry weight and fractal measures were used as proxies of habitat quantity and habitat architecture respectively. Results revealed significant differences in the complexity and in N, S and the structure of epifaunal assemblages among macroalgae and significant correlations between complexity and epifauna. Results suggested that, beside the effect of habitat quantity, the habitat architecture also seems to play a significant role in shaping epifaunal assemblages. Complexity of the studied invasive macroalga significantly differed from that of native species and hosted also different assemblages. Therefore, our findings suggest that invasive macroalgae, if structurally different from native species, induce changes in the associated epifauna.

  20. Managing invasive species in the presence of endogenous technological change with uncertainty.

    PubMed

    Kim, C S; Schaible, Glenn D; Lewandrowski, Jan; Vasavada, Utpal

    2010-02-01

    This research incorporates the development and adoption of an induced technology under uncertainty into a conceptual dynamic model to more broadly examine efficient policies for mitigating invasive species infestations. We find that under optimal policy, marginal costs of adopting conventional control measures are equal to the sum of the marginal benefits from development and adoption of new technology, as well as the use of conventional control measures. This result implies that a resource allocation designed for controlling invasive species is not adequate when an induced technology is not considered. Our results also reveal that the shadow values associated with the probabilities of developing and then adopting an induced technology increase as the shadow values associated with the stock of an invasive species population increase. PMID:19919554

  1. Filling in the gaps: Modelling native species richness and invasions using spatially incomplete data

    USGS Publications Warehouse

    Jarnevich, C.S.; Stohlgren, T.J.; Barnett, D.; Kartesz, J.

    2006-01-01

    Detailed knowledge of patterns of native species richness, an important component of biodiversity, and non-native species invasions is often lacking even though this knowledge is essential to conservation efforts. However, we cannot afford to wait for complete information on the distribution and abundance of native and harmful invasive species. Using information from counties well surveyed for plants across the USA, we developed models to fill data gaps in poorly surveyed areas by estimating the density (number of species km -2) of native and non-native plant species. Here, we show that native plant species density is non-random, predictable, and is the best predictor of non-native plant species density. We found that eastern agricultural sites and coastal areas are among the most invaded in terms of non-native plant species densities, and that the central USA appears to have the greatest ratio of non-native to native species. These large-scale models could also be applied to smaller spatial scales or other taxa to set priorities for conservation and invasion mitigation, prevention, and control efforts. ?? 2006 The Authors.

  2. Invasive species: an increasing threat to marine ecosystems under climate change?

    NASA Astrophysics Data System (ADS)

    Artioli, Yuri; Galienne, Chris; Holt, Jason; Wakelin, Sarah; Butenschön, Momme; Schrum, Corinna; Daewel, Ute; Pushpadas, Dhania; Cannaby, Heather; Salihoglu, Baris; Zavatarelli, Marco; Clementi, Emanuela; Olenin, Sergej; Allen, Icarus

    2013-04-01

    Planktonic Non-Indigenous Species (NIS) are a potential threat to marine ecosystems: a successful invasion of such organisms can alter significantly the ecosystem structure with shift in species composition that can affect different levels of the trophic network and also with local extinction of native species in the more extreme cases. Such changes will also impact some ecosystem functions like primary and secondary production or nutrient cycling, and services, like fishery, aquaculture or carbon sequestration. Understanding how climate change influences the susceptibility of a marine ecosystem to invasion is challenging as the success and the impact of an invasion depend on many different factors all tightly interconnected (e.g. time of the invasion, location, state of the ecosystem…). Here we present DivERSEM, a new version of the biogeochemical model ERSEM modified in order to account for phytoplankton diversity. With such a model, we are able to simulate invasion from phytoplankton NIS, to assess the likelihood of success of such an invasion and to estimate the potential impact on ecosystem structure, using indicator like the Biopollution index. In the MEECE project (www.meece.eu), the model has been coupled to a 1D water column model (GOTM) in two different climate scenarios (present day and the IPCC SRES A1B scenario for 2100) in 4 different European shelf seas (North Sea, Baltic Sea, Black Sea and Adriatic Sea). The model has been forced with atmospheric data coming from the IPSL climate model, and nutrient concentration extracted from a set of 3D biogeochemical models running under the same climate scenario. The response of the ecosystem susceptibility to invasion to climate change has been analysed comparing the successfulness of invasions in the two time slices and its impact on community structure and ecosystem functions. At the same time, the comparison among the different basins allowed to highlight some of the characteristics that make the

  3. Predicting invasive species impacts: a community module functional response approach reveals context dependencies.

    PubMed

    Paterson, Rachel A; Dick, Jaimie T A; Pritchard, Daniel W; Ennis, Marilyn; Hatcher, Melanie J; Dunn, Alison M

    2015-03-01

    Predatory functional responses play integral roles in predator-prey dynamics, and their assessment promises greater understanding and prediction of the predatory impacts of invasive species. Other interspecific interactions, however, such as parasitism and higher-order predation, have the potential to modify predator-prey interactions and thus the predictive capability of the comparative functional response approach. We used a four-species community module (higher-order predator; focal native or invasive predators; parasites of focal predators; native prey) to compare the predatory functional responses of native Gammarus duebeni celticus and invasive Gammarus pulex amphipods towards three invertebrate prey species (Asellus aquaticus, Simulium spp., Baetis rhodani), thus, quantifying the context dependencies of parasitism and a higher-order fish predator on these functional responses. Our functional response experiments demonstrated that the invasive amphipod had a higher predatory impact (lower handling time) on two of three prey species, which reflects patterns of impact observed in the field. The community module also revealed that parasitism had context-dependent influences, for one prey species, with the potential to further reduce the predatory impact of the invasive amphipod or increase the predatory impact of the native amphipod in the presence of a higher-order fish predator. Partial consumption of prey was similar for both predators and occurred increasingly in the order A. aquaticus, Simulium spp. and B. rhodani. This was associated with increasing prey densities, but showed no context dependencies with parasitism or higher-order fish predator. This study supports the applicability of comparative functional responses as a tool to predict and assess invasive species impacts incorporating multiple context dependencies.

  4. Predicting invasive species impacts: a community module functional response approach reveals context dependencies.

    PubMed

    Paterson, Rachel A; Dick, Jaimie T A; Pritchard, Daniel W; Ennis, Marilyn; Hatcher, Melanie J; Dunn, Alison M

    2015-03-01

    Predatory functional responses play integral roles in predator-prey dynamics, and their assessment promises greater understanding and prediction of the predatory impacts of invasive species. Other interspecific interactions, however, such as parasitism and higher-order predation, have the potential to modify predator-prey interactions and thus the predictive capability of the comparative functional response approach. We used a four-species community module (higher-order predator; focal native or invasive predators; parasites of focal predators; native prey) to compare the predatory functional responses of native Gammarus duebeni celticus and invasive Gammarus pulex amphipods towards three invertebrate prey species (Asellus aquaticus, Simulium spp., Baetis rhodani), thus, quantifying the context dependencies of parasitism and a higher-order fish predator on these functional responses. Our functional response experiments demonstrated that the invasive amphipod had a higher predatory impact (lower handling time) on two of three prey species, which reflects patterns of impact observed in the field. The community module also revealed that parasitism had context-dependent influences, for one prey species, with the potential to further reduce the predatory impact of the invasive amphipod or increase the predatory impact of the native amphipod in the presence of a higher-order fish predator. Partial consumption of prey was similar for both predators and occurred increasingly in the order A. aquaticus, Simulium spp. and B. rhodani. This was associated with increasing prey densities, but showed no context dependencies with parasitism or higher-order fish predator. This study supports the applicability of comparative functional responses as a tool to predict and assess invasive species impacts incorporating multiple context dependencies. PMID:25265905

  5. Predicting invasive species impacts: a community module functional response approach reveals context dependencies

    PubMed Central

    Paterson, Rachel A; Dick, Jaimie T A; Pritchard, Daniel W; Ennis, Marilyn; Hatcher, Melanie J; Dunn, Alison M

    2015-01-01

    Summary Predatory functional responses play integral roles in predator–prey dynamics, and their assessment promises greater understanding and prediction of the predatory impacts of invasive species. Other interspecific interactions, however, such as parasitism and higher-order predation, have the potential to modify predator–prey interactions and thus the predictive capability of the comparative functional response approach. We used a four-species community module (higher-order predator; focal native or invasive predators; parasites of focal predators; native prey) to compare the predatory functional responses of native Gammarus duebeni celticus and invasive Gammarus pulex amphipods towards three invertebrate prey species (Asellus aquaticus, Simulium spp., Baetis rhodani), thus, quantifying the context dependencies of parasitism and a higher-order fish predator on these functional responses. Our functional response experiments demonstrated that the invasive amphipod had a higher predatory impact (lower handling time) on two of three prey species, which reflects patterns of impact observed in the field. The community module also revealed that parasitism had context-dependent influences, for one prey species, with the potential to further reduce the predatory impact of the invasive amphipod or increase the predatory impact of the native amphipod in the presence of a higher-order fish predator. Partial consumption of prey was similar for both predators and occurred increasingly in the order A. aquaticus, Simulium spp. and B. rhodani. This was associated with increasing prey densities, but showed no context dependencies with parasitism or higher-order fish predator. This study supports the applicability of comparative functional responses as a tool to predict and assess invasive species impacts incorporating multiple context dependencies. PMID:25265905

  6. Native Macrophyte Density and Richness Affect the Invasiveness of a Tropical Poaceae Species

    PubMed Central

    Michelan, Thaisa S.; Thomaz, Sidinei M.; Bini, Luis M.

    2013-01-01

    The role of the native species richness and density in ecosystem invasibility is a matter of concern for both ecologists and managers. We tested the hypothesis that the invasiveness of Urochloa arrecta (non-native in the Neotropics) is negatively affected by the species richness and abundance of native aquatic macrophytes in freshwater ecosystems. We first created four levels of macrophyte richness in a greenhouse (richness experiment), and we then manipulated the densities of the same native species in a second experiment (density experiment). When the native macrophytes were adults, fragments of U. arrecta were added, and their growth was assessed. Our results from the richness experiment corroborated the hypothesis of a negative relationship between the native species richness and the growth of U. arrecta, as measured by sprout length and root biomass. However, the resistance to invasion was not attributed to the presence of a particular native species with a greater competitive ability. In the density experiment, U. arrecta growth decreased significantly with an increased density of all five of the native species. Density strongly affected the performance of the Poaceae in a negative manner, suggesting that patches that are densely colonized by native macrophytes and less subject to disturbances will be more resistant to invasion than those that are poorly colonized and more commonly subjected to disturbances. Our density experiment also showed that some species exhibit a higher competitive ability than others (sampling effect). Although native richness and abundance clearly limit the colonization and establishment of U. arrecta, these factors cannot completely prevent the invasion of aquatic ecosystems by this Poaceae species. PMID:23536902

  7. Native macrophyte density and richness affect the invasiveness of a tropical poaceae species.

    PubMed

    Michelan, Thaisa S; Thomaz, Sidinei M; Bini, Luis M

    2013-01-01

    The role of the native species richness and density in ecosystem invasibility is a matter of concern for both ecologists and managers. We tested the hypothesis that the invasiveness of Urochloa arrecta (non-native in the Neotropics) is negatively affected by the species richness and abundance of native aquatic macrophytes in freshwater ecosystems. We first created four levels of macrophyte richness in a greenhouse (richness experiment), and we then manipulated the densities of the same native species in a second experiment (density experiment). When the native macrophytes were adults, fragments of U. arrecta were added, and their growth was assessed. Our results from the richness experiment corroborated the hypothesis of a negative relationship between the native species richness and the growth of U. arrecta, as measured by sprout length and root biomass. However, the resistance to invasion was not attributed to the presence of a particular native species with a greater competitive ability. In the density experiment, U. arrecta growth decreased significantly with an increased density of all five of the native species. Density strongly affected the performance of the Poaceae in a negative manner, suggesting that patches that are densely colonized by native macrophytes and less subject to disturbances will be more resistant to invasion than those that are poorly colonized and more commonly subjected to disturbances. Our density experiment also showed that some species exhibit a higher competitive ability than others (sampling effect). Although native richness and abundance clearly limit the colonization and establishment of U. arrecta, these factors cannot completely prevent the invasion of aquatic ecosystems by this Poaceae species. PMID:23536902

  8. Invasive species triggers a massive loss of ecosystem services through a trophic cascade.

    PubMed

    Walsh, Jake R; Carpenter, Stephen R; Vander Zanden, M Jake

    2016-04-12

    Despite growing recognition of the importance of ecosystem services and the economic and ecological harm caused by invasive species, linkages between invasions, changes in ecosystem functioning, and in turn, provisioning of ecosystem services remain poorly documented and poorly understood. We evaluate the economic impacts of an invasion that cascaded through a food web to cause substantial declines in water clarity, a valued ecosystem service. The predatory zooplankton, the spiny water flea (Bythotrephes longimanus), invaded the Laurentian Great Lakes in the 1980s and has subsequently undergone secondary spread to inland lakes, including Lake Mendota (Wisconsin), in 2009. In Lake Mendota, Bythotrephes has reached unparalleled densities compared with in other lakes, decreasing biomass of the grazer Daphnia pulicaria and causing a decline in water clarity of nearly 1 m. Time series modeling revealed that the loss in water clarity, valued at US$140 million (US$640 per household), could be reversed by a 71% reduction in phosphorus loading. A phosphorus reduction of this magnitude is estimated to cost between US$86.5 million and US$163 million (US$430-US$810 per household). Estimates of the economic effects of Great Lakes invasive species may increase considerably if cases of secondary invasions into inland lakes, such as Lake Mendota, are included. Furthermore, such extreme cases of economic damages call for increased investment in the prevention and control of invasive species to better maximize the economic benefits of such programs. Our results highlight the need to more fully incorporate ecosystem services into our analysis of invasive species impacts, management, and public policy.

  9. Invasive species triggers a massive loss of ecosystem services through a trophic cascade

    PubMed Central

    Walsh, Jake R.; Carpenter, Stephen R.; Vander Zanden, M. Jake

    2016-01-01

    Despite growing recognition of the importance of ecosystem services and the economic and ecological harm caused by invasive species, linkages between invasions, changes in ecosystem functioning, and in turn, provisioning of ecosystem services remain poorly documented and poorly understood. We evaluate the economic impacts of an invasion that cascaded through a food web to cause substantial declines in water clarity, a valued ecosystem service. The predatory zooplankton, the spiny water flea (Bythotrephes longimanus), invaded the Laurentian Great Lakes in the 1980s and has subsequently undergone secondary spread to inland lakes, including Lake Mendota (Wisconsin), in 2009. In Lake Mendota, Bythotrephes has reached unparalleled densities compared with in other lakes, decreasing biomass of the grazer Daphnia pulicaria and causing a decline in water clarity of nearly 1 m. Time series modeling revealed that the loss in water clarity, valued at US$140 million (US$640 per household), could be reversed by a 71% reduction in phosphorus loading. A phosphorus reduction of this magnitude is estimated to cost between US$86.5 million and US$163 million (US$430–US$810 per household). Estimates of the economic effects of Great Lakes invasive species may increase considerably if cases of secondary invasions into inland lakes, such as Lake Mendota, are included. Furthermore, such extreme cases of economic damages call for increased investment in the prevention and control of invasive species to better maximize the economic benefits of such programs. Our results highlight the need to more fully incorporate ecosystem services into our analysis of invasive species impacts, management, and public policy. PMID:27001838

  10. Invasive species triggers a massive loss of ecosystem services through a trophic cascade.

    PubMed

    Walsh, Jake R; Carpenter, Stephen R; Vander Zanden, M Jake

    2016-04-12

    Despite growing recognition of the importance of ecosystem services and the economic and ecological harm caused by invasive species, linkages between invasions, changes in ecosystem functioning, and in turn, provisioning of ecosystem services remain poorly documented and poorly understood. We evaluate the economic impacts of an invasion that cascaded through a food web to cause substantial declines in water clarity, a valued ecosystem service. The predatory zooplankton, the spiny water flea (Bythotrephes longimanus), invaded the Laurentian Great Lakes in the 1980s and has subsequently undergone secondary spread to inland lakes, including Lake Mendota (Wisconsin), in 2009. In Lake Mendota, Bythotrephes has reached unparalleled densities compared with in other lakes, decreasing biomass of the grazer Daphnia pulicaria and causing a decline in water clarity of nearly 1 m. Time series modeling revealed that the loss in water clarity, valued at US$140 million (US$640 per household), could be reversed by a 71% reduction in phosphorus loading. A phosphorus reduction of this magnitude is estimated to cost between US$86.5 million and US$163 million (US$430-US$810 per household). Estimates of the economic effects of Great Lakes invasive species may increase considerably if cases of secondary invasions into inland lakes, such as Lake Mendota, are included. Furthermore, such extreme cases of economic damages call for increased investment in the prevention and control of invasive species to better maximize the economic benefits of such programs. Our results highlight the need to more fully incorporate ecosystem services into our analysis of invasive species impacts, management, and public policy. PMID:27001838

  11. Range expansion and population dynamics of an invasive species: the Eurasian Collared-Dove (Streptopelia decaocto).

    PubMed

    Scheidt, Spencer N; Hurlbert, Allen H

    2014-01-01

    Invasive species offer ecologists the opportunity to study the factors governing species distributions and population growth. The Eurasian Collared-Dove (Streptopelia decaocto) serves as a model organism for invasive spread because of the wealth of abundance records and the recent development of the invasion. We tested whether a set of environmental variables were related to the carrying capacities and growth rates of individual populations by modeling the growth trajectories of individual populations of the Collared-Dove using Breeding Bird Survey (BBS) and Christmas Bird Count (CBC) data. Depending on the fit of our growth models, carrying capacity and growth rate parameters were extracted and modeled using historical, geographical, land cover and climatic predictors. Model averaging and individual variable importance weights were used to assess the strength of these predictors. The specific variables with the greatest support in our models differed between data sets, which may be the result of temporal and spatial differences between the BBS and CBC. However, our results indicate that both carrying capacity and population growth rates are related to developed land cover and temperature, while growth rates may also be influenced by dispersal patterns along the invasion front. Model averaged multivariate models explained 35-48% and 41-46% of the variation in carrying capacities and population growth rates, respectively. Our results suggest that widespread species invasions can be evaluated within a predictable population ecology framework. Land cover and climate both have important effects on population growth rates and carrying capacities of Collared-Dove populations. Efforts to model aspects of population growth of this invasive species were more successful than attempts to model static abundance patterns, pointing to a potentially fruitful avenue for the development of improved invasive distribution models.

  12. Lionfish, Pterois volitans Linnaeus 1758, the complete mitochondrial DNA of an invasive species.

    PubMed

    Del Río-Portilla, Miguel A; Vargas-Peralta, Carmen E; Machkour-M'Rabet, Salima; Hénaut, Yann; García-De-León, Francisco J

    2016-01-01

    The lionfish, Pterois volitans, native from the Indo-Pacific, has been found in Atlantic and Caribbean waters and is considered as an invasive species. Here we sequence its mitogenome (Genbank accession number KJ739816), which has a total length of 16,500 bp, and the arrangement consist of 13 protein-coding genes, 2 ribosomal RNA (rRNA) genes and 22 transfer RNA similar to other Pteroinae subfamily (family Scorpaenidae). This mitogenome will be useful for phylogenetic and population genetic studies of this invasive species.

  13. Lionfish, Pterois volitans Linnaeus 1758, the complete mitochondrial DNA of an invasive species.

    PubMed

    Del Río-Portilla, Miguel A; Vargas-Peralta, Carmen E; Machkour-M'Rabet, Salima; Hénaut, Yann; García-De-León, Francisco J

    2016-01-01

    The lionfish, Pterois volitans, native from the Indo-Pacific, has been found in Atlantic and Caribbean waters and is considered as an invasive species. Here we sequence its mitogenome (Genbank accession number KJ739816), which has a total length of 16,500 bp, and the arrangement consist of 13 protein-coding genes, 2 ribosomal RNA (rRNA) genes and 22 transfer RNA similar to other Pteroinae subfamily (family Scorpaenidae). This mitogenome will be useful for phylogenetic and population genetic studies of this invasive species. PMID:25187501

  14. In the Weeds: Idaho’s Invasive Species Laws and Biofuel Research and Development

    SciTech Connect

    Pope, April Lea

    2015-05-01

    Federal laws, policies, and programs that incentivize and mandate the development of biofuels have local effects on both Idaho’s environment and on research supporting biofuels. The passage of a new energy crop rule in Idaho, effective as of March 20, 2014, follows an increased interest in growing, possessing, and transporting energy crops comprised of invasive plant species that are regulated under Idaho’s Invasive Species Act. Idaho’s new energy crop rule is an example of how a state can take measures to protect against unintended consequences of federal laws, policies, and programs while also taking advantage of the benefits of such policies and programs.

  15. Mediterranean Species of Caulerpa Are Polyploid with Smaller Genomes in the Invasive Ones

    PubMed Central

    Varela-Álvarez, Elena; Gómez Garreta, Amelia; Rull Lluch, Jordi; Salvador Soler, Noemi; Serrao, Ester A.; Siguán, María Antonia Ribera

    2012-01-01

    Caulerpa species are marine green algae, which often act as invasive species with rapid clonal proliferation when growing outside their native biogeographical borders. Despite many publications on the genetics and ecology of Caulerpa species, their life history and ploidy levels are still to be resolved and are the subject of large controversy. While some authors claimed that the thallus found in nature has a haplodiplobiontic life cycle with heteromorphic alternation of generations, other authors claimed a diploid or haploid life cycle with only one generation involved. DAPI-staining with image analysis and microspectrophotometry were used to estimate relative nuclear DNA contents in three species of Caulerpa from the Mediterranean, at individual, population and species levels. Results show that ploidy levels and genome size vary in these three Caulerpa species, with a reduction in genome size for the invasive ones. Caulerpa species in the Mediterranean are polyploids in different life history phases; all sampled C. taxifolia and C. racemosa var. cylindracea were in haplophasic phase, but in C. prolifera, the native species, individuals were found in both diplophasic and haplophasic phases. Different levels of endopolyploidy were found in both C. prolifera and C. racemosa var. cylindracea. Life history is elucidated for the Mediterranean C. prolifera and it is hypothesized that haplophasic dominance in C. racemosa var. cylindracea and C. taxifolia is a beneficial trait for their invasive strategies. PMID:23110095

  16. Do traits of invasive species influence decomposition and soil respiration of disturbed ecosystems?

    NASA Astrophysics Data System (ADS)

    Wells, A. J.; Balster, N. J.

    2009-12-01

    Large-scale landscape disturbances typically alter the terrestrial carbon cycle leading to shifts in pools of soil carbon. Restoration of disturbed landscapes with prairie vegetation has thus been practiced with the intent of increasing carbon accrual in soils. However, since disturbed soils are prone to invasion by non-native invasive species, many ecological restorations have resulted in unexpected outcomes, which may be explained by differences in plant traits such as tissue quality and biomass allocation. Typically, the tissue of invasive species has lower C:N ratios relative to native species, and consequently, faster decomposition rates, which potentially can alter the balance in soil carbon. The primary objective of this research was to compare the effects of native prairie species versus non-native invasive species on the carbon cycling within a novel environment: a recently dewatered basin in southwestern Wisconsin following dam removal. We hypothesized that a higher invasive to native species ratio would result in faster litter decomposition and a higher rate of soil respiration. To test this hypothesis, we seeded newly exposed sediments with native prairie seeds in 2005, annually collected aboveground plant biomass (by species per plot), calculated decomposition rate of native and invasive litter (underneath both canopy types), and measured soil respiration during the growing season of 2009. After four years of seeding, the aboveground biomass of the native vegetation has increased significantly (p < 0.01) from 14.4 to 351 g m-2 while invasive species biomass has decreased from 459 to 296 g m-2. Senesced tissue from mixed native species had a higher C:N ratio, 27:1 (43% C: 1.6% N), than tissue from mixed invasive species, 24:1 (35% C: 1.5% N). However, after 7 months, we found that the rate of decomposition depended on both litter type and plant canopy type (p < 0.01); invasive plant tissue had a slightly faster decomposition rate than the native litter

  17. Keystone predators (eastern newts, Notophthalmus viridescens) reduce the impacts of an aquatic invasive species

    USGS Publications Warehouse

    Smith, Kimberly G.

    2006-01-01

    Predation, competition, and their interaction are known to be important factors that influence the structure of ecological communities. In particular, in those cases where a competitive hierarchy exists among prey species, the presence of certain keystone predators can result in enhanced diversity in the prey community. However, little is known regarding the influence of keystone predator presence on invaded prey communities. Given the widespread occurrence of invasive species and substantial concern regarding their ecological impacts, studies on this topic are needed. In this study I used naturalistic replications of an experimental tadpole assemblage to assess the influence of predatory eastern newts, Notophthalmus viridescens, on the outcome of interspecific competition among native and nonindigenous tadpoles. When newts were absent, the presence of the tadpoles of one invasive species, the Cuban treefrog, Osteopilus septentrionalis, resulted in decreased survival and growth rate of the dominant native species, Bufo terrestris, and dominance of the tadpole assemblage by O. septentrionalis. However, the presence of one adult newt generally reduced or eliminated the negative impacts of O. septentrionalis tadpoles, resulting in comparable survival and performance of native species in invaded and noninvaded treatments. Differential mortality among the tadpole species suggests that newts preyed selectively on O. septentrionalis tadpoles, supporting the hypothesis that newts acted as keystone predators in the invaded assemblage. The presence of nonindigenous larval cane toads, Bufo marinus, did not significantly affect native species, and this species was not negatively affected by the presence of newts. Collectively, these results suggest that eastern newts significantly modified the competitive hierarchy of the invaded tadpole assemblage and reduced the impacts of a competitively superior invasive species. If general, these results suggest that the presence of

  18. Keystone predators (eastern newts, Notophthalmus viridescens) reduce the impacts of an aquatic invasive species.

    PubMed

    Smith, Kevin G

    2006-06-01

    Predation, competition, and their interaction are known to be important factors that influence the structure of ecological communities. In particular, in those cases where a competitive hierarchy exists among prey species, the presence of certain keystone predators can result in enhanced diversity in the prey community. However, little is known regarding the influence of keystone predator presence on invaded prey communities. Given the widespread occurrence of invasive species and substantial concern regarding their ecological impacts, studies on this topic are needed. In this study I used naturalistic replications of an experimental tadpole assemblage to assess the influence of predatory eastern newts, Notophthalmus viridescens, on the outcome of interspecific competition among native and nonindigenous tadpoles. When newts were absent, the presence of the tadpoles of one invasive species, the Cuban treefrog, Osteopilus septentrionalis, resulted in decreased survival and growth rate of the dominant native species, Bufo terrestris, and dominance of the tadpole assemblage by O. septentrionalis. However, the presence of one adult newt generally reduced or eliminated the negative impacts of O. septentrionalis tadpoles, resulting in comparable survival and performance of native species in invaded and noninvaded treatments. Differential mortality among the tadpole species suggests that newts preyed selectively on O. septentrionalis tadpoles, supporting the hypothesis that newts acted as keystone predators in the invaded assemblage. The presence of nonindigenous larval cane toads, Bufo marinus, did not significantly affect native species, and this species was not negatively affected by the presence of newts. Collectively, these results suggest that eastern newts significantly modified the competitive hierarchy of the invaded tadpole assemblage and reduced the impacts of a competitively superior invasive species. If general, these results suggest that the presence of

  19. Neonatal invasive candidiasis in Tunisian hospital: incidence, risk factors, distribution of species and antifungal susceptibility.

    PubMed

    Ben Abdeljelil, J; Saghrouni, F; Nouri, S; Geith, S; Khammari, I; Fathallah, A; Sboui, H; Ben Saïd, M

    2012-11-01

    The aim of our study was to assess epidemiological features of neonatal invasive candidiasis in Farhat Hached hospital of Sousse, Tunisia, including incidence, risk factors, mortality, species distribution and antifungal susceptibility. Laboratory data from 1995 to 2010 and medical records of 127 invasive candidiasis cases were reviewed. We tested the susceptibility of 100 Candida sp isolates by using ATB fungus(®) 3 and to fluconazole by using E-test(®) strips. A total of 252 cases of neonatal invasive candidiasis occurred over the study period. The incidence increased 1.8-fold from 1995 to 2006 and decreased fourfold from 2007 to 2010. Candida albicans was the predominant species up to 2006 and a shift in the species spectrum was observed with increase of the non-albicans species mainly C. parapsilosis. The agreement between the ATB Fungus(®) and the E-test(®) for determining fluconazole susceptibility was high. All tested isolates were susceptible to fluconazole, flucytosine, amphotéricine B and voriconazole and the itraconazole resistance rate was 5%. The mortality rate was 63%. The invasive candidiasis incidence increased from 1995 to 2006 and decreased from 2007 to 2010. The spectrum of Candida species and the lack of fluconazole-resistant strains argue for the usefulness of fluconazole as an empiric treatment.

  20. Petrified Forest National Park Invasive Plant Species Survey and Mapping; 2002-2005

    USGS Publications Warehouse

    Thomas, Kathryn A.; Hunt, Randall; Arundel, Terry R.; Guertin, P.

    2009-01-01

    We conducted a survey for invasive nonnative plant species at Petrified Forest National Park from 2002 through 2005. The survey employed a unique sampling design consisting of a grid of consecutive one-hectare cells as the sampling units. Our use of predetermined sampling units allowed all observations to be referenced to a fixed area with geographic coordinates that easily transferred to a geographic information system. Our field team surveyed 2,730 sampling units in three select areas for at least 1 year and 879 sampling units for 4 years. During this period we identified 40 different invasive plant species; more than half the invasive plants (22 species) were annual forbs and grasses. Four invasive plant species occurred in 25 percent or more of all sampling units observed in one or more years: Bromus tectorum, Erodium cicutarium, Salsola tragus, and Sisymbrium altissimum. Salsola tragus was the most abundant species in all years and occurred in more than 55 percent of all sampling units surveyed each year.

  1. Invasive species management restores a plant-pollinator mutualism in Hawaii

    USGS Publications Warehouse

    Hanna, Cause; Foote, David; Kremen, Claire

    2013-01-01

    1.The management and removal of invasive species may give rise to unanticipated changes in plant–pollinator mutualisms because they can alter the composition and functioning of plant–pollinator interactions in a variety of ways. To utilize a functional approach for invasive species management, we examined the restoration of plant–pollinator mutualisms following the large-scale removal of an invasive nectar thief and arthropod predator, Vespula pensylvanica. 2.We reduced V. pensylvanica populations in large plots managed over multiple years to examine the response of plant–pollinator mutualisms and the fruit production of a functionally important endemic Hawaiian tree species, Metrosideros polymorpha. To integrate knowledge of the invader's behaviour and the plant's mating system, we determined the efficacy of V. pensylvanica as a pollinator of M. polymorpha and quantified the dependence of M. polymorpha on animal pollination (e.g. level of self-compatibility and pollen limitation). 3.The reduction of V. pensylvanica in managed sites, when compared to unmanaged sites, resulted in a significant increase in the visitation rates of effective bee pollinators (e.g. introduced Apis mellifera and native Hylaeus spp.) and in the fruit production of M. polymorpha. 4.Apis mellifera, following the management of V. pensylvanica, appears to be acting as a substitute pollinator for M. polymorpha, replacing extinct or threatened bird and bee species in our study system. 5.Synthesis and applications. Fruit production of the native M. polymorpha was increased after management of the invasive pollinator predator V. pensylvanica; however, the main pollinators were no longer native but introduced. This research thus demonstrates the diverse impacts of introduced species on ecological function and the ambiguous role they play in restoration. We recommend incorporating ecological function and context into invasive species management as this approach may enable conservation

  2. The Physical and Biochemical Alteration of the Platte River by Phragmites australis, an Invasive Species of Wetland Grass

    NASA Astrophysics Data System (ADS)

    Mohr, R. C.; Krueger, R.; Triplett, L.; Michal, T.; Kettenring, K. M.

    2014-12-01

    Invasive species can have a profound impact on the ecosystems to which they are introduced. Beginning in 2003, the Platte River, Nebraska, USA, was invaded by an aggressive species of wetland grass, Phragmites australis. The invasion by Phragmites, in combination with river flow reductions due to agricultural irrigation, has drastically altered the character and morphology of the river. Once a braided and largely unvegetated river, the Platte had become densely colonized with vegetation by 2010. We measured some physical and biochemical characteristics of Platte River sediments to infer how that vegetation has changed the system. Specifically, we measured particle size, which is an indicator of flow velocity, and biogenic silica (BSi), which is a critical source of silicon for some aquatic organisms. Sediment was collected from areas of the riverbed that are unvegetated, and from areas that are occupied by Phragmites or native vegetation. Particle size was measured using a laser diffractometer to determine how much fine particle deposition was occurring. Biogenic silica (BSi) concentrations were measured using timed NaOH digestions and inductively coupled plasma mass spectrometry (ICP-MS). Our results indicate that stands of Phragmites in the Platte River cause more deposition of finer silt-sized particles than other parts of the river that are unvegetated or are occupied by native vegetation. Also, Phragmites increased the sequestration of BSi in the river sediments. These changes to the Platte reverberate beyond the river itself; by sequestering silica in sediments, Phragmites could be diminishing the supply of silica to estuaries and coastal oceans. Hypothesizing that the silica content of the Platte's water had been reduced by the arrival of Phragmites, we measured dissolved (DSi) and biogenic silica (BSi) concentrations of Platte water using ICP-MS to compare to existing data from the 1990s.

  3. Lack of sex-specific movement patterns in an alien species at its invasion front - consequences for invasion speed.

    PubMed

    Herfindal, Ivar; Melis, Claudia; Åhlén, Per-Arne; Dahl, Fredrik

    2016-08-01

    Efficient targeting of actions to reduce the spread of invasive alien species relies on understanding the spatial, temporal, and individual variation of movement, in particular related to dispersal. Such patterns may differ between individuals at the invasion front compared to individuals in established and dense populations due to differences in environmental and ecological conditions such as abundance of conspecifics or sex-specific dispersal affecting the encounter rate of potential mates. We assessed seasonal and diurnal variation in movement pattern (step length and turning angle) of adult male and female raccoon dog at their invasion front in northern Sweden using data from Global Positioning System (GPS)-marked adult individuals and assessed whether male and female raccoon dog differed in their movement behavior. There were few consistent sex differences in movement. The rate of dispersal was rather similar over the months, suggesting that both male and female raccoon dog disperse during most of the year, but with higher speed during spring and summer. There were diurnal movement patterns in both sexes with more directional and faster movement during the dark hours. However, the short summer nights may limit such movement patterns, and long-distance displacement was best explained by fine-scale movement patterns from 18:00 to 05:00, rather than by movement patterns only from twilight and night. Simulation of dispersing raccoon dogs suggested a higher frequency of male-female encounters that were further away from the source population for the empirical data compared to a scenario with sex differences in movement pattern. The lack of sex differences in movement pattern at the invasion front results in an increased likelihood for reproductive events far from the source population. Animals outside the source population should be considered potential reproducing individuals, and a high effort to capture such individuals is needed throughout the year to prevent

  4. Using Environmental DNA for Invasive Species Surveillance and Monitoring.

    PubMed

    Mahon, Andrew R; Jerde, Christopher L

    2016-01-01

    The method employed for environmental DNA (eDNA) surveillance for detection and monitoring of rare species in aquatic systems has evolved dramatically since its first large-scale applications. Both active (targeted) and passive (total diversity) surveillance methods provide helpful information for management groups, but each has a suite of techniques that necessitate proper equipment training and use. The protocols described in this chapter represent some of the latest iterations in eDNA surveillance being applied in aquatic and marine systems. PMID:27460374

  5. Existing and emerging high impact invasive species are characterized by higher functional responses than natives.

    PubMed

    Alexander, Mhairi E; Dick, Jaimie T A; Weyl, Olaf L F; Robinson, Tamara B; Richardson, David M

    2014-02-01

    Predicting ecological impacts of invasive species and identifying potentially damaging future invaders are research priorities. Since damage by invaders is characterized by their depletion of resources, comparisons of the 'functional response' (FR; resource uptake rate as a function of resource density) of invaders and natives might predict invader impact. We tested this by comparing FRs of the ecologically damaging 'world's worst' invasive fish, the largemouth bass (Micropterus salmoides), with a native equivalent, the Cape kurper (Sandelia capensis), and an emerging invader, the sharptooth catfish (Clarias gariepinus), with the native river goby (Glossogobius callidus), in South Africa, a global invasion hotspot. Using tadpoles (Hyperolius marmoratus) as prey, we found that the invaders consumed significantly more than natives. Attack rates at low prey densities within invader/native comparisons reflected similarities in predatory strategies; however, both invasive species displayed significantly higher Type II FRs than the native comparators. This was driven by significantly lower prey handling times by invaders, resulting in significantly higher maximum feeding rates. The higher FRs of these invaders are thus congruent with, and can predict, their impacts on native communities. Comparative FRs may be a rapid and reliable method for predicting ecological impacts of emerging and future invasive species.

  6. Existing and emerging high impact invasive species are characterized by higher functional responses than natives.

    PubMed

    Alexander, Mhairi E; Dick, Jaimie T A; Weyl, Olaf L F; Robinson, Tamara B; Richardson, David M

    2014-02-01

    Predicting ecological impacts of invasive species and identifying potentially damaging future invaders are research priorities. Since damage by invaders is characterized by their depletion of resources, comparisons of the 'functional response' (FR; resource uptake rate as a function of resource density) of invaders and natives might predict invader impact. We tested this by comparing FRs of the ecologically damaging 'world's worst' invasive fish, the largemouth bass (Micropterus salmoides), with a native equivalent, the Cape kurper (Sandelia capensis), and an emerging invader, the sharptooth catfish (Clarias gariepinus), with the native river goby (Glossogobius callidus), in South Africa, a global invasion hotspot. Using tadpoles (Hyperolius marmoratus) as prey, we found that the invaders consumed significantly more than natives. Attack rates at low prey densities within invader/native comparisons reflected similarities in predatory strategies; however, both invasive species displayed significantly higher Type II FRs than the native comparators. This was driven by significantly lower prey handling times by invaders, resulting in significantly higher maximum feeding rates. The higher FRs of these invaders are thus congruent with, and can predict, their impacts on native communities. Comparative FRs may be a rapid and reliable method for predicting ecological impacts of emerging and future invasive species. PMID:24522629

  7. Existing and emerging high impact invasive species are characterized by higher functional responses than natives

    PubMed Central

    Alexander, Mhairi E.; Dick, Jaimie T. A.; Weyl, Olaf L. F.; Robinson, Tamara B.; Richardson, David M.

    2014-01-01

    Predicting ecological impacts of invasive species and identifying potentially damaging future invaders are research priorities. Since damage by invaders is characterized by their depletion of resources, comparisons of the ‘functional response’ (FR; resource uptake rate as a function of resource density) of invaders and natives might predict invader impact. We tested this by comparing FRs of the ecologically damaging ‘world's worst’ invasive fish, the largemouth bass (Micropterus salmoides), with a native equivalent, the Cape kurper (Sandelia capensis), and an emerging invader, the sharptooth catfish (Clarias gariepinus), with the native river goby (Glossogobius callidus), in South Africa, a global invasion hotspot. Using tadpoles (Hyperolius marmoratus) as prey, we found that the invaders consumed significantly more than natives. Attack rates at low prey densities within invader/native comparisons reflected similarities in predatory strategies; however, both invasive species displayed significantly higher Type II FRs than the native comparators. This was driven by significantly lower prey handling times by invaders, resulting in significantly higher maximum feeding rates. The higher FRs of these invaders are thus congruent with, and can predict, their impacts on native communities. Comparative FRs may be a rapid and reliable method for predicting ecological impacts of emerging and future invasive species. PMID:24522629

  8. Comparable ecological dynamics underlie early cancer invasion and species dispersal, involving self-organizing processes

    PubMed Central

    Marco, Diana E.; Cannas, Sergio A.; Montemurro, Marcelo A.; Hu, Bo; Cheng, Shi-Yuan

    2010-01-01

    Occupancy of new habitats through dispersion is a central process in nature. In particular, long-distance dispersal is involved in the spread of species and epidemics, although it has not been previously related with cancer invasion, a process that involves cell spreading to tissues far away from the primary tumour. Using simulations and real data we show that the early spread of cancer cells is similar to the species individuals spread and we suggest that both processes are represented by a common spatio-temporal signature of long-distance dispersal and subsequent local proliferation. This signature is characterized by a particular fractal geometry of the boundaries of patches generated, and a power-law scaled, disrupted patch size distribution. In contrast, invasions involving only dispersal but not subsequent proliferation (“physiological invasions”) like trophoblast cells invasion during normal human placentation did not show the patch size power-law pattern. Our results are consistent under different temporal and spatial scales, and under different resolution levels of analysis. We conclude that the scaling properties are a hallmark and a direct result of long-distance dispersal and proliferation, and that they could reflect homologous ecological processes of population self-organization during cancer and species spread. Our results are significant for the detection of processes involving long-range dispersal and proliferation like cancer local invasion and metastasis, biological invasions and epidemics, and for the formulation of new cancer therapeutical approaches. PMID:18930739

  9. Estimating suitable environments for invasive plant species across large landscapes: A remote sensing strategy using Landsat 7 ETM+

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The key to reducing ecological and economic damage caused by invasive plant species is to locate and eradicate new invasions before they threaten native biodiversity and ecological processes. We used Landsat Enhanced Thematic Mapper Plus imagery to estimate suitable environments for four invasive pl...

  10. Effects of earthworm invasion on plant species richness in northern hardwood forests.

    PubMed

    Holdsworth, Andrew R; Frelich, Lee E; Reich, Peter B

    2007-08-01

    The invasion of non-native earthworms (Lumbricus spp.) into a small number of intensively studied stands of northern hardwood forest has been linked to declines in plant diversity and the local extirpation of one threatened species. It is unknown, however, whether these changes have occurred across larger regions of hardwood forests, which plant species are most vulnerable, or with which earthworm species such changes are associated most closely. To address these issues we conducted a regional survey in the Chippewa and Chequamegon national forests in Minnesota and Wisconsin (U.S.A.), respectively. We sampled earthworms, soils, and vegetation, examined deer browse in 20 mature, sugar-maple-dominated forest stands in each national forest, and analyzed the relationship between invasive earthworms and vascular plant species richness and composition. Invasion by Lumbricus was a strong indicator of reduced plant richness in both national forests. The mass of Lumbricus juveniles was significantly and negatively related to plant-species richness in both forests. In addition, Lumbricus was a significant factor affecting plant richness in a full model that included multiple variables. In the Chequamegon National Forest earthworm mass was associated with higher sedge cover and lower cover of sugar maple seedlings and several forb species. The trends were similar but not as pronounced in Chippewa, perhaps due to lower deer densities and different earthworm species composition. Our results provide regional evidence that invasion by Lumbricus species may be an important mechanism in reduced plant-species richness and changes in plant communities in mature forests dominated by sugar maples.

  11. Impact of an Alien Invasive Shrub on Ecology of Native and Alien Invasive Mosquito Species (Diptera: Culicidae).

    PubMed

    Muturi, Ephantus J; Gardner, Allison M; Bara, Jeffrey J

    2015-10-01

    We examined how leaf litter of alien invasive honeysuckle (Lonicera maackii Rupr.) either alone or in combination with leaf litter of one of two native tree species, sugar maple (Acer saccharum Marshall) and northern red oak (Quercus rubra L.), affects the ecology of Culex restuans Theobald, Ochlerotatus triseriatus Say, and Ochlerotatus japonicus Theobald. Experimental mesocosms containing single species litter or a mixture of honeysuckle and one of two native tree species litter were established at South Farms and Trelease Woods study sites in Urbana, IL, and examined for their effect on 1) oviposition site selection by the three mosquito species, and 2) adult production and body size of Oc. triseriatus and Oc. japonicus. There were no significant effects of study site and leaf treatment on Oc. japonicus and Oc. triseriatus oviposition preference and adult production. In contrast, significantly more Cx. restuans eggs rafts were collected at South Farms relative to Trelease Woods and in honeysuckle litter relative to native tree species litter. Significantly larger adult females of Oc. japonicus and Oc. triseriatus were collected at South Farms relative to Trelease Woods and in honeysuckle litter relative to native tree species litter. Combining honeysuckle litter with native tree species litter had additive effects on Cx. restuans oviposition preference and Oc. japonicus and Oc. triseriatus body size, with the exception of honeysuckle and northern red oak litter combination, which had antagonistic effects on Oc. triseriatus body size. We conclude that input of honeysuckle litter into container aquatic habitats may alter the life history traits of vector mosquito species. PMID:26314023

  12. Planting history and propagule pressure as predictors of invasion by woody species in a temperate region.

    PubMed

    Krivánek, Martin; Pysek, Petr; Jarosík, Vojtech

    2006-10-01

    We studied 28 alien tree species currently planted for forestry purposes in the Czech Republic to determine the probability of their escape from cultivation and naturalization. Indicators of propagule pressure (number of administrative units in which a species is planted and total planting area) and time of introduction into cultivation were used as explanatory variables in multiple regression models. Fourteen species escaped from cultivation, and 39% of the variance was explained by the number of planting units and the time of introduction, the latter being more important. Species introduced early had a higher probability of escape than those introduced later, with more than 95% probability of escape for those introduced before 1801 and <5% for those introduced after 1892. Probability of naturalization was more difficult to predict, and eight species were misclassified. A model omitting two species with the largest influence on the model yielded similar predictors of naturalization as did the probability of escape. Both phases of invasion therefore appear to be driven by planting and introduction history in a similar way. Our results demonstrate the importance of forestry for recruitment of invasive trees. Six alien forestry trees, classified as invasive in the Czech Republic, are currently reported in nature reserves. In addition, forestry authorities want to increase the diversity of alien species and planting area in the country.

  13. Acute Upper Thermal Limits of Three Aquatic Invasive Invertebrates: Hot Water Treatment to Prevent Upstream Transport of Invasive Species

    NASA Astrophysics Data System (ADS)

    Beyer, Jessica; Moy, Philip; de Stasio, Bart

    2011-01-01

    Transport of aquatic invasive species (AIS) by boats traveling up rivers and streams is an important mechanism of secondary spread of AIS into watersheds. Because physical barriers to AIS movement also prevent navigation, alternate methods for preventing spread are necessary while allowing upstream navigation. One promising approach is to lift boats over physical barriers and then use hot water immersion to kill AIS attached to the hull, motor, or fishing gear. However, few data have been published on the acute upper thermal tolerance limits of potential invaders treated in this manner. To test the potential effectiveness of this approach for a planned boat lift on the Fox River of northeastern WI, USA, acute upper thermal limits were determined for three AIS, adult zebra mussels ( Dreissena polymorpha), quagga mussels ( Dreissena rostriformis bugensis), and spiny water fleas ( Bythotrephes longimanus) from the local area employing temperatures from 32 to 54°C and immersion times from 1 to 20 min. Mortality was determined after immersion followed by a 20-min recovery period. Immersion at 43°C for at least 5 min was required to ensure 100% mortality for all three species, but due to variability in the response by Bythotrephes a 10 min immersion would be more reliable. Overall there were no significant differences between the three species in acute upper thermal limits. Heated water can be an efficient, environmentally sound, and cost effective method of controlling AIS potentially transferred by boats, and our results should have both specific and wide-ranging applications in the prevention of the spread of aquatic invasive species.

  14. Modelling invasion for a habitat generalist and a specialist plant species

    USGS Publications Warehouse

    Evangelista, P.H.; Kumar, S.; Stohlgren, T.J.; Jarnevich, C.S.; Crall, A.W.; Norman, J. B.; Barnett, D.T.

    2008-01-01

    Predicting suitable habitat and the potential distribution of invasive species is a high priority for resource managers and systems ecologists. Most models are designed to identify habitat characteristics that define the ecological niche of a species with little consideration to individual species' traits. We tested five commonly used modelling methods on two invasive plant species, the habitat generalist Bromus tectorum and habitat specialist Tamarix chinensis, to compare model performances, evaluate predictability, and relate results to distribution traits associated with each species. Most of the tested models performed similarly for each species; however, the generalist species proved to be more difficult to predict than the specialist species. The highest area under the receiver-operating characteristic curve values with independent validation data sets of B. tectorum and T. chinensis was 0.503 and 0.885, respectively. Similarly, a confusion matrix for B. tectorum had the highest overall accuracy of 55%, while the overall accuracy for T. chinensis was 85%. Models for the generalist species had varying performances, poor evaluations, and inconsistent results. This may be a result of a generalist's capability to persist in a wide range of environmental conditions that are not easily defined by the data, independent variables or model design. Models for the specialist species had consistently strong performances, high evaluations, and similar results among different model applications. This is likely a consequence of the specialist's requirement for explicit environmental resources and ecological barriers that are easily defined by predictive models. Although defining new invaders as generalist or specialist species can be challenging, model performances and evaluations may provide valuable information on a species' potential invasiveness.

  15. Improving invasive species management by integrating priorities and contributions of scientists and decision makers.

    PubMed

    N'Guyen, Anouk; Hirsch, Philipp E; Adrian-Kalchhauser, Irene; Burkhardt-Holm, Patricia

    2016-04-01

    Managing invasive species is a major challenge for society. In the case of newly established invaders, rapid action is key for a successful management. Here, we develop, describe and recommend a three-step transdisciplinary process (the "butterfly model") to rapidly initiate action for invasion management. In the framing of a case study, we present results from the first of these steps: assessing priorities and contributions of both scientists and decision makers. Both scientists and decision makers prioritise research on prevention. The available scientific knowledge contributions, however, are publications on impacts rather than prevention of the invasive species. The contribution of scientific knowledge does thus not reflect scientists' perception of what is essentially needed. We argue that a more objective assessment and transparent communication of not only decision makers' but also scientists' priorities is an essential basis for a successful cooperation. Our three-step model can help achieve objectivity via transdisciplinary communication.

  16. Screening Allelochemical-Resistant Species of the Alien Invasive Mikania micrantha for Restoration in South China

    PubMed Central

    Wu, Ai-Ping; Li, Zi-Li; He, Fei-Fei; Wang, Yan-Hong; Dong, Ming

    2015-01-01

    To screen allelochemical-resistant species of the alien invasive weed Mikania micrantha, we studied the allelopathic inhibition effects of the leaf aqueous extract (LAE) of Mikania on seed germination and seedling growth of the 26 species native or naturalized in the invaded region in South China. Seed germination was more strongly negatively affected by LAE than seedling growth. Responses of seed germination and seed growth to LAE differed differently among the target species. LAE more strongly negatively affected seed germination, but less strongly negatively affected seedling growth, in non-legume species than in legume species. LAE more strongly negatively affected seed germination and seedling growth in native species than naturalized exotic species. Therefore, naturalized exotic non-legume seedlings are more suitable than seeds of native legume species for restoration of Mikania-invaded habitats. PMID:26177031

  17. Non-invasive monitoring of inorganic species in water

    SciTech Connect

    Ahmad, S.R.; Iles, A.

    1995-12-31

    Results of the UV absorption properties of nitrate in waters and the effects of potential inorganic and organic species on these properties are presented. The attenuation of the water Raman and Rayleigh back-scattered light of appropriate wavelengths by nitrate distributed along the probed water column is correlated with nitrate concentration. An analysis of the results in terms of an extended source in the water column and integrated absorption (over a certain depth) is presented. The feasibility of using a differential absorption and scattering technique utilizing water Raman and Rayleigh back scattered signals without any optical contact wit cell walls is examined, so that the problem of cell fouling in conventional absorption measurements is avoided.

  18. Historic Mining and Agriculture as Indicators of Occurrence and Abundance of Widespread Invasive Plant Species

    PubMed Central

    Calinger, Kellen; Calhoon, Elisabeth; Chang, Hsiao-chi; Whitacre, James; Wenzel, John; Comita, Liza; Queenborough, Simon

    2015-01-01

    Anthropogenic disturbances often change ecological communities and provide opportunities for non-native species invasion. Understanding the impacts of disturbances on species invasion is therefore crucial for invasive species management. We used generalized linear mixed effects models to explore the influence of land-use history and distance to roads on the occurrence and abundance of two invasive plant species (Rosa multiflora and Berberis thunbergii) in a 900-ha deciduous forest in the eastern U.S.A., the Powdermill Nature Reserve. Although much of the reserve has been continuously forested since at least 1939, aerial photos revealed a variety of land-uses since then including agriculture, mining, logging, and development. By 2008, both R. multiflora and B. thunbergii were widespread throughout the reserve (occurring in 24% and 13% of 4417 10-m diameter regularly-placed vegetation plots, respectively) with occurrence and abundance of each varying significantly with land-use history. Rosa multiflora was more likely to occur in historically farmed, mined, logged or developed plots than in plots that remained forested, (log odds of 1.8 to 3.0); Berberis thunbergii was more likely to occur in plots with agricultural, mining, or logging history than in plots without disturbance (log odds of 1.4 to 2.1). Mining, logging, and agriculture increased the probability that R. multiflora had >10% cover while only past agriculture was related to cover of B. thunbergii. Proximity to roads was positively correlated with the occurrence of R. multiflora (a 0.26 increase in the log odds for every 1-m closer) but not B. thunbergii, and roads had no impact on the abundance of either species. Our results indicated that a wide variety of disturbances may aid the introduction of invasive species into new habitats, while high-impact disturbances such as agriculture and mining increase the likelihood of high abundance post-introduction. PMID:26046534

  19. Increase in quantity and quality of suitable areas for invasive species as climate changes.

    PubMed

    Bertelsmeier, Cleo; Luque, Gloria M; Courchamp, Franck

    2013-12-01

    As climatically suitable range projections become increasingly used to assess distributions of species, we recommend systematic assessments of the quality of habitat in addition to the classical binary classification of habitat. We devised a method to assess occurrence probability, captured by a climatic suitability index, through which we could determine variations in the quality of potential habitat. This relative risk assessment circumvents the use of an arbitrary suitability threshold. We illustrated our method with 2 case studies on invasive ant species. We estimated invasion potential of the destroyer ant (Monomorium destructor) and the European fire ant (Myrmica rubra) on a global scale currently and by 2080 with climate change. We found that 21.1% of the world's landmass currently has a suitable climate for the destroyer ant and 16% has a suitable climate for European fire ant. Our climatic suitability index showed that both ant species would benefit from climate change, but in different ways. The size of the potential distribution increased by 35.8% for the destroyer ant. Meanwhile, the total area of potential distribution remained the same for the European fire ant (>0.05%), but the level of climatic suitability within this range increased greatly and led to an improvement in habitat quality (i.e., of invasive species' establishment likelihood). Either through quantity or quality of suitable areas, both invasive ant species are likely to increase the extent of their invasion in the future, following global climate change. Our results show that species may increase their range if either more areas become suitable or if the available areas present improved suitability. Studies in which an arbitrary suitability threshold was used may overlook changes in area quality within climatically suitable areas and as a result reach incorrect predictions. Incremento de la Cantidad y Calidad de Áreas Idóneas para Especies Invasoras a Medida que Cambia el Clima.

  20. Historic Mining and Agriculture as Indicators of Occurrence and Abundance of Widespread Invasive Plant Species.

    PubMed

    Calinger, Kellen; Calhoon, Elisabeth; Chang, Hsiao-Chi; Whitacre, James; Wenzel, John; Comita, Liza; Queenborough, Simon

    2015-01-01

    Anthropogenic disturbances often change ecological communities and provide opportunities for non-native species invasion. Understanding the impacts of disturbances on species invasion is therefore crucial for invasive species management. We used generalized linear mixed effects models to explore the influence of land-use history and distance to roads on the occurrence and abundance of two invasive plant species (Rosa multiflora and Berberis thunbergii) in a 900-ha deciduous forest in the eastern U.S.A., the Powdermill Nature Reserve. Although much of the reserve has been continuously forested since at least 1939, aerial photos revealed a variety of land-uses since then including agriculture, mining, logging, and development. By 2008, both R. multiflora and B. thunbergii were widespread throughout the reserve (occurring in 24% and 13% of 4417 10-m diameter regularly-placed vegetation plots, respectively) with occurrence and abundance of each varying significantly with land-use history. Rosa multiflora was more likely to occur in historically farmed, mined, logged or developed plots than in plots that remained forested, (log odds of 1.8 to 3.0); Berberis thunbergii was more likely to occur in plots with agricultural, mining, or logging history than in plots without disturbance (log odds of 1.4 to 2.1). Mining, logging, and agriculture increased the probability that R. multiflora had >10% cover while only past agriculture was related to cover of B. thunbergii. Proximity to roads was positively correlated with the occurrence of R. multiflora (a 0.26 increase in the log odds for every 1-m closer) but not B. thunbergii, and roads had no impact on the abundance of either species. Our results indicated that a wide variety of disturbances may aid the introduction of invasive species into new habitats, while high-impact disturbances such as agriculture and mining increase the likelihood of high abundance post-introduction. PMID:26046534

  1. Increase in quantity and quality of suitable areas for invasive species as climate changes.

    PubMed

    Bertelsmeier, Cleo; Luque, Gloria M; Courchamp, Franck

    2013-12-01

    As climatically suitable range projections become increasingly used to assess distributions of species, we recommend systematic assessments of the quality of habitat in addition to the classical binary classification of habitat. We devised a method to assess occurrence probability, captured by a climatic suitability index, through which we could determine variations in the quality of potential habitat. This relative risk assessment circumvents the use of an arbitrary suitability threshold. We illustrated our method with 2 case studies on invasive ant species. We estimated invasion potential of the destroyer ant (Monomorium destructor) and the European fire ant (Myrmica rubra) on a global scale currently and by 2080 with climate change. We found that 21.1% of the world's landmass currently has a suitable climate for the destroyer ant and 16% has a suitable climate for European fire ant. Our climatic suitability index showed that both ant species would benefit from climate change, but in different ways. The size of the potential distribution increased by 35.8% for the destroyer ant. Meanwhile, the total area of potential distribution remained the same for the European fire ant (>0.05%), but the level of climatic suitability within this range increased greatly and led to an improvement in habitat quality (i.e., of invasive species' establishment likelihood). Either through quantity or quality of suitable areas, both invasive ant species are likely to increase the extent of their invasion in the future, following global climate change. Our results show that species may increase their range if either more areas become suitable or if the available areas present improved suitability. Studies in which an arbitrary suitability threshold was used may overlook changes in area quality within climatically suitable areas and as a result reach incorrect predictions. Incremento de la Cantidad y Calidad de Áreas Idóneas para Especies Invasoras a Medida que Cambia el Clima. PMID

  2. Historic Mining and Agriculture as Indicators of Occurrence and Abundance of Widespread Invasive Plant Species.

    PubMed

    Calinger, Kellen; Calhoon, Elisabeth; Chang, Hsiao-Chi; Whitacre, James; Wenzel, John; Comita, Liza; Queenborough, Simon

    2015-01-01

    Anthropogenic disturbances often change ecological communities and provide opportunities for non-native species invasion. Understanding the impacts of disturbances on species invasion is therefore crucial for invasive species management. We used generalized linear mixed effects models to explore the influence of land-use history and distance to roads on the occurrence and abundance of two invasive plant species (Rosa multiflora and Berberis thunbergii) in a 900-ha deciduous forest in the eastern U.S.A., the Powdermill Nature Reserve. Although much of the reserve has been continuously forested since at least 1939, aerial photos revealed a variety of land-uses since then including agriculture, mining, logging, and development. By 2008, both R. multiflora and B. thunbergii were widespread throughout the reserve (occurring in 24% and 13% of 4417 10-m diameter regularly-placed vegetation plots, respectively) with occurrence and abundance of each varying significantly with land-use history. Rosa multiflora was more likely to occur in historically farmed, mined, logged or developed plots than in plots that remained forested, (log odds of 1.8 to 3.0); Berberis thunbergii was more likely to occur in plots with agricultural, mining, or logging history than in plots without disturbance (log odds of 1.4 to 2.1). Mining, logging, and agriculture increased the probability that R. multiflora had >10% cover while only past agriculture was related to cover of B. thunbergii. Proximity to roads was positively correlated with the occurrence of R. multiflora (a 0.26 increase in the log odds for every 1-m closer) but not B. thunbergii, and roads had no impact on the abundance of either species. Our results indicated that a wide variety of disturbances may aid the introduction of invasive species into new habitats, while high-impact disturbances such as agriculture and mining increase the likelihood of high abundance post-introduction.

  3. Mapping Invasive Plant Species with a Combination of Field and Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Skowronek, S.; Feilhauer, H.; Van De Kerchove, R.; Ewald, M.; Aerts, R.; Somers, B.; Warrie, J.; Kempeneers, P.; Lenoir, J.; Honnay, O.; Asner, G. P.; Schmidtlein, S.; Hattab, T.; Rocchini, D.

    2015-12-01

    Advanced hyperspectral and LIDAR data offer a great potential to map and monitor invasive plant species and their impact on ecosystems. These species are often difficult to detect over large areas with traditional mapping approaches. One challenge is the combination of the remote sensing data with the field data for calibration and validation. Therefore, our goals were to (1) develop an approach that allows to efficiently map species invasions based on presence-only data of the target species and remote sensing data; and (2) use this approach to create distribution maps for invasive plant species in two study areas in western Europe, which offer the basis for further analysis of the impact of invasions and to infer possible management options. For this purpose, on the island of Sylt in Northern Germany, we collected vegetation data on 120 plots with a size of 3 m x 3 m with different cover fractions of two invasive plant species; the moss Campylopus introflexus and the shrub Rosa rugosa. In the forest of Compiègne in Northern France, we sampled a total of 50 plots with a size of 25 x 25 m, targeting the invasive tree Prunus serotina. In both study areas, independent validation datasets containing presence and absence points of the target species were collected. Airborne hyperspectral data (APEX), which were simultaneously acquired for both study areas in summer 2014, provided 285 spectral bands covering the visible, near infrared and short-wave infrared region with a pixel size of 1.8 and 3 m. First results showed that mapping using one-class classifiers is possible: For C. introflexus, AUC value was 0.89 and OAC 0.72, for R. rugosa., AUC was 0.93 and OAC 0.92. However, for both species, a few areas were mapped incorrectly. Possible explanations are the different appearances of the target species in different biotope types underrepresented in the calibration data, and a high cover of species with similar reflectance properties.

  4. Learning-by-catching: uncertain invasive-species populations and the value of information.

    PubMed

    D'Evelyn, Sean T; Tarui, Nori; Burnett, Kimberly; Roumasset, James A

    2008-12-01

    This paper develops a model of invasive species control when the species' population size is unknown. In the face of an uncertain population size, a resource manager's species-control efforts provide two potential benefits: (1) a direct benefit of possibly reducing the population of invasive species, and (2) an indirect benefit of information acquisition (due to learning about the population size, which reduces uncertainty). We provide a methodology that takes into account both of these benefits, and show how optimal management decisions are altered in the presence of the indirect benefit of learning. We then apply this methodology to the case of controlling the Brown Treesnake (Boiga irregularis) on the island of Saipan. We find that the indirect benefit--the value of information to reduce uncertainty--is likely to be quite large.

  5. Climate, invasive species and land use drive population dynamics of a cold-water specialist

    USGS Publications Warehouse

    Kovach, Ryan P.; Al-Chokhachy, Robert K.; Whited, Diane C.; Schmetterling, David A.; Dux, Andrew M; Muhlfeld, Clint C.

    2016-01-01

    Climate change is an additional stressor in a complex suite of threats facing freshwater biodiversity, particularly for cold-water fishes. Research addressing the consequences of climate change on cold-water fish has generally focused on temperature limits defining spatial distributions, largely ignoring how climatic variation influences population dynamics in the context of other existing stressors.We used long-term data from 92 populations of bull trout Salvelinus confluentus – one of North America's most cold-adapted fishes – to quantify additive and interactive effects of climate, invasive species and land use on population dynamics (abundance, variability and growth rate).Populations were generally depressed, more variable and declining where spawning and rearing stream habitat was limited, invasive species and land use were prevalent and stream temperatures were highest. Increasing stream temperature acted additively and independently, whereas land use and invasive species had additive and interactive effects (i.e. the impact of one stressor depended on exposure to the other stressor).Most (58%–78%) of the explained variation in population dynamics was attributed to the presence of invasive species, differences in life history and management actions in foraging habitats in rivers, lakes and reservoirs. Although invasive fishes had strong negative effects on populations in foraging habitats, proactive control programmes appeared to effectively temper their negative impact.Synthesis and applications. Long-term demographic data emphasize that climate warming will exacerbate imperilment of cold-water specialists like bull trout, yet other stressors – especially invasive fishes – are immediate threats that can be addressed by proactive management actions. Therefore, climate-adaptation strategies for freshwater biodiversity should consider existing abiotic and biotic stressors, some of which provide potential and realized opportunity for conservation

  6. Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species.

    PubMed

    Stapley, Jessica; Santure, Anna W; Dennis, Stuart R

    2015-05-01

    Rapid adaptation of invasive species to novel habitats has puzzled evolutionary biologists for decades, especially as this often occurs in the face of limited genetic variability. Although some ecological traits common to invasive species have been identified, little is known about the possible genomic/genetic mechanisms that may underlie their success. A common scenario in many introductions is that small founder population sizes will often lead to reduced genetic diversity, but that invading populations experience large environmental perturbations, such as changes in habitat and environmental stress. Although sudden and intense stress is usually considered in a negative context, these perturbations may actually facilitate rapid adaptation by affecting genome structure, organization and function via interactions with transposable elements (TEs), especially in populations with low genetic diversity. Stress-induced changes in TE activity can alter gene action and can promote structural variation that may facilitate the rapid adaptation observed in new environments. We focus here on the adaptive potential of TEs in relation to invasive species and highlight their role as powerful mutational forces that can rapidly create genetic diversity. We hypothesize that activity of transposable elements can explain rapid adaptation despite low genetic variation (the genetic paradox of invasive species), and provide a framework under which this hypothesis can be tested using recently developed and emerging genomic technologies.

  7. Temporal and spatial distribution of an invasive thrips species Scirtothrips dorsalis (Thysanoptera: Thripidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dispersion of a new invasive thrips species, chilli thrips Scirtothrips dorsalis Hood, was studied on three hosts, i.e., cotton (Gossypium hirsutum L.), peanut (Arachis hypogeal L.) and pepper (Capsicum annum L.) in the greenhouse and under field conditions in Homestead, Florida. The study of horizo...

  8. Sampling design for early detection of aquatic invasive species in Great Lakes ports

    EPA Science Inventory

    We evaluated a pilot adaptive monitoring program for aquatic invasive species (AIS) early detection in Lake Superior. The monitoring program is designed to detect newly-introduced fishes, and encompasses the lake’s three major ports (Duluth-Superior, Sault Ste. Marie, Thund...

  9. Exploring Stakeholders' Attitudes and Beliefs regarding Behaviors that Prevent the Spread of Invasive Species

    ERIC Educational Resources Information Center

    Prinbeck, Gwenn; Lach, Denise; Chan, Samuel

    2011-01-01

    The Theory of Planned Behavior was used as a framework for investigating recreationists' attitudes, subjective norms, and behavioral control beliefs pertaining to behaviors that reduce the spread of invasive species. A series of focus groups comprised of gardeners, fishers, hunters, and boaters was convened in Oregon, USA. Findings indicate six…

  10. Underutilized Resources for Studying the Evolution of Invasive Species During Their Introduction, Establishment, and Lag Phases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The early phases of biological invasions are poorly understood. In particular, it is not known if and/or how much evolutionary change must take place for an introduced species to transition from established to expanding. In this paper, we highlight three disparate data sources that may provide ins...

  11. Developing strategies for aquatic invasive species early detection in the Great Lakes

    EPA Science Inventory

    As part of a webinar round-table discussion of invasive species and ballast water research, Dr. Trebitz will be giving a short overview of the research that she and co-PIs Jack Kelly, Joel Hoffman, and Greg Peterson are conducting in this area. Key findings from the 2005-2007 sam...

  12. Missing the Boat on Invasive Alien Species: A Review of Post-Secondary Curricula in Canada

    ERIC Educational Resources Information Center

    Smith, Andrea L.; Bazely, Dawn R.; Yan, Norman D.

    2011-01-01

    Invasive alien species (IAS) cause major environmental and economic damage worldwide, and also threaten human food security and health. The impacts of IAS are expected to rise with continued globalization, land use modification, and climate change. Developing effective strategies to deal with IAS requires a collaborative, interdisciplinary…

  13. Sampling design for aquatic invasive species early detection in Great Lakes ports

    EPA Science Inventory

    From 2006-2012, we evaluated a pilot aquatic invasive species (AIS) early detection monitoring program in Lake Superior that was designed to detect newly introduced fishes. We established survey protocols for three major ports (Duluth-Superior, Sault Ste. Marie, Thunder Bay) and ...

  14. Utilizing hyperspectral and hyperspatial remote sensing to track invasive species in BARC wetland ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wetland vegetation is a critical component to the function of and ecological services provided by wetland ecosystems. Two non-native invasive species threaten wetland ecosystems in the Mid Atlantic region, Phragmites australis (giant reed) and Lythrum salicaria (purple loosestrife). Hyperspectral ...

  15. Use of DNA barcodes to identify invasive armyworm Spodoptera species in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A critical component for sustaining adequate food production is the protection of local agriculture from invasive pest insects. Essential to this goal is the ability to accurately distinguish foreign from closely related domestic species, a process that has traditionally required identification of d...

  16. Early detection monitoring of aquatic invasive species: Measuring performance success in a Lake Superior pilot network

    EPA Science Inventory

    The Great Lakes Water Quality Agreement, Annex 6 calls for a U.S.-Canada, basin-wide aquatic invasive species early detection network by 2015. The objective of our research is to explore survey design strategies that can improve detection efficiency, and to develop performance me...

  17. [Biomorphological Features and Microevolution of the Invasive Species Bidens L. in European Russia].

    PubMed

    Galkina, M A; Vinogradova, Yu K; Shanzer, I A

    2015-01-01

    Species of the genus Bidens that have invaded natural communities in Europe were observed. Fourteen species have been introduced in European botanical gardens since the 18th century, but only two of them have become invasive in Russia-Bidensfrondosa and B. connata. B.frondosa demonstrates microevolutional ability in the second distribution range. Nevertheless, it has a low ability of hybridization. B. frondosa has higher competitiveness compared with that of B. connata. PMID:26415279

  18. Invasive plant species as potential bioenergy producers and carbon contributors.

    SciTech Connect

    Young, S.; Gopalakrishnan, G.; Keshwani, D.

    2011-03-01

    Current cellulosic bioenergy sources in the United States are being investigated in an effort to reduce dependence on foreign oil and the associated risks to national security and climate change (Koh and Ghazoul 2008; Demirbas 2007; Berndes et al. 2003). Multiple sources of renewable plant-based material have been identified and include agricultural and forestry residues, municipal solid waste, industrial waste, and specifically grown bioenergy crops (Demirbas et al. 2009; Gronowska et al. 2009). These sources are most commonly converted to energy through direct burning, conversion to gas, or conversion to ethanol. Annual crops, such as corn (Zea Mays L.) and sorghum grain, can be converted to ethanol through fermentation, while soybean and canola are transformed into fatty acid methyl esters (biodiesel) by reaction with an alcohol (Demirbas 2007). Perennial grasses are one of the more viable sources for bioenergy due to their continuous growth habit, noncrop status, and multiple use products (Lewandowski el al. 2003). In addition, a few perennial grass species have very high water and nutrient use efficiencies producing large quantities of biomass on an annual basis (Dohleman et al. 2009; Grantz and Vu 2009).

  19. Invasive species as drivers of evolutionary change: cane toads in tropical Australia

    PubMed Central

    Shine, Richard

    2012-01-01

    The arrival of an invasive species can have wide-ranging ecological impacts on native taxa, inducing rapid evolutionary responses in ways that either reduce the invader's impact or exploit the novel opportunity that it provides. The invasion process itself can cause substantial evolutionary shifts in traits that influence the invader's dispersal rate (via both adaptive and non-adaptive mechanisms) and its ability to establish new populations. I briefly review the nature of evolutionary changes likely to be set in train by a biological invasion, with special emphasis on recent results from my own research group on the invasion of cane toads (Rhinella marina) through tropical Australia. The toads’ invasion has caused evolutionary changes both in the toads and in native taxa. Many of those changes are adaptive, but others may result from non-adaptive evolutionary processes: for example, the evolved acceleration in toad dispersal rates may be due to spatial sorting of dispersal-enhancing genes, rather than fitness advantages to faster-dispersing individuals. Managers need to incorporate evolutionary dynamics into their conservation planning, because biological invasions can affect both the rates and the trajectories of evolutionary change. PMID:25568034

  20. Does the Order of Invasive Species Removal Matter? The Case of the Eagle and the Pig

    PubMed Central

    Collins, Paul W.; Latta, Brian C.; Roemer, Gary W.

    2009-01-01

    Background Invasive species are recognized as a primary driver of native species endangerment and their removal is often a key component of a conservation strategy. Removing invasive species is not always a straightforward task, however, especially when they interact with other species in complex ways to negatively influence native species. Because unintended consequences may arise if all invasive species cannot be removed simultaneously, the order of their removal is of paramount importance to ecological restoration. In the mid-1990s, three subspecies of the island fox Urocyon littoralis were driven to near extinction on the northern California Channel Islands owing to heightened predation by golden eagles Aquila chrysaetos. Eagles were lured to the islands by an abundant supply of feral pigs Sus scrofa and through the process of apparent competition pigs indirectly facilitated the decline in foxes. As a consequence, both pigs and eagles had to be removed to recover the critically endangered fox. Complete removal of pigs was problematic: removing pigs first could force eagles to concentrate on the remaining foxes, increasing their probability of extinction. Removing eagles first was difficult: eagles are not easily captured and lethal removal was politically distasteful. Methodology/Principal Findings Using prey remains collected from eagle nests both before and after the eradication of pigs, we show that one pair of eagles that eluded capture did indeed focus more on foxes. These results support the premise that if the threat of eagle predation had not been mitigated prior to pig removal, fox extinction would have been a more likely outcome. Conclusions/Significance If complete eradication of all interacting invasive species is not possible, the order in which they are removed requires careful consideration. If overlooked, unexpected consequences may result that could impede restoration. PMID:19759894

  1. Selenium exposure results in reduced reproduction in an invasive ant species and altered competitive behavior for a native ant species.

    PubMed

    De La Riva, Deborah G; Trumble, John T

    2016-06-01

    Competitive ability and numerical dominance are important factors contributing to the ability of invasive ant species to establish and expand their ranges in new habitats. However, few studies have investigated the impact of environmental contamination on competitive behavior in ants as a potential factor influencing dynamics between invasive and native ant species. Here we investigated the widespread contaminant selenium to investigate its potential influence on invasion by the exotic Argentine ant, Linepithema humile, through effects on reproduction and competitive behavior. For the fecundity experiment, treatments were provided to Argentine ant colonies via to sugar water solutions containing one of three concentrations of selenium (0, 5 and 10 μg Se mL(-1)) that fall within the range found in soil and plants growing in contaminated areas. Competition experiments included both the Argentine ant and the native Dorymyrmex bicolor to determine the impact of selenium exposure (0 or 15 μg Se mL(-1)) on exploitation- and interference-competition between ant species. The results of the fecundity experiment revealed that selenium negatively impacted queen survival and brood production of Argentine ants. Viability of the developing brood was also affected in that offspring reached adulthood only in colonies that were not given selenium, whereas those in treated colonies died in their larval stages. Selenium exposure did not alter direct competitive behaviors for either species, but selenium exposure contributed to an increased bait discovery time for D. bicolor. Our results suggest that environmental toxins may not only pose problems for native ant species, but may also serve as a potential obstacle for establishment among exotic species.

  2. Selenium exposure results in reduced reproduction in an invasive ant species and altered competitive behavior for a native ant species.

    PubMed

    De La Riva, Deborah G; Trumble, John T

    2016-06-01

    Competitive ability and numerical dominance are important factors contributing to the ability of invasive ant species to establish and expand their ranges in new habitats. However, few studies have investigated the impact of environmental contamination on competitive behavior in ants as a potential factor influencing dynamics between invasive and native ant species. Here we investigated the widespread contaminant selenium to investigate its potential influence on invasion by the exotic Argentine ant, Linepithema humile, through effects on reproduction and competitive behavior. For the fecundity experiment, treatments were provided to Argentine ant colonies via to sugar water solutions containing one of three concentrations of selenium (0, 5 and 10 μg Se mL(-1)) that fall within the range found in soil and plants growing in contaminated areas. Competition experiments included both the Argentine ant and the native Dorymyrmex bicolor to determine the impact of selenium exposure (0 or 15 μg Se mL(-1)) on exploitation- and interference-competition between ant species. The results of the fecundity experiment revealed that selenium negatively impacted queen survival and brood production of Argentine ants. Viability of the developing brood was also affected in that offspring reached adulthood only in colonies that were not given selenium, whereas those in treated colonies died in their larval stages. Selenium exposure did not alter direct competitive behaviors for either species, but selenium exposure contributed to an increased bait discovery time for D. bicolor. Our results suggest that environmental toxins may not only pose problems for native ant species, but may also serve as a potential obstacle for establishment among exotic species. PMID:27038576

  3. Improving and integrating data on invasive species collected by citizen scientists

    USGS Publications Warehouse

    2010-01-01

    Limited resources make it difficult to effectively document, monitor, and control invasive species across large areas, resulting in large gaps in our knowledge of current and future invasion patterns. We surveyed 128 citizen science program coordinators and interviewed 15 of them to evaluate their potential role in filling these gaps. Many programs collect data on invasive species and are willing to contribute these data to public databases. Although resources for education and monitoring are readily available, groups generally lack tools to manage and analyze data. Potential users of these data also retain concerns over data quality. We discuss how to address these concerns about citizen scientist data and programs while preserving the advantages they afford. A unified yet flexible national citizen science program aimed at tracking invasive species location, abundance, and control efforts could be designed using centralized data sharing and management tools. Such a system could meet the needs of multiple stakeholders while allowing efficiencies of scale, greater standardization of methods, and improved data quality testing and sharing. Finally, we present a prototype for such a system (see www.citsci.org).

  4. Invasive hybridization in a threatened species is accelerated by climate change

    NASA Astrophysics Data System (ADS)

    Muhlfeld, Clint C.; Kovach, Ryan P.; Jones, Leslie A.; Al-Chokhachy, Robert; Boyer, Matthew C.; Leary, Robb F.; Lowe, Winsor H.; Luikart, Gordon; Allendorf, Fred W.

    2014-07-01

    Climate change will decrease worldwide biodiversity through a number of potential pathways, including invasive hybridization (cross-breeding between invasive and native species). How climate warming influences the spread of hybridization and loss of native genomes poses difficult ecological and evolutionary questions with little empirical information to guide conservation management decisions. Here we combine long-term genetic monitoring data with high-resolution climate and stream temperature predictions to evaluate how recent climate warming has influenced the spatio-temporal spread of human-mediated hybridization between threatened native westslope cutthroat trout (Oncorhynchus clarkii lewisi) and non-native rainbow trout (Oncorhynchus mykiss), the world's most widely introduced invasive fish. Despite widespread release of millions of rainbow trout over the past century within the Flathead River system, a large relatively pristine watershed in western North America, historical samples revealed that hybridization was prevalent only in one (source) population. During a subsequent 30-year period of accelerated warming, hybridization spread rapidly and was strongly linked to interactions between climatic drivers--precipitation and temperature--and distance to the source population. Specifically, decreases in spring precipitation and increases in summer stream temperature probably promoted upstream expansion of hybridization throughout the system. This study shows that rapid climate warming can exacerbate interactions between native and non-native species through invasive hybridization, which could spell genomic extinction for many species.

  5. Invasive hybridization in a threatened species is accelerated by climate change

    USGS Publications Warehouse

    Muhlfeld, Clint C.; Kovach, Ryan P.; Jones, Leslie A.; Al-Chokhachy, Robert K.; Boyer, Matthew C.; Leary, Robb F.; Lowe, Winsor H.; Luikart, Gordon; Allendorf, Fred W.

    2014-01-01

    Climate change will decrease worldwide biodiversity through a number of potential pathways, including invasive hybridization (cross-breeding between invasive and native species). How climate warming influences the spread of hybridization and loss of native genomes poses difficult ecological and evolutionary questions with little empirical information to guide conservation management decisions. Here we combine long-term genetic monitoring data with high-resolution climate and stream temperature predictions to evaluate how recent climate warming has influenced the spatio-temporal spread of human-mediated hybridization between threatened native westslope cutthroat trout (Oncorhynchus clarkii lewisi) and non-native rainbow trout (Oncorhynchus mykiss), the world’s most widely introduced invasive fish. Despite widespread release of millions of rainbow trout over the past century within the Flathead River system, a large relatively pristine watershed in western North America, historical samples revealed that hybridization was prevalent only in one (source) population. During a subsequent 30-year period of accelerated warming, hybridization spread rapidly and was strongly linked to interactions between climatic drivers—precipitation and temperature—and distance to the source population. Specifically, decreases in spring precipitation and increases in summer stream temperature probably promoted upstream expansion of hybridization throughout the system. This study shows that rapid climate warming can exacerbate interactions between native and non-native species through invasive hybridization, which could spell genomic extinction for many species.

  6. Beyond the ecological: biological invasions alter natural selection on a native plant species.

    PubMed

    Lau, Jennifer A

    2008-04-01

    Biological invasions can have strong ecological effects on native communities by altering ecosystem functions, species interactions, and community composition. Even though these ecological effects frequently impact the population dynamics and fitness of native species, the evolutionary consequences of biological invasions have received relatively little attention. Here, I show that invasions impose novel selective pressures on a native plant species. By experimentally manipulating community composition, I found that the exotic plant Medicago polymorpha and the exotic herbivore Hypera brunneipennis alter the strength and, in some instances, the direction of natural selection on the competitive ability and anti-herbivore defenses of the native plant Lotus wrangelianus. Furthermore, the community composition of exotics influenced which traits were favored. For example, high densities of the exotic herbivore Hypera selected for increased resistance to herbivores in the native Lotus; however, when Medicago also was present, selection on this defense was eliminated. In contrast, selection on tolerance, another plant defense trait, was highest when both Hypera and Medicago were present at high densities. Thus, multiple exotic species may interact to influence the evolutionary trajectories of native plant populations, and patterns of selection may change as additional exotic species invade the community.

  7. Teaching citizen science skills online: Implications for invasive species training programs

    USGS Publications Warehouse

    Newman, G.; Crall, A.; Laituri, M.; Graham, J.; Stohlgren, T.; Moore, J.C.; Kodrich, K.; Holfelder, K.A.

    2010-01-01

    Citizen science programs are emerging as an efficient way to increase data collection and help monitor invasive species. Effective invasive species monitoring requires rigid data quality assurances if expensive control efforts are to be guided by volunteer data. To achieve data quality, effective online training is needed to improve field skills and reach large numbers of remote sentinel volunteers critical to early detection and rapid response. The authors evaluated the effectiveness of online static and multimedia tutorials to teach citizen science volunteers (n = 54) how to identify invasive plants; establish monitoring plots; measure percent cover; and use Global Positioning System (GPS) units. Participants trained using static and multimedia tutorials provided less (p <.001) correct species identifications (63% and 67%) than did professionals (83%) across all species, but they did not differ (p =.125) between each other. However, their ability to identify conspicuous species was comparable to that of professionals. The variability in percent plant cover estimates between static (??10%) and multimedia (??13%) participants did not differ (p =.86 and.08, respectively) from those of professionals (??9%). Trained volunteers struggled with plot setup and GPS skills. Overall, the online approach used did not influence conferred field skills and abilities. Traditional or multimedia online training augmented with more rigorous, repeated, and hands-on, in-person training in specialized skills required for more difficult tasks will likely improve volunteer abilities, data quality, and overall program effectiveness. ?? Taylor & Francis Group, LLC.

  8. Plant pollinator interactions: comparison between an invasive and a native congeneric species

    NASA Astrophysics Data System (ADS)

    Vanparys, Valérie; Meerts, Pierre; Jacquemart, Anne-Laure

    2008-11-01

    Plant-pollinator interactions determine reproductive success for animal-pollinated species and, in the case of invasive plants, they are supposed to play an important role in invasive success. We compared the invasive Senecio inaequidens to its native congener S. jacobaea in terms of interactions with pollinators. Visitor guild, visitation rate, and seed set were compared over 3 years in three sites in Belgium. Floral display (capitula number and arrangement) and phenology were quantified, and visiting insects were individually censused, i.e. number of visited capitula and time per visited capitulum. As expected from capitula resemblance, visitor guilds of both species were very similar (proportional similarity = 0.94). Senecio inaequidens was visited by 33 species, versus 36 for S. jacobaea. For both species, main visitors were Diptera, especially Syrphidae, and Hymenoptera. Visitation rate averaged 0.13 visitor per capitulum per 10 min for S. inaequidens against 0.08 for S. jacobaea. However, insects visited more capitula per plant on S. jacobaea, due to high capitula density (886 m -2 versus 206 m -2 for S. inaequidens), which is likely to increase self-pollen deposition considerably. Seed set of S. jacobaea was lower than that of S. inaequidens. We suggest that floral display is the major factor explaining the differences in insect visitation and seed set between the two Senecio species.

  9. Species- and site-specific impacts of an invasive herbivore on tree survival in mixed forests.

    PubMed

    Holland, E Penelope; Gormley, Andrew M; Pech, Roger P

    2016-04-01

    Invasive herbivores are often managed to limit their negative impact on plant populations, but herbivore density - plant damage relationships are notoriously spatially and temporally variable. Site and species characteristics (both plant and herbivore) must be considered when assessing the potential for herbivore damage, making it difficult to set thresholds for efficient management. Using the invasive brushtail possum Trichosurus vulpecula in New Zealand as a case study, we parameterized a generic model to predict annual probability of browse-induced mortality of five tree species at 12 sites. We compared predicted and observed tree mortality for each species + site combination to establish herbivore abundance - tree mortality thresholds for each site on a single and combined tree species basis. Model results indicated it is likely that possum browse was the primary cause of all tree mortality at nine of the 12 species-site combinations, allowing us to estimate site-specific thresholds below which possum population numbers should be reduced and maintained to keep tree mortality under a predetermined level, for example 0.5% per year. The browse model can be used to set site- and species-specific management action thresholds, and can be adapted easily for other plant or herbivore species. Results for multiple plant or herbivore species at a single site can be combined to create conservative, site-wide management strategies, and used to: determine which sites will be affected most by changes in herbivore abundance; quantify thresholds for herbivore management; and justify expenditure on herbivore control.

  10. Evaluating the "recovery level" of endangered species without prior information before alien invasion.

    PubMed

    Watari, Yuya; Nishijima, Shota; Fukasawa, Marina; Yamada, Fumio; Abe, Shintaro; Miyashita, Tadashi

    2013-11-01

    For maintaining social and financial support for eradication programs of invasive species, quantitative assessment of recovery of native species or ecosystems is important because it provides a measurable parameter of success. However, setting a concrete goal for recovery is often difficult owing to lack of information prior to the introduction of invaders. Here, we present a novel approach to evaluate the achievement level of invasive predator management based on the carrying capacity of endangered species estimated using long-term monitoring data. In Amami-Oshima Island, Japan, where the eradication project of introduced small Indian mongoose is ongoing since 2000, we surveyed the population densities of four endangered species threatened by the mongoose (Amami rabbit, the Otton frog, Amami tip-nosed frog, and Amami Ishikawa's frog) at four time points ranging from 2003 to 2011. We estimated the carrying capacities of these species using the logistic growth model combined with the effects of mongoose predation and environmental heterogeneity. All species showed clear tendencies toward increasing their density in line with decreased mongoose density, and they exhibited density-dependent population growth. The estimated carrying capacities of three endangered species had small confidence intervals enough to measure recovery levels by the mongoose management. The population density of each endangered species has recovered to the level of the carrying capacity at about 20-40% of all sites, whereas no individuals were observed at more than 25% of all sites. We propose that the present approach involving appropriate monitoring data of native organism populations will be widely applicable to various eradication projects and provide unambiguous goals for management of invasive species.

  11. The use of environmental DNA in invasive species surveillance of the Great Lakes commercial bait trade.

    PubMed

    Nathan, Lucas R; Jerde, Christopher L; Budny, Michelle L; Mahon, Andrew R

    2015-04-01

    Over 180 non-native species have been introduced in the Laurentian Great Lakes region, many posing threats to native species and ecosystem functioning. One potential pathway for introductions is the commercial bait trade; unknowing or unconcerned anglers commonly release unused bait into aquatic systems. Previous surveillance efforts of this pathway relied on visual inspection of bait stocks in retail shops, which can be time and cost prohibitive and requires a trained individual that can rapidly and accurately identify cryptic species. Environmental DNA (eDNA) surveillance, a molecular tool that has been used for surveillance in aquatic environments, can be used to efficiently detect species at low abundances. We collected and analyzed 576 eDNA samples from 525 retail bait shops throughout the Laurentian Great Lake states. We used eDNA techniques to screen samples for multiple aquatic invasive species (AIS) that could be transported in the bait trade, including bighead (Hypophthalmichthys nobilis) and silver carp (H. molitrix), round goby (Neogobius melanostomus), tubenose goby (Proterorhinus marmoratus), Eurasian rudd (Scardinius erythrophthalmus), and goldfish (Carassius auratus). Twenty-seven samples were positive for at least one target species (4.7% of samples), and all target species were found at least once, except bighead carp. Despite current regulations, the bait trade remains a potential pathway for invasive species introductions in the Great Lakes region. Alterations to existing management strategies regarding the collection, transportation, and use of live bait are warranted, including new and updated regulations, to prevent future introductions of invasive species in the Great Lakes via the bait trade. PMID:25169113

  12. The use of environmental DNA in invasive species surveillance of the Great Lakes commercial bait trade.

    PubMed

    Nathan, Lucas R; Jerde, Christopher L; Budny, Michelle L; Mahon, Andrew R

    2015-04-01

    Over 180 non-native species have been introduced in the Laurentian Great Lakes region, many posing threats to native species and ecosystem functioning. One potential pathway for introductions is the commercial bait trade; unknowing or unconcerned anglers commonly release unused bait into aquatic systems. Previous surveillance efforts of this pathway relied on visual inspection of bait stocks in retail shops, which can be time and cost prohibitive and requires a trained individual that can rapidly and accurately identify cryptic species. Environmental DNA (eDNA) surveillance, a molecular tool that has been used for surveillance in aquatic environments, can be used to efficiently detect species at low abundances. We collected and analyzed 576 eDNA samples from 525 retail bait shops throughout the Laurentian Great Lake states. We used eDNA techniques to screen samples for multiple aquatic invasive species (AIS) that could be transported in the bait trade, including bighead (Hypophthalmichthys nobilis) and silver carp (H. molitrix), round goby (Neogobius melanostomus), tubenose goby (Proterorhinus marmoratus), Eurasian rudd (Scardinius erythrophthalmus), and goldfish (Carassius auratus). Twenty-seven samples were positive for at least one target species (4.7% of samples), and all target species were found at least once, except bighead carp. Despite current regulations, the bait trade remains a potential pathway for invasive species introductions in the Great Lakes region. Alterations to existing management strategies regarding the collection, transportation, and use of live bait are warranted, including new and updated regulations, to prevent future introductions of invasive species in the Great Lakes via the bait trade.

  13. Evaluating the "recovery level" of endangered species without prior information before alien invasion.

    PubMed

    Watari, Yuya; Nishijima, Shota; Fukasawa, Marina; Yamada, Fumio; Abe, Shintaro; Miyashita, Tadashi

    2013-11-01

    For maintaining social and financial support for eradication programs of invasive species, quantitative assessment of recovery of native species or ecosystems is important because it provides a measurable parameter of success. However, setting a concrete goal for recovery is often difficult owing to lack of information prior to the introduction of invaders. Here, we present a novel approach to evaluate the achievement level of invasive predator management based on the carrying capacity of endangered species estimated using long-term monitoring data. In Amami-Oshima Island, Japan, where the eradication project of introduced small Indian mongoose is ongoing since 2000, we surveyed the population densities of four endangered species threatened by the mongoose (Amami rabbit, the Otton frog, Amami tip-nosed frog, and Amami Ishikawa's frog) at four time points ranging from 2003 to 2011. We estimated the carrying capacities of these species using the logistic growth model combined with the effects of mongoose predation and environmental heterogeneity. All species showed clear tendencies toward increasing their density in line with decreased mongoose density, and they exhibited density-dependent population growth. The estimated carrying capacities of three endangered species had small confidence intervals enough to measure recovery levels by the mongoose management. The population density of each endangered species has recovered to the level of the carrying capacity at about 20-40% of all sites, whereas no individuals were observed at more than 25% of all sites. We propose that the present approach involving appropriate monitoring data of native organism populations will be widely applicable to various eradication projects and provide unambiguous goals for management of invasive species. PMID:24363899

  14. Predicting plant invasions under climate change: are species distribution models validated by field trials?

    PubMed

    Sheppard, Christine S; Burns, Bruce R; Stanley, Margaret C

    2014-09-01

    Climate change may facilitate alien species invasion into new areas, particularly for species from warm native ranges introduced into areas currently marginal for temperature. Although conclusions from modelling approaches and experimental studies are generally similar, combining the two approaches has rarely occurred. The aim of this study was to validate species distribution models by conducting field trials in sites of differing suitability as predicted by the models, thus increasing confidence in their ability to assess invasion risk. Three recently naturalized alien plants in New Zealand were used as study species (Archontophoenix cunninghamiana, Psidium guajava and Schefflera actinophylla): they originate from warm native ranges, are woody bird-dispersed species and of concern as potential weeds. Seedlings were grown in six sites across the country, differing both in climate and suitability (as predicted by the species distribution models). Seedling growth and survival were recorded over two summers and one or two winter seasons, and temperature and precipitation were monitored hourly at each site. Additionally, alien seedling performances were compared to those of closely related native species (Rhopalostylis sapida, Lophomyrtus bullata and Schefflera digitata). Furthermore, half of the seedlings were sprayed with pesticide, to investigate whether enemy release may influence performance. The results showed large differences in growth and survival of the alien species among the six sites. In the more suitable sites, performance was frequently higher compared to the native species. Leaf damage from invertebrate herbivory was low for both alien and native seedlings, with little evidence that the alien species should have an advantage over the native species because of enemy release. Correlations between performance in the field and predicted suitability of species distribution models were generally high. The projected increase in minimum temperature and reduced

  15. Predicting plant invasions under climate change: are species distribution models validated by field trials?

    PubMed

    Sheppard, Christine S; Burns, Bruce R; Stanley, Margaret C

    2014-09-01

    Climate change may facilitate alien species invasion into new areas, particularly for species from warm native ranges introduced into areas currently marginal for temperature. Although conclusions from modelling approaches and experimental studies are generally similar, combining the two approaches has rarely occurred. The aim of this study was to validate species distribution models by conducting field trials in sites of differing suitability as predicted by the models, thus increasing confidence in their ability to assess invasion risk. Three recently naturalized alien plants in New Zealand were used as study species (Archontophoenix cunninghamiana, Psidium guajava and Schefflera actinophylla): they originate from warm native ranges, are woody bird-dispersed species and of concern as potential weeds. Seedlings were grown in six sites across the country, differing both in climate and suitability (as predicted by the species distribution models). Seedling growth and survival were recorded over two summers and one or two winter seasons, and temperature and precipitation were monitored hourly at each site. Additionally, alien seedling performances were compared to those of closely related native species (Rhopalostylis sapida, Lophomyrtus bullata and Schefflera digitata). Furthermore, half of the seedlings were sprayed with pesticide, to investigate whether enemy release may influence performance. The results showed large differences in growth and survival of the alien species among the six sites. In the more suitable sites, performance was frequently higher compared to the native species. Leaf damage from invertebrate herbivory was low for both alien and native seedlings, with little evidence that the alien species should have an advantage over the native species because of enemy release. Correlations between performance in the field and predicted suitability of species distribution models were generally high. The projected increase in minimum temperature and reduced

  16. Suppression of invasion and metastasis in aggressive salivary cancer cells through targeted inhibition of ID1 gene expression.

    PubMed

    Murase, Ryuichi; Sumida, Tomoki; Kawamura, Rumi; Onishi-Ishikawa, Akiko; Hamakawa, Hiroyuki; McAllister, Sean D; Desprez, Pierre-Yves

    2016-07-10

    Salivary gland cancer (SGC) represents the most common malignancy in the head and neck region, and often metastasizes to the lungs. The helix-loop-helix ID1 protein has been shown to control metastatic progression in many types of cancers. Using two different approaches to target the expression of ID1 (genetic knockdown and progesterone receptor introduction combined with progesterone treatment), we previously determined that the aggressiveness of salivary gland tumor ACCM cells in culture was suppressed. Here, using the same approaches to target ID1 expression, we investigated the ability of ACCM cells to generate lung metastatic foci in nude mice. Moreover, since both approaches would be challenging for applications in humans, we added a third approach, i.e., treatment of mice with a non-toxic cannabinoid compound known to down-regulate ID1 gene expression. All approaches aimed at targeting the pro-metastatic ID1 gene led to a significant reduction in the formation of lung metastatic foci. Therefore, targeting a key transcriptional regulator using different means results in the same reduction of the metastatic spread of SGC cells in animal models, suggesting a novel approach for the treatment of patients with aggressive SGC. PMID:27087608

  17. Hyperspectral remote sensing tools for quantifying plant litter and invasive species in arid ecosystems

    USGS Publications Warehouse

    Nagler, Pamela L.; Sridhar, B.B. Maruthi; Olsson, Aaryn Dyami; Glenn, Edward P.; van Leeuwen, Willem J.D.; Thenkabail, Prasad S.; Huete, Alfredo; Lyon, John G.

    2012-01-01

    Green vegetation can be distinguished using visible and infrared multi-band and hyperspectral remote sensing methods. The problem has been in identifying and distinguishing the non-photosynthetically active radiation (PAR) landscape components, such as litter and soils, and from green vegetation. Additionally, distinguishing different species of green vegetation is challenging using the relatively few bands available on most satellite sensors. This chapter focuses on hyperspectral remote sensing characteristics that aim to distinguish between green vegetation, soil, and litter (or senescent vegetation). Quantifying litter by remote sensing methods is important in constructing carbon budgets of natural and agricultural ecosystems. Distinguishing between plant types is important in tracking the spread of invasive species. Green leaves of different species usually have similar spectra, making it difficult to distinguish between species. However, in this chapter we show that phenological differences between species can be used to detect some invasive species by their distinct patterns of greening and dormancy over an annual cycle based on hyperspectral data. Both applications require methods to quantify the non-green cellulosic fractions of plant tissues by remote sensing even in the presence of soil and green plant cover. We explore these methods and offer three case studies. The first concerns distinguishing surface litter from soil using the Cellulose Absorption Index (CAI), as applied to no-till farming practices where plant litter is left on the soil after harvest. The second involves using different band combinations to distinguish invasive saltcedar from agricultural and native riparian plants on the Lower Colorado River. The third illustrates the use of the CAI and NDVI in time-series analyses to distinguish between invasive buffelgrass and native plants in a desert environment in Arizona. Together the results show how hyperspectral imagery can be applied to

  18. Does temperature-mediated reproductive success drive the direction of species displacement in two invasive species of leafminer fly?

    PubMed

    Wang, Haihong; Reitz, Stuart R; Xiang, Juncheng; Smagghe, Guy; Lei, Zhongren

    2014-01-01

    Liriomyza sativae and L. trifolii (Diptera: Agromyzidae) are two highly invasive species of leafmining flies, which have become established as pests of horticultural crops throughout the world. In certain regions where both species have been introduced, L. sativae has displaced L. trifolii, whereas the opposite has occurred in other regions. These opposing outcomes suggest that neither species is an inherently superior competitor. The regions where these displacements have been observed (southern China, Japan and western USA) are climatically different. We determined whether temperature differentially affects the reproductive success of these species and therefore if climatic differences could affect the outcome of interspecific interactions where these species are sympatric. The results of life table parameters indicate that both species can develop successfully at all tested temperatures (20, 25, 31, 33°C). L. sativae had consistently higher fecundities at all temperatures, but L. trifolii developed to reproductive age faster. Age-stage specific survival rates were higher for L. sativae at low temperatures, but these were higher for L. trifolii at higher temperatures. We then compared the net reproductive rates (R0) for both species in pure and mixed cultures maintained at the same four constant temperatures. Both species had significantly lower net reproductive rates in mixed species cultures compared with their respective pure species cultures, indicating that both species are subject to intense interspecific competition. Net reproductive rates were significantly greater for L. sativae than for L. trifolii in mixed species groups at the lower temperatures, whereas the opposite occurred at the higher temperature. Therefore, interactions between the species are temperature dependent and small differences could shift the competitive balance between the species. These temperature mediated effects may contribute to the current ongoing displacement of L. sativae by

  19. Effects of invasive plant species on pollinator service and reproduction in native plants at Acadia National Park

    USGS Publications Warehouse

    Stubbs, C.J.; Drummond, F.; Ginsberg, H.

    2007-01-01

    Invasive plant species can have profound negative effects on natural communities by competively excluding native species. Berberis thunbergii (Japanese barberry), Frangula alnus (glossy or alder buckthorn) and Lythrum salicaria (purple loosestrife) are invasive species known to reduce native plant diversity and are thus of great concern to Acadia National Park. Pollinators visit them for nectar and pollen. The effects of invasive plant species on pollinator behavior were investigated by comparing pollinator visitation to co-flowering native and invasive species with visitation to native species growing alone. The effect of invasives on pollination of native plants was studied by comparing fruit set in patches of the native species growing near invasives with patches far from invasive species in Acadia National Park. The coflowering pairs were as follows: in the spring native Vaccinium angustifolium (lowbush blueberry) was paired with B. thunbergii; in early summer native Viburnum nudum (wild raisin) was paired with F. alnus ; in late summer native Spiraea alba (meadowsweet) was paired with L. salicaria. We investigated whether these invasives competed with native plants for pollinators in Acadia and thus negatively affected native plant reproduction. Our objectives were to determine: 1) the influence, if any, of each invasive on pollinator visitation to a co-flowering native species, 2) factors that might affect visitation, 3) invasive pollen transfer to native plants, and 4) whether invasives influence native plant reproduction (fruit set). Our findings indicate that at times the number of flower visitors to natives was lower or the species composition of visitors different when invasives were present, that invasives sometimes attracted more pollinators, that generally the invasives were more rewarding as far as nectar and pollen availability for pollinators, and that generally native plant fruit set and seed set was not significantly lowered in the presence of

  20. From points to forecasts: Predicting invasive species habitat suitability in the near term

    USGS Publications Warehouse

    Holcombe, Tracy R.; Stohlgren, Thomas J.; Jarnevich, Catherine S.

    2010-01-01

    We used near-term climate scenarios for the continental United States, to model 12 invasive plants species. We created three potential habitat suitability models for each species using maximum entropy modeling: (1) current; (2) 2020; and (3) 2035. Area under the curve values for the models ranged from 0.92 to 0.70, with 10 of the 12 being above 0.83 suggesting strong and predictable species-environment matching. Change in area between the current potential habitat and 2035 ranged from a potential habitat loss of about 217,000 km2, to a potential habitat gain of about 133,000 km2.

  1. Invasive species and habitat degradation in Iberian streams: an analysis of their role in freshwater fish diversity loss.

    PubMed

    Hermoso, Virgilio; Clavero, Miguel; Blanco-Garrido, Francisco; Prenda, José

    2011-01-01

    Mediterranean endemic freshwater fish are among the most threatened biota in the world. Distinguishing the role of different extinction drivers and their potential interactions is crucial for achieving conservation goals. While some authors argue that invasive species are a main driver of native species declines, others see their proliferation as a co-occurring process to biodiversity loss driven by habitat degradation. It is difficult to discern between the two potential causes given that few invaded ecosystems are free from habitat degradation, and that both factors may interact in different ways. Here we analyze the relative importance of habitat degradation and invasive species in the decline of native fish assemblages in the Guadiana River basin (southwestern Iberian Peninsula) using an information theoretic approach to evaluate interaction pathways between invasive species and habitat degradation (structural equation modeling, SEM). We also tested the possible changes in the functional relationships between invasive and native species, measured as the per capita effect of invasive species, using ANCOVA. We found that the abundance of invasive species was the best single predictor of natives' decline and had the highest Akaike weight among the set of predictor variables examined. Habitat degradation neither played an active role nor influenced the per capita effect of invasive species on natives. Our analyses indicated that downstream reaches and areas close to reservoirs had the most invaded fish assemblages, independently of their habitat degradation status. The proliferation of invasive species poses a strong threat to the persistence of native assemblages in highly fluctuating environments. Therefore, conservation efforts to reduce native freshwater fish diversity loss in Mediterranean rivers should focus on mitigating the effect of invasive species and preventing future invasions.

  2. Soil-occupancy effects of invasive and native grassland plant species on composition and diversity of mycorrhizal associations

    USGS Publications Warehouse

    Jordan, Nicholas R.; Aldrich-Wolfe, Laura; Huerd, Sheri C.; Larson, Diane L.; Muehlbauer, Gary

    2012-01-01

    Diversified grasslands that contain native plant species can produce biofuels, support sustainable grazing systems, and produce other ecosystem services. However, ecosystem service production can be disrupted by invasion of exotic perennial plants, and these plants can have soil-microbial “legacies” that may interfere with establishment and maintenance of diversified grasslands even after effective management of the invasive species. The nature of such legacies is not well understood, but may involve suppression of mutualisms between native species and soil microbes. In this study, we tested the hypotheses that legacy effects of invasive species change colonization rates, diversity, and composition of arbuscular-mycorrhizal fungi (AMF) associated with seedlings of co-occurring invasive and native grassland species. In a glasshouse, experimental soils were conditioned by cultivating three invasive grassland perennials, three native grassland perennials, and a native perennial mixture. Each was grown separately through three cycles of growth, after which we used T-RFLP analysis to characterize AMF associations of seedlings of six native perennial and six invasive perennial species grown in these soils. Legacy effects of soil conditioning by invasive species did not affect AMF richness in seedling roots, but did affect AMF colonization rates and the taxonomic composition of mycorrhizal associations in seedling roots. Moreover, native species were more heavily colonized by AMF and roots of native species had greater AMF richness (number of AMF operational taxonomic units per seedling) than did invasive species. The invasive species used to condition soil in this experiment have been shown to have legacy effects on biomass of native seedlings, reducing their growth in this and a previous similar experiment. Therefore, our results suggest that successful plant invaders can have legacies that affect soil-microbial associations of native plants and that these effects

  3. Effects of an invasive plant species, celastrus orbiculatus, on soil composition and processes

    USGS Publications Warehouse

    Leicht-Young, S. A.; O'Donnell, H.; Latimer, A.M.; Silander, J.A.

    2009-01-01

    Celastrus orbiculatus is a non-native, invasive liana that was introduced to the United States in the 1860s and has spread rapidly throughout the Northeast Several attributes contribute to the invasiveness of C. orbiculatus, including tolerance to a wide range of light levels and habitat types. We compared soil characteristics in seven sets of adjacent, paired plots, spanning a range of habitats and soil types, with and without C. orbiculatus. The paired plots were similar other than the presence or absence of Celastrus. Plots with C. orbiculatus had significantly higher soil pH, potassium, calcium and magnesium levels. Furthermore, nitrogen mineralization and litter decomposition rates were higher in plots with C. orbiculatus. Phosphorus levels were not significantly different between the paired plots. The results of this study contribute to the growing body of research of the effects of invasive species on ecosystem processes.

  4. Establishing a beachhead: A stochastic population model with an Allee effect applied to species invasion

    USGS Publications Warehouse

    Ackleh, A.S.; Allen, L.J.S.; Carter, J.

    2007-01-01

    We formulated a spatially explicit stochastic population model with an Allee effect in order to explore how invasive species may become established. In our model, we varied the degree of migration between local populations and used an Allee effect with variable birth and death rates. Because of the stochastic component, population sizes below the Allee effect threshold may still have a positive probability for successful invasion. The larger the network of populations, the greater the probability of an invasion occurring when initial population sizes are close to or above the Allee threshold. Furthermore, if migration rates are low, one or more than one patch may be successfully invaded, while if migration rates are high all patches are invaded. ?? 2007 Elsevier Inc. All rights reserved.

  5. Early detection of potentially invasive invertebrate species in Mytilus galloprovincialis Lamarck, 1819 dominated communities in harbours

    NASA Astrophysics Data System (ADS)

    Preda, Cristina; Memedemin, Daniyar; Skolka, Marius; Cogălniceanu, Dan

    2012-12-01

    Constanţa harbour is a major port on the western coast of the semi-enclosed Black Sea. Its brackish waters and low species richness make it vulnerable to invasions. The intensive maritime traffic through Constanţa harbour facilitates the arrival of alien species. We investigated the species composition of the mussel beds on vertical artificial concrete substrate inside the harbour. We selected this habitat for study because it is frequently affected by fluctuating levels of temperature, salinity and dissolved oxygen, and by accidental pollution episodes. The shallow communities inhabiting it are thus unstable and often restructured, prone to accept alien species. Monthly samples were collected from three locations from the upper layer of hard artificial substrata (maximum depth 2 m) during two consecutive years. Ten alien macro-invertebrate species were inventoried, representing 13.5% of the total number of species. Two of these alien species were sampled starting the end of summer 2010, following a period of high temperatures that triggered hypoxia, causing mass mortalities of benthic organisms. Based on the species accumulation curve, we estimated that we have detected all benthic alien species on artificial substrate from Constanţa harbour, but additional effort is required to detect all the native species. Our results suggest that monitoring of benthic communities at small depths in harbours is a simple and useful tool in early detection of potentially invasive alien species. The selected habitat is easily accessible, the method is low-cost, and the samples represent reliable indicators of alien species establishment.

  6. Investigating Invasives

    ERIC Educational Resources Information Center

    Lightbody, Mary

    2008-01-01

    Invasive species, commonly known as "invasives," are nonnative plants, animals, and microbes that completely take over and change an established ecosystem. The consequences of invasives' spread are significant. In fact, many of the species that appear on the Endangered Species list are threatened by invasives. Therefore, the topic of invasive…

  7. Ecophysiological constraints of two invasive plant species under a saline gradient: Halophytes versus glycophytes

    NASA Astrophysics Data System (ADS)

    Duarte, B.; Santos, D.; Marques, J. C.; Caçador, I.

    2015-12-01

    Salt marsh environments are harsh environments where salinity comprises one of the most important species distribution shaping factor, presenting sediment salinities from 0 to 855 mM (0-50 ppt). Invasive species have often a high colonizing potential, due to its high plasticity and adaptation ability. Spartina patens is an invasive species already spread along several Mediterranean countries, like France and Spain. Cyperus longus is typically a freshwater species that has been spreading across the Mediterranean. In order to evaluate the ecophysiological fitness of these species, mesocosmos trials were performed subjecting both species to increasing realistic salinity levels and their photochemical and biochemical feedback was evaluated. Both species presented very different behaviours. S. patens appears to be insensitive to salt stress, mostly due to elevated proline concentrations in its leaves allowing it to maintain its osmotic balance, and thus preventing the damaging of its photochemical mechanisms. C. longus, on the other hand, was highly affected by elevated salt levels mostly due to the lack of osmotic balance driven by an incapacity to counteract the elevated ionic strength of the external medium by osmocompatible solutes. S. patens is physiologically highly adapted to saline environments and thus is capable to colonize all the marsh saline environments, while C. longus appears to be an opportunistic invader colonizing the marsh during periods of lower salinities typical from rainy seasons.

  8. Distinguishing native (Celastrus scandens L.) and invasive (C. orbiculatus Thunb.) bittersweet species using morphological characteristics

    USGS Publications Warehouse

    Leicht-Young, S. A.; Pavlovic, N.B.; Grundel, R.; Frohnapple, K.J.

    2007-01-01

    Celastrus orbiculatus is an invasive liana in the Eastern United States. Its native congener, C. scandens, is less common and declining in the Northeast. The correct identification of these two species is often difficult because of their similar vegetative characteristics. Using morphological characteristics of both species growing naturally along a sand dune/forest ecotone, we built models for use in discriminating between the species, given a suite of leaf and fruit traits. We confirmed that the two species can be discriminated effectively using fruit characters, notably fruit volume and seed number. Several leaf traits, such as length-to-width ratio and leaf apex length can also discriminate between the species, but without the same predictive reliability of fruit traits. In addition, we determined that at leaf out in the spring the leaves of the two species were folded differently in the bud allowing them to be successfully discriminated in the early spring. Land managers could use this information to differentiate between the two species in the field and thereby control for the invasiveC. orbiculatus, while preserving remaining populations of C. scandens.

  9. Genetic diversity in three invasive clonal aquatic species in New Zealand

    PubMed Central

    2010-01-01

    Background Elodea canadensis, Egeria densa and Lagarosiphon major are dioecious clonal species which are invasive in New Zealand and other regions. Unlike many other invasive species, the genetic variation in New Zealand is very limited. Clonal reproduction is often considered an evolutionary dead end, even though a certain amount of genetic divergence may arise due to somatic mutations. The successful growth and establishment of invasive clonal species may be explained not by adaptability but by pre-existing ecological traits that prove advantageous in the new environment. We studied the genetic diversity and population structure in the North Island of New Zealand using AFLPs and related the findings to the number of introductions and the evolution that has occurred in the introduced area. Results Low levels of genetic diversity were found in all three species and appeared to be due to highly homogeneous founding gene pools. Elodea canadensis was introduced in 1868, and its populations showed more genetic structure than those of the more recently introduced of E. densa (1946) and L. major (1950). Elodea canadensis and L. major, however, had similar phylogeographic patterns, in spite of the difference in time since introduction. Conclusions The presence of a certain level of geographically correlated genetic structure in the absence of sexual reproduction, and in spite of random human dispersal of vegetative propagules, can be reasonably attributed to post-dispersal somatic mutations. Direct evidence of such evolutionary events is, however, still insufficient. PMID:20565861

  10. Evaluation of biomass of some invasive weed species as substrate for oyster mushroom (Pleurotus spp.) cultivation.

    PubMed

    Mintesnot, Birara; Ayalew, Amare; Kebede, Ameha

    2014-01-15

    This study assessed the bioconversion of Agriculture wastes like invasive weeds species (Lantana camara, Prosopis juliflora, Parthenium hysterophorus) as a substrate for oyster mushroom (Pleurotus species) cultivation together with wheat straw as a control. The experiment was laid out in factorial combination of substrates and three edible oyster mushroom species in a Completely Randomized Design (CRD) with three replications. Pleurotus ostreatus gave significantly (p < 0.01) total yield of 840 g kg(-1) on P. hysterophorus, Significantly (p < 0.01) biological efficiency (83.87%) and production rate of 3.13 was recorded for P. ostreatus grown on P. hysterophorus. The highest total ash content (13.90%) was recorded for P. florida grown on L. camara. while the lowest (6.92%) was for P. sajor-caju grown on the P. juliflora. Crude protein ranged from 40.51-41.48% for P. florida grown on P. hysterophorus and L. camara. Lowest crude protein content (30.11%) was recorded for P. ostreatus grown on wheat straw. The crude fiber content (12.73%) of P. sajor-caju grown on wheat straw was the highest. The lowest crude fiber (5.19%) was recorded for P. ostreatus on P. juliflora. Total yield had a positive and significant correlation with biological efficiency and production. Utilization of the plant biomass for mushroom cultivation could contribute to alleviating ecological impact of invasive weed species while offering practical option to mitigating hunger and malnutrition in areas where the invasive weeds became dominant. PMID:24783804

  11. Species identification of invasive yeasts including Candida in Pakistan: limitations of phenotypic methods

    PubMed Central

    Farooqi, Joveria; Jabeen, Kauser; Saeed, Noureen; Zafar, Afia; Brandt, Mary Eleanor; Hasan, Rumina

    2015-01-01

    Objective To compare phenotypic and genotypic methods of yeast identification. Methods The in-vitro cross-sectional study was conducted from January 2006 to May 2009. Invasive yeasts isolated at the clinical microbiology laboratory at the Aga Khan University (AKU), Karachi, Pakistan, were identified. Speciation by phenotypic and molecular methods was compared. All yeasts isolated during the study period from blood and other invasive sites were identified using standard methods. Isolates were shipped to Mycotic Diseases Branch, Centres for Disease Control and Prevention, Atlanta, Georgia, USA, for identification by Luminex flow cytometric multianalyte profiling (xMAP) system. Ribosomal ITS2 DNA sequencing was performed on isolates not identified by Luminex. Result Of the 214 invasive yeasts evaluated, Candida species were 209 (97.7%) while the frequency of non-Candida species was 5 (2.3%). Overall agreement between phenotypic and molecular identification was 81.3%, 90.3% amongst the more common Candida species, and only 38.8% amongst the uncommon yeasts. Conclusion Phenotypic methods of identification proved adequate for common Candida species, but were deficient in recognising rare Candida and non-Candida yeasts, highlighting the importance of molecular methods for identification. PMID:23866432

  12. Alkaloid concentration of the invasive plant species Ulex europaeus in relation to geographic origin and herbivory

    NASA Astrophysics Data System (ADS)

    Hornoy, Benjamin; Atlan, Anne; Tarayre, Michèle; Dugravot, Sébastien; Wink, Michael

    2012-11-01

    In the study of plant defense evolution, invasive plant species can be very insightful because they are often introduced without their enemies, and traits linked to defense can be released from selective pressures and evolve. Further, studying plant defense evolution in invasive species is important for biological control and use of these species. In this study, we investigated the evolution of the defensive chemicals quinolizidine alkaloids (QAs) in the invasive species gorse, Ulex europaeus. Using a common garden experiment, our goals were to characterize the role of QAs relative to specialist enemies of gorse and to investigate if QA concentration evolved in invaded regions, where gorse was introduced without these enemies. Our results showed that pod infestation rate by the seed predator Exapion ulicis and infestation by the rust pathogen Uromyces genistae-tinctoriae were negatively correlated to concentration of the QA lupanine. Quinolizidine alkaloid concentration was very variable between individuals, both within and among populations, but it was not different between native and invaded regions, suggesting that no evolution of decreased resistance occurred after gorse lost its enemies. Our study also suggests that QA concentrations are traits integrated into seed predation avoidance strategies of gorse, with plants that mass-fruit in spring but do not escape pod infestation in time being richer in QAs.

  13. Using economic instruments to develop effective management of invasive species: insights from a bioeconomic model.

    PubMed

    McDermott, Shana M; Irwin, Rebecca E; Taylor, Brad W

    2013-07-01

    Economic growth is recognized as an important factor associated with species invasions. Consequently, there is increasing need to develop solutions that combine economics and ecology to inform invasive species management. We developed a model combining economic, ecological, and sociological factors to assess the degree to which economic policies can be used to control invasive plants. Because invasive plants often spread across numerous properties, we explored whether property owners should manage invaders cooperatively as a group by incorporating the negative effects of invader spread in management decisions (collective management) or independently, whereby the negative effects of invasive plant spread are ignored (independent management). Our modeling approach used a dynamic optimization framework, and we applied the model to invader spread using Linaria vulgaris. Model simulations allowed us to determine the optimal management strategy based on net benefits for a range of invader densities. We found that optimal management strategies varied as a function of initial plant densities. At low densities, net benefits were high for both collective and independent management to eradicate the invader, suggesting the importance of early detection and eradication. At moderate densities, collective management led to faster and more frequent invader eradication compared to independent management. When we used a financial penalty to ensure that independent properties were managed collectively, we found that the penalty would be most feasible when levied on a property's perimeter boundary to control spread among properties. At the highest densities, the optimal management strategy was "do nothing" because the economic costs of removal were too high relative to the benefits of removal. Spatial variation in L. vulgaris densities resulted in different optimal management strategies for neighboring properties, making a formal economic policy to encourage invasive species removal

  14. Underutilized resources for studying the evolution of invasive species during their introduction, establishment, and lag phases

    PubMed Central

    Marsico, Travis D; Burt, Jennifer W; Espeland, Erin K; Gilchrist, George W; Jamieson, Mary A; Lindström, Leena; Roderick, George K; Swope, Sarah; Szűcs, Marianna; Tsutsui, Neil D

    2010-01-01

    The early phases of biological invasions are poorly understood. In particular, during the introduction, establishment, and possible lag phases, it is unclear to what extent evolution must take place for an introduced species to transition from established to expanding. In this study, we highlight three disparate data sources that can provide insights into evolutionary processes associated with invasion success: biological control organisms, horticultural introductions, and natural history collections. All three data sources potentially provide introduction dates, information about source populations, and genetic and morphological samples at different time points along the invasion trajectory that can be used to investigate preadaptation and evolution during the invasion process, including immediately after introduction and before invasive expansion. For all three data sources, we explore where the data are held, their quality, and their accessibility. We argue that these sources could find widespread use with a few additional pieces of data, such as voucher specimens collected at certain critical time points during biocontrol agent quarantine, rearing, and release and also for horticultural imports, neither of which are currently done consistently. In addition, public access to collected information must become available on centralized databases to increase its utility in ecological and evolutionary research. PMID:25567920

  15. Agent-based Bayesian approach to monitoring the progress of invasive species eradication programs

    PubMed Central

    Keith, Jonathan M.; Spring, Daniel

    2013-01-01

    Eradication of an invasive species can provide significant environmental, economic, and social benefits, but eradication programs often fail. Constant and careful monitoring improves the chance of success, but an invasion may seem to be in decline even when it is expanding in abundance or spatial extent. Determining whether an invasion is in decline is a challenging inference problem for two reasons. First, it is typically infeasible to regularly survey the entire infested region owing to high cost. Second, surveillance methods are imperfect and fail to detect some individuals. These two factors also make it difficult to determine why an eradication program is failing. Agent-based methods enable inferences to be made about the locations of undiscovered individuals over time to identify trends in invader abundance and spatial extent. We develop an agent-based Bayesian method and apply it to Australia’s largest eradication program: the campaign to eradicate the red imported fire ant (Solenopsis invicta) from Brisbane. The invasion was deemed to be almost eradicated in 2004 but our analyses indicate that its geographic range continued to expand despite a sharp decline in number of nests. We also show that eradication would probably have been achieved with a relatively small increase in the area searched and treated. Our results demonstrate the importance of inferring temporal and spatial trends in ongoing invasions. The method can handle incomplete observations and takes into account the effects of human intervention. It has the potential to transform eradication practices. PMID:23878210

  16. GyrB polymorphisms accurately assign invasive viridans group streptococcal species.

    PubMed

    Galloway-Peña, Jessica; Sahasrabhojane, Pranoti; Tarrand, Jeffrey; Han, Xiang Y; Shelburne, Samuel A

    2014-08-01

    Viridans group streptococci (VGS) are a heterogeneous group of medically important bacteria that cannot be accurately assigned to a particular species using conventional phenotypic methods. Although multilocus sequence analysis (MLSA) is considered the gold standard for VGS species-level identification, MLSA is not yet feasible in the clinical setting. Conversely, molecular methods, such as sodA and 16S rRNA gene sequencing, are clinically practical but not sufficiently accurate for VGS species-level identification. Here, we present data regarding the use of an ∼ 400-nucleotide internal fragment of the gene encoding DNA gyrase subunit B (GyrB) for VGS species-level identification. MLSA, internal gyrB, sodA, full-length, and 5' 16S gene sequences were used to characterize 102 unique VGS blood isolates collected from 2011 to 2012. When using the MLSA species assignment as a reference, full-length and 5' partial 16S gene and sodA sequence analyses failed to correctly assign all strains to a species. Precise species determination was particularly problematic for Streptococcus mitis and Streptococcus oralis isolates. However, the internal gyrB fragment allowed for accurate species designations for all 102 strains. We validated these findings using 54 VGS strains for which MLSA, 16S gene, sodA, and gyrB data are available at the NCBI, showing that gyrB is superior to 16S gene and sodA sequence analyses for VGS species identification. We also observed that specific polymorphisms in the 133-amino acid sequence of the internal GyrB fragment can be used to identify invasive VGS species. Thus, the GyrB amino acid sequence may offer a more practical and accurate method for classifying invasive VGS strains to the species level. PMID:24899021

  17. Species displacements are common to two invasive species of leafminer fly in China, Japan, and the United States.

    PubMed

    Gao, Yulin; Lei, Zhongren; Abe, Yoshihisa; Reitz, Stuart R

    2011-12-01

    Under field conditions, species displacements have occurred in different directions between the same invasive species of leafminers (Diptera: Agromyzidae). Liriomyza sativae (Blanchard) was displaced by L. trifolii (Burgess) in the western United States, with evidence suggesting that lower insecticide susceptibility of L. trifolii is a factor. However, in Japan, the opposite has occurred, as L. trifolii was recently displaced by L. sativae. This displacement is probably because of the higher fecundity of L. sativae and differential effects of parasitoids on the two leafminer species. Here, we carried out long-term surveys of these same two invasive leafminer species during January through March in 1999, 2007, and 2011, as well as June through July in 2011, in eight locations (Sanya, Dongfang, Haikou, Leidong, Lingshui, Wuzhisan, Qionghai, and Danzhou) across Hainan Island of southern China. Our results indicate that, between 2007 and 2011, L. trifolii rapidly replaced L. sativae as the predominant leafminer of vegetables on Hainan Island, similar to the situation in the western United States. Further surveys of growers revealed that avermectins and cyromazine are the two most frequently used insecticides against leafminers on Hainan Island. Dose-mortality tests showed that L. trifolii populations from Hainan Island are less susceptible to avermectins and cyromazine compared with L. sativae populations. This lower insecticide susceptibility of L. trifolii may be associated with the displacement of L. sativae by L. trifolii, although additional ecological or environmental factors cannot be ruled out.

  18. Cryptic species, native populations and biological invasions by a eucalypt forest pathogen.

    PubMed

    Pérez, Guillermo; Slippers, Bernard; Wingfield, Michael J; Wingfield, Brenda D; Carnegie, Angus J; Burgess, Treena I

    2012-09-01

    Human-associated introduction of pathogens and consequent invasions is very evident in areas where no related organisms existed before. In areas where related but distinct populations or closely related cryptic species already exist, the invasion process is much harder to unravel. In this study, the population structure of the Eucalyptus leaf pathogen Teratosphaeria nubilosa was studied within its native range in Australia, including both commercial plantations and native forests. A collection of 521 isolates from across its distribution was characterized using eight microsatellite loci, resulting in 112 multilocus haplotypes (MLHs). Multivariate and Bayesian analyses of the population conducted in structure revealed three genetically isolated groups (A, B and C), with no evidence for recombination or hybridization among groups, even when they co-occur in the same plantation. DNA sequence data of the ITS (n = 32), β-tubulin (n = 32) and 27 anonymous loci (n = 16) were consistent with microsatellite data in suggesting that T. nubilosa should be considered as a species complex. Patterns of genetic diversity provided evidence of biological invasions by the pathogen within Australia in the states of Western Australia and New South Wales and helped unravel the pattern of invasion beyond Australia into New Zealand, Brazil and Uruguay. No significant genetic differences in pathogen populations collected in native forests and commercial plantations were observed. This emphasizes the importance of sanitation in the acquisition of nursery stock for the establishment of commercial plantations.

  19. A framework for sustainable invasive species management: environmental, social and economic objectives

    USGS Publications Warehouse

    Larson, Diane L.; Phillips-Mao, Laura; Quiram, Gina; Sharpe, Leah; Stark, Rebecca; Sugita, Shinya; Weiler, Annie

    2011-01-01

    Applying the concept of sustainability to invasive species management (ISM) is challenging but necessary, given the increasing rates of invasion and the high costs of invasion impacts and control. To be sustainable, ISM must address environmental, social, and economic factors (or *pillars*) that influence the causes, impacts, and control of invasive species across multiple spatial and temporal scales. Although these pillars are generally acknowledged, their implementation is often limited by insufficient control options and significant economic and political constraints. In this paper, we outline specific objectives in each of these three *pillars* that, if incorporated into a management plan, will improve the plan's likelihood of sustainability. We then examine three case studies that illustrate how these objectives can be effectively implemented. Each pillar reinforces the others, such that the inclusion of even a few of the outlined objectives will lead to more effective management that achieves ecological goals, while generating social support and long-term funding to maintain projects to completion. We encourage agency directors and policy-makers to consider sustainability principles when developing funding schemes, management agendas, and policy.

  20. A framework for sustainable invasive species management: Environmental, social, and economic objectives.

    PubMed

    Larson, Diane L; Phillips-Mao, Laura; Quiram, Gina; Sharpe, Leah; Stark, Rebecca; Sugita, Shinya; Weiler, Annie

    2011-01-01

    Applying the concept of sustainability to invasive species management (ISM) is challenging but necessary, given the increasing rates of invasion and the high costs of invasion impacts and control. To be sustainable, ISM must address environmental, social, and economic factors (or "pillars") that influence the causes, impacts, and control of invasive species across multiple spatial and temporal scales. Although these pillars are generally acknowledged, their implementation is often limited by insufficient control options and significant economic and political constraints. In this paper, we outline specific objectives in each of these three "pillars" that, if incorporated into a management plan, will improve the plan's likelihood of sustainability. We then examine three case studies that illustrate how these objectives can be effectively implemented. Each pillar reinforces the others, such that the inclusion of even a few of the outlined objectives will lead to more effective management that achieves ecological goals, while generating social support and long-term funding to maintain projects to completion. We encourage agency directors and policy-makers to consider sustainability principles when developing funding schemes, management agendas, and policy.

  1. Patchy Invasion of Stage-Structured Alien Species with Short-Distance and Long-Distance Dispersal.

    PubMed

    Rodrigues, Luiz Alberto Díaz; Mistro, Diomar Cristina; Cara, Elisa Regina; Petrovskaya, Natalia; Petrovskii, Sergei

    2015-08-01

    Understanding of spatiotemporal patterns arising in invasive species spread is necessary for successful management and control of harmful species, and mathematical modeling is widely recognized as a powerful research tool to achieve this goal. The conventional view of the typical invasion pattern as a continuous population traveling front has been recently challenged by both empirical and theoretical results revealing more complicated, alternative scenarios. In particular, the so-called patchy invasion has been a focus of considerable interest; however, its theoretical study was restricted to the case where the invasive species spreads by predominantly short-distance dispersal. Meanwhile, there is considerable evidence that the long-distance dispersal is not an exotic phenomenon but a strategy that is used by many species. In this paper, we consider how the patchy invasion can be modified by the effect of the long-distance dispersal and the effect of the fat tails of the dispersal kernels. PMID:26438447

  2. How complete is our knowledge of the ecosystem services impacts of Europe's top 10 invasive species?

    NASA Astrophysics Data System (ADS)

    McLaughlan, C.; Gallardo, B.; Aldridge, D. C.

    2014-01-01

    Invasive non-native species have complex multilevel impacts on their introduced ecosystems, leading to far-ranging effects on fundamental ecosystem services, from the provision of food from that system, to human health and wellbeing. For this reason, there is an emerging interest in basing risk assessments not only on the species' ecological and economic impacts, but also on the effects related to ecosystem services. We investigated the quality and extent of baseline data detailing the effects that the top 10 of the 'worst' invasive species in Europe are having on their adopted ecosystems. The results were striking, as the 10 species showed a wide range of impacts on ecosystem services, a number of which were actually positive for ecosystems and human well-being. For instance, the bivalve Dreissena polymorpha is a prolific biofouler of pipes and boats, but it can improve water quality through its filtration of nuisance algae, a valuable effect that is often overlooked. We found that negative effects, particularly economic ones, were often assumed rather than quantitatively evidenced; for example, the cost of crop damage by species such as Myocastor coypus and Branta canadensis. In general, the evidence for impacts of these 'worst' invaders was severely lacking. We conclude that invasive species management requires prioritization, which should be based on informed and quantified assessment of the potential ecological and economic costs of species (both positive and negative), considered in the proper context of the invader and ecosystem. The Millennium Ecosystem Approach provides a useful framework to undertake such prioritization from a new perspective combining ecological and societal aspects. However, standard guidelines of evaluation are urgently needed in order to unify definitions, methods and evaluation scores.

  3. Invasive Species and Biodiversity Crises: Testing the Link in the Late Devonian

    PubMed Central

    Stigall, Alycia L.

    2010-01-01

    During the Late Devonian Biodiversity Crisis, the primary driver of biodiversity decline was the dramatic reduction in speciation rates, not elevated extinction rates; however, the causes of speciation decline have been previously unstudied. Speciation, the formation of new species from ancestral populations, occurs by two primary allopatric mechanisms: vicariance, where the ancestral population is passively divided into two large subpopulations that later diverge and form two daughter species, and dispersal, in which a small subset of the ancestral population actively migrates then diverges to form a new species. Studies of modern and fossil clades typically document speciation by vicariance in much higher frequencies than speciation by dispersal. To assess the mechanism behind Late Devonian speciation reduction, speciation rates were calculated within stratigraphically constrained species-level phylogenetic hypotheses for three representative clades and mode of speciation at cladogenetic events was assessed across four clades in three phyla: Arthropoda, Brachiopoda, and Mollusca. In all cases, Devonian taxa exhibited a congruent reduction in speciation rate between the Middle Devonian pre-crisis interval and the Late Devonian crisis interval. Furthermore, speciation via vicariance is almost entirely absent during the crisis interval; most episodes of speciation during this time were due to dispersal. The shutdown of speciation by vicariance during this interval was related to widespread interbasinal species invasions. The lack of Late Devonian vicariance is diametrically opposed to the pattern observed in other geologic intervals, which suggests the loss of vicariant speciation attributable to species invasions during the Late Devonian was a causal factor in the biodiversity crisis. Similarly, modern ecosystems, in which invasive species are rampant, may be expected to exhibit similar shutdown of speciation by vicariance as an outcome of the modern biodiversity

  4. Biology and impacts of Pacific island invasive species 9. Capra hircus, the feral goat, (Mammalia: Bovidae)

    USGS Publications Warehouse

    Chynoweth, Mark W.; Litton, Creighton M.; Lepczyk, Christopher A.; Hess, Steve A.; Cordell, Susan

    2013-01-01

    Domestic goats, Capra hircus, were intentionally introduced to numerous oceanic islands beginning in the sixteenth century. The remarkable ability of C. hircus to survive in a variety of conditions has enabled this animal to become feral and impact native ecosystems on islands throughout the world. Direct ecological impacts include consumption and trampling of native plants, leading to plant community modification and transformation of ecosystem structure. While the negative impacts of feral goats are well-known and effective management strategies have been developed to control this invasive species, large populations persist on many islands. This review summarizes the impacts of feral goats on Pacific island ecosystems, and the management strategies available to control this invasive species.

  5. In the Weeds: Idaho’s Invasive Species Laws and Biofuel Research and Development

    DOE PAGES

    Pope, April Lea

    2015-05-01

    Federal laws, policies, and programs that incentivize and mandate the development of biofuels have local effects on both Idaho’s environment and on research supporting biofuels. The passage of a new energy crop rule in Idaho, effective as of March 20, 2014, follows an increased interest in growing, possessing, and transporting energy crops comprised of invasive plant species that are regulated under Idaho’s Invasive Species Act. Idaho’s new energy crop rule is an example of how a state can take measures to protect against unintended consequences of federal laws, policies, and programs while also taking advantage of the benefits of suchmore » policies and programs.« less

  6. Expansion of an invasive coral species over Abrolhos Bank, Southwestern Atlantic.

    PubMed

    Costa, Thiago J F; Pinheiro, Hudson T; Teixeira, João Batista; Mazzei, Eric F; Bueno, Leonardo; Hora, Mike S C; Joyeux, Jean-Christophe; Carvalho-Filho, Alfredo; Amado-Filho, Gilberto; Sampaio, Claudio L S; Rocha, Luiz A

    2014-08-15

    Invasive coral species of the genus Tubastraea have been increasingly recorded in Southwestern Atlantic waters since the 1980s. Their invasion and infestation are mainly related to port and oil exploration activities. For the first time the presence of Tubastraea tagusensis colonies is reported in Espírito Santo State, colonizing a port shore area, and incrusting oil/gas platform structures situated in the southern Abrolhos Bank, which is part of the most important coral reef system of the South Atlantic Ocean. Tubastraea colonies exhibit fast growth and high recruitment rates, and colonized 40% of the analyzed structures in just four years. The projection of port and oil/gas industry growth for the Espírito Santo State (more than 300%) highlights an alert to the dispersal of this alien species to natural areas.

  7. Canopy and knowledge gaps when invasive alien insects remove foundation species

    PubMed Central

    Marler, Thomas E.; Lawrence, John H.

    2013-01-01

    The armored scale Aulacaspis yasumatsui invaded the northern range of the cycad Cycas micronesica in 2003, and epidemic tree mortality ensued due to a lack of natural enemies of the insect. We quantified cycad demographic responses to the invasion, but the ecological responses to the selective removal of this foundation species have not been addressed. We use this case to highlight information gaps in our understanding of how alien invasive phytophagous insects force cascading adverse ecosystem changes. The mechanistic role of unique canopy gaps, oceanic island examples and threatened foundation species with distinctive traits are three issues that deserve research efforts in a quest to understand this facet of ecosystem change occurring across multiple settings globally. PMID:23847712

  8. Forest legacies, climate change, altered disturbance regimes, invasive species and water

    USGS Publications Warehouse

    Stohlgren, T.; Jarnevich, C.; Kumar, S.

    2007-01-01

    The factors that must be considered in seeking to predict changes in water availability has been examined. These factors are the following: forest legacies including logging, mining, agriculture, grazing, elimination of large carnivores, human-caused wildfire, and pollution; climate change and stream flow; altered disturbances such as frequency intensity and pattern of wildfires and insect outbreaks as well as flood control; lastly, invasive species like forest pests and pathogens. An integrated approach quantifying the current and past condition trends can be combined with spatial and temporal modeling to develop future change in forest structures and water supply. The key is a combination of geographic information system technologies with climate and land use scenarios, while preventing and minimizing the effects of harmful invasive species.

  9. Expansion of an invasive coral species over Abrolhos Bank, Southwestern Atlantic.

    PubMed

    Costa, Thiago J F; Pinheiro, Hudson T; Teixeira, João Batista; Mazzei, Eric F; Bueno, Leonardo; Hora, Mike S C; Joyeux, Jean-Christophe; Carvalho-Filho, Alfredo; Amado-Filho, Gilberto; Sampaio, Claudio L S; Rocha, Luiz A

    2014-08-15

    Invasive coral species of the genus Tubastraea have been increasingly recorded in Southwestern Atlantic waters since the 1980s. Their invasion and infestation are mainly related to port and oil exploration activities. For the first time the presence of Tubastraea tagusensis colonies is reported in Espírito Santo State, colonizing a port shore area, and incrusting oil/gas platform structures situated in the southern Abrolhos Bank, which is part of the most important coral reef system of the South Atlantic Ocean. Tubastraea colonies exhibit fast growth and high recruitment rates, and colonized 40% of the analyzed structures in just four years. The projection of port and oil/gas industry growth for the Espírito Santo State (more than 300%) highlights an alert to the dispersal of this alien species to natural areas. PMID:24975092

  10. Comparing the ecological impacts of native and invasive crayfish: could native species' translocation do more harm than good?

    PubMed

    James, J; Slater, F M; Vaughan, I P; Young, K A; Cable, J

    2015-05-01

    Biological invasions are a principal threat to global biodiversity. Omnivores, such as crayfish, are among the most important groups of invaders. Their introduction often results in biodiversity loss, particularly of their native counterparts. Managed relocations of native crayfish from areas under threat from invasive crayfish into isolated 'ark sites' are sometimes suggested as a conservation strategy for native crayfish; however, such relocations may have unintended detrimental consequences for the recipient ecosystem. Despite this, there have been few attempts to quantify the relative impacts of native and invasive crayfish on aquatic ecosystems. To address this deficiency we conducted a meta-analysis on the effects of native and invasive crayfish on nine ecosystem components: decomposition rate, primary productivity, plant biomass, invertebrate density, biomass and diversity, fish biomass and refuge use, and amphibian larval survival. Native and invasive crayfish significantly reduced invertebrate density and biomass, fish biomass and amphibian survival rate and significantly increased decomposition rates. Invasive crayfish also significantly reduced plant biomass and invertebrate diversity and increased primary productivity. These results show that native and invasive crayfish have wide-ranging impacts on aquatic ecosystems that may be exacerbated for invasive species. Subsequent analysis showed that the impacts of invasive crayfish were significantly greater, in comparison to native crayfish, for decomposition and primary productivity but not invertebrate density, biomass and diversity. Overall, our findings reconfirm the ecosystem altering abilities of both native and invasive crayfish, enforcing the need to carefully regulate managed relocations of native species as well as to develop control programs for invasives. PMID:25549809

  11. Comparing the ecological impacts of native and invasive crayfish: could native species' translocation do more harm than good?

    PubMed

    James, J; Slater, F M; Vaughan, I P; Young, K A; Cable, J

    2015-05-01

    Biological invasions are a principal threat to global biodiversity. Omnivores, such as crayfish, are among the most important groups of invaders. Their introduction often results in biodiversity loss, particularly of their native counterparts. Managed relocations of native crayfish from areas under threat from invasive crayfish into isolated 'ark sites' are sometimes suggested as a conservation strategy for native crayfish; however, such relocations may have unintended detrimental consequences for the recipient ecosystem. Despite this, there have been few attempts to quantify the relative impacts of native and invasive crayfish on aquatic ecosystems. To address this deficiency we conducted a meta-analysis on the effects of native and invasive crayfish on nine ecosystem components: decomposition rate, primary productivity, plant biomass, invertebrate density, biomass and diversity, fish biomass and refuge use, and amphibian larval survival. Native and invasive crayfish significantly reduced invertebrate density and biomass, fish biomass and amphibian survival rate and significantly increased decomposition rates. Invasive crayfish also significantly reduced plant biomass and invertebrate diversity and increased primary productivity. These results show that native and invasive crayfish have wide-ranging impacts on aquatic ecosystems that may be exacerbated for invasive species. Subsequent analysis showed that the impacts of invasive crayfish were significantly greater, in comparison to native crayfish, for decomposition and primary productivity but not invertebrate density, biomass and diversity. Overall, our findings reconfirm the ecosystem altering abilities of both native and invasive crayfish, enforcing the need to carefully regulate managed relocations of native species as well as to develop control programs for invasives.

  12. Advancing the science of microbial symbiosis to support invasive species management: a case study on Phragmites in the Great Lakes.

    PubMed

    Kowalski, Kurt P; Bacon, Charles; Bickford, Wesley; Braun, Heather; Clay, Keith; Leduc-Lapierre, Michèle; Lillard, Elizabeth; McCormick, Melissa K; Nelson, Eric; Torres, Monica; White, James; Wilcox, Douglas A

    2015-01-01

    A growing body of literature supports microbial symbiosis as a foundational principle for the competitive success of invasive plant species. Further exploration of the relationships between invasive species and their associated microbiomes, as well as the interactions with the microbiomes of native species, can lead to key new insights into invasive success and potentially new and effective control approaches. In this manuscript, we review microbial relationships with plants, outline steps necessary to develop invasive species control strategies that are based on those relationships, and use the invasive plant species Phragmites australis (common reed) as an example of how development of microbial-based control strategies can be enhanced using a collective impact approach. The proposed science agenda, developed by the Collaborative for Microbial Symbiosis and Phragmites Management, contains a foundation of sequential steps and mutually-reinforcing tasks to guide the development of microbial-based control strategies for Phragmites and other invasive species. Just as the science of plant-microbial symbiosis can be transferred for use in other invasive species, so too can the model of collective impact be applied to other avenues of research and management.

  13. Advancing the science of microbial symbiosis to support invasive species management: a case study on Phragmites in the Great Lakes.

    PubMed

    Kowalski, Kurt P; Bacon, Charles; Bickford, Wesley; Braun, Heather; Clay, Keith; Leduc-Lapierre, Michèle; Lillard, Elizabeth; McCormick, Melissa K; Nelson, Eric; Torres, Monica; White, James; Wilcox, Douglas A

    2015-01-01

    A growing body of literature supports microbial symbiosis as a foundational principle for the competitive success of invasive plant species. Further exploration of the relationships between invasive species and their associated microbiomes, as well as the interactions with the microbiomes of native species, can lead to key new insights into invasive success and potentially new and effective control approaches. In this manuscript, we review microbial relationships with plants, outline steps necessary to develop invasive species control strategies that are based on those relationships, and use the invasive plant species Phragmites australis (common reed) as an example of how development of microbial-based control strategies can be enhanced using a collective impact approach. The proposed science agenda, developed by the Collaborative for Microbial Symbiosis and Phragmites Management, contains a foundation of sequential steps and mutually-reinforcing tasks to guide the development of microbial-based control strategies for Phragmites and other invasive species. Just as the science of plant-microbial symbiosis can be transferred for use in other invasive species, so too can the model of collective impact be applied to other avenues of research and management. PMID:25745417

  14. Advancing the science of microbial symbiosis to support invasive species management: a case study on Phragmites in the Great Lakes

    PubMed Central

    Kowalski, Kurt P.; Bacon, Charles; Bickford, Wesley; Braun, Heather; Clay, Keith; Leduc-Lapierre, Michèle; Lillard, Elizabeth; McCormick, Melissa K.; Nelson, Eric; Torres, Monica; White, James; Wilcox, Douglas A.

    2015-01-01

    A growing body of literature supports microbial symbiosis as a foundational principle for the competitive success of invasive plant species. Further exploration of the relationships between invasive species and their associated microbiomes, as well as the interactions with the microbiomes of native species, can lead to key new insights into invasive success and potentially new and effective control approaches. In this manuscript, we review microbial relationships with plants, outline steps necessary to develop invasive species control strategies that are based on those relationships, and use the invasive plant species Phragmites australis (common reed) as an example of how development of microbial-based control strategies can be enhanced using a collective impact approach. The proposed science agenda, developed by the Collaborative for Microbial Symbiosis and Phragmites Management, contains a foundation of sequential steps and mutually-reinforcing tasks to guide the development of microbial-based control strategies for Phragmites and other invasive species. Just as the science of plant-microbial symbiosis can be transferred for use in other invasive species, so too can the model of collective impact be applied to other avenues of research and management. PMID:25745417

  15. Advancing the science of microbial symbiosis to support invasive species management: a case study on Phragmites in the Great Lakes

    USGS Publications Warehouse

    Kowalski, Kurt P.; Bacon, Charles R.; Bickford, Wesley A.; Braun, Heather A.; Clay, Keith; Leduc-Lapierre, Michele; Lillard, Elizabeth; McCormick, Melissa K.; Nelson, Eric; Torres, Monica; White, James W. C.; Wilcox, Douglas A.

    2015-01-01

    A growing body of literature supports microbial symbiosis as a foundational principle for the competitive success of invasive plant species. Further exploration of the relationships between invasive species and their associated microbiomes, as well as the interactions with the microbiomes of native species, can lead to key new insights into invasive success and potentially new and effective control approaches. In this manuscript, we review microbial relationships with plants, outline steps necessary to develop invasive species control strategies that are based on those relationships, and use the invasive plant species Phragmites australis (common reed) as an example of how development of microbial-based control strategies can be enhanced using a collective impact approach. The proposed science agenda, developed by the Collaborative for Microbial Symbiosis andPhragmites Management, contains a foundation of sequential steps and mutually-reinforcing tasks to guide the development of microbial-based control strategies for Phragmites and other invasive species. Just as the science of plant-microbial symbiosis can be transferred for use in other invasive species, so too can the model of collective impact be applied to other avenues of research and management.

  16. Biological control of invasive plant species: a reassessment for the Anthropocene.

    PubMed

    Seastedt, Timothy R

    2015-01-01

    The science of finding, testing and releasing herbivores and pathogens to control invasive plant species has achieved a level of maturity and success that argues for continued and expanded use of this program. The practice, however, remains unpopular with some conservationists, invasion biologists, and stakeholders. The ecological and economic benefits of controlling densities of problematic plant species using biological control agents can be quantified, but the risks and net benefits of biological control programs are often derived from social or cultural rather than scientific criteria. Management of invasive plants is a 'wicked problem', and local outcomes to wicked problems have both positive and negative consequences differentially affecting various groups of stakeholders. The program has inherent uncertainties; inserting species into communities that are experiencing directional or even transformational changes can produce multiple outcomes due to context-specific factors that are further confounded by environmental change drivers. Despite these uncertainties, biological control could play a larger role in mitigation and adaptation strategies used to maintain biological diversity as well as contribute to human well-being by protecting food and fiber resources.

  17. Considering native and exotic terrestrial reptiles in island invasive species eradication programmes in the Tropical Pacific

    USGS Publications Warehouse

    Fisher, Richard N.; Veitch, C.R.; Clout, Mike N.; Towns, D. R.

    2010-01-01

    Most island restoration projects with reptiles, either as direct beneficiaries of conservation or as indicators of recovery responses, have been on temperate or xeric islands. There have been decades of research, particularly on temperate islands in New Zealand, on the responses of native reptiles to mammal eradications but very few studies in tropical insular systems. Recent increases in restoration projects involving feral mammal eradications in the tropical Pacific have led to several specific challenges related to native and invasive reptiles. This paper reviews these challenges and discusses some potential solutions to them. The first challenge is that the tropical Pacific herpetofauna is still being discovered, described and understood. There is thus incomplete knowledge of how eradication activities may affect these faunas and the potential risks facing critical populations of these species from these eradication actions. The long term benefit of the removal of invasives is beneficial, but the possible short term impacts to small populations on small islands might be significant. The second challenge is that protocols for monitoring the responses of these species are not well documented but are often different from those used in temperate or xeric habitats. Lizard monitoring techniques used in the tropical Pacific are discussed. The third challenge involves invasive reptiles already in the tropical Pacific, some of which could easily spread accidentally through eradication and monitoring operations. The species posing the greatest threats in this respect are reviewed, and recommendations for biosecurity concerning these taxa are made.

  18. Biological control of invasive plant species: a reassessment for the Anthropocene.

    PubMed

    Seastedt, Timothy R

    2015-01-01

    The science of finding, testing and releasing herbivores and pathogens to control invasive plant species has achieved a level of maturity and success that argues for continued and expanded use of this program. The practice, however, remains unpopular with some conservationists, invasion biologists, and stakeholders. The ecological and economic benefits of controlling densities of problematic plant species using biological control agents can be quantified, but the risks and net benefits of biological control programs are often derived from social or cultural rather than scientific criteria. Management of invasive plants is a 'wicked problem', and local outcomes to wicked problems have both positive and negative consequences differentially affecting various groups of stakeholders. The program has inherent uncertainties; inserting species into communities that are experiencing directional or even transformational changes can produce multiple outcomes due to context-specific factors that are further confounded by environmental change drivers. Despite these uncertainties, biological control could play a larger role in mitigation and adaptation strategies used to maintain biological diversity as well as contribute to human well-being by protecting food and fiber resources. PMID:25303317

  19. Macroalgal assemblages of disturbed coastal detritic bottoms subject to invasive species

    NASA Astrophysics Data System (ADS)

    Klein, Judith C.; Verlaque, Marc

    2009-04-01

    Characteristic flora and fauna that are highly sensitive to disturbances colonize coastal detritic bottoms in the Mediterranean Sea. In the present study, a comparison of the assemblage composition and colonization by invasive macroalgae was made between two coastal detritic macrophyte assemblages, one dominated by rhodoliths (free-living non-geniculate Corallinales) and the other dominated by fleshy algae, in an area that has been exposed to important levels of anthropogenic disturbance, mainly pollution (including changed sedimentation regimes) in the recent past (bay of Marseilles, France). In comparison with less strongly impacted Mediterranean regions, the macrophyte assemblages in the bay of Marseilles were characteristic in terms of species identity and richness of coastal detritic macrophyte assemblages. However, extremely low species abundance (cover) was observed. As far as invasive species were concerned, Caulerpa racemosa var. cylindracea was only abundant in the rhodolith assemblage whereas the two invasive Rhodophyta Asparagopsis armata and Womersleyella setacea were mainly found in the fleshy algae assemblage. The seasonality observed in the Rhodolith assemblage seemed to be related to the development of C. racemosa var. cylindracea and did not follow the typical pattern of other Mediterranean assemblages. This study represents the first study of coastal detritic assemblages invaded by C. racemosa var. cylindracea.

  20. Potential problems of removing one invasive species at a time: a meta-analysis of the interactions between invasive vertebrates and unexpected effects of removal programs.

    PubMed

    Ballari, Sebastián A; Kuebbing, Sara E; Nuñez, Martin A

    2016-01-01

    Although the co-occurrence of nonnative vertebrates is a ubiquitous global phenomenon, the study of interactions between invaders is poorly represented in the literature. Limited understanding of the interactions between co-occurring vertebrates can be problematic for predicting how the removal of only one invasive-a common management scenario-will affect native communities. We suggest a trophic food web framework for predicting the effects of single-species management on native biodiversity. We used a literature search and meta-analysis to assess current understanding of how the removal of one invasive vertebrate affects native biodiversity relative to when two invasives are present. The majority of studies focused on the removal of carnivores, mainly within aquatic systems, which highlights a critical knowledge gap in our understanding of co-occurring invasive vertebrates. We found that removal of one invasive vertebrate caused a significant negative effect on native species compared to when two invasive vertebrates were present. These unexpected results could arise because of the positioning and hierarchy of the co-occurring invasives in the food web (e.g., carnivore-carnivore or carnivore-herbivore). We consider that there are important knowledge gaps to determinate the effects of multiple co-existing invaders on native ecosystems, and this information could be precious for management.

  1. Potential problems of removing one invasive species at a time: a meta-analysis of the interactions between invasive vertebrates and unexpected effects of removal programs.

    PubMed

    Ballari, Sebastián A; Kuebbing, Sara E; Nuñez, Martin A

    2016-01-01

    Although the co-occurrence of nonnative vertebrates is a ubiquitous global phenomenon, the study of interactions between invaders is poorly represented in the literature. Limited understanding of the interactions between co-occurring vertebrates can be problematic for predicting how the removal of only one invasive-a common management scenario-will affect native communities. We suggest a trophic food web framework for predicting the effects of single-species management on native biodiversity. We used a literature search and meta-analysis to assess current understanding of how the removal of one invasive vertebrate affects native biodiversity relative to when two invasives are present. The majority of studies focused on the removal of carnivores, mainly within aquatic systems, which highlights a critical knowledge gap in our understanding of co-occurring invasive vertebrates. We found that removal of one invasive vertebrate caused a significant negative effect on native species compared to when two invasive vertebrates were present. These unexpected results could arise because of the positioning and hierarchy of the co-occurring invasives in the food web (e.g., carnivore-carnivore or carnivore-herbivore). We consider that there are important knowledge gaps to determinate the effects of multiple co-existing invaders on native ecosystems, and this information could be precious for management. PMID:27280066

  2. Incentivizing the public to support invasive species management: eurasian milfoil reduces lakefront property values.

    PubMed

    Olden, Julian D; Tamayo, Mariana

    2014-01-01

    Economic evaluations of invasive species are essential for providing comprehensive assessments of the benefits and costs of publicly-funded management activities, yet many previous investigations have focused narrowly on expenditures to control spread and infestation. We use hedonic modeling to evaluate the economic effects of Eurasian milfoil (Myriophyllum spicatum) invasions on lakefront property values of single-family homes in an urban-suburban landscape. Milfoil often forms dense canopies at the water surface, diminishing the value of ecosystem services (e.g., recreation, fishing) and necessitating expensive control and management efforts. We compare 1,258 lakeshore property sale transactions (1995-2006) in 17 lakes with milfoil and 24 un-invaded lakes in King County, Washington (USA). After accounting for structural (e.g., house size), locational (e.g., boat launch), and environmental characteristics (e.g., water clarity) of lakes, we found that milfoil has a significant negative effect on property sales price ($94,385 USD lower price), corresponding to a 19% decline in mean property values. The aggregate cost of milfoil invading one additional lake in the study area is, on average, $377,542 USD per year. Our study illustrates that invasive aquatic plants can significantly impact property values (and associated losses in property taxes that reduce local government revenue), justifying the need for management strategies that prevent and control invasions. We recommend coordinated efforts across Lake Management Districts to focus institutional support, funding, and outreach to prevent the introduction and spread of milfoil. This effort will limit opportunities for re-introduction from neighboring lakes and incentivize private landowners and natural resource agencies to commit time and funding to invasive species management. PMID:25333619

  3. Incentivizing the Public to Support Invasive Species Management: Eurasian Milfoil Reduces Lakefront Property Values

    PubMed Central

    Olden, Julian D.; Tamayo, Mariana

    2014-01-01

    Economic evaluations of invasive species are essential for providing comprehensive assessments of the benefits and costs of publicly-funded management activities, yet many previous investigations have focused narrowly on expenditures to control spread and infestation. We use hedonic modeling to evaluate the economic effects of Eurasian milfoil (Myriophyllum spicatum) invasions on lakefront property values of single-family homes in an urban-suburban landscape. Milfoil often forms dense canopies at the water surface, diminishing the value of ecosystem services (e.g., recreation, fishing) and necessitating expensive control and management efforts. We compare 1,258 lakeshore property sale transactions (1995–2006) in 17 lakes with milfoil and 24 un-invaded lakes in King County, Washington (USA). After accounting for structural (e.g., house size), locational (e.g., boat launch), and environmental characteristics (e.g., water clarity) of lakes, we found that milfoil has a significant negative effect on property sales price ($94,385 USD lower price), corresponding to a 19% decline in mean property values. The aggregate cost of milfoil invading one additional lake in the study area is, on average, $377,542 USD per year. Our study illustrates that invasive aquatic plants can significantly impact property values (and associated losses in property taxes that reduce local government revenue), justifying the need for management strategies that prevent and control invasions. We recommend coordinated efforts across Lake Management Districts to focus institutional support, funding, and outreach to prevent the introduction and spread of milfoil. This effort will limit opportunities for re-introduction from neighboring lakes and incentivize private landowners and natural resource agencies to commit time and funding to invasive species management. PMID:25333619

  4. Tolerance and resistance of invasive and native Eupatorium species to generalist herbivore insects

    NASA Astrophysics Data System (ADS)

    Wang, Rui-Fang; Feng, Yu-Long

    2016-11-01

    Invasive plants are exotic species that escape control by native specialist enemies. However, exotic plants may still be attacked by locally occurring generalist enemies, which can influence the dynamics of biological invasions. If invasive plants have greater defensive (resistance and tolerance) capabilities than indigenous plants, they may experience less damage from native herbivores. In the present study, we tested this prediction using the invasive plant Eupatorium adenophorum and two native congeners under simulated defoliation and generalist herbivore insect (Helicoverpa armigera and Spodoptera litura) treatments. E. adenophorum was less susceptible and compensated more quickly to damages in biomass production from both treatments compared to its two congeners, exhibiting greater herbivore tolerance. This strong tolerance to damage was associated with greater resource allocation to aboveground structures, leading to a higher leaf area ratio and a lower root: crown mass ratio than those of its native congeners. E. adenophorum also displayed a higher resistance index (which integrates acid detergent fiber, nitrogen content, carbon/nitrogen ratio, leaf mass per area, toughness, and trichome density) than its two congeners. Thus, H. armigera and S. litura performed poorly on E. adenophorum, with less leaf damage, a lengthened insect developmental duration, and decreased pupating: molting ratios compared to those of the native congeners. Strong tolerance and resistance traits may facilitate the successful invasion of E. adenophorum in China and may decrease the efficacy of leaf-feeding biocontrol agents. Our results highlight both the need for further research on defensive traits and their role in the invasiveness and biological control of exotic plants, and suggest that biocontrol of E. adenophorum in China would require damage to the plant far in excess of current levels.

  5. Mitochondrial Respiratory Dysfunction Induces Claudin-1 Expression via Reactive Oxygen Species-mediated Heat Shock Factor 1 Activation, Leading to Hepatoma Cell Invasiveness*

    PubMed Central

    Lee, Jong-Hyuk; Lee, Young-Kyoung; Lim, Jin J.; Byun, Hae-Ok; Park, Imkyong; Kim, Gyeong-Hyeon; Xu, Wei Guang; Wang, Hee-Jung; Yoon, Gyesoon

    2015-01-01

    Although mitochondrial dysfunction has been implicated in tumor metastasis, it is unclear how it regulates tumor cell aggressiveness. We have reported previously that human hepatoma cells harboring mitochondrial defects have high tumor cell invasion activity via increased claudin-1 (Cln-1) expression. In this study, we demonstrated that mitochondrial respiratory defects induced Cln-1 transcription via reactive oxygen species (ROS)-mediated heat shock factor 1 (HSF1) activation, which contributed to hepatoma invasiveness. We first confirmed the inverse relationship between mitochondrial defects and Cln-1 induction in SNU hepatoma cells and hepatocellular carcinoma tissues. We then examined five different respiratory complex inhibitors, and complex I inhibition by rotenone most effectively induced Cln-1 at the transcriptional level. Rotenone increased both mitochondrial and cytosolic ROS. In addition, rotenone-induced Cln-1 expression was attenuated by N-acetylcysteine, an antioxidant, and exogenous H2O2 treatment was enough to increase Cln-1 transcription, implying the involvement of ROS. Next we found that ROS-mediated HSF1 activation via hyperphosphorylation was the key event for Cln-1 transcription. Moreover, the Cln-1 promoter region (from −529 to +53) possesses several HSF1 binding elements, and this region showed increased promoter activity and HSF1 binding affinity in response to rotenone treatment. Finally, we demonstrated that the invasion activity of SNU449 cells, which harbor mitochondrial defects, was blocked by siRNA-mediated HSF1 knockdown. Taken together, these results indicate that mitochondrial respiratory defects enhance Cln-1-mediated hepatoma cell invasiveness via mitochondrial ROS-mediated HSF1 activation, presenting a potential role for HSF1 as a novel mitochondrial retrograde signal-responsive transcription factor to control hepatoma cell invasiveness. PMID:26157141

  6. Cylindrospermopsis raciborskii: review of the distribution, phylogeography, and ecophysiology of a global invasive species

    PubMed Central

    Antunes, Jorge T.; Leão, Pedro N.; Vasconcelos, Vítor M.

    2015-01-01

    Cylindrospermopsis raciborskii is a cyanobacterial species extensively studied for its toxicity, bloom formation and invasiveness potential, which have consequences to public and environmental health. Its current geographical distribution, spanning different climates, suggests that C. raciborskii has acquired the status of a cosmopolitan species. From phylogeography studies, a tropical origin for this species seems convincing, with different conjectural routes of expansion toward temperate climates. This expansion may be a result of the species physiological plasticity, or of the existence of different ecotypes with distinct environmental requirements. In particular, C. raciborskii is known to tolerate wide temperature and light regimes and presents diverse nutritional strategies. This cyanobacterium is also thought to have benefited from climate change conditions, regarding its invasiveness into temperate climates. Other factors, recently put forward, such as allelopathy, may also be important to its expansion. The effect of C. raciborskii in the invaded communities is still mostly unknown but may strongly disturb species diversity at different trophic levels. In this review we present an up-to-date account of the distribution, phylogeography, ecophysiology, as well some preliminary reports of the impact of C. raciborskii in different organisms. PMID:26042108

  7. Plant species invasions along the latitudinal gradient in the United States

    USGS Publications Warehouse

    Stohlgren, T.J.; Barnett, D.; Flather, C.; Kartesz, J.; Peterjohn, B.

    2005-01-01

    It has been long established that the richness of vascular plant species and many animal taxa decreases with increasing latitude, a pattern that very generally follows declines in actual and potential evapotranspiration, solar radiation, temperature, and thus, total productivity. Using county-level data on vascular plants from the United States (3000 counties in the conterminous 48 states), we used the Akaike Information Criterion (AIC) to evaluate competing models predicting native and nonnative plant species density (number of species per square kilometer in a county) from various combinations of biotic variables (e.g., native bird species density, vegetation carbon, normalized difference vegetation index), environmental/topographic variables (elevation, variation in elevation, the number of land cover classes in the county; radiation, mean precipitation, actual evapotranspiration, and potential evapotranspiration), and human variables (human population density, crop-land, and percentage of disturbed lands in a county). We found no evidence of a latitudinal gradient for the density of native plant species and a significant, slightly positive latitudinal gradient for the density of nonnative plant species. We found stronger evidence of a significant, positive productivity gradient (vegetation carbon) for the density of native plant species and nonnative plant species. We found much stronger significant relationships when biotic, environmental/topographic, and human variables were used to predict native plant species density and nonnative plant species density. Biotic variables generally had far greater influence in multivariate models than human or environmental/topographic variables. Later, we found that the best, single, positive predictor of the density of nonnative plant species in a county was the density of native plant species in a county. While further study is needed, it may be that, while humans facilitate the initial establishment invasions of nonnative

  8. Establishing research and management priorities for invasive water primroses (Ludwigia spp.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This technical report provides background information on invasive, aquatic Ludwigia species to assist aquatic resource managers. The report includes a description of the problems caused by these invasive plant species and why their current aggressive spread should concern resource managers and poli...

  9. Molecular detection of invasive species in heterogeneous mixtures using a microfluidic carbon nanotube platform.

    PubMed

    Mahon, Andrew R; Barnes, Matthew A; Senapati, Satyajyoti; Feder, Jeffrey L; Darling, John A; Chang, Hsueh-Chia; Lodge, David M

    2011-02-18

    Screening methods to prevent introductions of invasive species are critical for the protection of environmental and economic benefits provided by native species and uninvaded ecosystems. Coastal ecosystems worldwide remain vulnerable to damage from aquatic species introductions, particularly via ballast water discharge from ships. Because current ballast management practices are not completely effective, rapid and sensitive screening methods are needed for on-site testing of ships in transit. Here, we describe a detection technology based on a microfluidic chip containing DNA oligonucleotide functionalized carbon nanotubes. We demonstrate the efficacy of the chip using three ballast-transported species either established (Dreissena bugensis) or of potential threat (Eriocheir sinensis and Limnoperna fortuneii) to the Laurentian Great Lakes. With further refinement for on-board application, the technology could lead to real-time ballast water screening to improve ship-specific management and control decisions.

  10. Meta-analysis reveals evolution in invasive plant species but little support for Evolution of Increased Competitive Ability (EICA).

    PubMed

    Felker-Quinn, Emmi; Schweitzer, Jennifer A; Bailey, Joseph K

    2013-03-01

    Ecological explanations for the success and persistence of invasive species vastly outnumber evolutionary hypotheses, yet evolution is a fundamental process in the success of any species. The Evolution of Increased Competitive Ability (EICA) hypothesis (Blossey and Nötzold 1995) proposes that evolutionary change in response to release from coevolved herbivores is responsible for the success of many invasive plant species. Studies that evaluate this hypothesis have used different approaches to test whether invasive populations allocate fewer resources to defense and more to growth and competitive ability than do source populations, with mixed results. We conducted a meta-analysis of experimental tests of evolutionary change in the context of EICA. In contrast to previous reviews, there was no support across invasive species for EICA's predictions regarding defense or competitive ability, although invasive populations were more productive than conspecific native populations under noncompetitive conditions. We found broad support for genetically based changes in defense and competitive plant traits after introduction into new ranges, but not in the manner suggested by EICA. This review suggests that evolution occurs as a result of plant introduction and population expansion in invasive plant species, and may contribute to the invasiveness and persistence of some introduced species.

  11. Using Risk Assessment and Habitat Suitability Models to Prioritise Invasive Species for Management in a Changing Climate

    PubMed Central

    Chai, Shauna-Lee; Zhang, Jian; Nixon, Amy; Nielsen, Scott

    2016-01-01

    Accounting for climate change in invasive species risk assessments improves our understanding of potential future impacts and enhances our preparedness for the arrival of new non-native species. We combined traditional risk assessment for invasive species with habitat suitability modeling to assess risk to biodiversity based on climate change. We demonstrate our method by assessing the risk for 15 potentially new invasive plant species to Alberta, Canada, an area where climate change is expected to facilitate the poleward expansion of invasive species ranges. Of the 15 species assessed, the three terrestrial invasive plant species that could pose the greatest threat to Alberta’s biodiversity are giant knotweed (Fallopia sachalinensis), tamarisk (Tamarix chinensis), and alkali swainsonpea (Sphaerophysa salsula). We characterise giant knotweed as ‘extremely invasive’, with 21 times the suitable habitat between baseline and future projected climate. Tamarisk is ‘extremely invasive’ with a 64% increase in suitable habitat, and alkali swainsonpea is ‘highly invasive’ with a 21% increase in suitable habitat. Our methodology can be used to predict and prioritise potentially new invasive species for their impact on biodiversity in the context of climate change. PMID:27768758

  12. Biomass allocation, morphology and photosynthesis of invasive and noninvasive exotic species grown at four irradiance levels

    NASA Astrophysics Data System (ADS)

    Feng, Yulong; Wang, Junfeng; Sang, Weiguo

    2007-01-01

    We tested the hypotheses that invasive species had higher irradiance plasticity, capture ability and efficiency than noninvasive species using two invasive aliens - Ageratina adenophora and Chromolaena odorata, and one noninvasive alien - Gynura sp. The three aliens were grown at 4.5%, 12.5%, 36%, 50% and 100% irradiances for 64 days before harvesting. The plastic response of specific leaf area (SLA) contributed to improved light interception at low irradiance, carbon gain and water balance at high irradiance. It was a good predictor for intraspecific irradiance responses of leaf area ratio (LAR), leaf area:root mass ratio, maximum photosynthetic rate ( Pmax) and net assimilation rate (NAR). Biomass allocation-related traits were species specific and their plasticity to irradiance was low. The high root mass fraction, leaf mass fraction and LAR distinguished the two invaders from Gynura. However, other resource capture-related traits, such as SLA, NAR and Pmax, were not always higher for the invaders than for Gynura. Furthermore, plasticity to irradiance was not different between the invasive and noninvasive aliens. With increasing irradiance, Gynura decreased biomass investment to roots and leaves but increased the investment to support structures adversely affecting both low and high irradiance acclimation. Ageratina might invade new habitat successfully through tolerating shading at low irradiance and outshading competitors by forming dense stands when irradiance is increased. The results suggested that bot