Inspection of aging aircraft: A manufacturer's perspective
NASA Technical Reports Server (NTRS)
Hagemaier, Donald J.
1992-01-01
Douglas, in conjunction with operators and regulators, has established interrelated programs to identify and address issues regarding inspection of aging aircraft. These inspection programs consist of the following: Supplemental Inspection Documents; Corrosion Prevention and Control Documents; Repair Assessment Documents; and Service Bulletin Compliance Documents. In addition, airframe manufacturers perform extended airframe fatigue tests to deal with potential problems before they can develop in the fleet. Lastly, nondestructive inspection (NDI) plays a role in all these programs through the detection of cracks, corrosion, and disbonds. However, improved and more cost effective NDI methods are needed. Some methods such as magneto-optic imaging, electronic shearography, Diffractor-Sight, and multi-parameter eddy current testing appear viable for near-term improvements in NDI of aging aircraft.
DOT National Transportation Integrated Search
1992-01-01
Site evaluations of air carriers and repair stations conducting inspections and heavy maintenance on PART 121 aging aircraft were conducted during 1989-90 under the FAA's Office of Flight Standards Aging Fleet Evaluation Program. This report presents...
Development of a Digital Image Measurement System
NASA Technical Reports Server (NTRS)
2004-01-01
An unexpected tragedy took place on April 28, 1988, when the roof of an Aloha Airlines 737 aircraft ripped open at 24,000 feet, killing a flight attendant and injuring eight people. The in-flight structural failure of Aloha Flight 243 s 19-year-old aircraft prompted NASA Langley Research Center to join with colleagues at the U.S. Federal Aviation Administration and the U.S. Air Force to initiate the Nation's first Aging Aircraft Research program. One of the program's essential goals was to develop reliable, predictive methods for assessing the residual strength of aging aerospace structures.
Federal Aviation Administration aging aircraft nondestructive inspection research plan
NASA Technical Reports Server (NTRS)
Seher, Chris C.
1992-01-01
This paper highlights the accomplishments and plans of the Federal Aviation Administration (FAA) for the development of improved nondestructive evaluation (NDE) equipment, procedures, and training. The role of NDE in aircraft safety and the need for improvement are discussed. The FAA program participants, and coordination of activities within the program and with relevant organizations outside the program are also described.
1984-02-01
for tactical air power projection. The F/A-18 will replace aging F-4 and A-7 aircraft. The total programed procurement of F/A-18 aircraft is 1,377...inner zone anti-submarine .arfars helicopter which is needed to modernize aging CV assets. P-3C (Patrol) ORION (Dollars in Millions) FY 1985 FY 1986...tE MAVERICK modification. By modifying the Armament Station Control Unit ( ASCU ), procuring single rail launchers (iAU-117) and interfacing MAVERICT
An artificial intelligence-based structural health monitoring system for aging aircraft
NASA Technical Reports Server (NTRS)
Grady, Joseph E.; Tang, Stanley S.; Chen, K. L.
1993-01-01
To reduce operating expenses, airlines are now using the existing fleets of commercial aircraft well beyond their originally anticipated service lives. The repair and maintenance of these 'aging aircraft' has therefore become a critical safety issue, both to the airlines and the Federal Aviation Administration. This paper presents the results of an innovative research program to develop a structural monitoring system that will be used to evaluate the integrity of in-service aerospace structural components. Currently in the final phase of its development, this monitoring system will indicate when repair or maintenance of a damaged structural component is necessary.
Emerging nondestructive inspection methods for aging aircraft
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beattie, A; Dahlke, L; Gieske, J
This report identifies and describes emerging nondestructive inspection (NDI) methods that can potentially be used to inspect commercial transport and commuter aircraft for structural damage. The nine categories of emerging NDI techniques are: acoustic emission, x-ray computed tomography, backscatter radiation, reverse geometry x-ray, advanced electromagnetics, including magnetooptic imaging and advanced eddy current techniques, coherent optics, advanced ultrasonics, advanced visual, and infrared thermography. The physical principles, generalized performance characteristics, and typical applications associated with each method are described. In addition, aircraft inspection applications are discussed along with the associated technical considerations. Finally, the status of each technique is presented, with amore » discussion on when it may be available for use in actual aircraft maintenance programs. It should be noted that this is a companion document to DOT/FAA/CT-91/5, Current Nondestructive Inspection Methods for Aging Aircraft.« less
NASA Astrophysics Data System (ADS)
Pavelec, Sterling Michael
In the 1930s aeronautical engineering needed revision. A presumptive anomaly was envisaged as piston-engine aircraft flew higher and faster. Radical alternatives to piston engines were considered in the unending quest for speed. Concurrently, but unwittingly, two turbojet engine programs were undertaken in Europe. The air-breathing three-stage turbojet engine was based on previous turbine technology; the revolutionary idea was the gas turbine as a prime mover for aircraft. In Germany, Dr. Hans von Ohain was the first to complete a flight-worthy turbojet engine for aircraft. Installed in a Heinkel designed aircraft, the Germans began the jet age on 27 August 1939. The Germans led throughout the war and were the first to produce jet aircraft for combat operations. The principal limiting factor for the German jet program was a lack of reliable engines. The continuing myths that Hitler orders, too little fuel, or too few pilots hindered the program are false. In England, Frank Whittle, without substantial support, but with dogged determination, also developed a turbojet engine. The British came second in the jet race when the Whittle engine powered the Gloster Pioneer on 15 May 1941. The Whittle-Gloster relationship continued and produced the only Allied combat jet aircraft during the war, the Meteor, which was confined to Home Defense in Britain. The American turbojet program was built directly from the Whittle engine. General Electric copied the Whittle designs and Bell Aircraft was contracted to build the first American jet plane. The Americans began the jet age on 1 October 1942 with a lackluster performance from their first jet, the Airacomet. But the Americans forged ahead, and had numerous engine and airframe programs in development by the end of the war. But, the Germans did it right and did it first. Partly because of a predisposition towards excellent engineering and physics, partly out of necessity, the Germans were able to produce combat turbojet aircraft during the war. The Allies lagged from a lack of necessity, operational incompatibility, and stringent acceptance requirements. By the end of the war the Germans needed qualitative technological superiority to combat an overwhelming Allied quantitative advantage.
NASA Astrophysics Data System (ADS)
Hill, Owen Jacob
How prepared is the U.S. Air Force to modify its aircraft fleet in upcoming years? Aircraft modernization is a complex interaction of new and legacy aircraft, organizational structure, and planning policy. This research will take one component of modernization: aircraft modification, and apply a new method of analysis in order to help formulate policy to promote modernization. Departing from previous small-sample studies dependent upon weight as a chief explanatory variable, this dissertation incorporates a comprehensive dataset that was constructed for this research of all aircraft modifications from 1996 through 2005. With over 700 modification programs, this dataset is used to examine changes to the current modification policy using policy-response regression models. These changes include separating a codependent procurement and installation schedule, reducing the documentation requirements for safety modifications, and budgeting for aging aircraft modifications. The research then concludes with predictive models for the F-15 and F-16 along with their replacements: the F-22 and F-35 Joint Strike Fighter.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-03
... Program (Widespread Fatigue Damage) AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice and... information collection. The ``Aging Aircraft Program (Widespread Fatigue Damage)'' final rule (75 FR 69745... preclude widespread fatigue damage in those airplanes. DATES: Written comments should be submitted by...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-10
... Program (Widespread Fatigue Damage) AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice and... 40263-40264. The ``Aging Aircraft Program (Widespread Fatigue Damage)'' final rule (75 FR 69745) amended... widespread fatigue damage in those airplanes. DATES: Written comments should be submitted by October 10, 2013...
Automated Corrosion Detection Program
2001-10-01
More detailed explanations of the methodology development can be found in Hidden Corrosion Detection Technology Assessment, a paper presented at...Detection Program, a paper presented at the Fourth Joint DoD/FAA/NASA Conference on Aging Aircraft, 2000. AS&M PULSE. The PULSE system, developed...selection can be found in The Evaluation of Hidden Corrosion Detection Technologies on the Automated Corrosion Detection Program, a paper presented
Advanced aircraft service life monitoring method via flight-by-flight load spectra
NASA Astrophysics Data System (ADS)
Lee, Hongchul
This research is an effort to understand current method and to propose an advanced method for Damage Tolerance Analysis (DTA) for the purpose of monitoring the aircraft service life. As one of tasks in the DTA, the current indirect Individual Aircraft Tracking (IAT) method for the F-16C/D Block 32 does not properly represent changes in flight usage severity affecting structural fatigue life. Therefore, an advanced aircraft service life monitoring method based on flight-by-flight load spectra is proposed and recommended for IAT program to track consumed fatigue life as an alternative to the current method which is based on the crack severity index (CSI) value. Damage Tolerance is one of aircraft design philosophies to ensure that aging aircrafts satisfy structural reliability in terms of fatigue failures throughout their service periods. IAT program, one of the most important tasks of DTA, is able to track potential structural crack growth at critical areas in the major airframe structural components of individual aircraft. The F-16C/D aircraft is equipped with a flight data recorder to monitor flight usage and provide the data to support structural load analysis. However, limited memory of flight data recorder allows user to monitor individual aircraft fatigue usage in terms of only the vertical inertia (NzW) data for calculating Crack Severity Index (CSI) value which defines the relative maneuver severity. Current IAT method for the F-16C/D Block 32 based on CSI value calculated from NzW is shown to be not accurate enough to monitor individual aircraft fatigue usage due to several problems. The proposed advanced aircraft service life monitoring method based on flight-by-flight load spectra is recommended as an improved method for the F-16C/D Block 32 aircraft. Flight-by-flight load spectra was generated from downloaded Crash Survival Flight Data Recorder (CSFDR) data by calculating loads for each time hack in selected flight data utilizing loads equations. From the comparison of interpolated fatigue life using CSI value and fatigue test results, it is obvious that proposed advanced IAT method via flight-by-flight load spectra is more reliable and accurate than current IAT method. Therefore, the advanced aircraft service life monitoring method based on flight-by-flight load spectra not only monitors the individual aircraft consumed fatigue life for inspection but also ensures the structural reliability of aging aircrafts throughout their service periods.
Evaluation of the Advanced Subsonic Technology Program Noise Reduction Benefits
NASA Technical Reports Server (NTRS)
Golub, Robert A.; Rawls, John W., Jr.; Russell, James W.
2005-01-01
This report presents a detailed evaluation of the aircraft noise reduction technology concepts developed during the course of the NASA/FAA Advanced Subsonic Technology (AST) Noise Reduction Program. In 1992, NASA and the FAA initiated a cosponsored, multi-year program with the U.S. aircraft industry focused on achieving significant advances in aircraft noise reduction. The program achieved success through a systematic development and validation of noise reduction technology. Using the NASA Aircraft Noise Prediction Program, the noise reduction benefit of the technologies that reached a NASA technology readiness level of 5 or 6 were applied to each of four classes of aircraft which included a large four engine aircraft, a large twin engine aircraft, a small twin engine aircraft and a business jet. Total aircraft noise reductions resulting from the implementation of the appropriate technologies for each class of aircraft are presented and compared to the AST program goals.
1988-09-01
maintenance programs. They use "a dedicated age exploration technique and actuarial analyses (31:847)" to Justify any changes to programs. RAAF. The...A066593). 8. Coffin, M.D. and C.F. Tiffany. "New Air Force Requirements for Structural Safety, Durability and Life Management," AIAA/ ASME /SAE 16th
14 CFR 91.1109 - Aircraft maintenance: Inspection program.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Aircraft maintenance: Inspection program... Ownership Operations Program Management § 91.1109 Aircraft maintenance: Inspection program. Each program... conduct of inspections for the particular make and model aircraft, including necessary tests and checks...
14 CFR 91.1109 - Aircraft maintenance: Inspection program.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aircraft maintenance: Inspection program... Ownership Operations Program Management § 91.1109 Aircraft maintenance: Inspection program. Each program... conduct of inspections for the particular make and model aircraft, including necessary tests and checks...
14 CFR 91.1109 - Aircraft maintenance: Inspection program.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Aircraft maintenance: Inspection program... Ownership Operations Program Management § 91.1109 Aircraft maintenance: Inspection program. Each program... conduct of inspections for the particular make and model aircraft, including necessary tests and checks...
NASA Technical Reports Server (NTRS)
1998-01-01
SpaceAge Control, Inc., was established in 1968 to design, develop and manufacture pilot protection devices in support of space-based and high-performance test aircraft programs. In 1970, the company was awarded a NASA contract to produce precision, small-format position transducers for aircraft flight control testing. The successful completion of this contract led to the development and production of a complete line of position transducers. Today the company has over 600 customers in 20 industries and over 30 countries.
2005-02-03
Aging Aircraft 2005 The 8th Joint NASA /FAA/DOD Conference on Aging Aircraft Decision Algorithms for Electrical Wiring Interconnect Systems (EWIS...SUBTITLE Aging Aircraft 2005, The 8th Joint NASA /FAA/DOD Conference on Aging Aircraft, Decision algorithms for Electrical Wiring Interconnect...UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) NASA Langley Research Center, 8W. Taylor St., M/S 190 Hampton, VA 23681 and NAVAIR
Service life evaluation of rigid explosive transfer lines
NASA Technical Reports Server (NTRS)
Bement, L. J.; Kayser, E. G.; Schimmel, M. L.
1983-01-01
This paper describes a joint Army/NASA-sponsored research program on the service life evaluation of rigid explosive transfer lines. These transfer lines are used to initiate emergency crew escape functions on a wide variety of military and NASA aircraft. The purpose of this program was to determine quantitatively the effects of service, age, and degradation on rigid explosive transfer lines to allow responsible, conservative, service life determination. More than 800 transfer lines were removed from the U.S. Army AH-1G and AH-1S, the U.S. Air Force B-1 and F-111, and the U.S. Navy F-14 aircraft for testing. The results indicated that the lines were not adversely affected by age, service, or a repeat of the thermal qualification tests on full-service lines. Extension of the service life of rigid explosive transfer lines should be considered, since considerable cost savings could be realized with no measurable decrease in system reliability.
NASGRO 3.0: A Software for Analyzing Aging Aircraft
NASA Technical Reports Server (NTRS)
Mettu, S. R.; Shivakumar, V.; Beek, J. M.; Yeh, F.; Williams, L. C.; Forman, R. G.; McMahon, J. J.; Newman, J. C., Jr.
1999-01-01
Structural integrity analysis of aging aircraft is a critical necessity in view of the increasing numbers of such aircraft in general aviation, the airlines and the military. Efforts are in progress by NASA, the FAA and the DoD to focus attention on aging aircraft safety. The present paper describes the NASGRO software which is well-suited for effectively analyzing the behavior of defects that may be found in aging aircraft. The newly revised Version 3.0 has many features specifically implemented to suit the needs of the aircraft community. The fatigue crack growth computer program NASA/FLAGRO 2.0 was originally developed to analyze space hardware such as the Space Shuttle, the International Space Station and the associated payloads. Due to popular demand, the software was enhanced to suit the needs of the aircraft industry. Major improvements in Version 3.0 are the incorporation of the ability to read aircraft spectra of unlimited size, generation of common aircraft fatigue load blocks, and the incorporation of crack-growth models which include load-interaction effects such as retardation due to overloads and acceleration due to underloads. Five new crack-growth models, viz., generalized Willenborg, modified generalized Willenborg, constant closure model, Walker-Chang model and the deKoning-Newman strip-yield model, have been implemented. To facilitate easier input of geometry, material properties and load spectra, a Windows-style graphical user interface has been developed. Features to quickly change the input and rerun the problem as well as examine the output are incorporated. NASGRO has been organized into three modules, the crack-growth module being the primary one. The other two modules are the boundary element module and the material properties module. The boundary-element module provides the ability to model and analyze complex two-dimensional problems to obtain stresses and stress-intensity factors. The material properties module allows users to store and curve-fit fatigue-crack growth data. On-line help and documentation are provided for each of the modules. In addition to the popular PC windows version, a unix-based X-windows version of NASGRO is also available. A portable C++ class library called WxWindows was used to facilitate cross-platform availability of the software.
FY 1978 aeronautics and space technology program summary
NASA Technical Reports Server (NTRS)
1977-01-01
Highlights of the aeronautics program include research on aircraft energy efficiency, supersonic cruise aircraft, vertical takeoff and landing aircraft, short haul/short takeoff and landing aircraft, and general aviation aircraft. The space technology program includes work on space structures, propulsion systems, power systems, materials, and electronics.
Wildlife strikes to civil aircraft in the United States, 1990-2014.
DOT National Transportation Integrated Search
2015-07-01
The U.S. Departments of Transportation and Agriculture prohibit discrimination in all their programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, or marital or ...
Program to compute the positions of the aircraft and of the aircraft sensor footprints
NASA Technical Reports Server (NTRS)
Paris, J. F. (Principal Investigator)
1982-01-01
The positions of the ground track of the aircraft and of the aircraft sensor footprints, in particular the metric camera and the radar scatterometer on the C-130 aircraft, are estimated by a program called ACTRK. The program uses the altitude, speed, and attitude informaton contained in the radar scatterometer data files to calculate the positions. The ACTRK program is documented.
NASA Technical Reports Server (NTRS)
Anderton, D. A.
1982-01-01
Aeronautical research programs are discussed in relation to research methods and the status of the programs. The energy efficient aircraft, STOL aircraft and general aviation aircraft are considered. Aerodynamic concepts, rotary wing aircraft, aircraft safety, noise reduction, and aircraft configurations are among the topics included.
Measurements of Nucleation-Mode Particle Size Distributions in Aircraft Plumes during SULFUR 6
NASA Technical Reports Server (NTRS)
Brock, Charles A.; Bradford, Deborah G.
1999-01-01
This report summarizes the participation of the University of Denver in an airborne measurement program, SULFUR 6, which was undertaken in late September and early October of 1998 by the Deutsches Zentrum fur Luft und Raumfahrt (DLR). Scientific findings from two papers that have been published or accepted and from one manuscript that is in preparation are presented. The SULFUR 6 experiment was designed to investigate the emissions from subsonic aircraft to constrain calculations of possible atmospheric chemical and climatic effects. The University of Denver effort contributed toward the following SULFUR 6 goals: (1) To investigate the relationship between fuel sulfur content (FSC--mass of sulfur per mass of fuel) and particle number and mass emission index (El--quantity emitted per kg of fuel burned); (2) To provide upper and lower limits for the mass conversion efficiency (nu) of fuel sulfur to gaseous and particulate sulfuric acid; (3) To constrain models of volatile particle nucleation and growth by measuring the particle size distribution between 3 and 100 nm at aircraft plume ages ranging from 10(exp -1) to 10(exp 3) s; (4) To determine microphysical and optical properties and bulk chemical composition of soot particles in aircraft exhaust; and (5) To investigate the differences in particle properties between aircraft plumes in contrail and non-contrail situations. The experiment focused on emissions from the ATTAS research aircraft (a well characterized, but older technology turbojet) and from an in-service Boeing 737-300 aircraft provided by Lufthansa, with modem, high-bypass turbofan engines. Measurements were made from the DLR Dassault Falcon 900 aircraft, a modified business jet. The Atmospheric Effects of Aviation Program (AEAP) provided funding to operate an instrument, the nucleation-mode aerosol size spectrometer (N-MASS), during the SULFUR 6 campaign and to analyze the data. The N-MASS was developed at the University of Denver with the support of NOAA's Office of Global Programs and NASA's AEAP and measures particle size distributions in the 4-100 nm range.
Validation of bonded composite doubler technology through application oriented structural testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roach, D.; Graf, D.
1996-08-01
One of the major thrusts established under the FAA`s National Aging Aircraft Research Program is to foster new technologies associated with civil aircraft maintenance. Recent DOD and other government developments in the use of bonded composite patches on metal structures has supported the need for research and validation of such doubler applications on U.S. certificated airplanes. Composite patching is a rapidly maturing technology which shows promise of cost savings on aging aircraft. Sandia Labs is conducting a proof-of-concept project with Delta Air Lines, Lockheed Martin, Textron, and the FAA which seeks to remove any remaining obstacles to the approved usemore » of composite doublers. By focusing on a specific commercial aircraft application - reinforcement of the L-1011 door frame - and encompassing all {open_quotes}cradle-to-grave{close_quotes} tasks such as design, analysis, installation, and inspection, this program is designed to prove the capabilities of composite doublers. This paper reports on a series of structural tests which have been conducted on coupons and subsize test articles. Tension-tension fatigue and residual strength tests attempted to grow engineered flaws in coupons with composite doublers bonded to aluminum skin. Also, structures which modeled key aspects of the door corner installation were subjected to extreme tension, shear, and bending loads. In this manner it was possible to study strain fields in and around the Lockheed-designed composite doubler using realistic aircraft load scenarios and to assess the potential for interply delaminations and disbonds between the aluminum and the laminate. The data acquired was also used to validate finite element models (FEM) and associated Damage Tolerance Analyses.« less
Structural Load Alleviation Applied to Next Generation Aircraft and Wind Turbines
NASA Technical Reports Server (NTRS)
Frost, Susan
2011-01-01
Reducing the environmental impact of aviation is a goal of the Subsonic Fixed Wing Project under the Fundamental Aeronautics Program of NASAs Aeronautics Research Mission Directorate. Environmental impact of aviation is being addressed by novel aircraft configurations and materials that reduce aircraft weight and increase aerodynamic efficiency. NASA is developing tools to address the challenges of increased airframe flexibility created by wings constructed with reduced structural material and novel light-weight materials. This talk will present a framework and demonstration of a flight control system using optimal control allocation with structural load feedback and constraints to achieve safe aircraft operation. As wind turbines age, they become susceptible to many forms of blade degradation. Results will be presented on work in progress that uses adaptive contingency control for load mitigation in a wind turbine simulation with blade damage progression modeled.
14 CFR 135.419 - Approved aircraft inspection program.
Code of Federal Regulations, 2010 CFR
2010-01-01
... OPERATING REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Maintenance, Preventive Maintenance, and Alterations § 135.419 Approved aircraft inspection program. (a... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Approved aircraft inspection program. 135...
14 CFR 135.419 - Approved aircraft inspection program.
Code of Federal Regulations, 2012 CFR
2012-01-01
... OPERATING REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Maintenance, Preventive Maintenance, and Alterations § 135.419 Approved aircraft inspection program. (a... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Approved aircraft inspection program. 135...
14 CFR 135.419 - Approved aircraft inspection program.
Code of Federal Regulations, 2013 CFR
2013-01-01
... OPERATING REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Maintenance, Preventive Maintenance, and Alterations § 135.419 Approved aircraft inspection program. (a... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Approved aircraft inspection program. 135...
14 CFR 135.419 - Approved aircraft inspection program.
Code of Federal Regulations, 2014 CFR
2014-01-01
... OPERATING REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Maintenance, Preventive Maintenance, and Alterations § 135.419 Approved aircraft inspection program. (a... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Approved aircraft inspection program. 135...
14 CFR 135.419 - Approved aircraft inspection program.
Code of Federal Regulations, 2011 CFR
2011-01-01
... OPERATING REQUIREMENTS: COMMUTER AND ON DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Maintenance, Preventive Maintenance, and Alterations § 135.419 Approved aircraft inspection program. (a... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Approved aircraft inspection program. 135...
Review of V/STOL lift/cruise fan technology
NASA Technical Reports Server (NTRS)
Rolls, L. S.; Quigley, H. C.; Perkins, R. G., Jr.
1976-01-01
This paper presents an overview of supporting technology programs conducted to reduce the risk in the joint NASA/Navy Lift/Cruise Fan Research and Technology Aircraft Program. The aeronautical community has endeavored to combine the low-speed and lifting capabilities of the helicopter with the high-speed capabilities of the jet aircraft; recent developments have indicated a lift/cruise fan propulsion system may provide these desired characteristics. NASA and the Navy have formulated a program that will provide a research and technology aircraft to furnish viability of the lift/cruise fan aircraft through flight experiences and obtain data on designs for future naval and civil V/STOL aircraft. The supporting technology programs discussed include: (1) design studies for operational aircraft, a research and technology aircraft, and associated propulsion systems; (2) wind-tunnel tests of several configurations; (3) propulsion-system thrust vectoring tests; and (4) simulation. These supporting technology programs have indicated that a satisfactory research and technology aircraft program can be accomplished within the current level of technology.
Status report on the land processes aircraft science management operations working group
NASA Technical Reports Server (NTRS)
Lawless, James G.; Mann, Lisa J.
1991-01-01
Since its inception three years ago, the Land Processes Aircraft Science Management Operations Working Group (MOWG) provided recommendations on the optimal use of the Agency's aircraft in support of the Land Processes Science Program. Recommendations covered topics such as aircraft and sensor usage, development of long-range plans, Multisensor Airborne Campaigns (MAC), program balance, aircraft sensor databases, new technology and sensor development, and increased University scientist participation in the program. Impacts of these recommendations improved the efficiency of various procedures including the flight request process, tracking of flight hours, and aircraft usage. The group also created a bibliography focused on publications produced by Land Processes scientists from the use of the aircraft program, surveyed NASA funded PI's on their participation in the aircraft program, and developed a planning template for multi-sensor airborne campaigns. Benefits from these activities are summarized.
Improvements to the adaptive maneuvering logic program
NASA Technical Reports Server (NTRS)
Burgin, George H.
1986-01-01
The Adaptive Maneuvering Logic (AML) computer program simulates close-in, one-on-one air-to-air combat between two fighter aircraft. Three important improvements are described. First, the previously available versions of AML were examined for their suitability as a baseline program. The selected program was then revised to eliminate some programming bugs which were uncovered over the years. A listing of this baseline program is included. Second, the equations governing the motion of the aircraft were completely revised. This resulted in a model with substantially higher fidelity than the original equations of motion provided. It also completely eliminated the over-the-top problem, which occurred in the older versions when the AML-driven aircraft attempted a vertical or near vertical loop. Third, the requirements for a versatile generic, yet realistic, aircraft model were studied and implemented in the program. The report contains detailed tables which make the generic aircraft to be either a modern, high performance aircraft, an older high performance aircraft, or a previous generation jet fighter.
DOT National Transportation Integrated Search
1992-03-01
This report provides aircraft takeoff and landing profiles, : aircraft aerodynamic performance coefficients and engine : performance coefficients for the aircraft data base : (Database 9) in the Integrated Noise Model (INM) computer : program. Flight...
NASA Technical Reports Server (NTRS)
Bradley, E. S.; Little, B. H.; Warnock, W.; Jenness, C. M.; Wilson, J. M.; Powell, C. W.; Shoaf, L.
1982-01-01
The establishment of propfan technology readiness was determined and candidate drive systems for propfan application were identified. Candidate testbed aircraft were investigated for testbed aircraft suitability and four aircraft selected as possible propfan testbed vehicles. An evaluation of the four candidates was performed and the Boeing KC-135A and the Gulfstream American Gulfstream II recommended as the most suitable aircraft for test application. Conceptual designs of the two recommended aircraft were performed and cost and schedule data for the entire testbed program were generated. The program total cost was estimated and a wind tunnel program cost and schedule is generated in support of the testbed program.
DOT National Transportation Integrated Search
1992-03-01
This report provides aircraft takeoff and landing profiles, aircraft aerodynamic performance coefficients and engine performance coefficients for the aircraft data base (Database 9) in the Integrated Noise Model (INM) computer program. Flight profile...
Aging Aircraft Subsystems. Equipment Life Extension within the Tornado Program
2000-10-01
establish whether of trained personal. an equipment is already life expired or not. Maintenance documentation Repairs and concessions Existing...to be replaced equipment will lead over time to a degradation of the functional check seals. This means that the older the equipment stays inservice
An Air Force Guide for Effective Meeting Management
2011-05-01
The inspection program to ensure its sustainment has faced increasing workload requirements due to structural issues related to heavy use and aging...26 Data Sources /Format...aircraft availability, the High Velocity Maintenance (HVM) concept is being implemented to replace the current PDM process for heavy maintenance
Challenges for the aircraft structural integrity program
NASA Technical Reports Server (NTRS)
Lincoln, John W.
1994-01-01
Thirty-six years ago the United States Air Force established the USAF Aircraft Structural Integrity Program (ASIP) because flight safety had been degraded by fatigue failures of operational aircraft. This initial program evolved, but has been stable since the issuance of MIL-STD-1530A in 1975. Today, the program faces new challenges because of a need to maintain aircraft longer in an environment of reduced funding levels. Also, there is increased pressure to reduce cost of the acquisition of new aircraft. It is the purpose of this paper to discuss the challenges for the ASIP and identify the changes in the program that will meet these challenges in the future.
NASA Technical Reports Server (NTRS)
Oman, B. H.
1977-01-01
The NASA Langley Research Center vehicle design evaluation program (VDEP-2) was expanded by (1) incorporating into the program a capability to conduct preliminary design studies on subsonic commercial transport type aircraft using both JP and such alternate fuels as hydrogen and methane;(2) incorporating an aircraft detailed mission and performance analysis capability; and (3) developing and incorporating an external loads analysis capability. The resulting computer program (VDEP-3) provides a preliminary design tool that enables the user to perform integrated sizing, structural analysis, and cost studies on subsonic commercial transport aircraft. Both versions of the VDEP-3 Program which are designated preliminary Analysis VDEP-3 and detailed Analysis VDEP utilize the same vehicle sizing subprogram which includes a detailed mission analysis capability, as well as a geometry and weight analysis for multibodied configurations.
Examination of Air Force Crash Damaged or Disabled Aircraft Recovery Program Resourcing
2011-06-01
Positioning for Lift ................................................................................... 2 Figure 4. 26 and 15-Ton Airbags Under Wing...15 Figure 5. Manufacture Depiction of Airbag System...lifting capacities are calculated at an airbag working pressure of seven pounds per square inch. The lifting bag example below is from AGE
78 FR 12259 - Unmanned Aircraft System Test Site Program
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-22
...-0061] Unmanned Aircraft System Test Site Program AGENCY: Federal Aviation Administration (FAA), DOT... Defense, develop a test site program for the integration of unmanned aircraft systems in to the National Airspace System. The overall purpose of this test site program is to develop a body of data and operational...
Design and Development of the Aircraft Instrument Comprehension Program.
ERIC Educational Resources Information Center
Higgins, Norman C.
The Aircraft Instrument Comprehension (AIC) Program is a self-instructional program designed to teach undergraduate student pilots to read instruments that indicate the position of the aircraft in flight, based on sequential instructional stages of information, prompted practice, and unprompted practice. The program includes a 36-item multiple…
NASA Technical Reports Server (NTRS)
1979-01-01
Latest results of programs exploring new propulsion technology for powered-lift aircraft systems are presented. Topics discussed include results from the 'quiet clean short-haul experimental engine' program and progress reports on the 'quiet short-haul research aircraft' and 'tilt-rotor research aircraft' programs. In addition to these NASA programs, the Air Force AMST YC 14 and YC 15 programs were reviewed.
Update of aircraft profile data for the Integrated Noise Model computer program, vol 1: final report
DOT National Transportation Integrated Search
1992-03-01
This report provides aircraft takeoff and landing profiles, aircraft aerodynamic performance coefficients and engine performance coefficients for the aircraft data base (Database 9) in the Integrated Noise Model (INM) computer program. Flight profile...
Design definition study of NASA/Navy lift/cruise fan V/STOL aircraft
NASA Technical Reports Server (NTRS)
1975-01-01
Assessed are the risks associated with the lift/cruise fan technology V/STOL aircraft program. Three candidate concepts for the technology aircraft design approach are considered: the lowspeed only modification, the full performance modification, and the all new aircraft concepts. Survey results indicate that the lift/cruise fan technology aircraft program is feasible, from the standpoint of technical risk, with some evidence of uncertainty of meeting the planned schedule and relatively minor impact on estimated program costs.
NASA Technical Reports Server (NTRS)
Schoen, A. H.; Rosenstein, H.; Stanzione, K.; Wisniewski, J. S.
1980-01-01
This report describes the use of the V/STOL Aircraft Sizing and Performance Computer Program (VASCOMP II). The program is useful in performing aircraft parametric studies in a quick and cost efficient manner. Problem formulation and data development were performed by the Boeing Vertol Company and reflects the present preliminary design technology. The computer program, written in FORTRAN IV, has a broad range of input parameters, to enable investigation of a wide variety of aircraft. User oriented features of the program include minimized input requirements, diagnostic capabilities, and various options for program flexibility.
49 CFR 1544.205 - Acceptance and screening of cargo.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Preventing or deterring the carriage of any explosive or incendiary. Each aircraft operator operating under a... operator operating under a full program or a full all-cargo program, or a twelve-five program in an all... program, before loading it on its aircraft. (c) Control. Each aircraft operator operating under a full...
14 CFR 119.49 - Contents of operations specifications.
Code of Federal Regulations, 2013 CFR
2013-01-01
... markings, and serial number of each aircraft that is subject to an airworthiness maintenance program..., and emergency equipment of aircraft that are subject to an airworthiness maintenance program required... Transportation, if required. (4) Type of aircraft, registration markings, and serial numbers of each aircraft...
14 CFR 119.49 - Contents of operations specifications.
Code of Federal Regulations, 2011 CFR
2011-01-01
... markings, and serial number of each aircraft that is subject to an airworthiness maintenance program..., and emergency equipment of aircraft that are subject to an airworthiness maintenance program required... Transportation, if required. (4) Type of aircraft, registration markings, and serial numbers of each aircraft...
14 CFR 119.49 - Contents of operations specifications.
Code of Federal Regulations, 2014 CFR
2014-01-01
... markings, and serial number of each aircraft that is subject to an airworthiness maintenance program..., and emergency equipment of aircraft that are subject to an airworthiness maintenance program required... Transportation, if required. (4) Type of aircraft, registration markings, and serial numbers of each aircraft...
14 CFR 119.49 - Contents of operations specifications.
Code of Federal Regulations, 2012 CFR
2012-01-01
... markings, and serial number of each aircraft that is subject to an airworthiness maintenance program..., and emergency equipment of aircraft that are subject to an airworthiness maintenance program required... Transportation, if required. (4) Type of aircraft, registration markings, and serial numbers of each aircraft...
Propeller aircraft interior noise model utilization study and validation
NASA Technical Reports Server (NTRS)
Pope, L. D.
1984-01-01
Utilization and validation of a computer program designed for aircraft interior noise prediction is considered. The program, entitled PAIN (an acronym for Propeller Aircraft Interior Noise), permits (in theory) predictions of sound levels inside propeller driven aircraft arising from sidewall transmission. The objective of the work reported was to determine the practicality of making predictions for various airplanes and the extent of the program's capabilities. The ultimate purpose was to discern the quality of predictions for tonal levels inside an aircraft occurring at the propeller blade passage frequency and its harmonics. The effort involved three tasks: (1) program validation through comparisons of predictions with scale-model test results; (2) development of utilization schemes for large (full scale) fuselages; and (3) validation through comparisons of predictions with measurements taken in flight tests on a turboprop aircraft. Findings should enable future users of the program to efficiently undertake and correctly interpret predictions.
Computer programs for estimating civil aircraft economics
NASA Technical Reports Server (NTRS)
Maddalon, D. V.; Molloy, J. K.; Neubawer, M. J.
1980-01-01
Computer programs for calculating airline direct operating cost, indirect operating cost, and return on investment were developed to provide a means for determining commercial aircraft life cycle cost and economic performance. A representative wide body subsonic jet aircraft was evaluated to illustrate use of the programs.
The NASA Aircraft Energy Efficiency program
NASA Technical Reports Server (NTRS)
Klineberg, J. M.
1979-01-01
A review is provided of the goals, objectives, and recent progress in each of six aircraft energy efficiency programs aimed at improved propulsive, aerodynamic and structural efficiency for future transport aircraft. Attention is given to engine component improvement, an energy efficient turbofan engine, advanced turboprops, revolutionary gains in aerodynamic efficiency for aircraft of the late 1990s, laminar flow control, and composite primary aircraft structures.
The Power for Flight: NASA's Contributions to Aircraft Propulsion
NASA Technical Reports Server (NTRS)
Kinney, Jeremy R.
2017-01-01
The New York Times announced America's entry into the 'long awaited' Jet Age when a Pan American (Pan Am) World Airways Boeing 707 airliner left New York for Paris on October 26, 1958. Powered by four turbojet engines, the 707 offered speed, more nonstop flights, and a smoother and quieter travel experience compared to newly antiquated propeller airliners. With the Champs-Elysees only 6 hours away, humankind had entered into a new and exciting age in which the shrinking of the world for good was no longer a daydream. Fifty years later, the New York Times declared the second coming of a 'cleaner, leaner' Jet Age. Decades-old concerns over fuel efficiency, noise, and emissions shaped this new age as the aviation industry had the world poised for 'a revolution in jet engines'. Refined turbofans incorporating the latest innovations would ensure that aviation would continue to enable a worldwide transportation network. At the root of many of the advances over the preceding 50 years was the National Aeronautics and Space Administration (NASA). On October 1, 1958, just a few weeks before the flight of that Pan Am 707, NASA came into existence. Tasked with establishing a national space program as part of a Cold War competition between the United States and the Soviet Union, NASA is often remembered in popular memory first for putting the first human beings on the Moon in July 1969, followed by running the successful 30-year Space Shuttle Program and by landing the Rover Curiosity on Mars in August 2012. What many people do not recognize is the crucial role the first 'A' in NASA played in the development of aircraft since the Agency's inception. Innovations shaping the aerodynamic design, efficient operation, and overall safety of aircraft made NASA a vital element of the American aviation industry even though they remained unknown to the public. This is the story of one facet of NASA's many contributions to commercial, military, and general aviation: the development of aircraft propulsion technology, which provides the power for flight.
NASA Technical Reports Server (NTRS)
Rommel, Bruce A.
1989-01-01
An overview of the Aeroelastic Design Optimization Program (ADOP) at the Douglas Aircraft Company is given. A pilot test program involving the animation of mode shapes with solid rendering as well as wire frame displays, a complete aircraft model of a high-altitude hypersonic aircraft to test ADOP procedures, a flap model, and an aero-mesh modeler for doublet lattice aerodynamics are discussed.
United States Air Force Statistical Digest, Fiscal Year 1960. Fifteenth Edition
1960-09-30
USAF CIVILIAN EMPLOYEES IN SALARIED AND WAGE BOARD GROUPS EMPLOYED UNDER MILITARY , ASSISTANCE PROGRAM (MAP), AT END OF QUARTER - FY (Previous year...provide summary data on all aspects of the Mlli_ 165 tary Assistance program administered by the Air Force. The data were compiled from progress reports...Military Assistance . MAP AIRCRAFT - Aircraft in foreign countries provided by the USAF under Military Assistance Program . AIRCRAFT ATTRITION - Aircraft
A review of NASA's propulsion programs for aviation
NASA Technical Reports Server (NTRS)
Stewart, W. L.; Johnson, H. W.; Weber, R. J.
1978-01-01
A review of five NASA engine-oriented propulsion programs of major importance to civil aviation are presented and discussed. Included are programs directed at exploring propulsion system concepts for (1) energy conservation subsonic aircraft (improved current turbofans, advanced turbofans, and advanced turboprops); (2) supersonic cruise aircraft (variable cycle engines); (3) general aviation aircraft (improved reciprocating engines and small gas turbines); (4) powered lift aircraft (advanced turbofans); and (5) advanced rotorcraft.
The NASA Aircraft Energy Efficiency Program
NASA Technical Reports Server (NTRS)
Klineberg, J. M.
1978-01-01
The objective of the NASA Aircraft Energy Efficiency Program is to accelerate the development of advanced technology for more energy-efficient subsonic transport aircraft. This program will have application to current transport derivatives in the early 1980s and to all-new aircraft of the late 1980s and early 1990s. Six major technology projects were defined that could result in fuel savings in commercial aircraft: (1) Engine Component Improvement, (2) Energy Efficient Engine, (3) Advanced Turboprops, (4) Energy Efficiency Transport (aerodynamically speaking), (5) Laminar Flow Control, and (6) Composite Primary Structures.
Overview of mechanics of materials branch activities in the computational structures area
NASA Technical Reports Server (NTRS)
Poe, C. C., Jr.
1992-01-01
Base programs and system programs are discussed. The base programs include fundamental research of composites and metals for airframes leading to characterization of advanced materials, models of behavior, and methods for predicting damage tolerance. Results from the base programs support the systems programs, which change as NASA's missions change. The National Aerospace Plane (NASP), Advanced Composites Technology (ACT), Airframe Structural Integrity Program (Aging Aircraft), and High Speed Research (HSR) programs are currently being supported. Airframe durability is one of the key issues in each of these system programs. The base program has four major thrusts, which will be reviewed subsequently. Additionally, several technical highlights will be reviewed for each thrust.
DOT National Transportation Integrated Search
2009-07-01
As part of its more than $$24 billion Deepwater program to replace aging vessels and aircraft with new or upgraded assets, the Coast Guard is preparing the National Security Cutter (NSC) for service. GAO previously reported on Deepwater assets' deplo...
14 CFR 135.421 - Additional maintenance requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... programs, or a program approved by the Administrator, for each aircraft engine, propeller, rotor, and each... instructions set forth by the manufacturer as required by this chapter for the aircraft, aircraft engine, propeller, rotor or item of emergency equipment. (c) For each single engine aircraft to be used in passenger...
14 CFR 135.421 - Additional maintenance requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... programs, or a program approved by the Administrator, for each aircraft engine, propeller, rotor, and each... instructions set forth by the manufacturer as required by this chapter for the aircraft, aircraft engine, propeller, rotor or item of emergency equipment. (c) For each single engine aircraft to be used in passenger...
14 CFR 135.421 - Additional maintenance requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... programs, or a program approved by the Administrator, for each aircraft engine, propeller, rotor, and each... instructions set forth by the manufacturer as required by this chapter for the aircraft, aircraft engine, propeller, rotor or item of emergency equipment. (c) For each single engine aircraft to be used in passenger...
14 CFR 135.421 - Additional maintenance requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... programs, or a program approved by the Administrator, for each aircraft engine, propeller, rotor, and each... instructions set forth by the manufacturer as required by this chapter for the aircraft, aircraft engine, propeller, rotor or item of emergency equipment. (c) For each single engine aircraft to be used in passenger...
14 CFR 135.421 - Additional maintenance requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... programs, or a program approved by the Administrator, for each aircraft engine, propeller, rotor, and each... instructions set forth by the manufacturer as required by this chapter for the aircraft, aircraft engine, propeller, rotor or item of emergency equipment. (c) For each single engine aircraft to be used in passenger...
DOT National Transportation Integrated Search
2016-08-01
This paper provides information to Forest Service leadership about how the agency could use unmanned aircraft across different programs, especially in program areas where aircraft use is currently limited. It draws from published uses of unmanned air...
Novel methods for aircraft corrosion monitoring
NASA Astrophysics Data System (ADS)
Bossi, Richard H.; Criswell, Thomas L.; Ikegami, Roy; Nelson, James; Normand, Eugene; Rutherford, Paul S.; Shrader, John E.
1995-07-01
Monitoring aging aircraft for hidden corrosion is a significant problem for both military and civilian aircraft. Under a Wright Laboratory sponsored program, Boeing Defense & Space Group is investigating three novel methods for detecting and monitoring hidden corrosion: (1) atmospheric neutron radiography, (2) 14 MeV neutron activation analysis and (3) fiber optic corrosion sensors. Atmospheric neutron radiography utilizes the presence of neutrons in the upper atmosphere as a source for interrogation of the aircraft structure. Passive track-etch neutron detectors, which have been previously placed on the aircraft, are evaluated during maintenance checks to assess the presence of corrosion. Neutrons generated by an accelerator are used via activation analysis to assess the presence of distinctive elements in corrosion products, particularly oxygen. By using fast (14 MeV) neutrons for the activation, portable, high intensity sources can be employed for field testing of aircraft. The third novel method uses fiber optics as part of a smart structure technology for corrosion detection and monitoring. Fiber optic corrosion sensors are placed in the aircraft at locations known to be susceptible to corrosion. Periodic monitoring of the sensors is used to alert maintenance personnel to the presence and degree of corrosion at specific locations on the aircraft. During the atmospheric neutron experimentation, we identified a fourth method referred to as secondary emission radiography (SER). This paper discusses the development of these methods.
Analysis of the Effectiveness of F-15E Risk Management during Peacetime Operations
2015-06-18
of aircraft or life . These results were compared with existing risk management programs in the form of unit worksheet assessments. This study found...Force risk management program across all fixed-wing aircraft. Rotary wing aircraft will have their own unique challenges . However, for all its...the loss of aircraft or life . These results were compared with existing risk management programs in the form of unit worksheet assessments. This
GASP- General Aviation Synthesis Program. Volume 1: Main program. Part 1: Theoretical development
NASA Technical Reports Server (NTRS)
Hague, D.
1978-01-01
The General Aviation synthesis program performs tasks generally associated with aircraft preliminary design and allows an analyst the capability of performing parametric studies in a rapid manner. GASP emphasizes small fixed-wing aircraft employing propulsion systems varying froma single piston engine with fixed pitch propeller through twin turboprop/ turbofan powered business or transport type aircraft. The program, which may be operated from a computer terminal in either the batch or interactive graphic mode, is comprised of modules representing the various technical disciplines integrated into a computational flow which ensures that the interacting effects of design variables are continuously accounted for in the aircraft sizing procedure. The model is a useful tool for comparing configurations, assessing aircraft performance and economics, performing tradeoff and sensitivity studies, and assessing the impact of advanced technologies on aircraft performance and economics.
Cost Avoidance Techniques for RC-135 Program Flying Training
2013-06-01
135, age has an even greater impact . Built in the 1960’s, RC-135s have covered tours 8 over Vietnam and Operations Southern/Northern Watch. Over...of one PFT done on a weekly basis, although seemingly insignificant, could have enormous impact over time. Even the smallest regular cost savings...Force Flying Hour Costs Four variables make up the flying hour program. They are supplies (tools used to repair aircraft), impact card (purchases by
NASA's program on icing research and technology
NASA Technical Reports Server (NTRS)
Reinmann, John J.; Shaw, Robert J.; Ranaudo, Richard J.
1989-01-01
NASA's program in aircraft icing research and technology is reviewed. The program relies heavily on computer codes and modern applied physics technology in seeking icing solutions on a finer scale than those offered in earlier programs. Three major goals of this program are to offer new approaches to ice protection, to improve our ability to model the response of an aircraft to an icing encounter, and to provide improved techniques and facilities for ground and flight testing. This paper reviews the following program elements: (1) new approaches to ice protection; (2) numerical codes for deicer analysis; (3) measurement and prediction of ice accretion and its effect on aircraft and aircraft components; (4) special wind tunnel test techniques for rotorcraft icing; (5) improvements of icing wind tunnels and research aircraft; (6) ground de-icing fluids used in winter operation; (7) fundamental studies in icing; and (8) droplet sizing instruments for icing clouds.
NASA Technical Reports Server (NTRS)
Wlezien, R. W.; Horner, G. C.; McGowan, A. R.; Padula, S. L.; Scott, M. A.; Silcox, R. J.; Simpson, J. O.
1998-01-01
In the last decade smart technologies have become enablers that cut across traditional boundaries in materials science and engineering. Here we define smart to mean embedded actuation, sensing, and control logic in a tightly coupled feedback loop. While multiple successes have been achieved in the laboratory, we have yet to see the general applicability of smart devices to real aircraft systems. The NASA Aircraft Morphing program is an attempt to couple research across a wide range of disciplines to integrate smart technologies into high payoff aircraft applications. The program bridges research in seven individual disciplines and combines the effort into activities in three primary program thrusts. System studies are used to assess the highest- payoff program objectives, and specific research activities are defined to address the technologies required for development of smart aircraft systems. In this paper we address the overall program goals and programmatic structure, and discuss the challenges associated with bringing the technologies to fruition.
DOT National Transportation Integrated Search
2017-08-01
There are several mature Unmanned Aircraft System (UAS) and Small Unmanned Aircraft System (sUAS) training programs available for analysis. Many of these programs were developed by the various branches with the U.S. Department of Defense (DoD) in con...
Life cycle cost analysis of aging aircraft airframe maintenance
NASA Astrophysics Data System (ADS)
Sperry, Kenneth Robert
Scope and method of study. The purpose of this study was to examine the relationship between an aircraft's age and its annual airframe maintenance costs. Common life cycle costing methodology has previously not recognized the existence of this cost growth potential, and has therefor not determined the magnitude nor significance of this cost element. This study analyzed twenty-five years of DOT Form 41-airframe maintenance cost data for the Boeing 727, 737, 747 and McDonnell Douglas DC9 and DC-10 aircraft. Statistical analysis included regression analysis, Pearson's r, and t-tests to test the null hypothesis. Findings and conclusion. Airframe maintenance cost growth was confirmed to be increasing after an aircraft's age exceeded its designed service objective of approximately twenty-years. Annual airframe maintenance cost growth increases were measured ranging from 3.5% annually for a DC-9, to approximately 9% annually for a DC-10 aircraft. Average measured coefficient of determination between age and airframe maintenance, exceeded .80, confirming a strong relationship between cost: and age. The statistical significance of the difference between airframe costs sampled in 1985, compared to airframe costs sampled in 1998 was confirmed by t-tests performed on each subject aircraft group. Future cost forecasts involving aging aircraft subjects must address cost growth due to aging when attempting to model an aircraft's economic service life.
STOVL aircraft simulation for integrated flight and propulsion control research
NASA Technical Reports Server (NTRS)
Mihaloew, James R.; Drummond, Colin K.
1989-01-01
The United States is in the initial stages of committing to a national program to develop a supersonic short takeoff and vertical landing (STOVL) aircraft. The goal of the propulsion community in this effort is to have the enabling propulsion technologies for this type aircraft in place to permit a low risk decision regarding the initiation of a research STOVL supersonic attack/fighter aircraft in the late mid-90's. This technology will effectively integrate, enhance, and extend the supersonic cruise, STOVL and fighter/attack programs to enable U.S. industry to develop a revolutionary supersonic short takeoff and vertical landing fighter/attack aircraft in the post-ATF period. A joint NASA Lewis and NASA Ames research program, with the objective of developing and validating technology for integrated-flight propulsion control design methodologies for short takeoff and vertical landing (STOVL) aircraft, was planned and is underway. This program, the NASA Supersonic STOVL Integrated Flight-Propulsion Controls Program, is a major element of the overall NASA-Lewis Supersonic STOVL Propulsion Technology Program. It uses an integrated approach to develop an integrated program to achieve integrated flight-propulsion control technology. Essential elements of the integrated controls research program are realtime simulations of the integrated aircraft and propulsion systems which will be used in integrated control concept development and evaluations. This paper describes pertinent parts of the research program leading up to the related realtime simulation development and remarks on the simulation structure to accommodate propulsion system hardware drop-in for real system evaluation.
78 FR 18932 - Public Meeting: Unmanned Aircraft Systems Test Site Program; Privacy Approach
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-28
... operation of the UAS Test Sites. They are not intended to pre-determine the long- term policy and regulatory...-0061] Public Meeting: Unmanned Aircraft Systems Test Site Program; Privacy Approach AGENCY: Federal... the unmanned aircraft systems (UAS) test site program. The FAA is seeking the views from the public...
NASA Technical Reports Server (NTRS)
Welp, D. W.; Brown, R. A.; Ullman, D. G.; Kuhner, M. B.
1974-01-01
A computer simulation program which models a commercial short-haul aircraft operating in the civil air system was developed. The purpose of the program is to evaluate the effect of a given aircraft avionics capability on the ability of the aircraft to perform on-time carrier operations. The program outputs consist primarily of those quantities which can be used to determine direct operating costs. These include: (1) schedule reliability or delays, (2) repairs/replacements, (3) fuel consumption, and (4) cancellations. More comprehensive models of the terminal area environment were added and a simulation of an existing airline operation was conducted to obtain a form of model verification. The capability of the program to provide comparative results (sensitivity analysis) was then demonstrated by modifying the aircraft avionics capability for additional computer simulations.
Technology for reducing aircraft engine pollution
NASA Technical Reports Server (NTRS)
Rudey, R. A.; Kempke, E. E., Jr.
1975-01-01
Programs have been initiated by NASA to develop and demonstrate advanced technology for reducing aircraft gas turbine and piston engine pollutant emissions. These programs encompass engines currently in use for a wide variety of aircraft from widebody-jets to general aviation. Emission goals for these programs are consistent with the established EPA standards. Full-scale engine demonstrations of the most promising pollutant reduction techniques are planned within the next three years. Preliminary tests of advanced technology gas turbine engine combustors indicate that significant reductions in all major pollutant emissions should be attainable in present generation aircraft engines without adverse effects on fuel consumption. Fundamental-type programs are yielding results which indicate that future generation gas turbine aircraft engines may be able to utilize extremely low pollutant emission combustion systems.
Impact and promise of NASA aeropropulsion technology
NASA Technical Reports Server (NTRS)
Saunders, Neal T.; Bowditch, David N.
1987-01-01
The aeropropulsion industry in the United States has established an enviable record of leading the world in aeropropulsion for commercial and military aircraft. The NASA aeropropulsion propulsion program (primarily conducted through the Lewis Research Center) has significantly contributed to that success through research and technology advances and technology demonstrations such as the Refan, Engine Component Improvement, and the Energy Efficient Engine Programs. Some past NASA contributions to engines in current aircraft are reviewed, and technologies emerging from current research programs for the aircraft of the 1990's are described. Finally, current program thrusts toward improving propulsion systems in the 2000's for subsonic commercial aircraft and higher speed aircraft such as the High-Speed Civil Transport and the National Aerospace Plane (NASP) are discussed.
The atmospheric effects of stratospheric aircraft: A third program report
NASA Technical Reports Server (NTRS)
Stolarski, Richard S. (Editor); Wesoky, Howard L. (Editor)
1993-01-01
A third report from the Atmospheric Effects of Stratospheric Aircraft (AESA) component of NASA's High-Speed Research Program (HSRP) is presented. Market and technology considerations continue to provide an impetus for high-speed civil transport research. A recent United Nations Environment Program scientific assessment showed that considerable uncertainty still exists about the possible impact of aircraft on the atmosphere. The AESA was designed to develop the body of scientific knowledge necessary for the evaluation of the impact of stratospheric aircraft on the atmosphere. The first Program report presented the basic objectives and plans for AESA. This third report marks the midpoint of the program and presents the status of the ongoing research on the impact of stratospheric aircraft on the atmosphere as reported at the third annual AESA Program meeting in June 1993. The focus of the program is on predicted atmospheric changes resulting from projected HSCT emissions. Topics reported on cover how high-speed civil transports (HSCT) might affect stratospheric ozone, emissions scenarios and databases to assess potential atmospheric effects from HSCT's, calculated results from 2-D zonal mean models using emissions data, engine trace constituent measurements, and exhaust plume/aircraft wake vortex interactions.
Analysis and calculation of lightning-induced voltages in aircraft electrical circuits
NASA Technical Reports Server (NTRS)
Plumer, J. A.
1974-01-01
Techniques to calculate the transfer functions relating lightning-induced voltages in aircraft electrical circuits to aircraft physical characteristics and lightning current parameters are discussed. The analytical work was carried out concurrently with an experimental program of measurements of lightning-induced voltages in the electrical circuits of an F89-J aircraft. A computer program, ETCAL, developed earlier to calculate resistive and inductive transfer functions is refined to account for skin effect, providing results more valid over a wider range of lightning waveshapes than formerly possible. A computer program, WING, is derived to calculate the resistive and inductive transfer functions between a basic aircraft wing and a circuit conductor inside it. Good agreement is obtained between transfer inductances calculated by WING and those reduced from measured data by ETCAL. This computer program shows promise of expansion to permit eventual calculation of potential lightning-induced voltages in electrical circuits of complete aircraft in the design stage.
Role of research aircraft in technology development
NASA Technical Reports Server (NTRS)
Szalai, K. J.
1984-01-01
The United States's aeronautical research program has been rich in the use of research aircraft to explore new flight regimes, develop individual aeronautical concepts, and investigate new vehicle classes and configurations. This paper reviews the NASA supercritical wing, digital fly-by-wire, HiMAT, and AD-1 oblique-wing flight research programs, and draws from these examples general conclusions regarding the role and impact of research aircraft in technology development. The impact of a flight program on spinoff technology is also addressed. The secondary, serendipitous results are often highly significant. Finally, future research aircraft programs are examined for technology trends and expected results.
NASA Technical Reports Server (NTRS)
Foss, W. E., Jr.
1979-01-01
The takeoff and approach performance of an aircraft is calculated in accordance with the airworthiness standards of the Federal Aviation Regulations. The aircraft and flight constraints are represented in sufficient detail to permit realistic sensitivity studies in terms of either configuration modifications or changes in operational procedures. The program may be used to investigate advanced operational procedures for noise alleviation such as programmed throttle and flap controls. Extensive profile time history data are generated and are placed on an interface file which can be input directly to the NASA aircraft noise prediction program (ANOPP).
NASA Astrophysics Data System (ADS)
Pentz, Alan Carter
With today's uncertain funding climate (including sequestration and continuing budget resolutions), decision makers face severe budgetary challenges to maintain dominance through all aspects of the Department of Defense (DoD). To meet war-fighting capabilities, the DoD continues to extend aircraft programs beyond their design service lives by up to ten years, and occasionally much more. The budget requires a new approach to traditional extension strategies (i.e., reuse, reset, and reclamation) for structural hardware. While extending service life without careful controls can present a safety concern, future operations planning does not consider how much risk is present when operating within sound structural principles. Traditional structural hardware extension methods drive increased costs. Decision makers often overlook the inherent damage tolerance and fatigue capability of structural components and rely on simple time- and flight-based cycle accumulation when determining aircraft retirement lives. This study demonstrates that decision makers should consider risk in addition to the current extension strategies. Through an evaluation of eight military aircraft programs and the application and simulation of F-18 turbine engine usage data, this dissertation shows that insight into actual aircraft mission data, consideration of fatigue capability, and service extension length are key factors to consider. Aircraft structural components, as well as many critical safety components and system designs, have a predefined level of conservatism and inherent damage tolerance. The methods applied in this study would apply to extensions of other critical structures such as bridges. Understanding how much damage tolerance is built into the design compared to the original design usage requirements presents the opportunity to manage systems based on risk. The study presents the sensitivity of these factors and recommends avenues for further research.
NASA Boeing 737 Aircraft Test Results from 1996 Joint Winter Runway Friction Measurement Program
NASA Technical Reports Server (NTRS)
Yager, Thomas J.
1996-01-01
A description of the joint test program objectives and scope is given together with the performance capability of the NASA Langley B-737 instrumented aircraft. The B-737 test run matrix conducted during the first 8 months of this 5-year program is discussed with a description of the different runway conditions evaluated. Some preliminary test results are discussed concerning the Electronic Recording Decelerometer (ERD) readings and a comparison of B-737 aircraft braking performance for different winter runway conditions. Detailed aircraft parameter time history records, analysis of ground vehicle friction measurements and harmonization with aircraft braking performance, assessment of induced aircraft contaminant drag, and evaluation of the effects of other factors on aircraft/ground vehicle friction performance will be documented in a NASA Technical Report which is being prepared for publication next year.
2010-01-01
optical surveillance program for Space Situational Awareness (SSA), cadet First class Sean harte’s break-through repair technique for enamel ...also undertaken several collaborative projects to include Air Force Research Lab projects such as crack growth studies and a c-130 center Wingbox...research. the research projects involved in the collaboration include energy harvesting, corrosion and stress corrosion cracking of aging aircraft
Integrated Research/Education University Aircraft Design Program Development
2017-04-06
iterations and loop shaping compared to MIMO control methods. Despite the drawbacks, loop closure and classical methods are the design methods most commonly...AFRL-AFOSR-VA-TR-2017-0077 Integrated Research/Education University Aircraft Design Program Development Eli Livne UNIVERSITY OF WASHINGTON 4333...SUBTITLE Integrated Research/Education University Aircraft Design Program Development 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-14-1-0027 5c. PROGRAM
NASA Aeronautics: Research and Technology Program Highlights
NASA Technical Reports Server (NTRS)
1990-01-01
This report contains numerous color illustrations to describe the NASA programs in aeronautics. The basic ideas involved are explained in brief paragraphs. The seven chapters deal with Subsonic aircraft, High-speed transport, High-performance military aircraft, Hypersonic/Transatmospheric vehicles, Critical disciplines, National facilities and Organizations & installations. Some individual aircraft discussed are : the SR-71 aircraft, aerospace planes, the high-speed civil transport (HSCT), the X-29 forward-swept wing research aircraft, and the X-31 aircraft. Critical disciplines discussed are numerical aerodynamic simulation, computational fluid dynamics, computational structural dynamics and new experimental testing techniques.
Aircraft noise source and computer programs - User's guide
NASA Technical Reports Server (NTRS)
Crowley, K. C.; Jaeger, M. A.; Meldrum, D. F.
1973-01-01
The application of computer programs for predicting the noise-time histories and noise contours for five types of aircraft is reported. The aircraft considered are: (1) turbojet, (2) turbofan, (3) turboprop, (4) V/STOL, and (5) helicopter. Three principle considerations incorporated in the design of the noise prediction program are core effectiveness, limited input, and variable output reporting.
Simulating a Direction-Finder Search for an ELT
NASA Technical Reports Server (NTRS)
Bream, Bruce
2005-01-01
A computer program simulates the operation of direction-finding equipment engaged in a search for an emergency locator transmitter (ELT) aboard an aircraft that has crashed. The simulated equipment is patterned after the equipment used by the Civil Air Patrol to search for missing aircraft. The program is designed to be used for training in radio direction-finding and/or searching for missing aircraft without incurring the expense and risk of using real aircraft and ground search resources. The program places a hidden ELT on a map and enables the user to search for the location of the ELT by moving a 14 NASA Tech Briefs, March 2005 small aircraft image around the map while observing signal-strength and direction readings on a simulated direction- finding locator instrument. As the simulated aircraft is turned and moved on the map, the program updates the readings on the direction-finding instrument to reflect the current position and heading of the aircraft relative to the location of the ELT. The software is distributed in a zip file that contains an installation program. The software runs on the Microsoft Windows 9x, NT, and XP operating systems.
Impact and promise of NASA aeropropulsion technology
NASA Technical Reports Server (NTRS)
Saunders, Neal T.; Bowditch, David N.
1990-01-01
The aeropropulsion industry in the U.S. has established an enviable record of leading the world in aeropropulsion for commercial and military aircraft. NASA's aeropropulsion program (primarily conducted through the Lewis Research Center) has significantly contributed to that success through research and technology advances and technology demonstration. Some past NASA contributions to engines in current aircraft are reviewed, and technologies emerging from current research programs for the aircraft of the 1990's are described. Finally, current program thrusts toward improving propulsion systems in the 2000's for subsonic commercial aircraft and higher speed aircraft such as the High-Speed Civil Transport and the National Aerospace Plane are discussed.
NASA Technical Reports Server (NTRS)
Walter, Patrick L.
1992-01-01
A major center with emphasis on validation of nondestructive inspection (NDI) techniques for aging aircraft, the Aging Aircraft NDI Development and Demonstration Center (AANC), has been funded by the FAA at Sandia National Laboratories. The Center has been assigned specific tasks in developing techniques for the nondestructive inspection of static engine parts, assessing inspection reliability (POD experiments), developing testbeds for NDI validation, maintaining a FAA library of characterized aircraft structural test specimens, and leasing a hangar to house a high flight cycle transport aircraft for use as a full scale test bed.
Quiet Short-Haul Research Aircraft Joint Navy/NASA Sea Trials
NASA Technical Reports Server (NTRS)
Queen, S.; Cochrane, J.
1982-01-01
The Quiet Short-Haul Research Aircraft (QSRA) is a flight facility which Ames Research Center is using to conduct a broad program of terminal area and low-speed, propulsive-life flight research. A joint Navy/NASA flight research program used the QSRA to investigate the application of advanced propulsive-lift technology to the naval aircraft-carrier environment. Flight performance of the QSRA is presented together with the results or the joint Navy/NASA flight program. During the joint program, the QSRA operated aboard the USS Kitty Hawk for 4 days, during which numerous unarrested landings and free deck takeoffs were accomplished. These operations demonstrated that a large aircraft incorporating upper-surface-blowing, propulsive-life technology can be operated in the aircraft-carrier environment without any unusual problems.
Airworthiness criteria development for powered-lift aircraft: A program summary
NASA Technical Reports Server (NTRS)
Heffley, R. K.; Stapleford, R. L.; Rumold, R. C.
1977-01-01
A four-year simulation program to develop airworthiness criteria for powered-lift aircraft is summarized. All flight phases affected by use of powered lift (approach, landing, takeoff) are treated with regard to airworthiness problem areas (limiting flight conditions and safety margins: stability, control, and performance; and systems failure). The general features of powered-lift aircraft are compared to conventional aircraft.
Computer program to predict noise of general aviation aircraft: User's guide
NASA Technical Reports Server (NTRS)
Mitchell, J. A.; Barton, C. K.; Kisner, L. S.; Lyon, C. A.
1982-01-01
Program NOISE predicts General Aviation Aircraft far-field noise levels at FAA FAR Part 36 certification conditions. It will also predict near-field and cabin noise levels for turboprop aircraft and static engine component far-field noise levels.
NASA Technical Reports Server (NTRS)
Kelley, H. J.; Lefton, L.
1976-01-01
The numerical analysis of composite differential-turn trajectory pairs was studied for 'fast-evader' and 'neutral-evader' attitude dynamics idealization for attack aircraft. Transversality and generalized corner conditions are examined and the joining of trajectory segments discussed. A criterion is given for the screening of 'tandem-motion' trajectory segments. Main focus is upon the computation of barrier surfaces. Fortunately, from a computational viewpoint, the trajectory pairs defining these surfaces need not be calculated completely, the final subarc of multiple-subarc pairs not being required. Some calculations for pairs of example aircraft are presented. A computer program used to perform the calculations is included.
Aircraft operations management manual
NASA Technical Reports Server (NTRS)
1992-01-01
The NASA aircraft operations program is a multifaceted, highly diverse entity that directly supports the agency mission in aeronautical research and development, space science and applications, space flight, astronaut readiness training, and related activities through research and development, program support, and mission management aircraft operations flights. Users of the program are interagency, inter-government, international, and the business community. This manual provides guidelines to establish policy for the management of NASA aircraft resources, aircraft operations, and related matters. This policy is an integral part of and must be followed when establishing field installation policy and procedures covering the management of NASA aircraft operations. Each operating location will develop appropriate local procedures that conform with the requirements of this handbook. This manual should be used in conjunction with other governing instructions, handbooks, and manuals.
Smart Sensor System for NDE or Corrosion in Aging Aircraft
NASA Technical Reports Server (NTRS)
Bar-Cohen, Y.; Marzwell, N.; Osegueda, R.; Ferregut, C.
1998-01-01
The extension of the operation life of military and civilian aircraft rather than replacing them with new ones is increasing the probability of aircraft component failure as a result of aging. Aircraft that already have endured a long srvice life of more than 40 years are now being considered for another 40 years of service.
Aeronautics research and technology program and specific objectives
NASA Technical Reports Server (NTRS)
1981-01-01
Aeronautics research and technology program objectives in fluid and thermal physics, materials and structures, controls and guidance, human factors, multidisciplinary activities, computer science and applications, propulsion, rotorcraft, high speed aircraft, subsonic aircraft, and rotorcraft and high speed aircraft systems technology are addressed.
NASA Technical Reports Server (NTRS)
1973-01-01
A program to reduce the community noise levels of commercial jet aircraft is summarized. The program objective is the development of three acoustically treated nacelle configurations for the 707, 727, and 737 series aircraft to provide maximum noise reduction with minimum performance loss, modification requirements, and economic impact. The preliminary design, model testing, data analyses, and economic studies of proposed nacelle configurations are discussed.
Aircraft radial-belted tire evaluation
NASA Technical Reports Server (NTRS)
Yager, Thomas J.; Stubbs, Sandy M.; Davis, Pamela A.
1990-01-01
An overview is given of the ongoing joint NASA/FAA/Industry Surface Traction And Radial Tire (START) Program being conducted at NASA Langley's Aircraft Landing Dynamics Facility (ALDF). The START Program involves tests using three different tire sizes to evaluate tire rolling resistance, braking, and cornering performance throughout the aircraft ground operational speed range for both dry and wet runway surfaces. Preliminary results from recent 40 x 14 size bias-ply, radial-belted, and H-type aircraft tire tests are discussed. The paper concludes with a summary of the current program status and planned ALDF test schedule.
Small transport aircraft technology
NASA Technical Reports Server (NTRS)
Williams, L. J.
1983-01-01
Information on commuter airline trends and aircraft developments is provided to upgrade the preliminary findings of a NASA-formed small transport aircraft technology (STAT) team, established to determine whether the agency's research and development programs could help commuter aircraft manufacturers solve technical problems related to passenger acceptance and use of 19- to 50-passenger aircraft. The results and conclusions of the full set of completed STAT studies are presented. These studies were performed by five airplane manufacturers, five engine manufacturers, and two propeller manufacturers. Those portions of NASA's overall aeronautics research and development programs which are applicable to commuter aircraft design are summarized. Areas of technology that might beneficially be expanded or initiated to aid the US commuter aircraft manufacturers in the evolution of improved aircraft for the market are suggested.
NASA Technical Reports Server (NTRS)
Hindson, W. S.; Hardy, G.
1980-01-01
Several different flight research programs carried out by NASA and the Canadian Government using the Augmentor Wing Jet STOL Research Aircraft to investigate the design, operational, and systems requirements for powered-lift STOL aircraft are summarized. Some of these programs considered handling qualities and certification criteria for this class of aircraft, and addressed pilot control techniques, control system design, and improved cockpit displays for the powered-lift STOL approach configuration. Other programs involved exploiting the potential of STOL aircraft for constrained terminal-area approaches within the context of present or future air traffic control environments. Both manual and automatic flight control investigations are discussed, and an extensive bibliography of the flight programs is included.
NASA's aircraft icing technology program
NASA Technical Reports Server (NTRS)
Reinmann, John J.
1991-01-01
NASA' Aircraft Icing Technology program is aimed at developing innovative technologies for safe and efficient flight into forecasted icing. The program addresses the needs of all aircraft classes and supports both commercial and military applications. The program is guided by three key strategic objectives: (1) numerically simulate an aircraft's response to an in-flight icing encounter, (2) provide improved experimental icing simulation facilities and testing techniques, and (3) offer innovative approaches to ice protection. Our research focuses on topics that directly support stated industry needs, and we work closely with industry to assure a rapid and smooth transfer of technology. This paper presents selected results that illustrate progress towards the three strategic objectives, and it provides a comprehensive list of references on the NASA icing program.
NASA Technical Reports Server (NTRS)
Baer-Riedhart, Jennifer L.; Landy, Robert J.
1987-01-01
The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.
A Program in Air Transportation Technology (Joint University Program)
NASA Technical Reports Server (NTRS)
Stengel, Robert F.
1996-01-01
The Joint University Program on Air Transportation Technology was conducted at Princeton University from 1971 to 1995. Our vision was to further understanding of the design and operation of transport aircraft, of the effects of atmospheric environment on aircraft flight, and of the development and utilization of the National Airspace System. As an adjunct, the program emphasized the independent research of both graduate and undergraduate students. Recent principal goals were to develop and verify new methods for design and analysis of intelligent flight control systems, aircraft guidance logic for recovery from wake vortex encounter, and robust flight control systems. Our research scope subsumed problems associated with multidisciplinary aircraft design synthesis and analysis based on flight physics, providing a theoretical basis for developing innovative control concepts that enhance aircraft performance and safety. Our research focus was of direct interest not only to NASA but to manufacturers of aircraft and their associated systems. Our approach, metrics, and future directions described in the remainder of the report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrow, J.J.; Burris, R.A.; Watson, D.J.
1977-05-01
This report is intended to provide guidelines for the preparation of procurements specifications for aircraft survivability enhancement equipment, for the survivability/vulnerability (S/V) tasks associated with the procurement of a total aircraft system or its relate subsystems, and also for the modification of current fleet aircraft to their related subsystems. It is intended that these S/V procurement guidelines be applied to the procurement of all military aircraft, aircraft subsystems, and aircraft componenets which can either lose their functional capability of have their performance degraded as a result of interactions with the damage mechanisms of threat weapons. The guidelines should be appliedmore » to preliminary design programs, to production programs, and to programs that will retrofit or modify existing systems. These guidelines include general requirements statements for the establishment of an S/V program, requirements statements for reducing the susceptibility of the system to the threat weapons, and requirements for the reduction of vulnerability to nonnuclear, nuclear, and laser weapon effects. Requirements for S/V assessments and the verification of vulnerability levels and survival enhancement features are also included. Although nuclear and laser weapon effects are included, the major emphasis is on the reduction of susceptibility and vulnerability to conventional weapons and the establishment of the S/V program.« less
NASA Technical Reports Server (NTRS)
1979-01-01
The computer program DEKFIS (discrete extended Kalman filter/smoother), formulated for aircraft and helicopter state estimation and data consistency, is described. DEKFIS is set up to pre-process raw test data by removing biases, correcting scale factor errors and providing consistency with the aircraft inertial kinematic equations. The program implements an extended Kalman filter/smoother using the Friedland-Duffy formulation.
Aircraft wake vortices : a state-of-the-art review of the United States R&D program
DOT National Transportation Integrated Search
1977-02-28
The report summarizes the current state-of-the-art understanding : of the aircraft wake vortex phenomenon and the results of the United : States program to minimize the restrictions caused by aircraft wake : vortices in the terminal environment. The ...
An overview of the quiet short-haul research aircraft program
NASA Technical Reports Server (NTRS)
Shovlin, M. D.; Cochrane, J. A.
1978-01-01
An overview of the Quiet Short Haul Research Aircraft (QSRA) Program is presented, with special emphasis on its propulsion and acoustic aspects. A description of the NASA technical participation in the program including wind tunnel testing, engine ground tests, and advanced aircraft simulation is given. The aircraft and its systems are described and, measured performance, where available, is compared to program goals. Preliminary data indicate that additional research and development are needed in some areas of which acoustics is an example. Some of these additional research areas and potential experiments using the QSRA to develop the technology are discussed. The concept of the QSRA as a national flight research facility is explained.
Nondestructive inspection of bonded composite doublers for aircraft
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roach, D.; Moore, D.; Walkington, P.
1996-12-31
One major thrust in FAA`s National Aging Aircraft Research Program is to foster new technologies in civil aircraft maintenance. Recent DOD and other government developments in using bonded composite doublers on metal structures support the need for validation of such doubler applications on US certificated airplanes. In this study, a specific composite application was chosen on an L-1011 aircraft. Primary inspection requirements for these doublers include identifying disbonds between composite laminate and aluminum parent material, and delaminations in the composite laminate. Surveillance of cracks or corrosion in the parent aluminum material beneath the double is also a concern. No singlemore » NDI method can inspect for every flaw type, therefore we need to know NDI capabilities and limitations. This paper reports on a series of NDI tests conducted on laboratory test structures and on a fuselage section from a retired L-1011. Application of ultrasonics, x-ray, and eddy current to composite doublers and results from test specimens loaded to provide a changing flaw profile, are presented in this paper. Development of appropriate inspection calibration standards are also discussed.« less
Interior noise prediction methodology: ATDAC theory and validation
NASA Technical Reports Server (NTRS)
Mathur, Gopal P.; Gardner, Bryce K.
1992-01-01
The Acoustical Theory for Design of Aircraft Cabins (ATDAC) is a computer program developed to predict interior noise levels inside aircraft and to evaluate the effects of different aircraft configurations on the aircraft acoustical environment. The primary motivation for development of this program is the special interior noise problems associated with advanced turboprop (ATP) aircraft where there is a tonal, low frequency noise problem. Prediction of interior noise levels requires knowledge of the energy sources, the transmission paths, and the relationship between the energy variable and the sound pressure level. The energy sources include engine noise, both airborne and structure-borne; turbulent boundary layer noise; and interior noise sources such as air conditioner noise and auxiliary power unit noise. Since propeller and engine noise prediction programs are widely available, they are not included in ATDAC. Airborne engine noise from any prediction or measurement may be input to this program. This report describes the theory and equations implemented in the ATDAC program.
Interior noise prediction methodology: ATDAC theory and validation
NASA Astrophysics Data System (ADS)
Mathur, Gopal P.; Gardner, Bryce K.
1992-04-01
The Acoustical Theory for Design of Aircraft Cabins (ATDAC) is a computer program developed to predict interior noise levels inside aircraft and to evaluate the effects of different aircraft configurations on the aircraft acoustical environment. The primary motivation for development of this program is the special interior noise problems associated with advanced turboprop (ATP) aircraft where there is a tonal, low frequency noise problem. Prediction of interior noise levels requires knowledge of the energy sources, the transmission paths, and the relationship between the energy variable and the sound pressure level. The energy sources include engine noise, both airborne and structure-borne; turbulent boundary layer noise; and interior noise sources such as air conditioner noise and auxiliary power unit noise. Since propeller and engine noise prediction programs are widely available, they are not included in ATDAC. Airborne engine noise from any prediction or measurement may be input to this program. This report describes the theory and equations implemented in the ATDAC program.
14 CFR 91.1041 - Aircraft proving and validation tests.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Aircraft proving and validation tests. 91... Ownership Operations Program Management § 91.1041 Aircraft proving and validation tests. (a) No program... tests. However, pilot flight training may be conducted during the proving tests. (d) Validation testing...
14 CFR 91.1041 - Aircraft proving and validation tests.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Aircraft proving and validation tests. 91... Ownership Operations Program Management § 91.1041 Aircraft proving and validation tests. (a) No program... tests. However, pilot flight training may be conducted during the proving tests. (d) Validation testing...
14 CFR 91.1041 - Aircraft proving and validation tests.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Aircraft proving and validation tests. 91... Ownership Operations Program Management § 91.1041 Aircraft proving and validation tests. (a) No program... tests. However, pilot flight training may be conducted during the proving tests. (d) Validation testing...
14 CFR 91.1041 - Aircraft proving and validation tests.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Aircraft proving and validation tests. 91... Ownership Operations Program Management § 91.1041 Aircraft proving and validation tests. (a) No program... tests. However, pilot flight training may be conducted during the proving tests. (d) Validation testing...
14 CFR 91.1041 - Aircraft proving and validation tests.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aircraft proving and validation tests. 91... Ownership Operations Program Management § 91.1041 Aircraft proving and validation tests. (a) No program... tests. However, pilot flight training may be conducted during the proving tests. (d) Validation testing...
NASA Technical Reports Server (NTRS)
Scott, Robert C.; Pototzky, Anthony S.; Perry, Boyd, III
1994-01-01
NASA Langley Research Center has, for several years, conducted research in the area of time-correlated gust loads for linear and nonlinear aircraft. The results of this work led NASA to recommend that the Matched-Filter-Based One-Dimensional Search Method be used for gust load analyses of nonlinear aircraft. This manual describes this method, describes a FORTRAN code which performs this method, and presents example calculations for a sample nonlinear aircraft model. The name of the code is MFD1DS (Matched-Filter-Based One-Dimensional Search). The program source code, the example aircraft equations of motion, a sample input file, and a sample program output are all listed in the appendices.
Composite components on commercial aircraft
NASA Technical Reports Server (NTRS)
Dexter, H. B.
1980-01-01
Commercial aircraft manufacturers are making production commitments to composite structure for future aircraft and modifications to current production aircraft. Flight service programs with advanced composites sponsored by NASA during the past 10 years are described. Approximately 2.5 million total composite component flight hours have been accumulated since 1970 on both commercial transports and helicopters. Design concepts with significant mass savings were developed, appropriate inspection and maintenance procedures were established, and satisfactory service was achieved for the various composite components. A major NASA/U.S. industry technology program to reduce fuel consumption of commercial transport aircraft through the use of advanced composites was undertaken. Ground and flight environmental effects on the composite materials used in the flight service programs supplement the flight service evaluation.
Advanced tow placement of composite fuselage structure
NASA Technical Reports Server (NTRS)
Anderson, Robert L.; Grant, Carroll G.
1992-01-01
The Hercules NASA ACT program was established to demonstrate and validate the low cost potential of the automated tow placement process for fabrication of aircraft primary structures. The program is currently being conducted as a cooperative program in collaboration with the Boeing ATCAS Program. The Hercules advanced tow placement process has been in development since 1982 and was developed specifically for composite aircraft structures. The second generation machine, now in operation at Hercules, is a production-ready machine that uses a low cost prepreg tow material form to produce structures with laminate properties equivalent to prepreg tape layup. Current program activities are focused on demonstration of the automated tow placement process for fabrication of subsonic transport aircraft fuselage crown quadrants. We are working with Boeing Commercial Aircraft and Douglas Aircraft during this phase of the program. The Douglas demonstration panels has co-cured skin/stringers, and the Boeing demonstration panel is an intricately bonded part with co-cured skin/stringers and co-bonded frames. Other aircraft structures that were evaluated for the automated tow placement process include engine nacelle components, fuselage pressure bulkheads, and fuselage tail cones. Because of the cylindrical shape of these structures, multiple parts can be fabricated on one two placement tool, thus reducing the cost per pound of the finished part.
Roles, uses, and benefits of general aviation aircraft in aerospace engineering education
NASA Technical Reports Server (NTRS)
Odonoghue, Dennis P.; Mcknight, Robert C.
1994-01-01
Many colleges and universities throughout the United States offer outstanding programs in aerospace engineering. In addition to the fundamentals of aerodynamics, propulsion, flight dynamics, and air vehicle design, many of the best programs have in the past provided students the opportunity to design and fly airborne experiments on board various types of aircraft. Sadly, however, the number of institutions offering such 'airborne laboratories' has dwindled in recent years. As a result, opportunities for students to apply their classroom knowledge, analytical skills, and engineering judgement to the development and management of flight experiments on an actual aircraft are indeed rare. One major reason for the elimination of flight programs by some institutions, particularly the smaller colleges, is the prohibitive cost of operating and maintaining an aircraft as a flying laboratory. The purpose of this paper is to discuss simple, low-cost, relevant flight experiments that can be performed using readily available general aviation aircraft. This paper examines flight experiments that have been successfully conducted on board the NASA Lewis Research Center's T-34B aircraft, as part of the NASA/AIAA/University Flight Experiment Program for Students (NAUFEPS) and discusses how similar experiments could be inexpensively performed on other general aviation aircraft.
The atmospheric effects of stratospheric aircraft
NASA Technical Reports Server (NTRS)
Stolarski, Richard S. (Editor); Wesoky, Howard L. (Editor)
1993-01-01
This document presents a second report from the Atmospheric Effects of Stratospheric Aircraft (AESA) component of NASA's High-Speed Research Program (HSRP). This document presents a second report from the Atmospheric Effects of Stratospheric Aircraft (AESA) component of NASA's High Speed Research Program (HSRP). Market and technology considerations continue to provide an impetus for high-speed civil transport research. A recent United Nations Environment Program scientific assessment has shown that considerable uncertainty still exists about the possible impact of aircraft on the atmosphere. The AESA was designed to develop the body of scientific knowledge necessary for the evaluation of the impact of stratospheric aircraft on the atmosphere. The first Program report presented the basic objectives and plans for AESA. This second report presents the status of the ongoing research as reported by the principal investigators at the second annual AESA Program meeting in May 1992: Laboratory studies are probing the mechanism responsible for many of the heterogeneous reactions that occur on stratospheric particles. Understanding how the atmosphere redistributes aircraft exhaust is critical to our knowing where the perturbed air will go and for how long it will remain in the stratosphere. The assessment of fleet effects is dependent on the ability to develop scenarios which correctly simulate fleet operations.
Environmental Assessment for Management of South End of Runway Wetlands, Moody AFB, Georgia
2010-11-01
implement a management program for the wetlands at the south end of runway (EOR) at Moody AFB to reduce the bird/wildlife aircraft strike hazard (BASH) risk...because birds and other wildlife pose an increased bird/wildlife aircraft strike hazard (BASH) risk to aircraft utilizing the Moody AFB airfield. ln...support ofthe military mission, Moody AFB has implemented a BASH management program designed to minimize aircraft exposure to potentially hazardous
A Survey of Research Performed at NASA Langley Research Center's Impact Dynamics Research Facility
NASA Technical Reports Server (NTRS)
Jackson, K. E.; Fasanella, E. L.
2003-01-01
The Impact Dynamics Research Facility (IDRF) is a 240-ft-high gantry structure located at NASA Langley Research Center in Hampton, Virginia. The facility was originally built in 1963 as a lunar landing simulator, allowing the Apollo astronauts to practice lunar landings under realistic conditions. The IDRF was designated a National Historic Landmark in 1985 based on its significant contributions to the Apollo Program. In 1972, the facility was converted to a full-scale crash test facility for light aircraft and rotorcraft. Since that time, the IDRF has been used to perform a wide variety of impact tests on full-scale aircraft and structural components in support of the General Aviation (GA) aircraft industry, the US Department of Defense, the rotorcraft industry, and NASA in-house aeronautics and space research programs. The objective of this paper is to describe most of the major full-scale crash test programs that were performed at this unique, world-class facility since 1974. The past research is divided into six sub-topics: the civil GA aircraft test program, transport aircraft test program, military test programs, space test programs, basic research, and crash modeling and simulation.
THE BUREAU OF AERONAUTICS RESEARCH AND DEVELOPMENT PROGRAM FOR WATER-BASED AIRCRAFT,
WATER BASED AIRCRAFT, BUDGETS), RESEARCH MANAGEMENT, FLIGHT TESTING, WIND TUNNEL MODELS, TABLES(DATA), AIRCRAFT, TEST VEHICLES, HYDRODYNAMICS, PIERS, FLOATING DOCKS, LOADS(FORCES), WATER , STABILITY, SPRAYS, NAVAL AIRCRAFT.
Jaruchinda, Pariyanan; Thongdeetae, Taninsak; Panichkul, Suthee; Hanchumpol, Pongtep
2005-11-01
Hearing impairment from noise exposure has been reported in fix-wing pilots, especially in civilized countries. However, there are few studies on rotary wing aviators and aircraft mechanics, especially in developing countries whose hearing conservative program is not well established. The present study, therefore, was done to evaluate the prevalence of noise induced hearing loss and the contributing factors that may effect both groups of noise-exposed population. Report questionnaires were reviewed and physical examination combined with audiometric records of 34 pilots and 42 mechanics in the Royal Thai Army Aviation Center, Lobburi, were examined. Hearing loss was studied using four categories of significant threshold shift (STS). Amplitude of noise radiated by aircraft was also measured at different distances. No significant difference was found in prevalence of hearing loss in aviators (32.4%) and aircraft mechanics (47.6%), but in the aircraft mechanics group there were more damage of frequency involvement including speech frequency and high frequency and more decibels loss than aviators. The type of hearing protection and smoking index were strongly correlated with hearing loss. Age, flight time and alcohol habit had no significant effect and ninety percent of the subjects had no self awareness of hearing loss. Aircraft mechanics had more severity on hearing loss than aviators. Types of noise protector and cigarette smoking had significant association with hearing loss.
A FORTRAN program for determining aircraft stability and control derivatives from flight data
NASA Technical Reports Server (NTRS)
Maine, R. E.; Iliff, K. W.
1975-01-01
A digital computer program written in FORTRAN IV for the estimation of aircraft stability and control derivatives is presented. The program uses a maximum likelihood estimation method, and two associated programs for routine, related data handling are also included. The three programs form a package that can be used by relatively inexperienced personnel to process large amounts of data with a minimum of manpower. This package was used to successfully analyze 1500 maneuvers on 20 aircraft, and is designed to be used without modification on as many types of computers as feasible. Program listings and sample check cases are included.
Problems with aging wiring in Naval aircraft
NASA Technical Reports Server (NTRS)
Campbell, Frank J.
1994-01-01
The Navy is experiencing a severe aircraft electrical wiring maintenance problem as a result of the extensive use of an aromatic polyimide insulation that is deteriorating at a rate that was unexpected when this wire was initially selected. This problem has significantly affected readiness, reliability, and safety and has greatly increased the cost of ownership of Naval aircraft. Failures in wire harnesses have exhibited arcing and burning that will propagate drastically, to the interruption of many electrical circuits from a fault initiated by the failure of deteriorating wires. There is an urgent need for a capability to schedule aircraft rewiring in an orderly manner with a logically derived determination of which aircraft have aged to the point of absolute necessity. Excessive maintenance was demonstrated to result from the accelerated aging due to the parameters of moisture, temperature, and strain that exist in the Naval Aircraft environment. Laboratory studies have demonstrated that MIL-W-81381 wire insulation when aged at high humidities followed the classical Arrhenius thermal aging relationship. In an extension of the project a multifactor formula was developed that is now capable of predicting life under varying conditions of these service parameters. An automated test system has also been developed to analyze the degree of deterioration that has occurred in wires taken from an aircraft in order to obtain an assessment of remaining life. Since it is both physically and financially impossible to replace the wiring in all the Navy's aircraft at once, this system will permit expedient scheduling so that those aircraft that are most probable to have wiring failure problems can be overhauled first.
Users Guide for NASA Lewis Research Center DC-9 Reduced-Gravity Aircraft Program
NASA Technical Reports Server (NTRS)
Yaniec, John S.
1995-01-01
The document provides guidelines and information for users of the DC-9 Reduced-Gravity Aircraft Program. It describes the facilities, requirements for test personnel, equipment design and installation, mission preparation, and in-flight procedures. Those who have used the KC-135 reduced-gravity aircraft will recognize that many of the procedures and guidelines are the same, to ensure a commonality between the DC-9 and KC-135 programs.
A computer program for fitting smooth surfaces to three-dimensional aircraft configurations
NASA Technical Reports Server (NTRS)
Craidon, C. B.; Smith, R. E., Jr.
1975-01-01
A computer program developed to fit smooth surfaces to the component parts of three-dimensional aircraft configurations was described. The resulting equation definition of an aircraft numerical model is useful in obtaining continuous two-dimensional cross section plots in arbitrarily defined planes, local tangents, enriched surface plots and other pertinent geometric information; the geometry organization used as input to the program has become known as the Harris Wave Drag Geometry.
The NASA aircraft icing research program
NASA Technical Reports Server (NTRS)
Shaw, Robert J.; Reinmann, John J.
1990-01-01
The objective of the NASA aircraft icing research program is to develop and make available to industry icing technology to support the needs and requirements for all-weather aircraft designs. Research is being done for both fixed wing and rotary wing applications. The NASA program emphasizes technology development in two areas, advanced ice protection concepts and icing simulation. Reviewed here are the computer code development/validation, icing wind tunnel testing, and icing flight testing efforts.
JET TRANSPORT AIRCRAFT, *AIRFRAMES, SUPERSONIC AIRCRAFT, STEEL , STRUCTURAL PROPERTIES, FRACTURE(MECHANICS), FATIGUE(MECHANICS), STRESS CORROSION...MICROPHOTOGRAPHY, HIGH TEMPERATURE, NICKEL ALLOYS, COBALT ALLOYS, CARBON, BAINITE , COMMERCIAL AIRCRAFT.
The Enforcer Aircraft Program: A Lower-Cost Alternative Weapon System.
1984-03-01
armoured striking forces. NATO’s air forces then, sns 1.select the optimum aircraft(s) to maximize the damage to the enemy while minimizing the cost to...the reascns Congress kept the Enforcer program alive was their inclination to support the underdog , an underdog with persuasiveness and tenacity. To
2011-06-01
7 Figure 4. Helios flying near the Hawaiian islands of Niihau and Lehua [15] ................... 8 Figure 5. Plan view of ERAST Program aircraft...Figure 4. Helios flying near the Hawaiian islands of Niihau and Lehua [15] 9 Figure 5. Plan view of ERAST Program aircraft
Status review of NASA programs for reducing aircraft gas turbine engine emissions
NASA Technical Reports Server (NTRS)
Rudey, R. A.
1976-01-01
The paper describes and discusses the results from some of the research and development programs for reducing aircraft gas turbine engine emissions. Although the paper concentrates on NASA programs only, work supported by other U.S. government agencies and industry has provided considerable data on low emission advanced technology for aircraft gas turbine engine combustors. The results from the two major NASA technology development programs, the ECCP (Experimental Clean Combustor Program) and the PRTP (Pollution Reduction Technology Program), are presented and compared with the requirements of the 1979 U.S. EPA standards. Emission reduction techniques currently being evaluated in these programs are described along with the results and a qualitative assessment of development difficulty.
Status review of NASA programs for reducing aircraft gas turbine engine emissions
NASA Technical Reports Server (NTRS)
Rudey, R. A.
1976-01-01
Programs initiated by NASA to develop and demonstrate low emission advanced technology combustors for reducing aircraft gas turbine engine pollution are reviewed. Program goals are consistent with urban emission level requirements as specified by the U. S. Environmental Protection Agency and with upper atmosphere cruise emission levels as recommended by the U. S. Climatic Impact Assessment Program and National Research Council. Preliminary tests of advanced technology combustors indicate that significant reductions in all major pollutant emissions should be attainable in present generation aircraft gas turbine engines without adverse effects on fuel consumption. Preliminary test results from fundamental studies indicate that extremely low emission combustion systems may be possible for future generation jet aircraft. The emission reduction techniques currently being evaluated in these programs are described along with the results and a qualitative assessment of development difficulty.
Aircraft measurements and analysis of severe storms: 1975 field experiment
NASA Technical Reports Server (NTRS)
Sinclair, P. C.
1976-01-01
Three aircraft and instrumentation systems were acquired in support of the severe storm surveillance program. The data results indicate that the original concept of a highly mobile research aircraft capability for obtaining detailed measurements of wind, temperature, dew point, etc., near and within specifically designated severe storms is entirely feasible and has been demonstrated for the first time by this program. This program is unique in that it is designed to be highly mobile in order to move to and/or with the developing storm systems to obtain the necessary measurements. Previous programs have all been fixed to a particular location and therefore have had to wait for the storms to come within their network. The present research is designed around a highly mobile aircraft measurements group in order to maximize the storm cases during the field measurements program.
40 CFR 87.71 - Compliance with gaseous emission standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 87.71 Compliance with gaseous emission standards. Compliance with each gaseous emission standard by an aircraft engine shall be...
40 CFR 87.71 - Compliance with gaseous emission standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 87.71 Compliance with gaseous emission standards. Compliance with each gaseous emission standard by an aircraft engine shall be...
NASA Technical Reports Server (NTRS)
1973-01-01
An improved method for estimating aircraft weight and cost using a unique and fundamental approach was developed. The results of this study were integrated into a comprehensive digital computer program, which is intended for use at the preliminary design stage of aircraft development. The program provides a means of computing absolute values for weight and cost, and enables the user to perform trade studies with a sensitivity to detail design and overall structural arrangement. Both batch and interactive graphics modes of program operation are available.
Multidisciplinary Techniques and Novel Aircraft Control Systems
NASA Technical Reports Server (NTRS)
Padula, Sharon L.; Rogers, James L.; Raney, David L.
2000-01-01
The Aircraft Morphing Program at NASA Langley Research Center explores opportunities to improve airframe designs with smart technologies. Two elements of this basic research program are multidisciplinary design optimization (MDO) and advanced flow control. This paper describes examples where MDO techniques such as sensitivity analysis, automatic differentiation, and genetic algorithms contribute to the design of novel control systems. In the test case, the design and use of distributed shape-change devices to provide low-rate maneuvering capability for a tailless aircraft is considered. The ability of MDO to add value to control system development is illustrated using results from several years of research funded by the Aircraft Morphing Program.
Multidisciplinary Techniques and Novel Aircraft Control Systems
NASA Technical Reports Server (NTRS)
Padula, Sharon L.; Rogers, James L.; Raney, David L.
2000-01-01
The Aircraft Morphing Program at NASA Langley Research Center explores opportunities to improve airframe designs with smart technologies. Two elements of this basic research program are multidisciplinary design optimization (MDO) and advanced flow control. This paper describes examples where MDO techniques such as sensitivity analysis, automatic differentiation, and genetic algorithms contribute to the design of novel control systems. In the test case, the design and use of distributed shapechange devices to provide low-rate maneuvering capability for a tailless aircraft is considered. The ability of MDO to add value to control system development is illustrated using results from several years of research funded by the Aircraft Morphing Program.
Airborne Science Program: Observing Platforms for Earth Science Investigations
NASA Technical Reports Server (NTRS)
Mace, Thomas H.
2009-01-01
This slide presentation reviews the Airborne Science Program and the platforms used for conducting investigations for the Earth System Science. Included is a chart that shows some of the aircraft and the operational altitude and the endurance of the aircraft, views of the Dryden Aircraft Operation Facility, and some of the current aircraft that the facility operates, and the varieties of missions that are flown and the type of instrumentation. Also included is a chart showing the attributes of the various aircraft (i.e., duration, weight for a payload, maximum altitude, airspeed and range) for comparison
Correia, Andrew W; Peters, Junenette L; Levy, Jonathan I; Melly, Steven; Dominici, Francesca
2013-10-08
To investigate whether exposure to aircraft noise increases the risk of hospitalization for cardiovascular diseases in older people (≥ 65 years) residing near airports. Multi-airport retrospective study of approximately 6 million older people residing near airports in the United States. We superimposed contours of aircraft noise levels (in decibels, dB) for 89 airports for 2009 provided by the US Federal Aviation Administration on census block resolution population data to construct two exposure metrics applicable to zip code resolution health insurance data: population weighted noise within each zip code, and 90th centile of noise among populated census blocks within each zip code. 2218 zip codes surrounding 89 airports in the contiguous states. 6 027 363 people eligible to participate in the national medical insurance (Medicare) program (aged ≥ 65 years) residing near airports in 2009. Percentage increase in the hospitalization admission rate for cardiovascular disease associated with a 10 dB increase in aircraft noise, for each airport and on average across airports adjusted by individual level characteristics (age, sex, race), zip code level socioeconomic status and demographics, zip code level air pollution (fine particulate matter and ozone), and roadway density. Averaged across all airports and using the 90th centile noise exposure metric, a zip code with 10 dB higher noise exposure had a 3.5% higher (95% confidence interval 0.2% to 7.0%) cardiovascular hospital admission rate, after controlling for covariates. Despite limitations related to potential misclassification of exposure, we found a statistically significant association between exposure to aircraft noise and risk of hospitalization for cardiovascular diseases among older people living near airports.
Correia, Andrew W; Peters, Junenette L; Levy, Jonathan I; Melly, Steven
2013-01-01
Objective To investigate whether exposure to aircraft noise increases the risk of hospitalization for cardiovascular diseases in older people (≥65 years) residing near airports. Design Multi-airport retrospective study of approximately 6 million older people residing near airports in the United States. We superimposed contours of aircraft noise levels (in decibels, dB) for 89 airports for 2009 provided by the US Federal Aviation Administration on census block resolution population data to construct two exposure metrics applicable to zip code resolution health insurance data: population weighted noise within each zip code, and 90th centile of noise among populated census blocks within each zip code. Setting 2218 zip codes surrounding 89 airports in the contiguous states. Participants 6 027 363 people eligible to participate in the national medical insurance (Medicare) program (aged ≥65 years) residing near airports in 2009. Main outcome measures Percentage increase in the hospitalization admission rate for cardiovascular disease associated with a 10 dB increase in aircraft noise, for each airport and on average across airports adjusted by individual level characteristics (age, sex, race), zip code level socioeconomic status and demographics, zip code level air pollution (fine particulate matter and ozone), and roadway density. Results Averaged across all airports and using the 90th centile noise exposure metric, a zip code with 10 dB higher noise exposure had a 3.5% higher (95% confidence interval 0.2% to 7.0%) cardiovascular hospital admission rate, after controlling for covariates. Conclusions Despite limitations related to potential misclassification of exposure, we found a statistically significant association between exposure to aircraft noise and risk of hospitalization for cardiovascular diseases among older people living near airports. PMID:24103538
NASA Technical Reports Server (NTRS)
Frost, Susan A.; Bodson, Marc; Acosta, Diana M.
2009-01-01
The Next Generation (NextGen) transport aircraft configurations being investigated as part of the NASA Aeronautics Subsonic Fixed Wing Project have more control surfaces, or control effectors, than existing transport aircraft configurations. Conventional flight control is achieved through two symmetric elevators, two antisymmetric ailerons, and a rudder. The five effectors, reduced to three command variables, produce moments along the three main axes of the aircraft and enable the pilot to control the attitude and flight path of the aircraft. The NextGen aircraft will have additional redundant control effectors to control the three moments, creating a situation where the aircraft is over-actuated and where a simple relationship does not exist anymore between the required effector deflections and the desired moments. NextGen flight controllers will incorporate control allocation algorithms to determine the optimal effector commands and attain the desired moments, taking into account the effector limits. Approaches to solving the problem using linear programming and quadratic programming algorithms have been proposed and tested. It is of great interest to understand their relative advantages and disadvantages and how design parameters may affect their properties. In this paper, we investigate the sensitivity of the effector commands with respect to the desired moments and show on some examples that the solutions provided using the l2 norm of quadratic programming are less sensitive than those using the l1 norm of linear programming.
Power-by-Wire Development and Demonstration for Subsonic Civil Transport
NASA Technical Reports Server (NTRS)
1996-01-01
During the last decade, three significant studies by the Lockheed Martin Corporation, the NASA Lewis Research Center, and McDonnell Douglas Corporation have clearly shown operational, weight, and cost advantages for commercial subsonic transport aircraft that use all-electric or more-electric technologies in the secondary electric power systems. Even though these studies were completed on different aircraft, used different criteria, and applied a variety of technologies, all three have shown large benefits to the aircraft industry and to the nation's competitive position. The Power-by-Wire (PBW) program is part of the highly reliable Fly-By-Light/Power-By-Wire (FBL/PBW) Technology Program, whose goal is to develop the technology base for confident application of integrated FBL/PBW systems for transport aircraft. This program is part of the NASA aeronautics strategic thrust in subsonic aircraft/national airspace (Thrust 1) to "develop selected high-leverage technologies and explore new means to ensure the competitiveness of U.S. subsonic aircraft and to enhance the safety and productivity of the national aviation system" (The Aeronautics Strategic Plan). Specifically, this program is an initiative under Thrust 1, Key Objective 2, to "develop, in cooperation with U.S. industry, selected high-payoff technologies that can enable significant improvements in aircraft efficiency and cost."
NASA Technical Reports Server (NTRS)
Chambers, Joseph R.
2000-01-01
Established in 1917 as the nation#s first civil aeronautics research laboratory under the National Advisory Commit-tee for Aeronautics (NACA), Langley was a small laboratory that solved the problems of flight for military and civil aviation. Throughout history, Langley has maintained a working partnership with the Department of Defense, U.S. industry, universities, and other government agencies to support the defense of the nation with research. During World War II, Langley directed virtually all of its workforce and facilities to research for military aircraft. Following the war, a balanced program of military and civil projects was undertaken. In some instances Langley research from one aircraft program helped solve a problem in another. At the conclusion of some programs, Langley obtained the research models for additional tests to learn more about previously unknown phenomena. The data also proved useful in later developmental programs. Many of the military aircraft in the U.S. inventory as of late 1999 were over 20 years old. Langley activities that contributed to the development of some of these aircraft began over 50 years prior. This publication documents the role, from early concept stages to problem solving for fleet aircraft, that Langley played in the military aircraft fleet of the United States for the 1990's.
An automated system for global atmospheric sampling using B-747 airliners
NASA Technical Reports Server (NTRS)
Lew, K. Q.; Gustafsson, U. R. C.; Johnson, R. E.
1981-01-01
The global air sampling program utilizes commercial aircrafts in scheduled service to measure atmospheric constituents. A fully automated system designed for the 747 aircraft is described. Airline operational constraints and data and control subsystems are treated. The overall program management, system monitoring, and data retrieval from four aircraft in global service is described.
NASA Astrophysics Data System (ADS)
Mohlman, H. T.
1983-04-01
The Air Force community noise prediction model (NOISEMAP) is used to describe the aircraft noise exposure around airbases and thereby aid airbase planners to minimize exposure and prevent community encroachment which could limit mission effectiveness of the installation. This report documents two computer programs (OMEGA 10 and OMEGA 11) which were developed to prepare aircraft flight and ground runup noise data for input to NOISEMAP. OMEGA 10 is for flight operations and OMEGA 11 is for aircraft ground runups. All routines in each program are documented at a level useful to a programmer working with the code or a reader interested in a general overview of what happens within a specific subroutine. Both programs input normalized, reference aircraft noise data; i.e., data at a standard reference distance from the aircraft, for several fixed engine power settings, a reference airspeed and standard day meteorological conditions. Both programs operate on these normalized, reference data in accordance with user-defined, non-reference conditions to derive single-event noise data for 22 distances (200 to 25,000 feet) in a variety of physical and psycho-acoustic metrics. These outputs are in formats ready for input to NOISEMAP.
Preliminary design of a high speed civil transport: The Opus 0-001
NASA Technical Reports Server (NTRS)
1992-01-01
Based on research into the technology and issues surrounding the design, development, and operation of a second generation High Speed Civil Transport, HSCT, the Opus 0-001 team completed the preliminary design of a sixty passenger, three engine aircraft. The design of this aircraft was performed using a computer program which the team wrote. This program automatically computed the geometric, aerodynamic, and performance characteristic of an aircraft whose preliminary geometry was specified. The Opus 0-001 aircraft was designed for a cruise Mach number of 2.2, a range of 4,700 nautical miles and its design was based in current or very near term technology. Its small size was a consequence of an emphasis on a profitable, low cost program, capable of delivering tomorrow's passengers in style and comfort at prices that make it an attractive competitor to both current and future subsonic transport aircraft. Several hundred thousand cases of Cruise Mach number, aircraft size and cost breakdown were investigated to obtain costs and revenues for which profit was calculated. The projected unit flyaway cost was $92.0 million per aircraft.
High Speed Research Noise Prediction Code (HSRNOISE) User's and Theoretical Manual
NASA Technical Reports Server (NTRS)
Golub, Robert (Technical Monitor); Rawls, John W., Jr.; Yeager, Jessie C.
2004-01-01
This report describes a computer program, HSRNOISE, that predicts noise levels for a supersonic aircraft powered by mixed flow turbofan engines with rectangular mixer-ejector nozzles. It fully documents the noise prediction algorithms, provides instructions for executing the HSRNOISE code, and provides predicted noise levels for the High Speed Research (HSR) program Technology Concept (TC) aircraft. The component source noise prediction algorithms were developed jointly by Boeing, General Electric Aircraft Engines (GEAE), NASA and Pratt & Whitney during the course of the NASA HSR program. Modern Technologies Corporation developed an alternative mixer ejector jet noise prediction method under contract to GEAE that has also been incorporated into the HSRNOISE prediction code. Algorithms for determining propagation effects and calculating noise metrics were taken from the NASA Aircraft Noise Prediction Program.
40 CFR 141.804 - Aircraft water system operations and maintenance plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... calendar quarter of initial operation of the aircraft. (e) Any changes to the aircraft water system... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Aircraft water system operations and...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Aircraft Drinking Water Rule...
40 CFR 141.804 - Aircraft water system operations and maintenance plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... calendar quarter of initial operation of the aircraft. (e) Any changes to the aircraft water system... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Aircraft water system operations and...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Aircraft Drinking Water Rule...
Remote lift fan study program, volume 4
NASA Technical Reports Server (NTRS)
1973-01-01
A study program to select and conduct preliminary design of advanced technology lift fan systems to meet low noise goals of future V/STOL transport aircraft is discussed. This volume contains results of additional studies conducted to support the main preliminary design effort done under the Remote Lift Fan Study Program (Contract NAS3-14406) and a companion effort, the Integral Lift Fan Study (NAS3-14404). These results cover engine emission study, a review of existing engines for research aircraft application and support data for aircraft studies.
Tire and runway surface research
NASA Technical Reports Server (NTRS)
Yager, Thomas J.
1986-01-01
The condition of aircraft tires and runway surfaces can be crucial in meeting the stringent demands of aircraft ground operations, particularly under adverse weather conditions. Gaining a better understanding of the factors influencing the tire/pavement interface is the aim of several ongoing NASA Langley research programs which are described in this paper. Results from several studies conducted at the Langley Aircraft Landing Dynamics Facility, tests with instrumented ground vehicles and aircraft, and some recent aircraft accident investigations are summarized to indicate effects of different tire and runway properties. The Joint FAA/NASA Runway Friction Program is described together with some preliminary test findings. The scope of future NASA Langley research directed towards solving aircraft ground operational problems related to the tire/pavement interface is given.
AGFATL- ACTIVE GEAR FLEXIBLE AIRCRAFT TAKEOFF AND LANDING ANALYSIS
NASA Technical Reports Server (NTRS)
Mcgehee, J. R.
1994-01-01
The Active Gear, Flexible Aircraft Takeoff and Landing Analysis program, AGFATL, was developed to provide a complete simulation of the aircraft takeoff and landing dynamics problem. AGFATL can represent an airplane either as a rigid body with six degrees of freedom or as a flexible body with multiple degrees of freedom. The airframe flexibility is represented by the superposition of up to twenty free vibration modes on the rigid-body motions. The analysis includes maneuver logic and autopilots programmed to control the aircraft during glide slope, flare, landing, and takeoff. The program is modular so that performance of the aircraft in flight and during landing and ground maneuvers can be studied separately or in combination. A program restart capability is included in AGFATL. Effects simulated in the AGFATL program include: (1) flexible aircraft control and performance during glide slope, flare, landing roll, and takeoff roll under conditions of changing winds, engine failures, brake failures, control system failures, strut failures, restrictions due to runway length, and control variable limits and time lags; (2) landing gear loads and dynamics for up to five gears; (3) single and multiple engines (maximum of four) including selective engine reversing and failure; (4) drag chute and spoiler effects; (5) wheel braking (including skid-control) and selective brake failure; (6) aerodynamic ground effects; (7) aircraft carrier operations; (8) inclined runways and runway perturbations; (9) flexible or rigid airframes; 10) rudder and nose gear steering; and 11) actively controlled landing gear shock struts. Input to the AGFATL program includes data which describe runway roughness; vehicle geometry, flexibility and aerodynamic characteristics; landing gear(s); propulsion; and initial conditions such as attitude, attitude change rates, and velocities. AGFATL performs a time integration of the equations of motion and outputs comprehensive information on the airframe, state-of-maneuver logic, autopilots, control response, and aircraft loads from impact, runway roll-out, and ground operations. Flexible-body and total (elastic plus rigid-body) displacements, velocities, and accelerations are also output in the flexible-body option for up to twenty points on the aircraft. The AGFATL program is written in FORTRAN IV for batch execution and has been implemented on a CDC CYBER 170 series computer with an overlayed central memory requirement of approximately 141 (octal) of 60 bit words. The AGFATL program was last updated in 1984.
78 FR 68360 - Unmanned Aircraft System Test Site Program
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-14
...-0061] Unmanned Aircraft System Test Site Program AGENCY: Federal Aviation Administration (FAA), DOT...'') test site program; response to comments. SUMMARY: On February 22, 2013 the FAA published and requested public comment on the proposed privacy requirements (the ``Draft Privacy Requirements'') for UAS test...
Advanced supersonic technology and its implications for the future
NASA Technical Reports Server (NTRS)
Driver, C.
1979-01-01
A brief overview of the NASA Supersonic Cruise Research (SCR) program is presented. The SCR program has identified significant improvements in the areas of aerodynamics, structures, propulsion, noise reduction, takeoff and landing procedures, and advanced configuration concepts. These improvements tend to overcome most of the problems which led to the cancellation of the National SST program. They offer the promise of an advanced SST family of aircraft which are environmentally acceptable, have flexible range-payload capability, and are economically viable. The areas of technology addressed by the SCR program have direct application to advanced military aircraft and to supersonic executive aircraft.
Commercial jet transport crashworthiness
NASA Technical Reports Server (NTRS)
Widmayer, E.; Brende, O. B.
1982-01-01
The results of a study to identify areas of research and approaches that may result in improved occupant survivability and crashworthiness of transport aircraft are given. The study defines areas of structural crashworthiness for transport aircraft which might form the basis for a research program. A 10-year research and development program to improve the structural impact resistance of general aviation and commercial jet transport aircraft is planned. As part of this program parallel studies were conducted to review the accident experience of commercial transport aircraft, assess the accident performance of structural components and the status of impact resistance technology, and recommend areas of research and development for that 10-year plan. The results of that study are also given.
NASA Technical Reports Server (NTRS)
Fortenbaugh, R. L.
1980-01-01
Instructions for using Vertical Attitude Takeoff and Landing Aircraft Simulation (VATLAS), the digital simulation program for application to vertical attitude takeoff and landing (VATOL) aircraft developed for installation on the NASA Ames CDC 7600 computer system are described. The framework for VATLAS is the Off-Line Simulation (OLSIM) routine. The OLSIM routine provides a flexible framework and standardized modules which facilitate the development of off-line aircraft simulations. OLSIM runs under the control of VTOLTH, the main program, which calls the proper modules for executing user specified options. These options include trim, stability derivative calculation, time history generation, and various input-output options.
Time-based air traffic management using expert systems
NASA Technical Reports Server (NTRS)
Tobias, L.; Scoggins, J. L.
1986-01-01
A prototype expert system has been developed for the time scheduling of aircraft into the terminal area. The three functions of the air-traffic-control schedule advisor are as follows: (1) for each new arrival, it develops an admisible flight plan for that aircraft; (2) as the aircraft progresses through the terminal area, it monitors deviations from the aircraft's flight plan and provides advisories to return the aircraft to its assigned schedule; and (3) if major disruptions such as missed approaches occur, it develops a revised plan. The advisor is operational on a Symbolics 3600, and is programmed in MRS (a logic programming language), Lisp, and Fortran.
Alternate-fueled transport aircraft possibilities
NASA Technical Reports Server (NTRS)
Aiken, W. S.
1977-01-01
The paper is organized to describe: (1) NASA's cryogenically fueled aircraft program; (2) LH2 subsonic and supersonic transport design possibilities (3) the fuel system and ground side problems associated with LH2 distribution; (4) a comparison of LCH4 with LH2; (5) the design possibilities for LCH4 fueled aircraft; and (6) a summary of where NASA's cryogenically fueled programs are headed.
Aircraft noise prediction program validation
NASA Technical Reports Server (NTRS)
Shivashankara, B. N.
1980-01-01
A modular computer program (ANOPP) for predicting aircraft flyover and sideline noise was developed. A high quality flyover noise data base for aircraft that are representative of the U.S. commercial fleet was assembled. The accuracy of ANOPP with respect to the data base was determined. The data for source and propagation effects were analyzed and suggestions for improvements to the prediction methodology are given.
Experiment to Characterize Aircraft Volatile Aerosol and Trace-Species Emissions (EXCAVATE)
NASA Technical Reports Server (NTRS)
Anderson, B. E.; Branham, H.-S.; Hudgins, C. H.; Plant, J. V.; Ballenthin, J. O.; Miller, T. M.; Viggiano, A. A.; Blake, D. R.; Boudries, H.; Canagaratna, M.
2005-01-01
The Experiment to Characterize Aircraft Volatile and Trace Species Emissions (EXCAVATE) was conducted at Langley Research Center (LaRC) in January 2002 and focused upon assaying the production of aerosols and aerosol precursors by a modern commercial aircraft, the Langley B757, during ground-based operation. Remaining uncertainty in the postcombustion fate of jet fuel sulfur contaminants, the need for data to test new theories of particle formation and growth within engine exhaust plumes, and the need for observations to develop air quality models for predicting pollution levels in airport terminal areas were the primary factors motivating the experiment. NASA's Atmospheric Effects of Aviation Project (AEAP) and the Ultra Effect Engine Technology (UEET) Program sponsored the experiment which had the specific objectives of determining ion densities; the fraction of fuel S converted from S(IV) to S(VI); the concentration and speciation of volatile aerosols and black carbon; and gas-phase concentrations of long-chain hydrocarbon and PAH species, all as functions of engine power, fuel composition, and plume age.
NASA Technical Reports Server (NTRS)
Polhamus, E. C.; Gloss, B. B.
1981-01-01
Static aerodynamic research related to aircraft configurations in their cruise or combat modes is discussed. Subsonic transport aircraft, transonic tactical aircraft, and slender wing aircraft are considered. The status and plans of Langley's NTF configuration research program are reviewed. Recommendations for near term configuration research are made.
Aerodynamic design and analysis system for supersonic aircraft. Part 3: Computer program description
NASA Technical Reports Server (NTRS)
Middleton, W. D.; Lundry, J. L.; Coleman, R. G.
1975-01-01
The computer program for the design and analysis of supersonic aircraft configurations is presented. The schematics of the program structure are provided. The individual overlays and subroutines are described. The system is useful in determining surface pressures and supersonic area rule concepts.
The Challenges Affecting Heavy Lift Aircraft Development to Support Sea Basing
2005-06-17
effect timely development of heavy lift aircraft to support sea basing. 15. SUBJECT TERMS Aircraft Development, Aircraft Acquisition, Aircraft Program...bullet theory, vision, technology, and politics are the most prevalent factors, amongst many, that could potentially effect timely development of heavy...discussion will focus on some current examples of aircraft that will support sea basing and on factors effecting their development. 14 Secondary Questions
NASA Technical Reports Server (NTRS)
Craidon, C. B.
1975-01-01
A computer program that uses a three-dimensional geometric technique for fitting a smooth surface to the component parts of an aircraft configuration is presented. The resulting surface equations are useful in performing various kinds of calculations in which a three-dimensional mathematical description is necessary. Programs options may be used to compute information for three-view and orthographic projections of the configuration as well as cross-section plots at any orientation through the configuration. The aircraft geometry input section of the program may be easily replaced with a surface point description in a different form so that the program could be of use for any three-dimensional surface equations.
Fiber Optic System Test Results In A Tactical Military Aircraft
NASA Astrophysics Data System (ADS)
Uhlhorn, Roger W.; Greenwell, Roger A.
1980-09-01
The YAV-8B Electromagnetic Immunity and Flight-Test Program was established to evaluate the susceptibility of wire and optical fiber signal transmission lines to electromagnetic interference when these lines are installed in a graphite/epoxy composite wing and to demonstrate the flightworthiness of fiber optics interconnects in the vertical/ short takeoff and landing aircraft environment. In response, two fiber optic systems were designed, fabricated, and flight tested by McDonnell Aircraft Co. (MCAIR), a division of the McDonnell Douglas Corporation, on the two YAV-8B V/STOL flight test aircraft. The program successfully demonstrated that fiber optics are compatible with the attack aircraft environment. As a result, the full scale development AV-8B will incorporate fiber optics in a point-to-point data link. We describe here the fiber optic systems designs, test equipment development, cabling and connection requirements, fabrication and installation experience, and flight test program results.
Remotely piloted aircraft in the civil environment
NASA Technical Reports Server (NTRS)
Gregory, T. J.; Nelms, W. P.; Karmarkar, J. S.
1977-01-01
Remotely piloted aircraft (RPA's) are of increasing interest to the military and others, as evidenced by a number of technology and development programs that are currently funded or planned. These programs have led to a number of test aircraft with significant capabilities, and future remotely piloted aircraft are forecast to become even more capable as the technology in a number of important subsystem areas is progressing at a rapid rate. As the size, weight and cost of RPA's is reduced, the prospect of using them for civilian applications becomes more likely.
1992-03-01
8 KT) 02- 10 -1992 09: 48 :32 AIRCRAFT ID AIRCRAFT AND ENGINE AIRCRAFT NUMBER NAMES CATEGORY ------------------- ------------------- -------- 003...MAX CLIMB 8 CLIMB ZErO MAX CLIMB 9 CLIMB ZERO MAX CLIMB A-21 TAKEOFF PROFILE DATA (HEADWIND = 8 KT) 02- 10 -1992 09: 48 :36 AIRCRAFT AIRCRAFT AND ENGINE...CLIMB ZERO USR SUPPL 34033 LB 10 CLIMB ZERO USR SUPPL 34798 LB A-194 TAKEOFF PROFILE DATA (HEADWIND = 8 KT) 06-24-1991 10 :33: 48 AIRCRAFT AIRCRAFT
In-situ Charge Determination for Vapor Cycle Systems in Aircraft (Postprint)
2012-10-22
control and operation in support of the Energy Optimized Aircraft (EOA) initiative and the Integrated Vehicle ENergy Technology (INVENT) program...the Energy Optimized Aircraft (EOA) initiative and the Integrated Vehicle ENergy Technology (INVENT) program. Previous papers on ToTEMS have discussed...stationary chillers include a reduction in cooling capacity due to reduced availability of liquid for evaporation. In addition, the coefficient of
Overview of FIREMEN program at Ames Research Center
NASA Technical Reports Server (NTRS)
Kourtides, D. A.
1978-01-01
The Ames Firemen Program is described. The key elements of the program include: (1) the development and evaluation of aircraft interior composite panels; (2) the thermochemical and flammability characterization of thermoset and thermoplastic resins; and (3) the evolution of fire resist aircraft seat components. The first two elements are presented.
Aerospace Safety Advisory Panel
NASA Technical Reports Server (NTRS)
1985-01-01
The following areas of NASA's responsibilities are examined: (1) the Space Transportation System (STS) operations and evolving program elements; (2) establishment of the Space Station program organization and issuance of requests for proposals to the aerospace industry; and (3) NASA's aircraft operations, including research and development flight programs for two advanced X-type aircraft.
GASP- GENERAL AVIATION SYNTHESIS PROGRAM
NASA Technical Reports Server (NTRS)
Galloway, T. L.
1994-01-01
The General Aviation Synthesis Program, GASP, was developed to perform tasks generally associated with the preliminary phase of aircraft design. GASP gives the analyst the capability of performing parametric studies in a rapid manner during preliminary design efforts. During the development of GASP, emphasis was placed on small fixed-wing aircraft employing propulsion systems varying from a single piston engine with a fixed pitch propeller through twin turboprop/turbofan systems as employed in business or transport type aircraft. The program is comprised of modules representing the various technical disciplines of design, integrated into a computational flow which ensures that the interacting effects of design variables are continuously accounted for in the aircraft sizing procedures. GASP provides a useful tool for comparing configurations, assessing aircraft performance and economics, and performing tradeoff and sensitivity studies. By utilizing GASP, the impact of various aircraft requirements and design factors may be studied in a systematic manner, with benefits being measured in terms of overall aircraft performance and economics. The GASP program consists of a control module and six "technology" submodules which perform the various independent studies required in the design of general aviation or small transport type aircraft. The six technology modules include geometry, aerodynamics, propulsion, weight and balance, mission analysis, and economics. The geometry module calculates the dimensions of the synthesized aircraft components based on such input parameters as number of passengers, aspect ratio, taper ratio, sweep angles, and thickness of wing and tail surfaces. The aerodynamics module calculates the various lift and drag coefficients of the synthesized aircraft based on inputs concerning configuration geometry, flight conditions, and type of high lift device. The propulsion module determines the engine size and performance for the synthesized aircraft. Both cruise and take-off requirements for the aircraft may be specified. This module can currently simulate turbojet, turbofan, turboprop, and reciprocating or rotating combustion engines. The weight and balance module accepts as input gross weight, payload, aircraft geometry, and weight trend coefficients for use in calculating the size of tip tanks and wing location required such that the synthesized aircraft is in balance for center of gravity travel. In the mission analysis module, the taxi, take-off, climb, cruise, and landing segments of a specified mission are analyzed to compute the total range, and the aircraft size required to provide this range is determined. In the economic module both the flyaway and operating costs are determined from estimated resources and services cost. The six technology modules are integrated into a single synthesis system by the control module. This integrated approach ensures that the results from each module contain the effect of design interactions among all the modules. Starting from a set of simple input quantities concerning aircraft type, size, and performance, the synthesis is extended to the point where all of the important aircraft characteristics have been analyzed quantitatively. Together, the synthesis model and procedure develops aircraft configurations in a manner useful in parametric analysis and provides a useful step toward more detailed analytical and experimental studies. The GASP program is written in FORTRAN IV for batch execution and has been implemented on a CDC CYBER 170 series computer with a central memory requirement of approximately 200K(octal) of 60 bit words. The GASP program was developed in 1978.
40 CFR 141.804 - Aircraft water system operations and maintenance plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Aircraft Drinking Water Rule... must include the following requirements for procedures for disinfection and flushing of aircraft water system. (i) The air carrier must conduct disinfection and flushing of the aircraft water system in...
Analysis and design of insulation systems for LH2-fueled aircraft
NASA Technical Reports Server (NTRS)
Cunnington, G. R., Jr.
1979-01-01
An analytical program was conducted to evaluate the performance of 15 potential insulations for the fuel tanks of a subsonic LH2-fueled transport aircraft intended for airline service in the 1990-1995 time period. As a result, two candidate insulation systems are proposed for subsonic transport aircraft applications. Both candidates are judged to be the optimum available and should meet the design requirements. However, because of the long-life cyclic nature of the application and the cost sensitivity of airline operations, an experimental tank/insulation development or proof-of-concept program is recommended. This program should be carried out with a nearly full-scale system which would be subjected to the cyclic thermal and mechanical inputs anticipated in aircraft service.
NASA Technical Reports Server (NTRS)
Putnam, T. W.
1984-01-01
The X-29A aircraft is the first manned, experimental high-performance aircraft to be fabricated and flown in many years. The approach for expanding the X-29 flight envelope and collecting research data is described including the methods for monitoring wind divergence, flutter, and aeroservoelastic coupling of the aerodynamic forces with the structure and the flight-control system. Examples of the type of flight data to be acquired are presented along with types of aircraft maneuvers that will be flown. A brief description of the program management structure is also presented and the program schedule is discussed.
Toward Mach 2: The Douglas D-558 Program
NASA Technical Reports Server (NTRS)
Hunley, J. D. (Editor)
1999-01-01
This monograph contains the edited transcript of a symposium marking the 50th anniversary of this aircraft's first flight in 1948. A sister aircraft to the more well-known rocket-powered X-1, the jet-powered D-558 gave NACA researchers many useful insights about the transonic speed range. Several of the original aircraft pilots present accounts of their involvement in the program. Appendices include design specifications for the Douglas D-558-1 and -2 as well as declassified documentation and memoranda (1949-1957) regarding the progress of the program.
ANOPP programmer's reference manual for the executive System. [aircraft noise prediction program
NASA Technical Reports Server (NTRS)
Gillian, R. E.; Brown, C. G.; Bartlett, R. W.; Baucom, P. H.
1977-01-01
Documentation for the Aircraft Noise Prediction Program as of release level 01/00/00 is presented in a manual designed for programmers having a need for understanding the internal design and logical concepts of the executive system software. Emphasis is placed on providing sufficient information to modify the system for enhancements or error correction. The ANOPP executive system includes software related to operating system interface, executive control, and data base management for the Aircraft Noise Prediction Program. It is written in Fortran IV for use on CDC Cyber series of computers.
An Overview of the Space Shuttle Orbiter's Aging Aircraft Program
NASA Technical Reports Server (NTRS)
Russell, Richard W.
2007-01-01
The Space Shuttle Orbiter has well exceeded its original design life of 10 years or 100 missions. The Orbiter Project Office (OPO) has sponsored several activities to address aging vehicle concerns, including a Corrosion Control Review Board (CCRB), a mid-life certification program, and most recently the formation of the Aging Orbiter Working Group (AOWG). The AOWG was chartered in 2004 as a proactive group which provides the OPO oversight for aging issues such as corrosion, non-destructive inspection, non-metallics, wiring and subsystems. The core team consists of mainly representatives from the Materials and Processes Problem Resolution Team (M&P PRT) and Safety and Mission Assurance (S&MA). Subsystem engineers and subject matter experts are called in as required. The AOWG has functioned by forming issues based sub-teams. Examples of completed sub-teams include adhesives, wiring and wing leading edge metallic materials. Current sub-teams include Composite Over-Wrapped Pressure Vessels (COPV), elastomeric materials and mechanisms.
Development and validation of a general purpose linearization program for rigid aircraft models
NASA Technical Reports Server (NTRS)
Duke, E. L.; Antoniewicz, R. F.
1985-01-01
A FORTRAN program that provides the user with a powerful and flexible tool for the linearization of aircraft models is discussed. The program LINEAR numerically determines a linear systems model using nonlinear equations of motion and a user-supplied, nonlinear aerodynamic model. The system model determined by LINEAR consists of matrices for both the state and observation equations. The program has been designed to allow easy selection and definition of the state, control, and observation variables to be used in a particular model. Also, included in the report is a comparison of linear and nonlinear models for a high performance aircraft.
Remote sensing and uranium exploration at Lisbon Valley, Utah
NASA Technical Reports Server (NTRS)
Conel, J. E.; Niesen, P. L.
1981-01-01
As part of the joint NASA-Geosat uranium test case program, aircraft-acquired multispectral scanner data are used to investigate the distribution of bleaching in Windgate sandstone exposed in Lisbon Valley anticline, Utah. It is noted that all of the large ore bodies contained in lower Chinle Triassic age or Cutler Permian age strata in this area lie beneath or closely adjacent to such bleached outcrops. The geographic coincidences reported here are seen as inviting renewed interest in speculation of a causal relation between occurrences of Mississippian-Pennsylvanian oil and gas in this area and of Triassic uranium accumulation and rock bleaching.
Code of Federal Regulations, 2013 CFR
2013-07-01
... responsibilities of an agency's aviation program in justifying the use of a Government aircraft to transport... Aircraft § 102-33.220 What are the responsibilities of an agency's aviation program in justifying the use... authority, the agency's aviation program must provide cost estimates to assist in determining whether or not...
Code of Federal Regulations, 2010 CFR
2010-07-01
... responsibilities of an agency's aviation program in justifying the use of a Government aircraft to transport... Aircraft § 102-33.220 What are the responsibilities of an agency's aviation program in justifying the use... authority, the agency's aviation program must provide cost estimates to assist in determining whether or not...
Code of Federal Regulations, 2014 CFR
2014-01-01
... responsibilities of an agency's aviation program in justifying the use of a Government aircraft to transport... Aircraft § 102-33.220 What are the responsibilities of an agency's aviation program in justifying the use... authority, the agency's aviation program must provide cost estimates to assist in determining whether or not...
Code of Federal Regulations, 2011 CFR
2011-01-01
... responsibilities of an agency's aviation program in justifying the use of a Government aircraft to transport... Aircraft § 102-33.220 What are the responsibilities of an agency's aviation program in justifying the use... authority, the agency's aviation program must provide cost estimates to assist in determining whether or not...
Code of Federal Regulations, 2012 CFR
2012-01-01
... responsibilities of an agency's aviation program in justifying the use of a Government aircraft to transport... Aircraft § 102-33.220 What are the responsibilities of an agency's aviation program in justifying the use... authority, the agency's aviation program must provide cost estimates to assist in determining whether or not...
System IDentification Programs for AirCraft (SIDPAC)
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
2002-01-01
A collection of computer programs for aircraft system identification is described and demonstrated. The programs, collectively called System IDentification Programs for AirCraft, or SIDPAC, were developed in MATLAB as m-file functions. SIDPAC has been used successfully at NASA Langley Research Center with data from many different flight test programs and wind tunnel experiments. SIDPAC includes routines for experiment design, data conditioning, data compatibility analysis, model structure determination, equation-error and output-error parameter estimation in both the time and frequency domains, real-time and recursive parameter estimation, low order equivalent system identification, estimated parameter error calculation, linear and nonlinear simulation, plotting, and 3-D visualization. An overview of SIDPAC capabilities is provided, along with a demonstration of the use of SIDPAC with real flight test data from the NASA Glenn Twin Otter aircraft. The SIDPAC software is available without charge to U.S. citizens by request to the author, contingent on the requestor completing a NASA software usage agreement.
A computer program for obtaining airplane configuration plots from digital Datcom input data
NASA Technical Reports Server (NTRS)
Roy, M. L.; Sliwa, S. M.
1983-01-01
A computer program is described which reads the input file for the Stability and Control Digital Datcom program and generates plots from the aircraft configuration data. These plots can be used to verify the geometric input data to the Digital Datcom program. The program described interfaces with utilities available for plotting aircraft configurations by creating a file from the Digital Datcom input data.
Preliminary analysis of long-range aircraft designs for future heavy airlift missions
NASA Technical Reports Server (NTRS)
Nelms, W. P., Jr.; Murphy, R.; Barlow, A.
1976-01-01
A computerized design study of very large cargo aircraft for the future heavy airlift mission was conducted using the Aircraft Synthesis program (ACSYNT). The study was requested by the Air Force under an agreement whereby Ames provides computerized design support to the Air Force Flight Dynamics Laboratory. This effort is part of an overall Air Force program to study advanced technology large aircraft systems. Included in the Air Force large aircraft program are investigations of missions such as heavy airlift, airborne missile launch, battle platform, command and control, and aerial tanker. The Ames studies concentrated on large cargo aircraft of conventional design with payloads from 250,000 to 350,000 lb. Range missions up to 6500 n.mi. and radius missions up to 3600 n.mi. have been considered. Takeoff and landing distances between 7,000 and 10,000 ft are important constraints on the configuration concepts. The results indicate that a configuration employing conventional technology in all disciplinary areas weighs approximately 2 million pounds to accomplish either a 6500-n.mi. range mission or a 3600-n.mi. radius mission with a 350,000-lb payload.
NASA Technical Reports Server (NTRS)
Yager, Thomas J.; Vogler, William A.; Baldasare, Paul
1988-01-01
Aircraft and ground vehicle friction data collected during the Joint FAA/NASA Runway Friction Program under winter runway conditions are discussed and test results are summarized. The relationship between the different ground vehicle friction measurements obtained on compacted snow- and ice-covered conditions is defined together with the correlation to aircraft tire friction performance under similar runway conditions.
X-Wing Research Vehicle in Hangar
NASA Technical Reports Server (NTRS)
1987-01-01
One of the most unusual experimental flight vehicles appearing at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center) in the 1980s was the Rotor Systems Research Aircraft (RSRA) X-Wing aircraft, seen here on the ramp. The craft was developed originally and then modified by Sikorsky Aircraft for a joint NASA-Defense Advanced Research Projects Agency (DARPA) program and was rolled out 19 August 1986. Taxi tests and initial low-altitude flight tests without the main rotor attached were carried out at Dryden before the program was terminated in 1988. The unusual aircraft that resulted from the Ames Research Center/Army X-Wing Project was flown at the Ames-Dryden Flight Research Facility (now Dryden Flight Research Center), Edwards, California, beginning in the spring of 1984, with a follow-on program beginning in 1986. The program, was conceived to provide an efficient combination of the vertical lift characteristic of conventional helicopters and the high cruise speed of fixed-wing aircraft. It consisted of a hybrid vehicle called the NASA/Army Rotor Systems Research Aircraft (RSRA), which was equipped with advanced X-wing rotor systems. The program began in the early 1970s to investigate ways to increase the speed of rotor aircraft, as well as their performance, reliability, and safety . It also sought to reduce the noise, vibration, and maintenance costs of helicopters. Sikorsky Aircraft Division of United Technologies Laboratories built two RSRA aircraft. NASA's Langley Research Center, Hampton, Virginia, did some initial testing and transferred the program to Ames Research Center, Mountain View, California, for an extensive flight research program conducted by Ames and the Army. The purpose of the 1984 tests was to demonstrate the fixed-wing capability of the helicopter/airplane hybrid research vehicle and explore its flight envelope and flying qualities. These tests, flown by Ames pilot G. Warren Hall and Army Maj (soon promoted to Lt. Col.) Patrick Morris, began in May and continued until October 1984, when the RSRA vehicle returned to Ames. The project manager at Dryden for the flights was Wen Painter. These early tests were preparatory for a future X-Wing rotor flight test project to be sponsored by NASA, the Defense Advanced Research Projects Agency (DARPA), and Sikorsky Aircraft. A later derivative X-Wing flew in 1987. The modified RSRA was developed to provide a vehicle for in-flight investigation and verification of new helicopter rotor-system concepts and supporting technology. The RSRA could be configured to fly as an airplane with fixed wings, as a helicopter, or as a compound vehicle that could transition between the two configurations. NASA and DARPA selected Sikorsky in 1984 to convert one of the original RSRAs to the new demonstrator aircraft for the X-Wing concept. Developers of X-Wing technology did not view the X-Wing as a replacement for either helicopters (rotor aircraft) or fixed-wing aircraft. Instead, they envisioned it as an aircraft with special enhanced capabilities to perform missions that call for the low-speed efficiency and maneuverability of helicopters combined with the high cruise speed of fixed-wing aircraft. Some such missions include air-to-air and air-to-ground tactical operations, airborne early warning, electronic intelligence, antisubmarine warfare, and search and rescue. The follow-on X-Wing project was managed by James W. Lane, chief of the RSRA/X-Wing Project Office, Ames Research Center. Coordinating the Ames-Dryden flight effort in 1987 was Jack Kolf. The X-Wing project was a joint effort of NASA-Ames, DARPA, the U.S. Army, and Sikorsky Aircraft, Stratford, Connecticut. The modified X-Wing aircraft was delivered to Ames-Dryden by Sikorsky Aircraft on September 25, 1986. Following taxi tests, initial flights in the aircraft mode without main rotors attached took place at Dryden in December 1997. Ames research pilot G. Warren Hall and Sikorsky's W. Richard Faull were the pilots. The contract with Sikorsky ended that month, and the program ended in January 1988.
NASA Technical Reports Server (NTRS)
1986-01-01
One of the most unusual experimental flight vehicles appearing at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center) in the 1980s was the Rotor Systems Research Aircraft (RSRA) X-Wing aircraft, seen here on the ramp. The craft was developed originally and then modified by Sikorsky Aircraft for a joint NASA-Defense Advanced Research Projects Agency (DARPA) program and was rolled out 19 August 1986. Taxi tests and initial low-altitude flight tests without the main rotor attached were carried out at Dryden before the program was terminated in 1988. The unusual aircraft that resulted from the Ames Research Center/Army X-Wing Project was flown at the Ames-Dryden Flight Research Facility (now Dryden Flight Research Center), Edwards, California, beginning in the spring of 1984, with a follow-on program beginning in 1986. The program, was conceived to provide an efficient combination of the vertical lift characteristic of conventional helicopters and the high cruise speed of fixed-wing aircraft. It consisted of a hybrid vehicle called the NASA/Army Rotor Systems Research Aircraft (RSRA), which was equipped with advanced X-wing rotor systems. The program began in the early 1970s to investigate ways to increase the speed of rotor aircraft, as well as their performance, reliability, and safety . It also sought to reduce the noise, vibration, and maintenance costs of helicopters. Sikorsky Aircraft Division of United Technologies Laboratories built two RSRA aircraft. NASA's Langley Research Center, Hampton, Virginia, did some initial testing and transferred the program to Ames Research Center, Mountain View, California, for an extensive flight research program conducted by Ames and the Army. The purpose of the 1984 tests was to demonstrate the fixed-wing capability of the helicopter/airplane hybrid research vehicle and explore its flight envelope and flying qualities. These tests, flown by Ames pilot G. Warren Hall and Army Maj (soon promoted to Lt. Col.) Patrick Morris, began in May and continued until October 1984, when the RSRA vehicle returned to Ames. The project manager at Dryden for the flights was Wen Painter. These early tests were preparatory for a future X-Wing rotor flight test project to be sponsored by NASA, the Defense Advanced Research Projects Agency (DARPA), and Sikorsky Aircraft. A later derivative X-Wing flew in 1987. The modified RSRA was developed to provide a vehicle for in-flight investigation and verification of new helicopter rotor-system concepts and supporting technology. The RSRA could be configured to fly as an airplane with fixed wings, as a helicopter, or as a compound vehicle that could transition between the two configurations. NASA and DARPA selected Sikorsky in 1984 to convert one of the original RSRAs to the new demonstrator aircraft for the X-Wing concept. Developers of X-Wing technology did not view the X-Wing as a replacement for either helicopters (rotor aircraft) or fixed-wing aircraft. Instead, they envisioned it as an aircraft with special enhanced capabilities to perform missions that call for the low-speed efficiency and maneuverability of helicopters combined with the high cruise speed of fixed-wing aircraft. Some such missions include air-to-air and air-to-ground tactical operations, airborne early warning, electronic intelligence, antisubmarine warfare, and search and rescue. The follow-on X-Wing project was managed by James W. Lane, chief of the RSRA/X-Wing Project Office, Ames Research Center. Coordinating the Ames-Dryden flight effort in 1987 was Jack Kolf. The X-Wing project was a joint effort of NASA-Ames, DARPA, the U.S. Army, and Sikorsky Aircraft, Stratford, Connecticut. The modified X-Wing aircraft was delivered to Ames-Dryden by Sikorsky Aircraft on 25 September 1986. Following taxi tests, initial flights in the aircraft mode without main rotors attached took place at Dryden in December 1997. Ames research pilot G. Warren Hall and Sikorsky's W. Richard Faull were the pilots. The contract with Sikorsky ended that month, and the program ended in January 1988.
Air Force Journal of Logistics. Volume XXIII, Number 4, Winter 1999
1999-01-01
needs of the Air Force. 2. Uses existing software developed by base-level Air Force Reserve Command units as a benchmark. MSgt Maura A. Barton, DSN... Maura A. Barton, DSN 596-4581 Follow-on Technical Support for the Weapons Load Crew Management Program LM199812000—Consulting Study 1. Ensures the... Kelly AFB, an aging munitions infrastructure, and current runway restrictions for airlift aircraft make the future of that STAMP location uncertain
Sustaining Air Force Aging Aircraft into the 21st Century
2011-08-01
Yankel, AFMC CXI SAB Members: Mrs. Natalie Crawford Prof Mark Goorsky Mr. Neil Kacena Prof. David W. Miller Dr. Robert Schafrik Prof. Douglas...D. Eick Professor Mark S. Goorsky Mr. Neil G. Kacena Professor David W. Miller Dr. Robert E. Schafrik Dr. Douglas C. Schmidt Professor Daniel L...AFB, UT. Ivey, R., & Heath , R. (2011, April). Implementing MECSIP Through a Reliability Centered Maintenance Program for the Air Force C-130 SPO
NASA Technical Reports Server (NTRS)
Hiltner, Dale W.
2000-01-01
This report presents the assessment of an analytical tool developed as part of the NASA/FAA Tailplane Icing Program. The analytical tool is a specialized simulation program called TAILSM4 which was developed to model the effects of tailplane icing on the flight dynamics Twin Otter Icing Research Aircraft. This report compares the responses of the TAILSIM program directly to flight test data. The comparisons should be useful to potential users of TAILSIM. The comparisons show that the TAILSIM program qualitatively duplicates the flight test aircraft response during maneuvers with ice on the tailplane. TAILSIM is shown to be quantitatively "in the ballpark" in predicting when Ice Contaminated Tailplane Stall will occur during pushover and thrust transition maneuvers. As such, TAILSIM proved its usefulness to the flight test program by providing a general indication of the aircraft configuration and flight conditions of concern. The aircraft dynamics are shown to be modeled correctly by the equations of motion used in TAILSIM. However, the general accuracy of the TAILSIM responses is shown to be less than desired primarily due to inaccuracies in the aircraft database. The high sensitivity of the TAILSIM program responses to small changes in load factor command input is also shown to be a factor in the accuracy of the responses. A pilot model is shown to allow TAILSIM to produce more accurate responses and contribute significantly to the usefulness of the program. Suggestions to improve the accuracy of the TAILSIM responses are to further refine the database representation of the aircraft aerodynamics and tailplane flowfield and to explore a more realistic definition of the pilot model.
The NASA research program on propulsion for supersonic cruise aircraft
NASA Technical Reports Server (NTRS)
Weber, R. J.
1975-01-01
The objectives and status of the propulsion portion of a program aimed at advancing the technology and establishing a data base appropriate for the possible future development of supersonic cruise aircraft are reviewed. Research related to exhaust nozzles, combustors, and inlets that is covered by the noise, pollution, and dynamics programs is described.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Aging airplane inspections and records... § 129.105 Aging airplane inspections and records reviews for U.S.-registered multiengine aircraft. (a... completed the aging airplane inspection and records review required by this section. During the inspection...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Aging airplane inspections and records... § 129.105 Aging airplane inspections and records reviews for U.S.-registered multiengine aircraft. (a... completed the aging airplane inspection and records review required by this section. During the inspection...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Aging airplane inspections and records... § 129.105 Aging airplane inspections and records reviews for U.S.-registered multiengine aircraft. (a... completed the aging airplane inspection and records review required by this section. During the inspection...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aging airplane inspections and records... § 129.105 Aging airplane inspections and records reviews for U.S.-registered multiengine aircraft. (a... completed the aging airplane inspection and records review required by this section. During the inspection...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Aging airplane inspections and records... § 129.105 Aging airplane inspections and records reviews for U.S.-registered multiengine aircraft. (a... completed the aging airplane inspection and records review required by this section. During the inspection...
Acoustic measurements of F-16 aircraft operating in hush house, NSN 4920-02-070-2721
NASA Astrophysics Data System (ADS)
Miller, V. R.; Plzak, G. A.; Chinn, J. M.
1981-09-01
The purpose of this test program was to measure the acoustic environment in the hush house facility located at Kelly Air Force Base, Texas, during operation of the F-16 aircraft to ensure that aircraft structural acoustic design limits were not exceeded. The acoustic measurements showed that no sonic fatigue problems are anticipated with the F-16 aircraft aft fuselage structure during operation in the hush house. The measured acoustic levels were less than those measured in an F-16 aircraft water cooled hush house at Hill AFB, but were increased over that measured during ground run up. It was recommended that the acoustic loads measured in this program should be specified in the structural design criteria for aircraft which will be subjected to hush house operation or defining requirements for associated equipment.
Assessing the Impact of Aircraft Emissions on the Stratosphere
NASA Technical Reports Server (NTRS)
Kawa, S. R.; Anderson, D. E.
1999-01-01
For the past decade, the NASA Atmospheric Effects of Aviation Project (AEAP) has been the U.S. focal point for research on aircraft effects. In conjunction with U.S. basic research programs, AEAP and concurrent European research programs have driven remarkable progress reports released in 1999 [IPCC, 1999; Kawa et al., 1999]. The former report primarily focuses on aircraft effects in the upper troposphere, with some discussion on stratospheric impacts. The latter report focuses entirely on the stratosphere. The current status of research regarding aviation effects on stratospheric ozone and climate, as embodied by the findings of these reports, is reviewed. The following topics are addressed: Aircraft Emissions, Pollution Transport, Atmospheric Chemistry, Polar Processes, Climate Impacts of Supersonic Aircraft, Subsonic Aircraft Effect on the Stratosphere, Calculations of the Supersonic Impact on Ozone and Sensitivity to Input Conditions.
NASA Technical Reports Server (NTRS)
Guynn, Mark D.; Freh, Joshua E.; Olson, Erik D.
2004-01-01
This report describes the analytical modeling and evaluation of an unconventional commercial transport aircraft concept designed to address aircraft noise and emission issues. A blended-wing-body configuration with advanced technology hydrogen fuel cell electric propulsion is considered. Predicted noise and emission characteristics are compared to a current technology conventional configuration designed for the same mission. The significant technology issues which have to be addressed to make this concept a viable alternative to current aircraft designs are discussed. This concept is one of the "Quiet Green Transport" aircraft concepts studied as part of NASA's Revolutionary Aerospace Systems Concepts (RASC) Program. The RASC Program was initiated to develop revolutionary concepts that address strategic objectives of the NASA Enterprises, such as reducing aircraft noise and emissions, and to identify advanced technology requirements for the concepts.
2002-01-01
techniques that interface with the composite structure to attach opaque armor(s) to compos- ite aircraft structure. Over a period of four years...2002 2. REPORT TYPE 3. DATES COVERED 00-00-2002 to 00-00-2002 4. TITLE AND SUBTITLE Aircraft Survivability: UAVs and Manned Aircraft ...survivability concepts to UAV program offices and airframe manufacturers. 11 Aircraft Fire Protection Techniques—Application to UAVs by Ms. Ginger Bennett
NASA Technical Reports Server (NTRS)
Coen, Peter G.
1991-01-01
A new computer technique for the analysis of transport aircraft sonic boom signature characteristics was developed. This new technique, based on linear theory methods, combines the previously separate equivalent area and F function development with a signature propagation method using a single geometry description. The new technique was implemented in a stand-alone computer program and was incorporated into an aircraft performance analysis program. Through these implementations, both configuration designers and performance analysts are given new capabilities to rapidly analyze an aircraft's sonic boom characteristics throughout the flight envelope.
Research related to variable sweep aircraft development
NASA Technical Reports Server (NTRS)
Polhamus, E. C.; Toll, T. A.
1981-01-01
Development in high speed, variable sweep aircraft research is reviewed. The 1946 Langley wind tunnel studies related to variable oblique and variable sweep wings and results from the X-5 and the XF1OF variable sweep aircraft are discussed. A joint program with the British, evaluation of the British "Swallow", development of the outboard pivot wing/aft tail configuration concept by Langley, and the applied research program that followed and which provided the technology for the current, variable sweep military aircraft is outlined. The relative state of variable sweep as a design option is also covered.
NASA Technical Reports Server (NTRS)
Gaynor, T. L.; Bottrell, M. S.; Eagle, C. D.; Bachle, C. F.
1977-01-01
The feasibility of converting a spark ignition aircraft engine to the diesel cycle was investigated. Procedures necessary for converting a single cylinder GTS10-520 are described as well as a single cylinder diesel engine test program. The modification of the engine for the hot port cooling concept is discussed. A digital computer graphics simulation of a twin engine aircraft incorporating the diesel engine and Hot Fort concept is presented showing some potential gains in aircraft performance. Sample results of the computer program used in the simulation are included.
NASA Technical Reports Server (NTRS)
Foss, W. E., Jr.
1981-01-01
A computer technique to determine the mission radius and maneuverability characteristics of combat aircraft was developed. The technique was used to determine critical operational requirements and the areas in which research programs would be expected to yield the most beneficial results. In turn, the results of research efforts were evaluated in terms of aircraft performance on selected mission segments and for complete mission profiles. Extensive use of the technique in evaluation studies indicates that the calculated performance is essentially the same as that obtained by the proprietary programs in use throughout the aircraft industry.
Price Determination of General Aviation, Helicopter, and Transport Aircraft
NASA Technical Reports Server (NTRS)
Anderson, Joseph L.
1978-01-01
The NASA must assess its aeronautical research program with economic as well as performance measures. It thus is interested in what price a new technology aircraft would carry to make it attractive to the buyer. But what price a given airplane or helicopter will carry is largely a reflection of the manufacturer's assessment of the competitive market into which the new aircraft will be introduced. The manufacturer must weigh any new aerodynamic or system technology innovation he would add to an aircraft by the impact of this innovation upon the aircraft's economic attractiveness and price. The intent of this paper is to give price standards against which new technologies and the NASA's research program can be assessed. Using reported prices for general aviation, helicopter, and transport aircraft, price estimating relations in terms of engine and airframe characteristics have been developed. The relations are given in terms of the aircraft type, its manufactured empty weight, engine weight, horsepower or thrust. Factors for the effects of inflation are included to aid in making predictions of future aircraft prices. There are discussions of aircraft price in terms of number of passenger seats, airplane size and research and development costs related to an aircraft model, and indirectly as to how new technologies, aircraft complexity and inflation have affected these.
Price-Weight Relationships of General Aviation, Helicopters, Transport Aircraft and Engines
NASA Technical Reports Server (NTRS)
Anderson, Joseph L.
1981-01-01
The NASA must assess its aeronautical research program with economic as well as performance measures. It thus is interested in what price a new technology aircraft would carry to make it attractive to the buyer. But what price a given airplane or helicopter will carry is largely a reflection of the manufacturer's assessment of the competitive market into which the new aircraft will be introduced. The manufacturer must weigh any new aerodynamic or system technology innovation he would add to an aircraft by the impact of this innovation upon the aircraft's cost to manufacture, economic attractiveness and price. The intent of this paper is to give price standards against which new technologies and the NASA's research program can be assessed. Using reported prices for sailplanes, general aviation, agriculture, helicopter, business and transport aircraft, price estimating relations in terms of engine and airframe characteristics have been developed. The relations are given in terms of the aircraft type, its manufactured empty weight, engine weight, horsepower or thrust. Factors for the effects of inflation are included to aid in making predictions of future aircraft prices. There are discussions of aircraft price in terms of number of passenger seats, airplane size and research and development costs related to an aircraft model, and indirectly how new technologies, aircraft complexity and inflation have affected these.
Advanced composites wing study program, volume 2
NASA Technical Reports Server (NTRS)
Harvey, S. T.; Michaelson, G. L.
1978-01-01
The study on utilization of advanced composites in commercial aircraft wing structures was conducted as a part of the NASA Aircraft Energy Efficiency Program to establish, by the mid-1980s, the technology for the design of a subsonic commercial transport aircraft leading to a 40% fuel savings. The study objective was to develop a plan to define the effort needed to support a production commitment for the extensive use of composite materials in wings of new generation aircraft that will enter service in the 1985-1990 time period. Identification and analysis of what was needed to meet the above plan requirements resulted in a program plan consisting of three key development areas: (1) technology development; (2) production capability development; and (3) integration and validation by designing, building, and testing major development hardware.
Dryden Test Pilots 1990 - Smolka, Fullerton, Schneider, Dana, Ishmael, Smith, and McMurtry
NASA Technical Reports Server (NTRS)
1990-01-01
It was a windy afternoon on Rogers Dry Lake as the research pilots of the National Aeronautics and Space Administration's Ames-Dryden Flight Research Facility gathered for a photo shoot. It was a special day too, the 30th anniversary of the first F-104 flight by research pilot Bill Dana. To celebrate, a fly over of Building 4800, in formation, was made with Bill in a Lockheed F-104 (826), Gordon Fullerton in a Northrop T-38, and Jim Smolka in a McDonnell Douglas F/A-18 (841) on March 23, 1990. The F-18 (841), standing on the NASA ramp is a backdrop for the photo of (Left to Right) James W. (Smoke) Smolka, C. Gordon Fullerton, Edward T. (Ed) Schneider, William H. (Bill) Dana, Stephen D. (Steve) Ishmael, Rogers E. Smith, and Thomas C. (Tom) McMurtry. Smolka joined NASA Ames-Dryden Flight Research Facility in September 1985. He has been the project pilot on the F-15 Advanced Control Technology for Integrated Vehicles (ACTIVE) research and F-15 Aeronautical Research Aircraft programs. He has also flown as a pilot on the NASA B-52 launch aircraft, as a co-project pilot on the F-16XL Supersonic Laminar Flow Control aircraft and the F-18 High Angle-of-Attack Research Vehicle (HARV) aircraft. Other aircraft he has flown in research programs are the F-16, F-111, F-104 and the T-38 as support. Fullerton, joined NASA's Ames-Dryden Flight Research Facility in November 1986. He was project pilot on the NASA/Convair 990 aircraft to test space shuttle landing gear components, project pilot on the F-18 Systems Research Aircraft, and project pilot on the B-52 launch aircraft, where he was involved in six air launches of the commercially developed Pegasus space launch vehicle. Other assignments include a variety of flight research and support activities in multi-engine and high performance aircraft such as, F-15, F-111, F-14, X-29, MD-11 and DC-8. Schneider arrived at the NASA Ames-Dryden Flight Research Facility on July 5, 1982, as a Navy Liaison Officer, becoming a NASA research pilot one year later. He has been project pilot for the F-18 High Angle-of-Attack program (HARV), project pilot for the F-15 aeronautical research aircraft, the NASA B-52 launch aircraft, and the SR-71 'Blackbird' aircraft. His past research work at Dryden has included participation in the F-8 Digital Fly-By-Wire, the FAA/NASA 720 Controlled Impact Demonstration, the F-14 Automatic Rudder Interconnect and Laminar Flow programs, and the F-104 Aeronautical Research and Microgravity programs. Dana joined the NASA's High-Speed Flight Station on October 1, 1958. As a research pilot, he was involved in some of the most significant aeronautical programs carried out at the Center. In the late 1960s and in the 1970s Dana was a project pilot on the lifting body program, flying the wingless M2-F1, HL-10, M2-F3, and the X-24B vehicles. He was a project pilot on the hypersonic X-15 research aircraft and flew the rocket-powered vehicle 16 times, reaching a speed of 3,897 mph and an altitude of 310,000 feet. Bill was the pilot on the final (199th) flight of the 10-year program. Other research and support programs Dana participated in were the F-15 Highly Integrated Digital Electronic Control (HIDEC), the F-18 High Angle-of-Attack Research Vehicle (HARV), YF-12, F-104, F-16, PA-30, and T-38. In 1993 Dana became Chief Engineer at NASA's Ames-Dryden Flight Research Facility (soon to be renamed the Dryden Flight Research Center). Ishmael was a research pilot at NASA's Dryden Flight Research Center from January 1977 until the spring of 1995, when he became manager of Dryden's Reusable Launch Vehicle (RLV) programs. In 1996 he became NASA's X-33 Deputy Manager for Flight Test and Operation. As a research pilot he served as the chief project pilot on two major aeronautical research programs, the SR-71 High Speed Research program and the F-16XL Laminar Flow Technology program. He took part in the X-29 Forward-Swept-Wing program, and gave support to other pilots' research flights in a T-38 and F-104 aircraft. Smith became a research pilot at NASA's Ames-Dryden Flight Research Facility in August 1982. In the spring of 1995 he became Chief of the Flight Crew Branch where currently there are 8 other NASA pilots and 2 flight engineers. Smith has also been a co-project pilot on two major aeronautical programs at Dryden. They are the integrated thrust vectoring F-15 ACTIVE and the SR-71 'Blackbird' Research programs. Other research programs that he has been associated with are the F-104 Zero 'G' tests, F-18 HARV, X-29 Forward-Swept-Wing, with support flights being flown in a T-38 and F-104. McMurtry has been a pilot at NASA's Dryden since joining the Flight Research Center in November 1967. In 1981, Tom became Chief Pilot a position he held until February 1986, when he was appointed Chief of the Research Aircraft Operations Division. McMurtry has been project pilot for the AD-1 Oblique Wing program, the F-15 Digital Electronic Engine Control (DEEC) project and the F-8 Supercritical Wing program. He was co- project pilot on the F-15 ACTIVE program, F-8 Digital Fly-By-Wire program and on several remotely piloted research vehicle programs such as the FAA/NASA 720 Controlled Impact Demonstration and the sub-scale F-15 spin research project. He has also been a co-project pilot on the NASA 747 Shuttle Carrier Aircraft.
Probing Emissions of Military Cargo Aircraft: Description of a Joint Field Measurement Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Mengdawn; Corporan, E.; DeWitt, M.
2008-01-01
Direct emissions of NOx, volatile organic compounds, and particulate matter (PM) by aircraft contribute to the pollutant levels found in the atmosphere. Aircraft emissions can be injected at the ground level or directly at the high altitude in flight. Conversion of the precursor gases into secondary PM is one of the pathways for the increased atmospheric PM. Atmospheric PM interacts with solar radiation altering atmospheric radiation balance and potentially contributing to global and regional climate changes. Also, direct emissions of air toxics, ozone precursors and PM from aircraft in and around civilian airports and military air bases can worsen localmore » air quality in non-attainment and/or maintenance areas. These emissions need to be quantified. However, the current EPA methods for particle emission measurements from such sources, modified Method 5 and Conditional Test Method 039, are gravimetric-based, and it is anticipated that these methods will not be suitable for current and future generations of aircraft turbine engines, whose particle mass emissions are low. To evaluate measurement approaches for military aircraft emissions, two complementary projects were initiated in 2005. A joint field campaign between these two programs was executed during the first week of October 2005 at the Kentucky Air National Guard (KYANG) base in Louisville, KY. This campaign represented the first in a series of field studies for each program funded by the DoD Strategic Environmental Research and Development Program (SERDP) and provided the basis for cross-comparison of the sampling approaches and measurement techniques employed by the respective program teams. This paper describes the overall programmatic of the multi-year SERDP aircraft emissions research and presents a summary of the results from the joint field campaign.« less
Power management and distribution system for a More-Electric Aircraft (MADMEL) -- Program status
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maldonado, M.A.; Shah, N.M.; Cleek, K.J.
1995-12-31
A number of technology breakthroughs in recent years have rekindled the concept of a more-electric aircraft. High-power solid-state switching devices, electrohydrostatic actuators (EHAs), electromechanical actuators (EMAs), and high-power generators are just a few examples of component developments that have made dramatic improvements in properties such as weight, size, power, and cost. However, these components cannot be applied piecemeal. A complete, and somewhat revolutionary, system design approach is needed to exploit the benefits that a more-electric aircraft can provide. A five-phase Power Management and Distribution System for a More-Electric Aircraft (MADMEL) program was awarded by the Air Force to the Northrop/Grumman,more » Military Aircraft Division team in September 1991. The objective of the program is to design, develop, and demonstrate an advanced electrical power generation and distribution system for a more-electric aircraft (MEA). The MEA emphasizes the use of electrical power in place of hydraulics, pneumatic, and mechanical power to optimize the performance and life cycle cost of the aircraft. This paper presents an overview of the MADMEL program and a top-level summary of the program results, development and testing of major components to date. In Phase 1 and Phase 2 studies, the electrical load requirements were established and the electrical power system architecture was defined for both near-term (NT-year 1996) and far-term (FT-year 2003) MEA application. The detailed design and specification for the electrical power system (EPS), its interface with the Vehicle Management System, and the test set-up were developed under the recently completed Phase 3. The subsystem level hardware fabrication and testing will be performed under the on-going Phase 4 activities. The overall system level integration and testing will be performed in Phase 5.« less
An airborne remote sensing platform of the Helsinki University of Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikulainen, M.; Hallikainen, M.; Kemppinen, M.
1996-10-01
In 1994 Helsinki University of Technology acquired a Short SC7 Skyvan turboprop aircraft to be modified to carry remote sensing instruments. As the aircraft is originally designed to carry heavy and space consuming cargo, a modification program was implemented to make the aircraft feasible for remote sensing operations. The twelve-month long modification program had three design objectives: flexibility, accessibility and cost efficiency. The aircraft interior and electrical system were modified. Furthermore, the aircraft is equipped with DGPS-navigation system, multi-channel radiometer system and side looking airborne radar. Future projects include installation of local area network, attitude GPS system, imaging spectrometer andmore » 1.4 GHz radiometer. 6 refs., 5 figs., 1 tab.« less
State estimation applications in aircraft flight-data analysis: A user's manual for SMACK
NASA Technical Reports Server (NTRS)
Bach, Ralph E., Jr.
1991-01-01
The evolution in the use of state estimation is traced for the analysis of aircraft flight data. A unifying mathematical framework for state estimation is reviewed, and several examples are presented that illustrate a general approach for checking instrument accuracy and data consistency, and for estimating variables that are difficult to measure. Recent applications associated with research aircraft flight tests and airline turbulence upsets are described. A computer program for aircraft state estimation is discussed in some detail. This document is intended to serve as a user's manual for the program called SMACK (SMoothing for AirCraft Kinematics). The diversity of the applications described emphasizes the potential advantages in using SMACK for flight-data analysis.
Aircraft noise prediction program theoretical manual, part 1
NASA Technical Reports Server (NTRS)
Zorumski, W. E.
1982-01-01
Aircraft noise prediction theoretical methods are given. The prediction of data which affect noise generation and propagation is addressed. These data include the aircraft flight dynamics, the source noise parameters, and the propagation effects.
NASA Technical Reports Server (NTRS)
Grisaffe, S. J.; Merutka, J. P.
1972-01-01
The status of several coating programs is reviewed. These include efforts on protecting aircraft gas turbine engine materials from oxidation/corrosion and on protecting refractory metal reentry heat shields from oxidation.
NASA Technical Reports Server (NTRS)
1984-01-01
The NASA Aircraft Energy Efficiency (ACEE) Composite Primary Aircraft Structures Program was designed to develop technology for advanced composites in commercial aircraft. Research on composite materials, aircraft structures, and aircraft design is presented herein. The following parameters of composite materials were addressed: residual strength, damage tolerance, toughness, tensile strength, impact resistance, buckling, and noise transmission within composite materials structures.
NASA Technical Reports Server (NTRS)
Smith, P. J.; Thomson, L. W.; Wilson, R. D.
1986-01-01
NASA sponsored composites research and development programs were set in place to develop the critical engineering technologies in large transport aircraft structures. This NASA-Boeing program focused on the critical issues of damage tolerance and pressure containment generic to the fuselage structure of large pressurized aircraft. Skin-stringer and honeycomb sandwich composite fuselage shell designs were evaluated to resolve these issues. Analyses were developed to model the structural response of the fuselage shell designs, and a development test program evaluated the selected design configurations to appropriate load conditions.
Status of NASA aircraft engine emission reduction and upper atmosphere measurement programs
NASA Technical Reports Server (NTRS)
Rudey, R. A.; Lezberg, E. A.
1976-01-01
Advanced emission reduction techniques for five existing aircraft gas turbine engines are evaluated. Progress made toward meeting the 1979 EPA standards in rig tests of combustors for the five engines is reported. Results of fundamental combustion studies suggest the possibility of a new generation of jet engine combustor technology that would reduce oxides-of-nitrogen (NOx) emissions far below levels currently demonstrated in the engine-related programs. The Global Air Sampling Program (GAS) is now in full operation and is providing data on constituent measurements of ozone and other minor upper-atmosphere species related to aircraft emissions.
Selected topics from the structural acoustics program for the B-1 aircraft
NASA Technical Reports Server (NTRS)
Belcher, P. M.
1979-01-01
The major elements of the structural acoustics program for the B-1 aircraft are considered. Acoustic pressures measured at 280 sites on the surface of the vehicle were used to develop pressure models for a resizing of airframe components for aircraft No. 4 (A/C4). Acoustical fatigue design data for two dynamically complex structural configurations were acquired in laboratory programs, the conceptions for and executions of which detailed significant departures from the conventional. Design requirements for mechanical fasteners for configurations other than these two made use of analytical extensions of regrettably limited available information.
Lean, premixed, prevaporized combustion for aircraft gas turbine engines
NASA Technical Reports Server (NTRS)
Mularz, E. J.
1979-01-01
The application of lean, premixed, prevaporized combustion to aircraft turbine engine systems can result in benefits in terms of superior combustion performance, improved combustor and turbine durability, and environmentally acceptable pollutant emissions. Lean, premixed prevaporized combustion is particularly attractive for reducing the oxides of nitrogen emissions during high altitude cruise. The NASA stratospheric cruise emission reduction program will evolve and demonstrate lean, premixed, prevaporized combustion technology for aircraft engines. This multiphased program is described. In addition, the various elements of the fundamental studies phase of the program are reviewed, and results to date of many of these studies are summarized.
NASA Astrophysics Data System (ADS)
Niwa, Yosuke; Machida, Toshinobu; Sawa, Yousuke; Tsuboi, Kazuhiro; Matsueda, Hidekazu; Imasu, Ryoichi
2014-05-01
A Japan-centered observation network consisting of two regular aircraft programs have revealed the greenhouse gases variations from the lower-troposphere to the upper-troposphere/lower-stratosphere (UT/LS) regions. In the Comprehensive Observation Network for Trace gases by Airliner (CONTRAIL) project, in-situ continuous measurement equipment (CME) onboard commercial passenger aircraft world-widely observes CO2 profiles in vertical over tens of airports and in horizontal in the UT/LS regions. The CONTRAIL-CME has revealed three-dimensional structure of the global CO2 distribution and has exposed significant inter-hemispheric transport of CO2 through the upper-troposphere. In inverse modeling, the CME data have provided strong constraints on CO2 flux estimation especially for the Asian tropics. Automatic flask air sampling equipment (ASE) is also onboard the CONTRAIL aircraft and has been observing CO2 mixing ratios as well as those of methane, carbon monoxide, nitrous oxide and other trace species in the upper-troposphere between Japan and Australia. The observation period of the ASE has reached 20 years. In recent years, the ASE program has extended to the northern subarctic UT/LS region and has given an insight of transport mechanisms in the UT/LS by observing seasonal GHGs variations. In the other aircraft observation program by Japan Meteorological Agency, variations of GHGs have been observed by flask-sampling onboard a C-130H aircraft horizontally in the mid-troposphere over the western North Pacific as well as vertically over Minamitorishima-Island. The C-130H aircraft has persistently observed high mixing ratios of CH4 in the mid-troposphere, which seems to be originated from fossil fuel combustion throughout the year as well as from biogenic sources during summer in the Asian regions. Those above aircraft observation programs have a significant role for constraining GHGs flux estimates by filling the data gap of the existing surface measurement network specifically in the regions of Asia and the western North Pacific.
NASA Technical Reports Server (NTRS)
Wei, Peng; Sridhar, Banavar; Chen, Neil Yi-Nan; Sun, Dengfent
2012-01-01
A class of strategies has been proposed to reduce contrail formation in the United States airspace. A 3D grid based on weather data and the cruising altitude level of aircraft is adjusted to avoid the persistent contrail potential area with the consideration to fuel-efficiency. In this paper, the authors introduce a contrail avoidance strategy on 3D grid by considering additional operationally feasible constraints from an air traffic controller's aspect. First, shifting too many aircraft to the same cruising level will make the miles-in-trail at this level smaller than the safety separation threshold. Furthermore, the high density of aircraft at one cruising level may exceed the workload for the traffic controller. Therefore, in our new model we restrict the number of total aircraft at each level. Second, the aircraft count variation for successive intervals cannot be too drastic since the workload to manage climbing/descending aircraft is much larger than managing cruising aircraft. The contrail reduction is formulated as an integer-programming problem and the problem is shown to have the property of total unimodularity. Solving the corresponding relaxed linear programming with the simplex method provides an optimal and integral solution to the problem. Simulation results are provided to illustrate the methodology.
NASA Technical Reports Server (NTRS)
1973-01-01
Aircraft and airport noise reduction technology programs conducted by NASA are presented. The subjects discussed are: (1) effects of aircraft noise on individuals and communities, (2) status of aircraft source noise technology, (3) operational procedures to reduce the impact of aircraft noise, and (4) NASA relations with military services in aircraft noise problems. References to more detailed technical literature on the subjects discussed are included.
NASA Technical Reports Server (NTRS)
Berger, P. E.; Thornton, E. A.
1976-01-01
The APAS program a multistation structural synthesis procedure developed to evaluate material, geometry, and configuration with various design criteria usually considered for the primary structure of transport aircraft is described and evaluated. Recommendations to improve accuracy and extend the capabilities of the APAS program are given. Flow diagrams are included.
Programs at Wright-patterson Air Force Base
NASA Technical Reports Server (NTRS)
Dayton, Ron
1991-01-01
The Lubrication Branch has two active programs that are developing gas turbine engine mainshaft air/oil seals. Both of these programs, one of which is with General Electric Aircraft Engines and the other with Pratt & Whitney Aircraft, are addressing counter-rotating intershaft applications which involve very high rubbing velocities. The objectives and requirements of these efforts are briefly addressed.
NASA Astrophysics Data System (ADS)
Swindell, Paul; Doyle, Jon; Roach, Dennis
2017-02-01
The Federal Aviation Administration (FAA) started a research program in structural health monitoring (SHM) in 2011. The program's goal was to understand the technical gaps of implementing SHM on commercial aircraft and the potential effects on FAA regulations and guidance. The program evolved into a demonstration program consisting of a team from Sandia National Labs Airworthiness Assurance NDI Center (AANC), the Boeing Corporation, Delta Air Lines, Structural Monitoring Systems (SMS), Anodyne Electronics Manufacturing Corp (AEM) and the FAA. This paper will discuss the program from the selection of the inspection problem, the SHM system (Comparative Vacuum Monitoring-CVM) that was selected as the inspection solution and the testing completed to provide sufficient data to gain the first approved use of an SHM system for routine maintenance on commercial US aircraft.
X-15 on Lakebed after Landing with B-52 Mothership Flyover
NASA Technical Reports Server (NTRS)
1961-01-01
As crew members secure the X-15 rocket-powered aircraft after a research flight, the B-52 mothership used for launching this unique aircraft does a low fly-by overhead. The X-15s made a total of 199 flights over a period of nearly 10 years -- 1959 to 1968 -- and set unofficial world speed and altitude records of 4,520 mph (Mach 6.7) and 354,200. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo piloted spaceflight programs, and also the Space Shuttle program. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet.. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
Recent progress in VSTOL technology
NASA Technical Reports Server (NTRS)
Roberts, L.; Deckert, W. R.
1982-01-01
Progress in vertical and short takeoff and landing (V/STOL) aircraft technology, in particular, during the 1970 to 1980 period at Ames Research Center is discussed. Although only two kinds of V/STOL aircraft (the helicopter and the British direct lift Harrier) have achieved operational maturity, understanding of the technology has vastly improved during this 10 year period. To pursue an aggressive R and D program at a reasonable cost, it was decided to conduct extensive large scale testing in wind tunnel and flight simulation facilities, to develop low cost research aircraft using modified airframes or engines, and to involve other agencies and industry contractors in joint technical and funding arrangements. The STOL investigations include exploring STOL performance using the rotating cylinder flap concept, the augmentor wing, upon initiation of the Quiet Short Haul Research Aircraft program, the upper surface blown flap concept. The VTOL investigations were conducted using a tilt rotor aircraft, resulting in the XV-15 tilt rotor research aircraft. Direct jet lift is now being considered for application to future supersonic fighter aircraft.
40 CFR 141.804 - Aircraft water system operations and maintenance plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Aircraft water system operations and maintenance plan. 141.804 Section 141.804 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Aircraft Drinking Water Rule § 141.804 Aircraft water system...
Navy Maintenance: The P-3 Aircraft Overhaul Program Can Be Improved.
1987-06-01
Air Sys- tems Command’s Naval Aviation Logistics Center, we obtained data on aircraft turnaround times, mobilization requirements, and aircraft over...480 561 637 P-3 Workload as a Percent of 23 22 25 27 Total FINDING Z: Aplicability of Procedural Changes To Other Aircraft. The GAO observed that the
NASA Technical Reports Server (NTRS)
Guynn, Mark D.; Olson, Erik D.
2002-01-01
This report describes the analytical modeling and evaluation of an unconventional commercial transport aircraft concept designed to address aircraft noise and emission issues. A strut-braced wing configuration with overwing, ultra-high bypass ratio, hydrogen fueled turbofan engines is considered. Estimated noise and emission characteristics are compared to a conventional configuration designed for the same mission and significant benefits are identified. The design challenges and technology issues which would have to be addressed to make the concept a viable alternative to current aircraft designs are discussed. This concept is one of the "Quiet Green Transport" aircraft concepts studied as part of NASA's Revolutionary Aerospace Systems Concepts (RASC) Program. The RASC Program seeks to develop revolutionary concepts that address strategic objectives of the NASA Enterprises, such as reducing aircraft noise and emissions, and to identify enabling advanced technology requirements for the concepts.
Aircraft stress sequence development: A complex engineering process made simple
NASA Technical Reports Server (NTRS)
Schrader, K. H.; Butts, D. G.; Sparks, W. A.
1994-01-01
Development of stress sequences for critical aircraft structure requires flight measured usage data, known aircraft loads, and established relationships between aircraft flight loads and structural stresses. Resulting cycle-by-cycle stress sequences can be directly usable for crack growth analysis and coupon spectra tests. Often, an expert in loads and spectra development manipulates the usage data into a typical sequence of representative flight conditions for which loads and stresses are calculated. For a fighter/trainer type aircraft, this effort is repeated many times for each of the fatigue critical locations (FCL) resulting in expenditure of numerous engineering hours. The Aircraft Stress Sequence Computer Program (ACSTRSEQ), developed by Southwest Research Institute under contract to San Antonio Air Logistics Center, presents a unique approach for making complex technical computations in a simple, easy to use method. The program is written in Microsoft Visual Basic for the Microsoft Windows environment.
NASA Technical Reports Server (NTRS)
Denington, R. J.; Koenig, R. W.; Vanco, M. R.; Sagerser, D. A.
1972-01-01
The selection and the characteristics of quiet, clean propulsion systems for STOL aircraft are discussed. Engines are evaluated for augmentor wing and externally blown flap STOL aircraft with the engines located both under and over the wings. Some supporting test data are presented. Optimum engines are selected based on achieving the performance, economic, acoustic, and pollution goals presently being considered for future STOL aircraft. The data and results presented were obtained from a number of contracted studies and some supporting NASA inhouse programs, most of which began in early 1972. The contracts include: (1) two aircraft and mission studies, (2) two propulsion system studies, (3) the experimental and analytic work on the augmentor wing, and (4) the experimental programs on Q-Fan. Engines are selected and discussed based on aircraft economics using the direct operating cost as the primary criterion. This cost includes the cost of the crew, fuel, aircraft, and engine maintenance and depreciation.
Mathematical model for lift/cruise fan V/STOL aircraft simulator programming data
NASA Technical Reports Server (NTRS)
Bland, M. P.; Fajfar, B.; Konsewicz, R. K.
1976-01-01
Simulation data are reported for the purpose of programming the flight simulator for advanced aircraft for tests of the lift/cruise fan V/STOL Research Technology Aircraft. These simulation tests are to provide insight into problem areas which are encountered in operational use of the aircraft. A mathematical model is defined in sufficient detail to represent all the necessary pertinent aircraft and system characteristics. The model includes the capability to simulate two basic versions of an aircraft propulsion system: (1) the gas coupled configuration which uses insulated air ducts to transmit power between gas generators and fans in the form of high energy engine exhaust and (2) the mechanically coupled power system which uses shafts, clutches, and gearboxes for power transmittal. Both configurations are modeled such that the simulation can include vertical as well as rolling takeoff and landing, hover, powered lift flight, aerodynamic flight, and the transition between powered lift and aerodynamic flight.
A review of advanced turboprop transport aircraft
NASA Astrophysics Data System (ADS)
Lange, Roy H.
The application of advanced technologies shows the potential for significant improvement in the fuel efficiency and operating costs of future transport aircraft envisioned for operation in the 1990s time period. One of the more promising advanced technologies is embodied in an advanced turboprop concept originated by Hamilton Standard and NASA and known as the propfan. The propfan concept features a highly loaded multibladed, variable pitch propeller geared to a high pressure ratio gas turbine engine. The blades have high sweepback and advanced airfoil sections to achieve 80 percent propulsive efficiency at M=0.80 cruise speed. Aircraft system studies have shown improvements in fuel efficiency of 15-20 percent for propfan advanced transport aircraft as compared to equivalent turbofan transports. Beginning with the Lockheed C-130 and Electra turboprop aircraft, this paper presents an overview of the evolution of propfan aircraft design concepts and system studies. These system studies include possible civil and military transport applications and data on the performance, community and far-field noise characteristics and operating costs of propfan aircraft design concepts. NASA Aircraft Energy Efficiency (ACEE) program propfan projects with industry are reviewed with respect to system studies of propfan aircraft and recommended flight development programs.
V/STOL tilt rotor aircraft study. Volume 5: Definition of stowed rotor research aircraft
NASA Technical Reports Server (NTRS)
Soule, V. A.
1973-01-01
The results of a study of folding tilt rotor (stowed rotor) aircraft are presented. The effects of design cruise speed on the gross weight of a conceptual design stowed rotor aircraft are shown and a comparison is made with a conventional (non-folding) tilt rotor aircraft. A flight research stowed rotor design is presented. The program plans, including costs and schedules, are shown for the research aircraft development and a wind tunnel plan is presented for a full scale test of the aircraft.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hess, J.W.
An aircraft battle-damage repair (BDR) program is described that provides for the assessment and repair of battle damage and the return of badly damaged aircraft to their home bases. The program methodology is based on the use of time-saving temporary repairs and associated training and materials provision. BDR is shown to require knowledge of damage mechanisms and specifications for the minimum effective requirements for BDR support, and the method can facilitate the return of 50 percent of damaged aircraft within 24 hours.
NASA Technical Reports Server (NTRS)
Wingrove, R. C.
1994-01-01
This program was developed by Ames Research Center, in cooperation with the National Transportation Safety Board, as a technique for deriving time histories of an aircraft's motion from Air Traffic Control (ATC) radar records. This technique uses the radar range and azimuth data, along with the downlinked altitude data, to derive an expanded set of data which includes airspeed, lift, attitude angles (pitch, roll, and heading), etc. This technique should prove useful as a source of data in the investigation of commercial airline accidents and in the analysis of accidents involving aircraft which do not have onboard data recorders (e.g., military, short-haul, and general aviation). The technique used to determine the aircraft motions involves smoothing of raw radar data. These smoothed results, in combination with other available information (wind profiles and aircraft performance data), are used to derive the expanded set of data. This program uses a cubic least-square fit to smooth the raw data. This moving-arc procedure provides a smoothed time history of the aircraft position, the inertial velocities, and accelerations. Using known winds, these inertial data are transformed to aircraft stability axes to provide true airspeed, thrust-drag, lift, and roll angle. Further derivation, based on aircraft dependent performance data, can determine the aircraft angle of attack, pitch, and heading angle. Results of experimental tests indicate that values derived from ATC radar records using this technique agree favorably with airborne measurements. This program is written in FORTRAN IV to be executed in the batch mode, and has been implemented on a CDC 6000 series computer with a central memory requirement of 64k (octal) of 60 bit words.
2011-03-22
Aircraft collisions with birds and other wildlife annually cause millions of dollars in aircraft damage and may result in loss of life and aircraft...collisions with birds and other wildlife annually cause millions of dollars in aircraft damage and may result in loss of life and aircraft. More...Action would support the BASH program and meet the AF goal of reducing the loss of life and of valuable aircraft and other resources. Figure 1-2
Designing for aircraft structural crashworthiness
NASA Technical Reports Server (NTRS)
Thomson, R. G.; Caiafa, C.
1981-01-01
This report describes structural aviation crash dynamics research activities being conducted on general aviation aircraft and transport aircraft. The report includes experimental and analytical correlations of load-limiting subfloor and seat configurations tested dynamically in vertical drop tests and in a horizontal sled deceleration facility. Computer predictions using a finite-element nonlinear computer program, DYCAST, of the acceleration time-histories of these innovative seat and subfloor structures are presented. Proposed application of these computer techniques, and the nonlinear lumped mass computer program KRASH, to transport aircraft crash dynamics is discussed. A proposed FAA full-scale crash test of a fully instrumented radio controlled transport airplane is also described.
Airborne antenna pattern calculations
NASA Technical Reports Server (NTRS)
Knerr, T. J.; Mielke, R. R.
1981-01-01
Progress on the development of modeling software, testing software against caclulated data from program VPAP and measured patterns, and calculating roll plane patterns for general aviation aircraft is reported. Major objectives are the continued development of computer software for aircraft modeling and use of this software and program OSUVOL to calculate principal plane and volumetric radiation patterns. The determination of proper placement of antennas on aircraft to meet the requirements of the Microwave Landing System is discussed. An overview of the performed work, and an example of a roll plane model for the Piper PA-31T Cheyenne aircraft and the resulting calculated roll plane radiation pattern are included.
NASA Technical Reports Server (NTRS)
Beatty, T. D.; Worthey, M. K.
1984-01-01
A computerized prediction method known as the Vought V/STOL Aircraft Propulsive Effects computer program (VAPE) for propulsive induced forces and moments in transition and Short TakeOff and Landing (STOL) flight is improved and evaluated. The VAPE program is capable of evaluating: (1) effects of relative wind about an aircraft, (2) effects of propulsive lift jet entrainment, vorticity and flow blockage, (3) effects of engine inlet flow on the aircraft flow field, (4) engine inlet forces and moments including inlet separation, (5) ground effects in the STOL region of flight, and (6) viscous effects on lifting surfaces.
A robust optimization methodology for preliminary aircraft design
NASA Astrophysics Data System (ADS)
Prigent, S.; Maréchal, P.; Rondepierre, A.; Druot, T.; Belleville, M.
2016-05-01
This article focuses on a robust optimization of an aircraft preliminary design under operational constraints. According to engineers' know-how, the aircraft preliminary design problem can be modelled as an uncertain optimization problem whose objective (the cost or the fuel consumption) is almost affine, and whose constraints are convex. It is shown that this uncertain optimization problem can be approximated in a conservative manner by an uncertain linear optimization program, which enables the use of the techniques of robust linear programming of Ben-Tal, El Ghaoui, and Nemirovski [Robust Optimization, Princeton University Press, 2009]. This methodology is then applied to two real cases of aircraft design and numerical results are presented.
Time-based air traffic management using expert systems
NASA Technical Reports Server (NTRS)
Tobias, L.; Scoggins, J. L.
1986-01-01
A prototype expert system was developed for the time scheduling of aircraft into the terminal area. The three functions of the air traffic control schedule advisor are as follows: first, for each new arrival, it develops an admissible flight plan for that aircraft. Second, as the aircraft progresses through the terminal area, it monitors deviations from the flight plan and provides advisories to return the aircraft to its assigned schedule. Third, if major disruptions such as missed approaches occur, it develops a revised plan. The advisor is operational on a Symbolics 3600, and is programed in MRS (a logic programming language), Lisp, and FORTRAN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keifer, W.S.; Blumenthal, D.L.; Tommerdahl, J.B.
1981-09-01
As part of the EPRI sulfate regional experiment (SURE), Meteorology Research, Inc., (MRI) and Research Triangle Institute (RTI) conducted six air quality sampling programs in the eastern United States using instrumented aircraft. This volume includes the air quality and meteorological data obtained during the July 1978 Intensive when MRI sampled near the Duncan Falls, Ohio, SURE Station and RTI sampled near the Scranton, Pennsylvania, SURE Station. During the last part of the July 1978 sampling period, both MRI and RTI aircraft participated in a large regional-scale sampling program with Brookhaven National Laboratory (BNL) and Pacific Northwest Laboratory (PNL). Only themore » data obtained by the MRI and RTI aircraft during this regional-scale sapling program are included in this volume.« less
NASA Astrophysics Data System (ADS)
Garcea, Ralph; Leigh, Barry; Wong, R. L. M.
Reduction of interior noise in propeller-driven aircraft, to levels comparable with those obtained in jet transports, has become a leading factor in the early design stages of the new generation turboprops- and may be essential if these new designs are to succeed. The need for an analytical capability to predict interior noise is accepted throughout the turboprop aircraft industry. To this end, an analytical noise prediction program, which incorporates the SYSNOISE numerical acoustic analysis software, is under development at de Havilland. The discussion contained herein looks at the development program and how it was used in a design sensitivity analysis to optimize the structural design of the aircraft cabin for the purpose of reducing interior noise levels. This report also summarizes the validation of the SYSNOISE package using numerous classical cases from the literature.
ERAST Program Proteus Aircraft in Flight
1999-07-26
The unusual design of the Proteus high-altitude aircraft, incorporating a gull-wing shape for its main wing and a long, slender forward canard, is clearly visible in this view of the aircraft in flight over the Mojave Desert in California.
X-31 in flight, Herbst maneuver
NASA Technical Reports Server (NTRS)
1990-01-01
Two X-31 Enhanced Fighter Maneuverability (EFM) demonstrators were flown at the Rockwell International Palmdale, California, facility and the NASA Dryden Flight Research Center, Edwards, California, to obtain data that may apply to the design of highly-maneuverable next-generation fighters. The program had its first flight on October 11, 1990, in Palmdale; it ended in June 1995. The X-31 program demonstrated the value of thrust vectoring (directing engine exhaust flow) coupled with advanced flight control systems, to provide controlled flight during close-in air combat at very high angles of attack. The result of this increased maneuverability is an aircraft with a significant advantage over conventional fighters. 'Angle-of-attack' (alpha) is an engineering term to describe the angle of an aircraft body and wings relative to its actual flight path. During maneuvers, pilots often fly at extreme angles of attack--with the nose pitched up while the aircraft continues in its original direction. This can lead to loss of control and result in the loss of the aircraft, or both. Three thrust-vectoring paddles made of graphite epoxy mounted on the X-31 aircraft exhaust nozzle directed the exhaust flow to provide control in pitch (up and down) and yaw (right and left) to improve control. The paddles can sustain heat of up to 1,500 degrees centigrade for extended periods of time. In addition the X-31 aircraft were configured with movable forward canards and fixed aft strakes. The canards were small wing-like structures set on the wing line between the nose and the leading edge of the wing. The strakes were set on the same line between the trailing edge of the wing and the engine exhaust. Both supplied additional control in tight maneuvering situations. The X-31 research program produced technical data at high angles of attack. This information is giving engineers and aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. This is expected to lead to design methods that provide better maneuverability in future high performance aircraft and make them safer to fly. An international test organization of about 110 people, managed by the Advanced Research Projects Agency (ARPA), conducted the flight operations at NASA Dryden. The ARPA had requested flight research for the X-31 aircraft be moved there in February 1992. In addition to ARPA and NASA, the International Test Organization (ITO) included the U.S. Navy, the U.S. Air Force, Rockwell International, the Federal Republic of Germany, and Daimler-Benz Aerospace (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace). NASA was responsible for flight research operations, aircraft maintenance, and research engineering once the program moved to Dryden. The No. 1 X-31 aircraft was lost in an accident Jan. 19, 1995. The pilot, Karl Heinz-Lang, of the Federal Republic of Germany, ejected safely before the aircraft crashed in an unpopulated desert area just north of Edwards. The X-31 program logged an X-plane record of 580 flights during the program, including 555 research missions and 21 in Europe for the 1995 Paris Air Show. A total of 14 pilots representing all agencies of the ITO flew the aircraft. In this 40-second movie clip the X-31 aircraft is shown performing the 'Herbst maneuver,' which is a rapid, minimum-180-degree turn using a post-stall maneuver flying well beyond the aerodynamic limits of any conventional aircraft. Named after Wolfgang Herbst a proponent of using post-stall flight in air-to-air combat.
NASA Technical Reports Server (NTRS)
1995-01-01
Two X-31 Enhanced Fighter Maneuverability (EFM) demonstrators were flown at the Rockwell International facility, Palmdale, California, and the NASA Dryden Flight Research Center, Edwards, California, to obtain data that may apply to the design of highly-maneuverable next-generation fighters. The program had its first flight on October 11, 1990, in Palmdale; it ended in June 1995. The X-31 program demonstrated the value of thrust vectoring (directing engine exhaust flow) coupled with advanced flight control systems, to provide controlled flight during close-in air combat at very high angles of attack. The result of this increased maneuverability is an airplane with a significant advantage over conventional fighters. 'Angle-of-attack' (alpha) is an engineering term to describe the angle of an aircraft's body and wings relative to its actual flight path. During maneuvers, pilots often fly at extreme angles of attack -- with the nose pitched up while the aircraft continues in its original direction. This can lead to loss of control and result in the loss of the aircraft, pilot or both. Three thrust vectoring paddles made of graphite epoxy mounted on the exhaust nozzle of the X-31 aircraft directed the exhaust flow to provide control in pitch (up and down) and yaw (right and left) to improve control. The paddles can sustain heat of up to 1,500 degrees centigrade for extended periods of time. In addition the X-31 aircraft were configured with movable forward canards and fixed aft strakes. The canards were small wing-like structures set on the wing line between the nose and the leading edge of the wing. The strakes were set on the same line between the trailing edge of the wing and the engine exhaust. Both supplied additional control in tight maneuvering situations. The X-31 research program produced technical data at high angles of attack. This information is giving engineers and aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. This understanding is expected to lead to design methods that provide better maneuverability in future high performance aircraft and make them safer to fly. An international test organization of about 110 people, managed by the Advanced Research Projects Agency (ARPA), conducted the flight operations at NASA Dryden. The ARPA had requested flight research for the X-31 aircraft be moved there in February 1992. In addition to ARPA and NASA, the international test organization (ITO) included the U.S. Navy, the U.S. Air Force, Rockwell International, the Federal Republic of Germany, and Daimler-Benz Aerospace (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace). NASA was responsible for flight research operations, aircraft maintenance, and research engineering once the program moved to Dryden. The No. 1 X-31 aircraft was lost in an accident January 19, 1995. The pilot, Karl Heinz-Lang, of the Federal Republic of Germany, ejected safely before the aircraft crashed in an unpopulated desert area just north of Edwards. The X-31 program logged an X-plane record of 580 flights during the program, including 555 research missions and 21 in Europe for the 1995 Paris Air Show. A total of 14 pilots representing all agencies of the ITO flew the aircraft. The X-31 aircraft shown on approach with a high angle of attack, touches down with its speed brakes, which can be seen extended just above and behind the wing. The aircraft then begins to rotate the nosegear down to runway contact and deploys a braking parachute that assists in slowing the aircraft after landing.
NASA aviation safety program aircraft engine health management data mining tools roadmap
DOT National Transportation Integrated Search
2000-04-01
Aircraft Engine Health Management Data Mining Tools is a project led by NASA Glenn Research Center in support of the NASA Aviation Safety Program's Aviation System Monitoring and Modeling Thrust. The objective of the Glenn-led effort is to develop en...
A simplified analysis of propulsion installation losses for computerized aircraft design
NASA Technical Reports Server (NTRS)
Morris, S. J., Jr.; Nelms, W. P., Jr.; Bailey, R. O.
1976-01-01
A simplified method is presented for computing the installation losses of aircraft gas turbine propulsion systems. The method has been programmed for use in computer aided conceptual aircraft design studies that cover a broad range of Mach numbers and altitudes. The items computed are: inlet size, pressure recovery, additive drag, subsonic spillage drag, bleed and bypass drags, auxiliary air systems drag, boundary-layer diverter drag, nozzle boattail drag, and the interference drag on the region adjacent to multiple nozzle installations. The methods for computing each of these installation effects are described and computer codes for the calculation of these effects are furnished. The results of these methods are compared with selected data for the F-5A and other aircraft. The computer program can be used with uninstalled engine performance information which is currently supplied by a cycle analysis program. The program, including comments, is about 600 FORTRAN statements long, and uses both theoretical and empirical techniques.
Progress in supersonic cruise aircraft technology
NASA Technical Reports Server (NTRS)
Driver, C.
1978-01-01
The supersonic cruise aircraft research program identified significant improvements in the technology areas of propulsion, aerodynamics, structures, takeoff and landing procedures, and advanced configuration concepts. Application of these technology areas to a commercial aircraft is discussed. An advanced SST family of aircraft which may be environmentally acceptable, have flexible range-payload capability, and be economically viable is projected.
2012-03-01
comprehensive explanations (Yechout, 2003), (Nelson, 1998). Figure 9: USAFA/Brandt Jet5 Aircraft Modeling Program 18 2.5.1 Dynamic Aircraft...16 2.5.1 Dynamic Aircraft Stability Modes .......................................................... 18 2.5.2 State...12 Figure 7: Body-Fixed Reference Frame ........................................................................... 13 Figure 8: Static and Dynamic
NASA Technical Reports Server (NTRS)
Miller, James G. (Principal Investigator)
1996-01-01
Current concern for ensuring, the air-worthiness of the aging commercial air fleet has prompted the establishment of broad-agency programs to develop NDT technologies that address specific aging-aircraft issues. One of the crucial technological needs that has been identified is the development of rapid, quantitative systems for depot-level inspection of bonded aluminum lap joints on aircraft. Research results for characterization of disbond and corrosion based on normal-incidence pulse-echo measurement geometries are showing promise, but are limited by the single-site nature of the measurement which requires manual or mechanical scanning to inspect an area. One approach to developing efficient systems may be to transfer specific aspects of current medical imaging technology to the NDT arena. Ultrasonic medical imaging, systems offer many desirable attributes for large scale inspection. They are portable, provide real-time imaging, and have integrated video tape recorder and printer capabilities available for documentation and post-inspection review. Furthermore, these systems are available at a relatively low cost (approximately $50,000 to $200,000) and can be optimized for use with metals with straight-forward modifications.
Hybridized polymer matrix composites
NASA Technical Reports Server (NTRS)
House, E. E.; Hoggatt, J. T.; Symonds, W. A.
1980-01-01
The extent to which graphite fibers are released from resin matrix composites that are exposed to fire and impact conditions was determined. Laboratory simulations of those conditions that could exist in the event of an aircraft crash and burn situation were evaluated. The effectiveness of various hybridizing concepts in preventing this release of graphite fibers were also evaluated. The baseline (i.e., unhybridized) laminates examined were prepared from commercially available graphite/epoxy, graphite/polyimide, and graphite/phenolic materials. Hybridizing concepts investigated included resin fillers, laminate coatings, resin blending, and mechanical interlocking of the graphite reinforcement. The baseline and hybridized laminates' mechanical properties, before and after isothermal and humidity aging, were also compared. It was found that a small amount of graphite fiber was released from the graphite/epoxy laminates during the burn and impact conditions used in this program. However, the extent to which the fibers were released is not considered a severe enough problem to preclude the use of graphite reinforced composites in civil aircraft structure. It also was found that several hybrid concepts eliminated this fiber release. Isothermal and humidity aging did not appear to alter the fiber release tendencies.
NASA Astrophysics Data System (ADS)
Schoess, Jeffrey N.; Seifert, Greg; Paul, Clare A.
1996-05-01
The smart aircraft fastener evaluation (SAFE) system is an advanced structural health monitoring effort to detect and characterize corrosion in hidden and inaccessible locations of aircraft structures. Hidden corrosion is the number one logistics problem for the U.S. Air Force, with an estimated maintenance cost of $700M per year in 1990 dollars. The SAFE system incorporates a solid-state electrochemical microsensor and smart sensor electronics in the body of a Hi-Lok aircraft fastener to process and autonomously report corrosion status to aircraft maintenance personnel. The long-term payoff for using SAFE technology will be in predictive maintenance for aging aircraft and rotorcraft systems, fugitive emissions applications such as control valves, chemical pipeline vessels, and industrial boilers. Predictive maintenance capability, service, and repair will replace the current practice of scheduled maintenance to substantially reduce operational costs. A summary of the SAFE concept, laboratory test results, and future field test plans is presented.
Study on utilization of advanced composites in commercial aircraft wing structures, volume 2
NASA Technical Reports Server (NTRS)
Sakata, I. F.; Ostrom, R. B.
1978-01-01
A plan is defined for a composite wing development effort which will assist commercial transport manufacturers in reaching a level of technology readiness where the utilization of composite wing structure is a cost competitive option for a new aircraft production plan. The recommended development effort consists of two programs: a joint government/industry material development program and a wing structure development program. Both programs are described in detail.
A Case Study of an Aeronautical Systems Division System Program Office.
1982-09-01
11111 -’.-- m 1 1.25 111111.4 1 1.6_ MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A If. t 1’ I I( N 2> - .~.. * .~ .~-I ~ k~’ ~K ~r...office....assesses.................. 8 Section 11 The Standard Aircraft Sensor UnitProgram........ 32 Section III Terms and Defnition ...contracts with industry, (b) test programs with both industry and other DOD organizations, (c) aircraft production or modification programs with both
Development Cycle Time Simulation for Civil Aircraft
NASA Technical Reports Server (NTRS)
Spitz, William; Berardino, Frank; Golaszewski, Richard; Johnson, Jesse
2001-01-01
Cycle Time Reduction (CTR) will be one of the major factors affecting the future of the civil aerospace industry. This focus is the end reflection of the level of competition in the commercial large carrier aircraft industry. Aircraft manufacturer must minimize costs and pass a portion of those savings onto buyers. CTR is one strategy used to move the manufacturing firm down the cost curve. The current NASA Airframe Development Cycle Time Reduction Goal is 50% by year 2022. This goal is not achievable based on the program analysis done by the LMI/GRA team. This may mean that the current roster of NASA CTR programs needs to be reexamined or that the program technology progress factors, as determined by the NASA experts, were understated. Programs that duplicate the reductions of others should be replaced with non-duplicative programs. In addition, new programs targeting a specific part of the cycle can be developed.
Time-temperature-stress capabilities of composites for supersonic cruise aircraft applications
NASA Technical Reports Server (NTRS)
Haskins, J. F.; Kerr, J. R.; Stein, B. A.
1976-01-01
A range of baseline properties was determined for representatives of 5 composite materials systems: B/Ep, Gr/Ep, B/PI, Gr/PI, and B/Al. Long-term exposures are underway in static thermal environments and in ones which simultaneously combine programmed thermal histories and mechanical loading histories. Selected results from the environmental exposure studies with emphasis placed on the 10,000-hour thermal aging data are presented. Results of residual strength determinations and changes in physcial and chemical properties during high temperature aging are discussed and illustrated using metallographic, fractographic and thermomechanical analyses. Some initial results of the long-term flight simulation tests are also included.
A study on the utilization of advanced composites in commercial aircraft wing structure
NASA Technical Reports Server (NTRS)
Watts, D. J.
1978-01-01
A study was conducted to define the technology and data needed to support the introduction of advanced composite materials in the wing structure of future production aircraft. The study accomplished the following: (1) definition of acceptance factors, (2) identification of technology issues, (3) evaluation of six candidate wing structures, (4) evaluation of five program options, (5) definition of a composite wing technology development plan, (6) identification of full-scale tests, (7) estimation of program costs for the total development plan, (8) forecast of future utilization of composites in commercial transport aircraft and (9) identification of critical technologies for timely program planning.
Measurement of high altitude air quality using aircraft
NASA Technical Reports Server (NTRS)
Rudey, R. A.; Perkins, P. J.
1973-01-01
The minor atmospheric constituents associated with and affected by aircraft exhaust emissions at altitudes from 6 to 20 km will be monitored in flight programs presently being implemented. Preliminary in situ data are available from flight tests of dedicated instruments to be used in these programs. A Global Atmospheric Sampling Program using Boeing 747 airliners was determined to be feasible in studies conducted by airlines and airframe companies. Worldwide monitoring in the troposphere and the lower stratosphere is planned. Stratospheric air sampling on a more local basis will be done with a U2 aircraft. Measuring system evaluations and improvements have been required to detect the low background levels.
Measurement of high-altitude air quality using aircraft.
NASA Technical Reports Server (NTRS)
Rudey, R. A.; Perkins, P. J.
1973-01-01
The minor atmospheric constituents associated with and affected by aircraft exhaust emissions at altitudes from 6 to 20 km will be monitored in flight programs presently being implemented. Preliminary in situ data are available from flight tests of dedicated instruments to be used in these programs. A Global Atmospheric Sampling Program using Boeing 747 airliners was determined to be feasible in studies conducted by airlines and airframe companies. Worldwide monitoring in the troposphere and the lower stratosphere is planned. Stratospheric air sampling on a more local basis will be done with a U2 aircraft. Measuring system evaluations and improvements have been required to detect the low background levels.
The aircraft energy efficiency active controls technology program
NASA Technical Reports Server (NTRS)
Hood, R. V., Jr.
1977-01-01
Broad outlines of the NASA Aircraft Energy Efficiency Program for expediting the application of active controls technology to civil transport aircraft are presented. Advances in propulsion and airframe technology to cut down on fuel consumption and fuel costs, a program for an energy-efficient transport, and integrated analysis and design technology in aerodynamics, structures, and active controls are envisaged. Fault-tolerant computer systems and fault-tolerant flight control system architectures are under study. Contracts with leading manufacturers for research and development work on wing-tip extensions and winglets for the B-747, a wing load alleviation system, elastic mode suppression, maneuver-load control, and gust alleviation are mentioned.
Annual Industrial Capabilities Report to Congress
2008-03-01
61 5.1 Aircraft Sector Industrial Summary...basis, key contractor workforce capabilities necessary for successful programs. Industry segment-level baseline assessments ( aircraft ; command, control...monitored representative individual corporate divisions for each major industry segment ( aircraft parts and components, water craft, ground vehicles
Code of Federal Regulations, 2014 CFR
2014-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR... turboprop engines. Class TF means all turbofan or turbojet aircraft engines or aircraft engines designed for... turbine engines employed for propulsion of aircraft designed to operate at supersonic flight speeds...
NASA Technical Reports Server (NTRS)
Melton, John E.
1994-01-01
EGADS is a comprehensive preliminary design tool for estimating the performance of light, single-engine general aviation aircraft. The software runs on the Apple Macintosh series of personal computers and assists amateur designers and aeronautical engineering students in performing the many repetitive calculations required in the aircraft design process. The program makes full use of the mouse and standard Macintosh interface techniques to simplify the input of various design parameters. Extensive graphics, plotting, and text output capabilities are also included.
Navy’s Advanced Aircraft Armament System Program Concept Objectives
1983-10-01
12-1 00 NAVY’S ADVANCED AIRCRAFT ARMAMENT SYSTEM PROGRAM CONCEPT OBJECTIVES T. M . Leese and J. F. Haney Naval Weapons Center Code 31403 China...STORE FLWNT LIFE RECONFIOURATION ♦ UWMST OMHTH ninoairv M — MANN HUCTHM ^♦■ SILECT ALTERNATE • STORE 0PTI0M ■ REOUCIO CK« W0RKL0A0 • . README...mOVEMENTS INÜTEO FUIWUTY MM AM tTATWM COMPLEX AUTOMATIC LACK OF OIT RESTRICTIVE MLNIRV M FLUWAITV IUCSMVI Figure 1. Carrier aircraft
Harrier Information Management System (HIMS): The system and the approach
NASA Astrophysics Data System (ADS)
Reynolds, D. J.
1990-01-01
The Harrier GR5 is to be fleet-fitted with an engine monitoring system. The ground station known as HIMS was developed to enable engineers to analyze parameter exceedance and component life count data collected from it. The HIMS and its development program are reviewed. Counts can vary from aircraft to aircraft for a given number of flying hours and lifting on this basis is expected to yield considerable savings. Aspects relevant to future aircraft health monitoring programs are considered.
The Role of Modern Control Theory in the Design of Controls for Aircraft Turbine Engines
NASA Technical Reports Server (NTRS)
Zeller, J.; Lehtinen, B.; Merrill, W.
1982-01-01
Accomplishments in applying Modern Control Theory to the design of controls for advanced aircraft turbine engines were reviewed. The results of successful research programs are discussed. Ongoing programs as well as planned or recommended future thrusts are also discussed.
Aircraft Mechanics: Scope and Sequence.
ERIC Educational Resources Information Center
Nashville - Davidson County Metropolitan Public Schools, TN.
This scope and sequence guide, developed for an aircraft mechanics vocational education program, represents an initial step in the development of a systemwide articulated curriculum sequence for all vocational programs within the Metropolitan Nashville Public School System. It was developed as a result of needs expressed by teachers, parents, and…
Airframe technology for aircraft energy efficiency. [economic factors
NASA Technical Reports Server (NTRS)
James, R. L., Jr.; Maddalon, D. V.
1984-01-01
The economic factors that resulted in the implementation of the aircraft energy efficiency program (ACEE) are reviewed and airframe technology elements including content, progress, applications, and future direction are discussed. The program includes the development of laminar flow systems, advanced aerodynamics, active controls, and composite structures.
High-Speed Jet Noise Reduction NASA Perspective
NASA Technical Reports Server (NTRS)
Huff, Dennis L.; Handy, J. (Technical Monitor)
2001-01-01
History shows that the problem of high-speed jet noise reduction is difficult to solve. the good news is that high performance military aircraft noise is dominated by a single source called 'jet noise' (commercial aircraft have several sources). The bad news is that this source has been the subject of research for the past 50 years and progress has been incremental. Major jet noise reduction has been achieved through changing the cycle of the engine to reduce the jet exit velocity. Smaller reductions have been achieved using suppression devices like mixing enhancement and acoustic liners. Significant jet noise reduction without any performance loss is probably not possible! Recent NASA Noise Reduction Research Programs include the High Speed Research Program, Advanced Subsonic Technology Noise Reduction Program, Aerospace Propulsion and Power Program - Fundamental Noise, and Quiet Aircraft Technology Program.
[Clarity of flight information in the cockpit of the new aircraft generation].
Stern, C; Schwartz, R; Groenhoff, S; Draeger, J; Hüttig, G; Bernhard, H
1994-08-01
Fundamental changes of cockpit design in recent years, especially the transition from analogue to digital flight information systems and the use of colour-coded displays, lead to new demands on the visual system of the pilot. Twenty experienced pilots each participated in four 15-min sessions with a simulator program in the new Airbus 340 Simulator of the Technical University of Berlin. The pilots were confronted with various flight situations and events. The simulation program was carried out with visual acuity of 1.0 or better, with acuity reduced to 0.5 and with red and green filters. The time between the display of information and the pilot's reaction was determined. The probands were classified into two groups according to their age (< or = 45 years, > or = 45 years). In both age groups a significant difference was found only with green filters. There was no difference with reduced visual acuity or with red filters, and no differences were seen between the two age groups.
Aging Aircraft Transparencies: AN Italian Air Force Fleet Case History
NASA Astrophysics Data System (ADS)
Caucci, D.; Aiello, L.; Bagnoli, F.; Bernabei, M.
2008-08-01
Aircraft acrylic transparencies are structural components that must withstand flight and ground loads. Crazing occurrence, known as Environmental Stress Cracking (ESC), causes their substitution during aircraft maintenance operations. This form of aging is mainly a physical phenomenon due to the interaction of transparencies base material with an active liquid and leads craze formation at lower stress that would be required in air. In this paper, an extensive phenomenon of network ESC occurred on transparencies of many aircrafts operating in the same fleet was investigated. Cover application while parking was found to be the critical aspect in crazing appearance, thus acting as physical shield for condensed water and heat transferring.
Review of the Rhein-Flugzeugbau Wankel powered aircraft program. [ducted fan engines
NASA Technical Reports Server (NTRS)
Riethmueller, M.
1978-01-01
The development of light aircraft with special emphasis on modern propulsion systems and production is discussed in terms of the application of rotary engines to aircraft. Emphasis is placed on the integrated ducted-fan propulsion system using rotary engines.
Statistical loads data for Cessna 172 aircraft using the Aircraft Cumulative Fatigue System (ACFS)
DOT National Transportation Integrated Search
2001-08-01
The purpose of this research and development program was to manufacture a small, lightweight, low-cost recorder for loads usage monitoring of general aviation and commuter type aircraft to support the Federal Aviation Administration (FAA) Operation L...
X-31 in flight - Mongoose Maneuver
NASA Technical Reports Server (NTRS)
1995-01-01
Two X-31 Enhanced Fighter Maneuverability (EFM) demonstrators were flown at the Rockwell International facility, Palmdale, California, and the NASA Dryden Flight Research Center, Edwards, California, to obtain data that may apply to the design of highly-maneuverable next-generation fighters. The program had its first flight on October 11, 1990, in Palmdale; it ended in June 1995. The X-31 program demonstrated the value of thrust vectoring (directing engine exhaust flow) coupled with advanced flight control systems, to provide controlled flight during close-in air combat at very high angles of attack. The result of this increased maneuverability is an aircraft with a significant advantage over conventional fighters. 'Angle-of-attack' (alpha) is an engineering term to describe the angle of an aircraft body and wings relative to its actual flight path. During maneuvers, pilots often fly at extreme angles of attack -- with the nose pitched up while the aircraft continues in its original direction. This can lead to loss of control and result in the loss of the aircraft, pilot or both. Three thrust-vectoring paddles made of graphite epoxy mounted on the exhaust nozzle of the X-31 aircraft directed the exhaust flow to provide control in pitch (up and down) and yaw (right and left) to improve control. The paddles can sustain heat of up to 1,500 degrees centigrade for extended periods of time. In addition the X-31 aircraft were configured with movable forward canards and fixed aft strakes. The canards were small wing-like structures set on the wing line between the nose and the leading edge of the wing. The strakes were set on the same line between the trailing edge of the wing and the engine exhaust. Both supplied additional control in tight maneuvering situations. The X-31 research program produced technical data at high angles of attack. This information is giving engineers and aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. This understanding is expected to lead to design methods which provide better maneuverability in future high performance aircraft and make them safer to fly. An international test organization of about 110 people, managed by the Advanced Research Projects Agency (ARPA), conducted the flight operations at NASA Dryden. The ARPA had requested flight research for the X-31 aircraft be moved there in February 1992. In addition to ARPA and NASA, the international test organization (ITO) included the U.S. Navy, the U.S. Air Force, Rockwell International, the Federal Republic of Germany, and Daimler-Benz Aerospace (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace). NASA was responsible for flight research operations, aircraft maintenance, and research engineering once the program moved to Dryden. The No. 1 X-31 aircraft was lost in an accident January 19, 1995. The pilot, Karl Heinz-Lang, of the Federal Republic of Germany, ejected safely before the aircraft crashed in an unpopulated desert area just north of Edwards. The X-31 program logged an X-plane record of 580 flights during the program, including 555 research missions and 21 in Europe for the 1995 Paris Air Show. A total of 14 pilots representing all agencies of the ITO flew the aircraft. In this 36-second clip we see the X-31 performing the 'Mongoose maneuver,' beginning in a tight left hand turn, then pulling the aircraft into a high-angle-of-attack stall/tail-stand maneuver in which the aircraft remains in the vertical for several seconds, then pushes over to resume normal flight. This maneuver is in response to the Sukoi SU-27 'Flanker' test pilot Victor Georgievich Pugachev's 'Cobra maneuver' or 'Pugachev's cobra,' in which the aircraft, like the X-31, is stood on its tail to give the pilot a tactical advantage in air-to-air combat by essentially stopping and pointing the aircraft weapons toward the opponent.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-04
...) Program. Multiple munitions (bombs, missiles, and gunner rounds) and aircraft would be used to meet the... with Munitions specific munitions) GBU-10 laser-guided Mk-84 bomb F-16C fighter aircraft. GBU-24 laser-guided Mk-84 bomb F-16C+ fighter aircraft. GBU-31 Joint Direct Attack Munition, F-15E fighter aircraft...
Development of the NASA/FLAGRO computer program for analysis of airframe structures
NASA Technical Reports Server (NTRS)
Forman, R. G.; Shivakumar, V.; Newman, J. C., Jr.
1994-01-01
The NASA/FLAGRO (NASGRO) computer program was developed for fracture control analysis of space hardware and is currently the standard computer code in NASA, the U.S. Air Force, and the European Agency (ESA) for this purpose. The significant attributes of the NASGRO program are the numerous crack case solutions, the large materials file, the improved growth rate equation based on crack closure theory, and the user-friendly promptive input features. In support of the National Aging Aircraft Research Program (NAARP); NASGRO is being further developed to provide advanced state-of-the-art capability for damage tolerance and crack growth analysis of aircraft structural problems, including mechanical systems and engines. The project currently involves a cooperative development effort by NASA, FAA, and ESA. The primary tasks underway are the incorporation of advanced methodology for crack growth rate retardation resulting from spectrum loading and improved analysis for determining crack instability. Also, the current weight function solutions in NASGRO or nonlinear stress gradient problems are being extended to more crack cases, and the 2-d boundary integral routine for stress analysis and stress-intensity factor solutions is being extended to 3-d problems. Lastly, effort is underway to enhance the program to operate on personal computers and work stations in a Windows environment. Because of the increasing and already wide usage of NASGRO, the code offers an excellent mechanism for technology transfer for new fatigue and fracture mechanics capabilities developed within NAARP.
14 CFR 142.54 - Airline transport pilot certification training program.
Code of Federal Regulations, 2014 CFR
2014-01-01
... training in a flight simulation training device— (1) Holds an aircraft type rating for the aircraft represented by the flight simulation training device utilized in the training program and have received... will be demonstrated in the flight simulation training device; and (2) Satisfies the requirements of...
Aircraft: United States Air Force Child Care Program Activity Guide.
ERIC Educational Resources Information Center
Boggs, Juanita; Brant, Linda
General information about United States' aircraft is provided in this program activity guide for teachers and caregivers in Air Force preschools and day care centers. The guide includes basic information for teachers and caregivers, basic understandings, suggested teaching methods and group activities, vocabulary, ideas for interest centers, and…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-30
... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Centennial Challenges 2014 Unmanned Aircraft Systems... wish to compete may now register. Centennial Challenges is a program of prize competitions to stimulate...: http://www.uasaoc.org For general information on the NASA Centennial Challenges Program please visit...
NASA Technical Reports Server (NTRS)
1995-01-01
Two X-31 Enhanced Fighter Maneuverability (EFM) demonstrators were flown at the Rockwell International facility, Palmdale, California, and the NASA Dryden Flight Research Center, Edwards, California, to obtain data that may apply to the design of highly-maneuverable next-generation fighters. The program had its first flight on October 11, 1990, in Palmdale; it ended in June 1995. The X-31 program demonstrated the value of thrust vectoring (directing engine exhaust flow) coupled with advanced flight control systems, to provide controlled flight during close-in air combat at very high angles of attack. The result of this increased maneuverability is an airplane with a significant advantage over conventional fighters. 'Angle-of-attack' (alpha) is an engineering term to describe the angle of an aircraft body and wings relative to its actual flight path. During maneuvers, pilots often fly at extreme angles of attack -- with the nose pitched up while the aircraft continues in its original direction. This can lead to loss of control and result in the loss of the aircraft, pilot or both. Three thrust-vectoring paddles made of graphite epoxy mounted on the exhaust nozzle of the X-31 aircraft directed the exhaust flow to provide control in pitch (up and down) and yaw (right and left) to improve control. The paddles can sustain heat of up to 1,500 degrees centigrade for extended periods of time. In addition the X-31 aircraft were configured with movable forward canards and fixed aft strakes. The canards were small wing-like structures set on the wing line between the nose and the leading edge of the wing. The strakes were set on the same line between the trailing edge of the wing and the engine exhaust. Both supplied additional control in tight maneuvering situations. The X-31 research program produced technical data at high angles of attack. This information is giving engineers and aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. This understanding is expected to lead to design methods that provide better maneuverability in future high performance aircraft and make them safer to fly. An international test organization of about 110 people, managed by the Advanced Research Projects Agency (ARPA), conducted the flight operations at NASA Dryden. The ARPA had requested flight research for the X-31 aircraft be moved there in February 1992. In addition to ARPA and NASA, the international test organization (ITO) included the U.S. Navy, the U.S. Air Force, Rockwell International, the Federal Republic of Germany, and Daimler-Benz Aerospace (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace). NASA was responsible for flight research operations, aircraft maintenance, and research engineering once the program moved to Dryden. The No. 1 X-31 aircraft was lost in an accident January 19, 1995. The pilot, Karl Heinz-Lang, of the Federal Republic of Germany, ejected safely before the aircraft crashed in an unpopulated desert area just north of Edwards. The X-31 program logged an X-plane record of 580 flights during the program, including 555 research missions and 21 in Europe for the 1995 Paris Air Show. A total of 14 pilots representing all agencies of the ITO flew the aircraft. This 32-second clip shows the aircraft at the top of a stall and then thrust vectoring itself around to attain a new heading, thereby allowing the aircraft to gain the advantage over a putative opponent in air-to-air combat. This maneuver is also known as a 'J turn.'
Program for narrow-band analysis of aircraft flyover noise using ensemble averaging techniques
NASA Technical Reports Server (NTRS)
Gridley, D.
1982-01-01
A package of computer programs was developed for analyzing acoustic data from an aircraft flyover. The package assumes the aircraft is flying at constant altitude and constant velocity in a fixed attitude over a linear array of ground microphones. Aircraft position is provided by radar and an option exists for including the effects of the aircraft's rigid-body attitude relative to the flight path. Time synchronization between radar and acoustic recording stations permits ensemble averaging techniques to be applied to the acoustic data thereby increasing the statistical accuracy of the acoustic results. Measured layered meteorological data obtained during the flyovers are used to compute propagation effects through the atmosphere. Final results are narrow-band spectra and directivities corrected for the flight environment to an equivalent static condition at a specified radius.
Technologies for Aircraft Noise Reduction
NASA Technical Reports Server (NTRS)
Huff, Dennis L.
2006-01-01
Technologies for aircraft noise reduction have been developed by NASA over the past 15 years through the Advanced Subsonic Technology (AST) Noise Reduction Program and the Quiet Aircraft Technology (QAT) project. This presentation summarizes highlights from these programs and anticipated noise reduction benefits for communities surrounding airports. Historical progress in noise reduction and technologies available for future aircraft/engine development are identified. Technologies address aircraft/engine components including fans, exhaust nozzles, landing gear, and flap systems. New "chevron" nozzles have been developed and implemented on several aircraft in production today that provide significant jet noise reduction. New engines using Ultra-High Bypass (UHB) ratios are projected to provide about 10 EPNdB (Effective Perceived Noise Level in decibels) engine noise reduction relative to the average fleet that was flying in 1997. Audio files are embedded in the presentation that estimate the sound levels for a 35,000 pound thrust engine for takeoff and approach power conditions. The predictions are based on actual model scale data that was obtained by NASA. Finally, conceptual pictures are shown that look toward future aircraft/propulsion systems that might be used to obtain further noise reduction.
NASA Technical Reports Server (NTRS)
Yager, Thomas J.; Vogler, William A.; Baldasare, Paul
1990-01-01
Tests with specially instrumented NASA Boeing 737 and 727 aircraft together with several different ground friction measuring devices were conducted for a variety of runway surface types and conditions. These tests are part of joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow and ice-covered runway conditions is discussed as well as ground vehicle friction data obtained under similar runway conditions. For a given contaminated runway surface condition, the correlation between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, type and amount of surface contaminant, and ambient temperature are discussed. The effect of surface type on wet friction levels is also evaluated from comparative data collected on grooved and ungrooved concrete and asphalt surfaces.
Application of the generalized reduced gradient method to conceptual aircraft design
NASA Technical Reports Server (NTRS)
Gabriele, G. A.
1984-01-01
The complete aircraft design process can be broken into three phases of increasing depth: conceptual design, preliminary design, and detail design. Conceptual design consists primarily of developing general arrangements and selecting the configuration that optimally satisfies all mission requirements. The result of the conceptual phase is a conceptual baseline configuration that serves as the starting point for the preliminary design phase. The conceptual design of an aircraft involves a complex trade-off of many independent variables that must be investigated before deciding upon the basic configuration. Some of these variables are discrete (number of engines), some represent different configurations (canard vs conventional tail) and some may represent incorporation of new technologies (aluminum vs composite materials). At Lockheed-Georgia, the sizing program is known as GASP (Generalized Aircraft Sizing Program). GASP is a large program containing analysis modules covering the many different disciplines involved fin defining the aricraft, such as aerodynamics, structures, stability and control, mission performance, and cost. These analysis modules provide first-level estimates the aircraft properties that are derived from handbook, experimental, and historical sources.
Automatic Dynamic Aircraft Modeler (ADAM) for the Computer Program NASTRAN
NASA Technical Reports Server (NTRS)
Griffis, H.
1985-01-01
Large general purpose finite element programs require users to develop large quantities of input data. General purpose pre-processors are used to decrease the effort required to develop structural models. Further reduction of effort can be achieved by specific application pre-processors. Automatic Dynamic Aircraft Modeler (ADAM) is one such application specific pre-processor. General purpose pre-processors use points, lines and surfaces to describe geometric shapes. Specifying that ADAM is used only for aircraft structures allows generic structural sections, wing boxes and bodies, to be pre-defined. Hence with only gross dimensions, thicknesses, material properties and pre-defined boundary conditions a complete model of an aircraft can be created.
NASA Technical Reports Server (NTRS)
Treon, S. L.
1979-01-01
A survey of the U.S. aerospace industry in late 1977 suggests that there will be an increasing use of computer-aided prediction-design technology (CPD Tech) in the aircraft development process but that, overall, only a modest reduction in wind-tunnel test requirements from the current level is expected in the period through 1995. Opinions were received from key spokesmen in 23 of the 26 solicited major companies or corporate divisions involved in the design and manufacture of nonrotary wing aircraft. Development programs for nine types of aircraft related to test phases and wind-tunnel size and speed range were considered.
A knowledge-based system design/information tool for aircraft flight control systems
NASA Technical Reports Server (NTRS)
Mackall, Dale A.; Allen, James G.
1991-01-01
Research aircraft have become increasingly dependent on advanced electronic control systems to accomplish program goals. These aircraft are integrating multiple disciplines to improve performance and satisfy research objective. This integration is being accomplished through electronic control systems. Systems design methods and information management have become essential to program success. The primary objective of the system design/information tool for aircraft flight control is to help transfer flight control system design knowledge to the flight test community. By providing all of the design information and covering multiple disciplines in a structured, graphical manner, flight control systems can more easily be understood by the test engineers. This will provide the engineers with the information needed to thoroughly ground test the system and thereby reduce the likelihood of serious design errors surfacing in flight. The secondary object is to apply structured design techniques to all of the design domains. By using the techniques in the top level system design down through the detailed hardware and software designs, it is hoped that fewer design anomalies will result. The flight test experiences are reviewed of three highly complex, integrated aircraft programs: the X-29 forward swept wing; the advanced fighter technology integration (AFTI) F-16; and the highly maneuverable aircraft technology (HiMAT) program. Significant operating technologies, and the design errors which cause them, is examined to help identify what functions a system design/informatin tool should provide to assist designers in avoiding errors.
Geologic evaluation of remote sensing data, site 157, Awza-Borrego Desert, California
NASA Technical Reports Server (NTRS)
Wolfe, E. W.
1969-01-01
Remote sensing data were obtained at site 157 in May 1968 under mission 73 of the NASA aircraft program. The site is located in an area of high temperatures and extreme aridity immediately west of the Imperial Valley, Southern California. Site 157 is partially surrounded by pre-Cenozoic crystalline rocks exposed in the Fish Creek, Vallecito, and Tierra Blanca Mountains. The study area itself is underlain by more than 20,000 feet of sedimentary strata of late Cenozoic age.
Aircrew-aircraft integration: A summary of US Army research programs and plans
NASA Technical Reports Server (NTRS)
Key, D. L.; Aiken, E. W.
1984-01-01
A review of selected programs which illustrate the research efforts of the U.S. Army Aeromechanics Laboratory in the area of aircrew-aircraft integration is presented. Plans for research programs to support the development of future military rotorcraft are also described. The crew of a combat helicopter must, in general, perform two major functions during the conduct of a particular mission: flightpath control and mission management. Accordingly, the research programs described are being conducted in the same two major categories: (1) flightpath control, which encompasses the areas of handling qualities, stability and control, and displays for the pilot's control of the rotorcraft's flightpath, and (2) mission management, which includes human factors and cockpit integration research topics related to performance of navigation, communication, and aircraft systems management tasks.
40 CFR 141.806 - Reporting requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... fleet; (ii) Change in status (active or inactive) of any aircraft as an aircraft water system as defined... to or removed from the water system. (iv) Change to whether the aircraft water system can be... Section 141.806 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS...
40 CFR 141.806 - Reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... fleet; (ii) Change in status (active or inactive) of any aircraft as an aircraft water system as defined... to or removed from the water system. (iv) Change to whether the aircraft water system can be... Section 141.806 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS...
Annual Industrial Capabilities Report to Congress
2007-02-01
65 5.1 Aircraft Sector Industrial Summary ................................................................. 65 5.2 Command...industry partners to encourage long-term contractor workforce improvements. Industry segment-level baseline assessments ( aircraft ; command, control...For instance, within aircraft major defense acquisition programs (MDAPs), research, development, test, and evaluation (RDT&E) funding is steadily
14 CFR 35.4 - Instructions for Continued Airworthiness.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS General § 35.4 Instructions for Continued Airworthiness. The... program exists to ensure their completion prior to delivery of the first aircraft with the propeller installed, or upon issuance of a standard certificate of airworthiness for an aircraft with the propeller...
14 CFR 35.4 - Instructions for Continued Airworthiness.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS General § 35.4 Instructions for Continued Airworthiness. The... program exists to ensure their completion prior to delivery of the first aircraft with the propeller installed, or upon issuance of a standard certificate of airworthiness for an aircraft with the propeller...
14 CFR 35.4 - Instructions for Continued Airworthiness.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS General § 35.4 Instructions for Continued Airworthiness. The... program exists to ensure their completion prior to delivery of the first aircraft with the propeller installed, or upon issuance of a standard certificate of airworthiness for an aircraft with the propeller...
14 CFR 35.4 - Instructions for Continued Airworthiness.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS General § 35.4 Instructions for Continued Airworthiness. The... program exists to ensure their completion prior to delivery of the first aircraft with the propeller installed, or upon issuance of a standard certificate of airworthiness for an aircraft with the propeller...
14 CFR 35.4 - Instructions for Continued Airworthiness.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS General § 35.4 Instructions for Continued Airworthiness. The... program exists to ensure their completion prior to delivery of the first aircraft with the propeller installed, or upon issuance of a standard certificate of airworthiness for an aircraft with the propeller...
NASA Technical Reports Server (NTRS)
Kolb, Mark A.
1990-01-01
Viewgraphs on Rubber Airplane: Constraint-based Component-Modeling for Knowledge Representation in Computer Aided Conceptual Design are presented. Topics covered include: computer aided design; object oriented programming; airfoil design; surveillance aircraft; commercial aircraft; aircraft design; and launch vehicles.
ERAST Program Proteus Aircraft in Flight over the Mojave Desert in California
1999-07-26
The unusual design of the Proteus high-altitude aircraft, incorporating a gull-wing shape for its main wing and a long, slender forward canard, is clearly visible in this view of the aircraft in flight over the Mojave Desert in California.
NASA Technical Reports Server (NTRS)
Beatty, T. D.; Worthey, M. K.
1984-01-01
The V/STOL Aircraft Propulsive Effects (VAPE) computerized prediction method is evaluated. The program analyzes viscous effects, various jet, inlet, and Short TakeOff and Landing (STOL) models, and examines the aerodynamic configurations of V/STOL aircraft.
Acoustic loads prediction on jet aircraft
NASA Technical Reports Server (NTRS)
Reddy, N. N.
1992-01-01
A nearfield aircraft noise prediction computer program is presented for the F-22 aircraft. The dominant sources of noise are jet turbulent mixing noise, jet broadband shock noise, and fluctuating pressure under the turbulent boundary layer. All results from this investigation are presented in viewgraph format.
Acoustic loads prediction on jet aircraft
NASA Astrophysics Data System (ADS)
Reddy, N. N.
1992-07-01
A nearfield aircraft noise prediction computer program is presented for the F-22 aircraft. The dominant sources of noise are jet turbulent mixing noise, jet broadband shock noise, and fluctuating pressure under the turbulent boundary layer. All results from this investigation are presented in viewgraph format.
Advanced rotorcraft transmission program
NASA Technical Reports Server (NTRS)
Bill, Robert C.
1990-01-01
The Advanced Rotorcraft Transmission (ART) program is an Army-funded, joint Army/NASA program to develop and demonstrate lightweight, quiet, durable drivetrain systems for next generation rotorcraft. ART addresses the drivetrain requirements of two distinct next generation aircraft classes: Future Air Attack Vehicle, a 10,000 to 20,000 lb. aircraft capable of undertaking tactical support and air-to-air missions; and Advanced Cargo Aircraft, a 60,000 to 80,000 lb. aircraft capable of heavy life field support operations. Both tiltrotor and more conventional helicopter configurations are included in the ART program. Specific objectives of ART include reduction of drivetrain weight by 25 percent compared to baseline state-of-the-art drive systems configured and sized for the next generation aircraft, reduction of noise level at the transmission source by 10 dB relative to a suitably sized and configured baseline, and attainment of at least a 5000 hr mean-time-between-removal. The technical approach for achieving the ART goals includes application of the latest available component, material, and lubrication technology to advanced concept drivetrains that utilize new ideas in gear configuration, transmission layout, and airframe/drivetrain integration. To date, candidate drivetrain systems were carried to a conceptual design stage, and tradeoff studies were conducted resulting in selection of an ART transmission configuration for each of the four contractors. The final selection was based on comparative weight, noise, and reliability studies. A description of each of the selected ART designs is included. Preliminary design of each of the four selected ART transmission was completed, as have mission impact studies wherein comparisons of aircraft mission performance and life cycle costs are undertaken for the next generation aircraft with ART and with the baseline transmission.
MD-11 PCA - View of aircraft on ramp
NASA Technical Reports Server (NTRS)
1995-01-01
This McDonnell Douglas MD-11 is taxiing to a position on the flightline at NASA's Dryden Flight Research Center, Edwards, California, following its completion of the first and second landings ever performed by a transport aircraft under engine power only (on Aug. 29, 1995). The milestone flight, with NASA research pilot and former astronaut Gordon Fullerton at the controls, was part of a NASA project to develop a computer-assisted engine control system that enables a pilot to land a plane safely when its normal control surfaces are disabled. The Propulsion-Controlled Aircraft (PCA) system uses standard autopilot controls already present in the cockpit, together with the new programming in the aircraft's flight control computers. The PCA concept is simple. For pitch control, the program increases thrust to climb and reduces thrust to descend. To turn right, the autopilot increases the left engine thrust while decreasing the right engine thrust. The initial Propulsion-Controlled Aircraft studies by NASA were carried out at Dryden with a modified twin-engine F-15 research aircraft.
MD-11 PCA - Closeup view of aircraft on ramp
NASA Technical Reports Server (NTRS)
1995-01-01
This McDonnell Douglas MD-11 has taxied to a position on the flightline at NASA's Dryden Flight Research Center, Edwards, California, following its completion of the first and second landings ever performed by a transport aircraft under engine power only (on Aug. 29, 1995). The milestone flight, with NASA research pilot and former astronaut Gordon Fullerton at the controls, was part of a NASA project to develop a computer-assisted engine control system that enables a pilot to land a plane safely when its normal control surfaces are disabled. The Propulsion-Controlled Aircraft (PCA) system uses standard autopilot controls already present in the cockpit, together with the new programming in the aircraft's flight control computers. The PCA concept is simple. For pitch control, the program increases thrust to climb and reduces thrust to descend. To turn right, the autopilot increases the left engine thrust while decreasing the right engine thrust. The initial Propulsion-Controlled Aircraft studies by NASA were carried out at Dryden with a modified twin-engine F-15 research aircraft.
Auralization Architectures for NASA?s Next Generation Aircraft Noise Prediction Program
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Lopes, Leonard V.; Burley, Casey L.; Aumann, Aric R.
2013-01-01
Aircraft community noise is a significant concern due to continued growth in air traffic, increasingly stringent environmental goals, and operational limitations imposed by airport authorities. The assessment of human response to noise from future aircraft can only be afforded through laboratory testing using simulated flyover noise. Recent work by the authors demonstrated the ability to auralize predicted flyover noise for a state-of-the-art reference aircraft and a future hybrid wing body aircraft concept. This auralization used source noise predictions from NASA's Aircraft NOise Prediction Program (ANOPP) as input. The results from this process demonstrated that auralization based upon system noise predictions is consistent with, and complementary to, system noise predictions alone. To further develop and validate the auralization process, improvements to the interfaces between the synthesis capability and the system noise tools are required. This paper describes the key elements required for accurate noise synthesis and introduces auralization architectures for use with the next-generation ANOPP (ANOPP2). The architectures are built around a new auralization library and its associated Application Programming Interface (API) that utilize ANOPP2 APIs to access data required for auralization. The architectures are designed to make the process of auralizing flyover noise a common element of system noise prediction.
M2-F2 Lifting Body being Carried Aloft by B-52 Mothership
NASA Technical Reports Server (NTRS)
1966-01-01
The M2-F2 Lifting Body is shown here being carried aloft by the Air Force's B-52 (tail number 003) prior to a research launch. The success of Dryden's 'homebuilt' M2-F1 program led to NASA's development and construction of two heavyweight lifting bodies--the M2-F2 and the HL-10, both built by the Northrop Corporation. The 'M' refers to 'manned' and 'F' refers to 'flight' version. 'HL' comes from 'horizontal landing.' The first flight of the M2-F2--which looked much like the 'F1'--was on July 12, 1966. Milt Thompson was the pilot. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During the X-15 and Lifting-Body programs, another B-52, tail number 003, also served as a launch aircraft. During those programs, both B-52s were operated by the Air Force, NASA's partner in both programs. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
1974-01-28
This photograph shows a modified General Dynamics TACT/F-111A Aardvaark with supercritical wings installed. The aircraft, with flaps and landing gear down, is in a decending turn over Rogers Dry Lakebed at Edwards Air Force Base. Starting in 1971 the NASA Flight Research Center and the Air Force undertook a major research and flight testing program, using F-111A (#63-9778), which would span almost 20 years before completion. Intense interest over the results coming from the NASA F-8 supercritical wing program spurred NASA and the Air Force to modify the General Dynamics-Convair F-111A to explore the application of supercritical wing technology to maneuverable military aircraft. This flight program was called Transonic Aircraft Technology (TACT).
Digital autopilots: Design considerations and simulator evaluations
NASA Technical Reports Server (NTRS)
Osder, S.; Neuman, F.; Foster, J.
1971-01-01
The development of a digital autopilot program for a transport aircraft and the evaluation of that system's performance on a transport aircraft simulator is discussed. The digital autopilot includes three axis attitude stabilization, automatic throttle control and flight path guidance functions with emphasis on the mode progression from descent into the terminal area through automatic landing. The study effort involved a sequence of tasks starting with the definition of detailed system block diagrams of control laws followed by a flow charting and programming phase and concluding with performance verification using the transport aircraft simulation. The autopilot control laws were programmed in FORTRAN 4 in order to isolate the design process from requirements peculiar to an individual computer.
Technology needs for high speed rotorcraft (3)
NASA Technical Reports Server (NTRS)
Detore, Jack; Conway, Scott
1991-01-01
The spectrum of vertical takeoff and landing (VTOL) type aircraft is examined to determine which aircraft are most likely to achieve high subsonic cruise speeds and have hover qualities similar to a helicopter. Two civil mission profiles are considered: a 600-n.mi. mission for a 15- and a 30-passenger payload. Applying current technology, only the 15- and 30-passenger tiltfold aircraft are capable of attaining the 450-knot design goal. The two tiltfold aircraft at 450 knots and a 30-passenger tiltrotor at 375 knots were further developed for the Task II technology analysis. A program called High-Speed Total Envelope Proprotor (HI-STEP) is recommended to meet several of these issues based on the tiltrotor concept. A program called Tiltfold System (TFS) is recommended based on the tiltrotor concept. A task is identified to resolve the best design speed from productivity and demand considerations based on the technology that emerges from the recommended programs. HI-STEP's goals are to investigate propulsive efficiency, maneuver loads, and aeroelastic stability. Programs currently in progress that may meet the other technology needs include the Integrated High Performance Turbine Engine Technology (IHPTET) (NASA Lewis) and the Advanced Structural Concepts Program funded through NASA Langley.
Small Aircraft Data Distribution System
NASA Technical Reports Server (NTRS)
Chazanoff, Seth L.; Dinardo, Steven J.
2012-01-01
The CARVE Small Aircraft Data Distribution System acquires the aircraft location and attitude data that is required by the various programs running on a distributed network. This system distributes the data it acquires to the data acquisition programs for inclusion in their data files. It uses UDP (User Datagram Protocol) to broadcast data over a LAN (Local Area Network) to any programs that might have a use for the data. The program is easily adaptable to acquire additional data and log that data to disk. The current version also drives displays using precision pitch and roll information to aid the pilot in maintaining a level-level attitude for radar/radiometer mapping beyond the degree available by flying visually or using a standard gyro-driven attitude indicator. The software is designed to acquire an array of data to help the mission manager make real-time decisions as to the effectiveness of the flight. This data is displayed for the mission manager and broadcast to the other experiments on the aircraft for inclusion in their data files. The program also drives real-time precision pitch and roll displays for the pilot and copilot to aid them in maintaining the desired attitude, when required, during data acquisition on mapping lines.
A Model for a Single Unmanned Aircraft Systems (UAS) Program Office Managing Joint ISR Capabilities
2017-10-01
reduction in manning from the multiple program office structure to the new single program management model. Additional information regarding this...OFFICE MANAGING JOINT ISR CAPABILITIES by Angela E. Burris A Research Report Submitted to the Faculty In Partial Fulfillment of...research paper is to answer how a single management office could provide greater agility for unmanned aircraft systems (UAS); supporting Joint concepts
Automated predesign of aircraft
NASA Technical Reports Server (NTRS)
Poe, C. C., Jr.; Kruse, G. S.; Tanner, C. J.; Wilson, P. J.
1978-01-01
Program uses multistation structural-synthesis to size and design box-beam structures for transport aircraft. Program optimizes static strength and scales up to satisfy fatigue and fracture criteria. It has multimaterial capability and library of materials properties, including advanced composites. Program can be used to evaluate impact on weight of variables such as materials, types of construction, structural configurations, minimum gage limits, applied loads, fatigue lives, crack-growth lives, initial crack sizes, and residual strengths.
An overview of the Douglas Aircraft Company Aeroelastic Design Optimization Program (ADOP)
NASA Technical Reports Server (NTRS)
Dodd, Alan J.
1989-01-01
From a program manager's viewpoint, the history, scope and architecture of a major structural design program at Douglas Aircraft Company called Aeroelastic Design Optimization Program (ADOP) are described. ADOP was originally intended for the rapid, accurate, cost-effective evaluation of relatively small structural models at the advanced design level, resulting in improved proposal competitiveness and avoiding many costly changes later in the design cycle. Before release of the initial version in November 1987, however, the program was expanded to handle very large production-type analyses.
Aircraft cockpit vision: Math model
NASA Technical Reports Server (NTRS)
Bashir, J.; Singh, R. P.
1975-01-01
A mathematical model was developed to describe the field of vision of a pilot seated in an aircraft. Given the position and orientation of the aircraft, along with the geometrical configuration of its windows, and the location of an object, the model determines whether the object would be within the pilot's external vision envelope provided by the aircraft's windows. The computer program using this model was implemented and is described.
Applications of advanced V/STOL aircraft concepts to civil utility missions. Volume 2: Appendices
NASA Technical Reports Server (NTRS)
1977-01-01
The linear performance definition curves for the lift fan aircraft, tilt rotor aircraft, and advanced helicopter are given. The computer program written to perform the mission analysis for this study is also documented, and examples of its use are shown. Methods used to derive the performance coefficients for use in the mission analysis of the lift fan aircraft are described.
Concurrent airline fleet allocation and aircraft design with profit modeling for multiple airlines
NASA Astrophysics Data System (ADS)
Govindaraju, Parithi
A "System of Systems" (SoS) approach is particularly beneficial in analyzing complex large scale systems comprised of numerous independent systems -- each capable of independent operations in their own right -- that when brought in conjunction offer capabilities and performance beyond the constituents of the individual systems. The variable resource allocation problem is a type of SoS problem, which includes the allocation of "yet-to-be-designed" systems in addition to existing resources and systems. The methodology presented here expands upon earlier work that demonstrated a decomposition approach that sought to simultaneously design a new aircraft and allocate this new aircraft along with existing aircraft in an effort to meet passenger demand at minimum fleet level operating cost for a single airline. The result of this describes important characteristics of the new aircraft. The ticket price model developed and implemented here enables analysis of the system using profit maximization studies instead of cost minimization. A multiobjective problem formulation has been implemented to determine characteristics of a new aircraft that maximizes the profit of multiple airlines to recognize the fact that aircraft manufacturers sell their aircraft to multiple customers and seldom design aircraft customized to a single airline's operations. The route network characteristics of two simple airlines serve as the example problem for the initial studies. The resulting problem formulation is a mixed-integer nonlinear programming problem, which is typically difficult to solve. A sequential decomposition strategy is applied as a solution methodology by segregating the allocation (integer programming) and aircraft design (non-linear programming) subspaces. After solving a simple problem considering two airlines, the decomposition approach is then applied to two larger airline route networks representing actual airline operations in the year 2005. The decomposition strategy serves as a promising technique for future detailed analyses. Results from the profit maximization studies favor a smaller aircraft in terms of passenger capacity due to its higher yield generation capability on shorter routes while results from the cost minimization studies favor a larger aircraft due to its lower direct operating cost per seat mile.
Technology for aircraft energy efficiency
NASA Technical Reports Server (NTRS)
Klineberg, J. M.
1977-01-01
Six technology programs for reducing fuel use in U.S. commercial aviation are discussed. The six NASA programs are divided into three groups: Propulsion - engine component improvement, energy efficient engine, advanced turboprops; Aerodynamics - energy efficient transport, laminar flow control; and Structures - composite primary structures. Schedules, phases, and applications of these programs are considered, and it is suggested that program results will be applied to current transport derivatives in the early 1980s and to all-new aircraft of the late 1980s and early 1990s.
User's manual for LINEAR, a FORTRAN program to derive linear aircraft models
NASA Technical Reports Server (NTRS)
Duke, Eugene L.; Patterson, Brian P.; Antoniewicz, Robert F.
1987-01-01
This report documents a FORTRAN program that provides a powerful and flexible tool for the linearization of aircraft models. The program LINEAR numerically determines a linear system model using nonlinear equations of motion and a user-supplied nonlinear aerodynamic model. The system model determined by LINEAR consists of matrices for both state and observation equations. The program has been designed to allow easy selection and definition of the state, control, and observation variables to be used in a particular model.
NASA Technical Reports Server (NTRS)
Cavage, R. L.
1975-01-01
Results are presented of a study of lift-cruise fan V/STOL aircraft for the 1980-1985 time period. Technical and operating characteristics and technology requirements for the ultimate development of this type aircraft are identified. Aircraft individually optimized to perform the antisubmarine warfare, carrier onboard delivery, combat search and rescue, and surveillance and surface attack missions are considered along with a multi-purpose aircraft concept capable of performing all five missions at minimum total program cost. It is shown that lighter and smaller aircraft could be obtained by optimizing the design and fan selection for specific missions.
14 CFR 43.15 - Additional performance rules for inspections.
Code of Federal Regulations, 2010 CFR
2010-01-01
... TRANSPORTATION AIRCRAFT MAINTENANCE, PREVENTIVE MAINTENANCE, REBUILDING, AND ALTERATION § 43.15 Additional..., or 135 of this chapter, shall— (1) Perform the inspection so as to determine whether the aircraft, or... accordance with the instructions and procedures set forth in the inspection program for the aircraft being...
14 CFR 43.15 - Additional performance rules for inspections.
Code of Federal Regulations, 2013 CFR
2013-01-01
... TRANSPORTATION AIRCRAFT MAINTENANCE, PREVENTIVE MAINTENANCE, REBUILDING, AND ALTERATION § 43.15 Additional..., or 135 of this chapter, shall— (1) Perform the inspection so as to determine whether the aircraft, or... accordance with the instructions and procedures set forth in the inspection program for the aircraft being...
14 CFR 91.1015 - Management specifications.
Code of Federal Regulations, 2011 CFR
2011-01-01
... of all fractional owners and types of aircraft, registration markings and serial numbers; (2) The... other procedures under which each class and size of aircraft is to be operated; (4) Authorization for an inspection program approved under § 91.1109, including the type of aircraft, the registration markings and...
14 CFR 91.1015 - Management specifications.
Code of Federal Regulations, 2012 CFR
2012-01-01
... of all fractional owners and types of aircraft, registration markings and serial numbers; (2) The... other procedures under which each class and size of aircraft is to be operated; (4) Authorization for an inspection program approved under § 91.1109, including the type of aircraft, the registration markings and...
14 CFR 43.15 - Additional performance rules for inspections.
Code of Federal Regulations, 2011 CFR
2011-01-01
... TRANSPORTATION AIRCRAFT MAINTENANCE, PREVENTIVE MAINTENANCE, REBUILDING, AND ALTERATION § 43.15 Additional..., or 135 of this chapter, shall— (1) Perform the inspection so as to determine whether the aircraft, or... accordance with the instructions and procedures set forth in the inspection program for the aircraft being...
14 CFR 91.1015 - Management specifications.
Code of Federal Regulations, 2013 CFR
2013-01-01
... of all fractional owners and types of aircraft, registration markings and serial numbers; (2) The... other procedures under which each class and size of aircraft is to be operated; (4) Authorization for an inspection program approved under § 91.1109, including the type of aircraft, the registration markings and...
14 CFR 43.15 - Additional performance rules for inspections.
Code of Federal Regulations, 2014 CFR
2014-01-01
... TRANSPORTATION AIRCRAFT MAINTENANCE, PREVENTIVE MAINTENANCE, REBUILDING, AND ALTERATION § 43.15 Additional..., or 135 of this chapter, shall— (1) Perform the inspection so as to determine whether the aircraft, or... accordance with the instructions and procedures set forth in the inspection program for the aircraft being...
14 CFR 91.1015 - Management specifications.
Code of Federal Regulations, 2014 CFR
2014-01-01
... of all fractional owners and types of aircraft, registration markings and serial numbers; (2) The... other procedures under which each class and size of aircraft is to be operated; (4) Authorization for an inspection program approved under § 91.1109, including the type of aircraft, the registration markings and...
14 CFR 43.15 - Additional performance rules for inspections.
Code of Federal Regulations, 2012 CFR
2012-01-01
... TRANSPORTATION AIRCRAFT MAINTENANCE, PREVENTIVE MAINTENANCE, REBUILDING, AND ALTERATION § 43.15 Additional..., or 135 of this chapter, shall— (1) Perform the inspection so as to determine whether the aircraft, or... accordance with the instructions and procedures set forth in the inspection program for the aircraft being...
40 CFR 87.89 - Compliance with smoke emission standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) § 87.89 Compliance with smoke emission standards... engine of the model being tested. An acceptable alternative to testing every engine is described in...
40 CFR 87.89 - Compliance with smoke emission standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) § 87.89 Compliance with smoke emission standards... engine of the model being tested. An acceptable alternative to testing every engine is described in...
Preliminary sizing and performance of aircraft
NASA Technical Reports Server (NTRS)
Fetterman, D. E., Jr.
1985-01-01
The basic processes of a program that performs sizing operations on a baseline aircraft and determines their subsequent effects on aerodynamics, propulsion, weights, and mission performance are described. Input requirements are defined and output listings explained. Results obtained by applying the method to several types of aircraft are discussed.
1995-07-27
The Pathfinder research aircraft's wing structure was clearly defined as it soared under a clear blue sky during a test flight July 27, 1995, from Dryden Flight Research Center, Edwards, California. The center section and outer wing panels of the aircraft had ribs constructed of thin plastic foam, while the ribs in the inner wing panels are fabricated from lightweight composite material. Developed by AeroVironment, Inc., the Pathfinder was one of several unmanned aircraft being evaluated under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program.
Aircraft Rollout Iterative Energy Simulation
NASA Technical Reports Server (NTRS)
Kinoshita, L.
1986-01-01
Aircraft Rollout Iterative Energy Simulation (ARIES) program analyzes aircraft-brake performance during rollout. Simulates threedegree-of-freedom rollout after nose-gear touchdown. Amount of brake energy dissipated during aircraft landing determines life expectancy of brake pads. ARIES incorporates brake pressure, actual flight data, crosswinds, and runway characteristics to calculate following: brake energy during rollout for up to four independent brake systems; time profiles of rollout distance, velocity, deceleration, and lateral runway position; and all aerodynamic moments on aircraft. ARIES written in FORTRAN 77 for batch execution.
NASA Technical Reports Server (NTRS)
1997-01-01
The Aviation Safety Program initiated by NASA in 1997 has put greater emphasis in safety related research activities. Ice-contaminated-tailplane stall (ICTS) has been identified by the NASA Lewis Icing Technology Branch as an important activity for aircraft safety related research. The ICTS phenomenon is characterized as a sudden, often uncontrollable aircraft nose- down pitching moment, which occurs due to increased angle-of-attack of the horizontal tailplane resulting in tailplane stall. Typically, this phenomenon occurs when lowering the flaps during final approach while operating in or recently departing from icing conditions. Ice formation on the tailplane leading edge can reduce tailplane angle-of-attack range and cause flow separation resulting in a significant reduction or complete loss of aircraft pitch control. In 1993, the Federal Aviation Authority (FAA) and NASA embarked upon a four-year research program to address the problem of tailplane stall and to quantify the effect of tailplane ice accretion on aircraft performance and handling characteristics. The goals of this program, which was completed in March 1998, were to collect aerodynamic data for an aircraft tail with and without ice contamination and to develop analytical methods for predicting the effects of tailplane ice contamination. Extensive dry air and icing tunnel tests which resulted in a database of the aerodynamic effects associated with tailplane ice contamination. Although the FAA/NASA tailplane icing program generated some answers regarding ice-contaminated-tailplane stall (ICTS) phenomena, NASA researchers have found many open questions that warrant further investigation into ICTS. In addition, several aircraft manufacturers have expressed interest in a second research program to expand the database to other tail configurations and to develop experimental and computational methodologies for evaluating the ICTS phenomenon. In 1998, the icing branch at NASA Lewis initiated a second multi-phase research program for tailplane icing (TIP II) to develop test methodologies and tailplane performance and handling qualities evaluation tools. The main objectives of this new NASA/Industry/Academia collaborative research programs were: (1) define and evaluate a sub-scale wind tunnel test methodology for determining tailplane performance degradation due to icing. (2) develop an experimental database of tailplane aerodynamic performance with and without ice contamination for a range of tailplane configurations. Wind tunnel tests were planned with representative general aviation aircraft, i.e., the Learjet 45, and a twin engine low speed aircraft. This report summarizes the research performed during the first year of the study, and outlines the work tasks for the second year.
Aeroaging - A New Collaboration between Life Sciences Experts and Aerospace Engineers.
Vellas, M; Fualdes, C; Morley, J E; Dray, C; Rodriguez-Manas, L; Meyer, A; Michel, L; Rolland, Y; Gourinat, Y
2017-01-01
An open discussion between experts from life sciences and aeronautics has been held in order to investigate how both area of research overlap and could be relevant to each other, precisely on the topic of aging. Similarities in aging processes and prediction methodologies have been identified between human aging and aircraft aging. Two axis of collaboration have been raised: 1) The identification of the determinants in Aircraft aging (structural aging). 2) The development of P4 Systems medicine inspired new methodologies in the predictive maintenance.
Cost-efficient manufacturing of composite structures
NASA Technical Reports Server (NTRS)
Freeman, W. Tom; Davis, John G.; Johnston, Norman J.
1991-01-01
The Advanced Composites Technology (ACT) program is seeking research breakthroughs that will allow structures made of graphite epoxy materials to replace metals in the wings and fuselages of future aircrafts. NASA's goals are to reduce acquisition cost by 20 to 25 percent, structural weight for a resized aircraft by 40 to 50 percent, and the number of parts by half compared to current production aluminum aircraft. The innovative structural concepts, materials, and fabrication techniques emerging from the ACT program are described, and the relationship between aerospace developments and industrial, commercial, and sporting goods applications are discussed.
1986-06-01
INDIVIDUAL 22b TELEPHONE (include Area Code) 22c, OFFIcE YMBOI1. Thu . Lao(403) 646-255 1 o e DO FORM 1473,84 MAR 83 APR edition ray be used until...schedules are produced using projected direct labors hours available and established labor hour norms per aircraft. Since the actual workload is...and segment costs. (3) Use break-even analysis to compare revenues and costs and to evaluate relative profitability of the four aircraft program
Aircraft noise prediction program user's manual
NASA Technical Reports Server (NTRS)
Gillian, R. E.
1982-01-01
The Aircraft Noise Prediction Program (ANOPP) predicts aircraft noise with the best methods available. This manual is designed to give the user an understanding of the capabilities of ANOPP and to show how to formulate problems and obtain solutions by using these capabilities. Sections within the manual document basic ANOPP concepts, ANOPP usage, ANOPP functional modules, ANOPP control statement procedure library, and ANOPP permanent data base. appendixes to the manual include information on preparing job decks for the operating systems in use, error diagnostics and recovery techniques, and a glossary of ANOPP terms.
Long range view of materials research for civil transport aircraft
NASA Technical Reports Server (NTRS)
Ardema, M. D.; Waters, M. H.
1974-01-01
The impact of various material technology advancements on the economics of civil transport aircraft is investigated. Benefits of advances in both airframe and engine materials are considered. Benefits are measured primarily by improvements in return on investment for an operator. Materials research and development programs which lead to the greatest benefits are assessed with regards to cost, risk, and commonality with other programs. Emphasis of the paper is on advanced technology subsonic/transonic transports (ATT type aircraft) since these are likely to be the next generation of commercial transports.
Long range view of materials research for civil transport aircraft
NASA Technical Reports Server (NTRS)
Ardema, M. D.; Waters, M. H.
1973-01-01
The impact of various material technology advancements on the economics of civil transport aircraft is investigated. Benefits of advances in both airframe and engine materials are considered. Benefits are measured primarily by improvements in return on investment for an operator. Materials research and development programs which lead to the greatest benefits are assessed with regards to cost, risk, and commonality with other programs. Emphasis of the paper is on advanced technology subsonic/transonic transports (ATT type aircraft) since these are likely to be the next generation of commercial transports.
Aircraft engine pollution reduction
NASA Technical Reports Server (NTRS)
Rudey, R. A.
1972-01-01
The effect of engine operation on the types and levels of the major aircraft engine pollutants is described and the major factors governing the formation of these pollutants during the burning of hydrocarbon fuel are discussed. Methods which are being explored to reduce these pollutants are discussed and their application to several experimental research programs are pointed out. Results showing significant reductions in the levels of carbon monoxide, unburned hydrocarbons, and oxides of nitrogen obtained from experimental combustion research programs are presented and discussed to point out potential application to aircraft engines.
High heat flux actively cooled honeycomb sandwich structural panel for a hypersonic aircraft
NASA Technical Reports Server (NTRS)
Koch, L. C.; Pagel, L. L.
1978-01-01
The results of a program to design and fabricate an unshielded actively cooled structural panel for a hypersonic aircraft are presented. The design is an all-aluminum honeycomb sandwich with embedded cooling passages soldered to the inside of the outer moldline skin. The overall finding is that an actively cooled structure appears feasible for application on a hypersonic aircraft, but the fabrication process is complex and some material and manufacturing technology developments are required. Results from the program are summarized and supporting details are presented.
NASA Technical Reports Server (NTRS)
Bowles, Kenneth J.; Tsuji, Luis; Kamvouris, John; Roberts, Gary D.
2003-01-01
A cooperative program was conducted with the General Electric Aircraft Engines plant in Evendale, Ohio, to study the effects of long-term isothermal aging at elevated temperatures on compression and thermal durability properties of T650 35 fabric-reinforced PMR 15 composites. This degradation study was conducted over an approximate time period of 3 1/2 yr. The aging temperatures were 204, 260, 288, 316, and 343 C. Specimens of different dimensions were evaluated. Specimens with ratios of the cut edge to total surface area of 0.03 to 0.89 were fabricated and aged. The aged and unaged specimens were tested in compression as specified in Test Method for Compressive Properties of Rigid Plastics (ASTM D695M). Thickness changes, degraded surface layer growth, weight loss, and failure modes were monitored and recorded. All property changes were thickness dependent.
76 FR 60459 - 36(b)(1) Arms Sales Notification
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-29
... Consideration for Purchase: continuation of a pilot training program and logistics support for F-16 aircraft at... program and logistics support for F-16 aircraft at Luke Air Force Base, Arizona to include flight training..., which will contribute to an acceptable military balance in the area. This proposed sale is consistent...
JSC reduced gravity program and 1992 highlights
NASA Technical Reports Server (NTRS)
Williams, R. K.; Billica, L. W.
1993-01-01
A review is presented of the aircraft parabolic flight program in the U.S. including the USAF and NASA participation from 1957 to the present. The parabolic flight profile to achieve microgravity levels and intermediate g-levels is discussed. The NASA reduced gravity aircraft is described including the service provisions for this reimbursable project.
An acceptable role for computers in the aircraft design process
NASA Technical Reports Server (NTRS)
Gregory, T. J.; Roberts, L.
1980-01-01
Some of the reasons why the computerization trend is not wholly accepted are explored for two typical cases: computer use in the technical specialties and computer use in aircraft synthesis. The factors that limit acceptance are traced in part, to the large resources needed to understand the details of computer programs, the inability to include measured data as input to many of the theoretical programs, and the presentation of final results without supporting intermediate answers. Other factors are due solely to technical issues such as limited detail in aircraft synthesis and major simplifying assumptions in the technical specialties. These factors and others can be influenced by the technical specialist and aircraft designer. Some of these factors may become less significant as the computerization process evolves, but some issues, such as understanding large integrated systems, may remain issues in the future. Suggestions for improved acceptance include publishing computer programs so that they may be reviewed, edited, and read. Other mechanisms include extensive modularization of programs and ways to include measured information as part of the input to theoretical approaches.
Dynamic Structural Fault Detection and Identification
NASA Technical Reports Server (NTRS)
Smith, Timothy; Reichenbach, Eric; Urnes, James M.
2009-01-01
Aircraft structures are designed to guarantee safety of flight in some required operational envelope. When the aircraft becomes structurally impaired, safety of flight may not be guaranteed within that previously safe operational envelope. In this case the safe operational envelope must be redefined in-flight and a means to prevent excursion from this new envelope must be implemented. A specific structural failure mode that may result in a reduced safe operating envelope, the exceedance of which could lead to catastrophic structural failure of the aircraft, will be addressed. The goal of the DFEAP program is the detection of this failure mode coupled with flight controls adaptation to limit critical loads in the damaged aircraft structure. The DFEAP program is working with an F/A-18 aircraft model. The composite wing skins are bonded to metallic spars in the wing substructure. Over time, it is possible that this bonding can deteriorate due to fatigue. In this case, the ability of the wing spar to transfer loading between the wing skins is reduced. This failure mode can translate to a reduced allowable compressive strain on the wing skin and could lead to catastrophic wing buckling if load limiting of the wing structure is not applied. The DFEAP program will make use of a simplified wing strain model for the healthy aircraft. The outputs of this model will be compared in real-time to onboard strain measurements at several locations on the aircraft wing. A damage condition is declared at a given location when the strain measurements differ sufficiently from the strain model. Parameter identification of the damaged structure wing strain parameters will be employed to provide load limiting control adaptation for the aircraft. This paper will discuss the simplified strain models used in the implementation and their interaction with the strain sensor measurements. Also discussed will be the damage detection and identification schemes employed and the means by which the damaged aircraft parameters will be used to provide load limiting that keeps the aircraft within the safe operational envelope.
Kim, Myeong-Bo; Kim, Hyun-Jin; Kim, Soo-Hyeon; Lee, Suk-Ho; Lee, Se-Ho; Park, Won-Ju
2017-09-01
In the Republic of Korea Air Force, the health of pilots is strictly supervised, but there is comparatively not enough interest in aircraft mechanics' health. Among mechanics, who are heavily involved in military aircraft maintenance, the occurrence of sudden cardio-cerebrovascular diseases (CCVDs) is a possible risk factor during the maintenance process, which should be performed perfectly. We performed health examinations on 2123 male aircraft pilots and 1271 aircraft mechanics over 30 yr of age and determined the prevalence of metabolic syndrome (MetS), an important risk factor for CCVDs. The prevalence of MetS in the aircraft mechanics (21.3%) was significantly higher than in the pilots (12.6%), and the gap in prevalence tended to grow as age increased. Among aircraft mechanics in their 30s and 40s, the prevalence of MetS was lower than in the general population. However, the prevalence of MetS among aircraft mechanics in their 50s (36.0%) was similar to that in the general population (35.7%). Systematic health management is needed for aircraft mechanics for aviation safety and for the maintenance of military strength via the prevention of CCVDs.Kim M-B, Kim H-J, Kim S-H, Lee S-H, Lee S-H, Park W-J. Metabolic syndrome and cardio-cerebrovascular risk disparities between pilots and aircraft mechanics. Aerosp Med Hum Perform. 2017; 88(9):866-870.
MD-11 PCA - First Landing at Edwards
NASA Technical Reports Server (NTRS)
1995-01-01
This McDonnell Douglas MD-11 transport aircraft approaches its first landing under engine power only on Aug. 29, 1995, at NASA's Dryden Flight Research Center, Edwards, California. The milestone flight, flown by NASA research pilot and former astronaut Gordon Fullerton, was part of a NASA project to develop a computer-assisted engine control system that enables a pilot to land a plane safely when its normal control surfaces are disabled. The Propulsion-Controlled Aircraft (PCA) system uses standard autopilot controls already present in the cockpit, together with the new programming in the aircraft's flight control computers. The PCA concept is simple--for pitch control, the program increases thrust to climb and reduces thrust to descend. To turn right, the autopilot increases the left engine thrust while decreasing the right engine thrust. The initial Propulsion-Controlled Aircraft studies by NASA were carried out at Dryden with a modified twin-engine F-15 research aircraft.
MD-11 PCA - First Landing at Edwards
NASA Technical Reports Server (NTRS)
1995-01-01
This McDonnell Douglas MD-11 approaches the first landing ever of a transport aircraft under engine power only on Aug. 29, 1995, at NASA's Dryden Flight Research Center, Edwards, California. The milestone flight, flown by NASA research pilot and former astronaut Gordon Fullerton, was part of a NASA project to develop a computer-assisted engine control system that enables a pilot to land a plane safely when it normal control surfaces are disabled. The Propulsion-Controlled Aircraft (PCA) system uses standard autopilot controls already present in the cockpit, together with the new programming in the aircraft's flight control computers. The PCA concept is simple--for pitch control, the program increases thrust to climb and reduces thrust to descend. To turn right, the autopilot increases the left engine thrust while decreasing the right engine thrust. The initial Propulsion-Controlled Aircraft studies by NASA were carried out at Dryden with a modified twin-engine F-15 research aircraft.
Propulsion integration for military aircraft
NASA Technical Reports Server (NTRS)
Henderson, William P.
1989-01-01
The transonic aerodynamic characteristics for high-performance aircraft are significantly affected by shock-induced flow interactions as well as other local flow interference effects which usually occur at transonic speeds. These adverse interactions can not only cause high drag, but can cause unusual aerodynamic loadings and/or severe stability and control problems. Many new programs are underway to develop methods for reducing the adverse effects, as well as to develop an understanding of the basic flow conditions which are the primary contributors. It is anticipated that these new programs will result in technologies which can reduce the aircraft cruise drag through improved integration as well as increased aircraft maneuverability throughh the application of thrust vectoring. This paper will identify some of the primary propulsion integration problems for high performance aircraft at transonic speeds, and demonstrate several methods for reducing or eliminating the undesirable characteristics, while enhancing configuration effectiveness.
NASA Technical Reports Server (NTRS)
Hodge, Kenneth E. (Compiler); Kellogg, Yvonne (Editor)
1996-01-01
A technical symposium, aircraft display dedication, and pilots' panel discussion were held on May 27, 1992. to commemorate the 20th anniversary of the first flights of the F-8 Digital Fly-By-Wire (DFBW) and Supercritical Wing (SCW) research aircraft. The symposium featured technical presentations by former key government and industry participants in the advocacy, design, aircraft modification, and flight research program activities. The DFBW and SCW technical contributions are cited. A dedication ceremony marked permanent display of both program aircraft. The panel discussion participants included eight of the eighteen research and test pilots who flew these experimental aircraft. Pilots' remarks include descriptions of their most memorable flight experiences. The report also includes a survey of the Gulf Air War, an after-dinner presentation by noted aerospace author and historian Dr. Richard Hallion.
NASA Technical Reports Server (NTRS)
Hodge, Kenneth E. (Compiler)
1996-01-01
A technical symposium, aircraft display dedication, and pilots' panel discussion were held on May 27, 1992, to commemorate the 20th anniversary of the first flights of the F-8 Digital Fly-By-Wire (DFBW) and Supercrit- ical Wing (SCW) research aircraft. The symposium featured technical presentations by former key government and industry participants in the advocacy, design, aircraft modification, and flight research program activities. The DFBW and SCW technical contributions are cited. A dedication ceremony marked permanent display of both program aircraft. The panel discussion participants included eight of the eighteen research and test pilots who flew these experimental aircraft. Pilots' remarks include descriptions of their most memorable flight experiences The report also includes a survey of the Gulf Air War, and an after-dinner presentation by noted aerospace author and historian Dr. Richard Hallion.
Factors affecting measured aircraft sound levels in the vicinity of start-of-takeoff roll
NASA Astrophysics Data System (ADS)
Richard, Horonjeff; Fleming, Gregg G.; Rickley, Edward J.; Connor, Thomas L.
This paper presents the findings of a recently conducted measurement and analysis program of jet transport aircraft sound levels in the vicinity of the star-of-takeoff roll. The purpose of the program was two-fold: (1) to evaluate the computational accuracy of the Federal Aviation Administration's Integrated Noise Model (INM) in the vicinity of start-of-takeoff roll with a recently updated database (INM 3.10), and (2) to provide guidance for future model improvements. Focusing on the second of these two goals, this paper examines several factors affecting Sound Exposure Levels (SELs) in the hemicircular area behind the aircraft brake release point at the start-of-takeoff. In addition to the aircraft type itself, these factors included the geometric relationship of the measurement site to the runway, the wind velocity (speed and direction), aircraft grow weight, and start-of-roll mode (static or rolling start).
Aircraft operability methods applied to space launch vehicles
NASA Astrophysics Data System (ADS)
Young, Douglas
1997-01-01
The commercial space launch market requirement for low vehicle operations costs necessitates the application of methods and technologies developed and proven for complex aircraft systems. The ``building in'' of reliability and maintainability, which is applied extensively in the aircraft industry, has yet to be applied to the maximum extent possible on launch vehicles. Use of vehicle system and structural health monitoring, automated ground systems and diagnostic design methods derived from aircraft applications support the goal of achieving low cost launch vehicle operations. Transforming these operability techniques to space applications where diagnostic effectiveness has significantly different metrics is critical to the success of future launch systems. These concepts will be discussed with reference to broad launch vehicle applicability. Lessons learned and techniques used in the adaptation of these methods will be outlined drawing from recent aircraft programs and implementation on phase 1 of the X-33/RLV technology development program.
The Second Joint NASA/FAA/DOD Conference on Aging Aircraft. Pt. 1
NASA Technical Reports Server (NTRS)
Harris, Charles E. (Editor)
1999-01-01
The purpose of the Conference was to bring together world leaders in aviation safety research, aircraft design and manufacturing, fleet operation and aviation maintenance to disseminate information on current practices and advanced technologies that will assure the continued airworthiness of the aging aircraft in the military and commercial fleets. The Conference included reviews of current industry practices, assessments of future technology requirements, and status of aviation safety research. The Conference provided an opportunity for interactions among the key personnel in the research and technology development community, the original equipment manufacturers, commercial airline operators, military fleet operators, aviation maintenance, and aircraft certification and regulatory authorities. Conference participation was unrestricted and open to the international aviation community.
Report of the Task Group on the Department of Energy Aviation Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-02-01
The Department of Energy (DOE) owns or leases approximately 43 aircraft of which 17 are airplanes and 26 are helicopters. About two-thirds of these aircraft are used for activities related to defense programs; these are all government owned and contractor operated. The other third of DOE's aircraft is used by Bonneville Power Administration (BPA) and Western Area Power Administration (WAPA). These aircraft are primarily government owned and operated. In addition to transporting passengers, DOE aircraft are used for security operations, powerline and pipeline patrols, research and development activities, and aerial measurement and for the transport of hazardous materials. These operationsmore » are conducted at nine Field Offices under the organizational authority of eight DOE Program Secretarial Officers (PSOs). On July 24, 1991, a DOE-owned helicopter crashed at the Nevada Test Site resulting in the deaths of the five contractor employees on board. A DOE accident investigation board was convened, and an investigation into the causes of the crash was conducted. On November 19, 1991, a briefing of the preliminary results of the investigation was provided to the Assistant Secretary for Environment, Safety and Health (EH), the Assistant Secretary for Defense Programs (DP), and the Director, Office of Security Affairs (SA). On November 27, 1991, the Secretary of Energy directed the Assistant Secretary, EH, to convene and chair a Task Group with the PSOs to define the roles and responsibilities of DOE's aviation program. Task group recommendations are presented.« less
Report of the Task Group on the Department of Energy Aviation Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-02-01
The Department of Energy (DOE) owns or leases approximately 43 aircraft of which 17 are airplanes and 26 are helicopters. About two-thirds of these aircraft are used for activities related to defense programs; these are all government owned and contractor operated. The other third of DOE`s aircraft is used by Bonneville Power Administration (BPA) and Western Area Power Administration (WAPA). These aircraft are primarily government owned and operated. In addition to transporting passengers, DOE aircraft are used for security operations, powerline and pipeline patrols, research and development activities, and aerial measurement and for the transport of hazardous materials. These operationsmore » are conducted at nine Field Offices under the organizational authority of eight DOE Program Secretarial Officers (PSOs). On July 24, 1991, a DOE-owned helicopter crashed at the Nevada Test Site resulting in the deaths of the five contractor employees on board. A DOE accident investigation board was convened, and an investigation into the causes of the crash was conducted. On November 19, 1991, a briefing of the preliminary results of the investigation was provided to the Assistant Secretary for Environment, Safety and Health (EH), the Assistant Secretary for Defense Programs (DP), and the Director, Office of Security Affairs (SA). On November 27, 1991, the Secretary of Energy directed the Assistant Secretary, EH, to convene and chair a Task Group with the PSOs to define the roles and responsibilities of DOE`s aviation program. Task group recommendations are presented.« less
Atmospheric electrical modeling in support of the NASA F106 Storm Hazards Project
NASA Technical Reports Server (NTRS)
Helsdon, J. H.
1986-01-01
With the use of composite (non-metallic) and microelectronics becoming more prevalent in the construction of both military and commercial aircraft, the control systems have become more susceptible to damage or failure from electromagnetic transients. One source of such transients is the lightning discharge. In order to study the effects of the lightning discharge on the vital components of an aircraft, NASA Langley Research Center has undertaken a Storm Hazards Program in which a specially instrumented F106B jet aircraft is flown into active thunderstorms with the intention of being struck by lightning. One of the specific purposes of the program is to quantify the environmental conditions which are conductive to aircraft lightning strikes.
Aircraft Engine Technology for Green Aviation to Reduce Fuel Burn
NASA Technical Reports Server (NTRS)
Hughes, Christopher E.; VanZante, Dale E.; Heidmann, James D.
2013-01-01
The NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project and Integrated Systems Research Program Environmentally Responsible Aviation Project in the Aeronautics Research Mission Directorate are conducting research on advanced aircraft technology to address the environmental goals of reducing fuel burn, noise and NOx emissions for aircraft in 2020 and beyond. Both Projects, in collaborative partnerships with U.S. Industry, Academia, and other Government Agencies, have made significant progress toward reaching the N+2 (2020) and N+3 (beyond 2025) installed fuel burn goals by fundamental aircraft engine technology development, subscale component experimental investigations, full scale integrated systems validation testing, and development validation of state of the art computation design and analysis codes. Specific areas of propulsion technology research are discussed and progress to date.
14 CFR 91.1087 - Approval of aircraft simulators and other training devices.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Approval of aircraft simulators and other... OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1087 Approval of aircraft simulators and...
14 CFR 91.1087 - Approval of aircraft simulators and other training devices.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Approval of aircraft simulators and other... OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1087 Approval of aircraft simulators and...
14 CFR 91.1087 - Approval of aircraft simulators and other training devices.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Approval of aircraft simulators and other... OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1087 Approval of aircraft simulators and...
14 CFR 91.1087 - Approval of aircraft simulators and other training devices.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Approval of aircraft simulators and other... OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1087 Approval of aircraft simulators and...
Energy efficient engine flight propulsion system: Aircraft/engine integration evaluation
NASA Technical Reports Server (NTRS)
Patt, R. F.
1980-01-01
Results of aircraft/engine integration studies conducted on an advanced flight propulsion system are reported. Economic evaluations of the preliminary design are included and indicate that program goals will be met. Installed sfc, DOC, noise, and emissions were evaluated. Aircraft installation considerations and growth were reviewed.
Energy efficient engine flight propulsion system: Aircraft/engine integration evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patt, R.F.
Results of aircraft/engine integration studies conducted on an advanced flight propulsion system are reported. Economic evaluations of the preliminary design are included and indicate that program goals will be met. Installed sfc, DOC, noise, and emissions were evaluated. Aircraft installation considerations and growth were reviewed.
DOT National Transportation Integrated Search
1995-01-01
This report describes a study of shoulder harness installation and use rates in general aviation aircraft. Observations were made at six geographically separate areas to determine estimates of current installation and use rates. An expert panel was e...
Perspectives on Highly Adaptive or Morphing Aircraft
NASA Technical Reports Server (NTRS)
McGowan, Anna-Maria R.; Vicroy, Dan D.; Busan, Ronald C.; Hahn, Andrew S.
2009-01-01
The ability to adapt to different flight conditions has been fundamental to aircraft design since the Wright Brothers first flight. Over a hundred years later, unconventional aircraft adaptability, often called aircraft morphing has become a topic of considerable renewed interest. In the past two decades, this interest has been largely fuelled by advancements in multi-functional or smart materials and structures. However, highly adaptive or morphing aircraft is certainly a cross-discipline challenge that stimulates a wide range of design possibilities. This paper will review some of the history of morphing aircraft including recent research programs and discuss some perspectives on this work.
Investigations of simulated aircraft flight through thunderstorm outflows
NASA Technical Reports Server (NTRS)
Frost, W.; Crosby, B.
1978-01-01
The effects of wind shear on aircraft flying through thunderstorm gust fronts were investigated. A computer program was developed to solve the two dimensional, nonlinear equations of aircraft motion, including wind shear. The procedure described and documented accounts for spatial and temporal variations of the aircraft within the flow regime. Analysis of flight paths and control inputs necessary to maintain specified trajectories for aircraft having characteristics of DC-8, B-747, augmentor wing STOL, and DHC-6 aircraft was recorded. From the analysis an attempt was made to find criteria for reduction of the hazards associated with landing through thunderstorm gust fronts.
NASA Technical Reports Server (NTRS)
1975-01-01
Cost and benefits of a fuel conservative aircraft technology program proposed by NASA are estimated. NASA defined six separate technology elements for the proposed program: (a) engine component improvement (b) composite structures (c) turboprops (d) laminar flow control (e) fuel conservative engine and (f) fuel conservative transport. There were two levels postulated: The baseline program was estimated to cost $490 million over 10 years with peak funding in 1980. The level two program was estimated to cost an additional $180 million also over 10 years. Discussions with NASA and with representatives of the major commercial airframe manufacturers were held to estimate the combinations of the technology elements most likely to be implemented, the potential fuel savings from each combination, and reasonable dates for incorporation of these new aircraft into the fleet.
NASA Technical Reports Server (NTRS)
1975-01-01
The costs and benefits of the NASA Aircraft Fuel Conservation Technology Program are discussed. Consideration is given to a present worth analysis of the planned program expenditures, an examination of the fuel savings to be obtained by the year 2005 and the worth of this fuel savings relative to the investment required, a comparison of the program funding with that planned by other Federal agencies for energy conservation, an examination of the private industry aeronautical research and technology financial posture for the period FY 76 - FY 85, and an assessment of the potential impacts on air and noise pollution. To aid in this analysis, a computerized fleet mix forecasting model was developed. This model enables the estimation of fuel consumption and present worth of fuel expenditures for selected commerical aircraft fleet mix scenarios.
Fuel Tank Non-Nuclear Vulnerability Test Program
1975-02-01
configurations and structures , for all the threat velocities and obli~quities, alid for all the different fuel tank conditions. This is very unrealistic and can...of operational aircraft. It is, ot. course, imtpractical to simiul~ate all the potential conditions, threat variables, structural materials, and...simulate the structural members of the aircraft to which the aircraft skin and fuel tank walls are attached. The effect that paint, on the aircraft
Energy absorption studied to reduce aircraft crash forces
NASA Technical Reports Server (NTRS)
1981-01-01
The NASA/FAA aircraft safety reseach programs for general aviation aircraft are discussed. Energy absorption of aircraft subflooring and redesign of interior flooring are being studied. The testing of energy absorbing configurations is described. The three NASA advanced concepts performed at neary the maximum possible amount of energy absorption, and one of two minimum modifications concepts performed well. Planned full scale tests are described. Airplane seat concepts are being considered.
U-2 Aircraft at the Lewis Research Center
1973-09-21
A National Aeronautics and Space Administration (NASA) Lockheed U-2 aircraft on display at the 1973 Inspection of the Lewis Research Center in Cleveland, Ohio. Lockheed developed the U-2 as a high-altitude reconnaissance aircraft in the early 1950s before satellites were available. The U-2 could cruise over enemy territory at 70,000 feet and remain impervious to ground fire, interceptor aircraft, and even radar. An advanced camera system was designed specifically for the aircraft. The pilot is required to use a pressure suit similar to those worn by astronauts. NASA’s Ames Research Center received two U-2 aircraft in April 1971 to conduct high-altitude research. They were used to study and monitor various Earth resources, celestial bodies, atmospheric chemistry, and oceanic processes. NASA replaced its U-2s with ER-2 aircraft in 1981 and 1989. The ER-2s were designed to carry up to 2600 pounds of scientific equipment. The ER-2 program was transferred to Dryden Flight Research Center in 1997. Since the inaugural flight for this program on August 31, 1971, NASA’s U-2 and ER-2 aircraft have flown more than 4500 data missions and test flights for NASA, other federal agencies, states, universities, and the private sector.
Operation REDWING. Technical Summary of Military Effects. Programs 1-9
1981-05-15
study chorioretinal burns. The primary objective of the program on effects on aircraft structures was to ascer- tain the reliability of current weapons...other aircraft. In the program of tests on service equipment and studies of electromagnetic effects,I 4k. the emphasis was placed on studying long...range detection of nuclear explosions. An additional objective was the study of the effects of nuclear detonations on the ionosphere and microwave
Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 3
NASA Technical Reports Server (NTRS)
Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.
1985-01-01
An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit design of a multicylinder engine for eventual flight applications.
Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 2
NASA Technical Reports Server (NTRS)
Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.
1985-01-01
An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit a design of a multicylinder engine for eventual flight applications.
A knowledge-based system design/information tool for aircraft flight control systems
NASA Technical Reports Server (NTRS)
Mackall, Dale A.; Allen, James G.
1989-01-01
Research aircraft have become increasingly dependent on advanced control systems to accomplish program goals. These aircraft are integrating multiple disciplines to improve performance and satisfy research objectives. This integration is being accomplished through electronic control systems. Because of the number of systems involved and the variety of engineering disciplines, systems design methods and information management have become essential to program success. The primary objective of the system design/information tool for aircraft flight control system is to help transfer flight control system design knowledge to the flight test community. By providing all of the design information and covering multiple disciplines in a structured, graphical manner, flight control systems can more easily be understood by the test engineers. This will provide the engineers with the information needed to thoroughly ground test the system and thereby reduce the likelihood of serious design errors surfacing in flight. The secondary objective is to apply structured design techniques to all of the design domains. By using the techniques in the top level system design down through the detailed hardware and software designs, it is hoped that fewer design anomalies will result. The flight test experiences of three highly complex, integrated aircraft programs are reviewed: the X-29 forward-swept wing, the advanced fighter technology integration (AFTI) F-16, and the highly maneuverable aircraft technology (HiMAT) program. Significant operating anomalies and the design errors which cause them, are examined to help identify what functions a system design/information tool should provide to assist designers in avoiding errors.
X-31 in flight - Post Stall Maneuver
NASA Technical Reports Server (NTRS)
1995-01-01
Two X-31 Enhanced Fighter Maneuverability (EFM) demonstrators were flown at the Rockwell International facility, Palmdale, California, and the NASA Dryden Flight Research Center, Edwards, California, to obtain data that may apply to the design of highly-maneuverable next-generation fighters. The program had its first flight on October 11, 1990, in Palmdale; it ended in June 1995. The X-31 program demonstrated the value of thrust vectoring (directing engine exhaust flow) coupled with advanced flight control systems, to provide controlled flight during close-in air combat at very high angles of attack. The result of this increased maneuverability is an aircraft with a significant advantage over conventional fighters. 'Angle-of-attack' (alpha) is an engineering term to describe the angle of an aircraft body and wings relative to its actual flight path. During maneuvers, pilots often fly at extreme angles of attack -- with the nose pitched up while the aircraft continues in its original direction. This can lead to loss of control and result in the loss of the aircraft, pilot or both. Three thrust vectoring paddles made of graphite epoxy mounted on the exhaust nozzle of the X-31 aircraft directed the exhaust flow to provide control in pitch (up and down) and yaw (right and left) to improve control. The paddles can sustain heat of up to 1,500 degrees centigrade for extended periods of time. In addition the X-31 aircraft were configured with movable forward canards and fixed aft strakes. The canards were small wing-like structures set on the wing line between the nose and the leading edge of the wing. The strakes were set on the same line between the trailing edge of the wing and the engine exhaust. Both supplied additional control in tight maneuvering situations. The X-31 research program produced technical data at high angles of attack. This information is giving engineers and aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. This understanding is expected to lead to design methods that can provide better maneuverability in future high performance aircraft and make them safer to fly. An international test organization of about 110 people, managed by the Advanced Research Projects Agency (ARPA), conducted the flight operations at NASA Dryden. The ARPA had requested flight research for the X-31 aircraft be moved there in February 1992. In addition to ARPA and NASA, the international test organization (ITO) included the U.S. Navy, the U.S. Air Force, Rockwell International, the Federal Republic of Germany, and Daimler-Benz Aerospace (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace). NASA was responsible for flight research operations, aircraft maintenance, and research engineering once the program moved to Dryden. The No. 1 X-31 aircraft was lost in an accident January 19, 1995. The pilot, Karl Heinz-Lang, of the Federal Republic of Germany, ejected safely before the aircraft crashed in an unpopulated desert area just north of Edwards. The X-31 program logged an X-plane record of 580 flights during the program, including 555 research missions and 21 in Europe for the 1995 Paris Air Show. A total of 14 pilots representing all agencies of the ITO flew the aircraft. This movie clip runs 1 minute, 6 seconds in length and shows the X-31 rotating at takeoff and climbing into a stall maneuver. The aircraft then slides backwards thrust vectoring the tail over the top, turning the stall into a loop in which the aircraft then reverses its heading and resumes level flight.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roach, Dennis Patrick; Rackow, Kirk A.
A typical aircraft can experience over 2,000 fatigue cycles (cabin pressurizations) and even greater flight hours in a single year. An unavoidable by-product of aircraft use is that crack, impact, and corrosion flaws develop throughout the aircraft's skin and substructure elements. Economic barriers to the purchase of new aircraft have placed even greater demands on efficient and safe repair methods. The use of bonded composite doublers offers the airframe manufacturers and aircraft maintenance facilities a cost effective method to safely extend the lives of their aircraft. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, itmore » is now possible to bond a single Boron-Epoxy composite doubler to the damaged structure. The FAA's Airworthiness Assurance Center at Sandia National Labs (AANC), Boeing, and Federal Express completed a pilot program to validate and introduce composite doubler repair technology to the U.S. commercial aircraft industry. This project focused on repair of DC-10 fuselage structure and its primary goal was to demonstrate routine use of this repair technology using niche applications that streamline the design-to-installation process. As composite doubler repairs gradually appear in the commercial aircraft arena, successful flight operation data is being accumulated. These commercial aircraft repairs are not only demonstrating the engineering and economic advantages of composite doubler technology but they are also establishing the ability of commercial maintenance depots to safely adopt this repair technique. This report presents the array of engineering activities that were completed in order to make this technology available for widespread commercial aircraft use. Focused laboratory testing was conducted to compliment the field data and to address specific issues regarding damage tolerance and flaw growth in composite doubler repairs. Fatigue and strength tests were performed on a simulated wing repair using a substandard design and a flawed installation. In addition, the new Sol-Gel surface preparation technique was evaluated. Fatigue coupon tests produced Sol-Gel results that could be compared with a large performance database from conventional, riveted repairs. It was demonstrated that not only can composite doublers perform well in severe off-design conditions (low doubler stiffness and presence of defects in doubler installation) but that the Sol-Gel surface preparation technique is easier and quicker to carry out while still producing optimum bonding properties. Nondestructive inspection (NDI) methods were developed so that the potential for disbond and delamination growth could be monitored and crack growth mitigation could be quantified. The NDI methods were validated using full-scale test articles and the FedEx aircraft installations. It was demonstrated that specialized NDI techniques can detect flaws in composite doubler installations before they reach critical size. Probability of Detection studies were integrated into the FedEx training in order to quantify the ability of aircraft maintenance depots to properly monitor these repairs. In addition, Boeing Structural Repair and Nondestructive Testing Manuals were modified to include composite doubler repair and inspection procedures. This report presents the results from the FedEx Pilot Program that involved installation and surveillance of numerous repairs on operating aircraft. Results from critical NDI evaluations are reported in light of damage tolerance assessments for bonded composite doublers. This work has produced significant interest from airlines and aircraft manufacturers. The successful Pilot Program produced flight performance history to establish the durability of bonded composite patches as a permanent repair on commercial aircraft structures. This report discusses both the laboratory data and Pilot Program results from repair installations on operating aircraft to introduce composite doubler repairs into mainstream commercial aircraft use.« less
Electric Propulsion Platforms at DFRC
NASA Technical Reports Server (NTRS)
Baraaclough, Jonathan
2009-01-01
NASA Dryden Flight Research Center is a world-class flight research facility located at Edwards AFB, CA. With access to a 44 sq. mile dry lakebed and 350 testable days per year, it is the ideal location for flight research. DFRC has been undertaking aircraft research for approximately six decades including the famous X-aircraft (X-1 through X-48) and many science and exploration platforms. As part of this impressive heritage, DFRC has garnered more hours of full-sized electric aircraft testing than any other facility in the US, and possibly the world. Throughout the 80 s and 90 s Dryden was the home of the Pathfinder, Pathfinder Plus, and Helios prototype solar-electric aircraft. As part of the ERAST program, these electric aircraft achieved a world record 97,000 feet altitude for propeller-driven aircraft. As a result of these programs, Dryden s staff has collected thousands of man-hours of electric aircraft research and testing. In order to better answer the needs of the US in providing aircraft technologies with lower fuel consumption, lower toxic emissions (NOx, CO, VOCs, etc.), lower greenhouse gas (GHG) emissions, and lower noise emissions, NASA has engaged in cross-discipline research under the Aeronautics Research Mission Directorate (ARMD). As a part of this overall effort, Mark Moore of LaRC has initiated a cross-NASA-center electric propulsion working group (EPWG) to focus on electric propulsion technologies as applied to aircraft. Electric propulsion technologies are ideally suited to overcome all of the obstacles mentioned above, and are at a sufficiently advanced state of development component-wise to warrant serious R&D and testing (TRL 3+). The EPWG includes participation from NASA Langley Research Center (LaRC), Glenn Research Center (GRC), Ames Research Center (ARC), and Dryden Flight Research Center (DFRC). Each of the center participants provides their own unique expertise to support the overall goal of advancing the state-of-the-art in aircraft electric propulsion technologies. DFRC will leverage its vast experience in flight test to assist in the integration and flight test phases of any electric propulsion program. DFRC s core competencies, that have particular relevance to the goals of the EPWG, include flight research planning and execution and providing aircraft test beds for researching and testing electric propulsion concepts and equipment. There are three flight regimes that the EPWG is focusing on: subsonic small GA and UAV, subsonic transport class, and supersonic. DFRC proposes two classes of test bed aircraft, to answer the early- and mid-phase testing requirements of all flight regimes the EPWG is concerned with. First, a highly efficient PIK motor glider will be used to test concepts and equipment associated with the subsonic GA and UAV aircraft regime (N+1). Second, a small fleet of subscale remotely-piloted aircraft test beds, similar to the X48B Blended Wing Body aircraft tested at Dryden, will be developed to answer the unique testing requirements of the subsonic GA and UAV, subsonic transport and possibly the supersonic class of aircraft (N+2, N+3). These aircraft can be tested in either serial stages or concurrent stages, depending on the actual test requirements and program schedules. Both classes of test bed aircraft are described below.
Evaluation of materials and design modifications for aircraft brakes
NASA Technical Reports Server (NTRS)
Ho, T. L.; Kennedy, F. E.; Peterson, M. B.
1975-01-01
A test program is described which was carried out to evaluate several proposed design modifications and several high-temperature friction materials for use in aircraft disk brakes. The evaluation program was carried out on a specially built test apparatus utilizing a disk brake and wheel half from a small het aircraft. The apparatus enabled control of brake pressure, velocity, and braking time. Tests were run under both constant and variable velocity conditions and covered a kinetic energy range similar to that encountered in aircraft brake service. The results of the design evaluation program showed that some improvement in brake performance can be realized by making design changes in the components of the brake containing friction material. The materials evaluation showed that two friction materials show potential for use in aircraft disk brakes. One of the materials is a nickel-based sintered composite, while the other is a molybdenum-based material. Both materials show much lower wear rates than conventional copper-based materials and are better able to withstand the high temperatures encountered during braking. Additional materials improvement is necessary since both materials show a significant negative slope of the friction-velocity curve at low velocities.
Vista/F-16 Multi-Axis Thrust Vectoring (MATV) control law design and evaluation
NASA Technical Reports Server (NTRS)
Zwerneman, W. D.; Eller, B. G.
1994-01-01
For the Multi-Axis Thrust Vectoring (MATV) program, a new control law was developed using multi-axis thrust vectoring to augment the aircraft's aerodynamic control power to provide maneuverability above the normal F-16 angle of attack limit. The control law architecture was developed using Lockheed Fort Worth's offline and piloted simulation capabilities. The final flight control laws were used in flight test to demonstrate tactical benefits gained by using thrust vectoring in air-to-air combat. Differences between the simulator aerodynamics data base and the actual aircraft aerodynamics led to significantly different lateral-directional flying qualities during the flight test program than those identified during piloted simulation. A 'dial-a-gain' flight test control law update was performed in the middle of the flight test program. This approach allowed for inflight optimization of the aircraft's flying qualities. While this approach is not preferred over updating the simulator aerodynamic data base and then updating the control laws, the final selected gain set did provide adequate lateral-directional flying qualities over the MATV flight envelope. The resulting handling qualities and the departure resistance of the aircraft allowed the 422nd_squadron pilots to focus entirely on evaluating the aircraft's tactical utility.
41 CFR 101-26.602-1 - Procurement of lubricating oils, greases, and gear lubricants.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (nonaircraft) equipment and of aircraft engine oils on an annual program basis. Estimates of requirements for... program Due on or before Lubricating oils (nonaircraft) 4.1 November 15. Aircraft engine oils 4.2 June 15... lubricating oils, greases, and gear lubricants. 101-26.602-1 Section 101-26.602-1 Public Contracts and...
41 CFR 101-26.602-1 - Procurement of lubricating oils, greases, and gear lubricants.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (nonaircraft) equipment and of aircraft engine oils on an annual program basis. Estimates of requirements for... program Due on or before Lubricating oils (nonaircraft) 4.1 November 15. Aircraft engine oils 4.2 June 15... lubricating oils, greases, and gear lubricants. 101-26.602-1 Section 101-26.602-1 Public Contracts and...
41 CFR 101-26.602-1 - Procurement of lubricating oils, greases, and gear lubricants.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (nonaircraft) equipment and of aircraft engine oils on an annual program basis. Estimates of requirements for... program Due on or before Lubricating oils (nonaircraft) 4.1 November 15. Aircraft engine oils 4.2 June 15... lubricating oils, greases, and gear lubricants. 101-26.602-1 Section 101-26.602-1 Public Contracts and...
41 CFR 101-26.602-1 - Procurement of lubricating oils, greases, and gear lubricants.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (nonaircraft) equipment and of aircraft engine oils on an annual program basis. Estimates of requirements for... program Due on or before Lubricating oils (nonaircraft) 4.1 November 15. Aircraft engine oils 4.2 June 15... lubricating oils, greases, and gear lubricants. 101-26.602-1 Section 101-26.602-1 Public Contracts and...
41 CFR 101-26.602-1 - Procurement of lubricating oils, greases, and gear lubricants.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (nonaircraft) equipment and of aircraft engine oils on an annual program basis. Estimates of requirements for... program Due on or before Lubricating oils (nonaircraft) 4.1 November 15. Aircraft engine oils 4.2 June 15... lubricating oils, greases, and gear lubricants. 101-26.602-1 Section 101-26.602-1 Public Contracts and...
Jet engine noise source and noise footprint computer programs
NASA Technical Reports Server (NTRS)
Dunn, D. G.; Peart, N. A.; Miller, D. L.; Crowley, K. C.
1972-01-01
Calculation procedures are presented for predicting maximum passby noise levels and contours (footprints) of conventional jet aircraft with or without noise suppression devices. The procedures have been computerized and a user's guide is presented for the computer programs to be used in predicting the noise characteristics during aircraft takeoffs, fly-over, and/or landing operations.
A research program to reduce the interior noise in general aviation aircraft, index and summary
NASA Technical Reports Server (NTRS)
Morgan, L.; Jackson, K.; Roskam, J.
1985-01-01
This report is an index of the published works from NASA Grant NSG 1301, entitled A Research Program to Reduce the Interior Noise in General Aviation Aircraft. Included are a list of all published reports and papers, a compilation of test specimen characteristics, and summaries of each published work.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Foreign-owned military aircraft and naval vessels, and the Foreign Military Sales program. 126.6 Section 126.6 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS GENERAL POLICIES AND PROVISIONS § 126.6 Foreign-owned military...
NASA Technical Reports Server (NTRS)
1983-01-01
A profile of altitude, airspeed, and flight path angle as a function of range between a given set of origin and destination points for particular models of transport aircraft provided by NASA is generated. Inputs to the program include the vertical wind profile, the aircraft takeoff weight, the costs of time and fuel, certain constraint parameters and control flags. The profile can be near optimum in the sense of minimizing: (1) fuel, (2) time, or (3) a combination of fuel and time (direct operating cost (DOC)). The user can also, as an option, specify the length of time the flight is to span. The theory behind the technical details of this program is also presented.
Fabrication methods for YF-12 wing panels for the Supersonic Cruise Aircraft Research Program
NASA Technical Reports Server (NTRS)
Hoffman, E. L.; Payne, L.; Carter, A. L.
1975-01-01
Advanced fabrication and joining processes for titanium and composite materials are being investigated by NASA to develop technology for the Supersonic Cruise Aircraft Research (SCAR) Program. With Lockheed-ADP as the prime contractor, full-scale structural panels are being designed and fabricated to replace an existing integrally stiffened shear panel on the upper wing surface of the NASA YF-12 aircraft. The program involves ground testing and Mach 3 flight testing of full-scale structural panels and laboratory testing of representative structural element specimens. Fabrication methods and test results for weldbrazed and Rohrbond titanium panels are discussed. The fabrication methods being developed for boron/aluminum, Borsic/aluminum, and graphite/polyimide panels are also presented.
A User's Manual for ROTTILT Solver: Tiltrotor Fountain Flow Field Prediction
NASA Technical Reports Server (NTRS)
Tadghighi, Hormoz; Rajagopalan, R. Ganesh
1999-01-01
A CFD solver has been developed to provide the time averaged details of the fountain flow typical for tiltrotor aircraft in hover. This Navier-Stokes solver, designated as ROTTILT, assumes the 3-D fountain flowfield to be steady and incompressible. The theoretical background is described in this manual. In order to enable the rotor trim solution in the presence of tiltrotor aircraft components such as wing, nacelle, and fuselage, the solver is coupled with a set of trim routines which are highly efficient in CPU and suitable for CFD analysis. The Cartesian grid technique utilized provides the user with a unique capability for insertion or elimination of any components of the bodies considered for a given tiltrotor aircraft configuration. The flowfield associated with either a semi or full-span configuration can be computed through user options in the ROTTILT input file. Full details associated with the numerical solution implemented in ROTTILT and assumptions are presented. A description of input surface mesh topology is provided in the appendices along with a listing of all preprocessor programs. Input variable definitions and default values are provided for the V22 aircraft. Limited predicted results using the coupled ROTTILT/WOPWOP program for the V22 in hover are made and compared with measurement. To visualize the V22 aircraft and predictions, a preprocessor graphics program GNU-PLOT3D was used. This program is described and example graphic results presented.
A review and update of the NASA aircraft noise prediction program propeller analysis system
NASA Technical Reports Server (NTRS)
Golub, Robert A.; Nguyen, L. Cathy
1989-01-01
The National Aeronautics and Space Administration (NASA) Aircraft Noise Prediction Program (ANOPP) Propeller Analysis System (PAS) is a set of computational modules for predicting the aerodynamics, performance, and noise of propellers. The ANOPP PAS has the capability to predict noise levels for propeller aircraft certification and produce parametric scaling laws for the adjustment of measured data to reference conditions. A technical overview of the prediction techniques incorporated into the system is presented. The prediction system has been applied to predict the noise signature of a variety of propeller configurations including the effects of propeller angle of attack. A summary of these validation studies is discussed with emphasis being placed on the wind tunnel and flight test programs sponsored by the Federal Aviation Administration (FAA) for the Piper Cherokee Lance aircraft. A number of modifications and improvements have been made to the system and both DEC VAX and IBM-PC versions of the system have been added to the original CDC NOS version.
NASA Technical Reports Server (NTRS)
Starke, E. A., Jr.
1993-01-01
This report on the NASA-UVa Light Aerospace Alloy and Structure Technology Program Supplement: Aluminum-Based Materials for High Speed Aircraft covers the period from January 1, 1992 to June 30, 1992. The objective of the research is to develop aluminum alloys and aluminum matrix composites for the airframe which can efficiently perform in the HSCT environment for periods as long as 60,000 hours (certification for 120,000 hours) and, at the same time, meet the cost and weight requirements for an economically viable aircraft. Current industry baselines focus on flight at Mach 2.4. The research covers four major materials systems: (1) ingot metallurgy 2XXX, 6XXX, and 8XXX alloys, (2) powder metallurgy 2XXX alloys, (3) rapidly solidified, dispersion strengthened Al-Fe-X alloys, and (4) discontinuously reinforced metal matrix composites. There are ten major tasks in the program which also include evaluation and trade-off studies by Boeing and Douglas aircraft companies.
NASA Technical Reports Server (NTRS)
Starke, E. A., Jr. (Editor)
1995-01-01
This report on the NASA-UVa light aerospace alloy and structure technology program supplement: Aluminum-Based Materials for High Speed Aircraft covers the period from July 1, 1992. The objective of the research is to develop aluminum alloys and aluminum matrix composites for the airframe which can efficiently perform in the HSCT environment for periods as long as 60,000 hours (certification for 120,000 hours) and, at the same time, meet the cost and weight requirements for an economically viable aircraft. Current industry baselines focus on flight at Mach 2.4. The research covers four major materials systems: (1) Ingot metallurgy 2XXX, 6XXX, and 8XXX alloys, (2) Powder metallurgy 2XXX alloys, (3) Rapidly solidified, dispersion strengthened Al-Fe-X alloys, and (4) Discontinuously reinforced metal matrix composites. There are ten major tasks in the program which also include evaluation and trade-off studies by Boeing and Douglas aircraft companies.
Recent advances in active noise and vibration control at NASA Langley Research Center
NASA Astrophysics Data System (ADS)
Gibbs, Gary P.; Cabell, Randolph H.; Palumbo, Daniel L.; Silcox, Richard J.; Turner, Travis L.
2002-11-01
Over the past 15 years NASA has investigated the use of active control technology for aircraft interior noise. More recently this work has been supported through the Advanced Subsonic Technology Noise Reduction Program (1994-2001), High Speed Research Program (1994-1999), and through the Quiet Aircraft Technology Program (2000-present). The interior environment is recognized as an important element in flight safety, crew communications and fatigue, as well as passenger comfort. This presentation will overview research in active noise and vibration control relating to interior noise being investigated by NASA. The research to be presented includes: active control of aircraft fuselage sidewall transmission due to turbulent boundary layer or jet noise excitation, active control of interior tones due to propeller excitation of aircraft structures, and adaptive stiffening of structures for noise, vibration, and fatigue control. Work on actuator technology ranging from piezoelectrics, shape memory actuators, and fluidic actuators will be described including applications. Control system technology will be included that is experimentally based, real-time, and adaptive.
Forebody/Inlet of the Joint Strike Fighter Tested at Low Speeds
NASA Technical Reports Server (NTRS)
Johns, Albert L.
1998-01-01
As part of a national cooperative effort to develop a multinational fighter aircraft, a model of a Joint Strike Fighter concept was tested in several NASA Lewis Research Center wind tunnels at low speeds over a range of headwind velocities and model attitudes. This Joint Strike Fighter concept, which is scheduled to go into production in 2005, will greatly improve the range, capability, maneuverability, and survivability of fighter aircraft, and the production program could ultimately be worth $100 billion. The test program was a team effort between Lewis and Lockheed Martin Tactical Aircraft Systems. Testing was completed in September 1997, several weeks ahead of schedule, allowing Lockheed additional time to review the results and analysis data before the next test and resulting in significant cost savings for Lockheed. Several major milestones related to dynamic and steady-state data acquisition and overall model performance were reached during this model test. Results from this program will contribute to both the concept demonstration phase and the production aircraft.
Flight-determined engine exhaust characteristics of an F404 engine in an F-18 airplane
NASA Technical Reports Server (NTRS)
Ennix, Kimberly A.; Burcham, Frank W., Jr.; Webb, Lannie D.
1993-01-01
Personnel at the NASA Langley Research Center (NASA-Langley) and the NASA Dryden Flight Research Facility (NASA-Dryden) recently completed a joint acoustic flight test program. Several types of aircraft with high nozzle pressure ratio engines were flown to satisfy a twofold objective. First, assessments were made of subsonic climb-to-cruise noise from flights conducted at varying altitudes in a Mach 0.30 to 0.90 range. Second, using data from flights conducted at constant altitude in a Mach 0.30 to 0.95 range, engineers obtained a high quality noise database. This database was desired to validate the Aircraft Noise Prediction Program and other system noise prediction codes. NASA-Dryden personnel analyzed the engine data from several aircraft that were flown in the test program to determine the exhaust characteristics. The analysis of the exhaust characteristics from the F-18 aircraft are reported. An overview of the flight test planning, instrumentation, test procedures, data analysis, engine modeling codes, and results are presented.
Design of the Next Generation Aircraft Noise Prediction Program: ANOPP2
NASA Technical Reports Server (NTRS)
Lopes, Leonard V., Dr.; Burley, Casey L.
2011-01-01
The requirements, constraints, and design of NASA's next generation Aircraft NOise Prediction Program (ANOPP2) are introduced. Similar to its predecessor (ANOPP), ANOPP2 provides the U.S. Government with an independent aircraft system noise prediction capability that can be used as a stand-alone program or within larger trade studies that include performance, emissions, and fuel burn. The ANOPP2 framework is designed to facilitate the combination of acoustic approaches of varying fidelity for the analysis of noise from conventional and unconventional aircraft. ANOPP2 integrates noise prediction and propagation methods, including those found in ANOPP, into a unified system that is compatible for use within general aircraft analysis software. The design of the system is described in terms of its functionality and capability to perform predictions accounting for distributed sources, installation effects, and propagation through a non-uniform atmosphere including refraction and the influence of terrain. The philosophy of mixed fidelity noise prediction through the use of nested Ffowcs Williams and Hawkings surfaces is presented and specific issues associated with its implementation are identified. Demonstrations for a conventional twin-aisle and an unconventional hybrid wing body aircraft configuration are presented to show the feasibility and capabilities of the system. Isolated model-scale jet noise predictions are also presented using high-fidelity and reduced order models, further demonstrating ANOPP2's ability to provide predictions for model-scale test configurations.
A Mixed Integer Linear Program for Airport Departure Scheduling
NASA Technical Reports Server (NTRS)
Gupta, Gautam; Jung, Yoon Chul
2009-01-01
Aircraft departing from an airport are subject to numerous constraints while scheduling departure times. These constraints include wake-separation constraints for successive departures, miles-in-trail separation for aircraft bound for the same departure fixes, and time-window or prioritization constraints for individual flights. Besides these, emissions as well as increased fuel consumption due to inefficient scheduling need to be included. Addressing all the above constraints in a single framework while allowing for resequencing of the aircraft using runway queues is critical to the implementation of the Next Generation Air Transport System (NextGen) concepts. Prior work on airport departure scheduling has addressed some of the above. However, existing methods use pre-determined runway queues, and schedule aircraft from these departure queues. The source of such pre-determined queues is not explicit, and could potentially be a subjective controller input. Determining runway queues and scheduling within the same framework would potentially result in better scheduling. This paper presents a mixed integer linear program (MILP) for the departure-scheduling problem. The program takes as input the incoming sequence of aircraft for departure from a runway, along with their earliest departure times and an optional prioritization scheme based on time-window of departure for each aircraft. The program then assigns these aircraft to the available departure queues and schedules departure times, explicitly considering wake separation and departure fix restrictions to minimize total delay for all aircraft. The approach is generalized and can be used in a variety of situations, and allows for aircraft prioritization based on operational as well as environmental considerations. We present the MILP in the paper, along with benefits over the first-come-first-serve (FCFS) scheme for numerous randomized problems based on real-world settings. The MILP results in substantially reduced delays as compared to FCFS, and the magnitude of the savings depends on the queue and departure fix structure. The MILP assumes deterministic aircraft arrival times at the runway queues. However, due to taxi time uncertainty, aircraft might arrive either earlier or later than these deterministic times. Thus, to incorporate this uncertainty, we present a method for using the MILP with "overlap discounted rolling planning horizon". The approach is based on valuing near-term decision results more than future ones. We develop a model of taxitime uncertainty based on real-world data, and then compare the baseline FCFS delays with delays using the above MILP in a simple rolling-horizon method and in the overlap discounted scheme.
Residual Strength Analysis Methodology: Laboratory Coupons to Structural Components
NASA Technical Reports Server (NTRS)
Dawicke, D. S.; Newman, J. C., Jr.; Starnes, J. H., Jr.; Rose, C. A.; Young, R. D.; Seshadri, B. R.
2000-01-01
The NASA Aircraft Structural Integrity (NASIP) and Airframe Airworthiness Assurance/Aging Aircraft (AAA/AA) Programs have developed a residual strength prediction methodology for aircraft fuselage structures. This methodology has been experimentally verified for structures ranging from laboratory coupons up to full-scale structural components. The methodology uses the critical crack tip opening angle (CTOA) fracture criterion to characterize the fracture behavior and a material and a geometric nonlinear finite element shell analysis code to perform the structural analyses. The present paper presents the results of a study to evaluate the fracture behavior of 2024-T3 aluminum alloys with thickness of 0.04 inches to 0.09 inches. The critical CTOA and the corresponding plane strain core height necessary to simulate through-the-thickness effects at the crack tip in an otherwise plane stress analysis, were determined from small laboratory specimens. Using these parameters, the CTOA fracture criterion was used to predict the behavior of middle crack tension specimens that were up to 40 inches wide, flat panels with riveted stiffeners and multiple-site damage cracks, 18-inch diameter pressurized cylinders, and full scale curved stiffened panels subjected to internal pressure and mechanical loads.
40 CFR 87.23 - Exhaust emission standards for Tier 6 and Tier 8 engines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... and Tier 8 engines. 87.23 Section 87.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 87.23 Exhaust emission standards for Tier 6 and Tier 8...
40 CFR 87.23 - Exhaust emission standards for Tier 6 and Tier 8 engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... and Tier 8 engines. 87.23 Section 87.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 87.23 Exhaust emission standards for Tier 6 and Tier 8...
DEVELOPMENT OF CRITERIA AND METHODS FOR EVALUATING TRAINER AIRCRAFT EFFECTIVENESS.
ERIC Educational Resources Information Center
KUSEWITT, J.B.
THE PURPOSE OF THIS STUDY WAS TO DEVELOP A METHOD FOR DETERMINING OBJECTIVE MEASURES OF TRAINER AIRCRAFT EFFECTIVENESS TO EVALUATE PROGRAM ALTERNATIVES FOR TRAINING PILOTS FOR FLEET FIGHTER AND ATTACK-TYPE AIRCRAFT. THE TRAINING SYLLABUS WAS BASED ON AVERAGE STUDENT ABILITY. THE BASIC PROBLEM WAS TO ESTABLISH QUANTITATIVE TIME-DIFFICULTY…
48 CFR 25.407 - Agreement on Trade in Civil Aircraft.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Agreement on Trade in Civil Aircraft. 25.407 Section 25.407 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Trade Agreements 25.407 Agreement on Trade in Civil Aircraft. Under the authority of Section 303 of th...
48 CFR 25.407 - Agreement on Trade in Civil Aircraft.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Agreement on Trade in Civil Aircraft. 25.407 Section 25.407 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Trade Agreements 25.407 Agreement on Trade in Civil Aircraft. Under the authority of Section 303 of th...
48 CFR 25.407 - Agreement on Trade in Civil Aircraft.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Agreement on Trade in Civil Aircraft. 25.407 Section 25.407 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Trade Agreements 25.407 Agreement on Trade in Civil Aircraft. Under the authority of Section 303 of th...
48 CFR 25.407 - Agreement on Trade in Civil Aircraft.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Agreement on Trade in Civil Aircraft. 25.407 Section 25.407 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Trade Agreements 25.407 Agreement on Trade in Civil Aircraft. Under the authority of Section 303 of th...
NASA Technical Reports Server (NTRS)
Wallace, R.; Boyer, M. F.
1972-01-01
These direct measurements are in fair agreement with computations made using a program which considers both basic cosmic ray atmospheric physics and the focusing effect of the earth's magnetic field. These measurements also agree with those made at supersonic jet aircraft altitudes in Rb-57 aircraft. It is concluded that experiments and theory show that the doses received at conventional jet aircraft altitudes are slightly higher than those encountered in supersonic flights at much higher altitudes.
A parametric determination of transport aircraft price
NASA Technical Reports Server (NTRS)
Anderson, J. L.
1975-01-01
Cost per unit weight and other airframe and engine cost relations are given. Power equations representing these relations are presented for six airplane groups: general aircraft, turboprop transports, small jet transports, conventional jet transports, wide-body transports, supersonic transports, and for reciprocating, turboshaft, and turbothrust engines. Market prices calculated for a number of aircraft by use of the equations together with the aircraft characteristics are in reasonably good agreement with actual prices. Such price analyses are of value in the assessment of new aircraft devices and designs and potential research and development programs.
NASA Technical Reports Server (NTRS)
Koenig, D. G.; Stoll, F.; Aoyagi, K.
1981-01-01
The status of ejector development in terms of application to V/STOL aircraft is reported in three categories: aircraft systems and ejector concepts; ejector performance including prediction techniques and experimental data base available; and, integration of the ejector with complete aircraft configurations. Available prediction techniques are reviewed and performance of three ejector designs with vertical lift capability is summarized. Applications of the 'fuselage' and 'short diffuser' ejectors to fighter aircraft are related to current and planned research programs. Recommendations are listed for effort needed to evaluate installed performance.
The F-18 systems research aircraft facility
NASA Technical Reports Server (NTRS)
Sitz, Joel R.
1992-01-01
To help ensure that new aerospace initiatives rapidly transition to competitive U.S. technologies, NASA Dryden Flight Research Facility has dedicated a systems research aircraft facility. The primary goal is to accelerate the transition of new aerospace technologies to commercial, military, and space vehicles. Key technologies include more-electric aircraft concepts, fly-by-light systems, flush airdata systems, and advanced computer architectures. Future aircraft that will benefit are the high-speed civil transport and the National AeroSpace Plane. This paper describes the systems research aircraft flight research vehicle and outlines near-term programs.
Integrated controls pay-off. [for flight/propulsion aircraft systems
NASA Technical Reports Server (NTRS)
Putnam, Terrill W.; Christiansen, Richard S.
1989-01-01
It is shown that the integration of the propulsion and flight control systems for high performance aircraft can help reduce pilot workload while simultaneously increasing overall aircraft performance. Results of the Highly Integrated Digital Electronic Control (HiDEC) flight research program are presented to demonstrate the emerging payoffs of controls integration. Ways in which the performance of fighter aircraft can be improved through the use of propulsion for primary aircraft control are discussed. Research being conducted by NASA with the F-18 High Angle-of Attack Research Vehicle is described.
General Aviation Light Aircraft Propulsion: From the 1940's to the Next Century
NASA Technical Reports Server (NTRS)
Burkardt, Leo A.
1998-01-01
Current general aviation light aircraft are powered by engines that were originally designed in the 1940's. This paper gives a brief history of light aircraft engine development, explaining why the air-cooled, horizontally opposed piston engine became the dominant engine for this class of aircraft. Current engines are fairly efficient, and their designs have been updated through the years, but their basic design and operational characteristics are archaic in comparison to modem engine designs, such as those used in the automotive industry. There have been some innovative engine developments, but in general they have not been commercially successful. This paper gives some insight into the reasons for this lack of success. There is now renewed interest in developing modem propulsion systems for light aircraft, in the fore-front of which is NASA's General Aviation Propulsion (GAP) program. This paper gives an overview of the engines being developed in the GAP program, what they will mean to the general aviation community, and why NASA and its industry partners believe that these new engine developments will bring about a new era in general aviation light aircraft.
NASA Technical Reports Server (NTRS)
1983-01-01
The longitudinal dynamics of a medium range twin-jet or tri-jet transport aircraft are simulated. For the climbing trajectory, the thrust is constrained to maximum value, and for descent, the thrust is set at idle. For cruise, the aircraft is held in the trim condition. For climb or descent, the aircraft is steered to follow either (a) a fixed profile which is input to the program or (b) a profile computed at the beginning of that segment of the run. For climb, the aircraft is steered to maintain the given airspeed as a function of altitude. For descent, the aircraft is steered to maintain the given altitude as a function of range-to-go. In both cases, the control variable is angle-of-attack. The given output trajectory is presented and compared with the input trajectory. Step climb is treated just as climb. For cruise, the Breguet equations are used to compute the fuel burned to achieve a given range and to connect given initial and final values of altitude and Mach number.
Research Pilot C. Gordon Fullerton in Cockpit of TU-144LL SST Flying Laboratory
NASA Technical Reports Server (NTRS)
1998-01-01
NASA Research pilot C. Gordon Fullerton sits in cockpit of TU-144LL SST Flying Laboratory. Fullerton was one of two NASA pilots who flew the aircraft as part of a joint high speed research program. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in production-model aircraft. Fifty experiments were proposed for the program and eight were selected, including six flight and two ground (engine) tests. The flight experiments included studies of the aircraft's exterior surface, internal structure, engine temperatures, boundary-layer airflow, the wing's ground-effect characteristics, interior and exterior noise, handling qualities in various flight profiles, and in-flight structural flexibility. The ground tests studied the effect of air inlet structures on airflow entering the engine and the effect on engine performance when supersonic shock waves rapidly change position in the engine air inlet. A second phase of testing further studied the original six in-flight experiments with additional instrumentation installed to assist in data acquisition and analysis. A new experiment aimed at measuring the in-flight deflections of the wing and fuselage was also conducted. American-supplied transducers and sensors were installed to measure nose boom pressures, angle of attack, and sideslip angles with increased accuracy. Two NASA pilots, Robert Rivers of Langley Research Center, Hampton, Virginia, and Gordon Fullerton from Dryden Flight Research Center, Edwards, California, assessed the aircraft's handling at subsonic and supersonic speeds during three flight tests in September 1998. The program concluded after four more data-collection flights in the spring of 1999. The Tu-144LL model had new Kuznetsov NK-321 turbofan engines rated at more than 55,000 pounds of thrust in full afterburner. The aircraft is 215 feet, 6 inches long and 42 feet, 2 inches high with a wingspan of 94 feet, 6 inches. The aircraft is constructed mostly of light aluminum alloy with titanium and stainless steel on the leading edges, elevons, rudder, and the under-surface of the rear fuselage.
Russian Tu-144LL SST Roll-out for Joint NASA Research Program
NASA Technical Reports Server (NTRS)
1996-01-01
U.S. Ambassador Pickering addresses Russian and American dignitaries, industry representatives and members of the press during a roll-out ceremony for the modified Tu-144LL supersonic flying laboratory. The ceremony was held at the Zhukovsky Air Development Center near Moscow, Russia, on March 17, 1996. The 'LL' designation for the aircraft stands for Letayuschaya Laboratoriya, which means Flying Laboratory in Russian. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in production-model aircraft. Fifty experiments were proposed for the program and eight were selected, including six flight and two ground (engine) tests. The flight experiments included studies of the aircraft's exterior surface, internal structure, engine temperatures, boundary-layer airflow, the wing's ground-effect characteristics, interior and exterior noise, handling qualities in various flight profiles, and in-flight structural flexibility. The ground tests studied the effect of air inlet structures on airflow entering the engine and the effect on engine performance when supersonic shock waves rapidly change position in the engine air inlet. A second phase of testing further studied the original six in-flight experiments with additional instrumentation installed to assist in data acquisition and analysis. A new experiment aimed at measuring the in-flight deflections of the wing and fuselage was also conducted. American-supplied transducers and sensors were installed to measure nose boom pressures, angle of attack, and sideslip angles with increased accuracy. Two NASA pilots, Robert Rivers of Langley Research Center, Hampton, Virginia, and Gordon Fullerton from Dryden Flight Research Center, Edwards, California, assessed the aircraft's handling at subsonic and supersonic speeds during three flight tests in September 1998. The program concluded after four more data-collection flights in the spring of 1999. The Tu-144LL model had new Kuznetsov NK-321 turbofan engines rated at more than 55,000 pounds of thrust in full afterburner. The aircraft is 215 feet, 6 inches long and 42 feet, 2 inches high with a wingspan of 94 feet, 6 inches. The aircraft is constructed mostly of light aluminum alloy with titanium and stainless steel on the leading edges, elevons, rudder, and the under-surface of the rear fuselage.
Historical Review of Uncommanded Lateral-Directional Motions at Transonic Conditions
NASA Technical Reports Server (NTRS)
Chambers, Joseph R.; Hall, Robert M.
2003-01-01
This paper presents the results of a survey of past experiences with uncommanded lateral-directional motions at transonic speeds during specific military aircraft programs. The effort was undertaken to provide qualitative and quantitative information on past airplane programs that might be of use to the participants in the joint NASA/Navy/Air Force Abrupt Wing Stall (AWS) Program. The AWS Program was initiated because of the experiences of the F/A-l8E/F development program, during which unexpected, severe wing-drop motions were encountered by preproduction aircraft at transonic conditions. These motions were judged to be significantly degrading to the primary mission requirements of the aircraft. Although the problem was subsequently solved for the production version of the F/A-l8E/F, a high-level review panel emphasized the poor understanding of such phenomena and issued a strong recommendation to: "Initiate a national research effort to thoroughly and systematically study the wing drop phenomena." A comprehensive, cooperative NASA/Navy/Air Force AWS Program was designed to respond to provide the required technology requirements. As part of the AWS Program, a work element was directed at a historical review of wing-drop experiences in past aircraft development programs at high subsonic and transonic speeds. In particular, information was requested regarding: specific aircraft configurations that exhibited uncommanded motions and the nature of the motions; geometric characteristics of the air- planes; flight conditions involved in occurrences; relevant data, including wind-tunnel, computational, and flight sources; figures of merit used for analyses; and approaches used to alleviate the problem. An attempt was also made to summarize some of the more important lessons learned from past experiences, and to recommend specific research efforts. In addition to providing technical information to assist the AWS research objectives, the study produced fundamental information regarding the historical challenge of uncommanded lateral-directional motions at transonic conditions and the associated aerodynamic phenomena.
Historical Review of Uncommanded Lateral-Directional Motions At Transonic Conditions (Invited)
NASA Technical Reports Server (NTRS)
Chambers, Joseph R.; Hall, Robert M.
2003-01-01
This paper presents the results of a survey of past experiences with uncommanded lateral-directional motions at transonic speeds during specific military aircraft programs. The effort was undertaken to provide qualitative and quantitative information on past airplane programs that might be of use to the participants in the joint NASA/Navy/Air Force Abrupt Wing Stall (AWS) Program. The AWS Program was initiated because of the experiences of the F/A-18E/F development program, during which unexpected, severe wing-drop motions were encountered by preproduction aircraft at transonic conditions. These motions were judged to be significantly degrading to the primary mission requirements of the aircraft. Although the problem was subsequently solved for the production version of the F/A-l8E/F, a high-level review panel emphasized the poor understanding of such phenomena and issued a strong recommendation to: Initiate a national research effort to thoroughly and systematically study the wing drop phenomena. A comprehensive, cooperative NASA/Navy/Air Force AWS Program was designed to respond to provide the required technology requirements. As part of the AWS Program, a work element was directed at a historical review of wing-drop experiences in past aircraft development programs at high subsonic and transonic speeds. In particular, information was requested regarding: specific aircraft configurations that exhibited uncommanded motions and the nature of the motions; geometric characteristics of the air- planes; flight conditions involved in occurrences; relevant data, including wind-tunnel, computational, and flight sources; figures of merit used for analyses; and approaches used to alleviate the problem. An attempt was also made to summarize some of the more important lessons learned from past experiences, and to recommend specific research efforts. In addition to providing technical information to assist the AWS research objectives, the study produced fundamental information regarding the historical challenge of uncommanded lateral-directional motions at transonic conditions and the associated aerodynamic phenomena.
The Joint Winter Runway Friction Measurement Program: NASA Perspective
NASA Technical Reports Server (NTRS)
Yager, Thomas J.
1996-01-01
Some background information is given together with the scope and objectives of the 5-year, Joint National Aeronautics & Space Administration (NASA)/Transport Canada (TC)/Federal Aviation Administration (FAA) Winter Runway Friction Measurement Program. The range of the test equipment, the selected test sites and a tentative test program schedule are described. NASA considers the success of this program critical in terms of insuring adequate ground handling performance capability in adverse weather conditions for future aircraft being designed and developed as well as improving the safety of current aircraft ground operations.
Operational considerations for laminar flow aircraft
NASA Technical Reports Server (NTRS)
Maddalon, Dal V.; Wagner, Richard D.
1986-01-01
Considerable progress has been made in the development of laminar flow technology for commercial transports during the NASA Aircraft Energy Efficiency (ACEE) laminar flow program. Practical, operational laminar flow control (LFC) systems have been designed, fabricated, and are undergoing flight testing. New materials, fabrication methods, analysis techniques, and design concepts were developed and show much promise. The laminar flow control systems now being flight tested on the NASA Jetstar aircraft are complemented by natural laminar flow flight tests to be accomplished with the F-14 variable-sweep transition flight experiment. An overview of some operational aspects of this exciting program is given.
ACEE composite structures technology
NASA Technical Reports Server (NTRS)
Klotzsche, M. (Compiler)
1984-01-01
The NASA Aircraft Energy Efficiency (ACEE) Composite Primary Aircraft Structures Program has made significant progress in the development of technology for advanced composites in commercial aircraft. Commercial airframe manufacturers have demonstrated technology readiness and cost effectiveness of advanced composites for secondary and medium primary components and have initiated a concerted program to develop the data base required for efficient application to safety-of-flight wing and fuselage structures. Oral presentations were compiled into five papers. Topics addressed include: damage tolerance and failsafe testing of composite vertical stabilizer; optimization of composite multi-row bolted joints; large wing joint demonstation components; and joints and cutouts in fuselage structure.
Investigation of air transportation technology at Princeton University, 1992-1993
NASA Technical Reports Server (NTRS)
Stengel, Robert F.
1994-01-01
The Air Transportation Research Program at Princeton University proceeded along five avenues during the past year: (1) Flight Control System Robustness; (2) Microburst Hazards to Aircraft; (3) Wind Rotor Hazards to Aircraft; (4) Intelligent Aircraft/Airspace Systems; and (5) Aerospace Optical Communications. This research resulted in a number of publications, including theses, archival papers, and conference papers. An annotated bibliography of publications that appeared between June 1992 and June 1993 is included. The research that these papers describe was supported in whole or in part by the Joint University Program, including work that was completed prior to the reporting period.
Factors Affecting the Corporate Decision-Making Process of Air Transport Manufacturers
NASA Technical Reports Server (NTRS)
Ollila, R. G.; Hill, J. D.; Noton, B. R.; Duffy, M. A.; Epstein, M. M.
1976-01-01
Fuel economy is a pivotal question influencing the future sale and utilization of commercial aircraft. The NASA Aircraft Energy Efficiency (ACEE) Program Office has a program intended to accelerate the readiness of advanced technologies for energy efficient aircraft. Because the decision to develop a new airframe or engine is a major financial hazard for manufacturers, it is important to know what factors influence the decision making process. A method is described for identifying and ranking individuals and organizations involved at each stage of commercial air transport development, and the barriers that must be overcome in adopting new technologies.
Pegasus Mated to B-52 Mothership - Front View
NASA Technical Reports Server (NTRS)
1991-01-01
NASA's B-52 launch aircraft takes off with the second Pegasus vehicle under its wing from the Dryden Flight Research Facility (now the Dryden Flight Research Center), Edwards, California. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
Tu-144LL SST Flying Laboratory on Taxiway at Zhukovsky Air Development Center near Moscow, Russia
NASA Technical Reports Server (NTRS)
1998-01-01
The sleek lines of the Tupolev Tu-144LL are evident as it sits on the taxiway at the Zhukovsky Air Development Center near Moscow, Russia. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in production-model aircraft. Fifty experiments were proposed for the program and eight were selected, including six flight and two ground (engine) tests. The flight experiments included studies of the aircraft's exterior surface, internal structure, engine temperatures, boundary-layer airflow, the wing's ground-effect characteristics, interior and exterior noise, handling qualities in various flight profiles, and in-flight structural flexibility. The ground tests studied the effect of air inlet structures on airflow entering the engine and the effect on engine performance when supersonic shock waves rapidly change position in the engine air inlet. A second phase of testing further studied the original six in-flight experiments with additional instrumentation installed to assist in data acquisition and analysis. A new experiment aimed at measuring the in-flight deflections of the wing and fuselage was also conducted. American-supplied transducers and sensors were installed to measure nose boom pressures, angle of attack, and sideslip angles with increased accuracy. Two NASA pilots, Robert Rivers of Langley Research Center, Hampton, Virginia, and Gordon Fullerton from Dryden Flight Research Center, Edwards, California, assessed the aircraft's handling at subsonic and supersonic speeds during three flight tests in September 1998. The program concluded after four more data-collection flights in the spring of 1999. The Tu-144LL model had new Kuznetsov NK-321 turbofan engines rated at more than 55,000 pounds of thrust in full afterburner. The aircraft is 215 feet, 6 inches long and 42 feet, 2 inches high with a wingspan of 94 feet, 6 inches. The aircraft is constructed mostly of light aluminum alloy with titanium and stainless steel on the leading edges, elevons, rudder, and the under-surface of the rear fuselage.
Tu-144LL SST Flying Laboratory Lifts off Runway on a High-Speed Research Flight
NASA Technical Reports Server (NTRS)
1998-01-01
The Tupolev Tu-144LL lifts off from the Zhukovsky Air Development Center near Moscow, Russia, on a 1998 test flight. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in production-model aircraft. Fifty experiments were proposed for the program and eight were selected, including six flight and two ground (engine) tests. The flight experiments included studies of the aircraft's exterior surface, internal structure, engine temperatures, boundary-layer airflow, the wing's ground-effect characteristics, interior and exterior noise, handling qualities in various flight profiles, and in-flight structural flexibility. The ground tests studied the effect of air inlet structures on airflow entering the engine and the effect on engine performance when supersonic shock waves rapidly change position in the engine air inlet. A second phase of testing further studied the original six in-flight experiments with additional instrumentation installed to assist in data acquisition and analysis. A new experiment aimed at measuring the in-flight deflections of the wing and fuselage was also conducted. American-supplied transducers and sensors were installed to measure nose boom pressures, angle of attack, and sideslip angles with increased accuracy. Two NASA pilots, Robert Rivers of Langley Research Center, Hampton, Virginia, and Gordon Fullerton from Dryden Flight Research Center, Edwards, California, assessed the aircraft's handling at subsonic and supersonic speeds during three flight tests in September 1998. The program concluded after four more data-collection flights in the spring of 1999. The Tu-144LL model had new Kuznetsov NK-321 turbofan engines rated at more than 55,000 pounds of thrust in full afterburner. The aircraft is 215 feet, 6 inches long and 42 feet, 2 inches high with a wingspan of 94 feet, 6 inches. The aircraft is constructed mostly of light aluminum alloy with titanium and stainless steel on the leading edges, elevons, rudder, and the under-surface of the rear fuselage.
MQ-9 Reaper Unmanned Aircraft System (MQ-9 Reaper)
2015-12-01
Selected Acquisition Report ( SAR ) RCS: DD-A&T(Q&A)823-424 MQ-9 Reaper Unmanned Aircraft System (MQ-9 Reaper) As of FY 2017 President’s Budget...Defense Acquisition Management Information Retrieval (DAMIR) March 23, 2016 16:18:05 UNCLASSIFIED MQ-9 Reaper December 2015 SAR March 23, 2016 16:18:05...2015 SAR March 23, 2016 16:18:05 UNCLASSIFIED 3 PB - President’s Budget PE - Program Element PEO - Program Executive Officer PM - Program Manager
HC/MC-130 Recapitalization Aircraft (HC/MC-130 Recap)
2015-12-01
Selected Acquisition Report ( SAR ) RCS: DD-A&T(Q&A)823-257 HC/MC-130 Recapitalization Aircraft (HC/MC-130 Recap) As of FY 2017 President’s Budget...Defense Acquisition Management Information Retrieval (DAMIR) March 18, 2016 08:18:54 UNCLASSIFIED HC/MC-130 Recap December 2015 SAR March 18, 2016...Recap December 2015 SAR March 18, 2016 08:18:54 UNCLASSIFIED 3 PB - President’s Budget PE - Program Element PEO - Program Executive Officer PM - Program
The Chorus Conflict and Loss of Separation Resolution Algorithms
NASA Technical Reports Server (NTRS)
Butler, Ricky W.; Hagen, George E.; Maddalon, Jeffrey M.
2013-01-01
The Chorus software is designed to investigate near-term, tactical conflict and loss of separation detection and resolution concepts for air traffic management. This software is currently being used in two different problem domains: en-route self- separation and sense and avoid for unmanned aircraft systems. This paper describes the core resolution algorithms that are part of Chorus. The combination of several features of the Chorus program distinguish this software from other approaches to conflict and loss of separation resolution. First, the program stores a history of state information over time which enables it to handle communication dropouts and take advantage of previous input data. Second, the underlying conflict algorithms find resolutions that solve the most urgent conflict, but also seek to prevent secondary conflicts with the other aircraft. Third, if the program is run on multiple aircraft, and the two aircraft maneuver at the same time, the result will be implicitly co-ordinated. This implicit coordination property is established by ensuring that a resolution produced by Chorus will comply with a mathematically-defined criteria whose correctness has been formally verified. Fourth, the program produces both instantaneous solutions and kinematic solutions, which are based on simple accel- eration models. Finally, the program provides resolutions for recovery from loss of separation. Different versions of this software are implemented as Java and C++ software programs, respectively.
F-16XL Ship #2 in hangar for Laminar Flow Glove mounting
NASA Technical Reports Server (NTRS)
1995-01-01
NASA's two-seat F-16XL research aircraft is shown in the modification hangar at the Dryden Flight Research Center, Edwards, California, during installation of a titanium 'glove' on the upper surface of its modified left wing. The aircraft subsequently concluded a 13 month-long, 45-flight research program which investigated drawing off a small portion of the boundary-layer air in order to provide laminar -- or smooth -- flow over a major portion of a wing flying at supersonic speeds. A turbo-compressor in the aircraft's fuselage provided suction to draw air through more than 10 million tiny laser-drilled holes in the glove via a manifold system employing 20 valves. Data obtained during the program could assist designers of future high-speed aircraft in developing a more efficient civil transport.
F-16XL Ship #2 Laminar Flow Glove mounting
NASA Technical Reports Server (NTRS)
1995-01-01
NASA's two-seat F-16XL research aircraft is shown in the modification hangar at NASA's Dryden Flight Research Center, Edwards, California, during installation of a titanium 'glove' on the upper surface of its modified left wing. The aircraft subsequently carried out a 13-month-long, 45-flight research program which investigated drawing off a small part of the boundary-layer air in order to provide laminar--or smooth--flow over a major portion of a wing flying at supersonic speeds. A turbo-compressor in the aircraft's fuselage provided suction to draw air through more than 10 million tiny laser-drilled holes in the glove via a manifold system employing 20 valves. Data obtained during the program could assist designers of future aircraft in developing a more efficient high-speed civil transport.
NASA Technical Reports Server (NTRS)
Lee, J. T.
1984-01-01
As part of continuing research on aviation related weather hazards, numerous experiments were incorporated into the 1983 Spring Observation Program. This year's program was an abbreviated one because of commitments made to the development of the Next Generation Radar (NEXRAD) project. The National Oceanic and Atmospheric Administration's (NOAA) P-3 Orion and the National Aeronautics and Space Administration's (NASA) RB-57B and U-2 were the main aircraft involved in the studies of lightning, wind shear, turbulence, and storm structure. A total of 14 flights were made by these aircraft during the period of May 16 through June 5, 1983. Aircraft instrumentation experiments are described, and resultant data sets available for research are detailed. Aircraft instrumentation and Doppler radar characteristics are detailed.
76 FR 29335 - Qualification, Service, and Use of Crewmembers and Aircraft Dispatchers
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-20
...On January 12, 2009, the FAA published a notice of proposed rulemaking on qualification, service, and use of crewmembers and aircraft dispatchers. Because of the complexity of the issues and the concerns raised by commenters, the FAA is issuing this supplemental notice of proposed rulemaking. The FAA proposes to amend the regulations for crewmember and aircraft dispatcher training programs in domestic, flag, and supplemental operations. The proposed regulations enhance traditional training programs by requiring the use of flight simulation training devices for flightcrew members and including additional training and evaluation requirements for all crewmembers and aircraft dispatchers in areas that are critical to safety. The proposal also reorganizes and revises the qualification, training, and evaluation requirements. The proposed changes are intended to contribute significantly to reducing aviation accidents.
The Attributes of a Variable-Diameter Rotor System Applied to Civil Tiltrotor Aircraft
NASA Technical Reports Server (NTRS)
Brender, Scott; Mark, Hans; Aguilera, Frank
1996-01-01
The attributes of a variable diameter rotor concept applied to civil tiltrotor aircraft are investigated using the V/STOL aircraft sizing and performance computer program (VASCOMP). To begin, civil tiltrotor viability issues that motivate advanced rotor designs are discussed. Current work on the variable diameter rotor and a theoretical basis for the advantages of the rotor system are presented. The size and performance of variable diameter and conventional tiltrotor designs for the same baseline mission are then calculated using a modified NASA Ames version of VASCOMP. The aircraft are compared based on gross weight, fuel required, engine size, and autorotative performance for various hover disk loading values. Conclusions about the viability of the resulting designs are presented and a program for further variable diameter rotor research is recommended.
An overview of the joint FAA/NASA aircraft/ground runway friction program
NASA Technical Reports Server (NTRS)
Yager, Thomas J.
1989-01-01
There is a need for information on runways which may become slippery due to various forms and types of contaminants. Experience has shown that since the beginning of all weather aircraft operations, there have been landing and aborted takeoff incidents and/or accidents each year where aircraft have either run off the end or veered off the shoulder of low friction runways. NASA Langley's Landing and Impact Dynamics Branch is involved in several research programs directed towards obtaining a better understanding of how different tire properties interact with varying pavement surface characteristics to produce acceptable performance for aircraft ground handling requirements. One such effort, which was jointly supported by not only NASA and the FAA but by several aviation industry groups including the Flight Safety Foundation, is described.
X-Wing RSRA - 80 Knot Taxi Test
NASA Technical Reports Server (NTRS)
1987-01-01
The Rotor Systems Research Aircraft/X-Wing, a vehicle that was used to demonstrate an advanced rotor/fixed wing concept called X-Wing, is shown here during high-speed taxi tests at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, on 4 November 1987. During these tests, the vehicle made three taxi tests at speeds of up to 138 knots. On the third run, the RSRA/X-Wing lifted off the runway to a 25-foot height for about 16 seconds. This liftoff maneuver was pre-planned as an aid to evaluations for first flight. At the controls were NASA pilot G. Warren Hall and Sikorsky pilot W. Faull. The unusual aircraft that resulted from the Ames Research Center/Army X-Wing Project was flown at the Ames-Dryden Flight Research Facility (now Dryden Flight Research Center), Edwards, California, beginning in the spring of 1984, with a follow-on program beginning in 1986. The program, was conceived to provide an efficient combination of the vertical lift characteristic of conventional helicopters and the high cruise speed of fixed-wing aircraft. It consisted of a hybrid vehicle called the NASA/Army Rotor Systems Research Aircraft (RSRA), which was equipped with advanced X-wing rotor systems. The program began in the early 1970s to investigate ways to increase the speed of rotor aircraft, as well as their performance, reliability, and safety . It also sought to reduce the noise, vibration, and maintenance costs of helicopters. Sikorsky Aircraft Division of United Technologies Laboratories built two RSRA aircraft. NASA's Langley Research Center, Hampton, Virginia, did some initial testing and transferred the program to Ames Research Center, Mountain View, California, for an extensive flight research program conducted by Ames and the Army. The purpose of the 1984 tests was to demonstrate the fixed-wing capability of the helicopter/airplane hybrid research vehicle and explore its flight envelope and flying qualities. These tests, flown by Ames pilot G. Warren Hall and Army Maj (soon promoted to Lt. Col.) Patrick Morris, began in May and continued until October 1984, when the RSRA vehicle returned to Ames. The project manager at Dryden for the flights was Wen Painter. These early tests were preparatory for a future X-Wing rotor flight test project to be sponsored by NASA, the Defense Advanced Research Projects Agency (DARPA), and Sikorsky Aircraft. A later derivative X-Wing flew in 1987. The modified RSRA was developed to provide a vehicle for in-flight investigation and verification of new helicopter rotor-system concepts and supporting technology. The RSRA could be configured to fly as an airplane with fixed wings, as a helicopter, or as a compound vehicle that could transition between the two configurations. NASA and DARPA selected Sikorsky in 1984 to convert one of the original RSRAs to the new demonstrator aircraft for the X-Wing concept. Developers of X-Wing technology did not view the X-Wing as a replacement for either helicopters (rotor aircraft) or fixed-wing aircraft. Instead, they envisioned it as an aircraft with special enhanced capabilities to perform missions that call for the low-speed efficiency and maneuverability of helicopters combined with the high cruise speed of fixed-wing aircraft. Some such missions include air-to-air and air-to-ground tactical operations, airborne early warning, electronic intelligence, antisubmarine warfare, and search and rescue. The follow-on X-Wing project was managed by James W. Lane, chief of the RSRA/X-Wing Project Office, Ames Research Center. Coordinating the Ames-Dryden flight effort in 1987 was Jack Kolf. The X-Wing project was a joint effort of NASA-Ames, DARPA, the U.S. Army, and Sikorsky Aircraft, Stratford, Connecticut. The modified X-Wing aircraft was delivered to Ames-Dryden by Sikorsky Aircraft on September 25, 1986. Following taxi tests, initial flights in the aircraft mode without main rotors attached took place at Dryden in December 1997. Ames research pilot G. Warren Hall and Sikorsky's W. Richard Faull were the pilots. The contract with Sikorsky ended that month, and the program ended in January 1988.
X-31 in flight - Double Reversal
NASA Technical Reports Server (NTRS)
1995-01-01
Two X-31 Enhanced Fighter Maneuverability (EFM) demonstrators were flown at the Rockwell International facility, Palmdale, California, and the NASA Dryden Flight Research Center, Edwards, California, to obtain data that may apply to the design of highly-maneuverable next-generation fighters. The program had its first flight on October 11, 1990, in Palmdale; it ended in June 1995. The X-31 program demonstrated the value of thrust vectoring (directing engine exhaust flow) coupled with advanced flight control systems, to provide controlled flight during close-in air combat at very high angles of attack. The result of this increased maneuverability is an airplane with a significant advantage over conventional fighters. 'Angle-of-attack' (alpha) is an engineering term to describe the angle of an aircraft body and wings relative to its actual flight path. During maneuvers, pilots often fly at extreme angles of attack -- with the nose pitched up while he aircraft continues in its original direction. This can lead to loss of control and result in the loss of the aircraft, pilot or both. Three thrust-vectoring paddles made of graphite epoxy mounted on the exhaust nozzle of the X-31 aircraft directed the exhaust flow to provide control in pitch (up and down) and yaw (right and left) to improve control. The paddles can sustain heat of up to 1,500 degrees centigrade for extended periods of time. In addition the X-31 aircraft were configured with movable forward canards and fixed aft strakes. The canards were small wing-like structures set on the wing line between the nose and the leading edge of the wing. The strakes were set on the same line between the trailing edge of the wing and the engine exhaust. Both supplied additional control in tight maneuvering situations. The X-31 research program produced technical data at high angles of attack. This information is giving engineers and aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. This understanding is expected to lead to design methods that provide better maneuverability in future high performance aircraft and make them safer to fly. An international test organization of about 110 people, managed by the Advanced Research Projects Agency (ARPA), conducted the flight operations at NASA Dryden. The ARPA had requested flight research for the X-31 aircraft be moved there in February 1992. In addition to ARPA and NASA, the international test organization (ITO) included the U.S. Navy, the U.S. Air Force, Rockwell International, the Federal Republic of Germany, and Daimler-Benz Aerospace (formerly Messerschmitt-Bolkow-Blohm and Deutsche Aerospace). NASA was responsible for flight research operations, aircraft maintenance, and research engineering once the program moved to Dryden. The No. 1 X-31 aircraft was lost in an accident Jan. 19, 1995. The pilot, Karl Heinz-Lang, of the Federal Republic of Germany, ejected safely before the aircraft crashed in an unpopulated desert area just north of Edwards. The X-31 program logged an X-plane record of 580 flights during the program, including 555 research missions and 21 in Europe for the 1995 Paris Air Show. A total of 14 pilots representing all agencies of the ITO flew the aircraft. This 39-second clip begins as the X-31 performs a short loop at the top of a stall maneuver, then quickly reverses its course first left, then right by means of thrust vectoring -- thereby gaining a tactical advantage over a putative opponent in air-to-air combat.
Analysis of wind profile measurements from an instrumented aircraft
NASA Technical Reports Server (NTRS)
Paige, Terry S.; Murphy, Patrick J.
1990-01-01
The results of an experimental program to determine the capability of measuring wind profiles on support of STS operations with an instrumented aircraft are discussed. These results are a compilation of the flight experiments and the statistical data comparing the quality of the aircraft measurements with quasi-simultaneous and quasi-spatial overlapping Jimsphere measurements. An instrumented aircraft was chosen as a potential alternative to the Jimsphere/radar system for expediting the wind profile calculation by virtue of the ability of an aircraft to traverse the altitudes of interest in roughly 10 minutes. The two aircraft which participated in the study were F-104 and ER-2.
NASA Sea Ice and Snow Validation Program for the DMSP SSM/I: NASA DC-8 flight report
NASA Technical Reports Server (NTRS)
Cavalieri, D. J.
1988-01-01
In June 1987 a new microwave sensor called the Special Sensor Microwave Imager (SSM/I) was launched as part of the Defense Meteorological Satellite Program (DMSP). In recognition of the importance of this sensor to the polar research community, NASA developed a program to acquire the data, to convert the data into sea ice parameters, and finally to validate and archive both the SSM/I radiances and the derived sea ice parameters. Central to NASA's sea ice validation program was a series of SSM/I aircraft underflights with the NASA DC-8 airborne Laboratory. The mission (the Arctic '88 Sea Ice Mission) was completed in March 1988. This report summarizes the mission and includes a summary of aircraft instrumentation, coordination with participating Navy aircraft, flight objectives, flight plans, data collected, SSM/I orbits for each day during the mission, and lists several piggyback experiments supported during this mission.
The atmospheric effects of stratospheric aircraft: A topical review
NASA Technical Reports Server (NTRS)
Johnston, Harold S.; Prather, M. J.; Watson, R. T.
1991-01-01
In the late 1960s the aircraft industry became interested in developing a fleet of supersonic transports (SSTs). Between 1972 and 1975, the Climatic Impact Assessment Program (CIAP) studied the possible environmental impact of SSTs. For environmental and economic reasons, the fleet of SSTs was not developed. The Upper Atmosphere Research Program (UARP) has recently undertaken the responsibility of directing scientific research needed to assess the atmospheric impact of supersonic transports. The UARP and the High-Speed Research Program asked Harold Johnston to review the current understanding of aircraft emissions and their effect on the stratosphere. Johnston and his colleagues have recently re-examined the SST problem using current models for stratospheric ozone chemistry. A unique view is given here of the current scientific issues and the lessons learned since the beginning of CIAP, and it links the current research program with the assessment process that began two years ago.
Cabin noise and weight reduction program for the Gulfstream G200
NASA Astrophysics Data System (ADS)
Barton, C. Kearney
2002-11-01
This paper describes the approach and logic involved in a cabin noise and weight reduction program for an existing aircraft that was already in service with a pre-existing insulation package. The aircraft, a Gulfstream G200, was formally an IAI Galaxy, and the program was purchased from IAI in 2001. The approach was to investigate every aspect of the aircraft that could be a factor for cabin noise. This included such items as engine mounting and balancing criteria, the hydraulic system, the pressurization and air-conditioning system, the outflow valve, the interior shell and mounting system, antennae and other hull protuberances, as well as the insulation package. Each of these items was evaluated as potential candidates for noise and weight control modifications. Although the program is still ongoing, the results to date include a 175-lb weight savings and a 5-dB reduction in the cabin average Speech Interference Level (SIL).
The vehicle design evaluation program - A computer-aided design procedure for transport aircraft
NASA Technical Reports Server (NTRS)
Oman, B. H.; Kruse, G. S.; Schrader, O. E.
1977-01-01
The vehicle design evaluation program is described. This program is a computer-aided design procedure that provides a vehicle synthesis capability for vehicle sizing, external load analysis, structural analysis, and cost evaluation. The vehicle sizing subprogram provides geometry, weight, and balance data for aircraft using JP, hydrogen, or methane fuels. The structural synthesis subprogram uses a multistation analysis for aerodynamic surfaces and fuselages to develop theoretical weights and geometric dimensions. The parts definition subprogram uses the geometric data from the structural analysis and develops the predicted fabrication dimensions, parts material raw stock buy requirements, and predicted actual weights. The cost analysis subprogram uses detail part data in conjunction with standard hours, realization factors, labor rates, and material data to develop the manufacturing costs. The program is used to evaluate overall design effects on subsonic commercial type aircraft due to parameter variations.
Multiplexing electro-optic architectures for advanced aircraft integrated flight control systems
NASA Technical Reports Server (NTRS)
Seal, D. W.
1989-01-01
This report describes the results of a 10 month program sponsored by NASA. The objective of this program was to evaluate various optical sensor modulation technologies and to design an optimal Electro-Optic Architecture (EOA) for servicing remote clusters of sensors and actuators in advanced aircraft flight control systems. The EOA's supply optical power to remote sensors and actuators, process the modulated optical signals returned from the sensors, and produce conditioned electrical signals acceptable for use by a digital flight control computer or Vehicle Management System (VMS) computer. This study was part of a multi-year initiative under the Fiber Optic Control System Integration (FOCSI) program to design, develop, and test a totally integrated fiber optic flight/propulsion control system for application to advanced aircraft. Unlike earlier FOCSI studies, this program concentrated on the design of the EOA interface rather than the optical transducer technology itself.
Simulated Wake Characteristics Data for Closely Spaced Parallel Runway Operations Analysis
NASA Technical Reports Server (NTRS)
Guerreiro, Nelson M.; Neitzke, Kurt W.
2012-01-01
A simulation experiment was performed to generate and compile wake characteristics data relevant to the evaluation and feasibility analysis of closely spaced parallel runway (CSPR) operational concepts. While the experiment in this work is not tailored to any particular operational concept, the generated data applies to the broader class of CSPR concepts, where a trailing aircraft on a CSPR approach is required to stay ahead of the wake vortices generated by a lead aircraft on an adjacent CSPR. Data for wake age, circulation strength, and wake altitude change, at various lateral offset distances from the wake-generating lead aircraft approach path were compiled for a set of nine aircraft spanning the full range of FAA and ICAO wake classifications. A total of 54 scenarios were simulated to generate data related to key parameters that determine wake behavior. Of particular interest are wake age characteristics that can be used to evaluate both time- and distance- based in-trail separation concepts for all aircraft wake-class combinations. A simple first-order difference model was developed to enable the computation of wake parameter estimates for aircraft models having weight, wingspan and speed characteristics similar to those of the nine aircraft modeled in this work.
Increased prevalence of hypertension in a population exposed to aircraft noise
Rosenlund, M; Berglind, N; Pershagen, G; Jarup, L; Bluhm, G
2001-01-01
OBJECTIVES—To investigate whether there is a relation between residential exposure to aircraft noise and hypertension. METHODS—The study population comprised two random samples of subjects aged 19-80 years, one including 266 residents in the vicinity of Stockholm Arlanda airport, and another comprising 2693 inhabitants in other parts of Stockholm county. The subjects were classified according to the time weighted equal energy and maximum aircraft noise levels at their residence. A questionnaire provided information on individual characteristics including history of hypertension. RESULTS—The prevalence odds ratio for hypertension adjusted for age, sex, smoking, and education was 1.6 (95% confidence interval (95% CI) 1.0 to 2.5) among those with energy averaged aircraft noise levels exceeding 55 dBA, and 1.8 (95% CI 1.1 to 2.8) among those with maximum aircraft noise levels exceeding 72 dBA. An exposure-response relation was suggested for both exposure measures. The exposure to aircraft noise seemed particularly important for older subjects and for those not reporting impaired hearing ability. CONCLUSIONS—Community exposure to aircraft noise may be associated with hypertension. PMID:11706142
A Comparison of Combustor-Noise Models
NASA Technical Reports Server (NTRS)
Hultgren, Lennart, S.
2012-01-01
The current status of combustor-noise prediction in the NASA Aircraft Noise Prediction Program (ANOPP) for current-generation (N) turbofan engines is summarized. Best methods for near-term updates are reviewed. Long-term needs and challenges for the N+1 through N+3 timeframe are discussed. This work was carried out under the NASA Fundamental Aeronautics Program, Subsonic Fixed Wing Project, Quiet Aircraft Subproject.
Air Force KC-X Tanker Aircraft Program: Background and Issues for Congress
2009-10-05
General ..................................................................................................................... 12 Best Value vs . Lowest...Druyan was a single “bad apple ” and that her actions did not negate the merits of leasing Boeing 767s for use as tankers. In February 2005, however...Force KC-X Tanker Aircraft Program: Background and Issues for Congress Congressional Research Service 17 Best Value vs . Lowest Cost The question of
NASA Technical Reports Server (NTRS)
Teren, F.
1977-01-01
Minimum time accelerations of aircraft turbofan engines are presented. The calculation of these accelerations was made by using a piecewise linear engine model, and an algorithm based on nonlinear programming. Use of this model and algorithm allows such trajectories to be readily calculated on a digital computer with a minimal expenditure of computer time.
NASA Technical Reports Server (NTRS)
Coleman, Anthony S.; Hansen, Irving G.
1994-01-01
NASA is pursuing a program in Advanced Subsonic Transport (AST) to develop the technology for a highly reliable Fly-By-Light/Power-By-WIre aircraft. One of the primary objectives of the program is to develop the technology base for confident application of integrated PBW components and systems to transport aircraft to improve operating reliability and efficiency. Technology will be developed so that the present hydraulic and pneumatic systems of the aircraft can be systematically eliminated and replaced by electrical systems. These motor driven actuators would move the aircraft wing surfaces as well as the rudder to provide steering controls for the pilot. Existing aircraft electrical systems are not flight critical and are prone to failure due to Electromagnetic Interference (EMI) (1), ground faults and component failures. In order to successfully implement electromechanical flight control actuation, a Power Management and Distribution (PMAD) System must be designed having a reliability of 1 failure in 10(exp +9) hours, EMI hardening and a fault tolerance architecture to ensure uninterrupted power to all aircraft flight critical systems. The focus of this paper is to analyze, define, and describe technically challenging areas associated with the development of a Power By Wire Aircraft and typical requirements to be established at the box level. The authors will attempt to propose areas of investigation, citing specific military standards and requirements that need to be revised to accommodate the 'More Electric Aircraft Systems'.
Mission management aircraft operations manual
NASA Technical Reports Server (NTRS)
1992-01-01
This manual prescribes the NASA mission management aircraft program and provides policies and criteria for the safe and economical operation, maintenance, and inspection of NASA mission management aircraft. The operation of NASA mission management aircraft is based on the concept that safety has the highest priority. Operations involving unwarranted risks will not be tolerated. NASA mission management aircraft will be designated by the Associate Administrator for Management Systems and Facilities. NASA mission management aircraft are public aircraft as defined by the Federal Aviation Act of 1958. Maintenance standards, as a minimum, will meet those required for retention of Federal Aviation Administration (FAA) airworthiness certification. Federal Aviation Regulation Part 91, Subparts A and B, will apply except when requirements of this manual are more restrictive.
Russian Tu-144LL SST Roll-Out for Joint NASA Research Program
NASA Technical Reports Server (NTRS)
1996-01-01
The modified Tu-144LL supersonic flying laboratory is rolled out of its hangar at the Zhukovsky Air Development Center near Moscow, Russia in March 1996 at the beginning of a joint U.S. - Russian high-speed flight research program. The 'LL' stands for Letayuschaya Laboratoriya, which means Flying Laboratory. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in production-model aircraft. Fifty experiments were proposed for the program and eight were selected, including six flight and two ground (engine) tests. The flight experiments included studies of the aircraft's exterior surface, internal structure, engine temperatures, boundary-layer airflow, the wing's ground-effect characteristics, interior and exterior noise, handling qualities in various flight profiles, and in-flight structural flexibility. The ground tests studied the effect of air inlet structures on airflow entering the engine and the effect on engine performance when supersonic shock waves rapidly change position in the engine air inlet. A second phase of testing further studied the original six in-flight experiments with additional instrumentation installed to assist in data acquisition and analysis. A new experiment aimed at measuring the in-flight deflections of the wing and fuselage was also conducted. American-supplied transducers and sensors were installed to measure nose boom pressures, angle of attack, and sideslip angles with increased accuracy. Two NASA pilots, Robert Rivers of Langley Research Center, Hampton, Virginia, and Gordon Fullerton from Dryden Flight Research Center, Edwards, California, assessed the aircraft's handling at subsonic and supersonic speeds during three flight tests in September 1998. The program concluded after four more data-collection flights in the spring of 1999. The Tu-144LL model had new Kuznetsov NK-321 turbofan engines rated at more than 55,000 pounds of thrust in full afterburner. The aircraft is 215 feet, 6 inches long and 42 feet, 2 inches high with a wingspan of 94 feet, 6 inches. The aircraft is constructed mostly of light aluminum alloy with titanium and stainless steel on the leading edges, elevons, rudder, and the under-surface of the rear fuselage.
Pathfinder aircraft taking off - setting new solar powered altitude record
1995-09-11
The Pathfinder solar-powered remotely piloted aircraft climbs to a record-setting altitude of 50,567 feet during a flight Sept. 11, 1995, at NASA's Dryden Flight Research Center, Edwards, California. The flight was part of the NASA ERAST (Environmental Research Aircraft and Sensor Technology) program. The Pathfinder was designed and built by AeroVironment Inc., Monrovia, California. Solar arrays cover nearly all of the upper wing surface and produce electricity to power the aircraft's six motors.
Study of unconventional aircraft engines designed for low energy consumption
NASA Technical Reports Server (NTRS)
Gray, D. E.
1976-01-01
Declining U.S. oil reserves and escalating energy costs underline the need for reducing fuel consumption in aircraft engines. The most promising unconventional aircraft engines based on their potential for fuel savings and improved economics are identified. The engines installed in both a long-range and medium-range aircraft were evaluated. Projected technology advances are identified and evaluated for their state-of-readiness for application to a commercial transport. Programs are recommended for developing the necessary technology.
NASA Technical Reports Server (NTRS)
Sandlin, Doral R.; Howard, Kipp E.
1991-01-01
A user friendly FORTRAN code that can be used for preliminary design of V/STOL aircraft is described. The program estimates lift increments, due to power induced effects, encountered by aircraft in V/STOL flight. These lift increments are calculated using empirical relations developed from wind tunnel tests and are due to suckdown, fountain, ground vortex, jet wake, and the reaction control system. The code can be used as a preliminary design tool along with NASA Ames' Aircraft Synthesis design code or as a stand-alone program for V/STOL aircraft designers. The Power Induced Effects (PIE) module was validated using experimental data and data computed from lift increment routines. Results are presented for many flat plate models along with the McDonnell Aircraft Company's MFVT (mixed flow vectored thrust) V/STOL preliminary design and a 15 percent scale model of the YAV-8B Harrier V/STOL aircraft. Trends and magnitudes of lift increments versus aircraft height above the ground were predicted well by the PIE module. The code also provided good predictions of the magnitudes of lift increments versus aircraft forward velocity. More experimental results are needed to determine how well the code predicts lift increments as they vary with jet deflection angle and angle of attack. The FORTRAN code is provided in the appendix.
NASA Astrophysics Data System (ADS)
Clements, Jim; Robinson, Richard; Bunt, Leslie; Robinson, Joe
2011-06-01
A number of techniques have been utilized to evaluate the performance of Aircraft Survivability Equipment (ASE) against threat Man-Portable Air Defense Systems (MANPADS). These techniques include flying actual threat MANPADS against stationary ASE with simulated aircraft signatures, testing installed ASE systems against simulated threat signatures, and laboratory hardware-in-the-loop (HWIL) testing with simulated aircraft and simulated missile signatures. All of these tests lack the realism of evaluating installed ASE against in-flight MANPADS on a terminal homing intercept path toward the actual ASE equipped aircraft. This limitation is due primarily to the current inability to perform non-destructive MANPADS/Aircraft flight testing. The U.S. Army Aviation and Missile Research and Development and Engineering Center (AMRDEC) is working to overcome this limitation with the development of a recoverable surrogate MANPADS missile system capable of engaging aircraft equipped with ASE while guaranteeing collision avoidance with the test aircraft. Under its Missile Airframe Simulation Testbed - MANPADS (MAST-M) program, the AMRDEC is developing a surrogate missile system which will utilize actual threat MANPADS seeker/guidance sections to control the flight of a surrogate missile which will perform a collision avoidance and recovery maneuver prior to intercept to insure non-destructive test and evaluation of the ASE and reuse of the MANPADS seeker/guidance section. The remainder of this paper provides an overview of this development program and intended use.
NASA Technical Reports Server (NTRS)
1989-01-01
This photo depicts the AFTI F-16 in the configuration used midway through the program. The sensor pods were added to the fuselage, but the chin canards remained in place. Painted in non-standard gray tones, it carried Sidewinder air-to-air missles on its wingtips. During the 1980s and 1990s, NASA and the U.S. Air Force participated in a joint program to integrate and demonstrate new avionics technologies to improve close air support capabilities in next-generation aircraft. The testbed aircraft, seen here in flight over the desert at NASA's Dryden Flight Research Center, Edwards, California, was called the Advanced Fighter Technology Integration (AFTI) F-16. The tests demonstrated technologies to improve navigation and the pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. The aircraft--an F-16A Fighting Falcon (Serial #75-0750)--underwent numerous modifications. A relatively low-cost testbed, it evaluated the feasability of advanced, intergrated-sensor, avionics, and flight control technologies. During the first phase of the AFTI/F-16 program, which began in 1983, the aircraft demonstrated voice-actuated commands, helmet-mounted sights, flat turns, and selective fuselage pointing using forward-mounted canards and a triplex digital flight control computer system. The second phase of research, which began in the summer of 1991, demonstrated advanced technologies and capabilities to find and destroy ground targets day or night, and in adverse weather while using maneuverability and speed at low altitude. This phase was known as the close air support and battlefield air interdiction (CAS/BAI) phase. Finally, the aircraft was used to assess the Automatic Ground Collision Avoidance System (Auto - GCAS), a joint project with the Swedish Government. For these tests, the pilot flew the aircraft directly toward the ground, simulating a total loss of control. The GCAS was designed to take command in such emergencies and bring the aircraft back to level flight. The AFTI F-16 program ended at Dryden on November 4, 1997 after 15 years and over 700 research flights. The USAF continued to fly the aircraft until retiring it to the Air Force Museum on January 9, 2001.
Application study of filamentary composites in a commercial jet aircraft fuselage
NASA Technical Reports Server (NTRS)
Johnson, R. W.; June, R. R.
1972-01-01
A study of applications of filamentary composite materials to aircraft fuselage structure was performed. General design criteria were established and material studies conducted using the 727-200 forebody as the primary structural component. Three design approaches to the use of composites were investigated: uniaxial reinforcement of metal structure, uniaxial and biaxial reinforcement of metal structure, and an all-composite design. Materials application studies for all three concepts were conducted on fuselage shell panels, keel beam, floor beams, floor panels, body frames, fail-safe straps, and window frames. Cost benefit studies were conducted and developmental program costs estimated. On the basis of weight savings, cost effectiveness, developmental program costs, and potential for early application on commercial aircraft, the unaxial design is recommended for a 5-year flight service evaluation program.
Aircraft engine pollution reduction.
NASA Technical Reports Server (NTRS)
Rudey, R. A.
1972-01-01
The effect of engine operation on the types and levels of the major aircraft engine pollutants is described and the major factors governing the formation of these pollutants during the burning of hydrocarbon fuel are discussed. Methods which are being explored to reduce these pollutants are discussed and their application to several experimental research programs are pointed out. Results showing significant reductions in the levels of carbon monoxide, unburned hydrocarbons, and oxides of nitrogen obtained from experimental combustion research programs are presented and discussed to point out potential application to aircraft engines. An experimental program designed to develop and demonstrate these and other advanced, low pollution combustor design methods is described. Results that have been obtained to date indicate considerable promise for reducing advanced engine exhaust pollutants to levels significantly below current engines.
Hypersonic airframe structures: Technology needs and flight test requirements
NASA Technical Reports Server (NTRS)
Stone, J. E.; Koch, L. C.
1979-01-01
Hypersonic vehicles, that may be produced by the year 2000, were identified. Candidate thermal/structural concepts that merit consideration for these vehicles were described. The current status of analytical methods, materials, manufacturing techniques, and conceptual developments pertaining to these concepts were reviewed. Guidelines establishing meaningful technology goals were defined and twenty-eight specific technology needs were identified. The extent to which these technology needs can be satisfied, using existing capabilities and facilities without the benefit of a hypersonic research aircraft, was assessed. The role that a research aircraft can fill in advancing this technology was discussed and a flight test program was outlined. Research aircraft thermal/structural design philosophy was also discussed. Programs, integrating technology advancements with the projected vehicle needs, were presented. Program options were provided to reflect various scheduling and cost possibilities.
NASA Technical Reports Server (NTRS)
Gregory, G. L.; Beck, S. M.; Mathis, J. J., Jr.
1981-01-01
In situ correlative measurements were obtained with a NASA aircraft in support of two NASA airborne remote sensors participating in the Environmental Protection Agency's 1980persistent elevated pollution episode (PEPE) and Northeast regional oxidant study (NEROS) field program in order to provide data for evaluating the capability of two remote sensors for measuring mixing layer height, and ozone and aerosol concentrations in the troposphere during the 1980 PEPE/NEROS program. The in situ aircraft was instrumented to measure temperature, dewpoint temperature, ozone concentrations, and light scattering coefficient. In situ measurements for ten correlative missions are given and discussed. Each data set is presented in graphical and tabular format aircraft flight plans are included.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Name Record locator, if available; (xvi) International Air Transport Association (IATA) code of foreign... HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Aircraft Entry and Entry Documents...” includes each entity that is an “aircraft operator” or “foreign air carrier” with a security program under...
Analytical Fuselage and Wing Weight Estimation of Transport Aircraft
NASA Technical Reports Server (NTRS)
Chambers, Mark C.; Ardema, Mark D.; Patron, Anthony P.; Hahn, Andrew S.; Miura, Hirokazu; Moore, Mark D.
1996-01-01
A method of estimating the load-bearing fuselage weight and wing weight of transport aircraft based on fundamental structural principles has been developed. This method of weight estimation represents a compromise between the rapid assessment of component weight using empirical methods based on actual weights of existing aircraft, and detailed, but time-consuming, analysis using the finite element method. The method was applied to eight existing subsonic transports for validation and correlation. Integration of the resulting computer program, PDCYL, has been made into the weights-calculating module of the AirCraft SYNThesis (ACSYNT) computer program. ACSYNT has traditionally used only empirical weight estimation methods; PDCYL adds to ACSYNT a rapid, accurate means of assessing the fuselage and wing weights of unconventional aircraft. PDCYL also allows flexibility in the choice of structural concept, as well as a direct means of determining the impact of advanced materials on structural weight. Using statistical analysis techniques, relations between the load-bearing fuselage and wing weights calculated by PDCYL and corresponding actual weights were determined.
MD-11 PCA - First Landing at Edwards
NASA Technical Reports Server (NTRS)
1995-01-01
A transport aircraft lands for the first time under engine power only, as this McDonnell Douglas MD-11 touches down at 11:38 a.m., Aug. 29, 1995, at NASA's Dryden Flight Research Center, Edwards, California. The milestone flight, flown by NASA research pilot and former astronaut Gordon Fullerton, was part of a NASA project to develop a computer-assisted engine control system that enables a pilot to land a plane safely when its normal control surfaces are disabled. The propulsion-Controlled Aircraft (PCA) system uses standard autopilot controls already present in the cockpit, together with the new programming in the aircraft's flight control computers. The PCA concept is simple--for pitch control, the program increases thrust to climb and reduces thrust to descend. To turn right, the autopilot increases the left engine thrust while decreasing the right engine thrust. The initial Propulsion-Controlled Aircraft studies by NASA were carried out at Dryden with a modified twin-engine F-15 research aircraft.
MD-11 PCA - First Landing at Edwards
NASA Technical Reports Server (NTRS)
1995-01-01
A transport aircraft lands for the first time under engine power only, as this McDonnell Douglas MD-11 touches down at 11:38 a.m., Aug. 29, 1995, at NASA's Dryden Flight Research Center, Edwards, California. The milestone flight, flown by NASA research pilot and former astronaut Gordon Fullerton, was part of a NASA project to develop a computer-assisted engine control system that enables a pilot to land a plane safely when its normal control surfaces are disabled. The Propulsion-Controlled Aircraft (PCA) system uses standard autopilot controls already present in the cockpit, together with the new programming in the aircraft's flight control computers. The PCA concept is simple--for pitch control, the program increases thrust to climb and reduces thrust to descend. To turn right, the autopilot increases the left engine thrust while decreasing the right engine thrust. The initial Propulsion-Controlled Aircraft studies by NASA were carried out at Dryden with a modified twin-engine F-15 research aircraft.
NASA Technical Reports Server (NTRS)
Foster, John D.; Moralez, Ernesto, III; Franklin, James A.; Schroeder, Jeffery A.
1987-01-01
Results of a substantial body of ground-based simulation experiments indicate that a high degree of precision of operation for recovery aboard small ships in heavy seas and low visibility with acceptable levels of effort by the pilot can be achieved by integrating the aircraft flight and propulsion controls. The availability of digital fly-by-wire controls makes it feasible to implement an integrated control design to achieve and demonstrate in flight the operational benefits promised by the simulation experience. It remains to validate these systems concepts in flight to establish their value for advanced short takeoff vertical landing (STOVL) aircraft designs. This paper summarizes analytical studies and simulation experiments which provide a basis for the flight research program that will develop and validate critical technologies for advanced STOVL aircraft through the development and evaluation of advanced, integrated control and display concepts, and lays out the plan for the flight program that will be conducted on NASA's V/STOL Research Aircraft (VSRA).
MQ-8 Fire Scout Unmanned Aircraft System (MQ-8 Fire Scout)
2015-12-01
Selected Acquisition Report ( SAR ) RCS: DD-A&T(Q&A)823-253 MQ-8 Fire Scout Unmanned Aircraft System (MQ-8 Fire Scout) As of FY 2017 President’s...Budget Defense Acquisition Management Information Retrieval (DAMIR) March 8, 2016 11:20:32 UNCLASSIFIED MQ-8 Fire Scout December 2015 SAR March 8, 2016...Scout December 2015 SAR March 8, 2016 11:20:32 UNCLASSIFIED 3 PB - President’s Budget PE - Program Element PEO - Program Executive Officer PM - Program
CVN 78 Gerald R. Ford Class Nuclear Aircraft Carrier (CVN 78)
2015-12-01
Selected Acquisition Report ( SAR ) RCS: DD-A&T(Q&A)823-223 CVN 78 Gerald R. Ford Class Nuclear Aircraft Carrier (CVN 78) As of FY 2017 President’s...Budget Defense Acquisition Management Information Retrieval (DAMIR) March 21, 2016 17:17:44 UNCLASSIFIED CVN 78 December 2015 SAR March 21, 2016 17...December 2015 SAR March 21, 2016 17:17:44 UNCLASSIFIED 3 PB - President’s Budget PE - Program Element PEO - Program Executive Officer PM - Program Manager
NASA aeronautics R&T - A resource for aircraft design
NASA Technical Reports Server (NTRS)
Olstad, W. B.
1981-01-01
This paper discusses the NASA aeronautics research and technology program from the viewpoint of the aircraft designer. The program spans the range from fundamental research to the joint validation with industry of technology for application into product development. Examples of recent developments in structures, materials, aerodynamics, controls, propulsion systems, and safety technology are presented as new additions to the designer's handbook. Finally, the major thrusts of NASA's current and planned programs which are keyed to revolutionary advances in materials science, electronics, and computer technology are addressed.
NASA Technical Reports Server (NTRS)
Craidon, C. B.
1983-01-01
A computer program was developed to extend the geometry input capabilities of previous versions of a supersonic zero lift wave drag computer program. The arbitrary geometry input description is flexible enough to describe almost any complex aircraft concept, so that highly accurate wave drag analysis can now be performed because complex geometries can be represented accurately and do not have to be modified to meet the requirements of a restricted input format.
NASA Technical Reports Server (NTRS)
Grove, R. D.; Mayhew, S. C.
1973-01-01
A computer program (Langley program C1123) has been developed for estimating aircraft stability and control parameters from flight test data. These parameters are estimated by the maximum likelihood estimation procedure implemented on a real-time digital simulation system, which uses the Control Data 6600 computer. This system allows the investigator to interact with the program in order to obtain satisfactory results. Part of this system, the control and display capabilities, is described for this program. This report also describes the computer program by presenting the program variables, subroutines, flow charts, listings, and operational features. Program usage is demonstrated with a test case using pseudo or simulated flight data.
Dryden B-52 Launch Aircraft in Flight over Dryden
NASA Technical Reports Server (NTRS)
1996-01-01
NASA's venerable B-52 mothership flies over the main building at the Dryden Flight Research Center, Edwards, California. The B-52, used for launching experimental aircraft and for other flight research projects, has been a familiar sight in the skies over Edwards for more than 40 years and has also been both the oldest B-52 still flying and the aircraft with the lowest flight time of any B-52. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
Enabling propulsion materials for high-speed civil transport engines
NASA Technical Reports Server (NTRS)
Stephens, Joseph R.; Herbell, Thomas P.
1992-01-01
NASA Headquarters and LeRC have advocated an Enabling Propulsion Materials Program (EPM) to begin in FY-92. The High Speed Research Phase 1 program which began in FY-90 has focused on the environmental acceptability of a High Speed Civil Transport (HSCT). Studies by industry, including Boeing, McDonnell Douglas, GE Aircraft Engines, and Pratt & Whitney Aircraft, and in-house studies by NASA concluded that NO(x) emissions and airport noise reduction can only be economically achieved by revolutionary advancements in materials technologies. This is especially true of materials for the propulsion system where the combustor is the key to maintaining low emissions, and the exhaust nozzle is the key to reducing airport noise to an acceptable level. Both of these components will rely on high temperature composite materials that can withstand the conditions imposed by commercial aircraft operations. The proposed EPM program will operate in conjunction with the HSR Phase 1 Program and the planned HSR Phase 2 program slated to start in FY-93. Components and subcomponents developed from advanced materials will be evaluated in the HSR Phase 2 Program.
X-15 Mated to B-52 Captive Flight
NASA Technical Reports Server (NTRS)
1959-01-01
One of three X-15 rocket-powered research aircraft being carried aloft under the wing of its B-52 mothership. The X-15 was air launched from the B-52 so the rocket plane would have enough fuel to reach its high speed and altitude test points. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. The X-15s made a total of 199 flights over a period of nearly 10 years and set world's unofficial speed and altitude records of 4,520 miles per hour (Mach 6.7) and 354,200 feet. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo manned spaceflight programs and also the Space Shuttle program. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet.. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
X-15 Mated to B-52 Captive Flight
NASA Technical Reports Server (NTRS)
1960-01-01
High-altitude contrails frame the B-52 mothership as it carries the X-15 aloft for a research flight on 13 April 1960 on Air Force Maj. Robert M. White's first X-15 flight. The X-15s were air-launched so that they would have enough rocket fuel to reach their high speed and altitude test points. For this early research flight, the X-15 was equipped with a pair of XLR-11 rocket engines until the XLR-99 was available. The X-15s made a total of 199 flights over a period of nearly 10 years--1959 to 1968--and set unofficial world speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 feet. Information gained from the highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo piloted spaceflight programs, and also the Space Shuttle program. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables the B-52 to carry research vehicles and test articles to be air-launched/dropped. Located on the right wing, between the inboard engine pylon and the fuselage, this wing pylon was subjected to extensive testing prior to its use. For each test vehicle the B-52 carried, minor changes were made to the launch-panel operator's station. Built originally by the Boeing Company, the NASA B-52 is powered by eight Pratt & Whitney J57-19 turbojet engines, each of which produce 12,000 pounds of thrust. The aircraft's normal launch speed has been Mach 0.8 (about 530 miles per hour) and its normal drop altitude has been 40,000 to 45,000 feet. It is 156 feet long and has a wing span of 185 feet. The heaviest load it has carried was the No. 2 X-15 aircraft at 53,100 pounds. Project manager for the aircraft is Roy Bryant.
Fiber optics for advanced aircraft
NASA Technical Reports Server (NTRS)
Baumbick, Robert J.
1989-01-01
The increased use of composites makes the digital control more susceptible to electromagnetic effects. In order to provide the protection to the digital control additional shielding will be required as well as protective circuitry for the electronics. This results in increased weight and reduced reliability. The advantages that fiber optic technology provides for advanced aircraft applications is recognized. The use of optical signals to carry information between the aircraft and the control module provides immunity from contamination by electromagnetic sources as well as other important benefits such as reduced weight and volume resulting from the elimination of the shielding and the replacement of metal conductors with low weight glass fibers. In 1975 NASA began work to develop passive optical sensors for use with fiber optics in aircraft control systems. The problem now is to choose the best optical sensor concepts and evaluate them for use. In 1985 NASA and DOD entered into a joint program, Fiber Optic Control System Integration (FOCSI), to look at optical technology specifically for use in advanced aircraft systems. The results of this program are discussed. The conclusion of the study indicated that the use of fiber optic technology in advanced aircraft systems is feasible and desirable. The study pointed to a lack of available sensors from vendors capable of operating in the adverse environments of advanced aircraft.
Fiber optics for advanced aircraft
NASA Technical Reports Server (NTRS)
Baumbick, Robert J.
1988-01-01
The increased use of composites makes the digital control more susceptible to electromagnetic effects. In order to provide the protection to the digital control additional shielding will be required as well as protective circuitry for the electronics. This results in increased weight and reduced reliability. The advantages that fiber optic technology provides for advanced aircraft applications is recognized. The use of optical signals to carry information between the aircraft and the control module provides immunity from contamination by electromagnetic sources as well as other important benefits such as reduced weight and volume resulting from the elimination of the shielding and the replacement of metal conductors with low weight glass fibers. In 1975 NASA began work to develop passive optical sensors for use with fiber optics in aircraft control systems. The problem now is to choose the best optical sensor concepts and evaluate them for use. In 1985 NASA and DOD entered into a joint program, Fiber Optic Control System Integration (FOCSI), to look at optical technology specifically for use in advanced aircraft systems. The results of this program are discussed. The conclusion of the study indicated that the use of fiber optic technology in advanced aircraft systems is feasible and desirable. The study pointed to a lack of available sensors from vendors capable of operating in the adverse environments of advanced aircraft.
NASA Technical Reports Server (NTRS)
1990-01-01
The movie clip shown here runs about 13 seconds and shows an air-to-air shot of the front of the SR-71 aircraft and a head-on view of it coming in for a landing. Two SR-71A aircraft on loan from the U.S. Air Force have been used for high-speed, high-altitude research at the NASA Dryden Flight Research Center, Edwards, California, since 1991. One of them was later returned to the Air Force. A third SR-71 on loan from the Air Force is an SR-71B used for training but not for flight research. Developed for the U.S. Air Force as reconnaissance aircraft more than 30 years ago, SR-71 aircraft are still the world's fastest and highest-flying production aircraft. These aircraft can fly more than 2200 miles per hour (Mach 3+ or more than three times the speed of sound) and at altitudes of over 85,000 feet. This operating environment makes the aircraft excellent platforms to carry out research and experiments in a variety of areas--aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic-boom characterization. Data from the SR-71 high-speed research program may be used to aid designers of future supersonic or hypersonic aircraft and propulsion systems, including a possible high-speed civil transport. The SR-71 program at Dryden has been part of the NASA overall high-speed aeronautical research program, and projects have involved other NASA research centers, other government agencies, universities, and commercial firms. One of the first major experiments to be flown in the NASA SR-71 program was a laser air-data collection system. This system used laser light instead of air pressure to produce airspeed and attitude reference data such as angle of attack and angle of sideslip. These data are normally obtained with small tubes and vanes extending into the air stream, or from tubes with flush openings on the aircraft outer skin. The flights provided information on the presence of atmospheric particles at altitudes of 80,000 feet and above where future hypersonic aircraft will be operating. The system used six sheets of laser light projected from the bottom of one of the two 'A' models. As microscopic-sized atmospheric particles passed between the two beams, direction and speed were measured and processed into standard speed and attitude references. An earlier laser air-data collection system was successfully tested at Dryden on an F-l04 testbed. The first of a series of flights using the SR-71 as a science camera platform for the NASA Jet Propulsion Laboratory was flown in March 1993. From the nosebay of the aircraft, an upward-looking ultraviolet video camera studied a variety of celestial objects in wavelengths that are blocked to ground-based astronomers. The SR-71 has also been used in a project for researchers at the University of California-Los Angeles (UCLA) who are investigating the use of charged chlorine atoms to protect and rebuild the ozone layer. The SR-71, operating as a testbed, has been used to assist in the development of a commercial satellite-based instant wireless personal communications network, called the IRIDIUM system, under a NASA commercialization assistance program. In addition, the SR-71 has been used in a program to study ways of reducing sonic boom overpressures that are heard on the ground much like sharp thunderclaps when an aircraft exceeds the speed of sound. Data from this study could eventually lead to aircraft designs that would reduce the 'peak' of sonic booms and minimize the startle affect they produce on the ground. Instruments at precise locations on the ground recorded the sonic booms as the aircraft passed overhead at known altitudes and speeds. An F-16XL aircraft was also used in this study. It was flown behind the SR-71 to 'probe' the near-field shockwave while instrumentation recorded the pressures and other atmospheric parameters. The aircraft has also been used most recently to evaluate a new concept for space propulsion called the Linear Aerospike Rocket Engine, which could be used in the X-33 advanced technology demonstrator for a next generation reusable launch vehicle.
The Second Joint NASA/FAA/DoD Conference on Aging Aircraft. Part 2
NASA Technical Reports Server (NTRS)
Harris, Charles E. (Editor)
1999-01-01
The purpose of the Conference was to bring together world leaders in aviation safety research, aircraft design and manufacturing, fleet operation and aviation maintenance to disseminate information on current practices and advanced technologies that will assure the continued airworthiness of the aging aircraft in the military and commercial fleets. The Conference included reviews of current industry practices, assessments of future technology requirements, and status of aviation safety research. The Conference provided an opportunity for interactions among the key personnel in the research and technology development community, the original equipment manufacturers, commercial airline operators, military fleet operators, aviation maintenance, and aircraft certification and regulatory authorities. Conference participation was unrestricted and open to the international aviation community. Appendix B contains the name and addresses of the 623 participants in the Conference.