Science.gov

Sample records for agile meteor radar

  1. The Southern Argentine Agile Meteor Radar (SAAMER)

    NASA Astrophysics Data System (ADS)

    Janches, Diego

    2014-11-01

    The Southern Argentina Agile Meteor Radar (SAAMER) is a new generation system deployed in Rio Grande, Tierra del Fuego, Argentina (53 S) in May 2008. SAAMER transmits 10 times more power than regular meteor radars, and uses a newly developed transmitting array, which focuses power upward instead of the traditional single-antenna-all-sky configuration. The system is configured such that the transmitter array can also be utilized as a receiver. The new design greatly increases the sensitivity of the radar enabling the detection of large number of particles at low zenith angles. The more concentrated transmitted power enables additional meteor studies besides those typical of these systems based on the detection of specular reflections, such as routine detections of head echoes and non-specular trails, previously only possible with High Power and Large Aperture radars. In August 2010, SAAMER was upgraded to a system capable to determine meteoroid orbital parameters. This was achieved by adding two remote receiving stations approximately 10 km away from the main site in near perpendicular directions. The upgrade significantly expands the science that is achieved with this new radar enabling us to study the orbital properties of the interplanetary dust environment. Because of the unique geographical location, SAAMER allows for additional inter-hemispheric comparison with measurements from Canadian Meteor Orbit Radar, which is geographically conjugate. Initial surveys show, for example, that SAAMER observes a very strong contribution of the South Toroidal Sporadic meteor source, of which limited observational data is available. In addition, SAAMER offers similar unique capabilities for meteor showers and streams studies given the range of ecliptic latitudes that the system enables detailed study of showers at high southern latitudes (e.g July Phoenicids or Puppids complex). Finally, SAAMER is ideal for the deployment of complementary instrumentation in both, permanent

  2. The Southern Argentina Agile Meteor Radar (SAAMER): Platform for comprehensive meteor radar observations and studies

    NASA Astrophysics Data System (ADS)

    Janches, D.; Hormaechea, J.; Pifko, S.; Hocking, W.; Fritts, D.; Brunini, C.; Close, S.; Michell, R.; Samara, M.

    2014-07-01

    The Southern Argentina Agile Meteor Radar (SAAMER) is a new generation system deployed in Rio Grande, Tierra del Fuego, Argentina (53^oS) in May 2008 (Janches et al., 2013,2014). SAAMER transmits 10 times more power than regular meteor radars, and uses a newly developed transmitting array, which focuses power upward instead of the traditional single-antenna-all-sky configuration. The system is configured such that the transmitter array can also be utilized as a receiver. The new design greatly increases the sensitivity of the radar enabling the detection of large numbers of particles at low zenith angles. The more concentrated transmitted power enables additional meteor studies besides those typical of these systems based on the detection of specular reflections, such as routine detections of head echoes and non-specular trails, previously only possible with High Power and Large Aperture radars (Janches et al., 2014). In August 2010, SAAMER was upgraded to a system capable to determine meteoroid orbital parameters. This was achieved by adding two remote receiving stations approximately 10 km away from the main site in near perpendicular directions (Pifko et al., 2014). The upgrade significantly expands the science that is achieved with this new radar enabling us to study the orbital properties of the interplanetary dust environment. Because of the unique geographical location, the SAAMER allows for additional inter-hemispheric comparison with measurements from Canadian Meteor Orbit Radar, which is geographically conjugate. Initial surveys show, for example, that SAAMER observes a very strong contribution of the South Toroidal Sporadic meteor source (Pifko et al., 2014), of which limited observational data is available. In addition, SAAMER offers similar unique capabilities for meteor showers and streams studies given the range of ecliptic latitudes that the system enables to survey (Janches et al., 2013). It can effectively observe radiants from the ecliptic south

  3. Interferometric Meteor Head Echo Observations using the Southern Argentina Agile Meteor Radar (SAAMER)

    NASA Technical Reports Server (NTRS)

    Janches, D.; Hocking, W.; Pifko, S.; Hormaechea, J. L.; Fritts, D. C.; Brunini, C; Michell, R.; Samara, M.

    2013-01-01

    A radar meteor echo is the radar scattering signature from the free-electrons in a plasma trail generated by entry of extraterrestrial particles into the atmosphere. Three categories of scattering mechanisms exist: specular, nonspecular trails, and head-echoes. Generally, there are two types of radars utilized to detect meteors. Traditional VHF meteor radars (often called all-sky1radars) primarily detect the specular reflection of meteor trails traveling perpendicular to the line of sight of the scattering trail, while High Power and Large Aperture (HPLA) radars efficiently detect meteor head-echoes and, in some cases, non-specular trails. The fact that head-echo measurements can be performed only with HPLA radars limits these studies in several ways. HPLA radars are very sensitive instruments constraining the studies to the lower masses, and these observations cannot be performed continuously because they take place at national observatories with limited allocated observing time. These drawbacks can be addressed by developing head echo observing techniques with modified all-sky meteor radars. In addition, the fact that the simultaneous detection of all different scattering mechanisms can be made with the same instrument, rather than requiring assorted different classes of radars, can help clarify observed differences between the different methodologies. In this study, we demonstrate that such concurrent observations are now possible, enabled by the enhanced design of the Southern Argentina Agile Meteor Radar (SAAMER) deployed at the Estacion Astronomica Rio Grande (EARG) in Tierra del Fuego, Argentina. The results presented here are derived from observations performed over a period of 12 days in August 2011, and include meteoroid dynamical parameter distributions, radiants and estimated masses. Overall, the SAAMER's head echo detections appear to be produced by larger particles than those which have been studied thus far using this technique.

  4. Southern Argentina Agile Meteor Radar: Initial assessment of gravity wave momentum fluxes

    NASA Astrophysics Data System (ADS)

    Fritts, D. C.; Janches, D.; Hocking, W. K.

    2010-10-01

    The Southern Argentina Agile Meteor Radar (SAAMER) was installed on Tierra del Fuego (53.8°S) in May 2008 and has been operational since that time. This paper describes tests of the SAAMER ability to measure gravity wave momentum fluxes and applications of this capability during different seasons. Test results for specified mean, tidal, and gravity wavefields, including tidal amplitudes and gravity wave momentum fluxes varying strongly with altitude and/or time, suggest that the distribution of meteors throughout the diurnal cycle and averaged over a month allows characterization of both monthly mean profiles and diurnal variations of the gravity wave momentum fluxes. Applications of the same methods for real data suggest confidence in the monthly mean profiles and the composite day diurnal variations of gravity wave momentum fluxes at altitudes where meteor counts are sufficient to yield good statistical fits to the data. Monthly mean zonal winds and gravity wave momentum fluxes exhibit anticorrelations consistent with those seen at other midlatitude and high-latitude radars during austral spring and summer, when no strong local gravity wave sources are apparent. When stratospheric variances are significantly enhanced over the Drake Passage “hot spot” during austral winter, however, MLT winds and momentum fluxes over SAAMER exhibit very different correlations that suggest that MLT dynamics are strongly influenced by strong local gravity wave sources within this “hot spot.” SAAMER measurements of mean zonal and meridional winds at these times and their differences from measurements at a conjugate site provide further support for the unusual momentum flux measurements.

  5. An Initial Meteoroid Stream Survey in the Southern Hemisphere Using the Southern Argentina Agile Meteor Radar (SAAMER)

    NASA Technical Reports Server (NTRS)

    Janches, D.; Hormaechea, J. L.; Brunini, C.; Hocking, W.; Fritts, D. C.

    2013-01-01

    We present in this manuscript a 4 year survey of meteor shower radiants utilizing the Southern Argentina Agile Meteor Radar (SAAMER). SAAMER, which operates at the southern most region of South America, is a new generation SKiYMET system designed with significant differences from typical meteor radars including high transmitted power and an 8-antenna transmitting array enabling large detected rates at low zenith angles. We applied the statistical methodology developed by Jones and Jones (Jones, J., Jones, W. [2006]. Month. Not. R. Astron. Soc. 367, 1050-1056) to the data collected each day and compiled the results into 1 composite representative year at 1 resolution in Solar Longitude. We then search for enhancements in the activity which last for at least 3 days and evolve temporally as is expected from a meteor shower. Using this methodology, we have identified in our data 32 shower radiants, two of which were not part of the IAU commission 22 meteor shower working list. Recently, SAAMER's capabilities were enhanced by adding two remote stations to receive meteor forward scatter signals from meteor trails and thus enable the determination of meteoroid orbital parameters. SAAMER started recording orbits in January 2012 and future surveys will focus on the search for unknown meteor streams, in particular in the southern ecliptic sky.

  6. An initial meteoroid stream survey in the southern hemisphere using the Southern Argentina Agile Meteor Radar (SAAMER)

    NASA Astrophysics Data System (ADS)

    Janches, D.; Hormaechea, J. L.; Brunini, C.; Hocking, W.; Fritts, D. C.

    2013-04-01

    We present in this manuscript a 4 year survey of meteor shower radiants utilizing the Southern Argentina Agile Meteor Radar (SAAMER). SAAMER, which operates at the southern most region of South America, is a new generation SKiYMET system designed with significant differences from typical meteor radars including high transmitted power and an 8-antenna transmitting array enabling large detected rates at low zenith angles. We applied the statistical methodology developed by Jones and Jones (Jones, J., Jones, W. [2006]. Month. Not. R. Astron. Soc. 367, 1050-1056) to the data collected each day and compiled the results into 1 composite representative year at 1° resolution in Solar Longitude. We then search for enhancements in the activity which last for at least 3 days and evolve temporally as is expected from a meteor shower. Using this methodology, we have identified in our data 32 shower radiants, two of which were not part of the IAU commission 22 meteor shower working list. Recently, SAAMER's capabilities were enhanced by adding two remote stations to receive meteor forward scatter signals from meteor trails and thus enable the determination of meteoroid orbital parameters. SAAMER started recording orbits in January 2012 and future surveys will focus on the search for unknown meteor streams, in particular in the southern ecliptic sky.

  7. Drake Antarctic Agile Meteor Radar first results: Configuration and comparison of mean and tidal wind and gravity wave momentum flux measurements with Southern Argentina Agile Meteor Radar

    NASA Astrophysics Data System (ADS)

    Fritts, D. C.; Janches, D.; Iimura, H.; Hocking, W. K.; Bageston, J. V.; Leme, N. M. P.

    2012-01-01

    A new generation meteor radar was installed at the Brazilian Antarctic Comandante Ferraz Base (62.1°S) in March 2010. This paper describes the motivations for the radar location, its measurement capabilities, and comparisons of measured mean winds, tides, and gravity wave momentum fluxes from April to June of 2010 and 2011 with those by a similar radar on Tierra del Fuego (53.8°S). Motivations for the radars include the “hotspot” of small-scale gravity wave activity extending from the troposphere into the mesosphere and lower thermosphere (MLT) centered over the Drake Passage, the maximum of the semidiurnal tide at these latitudes, and the lack of other MLT wind measurements in this latitude band. Mean winds are seen to be strongly modulated at planetary wave and longer periods and to exhibit strong coherence over the two radars at shorter time scales as well as systematic seasonal variations. The semidiurnal tide contributes most to the large-scale winds over both radars, with maximum tidal amplitudes during May and maxima at the highest altitudes varying from ˜20 to >70 ms-1. In contrast, the diurnal tide and various planetary waves achieve maximum winds of ˜10 to 20 ms-1. Monthly mean gravity wave momentum fluxes appear to reflect the occurrence of significant sources at lower altitudes, with relatively small zonal fluxes over both radars, but with significant, and opposite, meridional momentum fluxes below ˜85 km. These suggest gravity waves propagating away from the Drake Passage at both sites, and may indicate an important source region accounting in part for this “hotspot.”

  8. Southern Argentina Agile Meteor Radar: System design and initial measurements of large-scale winds and tides

    NASA Astrophysics Data System (ADS)

    Fritts, D. C.; Janches, D.; Iimura, H.; Hocking, W. K.; Mitchell, N. J.; Stockwell, R. G.; Fuller, B.; Vandepeer, B.; Hormaechea, J.; Brunini, C.; Levato, H.

    2010-09-01

    The Southern Argentina Agile Meteor Radar (SAAMER) was installed at Rio Grande on Tierra del Fuego (53.8°S, 67.8°W) in May 2008 and has been operational for ˜24 months. This paper describes the motivations for the radar design and its placement at the southern tip of South America, its operating modes and capabilities, and observations of the mean winds, planetary waves, and tides during its first ˜20 months of operation. SAAMER was specifically designed to provide very high resolution of large-scale motions and hopefully enable direct measurements of the vertical momentum flux by gravity waves, which have only been possible previously with dual- or multiple-beam radars and lidars or in situ measurements. SAAMER was placed on Tierra del Fuego because it was a region devoid of similar measurements, the latitude was anticipated to provide high sensitivity to an expected large semidiurnal tide, and the region is now recognized to be a "hot spot" of small-scale gravity wave activity extending from the troposphere into the mesosphere and lower thermosphere, perhaps the most dynamically active location on Earth. SAAMER was also intended to permit simultaneous enhanced meteor studies, including "head echo" and "nonspecular" measurements, which were previously possible only with high-power large-aperture radars. Initial measurements have defined the mean circulation and structure, exhibited planetary waves at various periods, and revealed large semidiurnal tide amplitudes and variability, with maximum amplitudes at higher altitudes often exceeding 60 m s-1 and amplitude modulations at periods from a few to ˜30 days.

  9. The Southern Argentina Agile MEteor Radar Orbital System (SAAMER-OS): An Initial Sporadic Meteoroid Orbital Survey in the Southern Sky

    NASA Astrophysics Data System (ADS)

    Janches, D.; Close, S.; Hormaechea, J. L.; Swarnalingam, N.; Murphy, A.; O'Connor, D.; Vandepeer, B.; Fuller, B.; Fritts, D. C.; Brunini, C.

    2015-08-01

    We present an initial survey in the southern sky of the sporadic meteoroid orbital environment obtained with the Southern Argentina Agile MEteor Radar (SAAMER) Orbital System (OS), in which over three-quarters of a million orbits of dust particles were determined from 2012 January through 2015 April. SAAMER-OS is located at the southernmost tip of Argentina and is currently the only operational radar with orbit determination capability providing continuous observations of the southern hemisphere. Distributions of the observed meteoroid speed, radiant, and heliocentric orbital parameters are presented, as well as those corrected by the observational biases associated with the SAAMER-OS operating parameters. The results are compared with those reported by three previous surveys performed with the Harvard Radio Meteor Project, the Advanced Meteor Orbit Radar, and the Canadian Meteor Orbit Radar, and they are in agreement with these previous studies. Weighted distributions for meteoroids above the thresholds for meteor trail electron line density, meteoroid mass, and meteoroid kinetic energy are also considered. Finally, the minimum line density and kinetic energy weighting factors are found to be very suitable for meteroid applications. The outcomes of this work show that, given SAAMER’s location, the system is ideal for providing crucial data to continuously study the South Toroidal and South Apex sporadic meteoroid apparent sources.

  10. The Newcastle meteor radar

    NASA Technical Reports Server (NTRS)

    Keay, Colin

    1987-01-01

    A brief history and development of the Newcastle Meteor Radar system is given. Also described are its geographical coordinates and its method of operation. The initial objective when the project was commenced was to develop an entirely digital analyzer capable of recognizing meteor echo signals and recording as many of their parameters as possible. This objective was achieved.

  11. Coded continuous wave meteor radar

    NASA Astrophysics Data System (ADS)

    Vierinen, Juha; Chau, Jorge L.; Pfeffer, Nico; Clahsen, Matthias; Stober, Gunter

    2016-03-01

    The concept of a coded continuous wave specular meteor radar (SMR) is described. The radar uses a continuously transmitted pseudorandom phase-modulated waveform, which has several advantages compared to conventional pulsed SMRs. The coding avoids range and Doppler aliasing, which are in some cases problematic with pulsed radars. Continuous transmissions maximize pulse compression gain, allowing operation at lower peak power than a pulsed system. With continuous coding, the temporal and spectral resolution are not dependent on the transmit waveform and they can be fairly flexibly changed after performing a measurement. The low signal-to-noise ratio before pulse compression, combined with independent pseudorandom transmit waveforms, allows multiple geographically separated transmitters to be used in the same frequency band simultaneously without significantly interfering with each other. Because the same frequency band can be used by multiple transmitters, the same interferometric receiver antennas can be used to receive multiple transmitters at the same time. The principles of the signal processing are discussed, in addition to discussion of several practical ways to increase computation speed, and how to optimally detect meteor echoes. Measurements from a campaign performed with a coded continuous wave SMR are shown and compared with two standard pulsed SMR measurements. The type of meteor radar described in this paper would be suited for use in a large-scale multi-static network of meteor radar transmitters and receivers. Such a system would be useful for increasing the number of meteor detections to obtain improved meteor radar data products.

  12. Coded continuous wave meteor radar

    NASA Astrophysics Data System (ADS)

    Vierinen, J.; Chau, J. L.; Pfeffer, N.; Clahsen, M.; Stober, G.

    2015-07-01

    The concept of coded continuous wave meteor radar is introduced. The radar uses a continuously transmitted pseudo-random waveform, which has several advantages: coding avoids range aliased echoes, which are often seen with commonly used pulsed specular meteor radars (SMRs); continuous transmissions maximize pulse compression gain, allowing operation with significantly lower peak transmit power; the temporal resolution can be changed after performing a measurement, as it does not depend on pulse spacing; and the low signal to noise ratio allows multiple geographically separated transmitters to be used in the same frequency band without significantly interfering with each other. The latter allows the same receiver antennas to be used to receive multiple transmitters. The principles of the signal processing are discussed, in addition to discussion of several practical ways to increase computation speed, and how to optimally detect meteor echoes. Measurements from a campaign performed with a coded continuous wave SMR are shown and compared with two standard pulsed SMR measurements. The type of meteor radar described in this paper would be suited for use in a large scale multi-static network of meteor radar transmitters and receivers. This would, for example, provide higher spatio-temporal resolution for mesospheric wind field measurements.

  13. COBRA meteor radar antenna designs

    NASA Astrophysics Data System (ADS)

    Zainuddin, Mohamad

    A meteor radar system is one of the effective remote sensing techniques in measuring atmospheric parameters such as wind velocities, temperature, pressure and density which are essential in understanding the atmospheric dynamics in the Mesosphere Lower Thermosphere (MLT) region. Previous studies of very high frequency (VHF) meteors radar systems suggest that the minimum error for the estimation of the horizontal wind velocity from a radar interferometry algorithm should occur when the main beams of the transmit and receive antennas are pointing to between 30° to 50° elevation angles. Therefore, an ideal antenna design for VHF meteor radar systems would produce a pencil beam radiation pattern at a 45° elevation angle. However, both the transmit and receive antenna of the COBRA meteor radar system have major beams are pointing to between 60° to 65° degree elevation angles above a perfect ground plane. Besides transmitting maximum power at low elevation angles, the current antennas of the COBRA meteor radar are highly dependent on the ground plane to radiate maximum gains to between 60° to 65° degree elevation angles. Typically, the earth ground is considered as a common ground plane for many VHF antenna with acceptable performance. However, the earth ground could not effectively reflect most of the power at all time. Because the antennas are dependent on ground to radiate power at certain direction, an artificial ground plane or ground screen has to be built for the COBRA antenna system at the South Pole station, which is located on top of more than 2000 meter thick of ice sheet. This dissertation focuses on the analysis of the performance of the individual current antenna design with four different conditions namely in free space, above an infinite ground, lossy ground and finite ground. In the analysis of finite ground, the effects of varying wire spacing and the size of finite ground to the radiation pattern of a cross folded dipole antenna are investigated

  14. Meteor radiant mapping with MU radar

    NASA Technical Reports Server (NTRS)

    Watanabe, Jun-Ichi; Nakamura, Tsuko; Tsuda, T.; Tsutsumi, M.; Miyashita, A.; Yoshikawa, M.

    1992-01-01

    The radiant point mapping of meteor showers with the MU radar by using a modified mapping method originally proposed by Morton and Jones (1982) was carried out. The modification is that each meteor echo was weighted by using the beam pattern of the radar system. A preliminary result of the radiant point mapping of the Geminids meteor shower in 1989 is presented.

  15. Drake Antarctic Agile Meteor Radar (DrAAMER) First Results: Configuration and Comparison of Mean and Tidal Wind and Gravity Wave Momentum Flux Measurements with SAAMER

    NASA Technical Reports Server (NTRS)

    Fritts, D. C.; Janches, D.; Iimura, H.; Hocking, W. K.; Bageston, J. V.; Pene, N. M.

    2011-01-01

    A new-generation meteor radar was installed at the Brazilian Antarctic Comandante Ferraz Base (62.1degS) in March 2010. This paper describes the motivations for the radar location, its measurement capabilities, and comparisons of measured mean winds, tides, and gravity wave momentum fluxes from April to June of 2010 and 2011 with those by a similar radar on Tierra del Fuego (53.8degS). Motivations for the radars include the "hotspot" of small-scale gravity wave activity extending from the troposphere into the mesosphere and lower thermosphere (MLT) centered over the Drake Passage, the maximum of the semidiurnal tide at these latitudes, and the lack of other MLT wind measurements in this latitude band. Mean winds are seen to be strongly modulated at planetary wave and longer periods and to exhibit strong coherence over the two radars at shorter time scales as well as systematic seasonal variations. The semidiurnal tide contribute most to the large-scale winds over both radars, with maximum tidal amplitudes during May and maxima at the highest altitudes varying from approx.20 to >70 m/s. In contrast, the diurnal tide and various planetary waves achieve maximum winds of approx.10 to 20 m/s. Monthly-mean gravity wave momentum fluxes appear to reflect the occurrence of significant sources at lower altitudes, with relatively small zonal fluxes over both radars, but with significant, and opposite, meridional momentum fluxes below approx.85 km. These suggest gravity waves propagating away from the Drake Passage at both sites, and may indicate an important source region accounting in part for this "hotspot".

  16. Advanced meteor wind observations using meteor and MST radars

    NASA Astrophysics Data System (ADS)

    Tsutsumi, M.; Aso, T.; Hall, C.; Nakamura, T.; Sato, K.; Sato, T.

    A few topics from recent developments of radio meteor observation techniques are presented The Nippon Norway Tromsoe Meteor Radar NTMR has been in continuous operation since November 2003 in Tromsoe 69N One of the major advantages of the present meteor radar is its high echo rate 6000-20000 echoes a day despite the relatively small transmitting power 7 5kW peak From ambipolar diffusion coefficients we have successfully extracted atmospheric temperature fluctuations due to gravity waves assuming the Boussinesq approximation The time and height resolutions of horizontal winds and temperature fluctuations at the altitude of 90 km are 1 hour and 2km high enough for the study of gravity waves with a period longer than a few hours Horizontal propagation characteristics of gravity waves are further studied using a theoretical phase relation between the wind and temperature fluctuations MST radars in the VHF band have a great potential in meteor echo observations due to their high transmitting power The meteor measurement can be conducted throughout a day and complement the turbulent echo measurement in the mesosphere which is limited to daylight hours only The MU radar of Kyoto University is one of those radars and has been successfully applied to meteor studies by utilizing its very high versatility The MU radar was recently renewed Its signal processing unit is up-graded from a 4 analog receiver system to a 25 digital receiver system In the present study we try to improve the MU radar meteor measurement

  17. Kharkiv Meteor Radar System (the XX Age)

    NASA Astrophysics Data System (ADS)

    Kolomiyets, S. V.

    2012-09-01

    Kharkiv meteor radar research are of historic value (Kolomiyets and Sidorov 2007). Kharkiv radar observations of meteors proved internationally as the best in the world, it was noted at the IAU General Assembly in 1958. In the 1970s Kharkiv meteor automated radar system (MARS) was recommended at the international level as a successful prototype for wide distribution. Until now, this radar system is one of the most sensitive instruments of meteor radars in the world for astronomical observations. In 2004 Kharkiv meteor radar system is included in the list of objects which compose the national property of Ukraine. Kharkiv meteor radar system has acquired the status of the important historical astronomical instrument in world history. Meteor Centre for researching meteors in Kharkiv is a analogue of the observatory and performs the same functions of a generator and a battery of special knowledge and skills (the world-famous studio). Kharkiv and the location of the instrument were brand points on the globe, as the place where the world-class meteor radar studies were carried out. They are inscribed in the history of meteor astronomy, in large letters and should be immortalized on a world-wide level.

  18. Meteor detection on ST (MST) radars

    NASA Technical Reports Server (NTRS)

    Avery, S. K.

    1987-01-01

    The ability to detect radar echoes from backscatter due to turbulent irregularities of the radio refractive index in the clear atmosphere has lead to an increasing number of established mesosphere - stratosphere - troposphere (MST or ST) radars. Humidity and temperature variations are responsible for the echo in the troposphere and stratosphere and turbulence acting on electron density gradients provides the echo in the mesosphere. The MST radar and its smaller version, the ST radar, are pulsed Doppler radars operating in the VHF - UHF frequency range. These echoes can be used to determine upper atmosphere winds at little extra cost to the ST radar configuration. In addition, the meteor echoes can supplement mesospheric data from an MST radar. The detection techniques required on the ST radar for delineating meteor echo returns are described.

  19. Analysis of ALTAIR 1998 Meteor Radar Data

    NASA Technical Reports Server (NTRS)

    Zinn, J.; Close, S.; Colestock, P. L.; MacDonell, A.; Loveland, R.

    2011-01-01

    We describe a new analysis of a set of 32 UHF meteor radar traces recorded with the 422 MHz ALTAIR radar facility in November 1998. Emphasis is on the velocity measurements, and on inferences that can be drawn from them regarding the meteor masses and mass densities. We find that the velocity vs altitude data can be fitted as quadratic functions of the path integrals of the atmospheric densities vs distance, and deceleration rates derived from those fits all show the expected behavior of increasing with decreasing altitude. We also describe a computer model of the coupled processes of collisional heating, radiative cooling, evaporative cooling and ablation, and deceleration - for meteors composed of defined mixtures of mineral constituents. For each of the cases in the data set we ran the model starting with the measured initial velocity and trajectory inclination, and with various trial values of the quantity mPs 2 (the initial mass times the mass density squared), and then compared the computed deceleration vs altitude curves vs the measured ones. In this way we arrived at the best-fit values of the mPs 2 for each of the measured meteor traces. Then further, assuming various trial values of the density Ps, we compared the computed mass vs altitude curves with similar curves for the same set of meteors determined previously from the measured radar cross sections and an electrostatic scattering model. In this way we arrived at estimates of the best-fit mass densities Ps for each of the cases. Keywords meteor ALTAIR radar analysis 1 Introduction This paper describes a new analysis of a set of 422 MHz meteor scatter radar data recorded with the ALTAIR High-Power-Large-Aperture radar facility at Kwajalein Atoll on 18 November 1998. The exceptional accuracy/precision of the ALTAIR tracking data allow us to determine quite accurate meteor trajectories, velocities and deceleration rates. The measurements and velocity/deceleration data analysis are described in Sections

  20. Simultaneous optical and radar observations of meteor head-echoes utilizing SAAMER

    NASA Astrophysics Data System (ADS)

    Michell, R. G.; Janches, D.; Samara, M.; Hormaechea, J. L.; Brunini, C.; Bibbo, I.

    2015-12-01

    We present simultaneous optical and radar observations of meteors observed with the Southern Argentine Agile MEteor Radar (SAAMER). Although such observations were performed in the past using High Power and Large Aperture radars, the focus here is on meteors that produced head echoes that can be detected by a significantly less sensitive but more accessible radar system. An observational campaign was conducted in August of 2011, where an optical imager was operated near the radar site in Rio Grande, Tierra del Fuego, Argentina. Six head echo events out of 150 total detections were identified where simultaneous optical meteors could also be clearly seen within the main radar beam. The location of the meteors derived from the radar interferometry agreed very well with the optical location, verifying the accuracy of the radar interferometry technique. The meteor speeds and origin directions calculated from the radar data were accurate-compared with the optics-for the 2 meteors that had radar signal-to-noise ratios above 2.5. The optical meteors that produced the head echoes had horizontal velocities in the range of 29-91 km/s. These comparisons with optical observations improve the accuracy of the radar detection and analysis techniques, such that, when applied over longer periods of time, will improve the statistics of southern hemisphere meteor observations. Mass estimates were derived using both the optical and radar data and the resulting masses agreed well with each other. All were within an order of magnitude and in most cases, the agreement was within a factor of two.

  1. Observation of meteors by MST radar

    NASA Technical Reports Server (NTRS)

    Jones, William; Kingsley, S. P.

    1992-01-01

    The observation of meteor trails by a vertical mesosphere - stratosphere - troposphere (MST) radar beam has the advantage of good height resolution and an approximate knowledge of the zenith angle since the trails are horizontal or near-horizontal. An extension of the ablation theory of meteors was developed for near horizontal trails which takes into account the curvature of the earth. Observations of the Geminid meteor shower by MST radar reveal the 'diffusion heights' to be in fair agreement with the true height, but with some discrepancies that can amount to 4 km. The true heights are almost entirely confined to the range 87-91 km, although the upper limit is attributed to the coherent integration time of the existing MST radar processing.

  2. Radar observations of the Volantids meteor shower

    NASA Astrophysics Data System (ADS)

    Younger, J.; Reid, I.; Murphy, D.

    2016-01-01

    A new meteor shower occurring for the first time on 31 December 2015 in the constellation Volans was identified by the CAMS meteor video network in New Zealand. Data from two VHF meteor radars located in Australia and Antarctica have been analyzed using the great circle method to search for Volantids activity. The new shower was found to be active for at least three days over the period 31 December 2015 - 2 January 2016, peaking at an apparent radiant of R.A. = 119.3 ± 3.7, dec. = -74.5 ± 1.9 on January 1st. Measurements of meteoroid velocity were made using the Fresnel transform technique, yielding a geocentric shower velocity of 28.1 ± 1.8 km s-1. The orbital parameters for the parent stream are estimated to be a = 2.11 AU, e = 0.568, i = 47.2°, with a perihelion distance of q = 0.970 AU.

  3. Meteor radar response function: Application to the interpretation of meteor backscatter at medium frequency

    NASA Astrophysics Data System (ADS)

    Cervera, M. A.; Holdsworth, D. A.; Reid, I. M.; Tsutsumi, M.

    2004-11-01

    Recently, Cervera and Elford (2004) extended earlier work on the development of the meteor radar response function (Elford, 1964; Thomas et al., 1988) to include a nonuniform meteor ionization profile. This approach has the advantage that the height distribution of meteors expected to be observed by a radar meteor system is able to be accurately modeled and insights into the meteoroid chemistry to be gained. The meteor radar response function is also an important tool with regard to the interpretation of meteor backscatter in other areas, e.g., modeling the expected diurnal variation of sporadic meteors, investigating the expected echo distribution over the sky, and the calculation of the expected rate curves of meteor showers. We exemplify each of these techniques from the analysis of meteor data collected by the Buckland Park 2 MHz system during October 1997. In addition, we show that the response function may be used to quantify the echo rate of a given shower relative to the sporadic background and thus determine if that shower is able to be detected by the radar.

  4. Optical and Radar Measurements of the Meteor Speed Distribution

    NASA Technical Reports Server (NTRS)

    Moorhead, A. V.; Brown, P. G.; Campbell-Brown, M. D.; Kingery, A.; Cooke, W. J.

    2016-01-01

    The observed meteor speed distribution provides information on the underlying orbital distribution of Earth-intersecting meteoroids. It also affects spacecraft risk assessments; faster meteors do greater damage to spacecraft surfaces. Although radar meteor networks have measured the meteor speed distribution numerous times, the shape of the de-biased speed distribution varies widely from study to study. Optical characterizations of the meteoroid speed distribution are fewer in number, and in some cases the original data is no longer available. Finally, the level of uncertainty in these speed distributions is rarely addressed. In this work, we present the optical meteor speed distribution extracted from the NASA and SOMN allsky networks [1, 2] and from the Canadian Automated Meteor Observatory (CAMO) [3]. We also revisit the radar meteor speed distribution observed by the Canadian Meteor Orbit Radar (CMOR) [4]. Together, these data span the range of meteoroid sizes that can pose a threat to spacecraft. In all cases, we present our bias corrections and incorporate the uncertainty in these corrections into uncertainties in our de-biased speed distribution. Finally, we compare the optical and radar meteor speed distributions and discuss the implications for meteoroid environment models.

  5. Temperature tides determined with meteor radar

    NASA Astrophysics Data System (ADS)

    Hocking, W. K.; Hocking, A.

    2002-09-01

    A new analysis method for producing tidal temperature parameters using meteor radar measurements is presented, and is demonstrated with data from one polar and two mid-latitude sites. The technique further develops the temperature algorithm originally introduced by Hocking (1999). That earlier method was used to produce temperature measurements over time scales of days and months, but required an empirical model for the mean temperature gradient in the mesopause region. However, when tides are present, this temperature gradient is modulated by the presence of the tides, complicating extraction of diurnal variations. Nevertheless, if the vertical wavelengths of the tides are known from wind measurements, the effects of the gradient variations can be compensated for, permitting determination of temperature tidal amplitudes and phases by meteor techniques. The basic theory is described, and results from meteor radars at Resolute Bay (Canada), London (Canada) and Albuquerque (New Mexico, USA) are shown. Our results are compared with other lidar data, computer models, fundamental tidal theory and rocket data. Phase measurements at two mid-latitude sites (Albuquerque, New Mexico, and London, Canada) show times of maximum for the diurnal temperature tide to change modestly throughout most of the year, varying generally between 0 h and 6 h, with an excursion to 12 h in June at London. The semidiurnal tide shows a larger annual variation in time of maximum, being at 2 4 h in the winter months but increasing to 9 h during the late summer and early fall. We also find that, at least at mid-latitudes, the phase of the temperature tide matches closely the phase of the meridional tide, and theoretical justification for this statement is given. We also demonstrate that this is true using the Global Scale Wave Model (Hagan et al., 1999). Median values for the temperature amplitudes for each site are in the range 5 to 6 Kelvin. Results from a more northern site (Resolute Bay) show

  6. About comparative models of meteor orbital data for different radars

    NASA Astrophysics Data System (ADS)

    Kolomiyets, Svitlana

    2016-07-01

    There is an electronic data base (~ 250, 000 orbits of faint radar meteors till +12^M) in the Kashcheyev LAB of KhNURE (Kharkiv, Ukraine). It is important if this data base will become open. Two scientific teams (from New Zealand and from Canada) are the principal expert on similar radar dataset (~500,000 and more than 3 million, respectively). The Kharkiv team will prepare the data for implementation in the IAU Meteor Data Centre and the virtual Observatory. We will develop a standard model for comparison of data from different radars.

  7. The KUT meteor radar: An educational low cost meteor observation system by radio forward scattering

    NASA Astrophysics Data System (ADS)

    Madkour, W.; Yamamoto, M.

    2016-01-01

    The Kochi University of Technology (KUT) meteor radar is an educational low cost observation system built at Kochi, Japan by successive graduate students since 2004. The system takes advantage of the continuous VHF- band beacon signal emitted from Fukui National College of Technology (FNCT) for scientific usage all over Japan by receiving the forward scattered signals. The system uses the classical forward scattering setup similar to the setup described by the international meteor organization (IMO), gradually developed from the most basic single antenna setup to the multi-site meteor path determination setup. The primary objective is to automate the observation of the meteor parameters continuously to provide amounts of data sufficient for statistical analysis. The developed software system automates the observation of the astronomical meteor parameters such as meteor direction, velocity and trajectory. Also, automated counting of meteor echoes and their durations are used to observe mesospheric ozone concentration by analyzing the duration distribution of different meteor showers. The meteor parameters observed and the methodology used for each are briefly summarized.

  8. Automated UHF radar observations of meteors with aeronomic applications

    NASA Astrophysics Data System (ADS)

    Briczinski, Stanley J., Jr.

    The micrometeor observations performed using the 430 MHz Arecibo Observatory radar have been crucial for the understanding of meteoric effects on the aeronomy of the upper atmosphere. Previous techniques using the Arecibo radar required manual confirmation of each event, followed by direct measurements of the parameters (i.e. altitudes, velocities and decelerations). A new periodic FFT searching algorithm, the meteor return signal detector (MRSD) has been developed and implemented, replacing previous (labor-intensive) visual verification. The MRSD shows an improvement over traditional searching routines by increasing the event detection rate by as much as 30% as well as significantly reducing the required analysis time. The new technique used to detect meteors as well as the measured parameters obtained from this method are presented. The meteor parameters obtained from the MRSD are presented. Mass distributions are obtained from momentum considerations. Previous mass distributions have assumed a constant meteoroid mass density of 3 gm/cm3. Using statistical interpretations of the parameters obtained from the MRSD, the meteoroid mass density has been revised to a constant mass density of 1 gm/cm 3. This new mass result represents the first analysis and revision of the meteoroid mass since large aperture radars began observing meteors in the early 1990s. In some cases meteors are observed that appear to catastrophically destruct within the beam. These meteors appear to undergo minor ablation of their volatile components before annihilation---the terminal event---that occurs in under 1 ms. As with essentially all observed meteoroids, the meteoroids that disappear in a terminal event appear to experience linear decelerations before their abrupt disappearance. This non-ablative mass deposition process may play an important role in the composition of the upper atmosphere as it apparently produces sub-micron-sized particles. The first statistical analyses of the terminal

  9. Advanced Meteor radar at Tirupati: System details and first results

    NASA Astrophysics Data System (ADS)

    Sunkara, Eswaraiah; Gurubaran, Subramanian; Sundararaman, Sathishkumar; Venkat Ratnam, Madineni; Karanam, Kishore Kumar; Eethamakula, Kosalendra; Vijaya Bhaskara Rao, S.

    An advanced meteor radar viz., Enhanced Meteor Detection Radar (EMDR) operating at 35.25 MHz is installed at Sri Venkateswara University (SVU), Tirupati (13.63oN, 79.4oE), India, in the month of August 2013. Present communication describes the need for the meteor radar at present location, system description, its measurement techniques, its variables and comparison of measured mean winds with contemporary radars over the Indian region. The present radar site is selected to fill the blind region of Gadanki (13.5oN, 79.2oE) MST radar, which covers mesosphere and lower thermosphere (MLT) region (70-110 km). By modifying the receiving antenna structure and elements, this radar is capable of providing accurate wind information between 70 and 110 km unlike other similar radars. Height covering region is extended by increasing the meteor counting capacity by modifying the receiving antenna structure and elements and hence its wind estimation limits extended below and above of 80 and 100 km, respectively. In the present study, we also made comparison of horizontal winds in the MLT region with those measured by similar and different (MST and MF radars) techniques over the Indian region including the model (HWM 07) data sets. The comparison showed a very good agreement between the overlapping altitudes (82-98 km) of different radars. Zonal winds compared very well as that of meridional winds. The observed discrepancies and limitations in the wind measurement are discussed. This new radar is expected to play important role in understanding the vertical and lateral coupling by forming a unique local network.

  10. Radar meteor orbital structure of Southern Hemisphere cometary dust streams

    NASA Technical Reports Server (NTRS)

    Baggaley, W. Jack; Taylor, Andrew D.

    1992-01-01

    The Christchurch, New Zealand meteor orbit radar (AMOR) with its high precision and sensitivity, permits studies of the orbital fine structure of cometary streams. PC generated graphics are presented of data on some Southern Hemisphere Streams. Such data can be related to the formation phase and subsequent dynamical processes of dust streams.

  11. Rapid decrease of radar cross section of meteor head echo observed by the MU radar

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Nishio, M.; Sato, T.; Tsutsumi, S.; Tsuda, T.; Fushimi, K.

    The meteor head echo observation using the MU (Middle and Upper atmosphere) radar (46.5M Hz, 1MW), Shigaraki, Japan, was carried out simultaneously with a high sensitive ICCD (Image-intensified CCD) camera observation in November 2001. The time records were synchronized using GPS satellite signals, in order to compare instantaneous radar and optical meteor magnitudes. 26 faint meteors were successfully observed simultaneously by both equipments. Detailed comparison of the time variation of radar echo intensity and absolute optical magnitude showed that the radar scattering cross section is likely to decrease rapidly by 5 - 20 dB without no corresponding magnitude variation in the optical data. From a simple modeling, we concluded that such decrease of RCS (radar cross section ) is probably due to the transition from overdense head echo to underd ense head echo.

  12. Radio and Meteor Science Outcomes From Comparisons of Meteor Radar Observations at AMISR Poker Flat, Sondrestrom, and Arecibo

    NASA Astrophysics Data System (ADS)

    Mathews, J. D.; Briczinski, S. J.; Meisel, D. D.; Heinselman, C. J.

    2008-06-01

    Radio science and meteor physics issues regarding meteor “head-echo” observations with high power, large aperture (HPLA) radars, include the frequency and latitude dependency of the observed meteor altitude, speed, and deceleration distributions. We address these issues via the first ever use and analysis of meteor observations from the Poker Flat AMISR (PFISR: 449.3 MHz), Sondrestrom (SRF: 1,290 MHz), and Arecibo (AO: 430 MHz) radars. The PFISR and SRF radars are located near the Arctic Circle while AO is in the tropics. The meteors observed at each radar were detected and analyzed using the same automated FFT periodic micrometeor searching algorithm. Meteor parameters (event altitude, velocity, and deceleration distributions) from all three facilities are compared revealing a clearly defined altitude “ceiling effect” in the 1,290 MHz results relative to the 430/449.3 MHz results. This effect is even more striking in that the Arecibo and PFISR distributions are similar even though the two radars are over 2,000 times different in sensitivity and at very different latitudes, thus providing the first statistical evidence that HPLA meteor radar observations are dominated by the incident wavelength, regardless of the other radar parameters. We also offer insights into the meteoroid fragmentation and “terminal” process.

  13. MENTOR: Adding an outlying receiver to an ST radar for meteor-wind measurement

    NASA Technical Reports Server (NTRS)

    Roper, R. G.

    1984-01-01

    Radar scattering from ionized meteor trails has been used for many years as a way to determine mesopause-level winds. Scattering occurs perpendicular to the trails, and since the ionizing efficiency of the incoming meteoroids depends on the cosine of the zenith angle of the radiant, echoes directly overhead are rare. Stratosphere-troposphere (ST) radars normally sample within 15 deg of the vertical, and thus receive few meteor echoes. Even the higher powdered mesosphere-stratosphere-troposphere (MST) radars are not good meteor radars, although they were used to successfully retrieved meteor winds from the Poker Flat, Alaska MST radar by averaging long data intervals. It has been suggested that a receiving station some distance from an ST radar could receive pulses being scattered from meteor trails, determine the particular ST beam in which the scattering occurred, measure the radial Doppler velocity, and thus determine the wind field. This concept has been named MENTOR (Meteor Echoes; No Transmitter, Only Receivers).

  14. A decadal survey of the Daytime Arietid meteor shower using the Canadian Meteor Orbit Radar

    NASA Astrophysics Data System (ADS)

    Bruzzone, J. S.; Brown, P.; Weryk, R. J.; Campbell-Brown, M. D.

    2015-01-01

    We present results from a 12 year survey of the Daytime Arietid meteor shower using the Canadian Meteor Orbit Radar, a VHF backscattering orbital meteor radar, covering the interval 2002-2013. This survey recorded more than 2 × 104 Daytime Arietid orbits having representative masses of 8 × 10-8 kg and sizes of ≈0.4 mm. The core activity for the Arietids is found in the range 73.5° ≤ λ⊙ ≤ 84.5° and shows a broad 4-d maximum centred near λ⊙ = 80.5° of 0.04 meteoroids km-2 h-1 producing meteors of equivalent radio magnitude of +6.5 from a mean radiant at αg = 44.9° ± 1.1°, δg = 25.5° ± 1 .0°. During the plateau of shower peak activity, the mass index of the stream reaches a minimum with s = 1.6-1.7. Contamination from another nearby shower (likely the Daytime Zeta Perseids) and/or sub-streams showing different orbits compared to the core of the stream is evident in the interval 60.5° ≤ λ⊙ ≤ 71.5°. Similar contamination beyond λ⊙ = 84.5° may be due to the Helion sporadic source. We also characterized the deceleration profiles for Daytime Arietid meteor echoes using several independent speed techniques including Fresnel pre-t0, Fresnel amplitude oscillation and time-of-flight speeds which together with modelling produced a best estimate for the stream's out-of-atmosphere speed of v∞ = 40.5 ± 0.7 km s-1. The mean radar orbit from our study is noticeably smaller in semi-major axis and eccentricity than is found for larger Arietids measured with optical systems, a difference which if real indicates a particle-size sorting of the stream orbit. The broad activity maximum, long duration of activity and particle-size dependence of the orbital elements suggest the stream is too old to have been solely formed during the breakup of the parent comet of the Marsden sunskirters about a millennium ago as proposed by Sekanina & Chodas.

  15. Measurement of momentum flux using two meteor radars in Indonesia

    NASA Astrophysics Data System (ADS)

    Matsumoto, Naoki; Shinbori, Atsuki; Riggin, Dennis M.; Tsuda, Toshitaka

    2016-03-01

    Two nearly identical meteor radars were operated at Koto Tabang (0.20° S, 100.32° E), West Sumatra, and Biak (1.17° S, 136.10° E), West Papua, in Indonesia, separated by approximately 4000 km in longitude on the Equator. The zonal and meridional momentum flux, u'w' and v'w', where u, v, and w are the eastward, northward, and vertical wind velocity components, respectively, were estimated at 86 to 94 km altitudes using the meteor radar data by applying a method proposed by Hocking (2005). The observed u'w' at the two sites agreed reasonably well at 86, 90, and 94 km during the observation periods when the data acquisition rate was sufficiently large enough. Variations in v'w' were consistent between 86, 90, and 94 km altitudes at both sites. The climatological variation in the monthly averaged u'w' and v'w' was investigated using the long-term radar data at Koto Tabang from November 2002 to November 2013. The seasonal variations in u'w' and v'w' showed a repeatable semiannual and annual cycles, respectively. u'w' showed eastward values in February-April and July-September and v'w' was northward in June to August at 90-94 km, both of which were generally anti-phase with the mean zonal and meridional winds, having the same periodicity. Our results suggest the usefulness of the Hocking method.

  16. A method for estimating the height of a mesospheric density level using meteor radar

    NASA Astrophysics Data System (ADS)

    Younger, J. P.; Reid, I. M.; Vincent, R. A.; Murphy, D. J.

    2015-07-01

    A new technique for determining the height of a constant density surface at altitudes of 78-85 km is presented. The first results are derived from a decade of observations by a meteor radar located at Davis Station in Antarctica and are compared with observations from the Microwave Limb Sounder instrument aboard the Aura satellite. The density of the neutral atmosphere in the mesosphere/lower thermosphere region around 70-110 km is an essential parameter for interpreting airglow-derived atmospheric temperatures, planning atmospheric entry maneuvers of returning spacecraft, and understanding the response of climate to different stimuli. This region is not well characterized, however, due to inaccessibility combined with a lack of consistent strong atmospheric radar scattering mechanisms. Recent advances in the analysis of detection records from high-performance meteor radars provide new opportunities to obtain atmospheric density estimates at high time resolutions in the MLT region using the durations and heights of faint radar echoes from meteor trails. Previous studies have indicated that the expected increase in underdense meteor radar echo decay times with decreasing altitude is reversed in the lower part of the meteor ablation region due to the neutralization of meteor plasma. The height at which the gradient of meteor echo decay times reverses is found to occur at a fixed atmospheric density. Thus, the gradient reversal height of meteor radar diffusion coefficient profiles can be used to infer the height of a constant density level, enabling the observation of mesospheric density variations using meteor radar.

  17. A Intercomparison of Interferometric Meteor Radar Calibration Techniques

    NASA Astrophysics Data System (ADS)

    Kang, C.; Palo, S.

    Interferometric techniques are commonly used in all-sky meteor radar systems to determine the meteors position in the sky Before correctly conducting the task of estimating the direction-of-arrival DOA of the meteors effective and reliable calibrating the phases of the system is required Although different methods have been reported there is no satisfactory technique published This study thoroughly discusses the current and prospective calibration techniques Generally speaking phase calibration is implemented by measuring the phase difference between the receivers for a signal produced by a source with known locations Next the phase offsets can be estimated by comparing the measured phase difference with the expected phase difference between the antenna pairs Use of a low elevation ground antenna was reported by Valentic 1997 as the calibration source to estimate the receiver s phase offsets The advantage of this method is that the antennas can be mounted easily moved to a range of azimuths Measurements from these positions can thus be averaged to increase the accuracy of the estimated phase offsets However the angle estimation error at low elevation angles is larger than at high elevation angles which will degrade the performance of the calibration technique Unmanned vehicle UAV because of the low cost and operating flexibility received more concerns recently and is under development for autonomous antenna calibration Pisano et al 2005 This approach requires a robust navigation system in addition to GPS for system

  18. Effects of meteor head plasma distribution on radar cross sections and derived meteoroid masses

    NASA Astrophysics Data System (ADS)

    Marshall, R. A.; Close, S.; Brown, P.; Dimant, Y.

    2016-01-01

    We present calculations that relate meteor head echo radar cross sections to the meteor head plasma distribution. We use a forward model of radar scattering from meteor plasma using a finite-difference time-domain (FDTD) model of the electromagnetic wave interaction with the plasma. This model computes the meteor head RCS for a given meteor plasma distribution, specified with a peak plasma density and a characteristic size. We then relate measured RCS values to the input size and density parameters to better characterize the meteor plasma. We present simulation results that show that the RCS is directly related to the overdense meteor area; that is, the cross-section area of the meteor inside which the plasma frequency exceeds the radar frequency. This provides a direct estimate of the meteor plasma size from a given RCS measurement. Next we investigate the effect of the assumed plasma distribution. We study the RCS resulting from Gaussian, parabolic exponential and 1/r2 distributions. Comparing the different calculated RCS from these different distributions to three-frequency head echo data from the CMOR radar, we show that the 1/r2 distribution provides the best fit to the data. However, given uncertainties in the data, we cannot conclude that any distribution is the most valid. In addition, we show that the choice of distribution assumed can alter the resulting line density q by an order of magnitude for the same data.

  19. Agile beam laser radar using computational imaging for robotic perception

    NASA Astrophysics Data System (ADS)

    Powers, Michael A.; Stann, Barry L.; Giza, Mark M.

    2015-05-01

    This paper introduces a new concept that applies computational imaging techniques to laser radar for robotic perception. We observe that nearly all contemporary laser radars for robotic (i.e., autonomous) applications use pixel basis scanning where there is a one-to-one correspondence between world coordinates and the measurements directly produced by the instrument. In such systems this is accomplished through beam scanning and/or the imaging properties of focal-plane optics. While these pixel-basis measurements yield point clouds suitable for straightforward human interpretation, the purpose of robotic perception is the extraction of meaningful features from a scene, making human interpretability and its attendant constraints mostly unnecessary. The imposing size, weight, power and cost of contemporary systems is problematic, and relief from factors that increase these metrics is important to the practicality of robotic systems. We present a system concept free from pixel basis sampling constraints that promotes efficient and adaptable sensing modes. The cornerstone of our approach is agile and arbitrary beam formation that, when combined with a generalized mathematical framework for imaging, is suited to the particular challenges and opportunities of robotic perception systems. Our hardware concept looks toward future systems with optical device technology closely resembling modern electronically-scanned-array radar that may be years away from practicality. We present the design concept and results from a prototype system constructed and tested in a laboratory environment using a combination of developed hardware and surrogate devices for beam formation. The technological status and prognosis for key components in the system is discussed.

  20. Mesospheric observations by a forward scattering meteor radar basic setup

    NASA Astrophysics Data System (ADS)

    Madkour, Waleed; Yamamoto, Masa-yuki

    2016-08-01

    The durations of radio echo signals scattered from meteor ionized trails might not show a consistent increase corresponding to higher density trails due to the rapid removal of meteor ions at certain heights. Several studies have concluded the dominant role of the secondary ozone layer over diffusion in the removal of the meteor trails below 95 km through chemical oxidization of the meteor ions. Using a basic setup configuration of a forward scattering receiver, a trial to observe the mesospheric ozone concentration was performed by analyzing the meteor echo duration distributions. The forward scattered meteor echoes have the advantage of long durations that can enable observing the transition from the diffusion-removal regime to the chemistry-removal regime. The cumulative meteor echo duration distribution of two meteor showers, the Perseids and the Geminids, were analyzed over 10 years and the chemistry-removal regime in each shower was observed. The knee duration position at which a drop in the number of long overdense meteor echoes starts differed by around 30 seconds between the two showers. As the secondary ozone concentration is inversely related to the solar activity level, the Geminids 2011 corresponding to a high solar activity level showed a significant higher counts of long duration echoes compared to the Geminids 2006 during a low activity level, with the knee position shifted to longer duration. The knee positions obtained during the two distinct meteor showers and the two half solar cycle points are generally in agreement with the mesospheric ozone conditions expected in each case. However, continuous data record is required for the other meteor showers and the sporadic meteors at different heights to observe the mesospheric ozone concentration vertically and the full 11-years solar cycle.

  1. A processing method and results of meteor shower radar observations

    NASA Technical Reports Server (NTRS)

    Belkovich, O. I.; Suleimanov, N. I.; Tokhtasjev, V. S.

    1987-01-01

    Studies of meteor showers permit the solving of some principal problems of meteor astronomy: to obtain the structure of a stream in cross section and along its orbits; to retrace the evolution of particle orbits of the stream taking into account gravitational and nongravitational forces and to discover the orbital elements of its parent body; to find out the total mass of solid particles ejected from the parent body taking into account physical and chemical evolution of meteor bodies; and to use meteor streams as natural probes for investigation of the average characteristics of the meteor complex in the solar system. A simple and effective method of determining the flux density and mass exponent parameter was worked out. This method and its results are discussed.

  2. Modeling the Meteoroid Input Function at Mid-Latitude Using Meteor Observations by the MU Radar

    NASA Technical Reports Server (NTRS)

    Pifko, Steven; Janches, Diego; Close, Sigrid; Sparks, Jonathan; Nakamura, Takuji; Nesvorny, David

    2012-01-01

    The Meteoroid Input Function (MIF) model has been developed with the purpose of understanding the temporal and spatial variability of the meteoroid impact in the atmosphere. This model includes the assessment of potential observational biases, namely through the use of empirical measurements to characterize the minimum detectable radar cross-section (RCS) for the particular High Power Large Aperture (HPLA) radar utilized. This RCS sensitivity threshold allows for the characterization of the radar system s ability to detect particles at a given mass and velocity. The MIF has been shown to accurately predict the meteor detection rate of several HPLA radar systems, including the Arecibo Observatory (AO) and the Poker Flat Incoherent Scatter Radar (PFISR), as well as the seasonal and diurnal variations of the meteor flux at various geographic locations. In this paper, the MIF model is used to predict several properties of the meteors observed by the Middle and Upper atmosphere (MU) radar, including the distributions of meteor areal density, speed, and radiant location. This study offers new insight into the accuracy of the MIF, as it addresses the ability of the model to predict meteor observations at middle geographic latitudes and for a radar operating frequency in the low VHF band. Furthermore, the interferometry capability of the MU radar allows for the assessment of the model s ability to capture information about the fundamental input parameters of meteoroid source and speed. This paper demonstrates that the MIF is applicable to a wide range of HPLA radar instruments and increases the confidence of using the MIF as a global model, and it shows that the model accurately considers the speed and sporadic source distributions for the portion of the meteoroid population observable by MU.

  3. A MATLAB-based planar array design assistant package with applications to meteor radar systems

    NASA Astrophysics Data System (ADS)

    Kang, C.; Palo, S.

    Interferometric techniques are commonly used in all-sky meteor radar systems for meteor location determination Essentially interferometric techniques use the phase information recorded from different receiving antennas to estimate the elevation and azimuth of the meteors Prior efforts have been made to determine an antenna geometry that improves the performance of meteor radar systems For example Hocking and Thayaparan 1997 used four antennas typically spaced by 1 5 to 3 wavelengths to locate the meteors Jones 1992 and Hocking 1997 presented an antenna geometry using a 5 element array with minimum antenna spacing of 2 wavelengths to estimate the direction of arrival DOA of the meteors By spacing the antennas more than 2 wavelength apart these array geometries were successful in reducing the electromagnetic coupling effect between the antennas which can introduce errors in the estimation of meteor locations Without a clear metric for performance it is difficult to compare geometries In this work a MATLAB planar antenna array package mainly designed for visualization of the direction of arrival DOA estimation performance of arbitrary user designed antenna array is presented Performance comparisons of nominal array geometries are also provided Several metrics are available in this package in an effort to provide the user with a comprehensive examination of an array s performance The metrics are the Cramer-Rao bound CRB which is the minimum variance that can be obtained for any unbiased estimator the co-array the

  4. Meteor Trails in the Lower Thermosphere: What Do Large Radars Really Detect?

    NASA Astrophysics Data System (ADS)

    Oppenheim, M. M.; Dimant, Y. S.

    2014-12-01

    Tens of millions of detectable meteors ablate in the Earth's upper atmosphere each second, creating turbulent plasma trails that persist for up to minutes as they dissipate into the background ionosphere. These trails produce easily detected radar signals with a wealth of information. This talk will present a detailed analysis of two aspects of meteor physics: (1) the early evolution of meteors as they first ionize and create radar reflections called head echoes, and (2) the later evolution as meteor plasmas develop turbulence and create radar signals called non-specular or range spread meteor trail echoes. Head echoes form when sublimated material from a meteoroid initially collides with atmospheric molecules and ionize. Kinetic theory shows that this plasma develops over a length-scale close to the ion mean-free-path but with a highly non-Maxwellian velocity distribution. We have developed an analytical model that improves the quantitative interpretation of head echo radar measurements and ionization efficiency (called the Beta parameter). This will help us calculate meteoroid and atmosphere parameters from radar head-echo observations. Non-specular meteor trail echoes develop when meteor plasmas become turbulent allowing the reflection of radar signals. We will analyze this system using 3D simulations of a dense column of meteor plasma embedded in a background ionosphere/thermosphere. While the meteor diffuses across the Earth's geomagnetic field B0, large electric fields develop because of the interplay between highly mobile but magnetized electrons and the heavier but collisionally demagnetized ions. These fields point mostly perpendicular to B0 and change slowly in the direction of B0. These simulations show that the electric field causes a substantial restructuring of the ionospheric plasma outside the trail but connected to it via B0. They also demonstrate the diffusive expansion of the trail and the development of waves both within and outside the trail

  5. The Micrometeor Input Function: A study using model predictions HPLA radar meteor observations

    NASA Astrophysics Data System (ADS)

    Janches, D.; Fentzke, J. T.; Sparks, J. J.

    2008-05-01

    In this work we use a semi-empirical model of the Micrometeor Input Function (MIF) together with meteor head- echo observations obtained with two High Power and Large Aperture (HPLA) radars to study the seasonal and geographical dependence of the meteoric flux in the upper atmosphere. The model includes an initial mass flux that is provided by six known meteor sources (i.e. orbital families of dust) as well as detailed modeling of meteoroid atmospheric entry and ablation physics. In addition, we use a simple ionization model to treat radar sensitivity issues by defining minimum electron volume density production thresholds required in the meteor head-echo plasma for detection. This simplified approach works well because we use observations from two radars with similar frequencies, but different sensitivities and locations. This methodology allows us the explore the initial input of particles and how it manifests in different parts of the MLT as observed by these instruments without the need to invoke more sophisticated plasma models, which are under current development. The comparisons between model predictions and radar observations show excellent agreement between diurnal, seasonal, and latitudinal variability of the detected meteor rate and radial velocity distributions, allowing us to understand how individual meteoroid populations contribute to the overall flux at a particular location and season.

  6. Tristatic observations of meteors using the 930 MHz European Incoherent Scatter radar system

    NASA Astrophysics Data System (ADS)

    Janches, Diego; Pellinen-Wannberg, Asta; Wannberg, Gudmund; Westman, Assar; HäGgströM, Ingemar; Meisel, David D.

    2002-11-01

    We report results from the first tristatic measurements of radar meteors obtained during 17 November 1997 and 1998, using the UHF (930 MHz) European Incoherent Scatter (EISCAT) radar system. The observing technique utilized for these observations was first reported by [1998a]. This system consists of three 32-m parabolic antennae located in northern Scandinavia. Since EISCAT observes mostly meteor head echoes, a general characteristic of high-power/large-aperture radars, direct Doppler velocity (±1 km/s) determinations are possible. In addition, using the technique reported here, absolute geocentric meteor velocity and good radiant information (±5°) are deduced for those meteors that are detected simultaneously by all three receivers. An overview of the methodology and a summary of the results obtained so far are reported in this work. We compare the results obtained using this method with those reported by previous large-aperture meteor radar work at lower frequencies and find general agreement. EISCAT detects mainly sporadic particles extending the fast daily sporadic micrometeor storms first suggested by [2000b] and [2001] to submillimeter particles. To the best of our knowledge, these observations represent the first of their kind and prove EISCAT to be a crucial instrument for the study of extraterrestrial particles entering the Earth's atmosphere, in particular at very high geocentric latitudes and high geocentric speeds.

  7. Development of an external interferometer for meteor wind observation attached to the MU radar

    NASA Astrophysics Data System (ADS)

    Nakamura, Takuji; Tsuda, Toshitaka; Tsutsumi, Masaki

    1997-05-01

    An external meteor detection system for the middle and upper atmosphere (MU) radar, Shigaraki, Japan, has been developed in order to monitor the wind velocities at 80-100 km. The characteristics of the MU radar system and the observations are closely inspected, and we design a three-channel interferometer system using three independent single antennas. The data-taking system was carefully designed, considering fast data rate, short interpulse period, wide data bits (19 bit), and fast sampling rate (1 million samples/s), and all the logics are assembled by programmable logic devices. This external interferometer was operated since March 1995 during the Doppler beam swinging observation by the MU radar, and the first results are presented. Meteor echo rate was around 2000/day, 1000 of which were usable for postprocessing, i.e., wind measurement. This echo rate is greater than that of the meteor radar system in Jakarta. Wind velocities were determined with time-height resolutions of 1 hour × 2 km, which showed reasonable agreement with the wind velocities determined from the turbulent echoes in the mesosphere. We present the capability of an external interferometry system attached to the mesosphere-stratosphere-troposphere/stratosphere-troposphere radar as a meteor wind observation system.

  8. Analysis of Coherent Scatter Observations collected with the new Penn State VHF Meteor Radar

    NASA Astrophysics Data System (ADS)

    Urbina, J. V.; Hackett, A. L.; Dyrud, L. P.; Fentzke, J.

    2012-12-01

    The Penn State University 50 MHz radar interferometer has been installed near Penn State campus, University Park, Pennsylvania (77.97°W, 40.70°N), to make continuous meteor observations since July 5, 2012. The antenna beam is pointed to the north in the magnetic meridian plane. In azimuth the half-power beam-width is about 3.4o, while in elevation the gain pattern peaked in the direction perpendicular to the geomagnetic field at E-region heights at about 18o elevation angle. The system uses two phased sub-arrays of four 24-element COCO strings with an east-west separation of 50 m. On transmission both sub-arrays are excited simultaneously and oriented perpendicular to the Earth's geomagnetic field lines at E- region heights. On reception each sub-array is sampled independently for interferometric detection of the scattering regions. The new radar operates at a peak power of about 30 kW and can detect all three types of meteor reflections: 1) the commonly used specular meteor trails; 2) non-specular trails, which result from plasma instability and turbulence generated field aligned irregularities (FAI); and 3) meteor head-echoes, which are a radar target moving at the speed of the meteoroid. In this paper, we present first observational trends of specular, non- specular, and head-echoes collected with the new system and discuss sampling biases of each meteor observation technique. We also present the general characteristics of continuous measurements of E-region and F-region coherent echoes using this modern radar system and compare them with coherent radar events observed at other geographic mid-latitude radar stations.

  9. The New Meteor Radar at Penn State: Design and First Observations

    NASA Technical Reports Server (NTRS)

    Urbina, J.; Seal, R.; Dyrud, L.

    2011-01-01

    In an effort to provide new and improved meteor radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future meteor radars, with primary objectives of making such instruments more capable and more cost effective in order to study the basic properties of the global meteor flux, such as average mass, velocity, and chemical composition. Using low-cost field programmable gate arrays (FPGAs), combined with open source software tools, we describe a design methodology enabling one to develop state-of-the art radar instrumentation, by developing a generalized instrumentation core that can be customized using specialized output stage hardware. Furthermore, using object-oriented programming (OOP) techniques and open-source tools, we illustrate a technique to provide a cost-effective, generalized software framework to uniquely define an instrument s functionality through a customizable interface, implemented by the designer. The new instrument is intended to provide instantaneous profiles of atmospheric parameters and climatology on a daily basis throughout the year. An overview of the instrument design concepts and some of the emerging technologies developed for this meteor radar are presented.

  10. Comparison of meteor and medium frequency radar kilometer scale MLT dynamics at 70°N

    NASA Astrophysics Data System (ADS)

    Hall, C. M.; Aso, T.; Tsutsumi, M.; Nozawa, S.; Meek, C. E.; Manson, A. H.

    2006-02-01

    Kinetic energy dissipation rates for the auroral MLT have been obtained from the Tromsø middle frequency radar (MFR) and compared with simultaneous measurements of neutral wind-shears obtained from the Nippon/Norway Tromsø meteor radar (NTMR). Since wind-shears can drive dynamic instabilities which in turn result in turbulent dissipation of kinetic energy, we would expect these parameters to be correlated, and this is indeed the case. Having established this correlation we quantitatively combine the results from each radar to estimate the turbulent diffusion coefficient for momentum; considering the tentative nature of this approach, we find the agreement with previous estimates to be surprisingly good.

  11. Agile

    NASA Technical Reports Server (NTRS)

    Trimble, Jay Phillip

    2013-01-01

    This is based on a previous talk on agile development. Methods for delivering software on a short cycle are described, including interactions with the customer, the affect on the team, and how to be more effective, streamlined and efficient.

  12. Fragmentation of specular overdense meteor trail echoes observed with Gadanki MST radar

    NASA Astrophysics Data System (ADS)

    Chenna Reddy, K.; Yellaiah, G.

    2016-02-01

    The pulse-integrated signal to noise ratio as a function of time known as radar meteor light curve (analogous to optical light curve), is an indicative of ablation processes during meteoroid flight in the atmosphere. In this study, we present and discuss few examples of light curves of long duration specular overdense meteor echoes detected with 53 MHz Gadanki (13.5°N, 79.2°E) MST radar. These echoes are of several seconds duration, where pulsation in amplitude is about ten cycles within few seconds. This means the fluctuations in amplitude are much slower than typical Fresnel oscillations of underdense as well as the head echo fluctuations. These light curves reveal several features unreported previously in the radar meteor returns that are consistent with meteoroid fragmentation. Some of them provide the strong observational evidence of a sub-millimeter-sized meteoroid, breaking apart into two distinct fragments. The pulsations in light curves are interpreted as being due to interference from two distinct scattering centers. Some other meteor events such as meteoroids undergoing quasi-continuous disintegration are also discussed.

  13. The analyses of destruction of the meteoric trail on radar observations.

    NASA Astrophysics Data System (ADS)

    Karpov, A. V.; Naumov, A. V.; Abrosimov, J. V.

    2003-04-01

    It is known, that ambipolar diffusion defines a destruction of an ionic-electronic trail of underdence type. At the same time attempts of an explanation of destruction of overdence trail by only ambipolar diffusion give large deviations of definition of duration of the meteoric trail. Reduction of duration of existence of the meteoric trail was explained by influence of change of parameter s in distribution of meteoric bodies on weights; influence of effects recombination; to adhere of electrons to the neutral molecules, atoms and turbulent diffusion. The analysis of works of this problem gives, that researchers do not have the good explanation of processes of destruction of the meteoric trail. In this work we try to define the most important processes of destruction of the overdence meteoric trail and to construct model of destruction of an meteoric trail. The analysis of rate of reactions shows, that procesess of the recombination with electronic stabilization, dissociative recombination, two-step process with participation of atmospheric ozone also influence on reduction of concentration of electronic in trail. In view of these reactions we have written down the equation for change of electronic density of a trace. The decision of the given equation was carried out in approach, that distribution of electronic density on section of a trace is Gauss and does not vary in due course. We constructed modeling distributions of duration radioreflections at the account of action only one of mechanisms and their combination. The qualitative analysis ions structure of a trace is carried out. As the initial data the average structure of meteoric bodies is taken according to previous works of different authors and factors of ionization of these atoms for speeds from 20 km/s up to 70 km/s. For acknowledgement of theoretical hypotheses experimental supervision on meteoric radar KSU-5 are planned.

  14. Application of multiple-hypothesis tracking to agile beam radar tracking

    NASA Astrophysics Data System (ADS)

    Popoli, Robert F.; Blackman, Samuel S.; Busch, M. T.

    1996-05-01

    This paper describes methods that have been developed for using multiple hypothesis tracking (MHT) for an agile beam radar in the presence of range gate pull off (RGPO) electronic countermeasures (ECM). The paper shows how the agile beam radar allocation logic can be extended to include uncertainty in target position due to data association uncertainty. It also shows how the MHT track score can be modified to reflect target offset from the commanded radar antenna position and how measured SNR is included in the track score. Results from the second Benchmark tracking study are presented. These results show MHT-based allocation to ge highly efficient. The results also show that the system satisfies stringent track maintenance requirements in the presence of RGPO and coincident target maneuvers.

  15. Radar meteors range distribution model. III. Ablation, shape-density and self-similarity parameters

    NASA Astrophysics Data System (ADS)

    Pecinová, D.; Pecina, P.

    2007-10-01

    The theoretical radar meteors Range Distribution of the overdense echoes developed by Pecinová and Pecina (2007 a) is applied here to observed range distributions of meteors belonging to the Quadrantid, Perseid, Leonid, Geminid, γ Draconid (Giacobinid), ζ Perseid and β Taurid streams to study the variability of the shape-density, ablation, and self-similarity parameters of meteoroids of these streams. We have found in accordance with results of photographical observations that ablation parameter σ is higher for members of showers of clearly cometary origin, and is lower for Geminid and daytime shower meteoroids. Levin's self-similarity parameter μ was found to be much greater than the classical value 2/3 for all investigated streams with the exception of Geminids, for which the value found is almost classical, i.e. 0.66 ± 0.01. The method of getting μ by means of fitting the light curve of faint TV meteors is also suggested.

  16. DYNAMICS OF DUST PARTICLES RELEASED FROM OORT CLOUD COMETS AND THEIR CONTRIBUTION TO RADAR METEORS

    SciTech Connect

    Nesvorny, David; Vokrouhlicky, David; Pokorny, Petr; Janches, Diego

    2011-12-10

    The Oort Cloud Comets (OCCs), exemplified by the Great Comet of 1997 (Hale-Bopp), are occasional visitors from the heatless periphery of the solar system. Previous works hypothesized that a great majority of OCCs must physically disrupt after one or two passages through the inner solar system, where strong thermal gradients can cause phase transitions or volatile pressure buildup. Here we study the fate of small debris particles produced by OCC disruptions to determine whether the imprints of a hypothetical population of OCC meteoroids can be found in the existing meteor radar data. We find that OCC particles with diameters D {approx}< 10 {mu}m are blown out from the solar system by radiation pressure, while those with D {approx}> 1 mm have a very low Earth-impact probability. The intermediate particle sizes, D {approx} 100 {mu}m, represent a sweet spot. About 1% of these particles orbitally evolve by Poynting-Robertson drag to reach orbits with semimajor axis a {approx} 1 AU. They are expected to produce meteors with radiants near the apex of Earth's orbital motion. We find that the model distributions of their impact speeds and orbits provide a good match to radar observations of apex meteors, except for the eccentricity distribution, which is more skewed toward e {approx} 1 in our model. Finally, we propose an explanation for the long-standing problem in meteor science related to the relative strength of apex and helion/antihelion sources. As we show in detail, the observed trend, with the apex meteors being more prominent in observations of highly sensitive radars, can be related to orbital dynamics of particles released on the long-period orbits.

  17. Dynamics of Dust Particles Released from Oort Cloud Comets and Their Contribution to Radar Meteors

    NASA Technical Reports Server (NTRS)

    Nesvorny, David; Vokrouhlicky, David; Pokorny, Petr; Janches, Diego

    2012-01-01

    The Oort Cloud Comets (OCCs), exemplified by the Great Comet of 1997 (Hale-Bopp), are occasional visitors from the heatless periphery of the solar system. Previous works hypothesized that a great majority of OCCs must physically disrupt after one or two passages through the inner solar system, where strong thermal gradients can cause phase transitions or volatile pressure buildup. Here we study the fate of small debris particles produced by OCC disruptions to determine whether the imprints of a hypothetical population of OCC meteoroids can be found in the existing meteor radar data. We find that OCC particles with diameters D < or approx. 10 microns are blown out from the solar system by radiation pressure, while those with D > or approx. 1 mm have a very low Earth-impact probability. The intermediate particle sizes, D approx. 100 microns represent a sweet spot. About 1% of these particles orbitally evolve by Poynting-Robertson drag to reach orbits with semimajor axis a approx. 1 AU. They are expected to produce meteors with radiants near the apex of the Earth s orbital motion. We find that the model distributions of their impact speeds and orbits provide a good match to radar observations of apex meteors, except for the eccentricity distribution, which is more skewed toward e approx. 1 in our model. Finally, we propose an explanation for the long-standing problem in meteor science related to the relative strength of apex and helion/antihelion sources. As we show in detail, the observed trend, with the apex meteors being more prominent in observations of highly sensitive radars, can be related to orbital dynamics of particles released on the long-period orbits.

  18. High-altitude radar meteors observed at Jicamarca Radio Observatory using a multibaseline interferometric technique

    NASA Astrophysics Data System (ADS)

    Gao, Boyi; Mathews, John D.

    2015-10-01

    A new unambiguous, multibaseline interferometric technique was recently employed for meteor observations at Jicamarca Radio Observatory (JRO). These observations largely confirm high-altitude radar meteors (HARMs). The 50 MHz JRO array is arranged in contiguous quarter-arrays (Q) each of which is comprised of 4 × 4 sub-arrays (M), which are referred to as square modules in the Ochs' manual. In these observations the radar transmission was from two quarter-arrays sharing a common diagonal. Signal reception was via three, quarter-array (Q) receivers and three adjacent (M) module receivers all of the same polarization. This arrangement offered the usual Q-Q and M-M interferometric baseline-pairs as well as new Q-M baselines that were rotated ˜6° from the Q-Q and M-M baselines. For relatively high signal-to-noise ratio meteors, this arrangement yields ambiguity resolution to the horizon and confirms the existence of HARM events. We report results from 2014 August 4 to 5 observations that include interesting new HARM events and also suggest the meteoric origin of high-altitude, altitude-extended transient events we named `Dragons' in our earlier report (Gao & Mathews 2015a). We hope to extend this new technique with yet more baselines and higher sensitivity in near future observations.

  19. Estimation of mesopause temperatures at low latitudes using the Kunming meteor radar

    NASA Astrophysics Data System (ADS)

    Yi, Wen; Xue, Xianghui; Chen, Jinsong; Dou, Xiankang; Chen, Tingdi; Li, Na

    2016-03-01

    In this study, mesopause temperatures over a low-latitude station were derived by applying the temperature gradient model technique to data from a meteor radar installation located in Kunming (25.6°N, 103.8°E), China. The estimated temperatures are in good agreement with Sounding of the Atmosphere by Broadband Emission Radiometry (SABER) temperatures and exhibit clear seasonal and interannual variations with dominant spectral peaks at annual, semiannual, quasi 90 day, and terannual oscillations. However, the amplitudes of the temperature fluctuations and the dominant spectral peaks are larger than those from SABER. An improved method that accounts for the temperature sensitivity of the slope estimated from the meteor radar data was developed to calibrate the larger fluctuations obtained using the temperature gradient model technique. The resulting calibrated temperatures are more consistent with SABER observations, and the accuracy of the derived temperatures is significantly improved.

  20. Kinetic Theory of Meteor Plasma in the Earth's atmosphere: Implications for Radar Head Echo

    NASA Astrophysics Data System (ADS)

    Dimant, Y. S.; Oppenheim, M. M.

    2015-12-01

    Every second millions of tiny meteoroids hit the Earth from space, vast majority too small to be observed visually. However, radars detect the plasma they generate and use the collected data to characterize the incoming meteoroids and the atmosphere in which they disintegrate. This diagnostics requires a detailed quantitative understanding of formation of the meteor plasma and how it interacts with the Earth's atmosphere. Fast-descending meteoroids become detectable to radars after they heat due to collisions with atmospheric molecules sufficiently and start ablating. The ablated material then collides into atmospheric molecules and forms plasma around the meteoroid. Reflection of radar pulses from this plasma produces a localized signal called a head echo often accompanied by a much longer non-specular trail (see the Figure). Using first principles, we have developed a consistent collisional kinetic theory of the near-meteoroid plasma responsible for the radar head echo. This theory produces analytic expressions describing the ion and neutral velocity distributions along with the detailed 3-D spatial structure of the near-meteoroid plasma. These expressions predict a number of unexpected features such as shell-like velocity distributions. This theory shows that the meteoroid plasma develops over a length-scale close to the ion mean free path with a strongly non-Maxwellian velocity distribution. The spatial distribution of the plasma density shows significant deviations from a Gaussian law usually employed in head-echo modeling. This analytical model will serve as a basis for a more accurate quantitative interpretation of radar measurements, estimates of the ionization efficiency, and should help calculate meteoroid and atmosphere parameters from radar head-echo observations. This theory could also help clarify the physical nature of electromagnetic pulses observed during recent meteor showers and associated with the passage of fast-moving meteors through the

  1. Assessment of Gravity Wave Momentum Flux Measurement Capabilities by Meteor Radars Having Different Transmitter Power and Antenna Configurations

    NASA Technical Reports Server (NTRS)

    Fritts, D. C.; Janches, D.; Hocking, W. K.; Mitchell, N. J.; Taylor, M. J.

    2011-01-01

    Measurement capabilities of five meteor radars are assessed and compared to determine how well radars having different transmitted power and antenna configurations perform in defining mean winds, tidal amplitudes, and gravity wave (GW) momentum fluxes. The five radars include two new-generation meteor radars on Tierra del Fuego, Argentina (53.8 deg S) and on King George Island in the Antarctic (62.1 deg S) and conventional meteor radars at Socorro, New Mexico (34.1 deg N, 106.9 deg W), Bear Lake Observatory, Utah (approx 41.9 deg N, 111.4 deg W), and Yellowknife, Canada (62.5 deg N, 114.3 deg W). Our assessment employs observed meteor distributions for June of 2009, 2010, or 2011 for each radar and a set of seven test motion fields including various superpositions of mean winds, constant diurnal tides, constant and variable semidiurnal tides, and superposed GWs having various amplitudes, scales, periods, directions of propagation, momentum fluxes, and intermittencies. Radars having higher power and/or antenna patterns yielding higher meteor counts at small zenith angles perform well in defining monthly and daily mean winds, tidal amplitudes, and GW momentum fluxes, though with expected larger uncertainties in the daily estimates. Conventional radars having lower power and a single transmitting antenna are able to describe monthly mean winds and tidal amplitudes reasonably well, especially at altitudes having the highest meteor counts. They also provide qualitative estimates of GW momentum fluxes at the altitudes having the highest meteor counts; however, these estimates are subject to uncertainties of approx 20 to 50% and uncertainties rapidly become excessive at higher and lower altitudes. Estimates of all quantities degrade somewhat for more complex motion fields.

  2. Assessment of gravity wave momentum flux measurement capabilities by meteor radars having different transmitter power and antenna configurations

    NASA Astrophysics Data System (ADS)

    Fritts, D. C.; Janches, D.; Hocking, W. K.; Mitchell, N. J.; Taylor, M. J.

    2012-05-01

    Measurement capabilities of five meteor radars are assessed and compared to determine how well radars having different transmitted power and antenna configurations perform in defining mean winds, tidal amplitudes, and gravity wave (GW) momentum fluxes. The five radars include two new-generation meteor radars on Tierra del Fuego, Argentina (53.8°S) and on King George Island in the Antarctic (62.1°S) and conventional meteor radars at Socorro, New Mexico (34.1°N, 106.9°W), Bear Lake Observatory, Utah (˜41.9°N, 111.4°W), and Yellowknife, Canada (62.5°N, 114.3°W). Our assessment employs observed meteor distributions for June of 2009, 2010, or 2011 for each radar and a set of seven test motion fields including various superpositions of mean winds, constant diurnal tides, constant and variable semidiurnal tides, and superposed GWs having various amplitudes, scales, periods, directions of propagation, momentum fluxes, and intermittencies. Radars having higher power and/or antenna patterns yielding higher meteor counts at small zenith angles perform well in defining monthly and daily mean winds, tidal amplitudes, and GW momentum fluxes, though with expected larger uncertainties in the daily estimates. Conventional radars having lower power and a single transmitting antenna are able to describe monthly mean winds and tidal amplitudes reasonably well, especially at altitudes having the highest meteor counts. They also provide reasonable estimates of GW momentum fluxes at the altitudes having the highest meteor counts; however, these estimates are subject to uncertainties of ˜20 to 50% and uncertainties rapidly become excessive at higher and lower altitudes. Estimates of all quantities degrade somewhat for more complex motion fields.

  3. First Detection of Meteoric Smoke using the Poker Flat Incoherent Scatter Radar (PFISR)

    NASA Astrophysics Data System (ADS)

    Hsu, V. W.; Fentzke, J. T.; Brum, C. G.; Strelnikova, I.; Nicolls, M. J.

    2011-12-01

    In this work we present the first results of meteor smoke particles (MSPs) detected in the D-region plasma above the 449 MHz Poker Flat Incoherent Scatter Radar (PFISR) in Alaska (67°N, 149°W). MSPs are believed to be the major source of condensation nuclei for the formation of ice particles, the precursor for Polar Mesospheric Clouds (PMCs) and Polar Mesospheric Summer Echoes (PMSE). In addition, they are thought to contribute to D-region chemistry by providing a surface on which heterogeneous chemistry occurs (Summers and Siskand, 1999). Our results are obtained by utilizing a similar fitting method derived for use at other High Power Large Aperture Radar (HPLA) sites that treats the measured radar signal as the sum of two Lorentzian functions [Strelnikova et al., 2007]. This method allows us to determine particle size distributions and smoke densities (when calibrated electron density data is available) in the range of approximately 70 to 90 km altitude depending on background atmospheric composition. We present results from a period of strong D-Region ionization when the detected signal-to-noise (SNR) from the D-region is strongest (12 - 19 UT). Our results provide insight into the presence and distribution of charged meteoric dust in the polar mesopause region resulting from the condensation of ablated material of meteoric origin. Furthermore, we compare our results to other HPLA radar sites at high latitude (EISCAT) as well as low latitude (Arecibo) to verify our results and investigate any latitudinal variation that may exist.

  4. Deriving horizontally resolved winds applying inverse theory to multi-static meteor radar observations

    NASA Astrophysics Data System (ADS)

    Stober, Gunter; Wilhelm, Sven; Jacobi, Christoph; Chau, Jorge L.

    2016-04-01

    Mesospheric dynamics is characterized by the presence of atmospheric waves at different spatial and temporal scales such as planetary waves (PW), tides and gravity waves (GW). In particular, gravity waves provide a significant contribution to the mesospheric variability on short time scales from minutes to several hours. As GW carry a considerable amount of energy and momentum from their source region up to the region where they dissipate they contribute to the energy budget in the stratosphere and mesosphere. Here we present a new mathematical approach applying inverse theory to derive horizontally resolved wind fields using meteor radar networks. The horizontally resolved wind field contains valuable information about the horizontal scale of this short term variability and permit to access the horizontal wavelength spectra of GW. Our preliminary results indicate that our retrieval algorithm keeps the mesoscale information, viz. median of the retrieved winds is in agreement to all-sky meteor wind fit.

  5. Recent shower outbursts detected by the Canadian Meteor Orbit Radar (CMOR)

    NASA Astrophysics Data System (ADS)

    Brown, P.

    2016-01-01

    We present recent detections of short-duration shower outbursts as measured by the Canadian Meteor Orbit Radar (CMOR) between 2013-2016. In this interval, CMOR detected two strong shower outbursts unlinked to known showers. These included an outburst of the Kappa Cancrids (KCA - IAU 793) on January 5, 2015 and from the Gamma Lyrids (GLY - IAU 794) on February 7, 2015. Both have an orbit consistent with a Halley-type comet (HTC) or nearly isotropic-comet. Analysis of GLY activity also revealed a previously unreported annual shower, the September Ursae Majorids, (SUR - IAU 795).

  6. Aeronomy report no. 74: The Urbana meteor-radar system; design, development, and first observations

    NASA Technical Reports Server (NTRS)

    Hess, G. C.; Geller, M. A.

    1976-01-01

    The design, development, and first observations of a high power meteor-radar system located near Urbana, Illinois are described. The roughly five-fold increase in usable echo rate compared to other facilities, along with automated digital data processing and interferometry measurement of echo arrival angles, permits unsurpassed observations of tidal structure and shorter period waves. Such observations are discussed. The technique of using echo decay rates to infer density and scale height and the method of inferring wind shear from radial acceleration are examined. An original experiment to test a theory of the Delta-region winter anomaly is presented.

  7. Controlled time integration for the numerical simulation of meteor radar reflections

    NASA Astrophysics Data System (ADS)

    Räbinä, Jukka; Mönkölä, Sanna; Rossi, Tuomo; Markkanen, Johannes; Gritsevich, Maria; Muinonen, Karri

    2016-07-01

    We model meteoroids entering the Earth's atmosphere as objects surrounded by non-magnetized plasma, and consider efficient numerical simulation of radar reflections from meteors in the time domain. Instead of the widely used finite difference time domain method (FDTD), we use more generalized finite differences by applying the discrete exterior calculus (DEC) and non-uniform leapfrog-style time discretization. The computational domain is presented by convex polyhedral elements. The convergence of the time integration is accelerated by the exact controllability method. The numerical experiments show that our code is efficiently parallelized. The DEC approach is compared to the volume integral equation (VIE) method by numerical experiments. The result is that both methods are competitive in modelling non-magnetized plasma scattering. For demonstrating the simulation capabilities of the DEC approach, we present numerical experiments of radar reflections and vary parameters in a wide range.

  8. D region meteoric smoke and neutral temperature retrieval using the poker flat incoherent scatter radar

    NASA Astrophysics Data System (ADS)

    Fentzke, J. T.; Hsu, V.; Brum, C. G. M.; Strelnikova, I.; Rapp, M.; Nicolls, M.

    2012-11-01

    This brief note describes the first measurement of the microphysical properties and variability of meteoric smoke particles (MSPs) at high latitude using the Poker Flat ISR (65.1°N, 147.5°W). We present a novel technique for determining height resolved daytime D region neutral temperatures, which takes into account the presence of charged dust. We discuss the temporal/spatial variability and the relation to meteoric input observed and MSP microphysical properties in the polar mesopause region. The derived nanometer sized MSPs are consistent with size profiles derived previously using radar/rocket techniques and we note that our results imply a lack of heavy cluster ions below 85 km during the observing period. This provides a template for potential use at many other radar sites for the determination of microphysical properties of MSPs and day-time neutral temperature in the D region that show good general agreement with model and satellite temperature data during the observing period.

  9. The frequency-agile radar: A multifunctional approach to remote sensing of the ionosphere

    NASA Astrophysics Data System (ADS)

    Tsunoda, R. T.; Livingston, R. C.; Buonocore, J. J.; McKinley, A. V.

    1995-09-01

    We introduce a new kind of diagnostic sensor that combines multifunctional measurement capabilities for ionospheric research. Multifunctionality is realized through agility in frequency selection over an extended band (1.5 to 50 MHz), system modularity, complete system control by software written in C, and a user-friendly computer interface. This sensor, which we call the frequency-agile radar (FAR), incorporates dual radar channels and an arbitrary waveform synthesizer that allows creative design of sophisticated waveforms as a means of increasing its sensitivity to weak signals while minimizing loss in radar resolution. The sensitivity of the FAR is determined by two sets of power amplifier modules: four 4-kW solid-state broadband amplifiers, and four 30-kW vacuum tube amplifiers. FAR control is by an AT-bus personal computer with on-line processing by a programmable array processor. The FAR does not simply house the separate functions of most radio sensors in use today, it provides convenient and flexible access to those functions as elements to be used in any combination. Some of the first new results obtained with the FAR during recent field campaigns are presented to illustrate its versatility. These include (1) the first detection of anomalous high-frequency (HF) reflections from a barium ion cloud, (2) the first evidence of unexpectedly large drifts and a shear north of the equatorial electrojet, (3) the first HF radar signature of a developing equatorial plasma bubble, and (4) the first measurements by a portable radar of altitude-extended, quasi-periodic backscatter from midlatitude sporadic E. We also mention the potential of the FAR for atmospheric remote sensing.

  10. A comparison of detection sensitivity between ALTAIR and Arecibo meteor observations: Can high power and large aperture radars detect low velocity meteor head-echoes

    NASA Astrophysics Data System (ADS)

    Janches, Diego; Close, Sigrid; Fentzke, Jonathan T.

    2008-01-01

    Meteor head-echo observations using High Power and Large Aperture (HPLA) radars have been routinely used for micrometeor studies for over a decade. The head-echo is a signal from the radar-reflective plasma region traveling with the meteoroid and its detection allows for very precise determination of instantaneous meteor altitude, velocity and deceleration. Unlike specular meteor radars (SMR), HPLA radars are diverse instruments when compared one to another. The operating frequencies range from 46 MHz to 1.29 GHz while the antenna configurations changes from 18,000 dipoles in a 300 m×300 m square array, phase arrays of dipoles to single spherical or parabolic dishes of various dimensions. Hunt et al. [Hunt, S.M., Oppenheim, M., Close, S., Brown, P.G., McKeen, F., Minardi, M., 2004. Icarus 168, 34-42] and Close et al. [Close, S., Brown, P., Campbell-Brown, M., Oppenheim, M., Colestock, P., 2007. Icarus, doi: 10.1016/j.icarus.2006.09.07] recently showed, by utilizing a head-echo plasma-based model, the presence of instrumental biases in the ALTAIR VHF radar system against detecting meteors produced by very small particles (<1 μg) moving at slow (˜20 km/s) velocities due to the low head echo radar cross-section (RCS) associated with these particles. In this paper we apply the same methodology to the Arecibo 430 MHz radar and compare the results with those presented by Close et al. [Close, S., Brown, P., Campbell-Brown, M., Oppenheim, M., Colestock, P., 2007. Icarus, doi: 10.1016/j.icarus.2006.09.07]. We show that, if the methodology applied by Hunt et al. [Hunt, S.M., Oppenheim, M., Close, S., Brown, P.G., McKeen, F., Minardi, M., 2004. Icarus 168, 34-42] and Close et al. [Close, S., Brown, P., Campbell-Brown, M., Oppenheim, M., Colestock, P., 2007. Icarus, doi: 10.1016/j.icarus.2006.09.07] is accurate, for particles at least 1 μg or heavier, while the bias may exist for the ALTAIR measurements, it does not exist in the Arecibo data due to its greater sensitivity.

  11. 95 years anniversary of Professor BL Kashcheyev (1920 - 2004) - the well-known Ukrainian researcher of meteors by the radar method

    NASA Astrophysics Data System (ADS)

    Kolomiyets, Svitlana

    2015-08-01

    Meteor astronomy is constantly evolving. We can distinguish several stages in the development of meteor astronomy. One of these steps is the period associated with carrying out the global program called "International Geophysical Year 1957" (IGY1957). Thanks to this program in Ukraine in Kharkiv has been studied meteors using radar techniques. One of the organizers of the IGY 1957 meteor program execution in Ukraine (and in the former Soviet Union) was prof. BL Kashcheyev (1920-2004). At the IAU GA in 1958 prof. BL Kashcheyev made the report on the meteor radar studies in Kharkiv. These research were considered by the IAU Commission 22 as the best in the world. The name of Professor BL Kashcheyev related to the creation of the Kharkiv meteor radar system and the long series of meteor observations, creating the database of 250 thousand orbits of faint meteors (12^ M), carrying out the variety of meteor projects (including the GLOBMET). In 2004 the Kharkiv meteor radar complex was given the status of national heritage of Ukraine. In 2007, the organizers of the program "International Heliophisic Year 2007" (IHY2007) remarked the BL Kashcheyev contribution to the IGY 1957 (the certificate and the pin "The IGY1957 Gold ").

  12. Combined observations of meteors by image-orthicon television camera and multi-station radar. [to compare ionization with luminosity

    NASA Technical Reports Server (NTRS)

    Cook, A. F.; Forti, G.; Mccrosky, R. E.; Posen, A.; Southworth, R. B.; Williams, J. T.

    1973-01-01

    Observations from multiple sites of a radar network and by television of 29 individual meteors from February 1969 through June 1970 are reported. Only 12 of the meteors did not appear to fragment over all the observed portion of their trajectories. From these 12, the relation for the radar magnitude to the panchromatic absolute magnitude was found in terms of velocity of the meteor. A very tentative fit to the data on the duration of long enduring echoes versus visual absolute magnitude is made. The exponential decay characteristics of the later parts of several of the light curves are pointed out as possible evidence of mutual coalescence of droplets into which the meteoroid has completely broken.

  13. Interhemispheric structure and variability of the 5-day planetary wave from meteor radar wind measurements

    NASA Astrophysics Data System (ADS)

    Iimura, H.; Fritts, D. C.; Janches, D.; Singer, W.; Mitchell, N. J.

    2015-11-01

    A study of the quasi-5-day wave (5DW) was performed using meteor radars at conjugate latitudes in the Northern and Southern hemispheres. These radars are located at Esrange, Sweden (68° N) and Juliusruh, Germany (55° N) in the Northern Hemisphere, and at Tierra del Fuego, Argentina (54° S) and Rothera Station, Antarctica (68° S) in the Southern Hemisphere. The analysis was performed using data collected during simultaneous measurements by the four radars from June 2010 to December 2012 at altitudes from 84 to 96 km. The 5DW was found to exhibit significant short-term, seasonal, and interannual variability at all sites. Typical events had planetary wave periods that ranged between 4 and 7 days, durations of only a few cycles, and infrequent strongly peaked variances and covariances. Winds exhibited rotary structures that varied strongly among sites and between events, and maximum amplitudes up to ~ 20 m s-1. Mean horizontal velocity covariances tended to be largely negative at all sites throughout the interval studied.

  14. Semidiurnal lunar tides observed by meteor radar over Brazilian equatorial region

    NASA Astrophysics Data System (ADS)

    Paulino, Ana Roberta; Prado Batista, Paulo; Clemesha, Barclay; Buriti, Ricardo

    Using meteor radar data observed at São João do Cariri (7.4o S ; 36.5o W), it was possible to a a study the atmospheric semidiurnal lunar tide in the mesosphere and lower thermosphere from January, 2005 to December, 2008. Monthly tidal amplitudes and phases were determined using hourly mean winds in seven layers of four kilometer thickness each, centered in 81, 84, 87, 90, 93, 96 and 99 kilometers of height. The amplitudes and phases profiles of the semidiurnal lunar tide showed general characteristics of vertically propagating waves in the atmosphere, in other words, the amplitudes were increasing and the phases showed progression with decreasing heights. During almost all year, the amplitudes of the meridional component were greater than the zonal component and the phases presented equatorial characteristics of South Hemisphere. In several aspects, the observations presented good agreement with the Vial and Forbes (1994) atmospheric semidiurnal lunar tidal model.

  15. Inverse filtering of radar signals using compressed sensing with application to meteors

    NASA Astrophysics Data System (ADS)

    Volz, Ryan; Close, Sigrid

    2012-10-01

    Compressed sensing, a method which relies on sparsity to reconstruct signals with relatively few measurements, provides a new approach to processing radar signals that is ideally suited to detailed imaging and identification of multiple targets. In this paper, we extend previously published theoretical work by investigating the practical problems associated with this approach. In deriving a discrete linear radar model that is suitable for compressed sensing, we discuss what the discrete model can tell us about continuously defined targets and show how sparsity in the latter translates to sparsity in the former. We provide details about how this problem can be solved when using large data sets. Through comparisons with matched filter processing, we validate our compressed sensing technique and demonstrate its application to meteors, where it has the potential to answer open questions about processes like fragmentation and flares. At the cost of computational complexity and an assumption of target sparsity, the benefits over pulse compression using a matched filter include no filtering sidelobes, noise removal, and higher possible range and Doppler frequency resolution.

  16. Characteristics of ejecta and alluvial deposits at Meteor Crater, Arizona and Odessa Craters, Texas: Results from ground penetrating radar

    NASA Technical Reports Server (NTRS)

    Grant, J. A.; Schultz, P. H.

    1991-01-01

    Previous ground penetrating radar (GRP) studies around 50,000 year old Meteor Crater revealed the potential for rapid, inexpensive, and non-destructive sub-surface investigations for deep reflectors (generally greater than 10 m). New GRP results are summarized focusing the shallow sub-surfaces (1-2 m) around Meteor Crater and the main crater at Odessa. The following subject areas are covered: (1) the thickness, distribution, and nature of the contact between surrounding alluvial deposits and distal ejecta; and (2) stratigraphic relationships between both the ejecta and alluvium derived from both pre and post crater drainages. These results support previous conclusions indicating limited vertical lowering (less than 1 m) of the distal ejecta at Meteor Crater and allow initial assessment of the gradational state if the Odessa craters.

  17. Comparison of D-region Doppler drift winds measured by the SuperDARN Finland HF radar over an annual cycle using the Kiruna VHF meteor radar

    NASA Astrophysics Data System (ADS)

    Arnold, N. F.; Cook, P. A.; Robinson, T. R.; Lester, M.; Chapman, P. J.; Mitchell, N.

    2003-10-01

    The SuperDARN chain of oblique HF radars has provided an opportunity to generate a unique climatology of horizontal winds near the mesopause at a number of high latitude locations, via the Doppler shifted echoes from sources of ionisation in the D-region. Ablating meteor trails form the bulk of these targets, but other phenomena also contribute to the observations. Due to the poor vertical resolution of the radars, care must be taken to reduce possible biases from sporadic-E layers and Polar Mesospheric Summer echoes that can affect the effective altitude of the geophysical parameters being observed. Second, there is strong theoretical and observational evidence to suggest that the radars are picking up echoes from the backward looking direction that will tend to reduce the measured wind strengths. The effect is strongly frequency dependent, resulting in a 20% reduction at 12 MHz and a 50% reduction at 10 MHz. A comparison of the climatologies observed by the Super-DARN Finland radar between September 1999 and September 2000 and that obtained from the adjacent VHF meteor radar located at Kiruna is also presented. The agreement between the two instruments was very good. Extending the analysis to the SuperDARN Iceland East radar indicated that the principles outlined above could be applied successfully to the rest of the SuperDARN network.

  18. Improved estimates for neutral air temperatures at 90 km and 78°N using satellite and meteor radar data

    NASA Astrophysics Data System (ADS)

    Dyrland, M. E.; Hall, C. M.; Mulligan, F. J.; Tsutsumi, M.; Sigernes, F.

    2010-08-01

    A technique for using satellite-derived temperatures to calibrate initial estimates of 90 km temperatures measured by meteor wind radar is presented. Temperatures derived from the Nippon/Norway Svalbard Meteor Radar, situated on Svalbard at 78°N, 16°E, are calibrated using data from the Aura spacecraft's Microwave Limb Sounder (MLS) experiment. The calibration was performed in a two-step process: after an initial calibration of first-guess temperatures, results were used to adjust the MLS values to reflect daily means rather than the 0200-1100 UT observation period of the satellite instrument; thereafter the calibration was repeated with the revised MLS temperatures. The resulting temperature time series represents a marked improvement on earlier results calibrated using hydroxyl emission and potassium/K-Lidar observations, as the uncertainty is reduced from 17 to 7 K. These latest results represent a new step toward reliable and continual monitoring of upper mesosphere/lower thermosphere temperature.

  19. Observations of the new Camelopardalids meteor shower using a 38.9 MHz radar at Mohe, China

    NASA Astrophysics Data System (ADS)

    Younger, J. P.; Reid, I. M.; Li, G.; Ning, B.; Hu, L.

    2015-06-01

    The Camelopardalids meteor shower was predicted to occur for the first time on 24 May 2014, based on optical observations of the comet 209P/LINEAR. Using a 38.9 MHz meteor radar located at Mohe, China, we were able to detect approximately 590 shower meteors originating from an average pre-infall radiant of R.A. = 129.1° ± 9.8°, declination = 79.4° ± 1.6° (J2000) with a geocentric velocity of 16.0 ± 1.6 km s-1. Measurements of the shower duration, direction, velocity, and individual meteor detection heights facilitated a detailed analysis of the parent debris stream. Orbital parameters were calculated including a semi-major axis of 2.86 AU, eccentricity of 0.659, and inclination of 21.1°. Combining orbital parameters with the shower activity duration FWHM of 5.09 h, it was found that the stream has a FWHM of at least 211,000 km at 1 AU, as measured perpendicular to the direction of orbital motion. A comparison of shower meteor detection heights and diffusion coefficient estimates with the sporadic background is consistent the prediction of Ye and Wiegert (Ye, Q., Wiegert, P. [2014]. Mon. Not. R. Astron. Soc. 437, 3283-3287) that Camelopardalid meteoroids are biased towards larger sizes or that Cameloppardalid meteoroids are less fragile than sporadic background meteoroids.

  20. The history of meteors and meteor showers

    NASA Astrophysics Data System (ADS)

    Hughes, David W.

    The history of meteors and meteor showers can effectively start with the work of Edmond Halley who overcome the Aristotelean view of meteors as being an upper atmospheric phenomenon and introduced their extraterrestrial nature. Halley also estimated their height and velocity. The observations of the Leonids in 1799, 1833 and 1866 established meteoroids as cometary debris. Two red herrings were caught — fixed radiants and hyperbolic velocities. But the 1890 to 1950 period with two-station meteor photography, meteor spectroscopy and the radar detection of meteors saw the subject well established.

  1. An examination of high latitude upper mesosphere dynamic stability using the Nippon/Norway Svalbard Meteor Radar

    NASA Astrophysics Data System (ADS)

    Hall, C. M.; Aso, T.; Tsutsumi, M.

    2002-04-01

    Using wind measurements from the recently installed Nippon/Norway Svalbard Meteor Radar, (NSMR) at 78°N, 16°E, we have derived wind shears, and, combining these with model Brunt-Väisälä frequencies, have determined estimates of the gradient Richardson Number. These Richardson Number estimates parameterise the degree of stability of the upper mesosphere at a height of around 90 km. We find indications of dynamic instability in spring and autumn, with greater stability in summer.

  2. The analyses of destruction of the meteoric trail on radar observations.

    NASA Astrophysics Data System (ADS)

    Karpov, A.; Tereshin, S.; Abrosimov, J.

    It is known, that ambipolar diffusion defines a destruction of an ionic-electronic trail of underdense type. At the same time attempts of an explanation of destruction of overdense trail by only ambipolar diffusion give large deviations of definition of duration of the meteoric trail. Reduction of duration of existence of the meteoric trail was explained by influence of change of parameter s in distribution of meteoric bodies on weights; influence of effects recombination; to adhere of electrons to the neutral molecules, atoms and turbulent diffusion. The analysis of works of this problem gives, that researchers do not have the good explanation of processes of destruction of the meteoric trail. In this work we try to define the most important processes of destruction of the overdense meteoric trail and to construct model of destruction of an meteoric trail. The analysis of rate of reactions shows, that procesess of the recombination with electronic stabilization, dissociative recombination, two-step process with participation of atmospheric ozone also influence on reduction of concentration of electronic in trail. We constructed models of distributions of duration of radio echo using only one mechanism and combination of all mechanism. Now we plan experimental observations for distinguish of influence of each of mechanisms. This work was funded by the Russian Foundation for Fundamental Research (Project ? 00-02-16845)

  3. Characteristics of Meteor Echoes and Preliminary Winds Collected With a Narrow-Beam Radar at Piura, Peru

    NASA Astrophysics Data System (ADS)

    Lau, E. M.; Avery, S. K.; Avery, J. P.

    2002-12-01

    During the mid 1990's a MEDAC system was attached to the VHF wind profiler located in Piura, Peru to detect and collect meteor echoes and provide measurements of winds in the mesosphere-lower thermosphere. The collected data were different from those of similar systems operating at mid-latitudes and other equatorial sites. In particular, the echo rate was relatively low, the echoes were highly aspect sensitive, many of the meteor echoes were relatively weak suggesting the possibility that they were seen through a sidelobe instead of the main lobe of the antenna, and a great deal of activity was observed at nighttime when E-region echoes were also observed. A series of experiments have been designed to better understand the system and the resulting wind measurements. The first experiment was designed to increase the sensitivity of the radar and was conducted during one week in July 2002. Two transmitters were used instead of the single transmitter that normally feeds the transmit antenna on the wind profiler. Data was collected using three different systems: the wind profiler's own acquisition system, the MEDAC system, and a mode in which all data was collected and saved to the hard drive. This poster presents the results of the aforementioned experiment, compares the results provided by each data collection system, outlines the main features of the meteor echoes seen at Piura, and discusses the preliminary wind measurements.

  4. Atmospheric parameters in the mesosphere and lower thermosphere estimated using the Platteville, CO (40°N, 105°W) interferometric meteor radars

    NASA Astrophysics Data System (ADS)

    de La Pena, Santiago

    Two interferometric meteor radars operating at different frequencies have been collecting data for several years at the Platteville Atmospheric Observatory. Meteor decay rates measured by the two systems have been analyzed with the purpose of comparing estimates of the ambipolar diffusion in meteors made with the radars. Ambipolar diffusion is the main dispersion process for meteors. Due to its dependence on atmospheric conditions, it has been used in recent studies to estimate meteor height, and atmospheric temperature and pressure. The results of the comparison made shed light on the conditions under which meteor decay rates can be used to estimate ambipolar diffusion. The response of the two systems to sporadic and shower meteor activity was analyzed and discussed. The radars show similar temporal distributions of the echoes detected from meteor trails, but present some differences in the spatial distribution. The Statistics of the data collected by the radars present differences in the meteor echo spatial distribution between sporadic meteor activity and meteor shower events. Observations of a strong 2001 Leonid meteor storm were presented. A difference in the maximum altitude at which the radars detect meteors was seen. This limit in height is caused by a geophysical effect commonly known as meteor echo ceiling. Six years of horizontal wind estimates near the mesopause obtained from the meteor radars have been analyzed with the objective of studying the spatial and seasonal variability of the main tidal components identified in the wind structure. Interferometric capabilities allowed the estimation of the location of the detected meteor echoes, effectively providing vertical profiles of horizontal wind estimates. Spectral and harmonic analyses were made on the horizontal wind averages, and the main tidal components were identified. Diurnal and semidiurnal oscillations were found persistently, and six, 8, and 48 hour oscillations were more intermittent, but

  5. Radar detectability studies of slow and small zodiacal dust cloud particles using Arecibo 430-MHz meteor head echo observations

    NASA Astrophysics Data System (ADS)

    Janches, D.; Plane, J.; Nesvorny, D.; Feng, W.; Nicholls, M.; Vokrouhlicky, D.; Marsh, D.

    2014-07-01

    The total amount of meteoric input in the upper atmosphere is a hotly debated quantity, for which estimates vary by two orders of magnitude, depending on measuring techniques. The majority of the input is in the form of microgram size particles, which, in most cases, completely ablate injecting metals in the mesosphere. These metals are the primordial material for most of the layered phenomena (LP) occurring in the mesopause region (MR). Accurate knowledge of this quantity is crucial for the study of LPMR and, in many cases, it can contribute to the improvement of Whole Atmosphere Models (WAMs) by constraining parameters such as the vertical transport in the middle atmosphere. In an effort that ultimately aims to estimate this quantity, we utilize a new Zodiacal Dust Cloud (ZDC) model that follows the dynamical evolution of dust particles after ejection, utilizing the orbital properties of comets and asteroids. One of the main results of this model is that it predicts that 85--95 % of the dust in the inner solar system comes from Jupiter family comets (JFCs), with the remainder coming from the asteroid belt and Oort Cloud comets (OCCs)(Nesvorny et al., 2010). Furthermore, the modeled results show that most of the dust, which drifts down towards the inner solar system under the influence of the Poynting-Robertson drag, has a mass in the range 1--10 μ g at a near-prograde orbit with a mean speed of about 14 km/s, producing a global meteoric mass input around 32 t/d (Nesvorny et al., 2011a). The low average speed and the absence of significant orbital eccentricities, also a result of the model, do not agree with various types of meteor radar observations, which record average speeds closer to 30 km/s. One of the key problems with this model is that it is currently quantitatively only constrained by the Infrared Astronomical Satellite (IRAS) observations of the ZDC and only qualitatively constrained with terrestrial observations using radars (Nesvorny et al, 2011b

  6. Sensitivity Analysis of Meteor Smoke Size and Derived Daytime Temperature Structure derived from the Poker Flat Incoherent Scatter Radar (PFISR)

    NASA Astrophysics Data System (ADS)

    Abe, G.; Fentzke, J.; Hsu, V. W.; Brum, C. G.

    2012-12-01

    This work describes the microphysical properties and variability of meteoric smoke particles (MSPs) at high latitude using the Poker Flat ISR (65.1N, 147.5W). In addition, we present a novel technique for determining height resolved daytime D region neutral temperatures, which takes into account the presence of charged dust. We discuss the temporal/spatial variability and the relation to meteoric input observed and MSP microphysical properties in the polar mesopause region. The derived nanometer sized MSPs are consistent with size profiles derived previously using radar/rocket techniques and we note that our results imply a lack of heavy cluster ions below 85 km during the observing period. We examine the sensitivity of the derived sizes and temperatures to background atmospheric models and compare the results with available data sets. We find that he sizes in the range of approximately 0.5 to 1.5nm are in good general agreement with previous radar/rocket studies, but that the variability both temporally and with altitude are greater than at lower latitudes. The observed neutral temperatures are in the nominal range of 130 - 160 K between 70-90 km with several instances of larger departures up to 200 K indicating that wave activity may be present. This work provides a template for potential use at many other radar sites for the determination of microphysical properties of MSPs and day-time neutral temperature in the D region that show good general agreement with NRL-MSISE-00 temperatures during the observing period.

  7. Meteor radar wind over Chung-Li (24.9°N, 121°E), Taiwan, for the period 10-25 November 2012 which includes Leonid meteor shower: Comparison with empirical model and satellite measurements

    NASA Astrophysics Data System (ADS)

    Su, C. L.; Chen, H. C.; Chu, Y. H.; Chung, M. Z.; Kuong, R. M.; Lin, T. H.; Tzeng, K. J.; Wang, C. Y.; Wu, K. H.; Yang, K. F.

    2014-08-01

    The neutral winds in the mesosphere and lower thermosphere (MLT) region are measured by a newly installed meteor trail detection system (or meteor radar) at Chung-Li, Taiwan, for the period 10-25 November 2012, which includes the Leonid meteor shower period. In this study, we use the 3 m field-aligned plasma irregularities in the sporadic E (Es) region in combination with the International Geomagnetic Reference Field model to calibrate the system phase biases such that the true positions of the meteor trails can be correctly determined with interferometry technique. The horizontal wind velocities estimated from the radial velocities of the meteor trails and their locations by using a least squares method show that the diurnal tide dominates the variation of the MLT neutral wind with time over Chung-Li, which is in good agreement with the horizontal wind model (HWM07) prediction. However, harmonic analysis reveals that the amplitudes of the mean wind, diurnal, and semidiurnal tides of the radar-measured winds in height range 82-100 km are systematically larger than those of the model-predicted winds by up to a factor of 3. A comparison shows that the overall pattern of the height-local time distribution of the composite radar-measured meteor wind is, in general, consistent with that of the TIMED Doppler Interferometer-observed wind, which is dominated by a diurnal oscillation with downward phase progression at a rate of about 1.3 km/h. The occurrences of the Es layers retrieved from fluctuations of the amplitude and excess phase of the GPS signal received by the FORMOSAT-3/COSMIC satellites during the GPS radio occultation (RO) process are compared with the shear zones of the radar-measured meteor wind and HWM07 wind. The result shows that almost all of the RO-retrieved Es layers occur within the wind shear zones that favor the Es layer formation based on the wind shear theory, suggesting that the primary physical process responsible for the Es layer events

  8. Winter Mesopause Region Scale Height derived from VHF Meteor Radar Temperatures and LF absolute Reflection Heights measured at Collm

    NASA Astrophysics Data System (ADS)

    Jacobi, Ch.; Kürschner, D.

    The change of ionospheric absolute reflection heights h of low-frequency LF radio waves at oblique incidence in the course of the day is measured at Collm Observatory 51 3 r N 13 0 r E using 1 8 kHz sideband phase comparisons on sporadic oscillation bursts between the sky wave and the ground wave of a commercial 177 kHz transmitter Zehlendorf reflection point 52 1 r N 13 2 r E Plasma scale height H estimates are calculated from the decrease increase of h in the morning evening during winter months The day-to-day variations of H are compared with those of daily mean temperatures at 90 km measured with a VHF meteor radar 36 2 MHz at Collm utilising the amplitude decay of meteor reflections A good qualitative correspondence is found between the two data sets Since mesospheric long-period temperature variations are generally accepted to be the signature of atmospheric planetary waves this shows that LF reflection height measurements can be used for monitoring the dynamics of the upper middle atmosphere

  9. Analysis of Diurnal, Planetary and Mean Wind Activity using TIMED, MF and Meteor Radar Winds

    NASA Technical Reports Server (NTRS)

    Lieberman, Ruth S.; Riggin, Dennis R.

    2003-01-01

    The goals of this research are: 1) To validate TIMED Doppler Interferometer (TIDI) winds using ground-based MF and meteor winds; and 2) To examine short-term (i. e., day-to-day and week-to-week) variability of the diurnal tide. This objective was to have originally been met using comparisons of short-term diurnal tidal determinations from ground-based (GB) winds with planetary-scale diurnal nonmigrating tidal definitions from TIDI winds.

  10. Searching for dormant comets in the NEO region using data from the Canadian Meteor Orbit Radar

    NASA Astrophysics Data System (ADS)

    Ye, Quan-Zhi; Brown, Peter

    2015-11-01

    Dormant comets (DCs) are objects that appear asteroidal but have cometary origins. Earth-approaching DCs may produce dust during their final active stages which potentially are detectable as weak meteor showers at the Earth. However, identifying DCs is difficult as they are observationally indistinguishable from asteroids. Past asteroid-stream searches have produced some possible linkages between asteroids and meteor showers, the most notable being the Geminids and 3200 (Phaethon) and the Quadrantids and (196256) 2003 EH1. However, a comprehensive survey to look for all possible weak streams from recent DC activity, including dynamical formation and evolution of early dust trails has yet to be performed. Here we report on the progress of a DC meteoroid stream survey whereby we have identified all DC candidates whose orbits are such that recent (last several hundred years) dust release would be currently detectable at the Earth. We have simulated the evolution of dust trails for all candidate DC-stream objects and generate predictions for the characteristics of the associated DC shower at Earth. We then perform a cued survey for such streams among the 15 mega meteoroid orbits measured by CMOR since 2002, using a wavelet-based search algorithm with probe sizes tuned to the expected shower characteristics. The search is focused on ~300 Earth-approaching asteroids that have dynamical characteristics of comets (or asteroids in cometary orbits, ACOs). For some cases we will also discuss the connection between the meteor data and astrophysical observations of the parent body itself.

  11. Radar Detectability Studies of Slow and Small Zodiacal Dust Cloud Particles. I. The Case of Arecibo 430 MHz Meteor Head Echo Observations

    NASA Astrophysics Data System (ADS)

    Janches, D.; Plane, J. M. C.; Nesvorný, D.; Feng, W.; Vokrouhlický, D.; Nicolls, M. J.

    2014-11-01

    Recent model development of the Zodiacal Dust Cloud (ZDC) argues that the incoming flux of meteoric material into the Earth's upper atmosphere is mostly undetected by radars because they cannot detect small extraterrestrial particles entering the atmosphere at low velocities due to the relatively small production of electrons. In this paper, we present a new methodology utilizing meteor head echo radar observations that aims to constrain the ZDC physical model by ground-based measurements. In particular, for this work, we focus on Arecibo 430 MHz observations since this is the most sensitive radar utilized for this type of observations to date. For this, we integrate and employ existing comprehensive models of meteoroid ablation, ionization, and radar detection to enable accurate interpretation of radar observations and show that reasonable agreement in the hourly rates is found between model predictions and Arecibo observations when (1) we invoke the lower limit of the model predicted flux (~16 t d-1) and (2) we estimate the ionization probability of ablating metal atoms using laboratory measurements of the ionization cross sections of high-speed metal atom beams, resulting in values up to two orders of magnitude lower than the extensively utilized figure reported by Jones for low-speed meteors. However, even at this lower limit, the model overpredicts the slow portion of the Arecibo radial velocity distributions by a factor of three, suggesting that the model requires some revision.

  12. Radar detectability studies of slow and small Zodiacal Dust Cloud Particles: I. The case of Arecibo 430 MHz meteor head echo observations

    PubMed Central

    Janches, D.; Plane, J.M.C.; Nesvorný, D.; Feng, W.; Vokrouhlický, D.; Nicolls, M.J.

    2016-01-01

    Recent model development of the Zodiacal Dust Cloud (ZDC) model (Nesvorný et al. 2010, 2011b) argue that the incoming flux of meteoric material into the Earth’s upper atmosphere is mostly undetected by radars because they cannot detect small extraterrestrial particles entering the atmosphere at low velocities due to the relatively small production of electrons. In this paper we present a new methodology utilizing meteor head echo radar observations that aims to constrain the ZDC physical model by ground-based measurements. In particular, for this work, we focus on Arecibo 430 MHz observations since this is the most sensitive radar utilized for this type of observations to date. For this, we integrate and employ existing comprehensive models of meteoroid ablation, ionization and radar detection to enable accurate interpretation of radar observations and show that reasonable agreement in the hourly rates is found between model predictions and Arecibo observations when: 1) we invoke the lower limit of the model predicted flux (~16 t/d) and 2) we estimate the ionization probability of ablating metal atoms using laboratory measurements of the ionization cross sections of high speed metal atom beams, resulting in values up to two orders of magnitude lower than the extensively utilized figure reported by Jones (1997) for low speeds meteors. However, even at this lower limit the model over predicts the slow portion of the Arecibo radial velocity distributions by a factor of 3, suggesting the model requires some revision.

  13. Radar detectability studies of slow and small zodiacal dust cloud particles. I. The case of Arecibo 430 MHz meteor head echo observations

    SciTech Connect

    Janches, D.; Nesvorný, D.; Vokrouhlický, D.; Nicolls, M. J. E-mail: j.m.c.plane@leeds.ac.uk E-mail: davidn@boulder.swri.edu E-mail: Michael.Nicolls@sri.com

    2014-11-20

    Recent model development of the Zodiacal Dust Cloud (ZDC) argues that the incoming flux of meteoric material into the Earth's upper atmosphere is mostly undetected by radars because they cannot detect small extraterrestrial particles entering the atmosphere at low velocities due to the relatively small production of electrons. In this paper, we present a new methodology utilizing meteor head echo radar observations that aims to constrain the ZDC physical model by ground-based measurements. In particular, for this work, we focus on Arecibo 430 MHz observations since this is the most sensitive radar utilized for this type of observations to date. For this, we integrate and employ existing comprehensive models of meteoroid ablation, ionization, and radar detection to enable accurate interpretation of radar observations and show that reasonable agreement in the hourly rates is found between model predictions and Arecibo observations when (1) we invoke the lower limit of the model predicted flux (∼16 t d{sup –1}) and (2) we estimate the ionization probability of ablating metal atoms using laboratory measurements of the ionization cross sections of high-speed metal atom beams, resulting in values up to two orders of magnitude lower than the extensively utilized figure reported by Jones for low-speed meteors. However, even at this lower limit, the model overpredicts the slow portion of the Arecibo radial velocity distributions by a factor of three, suggesting that the model requires some revision.

  14. Characterization of Leonid meteor head echo data collected using the VHF-UHF Advanced Research Projects Agency Long-Range Tracking and Instrumentation Radar (ALTAIR)

    NASA Astrophysics Data System (ADS)

    Close, S.; Hunt, S. M.; McKeen, F. M.; Minardi, M. J.

    2002-02-01

    The Leonid meteor shower, which was predicted to hit storm-like activity on 17 November 1998, was observed using radar and optical sensors at the Kwajalein Missile Range in order to study potential threats to orbiting spacecraft. Meteor head echo data were collected during the predicted peak of the ``storm'' primarily using the Advanced Research Projects Agency Long-Range Tracking and Instrumentation Radar (ALTAIR). ALTAIR is a dual-frequency radar at VHF (160 MHz) and UHF (422 MHz) that is uniquely suited for detecting meteor head echoes due to high sensitivity, precise calibration, and the ability to record radar data at a high rate (Gb/min). ALTAIR transmits right-circular (RC) polarized energy and records left-circular (LC) sum, RC sum, LC azimuth angle difference, and LC elevation angle difference channels; these four measurements facilitate the determination of three-dimensional target position and velocity as a function of radar cross section and time. During the predicted peak of the storm, ALTAIR detected 734 VHF head echoes in 29 min of data and 472 UHF head echoes in 17 min of data, as well as numerous specular and nonspecular ionization trails. This paper contains analysis on the head echo data, including dual-frequency statistics and the variability of head echo decelerations. We also include results from the analysis of the radius-density parameter, which shows a strong correlation with deceleration.

  15. Radar Detectability Studies of Slow and Small Zodiacal Dust Cloud Particles: I. The Case of Arecibo 430 MHz Meteor Head Echo Observations

    NASA Technical Reports Server (NTRS)

    Janches, D.; Plane, J. M. C.; Nesvorny, D.; Feng, W.; Vokrouhlicky, D.; Nicolls, M. J.

    2014-01-01

    Recent model development of the Zodiacal Dust Cloud (ZDC) model (Nesvorny et al. 2010, 2011b) argue that the incoming flux of meteoric material into the Earth's upper atmosphere is mostly undetected by radars because they cannot detect small extraterrestrial particles entering the atmosphere at low velocities due to the relatively small production of electrons. In this paper we present a new methodology utilizing meteor head echo radar observations that aims to constrain the ZDC physical model by ground-based measurements. In particular, for this work, we focus on Arecibo 430 MHz observations since this is the most sensitive radar utilized for this type of observations to date. For this, we integrate and employ existing comprehensive models of meteoroid ablation, ionization and radar detection to enable accurate interpretation of radar observations and show that reasonable agreement in the hourly rates is found between model predictions and Arecibo observations when: 1) we invoke the lower limit of the model predicted flux (approximately 16 t/d) and 2) we estimate the ionization probability of ablating metal atoms using laboratory measurements of the ionization cross sections of high speed metal atom beams, resulting in values up to two orders of magnitude lower than the extensively utilized figure reported by Jones (1997) for low speeds meteors. However, even at this lower limit the model over predicts the slow portion of the Arecibo radial velocity distributions by a factor of 3, suggesting the model requires some revision.

  16. Estimation of mesospheric vertical winds from a VHF meteor radar at King Sejong Station, Antarctica (62.2S, 58.8W)

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Lee, C.; Kim, J.; Jee, G.

    2013-12-01

    For the first time, vertical winds near the mesopause region were estimated from radial velocities of meteor echoes detected by a VHF meteor radar at King Sejong Station (KSS) in 2011 and 2012. Since the radar usually detects more than a hundred echoes every hour in an altitude bin of 88 - 92 km, much larger than other radars, we were able to fit measured radial velocities of these echoes with a 6 component model that consists of horizontal winds, spatial gradients of horizontal winds and vertical wind. The conventional method of deriving horizontal winds from meteor echoes utilizes a 2 component model, assuming that vertical winds and spatial gradients of horizontal winds are negligible. We analyzed the radar data obtained for 8400 hours in 2012 and 8100 hours in 2011. We found that daily mean values of vertical winds are mostly within +/- 1 m/s, whereas those of zonal winds are a few tens m/s mostly eastward. The daily mean vertical winds sometimes stay positive or negative for more than 20 days, implying that the atmosphere near the mesopause experiences episodically a large scale low and high pressure environments, respectively, like the tropospheric weather system. By conducting Lomb-normalized periodogram analysis, we also found that the vertical winds have diurnal, semidiurnal and terdiurnal tidal components with about equal significance, in contrast to horizontal winds that show a dominant semidiurnal one. We will discuss about uncertainties of the estimated vertical wind and possible reasons of its tidal and daily variations.

  17. Meteor Showers.

    ERIC Educational Resources Information Center

    Kronk, Gary W.

    1988-01-01

    Described are the history, formation, and observing techniques of meteors and comets. Provided are several pictures, diagrams, meteor organizations and publications, and meteor shower observation tables. (YP)

  18. Frequency-agile dual-frequency lidar for integrated coherent radar-lidar architectures.

    PubMed

    Vercesi, Valeria; Onori, Daniel; Laghezza, Francesco; Scotti, Filippo; Bogoni, Antonella; Scaffardi, Mirco

    2015-04-01

    We propose a novel architecture for implementing a dual-frequency lidar (DFL) exploiting differential Doppler shift measurement. The two frequency tones, needed for target velocity measurements, are selected from the spectrum of a mode-locked laser operating in the C-band. The tones' separation is easily controlled by using a programmable wavelength selective switch, thus allowing for a dynamic trade-off among robustness to atmospheric turbulence and sensitivity. Speed measurements for different tone separations equal to 10, 40, 80, and 160 GHz are demonstrated, proving the system's capability of working in different configurations. Thanks to the acquisition system based on an analog-to-digital converter and digital-signal processing, real-time velocity measurements are demonstrated. The MLL-based proposed architecture enables the integration of the DFL with a photonic-based radar that exploits the same laser for generating and receiving radio-frequency signal with high performance, thus allowing for simultaneous or complementary target observations by exploiting the advantages of both radar and lidar. PMID:25831332

  19. Ground Penetrating Radar Field Studies of Lunar-Analog Geologic Settings and Processes: Barringer Meteor Crater and Northern Arizona Volcanics

    NASA Astrophysics Data System (ADS)

    Russell, P. S.; Grant, J. A.; Williams, K. K.; Bussey, B.

    2010-12-01

    Ground-Penetrating Radar (GPR) data from terrestrial analog environments can help constrain models for evolution of the lunar surface, aid in interpretation of orbital SAR data, and help predict what might be encountered in the subsurface during future, landed, scientific or engineering operations on the Moon. GPR can yield insight into the physical properties, clast-size distribution, and layering of the subsurface, granting a unique view of the processes affecting an area over geologic time. The purpose of our work is to demonstrate these capabilities at sites at which geologic processes, settings, and/or materials are similar to those that may be encountered on the moon, especially lava flows, impact-crater ejecta, and layered materials with varying properties. We present results from transects obtained at Barringer Meteor Crater, SP Volcano cinder cone, and Sunset Crater Volcano National Monument, all in northern Arizona. Transects were taken at several sites on the ejecta of Meteor Crater, all within a crater radius (~400 m) of the crater rim. Those taken across ejecta lobes or mounds reveal the subsurface contact of the ejecta upper surface and overlying, embaying sediments deposited by later alluvial, colluvial, and/or aeolian processes. Existing mine shafts and pits on the south side of the crater provide cross sections of the subsurface against which we compare adjacent GPR transects. The ‘actual’ number, size, and depth of clasts in the top 1-2 m of the subsurface are estimated from photos of the exposed cross sections. In GPR radargrams, reflections attributed to blocks in the top 2-5 m of the subsurface are counted, and their depth distribution noted. Taking GPR measurements along a transect at two frequencies (200 and 400 MHz) and to various depths, we obtain the ratio of the actual number of blocks in the subsurface to the number detectable with GPR, as well as an assessment of how GPR detections in ejecta decline with depth and depend on antenna

  20. A comparison of mesosphere and lower thermosphere neutral winds as determined by meteor and medium-frequency radar at 70°N

    NASA Astrophysics Data System (ADS)

    Hall, C. M.; Aso, T.; Tsutsumi, M.; Nozawa, S.; Manson, A. H.; Meek, C. E.

    2005-08-01

    There has been much discussion as to the veracity of neutral wind measurements made using medium-frequency radar (MFR) employing the spaced-antenna technique. Such systems are able to operate continuously, providing information on mesosphere and lower thermosphere dynamics with typical resolutions of 3 km in altitude and 5 min in time, and thus represent a low-cost monitoring of the atmosphere. It is similarly important to be able to trust the results, and therefore we make a dedicated comparison between the Tromsø MFR (70°N, 19°E) and the newly installed and colocated Nippon/Norway Tromsø meteor radar. The agreement is particularly good between 75 and 85 km.

  1. First results with a new-generation meteor radar on King George Island: Mean and Tidal Wind and Gravity Wave Momentum Flux Measurements over the Drake Passage

    NASA Astrophysics Data System (ADS)

    Fritts, D.; Janches, D.; Iimura, H.; Hocking, W. K.; Bageston, J. V.; Leme, N. P.

    2011-12-01

    A new-generation meteor radar was installed at the Brazilian Antarctic Comandante Ferraz Base (62.1S) in March 2010. This talk describes the motivations for the radar location, its measurement capabilities, and comparisons of measured mean winds, tides, and gravity wave momentum fluxes from April to June of 2010 and 2011 with those by a similar radar on Tierra del Fuego (53.8S). Motivations for the radars include the "hotspot" of small-scale gravity wave activity extending from the troposphere into the mesosphere and lower thermosphere (MLT) centered over the Drake Passage, the maximum of the semidiurnal tide at these latitudes, and the lack of other MLT wind measurements in this latitude band. Mean winds are seen to be strongly modulated at planetary wave and longer periods and to exhibit strong coherence over the two radars at shorter time scales as well as systematic seasonal variations. The semidiurnal tide contribute most to the large-scale winds over both radars, with maximum tidal amplitudes during May and maxima at the highest altitudes varying from ~20 to >70 m/s. In contrast, the diurnal tide and various planetary waves achieve maximum winds of ~10 to 20 m/s. Monthly-mean gravity wave momentum fluxes appear to reflect the occurrence of significant sources at lower altitudes, with relatively small zonal fluxes over both radars, but with significant, and opposite, meridional momentum fluxes below ~85 km. These suggest gravity waves propagating away from the Drake Passage at both sites, and may indicate an important source region accounting in part for this "hotspot".

  2. The micrometeoric input in the upper atmosphere. A comparison between model predictions and HPLA and meteor radars observations and AIM-CDE dust detections

    NASA Astrophysics Data System (ADS)

    Janches, Diego; Sparks, Jonathan; Johnson, Kyle; Poppe, Andrew; James, David; Fentzke, Jonathan; Palo, Scott; Horanyi, Mihaly

    It is now widely accepted that microgram extraterrestrial particles from the sporadic background are the major contributors of metals in the Mesosphere/Lower Thermosphere (MLT). It is also well established that this material gives rise to the upper atmospheric metallic and ion layers observed by radars and lidars. In addition, micrometeoroids are believed to be an important source for condensation nuclei (CN), the existence of which is a prerequisite for the formation of NLC and PMSE particles in the polar mesopause region. In order to understand how this flux gives rise to these atmospheric phenomena, accurate knowledge of the global meteoric input function (MIF) is critical. This function accounts for the annual and diurnal variations of meteor rates, global distribution, directionality, and velocity and mass distributions. Estimates of most of these parameters are still under investigation. In this talk, we present results of a detailed model of the diurnal, seasonal and geographical variability of the micrometeoric activity in the upper atmosphere. The principal goal of this effort is to construct a new and more precise sporadic MIF needed for the subsequent modeling of the atmospheric chemistry of meteoric material and the origin and formation of metal layers in the MLT. The model uses Monte Carlo simulation techniques and includes an accepted mass flux provided by six main known meteor sources (i.e. orbital families of dust) and a detailed modeling of the meteoroid atmospheric entry physics. We compare the model predictions with meteor head-echo observations using the 430 MHz Arecibo (AO) radar in Puerto Rico and the 450 MHz Advance Modular ISR in Poker Flat (PFISR), AK. The results indicate, that although the Earth's Apex centered source, thought to be composed mostly of dust from long period comets, is required to be only about ˜33% of dust in the Solar System at 1 AU, it accounts for 60 to 70% of the actual dust that ablates in the atmosphere. These

  3. Frequency agile optical parametric oscillator

    DOEpatents

    Velsko, Stephan P.

    1998-01-01

    The frequency agile OPO device converts a fixed wavelength pump laser beam to arbitrary wavelengths within a specified range with pulse to pulse agility, at a rate limited only by the repetition rate of the pump laser. Uses of this invention include Laser radar, LIDAR, active remote sensing of effluents/pollutants, environmental monitoring, antisensor lasers, and spectroscopy.

  4. Frequency agile optical parametric oscillator

    DOEpatents

    Velsko, S.P.

    1998-11-24

    The frequency agile OPO device converts a fixed wavelength pump laser beam to arbitrary wavelengths within a specified range with pulse to pulse agility, at a rate limited only by the repetition rate of the pump laser. Uses of this invention include Laser radar, LIDAR, active remote sensing of effluents/pollutants, environmental monitoring, antisensor lasers, and spectroscopy. 14 figs.

  5. Global Variation of Meteor Trail Plasma Turbulence

    NASA Technical Reports Server (NTRS)

    Dyrud, L. P.; Hinrichs, J.; Urbina, J.

    2011-01-01

    We present the first global simulations on the occurrence of meteor trail plasma irregularities. These results seek to answer the following questions: when a meteoroid disintegrates in the atmosphere will the resulting trail become plasma turbulent, what are the factors influencing the development of turbulence, and how do they vary on a global scale. Understanding meteor trail plasma turbulence is important because turbulent meteor trails are visible as non-specular trails to coherent radars, and turbulence influences the evolution of specular radar meteor trails, particularly regarding the inference of mesospheric temperatures from trail diffusion rates, and their usage for meteor burst communication. We provide evidence of the significant effect that neutral atmospheric winds and density, and ionospheric plasma density have on the variability of meteor trail evolution and the observation of nonspecular meteor trails, and demonstrate that trails are far less likely to become and remain turbulent in daylight, explaining several observational trends using non-specular and specular meteor trails.

  6. Long-period upper mesosphere temperature and plasma scale height variations derived from VHF meteor radar and LF absolute reflection height measurements

    NASA Astrophysics Data System (ADS)

    Jacobi, C.; Kürschner, D.

    2006-09-01

    The change of ionospheric absolute reflection heights h of low-frequency (LF) radio waves at oblique incidence in the course of the day is measured at Collm Observatory (51.3° N, 13.0° E) using 1.8 kHz sideband phase comparisons between the sky-wave and the ground wave of a commercial 177 kHz transmitter (Zehlendorf, reflection point at 52.1° N, 13.2° E). Plasma scale height estimates H are calculated from the decrease/increase of h in the morning/evening. The day-to-day variations of H are compared with those of daily mean temperatures at 90 km, measured with a VHF meteor radar (36.2 MHz) at Collm and using the amplitude decay of meteor reflections. A good qualitative correspondence is found between the two data sets. Since mesospheric long-period temperature variations are generally accepted to be the signature of atmospheric planetary waves, this shows that LF reflection height measurements can be used for monitoring the dynamics of the upper middle atmosphere.

  7. Meteor velocity determination with plasma physics

    NASA Astrophysics Data System (ADS)

    Dyrud, L. P.; Denney, K.; Close, S.; Oppenheim, M.; Chau, J.; Ray, L.

    2004-06-01

    Understanding the global meteor flux at Earth requires the measurement of meteor velocities. While several radar methods exist for measuring meteor velocity, they may be biased by plasma reflection mechanisms. This paper presents a new method for deriving meteoroid velocity from the altitudinal extent of non-specular trails. This method employs our recent discoveries on meteor trail plasma instability. Dyrud et al. (2002) demonstrated that meteor trails are unstable over a limited altitude range, and that the precise altitudes of instability are dependent on the meteoroid that generated the trail. Since meteor trail instability results in field aligned irregularities (FAI) that allow for radar reflection, non-specular trail observations may be used to derive velocity. We use ALTAIR radar data of combined head echos and non-specular trails to test non-specular trail derived velocity against head echo velocities. Meteor velocities derived from non-specular trail altitudinal width match to within 5 km/s when compared with head echo range rates from the same meteor. We apply this technique to Piura radar observations of hundreds of non-specular trails to produce histograms of occurrence of meteor velocity based solely on this non-specular trails width criterion. The results from this study show that the most probable velocity of meteors seen by the Piura radar is near 50 km/s, which is comparable with modern head echo studies.

  8. Meteor velocity determination with plasma physics

    NASA Astrophysics Data System (ADS)

    Dyrud, L. P.; Denney, K.; Close, S.; Oppenheim, M.; Ray, L.; Chau, J.

    2004-02-01

    Understanding the global meteor flux at Earth requires the measurement of meteor velocities. While several radar methods exist for measuring meteor velocity, they may be biased by plasma reflection mechanisms. This paper presents a new method for deriving meteoroid velocity from the altitudinal extent of non-specular trails. This method employs our recent discoveries on meteor trail plasma instability. Dyrud et al. (2002) demonstrated that meteor trails are unstable over a limited altitude range, and that the precise altitudes of instability are dependent on the meteoroid velocity that generated the trail. Since meteor trail instability results in field aligned irregularities (FAI) that allow for radar reflection, non-specular trail observations may be used to derive velocity. We use ALTAIR radar data of combined head echos and non-specular trails to test non-specular trail derived velocity against head echo velocities. Meteor velocities derived from non-specular trail altitudinal width match to within 5 km/s when compared with head echo range rates from the same meteor. We apply this technique to Piura radar observations of hundreds of non-specular trails to produce histograms of occurrence of meteor velocity based solely on this non-specular trails width criterion. The results from this study show that the most probable velocity of meteors seen by the Piura radar is near 50 km/s which is comparable with modern head echo studies.

  9. Meteor myths.

    NASA Astrophysics Data System (ADS)

    Hughes, D.

    1989-11-01

    The falling stars or meteors have long inspired folkloric imagery and superstition. All cultures, it seems, have produced their meteor myths and stories. In this article the reasoning behind the many strange ideas inspired by the meteor images is expanded and explored.

  10. High geocentric velocity meteor ablation

    NASA Astrophysics Data System (ADS)

    Hill, K. A.; Rogers, L. A.; Hawkes, R. L.

    2005-12-01

    Interstellar origin meteoroids have now been detected using radar, image intensified video, large aperture radar and space dust impact techniques. Dynamical and radiation production mechanisms will eject some meteoroids from other planetary systems into orbits which will impact Earth with high geocentric velocities. In this paper we numerically model the ablation of high geocentric velocity (71 to 500~km s-1) meteors in order to predict the heights, light curves and trail lengths to be expected. We modeled three compositions and structures: asteroidal, cometary and porous cometary. Meteoroid masses ranging from 10-6 to 10-13~kg were used in the model. As expected, these high geocentric velocity meteors, when compared to other meteors, ablate higher in the atmosphere. For example a 300~km s-1 cometary structure meteor of mass 10-9~kg will have a peak luminosity at about 190 km. They will also have significantly longer trail lengths. The same 300~km s-1, 10-9~kg cometary meteor would be within 2 mag of its peak brightness for a vertical displacement of 60 km if incident at a zenith angle of 45°. The peak light intensity of these high geocentric velocity meteors changes only slowly with velocity. Although the incident kinetic energy per unit time increases dramatically, this is largely offset by a decrease in the optical luminous efficiency in this velocity regime according to our luminous efficiency model. The 300~km s-1, 10-9~kg cometary meteor would have an absolute meteor magnitude at peak luminosity of about +8.5 mag. Our results suggest that at least those high geocentric velocity meteors larger than about 10-8~kg should be observable with current meteor electro-optical technology although there may be observational biases against their detection. The results of this paper can be used to help optimize a search strategy for these very high geocentric velocity meteors.

  11. Meteor radar quasi 2-day wave observations over 10 years at Collm (51.3° N, 13.0° E)

    NASA Astrophysics Data System (ADS)

    Lilienthal, F.; Jacobi, Ch.

    2015-09-01

    The quasi 2-day wave (QTDW) at 82-97 km altitude over Collm (51° N, 13° E) has been observed using a VHF meteor radar. The long-term mean amplitudes calculated using data between September 2004 and August 2014 show a strong summer maximum and a much weaker winter maximum. In summer, the meridional amplitude is slightly larger than the zonal one with about 15 m s-1 at 91 km height. Phase differences are slightly greater than 90° on an average. The periods of the summer QTDW vary between 43 and 52 h during strong bursts, while in winter the periods tend to be more diffuse. On average, the summer QTDW is amplified after a maximum of zonal wind shear which is connected with the summer mesospheric jet and there is a possible correlation of the summer mean amplitudes with the background wind shear. QTDW amplitudes exhibit considerable inter-annual variability; however, a relationship between the 11-year solar cycle and the QTDW is not found.

  12. Co-ordinated meteor wind radar observations during the Energy Budget Campaign from two locations in the British Isles

    NASA Astrophysics Data System (ADS)

    Muller, H. G.; Kingsley, S. P.

    1981-12-01

    Upper mesopause winds were recorded in Nov and Dec 1980, using radar systems in Sheffield (53 deg N) and Stornoway (58 deg N). Average wind values are produced every 30 min for NW and SW directed transmitters, and for the 75 to 90, 90 to 96, and 96 to 115 km height intervals. An all height average (mean = 95 km) is produced. Data show marked tidal wave activity at both sites, but the presence of planetary waves of quasi two-day period is less prominent than during a summer 1980 run.

  13. Meteor44 Video Meteor Photometry

    NASA Technical Reports Server (NTRS)

    Swift, Wesley R.; Suggs, Robert M.; Cooke, William J.

    2004-01-01

    Meteor44 is a software system developed at MSFC for the calibration and analysis of video meteor data. The dynamic range of the (8bit) video data is extended by approximately 4 magnitudes for both meteors and stellar images using saturation compensation. Camera and lens specific saturation compensation coefficients are derived from artificial variable star laboratory measurements. Saturation compensation significantly increases the number of meteors with measured intensity and improves the estimation of meteoroid mass distribution. Astrometry is automated to determine each image's plate coefficient using appropriate star catalogs. The images are simultaneously intensity calibrated from the contained stars to determine the photon sensitivity and the saturation level referenced above the atmosphere. The camera s spectral response is used to compensate for stellar color index and typical meteor spectra in order to report meteor light curves in traditional visual magnitude units. Recent efforts include improved camera calibration procedures, long focal length 'streak' meteor photometry and two-station track determination. Meteor44 has been used to analyze data from the 2001, 2002 and 2003 MSFC Leonid observational campaigns as well as several lesser showers. The software is interactive and can be demonstrated using data from recent Leonid campaigns.

  14. Meteor44 Video Meteor Photometry

    NASA Technical Reports Server (NTRS)

    Swift, Wesley R.; Suggs, Robert M.; Cooke, William J.

    2004-01-01

    Meteor44 is a software system developed at MSFC for the calibration and analysis of video meteor data. The dynamic range of the (8bit) video data is extended by approximately 4 magnitudes for both meteors and stellar images using saturation compensation. Camera and lens specific saturation compensation coefficients are derived from artificial variable star laboratory measurements. Saturation compensation significantly increases the number of meteors with measured intensity and improves the estimation of meteoroid mass distribution. Astrometry is automated to determine each image s plate coefficient using appropriate star catalogs. The images are simultaneously intensity calibrated from the contained stars to determine the photon sensitivity and the saturation level referenced above the atmosphere. The camera s spectral response is used to compensate for stellar color index and typical meteor spectra in order to report meteor light curves in traditional visual magnitude units. Recent efforts include improved camera calibration procedures, long focal length "streak" meteor photome&y and two-station track determination. Meteor44 has been used to analyze data from the 2001.2002 and 2003 MSFC Leonid observational campaigns as well as several lesser showers. The software is interactive and can be demonstrated using data from recent Leonid campaigns.

  15. Determination of meteor flux distribution over the celestial sphere

    NASA Technical Reports Server (NTRS)

    Andreev, V. V.; Belkovich, O. I.; Filimonova, T. K.; Sidorov, V. V.

    1992-01-01

    A new method of determination of meteor flux density distribution over the celestial sphere is discussed. The flux density was derived from observations by radar together with measurements of angles of arrival of radio waves reflected from meteor trails. The role of small meteor showers over the sporadic background is shown.

  16. Video Meteor Fluxes

    NASA Technical Reports Server (NTRS)

    Campbell-Brown, M. D.; Braid, D.

    2011-01-01

    The flux of meteoroids, or number of meteoroids per unit area per unit time, is critical for calibrating models of meteoroid stream formation and for estimating the hazard to spacecraft from shower and sporadic meteors. Although observations of meteors in the millimetre to centimetre size range are common, flux measurements (particularly for sporadic meteors, which make up the majority of meteoroid flux) are less so. It is necessary to know the collecting area and collection time for a given set of observations, and to correct for observing biases and the sensitivity of the system. Previous measurements of sporadic fluxes are summarized in Figure 1; the values are given as a total number of meteoroids striking the earth in one year to a given limiting mass. The Gr n et al. (1985) flux model is included in the figure for reference. Fluxes for sporadic meteoroids impacting the Earth have been calculated for objects in the centimeter size range using Super-Schmidt observations (Hawkins & Upton, 1958); this study used about 300 meteors, and used only the physical area of overlap of the cameras at 90 km to calculate the flux, corrected for angular speed of meteors, since a large angular speed reduces the maximum brightness of the meteor on the film, and radiant elevation, which takes into account the geometric reduction in flux when the meteors are not perpendicular to the horizontal. They bring up corrections for both partial trails (which tends to increase the collecting area) and incomplete overlap at heights other than 90 km (which tends to decrease it) as effects that will affect the flux, but estimated that the two effects cancelled one another. Halliday et al. (1984) calculated the flux of meteorite-dropping fireballs with fragment masses greater than 50 g, over the physical area of sky accessible to the MORP fireball cameras, counting only observations in clear weather. In the micron size range, LDEF measurements of small craters on spacecraft have been used to

  17. The ALTAIR Meteor Measurements Program

    NASA Technical Reports Server (NTRS)

    Cooke, William J.

    2007-01-01

    Established in late 2006, the Meteor Measurements Program is in the process of using the ALTAIR radar located on Kwajelein Atoll to obtain radar observations of sporadic and shower meteoroids. The goals are to determine meteoroid masses, orbits, ballistic coefficients and densities, which shall be provided to the Meteoroid Environment Office (MEO) at Marshall Space Flight Center. These data and analyses shall then be used by the MEO to 1) Add a realistic density distribution to the new Meteoroid Engineering Model (MEM), which is the specified environment for vehicle design in the NASA Constellation (return to Moon) program. This program is the implementation of President Bush's Vision for Space Exploration (VSE). 2) Investigate the meteoroid velocity distribution at smaller masses. 3) Strive to understand the differences (biases) in meteoroid observations produced by systems like ALTAIR and those of the meteor patrol radars, such as the University of Western Ontario's CMOR system. This paper outlines the program details and its progress.

  18. An FDTD model of scattering from meteor head plasma

    NASA Astrophysics Data System (ADS)

    Marshall, R. A.; Close, S.

    2015-07-01

    We have developed a three-dimensional finite difference time domain (FDTD) model of scattering of radar waves from meteor head plasma. The model treats the meteor head plasma as a cold, collisional, and magnetized plasma, and solves Maxwell's equations and the Langevin equation simultaneously and self-consistently in and around the plasma. We use this model to investigate scattering of radar waves from a meteor head (the "head echo") under a range of plasma densities, meteor scale sizes, and wave frequencies. In this way we relate the radar cross section (RCS) to these variable parameters. We find that computed RCS disagrees with previous analytical theory at certain meteor sizes and densities, in some cases by over an order of magnitude. We find that the calculated meteor head RCS is monotonically related to the "overdense area" of the meteor, defined as the cross-section area of the part of the meteor where the plasma frequency exceeds the wave frequency. These results provides a physical measure of the meteor size and density that can be inferred from measured RCS values from ground-based radars. Meteoroid mass can then be inferred from the meteor plasma distribution using established methods.

  19. Meteor trajectory estimation from radio meteor observations

    NASA Astrophysics Data System (ADS)

    Kákona, J.

    2016-01-01

    Radio meteor observation techniques are generally accepted as meteor counting methods useful mainly for meteor flux detection. Due to the technical progress in radio engineering and electronics a construction of a radio meteor detection network with software defined receivers has become possible. These receivers could be precisely time synchronized and could obtain data which provide us with more information than just the meteor count. We present a technique which is able to compute a meteor trajectory from the data recorded by multiple radio stations.

  20. Database of Properties of Meteors

    NASA Technical Reports Server (NTRS)

    Suggs, Rob; Anthea, Coster

    2006-01-01

    A database of properties of meteors, and software that provides access to the database, are being developed as a contribution to continuing efforts to model the characteristics of meteors with increasing accuracy. Such modeling is necessary for evaluation of the risk of penetration of spacecraft by meteors. For each meteor in the database, the record will include an identification, date and time, radiant properties, ballistic coefficient, radar cross section, size, density, and orbital elements. The property of primary interest in the present case is density, and one of the primary goals in this case is to derive densities of meteors from their atmospheric decelerations. The database and software are expected to be valid anywhere in the solar system. The database will incorporate new data plus results of meteoroid analyses that, heretofore, have not been readily available to the aerospace community. Taken together, the database and software constitute a model that is expected to provide improved estimates of densities and to result in improved risk analyses for interplanetary spacecraft. It is planned to distribute the database and software on a compact disk.

  1. First 3-D simulations of meteor plasma dynamics and turbulence

    NASA Astrophysics Data System (ADS)

    Oppenheim, Meers M.; Dimant, Yakov S.

    2015-02-01

    Millions of small but detectable meteors hit the Earth's atmosphere every second, creating trails of hot plasma that turbulently diffuse into the background atmosphere. For over 60 years, radars have detected meteor plasmas and used these signals to infer characteristics of the meteoroid population and upper atmosphere, but, despite the importance of meteor radar measurements, the complex processes by which these plasmas evolve have never been thoroughly explained or modeled. In this paper, we present the first fully 3-D simulations of meteor evolution, showing meteor plasmas developing instabilities, becoming turbulent, and inhomogeneously diffusing into the background ionosphere. These instabilities explain the characteristics and strength of many radar observations, in particular the high-resolution nonspecular echoes made by large radars. The simulations reveal how meteors create strong electric fields that dig out deep plasma channels along the Earth's magnetic fields. They also allow researchers to explore the impacts of the intense winds and wind shears, commonly found at these altitudes, on meteor plasma evolution. This study will allow the development of more sophisticated models of meteor radar signals, enabling the extraction of detailed information about the properties of meteoroid particles and the atmosphere.

  2. Meteor Beliefs Project: ``Year of Meteors''

    NASA Astrophysics Data System (ADS)

    McBeath, Alastair; Drobnock, George J.; Gheorghe, Andrei Dorian

    2011-10-01

    We present a discussion linking ideas from a modern music album by Laura Veirs back to a turbulent time in American history 150 years ago, which inspired poet Walt Whitman to compose his poem "Year of Meteors", and the meteor beliefs of the period around 1859-1860, when collection of facts was giving way to analyses and theoretical explanations in meteor science.

  3. Multi-Year CMOR Observations of the Geminid Meteor Shower

    NASA Technical Reports Server (NTRS)

    Webster, A. R.; Jones, J.

    2011-01-01

    The three-station Canadian Meteor Orbit Radar (CMOR) is used here to examine the Geminid meteor shower with respect to variation in the stream properties including the flux and orbital elements over the period of activity in each of the consecutive years 2005 2008 and the variability from year to year. Attention is given to the appropriate choice and use of the D-criterion in the separating the shower meteors from the sporadic background.

  4. The Meteor Meter.

    ERIC Educational Resources Information Center

    Eggensperger, Martin B.

    2000-01-01

    Introduces the Meteor Scatter Project (MSP) in which high school students build an automated meteor observatory and learn to monitor meteor activity. Involves students in activities such as radio frequency survey, antenna design, antenna construction, manual meteor counts, and computer board configuration and installation. (YDS)

  5. The 2014 KCG Meteor Outburst: Clues to a Parent Body

    NASA Astrophysics Data System (ADS)

    Moorhead, Althea V.; Brown, Peter G.; Spurný, Pavel; Cooke, William J.; Shrbený, Lukáš

    2015-10-01

    The κ Cygnid (KCG) meteor shower exhibited unusually high activity in 2014, producing ten times the flux of KCG meteors compared to normal years. The shower was detected during the routine operation of several radar and optical systems. Meteoroids associated with the outburst ranged from approximately 10-6-10-5 kg for radar meteors and from 10-3 to 2 kg for optical meteors. The Canadian Meteor Orbit Radar, Czech part of the European Fireball Network, and NASA All Sky and Southern Ontario Meteor Networks produced thousands of KCG meteor trajectories in total. Using these data, we have undertaken a new and improved characterization of the dynamics of this little-studied, variable meteor shower. The KCGs have a diffuse radiant and a significant spread in orbital characteristics. Our analysis of the highest quality KCG trajectories reveals concentrations of stream members near major resonances with Jupiter. We conducted a new search for parent bodies and find that several known asteroids are orbitally similar to the KCGs. Our meteor stream simulations show that the two best parent body candidates readily transfer meteoroids to the Earth in recent centuries, but neither produces a match to the KCG radiant, velocity, and solar longitude. We nevertheless identify asteroid 2001 MG1 as a promising parent body candidate.

  6. Multilayer detection and classification of specular and nonspecular meteor trails

    NASA Astrophysics Data System (ADS)

    Zhao, Siming; Urbina, Julio; Dyrud, Lars; Seal, Ryan

    2011-12-01

    Meteor radar data are continuously collected by different radar systems that operate throughout the year. Analyzing this fast growing, large data set requires efficient and reliable detection routines. Currently most meteor echo routines search for underdense meteor trails, often discarding overdense and nonspecular meteor trails. This is because their main purpose is the study of mesospheric winds. But the study of meteor flux requires the unique identification of each type of meteor reflections. In this paper, a multilayer radar detection and classification algorithm is proposed to correctly identify multiple types of meteor trail reflections. The process consists of two steps. The first step is based on the time-frequency waveform detector. In this step, we start by selecting low signal-to-noise ratio (SNR) values in order to detect all types of radar echoes; however, a high probability offalse alarm is often produced. In the second step, several features from the detected echoes in step one are extracted and a support vector machine (SVM) classifier is constructed to further classify these echoes. The algorithm was tested using data collected from a 50-MHz radar stationed near Salinas, Puerto Rico, on April 5, 1998. A total of 270 detected echoes were labeled as underdense, overdense, nonspecular, other ionospheric echoes, and noise. We used 50% of the labeled echoes as training samples and divided the rest 50% testing samples as 10 subsets for testing. This technique successfully classified about 85% of the testing samples. Details concerning implementation, feature extraction, and data visualization are presented and discussed.

  7. Archive of radar observations of meteors in Tomsk in 1965-1966. (Russian Title: Архив радиолокационных наблюдений метеоров в Томске в 1965-1966 гг.)

    NASA Astrophysics Data System (ADS)

    Ryabova, G. O.

    2010-12-01

    The archive of data of radar observations of Geminid, Quadrantid, Daytime Arietid, Perseid, Ursid, Lyrid, Orionid and Leonid meteor showers in Tomsk in 1965-1966 is described. In certain cases registrations of the sporadic background before and after a shower exist. Primary data of echo registrations contain time of a registration, distance, duration and amplitude of an echo, allowing to obtain corresponding distributions essential for calculation of the incident flux density of meteors. Work on the archive digitization has been started.

  8. Non-specular meteor trail diagnostics

    NASA Astrophysics Data System (ADS)

    Dyrud, L.; Oppenheim, M.; Close, S.; Ray, L.; McMillion, K.

    2003-12-01

    Plasma simulations demonstrate that meteor trails are unstable to growth of gradient-drift Farley-Buneman (GDFB) waves that become turbulent and generate large B-field aligned irregularities (FAI). These simulations and our analysis indicate that the non-specular echos, that can extend between 5-10 km in altitude range, are reflections from plasma instability generated FAI. We present models showing that the specific altitude range of trail instability depends on meteor and atmospheric properties. This variability will allow researchers to infer neutral temperature, neutral wind velocity, and meteoric velocity and composition in completely new ways. We demonstrate some of these non-specular trail diagnostic techniques using radar observations from the ALTAIR and Piura radar facilities. Finally, we present examples of a low altitude variety of non-specular echos that may be related to PMSE.

  9. Mesospheric temperature estimation from meteor decay times during Geminids meteor shower

    NASA Astrophysics Data System (ADS)

    Kozlovsky, Alexander; Lukianova, Renata; Shalimov, Sergey; Lester, Mark

    2016-02-01

    Meteor radar observations at the Sodankylä Geophysical Observatory (67° 22'N, 26° 38'E, Finland) indicate that the mesospheric temperature derived from meteor decay times is systematically underestimated by 20-50 K during the Geminids meteor shower which has peak on 13 December. A very good coincidence of the minimum of routinely calculated temperature and maximum of meteor flux (the number of meteors detected per day) was observed regularly on that day in December 2008-2014. These observations are for a specific height-lifetime distribution of the Geminids meteor trails and indicate a larger percentage of overdense trails compared to that for sporadic meteors. A consequence of this is that the routine estimates of mesospheric temperature during the Geminids are in fact underestimates. The observations do, however, indicate unusual properties (e.g., mass, speed, or chemical composition) of the Geminids meteoroids. Similar properties were found also for Quadrantids in January 2009-2015, which like the Geminids has as a parent body an asteroid, but not for other meteor showers.

  10. Diurnal variation of overdense meteor echo duration and ozone

    NASA Technical Reports Server (NTRS)

    Simek, Milos

    1992-01-01

    The diurnal variation of the median duration of overdense sporadic radar meteor echoes is examined. The meteors recorded in August, December, and January by the Ondrejov meteor radar during the period 1958-1990 were used for the analysis. A maximum median echo duration 1-3 hours after the time of local sunrise in the meteor region confirms the already known sunrise effect. Minimum echo duration occurring at the time of sunset seems to be the most important point of diurnal variation of the echo duration, when ozone is no longer dissociated by solar UV radiation. The effect of diurnal changes of the echo duration should be considered when the mass distribution of meteor showers is analyzed.

  11. Quadrantid Meteor, 2013

    NASA Video Gallery

    An allsky camera in New Mexico captured a brief video of this Quadrantid fireball meteor on Jan. 3, 2013 at 2:04 a.m. EST. The Quadrantid meteor shower occurs each January and derives its name from...

  12. Catalogue of representative meteor spectra

    NASA Astrophysics Data System (ADS)

    Vojáček, V.; Borovička, J.; Koten, P.; Spurný, P.; Štork, R.

    2016-01-01

    We present a library of low-resolution meteor spectra that includes sporadic meteors, members of minor meteor showers, and major meteor showers. These meteors are in the magnitude range from +2 to ‑3, corresponding to meteoroid sizes from 1 mm to10 mm. This catalogue is available online at the CDS for those interested in video meteor spectra.

  13. A Conjugate Study of Mean Winds and Planetary Waves Employing Enhanced Meteor Radars at Rio Grande, Argentina (53.8degS) and Juliusruh, Germany (54.6degN)

    NASA Technical Reports Server (NTRS)

    Fritts, D. C.; Imura, H.; Lieberman, R.; Janches, D.; Singer, W.

    2011-01-01

    Two meteor radars with enhanced power and sensitivity and located at closely conjugate latitudes (54.6degN and 53.8degS) are employed for inter-hemispheric comparisons of mean winds and planetary wave structures. Our study uses data from June 2008 through May 2010 during which both radars provided nearly continuous wind measurements from approx.80 to 100 km. Monthly mean winds at 53.8degS exhibit a somewhat stronger westward mean zonal jet in spring and early summer at lower altitudes and no westward monthly mean winds at higher altitudes. In contrast, westward mean winds of approx.5-10 m/s at 54.6degN extend to above 96 km during late winter and early spring each year. Equatorward monthly mean winds extend approximately from spring to fall equinox at both latitudes, with amplitudes of approx.5-10 m/s and more rapid decreases in amplitude at 54.6degN at higher altitudes. Meridional mean winds are more variable at both latitudes during fall and winter, with both poleward and equatorward monthly means indicating longer-period variability. Planetary waves seen in the 2-day mean data are episodic and variable at both sites, exhibit dominant periodicities of approx.8-10 and 16-20 days and are more confined to late fall and winter at 54.6degN. At both latitudes, planetary waves in the two period bands coincide closely in time and exhibit similar horizontal velocity covariances that are positive (negative) at 54.6degN (53.8degS) during peak planetary wave responses.

  14. AGILE Data Center and AGILE science highlights

    NASA Astrophysics Data System (ADS)

    Pittori, C.

    2013-06-01

    AGILE is a scientific mission of the Italian Space Agency (ASI) with INFN, INAF e CIFS participation, devoted to gamma-ray astrophysics. The satellite is in orbit since April 23rd, 2007. Gamma-ray astrophysics above 100 MeV is an exciting field of astronomical sciences that has received a strong impulse in recent years. Despite the small size and budget, AGILE produced several important scientific results, among which the unexpected discovery of strong and rapid gamma-ray flares from the Crab Nebula. This discovery won to the AGILE PI and the AGILE Team the prestigious Bruno Rossi Prize for 2012, an international recognition in the field of high energy astrophysics. We present here the AGILE data center main activities, and we give an overview of the AGILE scientific highlights after 5 years of operations.

  15. Kinematic Characteristics of Meteor Showers by Results of the Combined Radio-Television Observations

    NASA Astrophysics Data System (ADS)

    Narziev, Mirhusen

    2016-07-01

    One of the most important tasks of meteor astronomy is the study of the distribution of meteoroid matter in the solar system. The most important component to address this issue presents the results of measurements of the velocities, radiants, and orbits of both showers and sporadic meteors. Radiant's and orbits of meteors for different sets of data obtained as a result of photographic, television, electro-optical, video, Fireball Network and radar observations have been measured repeatedly. However, radiants, velocities and orbits of shower meteors based on the results of combined radar-optical observations have not been sufficiently studied. In this paper, we present a methods for computing the radiants, velocities, and orbits of the combined radar-TV meteor observations carried out at HisAO in 1978-1980. As a result of the two-year cycle of simultaneous TV-radar observations 57 simultaneous meteors have been identified. Analysis of the TV images has shown that some meteor trails appeared as dashed lines. Among the simultaneous meteors of d-Aquariids 10 produced such dashed images, and among the Perseids there were only 7. Using a known method, for such fragmented images of simultaneous meteors - together with the measured radar distance, trace length, and time interval between the segments - allowed to determine meteor velocity using combined method. In addition, velocity of the same meteors was measured using diffraction and radar range-time methods based on the results of radar observation. It has been determined that the mean values of meteoroid velocity based on the combined radar-TV observations are greater in 1 ÷ 3 km / c than the averaged velocity values measured using only radar methods. Orbits of the simultaneously observed meteors with segmented photographic images were calculated on the basis of the average velocity observed using the combined radar-TV method. The measured results of radiants velocities and orbital elements of individual meteors

  16. Various meteor scenes I: the perception and the conception of a 'meteor shower'

    NASA Astrophysics Data System (ADS)

    Koseki, Masahiro

    2014-10-01

    Not all 'established showers' are recognisable by every method. Some might be lost ('dead') or have recurrent (periodic) nature and are not observable annually. Some are dominated by faint meteors and not observable visually but by radar systems. Other showers are rich in fireballs and their low meteor rates make them a good target for video and photographic observations, while visual observers may not notice their activity because of the low rates. The perception limit in magnitude differs between the observing methods on the one hand, but depends on the magnitude ratios of shower meteors on the other hand. Differences in the definition of a 'meteor shower'/'meteoroid stream' work important roles composing the shower list and we need to know how much various researchers' definitions differ. Depending whether we use observational raw data of the visible meteor shower or orbital elements of the meteoroid stream this may lead to either an obvious meteor showers or an undetectable stream. This paper (paper I) describes the reasons why we can see a meteor shower and why not, Paper II proves the condition by the example of Cygnid-Draconid complex, especially for the κ-Cygnids, and Paper III looks at the different views of several minor showers from the different kind observations.

  17. Variations of Magnitude and Ionization Along the Traces of the Same Meteors

    NASA Astrophysics Data System (ADS)

    Narziev, Mirhusen

    2016-07-01

    Using the results of simultaneous television and basic radar observations of meteors from points 4-5, received during the periods of activity of the main annual meteor showers α - Kaprikornis, δ - Akvarids, Geminids, Quadrantids and Orionids in 1979 in GisAO, the variation of magnitude and linear electronic density along a traces of the same meteors were studied. It was determined that for meteors with velocities of 23-69 km/c the course of variation of magnitude and linear electronic density along the traces of the same meteors were fairly coordinated among themselves. The received results are compared with the similar data received for weaker meteors in Harward (Illinois). It is concluded that the difference between radar-tracking and photographic magnitude depends on the speed of meteors.

  18. Atmospheric motion investigation for vapor trails and radio meteors

    NASA Technical Reports Server (NTRS)

    Bedinger, J.

    1973-01-01

    The dynamics are investigated of the lower thermosphere through comparison of optical observations of motions of ejected vapor trails with radar observations of motions of ionized meteor trails. In particular, the winds obtained from a series of vapor trail observations which occurred at Wallops Island, Virginia during the night of 14-15 December 1970 are to be compared with wind data deduced from radar observations of meteor trails during the same period. The comparison of these data is considered important for two reasons. First, the most widely used methods of measuring winds in the lower thermosphere are the vapor trails and the radar meteors. However, the two techniques differ markedly and the resultant sets of data have been analyzed and presented in different formats. Secondly, and possibly of greater immediate concern is the fact that the radar meteor method appears to be an appropriate approach to the synoptic measurement of winds. During the night of 14-15 December 1970, five vapor trails were ejected from Nike Apache rockets over Wallops Island, Virginia from 2208 EST through 0627 EST. The wind data which were obtained from these trails are presented, and features of the wind profiles which relate to the radar meteor trails results are discussed.

  19. Apparatus for photographing meteors

    NASA Technical Reports Server (NTRS)

    Harvey, G. A. (Inventor)

    1973-01-01

    Apparatus for photographing meteors in a selected area of the sky is described. A photomultiplier is pointed in the direction of the area. When a meteor passes through the area the signal output of the photomultiplier increases. Means are provided that activate a camera, pointed at the area, in response to an increased signal from the photomultiplier. Hence, the camera photographs the selected are only while meteors are likely to be passing through the area.

  20. Atmospheric heating of meteors.

    NASA Technical Reports Server (NTRS)

    Harwell, K. E.; Mccay, T. D.; Best, J. T.

    1972-01-01

    A theoretical model of the radiating metallic gas produced about an iron meteor entering the earth's atmosphere is discussed. Numerical results are presented for a 0.1 cm diameter iron meteor traveling at 15 km/sec at an altitude of 100 km above the earth. It is shown that collisions between the expanding iron gas and the air molecules produce a radiating gas shell a few meters thick which is located many meters ahead of the meteor core. Temperature, pressure, and density distributions are presented as functions of radial distance and angle for several initial meteor conditions.

  1. Practical Meteor Stream Forecasting

    NASA Technical Reports Server (NTRS)

    Cooke, William J.; Suggs, Robert M.

    2003-01-01

    Inspired by the recent Leonid meteor storms, researchers have made great strides in our ability to predict enhanced meteor activity. However, the necessary calibration of the meteor stream models with Earth-based ZHRs (Zenith Hourly Rates) has placed emphasis on the terran observer and meteor activity predictions are published in such a manner to reflect this emphasis. As a consequence, many predictions are often unusable by the satellite community, which has the most at stake and the greatest interest in meteor forecasting. This paper suggests that stream modelers need to pay more attention to the needs of this community and publish not just durations and times of maxima for Earth, but everything needed to characterize the meteor stream in and out of the plane of the ecliptic, which, at a minimum, consists of the location of maximum stream density (ZHR) and the functional form of the density decay with distance from this point. It is also suggested that some of the terminology associated with meteor showers may need to be more strictly defined in order to eliminate the perception of crying wolf by meteor scientists. An outburst is especially problematic, as it usually denotes an enhancement by a factor of 2 or more to researchers, but conveys the notion of a sky filled with meteors to satellite operators and the public. Experience has also taught that predicted ZHRs often lead to public disappointment, as these values vastly overestimate what is seen.

  2. Rare Double Quadrantid Meteor Sighting

    NASA Video Gallery

    The wide-field meteor camera at NASA's Marshall Space Flight Center recorded these two simultaneous Quadrantid meteors on Jan. 4 at approximately 5 a.m. EST. Moving at 92,000 mph, the meteors flash...

  3. A discussion on the assumption of ambipolar diffusion of meteor trails in the Earth's upper atmosphere

    NASA Astrophysics Data System (ADS)

    Kumar, Karanam Kishore; Subrahmanyam, Kandula Venkata

    2012-09-01

    For the first time, height profiles of meteor trail decay time due to the ambipolar diffusion process are estimated using temperature and pressure measurements by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on-board Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite. The comparison of the meteor trail decay time measured by a meteor radar over Thumba (8?5 N, 77°E) and SABER offered very valuable insights into the meteor trail decay processes and also provided much needed validation for assumption of ambipolar diffusion of meteor trails. It is observed that the assumption of ambipolar diffusion is valid in the height region of 90-96 km only where both SABER and radar measurements show excellent agreement in meteor trail decay time. The present analysis also shows that there are other processes which govern the meteor trail decay in the 80-90 km region, where large deviations are found between radar and SABER measurements. The differences between the SABER- and radar-observed decay times are quantified, and the processes responsible for the observed differences are also discussed extensively in the light of present understanding. The important outcome of the present study is the validation of assumption on ambipolar diffusivity of the meteor trails, which has significant implications in estimating the temperature using meteor trail decay time.

  4. Solar influence on meteor rates and atmospheric density variations at meteor heights

    NASA Technical Reports Server (NTRS)

    Ellyett, C.

    1977-01-01

    Lindblad (1967) has concluded that there was an inverse relation between meteor rates and the solar cycle brought about by an increase in atmospheric density gradient at the height of meteor ionization. The present paper investigates Lindblad's conclusion more fully by using three long series of continuous radar meteor data from New Zealand and Canada. The results confirm a clear variation of total rate from year to year, inversely correlated with the annual sunspot number. Although meteor rates call for a density gradient variation inversely related to the solar cycle, direct evidence for such a variation remains nonexistant. Possibly the effect is being obscured by other density changes occurring at these heights. Analysis of meteor rates within the same one-year period in the two hemispheres has established that seasonal rate changes brought about by the variation of the angle between the latitude of the observing station and the apex of the earth's way override change of density gradient in at least one of the hemispheres and possibly both in controlling meteor rates within the year.

  5. Meteor Beliefs Project: Introduction

    NASA Astrophysics Data System (ADS)

    McBeath, A.; Gheorghe, A. D.

    2003-05-01

    A new project to investigate beliefs in meteors and meteoric phenomena in past and present times using chiefly folklore, mythology, prose and poetic literature, is described. Some initial examples are given, along with a bibliography of relevant items already in print in IMO publications.

  6. Dynamics of meteor streams

    NASA Technical Reports Server (NTRS)

    Babadjanov, P. B.; Obrubov, Yu. U.

    1987-01-01

    The overwhelming majority of meteor streams are generally assumed to be formed due to the decay of comets. The most effective process of the release of solid particles from a cometary nucleus is their ejection by sublimating gases when the comet approaches the Sun. The results of investigation of the Geminids and Quadrantids meteor stream evolution show that under the influence of planetary perturbations, the stream may originally be flat but then thicken depending on the variation range of orbital inclinations. Eventually, due to planetary perturbations, a meteor stream may take such a shape as to cause the start of several active showers at different solar longitudes.

  7. Meteors, comets, and millennialism.

    NASA Astrophysics Data System (ADS)

    McBeath, A.

    1999-12-01

    An overview of meteoric and cometary activity between circa 250 BC and circa 1600 AD is discussed with especial regard to the inclusion of meteoric imagery in Christian religious texts. Evidence is presented to suggest meteorite images played a leading role in the creation of millennial fears among adherents of the early medieval Church in Europe, which fears still persist into modern times, but which may have their origins in Mesopotamia circa 2200 BC. An extended discussion of meteoric imagery in Christian writings is also presented.

  8. Minor meteor shower activity

    NASA Astrophysics Data System (ADS)

    Rendtel, J.

    2016-01-01

    Video meteor observations provide us with data to analyze structures in minor meteor showers or weak features in flux profiles. Samples obtained independently by other techniques allow to calibrate the data sets and to improve the confidence of results as demonstrated with a few results. Both, the confirmation of events predicted by model calculation and the input of observational data to improve the modelling results may help to better understand meteoroid stream evolution processes. Furthermore, calibrated data series can be used for studies of the long-term evolution of meteor shower activity.

  9. Optical electronics for meteor observations

    NASA Technical Reports Server (NTRS)

    Shafiev, R. I.; Mukhamednazarov, S.; Atamas, I. A.

    1987-01-01

    Spectral observations of meteors have been carried out for several years using an optical electronics facility. Interest has centered on faint meteors and their trails in the period of intensive meteor showers. Over 800 meteors were registered during the observation period, with spectrograms obtained for 170 of these. A total of 86 meteors were photographed from two sites and for 25 of these spectrograms of the meteors as well as their trails were obtained. All meteors have undergone routine processing in order to determine atmospheric characteristics. Results are discussed.

  10. Current trends in meteor spectroscopy

    NASA Technical Reports Server (NTRS)

    Millman, P. M.

    1982-01-01

    The history of progress over more than a century in meteor spectroscopy is summarized. The observational data were originally visual records, but in the beginning of the 20th century photography of meteor spectra was undertaken. In the forties, 60 meteor spectra were photographed. Interest in the upper atmosphere led to the development of more efficient meteor cameras which employ replica gratings, and electronic image intensification systems recordings on video tape which resulted in the availability of several thousand meteor spectra.

  11. Agile Software Development

    ERIC Educational Resources Information Center

    Biju, Soly Mathew

    2008-01-01

    Many software development firms are now adopting the agile software development method. This method involves the customer at every level of software development, thus reducing the impact of change in the requirement at a later stage. In this article, the principles of the agile method for software development are explored and there is a focus on…

  12. Meteor Beliefs Project: Musical Meteors, meteoric imagery as used in near-contemporary song lyrics

    NASA Astrophysics Data System (ADS)

    McBeath, Alastair; Gheorghe, Andrei Dorian

    2010-01-01

    Items collected from contemporary song lyrics featuring meteoric imagery, or inspired by meteors, are given, with some discussion. While not a major part of the Meteor Beliefs Project, there are points of interest in how such usage may become passed into popular beliefs about meteors.

  13. The 2014 KCG Meteor Outburst: Clues to a Parent Body

    NASA Technical Reports Server (NTRS)

    Moorhead, Althea V.; Brown, Peter G.; Spurny, Pavel; Cooke, William J.

    2015-01-01

    The Kappa Cygnid (KCG) meteor shower exhibited unusually high activity in 2014, producing ten times the typical number of meteors. The shower was detected in both radar and optical systems and meteoroids associated with the outburst spanned at least five decades in mass. In total, the Canadian Meteor Orbit Radar, European Network, and NASA All Sky and Southern Ontario Meteor Network produced thousands of KCG meteor trajectories. Using these data, we have undertaken a new and improved characterization of the dynamics of this little-studied, variable meteor shower. The Cygnids have a di use radiant and a significant spread in orbital characteristics, with multiple resonances appearing to play a role in the shower dynamics. We conducted a new search for parent bodies and found that several known asteroids are orbitally similar to the KCGs. N-body simulations show that the two best parent body candidates readily transfer meteoroids to the Earth in recent centuries, but neither produces an exact match to the KCG radiant, velocity, and solar longitude. We nevertheless identify asteroid 2001 MG1 as a promising parent body candidate.

  14. The 2014 KCG meteor outburst: clues to a parent body

    NASA Astrophysics Data System (ADS)

    Moorhead, Althea V.; Brown, Peter G.; Spurný, Pavel; Cooke, William

    2015-05-01

    The κ Cygnid (KCG) meteor shower exhibited unusually high activity in 2014, producing ten times the typical number of meteors. The shower was detected in both radar and optical systems and meteoroids associated with the outburst spanned at least five decades in mass. In total, the Canadian Meteor Orbit Radar, European Network, and NASA All Sky and Southern Ontario Meteor Network produced thousands of KCG meteor trajectories. Using these data, we have undertaken a new and improved characterization of the dynamics of this little-studied, variable meteor shower. The κ Cygnids have a diffuse radiant and a significant spread in orbital characteristics, with multiple resonances appearing to play a role in the shower dynamics. We conducted a new search for parent bodies and found that several known asteroids are orbitally similar to the KCGs. N-body simulations show that the two best parent body candidates readily transfer meteoroids to the Earth in recent centuries, but neither produces an exact match to the KCG radiant, velocity, and solar longitude. We nevertheless identify asteroid 2001 MG1 as a promising parent body candidate.

  15. The Updated IAU MDC Catalogue of Photographic Meteor Orbits

    NASA Technical Reports Server (NTRS)

    Porubcan, V.; Svoren, J.; Neslusan, L.; Schunova, E.

    2011-01-01

    The database of photographic meteor orbits of the IAU Meteor Data Center at the Astronomical Institute SAS has gradually been updated. To the 2003 version of 4581 photographic orbits compiled from 17 different stations and obtained in the period 1936-1996, additional new 211 orbits compiled from 7 sources have been added. Thus, the updated version of the catalogue contains 4792 photographic orbits (equinox J2000.0) available either in two separate orbital and geophysical data files or a file with the merged data. All the updated files with relevant documentation are available at the web of the IAU Meteor Data Center. Keywords astronomical databases photographic meteor orbits 1 Introduction Meteoroid orbits are a basic tool for investigation of distribution and spatial structure of the meteoroid population in the close surroundings of the Earth s orbit. However, information about them is usually widely scattered in literature and often in publications with limited circulation. Therefore, the IAU Comm. 22 during the 1976 IAU General Assembly proposed to establish a meteor data center for collection of meteor orbits recorded by photographic and radio techniques. The decision was confirmed by the next IAU GA in 1982 and the data center was established (Lindblad, 1987). The purpose of the data center was to acquire, format, check and disseminate information on precise meteoroid orbits obtained by multi-station techniques and the database gradually extended as documented in previous reports on the activity of the Meteor Data Center by Lindblad (1987, 1995, 1999 and 2001) or Lindblad and Steel (1993). Up to present, the database consists of 4581 photographic meteor orbits (Lindblad et al., 2005), 63.330 radar determined orbit: Harvard Meteor Project (1961-1965, 1968-1969), Adelaide (1960-1961, 1968-1969), Kharkov (1975), Obninsk (1967-1968), Mogadish (1969-1970) and 1425 video-recordings (Lindblad, 1999) to which additional 817 video meteors orbits published by Koten el

  16. Historical aspects of radar atmospheric dynamics

    NASA Technical Reports Server (NTRS)

    Kato, Susumu

    1989-01-01

    A review of the history of radar techniques which have been applied to atmospheric observation is given. The author starts with ionosphere observation with the ionosonde, symbolizing as it does the earliest history of radar observation, and proceeds to later developments in radar observation such as the use of partial reflection, meteor, and incoherent scatter radars. Mesosphere stratosphere troposphere (MST) radars are discussed in terms of lower atmosphere observation.

  17. About distribution and origin of the peculiar group of sporadic meteors

    NASA Technical Reports Server (NTRS)

    Andreev, V. V.

    1992-01-01

    A particular group of sporadic meteors are picked out from analysis of meteor catalogs derived from results of radar observations in Mogadisho and Kharkov. The semi-major axes are equal or more than 1.73 AU and inclinations of orbits are equal or more than 90 degrees for these meteors. The distributions of radiants, velocities, and elements of orbits were derived. The probable source of meteor bodies of this peculiar group is the long-period comets, in particular, the comets of the Kreutz's group.

  18. Meteor project --- AMOS Cam

    NASA Astrophysics Data System (ADS)

    Tóth, J.; Kornoš, L.; Zigo, P.; Gajdoš, Š.; Kalmančok, D.; Šimon, J.; Buček, M.; Galád, A.; Ďuriš, F.

    2014-07-01

    Slovak Video Meteor Network (SVMN) is a project of Comenius University in Bratislava for continuous monitoring of meteor activity [1] over Slovakia. The network is based on AMOS (All-sky Meteor Orbit System) Cameras [2], which astrometric precision was calibrated using several commonly observed fireballs within European Fireball Network [3]. The field of view of the AMOS is 180° × 140° and the output digital resolution 1280 × 960 px with the frame rate of 15 f/s. Limiting sensitivity is +5.5 mag for stellar objects and about +4 mag for moving objects. The whole system is protected by outer and inner housing and monitoring by detectors of temperature, rain and illumination of the sky. The system is portable and suitable for expeditions from the ground or research planes. The AMOS cameras are working at four locations (SVMN) at present: AGO Modra, Arboretum T. Mlyňany, Kysucké Nové Mesto Obs. and Važec stations. The operation of cameras is semi-automatic and needs electric power and internet connection. The standard astrometric error is within an interval of 0.03--0.05 deg resulting in several tens or hundreds of meters for meteor atmospheric trajectory determination. The internal precision of the AMOS cameras is even better, especially when the precise all-sky reduction described in [4] is used. The first prototype has been working at the AGO Modra Observatory since 2007. Each AMOS camera records about 10 000 meteors per year as well as about 50 transient luminous events (sprites, elves) in Central Europe sky conditions. The results from the observational expedition on Tenerife and La Palma (Canary Islands 2014) showed higher efficiency of AMOS cameras at high altitudes and dark sites. The analyses of selected meteor streams (SPE, ACO, Lyrids and others) from AMOS cameras will be presented.

  19. Martian Meteor Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    20 February 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a fairly young meteor impact crater on Mars that is about the same size ( 1 kilometer; 0.62 miles) as the famous Meteor Crater in northern Arizona, U.S.A. Like the Arizona crater, boulders of ejected bedrock can be seen on the crater's ejecta blanket and in the crater itself. This crater is located in the Aethiopis region of Mars near 4.7oN, 224.1oW. Sunlight illuminates the scene from the lower left.

  20. Television meteor observations in INASAN

    NASA Astrophysics Data System (ADS)

    Kartashova, Anna

    2013-01-01

    The results of TV observations of meteors during the period 18 July-19 August (activity period of the Perseid meteor shower) in 2011 and 2012 are presented. The wide field-of-view cameras "PatrolCa" were used for the observations. Observations were carried out by the single-station as well as the double-station method. The double-station observations were aimed at determining the individual orbits of the observed meteors. The principle of Index Meteor Activity (IMA) calculations can be used for all meteor showers active during the observing period. We can use the IMA parameter to estimate the influx of meteor particles to the Earth per hour, both for shower and sporadic meteors. The distribution of the influx rate (IMA) for the Perseids to the Earth for the observing periods in 2011 and 2012 is given. Distributions of Perseid meteors by stellar magnitude are also presented.

  1. Martian Meteor Ionization Layers

    NASA Technical Reports Server (NTRS)

    Grebowsky, J. M.; Pesnell, W. D.

    1999-01-01

    Small interplanetary grains bombard Mars, like all the solar system planets, and, like all the planets with atmospheres, meteoric ion and atom layers form in the upper atmosphere. We have developed a comprehensive one-dimensional model of the Martian meteoric ionization layer including a full chemical scheme. A persistent layer of magnesium ions should exist around an altitude of 70 km. Unlike the terrestrial case, where the metallic ions are formed via charge-exchange with the ambient ions, Mg(+) in the Martian atmosphere is produced by photoionization. Nevertheless, the predicted metal layer peak densities for Earth and Mars are similar. Diffusion solutions, such as those presented here, should be a good approximation of the metallic ions in regions where the magnetic field is negligible and may provide a significant contribution to the nightside ionosphere. The low ultraviolet absorption of the Martian atmosphere may make Mars an excellent laboratory in which to study meteoric ablation. Resonance lines not seen in the spectra of terrestrial meteors may be visible to a surface observatory in the Martian highlands.

  2. Asteroids, Comets, Meteors 1991

    NASA Technical Reports Server (NTRS)

    Harris, Alan W. (Editor); Bowell, Edward (Editor)

    1992-01-01

    Papers from the conference are presented and cover the following topics with respect to asteroids, comets, and/or meteors: interplanetary dust, cometary atmospheres, atmospheric composition, comet tails, astronomical photometry, chemical composition, meteoroid showers, cometary nuclei, orbital resonance, orbital mechanics, emission spectra, radio astronomy, astronomical spectroscopy, photodissociation, micrometeoroids, cosmochemistry, and interstellar chemistry.

  3. Anomalous meteors from the observations with super-isocon TV systems

    NASA Astrophysics Data System (ADS)

    Kozak, P.; Watanabe, J.; Sato, M.

    2014-07-01

    There is a range of both optical and radar observations of meteors the behavior of which essentially differs from the behavior of most meteors. In some cases such meteors cannot be explained in the frame of the classic physical theory of meteors, in other cases the meteors are just of rare type. First of all these are the meteors with true hyperbolic velocities. In spite of the fact that most of hyperbolic orbits are the results of calculation errors, the meteors with extremely high velocities appreciably exceeding the hyperbolic limit of 73 km/s exist and can be of interstellar origin [1--3]. Another very rare phenomenon describes the possible cluster structure of meteor streams, which could be connected with the ejection of the substance from the cometary nucleus shortly before collision of the particles with the Earth [4]. Among anomalies connected with the meteor motion in the atmosphere one can note, first of all, the ultra-high altitudes of meteor beginnings exceeding 130--140 km [5--7]. Some other observations point to the beginning heights of bright meteors from Leonid shower on altitudes near 200 km [8]. The classic physical theory of meteors cannot explain their radiation on such high altitudes because of low air density [9]. Recently the results of TV observations of meteors with diffusive and cloudy structure appeared [9,10]. The results of observations in which, according to author's opinion, the meteors have a few kilometers transverse jets [9--11] were presented as well. There are video frames with bright meteor obtained with high temporal resolution, where authors declared the radiation, which could be an effect of a spread directly of the shock wave [12]. During many years' double-station observations of meteors which have been carrying out at Astronomical Observatory of Kyiv National Taras Shevchenko University the ultra-sensitive TV transmitting tubes of super-isocon type were used [7]. Given type of the tube is one of the most sensitive in the

  4. Studies of Transient Meteor Activity

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter M. M.

    2002-01-01

    Meteoroids bombard Earth's atmosphere daily, but occasionally meteor rates increase to unusual high levels when Earth crosses the relatively fresh ejecta of comets. These transient events in meteor activity provide clues about the whereabouts of Earth-threatening long-period comets, the mechanisms of large-grain dust ejection from comets, and the particle composition and size distribution of the cometary ejecta. Observations of these transient events provide important insight in natural processes that determine the large grain dust environment of comets, in natural phenomena that were prevalent during the time of the origin of life, and in processes that determine the hazard of civilizations to large impacts and of man-made satellites to the periodic blizzard of small meteoroids. In this proposal, three tasks form a coherent program aimed at elucidating various aspects of meteor outbursts, with special reference to planetary astronomy and astrobiology. Task 1 was a ground-based effort to observe periods of transient meteor activity. This includes: (1) stereoscopic imaging of meteors during transient meteor events for measurements of particle size distribution, meteoroid orbital dispersions and fluxes; and (2) technical support for Global-MS-Net, a network of amateur-operated automatic counting stations for meteor reflections from commercial VHF radio and TV broadcasting stations, keeping a 24h vigil on the level of meteor activity for the detection of new meteor streams. Task 2 consisted of ground-based and satellite born spectroscopic observations of meteors and meteor trains during transient meteor events for measurements of elemental composition, the presence of organic matter in the meteoroids, and products generated by the interaction of the meteoroid with the atmosphere. Task 3 was an airborne effort to explore the 2000 Leonid meteor outbursts, which are anticipated to be the most significant of transient meteor activity events in the remainder of the

  5. Distributions of Orbital Elements for Meteoroids on Near-Parabolic Orbits According to Radar Observational Data

    NASA Technical Reports Server (NTRS)

    Kolomiyets, S. V.

    2011-01-01

    Some results of the International Heliophysical Year (IHY) Coordinated Investigation Program (CIP) number 65 Meteors in the Earth Atmosphere and Meteoroids in the Solar System are presented. The problem of hyperbolic and near-parabolic orbits is discussed. Some possibilities for the solution of this problem can be obtained from the radar observation of faint meteors. The limiting magnitude of the Kharkov, Ukraine, radar observation program in the 1970 s was +12, resulting in a very large number of meteors being detected. 250,000 orbits down to even fainter limiting magnitude were determined in the 1972-78 period in Kharkov (out of them 7,000 are hyperbolic). The hypothesis of hyperbolic meteors was confirmed. In some radar meteor observations 1 10% of meteors are hyperbolic meteors. Though the Advanced Meteor Orbit Radar (AMOR, New Zealand) and Canadian Meteor Orbit Radar (CMOR, Canada) have accumulated millions of meteor orbits, there are difficulties in comparing the radar observational data obtained from these three sites (New Zealand, Canada, Kharkov). A new global program International Space Weather Initiative (ISWI) has begun in 2010 (http://www.iswi-secretariat.org). Today it is necessary to create the unified radar catalogue of nearparabolic and hyperbolic meteor orbits in the framework of the ISWI, or any other different way, in collaboration of Ukraine, Canada, New Zealand, the USA and, possibly, Japan. Involvement of the Virtual Meteor Observatory (Netherlands) and Meteor Data Centre (Slovakia) is desirable too. International unified radar catalogue of near-parabolic and hyperbolic meteor orbits will aid to a major advance in our understanding of the ecology of meteoroids within the Solar System and beyond.

  6. Elemental abundance determinations for meteors by spectroscopy.

    NASA Technical Reports Server (NTRS)

    Harvey, G. A.

    1973-01-01

    Relative elemental abundance determinations for meteors by spectroscopy are discussed. Relative abundances of spectroscopically accessible elements of four major shower meteors and one sporadic meteor are presented. A sporadic meteor with dominant sodium radiation and an iron-deficient sporadic meteor are analyzed. Empirical and theoretical tests for self-absorption in optical meteor plasmas have been conducted. Both ionization and incomplete dissociation are found to severely deplete certain neutral atoms from meteor plasmas.

  7. Electrophonic sounds in meteors

    NASA Astrophysics Data System (ADS)

    Wu, Guangjie

    2003-06-01

    Recordings about the sounds of meteors existed in ancient Chinese literature before Christ. During recent two hundreds years, especially, recent twenty years, reports and investigations about Electrophonic meteors and Electrophonic sounds have been developed largely. Electrophonic sounds are defined as sounds produced by direct conversion of electromagnetic radiation into audible sounds. It is thought that Electrophonic sounds may be induced in events of bolide, very bright auroral display, nearby strong lightning, earthquake and nuclear explosion. However, on account of its unusually rare chance and its particular physical course, no matter in observations or in theoretical study, there are many difficult and unresolved problems. The historical and present situations about Electrophonic sounds are summarized in this paper.

  8. An agile implementation of SCRUM

    NASA Astrophysics Data System (ADS)

    Gannon, Michele

    Is Agile a way to cut corners? To some, the use of an Agile Software Development Methodology has a negative connotation - “ Oh, you're just not producing any documentation” . So can a team with no experience in Agile successfully implement and use SCRUM?

  9. Zhamanshin meteor crater

    NASA Technical Reports Server (NTRS)

    Florenskiy, P. V.; Dabizha, A. I.

    1987-01-01

    A historical survey and geographic, geologic and geophysical characteristics, the results of many years of study of the Zhamanshin meteor crater in the Northern Aral region, are reported. From this data the likely initial configuration and cause of formation of the crater are reconstructed. Petrographic and mineralogical analyses are given of the brecciated and remelted rocks, of the zhamanshinites and irgizite tektites in particular. The impact melting, dispersion and quenching processes resulting in tektite formation are discussed.

  10. Meteor signature interpretation

    SciTech Connect

    Canavan, G.H.

    1997-01-01

    Meteor signatures contain information about the constituents of space debris and present potential false alarms to early warnings systems. Better models could both extract the maximum scientific information possible and reduce their danger. Accurate predictions can be produced by models of modest complexity, which can be inverted to predict the sizes, compositions, and trajectories of object from their signatures for most objects of interest and concern.

  11. An antenna, a radio and a microprocessor: which kinds of observation are possible in meteor radio astronomy?

    NASA Astrophysics Data System (ADS)

    Barbieri, L.

    2016-01-01

    Radio meteors are usually investigated by professional radars. Amateur astronomers cannot have transmitters, so usually they can only listen to sounds generated by a radio tuned to a TV or military transmitter. Until recently, this kind of observation has not produced good data. The experience of "RAMBo" (Radar Astrofilo Meteorico Bolognese) shows which data can be extracted from an amateur meteor scatter observatory and the results which can be achieved.

  12. Meteor head echo characteristics observed with MAARSY in the polar region

    NASA Astrophysics Data System (ADS)

    Schult, Carsten; Stober, Gunter; Chau, Jorge L.

    2016-04-01

    The Middle Atmosphere Alomar Radar System (MAARSY, 53.5 MHz), on the North Norwegian island Andoya (69.30° N, 16.04° E) , is the only high power large aperture (HPLA) radar system with interferometric capabilities providing daily meteor head echo observations since November 2013. Meanwhile, the data set of meteor head echoes contains over one million events with a perfect daily and seasonal coverage of the four northern hemisphere sporadic sources. Although, the North Apex meteor source dominates the observation by far (more than 40%), the statistic is large enough for a comparison of the observational meteor parameters for all sporadic sources. Furthermore, due to the large spread of the antenna gain of the HPLA radar system in combination with the interferometric solutions, the observation area can be divided into high and low sensitive regions with different collecting sizes. This separation is equivalent with a measurement of various radar systems with different beam characteristics, observing at the same time and geographical location. This helps answering question on the impact of the radar specifications on the meteor head echo measurements.

  13. Meteors in Australian Aboriginal Dreamings

    NASA Astrophysics Data System (ADS)

    Hamacher, Duane W.; Norris, Ray P.

    2010-06-01

    We present a comprehensive analysis of Australian Aboriginal accounts of meteors. The data used were taken from anthropological and ethnographic literature describing oral traditions, ceremonies, and Dreamings of 97 Aboriginal groups representing all states of modern Australia. This revealed common themes in the way meteors were viewed between Aboriginal groups, focusing on supernatural events, death, omens, and war. The presence of such themes around Australia was probably due to the unpredictable nature of meteors in an otherwise well-ordered cosmos.

  14. Dynamical Model for the Zodiacal Cloud and Sporadic Meteors

    NASA Technical Reports Server (NTRS)

    Nesvorny, David; Janches, Diego; Vokrouhlicky, David; Pokorny, Petr; Bottke, William F.; Jenniskens, Peter

    2011-01-01

    The solar system is dusty, and would become dustier over time as asteroids collide and comets disintegrate, except that small debris particles in interplanetary space do not last long. They can be ejected from the solar system by Jupiter, thermally destroyed near the Sun, or physically disrupted by collisions. Also, some are swept by the Earth (and other planets), producing meteors. Here we develop a dynamical model for the solar system meteoroids and use it to explain meteor radar observations. We find that the Jupiter Family Comets (JFCs) are the main source of the prominent concentrations of meteors arriving to the Earth from the helion and antihelion directions. To match the radiant and orbit distributions, as measured by the Canadian Meteor Orbit Radar (CMOR) and Advanced Meteor Orbit Radar (AMOR), our model implies that comets, and JFCs in particular, must frequently disintegrate when reaching orbits with low perihelion distance. Also, the collisional lifetimes of millimeter particles may be longer (approx. > 10(exp 5) yr at 1 AU) than postulated in the standard collisional models (approx 10(exp 4) yr at 1 AU), perhaps because these chondrule-sized meteoroids are stronger than thought before. Using observations of the Infrared Astronomical Satellite (IRAS) to calibrate the model, we find that the total cross section and mass of small meteoroids in the inner solar system are (1.7-3.5) 10(exp 11) sq km and approx. 4 10(exp 19) g, respectively, in a good agreement with previous studies. The mass input required to keep the Zodiacal Cloud (ZC) in a steady state is estimated to be approx. 10(exp 4)-10(exp 5) kg/s. The input is up to approx 10 times larger than found previously, mainly because particles released closer to the Sun have shorter collisional lifetimes, and need to be supplied at a faster rate. The total mass accreted by the Earth in particles between diameters D = 5 micron and 1 cm is found to be approx 15,000 tons/yr (factor of 2 uncertainty), which is

  15. Dynamical Model for the Zodiacal Cloud and Sporadic Meteors

    NASA Astrophysics Data System (ADS)

    Nesvorný, David; Janches, Diego; Vokrouhlický, David; Pokorný, Petr; Bottke, William F.; Jenniskens, Peter

    2011-12-01

    The solar system is dusty, and would become dustier over time as asteroids collide and comets disintegrate, except that small debris particles in interplanetary space do not last long. They can be ejected from the solar system by Jupiter, thermally destroyed near the Sun, or physically disrupted by collisions. Also, some are swept by the Earth (and other planets), producing meteors. Here we develop a dynamical model for the solar system meteoroids and use it to explain meteor radar observations. We find that the Jupiter Family Comets (JFCs) are the main source of the prominent concentrations of meteors arriving at the Earth from the helion and antihelion directions. To match the radiant and orbit distributions, as measured by the Canadian Meteor Orbit Radar (CMOR) and Advanced Meteor Orbit Radar (AMOR), our model implies that comets, and JFCs in particular, must frequently disintegrate when reaching orbits with low perihelion distance. Also, the collisional lifetimes of millimeter particles may be longer (gsim 105 yr at 1 AU) than postulated in the standard collisional models (~104 yr at 1 AU), perhaps because these chondrule-sized meteoroids are stronger than thought before. Using observations of the Infrared Astronomical Satellite to calibrate the model, we find that the total cross section and mass of small meteoroids in the inner solar system are (1.7-3.5) × 1011 km2 and ~4 × 1019 g, respectively, in a good agreement with previous studies. The mass input required to keep the zodiacal cloud in a steady state is estimated to be ~104-105 kg s-1. The input is up to ~10 times larger than found previously, mainly because particles released closer to the Sun have shorter collisional lifetimes and need to be supplied at a faster rate. The total mass accreted by the Earth in particles between diameters D = 5 μm and 1 cm is found to be ~15,000 tons yr-1 (factor of two uncertainty), which is a large share of the accretion flux measured by the Long Term Duration

  16. Radar Performance Improvement. Angle Tracking Modification to Fire Control Radar System for Space Shuttle Rendezvous

    NASA Technical Reports Server (NTRS)

    Little, G. R.

    1976-01-01

    The AN/APQ-153 fire control radar modified to provide angle tracking was evaluated for improved performance. The frequency agile modifications are discussed along with the range-rate improvement modifications, and the radar to computer interface. A parametric design and comparison of noncoherent and coherent radar systems are presented. It is shown that the shuttle rendezvous range and range-rate requirements can be made by a Ku-Band noncoherent pulse radar.

  17. Meteor Beliefs Project: Meteoric references in Ovid's Metamorphoses

    NASA Astrophysics Data System (ADS)

    Gheorghe, A. D.; McBeath, A.

    2003-10-01

    Three sections of Ovid's Metamorphoses are examined, providing further information on meteoric beliefs in ancient Roman times. These include meteoric imagery among the portents associated with the death of Julius Caesar, which we mentioned previously from the works of William Shakespeare (McBeath and Gheorghe, 2003b).

  18. James Joule and meteors

    NASA Astrophysics Data System (ADS)

    Hughes, David W.

    1989 was the hundredth anniversary of the death of James Prescott Joule, the Prescott being his mother's family name and the Joule, rhyming with cool, originating from the Derbyshire village of Youlgreave. Joule is rightly famous for his experimental efforts to establish the law of conservation of energy, and for the fact that J, the symbol known as the mechanical equivalent of heat, is named after him. Astronomically his "light has been hidden under a bushel". James Joule had a major influence on the physics of meteors.

  19. Dependences of Ratio of the Luminosity to Ionization on Velocity and Chemical Composition of Meteors

    NASA Technical Reports Server (NTRS)

    Narziev, M.

    2011-01-01

    On the bases of results simultaneous photographic and radio echo observations, the results complex radar and television observations of meteors and also results of laboratory modeling of processes of a luminescence and ionization, correlation between of luminous intensity Ip to linear electronic density q from of velocities and chemical structure are investigated. It is received that by increasing value of velocities of meteors and decrease of nuclear weight of substance of particles, lg Ip/q decreased more than one order.

  20. SOFIE Observations of Meteoric Smoke and Mesospheric Ice

    NASA Astrophysics Data System (ADS)

    Hervig, M. E.; Bardeen, C.

    2013-12-01

    The Solar Occultation for Ice Experiment (SOFIE) has sounded Earth's atmosphere from the Aeronomy of Ice in the Mesosphere (AIM) satellite since early 2007. SOFIE observes polar mesospheric clouds (PMC), meteoric smoke, temperature, and five gaseous species (H2O, O3, NO, CH4, and CO2). In this work, SOFIE observations are compared to SDWACCM model simulations which incorporate concurrent meteorological information, and include the microphysics of PMCs, meteoric smoke, and ice-smoke interactions. SOFIE smoke observations are used to constrain meteoric influx through model - measurement comparisons. The current results indicate that influx is on the low end of candidate values. These results depend on the estimates of meteoric smoke composition from SOFIE multi-wavelength observations, which currently indicate magnesiowüstite, carbon, magnetite or olivine as candidates. SOFIE smoke extinction observations indicate a pronounced seasonal cycle, and an intriguing systematic decrease during summer over the past six years. The abundance of smoke at a given latitude is due to transport by the circulation, and to the influx of meteoric material. The systematic decrease in smoke is interpreted as a manifestation of changing circulation, since concurrent radar observations do not indicate systematic changes in meteoric influx. Potential explanations for changing circulation are explored, including solar variability and increasing greenhouse gases. There is some evidence that sulfate aerosols may exist at altitudes higher than previously thought (~35 km), and this idea will be examined from modelling and observational perspectives. SOFIE observations indicate that the ice particles comprising PMCs contain a small amount of meteoric smoke (0.02-2% by volume), and that the smoke contained in ice is consistent with a composition of magnesiowüstite or carbon. The combined SOFIE and model results are used to examine ice-smoke interactions.

  1. Hard- and software problems of spaced meteor observations by optical electronics

    NASA Technical Reports Server (NTRS)

    Shafiev, R. I.; Mukhamednazarov, S.; Ataev, A. SH.

    1987-01-01

    An optical electronic facility is being used for meteor observations along with meteor radars and astronomical TV. The main parts of the facility are cameras using UM-92 optical electronic image tubes. The three cascade optical electronic image tube with magnetic focusing has a 40 mm cathode and resolution in the center of up to 30 pairs of lines/mm. The photocathode is of a multislit S-20 type. For meteor spectra observations, replica gratings of 200 and 300 lines/mm are used as the dispersive element.

  2. Asteroids, Comets, Meteors 2014

    NASA Astrophysics Data System (ADS)

    Muinonen, K.; Penttilä, A.; Granvik, M.; Virkki, A.; Fedorets, G.; Wilkman, O.; Kohout, T.

    2014-08-01

    Asteroids, Comets, Meteors focuses on the research of small Solar System bodies. Small bodies are the key to understanding the formation and evolution of the Solar System, carrying signals from pre-solar times. Understanding the evolution of the Solar System helps unveil the evolution of extrasolar planetary systems. Societally, small bodies will be important future resources of minerals. The near-Earth population of small bodies continues to pose an impact hazard, whether it be small pieces of falling meteorites or larger asteroids or cometary nuclei capable of causing global environmental effects. The conference series entitled ''Asteroids, Comets, Meteors'' constitutes the leading international series in the field of small Solar System bodies. The first three conferences took place in Uppsala, Sweden in 1983, 1985, and 1989. The conference is now returning to Nordic countries after a quarter of a century. After the Uppsala conferences, the conference has taken place in Flagstaff, Arizona, U.S.A. in 1991, Belgirate, Italy in 1993, Paris, France in 1996, Ithaca, New York, U.S.A. in 1999, in Berlin, Germany in 2002, in Rio de Janeiro, Brazil in 2005, in Baltimore, Maryland, U.S.A. in 2008, and in Niigata, Japan in 2012. ACM in Helsinki, Finland in 2014 will be the 12th conference in the series.

  3. Meteor fireball sounds identified

    NASA Technical Reports Server (NTRS)

    Keay, Colin

    1992-01-01

    Sounds heard simultaneously with the flight of large meteor fireballs are electrical in origin. Confirmation that Extra/Very Low Frequency (ELF/VLF) electromagnetic radiation is produced by the fireball was obtained by Japanese researchers. Although the generation mechanism is not fully understood, studies of the Meteorite Observation and Recovery Project (MORP) and other fireball data indicate that interaction with the atmosphere is definitely responsible and the cut-off magnitude of -9 found for sustained electrophonic sounds is supported by theory. Brief bursts of ELF/VLF radiation may accompany flares or explosions of smaller fireballs, producing transient sounds near favorably placed observers. Laboratory studies show that mundane physical objects can respond to electrical excitation and produce audible sounds. Reports of electrophonic sounds should no longer be discarded. A catalog of over 300 reports relating to electrophonic phenomena associated with meteor fireballs, aurorae, and lightning was assembled. Many other reports have been cataloged in Russian. These may assist the full solution of the similar long-standing and contentious mystery of audible auroral displays.

  4. Developments in Agile Manufacturing

    SciTech Connect

    Clinesmith, M.G.

    1993-09-01

    As part of a project design initiative, Sandia National Laboratories and AlliedSignal Inc. Kansas City Division have joined efforts to develop a concurrent engineering capability for the manufacturing of complex precision components. The primary effort of this project, called Agile Manufacturing, is directed toward: (1) Understand the error associated with manufacturing and inspection. (2) Develop methods for correcting error. (3) Integrate diverse software technologies into a compatible process. The Agile Manufacturing System (AMS) is a system that integrates product design, manufacturing, and inspection into a closed loop, concurrent engineering process. The goal of developing the Agile Manufacturing System is to: (1) Optimize accuracy in manufacturing and inspection. (A) Use of softgage software for product evaluation. This will ensure ANSI Y14.5 compliance. (B) Establish and monitor bias between CMM and machine center. (C) Map probe deflection error and apply correction to inspection results. This applies to both on machine probing and CMM inspections. (D) Inspection process. (2) Compress the cycle time from product concept to production level manufacturing and verification. (3) Create a self-correcting process that feeds inspection results back into the machining process. (4) Link subordinate processes (cutting/probing path, softgage model, etc.) to the solid model definition.

  5. Perspectives on Agile Coaching

    NASA Astrophysics Data System (ADS)

    Fraser, Steven; Lundh, Erik; Davies, Rachel; Eckstein, Jutta; Larsen, Diana; Vilkki, Kati

    There are many perspectives to agile coaching including: growing coaching expertise, selecting the appropriate coach for your context; and eva luating value. A coach is often an itinerant who may observe, mentor, negotiate, influence, lead, and/or architect everything from team organization to system architecture. With roots in diverse fields ranging from technology to sociology coaches have differing motivations and experience bases. This panel will bring together coaches to debate and discuss various perspectives on agile coaching. Some of the questions to be addressed will include: What are the skills required for effective coaching? What should be the expectations for teams or individu als being coached? Should coaches be: a corporate resource (internal team of consultants working with multiple internal teams); an integral part of a specific team; or external contractors? How should coaches exercise influence and au thority? How should management assess the value of a coaching engagement? Do you have what it takes to be a coach? - This panel will bring together sea soned agile coaches to offer their experience and advice on how to be the best you can be!

  6. The Chelyabinsk meteor

    NASA Astrophysics Data System (ADS)

    Popova, O.; Jenniskens, P.; Shuvalov, V.; Emel'yanenko, V.; Rybnov, Y.; Kharlamov, V.; Kartashova, A.; Biryukov, E.; Khaibrakhmanov, S.

    2014-07-01

    A review is given about what was learned about the 0.5-Mt Chelyabinsk airburst of 15 February 2013 by field studies, the analysis of recovered meteorites, and numerical models of meteoroid fragmentation and airburst propagation. Previous events with comparable or larger energy in recent times include only the 0.5-Mt -sized 3 August 1963 meteor over the south Atlantic, for which only an infrasound signal was recorded, and the famous Tunguska impact of 1908. Estimates of the initial kinetic energy of the Tunguska impact range from 3 to 50 Mt, due to the lack of good observations at the time. The Chelyabinsk event is much better documented than both, and provides a unique opportunity to calibrate the different approaches used to model meteoroid entry and calculate the damaging effects of a shock wave from a large meteoroid impact. A better understanding of what happened might help future impact hazard mitigation efforts by calibrating models of what might happen under somewhat different circumstances. The initial kinetic energy is estimated from infrasonic signals and the fireball's lightcurve, as well as the extent of the glass damage on the ground. Analysis of video observations of the fireball and the shadow movements provided an impact trajectory and a record of the meteor lightcurve, which describes how that energy was deposited in the atmosphere. Ablation and fragmentation scenarios determine the success of attempts to reproduce the observed meteor lightcurve and deceleration profile by numerical modeling. There was almost no deceleration until peak brightness. Meteoroid fragmentation occurred in different forms, some part of the initial mass broke in well separated fragments, the surviving fragments falling on the ground as meteorites. The specific conditions during energy deposition determined the fraction of surviving mass. The extent of the glass damage was mapped by visiting over 50 villages in the area. A number of numerical simulations were conducted that

  7. Identification of Optical Component of North Toroidal Source of Sporadic Meteors and its Origin

    NASA Technical Reports Server (NTRS)

    Hashimoto, T.; Watanabe, J.; Sato, M.; Ishiguro, M.

    2011-01-01

    We succeeded to identify the North Toroidal source by optical observations performed by the SonotaCo Network, which is a TV observation network coordinated by Japanese amateurs. This source has been known only for radar observations until now. The orbits of the optical meteors in the North Toroidal source are relatively large eccentricity and semi-major axis, compared with those of the radar meteors. In this paper, we report the characteristics of this North Toroidal source detected by optical observations, and discuss the possible origin and evolution of this source.

  8. What do we see as ANT, Apex and Toroidal sources? - What meteors are, where meteors came from, where meteoroids are going

    NASA Astrophysics Data System (ADS)

    Koseki, Masahiro

    2015-10-01

    We found that the observabilities of meteors depend strongly on meteor velocity; the ratio of the number of CCD to photographic meteors is expressed as a quadratic function of the velocity, and the observability for radar observations has a clear peak around V_g=30 km/s. If we do not compensate for the observability, we are under the impression that radar observations contribute most to the Toroidal activity, CCD observations record a huge number of the Apex meteors, and photographic meteors concentrate on the ANT area. We assume that the observed number against the velocity shows roughly the observability for each observational technique and get more plausible results: in first place in radar observations is the Apex source and in optical observations ANT, while the Toroidal source is not so impressive. We calculated the radiants of 3212 comets and 1533 PHAs (potentially hazardous asteroids), finding 193 radiants of periodic comets, 1013 radiants of non-periodic comets and 3018 radiants of PHAs. Comparison of predicted to observed radiants reveals a very interesting fact: the contribution of the periodic comets to sporadic meteor activities is small, though we have clear recollections of meteor showers made up by a substantial number of massive meteoroids. It is clear many meteoroids from periodic comets meet Earth with low velocity and do not radiate enough light to be visible. Both predicted and observed radiant distributions clearly separate into two regions except for radiant areas relating to periodic comets. It is suggested that the Apex source is descended from non-periodic comets, ANT from asteroid kinsfolk and the Toroidal source is accumulated by older particles near Earth's orbit from both comets and asteroids.

  9. MST radar detection of middle atmosphere tides

    NASA Technical Reports Server (NTRS)

    Forbes, J. M.

    1983-01-01

    Meteorological and dynamical requirements pertaining to the specification of middle atmosphere tides by the MST radar technique are outlined. Major issues addressed include: (1) the extraction of tidal information from measurements covering a fraction of a day; (2) the ramifications of transient effects (tidal variability) on the determination and interpretation of tides; (3) required temporal and spatial resolutions and; (4) global distributions of MST radars, so as to complement existing MST, meteor wind, and partial reflection drift radar locations.

  10. Waves from Radar and Optical Observations of the MLT region

    NASA Astrophysics Data System (ADS)

    Reid, Iain

    Over the past few years we have developed the Australian MLT radar network and established a Rayleigh Lidar system at Buckland Park (BP). In 2009 we obtained funding for a SuperDARN class radar to be installed at BP. This will occur in 2010. Our interest is in the use of this dual frequency radar (typical operating frequencies are between 8 and 12 MHz) for meteor studies of the MLT region. The relatively low operating frequencies of these radars result in an increase the count rates of detected usable meteors (because count rate is proportional to the square root of the transmitted power, and the wavelength raised to 1.5th power), and hence the quality of the derived winds. Most meteor radars operate in the 30 to 55 MHz frequency range. The height coverage is also extended upwards by using a lower frequency because of the larger initial radius of the meteor trails at greater heights. Data from existing SuperDARN radars is available from the Bruny Island radar in Tasmania (available from 1999 -present), and the Unwin radar in southern NZ (available form 2004 -present). While not ideal because of the limited height discrimination available with these older radars, the results extend the information of the dynamics of the MLT region to latitudes below 50S. Opportunities for siting radars on land in this latitude band are limited, and it is a correspondingly very sparse data region. Preliminary results from the radar network will be presented and discussed.

  11. Catalogue of representative meteor spectra

    NASA Astrophysics Data System (ADS)

    Vojáček, V.; Borovička, J.; Koten, P.; Spurný, P.; Štork, R.

    2015-08-01

    Aims: We present a library of low-resolution meteor spectra that includes sporadic meteors, members of minor meteor showers, and major meteor showers. These meteors are in the magnitude range from +2 to -3, corresponding to meteoroid sizes from 1 mm to 10 mm. Methods: Parallel double-station video observations allowed us to compute heliocentric orbits for all meteors. Most observations were performed during the periods of activity of major meteor showers in the years between 2006 and 2012. Spectra are classified according to relative intensities of the low-temperature emission lines of Mg, Na, and Fe. Results: Shower meteors were found to be of normal composition, except for Southern δ Aquariids and some members of the Geminid shower, neither of which have Na in the meteor spectra. Variations in Na content are typical for the Geminid shower. Three populations of Na-free mereoroids were identified. The first population are iron meteorites, which have an asteroidal-chondritic origin, but one meteoroid with low perihelion (0.11 AU) was found among the iron meteorites. The second population were Sun-approaching meteoroids in which sodium is depleted by thermal desorption. The third population were Na-free meteoroids of cometary origin. Long exposure to cosmic rays on the surface of comets in the Oort cloud and disintegration of this crust might be the origin of this population of meteoroids. Spectra (Figs. 17-30) are only, Tables 4-6 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/580/A67

  12. Artificial meteor test towards: On-demand meteor shower

    NASA Astrophysics Data System (ADS)

    Abe, S.; Okajima, L.; Sahara, H.; Watanabe, T.; Nojiri, Y.; Nishizono, T.

    2016-01-01

    An arc-heated wind tunnel is widely used for ground-based experiments to simulate environments of the planetary atmospheric entry under hypersonic and high-temperature conditions. In order to understand details of a meteor ablation such as temperature, composition ratio and fragmentation processes, the artificial meteor test was carried out using a JAXA/ISAS arc-heated wind tunnel. High-heating rate around 30 MW/m2 and High-enthalpy conditions, 10000 K arc-heated flow at velocity around 6 km/s were provided. Newly developed artificial metallic meteoroids and real meteorites such as Chelyabinsk were used for the ablation test. The data obtained by near-ultraviolet and visible spectrograph (200 and 1100nm) and high-speed camera (50 μs) have been examined to develop more efficient artificial meteor materials. We will test artificial meteors from a small satellite in 2018.

  13. Agile Walking Robot

    NASA Technical Reports Server (NTRS)

    Larimer, Stanley J.; Lisec, Thomas R.; Spiessbach, Andrew J.; Waldron, Kenneth J.

    1990-01-01

    Proposed agile walking robot operates over rocky, sandy, and sloping terrain. Offers stability and climbing ability superior to other conceptual mobile robots. Equipped with six articulated legs like those of insect, continually feels ground under leg before applying weight to it. If leg sensed unexpected object or failed to make contact with ground at expected point, seeks alternative position within radius of 20 cm. Failing that, robot halts, examines area around foot in detail with laser ranging imager, and replans entire cycle of steps for all legs before proceeding.

  14. Frequency agile relativistic magnetrons

    SciTech Connect

    Levine, J.S.; Harteneck, B.D.; Price, H.D.

    1995-11-01

    The authors are developing a family of frequency agile relativistic magnetrons to continuously cover the bands from 1 to 3 GHz. They have achieved tuning ranges of > 33%. The magnetrons have been operated repetitively in burst mode at rates up to 100 pps for 10 sec. Power is extracted from two resonators, and is in the range of 400--600 MW, fairly flat across the tuning bandwidth. They are using a network of phase shifters and 3-dB hybrids to combine the power into a single arm and to provide a continuously adjustable attenuator.

  15. Agile Infrastructure Monitoring

    NASA Astrophysics Data System (ADS)

    Andrade, P.; Ascenso, J.; Fedorko, I.; Fiorini, B.; Paladin, M.; Pigueiras, L.; Santos, M.

    2014-06-01

    At the present time, data centres are facing a massive rise in virtualisation and cloud computing. The Agile Infrastructure (AI) project is working to deliver new solutions to ease the management of CERN data centres. Part of the solution consists in a new "shared monitoring architecture" which collects and manages monitoring data from all data centre resources. In this article, we present the building blocks of this new monitoring architecture, the different open source technologies selected for each architecture layer, and how we are building a community around this common effort.

  16. THE RETURN OF THE ANDROMEDIDS METEOR SHOWER

    SciTech Connect

    Wiegert, Paul A.; Brown, Peter G.; Weryk, Robert J.; Wong, Daniel K.

    2013-03-15

    The Andromedid meteor shower underwent spectacular outbursts in 1872 and 1885, producing thousands of visual meteors per hour and described as ''stars fell like rain'' in Chinese records of the time. The shower originates from comet 3D/Biela whose disintegration in the mid-1800's is linked to the outbursts, but the shower has been weak or absent since the late 19th century. This shower returned in 2011 December with a zenithal hourly rate of approximately 50, the strongest return in over a hundred years. Some 122 probable Andromedid orbits were detected by the Canadian Meteor Orbit Radar while one possible brighter Andromedid member was detected by the Southern Ontario Meteor Network and several single station possible Andromedids by the Canadian Automated Meteor Observatory. The shower outburst occurred during 2011 December 3-5. The radiant at R.A. +18 Degree-Sign and decl. +56 Degree-Sign is typical of the ''classical'' Andromedids of the early 1800s, whose radiant was actually in Cassiopeia. Numerical simulations of the shower were necessary to identify it with the Andromedids, as the observed radiant differs markedly from the current radiant associated with that shower. The shower's orbital elements indicate that the material involved was released before 3D/Biela's breakup prior to 1846. The observed shower in 2011 had a slow geocentric speed (V{sub G} = 16 km s{sup -1}) and was comprised of small particles: the mean measured mass from the radar is {approx}5 Multiplication-Sign 10{sup -7} kg, corresponding to radii of 0.5 mm at a bulk density of 1000 kg m{sup -3}. Numerical simulations of the parent comet indicate that the meteoroids of the 2011 return of the Andromedids shower were primarily ejected during 3D/Biela's 1649 perihelion passage. The orbital characteristics, radiant, and timing as well as the absence of large particles in the streamlet are all broadly consistent with simulations. However, simulations of the 1649 perihelion passage necessitate going

  17. Meteor Beliefs Project: Seven years and counting

    NASA Astrophysics Data System (ADS)

    McBeath, A.; Drobnock, G. J.; Gheorghe, A. D.

    2010-04-01

    The Meteor Beliefs Project's seventh anniversary is celebrated with an eclectic mixture of meteor beliefs from the 1799 Leonids in Britain, the folkloric link between meteors and wishing in some Anglo-American sources, how a meteoric omen came to feature in Nathaniel Hawthorne's 1850 novel The Scarlet Letter, and a humorous item from the satirical magazine Punch in 1861, all helping to show how meteor beliefs can be transformed by different parts of society.

  18. Automated Optical Meteor Fluxes and Preliminary Results of Major Showers

    NASA Technical Reports Server (NTRS)

    Blaauw, R.; Campbell-Brown, M.; Cooke, W.; Kingery, A.; Weryk, R.; Gill, J.

    2014-01-01

    active shower or sporadic source radiant. The flux per height interval is calculated and summed to obtain the total meteor flux. Both single station and double station fluxes are currently found daily. Geminid fluxes on the peak night in 2012 (12-14-2012) were 0.058 meteors/km2/hr as found with double-station meteors and 0.057 meteors/ km2/hr as found with single-station meteors, to a limiting magnitude of +6.5. Both of those numbers are in agreement with the well-calibrated fluxes from the Canadian Meteor Orbit Radar. Along with flux algorithms and initial flux results, presented will be results from the first 18 months of operation, covering 3,000+ meteoroid orbits.

  19. Structure and sources of the sporadic meteor background from video observations

    NASA Astrophysics Data System (ADS)

    Jakšová, Ivana; Porubčan, Vladimír; Klačka, Jozef

    2015-10-01

    We investigate and discuss the structure of the sporadic meteor background population in the near-Earth space based on video meteor orbits from the SonotaCo database (SonotaCo 2009, WGN, 37, 55). The selection of the shower meteors was done by the Southworth-Hawkins streams-search criterion (Southworth & Hawkins 1963, Smithson. Contr. Astrophys., 7, 261). Of a total of 117786 orbits, 69.34% were assigned to sporadic background meteors. Our analysis revealed all the known sporadic sources, such as the dominant apex source which is splitting into the northern and southern branch. Part of a denser ring structure about the apex source connecting the antihelion and north toroidal sources is also evident. We showed that the annual activity of the apex source is similar to the annual variation in activity of the whole sporadic background. The antihelion source exhibits a very broad maximum from July until January and the north toroidal source shows three maxima similar to the radar observations by the Canadian Meteor Orbit Radar (CMOR). Potential parent bodies of the sporadic population were searched for by comparison of the distributions of the orbital elements of sporadic meteors, minor planets and comets.

  20. Theoretical and observational determinations of the ionization coefficient of meteors

    NASA Astrophysics Data System (ADS)

    Jones, William

    1997-07-01

    We examine the problem of the determination of the ionization coefficient beta from both the theoretical and observational points of view. In the past, theoretical evaluations of beta in terms of the relevant scattering cross-sections have used the Massey-Sida formula, which we show to give results which are plainly incorrect. We derive an integral equation for beta and compare the results of its application to copper and iron with laboratory simulations. Agreement for the variation of the ionization coefficient with velocity is good. The ionization coefficient has been determined observationally by Verniani & Hawkins from a comparison of radar and visual observations, employing the luminous efficiency tau also obtained observationally by Verniani. However, this determination of tau would appear to be invalidated by fragmentation. There is good evidence that the radiation of cometary meteors is dominated by that of iron in the visual range, and we have accordingly re-analysed the data of Verniani & Hawkins using the luminous efficiency of iron obtained in simulation experiments. However, it is not possible to choose an iron concentration which gives agreement between the determination of the ionization coefficient by this means and its determination from the theoretical equation in terms of either scattering coefficients or simulation methods. The observational ionization coefficients are much lower than predicted by the present theory and we provisionally explain this as a consequence of transfer of charge from the meteoric ion to a molecule of the air. It is now possible for the meteoric atom to be re-ionized, but it is also possible at sufficiently high initial line densities for significant dissociative recombination of the electrons and nitrogen or oxygen to take place. This recombination will not take place in meteor trains simulated in an ionization chamber. We thus conclude that the present theory is limited to faint radio meteors at lower velocities (v<~35

  1. First observational evidence for the connection between the meteoric activity and occurrence of equatorial counter electrojet

    NASA Astrophysics Data System (ADS)

    Vineeth, C.; Mridula, N.; Muralikrishna, P.; Kumar, K. K.; Pant, T. K.

    2016-09-01

    This paper presents the first direct observational evidence for the possible role of meteoric activity in the generation of the equatorial Counter Electrojets (CEJ), an enigmatic daytime electrodynamical process over the geomagnetic equatorial upper atmosphere. The investigation carried out using the data from Proton Precession Magnetometer and Meteor Wind Radar over a geomagnetic dip equatorial station, Trivandrum (8.5°N, 77°E, 0.5°N dip lat.) in India, revealed that the occurrence of the afternoon CEJ events during a month is directly proportional to the average monthly meteor counts over this location. The observation is found to be very consistent during the considered period of study, i.e the years 2006 and 2007. The study vindicates that the meteor showers play a major role in setting up the background condition conducive for the generation of CEJ by reducing the strength of the upward polarization field.

  2. Aircraft agility maneuvers

    NASA Technical Reports Server (NTRS)

    Cliff, Eugene M.; Thompson, Brian G.

    1992-01-01

    A new dynamic model for aircraft motions is presented. This model can be viewed as intermediate between a point-mass model, in which the body attitude angles are control-like, and a rigid-body model, in which the body-attitude angles evolve according to Newton's Laws. Specifically, consideration is given to the case of symmetric flight, and a model is constructed in which the body roll-rate and the body pitch-rate are the controls. In terms of this body-rate model a minimum-time heading change maneuver is formulated. When the bounds on the body-rates are large the results are similar to the point-mass model in that the model can very quickly change the applied forces and produce an acceleration to turn the vehicle. With finite bounds on these rates, the forces change in a smooth way. This leads to a measurable effect of agility.

  3. Agile manufacturing concept

    NASA Astrophysics Data System (ADS)

    Goldman, Steven L.

    1994-03-01

    The initial conceptualization of agile manufacturing was the result of a 1991 study -- chaired by Lehigh Professor Roger N. Nagel and California-based entrepreneur Rick Dove, President of Paradigm Shifts, International -- of what it would take for U.S. industry to regain global manufacturing competitiveness by the early twenty-first century. This industry-led study, reviewed by senior management at over 100 companies before its release, concluded that incremental improvement of the current system of manufacturing would not be enough to be competitive in today's global marketplace. Computer-based information and production technologies that were becoming available to industry opened up the possibility of an altogether new system of manufacturing, one that would be characterized by a distinctive integration of people and technologies; of management and labor; of customers, producers, suppliers, and society.

  4. Penn State Radar Systems: Implementation and Observations

    NASA Astrophysics Data System (ADS)

    Urbina, J. V.; Seal, R.; Sorbello, R.; Kuyeng, K.; Dyrud, L. P.

    2014-12-01

    Software Defined Radio/Radar (SDR) platforms have become increasingly popular as researchers, hobbyists, and military seek more efficient and cost-effective means for radar construction and operation. SDR platforms, by definition, utilize a software-based interface for configuration in contrast to traditional, hard-wired platforms. In an effort to provide new and improved radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future radars, with primary objectives of making such instruments more capable, portable, and more cost effective. This paper will describe the design and implementation of two low-cost radar systems and their deployment in ionospheric research at both low and mid-latitudes. One radar has been installed near Penn State campus, University Park, Pennsylvania (77.97°W, 40.70°N), to make continuous meteor observations and mid-latitude plasma irregularities. The second radar is being installed in Huancayo (12.05°S, -75.33°E), Peru, which is capable of detecting E and F region plasma irregularities as well as meteor reflections. In this paper, we examine and compare the diurnal and seasonal variability of specular, non- specular, and head-echoes collected with these two new radar systems and discuss sampling biases of each meteor observation technique. We report our current efforts to validate and calibrate these radar systems with other VHF radars such as Jicamarca and SOUSY. We also present the general characteristics of continuous measurements of E-region and F-region coherent echoes using these modern radar systems and compare them with coherent radar events observed at other geographic mid-latitude radar stations.

  5. Lunar and Planetary Science XXXV: Asteroids, Meteors, and Comets

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Asteroids, Meteors, and Comets" contained the following reports:Ejecta Generation and Redistribution on 433 Eros: Modeling Ejecta Launch Conditions; Macroscopic Voids in Small Asteroids: Effects of Cohesion; The Seismic Effect of Impacts on Asteroid Surface Morphology: Early Modeling Results; Photometric Studies of Eros from NEAR Data; Quantitative Aspects of Space Weathering: Implications for Regolith Breccia Meteorites and Asteroids; Diversity of Types of Hydrated Minerals on C-Class Asteroids; Mineralogical Variations Among High Albedo E-Type Asteroids: Implications for Asteroid Igneous Processes; Multi-Wavelength Observations of 2100 Ra-Shalom: Radar and Lightcurves; What are the P-type Asteroids Made Of?; Sodium Overabundance in Meteoroids from Meteor Spectroscopy; Migration Processes and Volatiles Inventory to the Inner Planets; Characterization of the Surface Properties of MUSES-C/Hayabusa Spacecraft Target; Asteroid 25143 Itokawa; and Sample Return Science by Hayabusa Near-Earth Asteroid Mission.

  6. Dynamical model for the toroidal sporadic meteors

    SciTech Connect

    Pokorný, Petr; Vokrouhlický, David; Nesvorný, David; Campbell-Brown, Margaret; Brown, Peter E-mail: vokrouhl@cesnet.cz E-mail: margaret.campbell@uwo.ca

    2014-07-01

    More than a decade of radar operations by the Canadian Meteor Orbit Radar have allowed both young and moderately old streams to be distinguished from the dispersed sporadic background component. The latter has been categorized according to broad radiant regions visible to Earth-based observers into three broad classes: the helion and anti-helion source, the north and south apex sources, and the north and south toroidal sources (and a related arc structure). The first two are populated mainly by dust released from Jupiter-family comets and new comets. Proper modeling of the toroidal sources has not to date been accomplished. Here, we develop a steady-state model for the toroidal source of the sporadic meteoroid complex, compare our model with the available radar measurements, and investigate a contribution of dust particles from our model to the whole population of sporadic meteoroids. We find that the long-term stable part of the toroidal particles is mainly fed by dust released by Halley type (long period) comets (HTCs). Our synthetic model reproduces most of the observed features of the toroidal particles, including the most troublesome low-eccentricity component, which is due to a combination of two effects: particles' ability to decouple from Jupiter and circularize by the Poynting-Robertson effect, and large collision probability for orbits similar to that of the Earth. Our calibrated model also allows us to estimate the total mass of the HTC-released dust in space and check the flux necessary to maintain the cloud in a steady state.

  7. Elements of an Art - Agile Coaching

    NASA Astrophysics Data System (ADS)

    Lundh, Erik

    This tutorial gives you a lead on becoming or redefining yourself as an Agile Coach. Introduction to elements and dimensions of state-of-the-art Agile Coaching. How to position the agile coach to be effective in a larger setting. Making the agile transition - from a single team to thousands of people. How to support multiple teams as a coach. How to build a coaches network in your company. Challenges when the agile coach is a consultant and the organization is large.

  8. The Telemetry Agile Manufacturing Effort

    SciTech Connect

    Brown, K.D.

    1995-01-01

    The Telemetry Agile Manufacturing Effort (TAME) is an agile enterprising demonstration sponsored by the US Department of Energy (DOE). The project experimented with new approaches to product realization and assessed their impacts on performance, cost, flow time, and agility. The purpose of the project was to design the electrical and mechanical features of an integrated telemetry processor, establish the manufacturing processes, and produce an initial production lot of two to six units. This paper outlines the major methodologies utilized by the TAME, describes the accomplishments that can be attributed to each methodology, and finally, examines the lessons learned and explores the opportunities for improvement associated with the overall effort. The areas for improvement are discussed relative to an ideal vision of the future for agile enterprises. By the end of the experiment, the TAME reduced production flow time by approximately 50% and life cycle cost by more than 30%. Product performance was improved compared with conventional DOE production approaches.

  9. A fast meteor detection algorithm

    NASA Astrophysics Data System (ADS)

    Gural, P.

    2016-01-01

    A low latency meteor detection algorithm for use with fast steering mirrors had been previously developed to track and telescopically follow meteors in real-time (Gural, 2007). It has been rewritten as a generic clustering and tracking software module for meteor detection that meets both the demanding throughput requirements of a Raspberry Pi while also maintaining a high probability of detection. The software interface is generalized to work with various forms of front-end video pre-processing approaches and provides a rich product set of parameterized line detection metrics. Discussion will include the Maximum Temporal Pixel (MTP) compression technique as a fast thresholding option for feeding the detection module, the detection algorithm trade for maximum processing throughput, details on the clustering and tracking methodology, processing products, performance metrics, and a general interface description.

  10. Human factors in agile manufacturing

    SciTech Connect

    Forsythe, C.

    1995-03-01

    As industries position themselves for the competitive markets of today, and the increasingly competitive global markets of the 21st century, agility, or the ability to rapidly develop and produce new products, represents a common trend. Agility manifests itself in many different forms, with the agile manufacturing paradigm proposed by the Iacocca Institute offering a generally accepted, long-term vision. In its many forms, common elements of agility or agile manufacturing include: changes in business, engineering and production practices, seamless information flow from design through production, integration of computer and information technologies into all facets of the product development and production process, application of communications technologies to enable collaborative work between geographically dispersed product development team members and introduction of flexible automation of production processes. Industry has rarely experienced as dramatic an infusion of new technologies or as extensive a change in culture and work practices. Human factors will not only play a vital role in accomplishing the technical and social objectives of agile manufacturing. but has an opportunity to participate in shaping the evolution of industry paradigms for the 21st century.

  11. Evaluation of momentum flux with radar

    NASA Astrophysics Data System (ADS)

    Riggin, Dennis M.; Tsuda, Toshitaka; Shinbori, Atsuki

    2016-05-01

    The statistics of gravity wave momentum flux estimation are investigated using data from the MU radar at Shigariki, Japan (136°E, 35°N). The radar has been operating during campaign periods since 1986. The first part of the paper focuses on a multi-day campaign during October 13-31, 1986. The second part of the paper investigates data after 2006 when the radar was operated in a meteor scatter mode. Momentum fluxes are derived from both the turbulent scatter and the meteor scatter measurements, but the techniques are quite different. Probability Distribution Functions are formed using turbulent scatter data. These show that wave packets sometimes have momentum flux magnitudes in excess of 100 m2 s-2. The technique for meteor radars, introduced by Hocking (2005), has been widely adopted by the radar community in recent years. The momentum flux estimated using this technique is found to be anti-correlated with the background tidal winds. A validation investigation is carried out for periods with a high meteor echo data rate. The conclusion was that the method can be used to calculate the sign of momentum flux, but does not accurately specify the magnitude.

  12. Non-linear meteor trails

    NASA Astrophysics Data System (ADS)

    Beech, Martin

    1988-08-01

    In this essay an attempt is made to not only review but reopen the debate on nonlinear meteor trails. On the basis of data culled from various, now historical, sources it is found that approximately one in every two hundred of the visual meteors is likely to show a nonlinear trail, and that of such trails about 60 percent will be continuously curved and 40 percent sinusoidal. It is suggested that two mechanisms may explain the various trail types: the continuously curved trails being a manifestation of the classical Magnus effect, and the sinusoidal trails resulting from torque-free precession.

  13. Wake in faint television meteors

    NASA Technical Reports Server (NTRS)

    Robertson, M. C.; Hawkes, Robert L.

    1992-01-01

    The two component dustball model was used in numerical lag computation. Detached grain lag is typically less than 2 km, with expected wakes of a few hundred meters. True wake in television meteors is masked by apparent wake due to the combined effects of image persistence and blooming. To partially circumvent this problem, we modified a dual MCP intensified CID video system by addition of a rotating shutter to reduce the effective exposure time to about 2.0 ms. Preliminary observations showed that only 2 of 27 analyzed meteors displayed statistically significant wake.

  14. Meteor Shower Identification and Characterization with Python

    NASA Technical Reports Server (NTRS)

    Moorhead, Althea

    2015-01-01

    The short development time associated with Python and the number of astronomical packages available have led to increased usage within NASA. The Meteoroid Environment Office in particular uses the Python language for a number of applications, including daily meteor shower activity reporting, searches for potential parent bodies of meteor showers, and short dynamical simulations. We present our development of a meteor shower identification code that identifies statistically significant groups of meteors on similar orbits. This code overcomes several challenging characteristics of meteor showers such as drastic differences in uncertainties between meteors and between the orbital elements of a single meteor, and the variation of shower characteristics such as duration with age or planetary perturbations. This code has been proven to successfully and quickly identify unusual meteor activity such as the 2014 kappa Cygnid outburst. We present our algorithm along with these successes and discuss our plans for further code development.

  15. The making of meteor astronomy: part V.

    NASA Astrophysics Data System (ADS)

    Beech, M.

    1993-12-01

    The first true comparisons between the observations and the "rising vapors" hypothesis of meteor origins were made in the early eighteenth century. One of the key figures in the new meteoric dialogue was Edmond Halley.

  16. Note on the 1972 Giacobinid meteor shower.

    NASA Technical Reports Server (NTRS)

    Harvey, G. A.

    1973-01-01

    It is shown that the 1972 Giacobinid meteor shower was extremely weak with a peak activity of two to three visual meteors per hour. Only two meteor spectra were obtained from the 17 slitless spectrograph systems operated by the Langley Research Center. The largely unexpected, essentially null results of the 1972 Giacobinid meteor shower observations are indicative of the present limited understanding and predictability of cosmic dust storms.

  17. The IAU Meteor Shower Nomenclature Rules

    NASA Astrophysics Data System (ADS)

    Jenniskens, Peter

    2008-06-01

    The International Astronomical Union at its 2006 General Assembly in Prague has adopted a set of rules for meteor shower nomenclature, a working list with designated names (with IAU numbers and three-letter codes), and established a Task Group for Meteor Shower Nomenclature in Commission 22 (Meteors and Interplanetary Dust) to help define which meteor showers exist from well defined groups of meteoroids from a single parent body.

  18. Agile automated vision

    NASA Astrophysics Data System (ADS)

    Fandrich, Juergen; Schmitt, Lorenz A.

    1994-11-01

    The microelectronic industry is a protagonist in driving automated vision to new paradigms. Today semiconductor manufacturers use vision systems quite frequently in their fabs in the front-end process. In fact, the process depends on reliable image processing systems. In the back-end process, where ICs are assembled and packaged, today vision systems are only partly used. But in the next years automated vision will become compulsory for the back-end process as well. Vision will be fully integrated into every IC package production machine to increase yields and reduce costs. Modem high-speed material processing requires dedicated and efficient concepts in image processing. But the integration of various equipment in a production plant leads to unifying handling of data flow and interfaces. Only agile vision systems can act with these contradictions: fast, reliable, adaptable, scalable and comprehensive. A powerful hardware platform is a unneglectable requirement for the use of advanced and reliable, but unfortunately computing intensive image processing algorithms. The massively parallel SIMD hardware product LANTERN/VME supplies a powerful platform for existing and new functionality. LANTERN/VME is used with a new optical sensor for IC package lead inspection. This is done in 3D, including horizontal and coplanarity inspection. The appropriate software is designed for lead inspection, alignment and control tasks in IC package production and handling equipment, like Trim&Form, Tape&Reel and Pick&Place machines.

  19. The new July meteor shower

    NASA Astrophysics Data System (ADS)

    Zoladek, Przemyslaw; Wisniewski, Mariusz

    2012-12-01

    A new meteor stream was found after an activity outburst observed on 2005 July 15. The radiant was located five degrees west of the possible early Perseid radiant, close to the star Zeta Cassiopeiae. Numerous bright meteors and fireballs were observed during this maximum. Analysis of the IMO Video Database and the SonotaCo orbital database revealed an annual stream which is active just before the appearance of the first Perseids, with a clearly visible maximum at solar longitude 113°1. Activity of the stream was estimated as two times higher than activity of the Alpha Capricornids at the same time. The activity period extends from July 12 to 17, during maximum the radiant is visible at coordinates alpha = 5°9, delta = +50°5, and observed meteors are fast, with Vg = 57.4 km/s. The shower was reported to the IAU Meteor Data Center and recognized as a new discovery. According to IAU nomenclature the new stream should be named the Zeta Cassiopeiids (ZCS). %z Arlt R. (1992). WGN, Journal of the IMO, 20:2, 62-69. Drummond J. D. (1981). Icarus, 45, 545-553. Kiraga M. and Olech A. (2001). In Arlt R., Triglav M., and Trayner C., editors, Proceedings of the International Meteor Conference, Pucioasa, Romania, 21-24 September 2000, pages 45-51. IMO. Molau S. (2007). In Bettonvil F. and Kac J., editors, Proceedings of the International Meteor Conference, Roden, The Netherlands, 14-17 September 2006, pages 38-55. IMO. Molau S. and Rendtel J. (2009). WGN, Journal of the IMO, 37:4, 98-121. Olech A., Zoladek P., Wisniewski M., Krasnowski M., Kwinta M., Fajfer T., Fietkiewicz K., Dorosz D., Kowalski L., Olejnik J., Mularczyk K., and Zloczewski K. (2006). In Bastiaens L., Verbert J., Wislez J.-M., and Verbeeck C., editors, Proceedings of the International Meteor Conference, Oostmalle, Belgium, 15-18 September 2005, pages 53-62. IMO. Poleski R. and Szaruga K. (2006). In Bastiaens L., Verbert J., Wislez J.-M., and Verbeeck C., editors, Proceedings of the International Meteor

  20. ESSAYS ON SCIENCE AND SOCIETY: Of Comets and Meteors.

    PubMed

    Whipple, F L

    2000-08-01

    Fred L. Whipple was born in Iowa in 1906. During his career as an astronomer, he discovered six comets and advanced the study of comets and meteors. He has encouraged amateur astronomers and advised many U.S. governmental and scientific agencies. He deduced that comets consist of ice and dust from observing that their orbits and timing change slightly through the gas vaporization from the ices. In this essay, he recounts highlights of his career, including developing radar-disrupting chaff and the promise of the global positioning system. PMID:17819566

  1. New trends in meteor radio receivers

    NASA Astrophysics Data System (ADS)

    Rault, Jean-Louis

    2014-01-01

    Recent progresses in low cost—but performing—SDR (software defined radio) technology presents a major breakthrough in the domain of meteor radio observations. Their performances are now good enough for meteor work and should therefore encourage newcomers to join the meteor radio community.

  2. Croatian Meteor Network: Ongoing work 2015 - 2016

    NASA Astrophysics Data System (ADS)

    Šegon, D.; Vida, D.; Korlević, K.; Andreić, Ž.

    2016-01-01

    Ongoing work of the Croatian Meteor Network (CMN) between the 2015 and 2016 International Meteor Conferences is presented. The current sky coverage is considered, software updates and updates of orbit catalogues are described. Furthermore, the work done on meteor shower searches, international collaborations as well as new fields of research are discussed. Finally, the educational efforts made by the CMN are described.

  3. Radiant measurement accuracy of micrometeors detected by the Arecibo 430 MHz Dual-Beam Radar

    NASA Astrophysics Data System (ADS)

    Janches, D.; Nolan, M. C.; Sulzer, M.

    2004-04-01

    Precise knowledge of the angle between the meteor vector velocity and the radar beam axis is one of the largest source of errors in the Arecibo Observatory (AO) micrometeor observations. In this paper we study ~250 high signal-to-noise ratio (SNR) meteor head-echoes obtained using the dual-beam 430 MHz AO Radar in Puerto Rico, in order to reveal the distribution of this angle. All of these meteors have been detected first by the radar first side lobe, then by the main beam and finally seen in the side lobe again. Using geometrical arguments to calculate the meteor velocity in the plane perpendicular to the beam axis, we find that most of the meteors are travelling within ~15° with respect to the beam axis, in excellent agreement with previous estimates. These results suggest that meteoroids entering the atmosphere at greater angles may deposit their meteoric material at higher altitudes explaining at some level the missing mass inconsistency raised by the comparisson of meteor fluxes derived from satellite and traditional meteor radar observations. They also may be the source of the observed high altitude ions and metalic layers observed by radars and lidars respectively.

  4. Meteor Crater, AZ

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Barringer Meteorite Crater (also known as 'Meteor Crater') is a gigantic hole in the middle of the arid sandstone of the Arizona desert. A rim of smashed and jumbled boulders, some of them the size of small houses, rises 50 m above the level of the surrounding plain. The crater itself is nearly a 1500 m wide, and 180 m deep. When Europeans first discovered the crater, the plain around it was covered with chunks of meteoritic iron - over 30 tons of it, scattered over an area 12 to 15 km in diameter. Scientists now believe that the crater was created approximately 50,000 years ago. The meteorite which made it was composed almost entirely of nickel-iron, suggesting that it may have originated in the interior of a small planet. It was 50 m across, weighed roughly 300,000 tons, and was traveling at a speed of 65,000 km per hour. This ASTER 3-D perspective view was created by draping an ASTER bands 3-2-1image over a digital elevation model from the US Geological Survey National Elevation Dataset.

    This image was acquired on May 17, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along

  5. Advanced SuperDARN meteor wind observations based on raw time series analysis technique

    NASA Astrophysics Data System (ADS)

    Tsutsumi, M.; Yukimatu, A. S.; Holdsworth, D. A.; Lester, M.

    2009-04-01

    The meteor observation technique based on SuperDARN raw time series analysis has been upgraded. This technique extracts meteor information as biproducts and does not degrade the quality of normal SuperDARN operations. In the upgrade the radar operating system (RADOPS) has been modified so that it can oversample every 15 km during the normal operations, which have a range resolution of 45 km. As an alternative method for better range determination a frequency domain interferometry (FDI) capability was also coded in RADOPS, where the operating radio frequency can be changed every pulse sequence. Test observations were conducted using the CUTLASS Iceland East and Finland radars, where oversampling and FDI operation (two frequencies separated by 3 kHz) were simultaneously carried out. Meteor ranges obtained in both ranging techniques agreed very well. The ranges were then combined with the interferometer data to estimate meteor echo reflection heights. Although there were still some ambiguities in the arrival angles of echoes because of the rather long antenna spacing of the interferometers, the heights and arrival angles of most of meteor echoes were more accurately determined than previously. Wind velocities were successfully estimated over the height range of 84 to 110 km. The FDI technique developed here can be further applied to the common SuperDARN operation, and study of fine horizontal structures of F region plasma irregularities is expected in the future.

  6. Meteor Beliefs Project: Meteors in the Maori astronomical traditions of New Zealand

    NASA Astrophysics Data System (ADS)

    Britton, Tui R.; Hamacher, Duane W.

    2014-02-01

    We review the literature for perceptions of meteors in the Maori culture of Aotearoa or New Zealand. We examine representations of meteors in religion, story, and ceremony. We find that meteors are sometimes personified as gods or children, or are seen as omens of death and destruction. The stories we found highlight the broad perception of meteors found throughout the Maori culture, and note that some early scholars conflated the terms comet and meteor.

  7. Tools for Supporting Distributed Agile Project Planning

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Maurer, Frank; Morgan, Robert; Oliveira, Josyleuda

    Agile project planning plays an important part in agile software development. In distributed settings, project planning is severely impacted by the lack of face-to-face communication and the inability to share paper index cards amongst all meeting participants. To address these issues, several distributed agile planning tools were developed. The tools vary in features, functions and running platforms. In this chapter, we first summarize the requirements for distributed agile planning. Then we give an overview on existing agile planning tools. We also evaluate existing tools based on tool requirements. Finally, we present some practical advices for both designers and users of distributed agile planning tools.

  8. What Does an Agile Coach Do?

    NASA Astrophysics Data System (ADS)

    Davies, Rachel; Pullicino, James

    The surge in Agile adoption has created a demand for project managers rather than direct their teams. A sign of this trend is the ever-increasing number of people getting certified as scrum masters and agile leaders. Training courses that introduce agile practices are easy to find. But making the transition to coach is not as simple as understanding what agile practices are. Your challenge as an Agile Coach is to support your team in learning how to wield their new Agile tools in creating great software.

  9. Meteors by radio: Getting started

    NASA Astrophysics Data System (ADS)

    Lonc, William

    1999-02-01

    A system for detecting meteors by radio is described which is simple and reliable, and thought to be suitable as a science fair project. There is a relatively detailed discussion of the various factors involved in such a project, along with some typical results to indicate the kind of data that is possible.

  10. SPA Meteor Section Results: 2008

    NASA Astrophysics Data System (ADS)

    McBeath, Alastair

    2013-10-01

    A report based on meteor data analyses from 2008 performed by the SPA Meteor Section is given with some discussion. Items detailed comprise: the Quadrantid peak on January 4 which may have had an unusual dip in activity partway through; the Perseid maximum, which seemed to produce two peaks, by far the strongest-recorded of which was around 02h UT on August 13; a meteor outburst on September 9 probably due to the September epsilon-Perseids, for which the radio results suggested activity was present at a stronger level for longer than previous visual and video findings had supposed, perhaps with more than one maximum; another stronger than expected return from the Orionids during October, part of the sequence of unusual events begun in 2006; a fresh Taurid ``swarm'' return in late October to early November, which probably produced somewhat higher activity than normal, if without the increased bright-meteor component observed at some previous returns; strong Leonid activity later in November, from the radio reports, possibly with two peaks; a Geminid maximum in December which showed some curious discrepancies between the limited visual and radio observations; and the Ursids, which may have provided another moderately-enhanced return, with up to four potential peaks recorded by radio observations in the first twelve hours UT of December 22.

  11. Chasing Meteors With a Microscope.

    ERIC Educational Resources Information Center

    Jones, Richard C.

    1993-01-01

    Describes types of meteors and micrometeorites that enter the Earth's atmosphere. Presents an activity where students collect micrometeorites with a strip of tape in an undisturbed outdoor area. After 24 hours, they examine the tape by sandwiching it between 2 glass slides and view through a microscope at 100X. (PR)

  12. DYNAMICAL MODEL FOR THE ZODIACAL CLOUD AND SPORADIC METEORS

    SciTech Connect

    Nesvorny, David; Vokrouhlicky, David; Pokorny, Petr; Bottke, William F.; Janches, Diego

    2011-12-20

    The solar system is dusty, and would become dustier over time as asteroids collide and comets disintegrate, except that small debris particles in interplanetary space do not last long. They can be ejected from the solar system by Jupiter, thermally destroyed near the Sun, or physically disrupted by collisions. Also, some are swept by the Earth (and other planets), producing meteors. Here we develop a dynamical model for the solar system meteoroids and use it to explain meteor radar observations. We find that the Jupiter Family Comets (JFCs) are the main source of the prominent concentrations of meteors arriving at the Earth from the helion and antihelion directions. To match the radiant and orbit distributions, as measured by the Canadian Meteor Orbit Radar (CMOR) and Advanced Meteor Orbit Radar (AMOR), our model implies that comets, and JFCs in particular, must frequently disintegrate when reaching orbits with low perihelion distance. Also, the collisional lifetimes of millimeter particles may be longer ({approx}> 10{sup 5} yr at 1 AU) than postulated in the standard collisional models ({approx}10{sup 4} yr at 1 AU), perhaps because these chondrule-sized meteoroids are stronger than thought before. Using observations of the Infrared Astronomical Satellite to calibrate the model, we find that the total cross section and mass of small meteoroids in the inner solar system are (1.7-3.5) Multiplication-Sign 10{sup 11} km{sup 2} and {approx}4 Multiplication-Sign 10{sup 19} g, respectively, in a good agreement with previous studies. The mass input required to keep the zodiacal cloud in a steady state is estimated to be {approx}10{sup 4}-10{sup 5} kg s{sup -1}. The input is up to {approx}10 times larger than found previously, mainly because particles released closer to the Sun have shorter collisional lifetimes and need to be supplied at a faster rate. The total mass accreted by the Earth in particles between diameters D = 5 {mu}m and 1 cm is found to be {approx}15

  13. New survey of meteor showers

    NASA Astrophysics Data System (ADS)

    Jenniskens, P.

    2014-07-01

    In order to confirm the many showers listed in the IAU Working List of Meteor Showers in need of verification, a 60-camera three-station video surveillance of the night sky is being conducted in the San Francisco Bay Area in California (http://cams.seti.org), called the Cameras for Allsky Meteor Surveillance (CAMS) project [1]. Now, the first 2.5 years of observations were reduced and analyzed, comprised of 112,024 meteoroid trajectories from mostly +4 to -2 magnitude meteors. The trajectories were calculated with a mean precision of 0.24° in radiant direction and 2 % in speed. An interactive tool was developed to study the distribution of meteoroid radiant and speed after correction for Earth's motion around the Sun. A report was submitted for publication in Icarus [2]. Our team assigned 30,801 meteors to 320 showers (27.5 %). This included 72 established showers and 64 known but now confirmed showers. An additional 24 previously reported showers were tentatively detected, but need further study. This study adds 105 potential new showers and 23 newly identified components of established showers to the IAU Working List of Meteor Showers. Another 32 showers previously reported based all or in part on CAMS data were detected again. The Northern and Southern Taurids, especially, are found to be composed of a series of individual streams. In this presentation, I will summarize statistical aspects of these shower detections and their relation to parent body near-Earth objects to shed light on the role of mostly dormant comets in contributing dust to the inner solar system.

  14. Meteors Without Borders: a global campaign

    NASA Astrophysics Data System (ADS)

    Heenatigala, T.

    2012-01-01

    "Meteors Without Borders" is a global project, organized by Astronomers Without Borders and launched during the Global Astronomy Month in 2010 for the Lyrid meteor shower. The project focused on encouraging amateur astronomy groups to hold public outreach events for major meteor showers, conduct meteor-related classroom activities, photography, poetry and art work. It also uses social-media platforms to connect groups around the world to share their observations and photography, live during the events. At the International Meteor Conference 2011, the progress of the project was presented along with an extended invitation for collaborations for further improvements of the project.

  15. Recent Advances in Video Meteor Photometry

    NASA Technical Reports Server (NTRS)

    Swift, Wesley R.; Suggs, Robert M.; Meachem, Terry; Cooke, William J.

    2003-01-01

    One of the most common (and obvious) problems with video meteor data involves the saturation of the output signal produced by bright meteors, resulting in the elimination of such meteors from photometric determinations. It is important to realize that a "bright" meteor recorded by intensified meteor camera is not what would be considered "bright" by a visual observer - indeed, many Generation II or III camera systems are saturated by meteors with a visual magnitude of 3, barely even noticeable to the untrained eye. As the relatively small fields of view (approx.30 ) of the camera systems captures at best modest numbers of meteors, even during storm peaks, the loss of meteors brighter than +3 renders the determination of shower population indices from video observations even more difficult. Considerable effort has been devoted by the authors to the study of the meteor camera systems employed during the Marshall Space Flight Center s Leonid ground-based campaigns, and a calibration scheme has been devised which can extend the useful dynamic range of such systems by approximately 4 magnitudes. The calibration setup involves only simple equipment, available to amateur and professional, and it is hoped that use of this technique will make for better meteor photometry, and move video meteor analysis beyond the realm of simple counts.

  16. Prediction of meteor shower associated with Comet 122P/de Vico

    NASA Astrophysics Data System (ADS)

    Tomko, Dusan; Neslusan, Lubos

    2013-01-01

    We model, for a far past, a theoretical stream associated with Comet 122P/de Vico and follow its dynamical evolution until present. Selecting the modeled particles approaching the Earth's orbit at the present, we predict the characteristics of a potential meteor shower and try to identify these particles with the meteors in three databases (photo, radar, and video). Our overall prediction is, however, negative because only the particles released from the comet nucleus before approximately 37 000 years ago are found to evolve into a collision course with the Earth and, therefore, form a possible shower. Meteoroids are known to survive a much shorter time in interplanetary space, unfortunately.

  17. Determination of the Meteor Limiting Magnitude

    NASA Technical Reports Server (NTRS)

    Kingery, A.; Blaauw, R.; Cooke, W. J.

    2016-01-01

    The limiting meteor magnitude of a meteor camera system will depend on the camera hardware and software, sky conditions, and the location of the meteor radiant. Some of these factors are constants for a given meteor camera system, but many change between meteor shower or sporadic source and on both long and short timescales. Since the limiting meteor magnitude ultimately gets used to calculate the limiting meteor mass for a given data set, it is important to have an understanding of these factors and to monitor how they change throughout the night, as a 0.5 magnitude uncertainty in limiting magnitude translates to a uncertainty in limiting mass by a factor of two.

  18. On the age and parent body of the daytime Arietids meteor shower

    NASA Astrophysics Data System (ADS)

    Abedin, A.; Wiegert, P.; Pokorny, P.; Brown, P.

    2016-01-01

    The daytime Arietid meteor shower is active from mid-May to late June and is among the strongest of the annual meteor showers, comparable in activity and duration to the Perseids and the Geminids. Due to the daytime nature of the shower, the Arietids have mostly been constrained by radar studies. The Arietids exhibit a long-debated discrepancy in the semi-major axis and the eccentricity of meteoroid orbits as measured by radar and optical surveys. Radar studies yield systematically lower values for the semi-major axis and eccentricity, where the origin of these discrepancies remain unclear. The proposed parent bodies of the stream include comet 96P/Machholz and more recently the Marsden's group of sun-skirting comets. In this work, we present detailed numerical modelling of the daytime Arietid meteoroid stream, with the goal to identifying the parent body and constraining the age of the stream. We use observational data from an extensive survey of the Arietids by the Canadian Meteor Orbit Radar (CMOR), in the period of 2002-2013, and several optical observations by the SonotaCo meteor network and the Cameras for All-sky Meteor Surveillance (CAMS). Our simulations suggest that the age and observed characteristics of the daytime Arietids are consistent with cometary activity from 96P, over the past 12000 years. The sunskirting comets that presumably formed in a major comet breakup between 100 - 950 AD (Chodas and Sekanina, 2005), alone, cannot explain the observed shower characteristics of the Arietids. Thus, the Marsden sunskirters cannot be the dominant parent, though our simulations suggest that they contribute to the core of the stream.

  19. Piloted simulator assessments of agility

    NASA Technical Reports Server (NTRS)

    Schneider, Edward T.

    1990-01-01

    NASA has utilized piloted simulators for nearly two decades to study high-angle-of-attack flying qualities, agility, and air-to-air combat. These studies have included assessments of an F-16XL aircraft equipped with thrust vectoring, an assessment of the F-18 HARV maneuvering requirements to assist in thrust vectoring control system design, and an agility assessment of the F-18. The F-18 agility assessment was compared with in-flight testing. Open-loop maneuvers such as 180-deg rolls to measure roll rate showed favorable simulator/in-flight comparison. Closed-loop maneuvers such as rolls to 90 deg with precision stops or certain maximum longitudinal pitching maneuvers showed poorer performance due to reduced aggressiveness of pilot inputs in flight to remain within flight envelope limits.

  20. Extraterrestrial meteors: a martian meteor and its parent comet.

    PubMed

    Selsis, Franck; Lemmon, Mark T; Vaubaillon, Jérémie; Bell, James F

    2005-06-01

    Regular meteor showers occur when a planet approaches the orbit of a periodic comet--for example, the Leonid shower is evident around 17 November every year as Earth skims past the dusty trail of comet Tempel-Tuttle. Such showers are expected to occur on Mars as well, and on 7 March last year, the panoramic camera of Spirit, the Mars Exploration Rover, revealed a curious streak across the martian sky. Here we show that the timing and orientation of this streak, and the shape of its light curve, are consistent with the existence of a regular meteor shower associated with the comet Wiseman-Skiff, which could be characterized as martian Cepheids. PMID:15931208

  1. The AGILE Data Center at ASDC

    NASA Astrophysics Data System (ADS)

    Pittori, Carlotta; AGILE Collaboration

    2013-01-01

    AGILE is a Scientific Mission of the Italian Space Agency (ASI) with INFN, INAF and CIFS participation, devoted to gamma-ray astrophysics. The satellite has been in orbit since April 23rd, 2007. Thanks to its sky monitoring capability and fast ground segment alert system, AGILE produced several important scientific results, among which was the unexpected discovery of strong and rapid gamma-ray flares from the Crab Nebula over daily timescales. This discovery won for the AGILE PI and the AGILE Team the Bruno Rossi Prize for 2012. The AGILE Data Center, located at ASDC, is in charge of all the scientific oriented activities related to the analysis and archiving of AGILE data. I will present the AGILE data center main activities, and I will give an overview of the AGILE scientific highlights after 5 years of operations.

  2. An analytical theory of a scattering of radio-waves on meteoric ionization. II. Solution of the integro-differential equation in case of backscatter

    NASA Astrophysics Data System (ADS)

    Pecina, P.

    2016-08-01

    The integro-differential equation for the polarization vector P inside the meteor trail, representing the analytical solution of the set of Maxwell equations, is solved for the case of backscattering of radio waves on meteoric ionization. The transversal and longitudinal dimensions of a typical meteor trail are small in comparison to the distances to both transmitter and receiver and so the phase factor appearing in the kernel of the integral equation is large and rapidly changing. This allows us to use the method of stationary phase to obtain an approximate solution of the integral equation for the scattered field and for the corresponding generalized radar equation. The final solution is obtained by expanding it into the complete set of Bessel functions, which results in solving a system of linear algebraic equations for the coefficients of the expansion. The time behaviour of the meteor echoes is then obtained using the generalized radar equation. Examples are given for values of the electron density spanning a range from underdense meteor echoes to overdense meteor echoes. We show that the time behaviour of overdense meteor echoes using this method is very different from the one obtained using purely numerical solutions of the Maxwell equations. Our results are in much better agreement with the observations performed e. g. by the Ondřejov radar.

  3. Various meteor scenes III: Recurrent showers and some minor showers

    NASA Astrophysics Data System (ADS)

    Koseki, Masahiro

    2015-02-01

    Meteor activities vary widely from year to year. We study here the June Bootids (JBO), τ-Herculids (TAH), and Andromedids (AND) which are basic examples for the recurrent nature of meteor showers. Half a century has passed since well-known photographic or radar meteor showers were detected. It is necessary to note that some `established' IAU showers are historical ones and we cannot always see them. We find the historical trace of AND by video and four distinct activities in the area of JBC (=JBO+TAH). Meteor showers look different by different observational techniques. Many minor showers in the IAU list have been detected only by observations stored for many days and many years; visual observations in a single night cannot perceive them naturally. We studied the φ-Piscids (PPS), χ-Taurids (CTA), γ-Ursae Minorids (GUM), η-Pegasids (ETP), and α-Sextantids (ASX) as examples and found they have not been recognized by visual observers at all. It is noteworthy that some of them have possible identifications in the IAU list and in preceding observations or reports. The difference in search methods makes the situations much more complicated. The five minor showers we studied here do not have confirmations by all observational techniques. Geobased search (radiant point, time of the observation, and possibly geocentric velocity) may overlook showers which are dispersed in radiant position. A search using the D-criterion is dependent on the presumption of a spherical distribution in the orbital space and may not represent the real distribution, or may overestimate the accuracy of the observations and lead to subdividing the showers into several parts. We must use these search methods properly.

  4. High temperature condensates among meteors

    NASA Technical Reports Server (NTRS)

    Wilkening, L. L.

    1975-01-01

    It is noted that two meteors which exhibited no lines of iron or sodium in their spectra have been tentatively attributed to aubrites in order to explain their lack of iron. It is shown, however, that no meteorites, including aubrites, have simultaneously low abundances of iron and sodium and that possible parent materials other than aubrites must be considered for the observed meteors. Other possible parent materials considered in this letter include melilite and diopside, two minerals containing both Ca and Mg but neither Fe nor Na. It is suggested that meteoroids rich in Ca and Mg but lacking Fe and Na might form a reservoir for the so-called 'lost' elements (Ca, Mg, Al, Ti, the lanthanides, and other refractory elements) which are depleted in ordinary and enstatite chondrites relative to cosmic abundances.

  5. Artificial meteor ablation studies: Olivine

    NASA Technical Reports Server (NTRS)

    Blanchard, M. B.; Cunningham, G. G.

    1973-01-01

    Artificial meteor ablation was performed on a Mg-rich olivine sample using an arc-heated plasma of ionized air. Experimental conditions simulated a meteor traveling about 12 km/sec at an altitude of 70 km. The mineral content of the original olivine sample was 98% olivine (including traces of olivine alteration products) and 2% chromite. Forsterite content of the original olivine was Fo-89. After ablation, the forsterite content had increased to Fo-94 in the recrystallized olivine. In addition, lamella-like intergrowths of magnetite were prevalent constituents. Wherever magnetite occurred, there was an increase in Mg and a corresponding decrease in Fe for the recrystallized olivine. The Allende fusion crust consisted of a recrystallized olivine, which was more Mg-rich and Fe-deficient than the original meteorite's olivine, and abundant magnetite grains. Although troilite and pentlandite were the common opaque mineral constituents in this meteorite, magnetite was the principal opaque mineral found in the fusion crust.

  6. Meteor observations under the INASAN supervision

    NASA Astrophysics Data System (ADS)

    Kartashova, A. P.; Bagrov, A. V.

    2012-09-01

    Meteor observations have the specific property: we do not know in advance neither area on the celestial sphere, not the time when the event occurs. Besides that, a meteor flash in the atmosphere has duration few seconds or less, and it is hard problem to gather enough photons from it to register a faint or fast meteor. There are a number of tasks in meteor astronomy for solution of which not only a simple registration of meteors in the optical range is required, but a high spatial and time resolution as well. Television method is the most acceptable for such a case and is widely used in the practice of meteor observations. Television meteor observations in Russia are carried out under the Institute of Astronomy of the Russian Academy of Sciences (INASAN) supervision in different regions of Russia: Moscow region, Irkutsk, Ryazan and North Caucasus. The TV system PatrolCa designed for observations in the wide field of view (the ordinary for most of meteor cameras), consists of the following components: the high resolution cameras Watec LCL-902HS, the wide-angle photograph objectives Canon 6/0.8 (F=6 mm, the aperture 1:0.8). The cameras have fields of view of 50°x40° and have a limiting magnitude (for meteors) of +4 m ÷ +5 m. The FAVOR (FAst Variability Optical Registrator) camera is used for observations of faint meteors at the North Caucasus [1]. The basic components of this camera are the following: the high-aperture lense objective with the aperture 150 mm and the focal length 180mm (the aperture 1:1.2), the image intensifier, the objective reversal, CCD receiver "Videoscan" VS-СTT285 2001. The CCD "Sony" ICX285 has format 1380 х 1024 pixels. The camera has a field of view of 18 ° х 20°, and has a limiting magnitude of above +10m (for meteors). The two cameras similar to FAVOR (named SMAC) were designed for double-station observations of faint meteors. The results of observations at these cameras are presented. The observations were held by both methods

  7. Meteor burst communications improvement study

    NASA Astrophysics Data System (ADS)

    Peterson, David

    1993-07-01

    Two identical Meteor Burst Radio Terminals were developed, fabricated, and delivered to the Air Force. Each is controlled by a PC computer in a menu driven manner. The mode of operation is full duplex. The RF frequency range is 40 to 60 MHz with tuning increments of 25 KHz. Data rates are 4, 8, 16, 32, 64, 128, 256, and 512 kbps. Modulation is coherent Binary Phase Shift Keying (BPSK) and incoherent Differential Phase Shift Keying (DPSK). Protocol includes Automatic Repeat Request (ARQ) with source and destination addressing, message number, start of message, and end of message. Messages are packetized, and Reed Solomon (R-S) coding is an option. The ARQ is under the control of a Cyclic Redundancy Check Code (CRCC) which detects binary errors within each packet. The terminal is intended to increase meteor trail availability and data throughput by several orders of magnitude--by operating with new antennas that provide much higher gains without sacrificing meteor trail acquisition performance.

  8. Collecting Comet Samples by ER-2 Aircraft: Cosmic Dust Collection During the Draconid Meteor Shower in October 2012

    NASA Technical Reports Server (NTRS)

    Bastien, Ron; Burkett, P. J.; Rodriquez, M.; Frank, D.; Gonzalez, C.; Robinson, G.-A.; Zolensky, M.; Brown, P.; Campbell-Brown, M.; Broce, S.; Kapitzke, M.; Moes, T.; Steel, D.; Williams, T.; Gearheart, D.

    2014-01-01

    Many tons of dust grains, including samples of asteroids and comets, fall from space into the Earth's atmosphere each day. NASA periodically collects some of these particles from the Earth's stratosphere using sticky collectors mounted on NASA's high-flying aircraft. Sometimes, especially when the Earth experiences a known meteor shower, a special opportunity is presented to associate cosmic dust particles with a known source. NASA JSC's Cosmic Dust Collection Program has made special attempts to collect dust from particular meteor showers and asteroid families when flights can be planned well in advance. However, it has rarely been possible to make collections on very short notice. In 2012, the Draconid meteor shower presented that opportunity. The Draconid meteor shower, originating from Comet 21P/Giacobini-Zinner, has produced both outbursts and storms several times during the last century, but the 2012 event was not predicted to be much of a show. Because of these predictions, the Cosmic Dust team had not targeted a stratospheric collection effort for the Draconids, despite the fact that they have one of the slowest atmospheric entry velocities (23 km/s) of any comet shower, and thus offer significant possibilities of successful dust capture. However, radar measurements obtained by the Canadian Meteor Orbit Radar during the 2012 Draconids shower indicated a meteor storm did occur October 8 with a peak at 16:38 (+/-5 min) UTC for a total duration of approximately 2 hours.

  9. US Air Force Space Weather Products Rapid Prototyping Efforts - Solar Radio Background/Burst Effects and Meteor Effects Products

    NASA Astrophysics Data System (ADS)

    Quigley, S.; Scro, K.

    2001-12-01

    The Space Vehicles Directorate of the Air Force Research Laboratory (AFRL/VSB) has joined efforts with the Technology Applications Division of the Space and Missile Systems Center (SMC Det 11/CIT) to rapidly transition space weather research into prototype, operational, system-impact products. These Rapid Prototyping Center (RPC) products are used to analyze, specify, and forecast the effects of the near-earth space environment on Department of Defense systems and communications. A summary of RPC activity is provided. Emphasis will be placed on current products under development, to include Solar Radio Background/Burst Effects (SoRBE) and Meteor Effects (ME) products. These will be added to real-time operations in the near future. SoRBE specifies the detrimental interference effects of background and event-level solar radio output on radar observations and satellite communications. ME will provide general meteor shower "nowcast" and forecast information, along with more specific meteor and meteor shower impact, radar clutter, and bolide (exploding meteor) effects. A brief overview of recently delivered products: Radar Auroral Clutter, Satellite Scintillation, HF Illumination, and GPS Single-Frequency Error Maps will also be provided.

  10. A First-Principle Kinetic Theory of Meteor Plasma Formation

    NASA Astrophysics Data System (ADS)

    Dimant, Yakov; Oppenheim, Meers

    2015-11-01

    Every second millions of tiny meteoroids hit the Earth from space, vast majority too small to observe visually. However, radars detect the plasma they generate and use the collected data to characterize the incoming meteoroids and the atmosphere in which they disintegrate. This diagnostics requires a detailed quantitative understanding of formation of the meteor plasma. Fast-descending meteoroids become detectable to radars after they heat due to collisions with atmospheric molecules sufficiently and start ablating. The ablated material then collides into atmospheric molecules and forms plasma around the meteoroid. Reflection of radar pulses from this plasma produces a localized signal called a head echo. Using first principles, we have developed a consistent collisional kinetic theory of the near-meteoroid plasma. This theory shows that the meteoroid plasma develops over a length-scale close to the ion mean free path with a non-Maxwellian velocity distribution. The spatial distribution of the plasma density shows significant deviations from a Gaussian law usually employed in head-echo modeling. This analytical model will serve as a basis for more accurate quantitative interpretation of the head echo radar measurements. Work supported by NSF Grant 1244842.

  11. Radiant measurement accuracy of micrometeors detected by the Arecibo 430 MHz dual-beam radar

    NASA Astrophysics Data System (ADS)

    Janches, D.; Nolan, M. C.; Sulzer, M.

    2004-01-01

    Precise knowledge of the angle between the meteor vector velocity and the radar beam axis is one of the largest source of errors in the Arecibo Observatory (AO) micrometeor observations. In this paper we study ~250 high signal-to-noise ratio (SNR) meteor head-echoes obtained using the dual-beam 430 MHz AO Radar in Puerto Rico, in order to reveal the distribution of this angle. All of these meteors have been detected first by the radar first side lobe, then by the main beam and finally seen in the side lobe again. Using geometrical arguments to calculate the meteor velocity in the plane perpendicular to the beam axis, we find that most of the meteors are travelling within ~15° with respect to the beam axis, in excellent agreement with previous estimates. These results suggest that meteoroids entering the atmosphere at greater angles may deposit their meteoric material at higher altitudes explaining at some level the missing mass inconsistency raised by the comparisson of meteor fluxes derived from satellite and radar observations. They also may be the source of the observed high altitude ions and metallic layers observed by radars and lidars respectively.

  12. The Upsilon Pegasid Meteor Shower

    NASA Astrophysics Data System (ADS)

    Povenmire, H.

    1995-09-01

    On the morning of August 8, 1975, meteors were observed from a previously unrecognized radiant in Pegasus. The rates were approximately seven per hour [1]. The radiant was alpha = 350 degrees, delta = +19 degrees (2000.0). These meteors are characterized as swift, yellow-white and without significant ionization trains [1]. The average magnitude of several hundred meteors from this shower is approximately +3.50, slightly fainter than the Perseids which occur at the same time. A broad maximum seems to occur about August 8. The three active fireball networks (Prairie, MORP and European) were contacted in a search for previously recorded fireballs with negative results. Ceplecha [2] of the European Network computed the orbital elements using the FIRBAL program. On August 19, 1982 at 02:09:57 UT, a magnitude -14.76 f1reball occurred over the White Carpathian Mountains of Austria and Czechoslovakia. It was photographed by five cameras of the European Network. Reduction of this Upsilon Pegasid fireball (EN 190882A) showed it to be a type IIIb fireball [2] - that is, an extremely low density, cometary, snow-like material with a specific gravity of approximately 0.27 g/cm^3. This material ablates at high altitude and cannot produce sonic phenomena or meteorites. It is similar to the material in the Draconid meteor shower. The orbital elements derived from EN 190882A are given in Table I. Table I: Orbital elements for the Upsilon Pegasid stream from EN 190882A. omega = 305.9009 degrees Omega = 145.3431 degrees i = 85.0817 degrees q = 0.2022 e = 1.0 velocity = 51.8608 km/s Using these refined elements, Kronk [3] computed the radiant drift. The radiant drifts from the SSW to NNE at a relatively steep angle and at an average rate of 20 arc-min per day. An intensive literature search [3] revealed four double station Upsilon Pegasids which had previously been listed as sporadics. Institutions providing these data were Yale [4], Stalinabad [5], Tadjikistan [6] and Harvard [7

  13. Big data era in meteor science

    NASA Astrophysics Data System (ADS)

    Vinković, D.; Gritsevich, M.; Srećković, V.; Pečnik, B.; Szabó, G.; Debattista, V.; Škoda, P.; Mahabal, A.; Peltoniemi, J.; Mönkölä, S.; Mickaelian, A.; Turunen, E.; Kákona, J.; Koskinen, J.; Grokhovsky, V.

    2016-01-01

    Over the last couple of decades technological advancements in observational techniques in meteor science have yielded drastic improvements in the quality, quantity and diversity of meteor data, while even more ambitious instruments are about to become operational. This empowers meteor science to boost its experimental and theoretical horizons and seek more advanced science goals. We review some of the developments that push meteor science into the big data era that requires more complex methodological approaches through interdisciplinary collaborations with other branches of physics and computer science. We argue that meteor science should become an integral part of large surveys in astronomy, aeronomy and space physics, and tackle the complexity of micro-physics of meteor plasma and its interaction with the atmosphere.

  14. Meteorological Radar Facility for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Eckerman, J.

    1975-01-01

    A proposed meteorological radar facility for Space Shuttle missions is described as a device suitable for providing vertical profiles of the precipitation distribution in the atmosphere above land masses and over ocean, thus ensuring three-dimensional mapping of the hydrometeor-precipitation distribution in the atmosphere. Some performance characteristics essential to orbiting meteorological radar systems and typical parameters are discussed, including large swath width, narrow beamwidth, frequency agility, and antenna configuration and orientation. Also discussed are the capabilities of the device as a test bed sensor with multiple mode capability, being able to operate in real aperture/pulse radar, real aperture/pulse Doppler and synthetic azimuth processing modes.

  15. Bi-telescopic, deep, simultaneous meteor observations

    NASA Technical Reports Server (NTRS)

    Taff, L. G.

    1986-01-01

    A statistical summary is presented of 10 hours of observing sporadic meteors and two meteor showers using the Experimental Test System of the Lincoln Laboratory. The observatory is briefly described along with the real-time and post-processing hardware, the analysis, and the data reduction. The principal observational results are given for the sporadic meteor zenithal hourly rates. The unique properties of the observatory include twin telescopes to allow the discrimination of meteors by parallax, deep limiting magnitude, good time resolution, and sophisticated real-time and post-observing video processing.

  16. Radar observations of field-aligned plasma irregularities in the SEEK-2 campaign

    NASA Astrophysics Data System (ADS)

    Saito, S.; Yamamoto, M.; Fukao, S.; Marumoto, M.; Tsunoda, R. T.

    2005-10-01

    During the Sporadic E Experiment over Kyushu 2 (SEEK-2) campaign, field-aligned irregularities (FAIs) associated with midlatitude sporadic-E (Es) layers were observed with two backscatter radars, the Lower Thermosphere Profiler Radar (LTPR) and the Frequency Agile Radar (FAR), which were located 40 km apart in Tanegashima, Japan. We conducted observations of FAI echoes from 31 July to 24 August 2002, and the radar data were used to determine launch timing of two sounding rockets on 3 August 2002. Our comparison of echoes obtained by the LTPR and the FAR revealed that echoes often appeared at the FAR about 10min earlier than they did at the LTPR and were well correlated. This indicates that echoing regions drift with a southward velocity component that maintains the spatial shape. Interferometry observations that were conducted with the LTPR from 3 to 8 August 2002, revealed that the quasi-periodic (QP) striations in the Range-Time-Intensity (RTI) plots were due to the apparent motion of echoing regions across the radar beam including both main and side lobes. In most cases, the echo moved to the east-southeast at an almost constant altitude of 100 110 km, which was along the locus of perpendicularity of the radar line-of-sight to the geomagnetic field line. We found that the QP pattern on the RTI plot reflects the horizontal structure and motion of the (Es layer, and that echoing regions seemed to be in one-dimensionally elongated shapes or in chains of patches. Neutral wind velocities from 75 to 105 km altitude were simultaneously derived with meteor echoes from the LTPR. This is the first time-continuous simultaneous observation FAIs and neutral wind with interferometry measurements. Assuming that the echoing regions were drifting with an ambient neutral wind, we found that the echoing region was aligned east-northeast-west-southwest in eight out of ten QP echo events during the SEEK-2 campaign. A range rate was negative (positive), when a frontal structure of

  17. Generation of a severe convective ionospheric storm under stable Rayleigh-Taylor conditions: triggering by meteors?

    NASA Astrophysics Data System (ADS)

    Kelley, M. C.; Ilma, R. R.

    2016-02-01

    Here we report on four events detected using the Jicamarca Radio Observatory (JRO) over an 18-year period, in which huge convective ionospheric storms (CISs) occur in a stable ionosphere. We argue that these rare events could be initiated by meteor-induced electric fields. The meteor-induced electric fields map to the bottomside of the F region, causing radar echoes and a localized CIS. If and when a localized disturbance reaches 500 km, we argue that it becomes two-dimensionally turbulent and cascades structure to both large and small scales. This leads to long-lasting structure and, almost certainly, to scintillations over a huge range of latitudes some ±15° wide and to 3 m irregularities, which backscatter the VHF radar waves. These structures located at high altitudes are supported by vortices shed by the upwelling bubble in a vortex street.

  18. Results of observations of the Eta Aquarid and Orionid meteor showers in 1980-1984

    NASA Technical Reports Server (NTRS)

    Hajduk, A.

    1987-01-01

    The main characteristics of meteor showers associated with Comet Halley were derived from the most recent radar observations carried out at the Ondrejov Astronomical Observatory during the periods of May 1 to 10 and October 15 to 30. The activity variations, the positions of activity maxima, the size distribution of particles, the particle flux variation within the stream and other characteristics were determined and compared with other results.

  19. Scattering characteristics of high-resolution meteor head echoes detected at multiple frequencies

    NASA Astrophysics Data System (ADS)

    Close, S.; Oppenheim, M.; Hunt, S.; Dyrud, L.

    2002-10-01

    Meteor data collected at the Kwajalein Missile Range (KMR) during the peak of the 1998 Leonid storm comprise the only simultaneous observations of meteor head echoes and trails using seven frequencies (very high frequency (VHF), ultrahigh frequency (UHF), L-, S-, C-, Ka-, and W-band spanning 160 MHz to 95 GHz). The primary sensor was the ARPA Long-Range Tracking and Instrumentation Radar (ALTAIR) radar operating at 160 MHz with 30 m range resolution and 422 MHz with 7.5 m range resolution, including both interferometric and polarization capabilities. This paper presents an analysis of this high-resolution data set with the following results: First, these observations support the theory that head echo scattering arises from an ionized region with a density sufficiently high that its plasma frequency exceeds the radar frequency (overdense reflection). Second, radar cross section (RCS) decreases rapidly with decreasing wavelength because higher frequencies must penetrate further into the increasing density of the plasma surrounding the meteoroid to reach its reflection point. Third, head echo angle measurements indicate that most of the observed meteors are sporadics not originating from the Leonid radiant. Fourth, polarization ratios showed that head echo reflections result from plasmas with a circular cross section. Fifth, the highest RCS values are detected near 105 km altitude, where the meteoroid gives up the most kinetic energy during its decent. This paper presents the first analyses of a three-frequency head echo as well as the polarization ratios and RCS characteristics from numerous two-frequency head echoes, which will allow us to develop a better understanding of meteor physics.

  20. On connection between evolution of troposphere fronts and changes of circulation regime in meteor zone

    NASA Technical Reports Server (NTRS)

    Karimov, K. A.

    1987-01-01

    The interactions between the thermobaric fields at heights from 5 to 95 km at the beginning of a winter period are considered, based on experimental radar measurements of meteor drifts obtained in Frunze in November to December 1983. During this period the high atmosphere readily responds to even slight changes in the thermal regime of the stratosphere. The interdiurnal variations of average daily values of wind u, v, U, and azimuth phi are shown.

  1. Meteor spectra in the EDMOND database

    NASA Astrophysics Data System (ADS)

    Koukal, J.; Gorková, S.; Srba, J.; Ferus, M.; Civiš, S.; di Pietro, C. A.

    2015-01-01

    We present a selection of five interesting meteor spectra obtained in the years 2014 and 2015 via CCTV video systems with a holographic grating, working in CEMENT and BRAMON meteor observation networks. Based on the EDMOND multi stations video meteor trajectory data an orbital classification of these meteors was performed. Selected meteors are members of the LYR, SPE, DSA and LVI meteor streams, one meteor is classified as sporadic background (SPO). In calibrated spectra the main chemical components were identified. Meteors are chemically classified based on relative intensities of the main spectral lines (or multiplets): Mg I (2), Na I (1), and Fe I (15). Bolide EN091214 is linked with the 23rd meteorite with known orbit (informally known as "Žďár"), two fragments of the parent body were found in the Czech Republic so far (August, 2015). For this particular event a time resolved spectral observation and comparison with laboratory spectra of LL3.2 chondritic meteorite are presented.

  2. The Makings of Meteor Astronomy: Part XIII

    NASA Astrophysics Data System (ADS)

    Beech, M.

    1996-10-01

    In 1848, Sir John Lubbock advanced the hypothesis that meteors shine by reflected sunlight. He developed a set of equations describing the geometry of meteor encounters, and for a decade or so, his idea was at least marginally supported by other observers.

  3. Croatian Meteor Network: ongoing work 2014 - 2015

    NASA Astrophysics Data System (ADS)

    Šegon, D.; Andreić, Ž.; Korlević, K.; Vida, D.

    2015-01-01

    Ongoing work mainly between 2014-2015 International Meteor Conferences (IMC) has been presented. Current sky coverage, software updates, orbit catalogues updates, shower search updates, international collaboration as well as new fields of research and educational efforts made by the Croatian Meteor Network are described.

  4. Meteor Terminology poster translated into different languages

    NASA Astrophysics Data System (ADS)

    Perlerin, Vincent; Hankey, Mike

    2014-02-01

    The American Meteor Society (AMS) has created an educational poster that defines the major terms of the meteor terminology. This poster is an educational tool made available for free on the AMS website. We offer this poster to be translated and shared among the IMO members.

  5. An Investigation of Agility Issues in Scrum Teams Using Agility Indicators

    NASA Astrophysics Data System (ADS)

    Pikkarainen, Minna; Wang, Xiaofeng

    Agile software development methods have emerged and become increasingly popular in recent years; yet the issues encountered by software development teams that strive to achieve agility using agile methods are yet to be explored systematically. Built upon a previous study that has established a set of indicators of agility, this study investigates what issues are manifested in software development teams using agile methods. It is focussed on Scrum teams particularly. In other words, the goal of the chapter is to evaluate Scrum teams using agility indicators and therefore to further validate previously presented agility indicators within the additional cases. A multiple case study research method is employed. The findings of the study reveal that the teams using Scrum do not necessarily achieve agility in terms of team autonomy, sharing, stability and embraced uncertainty. The possible reasons include previous organizational plan-driven culture, resistance towards the Scrum roles and changing resources.

  6. Activity of the Lyrid meteor stream

    NASA Technical Reports Server (NTRS)

    Lindblad, Bertil A.; Porubcan, V.

    1992-01-01

    The activity of the Lyrid meteor stream is in most years fairly low with a visual rate at maximum (21-22 April) of 5-10 meteors per hour. Short bursts of very high Lyrid activity, with visual hourly rates of 100 or more, have sometimes been reported. These observations generally refer to faint visual meteors. The reported bursts of high activity have occurred in a very narrow interval of solar longitudes (deg 31.24 to 31.38 equinox 1950.0), while the recurrent or 'normal' maximum for bright meteors occurs at solar longitude deg 31.6, or slightly later. A mass separation of the meteors in the shower is thus indicated.

  7. On Short-Perihelion Meteor Streams

    NASA Astrophysics Data System (ADS)

    Terentjeva, Alexandra; Bakanas, Elena; Barabanov, Sergey

    2013-02-01

    Research was conducted concerning the relation of short-perihelion meteor streams with comets and asteroids. But the origin of meteor streams with small perihelion distance (of the Arietid and Geminid types) has always represented a special problem for obvious reasons. Over four hundred meteor and fireball streams (by optical and TV-observations) contained 20 streams of perihelion distance q ≤ 0.26 AU. The research shows that 8 of 20 streams displayed a relation with small bodies. No relation was found either with comets or asteroids for the remaining 12 streams. Short-period streams may be formed on quasiparabolic comet orbits with small q in the perihelion area as well. In particular, SOHO comets may be a rich source both of small and large meteor bodies, forming short-perihelion meteor streams among others.

  8. Meteoric activities during the 11th century

    NASA Astrophysics Data System (ADS)

    Ahn, Sang-Hyeon

    2005-04-01

    We have analysed the meteor records in the chronicles that describe the era of the Song dynasty (AD 960-1279). The data are complementary to the record-vacant 10th century of the Koryo dynasty (AD 918-1392). The annual activity of sporadic meteors analysed shows a generic sinusoidal behaviour as in modern observations. In addition, we have also found that there are two prominent meteor showers, one in August and the other in November, appearing on the fluctuating sporadic meteors. The date of occurrence of the August shower indicates it to be the Perseids. By comparing the date of occurrence of the November shower with those of the Leonid showers of the Koryo dynasty, recent visual observations and the world-wide historical meteor storms, we conclude that the November shower is the Leonids. The regression rate of the Leonids is obtained to be days per century, which agrees with recent observations.

  9. The AGILE gamma-ray astronomy mission

    NASA Astrophysics Data System (ADS)

    Mereghetti, S.; Tavani, M.; Argan, A.; Barbiellini, G.; Caraveo, P.; Chen, A.; Cocco, V.; Costa, E.; Di Cocco, G.; Feroci, M.; Labanti, C.; Lapshov, I.; Lipari, P.; Longo, F.; Morselli, A.; Perotti, F.; Picozza, P.; Pittori, C.; Prest, M.; Rubini, A.; Soffitta, P.; Vallazza, E.; Vercellone, S.; Zanello, D.

    2001-09-01

    We describe the AGILE satellite: a unique tool for high-energy astrophysics in the 30 MeV - 50 GeV range before GLAST. The scientific performances of AGILE are comparable to those of EGRET, despite the much smaller weight and dimensions. The AGILE mission will be optimized for the imaging capabilities above 30 MeV and for the study of transient phenomena, complemented by simultaneous monitoring in the hard X-ray band (10 - 40 keV).

  10. Sporadic E-Layers and Meteor Activity

    NASA Astrophysics Data System (ADS)

    Alimov, Obid

    2016-07-01

    In average width it is difficult to explain variety of particularities of the behavior sporadic layer Es ionospheres without attraction long-lived metallic ion of the meteoric origin. Mass spectrometric measurements of ion composition using rockets indicate the presence of metal ions Fe+, Mg+, Si+, Na+, Ca+, K+, Al+ and others in the E-region of the ionosphere. The most common are the ions Fe+, Mg+, Si+, which are primarily concentrated in the narrow sporadic layers of the ionosphere at altitudes of 90-130 km. The entry of meteoric matter into the Earth's atmosphere is a source of meteor atoms (M) and ions (M +) that later, together with wind shear, produce midlatitude sporadic Es layer of the ionosphere. To establish the link between sporadic Es layer and meteoroid streams, we proceeded from the dependence of the ionization coefficient of meteors b on the velocity of meteor particles in different meteoroid streams. We investigated the dependence of the critical frequency f0Es of sporadic E on the particle velocity V of meteor streams and associations. It was established that the average values of f0Es are directly proportional to the velocity V of meteor streams and associations, with the correlation coefficient of 0.53 < R < 0.74. Thus, the critical frequency of the sporadic layer Es increases with the increase of particle velocity V in meteor streams, which indicates the direct influence of meteor particles on ionization of the lower ionosphere and formation of long-lived metal atoms M and ions M+ of meteoric origin.

  11. Assessment of proposed fighter agility metrics

    NASA Technical Reports Server (NTRS)

    Liefer, Randall K.; Valasek, John; Eggold, David P.; Downing, David R.

    1990-01-01

    This paper presents the results of an analysis of proposed metrics to assess fighter aircraft agility. A novel framework for classifying these metrics is developed and applied. A set of transient metrics intended to quantify the axial and pitch agility of fighter aircraft is evaluated with a high fidelity, nonlinear F-18 simulation. Test techniques and data reduction method are proposed, and sensitivities to pilot introduced errors during flight testing is investigated. Results indicate that the power onset and power loss parameters are promising candidates for quantifying axial agility, while maximum pitch up and pitch down rates are for quantifying pitch agility.

  12. Auroral effects on meteoric metals in the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Heinselman, Craig James

    1999-12-01

    Meteors deposit many tons of material into Earth's upper atmosphere each day. The physics and chemistry of meteoric metals in the atmosphere have long been active topics of study, but sophisticated models have emerged just recently of the gas-phase chemical reactions that affect the evolution of the state of these metals. At high latitudes, this portion of the upper atmosphere is also shared by the aurora borealis, or northern lights, which dramatically alter the properties of the background plasma. This thesis concerns coupled chemical models and one- dimensional dynamical models that were developed to investigate the effects of auroral ionization on the time evolution of meteoric iron and sodium elements and compounds in the upper atmosphere. These models are used to show that aurorae can result in rapid ionization of recently deposited iron and sodium, with time constants on the order of 15 minutes. The models are also used to investigate the influence of aurorae on the background iron and sodium layers. Because of the nominal altitude of the neutral iron layer, aurorae will not normally have a measurable impact on that constituent. For sodium, on the other hand, the impact is more significant but highly dependent on the chemical makeup of the aurorally produced ions. For either case, sporadic neutral atom layers at auroral altitudes are significantly affected. A case study of radar and lidar measurements from the Sondrestrom Facility in Greenland is used to test the sodium model. Results are presented which are consistent with the model predictions of the effects of the aurorally enhanced ionization. For this specific case, evidence is also presented to support a gas-phase chemical mechanism for the formation of a thin the formation of a thin sporadic sodium layer.

  13. Modeling the Global micrometeor influx into the Mesosphere/Lower Thermosphere using radar measurements

    NASA Astrophysics Data System (ADS)

    Janches, D.; Heinselman, C.; Chandran, A.; Chau, J. L.

    We discuss initial results from an effort to model the annual and global micrometeor influx into the Mesosphere Lower Thermosphere MLT atmospheric region based on very precise meteor head-echo radar observations The principal goal of this effort is to construct a new and more precise sporadic meteoric input function needed for the subsequent modeling of the atmospheric chemistry of the meteoric material and the origin and formation of metal layers in the MLT Modeling this function requires precise knowledge of the meteor directionality velocity distributions mass flux and diurnal and or annual variability of the sporadic micrometeoroid environment The model is constructed based on meteor radar observations obtained with the 430 MHz dual-beam Arecibo AO radar in Puerto Rico and the 50 MHz Jicamarca JRO radar in Peru We also compare the modeled fluxes with observations from the 1 29 GHz Sondrestrom radar in Greenland thus utilizing almost the entire NSF ISR chain The model uses Monte Carlo simulation techniques and at present assumes that most of the detected particles originate from three radiant distributions The most dominant meteor source has a radiant distribution concentrated around the Earth s apex The other two sources are centered 80 degrees in ecliptic longitude to each side of the Apex and are commonly known as Helion and Anti-Helion Each source is introduced with its characteristic particle geocentric velocity distribution To reproduce the measurements the Apex source flux was set to three times as many particles as the

  14. SPA Meteor Section Results: 2007

    NASA Astrophysics Data System (ADS)

    McBeath, Alastair

    2013-08-01

    Information extracted from analyses carried out by the SPA Meteor Section from 2007 is presented and discussed. Events covered include: the radio Quadrantid maximum on January 4; a bright fireball seen from parts of England and imaged from the Netherlands at 19h56m UT on February 6, for which an approximate trajectory was established; radio results from the Lyrids in late April; the Perseid near-peak activity from August and a note on some daylight Perseid observing from Britain using thermal imagers; the radio α-Aurigid maximum on September 1; the Orionid return, which again provided enhanced activity over several consecutive dates in October for visual and radio observers; the radio Leonids, although the probably main peak found visually on November 19 was not recorded thus due to its timing; the typically protracted Geminid maximum period around December 13-15 as observed visually and by radio; and the Ursid outburst, primarily as detected by radio on December 22.

  15. Multiply-agile encryption in high speed communication networks

    SciTech Connect

    Pierson, L.G.; Witzke, E.L.

    1997-05-01

    Different applications have different security requirements for data privacy, data integrity, and authentication. Encryption is one technique that addresses these requirements. Encryption hardware, designed for use in high-speed communications networks, can satisfy a wide variety of security requirements if that hardware is key-agile, robustness-agile and algorithm-agile. Hence, multiply-agile encryption provides enhanced solutions to the secrecy, interoperability and quality of service issues in high-speed networks. This paper defines these three types of agile encryption. Next, implementation issues are discussed. While single-algorithm, key-agile encryptors exist, robustness-agile and algorithm-agile encryptors are still research topics.

  16. Radio Meteors Observations Techniques at RI NAO

    NASA Astrophysics Data System (ADS)

    Vovk, Vasyl; Kaliuzhnyi, Mykola

    2016-07-01

    The Solar system is inhabited with large number of celestial bodies. Some of them are well studied, such as planets and vast majority of big asteroids and comets. There is one group of objects which has received little attention. That is meteoroids with related to them meteors. Nowadays enough low-technology high-efficiency radio-technical solutions are appeared which allow to observe meteors daily. At RI NAO three methodologies for meteor observation are developed: single-station method using FM-receiver, correlation method using FM-receiver and Internet resources, and single-station method using low-cost SDR-receiver.

  17. The 2014 May Camelopardalid Meteor Shower

    NASA Technical Reports Server (NTRS)

    Cooke, Bill; Moser, Danielle

    2014-01-01

    On May 24, 2014 Earth will encounter multiple streams of debris laid down by Comet 209P LINEAR. This will likely produce a new meteor shower, never before seen. Rates predicted to be from 100 to 1000 meteors per hour between 2 and 4 AM EDT, so we are dealing with a meteor outburst, potentially a storm. Peak rate of 200 per hour best current estimate. Difficult to calibrate models due to lack of past observations. Models indicate mm size particles in stream, so potential risk to Earth orbiting spacecraft.

  18. The First Confirmed Videorecordings of Lunar Meteor Impacts

    NASA Technical Reports Server (NTRS)

    Dunham, D. W.; Cudnik, B.; Palmer, D. M.; Sada, P. V.; Melosh, J.; Beech, M.; Pellerin, L.; Asher, D.; Frankenberger R.; Venable R.

    2000-01-01

    North American observers recorded at least six meteors striking the Moon's surface during the Leonid meteor shower on 1999 Nov. 18. Each meteor produced a flash that was recorded from at least two separate locations, marking the first confirmed lunar meteor impacts.

  19. Visual data of minor meteor showers limits of the method

    NASA Technical Reports Server (NTRS)

    Rendtel, Jurgen; Koschack, R.

    1992-01-01

    Visual meteor observations are carried out on a regular basis by many experienced observers worldwide, thus supplying information about activity of meteor showers. The limits of the method are determined by the accuracy of the detection of the meteor trail. This study shows that visual meteor observations provide reliable data for an observable hourly rate of greater than or equal to 3.

  20. An Agile Course-Delivery Approach

    ERIC Educational Resources Information Center

    Capellan, Mirkeya

    2009-01-01

    In the world of software development, agile methodologies have gained popularity thanks to their lightweight methodologies and flexible approach. Many advocates believe that agile methodologies can provide significant benefits if applied in the educational environment as a teaching method. The need for an approach that engages and motivates…

  1. The Introduction of Agility into Albania.

    ERIC Educational Resources Information Center

    Smith-Stevens, Eileen J.; Shkurti, Drita

    1998-01-01

    Describes a plan to introduce and achieve a national awareness of agility (and easy entry into the world market) for Albania through the relatively stable higher-education order. Agility's four strategic principles are enriching the customer, cooperating to enhance competitiveness, organizing to master change and uncertainty, and leveraging the…

  2. Teaching Agile Software Development: A Case Study

    ERIC Educational Resources Information Center

    Devedzic, V.; Milenkovic, S. R.

    2011-01-01

    This paper describes the authors' experience of teaching agile software development to students of computer science, software engineering, and other related disciplines, and comments on the implications of this and the lessons learned. It is based on the authors' eight years of experience in teaching agile software methodologies to various groups…

  3. Fighter agility metrics, research, and test

    NASA Technical Reports Server (NTRS)

    Liefer, Randall K.; Valasek, John; Eggold, David P.

    1990-01-01

    Proposed new metrics to assess fighter aircraft agility are collected and analyzed. A framework for classification of these new agility metrics is developed and applied. A completed set of transient agility metrics is evaluated with a high fidelity, nonlinear F-18 simulation provided by the NASA Dryden Flight Research Center. Test techniques and data reduction methods are proposed. A method of providing cuing information to the pilot during flight test is discussed. The sensitivity of longitudinal and lateral agility metrics to deviations from the pilot cues is studied in detail. The metrics are shown to be largely insensitive to reasonable deviations from the nominal test pilot commands. Instrumentation required to quantify agility via flight test is also considered. With one exception, each of the proposed new metrics may be measured with instrumentation currently available. Simulation documentation and user instructions are provided in an appendix.

  4. Some Findings Concerning Requirements in Agile Methodologies

    NASA Astrophysics Data System (ADS)

    Rodríguez, Pilar; Yagüe, Agustín; Alarcón, Pedro P.; Garbajosa, Juan

    Agile methods have appeared as an attractive alternative to conventional methodologies. These methods try to reduce the time to market and, indirectly, the cost of the product through flexible development and deep customer involvement. The processes related to requirements have been extensively studied in literature, in most cases in the frame of conventional methods. However, conclusions of conventional methodologies could not be necessarily valid for Agile; in some issues, conventional and Agile processes are radically different. As recent surveys report, inadequate project requirements is one of the most conflictive issues in agile approaches and better understanding about this is needed. This paper describes some findings concerning requirements activities in a project developed under an agile methodology. The project intended to evolve an existing product and, therefore, some background information was available. The major difficulties encountered were related to non-functional needs and management of requirements dependencies.

  5. Agile manufacturing from a statistical perspective

    SciTech Connect

    Easterling, R.G.

    1995-10-01

    The objective of agile manufacturing is to provide the ability to quickly realize high-quality, highly-customized, in-demand products at a cost commensurate with mass production. More broadly, agility in manufacturing, or any other endeavor, is defined as change-proficiency; the ability to thrive in an environment of unpredictable change. This report discusses the general direction of the agile manufacturing initiative, including research programs at the National Institute of Standards and Technology (NIST), the Department of Energy, and other government agencies, but focuses on agile manufacturing from a statistical perspective. The role of statistics can be important because agile manufacturing requires the collection and communication of process characterization and capability information, much of which will be data-based. The statistical community should initiate collaborative work in this important area.

  6. CT-assisted agile manufacturing

    NASA Astrophysics Data System (ADS)

    Stanley, James H.; Yancey, Robert N.

    1996-11-01

    The next century will witness at least two great revolutions in the way goods are produced. First, workers will use the medium of virtual reality in all aspects of marketing, research, development, prototyping, manufacturing, sales and service. Second, market forces will drive manufacturing towards small-lot production and just-in-time delivery. Already, we can discern the merging of these megatrends into what some are calling agile manufacturing. Under this new paradigm, parts and processes will be designed and engineered within the mind of a computer, tooled and manufactured by the offspring of today's rapid prototyping equipment, and evaluated for performance and reliability by advanced nondestructive evaluation (NDE) techniques and sophisticated computational models. Computed tomography (CT) is the premier example of an NDE method suitable for future agile manufacturing activities. It is the only modality that provides convenient access to the full suite of engineering data that users will need to avail themselves of computer- aided design, computer-aided manufacturing, and computer- aided engineering capabilities, as well as newly emerging reverse engineering, rapid prototyping and solid freeform fabrication technologies. As such, CT is assured a central, utilitarian role in future industrial operations. An overview of this exciting future for industrial CT is presented.

  7. Agile manufacturing prototyping system (AMPS)

    SciTech Connect

    Garcia, P.

    1998-05-09

    The Agile Manufacturing Prototyping System (AMPS) is being integrated at Sandia National Laboratories. AMPS consists of state of the industry flexible manufacturing hardware and software enhanced with Sandia advancements in sensor and model based control; automated programming, assembly and task planning; flexible fixturing; and automated reconfiguration technology. AMPS is focused on the agile production of complex electromechanical parts. It currently includes 7 robots (4 Adept One, 2 Adept 505, 1 Staubli RX90), conveyance equipment, and a collection of process equipment to form a flexible production line capable of assembling a wide range of electromechanical products. This system became operational in September 1995. Additional smart manufacturing processes will be integrated in the future. An automated spray cleaning workcell capable of handling alcohol and similar solvents was added in 1996 as well as parts cleaning and encapsulation equipment, automated deburring, and automated vision inspection stations. Plans for 1997 and out years include adding manufacturing processes for the rapid prototyping of electronic components such as soldering, paste dispensing and pick-and-place hardware.

  8. Monte Carlo modeling and meteor showers

    NASA Technical Reports Server (NTRS)

    Kulikova, N. V.

    1987-01-01

    Prediction of short lived increases in the cosmic dust influx, the concentration in lower thermosphere of atoms and ions of meteor origin and the determination of the frequency of micrometeor impacts on spacecraft are all of scientific and practical interest and all require adequate models of meteor showers at an early stage of their existence. A Monte Carlo model of meteor matter ejection from a parent body at any point of space was worked out by other researchers. This scheme is described. According to the scheme, the formation of ten well known meteor streams was simulated and the possibility of genetic affinity of each of them with the most probable parent comet was analyzed. Some of the results are presented.

  9. SAGE III/Meteor - 3M

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Full view of the SAGE III Bench Checkout Unit, Collimated Source Bench (CSB), Portable Image Generator (PIG) on tripod, and Stratospheric Aerosol Gastropheric Experiment (SAGE)/Meteor - 3M flight instrument. Photographed in building 1250, 40 foot clean room.

  10. SAGE III/Meteor - 3M

    NASA Technical Reports Server (NTRS)

    1999-01-01

    From left to right: Richard Rawls, Chip Holloway, and Art Hayhurst standing next to the Stratospheric Aerosol Gastropheric Experiment (SAGE)/Meteor - 3M flight instrument. Photographed in building 1250, 40 foot clean room.

  11. SAGE III/Meteor - 3M

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Back view of the SAGE III Bench Checkout Unit, Portable Image Generator (PIG) on tripod, and the Stratospheric Aerosol Gastropheric Experiment (SAGE)/Meteor - 3M flight instrument. Photographed in building 1250, 40 foot clean room.

  12. A Meteor Shower Origin for Martian Methane

    NASA Astrophysics Data System (ADS)

    Fries, M.; Christou, A.; Archer, D.; Conrad, P.; Cooke, W.; Eigenbrode, J.; ten Kate, I. L.; Matney, M.; Niles, P.; Sykes, M.; Steele, A.; Treiman, A.

    2015-07-01

    We present and discuss the hypothesis that martian methane arises from a meteor shower source. Infall material produces methane by UV photolysis, generating localized plumes that occur after Mars/comet orbit interactions. This hypothesis is testable.

  13. Large Meteor Tracked over Northeast Alabama

    NASA Video Gallery

    On the evening of May 18, NASA all-sky meteor cameras located at NASA’s Marshall Space Flight Center and at the Walker County Science Center near Chickamauga, Ga. tracked the entry of a large meteo...

  14. Monte Carlo modeling and meteor showers

    NASA Astrophysics Data System (ADS)

    Kulikova, N. V.

    1987-08-01

    Prediction of short lived increases in the cosmic dust influx, the concentration in lower thermosphere of atoms and ions of meteor origin and the determination of the frequency of micrometeor impacts on spacecraft are all of scientific and practical interest and all require adequate models of meteor showers at an early stage of their existence. A Monte Carlo model of meteor matter ejection from a parent body at any point of space was worked out by other researchers. This scheme is described. According to the scheme, the formation of ten well known meteor streams was simulated and the possibility of genetic affinity of each of them with the most probable parent comet was analyzed. Some of the results are presented.

  15. Man-Sized Meteor Over Macon

    NASA Video Gallery

    Astronomers at NASA's Marshall Space Flight Center have recorded the brightest meteor ever seen by their network. On May 20, 2011, six-foot diameter fragment of an unknown comet entered the atmosph...

  16. Comparison with Russian analyses of meteor impact

    SciTech Connect

    Canavan, G.H.

    1997-06-01

    The inversion model for meteor impacts is used to discuss Russian analyses and compare principal results. For common input parameters, the models produce consistent estimates of impactor parameters. Directions for future research are discussed and prioritized.

  17. Meteor showers associated with 2003EH1

    NASA Astrophysics Data System (ADS)

    Babadzhanov, P. B.; Williams, I. P.; Kokhirova, G. I.

    2008-06-01

    Using the Everhart RADAU19 numerical integration method, the orbital evolution of the near-Earth asteroid 2003EH1 is investigated. This asteroid belongs to the Amor group and is moving on a comet-like orbit. The integrations are performed over one cycle of variation of the perihelion argument ω. Over such a cycle, the orbit intersect that of the Earth at eight different values of ω. The orbital parameters are different at each of these intersections and so a meteoroid stream surrounding such an orbit can produce eight different meteor showers, one at each crossing. The geocentric radiants and velocities of the eight theoretical meteor showers associated with these crossing points are determined. Using published data, observed meteor showers are identified with each of the theoretically predicted showers. The character of the orbit and the existence of observed meteor showers associated with 2003EH1 confirm the supposition that this object is an extinct comet.

  18. Comet C/1917 F1 (Mellish) meteor shower complex

    NASA Astrophysics Data System (ADS)

    Hajdukova, M.; Neslusan, L.

    2014-07-01

    In this study, we mapped the whole meteor complex of the long-period comet C/1917 F1 (Mellish), using a procedure of proven reliability when investigating the 96P/Machholz and 2003 EH1 streams (Neslusan et al., 2013a; 2013b). For five perihelion passages of the comet C/1917 F1 in the past, we modeled associated theoretical streams, each consisting of 10000 test particles, and followed their dynamical evolution until the present. Subsequently, we analyzed the orbital characteristics of the parts of a stream that approach the Earth's orbit. These particles were used to predict the corresponding meteor showers. The predicted showers were searched for in the databases of actually observed meteors. According to our modeling, the meteoroid stream of the comet Mellish can be split into 4 filaments (F1 to F4), with 4 distinct radiant areas. The most numerous shower that originates in the comet nucleus of C/1917 F1 corresponds to theoretical filament F3. The meteoroids of this filament approach to the Earth's orbit relatively soon after their ejection from the nucleus. We identified this filament as the December Monocerotids (No. 19 in the IAU MDC list of the established showers). In the phase space of orbital elements, the shower occurs in the vicinity of another established shower, 250 November Orionids. However, shower No. 250 is obviously not related to C/1917 F1 since no single theoretical particle, in all five models, is in an orbit similar to the mean orbit of this shower. Filament F1 might be identified to 348 April rho-Cygnids, the meteoroid stream that was recently discovered by the Canadian Meteor Orbit Radar (Brown et al., 2010). In our models, this filament is numerous and, hence, the shower is well predicted. The particles of filament F1 and, therefore, the real April rho-Cygnids originating in C/1917 F1 can approach the Earth's orbit and collide with our planet not earlier than about 20 millennia after their release from the parent-comet nucleus. Despite this

  19. The determination of parameters of the upper atmosphere by the radio-meteor measurements

    NASA Astrophysics Data System (ADS)

    Shamukov, Damir; Fahrutdinova, Antonina; Nugmanov, Ildus

    Study of the parameters of the upper atmosphere on the basis of amplitude-time characteristics of meteor ionization. Together with various methods meteor observations (optical, photographic, visual, spectral, television), the most effective modern method of studying meteors means is radar. The development of modern radar technology allows us to apply this tool to monitor meteors. This method allows to determine the parameters of temperature and atmospheric pressure. Actual issue is the development of methods of determining the coefficient of ambipolar diffusion, pressure, density and temperature of the atmosphere in the meteor zone. Graph of amplitude-time characteristic has the exponential form. This fact allows to determine the coefficient of ambipolar diffusion. New algorithm for estimation of the ambipolar diffusion coefficient based on a set of statistical methods and techniques of digital signal processing. There are decomposition of data on singular values and Prony's method. This method of modeling the sample data as a linear combination of exponential. Prony’s method approximates the amplitude-time characteristics of using a deterministic exponential model. Input data is amplitude-time characteristics of the meteor trail x[1]…x[N]. The method allows to estimate x[n] p-membered exponential model: begin{center} x[n]=Sigma2A_{k}exp[a _{k}(n-1)]Cos[2Pif_{k}(n-1)T+Fi_{k}] (1) end{center} 1<=n<=N, T - time range in seconds, A_{k} and a_{k} - amplitude and damping coefficient, f_{k} and Fi_{k} - frequency and initial phase. The equation describing the decay of radio signal: begin{center} A=A_{0}exp(-16Pi^{2}$D_{a}t/λ (2) ). (2) lambdaλ - radar wavelength. The output of the algorithm - the ambipolar diffusion coefficient values D_{a}. begin{center} T=0.5lnD-T_{0}+mg/2kT_{0} (3) Last equation allows to obtain temperature values ​​using the coefficient of ambipolar diffusion depends on the height.

  20. A method of long-term radar shower data analysis

    NASA Technical Reports Server (NTRS)

    Simek, M.

    1987-01-01

    Complex photographic and radar meteor observations have been carried out since 1957. Using the available observational data, the density of incident flux of meteoroids was estimated over a wide mass range of 0.001 to 100 g. To avoid the influence of apparatus selectivity a special technique was applied. The application of this technique to the radar shower data analysis is discussed in detail.

  1. Error control coding for meteor burst channels

    NASA Astrophysics Data System (ADS)

    Frederick, T. J.; Belkerdid, M. A.; Georgiopoulos, M.

    The performance of several error control coding schemes for a meteor burst channel is studied via analysis and simulation. These coding strategies are compared using the probability of successful transmission of a fixed size packet through a single burst as a performance measure. The coding methods are compared via simulation for several realizations of meteor burst. It is found that, based on complexity and probability of success, fixed-rate convolutional codes with soft decision Viterbi decoding provide better performance.

  2. SEC Vidicon spectra of Geminid meteors, 1972

    NASA Technical Reports Server (NTRS)

    Millman, P. M.; Clifton, K. S.

    1975-01-01

    The SEC Vidicon, a low light level closed circuit television system, was used to obtain 137 spectrographic records of meteors at Mt. Hopkins, Arizona, during the Geminid meteor shower in December 1972. Seven of the best Geminid meteor spectra are studied here in detail. The near infrared, out to wavelengths near 9000 A, is recorded for the first time for Geminids. The spectra, in general, exhibit the elements previously found in photographic records of this shower but show a surprising frequency of occurrence of the forbidden green line of O I at 5577 A. This line is normally absent from meteors moving as slowly as the Geminids (36 km/sec) and its presence in these records may be due to the added sensitivity available with the SEC Vidicon. The average green line duration in Geminid meteors with a luminosity near zero absolute visual magnitude is 0.73 sec at a mean height of 95 km, 11 km lower than the green line peak in Perseid meteors of the same luminosity.

  3. Small-scale structures in common-volume meteor wind measurements

    NASA Astrophysics Data System (ADS)

    Fraser, G. J.; Marsh, S. H.; Baggaley, W. J.; Bennett, R. G. T.; Lawrence, B. N.; McDonald, A. J.; Plank, G. E.

    2006-02-01

    Observational differences occur when different techniques are used for measuring mesospheric winds because the different instruments observe different physical quantities to infer the wind velocity, and have differing time and space resolution. The AMOR meteor wind radar near Christchurch, New Zealand [Marsh et al., 2000. Journal of Atmospheric and Solar-Terrestrial Physics 62,1129 1133.] has good resolution in time (˜0.1 s) and height (˜1 km) and a narrow beam centred in the geographic N S meridian. The meteor echoes randomly sample the atmosphere in a region extending over several hundred kilometres to the South of the radar. The volume of data obtained from the one instrument has made it possible to use correlations between measurements made from individual meteor trails to identify the contribution of atmospheric variability to the observational differences. Measurements of the meridional wind component made from May July 1997 inclusive show that a large part (20 30 m/s r.m.s.) of the atmospheric variation is due to inhomogeneities with small scales, of the order of 10 km and 1 h. There is also a component which has a random time phase over the observation interval but a spatial scale which is coherent over several hundred kilometres, consistent with the behaviour of gravity waves.

  4. Meteoric Ions in Planetary Ionospheres

    NASA Technical Reports Server (NTRS)

    Pesnell, W. D.; Grebowsky, Joseph M.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    Solar system debris, in the form of meteoroids, impacts every planet. The flux, relative composition and speed of the debris at each planet depends on the planet's size and location in the solar system. Ablation in the atmosphere evaporates the meteoric material and leaves behind metal atoms. During the ablation process metallic ions are formed by impact ionization. For small inner solar system planets, including Earth, this source of ionization is typically small compared to either photoionization or charge exchange with ambient molecular ions. For Earth, the atmosphere above the main deposition region absorbs the spectral lines capable of ionizing the major metallic atoms (Fe and Mg) so that charge exchange with ambient ions is the dominant source. Within the carbon dioxide atmosphere of Mars (and possibly Venus), photoionization is important in determining the ion density. For a heavy planet like Jupiter, far from the sun, impact ionization of ablated neutral atoms by impacts with molecules becomes a prominent source of ionization due to the gravitational acceleration to high incident speeds. We will describe the processes and location and extent of metal ion layers for Mars, Earth and Jupiter, concentrating on flagging the uncertainties in the models at the present time. This is an important problem, because low altitude ionosphere layers for the planets, particularly at night, probably consist predominantly of metallic ions. Comparisons with Earth will be used to illustrate the differing processes in the three planetary atmospheres.

  5. January and February Meteor Showers Detected by CAMS: the Cameras for Allsky Meteor Surveillance

    NASA Astrophysics Data System (ADS)

    Johnson, Beth; Jenniskens, P. M.

    2014-01-01

    Many meteor showers are in need of validation. Of 493 meteor showers listed in the IAU Working List of Mete-or Showers, only 95 are established. Of the rest, it is uncertain whether they exist or not. The goal of the Cameras for Allsky Meteor Surveillance (CAMS) project in California is to validate or remove the remaining 325 showers. CAMS scales up the use of low-light-level video for meteor triangulation, by deploying 60 video cameras spread over three sites. Once the video data has been analyzed, showers can be confirmed by comparing arrival time, direc-tion of the radiant, and speed of the individual meteors. Once established, showers can be linked to their parent bod-ies and meteoroid streams. The CAMS stations are located in Sunnyvale, at Fremont Peak Observatory, and at Lick Observatory, to the south and east of Sunnyvale, respectively. Each station contains 20 low-light-level security cameras arrayed to view the entire sky above 30°. During the night, the video data from the cameras is written to disk and analysed in day-time with the MeteorScan software package to find moving objects. Eight-second video sequences are saved for all detections. The video sequences are combined at the SETI Institute, where astrometric calibration files are generated and meteors detected from at least two stations simultaneously are found interactively using the Coincidence program. Coincidence also calculates the radiant and velocity of each meteor. Here, we discuss results obtained in January and February 2013. Over 7,500 meteor orbits were cataloged in this period. This outcome doubled the detection rate from the previous two years of CAMS data.We will present graphs of the detected meteor showers and discuss their parent body sources.

  6. Multiband design boosts resolution of imaging radar

    NASA Astrophysics Data System (ADS)

    Parnell, William C.

    1988-09-01

    The design of a coherent high-resolution polarization-agile mapping and target-identification radar operating at 35, 95, and 140 GHz is described in detail and illustrated with circuit diagrams and graphs of antenna radiation patterns; lists of system components with their model numbers and manufacturers are also provided. The radar is intended for use on a target-range tower or in other remote locations and employs interchangeable front-end modules to achieve the dual-band operation required for development of real-time multispectral target-recognition algorithms.

  7. Opening up the Agile Innovation Process

    NASA Astrophysics Data System (ADS)

    Conboy, Kieran; Donnellan, Brian; Morgan, Lorraine; Wang, Xiaofeng

    The objective of this panel is to discuss how firms can operate both an open and agile innovation process. In an era of unprecedented changes, companies need to be open and agile in order to adapt rapidly and maximize their innovation processes. Proponents of agile methods claim that one of the main distinctions between agile methods and their traditional bureaucratic counterparts is their drive toward creativity and innovation. However, agile methods are rarely adopted in their textbook, "vanilla" format, and are usually adopted in part or are tailored or modified to suit the organization. While we are aware that this happens, there is still limited understanding of what is actually happening in practice. Using innovation adoption theory, this panel will discuss the issues and challenges surrounding the successful adoption of agile practices. In addition, this panel will report on the obstacles and benefits reported by over 20 industrial partners engaged in a pan-European research project into agile practices between 2006 and 2009.

  8. Social Protocols for Agile Virtual Teams

    NASA Astrophysics Data System (ADS)

    Picard, Willy

    Despite many works on collaborative networked organizations (CNOs), CSCW, groupware, workflow systems and social networks, computer support for virtual teams is still insufficient, especially support for agility, i.e. the capability of virtual team members to rapidly and cost efficiently adapt the way they interact to changes. In this paper, requirements for computer support for agile virtual teams are presented. Next, an extension of the concept of social protocol is proposed as a novel model supporting agile interactions within virtual teams. The extended concept of social protocol consists of an extended social network and a workflow model.

  9. Developing communications requirements for Agile Product Realization

    SciTech Connect

    Forsythe, C.; Ashby, M.R.

    1994-03-01

    Sandia National Laboratories has undertaken the Agile Product Realization for Innovative electroMEchanical Devices (A-PRIMED) pilot project to develop and implement technologies for agile design and manufacturing of electrochemical components. Emphasis on information-driven processes, concurrent engineering and multi-functional team communications makes computer-supported cooperative work critical to achieving significantly faster product development cycles. This report describes analyses conducted in developing communications requirements and a communications plan that addresses the unique communications demands of an agile enterprise.

  10. Agility enabled by the SEMATECH CIM framework

    NASA Astrophysics Data System (ADS)

    Hawker, Scott; Waskiewicz, Fred

    1997-01-01

    The survivor in today's market environment is agile: able to survive and thrive in a market place marked by rapid, continuous change. For manufacturers, this includes an ability to rapidly develop, deploy and reconfigure manufacturing information and control systems. The SEMATECH CIM framework defines an application integration architecture and standard application components that enable agile manufacturing information and control systems. Further, the CIM framework and its evolution process foster virtual organizations of suppliers and manufacturers, combining their products and capabilities into an agile manufacturing information and control system.

  11. Meteor Beliefs Project: an introduction to the meteor-dragon special

    NASA Astrophysics Data System (ADS)

    McBeath, A.

    2003-12-01

    By way of introduction to three Meteor Beliefs Project articles on the connection between dragons and meteors in East European folk-belief in this issue of WGN, some notes are given on the possible origins of this largely western Euroasian belief, together with some short comments leading in to the three articles.

  12. Prediction of evolution of meteor shower associated with comet 122P/de Vico

    NASA Astrophysics Data System (ADS)

    Tomko, D.

    2014-04-01

    We deal with a theoretical meteoroid stream of the comet 122P/de Vico. For five perihelion passages in the distant past, we model a theoretical stream and follow its dynamical evolution until the present. We predict the characteristics of potential a meteor shower approaching the Earth's orbit and we make also the identification of the particles of the predicted shower with the real meteors in three databases (photo, radar, and video). Our overall prediction is, however, negative because only the particles released from the comet nucleus before approximately 37 000 years are found to evolve into a collision course with the Earth and, therefore, form a possible shower. Many meteoroids do not survive such a long time in interplanetary space.

  13. A semi-empirical model of the contribution from sporadic meteoroid sources on the meteor input function in the MLT observed at Arecibo

    NASA Astrophysics Data System (ADS)

    Fentzke, Jonathan T.; Janches, Diego

    2008-03-01

    In this paper, we present a modeling and observational study of the micrometeor input function with a focus on understanding how each of the extraterrestrial sporadic meteoroid sources contributes to the observed meteoric flux in the Mesosphere and Lower Thermosphere (MLT) atmospheric region. For this purpose, we expand the model presented by Janches et al. (2006) using a Monte Carlo technique and incorporating: 1) a widely accepted global mass flux, which is divided into different proportions among the known sporadic meteoroid sources as the initial input above Earth's atmosphere; 2) contemporary knowledge on the source's velocity and radiant distributions; and 3) the full integration of the canonical meteor equations that describe the meteoroid entry and ablation physics. In addition, we constrain the initial input through a comparison of our modeled results with meteor observations obtained with the 430 MHz High Power and Large Aperture (HPLA) Arecibo radar in Puerto Rico that covers all seasons. The predicted meteor rates and velocity distributions are in excellent agreement with the observed ones without the need for any additional normalization factor. Our results indicate that although the Earth's Apex centered radiant source, which is characterized by high geocentric speeds (˜55 km/s), appears to be ˜33% of the meteoroids in the Solar System at 1 AU, it accounts for ˜60% of the meteors observed by the Arecibo HPLA radar in the atmosphere. The remaining 40% of observed meteors originate mostly from the Helion and Anti-Helion sources, with a very small, but constant during the day, contribution of the South and North Toroidal sources. These results also suggest that particles smaller than ˜10-3μg with slow velocities (<30 km/s) will not significantly ablate and never become observable meteors. The motivation of this effort is to construct a new and more precise MIF model needed for the subsequent modeling of the atmospheric phenomena related to the

  14. Agile manufacturing concepts and opportunities in ceramics

    SciTech Connect

    Booth, C.L.; Harmer, M.P.

    1995-08-01

    In 1991 Lehigh University facilitated seminars over a period of 8 months to define manufacturing needs for the 21st century. They concluded that the future will be characterized by rapid changes in technology advances, customer demands, and shifts in market dynamics and coined the term {open_quotes}Agile Manufacturing{close_quotes}. Agile manufacturing refers to the ability to thrive in an environment of constant unpredictable change. Market opportunities are attacked by partnering to form virtual firms to dynamically obtain the required skills for each product opportunity. This paper will describe and compare agile vs. traditional concepts of organization & structure, management policy and ethics, employee environment, product focus, information, and paradigm shift. Examples of agile manufacturing applied to ceramic materials will be presented.

  15. Asteroid 1620 Geographos: II. Associated Meteor Streams

    NASA Astrophysics Data System (ADS)

    Ryabova, G. O.

    2002-05-01

    This study attempts to answer the following questions. Are there meteor streams genetically related to asteroid 1620 Geographos? When and how were they generated? Can we find any of them in the catalogs of orbits of meteors that have been observed? Numerous model streams, varying in particle-ejection scheme and in the moment of generation, have been considered. It has been found that the meteor streams observed from the Earth were most likely produced as a result of a collision with a small body. However, the generation of the meteor stream under the combined effect of rotation and tidal forces during the asteroid's close approach to the Earth cannot also be ruled out. Meteoroid streams formed at high ejection velocities (up to 1 km/s) can approach the Earth's orbit twice per orbital period: once before perihelion (in February-March) and once after perihelion (in August). The 44 orbits close to the model ones were found in the catalogs of meteoroid orbits. A taxonomic structure has been built for them. The distribution of ejection velocities for the models of Earth-approaching meteoroids points to the impact of an overtaking body, but the moment of collision remains unknown. Thus, it is quite possible that asteroid Geographos is the parent body for twin meteor showers observed at the Earth: Spring and Autumn Geographids.

  16. BRAMS: The Belgian RAdio Meteor Stations

    NASA Technical Reports Server (NTRS)

    Lamy, H.; Ranvier, S.; De Keyser, J.; Calders, S.; Gamby, E.; Verbeeck, C.

    2011-01-01

    In the last months, the Belgian Institute for Space Aeronomy has been developing a Belgian network for observing radio meteors using forward scattering technique. This network is called BRAMS for Belgian RAdio Meteor Stations. Two beacons emitting a circularly polarized pure sine wave toward the zenith act as the transmitters at frequencies of 49.97 and 49.99 MHz. The first one located in Dourbes (Southern Belgium) emits a constant power of 150 Watts while the one located in Ieper (Western Belgium) emits a constant power of 50 Watts. The receiving network consists of about 20 stations hosted mainly by radio amateurs. Two stations have crossed-Yagi antennas measuring horizontal and vertical polarizations of the waves reflected off meteor trails. This will enable a detailed analysis of the meteor power profiles from which physical parameters of the meteoroids can be obtained. An interferometer consisting of 5 Yagi-antennas will be installed at the site of Humain in order to determine the angular detection of one reflection point, allowing us to determine meteoroid trajectories. We describe this new meteor observing facility and present the goals we expect to achieve with the network.

  17. CAMS confirmation of previously reported meteor showers

    NASA Astrophysics Data System (ADS)

    Jenniskens, P.; Nénon, Q.; Gural, P. S.; Albers, J.; Haberman, B.; Johnson, B.; Holman, D.; Morales, R.; Grigsby, B. J.; Samuels, D.; Johannink, C.

    2016-03-01

    Leading up to the 2015 IAU General Assembly, the International Astronomical Union's Working List of Meteor Showers included 486 unconfirmed showers, showers that are not certain to exist. If confirmed, each shower would provide a record of past comet or asteroid activity. Now, we report that 41 of these are detected in the Cameras for Allsky Meteor Surveillance (CAMS) video-based meteor shower survey. They manifest as meteoroids arriving at Earth from a similar direction and orbit, after removing the daily radiant drift due to Earth's motion around the Sun. These showers do exist and, therefore, can be moved to the IAU List of Established Meteor Showers. This adds to 31 previously confirmed showers from CAMS data. For each shower, finding charts are presented based on 230,000 meteors observed up to March of 2015, calculated by re-projecting the drift-corrected Sun-centered ecliptic coordinates into more familiar equatorial coordinates. Showers that are not detected, but should have, and duplicate showers that project to the same Sun-centered ecliptic coordinates, are recommended for removal from the Working List.

  18. World War II Radar and Early Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Smith, G.

    2005-08-01

    The pattern of radio astronomy which developed in Europe and Australia followed closely the development of metre wave radar in World War II. The leading pioneers, Ryle, Lovell, Hey and Pawsey, were all in radar research establishments in the UK and Australia. They returned to universities, recruited their colleagues into research groups and immediately started on some basic observations of solar radio waves, meteor echoes, and the galactic background. There was at first little contact with conventional astronomers. This paper traces the influence of the radar scientists and of several types of radar equipment developed during WW II, notably the German Wurzburg, which was adapted for radio research in several countries. The techniques of phased arrays and antenna switching were used in radar and aircraft installations. The influence of WW II radar can be traced at least up to 10 years after the War, when radio astronomy became accepted as a natural discipline within astronomy.

  19. Agility Following the Application of Cold Therapy

    PubMed Central

    Evans, Todd A.; Ingersoll, Christopher; Knight, Kenneth L.; Worrell, Teddy

    1995-01-01

    Cold application is commonly used before strenuous exercise due to its hypalgesic effects. Some have questioned this procedure because of reports that cold may reduce isokinetic torque. However, there have been no investigations of actual physical performance following cold application. The purpose of this study was to determine if a 20-minute ice immersion treatment to the foot and ankle affected the performance of three agility tests: the carioca maneuver, the cocontraction test, and the shuttle run. Twenty-four male athletic subjects were tested during two different treatment sessions following an orientation session. Subjects were tested following a 20-minute 1°C ice immersion treatment to the dominant foot and ankle and 20 minutes of rest. Following each treatment, subjects performed three trials of each agility test, with 30 seconds rest between each trial, and 1 minute between each different agility test. The order in which each subject performed the agility tests was determined by a balanced Latin square. A MANOVA with repeated measures was used to determine if there was an overall significant difference in the agility times recorded between the cold and control treatments and if the order of the treatment sessions affected the scores. Although the mean agility time scores were slightly slower following the cold treatment, cooling the foot and ankle caused no difference in agility times. Also, there was no difference resulting from the treatment orders. We felt that the slightly slower scores may have been a result of tissue stiffness and/or subject's apprehension immediately following the cold treatment. Cold application to the foot and ankle can be used before strenuous exercise without altering agility. Imagesp232-a PMID:16558341

  20. SuperAGILE Services at ASDC

    SciTech Connect

    Preger, B.; Verrecchia, F.; Pittori, C.; Antonelli, L. A.; Giommi, P.; Lazzarotto, F.; Evangelista, Y.

    2008-05-22

    The Italian Space Agency Science Data Center (ASDC) is a facility with several responsibilities including support to all the ASI scientific missions as for management and archival of the data, acting as the interface between ASI and the scientific community and providing on-line access to the data hosted. In this poster we describe the services that ASDC provides for SuperAGILE, in particular the ASDC public web pages devoted to the dissemination of SuperAGILE scientific results. SuperAGILE is the X-Ray imager onboard the AGILE mission, and provides the scientific community with orbit-by-orbit information on the observed sources. Crucial source information including position and flux in chosen energy bands will be reported in the SuperAGILE public web page at ASDC. Given their particular interest, another web page will be dedicated entirely to GRBs and other transients, where new event alerts will be notified and where users will find all the available informations on the GRBs detected by SuperAGILE.

  1. Optical Meteor Systems Used by the NASA Meteoroid Environment Office

    NASA Technical Reports Server (NTRS)

    Kingery, A. M.; Blaauw, R. C.; Cooke, W. J.; Moser, D. E.

    2015-01-01

    The NASA Meteoroid Environment Office (MEO) uses two main meteor camera networks to characterize the meteoroid environment: an all sky system and a wide field system to study cm and mm size meteors respectively. The NASA All Sky Fireball Network consists of fifteen meteor video cameras in the United States, with plans to expand to eighteen cameras by the end of 2015. The camera design and All-Sky Guided and Real-time Detection (ASGARD) meteor detection software [1, 2] were adopted from the University of Western Ontario's Southern Ontario Meteor Network (SOMN). After seven years of operation, the network has detected over 12,000 multi-station meteors, including meteors from at least 53 different meteor showers. The network is used for speed distribution determination, characterization of meteor showers and sporadic sources, and for informing the public on bright meteor events. The NASA Wide Field Meteor Network was established in December of 2012 with two cameras and expanded to eight cameras in December of 2014. The two camera configuration saw 5470 meteors over two years of operation with two cameras, and has detected 3423 meteors in the first five months of operation (Dec 12, 2014 - May 12, 2015) with eight cameras. We expect to see over 10,000 meteors per year with the expanded system. The cameras have a 20 degree field of view and an approximate limiting meteor magnitude of +5. The network's primary goal is determining the nightly shower and sporadic meteor fluxes. Both camera networks function almost fully autonomously with little human interaction required for upkeep and analysis. The cameras send their data to a central server for storage and automatic analysis. Every morning the servers automatically generates an e-mail and web page containing an analysis of the previous night's events. The current status of the networks will be described, alongside with preliminary results. In addition, future projects, CCD photometry and broadband meteor color camera

  2. ROAN Remote radio meteor detection sensor

    NASA Astrophysics Data System (ADS)

    Lesanu, C. E.

    2016-01-01

    Only few meteor enthusiasts across the world today, approaches systematically the radio meteor detection technique, one of the reasons being the difficulty to build and install proper permanent antennas, especially when low-VHF frequency opportunity transmitters are used as illuminators. Other reasons were in the past the relatively high cost of the entire system, receivers and computers, and not ultimately the high power consumption of the system in a 24/7 operation, when using regular personal computers. The situation changed in the recent years with the advent of the low cost software defined radio SDR receivers and low consumption/cost single board computers SBC. A commercial off-the-shelf hardware based remote radio meteor detection sensor is presented.

  3. SPA Meteor Section Results: Radio Draconids 2011

    NASA Astrophysics Data System (ADS)

    McBeath, Alastair

    2012-08-01

    Information determined from an analysis by the SPA Meteor Section of radio meteor data collected during the 2011 Draconid epoch is presented and discussed. A strong single maximum for the shower was found on October 8, with a mean time of 20 h05 m ± 5 m UT, and that activity was above half the maximum flux level between ˜ 19 h20 m to 20 h45 m UT. A comparison is given too with the IMO's preliminary visual and video findings, which suggested a quite close correlation between all three observing techniques in what was detected. A possibility that more somewhat larger particles/brighter meteors may have been present between ˜ 19 h40 m to 20 h20 m UT is noted too.

  4. Atmosphere dynamics in the equatorial meteor zone

    NASA Technical Reports Server (NTRS)

    Kascheev, B. L.

    1987-01-01

    The study of the atmospheric circulation of the Earth from its surface to the altitudes of 100 to 110 km is essential for establishing atmospheric motion regularities with a view toward perfecting weather forecasting. The main results of the Soviet equatorial meteor expedition (SEME) are presented. A continuous cycle of measurements was carried out. Considerable interdiurnal variation of the zonal component was observed. Importantly, in the meridional component, the prevalence of a two day component was established in the equatorial meteor zone for the first time. The pronounced westward motion of the atmosphere over the equator is noted. The SEME data analysis has shown that the meteor zone is characterized by flashes of intensity of the internal gravity waves and turbulence at highest instability moments of atmosphere due to tidal motion.

  5. SOFIE observations of PMCs and meteoric smoke

    NASA Astrophysics Data System (ADS)

    Hervig, M. E.; Gordley, L. L.; Russell, J.; Bailey, S. M.

    2010-12-01

    The Solar Occultation For Ice Experiment (SOFIE) has operated onboard the Aeronomy of Ice in the Mesosphere (AIM) satellite since May 2007. SOFIE uses solar occultation to measure vertical profiles of limb path atmospheric transmission within 16 spectral bands between 0.29 and 5.32 microns wavelength. SOFIE measurements are used to retrieve PMC extinction at ultraviolet (UV) through infrared (IR) wavelengths, meteoric smoke extinction at UV - near-IR wavelengths, temperature, and the abundance of five gaseous species (O3, H2O, CO2, CH4, and NO). Recent developments in understanding PMCs and meteoric smoke have been possible using SOFIE observations at 330 nm wavelength. These measurements provide information concerning PMC particle size, and also have provided observational evidence for the composition of meteoric smoke.

  6. SOFIE observations of PMCs and meteoric smoke

    NASA Astrophysics Data System (ADS)

    Hervig, Mark; Gordley, Larry; Russell, J. M., III; Bailey, Scott

    The Solar Occultation For Ice Experiment (SOFIE) has operated onboard the Aeronomy of Ice in the Mesosphere (AIM) satellite from May 2007 to present. SOFIE uses the technique of satel-lite solar occultation to measure vertical profiles of limb path atmospheric transmission within 16 spectral bands between 0.29 and 5.32 microns wavelength. SOFIE measurements are used to retrieve vertical profiles of polar mesospheric cloud (PMC) extinction at eleven wavelengths, temperature, meteoric smoke extinction, and the abundance of five gaseous species (O3, H2O, CO2, CH4, and NO). Recent developments in understanding PMCs and meteoric smoke have been possible using SOFIE observations at 0.330 microns wavelength. These measurements provide information concerning PMC particle size, and also have provided a new assessment of meteoric smoke in the northern hemisphere.

  7. All-sky Meteor Orbit System AMOS and preliminary analysis of three unusual meteor showers

    NASA Astrophysics Data System (ADS)

    Tóth, Juraj; Kornoš, Leonard; Zigo, Pavol; Gajdoš, Štefan; Kalmančok, Dušan; Világi, Jozef; Šimon, Jaroslav; Vereš, Peter; Šilha, Jiří; Buček, Marek; Galád, Adrián; Rusňák, Patrik; Hrábek, Peter; Ďuriš, František; Rudawska, Regina

    2015-12-01

    All-sky Meteor Orbit System (AMOS) is a semi-autonomous video observatory for detection of transient events on the sky, mostly the meteors. Its hardware and software development and permanent placement on several locations in Slovakia allowed the establishment of Slovak Video Meteor Network (SVMN) monitoring meteor activity above the Central Europe. The data reduction, orbital determination and additional results from AMOS cameras - the SVMN database - as well as from observational expeditions on Canary Islands and in Canada provided dynamical and physical data for better understanding of mutual connections between parent bodies of asteroids and comets and their meteoroid streams. We present preliminary results on exceptional and rare meteor streams such as September ɛ Perseids (SPE) originated from unknown long periodic comet on a retrograde orbit, suspected asteroidal meteor stream of April α Comae Berenicids (ACO) in the orbit of meteorites Příbram and Neuschwanstein and newly observed meteor stream Camelopardalids (CAM) originated from Jupiter family comet 209P/Linear.

  8. The Urbana coherent-scatter radar: Synthesis and first results

    NASA Technical Reports Server (NTRS)

    Gibbs, K. P.; Bowhill, S. A.

    1979-01-01

    A coherent scatter radar system was synthesized and several hundred hours of echo power and line of sight velocity data obtained. The coherent scatter radar utilizes a diode array and components from meteor radar. The receiving system permits a time resolution of one minute in the data. Echo power from the D region shows a high degree of variability from day to day. Examples of changes in power level at shorter time scales are observed. Velocity data show the existence of gravity waves and occasionally exhibit vertical standing wave characteristics.

  9. Software ``Best'' Practices: Agile Deconstructed

    NASA Astrophysics Data System (ADS)

    Fraser, Steven

    Software “best” practices depend entirely on context - in terms of the problem domain, the system constructed, the software designers, and the “customers” ultimately deriving value from the system. Agile practices no longer have the luxury of “choosing” small non-mission critical projects with co-located teams. Project stakeholders are selecting and adapting practices based on a combina tion of interest, need and staffing. For example, growing product portfolios through a merger or the acquisition of a company exposes legacy systems to new staff, new software integration challenges, and new ideas. Innovation in communications (tools and processes) to span the growth and contraction of both information and organizations, while managing the adoption of changing software practices, is imperative for success. Traditional web-based tools such as web pages, document libraries, and forums are not suf ficient. A blend of tweeting, blogs, wikis, instant messaging, web-based confer encing, and telepresence creates a new dimension of communication “best” practices.

  10. The First Year of Croatian Meteor Network

    NASA Astrophysics Data System (ADS)

    Andreic, Zeljko; Segon, Damir

    2010-08-01

    The idea and a short history of Croatian Meteor Network (CMN) is described. Based on use of cheap surveillance cameras, standard PC-TV cards and old PCs, the Network allows schools, amateur societies and individuals to participate in photographic meteor patrol program. The network has a strong educational component and many cameras are located at or around teaching facilities. Data obtained by these cameras are collected and processed by the scientific team of the network. Currently 14 cameras are operable, covering a large part of the croatian sky, data gathering is fully functional, and data reduction software is in testing phase.

  11. CCTV lenses for video meteor astronomy

    NASA Astrophysics Data System (ADS)

    Wiśniewski, M.; Olech, A.; Krasnowski, M.; Zloczewski, K.; Mularczyk, K.; Kedzierski, P.; Jonderko, W.

    2005-02-01

    We present the results of CCTV lens tests made last year at the Ostrowik Observatory by observers of the Comets and Meteors Workshop. A total of 13 lenses with different parameters were tested. The limiting magnitudes, size of field of view, distortion and off-axis aberrations were measured. The Computar f/1.2, f=4 mm appeared to be the best lens tested. We also note the good marks of both Ernitecs which were finally chosen as the lenses which will be used in our projects. Surprisingly, the very fast lenses which are popular in video meteor astronomy seem to be much worse that their f/1.2 rivals.

  12. Meteor spectra from AMOS video system

    NASA Astrophysics Data System (ADS)

    Gajdoš, Š.; Tóth, J.; Kornoš, L.

    2015-01-01

    We present a report on the observation of enhanced activity from the Ursids meteor shower using the all-sky camera, at the AGO Modra, on Dec. 22-23, 2014. The time of maximum is in good accordance with the predictions of some authors. We derived a single-station meteor radiant, RA = 217.9° ± 0.1°, DEC = +76.4° ± 0.1° at solar longitude S.L. = 270.9°, along with the activity profile of the Ursid outburst with the maximum occurring at Dec. 23th, 00h40m UT ± 30 min.

  13. In Situ Measurements of Meteoric Ions

    NASA Technical Reports Server (NTRS)

    Grebowsky, Joseph M.; Aiken, Arthur C.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Extraterrestrial material is the source of metal ions in the Earth's atmosphere, Each year approx. 10(exp 8) kg of material is intercepted by the Earth. The origin of this material is predominantly solar orbiting interplanetary debris from comets or asteroids that crosses the Earth's orbit. It contains a very small amount of interstellar material. On occasion the Earth passes through enhanced amounts of debris associated with the orbit of a decaying comet. This leads to enhanced meteor shower displays for up to several days. The number flux of shower material is typically several times the average sporadic background influx of material. Meteoric material is some of the earliest material formed in the solar system. By studying the relative elemental abundances of atmospheric metal ions, information can be gained on the chemical composition of cometary debris and the chemical makeup of the early solar system. Using in situ sampling with rocket-borne ion mass spectrometers; there have been approximately 50 flights that made measurements of the metal ion abundances at attitudes between 80 and 130 km. It is this altitude range where incoming meteoric particles am ablated, the larger ones giving rise to visible meteor. displays. In several rocket measurements isotopic ratios of different atomic ion mass components and metal molecular ion concentrations have been determined and used to identify unambiguously the measured species and to investigate the processes controlling the metal ion distributions The composition of the Earth's ionosphere was first sampled by an ion mass spectrometer flown an a rocket in 1956. In 1958 a rocket-borne ion spectrometer identified, fbr the first time, a layer of metal ions near 95 km. These data were interpreted as evidence of an extraterrestrial rather than a terrestrial source. Istomin predicted: "It seems probable that with some improvement in the method that analysis of the ion composition in the E-region may be used for determining

  14. Meteor spectra from AMOS video system

    NASA Astrophysics Data System (ADS)

    Rudawska, Regina; Tóth, Juraj; Kalmančok, Dušan; Zigo, Pavol; Matlovič, Pavol

    2016-04-01

    Here we demonstrate the capability of the updated All-Sky Meteor Orbit System (AMOS) (called AMOS-Spec) to measure the main element abundances of meteors. The AMOS-Spec program has been created with the intention of carrying out regular systematic spectroscopic observations. At the same time, the meteoroid trajectory and pre-atmospheric orbit are independently measured from data collected by the AMOS camera network. This, together with spectral information, allows us to find the link between the meteoroid and its parent body, from both dynamical and physical consideration. Here we report results for 35 selected cases.

  15. An analytical theory of radio-wave scattering from meteoric ionization - I. Basic equation

    NASA Astrophysics Data System (ADS)

    Pecina, P.

    2016-01-01

    We have developed an analytical theory of radio-wave scattering from ionization of meteoric origin. It is based on an integro-differential equation for the polarization vector, P, inside the meteor trail, representing an analytical solution of the set of Maxwell equations, in combination with a generalized radar equation involving an integral of the trail volume electron density, Ne, and P represented by an auxiliary vector, Q, taken over the whole trail volume. During the derivation of the final formulae, the following assumptions were applied: transversal as well as longitudinal dimensions of the meteor trail are small compared with the distances of the relevant trail point to both the transmitter and receiver and the ratio of these distances to the wavelength of the wave emitted by the radar is very large, so that the stationary-phase method can be employed for evaluation of the relevant integrals. Further, it is shown that in the case of sufficiently low electron density, Ne, corresponding to the case of underdense trails, the classical McKinley's radar equation results as a special case of the general theory. The same also applies regarding the Fresnel characteristics. Our approach is also capable of yielding solutions to the problems of the formation of Fresnel characteristics on trails having any electron density, forward scattering and scattering on trails immersed in the magnetic field. However, we have also shown that the geomagnetic field can be removed from consideration, due to its low strength. The full solution of the above integro-differential equation, valid for any electron volume densities, has been left to subsequent works dealing with this particular problem, due to its complexity.

  16. The Radio Meteor Zoo: a citizen science project

    NASA Astrophysics Data System (ADS)

    Calders, S.; Verbeeck, C.; Lamy, H.; Martínez Picar, A.

    2016-01-01

    Scientists from the BRAMS radio meteor network have started a citizen science project called Radio Meteor Zoo in collaboration with Zooniverse in order to identify meteor reflections in BRAMS spectrograms. First, a small-scale version of the Radio Meteor Zoo was carried out with a sample of meteor identifications in 12 spectrograms by 35 volunteers. Results are presented here and allowed us to define a method that reliably detects meteor reflections based on the identifications by the volunteers. It turns out that, if each spectrogram is inspected by 10 volunteers, hit and false detection percentages of 95% respectively 6% are expected. The Radio Meteor Zoo is online at https://www.zooniverse.org/projects/zooniverse/radio-meteor-zoo. Citizen scientists are kindly invited to inspect spectrograms.

  17. Exploring the relationship between meteor parameters based on photographic data

    NASA Astrophysics Data System (ADS)

    Yancheva, Y.; Hristova, S.; Bojurova, E.

    2016-01-01

    The paper presents an attempt to investigate the relationship between the luminosity and the linear length of the meteors, based on photographic observations of the Geminid meteor shower during the night of maximum in December 2015.

  18. Independent identification of meteor showers in EDMOND database

    NASA Astrophysics Data System (ADS)

    Rudawska, R.; Matlovič, P.; Tóth, J.; Kornoš, L.

    2015-12-01

    Cooperation and data sharing among national networks and International Meteor Organization Video Meteor Database (IMO VMDB) resulted in European viDeo MeteOr Network Database (EDMOND). The current version of the database (EDMOND 5.0) contains 144 749 orbits collected from 2001 to 2014. This paper presents the results obtained by a proposed new independent method of meteor showers identification, which is applied to the current version of the database (EDMOND 5.0). In the first step of the survey we used the DSH criterion to find groups around each meteor within the similarity threshold. Mean parameters of the groups were calculated and compared using a new function DX based on geocentric parameters (λ⊙, α, δ, and Vg). Similar groups were merged into final clusters (representing meteor showers), and compared with the IAU Meteor Data Center list of meteor showers.

  19. Planetary Radar

    NASA Technical Reports Server (NTRS)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  20. Optical studies of meteors at Mount Hopkins Observatory

    NASA Technical Reports Server (NTRS)

    Weekes, T. C.; Williams, J. T.

    1974-01-01

    The 10-m optical reflector and an array of phototubes are used to extend the optical measurements beyond the present limit achieved by the Vidicon system. The first detection of optical meteors with M sub v = + 12 is reported. It is hoped that this system can be used to determine intermediate points in the meteor frequency mass curve for sporadic meteors and to study in detail the faint components of meteor showers. Preliminary observations made on three nights in September 1974 are presented.

  1. The I.A.U. meteor shower nomenclature rules

    NASA Astrophysics Data System (ADS)

    Jenniskens, Peter

    2006-10-01

    The International Astronomical Union at its 2006 General Assembly in Prague has adopted a set of rules for meteor shower nomenclature, a working list with designated names (with IAU numbers and three-letter codes), and established a Task Group for Meteor Shower Nomenclature in Commission 22 (Meteors and Interplanetary Dust) to help define which meteor showers exist from well defined groups of meteoroids from a single parent body.

  2. Seasonal and diurnal variability of the meteor flux at high latitudes observed using PFISR

    NASA Astrophysics Data System (ADS)

    Sparks, J. J.; Janches, D.; Nicolls, M. J.; Heinselman, C. J.

    2009-05-01

    We report in this and a companion paper [Fentzke, J.T., Janches, D., Sparks, J.J., 2008. Latitudinal and seasonal variability of the micrometeor input function: A study using model predictions and observations from Arecibo and PFISR. Journal of Atmospheric and Solar-Terrestrial Physics, this issue, doi:10.1016/j.jastp.2008.07.015] a complete seasonal study of the micrometeor input function (MIF) at high latitudes using meteor head-echo radar observations performed with the Poker Flat Incoherent Scatter Radar (PFISR). This flux is responsible for a number of atmospheric phenomena; for example, it could be the source of meteoric smoke that is thought to act as condensation nuclei in the formation of ice particles in the polar mesosphere. The observations presented here were performed for full 24-h periods near the summer and winter solstices and spring and autumn equinoxes, times at which the seasonal variability of the MIF is predicted to be large at high latitudes [Janches, D., Heinselman, C.J., Chau, J.L., Chandran, A., Woodman, R., 2006. Modeling of the micrometeor input function in the upper atmosphere observed by High Power and Large Aperture Radars, JGR, 11, A07317, doi:10.1029/2006JA011628]. Precise altitude and radar instantaneous line-of-sight (radial) Doppler velocity information are obtained for each of the hundreds of events detected every day. We show that meteor rates, altitude, and radial velocity distributions have a large seasonal dependence. This seasonal variability can be explained by a change in the relative location of the meteoroid sources with respect to the observer. Our results show that the meteor flux into the upper atmosphere is strongly anisotropic and its characteristics must be accounted for when including this flux into models attempting to explain related aeronomical phenomena. In addition, the measured acceleration and received signal strength distribution do not seem to depend on season; which may suggest that these observed

  3. Meteor Search by Spirit, Sol 668

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Annotated Meteor Search by Spirit, Sol 668

    The panoramic cameras on NASA's Mars Exploration Rovers are about as sensitive as the human eye at night. The cameras can see the same bright stars that we can see from Earth, and the same patterns of constellations dot the night sky. Scientists on the rover team have been taking images of some of these bright stars as part of several different projects. One project is designed to try to capture 'shooting stars,' or meteors, in the martian night sky. 'Meteoroids' are small pieces of comets and asteroids that travel through space and eventually run into a planet. On Earth, we can sometimes see meteoroids become brilliant, long 'meteors' streaking across the night sky as they burn up from the friction in our atmosphere. Some of these meteors survive their fiery flight and land on the surface (or in the ocean) where, if found, they are called 'meteorites.' The same thing happens in the martian atmosphere, and Spirit even accidentally discovered a meteor while attempting to obtain images of Earth in the pre-dawn sky back in March, 2004 (see http://marsrovers.jpl.nasa.gov/gallery/press/spirit/20040311a.html, and Selsis et al. (2005) Nature, vol 435, p. 581). On Earth, some meteors come in 'storms' or 'showers' at predictable times of the year, like the famous Perseid meteor shower in August or the Leonid meteor shower in November. These 'storms' happen when Earth passes through the same parts of space where comets sometimes pass. The meteors we see at these times are from leftover debris that was shed off of these comets.

    The same kind of thing is predicted for Mars, as well. Inspired by calculations about Martian meteor storms by meteor scientists from the University of Western Ontario in Canada and the Centre de Recherche en Astrophysique de Lyon in France, and also aided by other meteor research colleagues from NASA's Marshall Space Flight Center, scientists on

  4. A parent body search across several video meteor data bases

    NASA Astrophysics Data System (ADS)

    Šegon, D.; Gural, P.; Andreić, Ž.; Skokić, I.; Korlević, K.; Vida, D.; Novoselnik, F.

    2014-07-01

    A meteor stream search that uses all the known near-Earth objects (NEOs) as parent bodies, with their individual orbital elements as the starting point, has found statistically significant associations when applied to video meteor data bases. By using the combined CMN-SonotaCo data sets containing 133,652 video meteor orbits, 30 comets were associated with meteor showers of which only 23 were previously listed in the IAU MDC data base. Additionally, 43 asteroids with inclinations over 15 degrees may be associated to streams containing ten or more meteor orbits, each possibly representing a new meteor shower. Lastly, by using a modified search that compared the orbital similarity of each meteor to all other video meteors in the data base, 1093 groupings with more than ten meteors were found that may be indicative of several new minor showers. Of those groups, 6 new showers were found to be potentially associated to a parent body. Several dozen additional groups are planned for publication and submittal to the IAU for their consideration as newly discovered streams. Altogether 56,486 (42%) of the meteors in the combined video meteor data base are in one of the meteor stream groupings found, while the rest are likely sporadics. Further analysis is needed to prove that the groupings found are indeed minor showers.

  5. Results of the IMO Video Meteor Network - October 2014

    NASA Astrophysics Data System (ADS)

    Molau, Sirko; Kac, Javor; Crivello, Stefano; Stomeo, Enrico; Barentsen, Geert; Goncalves, Rui; Saraiva, Carlos; Maciewski, Maciej; Maslov, Mikhail

    2015-02-01

    A record number of 86 cameras of the IMO Video Meteor Network collected over 11 000 hours worth of data in 2014 October, recording almost 52 000 meteors. Yearly flux density profiles are presented for the Orionids, Leonis Minorids, October Camelopardalids, and October Ursae Majorids, covering the period from 2011 to 2014. Population indexes are calculated for all four meteor showers.

  6. The activity of autumn meteor showers in 2006-2008

    NASA Astrophysics Data System (ADS)

    Kartashova, Anna

    2015-03-01

    The purpose of meteor observations in INASAN is the study of meteor showers, as the elements of the migrant substance of the Solar System, and estimation of risk of hazardous collisions of spacecrafts with the particles of streams. Therefore we need to analyze the meteor events with brightness of up to 8 m, which stay in meteoroid streams for a long time and can be a hazardous for the spacecraft. The results of our single station TV observations of autumn meteor showers for the period from 2006 to 2008 are presented. The high-sensitive hybrid camera (the system with coupled of the Image Intensifier) FAVOR with limiting magnitude for meteors about 9m. . .10m in the field of view 20 × 18 was used for observations. In 2006-2008 from October to November more than 3 thousand of meteors were detected, 65% from them have the brightness from 6m to 9m. The identification with autumn meteor showers (Orionids, Taurids, Draconids, Leonids) was carried out. In order to estimate the density of the influx of meteor matter to the Earth for these meteor showers the Index of meteor activity (IMA) was calculated. The IMA distribution for the period 2006 - 2008 is given. The distributions of autumn meteor showers (the meteors with brightness of up to 8 m) by stellar magnitude from 2006 to 2008 are also presented.

  7. 47 CFR 90.250 - Meteor burst communications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Meteor burst communications. 90.250 Section 90... PRIVATE LAND MOBILE RADIO SERVICES Non-Voice and Other Specialized Operations § 90.250 Meteor burst communications. Meteor burst communications may be authorized for the use of private radio stations subject...

  8. 47 CFR 90.250 - Meteor burst communications.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Meteor burst communications. 90.250 Section 90... PRIVATE LAND MOBILE RADIO SERVICES Non-Voice and Other Specialized Operations § 90.250 Meteor burst communications. Meteor burst communications may be authorized for the use of private radio stations subject...

  9. 47 CFR 90.250 - Meteor burst communications.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Meteor burst communications. 90.250 Section 90... PRIVATE LAND MOBILE RADIO SERVICES Non-Voice and Other Specialized Operations § 90.250 Meteor burst communications. Meteor burst communications may be authorized for the use of private radio stations subject...

  10. 47 CFR 90.250 - Meteor burst communications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Meteor burst communications. 90.250 Section 90... PRIVATE LAND MOBILE RADIO SERVICES Non-Voice and Other Specialized Operations § 90.250 Meteor burst communications. Meteor burst communications may be authorized for the use of private radio stations subject...

  11. 47 CFR 90.250 - Meteor burst communications.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Meteor burst communications. 90.250 Section 90... PRIVATE LAND MOBILE RADIO SERVICES Non-Voice and Other Specialized Operations § 90.250 Meteor burst communications. Meteor burst communications may be authorized for the use of private radio stations subject...

  12. Easy way to estimate meteor brightness on TV frames

    NASA Astrophysics Data System (ADS)

    Leonov, V. A.; Bagrov, A. V.

    2016-01-01

    The traditional method of the meteor brightness measurements claims that the meteor brightness is equal to the stellar magnitude of a star that looks like a meteor in the brightest point of its track. This rule was convenient for the comparison of meteor observations by different observers and for the analysis of the brightness distributions of meteors from observed showers. This traditional method suffers from systematic errors, particularly those that arise from using stellar brightness measured in specific spectral wave bands different from the observer's ones, but mainly due to neglecting the influence of the meteor angular velocity on the real meteor brightness. To get a proper estimate of the meteor brightness that is a measure of the ground meteor illumination in the non-systematic units, an observer must take into account that the effective exposition of a meteor image in any resolution element of its track is a few times shorter than the corresponding exposition of a star image in the same frame. We propose a very simple method for improved estimations of meteor brightness by applying a correction to the meteor stellar magnitude obtained within the traditional framework.

  13. Results of the IMO Video Meteor Network - June 2015

    NASA Astrophysics Data System (ADS)

    Molau, Sirko; Kac, Javor; Crivello, Stefano; Stomeo, Enrico; Barentsen, Geert; Goncalves, Rui; Saraiva, Carlos; Maciejewski, Maciej; Maslov, Mikhail

    2015-10-01

    Observations of the IMO Video Meteor Network are presented for 2015 June. Activity profile is presented for the Daytime Arietids, based on 28 shower meteors. The meteor rate of the Daytime Arietids between June 5 and 11, normalized for the limiting magnitude and angular velocity, is found to be about one quarter of that of the eta-Aquariids during their maximum.

  14. Perseid meteor shower in 2012--2013 by TV meteor observations

    NASA Astrophysics Data System (ADS)

    Kartashova, A.; Bolgova, G.

    2014-07-01

    We present results of TV observations that were obtained during the Perseid meteor shower activity (18 July -- 19 August) in 2012 and 2013. The observations were carried out in Moscow region using the TV system PatrolCa with FOV of 50°×40° and a limiting magnitude (for meteors) of 4^m--5^m [1]. The individual radiants of Perseid meteors and the radiant drift (for 2012--2013) are given. The Perseids orbits obtained by double-station observations are shown. The brightness distributions of the Perseids are also presented. The maximum activity occurs at 12 August with the Index of Meteor Activity (particles to the Earth per 1 hour [2,3]) of 7×10^4 in 2012 and 1×10^4 in 2013. An additional peak was detected in 10 August 2013. The distributions of IMA for 2012--2013 Perseids are presented.

  15. Meteor Shower Activity Derived from "Meteor Watching Public-Campaign" in Japan

    NASA Technical Reports Server (NTRS)

    Sato, M.; Watanabe, J.

    2011-01-01

    We tried to analyze activities of meteor showers from accumulated data collected by public campaigns for meteor showers which were performed as outreach programs. The analyzed campaigns are Geminids (in 2007 and 2009), Perseids (in 2008 and 2009), Quadrantids (in 2009) and Orionids (in 2009). Thanks to the huge number of reports, the derived time variations of the activities of meteor showers is very similar to those obtained by skilled visual observers. The values of hourly rates are about one-fifth (Geminids 2007) or about one-fourth (Perseids 2008) compared with the data of skilled observers, mainly due to poor observational sites such as large cities and urban areas, together with the immature skill of participants in the campaign. It was shown to be highly possible to estimate time variation in the meteor shower activity from our campaign.

  16. Automated Meteor Fluxes with a Wide-Field Meteor Camera Network

    NASA Technical Reports Server (NTRS)

    Blaauw, R. C.; Campbell-Brown, M. D.; Cooke, W.; Weryk, R. J.; Gill, J.; Musci, R.

    2013-01-01

    Within NASA, the Meteoroid Environment Office (MEO) is charged to monitor the meteoroid environment in near ]earth space for the protection of satellites and spacecraft. The MEO has recently established a two ]station system to calculate automated meteor fluxes in the millimeter ]size ]range. The cameras each consist of a 17 mm focal length Schneider lens on a Watec 902H2 Ultimate CCD video camera, producing a 21.7 x 16.3 degree field of view. This configuration has a red ]sensitive limiting meteor magnitude of about +5. The stations are located in the South Eastern USA, 31.8 kilometers apart, and are aimed at a location 90 km above a point 50 km equidistant from each station, which optimizes the common volume. Both single station and double station fluxes are found, each having benefits; more meteors will be detected in a single camera than will be seen in both cameras, producing a better determined flux, but double station detections allow for non ]ambiguous shower associations and permit speed/orbit determinations. Video from the cameras are fed into Linux computers running the ASGARD (All Sky and Guided Automatic Real ]time Detection) software, created by Rob Weryk of the University of Western Ontario Meteor Physics Group. ASGARD performs the meteor detection/photometry, and invokes the MILIG and MORB codes to determine the trajectory, speed, and orbit of the meteor. A subroutine in ASGARD allows for the approximate shower identification in single station meteors. The ASGARD output is used in routines to calculate the flux in units of #/sq km/hour. The flux algorithm employed here differs from others currently in use in that it does not assume a single height for all meteors observed in the common camera volume. In the MEO system, the volume is broken up into a set of height intervals, with the collecting areas determined by the radiant of active shower or sporadic source. The flux per height interval is summed to obtain the total meteor flux. As ASGARD also

  17. Meteor spectroscopy during the 2015 Quadrantids

    NASA Astrophysics Data System (ADS)

    Ward, Bill

    2015-08-01

    Spectroscopic video observations during the Quadrantid meteor shower 2015 were made with Watec low light level video cameras fitted with 12 mm f/0.8 lenses carrying 50 mm square diffraction gratings. Four spectra with adequate signal to noise ratios were captured and the results analysed and discussed.

  18. Bright Meteor Lights Up Atlanta Skies

    NASA Video Gallery

    This video shows a very bright meteor that streaked over the skies of Atlanta, Ga., on the night of Aug. 28, 2011. The view is from an all sky camera in Cartersville, Ga., operated by NASA’s Mars...

  19. Meteor Observation and the Light Pollution

    NASA Astrophysics Data System (ADS)

    Grigore, Valentin

    2010-01-01

    This paper propose some concrete ways and procedures made by "no light pollution" militants (astronomers, ecologists, scientific, educational and cultural institutions) to combat this type of pollution. Meteor observations is the most important field of astronomy affected by the light pollution.

  20. Lake Erie Fireball Meteor, Tavistock View

    NASA Video Gallery

    This brief video shows a view of the Aug 8 fireball meteor that entered the atmosphere 54 miles above Lake Erie and moved SSE at 25 km/s, or 55,900 mph. This view is from the all sky camera in Tavi...

  1. Lake Erie Fireball Meteor, Mcmaster View

    NASA Video Gallery

    This brief video shows a view of the Aug 8 fireball meteor that entered the atmosphere 54 miles above Lake Erie and moved SSE at 25 km/s, or 55,900 mph. This view is from the all sky camera in Mcma...

  2. Lake Erie Fireball Meteor, Orangeville View

    NASA Video Gallery

    This brief video shows a view of the Aug 8 fireball meteor that entered the atmosphere 54 miles above Lake Erie and moved SSE at 25 km/s, or 55,900 mph. This view is from the all sky camera in Oran...

  3. BRAMS --- the Belgian RAdio Meteor Stations

    NASA Astrophysics Data System (ADS)

    Lamy, H.; Ranvier, S.; Martinez Picar, A.; Gamby, E.; Calders, S.; Anciaux, M.; De Keyser, J.

    2014-07-01

    BRAMS is a new radio observing facility developed by the Belgian Institute for Space Aeronomy (BISA) to detect and characterize meteors using forward scattering. It consists of a dedicated beacon located in the south-east of Belgium and in 25 identical receiving stations spread over the Belgian territory. The beacon transmits a pure sinusoidal wave at a frequency of 49.97 MHz with a power of 150 watts. A complete description of the BRAMS network and the data produced will be provided. The main scientific goals of the project are to compute fluxes, retrieve trajectories of individual objects, and determine physical parameters (speed, ionization, mass) for some of the observed meteor echoes. All these goals require a good knowledge of the radiation patterns of the transmitting and receiving antennas. Simulations have been made and will be validated with in-situ measurements using a UAV/drone equipped with a transmitter flying in the far-field region. The results will be provided. Each receiving station generates around 1 GB of data per day with typical numbers of sporadic meteor echoes of 1500--2000. An automatic detection method of these meteor echoes is therefore mandatory but is complicated by spurious echoes mostly due to airplanes. The latest developments of this automatic detection method will be presented and compared to manual counts for validation. Strong and weak points of the method will be presented as well as a possible alternative method using neural networks.

  4. Meteor Search by Spirit, Sol 668

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Annotated Meteor Search by Spirit, Sol 668

    The panoramic cameras on NASA's Mars Exploration Rovers are about as sensitive as the human eye at night. The cameras can see the same bright stars that we can see from Earth, and the same patterns of constellations dot the night sky. Scientists on the rover team have been taking images of some of these bright stars as part of several different projects. One project is designed to try to capture 'shooting stars,' or meteors, in the martian night sky. 'Meteoroids' are small pieces of comets and asteroids that travel through space and eventually run into a planet. On Earth, we can sometimes see meteoroids become brilliant, long 'meteors' streaking across the night sky as they burn up from the friction in our atmosphere. Some of these meteors survive their fiery flight and land on the surface (or in the ocean) where, if found, they are called 'meteorites.' The same thing happens in the martian atmosphere, and Spirit even accidentally discovered a meteor while attempting to obtain images of Earth in the pre-dawn sky back in March, 2004 (see http://marsrovers.jpl.nasa.gov/gallery/press/spirit/20040311a.html, and Selsis et al. (2005) Nature, vol 435, p. 581). On Earth, some meteors come in 'storms' or 'showers' at predictable times of the year, like the famous Perseid meteor shower in August or the Leonid meteor shower in November. These 'storms' happen when Earth passes through the same parts of space where comets sometimes pass. The meteors we see at these times are from leftover debris that was shed off of these comets.

    The same kind of thing is predicted for Mars, as well. Inspired by calculations about Martian meteor storms by meteor scientists from the University of Western Ontario in Canada and the Centre de Recherche en Astrophysique de Lyon in France, and also aided by other meteor research colleagues from NASA's Marshall Space Flight Center, scientists on

  5. Fighter agility metrics. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Liefer, Randall K.

    1990-01-01

    Fighter flying qualities and combat capabilities are currently measured and compared in terms relating to vehicle energy, angular rates and sustained acceleration. Criteria based on these measurable quantities have evolved over the past several decades and are routinely used to design aircraft structures, aerodynamics, propulsion and control systems. While these criteria, or metrics, have the advantage of being well understood, easily verified and repeatable during test, they tend to measure the steady state capability of the aircraft and not its ability to transition quickly from one state to another. Proposed new metrics to assess fighter aircraft agility are collected and analyzed. A framework for classification of these new agility metrics is developed and applied. A complete set of transient agility metrics is evaluated with a high fidelity, nonlinear F-18 simulation. Test techniques and data reduction methods are proposed. A method of providing cuing information to the pilot during flight test is discussed. The sensitivity of longitudinal and lateral agility metrics to deviations from the pilot cues is studied in detail. The metrics are shown to be largely insensitive to reasonable deviations from the nominal test pilot commands. Instrumentation required to quantify agility via flight test is also considered. With one exception, each of the proposed new metrics may be measured with instrumentation currently available.

  6. Gamma-ray Astrophysics with AGILE

    SciTech Connect

    Longo, Francesco |; Tavani, M.; Barbiellini, G.; Argan, A.; Basset, M.; Boffelli, F.; Bulgarelli, A.; Caraveo, P.; Cattaneo, P.; Chen, A.; Costa, E.; Del Monte, E.; Di Cocco, G.; Di Persio, G.; Donnarumma, I.; Feroci, M.; Fiorini, M.; Foggetta, L.; Froysland, T.; Frutti, M.

    2007-07-12

    AGILE will explore the gamma-ray Universe with a very innovative instrument combining for the first time a gamma-ray imager and a hard X-ray imager. AGILE will be operational in spring 2007 and it will provide crucial data for the study of Active Galactic Nuclei, Gamma-Ray Bursts, unidentified gamma-ray sources. Galactic compact objects, supernova remnants, TeV sources, and fundamental physics by microsecond timing. The AGILE instrument is designed to simultaneously detect and image photons in the 30 MeV - 50 GeV and 15 - 45 keV energy bands with excellent imaging and timing capabilities, and a large field of view covering {approx} 1/5 of the entire sky at energies above 30 MeV. A CsI calorimeter is capable of GRB triggering in the energy band 0.3-50 MeV AGILE is now (March 2007) undergoing launcher integration and testing. The PLSV launch is planned in spring 2007. AGILE is then foreseen to be fully operational during the summer of 2007.

  7. Enterprise Technologies Deployment for Agile Manufacturing

    SciTech Connect

    Neal, R.E.

    1992-11-01

    This report is intended for high-level technical planners who are responsible for planning future developments for their company or Department of Energy/Defense Programs (DOE/DP) facilities. On one hand, the information may be too detailed or contain too much manufacturing technology jargon for a high-level, nontechnical executive, while at the same time an expert in any of the four infrastructure fields (Product Definition/Order Entry, Planning and Scheduling, Shop Floor Management, and Intelligent Manufacturing Systems) will know more than is conveyed here. The purpose is to describe a vision of technology deployment for an agile manufacturing enterprise. According to the 21st Century Manufacturing Enterprise Strategy, the root philosophy of agile manufacturing is that ``competitive advantage in the new systems will belong to agile manufacturing enterprises, capable of responding rapidly to demand for high-quality, highly customized products.`` Such agility will be based on flexible technologies, skilled workers, and flexible management structures which collectively will foster cooperative initiatives in and among companies. The remainder of this report is dedicated to sharpening our vision and to establishing a framework for defining specific project or pre-competitive project goals which will demonstrate agility through technology deployment.

  8. Enterprise Technologies Deployment for Agile Manufacturing

    SciTech Connect

    Neal, R.E.

    1992-11-01

    This report is intended for high-level technical planners who are responsible for planning future developments for their company or Department of Energy/Defense Programs (DOE/DP) facilities. On one hand, the information may be too detailed or contain too much manufacturing technology jargon for a high-level, nontechnical executive, while at the same time an expert in any of the four infrastructure fields (Product Definition/Order Entry, Planning and Scheduling, Shop Floor Management, and Intelligent Manufacturing Systems) will know more than is conveyed here. The purpose is to describe a vision of technology deployment for an agile manufacturing enterprise. According to the 21st Century Manufacturing Enterprise Strategy, the root philosophy of agile manufacturing is that competitive advantage in the new systems will belong to agile manufacturing enterprises, capable of responding rapidly to demand for high-quality, highly customized products.'' Such agility will be based on flexible technologies, skilled workers, and flexible management structures which collectively will foster cooperative initiatives in and among companies. The remainder of this report is dedicated to sharpening our vision and to establishing a framework for defining specific project or pre-competitive project goals which will demonstrate agility through technology deployment.

  9. Doppler Studies of Near-Antapex UHF Radar Micrometeors

    NASA Astrophysics Data System (ADS)

    Janches, D.; Mathews, J. D.; Meisel, D. D.; Getman, V. S.; Zhou, Q.-H.

    2000-02-01

    A "radar micrometeor" is the radar-scattering signature from the free electrons in the plasma generated by entry of a dust-sized meteoroid into the atmosphere. We report the first direct Doppler measurements, made using the Arecibo Observatory 430-MHz radar, of the so-called meteor head echo. Our observations demonstrate that this region is moving with the speed of the meteoroid as determined from the meteor head-echo altitude-time trajectory and that this radar return is distinct spatially and in velocity from the much more commonly observed trail echo. We also report the first observations of near-antapex micrometeors which are characterized by the very slow atmospheric speeds expected from low-ecliptic-inclination objects entering the atmosphere from behind Earth's orbital path. Of the 32 meteors observed during four early evening hours of observations on 10 January 1997, velocities were determined for 18 of the meteors of which 7 were at or just below Earth escape velocity (11.2 km/s). We give heliocentric orbits for the 11 meteor events with speeds greater than the escape velocity and present a detailed analysis of these orbital parameters and their possible origins. One particle was determined to be interstellar: a preliminary analysis indicates that the ecliptic coordinates of the radiant relative to the local standard of rest (LSR) (with the solar motion relative to the nearby stars removed) are λ=43.02°, β=-43.28°, V=-25.11 km/s or, in system II galactic coordinates lII=219.8°, bII=-52.4°, V=-25.1 km/s.

  10. Spaceborne radar

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Eckerman, J.; Meneghini, R.; Atlas, D.; Boerner, W. M.; Cherry, S.; Clark, J. F.; Doviak, R. J.; Goldhirsh, J.; Lhermitte, R. M.

    1981-01-01

    The spaceborne radar panel considered how radar could be used to measure precipitation from satellites. The emphasis was on how radar could be used with radiometry (at microwave, visible (VIS), and infrared (IR) wavelengths) to reduce the uncertainties of measuring precipitation with radiometry alone. In addition, the fundamental electromagnetic interactions involved in the measurements were discussed to determine the key work areas for research and development to produce effective instruments. Various approaches to implementing radar systems on satellites were considered for both shared and dedicated instruments. Finally, a research and development strategy was proposed for establishing the parametric relations and retrieval algorithms required for extracting precipitation information from the radar and associated radiometric data.

  11. Video Observations of Meteors: History, Current Status, and Future Prospects

    NASA Astrophysics Data System (ADS)

    Molau, S.; Nitschke, M.; de Lignie, M.; Hawkes, R. L.; Rendtel, J.

    1997-02-01

    Video meteor observations have been performed by amateur astronomers for more than 10 years. They enjoy a rapidly increasing interest in the meteor community and will evolve into a powerful tool for amateur observers in the near future. Video meteor observation is the key to a fundamental increase of our knowledge about meteoroid populations and their interaction with the Earth's atmosphere. In this paper, we want to summarize the history of video meteor observation and describe the current state of affairs. We discuss problems and limitations and propose future projects. The paper is intended to serve as basis for the foundation of appropriate organizational structures within the International Meteor Organization.

  12. Spectral analysis of four meteors. [chemical compositions and spectral emissions

    NASA Technical Reports Server (NTRS)

    Harvey, G. A.

    1973-01-01

    Four meteor spectra are analyzed for chemical composition and radiative processes. The chemical compositions of the Taurid, Geminid, and Perseid meteors were found to be similar to that of a typical stony meteorite. The chemical composition of the sporadic meteor was found to be similar to that of a nickel iron meteorite. The radiation from optical meteors was found to be similar to that of a low temperature gas, except that strong, anomalous ionic radiation is superposed on the neutral radiation in bright, fast meteors.

  13. An investigation of fighter aircraft agility

    NASA Technical Reports Server (NTRS)

    Valasek, John; Downing, David R.

    1993-01-01

    This report attempts to unify in a single document the results of a series of studies on fighter aircraft agility funded by the NASA Ames Research Center, Dryden Flight Research Facility and conducted at the University of Kansas Flight Research Laboratory during the period January 1989 through December 1993. New metrics proposed by pilots and the research community to assess fighter aircraft agility are collected and analyzed. The report develops a framework for understanding the context into which the various proposed fighter agility metrics fit in terms of application and testing. Since new metrics continue to be proposed, this report does not claim to contain every proposed fighter agility metric. Flight test procedures, test constraints, and related criteria are developed. Instrumentation required to quantify agility via flight test is considered, as is the sensitivity of the candidate metrics to deviations from nominal pilot command inputs, which is studied in detail. Instead of supplying specific, detailed conclusions about the relevance or utility of one candidate metric versus another, the authors have attempted to provide sufficient data and analyses for readers to formulate their own conclusions. Readers are therefore ultimately responsible for judging exactly which metrics are 'best' for their particular needs. Additionally, it is not the intent of the authors to suggest combat tactics or other actual operational uses of the results and data in this report. This has been left up to the user community. Twenty of the candidate agility metrics were selected for evaluation with high fidelity, nonlinear, non real-time flight simulation computer programs of the F-5A Freedom Fighter, F-16A Fighting Falcon, F-18A Hornet, and X-29A. The information and data presented on the 20 candidate metrics which were evaluated will assist interested readers in conducting their own extensive investigations. The report provides a definition and analysis of each metric; details

  14. Gamma-ray astrophysics with AGILE

    NASA Astrophysics Data System (ADS)

    Tavani, M.

    2003-09-01

    Gamma-ray astrophysics above 30 MeV will soon be revitalized by a new generation of high-energy detectors in space. We discuss here the AGILE Mission that will be dedicated to gamma-ray astrophysics above 30 MeV during the period 2005-2006. The main characteristics of AGILE are: (1) excellent imaging and monitoring capabilities both in the γ-ray (30 MeV - 30 GeV) and hard X-ray (10-40 keV) energy ranges (reaching an arcminute source positioning), (2) very good timing (improving by three orders of magnitude the instrumental deadtime for γ-ray detection compared to previous instruments), and (3) excellent imaging and triggering capability for Gamma-Ray Bursts. The AGILE scientific program will emphasize a quick response to gamma-ray transients and multiwavelength studies of gamma-ray sources.

  15. SuperAGILE and Gamma Ray Bursts

    SciTech Connect

    Pacciani, Luigi; Costa, Enrico; Del Monte, Ettore; Donnarumma, Immacolata; Evangelista, Yuri; Feroci, Marco; Frutti, Massimo; Lazzarotto, Francesco; Lapshov, Igor; Rubini, Alda; Soffitta, Paolo; Tavani, Marco; Barbiellini, Guido; Mastropietro, Marcello; Morelli, Ennio; Rapisarda, Massimo

    2006-05-19

    The solid-state hard X-ray imager of AGILE gamma-ray mission -- SuperAGILE -- has a six arcmin on-axis angular resolution in the 15-45 keV range, a field of view in excess of 1 steradian. The instrument is very light: 5 kg only. It is equipped with an on-board self triggering logic, image deconvolution, and it is able to transmit the coordinates of a GRB to the ground in real-time through the ORBCOMM constellation of satellites. Photon by photon Scientific Data are sent to the Malindi ground station at every contact. In this paper we review the performance of the SuperAGILE experiment (scheduled for a launch in the middle of 2006), after its first onground calibrations, and show the perspectives for Gamma Ray Bursts.

  16. Multi-Year Radar Observations of Planetary Waves at High Conjugate Latitudes (Invited)

    NASA Astrophysics Data System (ADS)

    Fritts, D. C.; Iimura, H.; Janches, D.; Mitchell, N. J.; Singer, W.

    2013-12-01

    Meteor radars at nearly conjugate latitudes from ~54o to 68o S and N are enabling multi-year studies of planetary wave (PW) structure and seasonal, interannual, and inter-hemispheric variability. The various PWs exhibit dramatically different seasonal and inter-hemispheric variability, strongly variable amplitude and phase structures with altitude, latitude, and time, and episodic maxima in E-P flux components. This talk will review these features defined with meteor radars at Rothera Station and Ferraz Base (62 and 68 S), on Tierra del Fuego (54 S), and at Juliusruh, Germany and Esrange, Sweden (55 and 68 N).

  17. Ground-based Optical Observations of Geophysical Phenomena: Aurora Borealis and Meteors

    NASA Astrophysics Data System (ADS)

    Samara, Marilia

    2010-10-01

    Advances in low-light level imaging technology have enabled significant improvements in the ground based study of geophysical phenomena. In this talk we focus on two such phenomena that occur in the Earth's ionosphere: aurorae and meteors. Imaging the aurora which is created by the interplay of the Earth's magnetosphere, ionosphere and atmosphere, provides a tool for remote sensing physical processes that are otherwise very difficult to study. By quantifying the intensities, scale sizes and lifetimes of auroral structures, we can gain significant insight into the physics behind the generation of the aurora and the interaction of the magnetosphere with the solar wind. Additionally, the combination of imaging with radars provides complimentary data and therefore more information than either method on its own. Meteor observations are a perfect example of this because the radar can accurately determine only the line-of-sight component of velocity, while imaging provides the direction of motion, the perpendicular velocity and brightness (a proxy for mass), therefore enabling a much more accurate determination of the full velocity vector and mass.

  18. Automotive radar

    NASA Astrophysics Data System (ADS)

    Rohling, Hermann

    2004-07-01

    Radar networks for automtovie short-range applications (up to 30m) based on powerful but inexpensive 24GHz high range resolution pulse or FMCW radar systems have been developed at the Technical University of Hamburg-Harburg. The described system has been integrated in to an experimental vehicle and tested in real street environment. This paper considers the general network design, the individual pulse or FMCW radar sensors, the network signal processing scheme, the tracking procedure and possible automotive applications, respectively. Object position estimation is accomplished by the very precise range measurement of each individual sensor and additional trilateration procedures. The paper concludes with some results obtained in realistic traffic conditions with multiple target situations using 24 GHz radar network.

  19. The cometary and asteroidal origins of meteors

    NASA Technical Reports Server (NTRS)

    Kresak, L.

    1973-01-01

    A quantitative examination of the gravitational and nongravitational changes of orbits shows that for larger interplanetary bodies the perturbations by Jupiter strongly predominate over all other effects, which include perturbations by other planets, splitting of comet nuclei and jet effects of cometary ejections. The structure of meteor streams, indicates that the mutual compensation of the changes in individual elements entering the Jacobian integral, which is characteristic for the comets, does not work among the meteoroids. It appears that additional forces of a different kind must exert appreciable influence on the motion of interplanetary particles of meteoroid size. Nevertheless, the distribution of the Jacobian constant in various samples of meteor orbits furnishes some information on the type of their parent bodies and on the relative contribution of individual sources.

  20. Data processing of records of meteoric echoes

    NASA Astrophysics Data System (ADS)

    Dolinský, P.

    2016-01-01

    The data obtained in the period from 4 November 2014 to 31 July 2014 by our receiving and recording system was statistically processed. The system records meteoric echoes from the TV transmitter Lviv 49.739583 MHz (N49.8480° E24.0369°, Ukraine) using a 4-element Yagi antenna with horizontal polarization (elevation of 0° and azimuth of 60°), receiver ICOM R-75 in the CW mode, and a computer with a recording using HROFFT v1.0.0f. The main goal was to identify weak showers in these data. Mayor or strong showers are visible without processing (referred at IMC2015, Mistelbach). To find or to identify weaker showers is more difficult. Not all echoes are meteoric echoes, but also ionospheric echoes or lightning disturbances are present.

  1. The Swedish Allsky Meteor Network: first results

    NASA Astrophysics Data System (ADS)

    Stempels, E.; Kero, E.

    2016-01-01

    The Swedish Allsky Meteor Network started operations with two cameras in early 2014 and has since grown steadily. Currently, seven stations are active and several more will come online in the near future. The network to a large degree relies on low-cost stations run by private individuals or small societies of amateur astronomers. Originally based on the Danish meteor network Stjerneskud, the central node of Uppsala University provides the network with the necessary infrastructure, such as a continually updated software distribution and automatic processing of data from all stations. Although covering a very large land mass with relatively low resources is challenging, there have up to now been several well-observed events, often in collaboration with observations from neighboring countries. We give a short overview of the network's current status, chosen technical solutions, and some results.

  2. Radar history

    NASA Astrophysics Data System (ADS)

    Putley, Ernest

    2008-07-01

    The invention of radar, as mentioned in Chris Lavers' article on warship stealth technology (March pp21-25), continues to be a subject of discussion. Here in Malvern we have just unveiled a blue plaque to commemorate the physicist Albert Percival Rowe, who arrived in 1942 as the head of the Telecommunications Research Establishment (TRE), which was the Air Ministry research facility responsible for the first British radar systems.

  3. Structural peculiarities of the Quadrantid meteor shower

    NASA Technical Reports Server (NTRS)

    Isamutdinov, Sh. O.; Chebotarev, R. P.

    1987-01-01

    Systematic radio observations to investigate the Quadrantid meteor shower structure are regularly carried out. They have now been conducted annually in the period of its maximum activity, January 1 to 6, since 1966. The latest results of these investigations are presented, on the basis of 1981 to 1984 data obtained using new equipment with a limiting sensitivity of +7.7 sup m which make it possible to draw some conclusions on the Quadrantids shower structure both for transverse and lengthwise directions.

  4. Recent meteor showers - models and observations

    NASA Astrophysics Data System (ADS)

    Koten, P.; Vaubaillon, J.

    2015-10-01

    A number of meteor shower outbursts and storms occurred in recent years starting with several Leonid storms around 2000 [1]. The methods of modeling meteoroid streams became better and more precise. An increasing number of observing systems enabled better coverage of such events. The observers provide modelers with an important feedback on precision of their models. Here we present comparison of several observational results with the model predictions.

  5. Impact mechanics at Meteor Crater, Arizona

    USGS Publications Warehouse

    Shoemaker, Eugene Merle

    1959-01-01

    Meteor Crator is a bowl-shaped depression encompassed by a rim composed chiefly of debris stacked in layers of different composition. Original bedrock stratigraphy is preserved, inverted, in the debris. The debris rests on older disturbed strata, which are turned up at moderate to steep angles in the wall of the crater and are locally overturned near the contact with the debris. These features of Meteor Crater correspond closely to those of a crater produced by nuclear explosion where depth of burial of the device was about 1/5 the diameter of the resultant crater. Studies of craters formed by detonation of nuclear devices show that structures of the crater rims are sensitive to the depth of explosion scaled to the yield of the device. The structure of Meteor Crater is such as would be produced by a very strong shock originating about at the level of the present crater floor, 400 feet below the original surface. At supersonic to hypersonic velocity an impacting meteorite penetrates the ground by a complex mechanism that includes compression of the target rocks and the meteorite by shock as well as hydrodynamic flow of the compressed material under high pressure and temperature. The depth of penetration of the meteorite, before it loses its integrity as a single body, is a function primarily of the velocity and shape of the meteorite and the densities and equations of state of the meteorite and target. The intensely compressed material then becomes dispersed in a large volume of breccia formed in the expanding shock wave. An impact velocity of about 15 km/sec is consonant with the geology of Meteor Crater in light of the experimental equation of state of iron and inferred compressibility of the target rocks. The kinetic energy of the meteorite is estimated by scaling to have been from 1.4 to 1.7 megatons TNT equivalent.

  6. A Global Atmospheric Model of Meteoric Iron

    NASA Technical Reports Server (NTRS)

    Feng, Wuhu; Marsh, Daniel R.; Chipperfield, Martyn P.; Janches, Diego; Hoffner, Josef; Yi, Fan; Plane, John M. C.

    2013-01-01

    The first global model of meteoric iron in the atmosphere (WACCM-Fe) has been developed by combining three components: the Whole Atmosphere Community Climate Model (WACCM), a description of the neutral and ion-molecule chemistry of iron in the mesosphere and lower thermosphere (MLT), and a treatment of the injection of meteoric constituents into the atmosphere. The iron chemistry treats seven neutral and four ionized iron containing species with 30 neutral and ion-molecule reactions. The meteoric input function (MIF), which describes the injection of Fe as a function of height, latitude, and day, is precalculated from an astronomical model coupled to a chemical meteoric ablation model (CABMOD). This newly developed WACCM-Fe model has been evaluated against a number of available ground-based lidar observations and performs well in simulating the mesospheric atomic Fe layer. The model reproduces the strong positive correlation of temperature and Fe density around the Fe layer peak and the large anticorrelation around 100 km. The diurnal tide has a significant effect in the middle of the layer, and the model also captures well the observed seasonal variations. However, the model overestimates the peak Fe+ concentration compared with the limited rocket-borne mass spectrometer data available, although good agreement on the ion layer underside can be obtained by adjusting the rate coefficients for dissociative recombination of Fe-molecular ions with electrons. Sensitivity experiments with the same chemistry in a 1-D model are used to highlight significant remaining uncertainties in reaction rate coefficients, and to explore the dependence of the total Fe abundance on the MIF and rate of vertical transport.

  7. Lean and Agile: An Epistemological Reflection

    ERIC Educational Resources Information Center

    Browaeys, Marie-Joelle; Fisser, Sandra

    2012-01-01

    Purpose: The aim of the paper is to contribute to the discussion of treating the concepts of lean and agile in isolation or combination by presenting an alternative view from complexity thinking on these concepts, considering an epistemological approach to this topic. Design/methodology/approach: The paper adopts an epistemological approach, using…

  8. Achieving agility through parameter space qualification

    SciTech Connect

    Diegert, K.V.; Easterling, R.G.; Ashby, M.R.; Benavides, G.L.; Forsythe, C.; Jones, R.E.; Longcope, D.B.; Parratt, S.W.

    1995-02-01

    The A-primed (Agile Product Realization of Innovative electro-Mechanical Devices) project is defining and proving processes for agile product realization for the Department of Energy complex. Like other agile production efforts reported in the literature, A-primed uses concurrent engineering and information automation technologies to enhance information transfer. A unique aspect of our approach to agility is the qualification during development of a family of related product designs and their production processes, rather than a single design and its attendant processes. Applying engineering principles and statistical design of experiments, economies of test and analytic effort are realized for the qualification of the device family as a whole. Thus the need is minimized for test and analysis to qualify future devices from this family, thereby further reducing the design-to-production cycle time. As a measure of the success of the A-primed approach, the first design took 24 days to produce, and operated correctly on the first attempt. A flow diagram for the qualification process is presented. Guidelines are given for implementation, based on the authors experiences as members of the A-primed qualification team.

  9. Solar activity and Perseid meteor heights

    NASA Astrophysics Data System (ADS)

    Buček, M.; Porubčan, V.; Zigo, P.

    2012-04-01

    Photographic meteor heights of the Perseid meteoroid stream compiled in the IAU Meteor Data Center catalogue observed in 1939-1992, covering five solar activity cycles, are analyzed and their potential variation within a solar activity cycle is investigated and discussed. Of the 673 Perseids selected from the catalogue, the variations of the heights for three independent sets: 524 Perseids with known information on both heights, 397 with known brightness and 279 with the geocentric velocity within a one sigma limit, were investigated. The observed beginning and endpoint heights of the Perseids, normalized for the geocentric velocity and the absolute photographic magnitude correlated with the solar activity represented by the relative sunspot number R, do not exhibit a variation consistent with the solar activity cycle. The result, confirmed also by the correlation analysis, is derived for the mass ranges of larger meteoroids observed by photographic techniques. However, a possible variation of meteor heights controlled by solar activity for smaller meteoroids detected by television and radio techniques remains still open and has to be verified.

  10. JEM-EUSO: Meteor and nuclearite observations

    NASA Astrophysics Data System (ADS)

    Adams, J. H.; Ahmad, S.; Albert, J.-N.; Allard, D.; Anchordoqui, L.; Andreev, V.; Anzalone, A.; Arai, Y.; Asano, K.; Ave Pernas, M.; Baragatti, P.; Barrillon, P.; Batsch, T.; Bayer, J.; Bechini, R.; Belenguer, T.; Bellotti, R.; Belov, K.; Berlind, A. A.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Blaksley, C.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Blümer, J.; Bobik, P.; Bogomilov, M.; Bonamente, M.; Briggs, M. S.; Briz, S.; Bruno, A.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellinic, G.; Catalano, C.; Catalano, G.; Cellino, A.; Chikawa, M.; Christl, M. J.; Cline, D.; Connaughton, V.; Conti, L.; Cordero, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Dagoret-Campagne, S.; de Castro, A. J.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Dell'Oro, A.; De Simone, N.; Di Martino, M.; Distratis, G.; Dulucq, F.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Falk, S.; Fang, K.; Fenu, F.; Fernández-Gómez, I.; Ferrarese, S.; Finco, D.; Flamini, M.; Fornaro, C.; Franceschi, A.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; Garipov, G.; Geary, J.; Gelmini, G.; Giraudo, G.; Gonchar, M.; González Alvarado, C.; Gorodetzky, P.; Guarino, F.; Guzmán, A.; Hachisu, Y.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Higashide, K.; Ikeda, D.; Ikeda, H.; Inoue, N.; Inoue, S.; Insolia, A.; Isgrò, F.; Itow, Y.; Joven, E.; Judd, E. G.; Jung, A.; Kajino, F.; Kajino, T.; Kaneko, I.; Karadzhov, Y.; Karczmarczyk, J.; Karus, M.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Keilhauer, B.; Khrenov, B. A.; Kim, J.-S.; Kim, S.-W.; Kim, S.-W.; Kleifges, M.; Klimov, P. A.; Kolev, D.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; Lacombe, M.; Lachaud, C.; Lee, J.; Licandro, J.; Lim, H.; López, F.; Maccarone, M. C.; Mannheim, K.; Maravilla, D.; Marcelli, L.; Marini, A.; Martinez, O.; Masciantonio, G.; Mase, K.; Matev, R.; Medina-Tanco, G.; Mernik, T.; Miyamoto, H.; Miyazaki, Y.; Mizumoto, Y.; Modestino, G.; Monaco, A.; Monnier-Ragaigne, D.; Morales de los Ríos, J. A.; Moretto, C.; Morozenko, V. S.; Mot, B.; Murakami, T.; Murakami, M. Nagano; Nagata, M.; Nagataki, S.; Nakamura, T.; Napolitano, T.; Naumov, D.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Panasyuk, M. I.; Parizot, E.; Park, I. H.; Park, H. W.; Pastircak, B.; Patzak, T.; Paul, T.; Pennypacker, C.; Perez Cano, S.; Peter, T.; Picozza, P.; Pierog, T.; Piotrowski, L. W.; Piraino, S.; Plebaniak, Z.; Pollini, A.; Prat, P.; Prévôt, G.; Prieto, H.; Putis, M.; Reardon, P.; Reyes, M.; Ricci, M.; Rodríguez, I.; Rodríguez Frías, M. D.; Ronga, F.; Roth, M.; Rothkaehl, H.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez-Cano, G.; Sagawa, H.; Saito, A.; Sakaki, N.; Sakata, M.; Salazar, H.; Sánchez, S.; Santangelo, A.; Santiago Crúz, L.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, H.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Segreto, A.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shibata, T.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Siemieniec-Oziȩbło, G.; Silva López, H. H.; Sledd, J.; Słomińska, K.; Sobey, A.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tajima, F.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Tenzer, C.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Trillaud, F.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tymieniecka, T.; Uchihori, Y.; Unger, M.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Valore, L.; Vankova, G.; Vigorito, C.; Villaseñor, L.; von Ballmoos, P.; Wada, S.; Watanabe, J.; Watanabe, S.; Watts, J.; Weber, M.; Weiler, T. J.; Wibig, T.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yamamoto, Y.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, K.; Yoshida, S.; Young, R.; Zotov, M. Yu.; Zuccaro Marchi, A.

    2015-11-01

    Meteor and fireball observations are key to the derivation of both the inventory and physical characterization of small solar system bodies orbiting in the vicinity of the Earth. For several decades, observation of these phenomena has only been possible via ground-based instruments. The proposed JEM-EUSO mission has the potential to become the first operational space-based platform to share this capability. In comparison to the observation of extremely energetic cosmic ray events, which is the primary objective of JEM-EUSO, meteor phenomena are very slow, since their typical speeds are of the order of a few tens of km/sec (whereas cosmic rays travel at light speed). The observing strategy developed to detect meteors may also be applied to the detection of nuclearites, which have higher velocities, a wider range of possible trajectories, but move well below the speed of light and can therefore be considered as slow events for JEM-EUSO. The possible detection of nuclearites greatly enhances the scientific rationale behind the JEM-EUSO mission.

  11. Photometric stellar catalogue for TV meteor astronomy

    NASA Astrophysics Data System (ADS)

    Leonov, V. A.; Bagrov, A. V.

    2016-01-01

    Photometry for ordinary astrophysics was carefully developed for its own purposes. As stars radiation is very similar to the blackbody radiation, astronomers measure star illumination in wide or narrow calibrated spectral bands. This is enough for star photometry with precise accuracy and for measuring their light flux in these bands in energetic units. Meteors are moving objects and do not allow collection of more photons then they emit. So meteor observers use the whole spectral band that can be covered by sensitivity of their light sensors. This is why measurements of stellar magnitudes of background stars by these sensors are not the same as catalogued star brightness in standard photometric spectral bands. Here we present a special photometric catalogue of 93 bright non-variable stars of the northern hemisphere, that can be used by meteor observers of standard background whose brightness are calculated in energetic units as well as in non-systematic stellar magnitudes in spectral wavelength of the WATEC 902 sensitivity.

  12. Comet outbursts and the meteor showers

    NASA Astrophysics Data System (ADS)

    Guliyev, A. S.; Kokhirova, G. I.; Poladova, U. D.

    2014-07-01

    The features of 116 comets that have shown an outbursts in their brightness, are considered in the paper. The hypothesis on that the outburst in activity of comets are caused by their passing through meteoroid streams is studied. For this purpose the orbital elements of such comets relative to the planes of motion of 68 meteor showers from Cook's catalogue are analyzed. It was found that four of the nearest and distant nodes of comet orbits relative to the planes of motion of nine meteor showers exceeds the average statistical background with confidence probability from 0.90 to 0.95, and more than 0.95, respectively. The October Draconids, Aurigids, kappa-Serpentids, delta-Draconids, sigma-Hydrids}, Coma Berenicids, Leonids, Leo Minorids, and Perseids showers are the most effective. The results of calculation show that often, the comets outbursts may be caused by collisions of comets with meteoroids under the passing through the meteoroid streams that are producing listed meteor showers as well as solar activity.

  13. Analysis of Historical Meteor and Meteor shower Records: Korea, China and Japan

    NASA Astrophysics Data System (ADS)

    Yang, Hong-Jin; Park, Changbom; Park, Myeong-Gu

    2015-03-01

    We have compiled and analyzed historical meter and meteor shower records in Korean, Chinese, and Japanese chronicles. We have confirmed the peaks of Perseids and an excess due to the mixture of Orionids, north-Taurids, or Leonids through the Monte-Carlo test from the Korean records. The peaks persist for almost one thousand years. We have also analyzed seasonal variation of sporadic meteors from Korean records. Major features in Chinese meteor shower records are quite consistent with those of Korean records, particularly for the last millennium. Japanese records also show Perseids feature and Orionids/north-Taurids/Leonids feature, although they are less prominent compared to those of Korean or Chinese records.

  14. Meteoric water in metamorphic core complexes

    NASA Astrophysics Data System (ADS)

    Teyssier, Christian; Mulch, Andreas

    2015-04-01

    The trace of surface water has been found in all detachment shear zones that bound the Cordilleran metamorphic core complexes of North America. DeltaD values of mica fish in detachment mylonites demonstrate that these synkinematic minerals grew in the presence of meteoric water. Typically deltaD values are very negative (-120 to -160 per mil) corresponding to deltaD values of water that are < -100 per mil given the temperature of water-mica isotopic equilibration (300-500C). From British Columbia (Canada) to Nevada (USA) detachment systems bound a series of core complexes: the Thor-Odin, Valhalla, Kettle-Okanogan, Bitterroot -Anaconda, Pioneer, Raft River, Ruby Mountain, and Snake Range. The bounding shear zones range in thickness from ~100 m to ~1 km, and within the shear zones, meteoric water signature is recognized over 10s to 100s of meters beneath the detachment fault. The age of shearing ranges generally from Eocene in the N (~50-45 Ma) to Oligo-Miocene in the S (25-15 Ma). DeltaD water values derived from mica fish in shear zones are consistent with supradetachment basin records of the same age brackets and can be used for paleoaltimetry if coeval isotopic records from near sea level are available. Results show that a wave of topography (typically 4000-5000 m) developed from N to S along the Cordillera belt from Eocene to Miocene, accompanied by the propagation of extensional deformation and volcanic activity. In addition, each detachment system informs a particular extensional detachment process. For example, the thick Thor-Odin detachment shear zone provides sufficient age resolution to indicate the downward propagation of shearing and the progressive incorporation of footwall rocks into the hanging wall. The Kettle detachment provides a clear illustration of the dependence of fluid circulation on dynamic recrystallization processes. The Raft River system consists of a thick Eocene shear zone that was overprinted by Miocene shearing; channels of meteoric

  15. High-resolution radar observations of meteoroid fragmentation and flaring at the Jicamarca Radio Observatory

    NASA Astrophysics Data System (ADS)

    Zhu, Qian; Dinsmore, Ross; Gao, Boyi; Mathews, John D.

    2016-04-01

    Although meteoroid fragmentation has been observed and studied in the optical meteor community since the 1950s, no definitive fragmentation mechanisms for the relatively small meteoroids (mass ≲10-4 kg) have been proposed. This is in part due to the lack of observations to constrain physical models of the fragmentation process. While it is challenging to record fragmentation in faint optical meteors, observing faint meteors using High-Power, Large-Aperture coherent radars can yield considerable micrometeoroid fragmentation information especially when employing interferometric imaging. Radar interferometric imaging can potentially resolve the fragmentation process in three spatial dimensions by monitoring the evolution of the plasma in the meteor head-echo, flare-echo, and trail-echo regions. We present results of applying a newly developed hybrid interferometric-CS (compressed sensing) technique (H-ICS) to radar meteor observations conducted at the Jicamarca Radio Observatory in Peru. With the H-ICS technique - which provides improved spatial resolution over earlier techniques - we analyse five representative meteoroid fragmentation events. Results include observations of both along and transverse to the trajectory spreading of the developing plasma apparently caused by gross fragmentation and plasma diffusion parallel to the geomagnetic field near the geomagnetic equator.

  16. Meteor observations of the Perseids 2015 using the SPOSH cameras

    NASA Astrophysics Data System (ADS)

    Margonis, A.; Oberst, J.; Christou, A.; Elgner, S.; Sohl, F.; Flohrer, J.; Intzekara, D.; Wahl, D.

    2015-10-01

    We will organize a meteor campaign in Greece focusing on the observation of the meteor activity during this year's maximum of the Perseids meteor shower. Double-station observations will be carried out from 10th until 14th of August using SPOSH cameras. During this period, we anticipate rates up to 100 Perseids per hour. The participation of graduate students during the observations and the data reduction will strengthen the educational aspect of the campaign

  17. On the origin of ringing irregularities - A meteor hypothesis

    NASA Technical Reports Server (NTRS)

    Deshpande, M. R.; Vats, H. O.; Trivedi, A. I.

    1978-01-01

    Isolated ionospheric irregularities produce oscillating diffraction patterns on the ground. In the present study typical physical properties such as density, size, etc. of these irregularities are estimated on the basis of diffraction pattern characteristics. These properties agree well with those of meteor trail ionization and it has been found that most of these oscillating irregularities occur on meteor shower days. It is therefore suggested that the oscillating irregularities are caused by meteor showers.

  18. Results of the IMO Video Meteor Network - May 2014

    NASA Astrophysics Data System (ADS)

    Molau, Sirko; Kac, Javor; Crivello, Stefano; Stomeo, Enrico; Barentsen, Geert; Goncalves, Rui; Igaz, Antal

    2014-08-01

    In 2014 May, over 18 000 meteors were recorded in almost 7 700 hours of effective observing time by 81 cameras of the IMO Video Meteor Network. The flux density profile of the η-Aquariids is presented over the full activity period, based on over 5 000 shower meteors recorded over the last four years. The activity profile is also presented for the η-Lyrids, based on data obtained during the years 2011 to 2014.

  19. Observed diurnal and seasonal behavior of the micrometeor flux using the Arecibo and Jicamarca radars

    NASA Astrophysics Data System (ADS)

    Janches, D.; Chau, J. L.

    2005-09-01

    In this paper, we present results from meteor head-echo observations using the 430 MHz dual beam Arecibo radar in Puerto Rico and the 50 MHz Jicamarca radar in Peru. We show that the seasonal behavior reflected in the fast component of the micrometeor velocity distributions measured at Arecibo can be well explained by a micrometeor radiant distribution centered at the Earth's apex as measured by Jicamarca Radio Observatory (JRO). We conclude that these radars, as probably every other high power and large aperture radar, detect this micrometeor population that show good agreement with the so-called South and North Apex sources reported by Jones and Brown [1993. Monthly Notices of the Royal Astronomical Society]. However, these radars do not seem to detect particles from any other source reported by those authors. We also showed that in order to explain the diurnal and seasonal behavior of the meteor rate detected at Arecibo, based on the results determined by the Jicamarca radar, a strong atmospheric filtering effect must exist. This effect is produced by the early and higher ablation of micrometeors, which enter the atmosphere a low elevation angles, probably reaching high temperature at higher altitudes and depositing some or all their material before they penetrate deep into the Mesosphere/Lower Thermosphere region. These results explain at some level the missing mass inconsistency raised by the comparison of meteor fluxes derived from satellite and traditional meteor radar observations. They also may be the source of the observed high altitude ions and metallic layers observed by radars and lidars, respectively.

  20. Optimising estimates of mesospheric neutral wind using the TIGER SuperDARN radar

    NASA Astrophysics Data System (ADS)

    Matthews, D. M.; Parkinson, M. L.; Dyson, P. L.; Devlin, J. C.

    2006-01-01

    Super Dual Auroral Radar Network (SuperDARN) HF backscatter radars scan 16 beam directions over a field of view of ˜52°. In the common mode of operation, data is collected using 45-km range gates and 7-s integrations on each beam. Application of a beam-swinging algorithm permits mesospheric neutral winds to be estimated from the line-of-sight (LOS) Doppler velocity of meteor echoes detected at near ranges (<600 km). Larger meteor echo detection rates better constrain the solutions and thereby increase the accuracy of wind estimates. Greater rates also lead to wind estimates with better time and height resolution. In this study, meteor echo detection rates were increased by running dedicated radar control programs on the Tasman Geospace Environment Radar (TIGER) Tasmania radar (147.2°E, 43.4°S). This involved the use of shorter 15-km range gates and 2-s integration times. The Doppler characteristics of different echo types at meteor echo ranges were identified. The echoes were then filtered according to these characteristics, and their suitability for estimating neutral winds investigated. One echo type was clearly of ionospheric origin, forming thin, continuous traces decreasing in group range from ˜1200 to ˜300 km before midnight. These "descending plasma streams" (DPS) merged into and contaminated the meteor scatter observed by TIGER. However, they will be less of a problem for the planned network of "storm time" SuperDARN radars to be deployed at mid-latitudes for the study of major substorms and storms which occur less frequently.

  1. Micrometeor Observations Using the Arecibo 430 MHz Radar. I. Determination of the Ballistic Parameter from Measured Doppler Velocity and Deceleration Results

    NASA Astrophysics Data System (ADS)

    Janches, D.; Mathews, J. D.; Meisel, D. D.; Zhou, Q.-H.

    2000-05-01

    We present a sample of radar meteors detected during the November 1997 Leonids shower period using the narrow-beam, high-power Arecibo Observatory 430-MHz radar. During this period ˜7700 events were detected over 73 h of observations that included six mornings. Near apex-crossing, 6-10 events per minute were observed in the ˜300-m diameter beam. From these events a total of 390 meteors are characterized by a clear linear deceleration as derived from the radial Doppler speed determined from the meteor-echo leading-edge (head-echo). We interpret our results in terms of the meteor ballistic parameter—the ratio of the meteoroid mass to cross-sectional area—yielding a physical characterization of these particles prior to any assumptions regarding meteoroid shape and mass density. In addition, we compare these measurements with the results of a numerical solution of the meteor deceleration equation and find them in good agreement. The size and dynamical mass of the meteoroids are estimated considering these particles to be spheres with densities of 3 g/cm 3. We also discuss atmospheric energy-loss mechanisms of these meteroids. We believe these are the first radar meteor decelerations detected since those ones reported by J. V. Evans (1966, J. Geophys. Res. 71, 171-188) and F. Verniani (1966, J. Geophys. Res. 71, 2749-2761; 1973, J. Geophys. Res. 78, 8429-8462) and the first ones for meteors of this size.

  2. Results of the IMO Video Meteor Network - December 2015

    NASA Astrophysics Data System (ADS)

    Molau, S.; Crivello, S.; Goncalves, R.; Saraiva, C.; Stomeo, E.; Kac, J.

    2016-04-01

    In 2015 December, 80 cameras of the IMO Video Meteor Network recorded over 60 000 meteors in more than 10 600 hours of observing time. The flux density profile is presented for the Geminids and compared to previous years. The population index profile of the Geminids is also presented. The activity of the Ursids was slightly enhanced again. The flux density profile is presented and compared to profiles since 2011. The annual summary of the 2015 IMO Video Meteor Network observations is presented. More than 480 000 meteors were recorded in almost 122 000 hours of observing time.

  3. Results of the IMO Video Meteor Network - December 2014

    NASA Astrophysics Data System (ADS)

    Molau, Sirko; Kac, Javor; Crivello, Stefano; Stomeo, Enrico; Barentsen, Geert; Goncalves, Rui; Saraiva, Carlos; Maciewski, Maciej; Maslov, Mikhail

    2015-04-01

    In 2014 December, 85 cameras of the IMO Video Meteor Network recorded almost 45 000 meteors in over 9 300 hours of observing time. The flux density profile is presented for the Geminids, as well as the population index profile around the maximum. A short-lasting outburst of the Ursids occurred on 2014 December 23 at 0h UT that reached a flux density of 60 meteoroids per 1 000 km^2 per hour in a 30-minute interval. The annual summary of the 2014 IMO Video Meteor Network observations is presented. More than 367 000 meteors were recorded in almost 100 000 hours of observing time.

  4. First results of Bosnia-Herzegovina Meteor Network (BHMN)

    NASA Astrophysics Data System (ADS)

    Mujić, N.; Muminović, M.

    2015-01-01

    Inspired by similar networks in the region, a video meteor network began since the spring of 2013 in Bosnia and Herzegovina which currently includes eight stations. Further expansion of the network is under preparation by setting up another 2 stations. The Network is managed by the Astronomical Society Orion Sarajevo together with the Federal Hydrometeorological Institute in Sarajevo whose meteorological stations were used for the installation of the cameras. By mid-June 2015 the cameras of the BH meteor network had recorded over 20000 meteors and we had calculated more than 4000 orbits. In this paper we present the results of the first two years of operation of our meteor network.

  5. METEOR - an artificial intelligence system for convective storm forecasting

    SciTech Connect

    Elio, R.; De haan, J.; Strong, G.S.

    1987-03-01

    An AI system called METEOR, which uses the meteorologist's heuristics, strategies, and statistical tools to forecast severe hailstorms in Alberta, is described, emphasizing the information and knowledge that METEOR uses to mimic the forecasting procedure of an expert meteorologist. METEOR is then discussed as an AI system, emphasizing the ways in which it is qualitatively different from algorithmic or statistical approaches to prediction. Some features of METEOR's design and the AI techniques for representing meteorological knowledge and for reasoning and inference are presented. Finally, some observations on designing and implementing intelligent consultants for meteorological applications are made. 7 references.

  6. Meteor orbit determination with improved accuracy

    NASA Astrophysics Data System (ADS)

    Dmitriev, Vasily; Lupovla, Valery; Gritsevich, Maria

    2015-08-01

    Modern observational techniques make it possible to retrive meteor trajectory and its velocity with high accuracy. There has been a rapid rise in high quality observational data accumulating yearly. This fact creates new challenges for solving the problem of meteor orbit determination. Currently, traditional technique based on including corrections to zenith distance and apparent velocity using well-known Schiaparelli formula is widely used. Alternative approach relies on meteoroid trajectory correction using numerical integration of equation of motion (Clark & Wiegert, 2011; Zuluaga et al., 2013). In our work we suggest technique of meteor orbit determination based on strict coordinate transformation and integration of differential equation of motion. We demonstrate advantage of this method in comparison with traditional technique. We provide results of calculations by different methods for real, recently occurred fireballs, as well as for simulated cases with a priori known retrieval parameters. Simulated data were used to demonstrate the condition, when application of more complex technique is necessary. It was found, that for several low velocity meteoroids application of traditional technique may lead to dramatically delusion of orbit precision (first of all, due to errors in Ω, because this parameter has a highest potential accuracy). Our results are complemented by analysis of sources of perturbations allowing to quantitatively indicate which factors have to be considered in orbit determination. In addition, the developed method includes analysis of observational error propagation based on strict covariance transition, which is also presented.Acknowledgements. This work was carried out at MIIGAiK and supported by the Russian Science Foundation, project No. 14-22-00197.References:Clark, D. L., & Wiegert, P. A. (2011). A numerical comparison with the Ceplecha analytical meteoroid orbit determination method. Meteoritics & Planetary Science, 46(8), pp. 1217

  7. A Global Model of Meteoric Sodium

    NASA Technical Reports Server (NTRS)

    Marsh, Daniel R.; Janches, Diego; Feng, Wuhu; Plane, John M. C.

    2013-01-01

    A global model of sodium in the mesosphere and lower thermosphere has been developed within the framework of the National Center for Atmospheric Research's Whole Atmosphere Community Climate Model (WACCM). The standard fully interactive WACCM chemistry module has been augmented with a chemistry scheme that includes nine neutral and ionized sodium species. Meteoric ablation provides the source of sodium in the model and is represented as a combination of a meteoroid input function (MIF) and a parameterized ablation model. The MIF provides the seasonally and latitudinally varying meteoric flux which is modeled taking into consideration the astronomical origins of sporadic meteors and considers variations in particle entry angle, velocity, mass, and the differential ablation of the chemical constituents. WACCM simulations show large variations in the sodium constituents over time scales from days to months. Seasonality of sodium constituents is strongly affected by variations in the MIF and transport via the mean meridional wind. In particular, the summer to winter hemisphere flow leads to the highest sodium species concentrations and loss rates occurring over the winter pole. In the Northern Hemisphere, this winter maximum can be dramatically affected by stratospheric sudden warmings. Simulations of the January 2009 major warming event show that it caused a short-term decrease in the sodium column over the polar cap that was followed by a factor of 3 increase in the following weeks. Overall, the modeled distribution of atomic sodium in WACCM agrees well with both ground-based and satellite observations. Given the strong sensitivity of the sodium layer to dynamical motions, reproducing its variability provides a stringent test of global models and should help to constrain key atmospheric variables in this poorly sampled region of the atmosphere.

  8. Meteor Beliefs Project: some meteoric imagery in the works of William Shakespeare

    NASA Astrophysics Data System (ADS)

    McBeath, A.; Gheorghe, A. D.

    2003-08-01

    Passages from three of William Shakespeare's plays are presented, illustrating some of the beliefs in meteors in 16th-17th century England. They also reflect earlier beliefs and information which it is known Shakespeare drew on in constructing his works.

  9. Present State and Prospects for the Meteor Research in Ukraine

    NASA Astrophysics Data System (ADS)

    Shulga, O.; Voloshchuk, Y.; Kolomiyets, S.; Cherkas, Y.; Kimakovskay, I.; Kimakovsky, S.; Knyazkova, E.; Kozyryev, Y.; Sybiryakova, Y.; Gorbanev, Y.; Stogneeva, I.; Shestopalov, V.; Kozak, P.; Rozhilo, O.; Taranukha, Y.

    2015-03-01

    ODESSA. Systematical study of the meteor events are being carried out since 1953. In 2003 complete modernization of the observing technique was performed, and TV gmeteor patrolh on the base of WATEC LCL902 cameras was created. @ wide variety of mounts and objectives are used: from Schmidt telescope F = 540 mm, F/D = 2.25 (field of view FOV = (0.68x0.51) deg, star limiting magnitude SLM = 13.5 mag, star astrometric accuracy 1-2 arcsec) up to Fisheye lenses F = 8 mm, F/D = 3.5 (FOV = (36x49) deg, SLM = 7 mag). The database of observations that was collected between 2003 and 2012 consists of 6176 registered meteor events. Observational programs on basis and non-basis observations in Odessa (Kryzhanovka station) and Zmeiny island are presented. Software suite of 12 programs was created for processing of meteor TV observations. It enables one to carry out the whole cycle of data processing: from image preprocessing up to orbital elements determination. Major meteor particles research directions: statistic, areas of streams, precise stream radiant, orbit elements, phenomena physics, flare appearance, wakes, afterglow, chemistry and density. KYIV. The group of meteor investigations has been functioning more than twenty years. The observations are carried out simultaneously from two points placed at the distance of 54 km. Super-isocon low light camera tubes are used with photo lens: F = 50mm, F/D = 1.5 (FOV = (23.5 x 19.0) deg, SLM = 9.5 mag), or F = 85, F/D = 1.5 (FOV = (13x11) deg, SLM = 11.5 mag). Astrometry, photometry, calculation of meteor trajectory in Earth atmosphere and computation of heliocentric orbit are realized in developed gFalling Starh software. KHARKOV. Meteor radio-observations have begun in 1957. In 1972, the radiolocation system MARS designed for automatic meteor registration was recognized as being the most sensitive system in the world. With the help of this system 250 000 faint meteors (up to 12 mag) were registered between 1972 and 1978 (frequency

  10. Analysis of photometric spectra of 17 meteors

    NASA Technical Reports Server (NTRS)

    Millman, P. M.

    1982-01-01

    The initial phase of the photometry which involved 17 meteor spectra consisting of eight Geminid spectra, six Orionid spectra and three Eta Aquarid spectra is discussed. Among these 17 spectra it is found that the Geminid spectra are of the best quality and are used for the identification of the atomic lines and molecular bands that normally appear on video tape spectra. The data from the Geminid records are used for developing calibration techniques in photometry. The Orionid and Eta Aquarid spectra are chosen for early analysis because of the current interest in all physical and chemical data relating to Comet Halley.

  11. Compact, Automated, Frequency-Agile Microspectrofluorimeter

    NASA Technical Reports Server (NTRS)

    Fernandez, Salvador M.; Guignon, Ernest F.

    1995-01-01

    Compact, reliable, rugged, automated cell-culture and frequency-agile microspectrofluorimetric apparatus developed to perform experiments involving photometric imaging observations of single live cells. In original application, apparatus operates mostly unattended aboard spacecraft; potential terrestrial applications include automated or semiautomated diagnosis of pathological tissues in clinical laboratories, biomedical instrumentation, monitoring of biological process streams, and portable instrumentation for testing biological conditions in various environments. Offers obvious advantages over present laboratory instrumentation.

  12. Architecture-Centric Methods and Agile Approaches

    NASA Astrophysics Data System (ADS)

    Babar, Muhammad Ali; Abrahamsson, Pekka

    Agile software development approaches have had significant impact on industrial software development practices. Despite becoming widely popular, there is an increasing perplexity about the role and importance of a system’s software architecture in agile approaches [1, 2]. Advocates of the vital role of architecture in achieving quality goals of large-scale-software-intensive-systems are skeptics of the scalability of any development approach that does not pay sufficient attention to architectural issues. However, the proponents of agile approaches usually perceive the upfront design and evaluation of architecture as being of less value to the customers of a system. According to them, for example, re-factoring can help fix most of the problems. Many experiences show that large-scale re-factoring often results in significant defects, which are very costly to address later in the development cycle. It is considered that re-factoring is worthwhile as long as the high-level design is good enough to limit the need for large-scale re-factoring [1, 3, 4].

  13. Agile manufacturing: The factory of the future

    NASA Technical Reports Server (NTRS)

    Loibl, Joseph M.; Bossieux, Terry A.

    1994-01-01

    The factory of the future will require an operating methodology which effectively utilizes all of the elements of product design, manufacturing and delivery. The process must respond rapidly to changes in product demand, product mix, design changes or changes in the raw materials. To achieve agility in a manufacturing operation, the design and development of the manufacturing processes must focus on customer satisfaction. Achieving greatest results requires that the manufacturing process be considered from product concept through sales. This provides the best opportunity to build a quality product for the customer at a reasonable rate. The primary elements of a manufacturing system include people, equipment, materials, methods and the environment. The most significant and most agile element in any process is the human resource. Only with a highly trained, knowledgeable work force can the proper methods be applied to efficiently process materials with machinery which is predictable, reliable and flexible. This paper discusses the affect of each element on the development of agile manufacturing systems.

  14. First GRB detections with the AGILE Minicalorimeter

    SciTech Connect

    Marisaldi, M.; Labanti, C.; Fuschino, F.; Bulgarelli, A.; Gianotti, F.; Trifoglio, M.; Galli, M.; Tavani, M.; Argan, A.

    2008-05-22

    The Minicalorimeter (MCAL) onboard the AGILE satellite is a 1400 cm{sup 2} scintillation detector sensitive in the energy range 0.3-200 MeV. MCAL works both as a slave of the AGILE Silicon Tracker and as an autonomous detector for transient events (BURST mode). A dedicated onboard Burst Search logic scans BURST mode data in search of count rate increase. Peculiar characteristics of the detector are the high energy spectral coverage and a timing resolution of about 2 microseconds. Even if a trigger is not issued, BURST mode data are used to build a broad band energy spectrum (scientific ratemeters) organized in 11 bands for each of the two MCAL detection planes, with a time resolution of 1 second. After the first engineering commissioning phase, following the AGILE launch on 23rd April 2007, between 22nd June and 5th November 2007 eighteen GRBs were detected offline in the scientific ratemeters data, with a detection rate of about one per week. In this paper the capabilities of the detector will be described and an overview of the first detected GRBs will be given.

  15. An overview of results from the ECOMA-project: in situ studies of meteor smoke particles in the middle atmosphere

    NASA Astrophysics Data System (ADS)

    Rapp, Markus; Strelnikova, Irina; Strelnikov, Boris; Baumgarten, Gerd; Latteck, Ralph; Brattli, Alvin; Svenes, Knut; Hoppe, Ulf-Peter; Friedrich, Martin; Gumbel, Jorg

    The ECOMA-project is dedicated to the study of the ‘Existence and Charge state Of Meteoric smoke particles in the middle Atmosphere'. The project is led by the Leibniz Institute of Atmospheric Physics, Germany, and the Norwegian Defence Research Establishment, Norway, and utilizes rocket borne in situ measurements as well as ground based observations with radars and lidars to characterize meteor smoke particles and their atmospheric and ionospheric environment. The prime instrument of the ECOMA payload is a new particle detector which combines a classical Faraday cup-design with a xenon-flashlamp for the active photoionization of mesospheric aerosol particles and the subsequent detection of corresponding photoelectrons. Other instruments are a swept Langmuir probe, two fixed biased probes and a wave propagation experiment to measure plasma parameters. In addition, an ionization gauge and two simple Pirani gauges are used for neutral density measurements, and a particle sampler is applied for the in flight collection of meteor smoke particles and their return to the ground. Two campaigns have been conducted to date: the first in September 2006 comprising two rocket launches and one in August 2007 where one sounding rocket was launched under conditions of noctilucent clouds and polar mesosphere summer echoes. A third campaign is currently planned for early July 2008. In the present paper we will present results from these campaigns. We will show that the ECOMA particle detector allows to detect meteor smoke particles throughout the mesosphere and that our measurements in autumn 2006 basically confirm expectations regarding the abundance of meteor smoke particles in the mesosphere from microphysical models. We will further compare measurements from autumn and summer conditions, where the most striking finding is that significantly less particles were observed in summer 2007 as compared to autumn 2006. The latter result will be critically discussed with respect to

  16. Meteor shower analysis using a Hausdorff metrization function

    NASA Astrophysics Data System (ADS)

    Kastinen, D.; Kero, J.; Nakamura, T.

    2014-07-01

    Introduction: Since 2009 orbital data of about 120,000 meteors have been collected using a novel head-echo analysis algorithm for the lower VHF band [1]. The data was collected using the middle and upper atmosphere radar (MU radar) of Kyoto University at Shigaraki. We now perform a shower-association analysis of the database [2] using a new Hausdorff metrization function d_H [5] and compare the results with an analysis using two D-criterion's D_{SH} [3] and D_N [4]. The D criterion is based on a sum of weighted differences between the orbits' dependent variables. There are, however, no indications that these satisfies the metric requirements and some of the weight functions have no direct physical explanation. Since the spaces representing elliptic orbits cannot carry a norm compatible with their standard topology [6] we choose to develop the new Hausdorff-based metrization that acts on the subsets in three-dimensional space representing the trajectories. These calculated distances are then used, together with statistical simulations, to perform a cluster analysis of the set of data. In all cases we use the same type of cluster analysis, using a critical threshold for association, but with a different distance function as a basis. The results are also compared to IAU Meteor Data Center's shower list to examine if some of the listed showers can be repeated and perhaps improved upon. Discussion: The statistical analysis of the new Hausdorff metrization function exhibit interesting properties. A Monte Carlo simulation of false association, where we generate a pseudo-random set of orbits, calculate the distances with the three different distance functions and then perform a series of cluster analysis with different critical thresholds, shows that the Hausdorff based function is linear in its false association while the D-criterions generate a convex curve [4]. Another interesting feature of the Hausdorff distance function is that the metrization is the same regardless

  17. Planetary radar

    NASA Technical Reports Server (NTRS)

    Taylor, R. M.

    1980-01-01

    The radar astronomy activities supported by the Deep Space Network during June, July, and August 1980 are reported. The planetary bodies observed were Venus, Mercury, and the asteroid Toro. Data were obtained at both S and X band, and the observations were considered successful.

  18. Future Research in Agile Systems Development: Applying Open Innovation Principles Within the Agile Organisation

    NASA Astrophysics Data System (ADS)

    Conboy, Kieran; Morgan, Lorraine

    A particular strength of agile approaches is that they move away from ‘introverted' development and intimately involve the customer in all areas of development, supposedly leading to the development of a more innovative and hence more valuable information system. However, we argue that a single customer representative is too narrow a focus to adopt and that involvement of stakeholders beyond the software development itself is still often quite weak and in some cases non-existent. In response, we argue that current thinking regarding innovation in agile development needs to be extended to include multiple stakeholders outside the business unit. This paper explores the intra-organisational applicability and implications of open innovation in agile systems development. Additionally, it argues for a different perspective of project management that includes collaboration and knowledge-sharing with other business units, customers, partners, and other relevant stakeholders pertinent to the business success of an organisation, thus embracing open innovation principles.

  19. Very Precise Orbits of 1998 Leonid Meteors

    NASA Technical Reports Server (NTRS)

    Betlem, Hans; Jenniskens, Peter; vantLeven, Jaap; terKuile, Casper; Johannink, Carl; Zhao, Hai-Bin; Lei, Chen-Ming; Li, Guan-You; Zhu, Jin; Evans, Steve; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    Seventy-five orbits of Leonid meteors obtained during the 1998 outburst are presented. Thirty-eight are precise enough to recognize significant dispersion in orbital elements. Results from the nights of 1998 November 16/17 and 17/18 differ, in agreement with the dominant presence of different dust components. The shower rate profile of 1998 November 16/17 was dominated by a broad component, rich in bright meteors. The radiant distribution is compact. The semimajor axis is confined to values close to that of the parent comet, whereas the distribution of inclination has a central condensation in a narrow range. On the other hand, 1998 November 17/18 was dominated by dust responsible for a more narrow secondary peak in the flux curve. The declination of the radiant and the inclination of the orbit are more widely dispersed. The argument of perihelion, inclination, and the perihelion distance are displaced. These data substantiate the hypothesis that trapping in orbital resonances is important for the dynamical evolution of the broad component.

  20. Meteoric Magnesium Ions in the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Pesnell, William Dean; Grebowsky, Joseph

    1999-01-01

    From a thorough modeling of the altitude profile of meteoritic ionization in the Martian atmosphere we deduce that a persistent layer of magnesium ions should exist around an altitude of 70 km. Based on current estimates of the meteoroid mass flux density, a peak ion density of about 10(exp 4) ions/cm is predicted. Allowing for the uncertainties in all of the model parameters, this value is probably within an order of magnitude of the correct density. Of these parameters, the peak density is most sensitive to the meteoroid mass flux density which directly determines the ablated line density into a source function for Mg. Unlike the terrestrial case, where the metallic ion production is dominated by charge-exchange of the deposited neutral Mg with the ambient ions, Mg+ in the Martian atmosphere is produced predominantly by photoionization. The low ultraviolet absorption of the Martian atmosphere makes Mars an excellent laboratory in which to study meteoric ablation. Resonance lines not seen in the spectra of terrestrial meteors may be visible to a surface observatory in the Martian highlands.

  1. The Taurid complex meteor showers and asteroids

    NASA Astrophysics Data System (ADS)

    Porubčan, V.; Kornoš, L.; Williams, I. P.

    2006-06-01

    The structure of the Taurid meteor complex based on photographic orbits available in the IAU Meteor database is studied. We have searched for potential sub-streams or filaments to be associated with the complex utilizing the Southworth-Hawkins D-criterion. Applying a strict limiting value for D=0.10, fifteen sub-streams or filaments, consisting of more than three members, could be separated out from the general complex. To confirm their mutual consistence as filaments, rather than fortuitous clumping at the present time, the orbital evolution over 5000 years of each member is studied. Utilizing the D-criterion we also searched for NEOs that might be associated with the streams and filaments of the complex and investigated the orbital evolution of potential members. Possible associations between 7 Taurid filaments and 9 NEOs were found. The most probable are for S Psc(b) -- 2003QC10, N Tau(a) -- 2004TG10, ο Ori -- 2003UL3 and N Tau(b) -- 2002XM35. Some of the potential parent objects could be either dormant comets or larger boulders moving within the complex. Three of the most populated filaments of the complex may have originated from 2P/Encke.

  2. Positional Measurements of the Meteor TV Images

    NASA Astrophysics Data System (ADS)

    Gorbanev, Yu. M.; Kimakovsky, S. R.; Knyazkova, E. F.

    We discuss the methods and software which is used for processing of the meteor TV images. Methods are based on the principles of the aperture CCD photometry. Software enables one to make processing of the observational material that was secured using TV methods with telescopic systems (field of view less that 1 angular degree), as well as with astrocameras of the wide field of view (field of view less 2-4 angular degrees, and even more than 50 degrees). We also elaborated method that allows one to identify operatively and to measure automatically rectangular coordinates within the image frame, as well as to calculate equatorial coordinates of the object using the Turner method and compiled stellar catalogues. This method was tested with observational material obtained with the help of TV meteor patrol within the period from 2003 to 2010 at Kryzhanovka station that belongs to Astronomical Observatory of Odessa National University. We performed an analysis of accuracy determination of the stellar images measurements. Software was tested in order to use it for the comet observations.

  3. Gasdynamic substantiation of physical theory of meteors

    NASA Astrophysics Data System (ADS)

    Egorova, Lidia A.; Tirskiy, Grigoriy A.

    2014-12-01

    Physical theory of meteors developing since 30s of the last century, based on two ordinary differential equations: the equation of motion for the center of mass of meteoroid and equation of meteoroid ablation. These equations contain drag and heat transfer coefficients, which are share of momentum and energy transferred from gas to meteoroid and effective enthalpy of mass loss. Accounting for different values of these coefficients substantially changes meteoroid ballistics compared with the results of simple physical theory of meteors. For the drag coefficient a simple interpolation formula is valid for all flow regimes and depends on the Reynolds number. The heat transfer coefficient represented in the form of the approximation depending on density and meteoroid radius. Based on the law of conservation of mass and energy at the front of meteoroid melting and evaporation the explicit expression for the effective enthalpy of mass loss Q was obtained, depending on the speed of the meteoroid and heterogeneous reactions on the surface. Classical solution gives a significant deviation from the exact one obtained in present study for small bodies (1 mm) at high altitudes and high speeds.

  4. Results of the IMO Video Meteor Network - January 2014

    NASA Astrophysics Data System (ADS)

    Molau, Sirko; Kac, Javor; Crivello, Stefano; Stomeo, Enrico; Barentsen, Geert; Goncalves, Rui

    2014-04-01

    The 2014 January results of the IMO Video Meteor Network are presented, based on more than 18 000 meteors collected in almost 6 000 hours of observing time. Flux density profile of the Quadrantids around the maximum (January 3/4) is presented and a population index of r=1.8 is obtained for the night of maximum.

  5. Results of the IMO Video Meteor Network - June 2014

    NASA Astrophysics Data System (ADS)

    Molau, Sirko; Kac, Javor; Crivello, Stefano; Stomeo, Enrico; Barentsen, Geert; Goncalves, Rui; Igaz, Antal

    2014-10-01

    About 18 500 meteors were recorded in almost 6 500 hours of effective observing time by 78 cameras of the IMO Video Meteor Network in 2014 June. Activity of the Daytime Arietids was studied and the first attempt to calculate the flux density profile is presented.

  6. The 2011 Draconids: The First European Airborne Meteor Observation Campaign

    NASA Astrophysics Data System (ADS)

    Vaubaillon, Jeremie; Koten, Pavel; Margonis, Anastasios; Toth, Juraj; Rudawska, Regina; Gritsevich, Maria; Zender, Joe; McAuliffe, Jonathan; Pautet, Pierre-Dominique; Jenniskens, Peter; Koschny, Detlef; Colas, Francois; Bouley, Sylvain; Maquet, Lucie; Leroy, Arnaud; Lecacheux, Jean; Borovicka, Jiri; Watanabe, Junichi; Oberst, Jürgen

    2015-02-01

    On 8 October 2011, the Draconid meteor shower (IAU, DRA) was predicted to cause two brief outbursts of meteors, visible from locations in Europe. For the first time, a European airborne meteor observation campaign was organized, supported by ground-based observations. Two aircraft were deployed from Kiruna, Sweden, carrying six scientists, 19 cameras and eight crew members. The flight geometry was chosen such that it was possible to obtain double-station observations of many meteors. The instrument setup on the aircraft as well as on the ground is described in full detail. The main peak from 1900-dust ejecta happened at the predicted time and at the predicted rate. The second peak was observed from the earlier flight and from the ground, and was caused most likely by trails ejected in the nineteenth century. A total of 250 meteors were observed, for which light curve data were derived. The trajectory, velocity, deceleration and orbit of 35 double station meteors were measured. The magnitude distribution index was high, as a result of which there was no excess of meteors near the horizon. The light curve proved to be extremely flat on average, which was unexpected. Observations of spectra allowed us to derive the compositional information of the Draconids meteoroids and showed an early release of sodium, usually interpreted as resulting from fragile meteoroids. Lessons learned from this experience are derived for future airborne meteor shower observation campaigns.

  7. Goals, technique and equipment of meteor study in Russia

    NASA Astrophysics Data System (ADS)

    Kartashova, A.; Bagrov, A. V.; Bolgova, G. T.; Kruchkov, S. V.; Leonov, V. A.; Mazurov, V. A.

    2013-09-01

    Institute of Astronomy RAS is one of the science institutes in the Russian Federation providing systematic optical meteor observations and supervises several meteor groups in our country. The main tasks of our investigations are dedicated to study meteoroid nature as well as meteoroid streams and meteoroid population in the Solar System. In the XXI century we in Russia carry out the reconstruction of our meteor astronomy due to possibilities of new meteor observation equipment (more powerful than were used before as visual and photographic methods) had made possible to select more interesting goals. First of our task is investigation of meteoroid streams crossing the Earth's orbit, and character of meteoroid distributions along of them. The multi stations meteor monitoring from located in the both hemispheres of the Earth can help in this study. According to the analysis of the evolution of meteor orbits, the compact and long lived meteoroid streams consist mainly from large particles. The observation equipment (cheap TV-cameras) with low limiting magnitude we use for gathering observational data. On the other hand, the observations of weak meteors are needed for new meteor shower indication (or confirmation of known meteor shower). The more effective way to do it is comparison of individual meteor orbits parameters (then calculation of radiants of meteor showers). The observations of space debris (as the meteors with low velocity - less 11.2 km/s) can be taking up within this task. The combination of high sensitive TV-cameras WATEC and super-fast lenses COMPUTAR are widely used for meteor TV-monitoring. The TVsystems for round-year meteor observations are fixed and are permanently oriented to the zenith area (the patrol camera - PatrolCa). The mobile TV-cameras (MobileCa) are used for double station observations (if it is possible) and located not far from main cameras PatrolCa (20-30 km). The mobile TVcameras observe 90% of main PatrolCa cameras FOV at altitudes

  8. Meteor trails observed by the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Cikota, A.; Bektešević, D.; Cikota, S.; Weaver, B.; Jevremović, D.; Vinković, D.

    2014-07-01

    Scientific observation of meteors is not simple because they have large angular size and random appearance in time and position on the sky. Bright meteors can be easily observed by naked eye or by video cameras in low resolution, but the luminosity distribution of meteors at their fainter end, the actual column diameter of the radiating zone, meteor fragmentation and the microstructure of lightcurves (especially when a meteor is detected through several color filters, as it happened in SDSS) is not well investigated. However, wide-field surveys, such as SDSS or the future LSST, with long time coverage over a significant fraction of sky might be helpful in collecting a scientifically relevant sample of low-brightness meteors. We used a custom designed Python script to detect linear features in SDSS images. The detection is performed in two steps: 1) we detect stars with Source Extractor [1] and blend them out; 2) we define a threshold so as to analyze 10000 points over the threshold; 3) we apply RANSAC [2] to detect points forming a line. We detected trails in over 15000 calibrated and sky-subtracted ''frame'' images in two filters so far. The drift scan in imaging survey mode of SDSS enables simple distinction between "apparently fast" meteors and other "slow" linear features caused by satellites and space debris, so that around 4000 frames could be eliminated as obvious satellites. Here we discuss the detection method, show some interesting preliminary results of the analysis of detected meteors, and discuss implications for other surveys.

  9. Comets and meteors in the beliefs of ancient mayas

    NASA Astrophysics Data System (ADS)

    Yershova, G. G.

    2001-12-01

    Data concerning the Mayan approach to comets and meteors have till now been available mostly from ethnographical and folklore sources which dealt, as a rule, with various beliefs and tokens. The studies of hieroglyphic texts of the Classic Period (AD 600-900) have proved that comets and meteors were undoubtedly known in this culture through astronomical observations and their periodicity.

  10. Romanian Observational Campaign on Summer Meteor Showers in 2000

    NASA Astrophysics Data System (ADS)

    Berinde, S.; Grigore, V.

    2001-01-01

    In this paper we summarize the most important results of a summer observational campaign dedicated to the observation of the entire spectrum of active meteor showers on this period. Our results are enriched by the determination of two possible new radiants in Cygnus, not related to any other known meteor shower.

  11. Meteor Showers of the Earth-crossing Asteroids

    NASA Astrophysics Data System (ADS)

    Pulat, Babadzhanov; Gulchekhra, Kokhirova

    2015-03-01

    The results of search for meteor showers associated with the asteroids crossing the Earthfs orbit and moving on comet-like orbits are given. It was shown that among 2872 asteroids discovered till 1.01.2005 and belonging to the Apollo and Amor groups, 130 asteroids have associated meteor showers and, therefore, are the extinct cometary nuclei.

  12. Investigation of meteor shower parent bodies using various metrics

    NASA Astrophysics Data System (ADS)

    Dumitru, B. A.; Birlan, M.; Nedelcu, A.; Popescu, M.

    2016-01-01

    The present knowledge of meteor showers identifies the small bodies of our Solar System as supply sources for meteor streams. Both comets and asteroids are considered as the origin of meteor showers. The new paradigm of "active asteroids" opens up a large field of investigation regarding the relationships between asteroids and meteors. Processes like ejection and disaggregation at impacts, rotational instabilities, electrostatic repulsion, radiation pressure, dehydration stress followed by thermal fractures, sublimation of ices are sources of matter loss from asteroids. Our objective is to find genetic relationships between asteroids and meteor showers using metrics based on orbital elements. For this objective we selected three metrics (Southworth and Hawkins, 1963; Asher et al. 1993, and Jopek, 1993, respectively), the recent MPC database and the more recent IAU meteor shower database. From our analysis, 41 of the meteor showers have probabilities of being produced (or to be fueled) by asteroids. Our sample of asteroids contains more than 1000 objects, all of them belonging to the Near-Earth Asteroid population. The systematic approach performed, based on the physical properties of our sample, reinforced the link between asteroids and their associated meteor shower.

  13. Abstracts for the International Conference on Asteroids, Comets, Meteors 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Topics addressed include: chemical abundances; asteroidal belt evolution; sources of meteors and meteorites; cometary spectroscopy; gas diffusion; mathematical models; cometary nuclei; cratering records; imaging techniques; cometary composition; asteroid classification; radio telescopes and spectroscopy; magnetic fields; cosmogony; IUE observations; orbital distribution of asteroids, comets, and meteors; solar wind effects; computerized simulation; infrared remote sensing; optical properties; and orbital evolution.

  14. Radar Detectability Studies of Slow and Small Zodiacal Dust Cloud Particles: II. A Study of Three Radars with Different Sensitivity

    NASA Astrophysics Data System (ADS)

    Janches, D.; Swarnalingam, N.; Plane, J. M. C.; Nesvorný, D.; Feng, W.; Vokrouhlický, D.; Nicolls, M. J.

    2015-07-01

    The sensitivity of radar systems to detect different velocity populations of the incoming micrometeoroid flux is often the first argument considered to explain disagreements between models of the Near-Earth dust environment and observations. Recently, this was argued by Nesvorný et al. to support the main conclusions of a Zodiacal Dust Cloud (ZDC) model which predicts a flux of meteoric material into the Earth’s upper atmosphere mostly composed of small and very slow particles. In this paper, we expand on a new methodology developed by Janches et al. to test the ability of powerful radars to detect the meteoroid populations in question. In our previous work, we focused on Arecibo 430 MHz observations since it is the most sensitive radar that has been used for this type of observation to date. In this paper, we apply our methodology to two other systems, the 440 MHz Poker Flat Incoherent Scatter Radar and the 46.5 Middle and Upper Atmosphere radar. We show that even with the less sensitive radars, the current ZDC model over-predicts radar observations. We discuss our results in light of new measurements by the Planck satellite which suggest that the ZDC particle population may be characterized by smaller sizes than previously believed. We conclude that the solution to finding agreement between the ZDC model and sensitive high power and large aperture meteor observations must be a combination of a re-examination not only of our knowledge of radar detection biases, but also the physical assumptions of the ZDC model itself.

  15. First results on video meteors from Crete, Greece

    NASA Astrophysics Data System (ADS)

    Maravelias, G.

    2012-01-01

    This work presents the first systematic video meteor observations from a, forthcoming permanent, station in Crete, Greece, operating as the first official node within the International Meteor Organization's Video Network. It consists of a Watec 902 H2 Ultimate camera equipped with a Panasonic WV-LA1208 (focal length 12mm, f/0.8) lens running MetRec. The system operated for 42 nights during 2011 (August 19-December 30, 2011) recording 1905 meteors. It is significantly more performant than a previous system used by the author during the Perseids 2010 (DMK camera 21AF04.AS by The Imaging Source, CCTV lens of focal length 2.8 mm, UFO Capture v2.22), which operated for 17 nights (August 4-22, 2010) recording 32 meteors. Differences - according to the author's experience - between the two softwares (MetRec, UFO Capture) are discussed along with a small guide to video meteor hardware.

  16. Meteoroid Fragmentation as Revealed in Head- and Trail-Echoes Observed with the Arecibo UHF and VHF Radars

    NASA Technical Reports Server (NTRS)

    Mathews, J. D.; Malhorta, A.

    2011-01-01

    We report recent 46.8/430 MHz (VHF/UHF) radar meteor observations at Arecibo Observatory (AO) that reveal many previously unreported features in the radar meteor return - including flare-trails at both UHF and VHF - that are consistent with meteoroid fragmentation. Signature features of fragmentation include strong intra-pulse and pulse-to-pulse fading as the result of interference between or among multiple meteor head-echo returns and between head-echo and impulsive flare or "point" trail-echoes. That strong interference fading occurs implies that these scatterers exhibit well defined phase centers and are thus small compared with the wavelength. These results are consistent with and offer advances beyond a long history of optical and radar meteoroid fragmentation studies. Further, at AO, fragmenting and flare events are found to be a large fraction of the total events even though these meteoroids are likely the smallest observed by the major radars. Fragmentation is found to be a major though not dominate component of the meteors observed at other HPLA radars that are sensitive to larger meteoroids.

  17. Applying Agile MethodstoWeapon/Weapon-Related Software

    SciTech Connect

    Adams, D; Armendariz, M; Blackledge, M; Campbell, F; Cloninger, M; Cox, L; Davis, J; Elliott, M; Granger, K; Hans, S; Kuhn, C; Lackner, M; Loo, P; Matthews, S; Morrell, K; Owens, C; Peercy, D; Pope, G; Quirk, R; Schilling, D; Stewart, A; Tran, A; Ward, R; Williamson, M

    2007-05-02

    This white paper provides information and guidance to the Department of Energy (DOE) sites on Agile software development methods and the impact of their application on weapon/weapon-related software development. The purpose of this white paper is to provide an overview of Agile methods, examine the accepted interpretations/uses/practices of these methodologies, and discuss the applicability of Agile methods with respect to Nuclear Weapons Complex (NWC) Technical Business Practices (TBPs). It also provides recommendations on the application of Agile methods to the development of weapon/weapon-related software.

  18. Solar Radio Burst Effects and Meteor Effects: Operational Products Under Development at the Joint SMC-AFRL Rapid Prototyping Center

    NASA Astrophysics Data System (ADS)

    Quigley, S.

    2002-05-01

    The Air Force Research Laboratory (AFRL/VSB) and Detachment 11, Space & Missile Systems Center (SMC, Det 11/CIT) have combined efforts to design, develop, test, and implement graphical products for the Air Force's space weather operations center. These products are generated to analyze, specify, and forecast the effects of the near-earth space environment on Department of Defense systems and communications. Jointly-developed products that will be added to real-time operations in the near future include a solar radio background and burst effects (SoRBE) product suite, and a meteor effects (ME) product suite. The SoRBE product addresses the effect of background and event-level solar radio output on operational DoD systems. Strong bursts of radio wave emissions given off by the sun during solar ``events'' can detrimentally affect radar and satellite communication systems that have operational receiving geometries within the field of view of the sun. For some systems, even the background radiation from the sun can produce effects. The radio frequency interference (RFI) of interest occurs on VHF, UHF, and SHF frequency bands, usually lasting several minutes during a solar flare. While such effects are limited in time and area (typically a few degrees in viewing angle), they can be quite severe in magnitude. The result can be a significant lack in a radar system's ability to detect and/or track an object, and loss of a communication system's ability to receive satellite signals. The ME product will address the detrimental effects of meteors on operational DoD systems. These include impacts on satellites, visible trail observations, and radar clutter. While certain types of individual meteors can produce system effects, the initial ME product will address the more generalized range of meteor shower activity and associated affects. These effects can result in damage to satellites, incorrect assessment of satellite sensor observations, and false target returns on radar

  19. A study of meteor spectroscopy and physics from earth-orbit: A preliminary survey into ultraviolet meteor spectra

    NASA Technical Reports Server (NTRS)

    Meisel, D. D.

    1976-01-01

    Preliminary data required to extrapolate available meteor physics information (obtained in the photographic, visual and near ultraviolet spectral regions) into the middle and far ultraviolet are presented. Wavelength tables, telluric attenuation factors, meteor rates, and telluric airglow data are summarized in the context of near-earth observation vehicle parameters using moderate to low spectral resolution instrumentation. Considerable attenuation is given to the problem of meteor excitation temperatures since these are required to predict the strength of UV features. Relative line intensities are computed for an assumed chondritic composition. Features of greatest predicted intensities, the major problems in meteor physics, detectability of UV meteor events, complications of spacecraft motion, and UV instrumentation options are summarized.

  20. Bangs and Meteors from the Quiet Comet 15P/Finlay

    NASA Astrophysics Data System (ADS)

    Ye, Quan-Zhi; Brown, Peter G.; Bell, Charles; Gao, Xing; Mašek, Martin; Hui, Man-To

    2015-11-01

    Jupiter-family comet 15P/Finlay has been reportedly quiet in activity for over a century but has harbored two outbursts during its 2014/2015 perihelion passage. Here we present an analysis of these two outbursts using a set of cometary observations. The outbursts took place between 2014 December 15.4-16.0 UT and 2015 January 15.5-16.0 UT as constrained by ground-based and spacecraft observations. We find a characteristic ejection speed of V0 = 300-650 m s-1 for the ejecta of the first outburst and V0 = 550-750 m s-1 for that of the second outburst using a Monte Carlo dust model. The mass of the ejecta is calculated to be Md = (2-3) × 105 kg for the first outburst and Md = (4-5) × 105 kg for the second outburst, which corresponds to less than 10-7 of the nucleus mass. The specific energy of the two outbursts is found to be (0.3-2) × 105 J kg-1. We also revisit the long-standing puzzle of the nondetection of the hypothetical Finlayid meteor shower by performing a cued search using the 13 yr data from the Canadian Meteor Orbit Radar, which does not reveal any positives. Earth will pass the 2014/2015 outburst ejecta between 2021 October 6 at 22 hr UT and October 7 at 1 hr UT, with a chance for some significant meteor activity in the radio range, which may provide further clues to the Finlayid puzzle. A southerly radiant in the constellation of Ara will favor the observers in the southern tip of Africa.

  1. Bangs and Meteors from the Quiet Comet 15P/Finlay

    NASA Astrophysics Data System (ADS)

    Ye, Quan-Zhi; Brown, Peter G.; Bell, Charles; Gao, Xing; Mašek, Martin; Hui, Man-To

    2015-11-01

    Jupiter-family comet 15P/Finlay has been reportedly quiet in activity for over a century but has harbored two outbursts during its 2014/2015 perihelion passage. Here we present an analysis of these two outbursts using a set of cometary observations. The outbursts took place between 2014 December 15.4–16.0 UT and 2015 January 15.5–16.0 UT as constrained by ground-based and spacecraft observations. We find a characteristic ejection speed of V0 = 300–650 m s‑1 for the ejecta of the first outburst and V0 = 550–750 m s‑1 for that of the second outburst using a Monte Carlo dust model. The mass of the ejecta is calculated to be Md = (2–3) × 105 kg for the first outburst and Md = (4–5) × 105 kg for the second outburst, which corresponds to less than 10‑7 of the nucleus mass. The specific energy of the two outbursts is found to be (0.3–2) × 105 J kg‑1. We also revisit the long-standing puzzle of the nondetection of the hypothetical Finlayid meteor shower by performing a cued search using the 13 yr data from the Canadian Meteor Orbit Radar, which does not reveal any positives. Earth will pass the 2014/2015 outburst ejecta between 2021 October 6 at 22 hr UT and October 7 at 1 hr UT, with a chance for some significant meteor activity in the radio range, which may provide further clues to the Finlayid puzzle. A southerly radiant in the constellation of Ara will favor the observers in the southern tip of Africa.

  2. On Meteoric Dust Particles in the Near-Earth Space Environment

    NASA Astrophysics Data System (ADS)

    Mahmoudian, Alireza; Farahani, Majid Mazraeh Ei; Mohebalhojeh, Ali R.; Scales, Wayne

    2016-07-01

    Over 40 metric tons of meteoric dust enters the earth's atmosphere every day. This dust settles and creates natural dust layers in the altitude ranges between 80 and 100 kilometers which spans the earth's upper mesosphere to lower thermosphere. The dust layers in the lower atmosphere have a great impact on climate, human health as well as communication and navigation signals. The main goal of this study is the role of meteoric smoke particles on the formation of Polar Mesospheric Clouds (PMC). Recent rocket experiments have detected the presence of these particles. Since these dust layers are immersed in the earth's upper atmosphere, they become charged due to collection of electrons and ions from the earth's ionospheric plasma. Noctilucent Clouds NLCs are a fascinating visual manifestation of these dust layers. So-called Polar Mesospheric Summer Echoes PMSEs are radar echoes that are a direct consequence of the sub-visible charged dust that exists at altitudes above NLC regions. Polar Mesospheric Summer Echoes (PMSE) are strong echoes that have been typically observed in the frequency range from 50MHz to 1.3GHz and in the altitude about 85km. Unlike PMSE, Polar mesospheric winter echoes (PMWE) are less known. PMWE appear at a lower altitude and is weaker in comparison with PMSE. The focus of this study is on meteoric smoke particles and how they affect PMWE source region. Parameters associated with smoke dust particles such as size distribution, charging characteristics, density and positive or negative charge will be considered. The second part of this presentation will be on the effect of gravity waves on PMC. Full coupling to a turbulent neutral field with a statistical analysis will be discussed. Impact of a neutral turbulence driving field on small amplitude plasma fluctuations in such a configuration and some of the important consequences will be also presented. This has important consequences for electric field and potential measurements on rocket probes as

  3. TRMM radar

    NASA Technical Reports Server (NTRS)

    Okamoto, Kenichi

    1993-01-01

    The results of a conceptual design study and the performance of key components of the Bread Board Model (BBM) of the Tropical Rainfall Measuring Mission (TRMM) radar are presented. The radar, which operates at 13.8 GHz and is designed to meet TRMM mission objectives, has a minimum measurable rain rate of 0.5 mm/h with a range resolution of 250 m, a horizontal resolution of about 4 km, and a swath width of 220 km. A 128-element active phased array system is adopted to achieve contiguous scanning within the swath. The basic characteristics of BBM were confirmed by experiments. The development of EM started with the cooperation of NASDA and CRL.

  4. The MAGIC meteoric smoke particle sampler

    NASA Astrophysics Data System (ADS)

    Hedin, Jonas; Giovane, Frank; Waldemarsson, Tomas; Gumbel, Jörg; Blum, Jürgen; Stroud, Rhonda M.; Marlin, Layne; Moser, John; Siskind, David E.; Jansson, Kjell; Saunders, Russell W.; Summers, Michael E.; Reissaus, Philipp; Stegman, Jacek; Plane, John M. C.; Horányi, Mihály

    2014-10-01

    Between a few tons to several hundred tons of meteoric material enters the Earth's atmosphere each day, and most of this material is ablated and vaporized in the 70-120 km altitude region. The subsequent chemical conversion, re-condensation and coagulation of this evaporated material are thought to form nanometre sized meteoric smoke particles (MSPs). These smoke particles are then subject to further coagulation, sedimentation and global transport by the mesospheric circulation. MSPs have been proposed as a key player in the formation and evolution of ice particle layers around the mesopause region, i.e. noctilucent clouds (NLC) and polar mesosphere summer echoes (PMSE). MSPs have also been implicated in mesospheric heterogeneous chemistry to influence the mesospheric odd oxygen/odd hydrogen (Ox/HOx) chemistry, to play an important role in the mesospheric charge balance, and to be a significant component of stratospheric aerosol and enhance the depletion of O3. Despite their apparent importance, little is known about the properties of MSPs and none of the hypotheses can be verified without direct evidence of the existence, altitude and size distribution, shape and elemental composition. The aim of the MAGIC project (Mesospheric Aerosol - Genesis, Interaction and Composition) was to develop an instrument and analysis techniques to sample for the first time MSPs in the mesosphere and return them to the ground for detailed analysis in the laboratory. MAGIC meteoric smoke particle samplers have been flown on several sounding rocket payloads between 2005 and 2011. Several of these flights concerned non-summer mesosphere conditions when pure MSP populations can be expected. Other flights concerned high latitude summer conditions when MSPs are expected to be contained in ice particles in the upper mesosphere. In this paper we present the MAGIC project and describe the MAGIC MSP sampler, the measurement procedure and laboratory analysis. We also present the attempts to

  5. Agile informatics: application of agile project management to the development of a personal health application.

    PubMed

    Chung, Jeanhee; Pankey, Evan; Norris, Ryan J

    2007-01-01

    We describe the application of the Agile method-- a short iteration cycle, user responsive, measurable software development approach-- to the project management of a modular personal health record, iHealthSpace, to be deployed to the patients and providers of a large academic primary care practice. PMID:18694014

  6. To See the Unseen: A History of Planetary Radar Astronomy

    NASA Technical Reports Server (NTRS)

    Butrica, Andrew J.

    1996-01-01

    This book relates the history of planetary radar astronomy from its origins in radar to the present day and secondarily to bring to light that history as a case of 'Big Equipment but not Big Science'. Chapter One sketches the emergence of radar astronomy as an ongoing scientific activity at Jodrell Bank, where radar research revealed that meteors were part of the solar system. The chief Big Science driving early radar astronomy experiments was ionospheric research. Chapter Two links the Cold War and the Space Race to the first radar experiments attempted on planetary targets, while recounting the initial achievements of planetary radar, namely, the refinement of the astronomical unit and the rotational rate and direction of Venus. Chapter Three discusses early attempts to organize radar astronomy and the efforts at MIT's Lincoln Laboratory, in conjunction with Harvard radio astronomers, to acquire antenna time unfettered by military priorities. Here, the chief Big Science influencing the development of planetary radar astronomy was radio astronomy. Chapter Four spotlights the evolution of planetary radar astronomy at the Jet Propulsion Laboratory, a NASA facility, at Cornell University's Arecibo Observatory, and at Jodrell Bank. A congeries of funding from the military, the National Science Foundation, and finally NASA marked that evolution, which culminated in planetary radar astronomy finding a single Big Science patron, NASA. Chapter Five analyzes planetary radar astronomy as a science using the theoretical framework provided by philosopher of science Thomas Kuhn. Chapter Six explores the shift in planetary radar astronomy beginning in the 1970s that resulted from its financial and institutional relationship with NASA Big Science. Chapter Seven addresses the Magellan mission and its relation to the evolution of planetary radar astronomy from a ground-based to a space-based activity. Chapters Eight and Nine discuss the research carried out at ground

  7. Behavior of neutral wind gradients at meteor heights over midlatitude stations

    NASA Technical Reports Server (NTRS)

    Devara, P. C. S.; Chandrasekhar, G.; Ahmed, M. I.

    1985-01-01

    The variation of wind gradients in the altitude range of 80 to 100 km, which contributes information on propagational characteristics of wave phenomena prevailing at those altitudes, was studied. Diurnal and semidiurnal components of the zonal (EW) and meridional (NS) neutral wind data collected over Atlanta using the Georgia Tech Meteor Wind Radar Facility during the period of August 1974 through March of 1978 over the height range of 80 to 100 km are analyzed in detail to obtain information on height gradients in amplitude and phase of neutral wind components over height intervals of 80 to 90 and 90 to 100 km. The details of the data analysis, major results, and conclusions are presented.

  8. Tunguska Genetic Anomaly and Electrophonic Meteors

    NASA Astrophysics Data System (ADS)

    Silagadze, Z. K.

    2005-03-01

    One of great mysteries of the Tunguska event is its genetic impact. Some genetic anomalies were reported in the plants, insects and people of the Tunguska region. Remarkably, the increased rate of biological mutations was found not only within the epicenter area, but also along the trajectory of the Tunguska Space Body (TSB). At that no traces of radioactivity were found, which could be reliably associated with the Tunguska event. The main hypotheses about the nature of the TSB, a stony asteroid, a comet nucleus or a carbonaceous chondrite, readily explain the absence of radioactivity but give no clues how to deal with the genetic anomaly. A choice between these hypotheses, as far as the genetic anomaly is concerned, is like to the choice between ``blue devil, green devil and speckled devil'', to quote late Academician N.V. Vasilyev. However, if another mysterious phenomenon, electrophonic meteors, is evoked, the origin of the Tunguska genetic anomaly becomes less obscure.

  9. Agile Development Methods for Space Operations

    NASA Technical Reports Server (NTRS)

    Trimble, Jay; Webster, Chris

    2012-01-01

    Main stream industry software development practice has gone from a traditional waterfall process to agile iterative development that allows for fast response to customer inputs and produces higher quality software at lower cost. How can we, the space ops community, adopt state of the art software development practice, achieve greater productivity at lower cost, and maintain safe and effective space flight operations? At NASA Ames, we are developing Mission Control Technologies Software, in collaboration with Johnson Space Center (JSC) and, more recently, the Jet Propulsion Laboratory (JPL).

  10. Crowdsourcing, the great meteor storm of 1833, and the founding of meteor science.

    PubMed

    Littmann, Mark; Suomela, Todd

    2014-06-01

    Yale science professor Denison Olmsted used crowdsourcing to gather observations from across the United States of the unexpected deluge of meteors on 13 November 1833--more than 72,000/h. He used these observations (and newspaper accounts and correspondence from scientists) to make a commendably accurate interpretation of the meteor storm, overturning 2100 years of erroneous teachings about shooting stars and establishing meteor science as a new branch of astronomy. Olmsted's success was substantially based on his use of newspapers and their practice of news pooling to solicit observations from throughout the country by lay and expert observers professionally unaffiliated with Yale College and him. In today's parlance, Olmsted was a remarkably successful early practitioner of scientific crowdsourcing, also known as citizen science. He may have been the first to use mass media for crowdsourcing in science. He pioneered many of the citizen-science crowdsourcing practices that are still in use today: an open call for citizen participation, a clearly defined task, a large geographical distribution for gathering data and a rapid response to opportunistic events. Olmsted's achievement is not just that he used crowdsourcing in 1833 but that crowdsourcing helped him to advance science significantly. PMID:24917173

  11. Meteoric Metal Layer in Mars' Atmosphere: Steady-state Flux and Meteor Showers

    NASA Astrophysics Data System (ADS)

    Crismani, Matteo; Schneider, Nicholas; Jain, Sonal; Plane, John; Diego Carrillo-Sanchez, Juan; Deighan, Justin; Stevens, Michael; Evans, Scott; Chaffin, Michael; Stewart, Ian; Jakosky, Bruce

    2016-04-01

    We report on a steady state metal ion layer at Mars produced by meteoric ablation in the upper atmosphere as observed by the Imaging Ultraviolet Spectrograph (IUVS) on MAVEN. The response of the Martian atmosphere to meteoroid influx constrains cometary activity, dust dynamics, ionospheric production at Mars and meteoric smoke may represent a site of nucleation for high altitude clouds. Using observations that span more than an Earth year, we find this layer is global and steady state, contrary to previous observations, but in accordance with predictions. IUVS observations cover a range of observation conditions, which allows us to determine the variability of the Mg+ layer seasonally and geographically. In December 2015, Mars encountered three predicted meteor showers, and analysis of these events will determine whether Mars' atmosphere responds to such events dramatically, as was the case with comet Siding Spring, or more similarly to Earth. Mg is also detected, but Mg/Mg+ less than predicted by factor >3, indicative of undetermined chemical processes in the Mars atmosphere.

  12. Doppler micro sense and avoid radar

    NASA Astrophysics Data System (ADS)

    Gorwara, Ashok; Molchanov, Pavlo; Asmolova, Olga

    2015-10-01

    There is a need for small Sense and Avoid (SAA) systems for small and micro Unmanned Aerial Systems (UAS) to avoid collisions with obstacles and other aircraft. The proposed SAA systems will give drones the ability to "see" close up and give them the agility to maneuver through tight areas. Doppler radar is proposed for use in this sense and avoid system because in contrast to optical or infrared (IR) systems Doppler can work in more harsh conditions such as at dusk, and in rain and snow. And in contrast to ultrasound based systems, Doppler can better sense small sized obstacles such as wires and it can provide a sensing range from a few inches to several miles. An SAA systems comprised of Doppler radar modules and an array of directional antennas that are distributed around the perimeter of the drone can cover the entire sky. These modules are designed so that they can provide the direction to the obstacle and simultaneously generate an alarm signal if the obstacle enters within the SAA system's adjustable "Protection Border". The alarm signal alerts the drone's autopilot to automatically initiate an avoidance maneuver. A series of Doppler radar modules with different ranges, angles of view and transmitting power have been designed for drones of different sizes and applications. The proposed Doppler radar micro SAA system has simple circuitry, works from a 5 volt source and has low power consumption. It is light weight, inexpensive and it can be used for a variety of small unmanned aircraft.

  13. Coherent radar imaging based on compressed sensing

    NASA Astrophysics Data System (ADS)

    Zhu, Qian; Volz, Ryan; Mathews, John D.

    2015-12-01

    High-resolution radar images in the horizontal spatial domain generally require a large number of different baselines that usually come with considerable cost. In this paper, aspects of compressed sensing (CS) are introduced to coherent radar imaging. We propose a single CS-based formalism that enables the full three-dimensional (3-D)—range, Doppler frequency, and horizontal spatial (represented by the direction cosines) domain—imaging. This new method can not only reduce the system costs and decrease the needed number of baselines by enabling spatial sparse sampling but also achieve high resolution in the range, Doppler frequency, and horizontal space dimensions. Using an assumption of point targets, a 3-D radar signal model for imaging has been derived. By comparing numerical simulations with the fast Fourier transform and maximum entropy methods at different signal-to-noise ratios, we demonstrate that the CS method can provide better performance in resolution and detectability given comparatively few available measurements relative to the number required by Nyquist-Shannon sampling criterion. These techniques are being applied to radar meteor observations.

  14. eMeteorNews: website and PDF journal

    NASA Astrophysics Data System (ADS)

    Roggemans, P.; Kacerek, R.; Koukal, J.; Miskotte, K.; Piffl, R.

    2016-01-01

    Amateur meteor workers have always been interested to exchange information and experience. In the past this was only possible via personal contacts by letter or by specialized journals. With internet a much faster medium became available and plenty of websites, mailing lists, Facebook groups, etc., have been created in order to communicate about meteors. Today there is a wealth of meteor data circulating on internet, but the information is very scattered and not directly available to everyone. The authors have been considering how to organize an easy access to the many different meteor related publications. The best solution for the current needs of amateur meteor observers proved to be a dedicated website combined with a PDF journal, both being free available without any subscription fee or registration requirement. The authors decided to start with this project and in March 2016 the website meteornews.org has been created. A first issue of eMeteorNews was prepared in April 2016. The year 2016 will be a test period for this project. The mission statement of this project is: "Minimizing overhead and editorial constraints to assure a swift exchange of information dedicated to all fields of active amateur meteor work."

  15. Double-station observations of meteors: efficiency and optimization

    NASA Astrophysics Data System (ADS)

    Kozak, Pavlo M.

    2015-08-01

    All information about kinematical parameters of a meteor in Earth's atmosphere, elements of its heliocentric orbit and connection of its light curve with height can be obtained from optical observations only if they are carrying out simultaneously from at least two points, i.e. double-station observations. Disposition of the observational points is closely connected with presence of special observational stations: it must be near 50-100 km for good precision of calculations. Main goal of double-station observations is the registration of maximal possible number of meteors. Efficiency of meteor registration, and accordingly number of meteors, in its turn, is conditioned by two values. First, these are parameters of lenses: focal distances which determine the sizes of view fields, and the lens apertures determining sensitivities of the observational systems. Second these are characteristics of the meteor itself: its magnitude and distance from it to an observational point, and its angular velocity. In the present work the efficiency of double-station meteor registration is investigated by means of calculation of the geometry of optical axes orientations which determine the common atmosphere volume, and selection of optical parameters of the observational systems. Increasing efficiency of double-station observations is actual at the moment because of creation of new professional and amateur networks for meteor video observations.

  16. The nature of near-Earth meteor streams from comets

    NASA Astrophysics Data System (ADS)

    Van Flandern, T.

    2002-05-01

    Following the embarrassing failure of the predicted return of a Leonid meteor storm in 1998 following the return of the parent comet, Tempel-Tuttle, a dozen groups of astronomers set out to solve the problem of predicting future meteor storms. The first success in history was achieved in 1999, when three of the groups predicted the time and place correctly to within ten minutes. These three successes were all based on the meteor stream concept, and the idea that comets release a new meteor stream at every return to perihelion. However, of the three successes, only the Lyytinen prediction based on the Van Flandern comet model got the meteor rates correct to within a factor of two. The next-best model by Asher & McNaught was off by a factor of eight. Continued success was achieved in 2000 and 2001, when the Earth again encountered various Leonid meteor streams released from the comet centuries ago. The Lyytinen-Van Flandern predictions were again closest, and that model was the only one to correctly predict an outburst of the Ursids in December 2001. This shows that the model is general enough to apply to other comets and meteor streams, and does not need a history of observed encounters to set various adjustable parameters as the other models do. In all, eight shower or storm peaks have now been predicted correctly. This tells us about the nature of comets, about how meteor streams in the inner solar system evolve over time, and about hazards in the near-Earth environment associated with these now-predictable meteor storms.

  17. Development of an agility assessment module for preliminary fighter design

    NASA Technical Reports Server (NTRS)

    Ngan, Angelen; Bauer, Brent; Biezad, Daniel; Hahn, Andrew

    1996-01-01

    A FORTRAN computer program is presented to perform agility analysis on fighter aircraft configurations. This code is one of the modules of the NASA Ames ACSYNT (AirCraft SYNThesis) design code. The background of the agility research in the aircraft industry and a survey of a few agility metrics are discussed. The methodology, techniques, and models developed for the code are presented. FORTRAN programs were developed for two specific metrics, CCT (Combat Cycle Time) and PM (Pointing Margin), as part of the agility module. The validity of the code was evaluated by comparing with existing flight test data. Example trade studies using the agility module along with ACSYNT were conducted using Northrop F-20 Tigershark and McDonnell Douglas F/A-18 Hornet aircraft models. The sensitivity of thrust loading and wing loading on agility criteria were investigated. The module can compare the agility potential between different configurations and has the capability to optimize agility performance in the preliminary design process. This research provides a new and useful design tool for analyzing fighter performance during air combat engagements.

  18. Agile Methods for Open Source Safety-Critical Software

    PubMed Central

    Enquobahrie, Andinet; Ibanez, Luis; Cheng, Patrick; Yaniv, Ziv; Cleary, Kevin; Kokoori, Shylaja; Muffih, Benjamin; Heidenreich, John

    2011-01-01

    The introduction of software technology in a life-dependent environment requires the development team to execute a process that ensures a high level of software reliability and correctness. Despite their popularity, agile methods are generally assumed to be inappropriate as a process family in these environments due to their lack of emphasis on documentation, traceability, and other formal techniques. Agile methods, notably Scrum, favor empirical process control, or small constant adjustments in a tight feedback loop. This paper challenges the assumption that agile methods are inappropriate for safety-critical software development. Agile methods are flexible enough to encourage the right amount of ceremony; therefore if safety-critical systems require greater emphasis on activities like formal specification and requirements management, then an agile process will include these as necessary activities. Furthermore, agile methods focus more on continuous process management and code-level quality than classic software engineering process models. We present our experiences on the image-guided surgical toolkit (IGSTK) project as a backdrop. IGSTK is an open source software project employing agile practices since 2004. We started with the assumption that a lighter process is better, focused on evolving code, and only adding process elements as the need arose. IGSTK has been adopted by teaching hospitals and research labs, and used for clinical trials. Agile methods have matured since the academic community suggested they are not suitable for safety-critical systems almost a decade ago, we present our experiences as a case study for renewing the discussion. PMID:21799545

  19. Peridigm summary report : lessons learned in development with agile components.

    SciTech Connect

    Salinger, Andrew Gerhard; Mitchell, John Anthony; Littlewood, David John; Parks, Michael L.

    2011-09-01

    This report details efforts to deploy Agile Components for rapid development of a peridynamics code, Peridigm. The goal of Agile Components is to enable the efficient development of production-quality software by providing a well-defined, unifying interface to a powerful set of component-based software. Specifically, Agile Components facilitate interoperability among packages within the Trilinos Project, including data management, time integration, uncertainty quantification, and optimization. Development of the Peridigm code served as a testbed for Agile Components and resulted in a number of recommendations for future development. Agile Components successfully enabled rapid integration of Trilinos packages into Peridigm. A cost of this approach, however, was a set of restrictions on Peridigm's architecture which impacted the ability to track history-dependent material data, dynamically modify the model discretization, and interject user-defined routines into the time integration algorithm. These restrictions resulted in modifications to the Agile Components approach, as implemented in Peridigm, and in a set of recommendations for future Agile Components development. Specific recommendations include improved handling of material states, a more flexible flow control model, and improved documentation. A demonstration mini-application, SimpleODE, was developed at the onset of this project and is offered as a potential supplement to Agile Components documentation.

  20. Agile Bodies: A New Imperative in Neoliberal Governance

    ERIC Educational Resources Information Center

    Gillies, Donald

    2011-01-01

    Modern business discourse suggests that a key bulwark against market fluctuation and the threat of failure is for organizations to become "agile'", a more dynamic and proactive position than that previously afforded by mere "flexibility". The same idea is also directed at the personal level, it being argued that the "agile" individual is better…

  1. Integrated product definition representation for agile numerical control applications

    SciTech Connect

    Simons, W.R. Jr.; Brooks, S.L.; Kirk, W.J. III; Brown, C.W.

    1994-11-01

    Realization of agile manufacturing capabilities for a virtual enterprise requires the integration of technology, management, and work force into a coordinated, interdependent system. This paper is focused on technology enabling tools for agile manufacturing within a virtual enterprise specifically relating to Numerical Control (N/C) manufacturing activities and product definition requirements for these activities.

  2. Agile Methods for Open Source Safety-Critical Software.

    PubMed

    Gary, Kevin; Enquobahrie, Andinet; Ibanez, Luis; Cheng, Patrick; Yaniv, Ziv; Cleary, Kevin; Kokoori, Shylaja; Muffih, Benjamin; Heidenreich, John

    2011-08-01

    The introduction of software technology in a life-dependent environment requires the development team to execute a process that ensures a high level of software reliability and correctness. Despite their popularity, agile methods are generally assumed to be inappropriate as a process family in these environments due to their lack of emphasis on documentation, traceability, and other formal techniques. Agile methods, notably Scrum, favor empirical process control, or small constant adjustments in a tight feedback loop. This paper challenges the assumption that agile methods are inappropriate for safety-critical software development. Agile methods are flexible enough to encourage the rightamount of ceremony; therefore if safety-critical systems require greater emphasis on activities like formal specification and requirements management, then an agile process will include these as necessary activities. Furthermore, agile methods focus more on continuous process management and code-level quality than classic software engineering process models. We present our experiences on the image-guided surgical toolkit (IGSTK) project as a backdrop. IGSTK is an open source software project employing agile practices since 2004. We started with the assumption that a lighter process is better, focused on evolving code, and only adding process elements as the need arose. IGSTK has been adopted by teaching hospitals and research labs, and used for clinical trials. Agile methods have matured since the academic community suggested they are not suitable for safety-critical systems almost a decade ago, we present our experiences as a case study for renewing the discussion. PMID:21799545

  3. Agile manufacturing in Intelligence, Surveillance and Reconnaissance (ISR)

    NASA Astrophysics Data System (ADS)

    DiPadua, Mark; Dalton, George

    2016-05-01

    The objective of the Agile Manufacturing for Intelligence, Surveillance, and Reconnaissance (AMISR) effort is to research, develop, design and build a prototype multi-intelligence (multi-INT), reconfigurable pod demonstrating benefits of agile manufacturing and a modular open systems approach (MOSA) to make podded intelligence, surveillance, and reconnaissance (ISR) capability more affordable and operationally flexible.

  4. A Roadmap for Using Agile Development in a Traditional Environment

    NASA Technical Reports Server (NTRS)

    Streiffert, Barbara; Starbird, Thomas; Grenander, Sven

    2006-01-01

    One of the newer classes of software engineering techniques is called 'Agile Development'. In Agile Development software engineers take small implementation steps and, in some cases, they program in pairs. In addition, they develop automatic tests prior to implementing their small functional piece. Agile Development focuses on rapid turnaround, incremental planning, customer involvement and continuous integration. Agile Development is not the traditional waterfall method or even a rapid prototyping method (although this methodology is closer to Agile Development). At the Jet Propulsion Laboratory (JPL) a few groups have begun Agile Development software implementations. The difficulty with this approach becomes apparent when Agile Development is used in an organization that has specific criteria and requirements handed down for how software development is to be performed. The work at the JPL is performed for the National Aeronautics and Space Agency (NASA). Both organizations have specific requirements, rules and processes for developing software. This paper will discuss some of the initial uses of the Agile Development methodology, the spread of this method and the current status of the successful incorporation into the current JPL development policies and processes.

  5. A Roadmap for Using Agile Development in a Traditional Environment

    NASA Technical Reports Server (NTRS)

    Streiffert, Barbara A.; Starbird, Thomas; Grenander, Sven

    2006-01-01

    One of the newer classes of software engineering techniques is called 'Agile Development'. In Agile Development software engineers take small implementation steps and, in some cases they program in pairs. In addition, they develop automatic tests prior to implementing their small functional piece. Agile Development focuses on rapid turnaround, incremental planning, customer involvement and continuous integration. Agile Development is not the traditional waterfall method or even a rapid prototyping method (although this methodology is closer to Agile Development). At Jet Propulsion Laboratory (JPL) a few groups have begun Agile Development software implementations. The difficulty with this approach becomes apparent when Agile Development is used in an organization that has specific criteria and requirements handed down for how software development is to be performed. The work at the JPL is performed for the National Aeronautics and Space Agency (NASA). Both organizations have specific requirements, rules and procedure for developing software. This paper will discuss the some of the initial uses of the Agile Development methodology, the spread of this method and the current status of the successful incorporation into the current JPL development policies.

  6. Data processing of solar EUV instruments on the METEOR satellite

    NASA Technical Reports Server (NTRS)

    Brown, Hipook

    1995-01-01

    The Multiple Experiment Transporter into Earth Orbit and Return-Solar EUV Experiment (METEOR-SEE) project will take daily extreme ultraviolet (EUV) irradiance spectra starting in the summer of 1995. The METEOR-SEE package consists of an EUV grating spectrograph (EGS) and a cluster of 5 soft x-ray photometers (XP's). Both these instruments have flown previously on NASA sounding rockets. Because of the scope of the project, new data processing algorithms had to be developed for the SEE instruments onboard the METEOR satellite. An overview of the data flow describes how satellite data are collected and processed. Detailed descriptions of specific routines will show what data processing entails.

  7. Double station observation of faint meteors in Nikolaev

    NASA Astrophysics Data System (ADS)

    Kulichenko, Mykola; Shulga, Alexandr; Sybiryakova, Yevgeniya

    2016-07-01

    Meteor research using TV CCD unintensified techniques was started in 2011 in Nikolaev astronomical observatory (RI NAO). The method of meteor registration is based on combined observation method developed at RI NAO. The main accent of the research is made on precise astrometry and meteoroid orbits calculation. In 2013 first double station meteors with low baseline were observed. The accuracy of visible radiant estimation is 0.7" with baseline 5 km, and less 0.5" with baseline 11.8 km. The accuracy of velocity and height estimation is 0.5 km/s and 1-2 km.

  8. Variation of Meteor Heights and Solar-Cycle Activity

    NASA Astrophysics Data System (ADS)

    Porubcan, Vladimír; Bucek, Marek; Cevolani, Giordano; Zigo, Pavel

    2012-08-01

    Photographic meteor observations of the Perseid meteoroid stream compiled from the IAU Meteor Data Center catalogue are analyzed from the viewpoint of possible long-term variation of meteor heights with the solar-cycle activity, which was previously reported from radio observations. The observed beginning and end-point heights of the Perseids, normalized for the geocentric velocity and the absolute photographic magnitude, do not show a variation consistent with the solar-cycle activity. This result is valid for the mass range of larger meteoroids observed by photographic techniques, and must be still verified also for the range of smaller meteoroids observed by TV and radio methods.

  9. Particle-based ablation model for faint meteors

    NASA Astrophysics Data System (ADS)

    Stokan, E.; Campbell-Brown, M.

    2014-07-01

    Modeling the ablation of meteoroids as they enter the atmosphere is a way of determining their physical structure and elemental composition. This can provide insight into the structure of parent bodies when combined with an orbit computed from observations. The Canadian Automated Meteor Observatory (CAMO) is a source of new, high-resolution observations of faint meteors [1]. These faint objects tend to have pre-atmospheric masses around 10^{-5} kg, corresponding to a radius of 1 mm. A wide-field camera with a 28° field of view provides guidance to a high-resolution camera that tracks meteors in flight with 1.5° field of view. Meteors are recorded with a scale of 4 m per pixel at a range of 135 km, at 110 frames per second, allowing us to investigate detailed meteor morphology. This serves as an important new constraint for ablation models, in addition to meteor brightness (lightcurves) and meteoroid deceleration. High-resolution observations of faint meteors have revealed that contemporary ablation models are not able to predict meteor morphology, even while matching the observed lightcurve and meteoroid deceleration [2]. This implies that other physical processes, in addition to fragmentation, must be considered for faint meteor ablation. We present a new, particle-based approach to modeling the ablation of small meteoroids. In this model, we simulate the collisions between atmospheric particles and the meteoroid to determine the rate of evaporation and deceleration. Subsequent collisions simulated between evaporated meteoroid particles and ambient atmospheric particles then produce light that would be observed by high-resolution cameras. Preliminary results show simultaneous agreement with meteor morphology, lightcurves, and decelerations recorded with CAMO. A sample comparison of simulated and observed meteor morphology is given in the attached figure. Several meteoroids are well-represented as solid, stony bodies, but some require modeling as a dustball [3

  10. Comet P/Machholtz and the Quadrantid meteor stream

    SciTech Connect

    Mcintosh, B.A. )

    1990-07-01

    Attention is drawn to the suggestive similarities between the calculated perturbation behavior of Comet P/Machholtz 1986 VIII, on the one hand, and on the other those of the Quadrantid, Delta Aquarid, and Arietid meteor streams. There appears to be adequate evidence for the formation by the Comets P/Machholtz and 1491-I, together with the three meteor streams, of a related complex controlled by Jupiter's gravitational perturbations; there is no comparably compelling information, however, bearing on the questions of parent-offspring or sibling relationships among these comets and meteor streams. 13 refs.

  11. Portable Radio System for Automated Meteor Activity Recording

    NASA Astrophysics Data System (ADS)

    Martinez Picar, Antonio

    2010-08-01

    Radio waves that collide with trails of ionized particles generated by the meteoroid entering the Earth's atmosphere undergo a process of electromagnetic scattering. The forward scatter mechanism (or oblique scattering) explains how these meteor trails can be used to establish longrange communication links. This paper describes the design and setup of a portable device that, based on this propagation mechanism, allows the automatic registration of meteor activity from the most appropriate observing location. The results show the feasibility of the system for detecting, recording and adequate storage of the necessary parameters in the study of meteor streams.

  12. New insights into asteroid 3200 Phaethon's meteor complex

    NASA Astrophysics Data System (ADS)

    Jakubik, Marian; Neslusan, Lubos

    2015-11-01

    In this work, we study the meteor complex originating from asteroid 3200 Phaethon. Using a modeling of variety of meteoroid streams and following their dynamical evolution, we confirm the presence of two filaments crossing the Earth observed as Geminid and Daytime Sextantid meteor showers. We use numerical integrations of modeled particles performed for several past perihelion passages of the asteroid considering (i) only the gravity of planets and (2) gravity of planets and the Poynting-Robertson effect. We present the results of comparing our models (predicted showers) with observed showers. We also point out discrepancies, their possible solutions and/or new hypothesis concerning the examined meteor complex.

  13. Introduction to Stand-up Meetings in Agile Methods

    NASA Astrophysics Data System (ADS)

    Hasnain, Eisha; Hall, Tracy

    2009-05-01

    In recent years, agile methods have become more popular in the software industry. Agile methods are a new approach compared to plan-driven approaches. One of the most important shifts in adopting an agile approach is the central focus given to people in the process. This is exemplified by the independence afforded to developers in the development work they do. This work investigates the opinions of practitioners about daily stand-up meetings in the agile methods and the role of developer in that. For our investigation we joined a yahoo group called "Extreme Programming". Our investigation suggests that although trust is an important factor in agile methods. But stand-ups are not the place to build trust.

  14. Supporting Agile Development of Authorization Rules for SME Applications

    NASA Astrophysics Data System (ADS)

    Bartsch, Steffen; Sohr, Karsten; Bormann, Carsten

    Custom SME applications for collaboration and workflow have become affordable when implemented as Web applications employing Agile methodologies. Security engineering is still difficult with Agile development, though: heavy-weight processes put the improvements of Agile development at risk. We propose Agile security engineering and increased end-user involvement to improve Agile development with respect to authorization policy development. To support the authorization policy development, we introduce a simple and readable authorization rules language implemented in a Ruby on Rails authorization plugin that is employed in a real-world SME collaboration and workflow application. Also, we report on early findings of the language’s use in authorization policy development with domain experts.

  15. A Case Study of Coordination in Distributed Agile Software Development

    NASA Astrophysics Data System (ADS)

    Hole, Steinar; Moe, Nils Brede

    Global Software Development (GSD) has gained significant popularity as an emerging paradigm. Companies also show interest in applying agile approaches in distributed development to combine the advantages of both approaches. However, in their most radical forms, agile and GSD can be placed in each end of a plan-based/agile spectrum because of how work is coordinated. We describe how three GSD projects applying agile methods coordinate their work. We found that trust is needed to reduce the need of standardization and direct supervision when coordinating work in a GSD project, and that electronic chatting supports mutual adjustment. Further, co-location and modularization mitigates communication problems, enables agility in at least part of a GSD project, and renders the implementation of Scrum of Scrums possible.

  16. Frequency-agile wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Arms, Steven W.; Townsend, Christopher P.; Churchill, David L.; Hamel, Michael J.; Galbreath, Jacob H.; Mundell, Steven W.

    2004-07-01

    Our goal was to demonstrate a wireless communications system capable of simultaneous, high speed data communications from a variety of sensors. We have previously reported on the design and application of 2 KHz data logging transceiver nodes, however, only one node may stream data at a time, since all nodes on the network use the same communications frequency. To overcome these limitations, second generation data logging transceivers were developed with software programmable radio frequency (RF) communications. Each node contains on-board memory (2 Mbytes), sensor excitation, instrumentation amplifiers with programmable gains & offsets, multiplexer, 16 bit A/D converter, microcontroller, and frequency agile, bi-directional, frequency shift keyed (FSK) RF serial data link. These systems are capable of continuous data transmission from 26 distinct nodes (902-928 MHz band, 75 kbaud). The system was demonstrated in a compelling structural monitoring application. The National Parks Service requested a means for continual monitoring and recording of sensor data from the Liberty Bell during a move to a new location (Philadelphia, October 2003). Three distinct, frequency agile, wireless sensing nodes were used to detect visible crack shear/opening micromotions, triaxial accelerations, and hairline crack tip strains. The wireless sensors proved to be useful in protecting the Liberty Bell.

  17. A Passive FPAA-Based RF Scatter Meteor Detector

    NASA Astrophysics Data System (ADS)

    Popowicz, A.; Malcher, A.; Bernacki, K.; Fietkiewicz, K.

    2015-02-01

    In the article, we present a hardware meteor detector. The detection principle is based on the electromagnetic wave reflection from the ionized meteor trail in the atmosphere. The detector uses the ANADIGM field programmable analog array (FPAA), which is an attractive alternative for typically used detecting equipment—a PC computer with dedicated software. We implement an analog signal path using most of available FPAA resources to obtain precise audio signal detection. Our new detector was verified in collaboration with the Polish Fireball Network, the organization which monitors meteor activity in Poland. When compared with currently used signal processing PC software employing real radio meteor scatter signals, our low-cost detector proved to be more precise and reliable. Due to its cost and efficiency superiority over the current solution, the presented module is going to be implemented in the planned distributed detectors system.

  18. NASA Meteor Cam Video of June 2, 2016 Arizona Fireball

    NASA Video Gallery

    Video obtained from the NASA meteor camera situated at the MMT Observatory on the site of the Fred Lawrence Whipple Observatory, located on Mount Hopkins, Arizona, in the Santa Rita Mountains. Cred...

  19. Activity and observability of meteor showers throughout the year

    NASA Astrophysics Data System (ADS)

    Zimnikoval, Peter

    2014-02-01

    Diagrams on the poster present the activity periods of meteor showers as well as the rising and setting times of meteor shower radiants. Plotted are sunrises, sunsets and the period of twilight. It was constructed according to data from the IMO Meteor Shower Working List. More active showers are displayed in red and less active showers in green. The diagrams are calculated for geographic latitudes of 40° N, 0° and 40° S. The time scale is given as local time at the relevant zonal meridian and supplemented by local daylight saving time. The diagrams contain rounded values of solar longitude J2000. The star chart shows the radiant positions and drift of IMO meteor showers while the other diagrams display shower activity and date of maximum.

  20. Mass influx obtained from LLLTV observations of faint meteors

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.; Clifton, K. S.

    1972-01-01

    Since the advent of low light level television (LLLTV) systems, it has been recognized that such devices offer the ability to observe meteors as faint as 10th magnitude which allows the extension of optical meteor data to masses as small as 0.0001 grams. The Space Sciences Lab at Marshall Space Flight Center has been actively engaged in such observations using image orthicons and intensified SEC vidicons. The results of these observations are presented along with an interpretation in terms of mass-flux. This interpretation includes the development of a relationship between peak luminosity of a meteor and mass, velocity, and zenith angle that was derived from single body meteor theory and compares favorably with results obtained from the Artificial Program. Also included in the mass flux interpretation is an analysis of the observation response of a LLLTV system to fixed and moving point sources.

  1. Meteor Outbursts and Storms from the Spacecraft Hazard Perspective

    NASA Technical Reports Server (NTRS)

    Cooke, William; Moser, Danielle; Suggs, Rob

    2004-01-01

    The recent Leonid meteor storms have propelled meteor shower forecasting from an idea into the realm of practical application, invoked several times per year by numerous spacecraft. This paper will describe shower activity predictions, which give zenith hourly rate (ZHR) as a function of time, and how these are translated into spacecraft risks. Common spacecraft meteor shower mitigation strategies will also be discussed, and the important issue as to when to implement such operations considered. It should be noted that, while the recent meteor storms did not result in the loss of a vehicle, there were a few spacecraft anomalies attributed to Leonid strikes, and the nature of these will be commented upon. Finally, we assess the current state of the art in shower forecasting, and take a look "down the road" at some possible outbursts in the near future.

  2. Improving Photometric Calibration of Meteor Video Camera Systems

    NASA Technical Reports Server (NTRS)

    Ehlert, Steven; Kingery, Aaron; Cooke, William

    2016-01-01

    Current optical observations of meteors are commonly limited by systematic uncertainties in photometric calibration at the level of approximately 0.5 mag or higher. Future improvements to meteor ablation models, luminous efficiency models, or emission spectra will hinge on new camera systems and techniques that significantly reduce calibration uncertainties and can reliably perform absolute photometric measurements of meteors. In this talk we discuss the algorithms and tests that NASA's Meteoroid Environment Office (MEO) has developed to better calibrate photometric measurements for the existing All-Sky and Wide-Field video camera networks as well as for a newly deployed four-camera system for measuring meteor colors in Johnson-Cousins BV RI filters. In particular we will emphasize how the MEO has been able to address two long-standing concerns with the traditional procedure, discussed in more detail below.

  3. Energy Dissipation Mechanisms in 2D Meteor Impacts

    NASA Astrophysics Data System (ADS)

    Lane, Andrew; Daniels, Karen E.; Utter, Brian; Behringer, R. P.

    2003-11-01

    The morphology of meteor craters has historically been studied via static analysis, after the fact, of what are highly dynamic impact events. As such, there are long-standing questions about the means through which a meteor comes to rest and forms a crater. Using high speed video analysis on a 2D lab-scale system, we characterize the dynamics of a "meteor" impacting on a granular bed. In this case, the particles are made of a photoelastic material, so that it is possible to measure the instantaneous elastic energy stored in the bed. To understand the energy dissipation mechanisms involved in slowing the meteor, we track the kinetic, potential, and elastic energies associated with individual grains. Two initial and tentative findings from this work are: 1) Damped oscillations occur as the energy is dissipated within the granular material; and 2) The angle of impact strongly influences the dynamics and final state.

  4. Using TRMM and GPM precipitation radar for calibration of weather radars in the Philippines

    NASA Astrophysics Data System (ADS)

    Crisologo, Irene; Bookhagen, Bodo; Smith, Taylor; Heistermann, Maik

    2016-04-01

    . Koistinen, D. Michelson, M. Peura, T. Pfaff, D. B. Wolff (2015): The Emergence of Open Source Software for the Weather Radar Community, Bull. Amer. Meteor. Soc., doi: 10.1175/BAMS-D-13-00240.1

  5. Initial altitude of the micrometeor phenomenon: Comparison between Arecibo radar observations and theory

    NASA Astrophysics Data System (ADS)

    Janches, Diego; Revelle, Douglas O.

    2005-08-01

    We present calculations of the altitude at which the micrometeor phenomenon begins, that is, the point where the interaction between micrometeoroids and the Earth's atmosphere becomes important. At these altitudes, physical processes such as light emission, heating, electron production, etc., begin to occur. The calculations are performed using four very different initial height models including (1) solving the full integration of the single-body meteor equations, (2) using a balance between the loss of momentum and the component of the acceleration due to gravity along the meteor trajectory, (3) using a solution that emanates from a "linearized" form of the meteor energy equation but without including either atmosphere or meteoroid radiation emission effects, and finally (4) utilizing a solution of the meteor energy equation that is specifically approximated for small particles. We compare our evaluated theoretical results with direct micrometeor observations detected using the 430 MHz Arecibo Observatory (AO) radar system. The goal of these calculations is to provide reliable initial conditions in order to completely model the AO micrometeor observations, most of which have nearly constant decelerations. The nature of this study, although performed with already existing theoretical formulations, is of unprecedented value because it is the first study where these models are directly compared against very highly resolved micrometeor velocity and altitude distributions that are derived directly from the radar observations. We found that the meteor energy equation approximated for small particles agrees very well with the radar observations, in particular for meteor melting temperatures of the order of 2100 K and entry angles lower than 30° with respect to the radar beam normal direction. Unfortunately, from this model the composition characteristics of the particles detected by the AO radar cannot conclusively be drawn. However, comparison with the calculation of

  6. Comet Encke: Meteor metallic ion identification by mass spectrometer

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Aikin, A. C.

    1973-01-01

    Positive metallic ions have been measured in the earth's atmosphere between 85 and 120 km, during the period of the beta Taurids meteor shower, which is associated with Comet Encke. The ions originate during and following ablation of extraterrestrial debris by the earth's atmosphere. The enhancement of metal ion density during meteor showers is primary evidence for their extraterrestrial origin. The present results were obtained from a rocket-borne ion mass spectrometer.

  7. Results of the IMO Video Meteor Network - January 2016

    NASA Astrophysics Data System (ADS)

    Molau, S.; Crivello, S.; Goncalves, R.; Saraiva, C.; Stomeo, E.; Kac, J.

    2016-06-01

    The January 2016 report of IMO Video Meteor Network observations is presented, based on more than 9 000 hours of observations with almost 28 000 meteors recorded. The flux density profile is presented for the 2016 Quadrantids and compared to the profiles from the years 2011-2015. The flux density profile is also presented for the 2016 gamma-Ursae Minorids. Development of a new algorithm for the calculation of the limiting magnitude is presented.

  8. Results of the IMO Video Meteor Network - October 2015

    NASA Astrophysics Data System (ADS)

    Molau, S.; Crivello, S.; Goncalves, R.; Saraiva, C.; Stomeo, E.; Kac, J.

    2016-02-01

    The October 2015 overview of IMO Video Meteor Network observations is presented, covering more than 9 600 hours of observations with almost 55 000 recorded meteors. The flux density profile is presented for the October Ursae Majorids for the years 2011 to 2015. The flux density profiles for Orionids are presented for years 2012 to 2015, showing a broad maximum between October 20 and 27.

  9. ESA/ESTEC Meteor Research Group - behind the scenes

    NASA Astrophysics Data System (ADS)

    Rudawska, R.

    2016-01-01

    The ESA/ESTEC Meteor Research Group consists of a team people with one goal: understand the effects of meteoric phenomena on planetary atmospheres and surfaces, as well as on spacecraft. The team carries out observational and theoretical studies in order to increase our knowledge of the small particle complex in the solar system. This talk addresses a number of tasks within the group seen from a perspective of a research fellow.

  10. The investigation of multiplet structures in meteor spectra

    NASA Astrophysics Data System (ADS)

    Mozgova, Alona; Churyumov, Klim

    2016-07-01

    The structures of the iron multiplets and some other elements observed in spectra of meteor comas were considered. The catalog of iron multiplets lines was made. For each term there are indicated energy levels and wavelengths of spectral lines. For clearly explaining the transitions that accompany the radiation in given multiplets the complete Grotrian diagrams were constructed. Spectral analysis has an important role in understanding the physical processes which occur in meteor comas. Each meteor spectrum contains a large number of spectral lines belonging to atoms of different chemical elements and has a multiplet structures. The multiplets are usually spaced pairs or triples of lines but the multiplet may consist of one or more lines than three. The studying of multiplet structures in meteor spectra makes it possible to investigate the properties and a behavior of atoms of the meteor body matter. It can be used for creating models of physical and chemical processes which occur during the meteor flight in the Earth's atmosphere. For some tasks of meteor physics it needs to know not only the wavelength of a line and its belonging to some multiplet, but also both the excitation potentials of the upper and lower levels. This is useful, for example, for the study of the atoms distribution over the levels and how it differs from the Boltzmann distribution, as well as for the construction of curves growth and for determining the temperature excitation in the meteor coma, etc. For this purpose, the Walt Grotrian diagrams or chart of terms are built. They show the allowed transitions between the energy levels of the atoms. These diagrams can be used for one or more electrons (multielectrons) in the atom. The specific selection rules are taken into account in their construction. These rules are related to the change in angular momentum of the electron.

  11. Origin of meteor swarms of the Arietid and Geminid types

    SciTech Connect

    Lebedinets, V.N.

    1985-10-01

    The author proposes a physical mechanism for the formation of meteor swarms on orbits of small size and very small perihelion distance, similar to the orbits of Arietid and Geminid meteor swarms, which are rarely encountered among the larger bodies of the solar system, and he justifies the mechanism mathematically. He shows that comets can transfer to such orbits from orbits of large size during evaporation of their ice nuclei under the action of reactive drag.

  12. Meteor Beliefs Project: Spears of GodSpears of God

    NASA Astrophysics Data System (ADS)

    Hendrix, Howard V.; McBeath, Alastair; Gheorghe, Andrei Dorian

    2012-04-01

    A selection of genuine or supposedly sky-fallen objects from real-world sources, a mixture of weapons, tools and "magical" objects of heavenly provenance, are drawn from their re-use in the near-future science-fiction novel Spears of God by author Howard V Hendrix, with additional discussion. The book includes other meteoric and meteoritic items too, some of which have been the subject of previous Meteor Beliefs Project examinations.

  13. On the accuracy of orbits from video meteor observations

    NASA Astrophysics Data System (ADS)

    Skokić, I.; Šegon, D.; Kurtović, G.

    2016-01-01

    The velocity limits of the meteor shower's geocentric velocity distribution from the CAMS meteoroid database were determined and used to calculate perturbed orbits. These were compared with the mean stream orbit using the DSH dissimilarity criterion. It was found that for the slow meteor showers (Alpha Capricornids and Geminids), the resulting orbits are within the generally accepted cutoff values for stream associations, while for the faster showers (Perseids, Orionids and Quadrantids) the resulting orbits differ significantly from their mean stream orbit.

  14. Optical observations of meteors in RI Nikolaev Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Shulga, Alexander; Sybiryakova, Yevgeniya; Kulichenko, Nikolay; Vovk, Vasyl

    2015-08-01

    Video observations of meteors at the RI NAO are conducted using meteor patrol, which includes 6 optical telescopes (4 lenses: f = 85 mm, f/1.8; 2 lenses: f = 100 mm, f/2.0) equipped with a TV CCD cameras WAT-902H2 (768×576, 8.6×8.3µ). The field of view of 4 telescopes is 3.2°×4.2° and 2.7°×3.6° for 2 telescopes. System doesn't have any intensifier. Each video system is contained in a hermetic capsule to prevent it from rain and other aggressive meteorological conditions. Cameras work in the interlace mode with rate 50 half-frames per second.During 2011-2014 4135 single station meteors were observed. The mean duration of observed meteor trajectories are in 0.05-0.6 s. Double station observation campaigns has been started in September 2013 and it is still working with baseline 11.8 km. During September 2013 - September 2014 total number of observed meteor trajectories was 1757. Number of double station meteors - 328. The mean accuracy of visible radiant determination is less than 0.5 arc sec, more than 80% of radiates have standard deviation less than 0.2 arc sec.

  15. ``Hiss, clicks and pops'' - The enigmatic sounds of meteors

    NASA Astrophysics Data System (ADS)

    Finnegan, J. A.

    2015-04-01

    The improbability of sounds heard simultaneously with meteors allows the phenomenon to remain on the margins of scientific interest and research. This is unjustified, since these audibly perceived electric field effects indicate complex, inconsistent and still unresolved electric-magnetic coupling and charge dynamics; interacting between the meteor; the ionosphere and mesosphere; stratosphere; troposphere and the surface of the earth. This paper reviews meteor acoustic effects, presents illustrating reports and hypotheses and includes a summary of similar and additional phenomena observed during the 2013 February 15 asteroid fragment disintegration above the Russian district of Chelyabinsk. An augmenting theory involving near ground, non uniform electric field production of Ozone, as a stimulated geo-physical phenomenon to explain some hissing `meteor sounds' is suggested in section 2.2. Unlike previous theories, electric-magnetic field fluctuation rates are not required to occur in the audio frequency range for this process to acoustically emit hissing and intermittent impulsive sounds; removing the requirements of direct conversion, passive human transduction or excited, localised acoustic `emitters'. Links to the Armagh Observatory All-sky meteor cameras, electrophonic meteor research and full construction plans for an extremely low frequency (ELF) receiver are also included.

  16. Meteor scatter radio communication at high latitudes

    NASA Astrophysics Data System (ADS)

    Cannon, P. S.; Dickson, A. H.; Armstrong, M. H.

    1985-11-01

    A brief historical and physical description of the meteor burst communications (MBC) technique is given together with a discussion of the advantages of very high frequency MBC, with respect to conventional high frequency communication, when used at high latitudes. A recently deployed high latitude MBC propagation experiment, between Bodo in Norway and Wick in Scotland (UK) is described and some of the early data gathered at frequencies close to 40 MHz and 70 MHz is presented. A theoretical description of the effects of Polarisation Rotation in a linearly polarised MBC system is developed and it is shown that at 40 MHz Polarisation Rotation, due to excess D-region ionization may cause the system performance to differ from its ambient level. Corroborative experimental results, over a temperature latitude path, are presented. Based upon the early high latitude experimental results and on the theoretical calculations, it is suggested that frequencies close to 40 MHz, in common use in atemperate latitude linearly polarised MBC systems, are too low for high latitude operation.

  17. Agile: From Software to Mission System

    NASA Technical Reports Server (NTRS)

    Trimble, Jay; Shirley, Mark H.; Hobart, Sarah Groves

    2016-01-01

    The Resource Prospector (RP) is an in-situ resource utilization (ISRU) technology demonstration mission, designed to search for volatiles at the Lunar South Pole. This is NASA's first near real time tele-operated rover on the Moon. The primary objective is to search for volatiles at one of the Lunar Poles. The combination of short mission duration, a solar powered rover, and the requirement to explore shadowed regions makes for an operationally challenging mission. To maximize efficiency and flexibility in Mission System design and thus to improve the performance and reliability of the resulting Mission System, we are tailoring Agile principles that we have used effectively in ground data system software development and applying those principles to the design of elements of the mission operations system.

  18. Agility and mixed-model furniture production

    NASA Astrophysics Data System (ADS)

    Yao, Andrew C.

    2000-10-01

    The manufacture of upholstered furniture provides an excellent opportunity to analyze the effect of a comprehensive communication system on classical production management functions. The objective of the research is to study the scheduling heuristics that embrace the concepts inherent in MRP, JIT and TQM while recognizing the need for agility in a somewhat complex and demanding environment. An on-line, real-time data capture system provides the status and location of production lots, components, subassemblies for schedule control. Current inventory status of raw material and purchased items are required in order to develop and adhere to schedules. For the large variety of styles and fabrics customers may order, the communication system must provide timely, accurate and comprehensive information for intelligent decisions with respect to the product mix and production resources.

  19. Compact, flexible, frequency agile parametric wavelength converter

    DOEpatents

    Velsko, Stephan P.; Yang, Steven T.

    2002-01-01

    This improved Frequency Agile Optical Parametric Oscillator provides near on-axis pumping of a single QPMC with a tilted periodically poled grating to overcome the necessity to find a particular crystal that will permit collinear birefringence in order to obtain a desired tuning range. A tilted grating design and the elongation of the transverse profile of the pump beam in the angle tuning plane of the FA-OPO reduces the rate of change of the overlap between the pumped volume in the crystal and the resonated and non-resonated wave mode volumes as the pump beam angle is changed. A folded mirror set relays the pivot point for beam steering from a beam deflector to the center of the FA-OPO crystal. This reduces the footprint of the device by as much as a factor of two over that obtained when using the refractive telescope design.

  20. Radar and Lidar Radar DEM

    NASA Technical Reports Server (NTRS)

    Liskovich, Diana; Simard, Marc

    2011-01-01

    Using radar and lidar data, the aim is to improve 3D rendering of terrain, including digital elevation models (DEM) and estimates of vegetation height and biomass in a variety of forest types and terrains. The 3D mapping of vegetation structure and the analysis are useful to determine the role of forest in climate change (carbon cycle), in providing habitat and as a provider of socio-economic services. This in turn will lead to potential for development of more effective land-use management. The first part of the project was to characterize the Shuttle Radar Topography Mission DEM error with respect to ICESat/GLAS point estimates of elevation. We investigated potential trends with latitude, canopy height, signal to noise ratio (SNR), number of LiDAR waveform peaks, and maximum peak width. Scatter plots were produced for each variable and were fitted with 1st and 2nd degree polynomials. Higher order trends were visually inspected through filtering with a mean and median filter. We also assessed trends in the DEM error variance. Finally, a map showing how DEM error was geographically distributed globally was created.