Science.gov

Sample records for aging aircraft research

  1. Ageing aircraft research in the Netherlands

    NASA Technical Reports Server (NTRS)

    Dejonge, J. B.; Bartelds, G.

    1992-01-01

    The problems of aging aircraft are worldwide. Hence, international cooperative actions to overcome or prevent problems should be taken. The Federal Aviation Administration (FAA) and the Netherlands Civil Aviation Department (RLD) signed a Memorandum of Cooperation in the area of structural integrity, with specific reference to research on problems in the area of aging aircraft. Here, an overview is given of aging research that is going on in the Netherlands. The work described is done largely at the National Aerospace Laboratory; much of the research is part of the forementioned cooperative agreement.

  2. Aircraft as Research Tools

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Aeronautical research usually begins with computers, wind tunnels, and flight simulators, but eventually the theories must fly. This is when flight research begins, and aircraft are the primary tools of the trade. Flight research involves doing precision maneuvers in either a specially built experimental aircraft or an existing production airplane that has been modified. For example, the AD-1 was a unique airplane made only for flight research, while the NASA F-18 High Alpha Research Vehicle (HARV) was a standard fighter aircraft that was transformed into a one-of-a-kind aircraft as it was fitted with new propulsion systems, flight controls, and scientific equipment. All research aircraft are able to perform scientific experiments because of the onboard instruments that record data about its systems, aerodynamics, and the outside environment. Since the 1970's, NASA flight research has become more comprehensive, with flights involving everything form Space Shuttles to ultralights. NASA now flies not only the fastest airplanes, but some of the slowest. Flying machines continue to evolve with new wing designs, propulsion systems, and flight controls. As always, a look at today's experimental research aircraft is a preview of the future.

  3. X-29: Research Aircraft

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A preliminary look at the Ames Dryden Flight Research Center in the context of the X-29 aircraft is provided. The uses of the X-29's 30 deg forward swept wing are examined. The video highlights the historical development of the forward swept wing, and its unique blend of speed, agility, and slow flight potential. The central optimization of the wing, the forward canard, and the rear flaps by an onboard flight computer is also described.

  4. Survival analysis of aging aircraft

    NASA Astrophysics Data System (ADS)

    Benavides, Samuel

    This study pushes systems engineering of aging aircraft beyond the boundaries of empirical and deterministic modeling by making a sharp break with the traditional laboratory-derived corrosion prediction algorithms that have shrouded real-world failures of aircraft structure. At the heart of this problem is the aeronautical industry's inability to be forthcoming in an accurate model that predicts corrosion failures in aircraft in spite of advances in corrosion algorithms or improvements in simulation and modeling. The struggle to develop accurate corrosion probabilistic models stems from a multitude of real-world interacting variables that synergistically influence corrosion in convoluted and complex ways. This dissertation, in essence, offers a statistical framework for the analysis of structural airframe corrosion failure by utilizing real-world data while considering the effects of interacting corrosion variables. This study injects realism into corrosion failures of aging aircraft systems by accomplishing four major goals related to the conceptual and methodological framework of corrosion modeling. First, this work connects corrosion modeling from the traditional, laboratory derived algorithms to corrosion failures in actual operating aircraft. This work augments physics-based modeling by examining the many confounding and interacting variables, such as environmental, geographical and operational, that impact failure of airframe structure. Examined through the lens of censored failure data from aircraft flying in a maritime environment, this study enhances the understanding between the triad of the theoretical, laboratory and real-world corrosion. Secondly, this study explores the importation and successful application of an advanced biomedical statistical tool---survival analysis---to model censored corrosion failure data. This well-grounded statistical methodology is inverted from a methodology that analyzes survival to one that examines failures. Third, this

  5. NASA research in aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Beheim, M. A.

    1982-01-01

    A broad overview of the scope of research presently being supported by NASA in aircraft propulsion is presented with emphasis on Lewis Research Center activities related to civil air transports, CTOL and V/STOL systems. Aircraft systems work is performed to identify the requirements for the propulsion system that enhance the mission capabilities of the aircraft. This important source of innovation and creativity drives the direction of propulsion research. In a companion effort, component research of a generic nature is performed to provide a better basis for design and provides an evolutionary process for technological growth that increases the capabilities of all types of aircraft. Both are important.

  6. Advanced aircraft for atmospheric research

    NASA Technical Reports Server (NTRS)

    Russell, P.; Wegener, S.; Langford, J.; Anderson, J.; Lux, D.; Hall, D. W.

    1991-01-01

    The development of aircraft for high-altitude research is described in terms of program objectives and environmental, technological limitations, and the work on the Perseus A aircraft. The need for these advanced aircraft is proposed in relation to atmospheric science issues such as greenhouse trapping, the dynamics of tropical cyclones, and stratospheric ozone. The implications of the study on aircraft design requirements is addressed with attention given to the basic categories of high-altitude, long-range, long-duration, and nap-of-the-earth aircraft. A strategy is delineated for a platform that permits unique stratospheric measurements and is a step toward a more advanced aircraft. The goal of Perseus A is to carry scientific air sampling payloads weighing at least 50 kg to altitudes of more than 25 km. The airfoils are designed for low Reynolds numbers, the structural weight is very low, and the closed-cycle power plant runs on liquid oxygen.

  7. Life prediction of aging aircraft wiring systems

    NASA Technical Reports Server (NTRS)

    Slenski, George

    1995-01-01

    The program goal is to develop a computerized life prediction model capable of identifying present aging progress and predicting end of life for aircraft wiring. A summary is given in viewgraph format of progress made on phase 1 objectives, which were to identify critical aircraft wiring problems; relate most common failures identified to the wire mechanism causing the failure; assess wiring requirments, materials, and stress environment for fighter aircraft; and demonstrate the feasibility of a time-temperature-environment model.

  8. Aircraft icing research at NASA

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Shaw, R. J.; Olsen, W. A., Jr.

    1982-01-01

    Research activity is described for: ice protection systems, icing instrumentation, experimental methods, analytical modeling for the above, and in flight research. The renewed interest in aircraft icing has come about because of the new need for All-Weather Helicopters and General Aviation aircraft. Because of increased fuel costs, tomorrow's Commercial Transport aircraft will also require new types of ice protection systems and better estimates of the aeropenalties caused by ice on unprotected surfaces. The physics of aircraft icing is very similar to the icing that occurs on ground structures and structures at sea; all involve droplets that freeze on the surfaces because of the cold air. Therefore all icing research groups will benefit greatly by sharing their research information.

  9. NASA Aircraft Controls Research, 1983

    NASA Technical Reports Server (NTRS)

    Beasley, G. P. (Compiler)

    1984-01-01

    The workshop consisted of 24 technical presentations on various aspects of aircraft controls, ranging from the theoretical development of control laws to the evaluation of new controls technology in flight test vehicles. A special report on the status of foreign aircraft technology and a panel session with seven representatives from organizations which use aircraft controls technology were also included. The controls research needs and opportunities for the future as well as the role envisioned for NASA in that research were addressed. Input from the panel and response to the workshop presentations will be used by NASA in developing future programs.

  10. Problems with aging wiring in Naval aircraft

    NASA Technical Reports Server (NTRS)

    Campbell, Frank J.

    1994-01-01

    The Navy is experiencing a severe aircraft electrical wiring maintenance problem as a result of the extensive use of an aromatic polyimide insulation that is deteriorating at a rate that was unexpected when this wire was initially selected. This problem has significantly affected readiness, reliability, and safety and has greatly increased the cost of ownership of Naval aircraft. Failures in wire harnesses have exhibited arcing and burning that will propagate drastically, to the interruption of many electrical circuits from a fault initiated by the failure of deteriorating wires. There is an urgent need for a capability to schedule aircraft rewiring in an orderly manner with a logically derived determination of which aircraft have aged to the point of absolute necessity. Excessive maintenance was demonstrated to result from the accelerated aging due to the parameters of moisture, temperature, and strain that exist in the Naval Aircraft environment. Laboratory studies have demonstrated that MIL-W-81381 wire insulation when aged at high humidities followed the classical Arrhenius thermal aging relationship. In an extension of the project a multifactor formula was developed that is now capable of predicting life under varying conditions of these service parameters. An automated test system has also been developed to analyze the degree of deterioration that has occurred in wires taken from an aircraft in order to obtain an assessment of remaining life. Since it is both physically and financially impossible to replace the wiring in all the Navy's aircraft at once, this system will permit expedient scheduling so that those aircraft that are most probable to have wiring failure problems can be overhauled first.

  11. Problems with aging wiring in Naval aircraft

    NASA Astrophysics Data System (ADS)

    Campbell, Frank J.

    1994-09-01

    The Navy is experiencing a severe aircraft electrical wiring maintenance problem as a result of the extensive use of an aromatic polyimide insulation that is deteriorating at a rate that was unexpected when this wire was initially selected. This problem has significantly affected readiness, reliability, and safety and has greatly increased the cost of ownership of Naval aircraft. Failures in wire harnesses have exhibited arcing and burning that will propagate drastically, to the interruption of many electrical circuits from a fault initiated by the failure of deteriorating wires. There is an urgent need for a capability to schedule aircraft rewiring in an orderly manner with a logically derived determination of which aircraft have aged to the point of absolute necessity. Excessive maintenance was demonstrated to result from the accelerated aging due to the parameters of moisture, temperature, and strain that exist in the Naval Aircraft environment. Laboratory studies have demonstrated that MIL-W-81381 wire insulation when aged at high humidities followed the classical Arrhenius thermal aging relationship. In an extension of the project a multifactor formula was developed that is now capable of predicting life under varying conditions of these service parameters. An automated test system has also been developed to analyze the degree of deterioration that has occurred in wires taken from an aircraft in order to obtain an assessment of remaining life. Since it is both physically and financially impossible to replace the wiring in all the Navy's aircraft at once, this system will permit expedient scheduling so that those aircraft that are most probable to have wiring failure problems can be overhauled first.

  12. Advances in Protective Coatings and Their Application to Ageing Aircraft

    DTIC Science & Technology

    2000-04-01

    Materials for the Structure f Aging Aircraft [les Nouveaux Materiaux metalliques pour les structures des aeronefs d’ancienne generation] To order the...corrosion through design, the selection of military and civil aircraft during the last thirty years. Research materials that are resistant to corrosion and...fluid resistance and greater flexibility. New methods of paint stripping and novel processes for the 2.1 Design repair of pre-treatments and metal

  13. Emerging nondestructive inspection methods for aging aircraft

    SciTech Connect

    Beattie, A; Dahlke, L; Gieske, J

    1994-01-01

    This report identifies and describes emerging nondestructive inspection (NDI) methods that can potentially be used to inspect commercial transport and commuter aircraft for structural damage. The nine categories of emerging NDI techniques are: acoustic emission, x-ray computed tomography, backscatter radiation, reverse geometry x-ray, advanced electromagnetics, including magnetooptic imaging and advanced eddy current techniques, coherent optics, advanced ultrasonics, advanced visual, and infrared thermography. The physical principles, generalized performance characteristics, and typical applications associated with each method are described. In addition, aircraft inspection applications are discussed along with the associated technical considerations. Finally, the status of each technique is presented, with a discussion on when it may be available for use in actual aircraft maintenance programs. It should be noted that this is a companion document to DOT/FAA/CT-91/5, Current Nondestructive Inspection Methods for Aging Aircraft.

  14. Aging analyses of aircraft wire insulation

    SciTech Connect

    GILLEN,KENNETH T.; CLOUGH,ROGER LEE; CELINA,MATHIAS C.; AUBERT,JAMES H.; MALONE,G. MICHAEL

    2000-05-08

    Over the past two decades, Sandia has developed a variety of specialized analytical techniques for evaluating the long-term aging and stability of cable insulation and other related materials. These techniques have been applied to cable reliability studies involving numerous insulation types and environmental factors. This work has allowed the monitoring of the occurrence and progression of cable material deterioration in application environments, and has provided insights into material degradation mechanisms. It has also allowed development of more reliable lifetime prediction methodologies. As a part of the FAA program for intrusive inspection of aircraft wiring, they are beginning to apply a battery of techniques to assessing the condition of cable specimens removed from retired aircraft. It is anticipated that in a future part of this program, they may employ these techniques in conjunction with accelerated aging methodologies and models that the authros have developed and employed in the past to predict cable lifetimes. The types of materials to be assessed include 5 different wire types: polyimide, PVC/Glass/Nylon, extruded XL-polyalkene/PVDF, Poly-X, and XL-ETFE. This presentation provides a brief overview of the main techniques that will be employed in assessing the state of health of aircraft wire insulation. The discussion will be illustrated with data from their prior cable aging studies, highlighting the methods used and their important conclusions. A few of the techniques that they employ are widely used in aging studies on polymers, but others are unique to Sandia. All of their techniques are non-proprietary, and maybe of interest for use by others in terms of application to aircraft wiring analysis. At the end of this report is a list showing some leading references to papers that have been published in the open literature which provide more detailed information on the analytical techniques for elastomer aging studies. The first step in the

  15. Inspection of aging aircraft: A manufacturer's perspective

    NASA Technical Reports Server (NTRS)

    Hagemaier, Donald J.

    1992-01-01

    Douglas, in conjunction with operators and regulators, has established interrelated programs to identify and address issues regarding inspection of aging aircraft. These inspection programs consist of the following: Supplemental Inspection Documents; Corrosion Prevention and Control Documents; Repair Assessment Documents; and Service Bulletin Compliance Documents. In addition, airframe manufacturers perform extended airframe fatigue tests to deal with potential problems before they can develop in the fleet. Lastly, nondestructive inspection (NDI) plays a role in all these programs through the detection of cracks, corrosion, and disbonds. However, improved and more cost effective NDI methods are needed. Some methods such as magneto-optic imaging, electronic shearography, Diffractor-Sight, and multi-parameter eddy current testing appear viable for near-term improvements in NDI of aging aircraft.

  16. NASA aircraft trailing vortex research

    NASA Technical Reports Server (NTRS)

    Mcgowan, W. A.

    1971-01-01

    A brief description is given of NASA's comprehensive program to study the aircraft trailing vortex problem. Wind tunnel experiments are used to develop the detailed processes of wing tip vortex formation and explore different means to either prevent trailing vortices from forming or induce early break-up. Flight tests provide information on trailing vortex system behavior behind large transport aircraft, both near the ground, as in the vicinity of the airport, and at cruise/holding pattern altitudes. Results from some flight tests are used to show how pilots might avoid the dangerous areas when flying in the vicinity of large transport aircraft. Other flight tests will be made to verify and evaluate trailing vortex elimination schemes developed in the model tests. Laser Doppler velocimeters being developed for use in the research program and to locate and measure vortex winds in the airport area are discussed. Field tests have shown that the laser Doppler velocimeter measurements compare well with those from cup anemometers.

  17. Subsonic Ultra Green Aircraft Research

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Droney, Christopher K.

    2011-01-01

    This Final Report summarizes the work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team in Phase 1, which includes the time period of October 2008 through March 2010. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. The team completed the development of a comprehensive future scenario for world-wide commercial aviation, selected baseline and advanced configurations for detailed study, generated technology suites for each configuration, conducted detailed performance analysis, calculated noise and emissions, assessed technology risks, and developed technology roadmaps. Five concepts were evaluated in detail: 2008 baseline, N+3 reference, N+3 high span strut braced wing, N+3 gas turbine battery electric concept, and N+3 hybrid wing body. A wide portfolio of technologies was identified to address the NASA N+3 goals. Significant improvements in air traffic management, aerodynamics, materials and structures, aircraft systems, propulsion, and acoustics are needed. Recommendations for Phase 2 concept and technology projects have been identified.

  18. Technical Seminar: "Progress in Aircraft Noise Research"""

    NASA Video Gallery

    Advances in aircraft noise research can be attributed to the development of new technologies and sustained collaboration with industry, universities and government organizations. Emphasis has been ...

  19. The F-18 systems research aircraft facility

    NASA Technical Reports Server (NTRS)

    Sitz, Joel R.

    1992-01-01

    To help ensure that new aerospace initiatives rapidly transition to competitive U.S. technologies, NASA Dryden Flight Research Facility has dedicated a systems research aircraft facility. The primary goal is to accelerate the transition of new aerospace technologies to commercial, military, and space vehicles. Key technologies include more-electric aircraft concepts, fly-by-light systems, flush airdata systems, and advanced computer architectures. Future aircraft that will benefit are the high-speed civil transport and the National AeroSpace Plane. This paper describes the systems research aircraft flight research vehicle and outlines near-term programs.

  20. Airborne Subscale Transport Aircraft Research Testbed: Aircraft Model Development

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas L.; Langford, William M.; Hill, Jeffrey S.

    2005-01-01

    The Airborne Subscale Transport Aircraft Research (AirSTAR) testbed being developed at NASA Langley Research Center is an experimental flight test capability for research experiments pertaining to dynamics modeling and control beyond the normal flight envelope. An integral part of that testbed is a 5.5% dynamically scaled, generic transport aircraft. This remotely piloted vehicle (RPV) is powered by twin turbine engines and includes a collection of sensors, actuators, navigation, and telemetry systems. The downlink for the plane includes over 70 data channels, plus video, at rates up to 250 Hz. Uplink commands for aircraft control include over 30 data channels. The dynamic scaling requirement, which includes dimensional, weight, inertial, actuator, and data rate scaling, presents distinctive challenges in both the mechanical and electrical design of the aircraft. Discussion of these requirements and their implications on the development of the aircraft along with risk mitigation strategies and training exercises are included here. Also described are the first training (non-research) flights of the airframe. Additional papers address the development of a mobile operations station and an emulation and integration laboratory.

  1. Smart Sensor System for NDE or Corrosion in Aging Aircraft

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Marzwell, N.; Osegueda, R.; Ferregut, C.

    1998-01-01

    The extension of the operation life of military and civilian aircraft rather than replacing them with new ones is increasing the probability of aircraft component failure as a result of aging. Aircraft that already have endured a long srvice life of more than 40 years are now being considered for another 40 years of service.

  2. Role of research aircraft in technology development

    NASA Technical Reports Server (NTRS)

    Szalai, K. J.

    1984-01-01

    The United States's aeronautical research program has been rich in the use of research aircraft to explore new flight regimes, develop individual aeronautical concepts, and investigate new vehicle classes and configurations. This paper reviews the NASA supercritical wing, digital fly-by-wire, HiMAT, and AD-1 oblique-wing flight research programs, and draws from these examples general conclusions regarding the role and impact of research aircraft in technology development. The impact of a flight program on spinoff technology is also addressed. The secondary, serendipitous results are often highly significant. Finally, future research aircraft programs are examined for technology trends and expected results.

  3. Supersonic cruise aircraft research: An annotated bibliography

    NASA Technical Reports Server (NTRS)

    Tuttle, M. H.

    1980-01-01

    This bibliography, with abstracts, consists of 69 publications arranged in chronological order. The material may be useful to those interested in supersonic cruise fighter/penetrator/interceptor airplanes. Two pertinent conferences on military supercruise aircraft are considered as single items; one contains 37 papers and the other 29 papers. In addition, several related bibliographies are included which cover supersonic civil aircraft and military aircraft studies at the Langley Research Center. There is also an author index.

  4. Oblique Wing Research Aircraft on ramp

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This 1976 photograph of the Oblique Wing Research Aircraft was taken in front of the NASA Flight Research Center hangar, located at Edwards Air Force Base, California. In the photograph the noseboom, pitot-static probe, and angles-of-attack and sideslip flow vanes(covered-up) are attached to the front of the vehicle. The clear nose dome for the television camera, and the shrouded propellor for the 90 horsepower engine are clearly seen. The Oblique Wing Research Aircraft was a small, remotely piloted, research craft designed and flight tested to look at the aerodynamic characteristics of an oblique wing and the control laws necessary to achieve acceptable handling qualities. NASA Dryden Flight Research Center and the NASA Ames Research Center conducted research with this aircraft in the mid-1970s to investigate the feasibility of flying an oblique wing aircraft.

  5. Quantitative Inspection Technologies for Aging Military Aircraft

    DTIC Science & Technology

    2013-11-01

    177 Figure 133. Aircraft Mockup With EDM Notches Marked As Red Dots And Numbered In Magnified Photos...178 ix Approved for public release; distribution is unlimited Figure 134. First Test Of The Pantograph Scanner On The Mockup Aircraft...180 Figure 137. CAD Model Of Arc Scanner And Simulated Aircraft Fitting Mockup Panel ..................................... 181 Figure 138

  6. Research related to variable sweep aircraft development

    NASA Technical Reports Server (NTRS)

    Polhamus, E. C.; Toll, T. A.

    1981-01-01

    Development in high speed, variable sweep aircraft research is reviewed. The 1946 Langley wind tunnel studies related to variable oblique and variable sweep wings and results from the X-5 and the XF1OF variable sweep aircraft are discussed. A joint program with the British, evaluation of the British "Swallow", development of the outboard pivot wing/aft tail configuration concept by Langley, and the applied research program that followed and which provided the technology for the current, variable sweep military aircraft is outlined. The relative state of variable sweep as a design option is also covered.

  7. The NASA aircraft icing research program

    NASA Technical Reports Server (NTRS)

    Shaw, Robert J.; Reinmann, John J.

    1990-01-01

    The objective of the NASA aircraft icing research program is to develop and make available to industry icing technology to support the needs and requirements for all-weather aircraft designs. Research is being done for both fixed wing and rotary wing applications. The NASA program emphasizes technology development in two areas, advanced ice protection concepts and icing simulation. Reviewed here are the computer code development/validation, icing wind tunnel testing, and icing flight testing efforts.

  8. NASA Wake Vortex Research for Aircraft Spacing

    NASA Technical Reports Server (NTRS)

    Perry, R. Brad; Hinton, David A.; Stuever, Robert A.

    1996-01-01

    The National Aeronautics and Space Administration (NASA) is addressing airport capacity enhancements during instrument meteorological conditions through the Terminal Area Productivity (TAP) program. Within TAP, the Reduced Spacing Operations (RSO) subelement at the NASA Langley Research Center is developing an Aircraft Vortex Spacing System (AVOSS). AVOSS will integrate the output of several inter-related areas to produce weather dependent, dynamic wake vortex spacing criteria. These areas include current and predicted weather conditions, models of wake vortex transport and decay in these weather conditions, real-time feedback of wake vortex behavior from sensors, and operationally acceptable aircraft/wake interaction criteria. In today's ATC system, the AVOSS could inform ATC controllers when a fixed reduced separation becomes safe to apply to large and heavy aircraft categories. With appropriate integration into the Center/TRACON Automation System (CTAS), AVOSS dynamic spacing could be tailored to actual generator/follower aircraft pairs rather than a few broad aircraft categories.

  9. Aging aircraft NDI Development and Demonstration Center (AANC): An overview

    NASA Astrophysics Data System (ADS)

    Walter, Patrick L.

    1992-07-01

    A major center with emphasis on validation of nondestructive inspection (NDI) techniques for aging aircraft, the Aging Aircraft NDI Development and Demonstration Center (AANC), has been funded by the FAA at Sandia National Laboratories. The Center has been assigned specific tasks in developing techniques for the nondestructive inspection of static engine parts, assessing inspection reliability (POD experiments), developing testbeds for NDI validation, maintaining a FAA library of characterized aircraft structural test specimens, and leasing a hangar to house a high flight cycle transport aircraft for use as a full scale test bed.

  10. Aging Aircraft NDI Development and Demonstration Center (AANC): An overview

    SciTech Connect

    Walter, P.L.

    1991-01-01

    A major center with emphasis on validation of nondestructive inspection techniques for aging aircraft, the Aging Aircraft NDI Development and Demonstration Center (AANC), has been funded by the FAA at Sandia National Laboratories. The Center has been assigned specific tasks in developing techniques for the nondestructive inspection of static engine parts, assessing inspection reliability (POD experiments), developing test beds for nondestructive inspection validation, maintaining a FAA library of characterized aircraft structural test specimens, and leasing a hangar to house a high flight cycle transport aircraft for use as a full scale test bed. 3 refs.

  11. Assessment of NDE needs for aging corporate and private aircraft

    NASA Astrophysics Data System (ADS)

    Reinhart, Eugene R.

    1998-03-01

    Considerable attention has been focused on the life extension of ageing military and commercial aircraft by the government and major aircraft fabricators. A vital, but often neglected segment of the aircraft industry is the are of inspecting ageing fleets of corporate and privately-owned aircraft. Many of these aircraft are inspected and maintained by the various FAA-approved repair stations located around the country. Nondestructive inspection (NDI) methods, equipment, and trained inspectors are a key aspect of maintaining these aircraft; however, there are currently several issues that need to be addressed by the private sector NDI community. Personnel training and certification to an accepted standard is critically needed in this industry since experience and capability in NDI can vary considerably between FAA stations and inspectors. Also, the updating of NDI methods are standards is needed. A review of these issues and suggestions for improvement are presented.

  12. Emerging NDE Technology for aging aircraft

    SciTech Connect

    Moore, D.G.; Perry, R.L.

    1998-03-01

    This paper presents an overview of several emerging nondestructive evaluation technologies that are being employed or considered for use to inspect commercial transport, commuter aircraft and military aircraft. An overview of the Federal Aviation Administration (FAA) Airworthiness Assurance NDI Validation Center (AANC) is described and how AANC teams with industry, universities, and other federal entities to assess these technologies.

  13. NASA's Research in Aircraft Vulnerability Mitigation

    NASA Technical Reports Server (NTRS)

    Allen, Cheryl L.

    2005-01-01

    Since its inception in 1958, the National Aeronautics and Space Administration s (NASA) role in civil aeronautics has been to develop high-risk, high-payoff technologies to meet critical national aviation challenges. Following the events of Sept. 11, 2001, NASA recognized that it now shared the responsibility for improving homeland security. The NASA Strategic Plan was modified to include requirements to enable a more secure air transportation system by investing in technologies and collaborating with other agencies, industry, and academia. NASA is conducting research to develop and advance innovative and commercially viable technologies that will reduce the vulnerability of aircraft to threats or hostile actions, and identify and inform users of potential vulnerabilities in a timely manner. Presented in this paper are research plans and preliminary status for mitigating the effects of damage due to direct attacks on civil transport aircraft. The NASA approach to mitigation includes: preventing loss of an aircraft due to a hit from man-portable air defense systems; developing fuel system technologies that prevent or minimize in-flight vulnerability to small arms or other projectiles; providing protection from electromagnetic energy attacks by detecting directed energy threats to aircraft and on/off-board systems; and minimizing the damage due to high-energy attacks (explosions and fire) by developing advanced lightweight, damage-resistant composites and structural concepts. An approach to preventing aircraft from being used as weapons of mass destruction will also be discussed.

  14. Rotor systems research aircraft simulation mathematical model

    NASA Technical Reports Server (NTRS)

    Houck, J. A.; Moore, F. L.; Howlett, J. J.; Pollock, K. S.; Browne, M. M.

    1977-01-01

    An analytical model developed for evaluating and verifying advanced rotor concepts is discussed. The model was used during in both open loop and real time man-in-the-loop simulation during the rotor systems research aircraft design. Future applications include: pilot training, preflight of test programs, and the evaluation of promising concepts before their implementation on the flight vehicle.

  15. Federal Aviation Administration aircraft inspection research and develoment programs

    NASA Astrophysics Data System (ADS)

    Smith, Christopher D.

    1996-11-01

    A substantial and coordinated program in inspection system research was initiated at the FAA Technical Center in 1990 as part of the National Aging Aircraft Research Program. the primary objectives of the inspection systems initiative are to develop improved inspection techniques to address specific aging airframe and engine inspection problems and to evaluate and validate existing and emerging inspection systems. Advanced conventional technologies, emerging technologies, or combinations of technologies are investigated for their ability to accurately and reliably detect cracks, disbonds, corrosion, and other damage. This paper will present an overview of FAA inspection system research initiatives, but will focus primarily on the technical issues which have defined and prioritized those initiatives.

  16. Overview of high performance aircraft propulsion research

    NASA Technical Reports Server (NTRS)

    Biesiadny, Thomas J.

    1992-01-01

    The overall scope of the NASA Lewis High Performance Aircraft Propulsion Research Program is presented. High performance fighter aircraft of interest include supersonic flights with such capabilities as short take off and vertical landing (STOVL) and/or high maneuverability. The NASA Lewis effort involving STOVL propulsion systems is focused primarily on component-level experimental and analytical research. The high-maneuverability portion of this effort, called the High Alpha Technology Program (HATP), is part of a cooperative program among NASA's Lewis, Langley, Ames, and Dryden facilities. The overall objective of the NASA Inlet Experiments portion of the HATP, which NASA Lewis leads, is to develop and enhance inlet technology that will ensure high performance and stability of the propulsion system during aircraft maneuvers at high angles of attack. To accomplish this objective, both wind-tunnel and flight experiments are used to obtain steady-state and dynamic data, and computational fluid dynamics (CFD) codes are used for analyses. This overview of the High Performance Aircraft Propulsion Research Program includes a sampling of the results obtained thus far and plans for the future.

  17. Computational fire modeling for aircraft fire research

    SciTech Connect

    Nicolette, V.F.

    1996-11-01

    This report summarizes work performed by Sandia National Laboratories for the Federal Aviation Administration. The technical issues involved in fire modeling for aircraft fire research are identified, as well as computational fire tools for addressing those issues, and the research which is needed to advance those tools in order to address long-range needs. Fire field models are briefly reviewed, and the VULCAN model is selected for further evaluation. Calculations are performed with VULCAN to demonstrate its applicability to aircraft fire problems, and also to gain insight into the complex problem of fires involving aircraft. Simulations are conducted to investigate the influence of fire on an aircraft in a cross-wind. The interaction of the fuselage, wind, fire, and ground plane is investigated. Calculations are also performed utilizing a large eddy simulation (LES) capability to describe the large- scale turbulence instead of the more common k-{epsilon} turbulence model. Additional simulations are performed to investigate the static pressure and velocity distributions around a fuselage in a cross-wind, with and without fire. The results of these simulations provide qualitative insight into the complex interaction of a fuselage, fire, wind, and ground plane. Reasonable quantitative agreement is obtained in the few cases for which data or other modeling results exist Finally, VULCAN is used to quantify the impact of simplifying assumptions inherent in a risk assessment compatible fire model developed for open pool fire environments. The assumptions are seen to be of minor importance for the particular problem analyzed. This work demonstrates the utility of using a fire field model for assessing the limitations of simplified fire models. In conclusion, the application of computational fire modeling tools herein provides both qualitative and quantitative insights into the complex problem of aircraft in fires.

  18. High temperature aircraft research furnace facilities

    NASA Technical Reports Server (NTRS)

    Smith, James E., Jr.; Cashon, John L.

    1992-01-01

    Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.

  19. Advanced instrumentation for aircraft icing research

    NASA Technical Reports Server (NTRS)

    Bachalo, W.; Smith, J.; Rudoff, R.

    1990-01-01

    A compact and rugged probe based on the phase Doppler method was evaluated as a means for characterizing icing clouds using airborne platforms and for advancing aircraft icing research in large scale wind tunnels. The Phase Doppler Particle Analyzer (PDPA) upon which the new probe was based is now widely recognized as an accurate method for the complete characterization of sprays. The prototype fiber optic-based probe was evaluated in simulated aircraft icing clouds and found to have the qualities essential to providing information that will advance aircraft icing research. Measurement comparisons of the size and velocity distributions made with the standard PDPA and the fiber optic probe were in excellent agreement as were the measurements of number density and liquid water content. Preliminary testing in the NASA Lewis Icing Research Tunnel (IRT) produced reasonable results but revealed some problems with vibration and signal quality at high speeds. The cause of these problems were identified and design changes were proposed to eliminate the shortcomings of the probe.

  20. YO-3A acoustics research aircraft systems manual

    NASA Technical Reports Server (NTRS)

    Cross, J. L.

    1984-01-01

    The flight testing techniques, equipment, and procedures employed during air-to-air acoustic testing of helicopters using the NASA YO-3A Acoustic Research Aircraft are discussed. The research aircraft instrumentation system is described as well as hardware installation on the test aircraft and techniques used during the tests. Emphasis is placed on formation flying, position locations, test matrices, and test procedures.

  1. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2013-01-01

    This paper provides an overview of the aircraft turbine engine control research at the NASA Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. With the increased emphasis on aircraft safety, enhanced performance, and affordability, as well as the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA Aeronautics Research Mission programs. The rest of the paper provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges, and the key progress to date are summarized.

  2. Recent Progress in Aircraft Noise Research

    NASA Technical Reports Server (NTRS)

    Envia, Edmane; Thomas, Russell

    2007-01-01

    An overview of the acoustics research at NASA under the Subsonic Fixed Wing project is given. The presentation describes the rationale behind the noise reduction goals of the project in the context of the next generation air transportation system, and the emphasis placed on achieving these goals through a combination of the in-house and collaborative efforts with industry, universities and other government agencies. The presentation also describes the in-house research plan which is focused on the development of advanced noise and flow diagnostic techniques, next generation noise prediction tools, and novel noise reduction techniques that are applicable across a wide range of aircraft.

  3. NASGRO 3.0: A Software for Analyzing Aging Aircraft

    NASA Technical Reports Server (NTRS)

    Mettu, S. R.; Shivakumar, V.; Beek, J. M.; Yeh, F.; Williams, L. C.; Forman, R. G.; McMahon, J. J.; Newman, J. C., Jr.

    1999-01-01

    Structural integrity analysis of aging aircraft is a critical necessity in view of the increasing numbers of such aircraft in general aviation, the airlines and the military. Efforts are in progress by NASA, the FAA and the DoD to focus attention on aging aircraft safety. The present paper describes the NASGRO software which is well-suited for effectively analyzing the behavior of defects that may be found in aging aircraft. The newly revised Version 3.0 has many features specifically implemented to suit the needs of the aircraft community. The fatigue crack growth computer program NASA/FLAGRO 2.0 was originally developed to analyze space hardware such as the Space Shuttle, the International Space Station and the associated payloads. Due to popular demand, the software was enhanced to suit the needs of the aircraft industry. Major improvements in Version 3.0 are the incorporation of the ability to read aircraft spectra of unlimited size, generation of common aircraft fatigue load blocks, and the incorporation of crack-growth models which include load-interaction effects such as retardation due to overloads and acceleration due to underloads. Five new crack-growth models, viz., generalized Willenborg, modified generalized Willenborg, constant closure model, Walker-Chang model and the deKoning-Newman strip-yield model, have been implemented. To facilitate easier input of geometry, material properties and load spectra, a Windows-style graphical user interface has been developed. Features to quickly change the input and rerun the problem as well as examine the output are incorporated. NASGRO has been organized into three modules, the crack-growth module being the primary one. The other two modules are the boundary element module and the material properties module. The boundary-element module provides the ability to model and analyze complex two-dimensional problems to obtain stresses and stress-intensity factors. The material properties module allows users to store and

  4. The Second Joint NASA/FAA/DOD Conference on Aging Aircraft. Pt. 1

    NASA Technical Reports Server (NTRS)

    Harris, Charles E. (Editor)

    1999-01-01

    The purpose of the Conference was to bring together world leaders in aviation safety research, aircraft design and manufacturing, fleet operation and aviation maintenance to disseminate information on current practices and advanced technologies that will assure the continued airworthiness of the aging aircraft in the military and commercial fleets. The Conference included reviews of current industry practices, assessments of future technology requirements, and status of aviation safety research. The Conference provided an opportunity for interactions among the key personnel in the research and technology development community, the original equipment manufacturers, commercial airline operators, military fleet operators, aviation maintenance, and aircraft certification and regulatory authorities. Conference participation was unrestricted and open to the international aviation community.

  5. The Second Joint NASA/FAA/DoD Conference on Aging Aircraft. Part 2

    NASA Technical Reports Server (NTRS)

    Harris, Charles E. (Editor)

    1999-01-01

    The purpose of the Conference was to bring together world leaders in aviation safety research, aircraft design and manufacturing, fleet operation and aviation maintenance to disseminate information on current practices and advanced technologies that will assure the continued airworthiness of the aging aircraft in the military and commercial fleets. The Conference included reviews of current industry practices, assessments of future technology requirements, and status of aviation safety research. The Conference provided an opportunity for interactions among the key personnel in the research and technology development community, the original equipment manufacturers, commercial airline operators, military fleet operators, aviation maintenance, and aircraft certification and regulatory authorities. Conference participation was unrestricted and open to the international aviation community. Appendix B contains the name and addresses of the 623 participants in the Conference.

  6. An Overview of NASA's Subsonic Research Aircraft Testbed (SCRAT)

    NASA Technical Reports Server (NTRS)

    Baumann, Ethan; Hernandez, Joe; Ruhf, John C.

    2013-01-01

    National Aeronautics and Space Administration Dryden Flight Research Center acquired a Gulfstream III (GIII) aircraft to serve as a testbed for aeronautics flight research experiments. The aircraft is referred to as SCRAT, which stands for SubsoniC Research Aircraft Testbed. The aircraft's mission is to perform aeronautics research; more specifically raising the Technology Readiness Level (TRL) of advanced technologies through flight demonstrations and gathering high-quality research data suitable for verifying the technologies, and validating design and analysis tools. The SCRAT has the ability to conduct a range of flight research experiments throughout a transport class aircraft's flight envelope. Experiments ranging from flight-testing of a new aircraft system or sensor to those requiring structural and aerodynamic modifications to the aircraft can be accomplished. The aircraft has been modified to include an instrumentation system and sensors necessary to conduct flight research experiments along with a telemetry capability. An instrumentation power distribution system was installed to accommodate the instrumentation system and future experiments. An engineering simulation of the SCRAT has been developed to aid in integrating research experiments. A series of baseline aircraft characterization flights has been flown that gathered flight data to aid in developing and integrating future research experiments. This paper describes the SCRAT's research systems and capabilities.

  7. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface

  8. X-1 research aircraft landing on lakebed

    NASA Technical Reports Server (NTRS)

    1947-01-01

    The first of the rocket-powered research aircraft, the X-1 (originally designated the XS-1), was a bullet-shaped airplane that was built by the Bell Aircraft Company for the US Air Force and the National Advisory Committee on Aeronautics (NACA). The mission of the X-1 was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier'. The first of the three X-1s was glide-tested at Pinecastle Air Force Base, FL, in early 1946. The first powered flight of the X-1 was made on Dec. 9, 1946, at Edwards Air Force Base with Chalmers Goodlin, a Bell test pilot, at the controls. On Oct. 14, 1947, with USAF Captain Charles 'Chuck' Yeager as pilot, the aircraft flew faster than the speed of sound for the first time. Captain Yeager ignited the four-chambered XLR-11 rocket engines after being air-launched from under the bomb bay of a B-29 at 21,000 ft. The 6,000-lbthrust ethyl alcohol/liquid oxygen burning rockets, built by Reaction Motors, Inc., pushed him up to a speed of 700 mph in level flight. Captain Yeager was also the pilot when the X-1 reached its maximum speed of 957 mph. Another USAF pilot. Lt. Col. Frank Everest, Jr., was credited with taking the X-1 to its maximum altitude of 71,902 ft. Eighteen pilots in all flew the X-1s. The number three plane was destroyed in a fire before ever making any powered flights. A single-place monoplane, the X-1 was 31 ft long, 10 ft high, and had a wingspan of 29 ft. It weighed 4,900 lb and carried 8,200 lb of fuel. It had a flush cockpit with a side entrance and no ejection seat. This roughly 30-second video clip shows the X-1 landing on Rogers Dry Lakebed followed by the safety chase aircraft.

  9. An artificial intelligence-based structural health monitoring system for aging aircraft

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Tang, Stanley S.; Chen, K. L.

    1993-01-01

    To reduce operating expenses, airlines are now using the existing fleets of commercial aircraft well beyond their originally anticipated service lives. The repair and maintenance of these 'aging aircraft' has therefore become a critical safety issue, both to the airlines and the Federal Aviation Administration. This paper presents the results of an innovative research program to develop a structural monitoring system that will be used to evaluate the integrity of in-service aerospace structural components. Currently in the final phase of its development, this monitoring system will indicate when repair or maintenance of a damaged structural component is necessary.

  10. Aircraft

    DTIC Science & Technology

    2002-01-01

    Company, Washington, DC Boeing Commercial Aircraft Division, Seattle, WA and Long Beach, CA Boeing Military Aircraft and Missile Division, St. Louis, MO and... aircraft ; military fixed-wing aircraft ; rotorcraft (helicopters and tiltrotor aircraft ); and aircraft jet engines. Two companies dominate the commercial... aircraft business, Boeing and Airbus. Four companies dominate the military fixed-wing market, Boeing, Lockheed Martin, BAE Systems, and European

  11. Antimisting Fuel Research and Development for Commercial Aircraft

    DTIC Science & Technology

    1986-04-01

    aircraft boost pump with cold AMK. Later, the FAA added the following secondary objectives to the Boeing program: o Power requirements for degrading AMK...rWMRCIAL AIRCRAFT - FIIL SUMARY REPOIT ACT-320 6. Petforiirtg Organixat;o., Report No. 7. Au’torls) Michael Yaffee DOT/ FAA /CT-86/7 9. Parformina... FAA and England’s Royal Aircraft Establishment (RAE), which also had been conducting research in this area. The National Aeronautics and Space

  12. Rotor systems research aircraft predesign study. Volume 3: Predesign report

    NASA Technical Reports Server (NTRS)

    Schmidt, S. A.; Linden, A. W.

    1972-01-01

    The features of two aircraft designs were selected to be included in the single RSRA configuration. A study was conducted for further preliminary design and a more detailed analysis of development plans and costs. An analysis was also made of foreseeable technical problems and risks, identification of parallel research which would reduce risks and/or add to the basic capability of the aircraft, and a draft aircraft specification.

  13. X-38 research aircraft landing - computer animation

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In the mid-1990's researchers at the NASA Dryden Flight Research Center, Edwards, California, and Johnson Space Center in Houston, Texas, began working actively with the sub-scale X-38 prototype crew return vehicle (CRV). This was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force X-23 (SV-5) program in the mid-1960's and the Air Force-NASA X-24A lifting-body project in the early to mid-1970's. Built by Scaled Composites, Inc., in Mojave, California, and outfitted with avionics, computer systems, and other hardware at Johnson Space Center, two X-38 aircraft were involved in flight research at Dryden beginning in July of 1997. Before that, however, Dryden conducted some 13 flights at a drop zone near California City, California. These tests were done with a 1/6-scale model of the X-38 aircraft to test the parafoil concept that would be employed on the X-38 aircraft and the actual CRV. The basic concept is that the actual CRV will use an inertial navigation system together with the Global Positioning System of satellites to guide it from the International Space Station into the earth's atmosphere. A deorbit engine module will redirect the vehicle from orbit into the atmosphere where a series of parachutes and a parafoil will deploy in sequence to bring the vehicle to a landing, possibly in a field next to a hospital. Flight research at NASA Dryden for the X-38 began with an unpiloted captive carry flight in which the vehicle remained attached to its future launch vehicle, the Dryden B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. Although the X-38 landed safely on the lakebed at Edwards after the March 1998 drop test, there had

  14. Walter C. Williams Research Aircraft Integration Facility (RAIF)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA-Dryden Integrated Test Facility (ITF), also known as the Walter C. Williams Research Aircraft Integration Facility (RAIF), provides an environment for conducting efficient and thorough testing of advanced, highly integrated research aircraft. Flight test confidence is greatly enhanced by the ability to qualify interactive aircraft systems in a controlled environment. In the ITF, each element of a flight vehicle can be regulated and monitored in real time as it interacts with the rest of the aircraft systems. Testing in the ITF is accomplished through automated techniques in which the research aircraft is interfaced to a high-fidelity real-time simulation. Electric and hydraulic power are also supplied, allowing all systems except the engines to function as if in flight. The testing process is controlled by an engineering workstation that sets up initial conditions for a test, initiates the test run, monitors its progress, and archives the data generated. The workstation is also capable of analyzing results of individual tests, comparing results of multiple tests, and producing reports. The computers used in the automated aircraft testing process are also capable of operating in a stand-alone mode with a simulation cockpit, complete with its own instruments and controls. Control law development and modification, aerodynamic, propulsion, guidance model qualification, and flight planning -- functions traditionally associated with real-time simulation -- can all be performed in this manner. The Remotely Augmented Vehicles (RAV) function, now located in the ITF, is a mainstay in the research techniques employed at Dryden. This function is used for tests that are too dangerous for direct human involvement or for which computational capacity does not exist onboard a research aircraft. RAV provides the researcher with a ground-based computer that is radio linked to the test aircraft during actual flight. The Ground Vibration Testing (GVT) system, formerly housed

  15. X-38 research aircraft deorbit - computer animation

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In the mid-1990's researchers at the NASA Dryden Flight Research Center, Edwards, California, and Johnson Space Center in Houston, Texas, began working actively with the sub-scale X-38 prototype crew return vehicle (CRV). This was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force X-23 (SV-5) program in the mid-1960's and the Air Force-NASA X-24A lifting-body project in the early to mid-1970's. Built by Scaled Composites, Inc., in Mojave, California, and outfitted with avionics, computer systems, and other hardware at Johnson Space Center, two X-38 aircraft were involved in flight research at Dryden beginning in July of 1997. Before that, however, Dryden conducted some 13 flights at a drop zone near California City, California. These tests were done with a 1/6-scale model of the X-38 to test the parafoil concept that would be employed on the X-38 and the actual CRV. The basic concept is that the actual CRV will use an inertial navigation system together with the Global Positioning System of satellites to guide it from the International Space Station into the earth's atmosphere. A deorbit engine module will redirect the vehicle from orbit into the atmosphere where a series of parachutes and a parafoil will deploy in sequence to bring the vehicle to a landing, possibly in a field next to a hospital. Flight research at NASA Dryden for the X-38 began with an unpiloted captive carry flight in which the vehicle remained attached to its future launch vehicle, the Dryden B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. Although the X-38 landed safely on the lakebed at Edwards after the March 1998 drop test, there had been some problems

  16. V/STOL tilt rotor aircraft study. Volume 2: Preliminary design of research aircraft

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A preliminary design study was conducted to establish a minimum sized, low cost V/STOL tilt-rotor research aircraft with the capability of performing proof-of-concept flight research investigations applicable to a wide range of useful military and commercial configurations. The analysis and design approach was based on state-of-the-art methods and maximum use of off-the-shelf hardware and systems to reduce development risk, procurement cost and schedules impact. The rotors to be used are of 26 foot diameter and are the same as currently under construction and test as part of NASA Tilt-Rotor Contract NAS2-6505. The aircraft has a design gross weight of 12,000 lbs. The proposed engines to be used are Lycoming T53-L-13B rated at 1550 shaft horsepower which are fully qualified. A flight test investigation is recommended which will determine the capabilities and limitations of the research aircraft.

  17. Aircraft Electric Propulsion Systems Applied Research at NASA

    NASA Technical Reports Server (NTRS)

    Clarke, Sean

    2015-01-01

    Researchers at NASA are investigating the potential for electric propulsion systems to revolutionize the design of aircraft from the small-scale general aviation sector to commuter and transport-class vehicles. Electric propulsion provides new degrees of design freedom that may enable opportunities for tightly coupled design and optimization of the propulsion system with the aircraft structure and control systems. This could lead to extraordinary reductions in ownership and operating costs, greenhouse gas emissions, and noise annoyance levels. We are building testbeds, high-fidelity aircraft simulations, and the first highly distributed electric inhabited flight test vehicle to begin to explore these opportunities.

  18. American Federation for Aging Research

    MedlinePlus

    ... Links Videos Huff/Post 50 Infoaging Biology of Aging Disease Center Healthy Aging Ask the Expert Contact Us Press Info Contact ... the pipeline of research in the biology of aging AFAR's Impact GIVE to AFAR's work to help ...

  19. NASA Glenn's Contributions to Aircraft Engine Noise Research

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2013-01-01

    This report reviews all engine noise research conducted at the NASA Glenn Research Center over the past 70 years. This report includes a historical perspective of the Center and the facilities used to conduct the research. Major noise research programs are highlighted to show their impact on industry and on the development of aircraft noise reduction technology. Noise reduction trends are discussed, and future aircraft concepts are presented. Since the 1960s, research results show that the average perceived noise level has been reduced by about 20 decibels (dB). Studies also show that, depending on the size of the airport, the aircraft fleet mix, and the actual growth in air travel, another 15 to 17 dB reduction will be required to achieve NASA's long-term goal of providing technologies to limit objectionable noise to the boundaries of an average airport.

  20. NASA Glenn's Contributions to Aircraft Engine Noise Research

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2014-01-01

    This presentation reviews engine noise research conducted at the NASA Glenn Research Center over the past 70 years. This report includes a historical perspective of the Center and the facilities used to conduct the research. Major noise research programs are highlighted to show their impact on industry and on the development of aircraft noise reduction technology. Noise reduction trends are discussed, and future aircraft concepts are presented. Since the 1960s, research results show that the average perceived noise level has been reduced by about 20 decibels (dB). Studies also show that, depending on the size of the airport, the aircraft fleet mix, and the actual growth in air travel, another 15 to 17 dB reduction will be required to achieve NASAs long-term goal of providing technologies to limit objectionable noise to the boundaries of an average airport.

  1. Experimental aerothermodynamic research of hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Cleary, Joseph W.

    1987-01-01

    The 2-D and 3-D advance computer codes being developed for use in the design of such hypersonic aircraft as the National Aero-Space Plane require comparison of the computational results with a broad spectrum of experimental data to fully assess the validity of the codes. This is particularly true for complex flow fields with control surfaces present and for flows with separation, such as leeside flow. Therefore, the objective is to provide a hypersonic experimental data base required for validation of advanced computational fluid dynamics (CFD) computer codes and for development of more thorough understanding of the flow physics necessary for these codes. This is being done by implementing a comprehensive test program for a generic all-body hypersonic aircraft model in the NASA/Ames 3.5 foot Hypersonic Wind Tunnel over a broad range of test conditions to obtain pertinent surface and flowfield data. Results from the flow visualization portion of the investigation are presented.

  2. Aging aircraft NDI Development and Demonstration Center (AANC): An overview. [nondestructive inspection

    NASA Technical Reports Server (NTRS)

    Walter, Patrick L.

    1992-01-01

    A major center with emphasis on validation of nondestructive inspection (NDI) techniques for aging aircraft, the Aging Aircraft NDI Development and Demonstration Center (AANC), has been funded by the FAA at Sandia National Laboratories. The Center has been assigned specific tasks in developing techniques for the nondestructive inspection of static engine parts, assessing inspection reliability (POD experiments), developing testbeds for NDI validation, maintaining a FAA library of characterized aircraft structural test specimens, and leasing a hangar to house a high flight cycle transport aircraft for use as a full scale test bed.

  3. X-36 Tailless Fighter Agility Research Aircraft in flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The tailless X-36 technology demonstrator research aircraft cruises over the California desert at low altitude during a 1997 research flight. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams International F112 turbofan engine

  4. X-36 Tailless Fighter Agility Research Aircraft arrival at Dryden

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA/McDonnell Douglas Corporation (MDC) X-36 Tailless Fighter Agility Research Aircraft is steered to it's hangar at NASA Dryden Flight Research Center, Edwards, California, following arrival on July 2, 1996. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a

  5. X-36 Tailless Fighter Agility Research Aircraft arrival at Dryden

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA and McDonnell Douglas Corporation (MDC) personnel wait to attach a hoist to the X-36 Tailless Fighter Agility Research Aircraft, which arrived at NASA Dryden Flight Research Center, Edwards, California, on July 2, 1996. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high

  6. X-36 Tailless Fighter Agility Research Aircraft arrival at Dryden

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA/McDonnell Douglas Corporation (MDC) X-36 Tailless Fighter Agility Research Aircraft in it's hangar at NASA Dryden Flight Research Center, Edwards, California, following its arrival on July 2, 1996. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of

  7. X-36 Tailless Fighter Agility Research Aircraft arrival at Dryden

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA and McDonnell Douglas Corporation (MDC) personnel remove protective covers from the newly arrived NASA/McDonnell Douglas Corporation X-36 Tailless Fighter Agility Research Aircraft. It arrived at NASA Dryden Flight Research Center, Edwards, California, on July 2, 1996. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1

  8. Experimental aerothermodynamic research of hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Cleary, Joseph W.

    1990-01-01

    Wind tunnel tests were conducted to establish a benchmark experimental data base for a genetic hypersonic aircraft vehicle. Comprehensive measurements were made at Mach 7 to give flow visualization, surface pressure, surface convective heat transfer, and flow field Pitot pressure for a delta platform all-body vehicle. The tests were conducted in the NASA/Ames 3.5-Foot Hypersonic Wind Tunnel at Reynolds numbers sufficient to give turbulent flow. Comparisons are made of the experimental results with computational solutions of the flow by an upwind parabolized Navier-Stokes code developed at Ames. Good agreement of experiment with solutions by the code is demonstrated.

  9. The FAA aging airplane program plan for transport aircraft

    NASA Technical Reports Server (NTRS)

    Curtis, Dayton; Lewis, Jess

    1992-01-01

    The Federal Aviation Administration (FAA) Aging Airplane Program is focused on five program areas: maintenance, transport airplanes, commuter airplanes, airplane engines, and research. These programs are complementary and concurrent, and have been in effect since 1988. The programs address the aging airplane challenge through different methods, including policies, procedures, and hardware development. Each program is carefully monitored and its progress tracked to ensure that the needs of the FAA, the industry, and the flying public are being met.

  10. X-36 Tailless Fighter Agility Research Aircraft in flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The X-36 technology demonstrator shows off its distinctive shape as the remotely piloted aircraft flies a research mission over the Southern California desert on October 30, 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams

  11. X-36 Tailless Fighter Agility Research Aircraft in flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The lack of a vertical tail on the X-36 technology demonstrator is evident as the remotely piloted aircraft flies a low-altitude research flight above Rogers Dry Lake at Edwards Air Force Base in the California desert on October 30, 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three

  12. Guidelines for composite materials research related to general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Dow, N. F.; Humphreys, E. A.; Rosen, B. W.

    1983-01-01

    Guidelines for research on composite materials directed toward the improvement of all aspects of their applicability for general aviation aircraft were developed from extensive studies of their performance, manufacturability, and cost effectiveness. Specific areas for research and for manufacturing development were identified and evaluated. Inputs developed from visits to manufacturers were used in part to guide these evaluations, particularly in the area of cost effectiveness. Throughout the emphasis was to direct the research toward the requirements of general aviation aircraft, for which relatively low load intensities are encountered, economy of production is a prime requirement, and yet performance still commands a premium. A number of implications regarding further directions for developments in composites to meet these requirements also emerged from the studies. Chief among these is the need for an integrated (computer program) aerodynamic/structures approach to aircraft design.

  13. Nitrogen oxides at the UTLS: Combining observations from research aircraft and in-service aircraft

    NASA Astrophysics Data System (ADS)

    Ziereis, Helmut; Stratmann, Greta; Schlager, Hans; Gottschaldt, Klaus-Dirk; Rauthe-Schöch, Armin; Zahn, Andreas; Hoor, Peter; van, Peter

    2016-04-01

    Nitrogen oxides have a decisive influence on the chemistry of the upper troposphere and lower stratosphere. They are key constituents of several reaction chains influencing the production of ozone. They also play an essential role in the cycling of hydroxyl radicals and therefore influence the lifetime of methane. Due to their short lifetime and their variety of sources there is still a high uncertainty about the abundance of nitrogen oxides in the UTLS. Dedicated aircraft campaigns aim to study specific atmospheric questions like lightning, long range transport or aircraft emissions. Usually, within a short time period comprehensive measurements are performed within a more or less restricted region. Therefore, especially trace constituents like nitrogen oxides with short lifetime and a variety of different sources are not represented adequately. On the other hand, routine measurements from in-service aircraft allow observations over longer time periods and larger regions. However, it is nearly impossible to influence the scheduling of in-service aircraft and thereby time and space of the observations. Therefore, the combination of dedicated aircraft campaigns and routine observations might supplement each other. For this study we combine nitrogen oxides data sets obtained with the IAGOS-CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container) flying laboratory and with the German research aircraft HALO (High altitude and long range research aircraft). Data have been acquired within the IAGOS-CARIBIC project on a monthly base using a Lufthansa Airbus A340-600 since December 2004. About four flights are performed each month covering predominantly northern mid-latitudes. Additional flights have been conducted to destinations in South America and South Africa. Since 2012 HALO has been operational. Nitrogen oxides measurements have been performed during six missions covering mid latitudes, tropical as well as Polar

  14. Materials research for aircraft fire safety

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Bricker, R. W.

    1976-01-01

    The thermochemical and flammability characteristics of two polymeric composites currently in use and seven others being considered for use as aircraft interior panels are described. The properties studied included: (1) limiting oxygen index of the composite constituents; (2) fire containment capability of the composite; (3) smoke evolution from the composite; (4) thermogravimetric analysis; (5) composition of the volatile products of thermal degradation; and (6) relative toxicity of the volatile products of pyrolysis. The performance of high-temperature laminating resins such as bismaleimides is compared with the performance of phenolics and epoxies. The relationship of increased fire safety with the use of polymers with high anaerobic char yield is shown. Processing parameters of the state-of-the-art and the advanced bismaleimide composites are detailed.

  15. STOVL aircraft simulation for integrated flight and propulsion control research

    NASA Technical Reports Server (NTRS)

    Mihaloew, James R.; Drummond, Colin K.

    1989-01-01

    The United States is in the initial stages of committing to a national program to develop a supersonic short takeoff and vertical landing (STOVL) aircraft. The goal of the propulsion community in this effort is to have the enabling propulsion technologies for this type aircraft in place to permit a low risk decision regarding the initiation of a research STOVL supersonic attack/fighter aircraft in the late mid-90's. This technology will effectively integrate, enhance, and extend the supersonic cruise, STOVL and fighter/attack programs to enable U.S. industry to develop a revolutionary supersonic short takeoff and vertical landing fighter/attack aircraft in the post-ATF period. A joint NASA Lewis and NASA Ames research program, with the objective of developing and validating technology for integrated-flight propulsion control design methodologies for short takeoff and vertical landing (STOVL) aircraft, was planned and is underway. This program, the NASA Supersonic STOVL Integrated Flight-Propulsion Controls Program, is a major element of the overall NASA-Lewis Supersonic STOVL Propulsion Technology Program. It uses an integrated approach to develop an integrated program to achieve integrated flight-propulsion control technology. Essential elements of the integrated controls research program are realtime simulations of the integrated aircraft and propulsion systems which will be used in integrated control concept development and evaluations. This paper describes pertinent parts of the research program leading up to the related realtime simulation development and remarks on the simulation structure to accommodate propulsion system hardware drop-in for real system evaluation.

  16. Some historical trends in the research and development of aircraft

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1983-01-01

    A survey of some trends in aircraft design was made in an effort to determine the relation between research, development, test, and evaluation (RDT and E) and aircraft mission capability, requirements, and objectives. Driving forces in the history of aircraft include the quest for speed which involved design concepts incorporating jet propulsion systems and low drag features. The study of high speed design concepts promoted new experimental and analytical research techniques. These research techniques, in turn, have lead to concepts offering new performance potential. Design trends were directed toward increased speed, efficiency, productivity, and safety. Generally speaking, the research and development effort has been evolutionary in nature and, with the exception of the transition to supersonic flight, little has occurred since the origin of flight that has drastically changed the basic design fundamentals of aircraft. However, this does not preclude the possibility of dramatic changes in the future since the products of research are frequently unpredictable. Advances should be expected and sought in improved aerodynamics (reduced drag, enhanced lift, flow field exploitation); propulsion (improved engine cycles, multimode engines, alternate fuels, alternate power sources); structures (new materials, manufacturing techniques); all with a view toward increased efficiency and utility.

  17. Advanced materials research for long-haul aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Signorelli, R. A.; Blankenship, C. P.

    1978-01-01

    The status of research efforts to apply low to intermediate temperature composite materials and advanced high temperature materials to engine components is reviewed. Emerging materials technologies and their potential benefits to aircraft gas turbines were emphasized. The problems were identified, and the general state of the technology for near term use was assessed.

  18. Long range view of materials research for civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.; Waters, M. H.

    1973-01-01

    The impact of various material technology advancements on the economics of civil transport aircraft is investigated. Benefits of advances in both airframe and engine materials are considered. Benefits are measured primarily by improvements in return on investment for an operator. Materials research and development programs which lead to the greatest benefits are assessed with regards to cost, risk, and commonality with other programs. Emphasis of the paper is on advanced technology subsonic/transonic transports (ATT type aircraft) since these are likely to be the next generation of commercial transports.

  19. Long range view of materials research for civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.; Waters, M. H.

    1974-01-01

    The impact of various material technology advancements on the economics of civil transport aircraft is investigated. Benefits of advances in both airframe and engine materials are considered. Benefits are measured primarily by improvements in return on investment for an operator. Materials research and development programs which lead to the greatest benefits are assessed with regards to cost, risk, and commonality with other programs. Emphasis of the paper is on advanced technology subsonic/transonic transports (ATT type aircraft) since these are likely to be the next generation of commercial transports.

  20. Lockheed ER-2 #806 high altitude research aircraft in flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    ER-2 tail number 806, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F-118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  1. Lockheed ER-2 high altitude research aircraft in flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    ER-2 tail number 706, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F-118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  2. Lockheed ER-2 #806 high altitude research aircraft during landing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    ER-2 tail number 806, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F-118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  3. Lockheed ER-2 #809 high altitude research aircraft in flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    ER-2 tail number 809, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  4. Lockheed ER-2 #809 high altitude research aircraft in flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    ER-2 tail number 809, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F-118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  5. Joint USAF/NASA hypersonic research aircraft study

    NASA Technical Reports Server (NTRS)

    Kirkham, F. S.; Jones, R. A.; Buck, M. L.; Zima, W. P.

    1975-01-01

    A joint USAF/NASA study has developed a conceptual design for a new high-speed research airplane (X-24C) and identified candidate flight research experiments in the Mach 3 to 6 speed range. Four major categories of high priority research experiments are described as well as the X-24C design concept. The vehicle, a rocket-boosted, delta planform aircraft, is air launched from a B-52 and is capable of forty seconds of rocket cruise at Mach 6 with a research scramjet. Research provisions include a dedicated 10-foot long research experiments section, removable fins and strakes, and provisions for testing integrated airbreathing propulsion systems.

  6. NASA/Ames Research Center's science and applications aircraft program

    NASA Technical Reports Server (NTRS)

    Hall, G. Warren

    1991-01-01

    NASA-Ames Research Center operates a fleet of seven Science and Applications Aircraft, namely the C-141/Kuiper Airborne Observatory (KAO), DC-8, C-130, Lear Jet, and three ER-2s. These aircraft are used to satisfy two major objectives, each of equal importance. The first is to acquire remote and in-situ scientific data in astronomy, astrophysics, earth sciences, ocean processes, atmospheric physics, meteorology, materials processing and life sciences. The second major objective is to expedite the development of sensors and their attendant algorithms for ultimate use in space and to simulate from an aircraft, the data to be acquired from spaceborne sensors. NASA-Ames Science and Applications Aircraft are recognized as national and international facilities. They have performed and will continue to perform, operational missions from bases in the United States and worldwide. Historically, twice as many investigators have requested flight time than could be accommodated. This situation remains true today and is expected to increase in the years ahead. A major advantage of the existing fleet of aircraft is their ability to cover a large expanse of the earth's ecosystem from the surface to the lower stratosphere over large distances and time aloft. Their large payload capability allows a number of scientists to use multi-investigator sensor suites to permit simultaneous and complementary data gathering. In-flight changes to the sensors or data systems have greatly reduced the time required to optimize the development of new instruments. It is doubtful that spaceborne systems will ever totally replace the need for airborne science aircraft. The operations philosophy and capabilities exist at NASA-Ames Research Center.

  7. Faculty Training in Aging Research.

    ERIC Educational Resources Information Center

    Mehrotra, Chandra M.

    2003-01-01

    Evaluation of a research training program by 58 psychology faculty participants revealed four outcomes: improved knowledge of methodology, increased interest in aging research, expanded networking, and stronger undergraduate programs. Grant writing training resulted in 10 participants obtaining National Institute on Aging funding. (SK)

  8. The Proposed Use of Unmanned Aerial System Surrogate Research Aircraft for National Airspace System Integration Research

    NASA Technical Reports Server (NTRS)

    Howell, Charles T., III

    2011-01-01

    Research is needed to determine what procedures, aircraft sensors and other systems will be required to allow Unmanned Aerial Systems (UAS) to safely operate with manned aircraft in the National Airspace System (NAS). This paper explores the use of Unmanned Aerial System (UAS) Surrogate research aircraft to serve as platforms for UAS systems research, development, and flight testing. These aircraft would be manned with safety pilots and researchers that would allow for flight operations almost anywhere in the NAS without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). With pilot override capability, these UAS Surrogate aircraft would be controlled from ground stations like true UAS s. It would be possible to file and fly these UAS Surrogate aircraft in the NAS with normal traffic and they would be better platforms for real world UAS research and development over existing vehicles flying in restricted ranges or other sterilized airspace. These UAS surrogate aircraft could be outfitted with research systems as required such as computers, state sensors, video recording, data acquisition, data link, telemetry, instrumentation, and Automatic Dependent Surveillance-Broadcast (ADS-B). These surrogate aircraft could also be linked to onboard or ground based simulation facilities to further extend UAS research capabilities. Potential areas for UAS Surrogate research include the development, flight test and evaluation of sensors to aide in the process of air traffic "see-and-avoid". These and other sensors could be evaluated in real-time and compared with onboard human evaluation pilots. This paper examines the feasibility of using UAS Surrogate research aircraft as test platforms for a variety of UAS related research.

  9. Quiet short-haul research aircraft familiarization document, revision 1

    NASA Technical Reports Server (NTRS)

    Eppel, J. C.

    1981-01-01

    The design features and general characteristics of the Quiet Short Haul Research Aircraft are described. Aerodynamic characteristics and performance are discussed based on predictions and early flight test data. Principle airplane systems, including the airborne data acquisition system, are also described. The aircraft was designed and built to fulfill the need for a national research facility to explore the use of upper surface blowing, propulsive lift technology in providing short takeoff and landing capability, and perform advanced experiments in various technical disciplines such as aerodynamics, propulsion, stability and control, handling qualities, avionics and flight control systems, trailing vortex phenomena, acoustics, structure and loads, operating systems, human factors, and airworthiness/certification criteria. An unusually austere approach using experimental shop practices resulted in a low cost and high research capability.

  10. Aircraft

    DOEpatents

    Hibbs, B.D.; Lissaman, P.B.S.; Morgan, W.R.; Radkey, R.L.

    1998-09-22

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing`s top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gases for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well. 31 figs.

  11. Aircraft

    DOEpatents

    Hibbs, Bart D.; Lissaman, Peter B. S.; Morgan, Walter R.; Radkey, Robert L.

    1998-01-01

    This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Travelling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five sections of the wing has one or more engines and photovoltaic arrays, and produces its own lift independent of the other sections, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft is capable of a top speed of about ninety miles per hour, which enables the aircraft to attain and can continuously maintain altitudes of up to sixty-five thousand feet. Regenerative fuel cells in the wing store excess electricity for use at night, such that the aircraft can sustain its elevation indefinitely. A main spar of the wing doubles as a pressure vessel that houses hydrogen and oxygen gasses for use in the regenerative fuel cell. The aircraft has a wide variety of applications, which include weather monitoring and atmospheric testing, communications, surveillance, and other applications as well.

  12. Aging Research Using Mouse Models.

    PubMed

    Ackert-Bicknell, Cheryl L; Anderson, Laura C; Sheehan, Susan; Hill, Warren G; Chang, Bo; Churchill, Gary A; Chesler, Elissa J; Korstanje, Ron; Peters, Luanne L

    2015-06-01

    Despite the dramatic increase in human lifespan over the past century, there remains pronounced variability in "health-span," or the period of time in which one is generally healthy and free of disease. Much of the variability in health-span and lifespan is thought to be genetic in origin. Understanding the genetic mechanisms of aging and identifying ways to boost longevity is a primary goal in aging research. Here, we describe a pipeline of phenotypic assays for assessing mouse models of aging. This pipeline includes behavior/cognition testing, body composition analysis, and tests of kidney function, hematopoiesis, and immune function, as well as physical parameters. We also describe study design methods for assessing lifespan and health-span, and other important considerations when conducting aging research in the laboratory mouse. The tools and assays provided can assist researchers with understanding the correlative relationships between age-associated phenotypes and, ultimately, the role of specific genes in the aging process.

  13. Aging Research Using Mouse Models

    PubMed Central

    Ackert-Bicknell, Cheryl L.; Anderson, Laura; Sheehan, Susan; Hill, Warren G.; Chang, Bo; Churchill, Gary A.; Chesler, Elissa J.; Korstanje, Ron; Peters, Luanne L.

    2015-01-01

    Despite the dramatic increase in human lifespan over the past century, there remains pronounced variability in “health-span”, or the period of time in which one is generally healthy and free of disease. Much of the variability in health-span and lifespan is thought to be genetic in origin. Understanding the genetic mechanisms of aging and identifying ways to boost longevity is a primary goal in aging research. Here, we describe a pipeline of phenotypic assays for assessing mouse models of aging. This pipeline includes behavior/cognition testing, body composition analysis, and tests of kidney function, hematopoiesis, immune function and physical parameters. We also describe study design methods for assessing lifespan and health-span, and other important considerations when conducting aging research in the laboratory mouse. The tools and assays provided can assist researchers with understanding the correlative relationships between age-associated phenotypes and, ultimately, the role of specific genes in the aging process. PMID:26069080

  14. Pseudo Aircraft Systems - A multi-aircraft simulation system for air traffic control research

    NASA Technical Reports Server (NTRS)

    Weske, Reid A.; Danek, George L.

    1993-01-01

    Pseudo Aircraft Systems (PAS) is a computerized flight dynamics and piloting system designed to provide a high fidelity multi-aircraft real-time simulation environment to support Air Traffic Control research. PAS is composed of three major software components that run on a network of computer workstations. Functionality is distributed among these components to allow the system to execute fast enough to support real-time operation. PAS workstations are linked by an Ethernet Local Area Network, and standard UNIX socket protocol is used for data transfer. Each component of PAS is controlled and operated using a custom designed Graphical User Interface. Each of these is composed of multiple windows, and many of the windows and sub-windows are used in several of the components. Aircraft models and piloting logic are sophisticated and realistic and provide complex maneuvering and navigational capabilities. PAS will continually be enhanced with new features and improved capabilities to support ongoing and future Air Traffic Control system development.

  15. An Indispensable Ingredient: Flight Research and Aircraft Design

    NASA Technical Reports Server (NTRS)

    Gorn, Michael H.

    2003-01-01

    Flight research-the art of flying actual vehicles in the atmosphere in order to collect data about their behavior-has played a historic and decisive role in the design of aircraft. Naturally, wind tunnel experiments, computational fluid dynamics, and mathematical analyses all informed the judgments of the individuals who conceived of new aircraft. But flight research has offered moments of realization found in no other method. Engineer Dale Reed and research pilot Milt Thompson experienced one such epiphany on March 1, 1963, at the National Aeronautics and Space Administration s Dryden Flight Research Center in Edwards, California. On that date, Thompson sat in the cockpit of a small, simple, gumdrop-shaped aircraft known as the M2-F1, lashed by a long towline to a late-model Pontiac Catalina. As the Pontiac raced across Rogers Dry Lake, it eventually gained enough speed to make the M2-F1 airborne. Thompson braced himself for the world s first flight in a vehicle of its kind, called a lifting body because of its high lift-to-drag ratio. Reed later recounted what he saw:

  16. Research in robust control for hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Calise, A. J.

    1993-01-01

    The research during the second reporting period has focused on robust control design for hypersonic vehicles. An already existing design for the Hypersonic Winged-Cone Configuration has been enhanced. Uncertainty models for the effects of propulsion system perturbations due to angle of attack variations, structural vibrations, and uncertainty in control effectiveness were developed. Using H(sub infinity) and mu-synthesis techniques, various control designs were performed in order to investigate the impact of these effects on achievable robust performance.

  17. NASA Dryden Flight Research Center: Unmanned Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Pestana, Mark

    2010-01-01

    This slide presentation reviews several topics related to operating unmanned aircraft in particular sharing aspects of unmanned aircraft from the perspective of a pilot. There is a section on the Global Hawk project which contains information about the first Global Hawk science mission, (i.e., Global Hawk Pacific (GloPac). Included in this information is GloPac science highlights, a listing of the GloPac Instruments. The second Global Hawk science mission was Genesis and Rapid Intensification Process (GRIP), for the NASA Hurricane Science Research Team. Information includes the instrumentation and the flights that were undertaken during the program. A section on Ikhana is next. This section includes views of the Ground Control Station (GCS), and a discussion of how the piloting of UAS is different from piloting in a manned aircraft. There is also discussion about displays and controls of aircraft. There is also discussion about what makes a pilot. The last section relates the use of Ikhana in the western states fire mission.

  18. Digital simulation of V/STOL aircraft for autopilot research

    NASA Technical Reports Server (NTRS)

    Cicolani, L. S.; Meyer, G.

    1975-01-01

    Simulations of V/STOL aircraft for autopilot research were introduced as examples of large scale systems. A hierarchy of simulations was assembled, and a modular organization was given to the simulations. The dynamics of the system were subdivided into translational and rotational degrees of freedom, based on the different frequencies at which significant variations in motion variables, control forces and moments occur in two subsystems. This is the basis of the autopilot partitioning into two smaller control problems.

  19. Dynamic thermal tomography for nondestructive inspection of aging aircraft

    SciTech Connect

    Del Grande, N.K.; Dolan, K.W.; Durbin, P.F.; Gorvad, M.R.; Shapiro, A.B.

    1993-11-01

    The authors apply dual-band infrared (DBIR) imaging as a dynamic thermal tomography tool for wide area inspection of a Boeing 737 aircraft and several Boeing KC-135 aircraft panels. The analyses are discussed in this report. After flash-heating the aircraft skin, they record synchronized DBIR images every 40 ms, from onset to 8 seconds after the heat flash. They analyze selective DBIR image ratios which enhance surface temperature contrast and remove surface-emissivity clutter. The Boeing 737 and KC-135 aircraft fuselage panels have varying percent thickness losses from corrosion. They established the correlation of percent thickness loss with surface temperature rise (above ambient) for a partially corroded F-18 wing box structure and several aluminum plates which had 6 to 60% thickness losses at milled flat-bottom hole sites. Based on this correlation, lap splice temperatures rise 1C per 24 {plus_minus} 5% material loss at 0.4 s after the heat flash. They tabulate and map corrosion-related percent thickness loss effects for the riveted Boeing 737, and the riveted Boeing KKC-135. They map the fuselage composite thermal inertia, based on the (inverse) slope of the surface temperature versus inverse square root of time. Composite thermal inertia maps characterized shallow skin defects within the lap splice at early times (< 0.3 s) and deeper skin defects within the lap splice at late times (> 0.4 s). Late time composite thermal inertia maps depict where corrosion-related thickness losses occur (e.g., on the inside of the Boeing 737 lap splice, beneath the galley and the latrine). Lap splice sites on a typical Boeing KC-135 panel with low composite thermal inertia values had high skin-thickness losses from corrosion.

  20. Continuous Structural Monitoring of Aging Aircraft without using Reference Data

    DTIC Science & Technology

    2009-05-31

    changes and ambient loading, that in-service aircraft is subject to, will be explicitly taken into consideration through laboratory specimen tests and...plate was simulated using the combination of plain strain, piezo plain strain, and electrostatics modules in COMSOL softw m collocated but on the other...MPa. Circular PZTs (6.35 mm in diameter and 0.25 mm in thickness) were purchased from American Piezo Ltd. They had a Curie temperature of 3600C and

  1. V/STOL tilt rotor aircraft study. Volume 6: Preliminary design of a composite wing for tilt rotor research aircraft

    NASA Technical Reports Server (NTRS)

    Soule, V. A.; Badri-Nath, Y.

    1973-01-01

    The results of a study of the use of composite materials in the wing of a tilt rotor aircraft are presented. An all-metal tilt rotor aircraft was first defined to provide a basis for comparing composite with metal structure. A configuration study was then done in which the wing of the metal aircraft was replaced with composite wings of varying chord and thickness ratio. The results of this study defined the design and performance benefits obtainable with composite materials. Based on these results the aircraft was resized with a composite wing to extend the weight savings to other parts of the aircraft. A wing design was then selected for detailed structural analysis. A development plan including costs and schedules to develop this wing and incorporate it into a proposed flight research tilt rotor vehicle has been devised.

  2. Rotor systems research aircraft risk-reduction shake test

    NASA Technical Reports Server (NTRS)

    Wellman, J. Brent

    1990-01-01

    A shake test and an extensive analysis of results were performed to evaluate the possibility of and the method for dynamically calibrating the Rotor Systems Research Aircraft (RSRA). The RSRA airframe was subjected to known vibratory loads in several degrees of freedom and the responses of many aircraft transducers were recorded. Analysis of the transducer responses using the technique of dynamic force determination showed that the RSRA, when used as a dynamic measurement system, could predict, a posteriori, an excitation force in a single axis to an accuracy of about 5 percent and sometimes better. As the analysis was broadened to include multiple degrees of freedom for the excitation force, the predictive ability of the measurement system degraded to about 20 percent, with the error occasionally reaching 100 percent. The poor performance of the measurement system is explained by the nonlinear response of the RSRA to vibratory forces and the inadequacy of the particular method used in accounting for this nonlinearity.

  3. Predesign report for the rotor systems research aircraft

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A conceptual predesign of a compound helicopter for conducting rotor research is presented. The aircraft was selected by the Government as the better of two concepts submitted. The helicopter is a three place vehicle in the 24,000 pound gross weight class. It has been determined that the helicopter satisfies the requirements for the rotor research mission. The model has been predesigned sufficiently to allow an assessment of its performance and stability and control characteristics. A brief treatment of these subjects is included.

  4. Ethical aspects of aging research.

    PubMed

    Seppet, Enn; Pääsuke, Mati; Conte, Maria; Capri, Miriam; Franceschi, Claudio

    2011-12-01

    During the last 50-60 years, due to development of medical care and hygienically safe living conditions, the average life span of European citizens has substantially increased, with a rapid growth of the population older than 65 years. This trend places ever-growing medical and economical burden on society, as many of the older subjects suffer from age-related diseases and frailty. Coping with these problems requires not only appropriate medical treatment and social support but also extensive research in many fields of aging-from biology to sociology, with involvement of older people as the research subjects. This work anticipates development and application of ethical standards suited to dynamic advances in aging research. The aim of this review is to update the knowledge in ethical requirements toward recruitment of older research subjects, obtaining of informed consent, collection of biological samples, and use of stem cells in preclinical and clinical settings. It is concluded that application of adequate ethical platform markedly facilitates recruitment of older persons for participation in research. Currently, the basic ethical concepts are subjected to extensive discussion, with participation of all interested parties, in order to guarantee successful research on problems of human aging, protect older people from undesired interference, and afford their benefits through supporting innovations in research, therapy, and care.

  5. Aircraft

    DTIC Science & Technology

    2003-01-01

    national power. But with the recent events such as the war with Iraq, the Severe Acute Respiratory Syndrome (SARS) outbreak, some major carriers... TITLE AND SUBTITLE 2003 Industry Studies: Aircraft 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER

  6. Insights gained from aging research

    SciTech Connect

    Blahnik, D.E.; Casada, D.A.; Edson, J.L.; Fineman, D.L.; Gunther, W.E.; Haynes, H.D.; Hoopingarner, K.R.; Jacobus, M.J.; Jarrell, D.B.; Kryter, R.C.; Magelby, H.L.; Murphy, G.A.; Subudhi, M.M.

    1992-03-01

    The US NRC Office of Nuclear Regulatory Research has implemented hardware-oriented engineering research programs to identify and resolve technical issues related to the aging of systems, structures, and components (SSCs) in operating nuclear power plants. This report provides a summary of those research results which have been compiled and published in NUREGS and related technical reports. The systems, components and structures that have been studied are organized by alphabetical order. The research results summary on the SSCs is followed by an assessment guide to emphasize inspection techniques which may be useful for detecting aging degradation in nuclear power plants. This report will be updated periodically to reflect new research results on these or other SSCs.

  7. Light transport and general aviation aircraft icing research requirements

    NASA Technical Reports Server (NTRS)

    Breeze, R. K.; Clark, G. M.

    1981-01-01

    A short term and a long term icing research and technology program plan was drafted for NASA LeRC based on 33 separate research items. The specific items listed resulted from a comprehensive literature search, organized and assisted by a computer management file and an industry/Government agency survey. Assessment of the current facilities and icing technology was accomplished by presenting summaries of ice sensitive components and protection methods; and assessments of penalty evaluation, the experimental data base, ice accretion prediction methods, research facilities, new protection methods, ice protection requirements, and icing instrumentation. The intent of the research plan was to determine what icing research NASA LeRC must do or sponsor to ultimately provide for increased utilization and safety of light transport and general aviation aircraft.

  8. Broadband electromagnetic sensors for aircraft lightning research. [electromagnetic effects of lightning on aircraft digital equipment

    NASA Technical Reports Server (NTRS)

    Trost, T. F.; Zaepfel, K. P.

    1980-01-01

    A set of electromagnetic sensors, or electrically-small antennas, is described. The sensors are designed for installation on an F-106 research aircraft for the measurement of electric and magnetic fields and currents during a lightning strike. The electric and magnetic field sensors mount on the aircraft skin. The current sensor mounts between the nose boom and the fuselage. The sensors are all on the order of 10 cm in size and should produce up to about 100 V for the estimated lightning fields. The basic designs are the same as those developed for nuclear electromagnetic pulse studies. The most important electrical parameters of the sensors are the sensitivity, or equivalent area, and the bandwidth (or rise time). Calibration of sensors with simple geometries is reliably accomplished by a geometric analysis; all the sensors discussed possess geometries for which the sensitivities have been calculated. For the calibration of sensors with more complex geometries and for general testing of all sensors, two transmission lines were constructed to transmit known pulsed fields and currents over the sensors.

  9. NACA's 9th Annual Aircraft Engineering Research Conference

    NASA Technical Reports Server (NTRS)

    1934-01-01

    Eight of the twelve members of the National Advisory Committee for Aeronautics attending the 9th Annual Aircraft Engineering Research Conference posed for this photograph at Langley Field, Virginia, on May 23, 1934. Those pictured are (left to right): Brig. Gen. Charles A. Lindbergh, USAFR Vice Admiral Arthur B. Cook, USN Charles G. Abbot, Secretary of the Smithsonian Institution Dr. Joseph S. Ames, Committee Chairman Orville Wright Edward P. Warner Fleet Admiral Ernest J. King, USN Eugene L. Vidal, Director, Bureau of Air Commerce.

  10. Dual-band infrared imaging applications: Locating buried minefields, mapping sea ice, and inspecting aging aircraft

    SciTech Connect

    Del Grande, N.K.; Durbin, P.F.; Perkins, D.E.

    1992-09-01

    We discuss the use of dual-band infrared (DBIR) imaging for three quantitative NDE applications: location buried surrogate mines, mapping sea ice thicknesses and inspecting subsurface flaws in aging aircraft parts. Our system of DBIR imaging offers a unique combination of thermal resolution, detectability, and interpretability. Pioneered at Lawrence Livermore Laboratory, it resolves 0.2 {degrees}C differences in surface temperatures needed to identify buried mine sites and distinguish them from surface features. It produces both surface temperature and emissivity-ratio images of sea ice, needed to accurately map ice thicknesses (e.g., by first removing clutter due to snow and surface roughness effects). The DBIR imaging technique depicts subsurface flaws in composite patches and lap joints of aircraft, thus providing a needed tool for aging aircraft inspections.

  11. Dual-band infrared imaging applications: Locating buried minefields, mapping sea ice, and inspecting aging aircraft

    NASA Astrophysics Data System (ADS)

    Delgrande, N. K.; Durbin, P. F.; Perkins, D. E.

    1992-09-01

    We discuss the use of dual-band infrared (DBIR) imaging for three quantitative NDE applications: location buried surrogate mines, mapping sea ice thicknesses, and inspecting subsurface flaws in aging aircraft parts. Our system of DBIR imaging offers a unique combination of thermal resolution, detectability, and interpretability. Pioneered at Lawrence Livermore Laboratory, it resolves 0.2 C differences in surface temperatures needed to identify buried mine sites and distinguish them from surface features. It produces both surface temperature and emissivity-ratio images of sea ice, needed to accurately map ice thicknesses (e.g., by first removing clutter due to snow and surface roughness effects). The DBIR imaging technique depicts subsurface flaws in composite patches and lap joints of aircraft, thus providing a needed tool for aging aircraft inspections.

  12. The NASA Langley Research Center's Unmanned Aerial System Surrogate Research Aircraft

    NASA Technical Reports Server (NTRS)

    Howell, Charles T., III; Jessup, Artie; Jones, Frank; Joyce, Claude; Sugden, Paul; Verstynen, Harry; Mielnik, John

    2010-01-01

    Research is needed to determine what procedures, aircraft sensors and other systems will be required to allow Unmanned Aerial Systems (UAS) to safely operate with manned aircraft in the National Airspace System (NAS). The NASA Langley Research Center has transformed a Cirrus Design SR22 general aviation (GA) aircraft into a UAS Surrogate research aircraft to serve as a platform for UAS systems research, development, flight testing and evaluation. The aircraft is manned with a Safety Pilot and systems operator that allows for flight operations almost anywhere in the NAS without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). The UAS Surrogate can be controlled from a modular, transportable ground station like a true UAS. The UAS Surrogate is able to file and fly in the NAS with normal traffic and is a better platform for real world UAS research and development than existing vehicles flying in restricted ranges or other sterilized airspace. The Cirrus Design SR22 aircraft is a small, singleengine, four-place, composite-construction aircraft that NASA Langley acquired to support NASA flight-research programs like the Small Aircraft Transportation System (SATS) Project. Systems were installed to support flight test research and data gathering. These systems include: separate research power; multi-function flat-panel displays; research computers; research air data and inertial state sensors; video recording; data acquisition; data-link; S-band video and data telemetry; Common Airborne Instrumentation System (CAIS); Automatic Dependent Surveillance-Broadcast (ADS-B); instrumented surfaces and controls; and a systems operator work station. The transformation of the SR22 to a UAS Surrogate was accomplished in phases. The first phase was to modify the existing autopilot to accept external commands from a research computer that was connected by redundant data-link radios to a ground control station. An electro-mechanical auto

  13. The Pilatus unmanned aircraft system for lower atmospheric research

    NASA Astrophysics Data System (ADS)

    de Boer, Gijs; Palo, Scott; Argrow, Brian; LoDolce, Gabriel; Mack, James; Gao, Ru-Shan; Telg, Hagen; Trussel, Cameron; Fromm, Joshua; Long, Charles N.; Bland, Geoff; Maslanik, James; Schmid, Beat; Hock, Terry

    2016-04-01

    This paper presents details of the University of Colorado (CU) "Pilatus" unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might

  14. The Pilatus Unmanned Aircraft System for Lower Atmospheric Research

    NASA Technical Reports Server (NTRS)

    de Boer, Gijs; Palo, Scott; Argrow, Brian; LoDolce, Gabriel; Mack, James; Gao, Ru-shan; Telg, Hagen; Trussel, Cameron; Fromm, Joshua; Long, Charles N.; Bland, Geoff; Maslanik, James; Schmid, Beat; Hock, Terry

    2016-01-01

    This paper presents details of the University of Colorado (CU) "Pilatus" unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might

  15. The pilatus unmanned aircraft system for lower atmospheric research

    NASA Astrophysics Data System (ADS)

    de Boer, G.; Palo, S.; Argrow, B.; LoDolce, G.; Mack, J.; Gao, R.-S.; Telg, H.; Trussel, C.; Fromm, J.; Long, C. N.; Bland, G.; Maslanik, J.; Schmid, B.; Hock, T.

    2015-11-01

    This paper presents details of the University of Colorado (CU) Pilatus unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take off weight of 25 kg and is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and it's orientation to the upward looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might be

  16. The Pilatus unmanned aircraft system for lower atmospheric research

    SciTech Connect

    de Boer, Gijs; Palo, Scott; Argrow, Brian; LoDolce, Gabriel; Mack, James; Gao, Ru -Shan; Telg, Hagen; Trussel, Cameron; Fromm, Joshua; Long, Charles N.; Bland, Geoff; Maslanik, James; Schmid, Beat; Hock, Terry

    2016-04-28

    This study presents details of the University of Colorado (CU) “Pilatus” unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as

  17. The Pilatus unmanned aircraft system for lower atmospheric research

    DOE PAGES

    de Boer, Gijs; Palo, Scott; Argrow, Brian; ...

    2016-04-28

    This study presents details of the University of Colorado (CU) “Pilatus” unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. Inmore » order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured

  18. Final report on development of Pulse Arrested Spark Discharge (PASD) for aging aircraft wiring application

    SciTech Connect

    Lockner, Thomas Ramsbeck; Howard, R. Kevin; Pena, Gary Edward; Schneider, Larry X.; Higgins, Matthew B.; Glover, Steven Frank

    2006-09-01

    Pulsed Arrested Spark Discharge (PASD) is a Sandia National Laboratories Patented, non-destructive wiring system diagnostic that has been developed to detect defects in aging wiring systems in the commercial aircraft fleet. PASD was previously demonstrated on relatively controlled geometry wiring such as coaxial cables and shielded twisted-pair wiring through a contract with the U.S. navy and is discussed in a Sandia National Laboratories report, SAND2001-3225 ''Pulsed Arrested Spark Discharge (PASD) Diagnostic Technique for the Location of Defects in Aging Wiring Systems''. This report describes an expansion of earlier work by applying the PASD technique to unshielded twisted-pair and discrete wire configurations commonly found in commercial aircraft. This wiring is characterized by higher impedances as well as relatively non-uniform impedance profiles that have been found to be challenging for existing aircraft wiring diagnostics. Under a three year contract let by the Federal Aviation Administration, Interagency Agreement DTFA-03-00X90019, this technology was further developed for application on aging commercial aircraft wiring systems. This report describes results of the FAA program with discussion of previous work conducted under U.S. Department of Defense funding.

  19. Overview of NASA research in fiber optics for aircraft controls

    NASA Technical Reports Server (NTRS)

    Seng, Gary T.

    1988-01-01

    The challenge of those involved in aircraft control system hardware development is to accommodate an ever-increasing complexity in aircraft control, while limiting the size and weight of the components and improving system reliability. A technology that displays promise towards this end is fiber optics. The primary advantages of employing optical fibers, passive optical sensors and optically controlled actuators are weight/volume reduction, immunity from electromagnetic effects, high bandwidth capabilities and freedom from short circuits/sparking contacts. Since 1975, NASA Lewis has been performing in-house, contract and grant research in fiber optic sensors, high temperature electro-optic switches and fly-by-light control system architecture. Passive optical sensor development is an essential yet challenging area of work and has therefore received much attention during this period. A major effort to develop fly-by-light control system technology, known as the Fiber Optic Control System Integration (FOCSI) program, was initiated in 1985 as a cooperative effort between NASA and DOD. Phase 1 of FOCSI, completed in 1986, was aimed at the design of a fiber optic integrated propulsion/flight control system. Phase 2 will provide subcomponent and system development and system testing. In addition to a summary of the benefits of fiber optics, the FOCSI program, sensor advances, and future directions in the NASA Lewis program are discussed.

  20. An Overview of the Space Shuttle Orbiter's Aging Aircraft Program

    NASA Technical Reports Server (NTRS)

    Russell, Richard W.

    2007-01-01

    The Space Shuttle Orbiter has well exceeded its original design life of 10 years or 100 missions. The Orbiter Project Office (OPO) has sponsored several activities to address aging vehicle concerns, including a Corrosion Control Review Board (CCRB), a mid-life certification program, and most recently the formation of the Aging Orbiter Working Group (AOWG). The AOWG was chartered in 2004 as a proactive group which provides the OPO oversight for aging issues such as corrosion, non-destructive inspection, non-metallics, wiring and subsystems. The core team consists of mainly representatives from the Materials and Processes Problem Resolution Team (M&P PRT) and Safety and Mission Assurance (S&MA). Subsystem engineers and subject matter experts are called in as required. The AOWG has functioned by forming issues based sub-teams. Examples of completed sub-teams include adhesives, wiring and wing leading edge metallic materials. Current sub-teams include Composite Over-Wrapped Pressure Vessels (COPV), elastomeric materials and mechanisms.

  1. American Federation for Aging Research

    MedlinePlus

    ... Post 50 Infoaging Biology of Aging Disease Center Healthy Aging Ask the Expert Contact Us Press Info Contact ... live healthier, longer Age Better Fund LEARN about healthy aging through AFAR's expert-edited guides InfoAging What's New ...

  2. The 1991 International Conference on Aging Aircraft and Structural Airworthiness

    NASA Technical Reports Server (NTRS)

    Harris, Charles E. (Editor)

    1992-01-01

    Technical sessions of the conference included structural performance, nondestructive evaluation, maintenance and repair, international activities, and commuter airlines. Each session was organized to provide a well-rounded view of the subject from the industry, regulatory, and research perspective. Thirty-four presentations were given by the international technical community.

  3. XV-15 Tilt Rotor Research Aircraft - Program report

    NASA Technical Reports Server (NTRS)

    Magee, J. P.; Wernicke, K. G.

    1979-01-01

    This paper is a status report of the NASA/Army XV-15 Project. The basic tilt-rotor concept and the XV-15 Tilt-Rotor Research Aircraft are discussed and some results of full-scale wind-tunnel tests in the Ames 40- by 80-Foot Wind Tunnel are presented. Flight-test data are included to give preliminary performance, noise, and vibration data in hover and as far into transition flight as are available at the time of presentation. Information concerning vehicle aerodynamics and airloads obtained as a result of both wind-tunnel and flight tests are provided with some conclusions as to the ramifications of the data in terms of design criteria and configuration layout.

  4. Fabrication research for supersonic cruise aircraft. [YF-12 skin structures

    NASA Technical Reports Server (NTRS)

    Hoffman, E. L.; Bales, T. T.; Payne, L.

    1979-01-01

    Advanced fabrication and joining processes for titanium and composite materials are being investigated by NASA to develop technology for the Supersonic Cruise Research (SCR) Program. Full-scale structural panels are being designed and fabricated to meet the criteria of an existing integrally stiffened shear panel on the upper wing surface of the NASA YF-12 aircraft. The program consists of laboratory testing and Mach 3 flight service of full-scale structural panels and laboratory testing of representative structural element specimens. Borsic/aluminum honeycomb-core, titanium clad Borsic/aluminum skin-stringer, graphite/PMR-15 polyimide honeycomb-core, and titanium superplastically formed/diffusion bonded panels have been designed, fabricated, and tested. Graphite/LARC-160 polyimide skin-stringer panels have been designed, and fabrication methods are being developed.

  5. A conceptual study of the rotor systems research aircraft

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The analytical comparison of the two candidate Rotor Systems Research Aircraft (RSRA) configurations selected by the Government at the completion of Part 1 of the RSRA Conceptual Predesign Study is presented. The purpose of the comparison was to determine the relative suitability of both vehicles for the RSRA missions described in the Government Statement of Work, and to assess their versatility in the testing of new rotor concepts. The analytical comparison was performed primarily with regard to performance and stability and control. A weights, center-of-gravity, and inertia computation was performed for each iteration in the analysis process. The dynamics investigation was not concerned so much with a comparison of the two vehicles, but explored the dynamic problems attending operation of any RSRA operating with large rotor RPM and diameter ranges over large forward speed ranges. Several means of isolating in- and out-of-plane rotor vibrations were analyzed. An optimum isolation scheme was selected.

  6. Simulation of the XV-15 tilt rotor research aircraft

    NASA Technical Reports Server (NTRS)

    Churchill, G. B.; Dugan, D. C.

    1982-01-01

    The effective use of simulation from issuance of the request for proposal through conduct of a flight test program for the XV-15 Tilt Rotor Research Aircraft is discussed. From program inception, simulation complemented all phases of XV-15 development. The initial simulation evaluations during the source evaluation board proceedings contributed significantly to performance and stability and control evaluations. Eight subsequent simulation periods provided major contributions in the areas of control concepts; cockpit configuration; handling qualities; pilot workload; failure effects and recovery procedures; and flight boundary problems and recovery procedures. The fidelity of the simulation also made it a valuable pilot training aid, as well as a suitable tool for military and civil mission evaluations. Simulation also provided valuable design data for refinement of automatic flight control systems. Throughout the program, fidelity was a prime issue and resulted in unique data and methods for fidelity evaluation which are presented and discussed.

  7. Current and Future Research in Active Control of Lightweight, Flexible Structures Using the X-56 Aircraft

    NASA Technical Reports Server (NTRS)

    Ryan, John J.; Bosworth, John T.; Burken, John J.; Suh, Peter M.

    2014-01-01

    The X-56 Multi-Utility Technology Testbed aircraft system is a versatile experimental research flight platform. The system was primarily designed to investigate active control of lightweight flexible structures, but is reconfigurable and capable of hosting a wide breadth of research. Current research includes flight experimentation of a Lockheed Martin designed active control flutter suppression system. Future research plans continue experimentation with alternative control systems, explore the use of novel sensor systems, and experiments with the use of novel control effectors. This paper describes the aircraft system, current research efforts designed around the system, and future planned research efforts that will be hosted on the aircraft system.

  8. An Overview of NASA's SubsoniC Research Aircraft Testbed (SCRAT)

    NASA Technical Reports Server (NTRS)

    Baumann, Ethan; Hernandez, Joe; Ruhf, John

    2013-01-01

    National Aeronautics and Space Administration Dryden Flight Research Center acquired a Gulfstream III (GIII) aircraft to serve as a testbed for aeronautics flight research experiments. The aircraft is referred to as SCRAT, which stands for SubsoniC Research Aircraft Testbed. The aircraft’s mission is to perform aeronautics research; more specifically raising the Technology Readiness Level (TRL) of advanced technologies through flight demonstrations and gathering high-quality research data suitable for verifying the technologies, and validating design and analysis tools. The SCRAT has the ability to conduct a range of flight research experiments throughout a transport class aircraft’s flight envelope. Experiments ranging from flight-testing of a new aircraft system or sensor to those requiring structural and aerodynamic modifications to the aircraft can be accomplished. The aircraft has been modified to include an instrumentation system and sensors necessary to conduct flight research experiments along with a telemetry capability. An instrumentation power distribution system was installed to accommodate the instrumentation system and future experiments. An engineering simulation of the SCRAT has been developed to aid in integrating research experiments. A series of baseline aircraft characterization flights has been flown that gathered flight data to aid in developing and integrating future research experiments. This paper describes the SCRAT’s research systems and capabilities

  9. Short-haul CTOL aircraft research. [on reduced energy for commercial air transportation

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1978-01-01

    The results of the reduced energy for commercial air transportation studies on air transportation energy efficiency improvement alternatives are reviewed along with subsequent design studies of advanced turboprop powered transport aircraft. The application of this research to short-haul transportation is discussed. The results of several recent turboprop aircraft design are included. The potential fuel savings and cost savings for advanced turboprop aircraft appear substantial, particularly at shorter ranges.

  10. Aircraft Engine Noise Research and Testing at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Elliott, Dave

    2015-01-01

    The presentation will begin with a brief introduction to the NASA Glenn Research Center as well as an overview of how aircraft engine noise research fits within the organization. Some of the NASA programs and projects with noise content will be covered along with the associated goals of aircraft noise reduction. Topics covered within the noise research being presented will include noise prediction versus experimental results, along with engine fan, jet, and core noise. Details of the acoustic research conducted at NASA Glenn will include the test facilities available, recent test hardware, and data acquisition and analysis methods. Lastly some of the actual noise reduction methods investigated along with their results will be shown.

  11. Multi-Site Fatigue Testing and Characterization of Fuselage Panels from Aging Aircraft Structure

    DTIC Science & Technology

    2013-06-07

    Multi-site fatigue damage is a common problem in the riveted lap joint structure of aging aircraft. Modeling and characterization of such damage is...an especially daunting task. In this effort we present the results from fatigue tests which were performed on fuselage lap joints extracted from...in the lap joint . Some spot welded lap joint panels were also tested during the larger program; however, only the results from mechanically fastened

  12. NASA Now: Phase Change and Forces of Flight: Aircraft Icing Research

    NASA Video Gallery

    Tour the Icing Research Tunnel with Judith VanZante, aeromechanical engineer and icing specialist. VanZante explains the hazards of ice on aircraft, how it is formed, and why the research on ice pl...

  13. Forced Oscillation Wind Tunnel Testing for FASER Flight Research Aircraft

    NASA Technical Reports Server (NTRS)

    Hoe, Garrison; Owens, Donald B.; Denham, Casey

    2012-01-01

    As unmanned air vehicles (UAVs) continue to expand their flight envelopes into areas of high angular rate and high angle of attack, modeling the complex unsteady aerodynamics for simulation in these regimes has become more difficult using traditional methods. The goal of this experiment was to improve the current six degree-of-freedom aerodynamic model of a small UAV by replacing the analytically derived damping derivatives with experimentally derived values. The UAV is named the Free-flying Aircraft for Sub-scale Experimental Research, FASER, and was tested in the NASA Langley Research Center 12- Foot Low-Speed Tunnel. The forced oscillation wind tunnel test technique was used to measure damping in the roll and yaw axes. By imparting a variety of sinusoidal motions, the effects of non-dimensional angular rate and reduced frequency were examined over a large range of angle of attack and side-slip combinations. Tests were performed at angles of attack from -5 to 40 degrees, sideslip angles of -30 to 30 degrees, oscillation amplitudes from 5 to 30 degrees, and reduced frequencies from 0.010 to 0.133. Additionally, the effect of aileron or elevator deflection on the damping coefficients was examined. Comparisons are made of two different data reduction methods used to obtain the damping derivatives. The results show that the damping derivatives are mainly a function of angle of attack and have dependence on the non-dimensional rate and reduced frequency only in the stall/post-stall regime

  14. Acceleration display system for aircraft zero-gravity research

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1987-01-01

    The features, design, calibration, and testing of Lewis Research Center's acceleration display system for aircraft zero-gravity research are described. Specific circuit schematics and system specifications are included as well as representative data traces from flown trajectories. Other observations learned from developing and using this system are mentioned where appropriate. The system, now a permanent part of the Lewis Learjet zero-gravity program, provides legible, concise, and necessary guidance information enabling pilots to routinely fly accurate zero-gravity trajectories. Regular use of this system resulted in improvements of the Learjet zero-gravity flight techniques, including a technique to minimize later accelerations. Lewis Gates Learjet trajectory data show that accelerations can be reliably sustained within 0.01 g for 5 consecutive seconds, within 0.02 g for 7 consecutive seconds, and within 0.04 g for up to 20 second. Lewis followed the past practices of acceleration measurement, yet focussed on the acceleration displays. Refinements based on flight experience included evolving the ranges, resolutions, and frequency responses to fit the pilot and the Learjet responses.

  15. Engineering and Technical Configuration Aspects of HIAPER, the new NSF/NCAR Research Aircraft

    NASA Astrophysics Data System (ADS)

    Friesen, R.; Laursen, K.

    2002-12-01

    The High-performance Instrumented Airborne Platform for Environmental Research, or HIAPER, is the new research aircraft presently being developed at the National Center for Atmospheric Research (NCAR) to serve the environmental research needs of the National Science Foundation (NSF) for the next several decades. The basic aircraft -- a Gulfstream V (G-V) business jet -- has been completed and will shortly undergo extensive modification to prepare it for future deployments in support of a variety of geosciences research missions. This presentation will focus on the many design and engineering considerations that have been made and are yet to come in converting a "green" business jet into a versatile research aircraft to serve the environmental research community. The project teams composed of engineers and scientists from NCAR and the scientific community at large are faced with trade offs involving costs of modifications, airframe structural integrity, aircraft performance (e.g. weight, drag), cabin environment, locations of inlet and sampling ports and FAA certification requirements. Many of the specific engineering specifications and modifications that have been made to date will be presented by way of engineering drawings, graphical depictions and actual photographs of the aircraft structure. Additionally, projected performance data of the modified-for-research aircraft will be presented along with some of the analyses performed to arrive at critical decisions (e.g. CFD airflow analysis). Finally, some of the details of the aircraft "infrastructure" such as signal and power wiring, generic cabin layout and data acquisition will be discussed.

  16. An overview of the quiet short-haul research aircraft program

    NASA Technical Reports Server (NTRS)

    Shovlin, M. D.; Cochrane, J. A.

    1978-01-01

    An overview of the Quiet Short Haul Research Aircraft (QSRA) Program is presented, with special emphasis on its propulsion and acoustic aspects. A description of the NASA technical participation in the program including wind tunnel testing, engine ground tests, and advanced aircraft simulation is given. The aircraft and its systems are described and, measured performance, where available, is compared to program goals. Preliminary data indicate that additional research and development are needed in some areas of which acoustics is an example. Some of these additional research areas and potential experiments using the QSRA to develop the technology are discussed. The concept of the QSRA as a national flight research facility is explained.

  17. Recent Developments in Aircraft Flyover Noise Simulation at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Sullivan, Brenda M.; Aumann, Aric R.

    2008-01-01

    The NASA Langley Research Center is involved in the development of a new generation of synthesis and simulation tools for creation of virtual environments used in the study of aircraft community noise. The original emphasis was on simulation of flyover noise associated with subsonic fixed wing aircraft. Recently, the focus has shifted to rotary wing aircraft. Many aspects of the simulation are applicable to both vehicle classes. Other aspects, particularly those associated with synthesis, are more vehicle specific. This paper discusses the capabilities of the current suite of tools, their application to fixed and rotary wing aircraft, and some directions for the future.

  18. Investigations into the triggered lightning response of the F106B thunderstorm research aircraft

    NASA Technical Reports Server (NTRS)

    Rudolph, Terence H.; Perala, Rodney A.; Mckenna, Paul M.; Parker, Steven L.

    1985-01-01

    An investigation has been conducted into the lightning characteristics of the NASA F106B thunderstorm research aircraft. The investigation includes analysis of measured data from the aircraft in the time and frequency domains. Linear and nonlinear computer modelling has also been performed. In addition, new computer tools have been developed, including a new enhanced nonlinear air breakdown model, and a subgrid model useful for analyzing fine details of the aircraft's geometry. Comparison of measured and calculated electromagnetic responses of the aircraft to a triggered lightning environment are presented.

  19. Performance and safety aspects of the XV-15 tilt rotor research aircraft

    NASA Technical Reports Server (NTRS)

    Wernicke, K. G.

    1977-01-01

    Aircraft performance is presented illustrating the flexibility and capability of the XV-15 to conduct its planned proof-of-concept flight research in the areas of dynamics, stability and control, and aerodynamics. Additionally, the aircraft will demonstrate mission-type performance typical of future operational aircraft. The aircraft design is described and discussed with emphasis on the safety and fail-operate features of the aircraft and its systems. Two or more levels of redundancy are provided in the dc and ac electrical systems, hydraulics, conversion, flaps, landing gear extension, SCAS, and force-feel. RPM is maintained by a hydro-electrical blade pitch governor that consists of a primary and standby governor with a cockpit wheel control for manual backup. The two engines are interconnected for operation on a single engine. In the event of total loss of power, the aircraft can enter autorotation starting from the airplane as well as the helicopter mode of flight.

  20. NASA's NB-52B carrier aircraft rolls down a taxiway with the X-43A hypersonic research aircraft and

    NASA Technical Reports Server (NTRS)

    2001-01-01

    As part of a combined systems test conducted by NASA Dryden Flight Research Center, NASA's NB-52B carrier aircraft rolls down a taxiway at Edwards Air Force Base with the X-43A hypersonic research aircraft and its modified Pegasus booster rocket attached to a pylon under its right wing. The taxi test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ('scramjet') engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster was built by Orbital Sciences Corp., Dulles, Va. After being air-launched from NASA's venerable NB-52 mothership, the booster will accelerate the X-43A to test speed and altitude. The X-43A will then separate from the rocket and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.

  1. NASA's NB-52B carrier aircraft rolls down a taxiway with the X-43A hypersonic research aircraft and

    NASA Technical Reports Server (NTRS)

    2001-01-01

    NASA's NB-52B carrier aircraft rolls down a taxiway at Edwards Air Force Base with the X-43A hypersonic research aircraft and its modified Pegasus booster rocket slung from a pylon under its right wing. Part of a combined systems test conducted by NASA's Dryden Flight Research Center at Edwards, the taxi test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ('scramjet') engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster was built by Orbital Sciences Corp., Dulles, Va.,After being air-launched from NASA's venerable NB-52 mothership, the booster will accelerate the X-43A to test speed and altitude. The X-43A will then separate from the rocket and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10, with the first tentatively scheduled for late spring to early summer, 2001.

  2. Development of Spray Coating Methods and Materials to Replace Aluminum Cladding of Aging Aircraft for Corrosion Protection

    DTIC Science & Technology

    2007-06-01

    Replace FA9550-06-C-0113 Aluminum Cladding of Aging Aircraft for Corrosion Protection 5b. GRANTNUMBER [AF STTR Phase I Final Technical Report] 5c. PROGRAM...development of glassy coatings is limited by non-availability of aluminum based BMG powder feedstock for spraying. 15. SUBJECT TERMS STTR Report Corrosion ... aluminum cladding of aging aircraft for corrosion protection ABSTRACT The objective of this AF STTR Phase I work was to develop spray coating methods and new

  3. Tiltrotor research aircraft composite blade repairs: Lessons learned

    NASA Technical Reports Server (NTRS)

    Espinosa, Paul S.; Groepler, David R.

    1991-01-01

    The XV-15, N703NA Tiltrotor Research Aircraft located at the NASA Ames Research Center, Moffett Field, California, currently uses a set of composite rotor blades of complex shape known as the advanced technology blades (ATBs). The main structural element of the blades is a D-spar constructed of unidirectional, angled fiberglass/graphite, with the aft fairing portion of the blades constructed of a fiberglass cross-ply skin bonded to a Nomex honeycomb core. The blade tip is a removable laminate shell that fits over the outboard section of the spar structure, which contains a cavity to retain balance weights. Two types of tip shells are used for research. One is highly twisted (more than a conventional helicopter blade) and has a hollow core constructed of a thin Nomex-honeycomb-and-fiberglass-skin sandwich; the other is untwisted with a solid Nomex honeycomb core and a fiberglass cross-ply skin. During initial flight testing of the blades, a number of problems in the composite structure were encountered. These problems included debonding between the fiberglass skin and the honeycomb core, failure of the honeycomb core, failures in fiberglass splices, cracks in fiberglass blocks, misalignment of mated composite parts, and failures of retention of metal fasteners. Substantial time was spent in identifying and repairing these problems. Discussed here are the types of problems encountered, the inspection procedures used to identify each problem, the repairs performed on the damaged or flawed areas, the level of criticality of the problems, and the monitoring of repaired areas. It is hoped that this discussion will help designers, analysts, and experimenters in the future as the use of composites becomes more prevalent.

  4. X-38 research aircraft launch from Space Station - computer animation

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In the mid-1990's researchers at the NASA Dryden Flight Research Center, Edwards, California, and Johnson Space Center in Houston, Texas, began working actively with the sub-scale X-38 prototype crew return vehicle (CRV). This was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force X-23 (SV-5) program in the mid-1960's and the Air Force-NASA X-24A lifting-body project in the early to mid-1970's. Built by Scaled Composites, Inc., in Mojave, CA, and outfitted with avionics, computer systems, and other hardware at Johnson Space Center, two X-38 aircraft were involved in flight research at Dryden beginning in July of 1997. Before that, however, Dryden conducted some 13 flights at a drop zone near California City, California. These tests were done with a 1/6-scale model of the X-38 aircraft to test the parafoil concept that would be employed on the X-38 and the actual CRV. The basic concept is that the actual CRV will use an inertial navigation system together with the Global Positioning System of satellites to guide it from the International Space Station into the earth's atmosphere. A deorbit engine module will redirect the vehicle from orbit into the atmosphere where a series of parachutes and a parafoil will deploy in sequence to bring the vehicle to a landing, possibly in a field next to a hospital. Flight research at NASA Dryden for the X-38 began with an unpiloted captive carry flight in which the vehicle remained attached to its future launch vehicle, the Dryden B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. Although the X-38 landed safely on the lakebed at Edwards after the March 1998 drop test, there had been some problems

  5. X-38 research aircraft - First drop flight and landing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the mid-1990's researchers at the NASA Dryden Flight Research Center, Edwards, California, and Johnson Space Center in Houston, Texas, began working actively with the sub-scale X-38 prototype crew return vehicle (CRV). This was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force X-23 (SV-5) program in the mid-1960's and the Air Force-NASA X-24A lifting-body project in the early to mid-1970's. Built by Scaled Composites, Inc., in Mojave, California, and outfitted with avionics, computer systems, and other hardware at Johnson Space Center, two X-38 aircraft were involved in flight research at Dryden beginning in July of 1997. Before that, however, Dryden conducted some 13 flights at a drop zone near California City, California. Those tests were done with a 1/6-scale model of the X-38 aircraft to test the parafoil concept that would be employed on the X-38 and the actual CRV. The basic concept is that the actual CRV will use an inertial navigation system together with the Global Positioning System of satellites to guide it from the International Space Station into the Earth's atmosphere. A deorbit engine module will redirect the vehicle from orbit into the atmosphere where a series of parachutes and a parafoil will deploy in sequence to bring the vehicle to a landing, possibly in a field next to a hospital. Flight research at NASA Dryden for the X-38 began with an unpiloted captive carry flight in which the vehicle remained attached to its future launch vehicle the Dryden B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. Although the X-38 landed safely on the lakebed at Edwards after the March 1998 drop test, there had been some

  6. Evaluation of XV-15 tilt rotor aircraft for flying qualities research application

    NASA Technical Reports Server (NTRS)

    Radford, R. C.; Schelhorn, A. E.; Siracuse, R. J.; Till, R. D.; Wasserman, R.

    1976-01-01

    The results of a design review study and evaluation of the XV-15 Tilt Rotor Research Aircraft for flying qualities research application are presented. The objectives of the program were to determine the capability of the XV-15 aircraft and the V/STOLAND system as a safe, inflight facility to provide meaningful research data on flying qualities, flight control systems, and information display systems.

  7. 14 CFR 129.105 - Aging airplane inspections and records reviews for U.S.-registered multiengine aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Aging airplane inspections and records... § 129.105 Aging airplane inspections and records reviews for U.S.-registered multiengine aircraft. (a... completed the aging airplane inspection and records review required by this section. During the...

  8. 14 CFR 129.105 - Aging airplane inspections and records reviews for U.S.-registered multiengine aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Aging airplane inspections and records... § 129.105 Aging airplane inspections and records reviews for U.S.-registered multiengine aircraft. (a... completed the aging airplane inspection and records review required by this section. During the...

  9. 14 CFR 129.105 - Aging airplane inspections and records reviews for U.S.-registered multiengine aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Aging airplane inspections and records... § 129.105 Aging airplane inspections and records reviews for U.S.-registered multiengine aircraft. (a... completed the aging airplane inspection and records review required by this section. During the...

  10. 14 CFR 129.105 - Aging airplane inspections and records reviews for U.S.-registered multiengine aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aging airplane inspections and records... § 129.105 Aging airplane inspections and records reviews for U.S.-registered multiengine aircraft. (a... completed the aging airplane inspection and records review required by this section. During the...

  11. 14 CFR 129.105 - Aging airplane inspections and records reviews for U.S.-registered multiengine aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Aging airplane inspections and records... § 129.105 Aging airplane inspections and records reviews for U.S.-registered multiengine aircraft. (a... completed the aging airplane inspection and records review required by this section. During the...

  12. A service life extension (SLEP) approach to operating aging aircraft beyond their original design lives

    NASA Astrophysics Data System (ADS)

    Pentz, Alan Carter

    With today's uncertain funding climate (including sequestration and continuing budget resolutions), decision makers face severe budgetary challenges to maintain dominance through all aspects of the Department of Defense (DoD). To meet war-fighting capabilities, the DoD continues to extend aircraft programs beyond their design service lives by up to ten years, and occasionally much more. The budget requires a new approach to traditional extension strategies (i.e., reuse, reset, and reclamation) for structural hardware. While extending service life without careful controls can present a safety concern, future operations planning does not consider how much risk is present when operating within sound structural principles. Traditional structural hardware extension methods drive increased costs. Decision makers often overlook the inherent damage tolerance and fatigue capability of structural components and rely on simple time- and flight-based cycle accumulation when determining aircraft retirement lives. This study demonstrates that decision makers should consider risk in addition to the current extension strategies. Through an evaluation of eight military aircraft programs and the application and simulation of F-18 turbine engine usage data, this dissertation shows that insight into actual aircraft mission data, consideration of fatigue capability, and service extension length are key factors to consider. Aircraft structural components, as well as many critical safety components and system designs, have a predefined level of conservatism and inherent damage tolerance. The methods applied in this study would apply to extensions of other critical structures such as bridges. Understanding how much damage tolerance is built into the design compared to the original design usage requirements presents the opportunity to manage systems based on risk. The study presents the sensitivity of these factors and recommends avenues for further research.

  13. Global stratospheric change: Requirements for a Very-High-Altitude Aircraft for Atmospheric Research

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The workshop on Requirements for a Very-High-Altitude Aircraft for Atmospheric Research, sponsored by NASA Ames Research Center, was held July 15 to 16, 1989, at Truckee, CA. The workshop had two purposes: to assess the scientific justification for a new aircraft that will support stratospheric research beyond the altitudes accessible to the NASA ER-2; and to determine the aircraft characteristics (e.g., ceiling altitude, payload accommodations, range, flight duration, operational capabilities) required to perform the stratospheric research referred to in the justification. To accomplish these purposes, the workshop brought together a cross-section of stratospheric scientists with several aircraft design and operations experts. The stratospheric scientists included theoreticians as well as experimenters with experience in remote and in situ measurements from satellites, rockets, balloons, aircraft, and the ground. Discussions of required aircraft characteristics focused on the needs of stratospheric research. It was recognized that an aircraft optimal for stratospheric science would also be useful for other applications, including remote measurements of Earth's surface. A brief description of these other applications was given at the workshop.

  14. Fan beam and double crosshole Lamb wave tomography for mapping flaws in aging aircraft structures.

    PubMed

    Malyarenko, E V; Hinders, M K

    2000-10-01

    As the worldwide aviation fleet continues to age, methods for accurately predicting the presence of structural flaws-such as hidden corrosion and disbonds-that compromise airworthiness become increasingly necessary. Ultrasonic guided waves, Lamb waves, allow large sections of aircraft structures to be rapidly inspected. However, extracting quantitative information from Lamb wave data has always involved highly trained personnel with a detailed knowledge of mechanical waveguide physics. The work summarized here focuses on a variety of different tomographic reconstruction techniques to graphically represent the Lamb wave data in quantitative maps that can be easily interpreted by technicians. Because the velocity of Lamb waves depends on thickness, for example, the traveltimes of the fundamental Lamb modes can be converted into a thickness map of the inspection region. This article describes two potentially practical implementations of Lamb wave tomographic imaging techniques that can be optimized for in-the-field testing of large-area aircraft structures. Laboratory measurements discussed here demonstrate that Lamb wave tomography using either a ring of transducers with fan beam reconstructions, or a square array of transducers with algebraic reconstruction tomography, is appropriate for detecting flaws in multilayer aircraft materials. The speed and fidelity of the reconstruction algorithms as well as practical considerations for person-portable array-based systems are discussed in this article.

  15. A brief review of aircraft controls research opportunities in the general aviation field

    NASA Technical Reports Server (NTRS)

    Kendall, E. R.

    1984-01-01

    A review of aircraft controls research in the general aviation field is given. Among the topics included are: controls technology benefits, military and commercial test programs, flight tests, ride quality control, and wind loading.

  16. NASA/Army XV-15 tilt rotor research aircraft familiarization document

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The design features and general characteristics of the NASA/Army XV-15 tilt rotor research aircraft are described. This aircraft was conceived as a proof-of-concept vehicle and a V/STOL research tool for integrated wind tunnel, flight-simulation, and flight-test investigations. Discussions of special design provisions and safety considerations necessary to perform these missions are included in this report. In addition to predictions of aircraft and engine performance for the hover, helicopter, and airplane flight modes, analytical estimates of the structural and dynamic limitations of the XV-15 are provided.

  17. NASA-Langley Research Center's Aircraft Condition Analysis and Management System Implementation

    NASA Technical Reports Server (NTRS)

    Frye, Mark W.; Bailey, Roger M.; Jessup, Artie D.

    2004-01-01

    This document describes the hardware implementation design and architecture of Aeronautical Radio Incorporated (ARINC)'s Aircraft Condition Analysis and Management System (ACAMS), which was developed at NASA-Langley Research Center (LaRC) for use in its Airborne Research Integrated Experiments System (ARIES) Laboratory. This activity is part of NASA's Aviation Safety Program (AvSP), the Single Aircraft Accident Prevention (SAAP) project to develop safety-enabling technologies for aircraft and airborne systems. The fundamental intent of these technologies is to allow timely intervention or remediation to improve unsafe conditions before they become life threatening.

  18. The Small Aircraft Transportation System (SATS): Research Collaborations with the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Tarry, Scott E.; Bowen, Brent D.; Nickerson, Jocelyn S.

    2002-01-01

    The aviation industry is an integral part of the world s economy. Travelers have consistently chosen aviation as their mode of transportation as it is reliable, time efficient and safe. The out- dated Hub and Spoke system, coupled with high demand, has led to delays, cancellations and gridlock. NASA is developing innovative solutions to these and other air transportation problems. This research is being conducted through partnerships with federal agencies, industry stakeholders, and academia, specifically the University of Nebraska at Omaha. Each collaborator is pursuing the NASA General Aviation Roadmap through their involvement in the expansion of the Small Aircraft Transportation System (SATS). SATS will utilize technologically advanced small aircraft to transport travelers to and from rural and isolated communities. Additionally, this system will provide a safe alternative to the hub and spoke system, giving more time to more people through high-speed mobility and increased accessibility.

  19. A study for active control research and validation using the Total In-Flight Simulator (TIFS) aircraft

    NASA Technical Reports Server (NTRS)

    Chen, R. T. N.; Daughaday, H.; Andrisani, D., II; Till, R. D.; Weingarten, N. C.

    1975-01-01

    The results of a feasibility study and preliminary design for active control research and validation using the Total In-Flight Simulator (TIFS) aircraft are documented. Active control functions which can be demonstrated on the TIFS aircraft and the cost of preparing, equipping, and operating the TIFS aircraft for active control technology development are determined. It is shown that the TIFS aircraft is as a suitable test bed for inflight research and validation of many ACT concepts.

  20. Shipboard trials of the Quiet Short-Haul Research Aircraft /QSRA/

    NASA Technical Reports Server (NTRS)

    Martin, J. L.; Strickland, P. B.

    1980-01-01

    The feasibility of the application of advanced state-of-the-art high lift STOL aircraft in the aircraft carrier environment was evaluated using the NASA Quiet Short-Haul Research Aircraft (QSRA). The QSRA made repeated unarrested landings and free deck takeoffs from the USS Kitty Hawk while being flown by three pilots of significant different backgrounds. The exercise demonstrated that the USB propulsive lift technology presents no unusual problems in the aircraft carrier environment. Optimum parameters for landing the QSRA were determined from the shore-based program; these proved satisfactory during operations aboard ship. Correlation of shipboard experience with shore-based data indicates that both free deck takeoffs and unarrested landings could be conducted with zero to 35 knots of wind across the deck of an aircraft carrier the size of the USS Kitty Hawk.

  1. The tilt rotor research aircraft (XV-15) program

    NASA Technical Reports Server (NTRS)

    Magee, J. P.

    1983-01-01

    The tilt rotor concept is introduced and the performance capabilities and noise characteristics of the XV-15 aircraft are discussed. In hover, the aircraft is lifted by the two wing tip mounted rotors with the nacelles in the vertical position. In this flight mode, the vehicle is a twin rotor helicopter and is controlled by rotor cyclic and collective controls. The aircraft can fly as a helicopter or tilt the nacelle to the propeller mode and operate as a fixed-wing twin turboprop airplane. It is also possible to stop the conversion at any intermediate angle and fly continuously or reconvert. The rotors are powered by two modified T-53 engines and the power train includes a cross shaft located in the wing, to allow for the engine failure case and still retain power to both rotors.

  2. Aircraft noise effects on sleep: mechanisms, mitigation and research needs.

    PubMed

    Basner, Mathias; Griefahn, Barbara; Berg, Martin van den

    2010-01-01

    There is an ample number of laboratory and field studies which provide sufficient evidence that aircraft noise disturbs sleep and, depending on traffic volume and noise levels, may impair behavior and well-being during the day. Although clinical sleep disorders have been shown to be associated with increased risk of cardiovascular diseases, only little is known about the long-term effects of aircraft noise disturbed sleep on health. National and international laws and guidelines try to limit aircraft noise exposure facilitating active and passive noise control to prevent relevant sleep disturbances and its consequences. Adopting the harmonized indicator of the European Union Directive 2002/49/EC, the WHO Night Noise Guideline for Europe (NNG) defines four Lnight , outside ranges associated with different risk levels of sleep disturbance and other health effects ( < 30, 30-40, 40-55, and> 55 dBA). Although traffic patterns differing in number and noise levels of events that lead to varying degrees of sleep disturbance may result in the same Lnight , simulations of nights with up to 200 aircraft noise events per night nicely corroborate expert opinion guidelines formulated in WHO's NNG. In the future, large scale field studies on the effects of nocturnal (aircraft) noise on sleep are needed. They should involve representative samples of the population including vulnerable groups like children and chronically ill subjects. Optimally, these studies are prospective in nature and examine the long-term consequences of noise-induced sleep disturbances. Furthermore, epidemiological case-control studies on the association of nocturnal (aircraft) noise exposure and cardiovascular disease are needed. Despite the existing gaps in knowledge on long-term health effects, sufficient data are available for defining limit values, guidelines and protection concepts, which should be updated with the availability of new data.

  3. The NASA Earth Research-2 (ER-2) Aircraft: A Flying Laboratory for Earth Science Studies

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    2007-01-01

    The National Aeronautics and Space Administration Dryden Flight Research Center, Edwards, California, has two Lockheed Martin Corporation (Bethesda, Maryland) Earth Research-2 (ER2) aircraft that serve as high-altitude and long-range flying laboratories. The ER-2 aircraft has been successfully utilized to conduct scientific studies of stratospheric and tropospheric chemistry, land-use mapping, disaster assessment, preliminary testing and calibration and validation of satellite sensors. The research missions for the ER-2 aircraft are planned, implemented, and managed by the Dryden Flight Research Center Science Mission Directorate. Maintenance and instrument payload integration is conducted by Dryden personnel. The ER-2 aircraft provides experimenters with a wide array of payload accommodations areas with suitable environment control with required electrical and mechanical interfaces. Missions may be flown out of Dryden or from remote bases worldwide, according to research requirements. The NASA ER-2 aircraft is utilized by a variety of customers, including U.S. Government agencies, civilian organizations, universities, and state governments. The combination of the ER-2 aircraft s range, endurance, altitude, payload power, payload volume and payload weight capabilities complemented by a trained maintenance and operations team provides an excellent and unique platform system to the science community and other customers.

  4. Resilient Propulsion Control Research for the NASA Integrated Resilient Aircraft Control (IRAC) Project

    NASA Technical Reports Server (NTRS)

    Guo, Ten-Huei; Litt, Jonathan S.

    2007-01-01

    Gas turbine engines are designed to provide sufficient safety margins to guarantee robust operation with an exceptionally long life. However, engine performance requirements may be drastically altered during abnormal flight conditions or emergency maneuvers. In some situations, the conservative design of the engine control system may not be in the best interest of overall aircraft safety; it may be advantageous to "sacrifice" the engine to "save" the aircraft. Motivated by this opportunity, the NASA Aviation Safety Program is conducting resilient propulsion research aimed at developing adaptive engine control methodologies to operate the engine beyond the normal domain for emergency operations to maximize the possibility of safely landing the damaged aircraft. Previous research studies and field incident reports show that the propulsion system can be an effective tool to help control and eventually land a damaged aircraft. Building upon the flight-proven Propulsion Controlled Aircraft (PCA) experience, this area of research will focus on how engine control systems can improve aircraft safe-landing probabilities under adverse conditions. This paper describes the proposed research topics in Engine System Requirements, Engine Modeling and Simulation, Engine Enhancement Research, Operational Risk Analysis and Modeling, and Integrated Flight and Propulsion Controller Designs that support the overall goal.

  5. X-38 research aircraft atmospheric reentry - computer animation

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In the mid-1990's researchers at the NASA Dryden Flight Research Center, Edwards, California, and Johnson Space Center in Houston, Texas, began working actively with the sub-scale X-38 prototype crew return vehicle (CRV). This was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force X-23 (SV-5) program in the mid-1960's and the Air Force-NASA X-24A lifting-body project in the early to mid-1970's. Built by Scaled Composites, Inc., in Mojave, California, and outfitted with avionics, computer systems, and other hardware at Johnson Space Center, two X-38 aircraft were involved in flight research at Dryden beginning in July of 1997. Before that, however, Dryden conducted some 13 flights at a drop zone near California City, California. These tests were done with a 1/6-scale model of the X-38 to test the parafoil concept that would be employed on the X-38 and the actual CRV. The basic concept is that the actual CRV will use an inertial navigation system together with the Global Positioning System of satellites to guide it from the International Space Station into the Earth's atmosphere. A deorbit engine module will redirect the vehicle from orbit into the atmosphere where a series of parachutes and a parafoil will deploy in sequence to bring the vehicle to a landing, possibly in a field next to a hospital. Flight research at NASA Dryden for the X-38 began with an unpiloted captive carry flight in which the vehicle remained attached to its future launch vehicle, the Dryden B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. Although the X-38 landed safely on the lakebed at Edwards after the March 1998 drop test, there had been some problems

  6. X-38 research aircraft deorbit burn - computer animation

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In the mid-1990's researchers at the NASA Dryden Flight Research Center, Edwards, California, and Johnson Space Center in Houston, Texas, began working actively with the sub-scale X-38 prototype crew return vehicle (CRV). This was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force X-23 (SV-5) program in the mid-1960's and the Air Force-NASA X-24A lifting-body project in the early to mid-1970's. Built by Scaled Composites, Inc., in Mojave, California, and outfitted with avionics, computer systems, and other hardware at Johnson Space Center, two X-38 aircraft were involved in flight research at Dryden beginning in July of 1997. Before that, however, Dryden conducted some 13 flights at a drop zone near California City, California. These tests were done with a 1/6-scale model of the X-38 to test the parafoil concept that would be employed on the X-38 and the actual CRV. The basic concept is that the actual CRV will use an inertial navigation system together with the Global Positioning System of satellites to guide it from the International Space Station into the earth's atmosphere. A deorbit engine module will redirect the vehicle from orbit into the atmosphere where a series of parachutes and a parafoil will deploy in sequence to bring the vehicle to a landing, possibly in a field next to a hospital. Flight research at NASA Dryden for the X-38 began with an unpiloted captive carry flight in which the vehicle remained attached to its future launch vehicle, the Dryden B-52 008. There were four captive flights in 1997 and three in 1998 plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. Although the X-38 landed safely on the lakebed at Edwards after the March 1998 drop test, there had been some problems

  7. [Ageing: research in Spain and Europe].

    PubMed

    Rodríguez Rodríguez, Vicente; Rodríguez Mañas, Leocadio; Sancho Castiello, Mayte; Díaz Martín, Rosa

    2012-01-01

    Researchers, stakeholders and policy makers agree about the importance of the population ageing in modern societies, so a broad analysis of current research strategies is in progress, such as FUTURAGE, a network for drawing a map for future research on ageing. This document presents the Spanish contribution to this map following FUTURAGE guidelines, drawn from the debates held in the 'Ageing. Research in Spain and Europe' Workshop. The first part consists of general ideas seeking to define future challenges on research using a multidisciplinary approach, in which the theoretical and methodological debate, the comparative and multilevel perspective, the transfer of knowledge and involvement of the older people would be essential to consider. Some of the main issues according to FUTURAGE structure are, the bio-gerontology of ageing, healthy and active ageing, and the socioeconomic and environmental resources of ageing. The interaction between these contents is pivotal to understand the research on ageing. Finally, the document provides some methodological and instrumental ideas to reinforce the need for cross-sectional research initiatives, integrating different data and combining methods in order to develop assessment and intervention strategies. Other aspects look into the mechanisms to coordinate research within a European context. The map on ageing research has been published after the consultation process in Europe (http://futurage.group.shef.ac.uk/road-map.html) and is now ready to be considered for integration into future European and Spanish research programs.

  8. The History of the XV-15 Tilt Rotor Research Aircraft: From Concept to Flight

    NASA Technical Reports Server (NTRS)

    Maisel, Martin D.; Giulianetti, Demo J.; Dugan, Daniel C.

    2000-01-01

    This monograph is a testament to the efforts of many people overcoming multiple technical challenges encountered while developing the XV-15 tilt rotor research aircraft. The Ames involvement with the tilt rotor aircraft began in 1957 with investigations of the performance and dynamic behavior of the Bell XV-3 tilt rotor aircraft. At that time, Ames Research Center was known as the Ames Aeronautical Laboratory of the National Advisory Committee for Aeronautics (NACA). As we approach the new millennium, and after more than 40 years of effort and the successful completion of our initial goals, it is appropriate to reflect on the technical accomplishments and consider the future applications of this unique aircraft class, the tilt rotor. The talented engineers, technicians, managers, and leaders at Ames have worked hard with their counterparts in the U.S. rotorcraft industry to overcome technology barriers and to make the military and civil tilt rotor aircraft safer, environmentally acceptable, and more efficient. The tilt rotor aircraft combines the advantages of vertical takeoff and landing capabilities, inherent to the helicopter, with the forward speed and range of a fixed wing turboprop airplane. Our studies have shown that this new vehicle type can provide the aviation transportation industry with the flexibility for highspeed, long-range flight, coupled with runway-independent operations, thus having a significant potential to relieve airport congestion. We see the tilt rotor aircraft as an element of the solution to this growing air transport problem.

  9. {open_quotes}Airborne Research Australia (ARA){close_quotes} a new research aircraft facility on the southern hemisphere

    SciTech Connect

    Hacker, J.M.

    1996-11-01

    {open_quotes}Airborne Research Australia{close_quotes} (ARA) is a new research aircraft facility in Australia. It will serve the scientific community of Australia and will also make its aircraft and expertise available for commercial users. To cover the widest possible range of applications, the facility will operate up to five research aircraft, from a small, low-cost platform to medium-sized multi-purpose aircraft, as well as a unique high altitude aircraft capable of carrying scientific loads to altitudes of up to 15km. The aircraft will be equipped with basic instrumentation and data systems, as well as facilities to mount user-supplied instrumentation and systems internally and externally on the aircraft. The ARA operations base consisting of a hangar, workshops, offices, laboratories, etc. is currently being constructed at Parafield Airport near Adelaide/South Australia. The following text reports about the current state of development of the facility. An update will be given in a presentation at the Conference. 6 figs.

  10. Application of variable structure system theory to aircraft flight control. [AV-8A and the Augmentor Wing Jet STOL Research Aircraft

    NASA Technical Reports Server (NTRS)

    Calise, A. J.; Kadushin, I.; Kramer, F.

    1981-01-01

    The current status of research on the application of variable structure system (VSS) theory to design aircraft flight control systems is summarized. Two aircraft types are currently being investigated: the Augmentor Wing Jet STOL Research Aircraft (AWJSRA), and AV-8A Harrier. The AWJSRA design considers automatic control of longitudinal dynamics during the landing phase. The main task for the AWJSRA is to design an automatic landing system that captures and tracks a localizer beam. The control task for the AV-8A is to track velocity commands in a hovering flight configuration. Much effort was devoted to developing computer programs that are needed to carry out VSS design in a multivariable frame work, and in becoming familiar with the dynamics and control problems associated with the aircraft types under investigation. Numerous VSS design schemes were explored, particularly for the AWJSRA. The approaches that appear best suited for these aircraft types are presented. Examples are given of the numerical results currently being generated.

  11. In flight direct strike lightning research. [Using an F-106B Aircraft

    NASA Technical Reports Server (NTRS)

    Pitts, F. L.

    1981-01-01

    The lightning generated electromagnetic environment effecting aircraft is studied. The program uses F-106B aircraft which operates in a thunderstorm environment and is specially instrumented for the lightning electromagnetic measurements. The instrumentation system is reviewed and typical results recorded by the research instrumentation during simulated lightning ground tests performed for a safety survey are presented along with several examples of direct strike data obtained during the summer of 1980.

  12. Theory and Methods of Research on Aging.

    ERIC Educational Resources Information Center

    Schaie, K. Warner, Ed.

    The document reports the proceedings of a conference on "Theory and Methods of Research on Aging" held under the auspices of the Division of Maturity and Old Age of the American Psychological Association, the Department of Psychology and the Human Resources Research Institute of West Virginia University, May 17-19, 1967. The summaries of four…

  13. Increasing Student Involvement in Cognitive Aging Research

    ERIC Educational Resources Information Center

    Henkel, Linda A.

    2006-01-01

    The involvement of undergraduates in research on aging has benefits for the students and for the faculty mentors, as well as for their departments, their universities, and the field of gerontology at large. This article reports on the application of a 3-year Academic Research Enhancement Award (AREA) by the National Institute on Aging awarded to…

  14. Research on hypersonic aircraft using pre-cooled turbojet engines

    NASA Astrophysics Data System (ADS)

    Taguchi, Hideyuki; Kobayashi, Hiroaki; Kojima, Takayuki; Ueno, Atsushi; Imamura, Shunsuke; Hongoh, Motoyuki; Harada, Kenya

    2012-04-01

    Systems analysis of a Mach 5 class hypersonic aircraft is performed. The aircraft can fly across the Pacific Ocean in 2 h. A multidisciplinary optimization program for aerodynamics, structure, propulsion, and trajectory is used in the analysis. The result of each element model is improved using higher accuracy analysis tools. The aerodynamic performance of the hypersonic aircraft is examined through hypersonic wind tunnel tests. A thermal management system based on the data of the wind tunnel tests is proposed. A pre-cooled turbojet engine is adopted as the propulsion system for the hypersonic aircraft. The engine can be operated continuously from take-off to Mach 5. This engine uses a pre-cooling cycle using cryogenic liquid hydrogen. The high temperature inlet air of hypersonic flight would be cooled by the same liquid hydrogen used as fuel. The engine is tested under sea level static conditions. The engine is installed on a flight test vehicle. Both liquid hydrogen fuel and gaseous hydrogen fuel are supplied to the engine from a tank and cylinders installed within the vehicle. The designed operation of major components of the engine is confirmed. A large amount of liquid hydrogen is supplied to the pre-cooler in order to make its performance sufficient for Mach 5 flight. Thus, fuel rich combustion is adopted at the afterburner. The experiments are carried out under the conditions that the engine is mounted upon an experimental airframe with both set up either horizontally or vertically. As a result, the operating procedure of the pre-cooled turbojet engine is demonstrated.

  15. Healthy ageing, narrative method and research ethics.

    PubMed

    Sarvimäki, Anneli

    2015-08-01

    The purpose of this article is to describe research and teaching activities related to healthy ageing, narrative methods and research ethics at the Nordic School of Public Health NHV during 1999 - 2012. Healthy ageing was conceived in terms of The World Health Organization's (WHO) model of active ageing and of quality of life defined as a sense of well-being, meaning and value. Qualitative research on ageing and health conducted at NHV showed how elderly people themselves experience health and what they perceive to be health promoting. Narrative method was one the qualitative methods used in research at NHV. By adopting holistic and categorical content analysis the life stories of elderly Finnish migrants, the stories of home-dwelling persons about falls, and working persons' stories of alcohol use were studied. The courses on research ethics took their point of departure in a model that describes the role of scientific, economic, aesthetic and ethical values in research.

  16. X-36 Tailless Fighter Agility Research Aircraft on lakebed during high-speed taxi tests

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA/McDonnell Douglas Corporation (MDC) X-36 Tailless Fighter Agility Research Aircraft undergoes high-speed taxi tests on Rogers Dry Lake at NASA Dryden Flight Research Center, Edwards, California, on October 17, 1996. The aircraft was tested at speeds up to 85 knots. Normal takeoff speed would be 110 knots. More taxi and radio frequency tests were slated before it's first flight would be made. This took place on May 17, 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems

  17. X-36 Tailless Fighter Agility Research Aircraft on lakebed during high-speed taxi tests

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA/McDonnell Douglas Corporation (MDC) X-36 Tailless Fighter Agility Research Aircraft undergoes high-speed taxi tests on Rogers Dry Lake at NASA Dryden Flight Research Center, Edwards, California, on October 17, 1996. The aircraft was tested at speeds up to 85 knots. Normal takeoff speed would be 110 knots. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X

  18. Conceptual design study of a Harrier V/STOL research aircraft

    NASA Technical Reports Server (NTRS)

    Bode, W. E.; Berger, R. L.; Elmore, G. A.; Lacey, T. R.

    1978-01-01

    MCAIR recently completed a conceptual design study to define modification approaches to, and derive planning prices for the conversion of a two place Harrier to a V/STOL control, display and guidance research aircraft. Control concepts such as rate damping, attitude stabilization, velocity command, and cockpit controllers are to be demonstrated. Display formats will also be investigated, and landing, navigation and guidance systems flight tested. The rear cockpit is modified such that it can be quickly adapted to faithfully simulate the controls, displays and handling qualities of a Type A or Type B V/STOL. The safety pilot always has take command capability. The modifications studied fall into two categories: basic modifications and optional modifications. Technical descriptions of the basic modifications and of the optional modifications are presented. The modification plan and schedule as well as the test plan and schedule are presented. The failure mode and effects analysis, aircraft performance, aircraft weight, and aircraft support are discussed.

  19. A neural based intelligent flight control system for the NASA F-15 flight research aircraft

    NASA Technical Reports Server (NTRS)

    Urnes, James M.; Hoy, Stephen E.; Ladage, Robert N.; Stewart, James

    1993-01-01

    A flight control concept that can identify aircraft stability properties and continually optimize the aircraft flying qualities has been developed by McDonnell Aircraft Company under a contract with the NASA-Dryden Flight Research Facility. This flight concept, termed the Intelligent Flight Control System, utilizes Neural Network technology to identify the host aircraft stability and control properties during flight, and use this information to design on-line the control system feedback gains to provide continuous optimum flight response. This self-repairing capability can provide high performance flight maneuvering response throughout large flight envelopes, such as needed for the National Aerospace Plane. Moreover, achieving this response early in the vehicle's development schedule will save cost.

  20. Development of a Low-Cost Sub-Scale Aircraft for Flight Research: The FASER Project

    NASA Technical Reports Server (NTRS)

    Owens, Donald B.; Cox, David E.; Morelli, Eugene A.

    2006-01-01

    An inexpensive unmanned sub-scale aircraft was developed to conduct frequent flight test experiments for research and demonstration of advanced dynamic modeling and control design concepts. This paper describes the aircraft, flight systems, flight operations, and data compatibility including details of some practical problems encountered and the solutions found. The aircraft, named Free-flying Aircraft for Sub-scale Experimental Research, or FASER, was outfitted with high-quality instrumentation to measure aircraft inputs and states, as well as vehicle health parameters. Flight data are stored onboard, but can also be telemetered to a ground station in real time for analysis. Commercial-off-the-shelf hardware and software were used as often as possible. The flight computer is based on the PC104 platform, and runs xPC-Target software. Extensive wind tunnel testing was conducted with the same aircraft used for flight testing, and a six degree-of-freedom simulation with nonlinear aerodynamics was developed to support flight tests. Flight tests to date have been conducted to mature the flight operations, validate the instrumentation, and check the flight data for kinematic consistency. Data compatibility analysis showed that the flight data are accurate and consistent after corrections are made for estimated systematic instrumentation errors.

  1. Nondestructive detection and assessment of damage in aging aircraft using a novel stress-strain microprobe system

    NASA Astrophysics Data System (ADS)

    Haggag, Fahmy M.; Wang, J. A.

    1996-11-01

    Aging of current commercial and military aircraft has become a major concern as many older aircraft are reaching their original design life. Service failures due to inaccurate characterization of aging responses might result in costly repair, premature component replacement, and loss of human lives. The properties of aluminum alloys, titanium alloys, and nickel-based superalloys used in aircraft structures and engines might degrade with service conditions associated with the operation of the aircraft. Important aspects of environmental conditions encountered in service cannot be accurately simulated. Thus, it will be a great advantage that the in-situ mechanical properties can be obtained nondestructively. A novel portable/in-situ stress-strain microprobe (SSM) system was developed to use an automated ball indentation technique to measure, yield strength, true- stress versus true-plastic-strain curve, strength coefficient, strain-hardening-exponent, and to estimate fracture toughness. Example test results on metallic structural components and samples are given in this paper and a video demonstration will be presented at the conference. Furthermore, potential applications of the SSM technology to assess the integrity of aging aircraft are briefly discussed.

  2. USEPA ORD Aging Water Infrastructure Research Program

    EPA Science Inventory

    This presentation describes research that is being conducted under the U.S. Environmental Protection Agency’s Aging Water Infrastructure (AWI) Research Program, which will help U.S. water infrastructure to be more effectively and sustainably managed. The AWI research program see...

  3. Aging and Motor Skill: A Research Frontier.

    ERIC Educational Resources Information Center

    Lersten, Ken

    This report reviews research which characterizes the motor skill capacity of older persons, 50 years of age and beyond. Research dealing with sensory-motor systems, memory, and practice factors receives major attention. Suggestions for future research include the following: (a) social psychological parameters which contribute to motor learning and…

  4. Military aircraft and missile technology at the Langley Research Center: A selected bibliography

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.

    1980-01-01

    A compilation of reference material is presented on the Langley Research Center's efforts in developing advanced military aircraft and missile technology over the past twenty years. Reference material includes research made in aerodynamics, performance, stability, control, stall-spin, propulsion integration, flutter, materials, and structures.

  5. NASA/Army Rotorcraft Technology. Volume 3: Systems Integration, Research Aircraft, and Industry

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This is part 3 of the conference proceedings on rotorcraft technology. This volume is divided into areas on systems integration, research aircraft, and industry. Representative titles from each area are: system analysis in rotorcraft design, the past decade; rotorcraft flight research with emphasis on rotor systems; and an overview of key technology thrusts at Bell Helicopter Textron.

  6. Simulation test results for lift/cruise fan research and technology aircraft

    NASA Technical Reports Server (NTRS)

    Bland, M. P.; Konsewicz, R. K.

    1976-01-01

    A flight simulation program was conducted on the flight simulator for advanced aircraft (FSAA). The flight simulation was a part of a contracted effort to provide a lift/cruise fan V/STOL aircraft mathematical model for flight simulation. The simulated aircraft is a configuration of the Lift/Cruise Fan V/STOL research technology aircraft (RTA). The aircraft was powered by three gas generators driving three fans. One lift fan was installed in the nose of the aircraft, and two lift/cruise fans at the wing root. The thrust of these fans was modulated to provide pitch and roll control, and vectored to provide yaw, side force control, and longitudinal translation. Two versions of the RTA were defined. One was powered by the GE J97/LF460 propulsion system which was gas-coupled for power transfer between fans for control. The other version was powered by DDA XT701 gas generators driving 62 inch variable pitch fans. The flight control system in both versions of the RTA was the same.

  7. Impact dynamics research facility for full-scale aircraft crash testing

    NASA Technical Reports Server (NTRS)

    Vaughan, V. L. J.; Alfaro-Bou, E.

    1976-01-01

    An impact dynamics research facility (IDRF) was developed to crash test full-scale general aviation aircraft under free-flight test conditions. The aircraft are crashed into the impact surface as free bodies; a pendulum swing method is used to obtain desired flight paths and velocities. Flight paths up to -60 deg and aircraft velocities along the flight paths up to about 27.0 m/s can be obtained with a combination of swing-cable lengths and release heights made available by a large gantry. Seven twin engine, 2721-kg aircraft were successfully crash tested at the facility, and all systems functioned properly. Acquisition of data from signals generated by accelerometers on board the aircraft and from external and onboard camera coverage was successful in spite of the amount of damage which occurred during each crash. Test parameters at the IDRF are controllable with flight path angles accurate within 8 percent, aircraft velocity accurate within 6 percent, pitch angles accurate to 4.25 deg, and roll and yaw angles acceptable under wind velocities up to 4.5 m/s.

  8. Research of Fears of Preschool Age Children

    ERIC Educational Resources Information Center

    Konkabayeva, Aiman E.; Dakhbay, Beybitkhan D.; Oleksyuk, Z?ryana Ya.; Tykezhanova, Gulmira M.; Alshynbekova, Gulnaziya K.; Starikova, Anna Ye.

    2016-01-01

    One of the symptoms of neurosis at preschool age children is fear. In our opinion, research in this area will help to solve a number of problems of children of preschool age, including difficulties of acceptance on themselves in the new social roles in relation from kindergarten transition to school adjustment problems and a number of other…

  9. Subsonic Ultra Green Aircraft Research Phase II: N+4 Advanced Concept Development

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Droney, Christopher K.

    2012-01-01

    This final report documents the work of the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team on Task 1 of the Phase II effort. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. Using a quantitative workshop process, the following technologies, appropriate to aircraft operational in the N+4 2040 timeframe, were identified: Liquefied Natural Gas (LNG), Hydrogen, fuel cell hybrids, battery electric hybrids, Low Energy Nuclear (LENR), boundary layer ingestion propulsion (BLI), unducted fans and advanced propellers, and combinations. Technology development plans were developed.

  10. Satellite communications provisions on NASA Ames instrumented aircraft platforms for Earth science research/applications

    NASA Technical Reports Server (NTRS)

    Shameson, L.; Brass, J. A.; Hanratty, J. J.; Roberts, A. C.; Wegener, S. S.

    1995-01-01

    Earth science activities at NASA Ames are research in atmospheric and ecosystem science, development of remote sensing and in situ sampling instruments, and their integration into scientific research platform aircraft. The use of satellite communications can greatly extend the capability of these agency research platform aircraft. Current projects and plans involve satellite links on the Perseus UAV and the ER-2 via TDRSS and a proposed experiment on the NASA Advanced Communications Technology Satellite. Provisions for data links on the Perseus research platform, via TDRSS S-band multiple access service, have been developed and are being tested. Test flights at Dryden are planned to demonstrate successful end-to-end data transfer. A Unisys Corp. airborne satcom STARLink system is being integrated into an Ames ER-2 aircraft. This equipment will support multiple data rates up to 43 Mb/s each via the TDRS S Ku-band single access service. The first flight mission for this high-rate link is planned for August 1995. Ames and JPL have proposed an ACTS experiment to use real-time satellite communications to improve wildfire research campaigns. Researchers and fire management teams making use of instrumented aircraft platforms at a prescribed burn site will be able to communicate with experts at Ames, the U.S. Forest Service, and emergency response agencies.

  11. In-flight acoustic testing techniques using the YO-3A Acoustic Research Aircraft

    NASA Technical Reports Server (NTRS)

    Cross, J. L.; Watts, M. E.

    1984-01-01

    This report discusses the flight testing techniques and equipment employed during air-to-air acoustic testing of helicopters at Ames Research Center. The in flight measurement technique used enables acoustic data to be obtained without the limitations of anechoic chambers or the multitude of variables encountered in ground based flyover testing. The air-to-air testing is made possible by the NASA YO-3A Acoustic Research Aircraft. This "Quiet Aircraft' is an acoustically instrumented version of a quiet observation aircraft manufactured for the military. To date, tests with the following aircraft have been conducted: YO-3A background noise; Hughes 500D; Hughes AH-64; Bell AH-1S; Bell AH-1G. Several system upgrades are being designed and implemented to improve the quality of data. This report will discuss not only the equipment involved and aircraft tested, but also the techniques used in these tests. In particular, formation flying position locations, and the test matrices will be discussed. Examples of data taken will also be presented.

  12. Correction of static pressure on a research aircraft in accelerated flight using differential pressure measurements

    NASA Astrophysics Data System (ADS)

    Rodi, A. R.; Leon, D. C.

    2012-11-01

    A method is described that estimates the error in the static pressure measurement on an aircraft from differential pressure measurements on the hemispherical surface of a Rosemount model 858AJ air velocity probe mounted on a boom ahead of the aircraft. The theoretical predictions for how the pressure should vary over the surface of the hemisphere, involving an unknown sensitivity parameter, leads to a set of equations that can be solved for the unknowns - angle of attack, angle of sideslip, dynamic pressure and the error in static pressure - if the sensitivity factor can be determined. The sensitivity factor was determined on the University of Wyoming King Air research aircraft by comparisons with the error measured with a carefully designed sonde towed on connecting tubing behind the aircraft - a trailing cone - and the result was shown to have a precision of about ±10 Pa over a wide range of conditions, including various altitudes, power settings, and gear and flap extensions. Under accelerated flight conditions, geometric altitude data from a combined Global Navigation Satellite System (GNSS) and inertial measurement unit (IMU) system are used to estimate acceleration effects on the error, and the algorithm is shown to predict corrections to a precision of better than ±20 Pa under those conditions. Some limiting factors affecting the precision of static pressure measurement on a research aircraft are discussed.

  13. In-flight acoustic testing techniques using the YO-3A acoustic research aircraft

    NASA Technical Reports Server (NTRS)

    Cross, J. L.; Watts, M. E.

    1983-01-01

    This report discusses the flight testing techniques and equipment employed during air-to-air acoustic testing of helicopters at Ames Research Center. The in-flight measurement technique used enables acoustic data to be obtained without the limitations of anechoic chambers or the multitude of variables encountered in ground based flyover testing. The air-to-air testing is made possible by the NASA YO-3A Acoustic Research Aircraft. This 'Quiet Aircraft' is an acoustically instrumented version of a quiet observation aircraft manufactured for the military. To date, tests with the following aircraft have been conducted: YO-3A background noise; Hughes 500D; Hughes AH-64; Bell AH-1S; Bell AH-1G. Several system upgrades are being designed and implemented to improve the quality of data. This report will discuss not only the equipment involved and aircraft tested, but also the techniques used in these tests. In particular, formation flying, position locations, and the test matrices will be discussed. Examples of data taken will also be presented.

  14. Rotary Balance Wind Tunnel Testing for the FASER Flight Research Aircraft

    NASA Technical Reports Server (NTRS)

    Denham, Casey; Owens, D. Bruce

    2016-01-01

    Flight dynamics research was conducted to collect and analyze rotary balance wind tunnel test data in order to improve the aerodynamic simulation and modeling of a low-cost small unmanned aircraft called FASER (Free-flying Aircraft for Sub-scale Experimental Research). The impetus for using FASER was to provide risk and cost reduction for flight testing of more expensive aircraft and assist in the improvement of wind tunnel and flight test techniques, and control laws. The FASER research aircraft has the benefit of allowing wind tunnel and flight tests to be conducted on the same model, improving correlation between wind tunnel, flight, and simulation data. Prior wind tunnel tests include a static force and moment test, including power effects, and a roll and yaw damping forced oscillation test. Rotary balance testing allows for the calculation of aircraft rotary derivatives and the prediction of steady-state spins. The rotary balance wind tunnel test was conducted in the NASA Langley Research Center (LaRC) 20-Foot Vertical Spin Tunnel (VST). Rotary balance testing includes runs for a set of given angular rotation rates at a range of angles of attack and sideslip angles in order to fully characterize the aircraft rotary dynamics. Tests were performed at angles of attack from 0 to 50 degrees, sideslip angles of -5 to 10 degrees, and non-dimensional spin rates from -0.5 to 0.5. The effects of pro-spin elevator and rudder deflection and pro- and anti-spin elevator, rudder, and aileron deflection were examined. The data are presented to illustrate the functional dependence of the forces and moments on angle of attack, sideslip angle, and angular rate for the rotary contributions to the forces and moments. Further investigation is necessary to fully characterize the control effectors. The data were also used with a steady state spin prediction tool that did not predict an equilibrium spin mode.

  15. Update on geriatric research in productive aging.

    PubMed

    Murphy, Susan L

    2011-01-01

    The American Occupational Therapy Association's Centennial Vision articulates the strategic goals for the profession to be science driven and evidence based in major practice areas. In the practice area of productive aging, a previous review of research published in the American Journal of Occupational Therapy (AJOT) found mostly basic research with far fewer effectiveness studies. The current review article is divided into two parts. Part 1 provides an update on the types of research published on productive aging in AJOT in the past 2 yr (2009-2010). Part 2 examines the range and scope of occupational therapy effectiveness research on productive aging published in a similar time frame in other occupational therapy journals and outside of the discipline.

  16. Unveiling of sign for Walter C. Williams Research Aircraft Integration Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In a brief ceremony following a memorial service for the late Walter C. Williams on November 17, 1995, the Integrated Test Facility (ITF) at the NASA Dryden Flight Research Center at Edwards, California, was formally renamed the Walter C. Williams Research Aircraft Integration Facility. Shown is the family of Walt Williams: Helen, his widow, sons Charles and Howard, daughter Elizabeth Williams Powell, their spouses and children unveiling the new sign redesignating the Facility. The test facility provides state-of-the-art capabilities for thorough ground testing of advanced research aircraft. It allows researchers and technicians to integrate and test aircraft systems before each research flight, which greatly enhances the safety of each mission. In September 1946 Williams became engineer-in-charge of a team of five engineers who arrived at Muroc Army Air Base (now Edwards AFB) from the National Advisory Committee for Aeronautics's Langley Memorial Aeronautical Laboratory, Hampton, Virginia (now NASA's Langley Research Center), to prepare for supersonic research flights in a joint NACA-Army Air Forces program involving the rocket-powered X-1. This established the first permanent NACA presence at the Mojave Desert site although initially the five engineers and others who followed them were on temporary assignment. Over time, Walt continued to be in charge during the many name changes for the NACA-NASA organization, with Williams ending his stay as Chief of the NASA Flight Research Center in September 1959 (today NASA's Dryden Flight Research Center).

  17. Application of a cost/performance measurement system on a research aircraft project

    NASA Technical Reports Server (NTRS)

    Diehl, J. J.

    1978-01-01

    The fundamentals of the cost/performance management system used in the procurement of two tilt rotor aircraft for a joint NASA/Army research project are discussed. The contractor's reporting system and the GPO's analyses are examined. The use of this type of reporting system is assessed. Recommendations concerning the use of like systems on future projects are included.

  18. Aircraft and avionic related research required to develop an effective high-speed runway exit system

    NASA Technical Reports Server (NTRS)

    Schoen, M. L.; Hosford, J. E.; Graham, J. M., Jr.; Preston, O. W.; Frankel, R. S.; Erickson, J. B.

    1979-01-01

    Research was conducted to increase airport capacity by studying the feasibility of the longitudinal separation between aircraft sequences on final approach. The multidisciplinary factors which include the utility of high speed exits for efficient runway operations were described along with recommendations and highlights of these studies.

  19. A unique facility for V/STOL aircraft hover testing. [Langley Impact Dynamics Research Facility

    NASA Technical Reports Server (NTRS)

    Culpepper, R. G.; Murphy, R. D.; Gillespie, E. A.; Lane, A. G.

    1979-01-01

    The Langley Impact Dynamics Research Facility (IDRF) was modified to obtain static force and moment data and to allow assessment of aircraft handling qualities during dynamic tethered hover flight. Test probe procedures were also established. Static lift and control measurements obtained are presented along with results of limited dynamic tethered hover flight.

  20. A research program to reduce the interior noise in general aviation aircraft, index and summary

    NASA Technical Reports Server (NTRS)

    Morgan, L.; Jackson, K.; Roskam, J.

    1985-01-01

    This report is an index of the published works from NASA Grant NSG 1301, entitled A Research Program to Reduce the Interior Noise in General Aviation Aircraft. Included are a list of all published reports and papers, a compilation of test specimen characteristics, and summaries of each published work.

  1. Subminiaturization for ERAST instrumentation (Environmental Research Aircraft and Sensor Technology)

    NASA Technical Reports Server (NTRS)

    Madou, Marc; Lowenstein, Max; Wegener, Steven

    1995-01-01

    We are focusing on the Argus as an example to demonstrate our philosophy on miniaturization of airborne analytical instruments for the study of atmospheric chemistry. Argus is a two channel, tunable-diode laser absorption spectrometer developed at NASA for the measurement of nitrogen dioxide (N2O) (4.5 micrometers) and ammonia (CH3) (3.3 micrometers) at the 0.1 parts per billion (ppb) level from the Perseus aircraft platform at altitudes up to 30 km. Although Argus' mass is down to 23 kg from the 197 kg Atlas, its predecessor, our goal is to design a next-generation subminiaturized instrument weighing less than 1 kg, measuring a few cm(exp 3) and able to eliminate dewars for cooling. Current designs enable use to make a small,inexpensive, monolithic spectrometer without the required sensitivity range. Further work is on its way to increase sensitivity. We are continuing to zero-base the technical approach in terms of the specifications for the given instrument. We are establishing a check list of questions to hone into the best micromachining approach and to superpose on the answers insights in scaling laws and flexible engineering designs to enable more relaxed tolerances for the smallest of the components.

  2. Lockheed ER-2 #709 high altitude research aircraft during take off

    NASA Technical Reports Server (NTRS)

    1998-01-01

    ER-2 tail number 709, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F-118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  3. Longitudinal stability and control characteristics of the Quiet Short-Haul Research Aircraft (QSRA)

    NASA Technical Reports Server (NTRS)

    Stephenson, Jack D.; Hardy, Gordon H.

    1989-01-01

    Flight experiments were conducted to evaluate various aerodynamic characteristics of the Quiet Short-Haul Research Aircraft (QSRA), an experimental aircraft that makes use of the upper-surface blown (USB) powered-lift concept. Time-history records from maneuvers performed with the aircraft in landing-approach and take-off configurations (with its stability augmentation system disengaged) were analyzed to obtain longitudinal stability and control derivatives and performance characteristics. The experiments included measuring the aircraft responses to variations in the deflection of direct-lift control spoilers and to thrust variations as well as to elevator inputs. The majority of the results are given for the aircraft in a landing configuration with the USB flaps at 50 degrees. For this configuration, if the static longitudinal stability is defined as the variation of the pitching-moment coefficient with the lift coefficient at a constant thrust coefficient, this stability decreases significantly with increasing angle of attack above 9 degrees. For this configuration, at small and negative angles of attack and high levels of thrust, the elevators and the horizontal stabilizer lost effectiveness owing to incipent stalling, but this occurred only during unsteady maneuvers and for brief time intervals.

  4. The movement of water droplets in clouds around the nose of an atmospheric research aircraft

    NASA Technical Reports Server (NTRS)

    Feuillebois, P.; Scibilia, M. F.

    1983-01-01

    The dynamic interaction between droplets and the airflow around the hemispherical nose of an aircraft was evaluated. The effect of the aircraft nose on droplet sampling for cloud research is explained. The proportion of different droplet sizes and their concentration at each point around the aircraft nose were determined. In a cloud, interaction between droplets is negligible. Each particle acts, for the calculation of the forces applied to it, as if it is alone in the air. The airflow carrying the droplets, on the average, is not influenced by their presence. The trajectory of each droplet was studied separately after calculating dry airflow. Concentrations were found with a Lagrangian method, using two trajectories computed directly close to one another. Theory confirms that to within 3% experimentally measured concentrations are representative of those in a cloud.

  5. Research on flight stability performance of rotor aircraft based on visual servo control method

    NASA Astrophysics Data System (ADS)

    Yu, Yanan; Chen, Jing

    2016-11-01

    control method based on visual servo feedback is proposed, which is used to improve the attitude of a quad-rotor aircraft and to enhance its flight stability. Ground target images are obtained by a visual platform fixed on aircraft. Scale invariant feature transform (SIFT) algorism is used to extract image feature information. According to the image characteristic analysis, fast motion estimation is completed and used as an input signal of PID flight control system to realize real-time status adjustment in flight process. Imaging tests and simulation results show that the method proposed acts good performance in terms of flight stability compensation and attitude adjustment. The response speed and control precision meets the requirements of actual use, which is able to reduce or even eliminate the influence of environmental disturbance. So the method proposed has certain research value to solve the problem of aircraft's anti-disturbance.

  6. Metformin: A Hopeful Promise in Aging Research.

    PubMed

    Novelle, Marta G; Ali, Ahmed; Diéguez, Carlos; Bernier, Michel; de Cabo, Rafael

    2016-03-01

    Even though the inevitable process of aging by itself cannot be considered a disease, it is directly linked to life span and is the driving force behind all age-related diseases. It is an undisputable fact that age-associated diseases are among the leading causes of death in the world, primarily in industrialized countries. During the last several years, an intensive search of antiaging treatments has led to the discovery of a variety of drugs that promote health span and/or life extension. The biguanide compound metformin is widely used for treating people with type 2 diabetes and appears to show protection against cancer, inflammation, and age-related pathologies. Here, we summarize the recent developments about metformin use in translational aging research and discuss its role as a potential geroprotector.

  7. Aircrew-aircraft integration: A summary of US Army research programs and plans

    NASA Technical Reports Server (NTRS)

    Key, D. L.; Aiken, E. W.

    1984-01-01

    A review of selected programs which illustrate the research efforts of the U.S. Army Aeromechanics Laboratory in the area of aircrew-aircraft integration is presented. Plans for research programs to support the development of future military rotorcraft are also described. The crew of a combat helicopter must, in general, perform two major functions during the conduct of a particular mission: flightpath control and mission management. Accordingly, the research programs described are being conducted in the same two major categories: (1) flightpath control, which encompasses the areas of handling qualities, stability and control, and displays for the pilot's control of the rotorcraft's flightpath, and (2) mission management, which includes human factors and cockpit integration research topics related to performance of navigation, communication, and aircraft systems management tasks.

  8. CV-990 Landing Systems Research Aircraft (LSRA) during final Space Shuttle tire test

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A Convair 990 (CV-990) was used as a Landing Systems Research Aircraft (LSRA) at NASA's Dryden Flight Research Center, Edwards, California, to test space shuttle landing gear and braking systems as part of NASA's effort to upgrade and improve space shuttle capabilities. The first flight at Dryden of the CV-990 with shuttle test components occurred in April 1993, and tests continued into August 1995, when this photo shows a test of the shuttle tires. The purpose of this series of tests was to determine the performance parameters and failure limits of the tires. This particular landing was on the dry lakebed at Edwards, but other tests occurred on the main runway there. The CV-990, built in 1962 by the Convair Division of General Dynamics Corp., Ft. Worth, Texas, served as a research aircraft at Ames Research Center, Moffett Field, California, before it came to Dryden.

  9. Results of LWR snubber aging research

    SciTech Connect

    Brown, D P; Werry, E V; Blahnik, D E

    1992-05-01

    This report describes the aging research results and recommendations for snubbers used in commercial nuclear power plants. Snubbers are safety-related devices used to restrain undesirable dynamic loads at various piping and equipment locations in nuclear power plants (NPPs). Each snubber must accommodate a plant's normal thermal movements and must be capable of restraining the maximum off-normal dynamic loads, such as a seismic event or a transient, postulated for its specific location. The effects of snubber aging and the factors that contribute to the degradation of their safety performance need to be better understood. Thus, Phase II of Nuclear Plant Aging Research was conducted to enhance the understanding of snubber aging and its consequences. Pacific Northwest Laboratory staff and their subcontractors, Lake Engineering and Wyle Laboratories, visited eight sites (encompassing thirteen plants) to conduct interviews with NPP staff and to collect data on snubber aging, testing, and maintenance. The Phase II research methodology, evaluation, results, conclusions, and recommendations are described in the report. Effective methods for service-life monitoring of snubbers are included in the recommendations.

  10. Practical Application of a Subscale Transport Aircraft for Flight Research in Control Upset and Failure Conditions

    NASA Technical Reports Server (NTRS)

    Cunningham, Kevin; Foster, John V.; Morelli, Eugene A.; Murch, Austin M.

    2008-01-01

    Over the past decade, the goal of reducing the fatal accident rate of large transport aircraft has resulted in research aimed at the problem of aircraft loss-of-control. Starting in 1999, the NASA Aviation Safety Program initiated research that included vehicle dynamics modeling, system health monitoring, and reconfigurable control systems focused on flight regimes beyond the normal flight envelope. In recent years, there has been an increased emphasis on adaptive control technologies for recovery from control upsets or failures including damage scenarios. As part of these efforts, NASA has developed the Airborne Subscale Transport Aircraft Research (AirSTAR) flight facility to allow flight research and validation, and system testing for flight regimes that are considered too risky for full-scale manned transport airplane testing. The AirSTAR facility utilizes dynamically-scaled vehicles that enable the application of subscale flight test results to full scale vehicles. This paper describes the modeling and simulation approach used for AirSTAR vehicles that supports the goals of efficient, low-cost and safe flight research in abnormal flight conditions. Modeling of aerodynamics, controls, and propulsion will be discussed as well as the application of simulation to flight control system development, test planning, risk mitigation, and flight research.

  11. X-43A hypersonic research aircraft mated to its modified Pegasus booster rocket.

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first of three X-43A hypersonic research aircraft was mated to its modified Pegasus booster rocket in late January at NASA's Dryden Flight Research Center, Edwards, Calif. FIRST X-43A MATED TO BOOSTER -- The first of three X-43A hypersonic research aircraft was mated to its modified Pegasus booster rocket in late January at NASA's Dryden Flight Research Center, Edwards, Calif. Mating of the X-43A and its specially-designed adapter to the first stage of the booster rocket marks a major milestone in the Hyper-X hypersonic research program. The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., for NASA. The booster, built by Orbital Sciences Corp., Dulles, Va., will accelerate the X-43A after the X-43A booster 'stack' is air-launched from NASA's venerable NB-52 mothership. The X-43A will separate from the rocket at a predetermined altitude and speed and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it impacts into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10 (seven and 10 times the speed of sound respectively) with the first tentatively scheduled for early summer of 2001. The X-43A is powered by a revolutionary supersonic-combustion ramjet ('scramjet') engine, and will use the underbody of the aircraft to form critical elements of the engine. The forebody shape helps compress the intake airflow, while the aft section acts as a nozzle to direct thrust. The X-43A flights will be the first actual flight tests of an aircraft powered by an air-breathing scramjet engine.

  12. The NASA Dryden Flight Research Center Unmanned Aircraft System Service Capabilities

    NASA Technical Reports Server (NTRS)

    Bauer, Jeff

    2007-01-01

    Over 60 years of Unmanned Aircraft System (UAS) expertise at the NASA Dryden Flight Research Center are being leveraged to provide capability and expertise to the international UAS community. The DFRC brings together technical experts, UAS, and an operational environment to provide government and industry a broad capability to conduct research, perform operations, and mature systems, sensors, and regulation. The cornerstone of this effort is the acquisition of both a Global Hawk (Northrop Grumman Corporation, Los Angeles, California) and Predator B (General Atomics Aeronautical Systems, Inc., San Diego, California) unmanned aircraft system (UAS). In addition, a test range for small UAS will allow developers to conduct research and development flights without the need to obtain approval from civil authorities. Finally, experts are available to government and industry to provide safety assessments in support of operations in civil airspace. These services will allow developers to utilize limited resources to their maximum capability in a highly competitive environment.

  13. The NASA Dryden Flight Research Center Unmanned Aircraft System Service Capabilities

    NASA Technical Reports Server (NTRS)

    Bauer, Jeff

    2007-01-01

    Over 60 years of Unmanned Aircraft System (UAS) expertise at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center are being leveraged to provide capability and expertise to the international UAS community. The DFRC brings together technical experts, UAS, and an operational environment to provide government and industry a broad capability to conduct research, perform operations, and mature systems, sensors, and regulation. The cornerstone of this effort is the acquisition of both a Global Hawk (Northrop Grumman Corporation, Los Angeles, California) and Predator B (General Atomics Aeronautical Systems, Inc., San Diego, California) unmanned aircraft system (UAS). In addition, a test range for small UAS will allow developers to conduct research and development flights without the need to obtain approval from civil authorities. Finally, experts are available to government and industry to provide safety assessments in support of operations in civil airspace. These services will allow developers to utilize limited resources to their maximum capability in a highly competitive environment.

  14. Unmanned aircraft systems in wildlife research: Current and future applications of a transformative technology

    USGS Publications Warehouse

    Christie, Katherine S.; Gilbert, Sophie L.; Brown, Casey L.; Hatfield, Michael; Hanson, Leanne

    2016-01-01

    Unmanned aircraft systems (UAS) – also called unmanned aerial vehicles (UAVs) or drones – are an emerging tool that may provide a safer, more cost-effective, and quieter alternative to traditional research methods. We review examples where UAS have been used to document wildlife abundance, behavior, and habitat, and illustrate the strengths and weaknesses of this technology with two case studies. We summarize research on behavioral responses of wildlife to UAS, and discuss the need to understand how recreational and commercial applications of this technology could disturb certain species. Currently, the widespread implementation of UAS by scientists is limited by flight range, regulatory frameworks, and a lack of validation. UAS are most effective when used to examine smaller areas close to their launch sites, whereas manned aircraft are recommended for surveying greater distances. The growing demand for UAS in research and industry is driving rapid regulatory and technological progress, which in turn will make them more accessible and effective as analytical tools.

  15. Federal Interagency Committee on Aviation Noise (FICAN) Position on Research into Effects of Aircraft Noise on Classroom Learning.

    ERIC Educational Resources Information Center

    2000

    This symposium report presents a summary of research on the affect of aircraft noise on the classroom environment revealing that aircraft noise can interfere with learning in the following areas: reading, motivation, language and speech acquisition, and memory. The strongest findings are in the area of reading, where more than 20 studies have…

  16. The X-43A hypersonic research aircraft and its modified Pegasus booster rocket recently underwent c

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first of three X-43A hypersonic research aircraft and its modified Pegasus booster rocket recently underwent combined systems testing while mounted to NASA's NB-52B carrier aircraft at the Dryden Flight Research Center, Edwards, Calif. The combined systems test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ('scramjet') engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster was built by Orbital Sciences Corp., Dulles, Va.,After being air-launched from NASA's venerable NB-52 mothership, the booster will accelerate the X-43A to test speed and altitude. The X-43A will then separate from the rocket and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.

  17. Review of recent research of interior noise of propeller aircraft

    NASA Technical Reports Server (NTRS)

    Mixson, J. S.; Powell, C. A.

    1984-01-01

    Publications on the topics of propeller source noise, airborne noise transmission, and passenger comfort response to noise and vibration are reviewed. Of the 187 publications referenced, 140 have appeared since 1978. Examples of research accomplishments are presented to illustrate the state of the art. Emphasis is on comparisons of theoretical and measured results, but the description of the theories is left to the references. This review shows that substantial progress has been made in understanding the characteristics of propeller noise, airborne noise, and passenger response, and in the development of prediction methods. Application of the technology to cabin noise control and possible future research directions are discussed.

  18. Concept to Reality: Contributions of the Langley Research Center to US Civil Aircraft of the 1990s

    NASA Technical Reports Server (NTRS)

    Chambers, Joseph R.

    2003-01-01

    This document is intended to be a companion to NASA SP-2000-4519, 'Partners in Freedom: Contributions of the Langley Research Center to U.S. Military Aircraft of the 1990s'. Material included in the combined set of volumes provides informative and significant examples of the impact of Langley's research on U.S. civil and military aircraft of the 1990s. This volume, 'Concept to Reality: Contributions of the NASA Langley Research Center to U.S. Civil Aircraft of the 1990s', highlights significant Langley contributions to safety, cruise performance, takeoff and landing capabilities, structural integrity, crashworthiness, flight deck technologies, pilot-vehicle interfaces, flight characteristics, stall and spin behavior, computational design methods, and other challenging technical areas for civil aviation. The contents of this volume include descriptions of some of the more important applications of Langley research to current civil fixed-wing aircraft (rotary-wing aircraft are not included), including commercial airliners, business aircraft, and small personal-owner aircraft. In addition to discussions of specific aircraft applications, the document also covers contributions of Langley research to the operation of civil aircraft, which includes operating problems. This document is organized according to disciplinary technologies, for example, aerodynamics, structures, materials, and flight systems. Within each discussion, examples are cited where industry applied Langley technologies to specific aircraft that were in operational service during the 1990s and the early years of the new millennium. This document is intended to serve as a key reference for national policy makers, internal NASA policy makers, Congressional committees, the media, and the general public. Therefore, it has been written for a broad general audience and does not presume any significant technical expertise. An extensive bibliography is provided for technical specialists and others who desire a

  19. Current Research in Aircraft Tire Design and Performance

    NASA Technical Reports Server (NTRS)

    Tanner, J. A.; Mccarthy, J. L.; Clark, S. K.

    1981-01-01

    A review of the tire research programs which address the various needs identified by landing gear designers and airplane users is presented. The experimental programs are designed to increase tire tread lifetimes, relate static and dynamic tire properties, establish the tire hydroplaning spin up speed, study gear response to tire failures, and define tire temperature profiles during taxi, braking, and cornering operations. The analytical programs are aimed at providing insights into the mechanisms of heat generation in rolling tires and developing the tools necessary to streamline the tire design process and to aid in the analysis of landing gear problems.

  20. NASA rotor system research aircraft flight-test data report: Helicopter and compound configuration

    NASA Technical Reports Server (NTRS)

    Erickson, R. E.; Kufeld, R. M.; Cross, J. L.; Hodge, R. W.; Ericson, W. F.; Carter, R. D. G.

    1984-01-01

    The flight test activities of the Rotor System Research Aircraft (RSRA), NASA 740, from June 30, 1981 to August 5, 1982 are reported. Tests were conducted in both the helicopter and compound configurations. Compound tests reconfirmed the Sikorsky flight envelope except that main rotor blade bending loads reached endurance at a speed about 10 knots lower than previously. Wing incidence changes were made from 0 to 10 deg.

  1. Bibliography of Supersonic Cruise Aircraft Research (SCAR) Program from 1972 to Mid-1977

    NASA Technical Reports Server (NTRS)

    Hoffman, S.

    1977-01-01

    This bibliography documents publications of the supersonic cruise aircraft research (SCAR) program that were generated during the first 5 years of effort. The reports are arranged according to systems studies and five SCAR disciplines: propulsion, stratospheric emissions impact, structures and materials, aerodynamic performance, and stability and control. The specific objectives of each discipline are summarized. Annotation is included for all NASA inhouse and low-number contractor reports. There are 444 papers and articles included.

  2. Flight assessment of a large supersonic drone aircraft for research use

    NASA Technical Reports Server (NTRS)

    Eckstrom, C. V.; Peele, E. L.

    1974-01-01

    An assessment is made of the capabilities of the BQM-34E supersonic drone aircraft as a test bed research vehicle. This assessment is made based on a flight conducted for the purpose of obtaining flight test measurements of wing loads at various maneuver flight conditions. Flight plan preparation, flight simulation, and conduct of the flight test are discussed along with a presentation of the test data obtained and an evaluation of how closely the flight test followed the test plan.

  3. Predesign study for a modern 4-bladed rotor for the NASA rotor systems research aircraft

    NASA Technical Reports Server (NTRS)

    Bishop, H. E.; Burkam, J. E.; Heminway, R. C.; Keys, C. N.; Smith, K. E.; Smith, J. H.; Staley, J. A.

    1981-01-01

    Trade-off study results and the rationale for the final selection of an existing modern four-bladed rotor system that can be adapted for installation on the Rotor Systems Research Aircraft (RSRA) are reported. The results of the detailed integration studies, parameter change studies, and instrumentation studies and the recommended plan for development and qualification of the rotor system is also given. Its parameter variants, integration on the RSRA, and support of ground and flight test programs are also discussed.

  4. Identification of Spey engine dynamics in the augmentor wing jet STOL research aircraft from flight data

    NASA Technical Reports Server (NTRS)

    Dehoff, R. L.; Reed, W. B.; Trankle, T. L.

    1977-01-01

    The development and validation of a spey engine model is described. An analysis of the dynamical interactions involved in the propulsion unit is presented. The model was reduced to contain only significant effects, and was used, in conjunction with flight data obtained from an augmentor wing jet STOL research aircraft, to develop initial estimates of parameters in the system. The theoretical background employed in estimating the parameters is outlined. The software package developed for processing the flight data is described. Results are summarized.

  5. Research Pilot Milt Thompson in M2-F2 Aircraft Attached to B-52 Mothership

    NASA Technical Reports Server (NTRS)

    1966-01-01

    NASA research pilot Milt Thompson sits in the M2-F2 'heavyweight' lifting body research vehicle before a 1966 test flight. The M2-F2 and the other lifting-body designs were all attached to a wing pylon on NASA's B-52 mothership and carried aloft. The vehicles were then drop-launched and, at the end of their flights, glided back to wheeled landings on the dry lake or runway at Edwards AFB. The lifting body designs influenced the design of the Space Shuttle and were also reincarnated in the design of the X-38 in the 1990s. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft

  6. Overview of Fundamental High-Lift Research for Transport Aircraft at NASA

    NASA Technical Reports Server (NTRS)

    Leavitt, L. D.; Washburn, A. E.; Wahls, R. A.

    2007-01-01

    NASA has had a long history in fundamental and applied high lift research. Current programs provide a focus on the validation of technologies and tools that will enable extremely short take off and landing coupled with efficient cruise performance, simple flaps with flow control for improved effectiveness, circulation control wing concepts, some exploration into new aircraft concepts, and partnership with Air Force Research Lab in mobility. Transport high-lift development testing will shift more toward mid and high Rn facilities at least until the question: "How much Rn is required" is answered. This viewgraph presentation provides an overview of High-Lift research at NASA.

  7. Supersonic cruise research aircraft structural studies: Methods and results

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.; Gross, D.; Kurtze, W.; Newsom, J.; Wrenn, G.; Greene, W.

    1981-01-01

    NASA Langley Research Center SCAR in-house structural studies are reviewed. In methods development, advances include a new system of integrated computer programs called ISSYS, progress in determining aerodynamic loads and aerodynamically induced structural loads (including those due to gusts), flutter optimization for composite and metal airframe configurations using refined and simplified mathematical models, and synthesis of active controls. Results given address several aspects of various SCR configurations. These results include flutter penalties on composite wing, flutter suppression using active controls, roll control effectiveness, wing tip ground clearance, tail size effect on flutter, engine weight and mass distribution influence on flutter, and strength and flutter optimization of new configurations. The ISSYS system of integrated programs performed well in all the applications illustrated by the results, the diversity of which attests to ISSYS' versatility.

  8. Polar Research with Unmanned Aircraft and Tethered Balloons

    SciTech Connect

    Ivey, M; Petty, R; Desilets, D; Verlinde, J; Ellingson, R

    2014-01-24

    The Arctic is experiencing rapid climate change, with nearly double the rate of surface warming observed elsewhere on the planet. While various positive feedback mechanisms have been suggested, the reasons for Arctic amplification are not well understood, nor are the impacts to the global carbon cycle well quantified. Additionally, there are uncertainties associated with the complex interactions between Earth’s surface and the atmosphere. Elucidating the causes and consequences of Arctic warming is one of the many goals of the Climate and Environmental Sciences Division (CESD) of the U.S. Department of Energy’s (DOE) Biological and Environmental Research (BER) program, and is part of the larger CESD initiative to develop a robust predictive understanding of Earth’s climate system.

  9. Follow on Researches for X-56A Aircraft at NASA Dryden Flight Research Center (Progress Report)

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi

    2012-01-01

    A lot of composite materials are used for the modern aircraft to reduce its weight. Aircraft aeroservoelastic models are typically characterized by significant levels of model parameter uncertainty due to composite manufacturing process. Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of X-56A aircraft is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes is based on the flutter analysis of X-56A aircraft. It should be noted that for all three Mach number cases rigid body modes and mode numbers seven and nine are participated 89.1 92.4 % of the first flutter mode. Modal participation of the rigid body mode and mode numbers seven and nine for the second flutter mode are 94.6 96.4%. Rigid body mode and the first two anti-symmetric modes, eighth and tenth modes, are participated 93.2 94.6% of the third flutter mode. Therefore, rigid body modes and the first four flexible modes of X-56A aircraft are the primary modes during the model tuning procedure. The ground vibration test-validated structural dynamic finite element model of the X-56A aircraft is to obtain in this study. The structural dynamics finite element model of X-56A aircraft is improved using the parallelized big-bang big-crunch algorithm together with a hybrid optimization technique.

  10. Performance of an Electro-Hydrostatic Actuator on the F-18 Systems Research Aircraft

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    1997-01-01

    An electro-hydrostatic actuator was evaluated at NASA Dryden Flight Research Center, Edwards, California. The primary goal of testing this actuator system was the flight demonstration of power-by-wire technology on a primary flight control surface. The electro-hydrostatic actuator uses an electric motor to drive a hydraulic pump and relies on local hydraulics for force transmission. This actuator replaced the F-18 standard left aileron actuator on the F-18 Systems Research Aircraft and was evaluated throughout the Systems Research Aircraft flight envelope. As of July 24, 1997 the electro-hydrostatic actuator had accumulated 23.5 hours of flight time. This paper presents the electro-hydrostatic actuator system configuration and component description, ground and flight test plans, ground and flight test results, and lessons learned. This actuator performs as well as the standard actuator and has more load capability than required by aileron actuator specifications of McDonnell- Douglas Aircraft, St. Louis, Missouri. The electro-hydrostatic actuator system passed all of its ground tests with the exception of one power-off test during unloaded dynamic cycling.

  11. Assessing Regional Scale Fluxes of Mass, Momentum, and Energy with Small Environmental Research Aircraft

    NASA Astrophysics Data System (ADS)

    Zulueta, Rommel Callejo

    Natural ecosystems are rarely structurally or functionally homogeneous. This is true for the complex coastal regions of Magdalena Bay, Baja California Sur, Mexico, and the Barrow Peninsula on the Arctic Coastal Plain of Alaska. The coastal region of Magdalena Bay is comprised of the Pacific coastal ocean, eutrophic lagoon, mangroves, and desert ecosystems all adjacent and within a few kilometers, while the Barrow Peninsula is a mosaic of small ponds, thaw lakes, different aged vegetated thaw-lake basins ( VDTLBs ) and interstitial tundra which have been dynamically formed by both short- and long-term processes. We used a combination of tower- and small environmental research aircraft (SERA)-based eddy covariance measurements to characterize the spatial and temporal patterns of CO2, latent, and sensible heat fluxes along with MODIS NDVI, and land surface information, to scale the SERA-based CO2 fluxes up to the regional scale. In the first part of this research, the spatial variability in ecosystem fluxes from the Pacific coastal ocean, eutrophic lagoon, mangroves, and desert areas of northern Magdalena Bay were studied. SERA-derived average midday CO2 fluxes from the desert showed a slight uptake of -1.32 mumol CO2 m-2 s-1, the coastal ocean also showed uptake of -3.48 mumol CO2 m-2 s -1, and the lagoon mangroves showed the highest uptake of -8.11 mumol CO2 m-2 s-1. Additional simultaneous measurements of NDVI allowed simple linear modeling of CO2 flux as a function of NDVI for the mangroves of the Magdalena Bay region. In the second part of this research, the spatial variability of ecosystem fluxes across the 1802 km2 Barrow Peninsula region was studied. During typical 2006 summer conditions, the midday hourly CO2 flux over the region was -2.04 x 105 kgCO2 hr-1. The CO2 fluxes among the interstitial tundra, Ancient and Old VDTLBs, as well as between the Medium and Young VDTLBs were not significantly different. Combined, the interstitial tundra and Old and Ancient

  12. Specially equipped aircraft used in Florida airborne field mill research

    NASA Technical Reports Server (NTRS)

    2000-01-01

    CO2 study site manager and plant physiologist Graham Hymus (left) examines scrub oak foliage while project engineer David Johnson (right) looks on. The life sciences study is showing that rising levels of carbon dioxide in our atmosphere, caused by the burning of fossil fuels, could spur plant growth globally. The site of KSC's study is a natural scrub oak area near the Vehicle Assembly Building. Twelve-foot areas of scrub oak have been enclosed in 16 open-top test chambers into which CO2 has been blown. Five scientists from NASA and the Smithsonian Environmental Research Center in Edgewater, Md., work at the site to monitor experiments and keep the site running. Scientists hope to continue the study another five to 10 years. More information on this study can be found in Release No. 57- 00. Additional photos can be found at: www- pao.ksc.nasa.gov/captions/subjects/co2study.htm

  13. Simulation evaluation of the control system command monitoring concept for the NASA V/STOL research aircraft (VSRA)

    NASA Technical Reports Server (NTRS)

    Schroeder, J. A.; Moralez, E.; Merrick, V. K.

    1987-01-01

    A control-system monitoring concept is described that has the potential of rapidly detecting computer command failures (hardware or software) in fly-by-wire control systems. The concept has been successfully tested on the NASA Vertical/Short Takeoff and Landing Research Aircraft (VSRA) in the Ames Research Center's Vertical Motion Simulator. The test was particularly stringent, since the VSRA is required to operate in a hazardous environment. The fidelity of the aircraft model used in the simulation was verified by flying both the simulated and actual aircraft in a precision hover task using specially designed targets.

  14. Flight Test Experience With an Electromechanical Actuator on the F-18 Systems Research Aircraft

    NASA Technical Reports Server (NTRS)

    Jensen, Stephen C.; Jenney, Gavin D.; Raymond, Bruce; Dawson, David

    2000-01-01

    Development of reliable power-by-wire actuation systems for both aeronautical and space applications has been sought recently to eliminate hydraulic systems from aircraft and spacecraft and thus improve safety, efficiency, reliability, and maintainability. The Electrically Powered Actuation Design (EPAD) program was a joint effort between the Air Force, Navy, and NASA to develop and fly a series of actuators validating power-by-wire actuation technology on a primary flight control surface of a tactical aircraft. To achieve this goal, each of the EPAD actuators was installed in place of the standard hydraulic actuator on the left aileron of the NASA F/A-18B Systems Research Aircraft (SRA) and flown throughout the SRA flight envelope. Numerous parameters were recorded, and overall actuator performance was compared with the performance of the standard hydraulic actuator on the opposite wing. This paper discusses the integration and testing of the EPAD electromechanical actuator (EMA) on the SRA. The architecture of the EMA system is discussed, as well as its integration with the F/A-18 Flight Control System. The flight test program is described, and actuator performance is shown to be very close to that of the standard hydraulic actuator it replaced. Lessons learned during this program are presented and discussed, as well as suggestions for future research.

  15. Flight Test Experience with an Electromechanical Actuator on the F-18 Systems Research Aircraft

    NASA Technical Reports Server (NTRS)

    Jensen, Stephen C.; Jenney, Gavin D.; Raymond, Bruce; Dawson, David; Flick, Brad (Technical Monitor)

    2000-01-01

    Development of reliable power-by-wire actuation systems for both aeronautical and space applications has been sought recently to eliminate hydraulic systems from aircraft and spacecraft and thus improve safety, efficiency, reliability, and maintainability. The Electrically Powered Actuation Design (EPAD) program was a joint effort between the Air Force, Navy, and NASA to develop and fly a series of actuators validating power-by-wire actuation technology on a primary flight control surface of a tactical aircraft. To achieve this goal, each of the EPAD actuators was installed in place of the standard hydraulic actuator on the left aileron of the NASA F/A-18B Systems Research Aircraft (SRA) and flown throughout the SRA flight envelope. Numerous parameters were recorded, and overall actuator performance was compared with the performance of the standard hydraulic actuator on the opposite wing. This paper discusses the integration and testing of the EPAD electromechanical actuator (EMA) on the SRA. The architecture of the EMA system is discussed, as well as its integration with the F/A-18 Flight Control System. The flight test program is described, and actuator performance is shown to be very close to that of the standard hydraulic actuator it replaced. Lessons learned during this program are presented and discussed, as well as suggestions for future research.

  16. Atmospheric effects of stratospheric aircraft - A status report from NASA's High-Speed Research Program

    NASA Technical Reports Server (NTRS)

    Wesoky, Howard L.; Prather, Michael J.

    1991-01-01

    Studies have indicated that, with sufficient technology development, future high-speed civil transport aircraft could be economically competitive with long-haul subsonic aircraft. However, uncertainty about atmospheric pollution, along with community noise and sonic boom, continues to be a major concern which is being addressed in the planned six-year High-Speed Research Program begun in 1990. Building on NASA's research in atmospheric science and emissions reduction, current analytical predictions indicate that an operating range may exist at altitudes below 20 km (i.e., corresponding to a cruise Mach number of approximately 2.4) where the goal level of 5 gm equivalent NO2 emissions/kg fuel will deplete less than one percent of column ozone. Because it will not be possible to directly measure the impact of an aircraft fleet on the atmosphere, the only means of assessment will be prediction. The process of establishing credibility for the predicted effects will likely be complex and involve continued model development and testing against climatological patterns. In particular, laboratory simulation of heterogeneous chemistry and other effects, and direct measurements of well understood tracers in the troposphere and stratosphere are being used to improve the current models.

  17. Estimation of longitudinal stability and control derivatives for an icing research aircraft from flight data

    NASA Technical Reports Server (NTRS)

    Batterson, James G.; Omara, Thomas M.

    1989-01-01

    The results of applying a modified stepwise regression algorithm and a maximum likelihood algorithm to flight data from a twin-engine commuter-class icing research aircraft are presented. The results are in the form of body-axis stability and control derivatives related to the short-period, longitudinal motion of the aircraft. Data were analyzed for the baseline (uniced) and for the airplane with an artificial glaze ice shape attached to the leading edge of the horizontal tail. The results are discussed as to the accuracy of the derivative estimates and the difference between the derivative values found for the baseline and the iced airplane. Additional comparisons were made between the maximum likelihood results and the modified stepwise regression results with causes for any discrepancies postulated.

  18. Fabrication methods for YF-12 wing panels for the Supersonic Cruise Aircraft Research Program

    NASA Technical Reports Server (NTRS)

    Hoffman, E. L.; Payne, L.; Carter, A. L.

    1975-01-01

    Advanced fabrication and joining processes for titanium and composite materials are being investigated by NASA to develop technology for the Supersonic Cruise Aircraft Research (SCAR) Program. With Lockheed-ADP as the prime contractor, full-scale structural panels are being designed and fabricated to replace an existing integrally stiffened shear panel on the upper wing surface of the NASA YF-12 aircraft. The program involves ground testing and Mach 3 flight testing of full-scale structural panels and laboratory testing of representative structural element specimens. Fabrication methods and test results for weldbrazed and Rohrbond titanium panels are discussed. The fabrication methods being developed for boron/aluminum, Borsic/aluminum, and graphite/polyimide panels are also presented.

  19. Dynamic structural aeroelastic stability testing of the XV-15 tilt rotor research aircraft

    NASA Technical Reports Server (NTRS)

    Schroers, L. G.

    1982-01-01

    For the past 20 years, a significant effort has been made to understand and predict the structural aeroelastic stability characteristics of the tilt rotor concept. Beginning with the rotor-pylon oscillation of the XV-3 aircraft, the problem was identified and then subjected to a series of theoretical studies, plus model and full-scale wind tunnel tests. From this data base, methods were developed to predict the structural aeroelastic stability characteristics of the XV-15 Tilt Rotor Research Aircraft. The predicted aeroelastic characteristics are examined in light of the major parameters effecting rotor-pylon-wing stability. Flight test techniques used to obtain XV-15 aeroelastic stability are described. Flight test results are summarized and compared to the predicted values. Wind tunnel results are compared to flight test results and correlated with predicted values.

  20. Small unmanned aircraft systems for remote sensing and Earth science research

    NASA Astrophysics Data System (ADS)

    Hugenholtz, Chris H.; Moorman, Brian J.; Riddell, Kevin; Whitehead, Ken

    2012-06-01

    To understand and predict Earth-surface dynamics, scientists often rely on access to the latest remote sensing data. Over the past several decades, considerable progress has been made in the development of specialized Earth observation sensors for measuring a wide range of processes and features. Comparatively little progress has been made, however, in the development of new platforms upon which these sensors can be deployed. Conventional platforms are still almost exclusively restricted to piloted aircraft and satellites. For many Earth science research questions and applications these platforms do not yet have the resolution or operational flexibility to provide answers affordably. The most effective remote sensing data match the spatiotemporal scale of the process or feature of interest. An emerging technology comprising unmanned aircraft systems (UAS), also known as unmanned aerial vehicles (UAV), is poised to offer a viable alternative to conventional platforms for acquiring high-resolution remote sensing data with increased operational flexibility, lower cost, and greater versatility (Figure 1).

  1. Advanced AFCS developments on the XV-15 tilt rotor research aircraft. [Automatic Flight Control System

    NASA Technical Reports Server (NTRS)

    Churchill, G. B.; Gerdes, R. M.

    1984-01-01

    The design criteria and control and handling qualities of the Automatic Flight Control System (AFCS), developed in the framework of the XV-15 tilt-rotor research aircraft, are evaluated, differentiating between the stability and control criteria. A technically aggressive SCAS control law was implemented, demonstrating that significant benefits accrue when stability criteria are separated from design criteria; the design analyses for application of the control law are presented, and the limit bandwidth for stabilization in hovering flight is shown to be defined by rotor or control lag functions. Flight tests of the aircraft resulted in a rating of 3 on the Cooper-Harper scale; a possibility of achieving a rating of 2 is expected if the system is applied to the yaw and heave control modes.

  2. Static noise tests on augmentor wing jet STOL research aircraft (C8A Buffalo)

    NASA Technical Reports Server (NTRS)

    Marrs, C. C.; Harkonen, D. L.; Okeefe, J. V.

    1974-01-01

    Results are presented for full scale ground static acoustic tests of over-area conical nozzles and a lobe nozzle installed on the Augmentor Wing Jet STOL Research Aircraft, a modified C8A Buffalo. The noise levels and spectrums of the test nozzles are compared against those of the standard conical nozzle now in use on the aircraft. Acoustic evaluations at 152 m (500 ft), 304 m (1000 ft), and 1216 m (4000 ft) are made at various engine power settings with the emphasis on approach and takeoff power. Appendix A contains the test log and propulsion calculations. Appendix B gives the original test plan, which was closely adhered to during the test. Appendix C describes the acoustic data recording and reduction systems, with calibration details.

  3. Ground vibration test of the XV-15 Tiltrotor Research Aircraft and pretest predictions

    NASA Technical Reports Server (NTRS)

    Studebaker, Karen; Abrego, Anita

    1994-01-01

    The first comprehensive ground vibration survey was performed on the XV-15 Tiltrotor Research Aircraft to measure the vibration modes of the airframe and to provide data critical for determining whirl flutter stability margins. The aircraft was suspended by the wings with bungee cords and cables. A NASTRAN finite element model was used in the design of the suspension system to minimize its interference with the wing modes. The primary objective of the test was to measure the dynamic characteristics of the wings and pylons for aeroelastic stability analysis. In addition, over 130 accelerometers were placed on the airframe to characterize the fuselage, wing, and tail vibration. Pretest predictions were made with the NASTRAN model as well as correlations with the test data. The results showed that the suspension system provided the isolation necessary for modal measurements.

  4. Aging and the Environment: A Research Framework

    PubMed Central

    Geller, Andrew M.; Zenick, Harold

    2005-01-01

    The rapid growth in the number of older Americans has many implications for public health, including the need to better understand the risks posed to older adults by environmental exposures. Biologic capacity declines with normal aging; this may be exacerbated in individuals with pre-existing health conditions. This decline can result in compromised pharmacokinetic and pharmacodynamic responses to environmental exposures encountered in daily activities. In recognition of this issue, the U.S. Environmental Protection Agency (EPA) is developing a research agenda on the environment and older adults. The U.S. EPA proposes to apply an environmental public health paradigm to better understand the relationships between external pollution sources → human exposures → internal dose → early biologic effect → adverse health effects for older adults. The initial challenge will be using information about aging-related changes in exposure, pharmacokinetic, and pharmacodynamic factors to identify susceptible subgroups within the diverse population of older adults. These changes may interact with specific diseases of aging or medications used to treat these conditions. Constructs such as “frailty” may help to capture some of the diversity in the older adult population. Data are needed regarding a) behavior/activity patterns and exposure to the pollutants in the microenvironments of older adults; b) changes in absorption, distribution, metabolism, and excretion with aging; c) alterations in reserve capacity that alter the body’s ability to compensate for the effects of environmental exposures; and d) strategies for effective communication of risk and risk reduction methods to older individuals and communities. This article summarizes the U.S. EPA’s development of a framework to address and prioritize the exposure, health effects, and risk communications concerns for the U.S. EPA’s evolving research program on older adults as a susceptible subpopulation. PMID

  5. The Small Aircraft Transportation System (SATS), Higher Volume Operations (HVO) Concept and Research

    NASA Technical Reports Server (NTRS)

    Baxley, B.; Williams, D.; Consiglio, M.; Adams, C.; Abbott, T.

    2005-01-01

    The ability to conduct concurrent, multiple aircraft operations in poor weather at virtually any airport offers an important opportunity for a significant increase in the rate of flight operations, a major improvement in passenger convenience, and the potential to foster growth of operations at small airports. The Small Aircraft Transportation System, (SATS) Higher Volume Operations (HVO) concept is designed to increase capacity at the 3400 non-radar, non-towered airports in the United States where operations are currently restricted to one-in/one-out procedural separation during low visibility or ceilings. The concept s key feature is that pilots maintain their own separation from other aircraft using air-to-air datalink and on-board software within the Self-Controlled Area (SCA), an area of flight operations established during poor visibility and low ceilings around an airport without Air Traffic Control (ATC) services. While pilots self-separate within the SCA, an Airport Management Module (AMM) located at the airport assigns arriving pilots their sequence based on aircraft performance, position, winds, missed approach requirements, and ATC intent. The HVO design uses distributed decision-making, safe procedures, attempts to minimize pilot and controller workload, and integrates with today's ATC environment. The HVO procedures have pilots make their own flight path decisions when flying in Instrument Metrological Conditions (IMC) while meeting these requirements. This paper summarizes the HVO concept and procedures, presents a summary of the research conducted and results, and outlines areas where future HVO research is required. More information about SATS HVO can be found at http://ntrs.nasa.gov.

  6. Comparison of Profiling Microwave Radiometer, Aircraft, and Radiosonde Measurements From the Alliance Icing Research Study (AIRS)

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.

    2001-01-01

    Measurements from a profiling microwave radiometer are compared to measurements from a research aircraft and radiosondes. Data compared is temperature, water vapor, and liquid water profiles. Data was gathered at the Alliance Icing Research Study (AIRS) at Mirabel Airport outside Montreal, Canada during December 1999 and January 2000. All radiometer measurements were found to lose accuracy when the radome was wet. When the radome was not wetted, the radiometer was seen to indicate an inverted distribution of liquid water within a cloud. When the radiometer measurements were made at 15 deg. instead of the standard zenith, the measurements were less accurate.

  7. Issues in Research on Aging and Suicide

    PubMed Central

    Van Orden, Kimberly A.; Conwell, Yeates

    2016-01-01

    Late-life suicide is a complex clinical and public health problem. In this article, some of the key complexities inherent in studying late-life suicide are discussed in the service of promoting high quality late-life suicide prevention science. We discuss the following research issues: the relatively greater lethality of suicidal behavior in later life (compared to younger ages); the lack of data on whether thoughts of death in later life are indicators of suicide risk; the fact that older adults do not tend to seek specialty mental health care, necessitating moving research into primary care clinics and the community; the lack of theory-based research in late-life suicide; the unclear role of cognitive impairment; and the promise of taking a “patient centered” and “participatory research” approach to late-life suicide research efforts. We believe that these perspectives are too often not capitalized upon in research on suicide prevention with older adults and that voice of the older person could contribute much to our understanding of why older adults think about and act on suicidal thoughts, as well as the most acceptable ways to reach and intervene with those at risk. PMID:26179380

  8. Capabilities Enhanced for Researching the Reduction of Emissions in Future Aircraft

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Aircraft future aircraft jet engines will run at higher pressures to obtain greater fuel efficiency and performance. This will require new combustor designs to keep the nitrogen oxide and carbon monoxide emissions at environmentally acceptable levels. The actual pressures and temperatures found in gas turbine combustors must be duplicated in a laboratory to verify the emissions characteristics of gas turbine engines. Recognizing this, the U.S. aircraft gas turbine industry identified a need for a national facility that could duplicate the severe inlet conditions of future combustors. Because of our expertise in combustion emissions reduction research and in the design and operation of high-pressure test facilities, the NASA Lewis Research Center was seen as the natural location for such a facility. As a national laboratory, Lewis could provide these facilities to all U.S. gas turbine engine manufacturers while protecting their proprietary interests. Called the Advanced Subsonic Combustion Rig, the facility will provide up to 60-atm pressures at inlet temperatures up to 1300 F and air flow rates up to 38 lb/sec. Furthermore, it will offer state-of-the-art diagnostic methods for characterizing advanced combustor concepts. Aeronautical combustion research at Lewis provided several significant accomplishments recently in support of both the High Speed Research (HSR) and Advanced Subsonic Technology (AST) programs. For example, in the High Speed Research Program, NO_x reductions of up to 90 percent were achieved in prototype combustor hardware. Advanced computational analysis, gas sampling, and laser diagnostic techniques were critical to this success. Working closely with the gas turbine industry, we have successfully transferred this low-emissions combustor technology into engine prototype hardware. This hardware is now being tested at the engine manufacturers facilities. Complementary tests in Lewis currently available 30-atm test facilities are also underway, taking

  9. Partners in Freedom: Contributions of the Langley Research Center to U.S. Military Aircraft of the 1990's

    NASA Technical Reports Server (NTRS)

    Chambers, Joseph R.

    2000-01-01

    Established in 1917 as the nation#s first civil aeronautics research laboratory under the National Advisory Commit-tee for Aeronautics (NACA), Langley was a small laboratory that solved the problems of flight for military and civil aviation. Throughout history, Langley has maintained a working partnership with the Department of Defense, U.S. industry, universities, and other government agencies to support the defense of the nation with research. During World War II, Langley directed virtually all of its workforce and facilities to research for military aircraft. Following the war, a balanced program of military and civil projects was undertaken. In some instances Langley research from one aircraft program helped solve a problem in another. At the conclusion of some programs, Langley obtained the research models for additional tests to learn more about previously unknown phenomena. The data also proved useful in later developmental programs. Many of the military aircraft in the U.S. inventory as of late 1999 were over 20 years old. Langley activities that contributed to the development of some of these aircraft began over 50 years prior. This publication documents the role, from early concept stages to problem solving for fleet aircraft, that Langley played in the military aircraft fleet of the United States for the 1990's.

  10. Crash Test of Three Cessna 172 Aircraft at NASA Langley Research Center's Landing and Impact Research Facility

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.

    2015-01-01

    During the summer of 2015, three Cessna 172 aircraft were crash tested at the Landing and Impact Research Facility (LandIR) at NASA Langley Research Center (LaRC). The three tests simulated three different crash scenarios. The first simulated a flare-to-stall emergency or hard landing onto a rigid surface such as a road or runway, the second simulated a controlled flight into terrain with a nose down pitch on the aircraft, and the third simulated a controlled flight into terrain with an attempt to unsuccessfully recover the aircraft immediately prior to impact, resulting in a tail strike condition. An on-board data acquisition system captured 64 channels of airframe acceleration, along with acceleration and load in two onboard Hybrid II 50th percentile Anthropomorphic Test Devices, representing the pilot and co-pilot. Each test contained different airframe loading conditions and results show large differences in airframe performance. This paper presents test methods used to conduct the crash tests and will summarize the airframe results from the test series.

  11. The SR-71 Test Bed Aircraft: A Facility for High-Speed Flight Research

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Moes, Timothy R.; Mizukami, Masashi; Hass, Neal E.; Jones, Daniel; Monaghan, Richard C.; Ray, Ronald J.; Jarvis, Michele L.; Palumbo, Nathan

    2000-01-01

    The SR-71 test bed aircraft is shown to be a unique platform to flight-test large experiments to supersonic Mach numbers. The test bed hardware mounted on the SR-71 upper fuselage is described. This test bed hardware is composed of a fairing structure called the "canoe" and a large "reflection plane" flat plate for mounting experiments. Total experiment weights, including the canoe and reflection plane, as heavy as 14,500 lb can be mounted on the aircraft and flight-tested to speeds as fast as Mach 3.2 and altitudes as high as 80,000 ft. A brief description of the SR-71 aircraft is given, including details of the structural modifications to the fuselage, modifications to the J58 engines to provide increased thrust, and the addition of a research instrumentation system. Information is presented based on flight data that describes the SR-71 test bed aerodynamics, stability and control, structural and thermal loads, the canoe internal environment, and reflection plane flow quality. Guidelines for designing SR-71 test bed experiments are also provided.

  12. Applications of the Remotely Piloted Aircraft (RPA) 'MASC' in Atmospheric Boundary Layer Research

    NASA Astrophysics Data System (ADS)

    Wildmann, Norman; Platis, Andreas; Tupman, David-James; Bange, Jens

    2015-04-01

    The remotely piloted aircraft (RPA) MASC (Multipurpose Airborne Sensor Carrier) was developed at the University of Tübingen in cooperation with the University of Stuttgart, University of Applied Sciences Ostwestfalen-Lippe and 'ROKE-Modelle'. Its purpose is the investigation of thermodynamic processes in the atmospheric boundary layer (ABL), including observations of temperature, humidity and wind profiles, as well as the measurement of turbulent heat, moisture and momentum fluxes. The aircraft is electrically powered, has a maximum wingspan of 3.40~m and a total weight of 5-8~kg, depending on the battery- and payload. The standard meteorological payload consists of two temperature sensors, a humidity sensor, a flow probe, an inertial measurement unit and a GNSS. The sensors were optimized for the resolution of small-scale turbulence down to length scales in the sub-meter range. In normal operation, the aircraft is automatically controlled by the ROCS (Research Onboard Computer System) autopilot to be able to fly predefined paths at constant altitude and airspeed. Only take-off and landing are carried out by a human RC pilot. Since 2012, the system is operational and has since then been deployed in more than ten measurement campaigns, with more than 100 measurement flights. The fields of research that were tackled in these campaigns include sensor validation, fundamental boundary-layer research and wind-energy research. In 2014, for the first time, two MASC have been operated at the same time within a distance of a few kilometres, in order to investigate the wind field over an escarpment in the Swabian Alb. Furthermore, MASC was first deployed off-shore in October 2014, starting from the German island Heligoland in the North Sea, for the purpose of characterization of the marine boundary layer for offshore wind parks. Detailed descriptions of the experimental setup and first preliminary results will be presented.

  13. Advancement of proprotor technology. Task 1: Design study summary. [aerodynamic concept of minimum size tilt proprotor research aircraft

    NASA Technical Reports Server (NTRS)

    1969-01-01

    A tilt-proprotor proof-of-concept aircraft design study has been conducted. The results are presented. The ojective of the contract is to advance the state of proprotor technology through design studies and full-scale wind-tunnel tests. The specific objective is to conduct preliminary design studies to define a minimum-size tilt-proprotor research aircraft that can perform proof-of-concept flight research. The aircraft that results from these studies is a twin-engine, high-wing aircraft with 25-foot, three-bladed tilt proprotors mounted on pylons at the wingtips. Each pylon houses a Pratt and Whitney PT6C-40 engine with a takeoff rating of 1150 horsepower. Empty weight is estimated at 6876 pounds. The normal gross weight is 9500 pounds, and the maximum gross weight is 12,400 pounds.

  14. V/STOL systems research aircraft: A tool for cockpit integration

    NASA Technical Reports Server (NTRS)

    Stortz, Michael W.; ODonoghue, Dennis P.

    1995-01-01

    The next generation ASTOVL aircraft will have a complicated propulsion system. The configuration choices include Direct Lift, Lift-Fan and Lift + Lift/Cruise but the aircraft must also have supersonic performance and low-observable characteristics. The propulsion system may have features such as flow blockers, vectoring nozzles and flow transfer schemes. The flight control system will necessarily fully integrate the aerodynamic surfaces and the propulsive elements. With a fully integrated, fly-by-wire flight/propulsion control system, the options for cockpit integration are interesting and varied. It is possible to de-couple longitudinal and vertical responses allowing the pilot to close the loop on flightpath and flightpath acceleration directly. In the hover, the pilot can control the translational rate directly without having to stabilize the inner rate and attitude loops. The benefit of this approach, reduced workload and increased precision, has previously been demonstrated through several motion-based simulations. In order to prove the results in flight, the V/STOL System Research Aircraft (VSRA) was developed at the NASA Ames Research Center. The VSRA is the YAV-8B Prototype modified with a research flight control system using a series-parallel servo configuration in all the longitudinal degrees of freedom (including thrust and thrust vector angle) to provide an integrated flight and propulsion control system in a limited envelope. Development of the system has been completed and flight evaluations of the response types have been performed. In this paper we will discuss the development of the VSRA, the evolution of the flightpath command and translational rate command response types and the Guest Pilot evaluations of the system. Pilot evaluation results are used to draw conclusions regarding the suitability of the system to satisfy V/STOL requirements.

  15. V/STOL Systems Research Aircraft: A Tool for Cockpit Integration

    NASA Technical Reports Server (NTRS)

    Stortz, Michael W.; ODonoghue, Dennis P.; Tiffany, Geary (Technical Monitor)

    1995-01-01

    The next generation ASTOVL aircraft will have a complicated propulsion System. The configuration choices include Direct Lift, Lift-Fan and Lift+Lift /Cruise but the aircraft must also have supersonic performance and low-observable characteristics. The propulsion system may have features such as flow blockers, vectoring nozzles and flow transfer schemes. The flight control system will necessarily fully integrate the aerodynamic surfaces and the propulsive elements. With a fully integrated, fly-by-wire flight/propulsion control system, the options for cockpit integration are interesting and varied. It is possible to decouple longitudinal and vertical responses allowing the pilot to close the loop on flight path and flight path acceleration directly. In the hover, the pilot can control the translational rate directly without having to stabilize the inner rate and attitude loops. The benefit of this approach, reduced workload and increased precision. has previously been demonstrated through several motion-based simulations. In order to prove the results in flight, the V/STOL System Research Aircraft (VSRA) was developed at the NASA Ames Research Center. The VSRA is the YAV-8B Prototype modified with a research flight control system using a series-parallel servo configuration in all the longitudinal degrees of freedom (including thrust and thrust vector angle) to provide an integrated flight and propulsion control system in a limited envelope. Development of the system has been completed and flight evaluations of the response types have been performed. In this paper we will discuss the development of the VSRA, the evolution of the flight path command and translational rate command response types and the Guest Pilot evaluations of the system. Pilot evaluation results will be used to draw conclusions regarding the suitability of the system to satisfy V/STOL requirements.

  16. Application of the Remotely Piloted Aircraft (RPA) 'MASC' in Atmospheric Boundary Layer Research

    NASA Astrophysics Data System (ADS)

    Wildmann, Norman; Bange, Jens

    2014-05-01

    The remotely piloted aircraft (RPA) MASC (Multipurpose Airborne Sensor Carrier) was developed at the University of Tübingen in cooperation with the University of Stuttgart, University of Applied Sciences Ostwestfalen-Lippe and 'ROKE-Modelle'. Its purpose is the investigation of thermodynamic processes in the atmospheric boundary layer (ABL), including observations of temperature, humidity and wind profiles, as well as the measurement of turbulent heat, moisture and momentum fluxes. The aircraft is electrically powered, has a maximum wingspan of 3.40 m and a total weight of 5-8 kg, depending on battery- and payload. The standard meteorological payload consists of temperature sensors, a humidity sensor, a flow probe, an inertial measurement unit and a GNSS. In normal operation, the aircraft is automatically controlled by the ROCS (Research Onboard Computer System) autopilot to be able to fly predefined paths at constant altitude and airspeed. Since 2010 the system has been tested and improved intensively. In September 2012 first comparative tests could successfully be performed at the Lindenberg observatory of Germany's National Meteorological Service (DWD). In 2013, several campaigns were done with the system, including fundamental boundary layer research, wind energy meteorology and assistive measurements to aerosol investigations. The results of a series of morning transition experiments in summer 2013 will be presented to demonstrate the capabilities of the measurement system. On several convective days between May and September, vertical soundings were done to record the evolution of the ABL in the early morning, from about one hour after sunrise, until noon. In between the soundings, flight legs of up to 1 km length were performed to measure turbulent statistics and fluxes at a constant altitude. With the help of surface flux measurements of a sonic anemometer, methods of similarity theory could be applied to the RPA flux measurements to compare them to

  17. Research on motion model for the hypersonic boost-glide aircraft

    NASA Astrophysics Data System (ADS)

    Xu, Shenda; Wu, Jing; Wang, Xueying

    2015-11-01

    A motion model for the hypersonic boost-glide aircraft(HBG) was proposed in this paper, which also analyzed the precision of model through simulation. Firstly the trajectory of HBG was analyzed, and a scheme which divide the trajectory into two parts then build the motion model on each part. Secondly a restrained model of boosting stage and a restrained model of J2 perturbation were established, and set up the observe model. Finally the analysis of simulation results show the feasible and high-accuracy of the model, and raise a expectation for intensive research.

  18. Variable pitch fan system for NASA/Navy research and technology aircraft

    NASA Technical Reports Server (NTRS)

    Ryan, W. P.; Black, D. M.; Yates, A. F.

    1977-01-01

    Preliminary design of a shaft driven, variable-pitch lift fan and lift-cruise fan was conducted for a V/STOL Research and Technology Aircraft. The lift fan and lift-cruise fan employed a common rotor of 157.5 cm diameter, 1.18 pressure ratio variable-pitch fan designed to operate at a rotor-tip speed of 284 mps. Fan performance maps were prepared and detailed aerodynamic characteristics were established. Cost/weight/risk trade studies were conducted for the blade and fan case. Structural sizing was conducted for major components and weights determined for both the lift and lift-cruise fans.

  19. Cost and schedule management on the quiet short-haul research aircraft project

    NASA Technical Reports Server (NTRS)

    Wilcox, D. E.; Patterakis, P.

    1979-01-01

    The Quiet Short-Haul Research Aircraft (QSRA) Project, one of the largest aeronautical programs undertaken by NASA to date, achieved a significant cost underrun. This is attributed to numerous factors, not the least of which were the contractual arrangement and the system of cost and schedule management employed by the contractor. This paper summarizes that system and the methods used for cost/performance measurement by the contractor and by the NASA project management. Recommendations are made for the use of some of these concepts in particular for future programs of a similar nature.

  20. Human factors in aircraft maintenance and inspection

    NASA Technical Reports Server (NTRS)

    Shepherd, William T.

    1992-01-01

    The events which have led to the intensive study of aircraft structural problems have contributed in no less measure to the study of human factors which influence aircraft maintenance and inspection. Initial research emphasis on aging aircraft maintenance and inspection has since broadened to include all aircraft types. Technicians must be equally adept at repairing old and new aircraft. Their skills must include the ability to repair sheet metal and composite materials; control cable and fly-by-wire systems; round dials and glass cockpits. Their work performance is heavily influenced by others such as designers, technical writers, job card authors, schedulers, and trainers. This paper describes the activities concerning aircraft and maintenance human factors.

  1. MASC - a small Remotely Piloted Aircraft (RPA) for wind energy research

    NASA Astrophysics Data System (ADS)

    Wildmann, N.; Hofsäß, M.; Weimer, F.; Joos, A.; Bange, J.

    2014-05-01

    Originally designed for atmospheric boundary layer research, the MASC (Multipurpose Airborne Sensor Carrier) RPA (Remotely Piloted Aircraft, also known as Unmanned Aerial Vehicle, UAV) is capable of making in-situ measurements of temperature, humidity and wind in high resolution and precision. The autopilot system ROCS (Research Onboard Computer System) enables the aircraft to fly pre-defined routes between waypoints at constant altitude and airspeed. The system manages to operate in wind speeds up to 15 m s-1 safely. It is shown that a MASC can fly as close as one rotor diameter upstream and downstream of running wind turbines at these wind speeds and take valuable data of incoming flow and wake. The flexible operation of an RPA at the size of a MASC can be a major advantage of the system compared to tower measurements and remote sensing in wind energy research. In the project "Lidar Complex" comparisons of RPA measurements with lidar systems and tower measurements are carried out at two different test sites. First results, including turbulence and wake measurements, from a campaign in autumn 2013 are presented.

  2. Determination of longitudinal aerodynamic derivatives using flight data from an icing research aircraft

    NASA Technical Reports Server (NTRS)

    Ranaudo, R. J.; Reehorst, A. L.; Bond, T. H.; Batterson, J. G.; O'Mara, T. M.

    1989-01-01

    A flight test was performed with the NASA Lewis Research Center's DH-6 icing research aircraft. The purpose was to employ a flight test procedure and data analysis method, to determine the accuracy with which the effects of ice on aircraft stability and control could be measured. For simplicity, flight testing was restricted to the short period longitudinal mode. Two flights were flown in a clean (baseline) configuration, and two flights were flown with simulated horizontal tail ice. Forty-five repeat doublet maneuvers were performed in each of four test configurations, at a given trim speed, to determine the ensemble variation of the estimated stability and control derivatives. Additional maneuvers were also performed in each configuration, to determine the variation in the longitudinal derivative estimates over a wide range of trim speeds. Stability and control derivatives were estimated by a Modified Stepwise Regression (MSR) technique. A measure of the confidence in the derivative estimates was obtained by comparing the standard error for the ensemble of repeat maneuvers, to the average of the estimated standard errors predicted by the MSR program. A multiplicative relationship was determined between the ensemble standard error, and the averaged program standard errors. In addition, a 95 percent confidence interval analysis was performed for the elevator effectiveness estimates, C sub m sub delta e. This analysis identified the speed range where changes in C sub m sub delta e could be attributed to icing effects. The magnitude of icing effects on the derivative estimates were strongly dependent on flight speed and aircraft wing flap configuration. With wing flaps up, the estimated derivatives were degraded most at lower speeds corresponding to that configuration. With wing flaps extended to 10 degrees, the estimated derivatives were degraded most at the higher corresponding speeds. The effects of icing on the changes in longitudinal stability and control

  3. Determination of longitudinal aerodynamic derivatives using flight data from an icing research aircraft

    NASA Technical Reports Server (NTRS)

    Ranaudo, R. J.; Batterson, J. G.; Reehorst, A. L.; Bond, T. H.; Omara, T. M.

    1989-01-01

    A flight test was performed with the NASA Lewis Research Center's DH-6 icing research aircraft. The purpose was to employ a flight test procedure and data analysis method, to determine the accuracy with which the effects of ice on aircraft stability and control could be measured. For simplicity, flight testing was restricted to the short period longitudinal mode. Two flights were flown in a clean (baseline) configuration, and two flights were flown with simulated horizontal tail ice. Forty-five repeat doublet maneuvers were performed in each of four test configurations, at a given trim speed, to determine the ensemble variation of the estimated stability and control derivatives. Additional maneuvers were also performed in each configuration, to determine the variation in the longitudinal derivative estimates over a wide range of trim speeds. Stability and control derivatives were estimated by a Modified Stepwise Regression (MSR) technique. A measure of the confidence in the derivative estimates was obtained by comparing the standard error for the ensemble of repeat maneuvers, to the average of the estimated standard errors predicted by the MSR program. A multiplicative relationship was determined between the ensemble standard error, and the averaged program standard errors. In addition, a 95 percent confidence interval analysis was performed for the elevator effectiveness estimates, C sub m sub delta e. This analysis identified the speed range where changes in C sub m sub delta e could be attributed to icing effects. The magnitude of icing effects on the derivative estimates were strongly dependent on flight speed and aircraft wing flap configuration. With wing flaps up, the estimated derivatives were degraded most at lower speeds corresponding to that configuration. With wing flaps extended to 10 degrees, the estimated derivatives were degraded most at the higher corresponding speeds. The effects of icing on the changes in longitudinal stability and control

  4. Aging in Romania: research and public policy.

    PubMed

    Bodogai, Simona I; Cutler, Stephen J

    2014-04-01

    Romania has entered a period of rapid and dramatic population aging. Older Romanians are expected to make up more than 30% of the total population by 2050. Yet, gerontological research is sparse and the few studies of older Romanians that exist are not well used by policy makers. Much of the research is descriptive and focused on needs assessments. Most databases created from studies of older adults are not available for secondary analysis, nor is Romania among the countries included in the Survey of Health and Retirement in Europe. The pension and health insurance systems and the system of social welfare services address the specific needs of older Romanians, but comparing the social protection systems in the European Union with those in Romania suggests the existence of a development lag. The relevant legislation exists but there are still issues regarding the implementation of specially developed social services for older persons. As a result, there are major inadequacies in the organization of the social service system: too few public services, insufficient budget funds, insufficient collaboration between public and private services, and frequently overlapping services.

  5. Airborne measurements of CO2 and CH4 onboard the UK FAAM research aircraft using a, Los Gatos Research Inc, cavity enhanced absorption spectrometer

    NASA Astrophysics Data System (ADS)

    O'Shea, S.; Bauguitte, S.; Muller, J. B.; Le Breton, M.; Gallagher, M. W.; Allen, G.; Percival, C. J.

    2012-12-01

    Airborne measurements of CO2 and CH4 have been made using the UK Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft since spring 2011.The measurement system uses a commercially available analyser, based on the off-axis integrated cavity output spectroscopy technique, from Los Gatos Research Inc (FGGA, Model RMT-200). During the first year of operation (29 flights), 1 Hz measurements were found to be accurate to 0.07 ± 2.48ppbv for CH4 and -0.06± 0.66ppmv for CO2. In summer 2011, as part of the BORTAS project (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites), outflow from boreal forest fires was measured in Eastern Canada. A number of fresh and photochemically-aged plumes were identified using simultaneous HCN measurements, a widely used tracer for biomass burning. In the freshest plumes, strong relationships were found between CH4, CO2 and other tracers for biomass burning. From this we were able to estimate that 6.9±0.8 g of CH4 and 1551±213 g of CO2 were released into the atmosphere per kg of dry matter burnt. These emission factors are in good agreement with estimates from previous studies in boreal regions. However for aged plumes the correlations between CH4 and other biomass burning tracers were not as robust, most likely due to mixing from other CH4 emission sources, such as the wetland regions. The role of additional emission sources will be investigated using the UK Met Office NAME atmospheric dispersion model and the HYSPLIT trajectory model. Using tailored back trajectory analysis, we will present an interpretation of this new dataset in the context of air mass/fire origin, relating this to MODIS fire maps and source strength.

  6. Community Engagement and the Resource Centers for Minority Aging Research

    ERIC Educational Resources Information Center

    Sood, Johanna R.; Stahl, Sidney M.

    2011-01-01

    The National Institute on Aging created the Resource Centers for Minority Aging Research (RCMARs) to address infrastructure development intended to reduce health disparities among older adults. The overall goals of the RCMARs are to (a) increase the size of the cadre of researchers conducting research on issues related to minority aging; (b)…

  7. An Evaluation Technique for an F/A-18 Aircraft Loads Model Using F/A-18 Systems Research Aircraft Flight Data

    NASA Technical Reports Server (NTRS)

    Olney, Candida D.; Hillebrandt, Heather; Reichenbach, Eric Y.

    2000-01-01

    A limited evaluation of the F/A-18 baseline loads model was performed on the Systems Research Aircraft at NASA Dryden Flight Research Center (Edwards, California). Boeing developed the F/A-18 loads model using a linear aeroelastic analysis in conjunction with a flight simulator to determine loads at discrete locations on the aircraft. This experiment was designed so that analysis of doublets could be used to establish aircraft aerodynamic and loads response at 20 flight conditions. Instrumentation on the right outboard leading edge flap, left aileron, and left stabilator measured the hinge moment so that comparisons could be made between in-flight-measured hinge moments and loads model-predicted values at these locations. Comparisons showed that the difference between the loads model-predicted and in-flight-measured hinge moments was up to 130 percent of the flight limit load. A stepwise regression technique was used to determine new loads derivatives. These derivatives were placed in the loads model, which reduced the error to within 10 percent of the flight limit load. This paper discusses the flight test methodology, a process for determining loads coefficients, and the direct comparisons of predicted and measured hinge moments and loads coefficients.

  8. An experimental and analytical method for approximate determination of the tilt rotor research aircraft rotor/wing download

    NASA Technical Reports Server (NTRS)

    Jordon, D. E.; Patterson, W.; Sandlin, D. R.

    1985-01-01

    The XV-15 Tilt Rotor Research Aircraft download phenomenon was analyzed. This phenomenon is a direct result of the two rotor wakes impinging on the wing upper surface when the aircraft is in the hover configuration. For this study the analysis proceeded along tow lines. First was a method whereby results from actual hover tests of the XV-15 aircraft were combined with drag coefficient results from wind tunnel tests of a wing that was representative of the aircraft wing. Second, an analytical method was used that modeled that airflow caused gy the two rotors. Formulas were developed in such a way that acomputer program could be used to calculate the axial velocities were then used in conjunction with the aforementioned wind tunnel drag coefficinet results to produce download values. An attempt was made to validate the analytical results by modeling a model rotor system for which direct download values were determinrd..

  9. Scaled Composites' Proteus aircraft and an F/A-18 Hornet from NASA's Dryden Flight Research Center d

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Scaled Composites' Proteus aircraft and an F/A-18 Hornet from NASA's Dryden Flight Research Center during a low-level flyby at Las Cruces Airport in New Mexico. The unique Proteus aircraft served as a test bed for NASA-sponsored flight tests designed to validate collision-avoidance technologies proposed for uninhabited aircraft. The tests, flown over southern New Mexico in March, 2002, used the Proteus as a surrogate uninhabited aerial vehicle (UAV) while three other aircraft flew toward the Proteus from various angles on simulated collision courses. Radio-based 'detect, see and avoid' equipment on the Proteus successfully detected the other aircraft and relayed that information to a remote pilot on the ground at Las Cruces Airport. The pilot then transmitted commands to the Proteus to maneuver it away from the potential collisions. The flight demonstration, sponsored by NASA Dryden Flight Research Center, New Mexico State University, Scaled Composites, the U.S. Navy and Modern Technology Solutions, Inc., were intended to demonstrate that UAVs can be flown safely and compatibly in the same skies as piloted aircraft.

  10. NASA rotor systems research aircraft: Fixed-wing configuration flight-test results

    NASA Technical Reports Server (NTRS)

    Erickson, R. E.; Cross, J. L.; Kufeld, R. M.; Acree, C. W.; Nguyen, D.; Hodge, R. W.

    1986-01-01

    The fixed-wing, airplane configuration flight-test results of the Rotor System Research Aircraft (RSRA), NASA 740, at Ames/Dryden Flight Research Center are documented. Fourteen taxi and flight tests were performed from December 1983 to October 1984. This was the first time the RSRA was flown with the main rotor removed; the tail rotor was installed. These tests confirmed that the RSRA is operable as a fixed-wing aircraft. Data were obtained for various takeoff and landing distances, control sensitivity, trim and dynamics stability characteristics, performance rotor-hub drag, and acoustics signature. Stability data were obtained with the rotor hub both installed and removed. The speed envelope was developed to 261 knots true airspeed (KTAS), 226 knots calibrated airspeed (KCAS) at 10,000 ft density altitude. The airplane was configured at 5 deg. wing incidence with 5 deg. wing flaps as a normal configuration. Level-flight data were acquired at 167 KCAS for wing incidence from 0 to 10 deg. Step inputs and doublet inputs of various magnitudes were utilized to acquire dynamic stability and control sensitivity data. Sine-wave inputs of constantly increasing frequency were used to generate parameter identification data. The maximum load factor attained was 2.34 g at 206 KCAS.

  11. Subsonic Ultra Green Aircraft Research: Phase 2. Volume 2; Hybrid Electric Design Exploration

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Droney, Christopher K.

    2015-01-01

    This report summarizes the hybrid electric concept design, analysis, and modeling work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, consisting of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech.Performance and sizing tasks were conducted for hybrid electric versions of a conventional tube-and-wing aircraft and a hybrid wing body. The high wing Truss Braced Wing (TBW) SUGAR Volt was updated based on results from the TBW work (documented separately) and new engine performance models. Energy cost and acoustic analyses were conducted and technology roadmaps were updated for hybrid electric and battery technology. NOx emissions were calculated for landing and takeoff (LTO) and cruise. NPSS models were developed for hybrid electric components and tested using an integrated analysis of superconducting and non-superconducting hybrid electric engines. The hybrid electric SUGAR Volt was shown to produce significant emissions and fuel burn reductions beyond those achieved by the conventionally powered SUGAR High and was able to meet the NASA goals for fuel burn. Total energy utilization was not decreased but reduced energy cost can be achieved for some scenarios. The team was not able to identify a technology development path to meet NASA's noise goals

  12. Subsonic Ultra Green Aircraft Research. Phase II - Volume I; Truss Braced Wing Design Exploration

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Droney, Christopher K.; Allen, Timothy J.

    2015-01-01

    This report summarizes the Truss Braced Wing (TBW) work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, consisting of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, Georgia Tech, Virginia Tech, NextGen Aeronautics, and Microcraft. A multi-disciplinary optimization (MDO) environment defined the geometry that was further refined for the updated SUGAR High TBW configuration. Airfoil shapes were tested in the NASA TCT facility, and an aeroelastic model was tested in the NASA TDT facility. Flutter suppression was successfully demonstrated using control laws derived from test system ID data and analysis models. Aeroelastic impacts for the TBW design are manageable and smaller than assumed in Phase I. Flutter analysis of TBW designs need to include pre-load and large displacement non-linear effects to obtain a reasonable match to test data. With the updated performance and sizing, fuel burn and energy use is reduced by 54% compared to the SUGAR Free current technology Baseline (Goal 60%). Use of the unducted fan version of the engine reduces fuel burn and energy by 56% compared to the Baseline. Technology development roadmaps were updated, and an airport compatibility analysis established feasibility of a folding wing aircraft at existing airports.

  13. Strategies for Successful Aging: A Research Update

    PubMed Central

    Depp, Colin A.; Harmell, Alexandrea L.; Jeste, Dilip

    2014-01-01

    Population aging is an enormous public health issue and there is clear need for strategies to maximize opportunities for successful aging. Many psychiatric illnesses are increasingly thought to be associated with accelerated aging, therefore emerging data on individual and policy level interventions that alter typical aging trajectories are relevant to mental health practitioners. Although the determinants and definition of successful aging remain controversial, increasing data indicate that psychiatric illnesses directly impact biological aging trajectories and diminish lifestyle, psychological and socio-environmental factors that seem reduce risk of morbidity and mortality. Many interventions designed to enhance the normal course of aging may be adjunctive approaches to management of psychiatric illnesses. We highlight recent data on interventions seeking to promote healthy aging, such as cognitive remediation, physical activity, nutrition, and complementary and alternative treatments for older people with and without psychiatric illnesses. PMID:25135776

  14. Strategies for successful aging: a research update.

    PubMed

    Harmell, Alexandrea L; Jeste, Dilip; Depp, Colin

    2014-10-01

    Population aging is an enormous public health issue and there is clear need for strategies to maximize opportunities for successful aging. Many psychiatric illnesses are increasingly thought to be associated with accelerated aging, therefore emerging data on individual and policy level interventions that alter typical aging trajectories are relevant to mental health practitioners. Although the determinants and definition of successful aging remain controversial, increasing data indicate that psychiatric illnesses directly impact biological aging trajectories and diminish lifestyle, psychological, and socio-environmental factors that seem to reduce risk of morbidity and mortality. Many interventions designed to enhance the normal course of aging may be adjunctive approaches to management of psychiatric illnesses. We highlight recent data on interventions seeking to promote healthy aging, such as cognitive remediation, physical activity, nutrition, and complementary and alternative treatments for older people with and without psychiatric illnesses.

  15. Lateral-directional stability and control characteristics of the Quiet Short-Haul Research Aircraft (QSRA)

    NASA Technical Reports Server (NTRS)

    Stephenson, Jack D.; Jeske, James A.; Hardy, Gordon H.

    1990-01-01

    The results are presented of flight experiments to determine the lateral-directional stability and control characteristics of the Quiet Short-Haul Research Aircraft (QSRA), an experimental aircraft designed to furnish information on various aerodynamic characteristics of a transport type of airplane that makes use of the upper-surface blown (USB) flap technology to achieve short takeoff and landing (STOL) performance. The flight program designed to acquire the data consisted of maneuvers produced by rudder and control-wheel inputs with the airplane in several configurations that had been proposed for landing approach and takeoff operation. The normal stability augmentation system was not engaged during these maneuvers. Time-history records from the maneuvers were analyzed with a parameter estimation procedure to extract lateral-directional stability and control derivatives. For one aircraft configuration in which the USB flaps were deflected 50 deg, several maneuvers were performed to determine the effects of varying the average angle of attack, varying the thrust coefficient, and setting the airplane's upper surface spoilers at a 13 deg symmetrical bias angle . The effects on the lateral characteristics of deflecting the spoilers were rather small and generally favorable. The data indicate that for one test, conducted at low thrust (a thrust coefficient of 0.38), compared with results from tests at thrust coefficients of 0.77 and larger, there was a significant decrease in the lateral control effectiveness, in the yaw damping and in the directional derivative. The directional derivative was also decreased (by about 30 percent) when the average angle of attack of the test was increased from 3 to 16 deg.

  16. Sikorsky UH-60 (USA 82-23748 NASA-748) Air-loads research aircraft - Blackhawk helicopter with

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Sikorsky UH-60 (USA 82-23748 NASA-748) Air-loads research aircraft - Blackhawk helicopter with MUX-Bucket in flight Note: Used in publication in Flight Research at Ames; 57 Years of Development and Validation of Aeronautical Technology NASA SP-1998-3300 fig. 135

  17. Enabling Electric Propulsion for Flight - Hybrid Electric Aircraft Research at AFRC

    NASA Technical Reports Server (NTRS)

    Clarke, Sean; Lin, Yohan; Kloesel, Kurt; Ginn, Starr

    2014-01-01

    Advances in electric machine efficiency and energy storage capability are enabling a new alternative to traditional propulsion systems for aircraft. This has already begun with several small concept and demonstration vehicles, and NASA projects this technology will be essential to meet energy and emissions goals for commercial aviation in the next 30 years. In order to raise the Technology Readiness Level of electric propulsion systems, practical integration and performance challenges will need to be identified and studied in the near-term so that larger, more advanced electric propulsion system testbeds can be designed and built. Researchers at NASA Armstrong Flight Research Center are building up a suite of test articles for the development, integration, and validation of these systems in a real world environment.

  18. Efficient, Low-Cost Fan System Research for General Aviation and Commuter Aircraft

    NASA Technical Reports Server (NTRS)

    Merrill, G. L.

    2003-01-01

    This document reports research investigations into efficient, low-cost fan system concepts for high bypass turbofans for future general aviation and commuter aircraft. The research specifically addressed lower pressure ratio fans for good propulsive efficiencies in the 200 to 400 knot flight speed regime. Aerodynamic design analyses yielded predicted efficiency in area of 91 to 92 percent (adiabatic). Low-cost manufacturing studies yielded an aluminum blisk rotor and investment cast stator having lowest cost. Structural design analyses yielded a design having excellent vibratory characteristics and the ability to pass One- and Four-pound bird strikes satisfactorily. The low speed and low pressure fans of the study are estimated to have 24 to 30 EPNdB lower community noise levels than larger, high pressure ratio transonic fans.

  19. Extramural Training and Career Opportunities in Aging Research.

    ERIC Educational Resources Information Center

    National Inst. on Aging (DHHS/NIH), Bethesda, MD.

    The rapid growth of the older population heightens the urgency for training in aging research. This publication outlines the opportunities for extramural research training and career development that exist within the National Institute on Aging (NIA). The NIA supports research and research training primarily through the award of grants and…

  20. Gravity-Dependent Combustion and Fluids Research - From Drop Towers to Aircraft to the ISS

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Singh, Bhim S.; Kohl, Fred J.

    2007-01-01

    Driven by the need for knowledge related to the low-gravity environment behavior of fluids in liquid fuels management, thermal control systems and fire safety for spacecraft, NASA embarked on a decades long research program to understand, accommodate and utilize the relevant phenomena. Beginning in the 1950s, and continuing through to today, drop towers and aircraft were used to conduct an ever broadening and increasingly sophisticated suite of experiments designed to elucidate the underlying gravity-dependent physics that drive these processes. But the drop towers and aircraft afford only short time periods of continuous low gravity. Some of the earliest rocket test flights and manned space missions hosted longer duration experiments. The relatively longer duration low-g times available on the space shuttle during the 1980s and 1990s enabled many specialized experiments that provided unique data for a wide range of science and engineering disciplines. Indeed, a number of STS-based Spacelab missions were dedicated solely to basic and applied microgravity research in the biological, life and physical sciences. Between 1980 and 2000, NASA implemented a vigorous Microgravity Science Program wherein combustion science and fluid physics were major components. The current era of space stations from the MIR to the International Space Station have opened up a broad range of opportunities and facilities that are now available to support both applied research for technologies that will help to enable the future exploration missions and for a continuation of the non-exploration basic research that began over fifty years ago. The ISS-based facilities of particular value to the fluid physics and combustion/fire safety communities are the Fluids and Combustion Facility Combustion Integrated Rack and the Fluids Integrated Rack.

  1. CV-990 Landing Systems Research Aircraft (LSRA) flight #145 drilling of shuttle tire using Tire Assa

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Created from a 1/16th model of a German World War II tank, the TAV (Tire Assault Vehicle) was an important safety feature for the Convair 990 Landing System Research Aircraft, which tested space shuttle tires. It was imperative to know the extreme conditions the shuttle tires could tolerate at landing without putting the shuttle and its crew at risk. In addition, the CV990 was able to land repeatedly to test the tires. The TAV was built from a kit and modified into a radio controlled, video-equipped machine to drill holes in aircraft test tires that were in imminent danger of exploding because of one or more conditions: high air pressure, high temperatures, and cord wear. An exploding test tire releases energy equivalent to two and one-half sticks of dynamite and can cause severe injuries to anyone within 50 ft. of the explosion, as well as ear injury - possibly permanent hearing loss - to anyone within 100 ft. The degree of danger is also determined by the temperature pressure and cord wear of a test tire. The TAV was developed by David Carrott, a PRC employee under contract to NASA.

  2. NASA aeronautics. [fact sheet on NASA programs for aeronautical research and aircraft development

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A fact sheet depicting the NASA programs involving aircraft development and aeronautics is presented. The fact sheet consists of artist concepts of the various aircraft which represent specific programs. Among the subjects discussed in the concise explanatory notes are: (1) the YF-12 aircraft, (2) hypersonic drag tests in wind tunnels, (3) augmentor wing concepts, (4) rotary wing development, (5) fly-by-wire aircraft control, (6) supercritical wings, (7) the quiet engine program for noise and emission abatement, (8) flight capabilities of lifting bodies, (9) tilt rotor concepts for improved helicopter performance, and (10) flight safety improvements for general aviation aircraft.

  3. NIH Research Addresses Aging Issues and Disparities in Oral Health

    MedlinePlus

    ... please turn JavaScript on. Feature: Oral Health and Aging NIH Research Addresses Aging Issues and Disparities in Oral Health Past Issues / ... What types of research is NIDCR conducting on aging and oral health? We’re currently funding basic ...

  4. NOAA Utilization of the Global Hawk Unmanned Aircraft for Atmospheric Research and Forecast Improvement

    NASA Astrophysics Data System (ADS)

    Wick, G. A.; Hood, R. E.; Black, M. L.; Spackman, J. R.; Ralph, F. M.; Intrieri, J. M.; Hock, T. F.; Neiman, P. J.

    2014-12-01

    High altitude, long endurance unmanned aircraft provide a tremendous new capability for monitoring the atmosphere in support of weather research and forecast improvement. The NOAA Unmanned Aircraft Systems (UAS) program is collaborating with NASA on the use of their Global Hawk (GH) aircraft for research into better understanding and forecasting high-impact weather events. NOAA has participated in multiple field campaigns either in partnership with NASA including the Genesis and Rapid Intensification Processes (GRIP, 2010) and the Hurricane and Severe Storm Sentinel (HS3, 2011-2014) experiments, or under NOAA leadership during the Winter Storms and Pacific Atmospheric Rivers (WISPAR, 2011) experiment. This past year, NOAA began a 3-year project, Sensing Hazards with Operational Unmanned Technology (SHOUT), to quantify the influence of UAS data on high-impact weather prediction and assess the operational effectiveness of UAS to help mitigate the risk of potential satellite observing gaps. The NOAA UAS system partnered with the National Center for Atmospheric Research in the development of a dropsonde system for the GH which has been flown along with other remote sensing instrumentation. This presentation summarizes our key results to date and describes our planned activities over the next two years. Flights during WISPAR provided measurements of water vapor transport within atmospheric rivers for evaluation of numerical weather prediction forecasts and analyses. A flight sampling the Arctic atmosphere north of Alaska included the first dropsondes released in the Arctic since the 1950's and extensive measurements of boundary-layer variability over an ocean-ice lead feature. Assimilation of GH dropsonde data collected in the environment around tropical storms during HS3 has demonstrated significant positive forecast improvements. Data are also being employed in the validation of multiple satellite-derived products. In SHOUT, campaigns are planned targeting Atlantic

  5. Health- and Disease-Related Biomarkers in Aging Research

    PubMed Central

    Thompson, Hilaire J.; Voss, Joachim G.

    2011-01-01

    This article focuses on a synthesis of knowledge about healthy aging research in human beings and then synthesized nurse-led research in gerontology and geriatrics that use biomarkers. Healthy aging research has attracted considerable attention in the biomedical and basic sciences within the context of four major areas: (a) genetic variations as an expression of successful or unsuccessful aging; (b) caloric restriction as an intervention to slow the progression of aging; (c) immunological aging; (d) neurobiology of the aging brain. A systematic review of the literature was performed to identify nurse-led geriatric-related biomarker research. Nurse researchers who have chosen to integrate biomarkers as part of their research studies have been working in six focal areas, which are reviewed: health promotion within risk populations, cancer, vascular disease, Alzheimer’s disease, caregiving, and complementary therapies. The article provides a discussion of contributions to date, identifying existing gaps and future research opportunities. PMID:20077975

  6. Development of test methods for scale model simulation of aerial applications in the NASA Langley Vortex Research Facility. [agricultural aircraft

    NASA Technical Reports Server (NTRS)

    Jordan, F. L., Jr.

    1980-01-01

    As part of basic research to improve aerial applications technology, methods were developed at the Langley Vortex Research Facility to simulate and measure deposition patterns of aerially-applied sprays and granular materials by means of tests with small-scale models of agricultural aircraft and dynamically-scaled test particles. Interactions between the aircraft wake and the dispersed particles are being studied with the objective of modifying wake characteristics and dispersal techniques to increase swath width, improve deposition pattern uniformity, and minimize drift. The particle scaling analysis, test methods for particle dispersal from the model aircraft, visualization of particle trajectories, and measurement and computer analysis of test deposition patterns are described. An experimental validation of the scaling analysis and test results that indicate improved control of chemical drift by use of winglets are presented to demonstrate test methods.

  7. Research Advances in Aging 1984-1986.

    ERIC Educational Resources Information Center

    National Inst. on Aging (DHHS/NIH), Bethesda, MD.

    The National Institute on Aging (NIA) has, for the past several years, focused attention on a wide range of clinical problems associated with aging, including falls and gait disorders, bone fractures, urinary incontinence, and hypertension. Understanding the causes of and exploring possible treatments for Alzheimer's disease has been another of…

  8. The Healthy Aging Research Network: Modeling Collaboration for Community Impact.

    PubMed

    Belza, Basia; Altpeter, Mary; Smith, Matthew Lee; Ory, Marcia G

    2017-03-01

    As the first Centers for Disease Control and Prevention (CDC) Prevention Research Centers Program thematic network, the Healthy Aging Research Network was established to better understand the determinants of healthy aging within older adult populations, identify interventions that promote healthy aging, and assist in translating research into sustainable community-based programs throughout the nation. To achieve these goals requires concerted efforts of a collaborative network of academic, community, and public health organizational partnerships. For the 2001-2014 Prevention Research Center funding cycles, the Healthy Aging Research Network conducted prevention research and promoted the wide use of practices known to foster optimal health. Organized around components necessary for successful collaborations (i.e., governance and infrastructure, shaping focus, community involvement, and evaluation and improvement), this commentary highlights exemplars that demonstrate the Healthy Aging Research Network's unique contributions to the field. The Healthy Aging Research Network's collaboration provided a means to collectively build capacity for practice and policy, reduce fragmentation and duplication in health promotion and aging research efforts, maximize the efficient use of existing resources and generate additional resources, and ultimately, create synergies for advancing the healthy aging agenda. This collaborative model was built upon a backbone organization (coordinating center); setting of common agendas and mutually reinforcing activities; and continuous communications. Given its successes, the Healthy Aging Research Network model could be used to create new and evaluate existing thematic networks to guide the translation of research into policy and practice.

  9. NASA Research Aircraft - D-558-II, D-558-I, X-5, X-1, XF-92A, X-4

    NASA Technical Reports Server (NTRS)

    1952-01-01

    NACA High Speed Flight Station at Edwards AFB South Base. Aircraft are (left to right): D-558-2, D-558-1, X-5, X-1, XF-92A, and X-4. This is an early 1950s color photo of NACA research aircraft in front of the South Base hangar. On the left is the third D-558-2 (NACA 145/Navy 37975). At this time, the aircraft was still in the combined jet and rocket configuration. NACA 145 was used to test a number of wing modifications intended to lessen the pitch up of the aircraft in turns. Next to it is the third D-558-1 (NACA 142/Navy 37972) which provided aerodynamic data at transonic speeds. The rudder is still painted red, to avoid possible control surface flutter problems which might be caused by weight and balance changes from a coat of white paint. To the right is the first X-5 (Air Force 50-1838), which tested an in-flight variable-sweep wing design. This allowed the gathering of transonic data at a wide range of sweep angles. The X-5 did have very poor stall/spin behavior, which made it dangerous to fly. Beside it is the second X-1 (Air Force 46-063), which was flown by the NACA between September 1947 and October 1951. This aircraft had a thicker wing than the first X-1 (46-062), which created considerable drag. The aircraft was later modified to become the X-1E. Behind the rocket-powered X-1 is the single XF-92A built (Air Force 46-682). Although intended to be the prototype of a jet fighter, it became a research aircraft testing delta wings. Its use by the NACA was relatively brief, but the data proved useful in the design of later U.S. delta-wing aircraft. To the forward right is the second X-4 (Air Force 46-677) which tested the concept of a semi-tailless swept-wing aircraft (no horizontal stabilizer). Without horizontal stabilizers, however, the aircraft proved unstable at high transonic speeds. The Dryden Flight Research Center, NASA's premier installation for aeronautical flight research, celebrated its 50th anniversary in 1996. Dryden is the 'Center of

  10. Aerodynamic configuration development of the highly maneuverable aircraft technology remotely piloted research vehicle

    NASA Technical Reports Server (NTRS)

    Gingrich, P. B.; Child, R. D.; Panageas, G. N.

    1977-01-01

    The aerodynamic development of the highly maneuverable aircraft technology remotely piloted research vehicle (HiMAT/RPRV) from the conceptual design to the final configuration is presented. The design integrates several advanced concepts to achieve a high degree of transonic maneuverability, and was keyed to sustained maneuverability goals while other fighter typical performance characteristics were maintained. When tests of the baseline configuration indicated deficiencies in the technology integration and design techniques, the vehicle was reconfigured to satisfy the subcritical and supersonic requirements. Drag-due-to-lift levels only 5 percent higher than the optimum were obtained for the wind tunnel model at a lift coefficient of 1 for Mach numbers of up to 0.8. The transonic drag rise was progressively lowered with the application of nonlinear potential flow analyses coupled with experimental data.

  11. Evaluation of a load cell model for dynamic calibration of the rotor systems research aircraft

    NASA Technical Reports Server (NTRS)

    Duval, R. W.; Bahrami, H.; Wellman, B.

    1985-01-01

    The Rotor Systems Research Aircraft uses load cells to isolate the rotor/transmission system from the fuselage. An analytical model of the relationship between applied rotor loads and the resulting load cell measurements is derived by applying a force-and-moment balance to the isolated rotor/transmission system. The model is then used to estimate the applied loads from measured load cell data, as obtained from a ground-based shake test. Using nominal design values for the parameters, the estimation errors, for the case of lateral forcing, were shown to be on the order of the sensor measurement noise in all but the roll axis. An unmodeled external load appears to be the source of the error in this axis.

  12. Application of modern control design methodology to oblique wing research aircraft

    NASA Technical Reports Server (NTRS)

    Vincent, James H.

    1991-01-01

    A Linear Quadratic Regulator synthesis technique was used to design an explicit model following control system for the Oblique Wing Research Aircraft (OWRA). The forward path model (Maneuver Command Generator) was designed to incorporate the desired flying qualities and response decoupling. The LQR synthesis was based on the use of generalized controls, and it was structured to provide a proportional/integral error regulator with feedforward compensation. An unexpected consequence of this design approach was the ability to decouple the control synthesis into separate longitudinal and lateral directional designs. Longitudinal and lateral directional control laws were generated for each of the nine design flight conditions, and gain scheduling requirements were addressed. A fully coupled 6 degree of freedom open loop model of the OWRA along with the longitudinal and lateral directional control laws was used to assess the closed loop performance of the design. Evaluations were performed for each of the nine design flight conditions.

  13. Upper surface blowing noise of the NASA-Ames quiet short-haul research aircraft

    NASA Technical Reports Server (NTRS)

    Bohn, A. J.; Shovlin, M. D.

    1980-01-01

    An experimental study of the propulsive-lift noise of the NASA-Ames quiet short-haul research aircraft (QSRA) is described. Comparisons are made of measured QSRA flyover noise and model propulsive-lift noise data available in references. Developmental tests of trailing-edge treatments were conducted using sawtooth-shaped and porous USB flap trailing-edge extensions. Small scale parametric tests were conducted to determine noise reduction/design relationships. Full-scale static tests were conducted with the QSRA preparatory to the selection of edge treatment designs for flight testing. QSRA flight and published model propulsive-lift noise data have similar characteristics. Noise reductions of 2 to 3 dB were achieved over a wide range of frequency and directivity angles in static tests of the QSRA. These noise reductions are expected to be achieved or surpassed in flight tests planned by NASA in 1980.

  14. Simulation validation of the XV-15 tilt-rotor research aircraft

    NASA Technical Reports Server (NTRS)

    Ferguson, S. W.; Hanson, G. D.; Churchill, G. B.

    1984-01-01

    The results of a simulation validation program of the XV-15 tilt-rotor research aircraft are detailed, covering such simulation aspects as the mathematical model, visual system, motion system, cab aural system, cab control loader system, pilot perceptual fidelity, and generic tilt rotor applications. Simulation validation was performed for the hover, low-speed, and sideward flight modes, with consideration of the in-ground rotor effect. Several deficiencies of the mathematical model and the simulation systems were identified in the course of the simulation validation project, and some were corrected. It is noted that NASA's Vertical Motion Simulator used in the program is an excellent tool for tilt-rotor and rotorcraft design, development, and pilot training.

  15. Developments in real-time 2D ultrasound inspection for aging aircraft

    NASA Astrophysics Data System (ADS)

    Lasser, Marvin E.; Lasser, Bob; Kula, John; Rohrer, Gene; Harrison, George H.

    1999-01-01

    Nondestructive testing of aircraft components through ultrasonic testing is well established as one of the industry's benchmark techniques. Its capability to penetrate both thin and thick material provides arguably the best information to inspectors on subsurface faults. However, there are tow basic drawbacks to it use: its difficulty to employ and its slow speed. Real-time C-scan solves both of these issues while maintain high quality subsurface information. Cracking, corrosion, voids, delaminations and impact damage can be observed in 1/30 second. The basis for this technology is a novel 2D imaging array that creates immediate, high-resolution images of subsurface faults. The latest developments of the technique include commercial introduction of a through-transmission scanning product which can inspect large structures, as well as significant progress in the development of a hand held device which produces instantaneous high quality imagery of defects in reflection over an area as the user simply holds a probe up to the target. This work is funded in part by the Navy SBIR 'Fasttrack' program.

  16. NASA/USRA high altitude research aircraft. Gryphon: Soar like an eagle with the roar of a lion

    NASA Technical Reports Server (NTRS)

    Rivera, Jose; Nunes, Anne; Mcray, Mike; Wong, Walter; Ong, Audrey; Coble, Scott

    1991-01-01

    At the equator, the ozone layer ranges from 65,000 to 130,000+ feet. This is beyond the capabilities of the ER-2, which is NASA's current high altitude reconnaissance aircraft. The Universities Space Research Association, in cooperation with NASA, is sponsoring an undergraduate program which is geared to designing an aircraft that can study the ozoned layer at the equator. This aircraft must be able to satisfy four mission profiles. Mission one is a polar mission which ranges from Chile to the South Pole and back to Chile, a total range of 6000 n. mi. at 100,000 feet with a 2500 lb. payload. The second mission is also a polar mission with a decreased altitude of 70,000 feet and an increased payload of 4000 lb. For the third mission, the aircraft will take-off at NASA Ames, cruise at 100,000 feet carrying a 2500 lb. payload, and land in Puerto Montt, Chile. The final mission requires the aircraft to take-off at NASA Ames, cruise at 100,000 feet with a 1000 lb. payload, make an excursion to 120,000 feet, and land at Howard AFB, Panama. All three missions require that a subsonic Mach number be maintained due to constraints imposed by the air sampling equipment. The aircraft need not be manned for all four missions. Three aircraft configurations were determined to be the most suitable for meeting the above requirements. The performance of each configuration is analyzed to investigate the feasibility of the project requirements. In the event that a requirement can not be obtained within the given constraints, recommendations for proposal modifications are given.

  17. A Correlation Between Flight-Determined Derivatives and Wind-Tunnel Data for the X-24B Research Aircraft

    NASA Technical Reports Server (NTRS)

    Sim, Alex G.

    1997-01-01

    Longitudinal and lateral-directional estimates of the aerodynamic derivatives of the X-24B research aircraft were obtained from flight data by using a modified maximum likelihood estimation method. Data were obtained over a Mach number range from 0.35 to 1.72 and over an angle of attack range from 3.5 deg. to 15.7 deg. Data are presented for a subsonic and transonic configuration. The flight derivatives were generally consistent and documented the aircraft well. The correlation between the flight data and wind-tunnel predictions is presented and discussed.

  18. A Correlation Between Flight-Determined Derivatives and Wind-Tunnel Data for the X-24B Research Aircraft

    NASA Technical Reports Server (NTRS)

    Sim, Alex G.

    1976-01-01

    Longitudinal and lateral-directional estimates of the aerodynamic derivatives of the X-24B research aircraft were obtained from flight data by using a modified maximum likelihooa estimation method. Data were obtained over a Mach number range from 0.35 to 1.72 and over an angle of attack range from 3.5deg to 15.7deg. Data are presented for a subsonic and a transonic configuration. The flight derivatives were generally consistent and documented the aircraft well. The correlation between the flight data and wind-tunnel predictions is presented and discussed.

  19. Aging in france: population trends, policy issues, and research institutions.

    PubMed

    Béland, Daniel; Viriot Durandal, Jean-Philippe

    2013-04-01

    Like in other advanced industrial countries, in France, demographic aging has become a widely debated research and policy topic. This article offers a brief overview of major aging-related trends in France. The article describes France's demographics of aging, explores key policy matters, maps the institutional field of French social gerontology research, and, finally, points to several emerging issues about aging. In France, these issues include active and healthy aging, the improvement of knowledge on specific vulnerable segments of the elderly population, and the adaptation of the urban landscape and infrastructure to an aging population. At the broadest level, one of the key points formulated in this article is that in France, aging research is dominated by the state, yet it is scattered and compartmentalized, posing a crucial challenge in an era dominated by European and other international networks and coordination efforts in aging policy and knowledge.

  20. Strain Gage Loads Calibration Testing with Airbag Support for the Gulfstream III SubsoniC Research Aircraft Testbed (SCRAT)

    NASA Technical Reports Server (NTRS)

    Lokos, William A.; Miller, Eric J.; Hudson, Larry D.; Holguin, Andrew C.; Neufeld, David C.; Haraguchi, Ronnie

    2015-01-01

    This paper describes the design and conduct of the strain-gage load calibration ground test of the SubsoniC Research Aircraft Testbed, Gulfstream III aircraft, and the subsequent data analysis and results. The goal of this effort was to create and validate multi-gage load equations for shear force, bending moment, and torque for two wing measurement stations. For some of the testing the aircraft was supported by three airbags in order to isolate the wing structure from extraneous load inputs through the main landing gear. Thirty-two strain gage bridges were installed on the left wing. Hydraulic loads were applied to the wing lower surface through a total of 16 load zones. Some dead-weight load cases were applied to the upper wing surface using shot bags. Maximum applied loads reached 54,000 lb. Twenty-six load cases were applied with the aircraft resting on its landing gear, and 16 load cases were performed with the aircraft supported by the nose gear and three airbags around the center of gravity. Maximum wing tip deflection reached 17 inches. An assortment of 2, 3, 4, and 5 strain-gage load equations were derived and evaluated against independent check cases. The better load equations had root mean square errors less than 1 percent. Test techniques and lessons learned are discussed.

  1. Identification of linearized equations of motion for the fixed wing configuration of the rotor systems research aircraft

    NASA Technical Reports Server (NTRS)

    Balough, D. L.; Sandlin, D. R.

    1986-01-01

    The purpose of this report is to establish linear, decoupled models of rigid body motion for the fixed wing configuration of the Rotor Systems Research Aircraft (RSRA). Longitudinal and lateral control surface fixed linear models were created from aircraft time histories using current system identification techniques. Models were obtained from computer simulation at 160 KCAS and 200 KCAS, and from flight data at 160 KCAS. Comparisons were performed to examine modeling accuracy, variation of dynamics with airspeed and correlation of simulation and flight data results. The results showed that the longitudinal and lateral linear models accurately predicted RSRA dynamics. The flight data results showed that no significant handling qualities problems were present in the RSRA fixed wing aircraft at the flight speed tested.

  2. Science requirements and feasibility/design studies of a very-high-altitude aircraft for atmospheric research

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Lux, David P.; Reed, R. Dale; Loewenstein, Max; Wegener, Steven

    1991-01-01

    The advantages and shortcomings of currently available aircraft for use in very high altitude missions to study such problems as polar ozone or stratosphere-troposphere exchange pose the question of whether to develop advanced aircraft for atmospheric research. To answer this question, NASA conducted a workshop to determine science needs and feasibility/design studies to assess whether and how those needs could be met. It was determined that there was a need for an aircraft that could cruise at an altitude of 30 km with a range of 6,000 miles with vertical profiling down to 10 km and back at remote points and carry a payload of 3,000 lbs.

  3. Strain Gage Loads Calibration Testing with Airbag Support for the Gulfstream III SubsoniC Research Aircraft Testbed (SCRAT)

    NASA Technical Reports Server (NTRS)

    Lokos, William; Miller, Eric; Hudson, Larry; Holguin, Andrew; Neufeld, David; Haraguchi, Ronnie

    2015-01-01

    This paper describes the design and conduct of the strain gage load calibration ground test of the SubsoniC Research Aircraft Testbed, Gulfstream III aircraft, and the subsequent data analysis and its results. The goal of this effort was to create and validate multi-gage load equations for shear force, bending moment, and torque for two wing measurement stations. For some of the testing the aircraft was supported by three air bags in order to isolate the wing structure from extraneous load inputs through the main landing gear. Thirty-two strain gage bridges were installed on the left wing. Hydraulic loads were applied to the wing lower surface through a total of 16 load zones. Some dead weight load cases were applied to the upper wing surface using shot bags. Maximum applied loads reached 54,000 pounds.

  4. Development of an Unmanned Aircraft System and Cyberinfrastructure for Environmental Science Research

    NASA Astrophysics Data System (ADS)

    Brady, J. J.; Tweedie, C. E.; Escapita, I. J.

    2009-12-01

    There is a fundamental need to improve capacities for monitoring environmental change using remote sensing technologies. Recently, researchers have begun using Unmanned Aerial Vehicles (UAVs) to expand and improve upon remote sensing capabilities. Limitations to most non-military and relatively small-scale Unmanned Aircraft Systems (UASs) include a need to develop more reliable communications between ground and aircraft, tools to optimize flight control, real time data processing, and visually ascertaining the quantity of data collected while in air. Here we present a prototype software system that has enhanced communication between ground and the vehicle, can synthesize near real time data acquired from sensors on board, can log operation data during flights, and can visually demonstrate the amount and quality of data for a sampling area. This software has the capacity to greatly improve the utilization of UAS in the environmental sciences. The software system is being designed for use on a paraglider UAV that has a suite of sensors suitable for characterizing the footprints of eddy covariance towers situated in the Chihuahuan Desert and in the Arctic. Sensors on board relay operational flight data (airspeed, ground speed, latitude, longitude, pitch, yaw, roll, acceleration, and video) as well as a suite of customized sensors. Additional sensors can be added to an on board laptop or a CR1000 data logger thereby allowing data from these sensors to be visualized in the prototype software. This poster will describe the development, use and customization of our UAS and multimedia will be available during AGU to illustrate the system in use. UAV on workbench in the lab UAV in flight

  5. Research In Nonlinear Flight Control for Tiltrotor Aircraft Operating in the Terminal Area

    NASA Technical Reports Server (NTRS)

    Calise, A. J.; Rysdyk, R.

    1996-01-01

    The research during the first year of the effort focused on the implementation of the recently developed combination of neural net work adaptive control and feedback linearization. At the core of this research is the comprehensive simulation code Generic Tiltrotor Simulator (GTRS) of the XV-15 tilt rotor aircraft. For this research the GTRS code has been ported to a Fortran environment for use on PC. The emphasis of the research is on terminal area approach procedures, including conversion from aircraft to helicopter configuration. This report focuses on the longitudinal control which is the more challenging case for augmentation. Therefore, an attitude command attitude hold (ACAH) control augmentation is considered which is typically used for the pitch channel during approach procedures. To evaluate the performance of the neural network adaptive control architecture it was necessary to develop a set of low order pilot models capable of performing such tasks as, follow desired altitude profiles, follow desired speed profiles, operate on both sides of powercurve, convert, including flaps as well as mastangle changes, operate with different stability and control augmentation system (SCAS) modes. The pilot models are divided in two sets, one for the backside of the powercurve and one for the frontside. These two sets are linearly blended with speed. The mastangle is also scheduled with speed. Different aspects of the proposed architecture for the neural network (NNW) augmented model inversion were also demonstrated. The demonstration involved implementation of a NNW architecture using linearized models from GTRS, including rotor states, to represent the XV-15 at various operating points. The dynamics used for the model inversion were based on the XV-15 operating at 30 Kts, with residualized rotor dynamics, and not including cross coupling between translational and rotational states. The neural network demonstrated ACAH control under various circumstances. Future

  6. A History of Full-Scale Aircraft and Rotorcraft Crash Testing and Simulation at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.; Lyle, Karen H.

    2004-01-01

    This paper summarizes 2-1/2 decades of full-scale aircraft and rotorcraft crash testing performed at the Impact Dynamics Research Facility (IDRF) located at NASA Langley Research Center in Hampton, Virginia. The IDRF is a 240-ft.-high steel gantry that was built originally as a lunar landing simulator facility in the early 1960's. It was converted into a full-scale crash test facility for light aircraft and rotorcraft in the early 1970 s. Since the first full-scale crash test was preformed in February 1974, the IDRF has been used to conduct: 41 full-scale crash tests of General Aviation (GA) aircraft including landmark studies to establish baseline crash performance data for metallic and composite GA aircraft; 11 full-scale crash tests of helicopters including crash qualification tests of the Bell and Sikorsky Advanced Composite Airframe Program (ACAP) prototypes; 48 Wire Strike Protection System (WSPS) qualification tests of Army helicopters; 3 vertical drop tests of Boeing 707 transport aircraft fuselage sections; and, 60+ crash tests of the F-111 crew escape module. For some of these tests, nonlinear transient dynamic codes were utilized to simulate the impact response of the airframe. These simulations were performed to evaluate the capabilities of the analytical tools, as well as to validate the models through test-analysis correlation. In September 2003, NASA Langley closed the IDRF facility and plans are underway to demolish it in 2007. Consequently, it is important to document the contributions made to improve the crashworthiness of light aircraft and rotorcraft achieved through full-scale crash testing and simulation at the IDRF.

  7. Gender Relations and Applied Research on Aging

    ERIC Educational Resources Information Center

    Calasanti, Toni

    2010-01-01

    As a concept in gerontology, gender appears as lists of traits learned through socialization when theorized at all. I argue for a framework that theorizes the intersections of relations of gender inequality with those of age. This framework holds that men and women gain resources and bear responsibilities, in relation to one another, by virtue of…

  8. The solar-powered Helios Prototype flying wing frames two modified F-15 research aircraft in a hanga

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The solar-powered Helios Prototype flying wing frames two modified F-15 research aircraft in a hangar at NASA's Dryden flight Research Center, Edwards, California. The elongated 247-foot span lightweight aircraft, resting on its ground maneuvering dolly, stretched almost the full length of the 300-foot long hangar while on display during a visit of NASA Administrator Sean O'Keefe and other NASA officials on Jan. 31, 2002. The unique solar-electric flying wing reached an altitude of 96,863 feet during an almost 17-hour flight near Hawaii on Aug. 13, 2001, a world record for sustained horizontal flight by a non-rocket powered aircraft. Developed by AeroVironment, Inc., under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the Helios Prototype is the forerunner of a planned fleet of slow-flying, long duration, high-altitude uninhabited aerial vehicles (UAV) which can serve as 'atmospheric satellites,' performing Earth science missions or functioning as telecommunications relay platforms in the stratosphere.

  9. Production Support Flight Control Computers: Research Capability for F/A-18 Aircraft at Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Carter, John F.

    1997-01-01

    NASA Dryden Flight Research Center (DFRC) is working with the United States Navy to complete ground testing and initiate flight testing of a modified set of F/A-18 flight control computers. The Production Support Flight Control Computers (PSFCC) can give any fleet F/A-18 airplane an in-flight, pilot-selectable research control law capability. NASA DFRC can efficiently flight test the PSFCC for the following four reasons: (1) Six F/A-18 chase aircraft are available which could be used with the PSFCC; (2) An F/A-18 processor-in-the-loop simulation exists for validation testing; (3) The expertise has been developed in programming the research processor in the PSFCC; and (4) A well-defined process has been established for clearing flight control research projects for flight. This report presents a functional description of the PSFCC. Descriptions of the NASA DFRC facilities, PSFCC verification and validation process, and planned PSFCC projects are also provided.

  10. Aging in France: Population Trends, Policy Issues, and Research Institutions

    ERIC Educational Resources Information Center

    Beland, Daniel; Durandal, Jean-Philippe Viriot

    2013-01-01

    Like in other advanced industrial countries, in France, demographic aging has become a widely debated research and policy topic. This article offers a brief overview of major aging-related trends in France. The article describes France's demographics of aging, explores key policy matters, maps the institutional field of French social gerontology…

  11. Intensive Measurement Designs for Research on Aging.

    PubMed

    Rast, Philippe; Macdonald, Stuart W S; Hofer, Scott M

    2012-01-01

    Intensive measurement burst designs permit analysis of behavioral and biological processes as they unfold over short and long periods of time and providing the opportunity to identify change from an individual's normative level of functioning. The measurement burst design permits statistical decomposition of short-term variation and learning effects that overlay normative aging and provide stronger bases for detecting accelerated change due to pathological processes. We provide an overview of design features and analysis of measurement burst data in Project MIND. The objective of intensive measurement designs is to obtain greater resolution of processes of interest that permit reliable and sensitive assessments of functioning and change in functioning and of key determinants underlying short-term variation and long-term aging and health-related change.

  12. Development of Ultrasonic and Fabry-Perot Interferometer for Non-Destruction Inspection of Aging Aircraft

    NASA Technical Reports Server (NTRS)

    Smith, Alphonso C.

    1998-01-01

    Fabry-Perot Interferometer (FPI) sensor detection system was continued and refined modifications were made in the data acquisition and evaluation process during the last year. The ultrasonic and FPI detection system was improved from one to multiple sensor detectors. Physical models were developed to understand the physical phenomenon of this work. Multilayered flawed samples were fabricated for inspection by a prototype ultrasonic and FPI detection. Experimental data was verified with simulated results. Undergraduate students that were associated with this research gained valuable knowledge from this experience. This was a learning process helping students to understand the importance of research and its application to solve important technological problems. As a result of our students exposure to this research two and planning to continue this type of research work in graduate school. A prototype instrument package was laboratory tested an actual airframe structure for documentation purposes.

  13. Flux measurements by the NRC Twin Otter atmospheric research aircraft: 1987-2011

    NASA Astrophysics Data System (ADS)

    Desjardins, Raymond L.; Worth, Devon E.; MacPherson, J. Ian; Bastian, Matthew; Srinivasan, Ramesh

    2016-03-01

    Over the past 30 years, the Canadian Twin Otter research group has operated an aircraft platform for the study of atmospheric greenhouse gas fluxes (carbon dioxide, ozone, nitrous oxide and methane) and energy exchange (latent and sensible heat) over a wide range of terrestrial ecosystems in North America. Some of the acquired data from these projects have now been archived at the Flight Research Laboratory and Agriculture and Agri-Food Canada. The dataset, which contains the measurements obtained in eight projects from 1987 to 2011 are now publicly available. All these projects were carried out in order to improve our understanding of the biophysical controls acting on land-surface atmosphere fluxes. Some of the projects also attempted to quantify the impacts of agroecosystems on the environment. To provide information on the data available, we briefly describe each project and some of the key findings by referring to previously published relevant work. As new flux analysis techniques are being developed, we are confident that much additional information can be extracted from this unique data set.

  14. Subsonic Ultra Green Aircraft Research: Phase II- Volume III-Truss Braced Wing Aeroelastic Test Report

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Allen, Timothy J.; Droney, Christopher

    2014-01-01

    This Test Report summarizes the Truss Braced Wing (TBW) Aeroelastic Test (Task 3.1) work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, which includes the time period of February 2012 through June 2014. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, Virginia Tech, and NextGen Aeronautics. The model was fabricated by NextGen Aeronautics and designed to meet dynamically scaled requirements from the sized full scale TBW FEM. The test of the dynamically scaled SUGAR TBW half model was broken up into open loop testing in December 2013 and closed loop testing from January 2014 to April 2014. Results showed the flutter mechanism to primarily be a coalescence of 2nd bending mode and 1st torsion mode around 10 Hz, as predicted by analysis. Results also showed significant change in flutter speed as angle of attack was varied. This nonlinear behavior can be explained by including preload and large displacement changes to the structural stiffness and mass matrices in the flutter analysis. Control laws derived from both test system ID and FEM19 state space models were successful in suppressing flutter. The control laws were robust and suppressed flutter for a variety of Mach, dynamic pressures, and angle of attacks investigated.

  15. The use of the National Research Council of Canada's Falcon 20 research aircraft as a terrestrial analogue space environment (TASE) for space surgery research: Challenges and suggested solutions

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, A. W.; Keaney, M. A.; Bentz, K.; Groleau, M.; Tyssen, M.; Keyte, J.; Ball, C. G.; Campbell, M. R.; Grenon, S. M.; McBeth, P.; Broderick, T. J.

    2010-03-01

    Emergency surgery will be needed to prevent death if humans are used to explore beyond low earth's orbit. Laparoscopic surgery (LS) is envisioned as a less invasive option for space, but will induce further stresses and complicate logistical requirements. Thus, further study into the technology and physiology of LS in weightlessness is required. We recently utilized the National Research Council of Canada's Flight Research Laboratory's Falcon 20 aircraft as a terrestrial analogue space environment (TASE) for space surgery research. The Falcon 20 had never been used for this purpose nor had the involved teams collaborated previously. There were many process challenges including the lack of antecedent surgical studies on this aircraft, a requirement for multiple disciplines who were unfamiliar and geographically distant from each other, flight performance limitations with the Falcon 20, complex animal care requirements, requirements for prototypical in-flight life-support surgical suites, financial limitations, and a need to use non-flight hardened technologies. Stepwise suggested solutions to these challenges are outlined as guidelines for future investigators intending similar research. Overall, the Falcon 20 TASE, backed by the flight resources, especially the design and fabrication capabilities of the NRC-FRL, provide investigators with a versatile and responsive opportunity to pursue research into advanced medical techniques that will be needed to save lives during space exploration.

  16. Current research in aging: a report from the 2015 Ageing Summit.

    PubMed

    Moyse, Emmanuel; Lahousse, Lies; Krantic, Slavica

    2015-01-01

    Ageing Summit, London, UK, 10-12 February 2015 The Ageing Summit 2015 held on 10-12 February 2015 in London (UK) provided an extensive update to our knowledge of the 'Biology of Ageing' and a forum to discuss the participants' latest research progress. The meeting was subdivided into four thematic sessions: cellular level research including the aging brain; slowing down progression, rejuvenation and self-repair; genetic and epigenetic regulation; and expression and pathology of age-related diseases. Each session included multiple key presentations, three to five short research communications and ongoing poster presentations. The meeting provided an exciting multidisciplinary overview of the aging process from cellular and molecular mechanisms to medico-social aspects of human aging.

  17. Resisting Age Bias in Digital Literacy Research

    ERIC Educational Resources Information Center

    Bowen, Lauren Marshall

    2011-01-01

    Through an eighty-one-year-old woman's literacy narrative, I argue that literacy researchers should pay greater attention to elder writers, readers, and learners. Particularly as notions of literacy shift in digital times, the perspective of a lifespan can reveal otherwise hidden complexities of literacy, including the motivational impact of…

  18. Integrating Multiple Autonomous Underwater Vessels, Surface Vessels and Aircraft into Oceanographic Research Vessel Operations

    NASA Astrophysics Data System (ADS)

    McGillivary, P. A.; Borges de Sousa, J.; Martins, R.; Rajan, K.

    2012-12-01

    Autonomous platforms are increasingly used as components of Integrated Ocean Observing Systems and oceanographic research cruises. Systems deployed can include gliders or propeller-driven autonomous underwater vessels (AUVs), autonomous surface vessels (ASVs), and unmanned aircraft systems (UAS). Prior field campaigns have demonstrated successful communication, sensor data fusion and visualization for studies using gliders and AUVs. However, additional requirements exist for incorporating ASVs and UASs into ship operations. For these systems to be optimally integrated into research vessel data management and operational planning systems involves addressing three key issues: real-time field data availability, platform coordination, and data archiving for later analysis. A fleet of AUVs, ASVs and UAS deployed from a research vessel is best operated as a system integrated with the ship, provided communications among them can be sustained. For this purpose, Disruptive Tolerant Networking (DTN) software protocols for operation in communication-challenged environments help ensure reliable high-bandwidth communications. Additionally, system components need to have considerable onboard autonomy, namely adaptive sampling capabilities using their own onboard sensor data stream analysis. We discuss Oceanographic Decision Support System (ODSS) software currently used for situational awareness and planning onshore, and in the near future event detection and response will be coordinated among multiple vehicles. Results from recent field studies from oceanographic research vessels using AUVs, ASVs and UAS, including the Rapid Environmental Picture (REP-12) cruise, are presented describing methods and results for use of multi-vehicle communication and deliberative control networks, adaptive sampling with single and multiple platforms, issues relating to data management and archiving, and finally challenges that remain in addressing these technological issues. Significantly, the

  19. The X-43A hypersonic research aircraft and its modified Pegasus booster rocket nestled under the wi

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The X-43A hypersonic research aircraft and its modified Pegasus booster rocket are nestled under the wing of NASA's NB-52B carrier aircraft during pre-flight systems testing at the Dryden Flight Research Center, Edwards, Calif. The combined systems test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ('scramjet') engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster was built by Orbital Sciences Corp., Dulles, Va. After being air-launched from NASA's venerable NB-52 mothership, the booster will accelerate the X-43A to test speed and altitude. The X-43A will then separate from the rocket and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.

  20. Neuroscience research on aging and implications for counseling psychology.

    PubMed

    Wright, Stephen L; Díaz, Fernando

    2014-10-01

    The advances in neuroscience have led to an increase in scientific understanding of the aging process, and counseling psychologists can benefit from familiarity with the research on the neuroscience of aging. In this article, we have focused on the cognitive neuroscience of aging, and we describe the progression of healthy aging to Alzheimer's disease, given its high prevalence rate among older adults (Alzheimer's Association, 2013). Common techniques used to study the cognitive neuroscience of aging are explained in regards to measuring age-related changes in the brain and the role of biomarkers in identifying cognitive decline related to Alzheimer's disease. Using this information and in collaboration with cognitive neuroscientists, it is our hope that counseling psychologists may further pursue research areas on aging as well as design appropriate interventions for older individuals who may be experiencing cognitive impairment.

  1. Using Hyperspectral Aircraft Remote Sensing to Support Ecosystems Services Research in New England Lakes and Ponds

    NASA Astrophysics Data System (ADS)

    Keith, D. J.; Milstead, B.; Walker, H.; Worthy, D.; Szykman, J.; Wusk, M.; Kagey, L.; Howell, C.; Snook, H.; Drueke, C.

    2010-12-01

    Northeastern lakes and ponds provide important ecosystem services to New England residents and visitors. These include the provisioning of abundant, clean water for consumption, agriculture, and industry as well as cultural services (recreation, aesthetics, and wilderness experiences) which enhance local economies and quality of life. Less understood, but equally important, are the roles that these lakes play in protecting all life through supportive services such as nutrient cycling. Nitrogen and phosphorus have a direct impact on the condition of fresh water lakes. Excesses of these nutrients can lead to eutrophication, toxic cyanobacteria blooms, decreased biodiversity, and loss of ecosystem function leading to a reduction in the availability and delivery of ecosystem services. In this study, we examined how variations in lake nutrient concentrations and phytoplankton pigment concentrations correlated with changes in the potential to provide cultural ecosystem services. Using a NASA Cessna 206 aircraft, hyperspectral data were collected during late summer 2009 from 55 lakes in New Hampshire, Massachusetts, Connecticut, and Rhode Island over a 2 day period. From the spectral data, algorithms were created which estimated concentrations of chlorophyll a, phycocyanin, and colored dissolved organic matter. The remotely sensed estimates were supplemented by in situ chlorophyll a, total nitrogen, total phosphorus and lake color data from 43 lakes sampled by field crews from the New England states. The purpose of this research is to understand how variations in lake nutrient concentrations and phytoplankton pigment concentrations correlate with changes in availability of cultural ecosystem services in the surveyed lakes. This dataset will be combined with information from the EPA National Lake Survey (2007), the EPA New England Lakes and Ponds Survey (2008) and the USGS SPARROW model to explore the association between lake condition and the provisioning of ecosystem

  2. Chloroplast research in the genomic age.

    PubMed

    Leister, Dario

    2003-01-01

    Chloroplast research takes significant advantage of genomics and genome sequencing, and a new picture is emerging of how the chloroplast functions and communicates with other cellular compartments. In terms of evolution, it is now known that only a fraction of the many proteins of cyanobacterial origin were rerouted to higher plant plastids. Reverse genetics and novel mutant screens are providing a growing catalogue of chloroplast protein-function relationships, and the characterization of plastid-to-nucleus signalling mutants reveals cell-organelle interactions. Recent advances in transcriptomics and proteomics of the chloroplast make this organelle one of the best understood of all plant cell compartments.

  3. Performance of WVSS-II hygrometers on the FAAM research aircraft

    NASA Astrophysics Data System (ADS)

    Vance, A. K.; Abel, S. J.; Cotton, R. J.; Woolley, A. M.

    2015-03-01

    We compare the performance of five hygrometers fitted to the Facility for Airborne Atmospheric Measurement's (FAAM) BAe 146-301 research aircraft using data from approximately 100 flights executed over the course of 2 years under a wide range of conditions. Bulk comparison of cloud free data show good agreement between chilled mirror hygrometers and a WVSS-II fed from a modified Rosemount inlet, but that a WVSS-II fed from the standard flush inlet appears to over-read compared to the other instruments, except at higher humidities. Statistical assessment of hygrometer performance in cloudy conditions is problematic due to the variable nature of clouds, so a number of case studies are used instead to investigate the performance of the hygrometers in sub-optimal conditions. It is found that the flush inlet is not susceptible to either liquid or solid water but that the Rosemount inlet has a significant susceptibility to liquid water and may also be susceptible to ice. In all conditions the WVSS-II responds much more rapidly than the chilled mirror devices, with the flush inlet-fed WVSS-II being more rapid than that connected to the Rosemount.

  4. Estimation of dynamic rotor loads for the rotor systems research aircraft: Methodology development and validation

    NASA Technical Reports Server (NTRS)

    Duval, R. W.; Bahrami, M.

    1985-01-01

    The Rotor Systems Research Aircraft uses load cells to isolate the rotor/transmission systm from the fuselage. A mathematical model relating applied rotor loads and inertial loads of the rotor/transmission system to the load cell response is required to allow the load cells to be used to estimate rotor loads from flight data. Such a model is derived analytically by applying a force and moment balance to the isolated rotor/transmission system. The model is tested by comparing its estimated values of applied rotor loads with measured values obtained from a ground based shake test. Discrepancies in the comparison are used to isolate sources of unmodeled external loads. Once the structure of the mathematical model has been validated by comparison with experimental data, the parameters must be identified. Since the parameters may vary with flight condition it is desirable to identify the parameters directly from the flight data. A Maximum Likelihood identification algorithm is derived for this purpose and tested using a computer simulation of load cell data. The identification is found to converge within 10 samples. The rapid convergence facilitates tracking of time varying parameters of the load cell model in flight.

  5. Aerodynamic characteristics of a 1/6-scale powered model of the rotor systems research aircraft

    NASA Technical Reports Server (NTRS)

    Mineck, R. E.; Freeman, C. E.

    1977-01-01

    A wind-tunnel investigation was conducted to determine the effects of the main-rotor wake on the aerodynamic characteristics of the rotor systems research aircraft (RSRA). For the investigation, a 1/6-scale model with a four-blade articulated main rotor was used. Tests were conducted with and without the main rotor. Both the helicopter and the compound helicopter were tested. The latter configuration included the auxiliary thrust engines and the variable-incidence wing. Data were obtained over ranges of angle of attack, angle of sideslip, and main-rotor collective pitch angle at several main-rotor advance ratios. Results are presented for the total loads on the airframe as well as the loads on the rotor, the wing, and the tail. The results indicated that without the effect of the rotor wake, the RSRA had static longitudinal and directional stability and positive effective dihedral. With the effect of the main rotor and its wake, the RSRA exhibited longitudinal instability but retained static directional stability and positive effective dihedral.

  6. Preliminary design of propulsion system for V/STOL research and technology aircraft

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The V/STOL Research and Technology Aircraft (RTA)propulsion system design effort is limited to components of the lift/cruise engines, turboshaft engine modifications, lift fan assembly, and propulsion system performance generation. The uninstalled total net thrust with all engines and fans operating at intermediate power was 37,114 pounds. Uninstalled system total net thrust was 27,102 pounds when one lift/cruise is inoperative. Components have lives above the 500 hours of the RTA duty cycle. The L/C engine used in a fixed nacelle has the cross shaft forward of the reduction gear whereas the cross shaft is aft of the reduction gear in a tilt nacelle L/C engine. The lift/cruise gearbox contains components and technologies from other DDA engines. The rotor has a 62-inch diameter and contains 22 composite blades that have a hub/tip ratio of 0.454. The blade pitch change mechanism contains hydraulic and mechanical redundancy. The lift fan assembly is completely self-contained including oil cooling in 10 exit vanes.

  7. Calibration of 3-D wind measurements on a single engine research aircraft

    NASA Astrophysics Data System (ADS)

    Mallaun, C.; Giez, A.; Baumann, R.

    2015-02-01

    An innovative calibration method for the wind speed measurement using a boom mounted Rosemount model 858 AJ air velocity probe is introduced. The method is demonstrated for a sensor system installed on a medium size research aircraft which is used for measurements in the atmospheric boundary layer. The method encounters a series of coordinated flight manoeuvres to directly estimate the aerodynamic influences on the probe and to calculate the measurement uncertainties. The introduction of a differential Global Positioning System (DGPS) combined with a high accuracy Inertial Reference System (IRS) has brought major advances to airborne measurement techniques. The exact determination of geometrical height allows the use of the pressure signal as an independent parameter. Furthermore, the exact height information and the stepwise calibration process lead to maximum accuracy. The results show a measurement uncertainty for the aerodynamic influence of the dynamic and static pressures of 0.1 hPa. The applied parametrisation does not require any height dependencies or time shifts. After extensive flight tests a correction for the flow angles (attack and sideslip angles) was found, which is necessary for a successful wind calculation. A new method is demonstrated to correct for the aerodynamic influence on the sideslip angle. For the 3-D wind vector (with 100 Hz resolution) a novel error propagation scheme is tested, which determines the measurement uncertainties to be 0.3 m s-1 for the horizontal and 0.2 m s-1 for the vertical wind components.

  8. Calibration of 3-D wind measurements on a single-engine research aircraft

    NASA Astrophysics Data System (ADS)

    Mallaun, C.; Giez, A.; Baumann, R.

    2015-08-01

    An innovative calibration method for the wind speed measurement using a boom-mounted Rosemount model 858 AJ air velocity probe is introduced. The method is demonstrated for a sensor system installed on a medium-size research aircraft which is used for measurements in the atmospheric boundary layer. The method encounters a series of coordinated flight manoeuvres to directly estimate the aerodynamic influences on the probe and to calculate the measurement uncertainties. The introduction of a differential Global Positioning System (DGPS) combined with a high-accuracy inertial reference system (IRS) has brought major advances to airborne measurement techniques. The exact determination of geometrical height allows the use of the pressure signal as an independent parameter. Furthermore, the exact height information and the stepwise calibration process lead to maximum accuracy. The results show a measurement uncertainty for the aerodynamic influence of the dynamic and static pressures of 0.1 hPa. The applied parametrisation does not require any height dependencies or time shifts. After extensive flight tests a correction for the flow angles (attack and sideslip angles) was found, which is necessary for a successful wind calculation. A new method is demonstrated to correct for the aerodynamic influence on the sideslip angle. For the three-dimensional (3-D) wind vector (with 100 Hz resolution) a novel error propagation scheme is tested, which determines the measurement uncertainties to be 0.3 m s-1 for the horizontal and 0.2 m s-1 for the vertical wind components.

  9. A review of ONERA aerodynamic research in support of a future supersonic transport aircraft

    NASA Astrophysics Data System (ADS)

    Thibert, J. J.; Arnal, D.

    2000-11-01

    The ONERA activities concerning the aerodynamics of the future supersonic transport aircraft are reviewed. Section 1 is devoted to the performance prediction and detailed comparisons between CFD and wind-tunnel data are presented and discussed. Section 2 addresses the problem of the drag prediction in cruise flight conditions from wind-tunnel data. Skin friction coefficients values measured in flight are compared to the results of boundary layer computations. Section 3 is devoted to wing designs with numerical optimisation techniques. Several examples are presented and discussed. Results concerning riblets and laminar flow control are given in Section 4 part which also will present experiments carried out for attachment line contamination investigation. Results from basic research on supersonic laminar flows are also be presented. Section 5 deals with activities on air intake aerodynamics. After a brief recall of supersonic air intakes operational modes and a description of the Concorde air intake, comparisons between CFD and wind tunnel data on a generic 2D intake are presented. Basic experiments on intake internal flow are described and the problem of the internal shock control is addressed.

  10. Hypersonic aerodynamic characteristics of an all-body research aircraft configuration

    NASA Technical Reports Server (NTRS)

    Clark, L. E.

    1973-01-01

    An experimental investigation was conducted at Mach 6 to determine the hypersonic aerodynamic characteristics of an all-body, delta-planform, hypersonic research aircraft (HYFAC configuration). The aerodynamic characteristics were obtained at Reynolds numbers based on model length of 2.84 million and 10.5 million and over an angle-of-attack range from minus 4 deg to 20 deg. The experimental results show that the HYFAC configuration is longitudinally stable and can be trimmed over the range of test conditions. The configuration had a small degree of directional stability over the angle-of-attack range and positive effective dihedral at angles of attack greater than 2 deg. Addition of canards caused a decrease in longitudinal stability and an increase in directional stability. Oil-flow studies revealed extensive areas of separated and vortex flow on the fuselage lee surface. A limited comparison of wind-tunnel data with several hypersonic approximations indicated that, except for the directional stability, the tangent-cone method gave adequate agreement at control settings between 5 deg and minus 5 deg and positive lift coefficient. A limited comparison indicated that the HYFAC configuration had greater longitudinal stability than an elliptical-cross-section configuration, but a lower maximum lift-drag ratio.

  11. X-38 research aircraft - second drop flight from NB-52B mothership

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the mid-1990's researchers at the NASA Dryden Flight Research Center, Edwards, California, and Johnson Space Center in Houston, Texas, began working actively with the sub-scale X-38 prototype crew return vehicle (CRV). This was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force X-23 (SV-5) program in the mid-1960's and the Air Force-NASA X-24A lifting-body project in the early to mid-1970's. Built by Scaled Composites, Inc., in Mojave, California, and outfitted with avionics, computer systems, and other hardware at Johnson Space Center, two X-38 aircraft were involved in flight research at Dryden beginning in July of 1997. Before that, however, Dryden conducted some 13 flights at a drop zone near California City, California. These tests were done with a 1/6-scale model of the X-38 aircraft to test the parafoil concept that would be employed on the X-38 and the actual CRV. The basic concept is that the actual CRV will use an inertial navigation system together with the Global Positioning System of satellites to guide it from the International Space Station into the Earth's atmosphere. A deorbit engine module will redirect the vehicle from orbit into the atmosphere where a series of parachutes and a parafoil will deploy in sequence to bring the vehicle to a landing, possibly in a field next to a hospital. Flight research at NASA Dryden for the X-38 began with an unpiloted captive carry flight in which the vehicle remained attached to its future launch vehicle, the Dryden B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999, including one on February 6, 1999. Although the X-38 landed safely on the lakebed at Edwards after the March

  12. X-38 research aircraft mounted in Shuttle docked at Space Station - computer animation

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In the mid-1990's researchers at the NASA Dryden Flight Research Center, Edwards, California, and Johnson Space Center in Houston, Texas, began working actively with the sub-scale X-38 prototype crew return vehicle (CRV). This was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force X-23 (SV-5) program in the mid-1960's and the Air Force-NASA X-24A lifting-body project in the early to mid-1970's. Built by Scaled Composites, Inc., in Mojave, California, and outfitted with avionics, computer systems, and other hardware at Johnson Space Center, two X-38 aircraft were involved in flight research at Dryden beginning in July of 1997. Before that, however, Dryden conducted some 13 flights at a drop zone near California City, California. These tests were done with a 1/6-scale model of the X-38 aircraft to test the parafoil concept that would be employed on the X-38 and the actual CRV. The basic concept is that the actual CRV will use an inertial navigation system together with the Global Positioning System of satellites to guide it from the International Space Station into the Earth's atmosphere. A deorbit engine module will redirect the vehicle from orbit into the atmosphere where a series of parachutes and a parafoil will deploy in sequence to bring the vehicle to a landing, possibly in a field next to a hospital. Flight research at NASA Dryden for the X-38 began with an unpiloted captive carry flight in which the vehicle remained attached to its future launch vehicle, the Dryden B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. Although the X-38 landed safely on the lakebed at Edwards after the March 1998 drop test, there had been some

  13. X-38 research aircraft removal from Shuttle cargo bay - computer animation

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In the mid-1990's researchers at the NASA Dryden Flight Research Center, Edwards, California, and Johnson Space Center in Houston, Texas, began working actively with the sub-scale X-38 prototype crew return vehicle (CRV). This was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force X-23 (SV-5) program in the mid-1960's and the Air Force-NASA X-24A lifting-body project in the early to mid-1970's. Built by Scaled Composites, Inc., in Mojave, California, and outfitted with avionics, computer systems, and other hardware at Johnson Space Center, two X-38 aircraft were involved in flight research at Dryden beginning in July of 1997. Before that, however, Dryden conducted some 13 flights at a drop zone near California City, California. These tests were done with a 1/6-scale model of the X-38 aircraft to test the parafoil concept that would be employed on the X-38 and the actual CRV. The basic concept is that the actual CRV will use an inertial navigation system together with the Global Positioning System of satellites to guide it from the International Space Station into the earth's atmosphere. A deorbit engine module will redirect the vehicle from orbit into the atmosphere where a series of parachutes and a parafoil will deploy in sequence to bring the vehicle to a landing, possibly in a field next to a hospital. Flight research at NASA Dryden for the X-38 began with an unpiloted captive carry flight in which the vehicle remained attached to its future launch vehicle, the Dryden B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. Although the X-38 landed safely on the lakebed at Edwards after the March 1998 drop test, there had been some

  14. The X-43A hypersonic research aircraft and its modified Pegasus booster rocket mounted to NASA's NB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first of three X-43A hypersonic research aircraft and its modified Pegasus booster rocket recently underwent combined systems testing while mounted to NASA's NB-52B carrier aircraft at the Dryden Flight Research Center, Edwards, California. The combined systems test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. One of the major goals of the Hyper-X program is flight validation of airframe-integrated, air-breathing propulsion system, which so far have only been tested in ground facilities, such as wind tunnels. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ('scramjet') engine capable of operating at hypersonic speeds above Mach 5 (five times the speed of sound). The X-43A design uses the underbody of the aircraft to form critical elements of the engine. The forebody shape helps compress the intake airflow, while the aft section acts as a nozzle to direct thrust. The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster, built by Orbital Sciences Corp., Dulles, Va., will accelerate the X-43A after the X-43A/booster 'stack' is air-launched from NASA's venerable NB-52 mothership. The X-43A will separate from the rocket at a predetermined altitude and speed and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.

  15. Expanding the Educational Horizons of Undergraduates through Cognitive Aging Research

    ERIC Educational Resources Information Center

    Laver, Gary D.

    2006-01-01

    Involving undergraduate students in cognitive aging research requires extra efforts not associated with graduate assistants. However, if the researcher acknowledges the limited experience of undergraduates in structuring their participation, the rewards are copious for the students and researcher alike. This paper describes undergraduate student…

  16. Evolution of Aging Theories: Why Modern Programmed Aging Concepts Are Transforming Medical Research.

    PubMed

    Goldsmith, Theodore C

    2016-12-01

    Programmed aging refers to the idea that senescence in humans and other organisms is purposely caused by evolved biological mechanisms to obtain an evolutionary advantage. Until recently, programmed aging was considered theoretically impossible because of the mechanics of the evolution process, and medical research was based on the idea that aging was not programmed. Theorists struggled for more than a century in efforts to develop non-programmed theories that fit observations, without obtaining a consensus supporting any non-programmed theory. Empirical evidence of programmed lifespan limitations continued to accumulate. More recently, developments, especially in our understanding of biological inheritance, have exposed major issues and complexities regarding the process of evolution, some of which explicitly enable programmed aging of mammals. Consequently, science-based opposition to programmed aging has dramatically declined. This progression has major implications for medical research, because the theories suggest that very different biological mechanisms are ultimately responsible for highly age-related diseases that now represent most research efforts and health costs. Most particularly, programmed theories suggest that aging per se is a treatable condition and suggest a second path toward treating and preventing age-related diseases that can be exploited in addition to the traditional disease-specific approaches. The theories also make predictions regarding the nature of biological aging mechanisms and therefore suggest research directions. This article discusses developments of evolutionary mechanics, the consequent programmed aging theories, and logical inferences concerning biological aging mechanisms. It concludes that major medical research organizations cannot afford to ignore programmed aging concepts in assigning research resources and directions.

  17. Research and technology program perspectives for general aviation and commuter aircraft

    NASA Technical Reports Server (NTRS)

    Bauchspies, J. S.; Simpson, W. E.

    1982-01-01

    The uses, benefits, and technology needs of the U.S. general aviation industry were studied in light of growing competition from foreign general aviation manufacturers, especially in the commuter and business jet aircraft markets.

  18. Flight Research into Simple Adaptive Control on the NASA FAST Aircraft

    NASA Technical Reports Server (NTRS)

    Hanson, Curtis E.

    2011-01-01

    A series of simple adaptive controllers with varying levels of complexity were designed, implemented and flight tested on the NASA Full-Scale Advanced Systems Testbed (FAST) aircraft. Lessons learned from the development and flight testing are presented.

  19. Small transport aircraft technology

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1983-01-01

    Information on commuter airline trends and aircraft developments is provided to upgrade the preliminary findings of a NASA-formed small transport aircraft technology (STAT) team, established to determine whether the agency's research and development programs could help commuter aircraft manufacturers solve technical problems related to passenger acceptance and use of 19- to 50-passenger aircraft. The results and conclusions of the full set of completed STAT studies are presented. These studies were performed by five airplane manufacturers, five engine manufacturers, and two propeller manufacturers. Those portions of NASA's overall aeronautics research and development programs which are applicable to commuter aircraft design are summarized. Areas of technology that might beneficially be expanded or initiated to aid the US commuter aircraft manufacturers in the evolution of improved aircraft for the market are suggested.

  20. Perspectives on ageing, later life and ethnicity: ageing research in ethnic minority contexts.

    PubMed

    Zubair, Maria; Norris, Meriel

    2015-05-01

    This special issue focuses broadly upon questions and themes relating to the current conceptualisations, representations and use of 'ethnicity' (and ethnic minority experiences) within the field of social gerontology. An important aim of this special issue is to explore and address the issue of 'otherness' within the predominant existing frameworks for researching those who are ageing or considered aged, compounded by the particular constructions of their ethnicity and ethnic 'difference'. The range of theoretical, methodological and empirical papers included in this collection provide some critical insights into particular facets of the current research agendas, cultural understandings and empirical focus of ethnic minority ageing research. The main emphasis is on highlighting the ways in which ethnic cultural homogeneity and 'otherness' is often assumed in research involving older people from ethnic minority backgrounds, and how wider societal inequalities are concomitantly (re)produced, within (and through) research itself - for example, based on narrowly defined research agendas and questions; the assumed age and/or ethnic differences of researchers vis-à-vis their older research participants; the workings of the formalised ethical procedures and frameworks; and the conceptual and theoretical frameworks employed in the formulation of research questions and interpretation of data. We examine and challenge here the simplistic categorisations and distinctions often made in gerontological research based around research participants' ethnicity, age and ageing and assumed cultural differences. The papers presented in this collection reveal instead the actual complexity and fluidity of these concepts as well as the cultural dynamism and diversity of experiences within ethnic groups. Through an exploration of these issues, we address some of the gaps in existing knowledge and understandings as well as contribute to the newly emerging discussions surrounding the use of

  1. Users Guide for NASA Lewis Research Center DC-9 Reduced-Gravity Aircraft Program

    NASA Technical Reports Server (NTRS)

    Yaniec, John S.

    1995-01-01

    The document provides guidelines and information for users of the DC-9 Reduced-Gravity Aircraft Program. It describes the facilities, requirements for test personnel, equipment design and installation, mission preparation, and in-flight procedures. Those who have used the KC-135 reduced-gravity aircraft will recognize that many of the procedures and guidelines are the same, to ensure a commonality between the DC-9 and KC-135 programs.

  2. The Effects of Aging on Researchers' Publication and Citation Patterns

    PubMed Central

    Gingras, Yves; Larivière, Vincent; Macaluso, Benoît; Robitaille, Jean-Pierre

    2008-01-01

    The average age at which U.S. researchers receive their first grant from NIH has increased from 34.3 in 1970, to 41.7 in 2004. These data raise the crucial question of the effects of aging on the scientific productivity and impact of researchers. Drawing on a sizeable sample of 6,388 university professors in Quebec who have published at least one paper between 2000 and 2007, our results identify two turning points in the professors' careers. A first turning point is visible at age 40 years, where researchers start to rely on older literature and where their productivity increases at a slower pace—after having increased sharply since the beginning of their career. A second turning point can be seen around age 50, when researchers are the most productive whereas their average scientific impact is at its lowest. Our results also show that older professors publish fewer first-authored papers and move closer to the end of the list of co-authors. Although average scientific impact per paper decreases linearly until about age 50, the average number of papers in highly cited journals and among highly cited papers rises continuously until retirement. Our results show clearly that productivity and impact are not a simple and declining function of age and that we must take into account the collaborative aspects of scientific research. Science is a collective endeavor and, as our data shows, researchers of all ages play a significant role in its dynamic. PMID:19112502

  3. Study of the application of advanced technologies to long-range transport aircraft. Volume 2: Research and development requirements

    NASA Technical Reports Server (NTRS)

    Lange, R. H.; Sturgeon, R. F.; Adams, W. E.; Bradley, E. S.; Cahill, J. F.; Eudaily, R. R.; Hancock, J. P.; Moore, J. W.

    1972-01-01

    Investigations were conducted to evaluate the relative benefits attainable through the exploitation of advanced technologies and to identify future research and development efforts required to permit the application of selected technologies to transport aircraft entering commercial operation in 1985. Results show that technology advances, particularly in the areas of composite materials, supercritical aerodynamics, and active control systems, will permit the development of long-range, high-payload commercial transports operating at high-subsonic speeds with direct operating costs lower than those of current aircraft. These advanced transports also achieve lower noise levels and lower engine pollutant emissions than current transports. Research and development efforts, including analytical investigations, laboratory test programs, and flight test programs, are required in essentially all technology areas to achieve the potential technology benefits.

  4. Advanced turboprop aircraft noise annoyance - A review of recent NASA research

    NASA Technical Reports Server (NTRS)

    Mccurdy, D. A.; Leatherwood, J. D.; Shepherd, K. P.

    1986-01-01

    Passenger and community response to advanced turboprop aircraft noise are studied. Four experiments were conducted utilizing an aircraft noise synthesis system, an exterior effects room, an anechoic listening room, and a Space Station/aircraft acoustic apparatus; the experimental conditions and procedures for the psychoacoustic studies are described. The community noise studies involved evaluating the effects of various tonal characteristics on annoyance. It was observed that the frequency envelope shape did not effect annoyance; however, the interaction of the fundamental frequency with tone-to-broadband noise ratio did have a large effect on annoyance. The effects of low frequency tones, turbulent boundary layer noise, and tonal beats on passenger annoyance are investigated. The data reveal that passenger annoyance is greater for a given level of boundary layer noise when tones are at levels sufficient to increase the overall sound pressure level within the cabin. The annoyance response of an advanced turboprop and a conventional aircraft are compared. It is determined that the flyover noise level for the turboprop aircraft is not more annoying than that of a conventional aircraft.

  5. Aircraft landing gear systems

    NASA Technical Reports Server (NTRS)

    Tanner, John A. (Editor)

    1990-01-01

    Topics presented include the laboratory simulation of landing gear pitch-plane dynamics, a summary of recent aircraft/ground vehicle friction measurement tests, some recent aircraft tire thermal studies, and an evaluation of critical speeds in high-speed aircraft. Also presented are a review of NASA antiskid braking research, titanium matrix composite landing gear development, the current methods and perspective of aircraft flotation analysis, the flow rate and trajectory of water spray produced by an aircraft tire, and spin-up studies of the Space Shuttle Orbiter main gear tire.

  6. Community engagement and the resource centers for minority aging research.

    PubMed

    Sood, Johanna R; Stahl, Sidney M

    2011-06-01

    The National Institute on Aging created the Resource Centers for Minority Aging Research (RCMARs) to address infrastructure development intended to reduce health disparities among older adults. The overall goals of the RCMARs are to (a) increase the size of the cadre of researchers conducting research on issues related to minority aging; (b) increase the diversity of researchers conducting research on minority aging; (c) create and test reliable measures for use in older diverse populations; and (d) conduct research on recruitment and retention of community-dwelling older adults for research addressing behavioral, social, and medical issues. Along with this latter goal, the RCMARs developed and maintain academic-community partnerships. To accomplish the recruitment and retention goal, the RCMARs established Community Liaison Working Groups using a collaborative approach to scientific inquiry; this special issue will identify research priorities for moving the science of recruitment and retention forward. In addition, sustainable and efficient methods for fostering long-term partnerships will be identified between community and academia. Evidence-based approaches to the recruitment and retention of diverse elders are explored. We expect this supplement to serve as a catalyst for researchers interested in engaging diverse community-dwelling elders in health-related research. In addition, this supplement should serve as a source of the most contemporary evidence-based approaches to the recruitment and retention of diverse older populations for participation in social, behavioral, and clinical research.

  7. Application of Piloted Simulation to High-Angle-of-Attack Flight-Dynamics Research for Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    Ogburn, Marilyn E.; Foster, John V.; Hoffler, Keith D.

    2005-01-01

    This paper reviews the use of piloted simulation at Langley Research Center as part of the NASA High-Angle-of-Attack Technology Program (HATP), which was created to provide concepts and methods for the design of advanced fighter aircraft. A major research activity within this program is the development of the design processes required to take advantage of the benefits of advanced control concepts for high-angle-of-attack agility. Fundamental methodologies associated with the effective use of piloted simulation for this research are described, particularly those relating to the test techniques, validation of the test results, and design guideline/criteria development.

  8. School Age Populations Research Needs - NCS Dietary Assessment Literature Review

    Cancer.gov

    Drawing conclusions about the validity of available dietary assessment instruments in school age children is hampered by the differences in instruments, research design, reference methods, and populations in the validation literature.

  9. AGING WATER INFRASTRUCTURE RESEARCH PROGRAM: ADDRESSING THE CHALLENGE THROUGH INNOVATION

    EPA Science Inventory

    A driving force behind the Sustainable Water Infrastructure (SI) initiative and the Aging Water Infrastructure (AWI) research program is the Clean Water and Drinking Water Infrastructure Gap Analysis. In this report, EPA estimated that if operation, maintenance, and capital inves...

  10. [Research on the aged within the framework of social geography].

    PubMed

    Kempers-Warmerdam, A H

    1985-06-01

    Until now social gerontological research in the Netherlands has primarily been done by psychologists and sociologists. Geographic contributions are subordinate. Nevertheless there are innumerable geographical aspects which influence ageing and human behaviour of the elderly. Several studies on ageing have already been made, considering geographical topics as distribution, migration, housing, mobility and accessibility of provisions. The geographer can supply enhanced contributions in the future.

  11. Contributions of Nonhuman Primates to Research on Aging

    PubMed Central

    Didier, E. S.; MacLean, A. G.; Mohan, M.; Didier, P. J.; Lackner, A. A.; Kuroda, M. J.

    2016-01-01

    Aging is the biological process of declining physiologic function associated with increasing mortality rate during advancing age. Humans and higher nonhuman primates exhibit unusually longer average life spans as compared with mammals of similar body mass. Furthermore, the population of humans worldwide is growing older as a result of improvements in public health, social services, and health care systems. Comparative studies among a wide range of organisms that include nonhuman primates contribute greatly to our understanding about the basic mechanisms of aging. Based on their genetic and physiologic relatedness to humans, nonhuman primates are especially important for better understanding processes of aging unique to primates, as well as for testing intervention strategies to improve healthy aging and to treat diseases and disabilities in older people. Rhesus and cynomolgus macaques are the predominant monkeys used in studies on aging, but research with lower nonhuman primate species is increasing. One of the priority topics of research about aging in nonhuman primates involves neurologic changes associated with cognitive decline and neurodegenerative diseases. Additional areas of research include osteoporosis, reproductive decline, caloric restriction, and their mimetics, as well as immune senescence and chronic inflammation that affect vaccine efficacy and resistance to infections and cancer. The purpose of this review is to highlight the findings from nonhuman primate research that contribute to our understanding about aging and health span in humans. PMID:26869153

  12. Toward an Integrated Research Agenda for Critical Illness in Aging

    PubMed Central

    Milbrandt, Eric B.; Eldadah, Basil; Nayfield, Susan; Hadley, Evan; Angus, Derek C.

    2010-01-01

    Aging brings an increased predisposition to critical illness. Patients older than 65 years of age account for approximately half of all intensive care unit (ICU) admissions in the United States, a proportion that is expected to increase considerably with the aging of the population. Emerging research suggests that elderly survivors of intensive care suffer significant long-term sequelae, including accelerated age-related functional decline. Existing evidence-based interventions are frequently underused and their efficacy untested in older subjects. Improving ICU outcomes in the elderly will require not only better methods for translating sound science into improved ICU practice but also an enhanced understanding of the underlying molecular, physiological, and pathophysiological interactions of critical illness with the aging process itself. Yet, significant barriers to research for critical illness in aging exist. We review the state of knowledge and identify gaps in knowledge, research opportunities, and barriers to research, with the goal of promoting an integrated research agenda for critical illness in aging. PMID:20558632

  13. Research gaps in the demography of aging with disability.

    PubMed

    Freedman, Vicki A

    2014-01-01

    The evidence base regarding the demography of aging with disabilities in the US is growing yet substantial gaps remain. This paper summarizes seven major research gaps identified during a conference held in May 2012: how many adults are aging with disabilities; has survival improved for individuals aging with disabilities; can the notion of active life expectancy help inform understanding of aging with disability; what is the pattern of onset of secondary conditions for individuals aging with disabilities and how might such conditions be prevented and/or their debilitating effects ameliorated; what role has obesity had in shaping the population of individuals aging with disability; how do individuals aging with disability differ from those who develop disability later in life; and what are the long-term consequences of developing disability before late life for subsequent health, functioning, and socioeconomic outcomes. Bridging these gaps is crucial for enhancing understanding of this understudied population.

  14. A Remotely Piloted Aircraft (RPA) as a Measurement Tool for Wind-Energy Research

    NASA Astrophysics Data System (ADS)

    Wildmann, Norman; Bange, Jens

    2014-05-01

    In wind energy meteorology, RPA have the clear advantage compared to manned aircraft that they allow to fly very close to the ground and even in between individual wind turbines in a wind farm. Compared to meteorological towers and lidar systems, the advantage is the flexibility of the system, which makes it possible to measure at the desired site on short notice and not only in main wind direction. At the Center of Applied Geoscience at the University of Tübingen, the research RPA MASC (Multi-purpose Airborne Sensor Carrier) was developed. RPA of type MASC have a wingspan of about 3 m and a maximum take-off weight of 7.5 kg, including payload. The standard meteorological payload includes instruments for temperature, humidity, barometric pressure and wind measurement. It is possible to resolve turbulence fluctuations of wind and temperature up to 20 Hz. The autopilot ROCS (Research Onboard Computer System), which is developed at the Institute of Flight Mechanics and Control, University of Stuttgart, makes it possible to automatically follow predefined waypoints at constant altitude and airspeed. At a cruising speed of 24 m/s and a battery life of approx. one hour, a range of 80 km is feasible. The project 'Lidar Complex', funded by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, is part of the research network 'WindForS', based in Southern Germany. The goal of the project is to establish lidar technology for wind energy plant site evaluation in complex terrain. Additional goals are the comparison of different measurement techniques and the validation of wind-field models in not IEC 61400 conform terrain. It is planned to design a turbulent wind-field generator, fed by real measurement data, which can be used to analyse WEC behaviour. Two test sites were defined for the 'Lidar Complex' project, one in IEC-conform terrain about 15 km from the Baltic Sea, the other in the Swabian Alb, only 2 km downstream of a 100 m steep

  15. The Joint Strike Fighter (JSF) PHM and the Autonomic Logistic Concept: Potential Impact on Aging Aircraft Problems

    DTIC Science & Technology

    2003-02-01

    maintenance practices, lead to preventable incidents in which people are injured or killed . This situation also ensures additional and very high...Logistics, all component parts will be tracked by serial number across all aircraft tail numbers. This will assist in catching potential fleet-wide...Additionally, with the lead time notice to order more parts, ideally there would be no more cannibalization of aircraft. Many squadrons have what is known as a

  16. Gender, aging, and the economics of "active aging": Setting a new research agenda.

    PubMed

    Paz, Amira; Doron, Israel; Tur-Sinai, Aviad

    2017-04-03

    The world is aging, and the percentages of older people are on a dramatic ascent. This dramatic demographic aging of human society is not gender neutral; it is mostly about older women. One of the key policy approaches to address the aging revolution is known as "active aging," crystalized by the WHO in 2002 by three pillars: participation, health, and security. The active aging policy has financial and economic aspects and affects both men and women. However, as argued in this article, a gender-based approach has not been adopted within the existing active aging framework. Therefore, a new gender-specific research agenda is needed, one that focuses on an interrelation between gender and different economic aspects of "active aging" from international, comparative, cultural, and longitudinal perspectives.

  17. The development of small primate models for aging research.

    PubMed

    Fischer, Kathleen E; Austad, Steven N

    2011-01-01

    Nonhuman primate (NHP) aging research has traditionally relied mainly on the rhesus macaque. But the long lifespan, low reproductive rate, and relatively large body size of macaques and related Old World monkeys make them less than ideal models for aging research. Manifold advantages would attend the use of smaller, more rapidly developing, shorter-lived NHP species in aging studies, not the least of which are lower cost and the ability to do shorter research projects. Arbitrarily defining "small" primates as those weighing less than 500 g, we assess small, relatively short-lived species among the prosimians and callitrichids for suitability as models for human aging research. Using the criteria of availability, knowledge about (and ease of) maintenance, the possibility of genetic manipulation (a hallmark of 21st century biology), and similarities to humans in the physiology of age-related changes, we suggest three species--two prosimians (Microcebus murinus and Galago senegalensis) and one New World monkey (Callithrix jacchus)--that deserve scrutiny for development as major NHP models for aging studies. We discuss one other New World monkey group, Cebus spp., that might also be an effective NHP model of aging as these species are longer-lived for their body size than any primate except humans.

  18. A Preliminary Study of V/STOL Transport Aircraft and Bibliography of NASA Research in the VTOL-STOL Field

    NASA Technical Reports Server (NTRS)

    1961-01-01

    This group of papers was prepared by the staff of the Langley Research Center to assist in planning for future commercial air-transport facilities in the New York metropolitan area. Areas of particular interest were predictions regarding the types of V/STOL aircraft that are likely to be developed for various commercial transport applications, estimates of the performance and probable operating procedures for such aircraft, and the approximate dates these aircraft could be available for use. Although the NASA has made no comprehensive studies of this type, the extensive research program in the VTOL-STOL field during the last 10 years appeared to provide a source for some of the desired information . The five papers included herein were therefore prepared to summarize pertinent available material in a form suitable for the intended use. In several instances, new studies and analysis were required to provide the necessary information, but because of a time deadline, many of the significant points received only a cursory examination. For example, much of the quantitative data used in the papers for making generalized comparisons was obtained by approximate methods and is not considered appropriate for use in applications where precise estimates are required. It should be recognized, then, that the treatment of the V/STOL transport provided by this group of papers is necessarily of a preliminary nature.

  19. The ACRIDICON-CHUVA observational study of tropical convective clouds and precipitation using the new German research aircraft HALO

    NASA Astrophysics Data System (ADS)

    Wendisch, Manfred; Pöschl, Ulrich; Andreae, Meinrat O.; Machado, Luiz A. T.; Albrecht, Rachel; Schlager, Hans; Rosenfeld, Daniel; Krämer, Martina

    2015-04-01

    An extensive airborne/ground-based measurement campaign to study tropical convective clouds is introduced. It was performed in Brazil with focus on the Amazon rainforest from 1 September to 4 October 2014. The project combined the joint German-Brazilian ACRIDICON (Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems) and CHUVA (Machado et al.2014) projects. ACRIDICON aimed at the quantification of aerosol-cloud-precipitation interactions and their thermodynamic, dynamic and radiative effects in convective cloud systems by in-situ aircraft observations and indirect measurements (aircraft, satellite, and ground-based). The ACRIDICON-CHUVA campaign was conducted in cooperation with the second Intensive Operational Phase (IOP) of the GOAmazon (Green Ocean Amazon) program. The focus in this presentation is on the airborne observations within ACRIDICON-CHUVA. The German HALO (High Altitude and Long-Range Research Aircraft) was based in Manaus (Amazonas State); it carried out 14 research flights (96 flight hours in total). HALO was equipped with remote sensing and in-situ instrumentation for meteorological, trace gas, aerosol, cloud, and precipitation measurements. Five mission objectives were pursued: (1) cloud vertical evolution (cloud profiling), (2) aerosol processing (inflow and outflow), (3) satellite validation, (4) vertical transport and mixing (tracer experiment), and (5) clouds over forested and deforested areas. The five cloud missions collected data in clean atmospheric conditions and in contrasting polluted (urban and biomass burning) environments.

  20. An analytical investigation of acquisition techniques and system integration studies for a radar aircraft guidance research facility, phase 2

    NASA Technical Reports Server (NTRS)

    Thompson, W. S.; Ruedger, W. H.

    1973-01-01

    A review of user requirements and updated instrumentation plans are presented for the aircraft tracking and guidance facility at NASA Wallops Station. User demand has increased as a result of new flight research programs; however, basic requirements remain the same as originally reported. Instrumentation plans remain essentially the same but with plans for up- and down-link telemetry more firm. With slippages in the laser acquisition schedule, added importance is placed on the FPS-16 radar as the primary tracking device until the laser is available. Limited simulation studies of a particular Kalman-type filter are also presented. These studies simulated the use of the filter in a helicopter guidance loop in a real-time mode. Disadvantages and limitations of this mode of operation are pointed out. Laser eyesafety calculations show that laser tracking of aircraft is readily feasible from the eyesafety viewpoint.

  1. Integration of structural health monitoring solutions onto commercial aircraft via the Federal Aviation Administration structural health monitoring research program

    NASA Astrophysics Data System (ADS)

    Swindell, Paul; Doyle, Jon; Roach, Dennis

    2017-02-01

    The Federal Aviation Administration (FAA) started a research program in structural health monitoring (SHM) in 2011. The program's goal was to understand the technical gaps of implementing SHM on commercial aircraft and the potential effects on FAA regulations and guidance. The program evolved into a demonstration program consisting of a team from Sandia National Labs Airworthiness Assurance NDI Center (AANC), the Boeing Corporation, Delta Air Lines, Structural Monitoring Systems (SMS), Anodyne Electronics Manufacturing Corp (AEM) and the FAA. This paper will discuss the program from the selection of the inspection problem, the SHM system (Comparative Vacuum Monitoring-CVM) that was selected as the inspection solution and the testing completed to provide sufficient data to gain the first approved use of an SHM system for routine maintenance on commercial US aircraft.

  2. Linear and nonlinear interpretation of the direct strike lightning response of the NASA F106B thunderstorm research aircraft

    NASA Technical Reports Server (NTRS)

    Rudolph, T. H.; Perala, R. A.

    1983-01-01

    The objective of the work reported here is to develop a methodology by which electromagnetic measurements of inflight lightning strike data can be understood and extended to other aircraft. A linear and time invariant approach based on a combination of Fourier transform and three dimensional finite difference techniques is demonstrated. This approach can obtain the lightning channel current in the absence of the aircraft for given channel characteristic impedance and resistive loading. The model is applied to several measurements from the NASA F106B lightning research program. A non-linear three dimensional finite difference code has also been developed to study the response of the F106B to a lightning leader attachment. This model includes three species air chemistry and fluid continuity equations and can incorporate an experimentally based streamer formulation. Calculated responses are presented for various attachment locations and leader parameters. The results are compared qualitatively with measured inflight data.

  3. Remote sensing as a research tool. [sea ice surveillance from aircraft and spacecraft

    NASA Technical Reports Server (NTRS)

    Carsey, F. D.; Zwally, H. J.

    1986-01-01

    The application of aircraft and spacecraft remote sensing techniques to sea ice surveillance is evaluated. The effects of ice in the air-sea-ice system are examined. The measurement principles and characteristics of remote sensing methods for aircraft and spacecraft surveillance of sea ice are described. Consideration is given to ambient visible light, IR, passive microwave, active microwave, and laser altimeter and sonar systems. The applications of these systems to sea ice surveillance are discussed and examples are provided. Particular attention is placed on the use of microwave data and the relation between ice thickness and sea ice interactions. It is noted that spacecraft and aircraft sensing techniques can successfully measure snow cover; ice thickness; ice type; ice concentration; ice velocity field; ocean temperature; surface wind vector field; and air, snow, and ice surface temperatures.

  4. A study to define the research and technology requirements for advanced turbo/propfan transport aircraft

    NASA Technical Reports Server (NTRS)

    Goldsmith, I. M.

    1981-01-01

    The feasibility of the propfan relative to the turbofan is summarized, using the Douglas DC-9 Super 80 (DS-8000) as the actual operational base aircraft. The 155 passenger economy class aircraft (31,775 lb 14,413 kg payload), cruise Mach at 0.80 at 31,000 ft (8,450 m) initial altitude, and an operational capability in 1985 was considered. Three propfan arrangements, wing mounted, conventional horizontal tail aft mounted, and aft fuselage pylon mounted are selected for comparison with the DC-9 Super 80 P&WA JT8D-209 turbofan powered aircraft. The configuration feasibility, aerodynamics, propulsion, structural loads, structural dynamics, sonic fatigue, acoustics, weight maintainability, performance, rough order of magnitude economics, and airline coordination are examined. The effects of alternate cruise Mach number, mission stage lengths, and propfan design characteristics are considered. Recommendations for further study, ground testing, and flight testing are included.

  5. Trajectory module of the NASA Ames Research Center aircraft synthesis program ACSYNT

    NASA Technical Reports Server (NTRS)

    Tauber, M. E.; Paterson, J. A.

    1978-01-01

    A program was developed to calculate trajectories for both military and commercial aircraft for use in the aircraft synthesis program, ACSYNT. The function of the trajectory module was to calculate the changes in the vehicle's flight conditions and weight, as fuel is consumed, during the flying of one or more missions. The trajectory calculations started with a takeoff, followed by up to 12 phases chosen from among the following: climb, cruise, acceleration, combat, loiter, descent, and paths. In addition, a balanced field length was computed. The emphasis was on relatively simple formulations and analytic expressions suitable for rapid computation since a prescribed trajectory had to be calculated many times in the process of converging an aircraft design, or finding an optimum configuration. The trajectory module consists of about 2500 cards and operational on a CDC 7600 computer.

  6. Structural dynamics research in a full-scale transport aircraft crash test

    NASA Technical Reports Server (NTRS)

    Mccomb, H. G., Jr.; Hayduk, R. J.; Thomson, R. G.

    1986-01-01

    A remotely piloted air-to-ground crash test of a full-scale transport aircraft was conducted for the first time for two purposes: (1) to demonstrate performance of an antimisting fuel additive in suppressing fire in a crash environment, and (2) to obtain structural dynamics data under crash conditions for comparison with analytical predictions. The test, called the Controlled Impact Demonstration (CID), was sponsored by FAA and NASA with cooperation of industry, the Department of Defense, and the British and French governments. The test aircraft was a Boeing 720 jet transport. The aircraft impacted a dry lakebed at Edwards Air Force Base, CA. The purpose of this paper is to discuss the structural aspects of the CID. The fuselage section tests and the CID itself are described. Structural response data from these tests are presented and discussed. Nonlinear analytical modeling efforts are described, and comparisons between analytical results and experimental results are presented.

  7. The Revival of Research Circles: Meeting the Needs of Modern Aging and the Third Age

    ERIC Educational Resources Information Center

    Ostlund, Britt

    2008-01-01

    This article provides evidence that it is worthwhile to reconsider the traditional research circle method as a means of involving people in the third age in fulfilling their needs to participate in learning activities and make their voices heard. The findings are based on three cases of research circles consistently driven by the interests of the…

  8. The healthy aging research network: resources for building capacity for public health and aging practice.

    PubMed

    Wilcox, Sara; Altpeter, Mary; Anderson, Lynda A; Belza, Basia; Bryant, Lucinda; Jones, Dina L; Leith, Katherine H; Phelan, Elizabeth A; Satariano, William A

    2013-01-01

    There is an urgent need to translate science into practice and help enhance the capacity of professionals to deliver evidence-based programming. We describe contributions of the Healthy Aging Research Network in building professional capacity through online modules, issue briefs, monographs, and tools focused on health promotion practice, physical activity, mental health, and environment and policy. We also describe practice partnerships and research activities that helped inform product development and ways these products have been incorporated into real-world practice to illustrate possibilities for future applications. Our work aims to bridge the research-to-practice gap to meet the demands of an aging population.

  9. Real-time application of advanced three-dimensional graphic techniques for research aircraft simulation

    NASA Technical Reports Server (NTRS)

    Davis, Steven B.

    1990-01-01

    Visual aids are valuable assets to engineers for design, demonstration, and evaluation. Discussed here are a variety of advanced three-dimensional graphic techniques used to enhance the displays of test aircraft dynamics. The new software's capabilities are examined and possible future uses are considered.

  10. CID-720 aircraft Langley Research Center preflight hardware tests: Development, flight acceptance and qualification

    NASA Technical Reports Server (NTRS)

    Pride, J. D.

    1986-01-01

    The testing conducted on LaRC-developed hardware for the controlled impact demonstration transport aircraft is discussed. To properly develop flight qualified crash systems, two environments were considered: the aircraft flight environment with the focus on vibration and temperature effects, and the crash environment with the long pulse shock effects. Also with the large quantity of fuel in the wing tanks the possibility of fire was considered to be a threat to data retrieval and thus fire tests were included in the development test process. The aircraft test successfully demonstrated the performance of the LaRC developed heat shields. Good telemetered data (S-band) was received during the impact and slide-out phase, and even after the aircraft came to rest. The two onboard DAS tape recorders were protected from the intense fire and high quality tape data was recovered. The complete photographic system performed as planned throughout the 40.0 sec of film supply. The four photo power distribution pallets remained in good condition and all ten onboard 16 mm high speed (400 frames/sec) cameras produced good film data.

  11. A NASA/University/Industry Consortium for Research on Aircraft Ice Protection

    NASA Technical Reports Server (NTRS)

    Zumwalt, Glen W.

    1989-01-01

    From 1982 through 1987, an unique consortium was functioning which involved government (NASA), academia (Wichita State Univ.) and twelve industries. The purpose was the development of a better ice protection systems for aircraft. The circumstances which brought about this activity are described, the formation and operation recounted, and the effectiveness of the ventue evaluated.

  12. V/STOL tilt rotor study. Volume 5: A mathematical model for real time flight simulation of the Bell model 301 tilt rotor research aircraft

    NASA Technical Reports Server (NTRS)

    Harendra, P. B.; Joglekar, M. J.; Gaffey, T. M.; Marr, R. L.

    1973-01-01

    A mathematical model for real-time flight simulation of a tilt rotor research aircraft was developed. The mathematical model was used to support the aircraft design, pilot training, and proof-of-concept aspects of the development program. The structure of the mathematical model is indicated by a block diagram. The mathematical model differs from that for a conventional fixed wing aircraft principally in the added requirement to represent the dynamics and aerodynamics of the rotors, the interaction of the rotor wake with the airframe, and the rotor control and drive systems. The constraints imposed on the mathematical model are defined.

  13. [Research on the infrared spectrometry of aging silk fabrics].

    PubMed

    Zhang, Xiao-mei; Yuan, Si-xun

    2004-12-01

    The detection of deterioration degree of ancient silk fabrics will be helpful to the selection and developing of conservation methods. This paper carried out some research on the deterioration extent and mechanism of silk fabrics by means of infrared spectrometry. The samples artificially aged and excavated from Hubei, Innermongolia and Qinghai province, were analyzed. The artificially aging was done by simulating three main natural aging factors: light, heat and hydrolysis. The infrared spectrometric analysis results show that although the infrared spectrometry is a half-quantitative analysis method, for the hydrolysis-aged silk fabrics, it can give good qualitative and better half-quantitative analysis results because of the increase of carboxyl. So the infrared spectrometric analysis is of practical value for the conservation state and aging mechanism studies of ancient silk.

  14. An overview of nonhuman primates in aging research.

    PubMed

    Mattison, Julie A; Vaughan, Kelli L

    2016-12-10

    A graying human population and the rising costs of healthcare have fueled the growing need for a sophisticated translational model of aging. Nonhuman primates (NHPs) experience aging processes similar to humans and, as a result, provide an excellent opportunity to study a closely related species. Rhesus monkeys share >92% homology and are the most commonly studied NHP. However, their substantial size, long lifespan, and the associated expense are prohibitive factors. Marmosets are rapidly becoming the preferred NHP for biomedical testing due to their small size, low zoonotic risk, reproductive efficiency, and relatively low-cost. Both species experience age-related pathology similar to humans, such as cancer, diabetes, arthritis, cardiovascular disease, and neurological decline. As a result, their use in aging research is paving the way to improved human health through a better understanding of the mechanisms of aging.

  15. The application of information theory for the research of aging and aging-related diseases.

    PubMed

    Blokh, David; Stambler, Ilia

    2016-03-19

    This article reviews the application of information-theoretical analysis, employing measures of entropy and mutual information, for the study of aging and aging-related diseases. The research of aging and aging-related diseases is particularly suitable for the application of information theory methods, as aging processes and related diseases are multi-parametric, with continuous parameters coexisting alongside discrete parameters, and with the relations between the parameters being as a rule non-linear. Information theory provides unique analytical capabilities for the solution of such problems, with unique advantages over common linear biostatistics. Among the age-related diseases, information theory has been used in the study of neurodegenerative diseases (particularly using EEG time series for diagnosis and prediction), cancer (particularly for establishing individual and combined cancer biomarkers), diabetes (mainly utilizing mutual information to characterize the diseased and aging states), and heart disease (mainly for the analysis of heart rate variability). Few works have employed information theory for the analysis of general aging processes and frailty, as underlying determinants and possible early preclinical diagnostic measures for aging-related diseases. Generally, the use of information-theoretical analysis permits not only establishing the (non-linear) correlations between diagnostic or therapeutic parameters of interest, but may also provide a theoretical insight into the nature of aging and related diseases by establishing the measures of variability, adaptation, regulation or homeostasis, within a system of interest. It may be hoped that the increased use of such measures in research may considerably increase diagnostic and therapeutic capabilities and the fundamental theoretical mathematical understanding of aging and disease.

  16. Understanding the Role of the Saharan Heat Low in Modifying Atmospheric Dust Distributions - Observations From Two Research Aircraft Flying Simultaneously Over Western Africa

    NASA Astrophysics Data System (ADS)

    Engelstaedter, S.; Washington, R.; Allen, C.; Flamant, C.; Chaboureau, J.-P.; Kocha, C.; Lavaysse, C.

    2012-04-01

    The near-surface low pressure system that develops over western Africa in Boreal summer (know as the Saharan Heat Low) is thought to have a significant influence on regional and global climate due to its links with the Monsoon, the Northern Atlantic and the Mediterranean climate system. The SHL is associated with the deepest atmospheric boundary layer on the planet and is co-located with the highest dust loadings in the world. The processes that link the heat low and dust distribution are only poorly understood. Improving the representation of the heat low and the processes that control the emission and atmospheric distribution of dust in climate and NWP models is crucial if we are to reduce known systematic errors in climate predictions and weather forecasts. In collaboration with European partners, the UK-based consortium project "Fennec - The Saharan Climate System" aims at improving our understanding of this complex climate system by integrating for the first time coordinated ground and aircraft observations from the central Sahara, newly developed satellite products, and the application of regional and global models. On 22 June 2011, two research aircraft operating out of Fuerteventura (Spain) surveyed the Saharan Heat Low centred over Mauritania-Mali border. The aircraft flew simultaneously in the morning and in the afternoon on two different tracks thereby sampling each track four times on that day. Both aircraft were equipped with a downward looking LIDAR for aerosol detection. In total, 51 sondes were dropped during the flights making this the most comprehensive dataset to study the spatio-temporal diurnal evolution of the heat low including the interactions between the atmospheric boundary layer and dust distributions. Combining LIDAR observations, satellite imagery and back-trajectory modelling we show that an aged dust layer was present in the heat low region resulting from previous day's dust activity associated with a south-moving density current from

  17. Volatile Organic Compounds (VOCs) onboard the HALO research aircraft during OMO-ASIA

    NASA Astrophysics Data System (ADS)

    Safadi, Layal; Neumaier, Marco; Fischbeck, Garlich; Zahn, Andreas

    2016-04-01

    We report on first results of VOC measurements during the OMO-Asia campaign that took place in summer 2015 on Cyprus and on the island of Gan (Maldives) to study the free-radical chemistry at higher altitudes during the Asian summer monsoon. The deployed instrument (KMS = Karlsruhe Mass Spectrometer) is based on a commercial PTRMS from Ionicon and was strongly modified for the use onboard the research aircraft HALO (a modified Gulfstream GV-550 having a ceiling altitude of ~15.5 km). By the construction of an aluminum vacuum system, the development of largely custom-made electronics and the use of light-weight pumps, the weight was reduced to ~55 kg compared to 120-130 kg of the commercial instrument. The KMS is in addition very robust and field-compliant. Before OMO-Asia the HALO payload was tested first during a technical field campaign OMO-EU which took place in Oberpfaffenhofen (Germany) in winter 2015. During OMO-Asia the instrument was calibrated before and after each flight by diluting an external gas standard (Apel-Riemer Environmental, Inc. Denver, Colorado) containing ~1 ppm of 10 VOCs. The determined sensitivity for acetone was ~380 cps/ppb showing a variation of ±5% over a period of 8 weeks. The detection limit amounted to ~35 ppt for acetone at an integration time of 6 s. The measurements during all together 17 flights took place over a wide range of Asia, including Saudi Arabia, Bahrain, Oman and Sri Lanka. Referring to the meteorological forecasts of carbon monoxide (CO), remnant of the Asia monsoon outflow was measured during some flights (e.g. over Oman). Acetone mixing ratios of up to ~1500 ppt and up to ~100 ppt of benzene were measured in the outflow of the plume. The gathered data shows a good correlation with the measurements taken with other instruments (e.g. CO measurements by Max Planck Institute for Chemistry). The poster will describe the instrument and the main features derived.

  18. [35-year experience in research of peptide regulation of aging].

    PubMed

    Khavinson, V Kh; Anisimov, V N

    2009-01-01

    The results of 35-year-long studies on mechanisms of aging and on efficacy of peptide bioregulators in prevention of age-related pathology are presented in this review paper. The data have been obtained with most advanced methods in collaboration with research laboratories of Russia, USA, UK, Germany, Italy, Spain, France. The molecular model of complementary interrelation of short peptides with promoter site of genes which is a background of protein biosynthesis initiation has been suggested. The prospects of clinical use of peptide bioregulators for prevention of premature aging of the active population in Russia are discussed.

  19. Nutrition and ageing: knowledge, gaps and research priorities.

    PubMed

    Mathers, John C

    2013-05-01

    Over the past two centuries human life expectancy has increased by nearly 50 years. Genetic factors account for about one-third of the variation in life expectancy so that most of the inter-individual variation in lifespan is explained by stochastic and environmental factors, including diet. In some model organisms, dietary (energy) restriction is a potent, and highly reproducible, means of increasing lifespan and of reducing the risk of age-related dysfunction although whether this strategy is effective in human subjects is unknown. This is ample evidence that the ageing process is plastic and research demonstrates that ageing is driven by the accumulation of molecular damage, which causes the changes in cell and tissue function that characterise the ageing phenotype. This cellular, tissue and organ damage results in the development of age-related frailty, disabilities and diseases. There are compelling observational data showing links between eating patterns, e.g., the Mediterranean dietary pattern, and ageing. In contrast, there is little empirical evidence that dietary changes can prolong healthy lifespan and there is even less information about the intervention modalities that can produce such sustainable dietary behaviour changes. In conclusion, current research needs include (1) a better understanding of the causal biological pathways linking diet with the ageing trajectory, (2) the development of lifestyle-based interventions, including dietary changes, which are effective in preventing age-related disease and disability and (3) the development of robust markers of healthy ageing, which can be used as surrogate outcome measures in the development and testing of dietary interventions designed to enhance health and well-being long into old age.

  20. A perspective on 15 years of proof-of-concept aircraft development and flight research at Ames-Moffett by the Rotorcraft and Powered-Lift Flight Projects Division, 1970-1985

    NASA Technical Reports Server (NTRS)

    Few, David D.

    1987-01-01

    A proof-of-concept (POC) aircraft is defined and the concept of interest described for each of the six aircraft developed by the Ames-Moffet Rotorcraft and Powered-Lift Flight Projects Division from 1970 through 1985; namely, the OV-10, the C-8A Augmentor Wing, the Quiet Short-Haul Research Aircraft (QSRA), the XV-15 Tilt Rotor Research Aircraft (TRRA), the Rotor Systems Research Aircraft (RSRA)-compound, and the yet-to-fly RSRA/X-Wing Aircraft. The program/project chronology and most noteworthy features of the concepts are reviewed. The paper discusses the significance of each concept and the project demonstrating it; it briefly looks at what concepts are on the horizon as potential POC research aircraft and emphasizes that no significant advanced concept in aviation technology has ever been accepted by civilian or military users without first completing a demonstration through flight testing.

  1. The European Research Infrastructure IAGOS - From dedicated field studies to routine observations of the atmosphere by instrumented passenger aircraft

    NASA Astrophysics Data System (ADS)

    Petzold, Andreas; Volz-Thomas, Andreas; Gerbig, Christoph; Thouret, Valerie; Cammas, Jean-Pierre; Brenninkmeijer, Carl A. M.; Iagos Team

    2013-04-01

    The global distribution of trace species is controlled by a complex interplay between natural and anthropogenic sources and sinks, atmospheric short- to long-range transport, and in future by diverse, largely not yet quantified feedback mechanisms such as enhanced evaporation of water vapour in a warming climate or possibly the release of methane from melting marine clathrates. Improving global trace gas budgets and reducing the uncertainty of climate predictions crucially requires representative data from routine long-term observations as independent constraint for the evaluation and improvement of model parameterizations. IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) is a new European Research Infrastructure which operates a unique global observing system by deploying autonomous instruments aboard a fleet of passenger aircraft. IAGOS consists of two complementary building blocks: IAGOS-CORE deploys newly developed high-tech instrumentation for regular in-situ measurements of atmospheric chemical species (O3, CO, CO2, NOx, NOy, H2O, CH4), aerosols and cloud particles. Involved airlines ensure global operation of the network. In IAGOS-CARIBIC a cargo container is operated as a flying laboratory aboard one passenger aircraft. IAGOS aims at the provision of long-term, frequent, regular, accurate, and spatially resolved in-situ observations of the atmospheric chemical composition in the UTLS and the extra tropical troposphere and on vertical profiles of greenhouse gases, reactive trace gases and aerosols throughout the troposphere. It builds on almost 20 years of scientific and technological expertise gained in the research projects MOZAIC (Measurement of Ozone and Water Vapour on Airbus In-service Aircraft) and CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container). The European consortium includes research centres, universities, national weather services, airline operators and aviation

  2. Role of EPA in Asset Management Research – The Aging Water Infrastructure Research Program

    EPA Science Inventory

    This slide presentation provides an overview of the EPA Office of Research and Development’s Aging Water infrastructure Research Program (AWIRP). The research program origins, goals, products, and plans are described. The research program focuses on four areas: condition asses...

  3. Adult Education and Aging: Perspectives on Research at a Private Independent Research Organization.

    ERIC Educational Resources Information Center

    Russ-Eft, Darlene

    As part of a symposium on challenges and problems of adult education researchers in different settings, recent research activities at one private independent research organization were examined. Three projects of the American Instituties for Research (AIR) were reviewed, all relating to adult development and aging. The first examined career…

  4. Current and future developments in civil aircraft non-destructive evaluation from an operator's point of view

    NASA Technical Reports Server (NTRS)

    Register, Jeff

    1992-01-01

    In June, 1988, the first International Conference on aging aircraft was held to address nondestructive tests (NDT) of aging aircraft and other issues. From this meeting, a research program was initiated and funded by the FAA. As a result of this program, a lot of work has been done to study current NDT practices in the aviation industry and secondly, to research and develop new NDT methods to improve the reliability and efficiency of in-service inspection of aircraft structures and powerplants. The following is an overview of the current and future developments in civil aircraft NDT, as viewed by an air carrier and the concerns for NDT in the future.

  5. NACA research on combustors for aircraft gas turbines I : effects of operating variables on steady-state performance

    NASA Technical Reports Server (NTRS)

    Olson, Walter T; Childs, J Howard

    1950-01-01

    Some of the systematic research conducted by the NACA on aircraft gas-turbine combustors is reviewed. Trends depicting the effect of inlet-air pressure, temperature, and velocity and fuel-air ratio on performance characteristics, such as combustion efficiency, maximum temperature rise attainable, pressure loss, and combustor-outlet temperature distribution are described for a variety of turbojet combustors of the liquid-fuel type. These trends are further discussed as effects significant to the turbojet engine, such as altitude operational limits, specific fuel consumption, thrust, acceleration, and turbine life.

  6. Government financial support for civil aircraft research, technology and development in four European countries and the United States

    NASA Technical Reports Server (NTRS)

    Chandler, B.; Golaszewski, R.; Patten, C.; Rudman, B.; Scott, R.

    1980-01-01

    Data on the levels of government financial support for civil aircraft airframe and engine (CAAE) research and technology (R&T) in the United States and Europe (United Kingdom, West Germany, France and The Netherlands) and means of comparing these levels are provided. Data are presented for the years 1974-1977. European R&T expenditure data were obtained through visits to each of the four European countries, to the Washington office of the European Communities, and by a search of applicable literature. CAAE R&T expenditure data for the United States were obtained from NASA and Federal Aviation Administration (FAA).

  7. Modeling of the Mode S tracking system in support of aircraft safety research

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Goka, T.

    1982-01-01

    This report collects, documents, and models data relating the expected accuracies of tracking variables to be obtained from the FAA's Mode S Secondary Surveillance Radar system. The data include measured range and azimuth to the tracked aircraft plus the encoded altitude transmitted via the Mode S data link. A brief summary is made of the Mode S system status and its potential applications for aircraft safety improvement including accident analysis. FAA flight test results are presented demonstrating Mode S range and azimuth accuracy and error characteristics and comparing Mode S to the current ATCRBS radar tracking system. Data are also presented that describe the expected accuracy and error characteristics of encoded altitude. These data are used to formulate mathematical error models of the Mode S variables and encoded altitude. A brief analytical assessment is made of the real-time tracking accuracy available from using Mode S and how it could be improved with down-linked velocity.

  8. V/STOL tilt rotor research aircraft. Volume 2: Ship 1 instrumentation

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information covering sensor cables, sensor installation, and sensor calibration for the XV-15 aircraft number 1 is included. For each junction box (J-box) designation there is a schematic of the J-box disconnect harness instrumentation worksheets which show sensor location, and calibration data sheets for each sensor associated with that J-box. An index of measurement item codes to J-box locations is given in a table. Cross references are given.

  9. V/STOL tilt rotor research aircraft. Volume 3: Ship 2 instrumentation

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information covering sensor cables, sensor installation, and sensor calibration for the XV-15 aircraft number 2 is included. For each junction box (J-box) designation there is a schematic of the J-box disconnect harness, instrumentation worksheets which show sensor location, and calibration data sheets for each sensor associated with that J-box. An index of measurement data codes to J-box locations is given in a table. Cross references are given.

  10. Flight control systems research. [optimization of F-8 aircraft control system

    NASA Technical Reports Server (NTRS)

    Whitaker, H. P.; Baram, Y.; Cheng, Y.

    1973-01-01

    Theoretical development is reported for the parameter optimization design technique needed for digital flight control system design. The results of an example case study applying the optimization technique for continuous systems to an F-8 aircraft feedback control system are presented. The concept of evolving the simplest system configuration that is capable of meeting a specified set of performance requirements is illustrated in this work.

  11. A review of US Army aircrew-aircraft integration research programs

    NASA Technical Reports Server (NTRS)

    Key, D. C.; Aiken, E. W.

    1984-01-01

    If the U.S. Army's desire to develop a one crew version of the Light Helicopter Family (LHX) helicopter is to be realized, both flightpath management and mission management will have to be performed by one crew. Flightpath management, the helicopter pilot, and the handling qualities of the helicopter were discussed. In addition, mission management, the helicopter pilot, and pilot control/display interface were considered. Aircrew-aircraft integration plans and programs were reviewed.

  12. Research of hail impact on aircraft wheel door with lattice hybrid structure

    NASA Astrophysics Data System (ADS)

    Li, Shengze; Jin, Feng; Zhang, Weihua; Meng, Xuanzhu

    2016-09-01

    Aimed at a long lasting issue of hail impact on aircraft structures and aviation safety due to its high speed, the resistance performance of hail impact on the wheel door of aircraft with lattice hybrid structure is investigated. The proper anti-hail structure can be designed both efficiency and precision based on this work. The dynamic responses of 8 different sandwich plates in diverse impact speed are measured. Smoothed Particle Hydrodynamic (SPH) method is introduced to mimic the speciality of solid-liquid mixture trait of hailstone during the impact process. The deformation and damage degree of upper and lower panel of sandwich plate are analysed. The application range and failure mode for the relevant structure, as well as the energy absorbing ratio between lattice structure and aluminium foam are summarized. Results show that the tetrahedral sandwich plate with aluminium foam core is confirmed the best for absorbing energy. Furthermore, the high absorption characteristics of foam material enhance the capability of the impact resistance for the composition with lattice structure without increasing the structure surface density. The results of study are of worth to provide a reliable basis for reduced weight aircraft wheel door.

  13. Military Aircraft Emissions Research - Case of Hercules Cargo Plane (C-130H) Emissions

    SciTech Connect

    Cheng, Mengdawn; Corporan, E.; DeWitt, M.; Harris, B.; Hashmonay, R.; Holdren, M.; Kaganan, R.; Spicer, C.

    2007-01-01

    Tactical airlifter like C-130H has been in use for more than 50 years, and is expected to serve for many years to come. However, the emission characteristics data of the aircraft are scarce. To increase our understanding of turboprop engine emissions, emissions from a military C-130H cargo aircraft were characterized in field conditions in the fall of 2005. Particulate and gaseous pollutants were measured by conventional and advanced instrumentation platforms that were built with in-situ extractive or remote optical sensing technologies. The measurements performed at the C-130H engine exhaust exit showed increased levels of emissions as the engine power setting increased. In contrast, there was no such a relationship found for the C-130H emitted particulate matter (as a function of engine power setting) measured at about 15-m downstream of the engine exhaust plane. The emitted gaseous species measured at both locations were, however, proportional to the engine power setting and comparable (at both locations) when corrected for ambient dilution indicating the lack of particulate emission-power setting relationship at the far field is unique. The result clearly indicates that the aircraft emission factor or index for particulate matter cannot be experimentally determined at a downstream location away from the exhaust exit and has to be determined right at the engine exhaust plane. Emission indices that are needed for air quality modeling will be presented.

  14. Leading Edges: Recent Research on Psychosocial Aging. Review Essays Prepared for the White House Conference on Aging.

    ERIC Educational Resources Information Center

    Hess, Beth B., Ed.; Bond, Kathleen, Ed.

    The objectives of this book, a collection of papers about recent research on psychosocial aging, are to broaden scientific understanding of the psychosocial components of the aging process and the place of older people in society, and to call attention to a number of issues in aging research. The papers emphasize that aging does not occur in a…

  15. Transportation and Aging: A Research Agenda for Advancing Safe Mobility

    ERIC Educational Resources Information Center

    Dickerson, Anne E.; Molnar, Lisa J.; Eby, David W.; Adler, Geri; Bedard, Michel; Berg-Weger, Marla; Classen, Sherrilene; Foley, Daniel; Horowitz, Amy; Kerschner, Helen; Page, Oliver; Silverstein, Nina M.; Staplin, Loren; Trujillo, Leonard

    2007-01-01

    Purpose: We review what we currently know about older driver safety and mobility, and we highlight important research needs in a number of key areas that hold promise for achieving the safety and mobility goals for the aging baby boomers and future generations of older drivers. Design and Methods: Through the use of a framework for transportation…

  16. [SOME RESULTS OF MOLECULAR GENETIC RESEARCHES OF AGING AND LONGEVITY].

    PubMed

    Mustafina, O E; Somova, R Sh

    2015-01-01

    This review is devoted to the description of research achievements in genetics of aging and longevity. It represents a certain interest for understanding of a problems of aging as a whole. There is a huge amount of results of diverse genetic studies of aging and longevity. Studies were performed with using different experimental strategies on model organisms or samples from different human populations of the world. The search for aging and longevity genes was carried out within international consortiums. The first results of whole genome sequences of super-centenarians were received. The genes influencing life expectancy were revealed in organisms of different systematic groups. Many of these genes are evolutionarily conservative. Associations between APOE, FOXO1A, FOXO3A, AKT1 gene polymorphisms and human longevity were confirmed in independent studies.

  17. The Pilot Land Data System (PLDS) at the Ames Research Center manages aircraft data in collaboration with an ecosystem research project

    NASA Technical Reports Server (NTRS)

    Angelici, Gary; Popovici, Lidia; Skiles, Jay

    1991-01-01

    The Pilot Land Data System (PLDS) is a data and information system serving NASA-supported investigators in the land science community. The three nodes of the PLDS, one each at the Ames Research Center (ARC), the Goddard Space Flight Center (GSFC) and the Jet Propulsion Laboratory (JPL), cooperate in providing consistent information describing the various data holding in the hardware and software (accessible via network and modem) that provide information about and access to PLDS-held data, which is available for distribution. A major new activity of the PLDS node at the Ames Research Center involves the interaction of the PLDS with an active NASA ecosystem science project, the Oregon Transect Ecosystems Research involves the management of, access to, and distribution of the large volume of widely-varying aircraft data collected by OTTER. The OTTER project, is managed by researchers at the Ames Research Center and Oregon State University. Its principal objective is to estimate major fluxes of carbon, nitrogen, and water of forest ecosystems using an ecosystem process model driven by remote sensing data. Ten researchers at NASA centers and universities are analyzing data for six sites along a temperature-moisture gradient across the western half of central Oregon (called the Oregon Transect). Sensors mounted on six different aircraft have acquired data over the Oregon Transect in support of the OTTER project.

  18. Predicting Aircraft Availability

    DTIC Science & Technology

    2013-06-01

    ENS- GRP -13-J-2 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio...AFIT-ENS- GRP -13-J-2 PREDICTING AIRCRAFT AVAILABILITY GRADUATE RESEARCH PROJECT Presented to the Faculty Department of Operational...APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT-ENS- GRP -13-J-2 PREDICTING AIRCRAFT AVAILABILITY Mark A. Chapa

  19. A summary of the forebody high-angle-of-attack aerodynamics research on the F-18 and the X-29A aircraft

    NASA Technical Reports Server (NTRS)

    Bjarke, Lisa J.; Delfrate, John H.; Fisher, David F.

    1992-01-01

    High-angle-of-attack aerodynamic studies have been conducted on both the F18 High Alpha Research Vehicle (HARV) and the X-29A aircraft. Data obtained include on- and off-surface flow visualization and static pressure measurements on the forebody. Comparisons of similar results are made between the two aircraft where possible. The forebody shapes of the two aircraft are different and the X-29A forebody flow is affected by the addition of nose strakes and a flight test noseboom. The forebody flow field of the F-18 HARV is fairly symmetric at zero sideslip and has distinct, well-defined vortices. The X-29A forebody vortices are more diffuse and are sometimes asymmetric at zero sideslip. These asymmetries correlate with observed zero-sideslip aircraft yawing moments.

  20. Candidate bird species for use in aging research.

    PubMed

    Austad, Steven N

    2011-01-01

    Birds live about 3 times as long as an average mammal of similar size. They exhibit this remarkable resistance to the degenerative processes of aging despite traits such as elevated body temperature, a rapid metabolic rate, and high blood glucose that might lead one to expect them to be especially short-lived. Although birds appear to age slowly, the patterns of age-related deterioration and development of disease parallel in many ways those of mammals such as humans. Therefore, birds may reveal novel mechanisms of resistance to senescence. A previous impediment to the use of birds in modern biomedical research was the inability to perform targeted genetic manipulations, which has revolutionized the use of other model species. But with the publication of the whole genome sequence of two bird species and the development of gene knockdown technology and tissue-specific transgenesis, this impediment seems to be disappearing. At least five bird species deserve special attention for development as models of successful aging. Three of these species--budgerigars, canaries, and zebra finches--are common cage birds and are already used extensively in the study of vocal learning and sustained neurogenesis in adulthood. In addition, two wild species--the European starling and the house sparrow--may also make excellent models for aging research.

  1. Promoting Cognitive Health: A Formative Research Collaboration of the Healthy Aging Research Network

    ERIC Educational Resources Information Center

    Laditka, James N.; Beard, Renee L.; Bryant, Lucinda L.; Fetterman, David; Hunter, Rebecca; Ivey, Susan; Logsdon, Rebecca G.; Sharkey, Joseph R.; Wu, Bei

    2009-01-01

    Purpose: Evidence suggests that healthy lifestyles may help maintain cognitive health. The Prevention Research Centers Healthy Aging Research Network, 9 universities collaborating with their communities and the Centers for Disease Control and Prevention, is conducting a multiyear research project, begun in 2005, to understand how to translate this…

  2. The Geropathology Research Network: An Interdisciplinary Approach for Integrating Pathology Into Research on Aging.

    PubMed

    Ladiges, Warren; Ikeno, Yuji; Niedernhofer, Laura; McIndoe, Richard A; Ciol, Marcia A; Ritchey, Jerry; Liggitt, Denny

    2016-04-01

    Geropathology is the study of aging and age-related lesions and diseases in the form of whole necropsies/autopsies, surgical biopsies, histology, and molecular biomarkers. It encompasses multiple subspecialties of geriatrics, anatomic pathology, molecular pathology, clinical pathology, and gerontology. In order to increase the consistency and scope of communication in the histologic and molecular pathology assessment of tissues from preclinical and clinical aging studies, a Geropathology Research Network has been established consisting of pathologists and scientists with expertise in the comparative pathology of aging, the design of aging research studies, biostatistical methods for analysis of aging data, and bioinformatics for compiling and annotating large sets of data generated from aging studies. The network provides an environment to promote learning and exchange of scientific information and ideas for the aging research community through a series of symposia, the development of uniform ways of integrating pathology into aging studies, and the statistical analysis of pathology data. The efforts of the network are ultimately expected to lead to a refined set of sentinel biomarkers of molecular and anatomic pathology that could be incorporated into preclinical and clinical aging intervention studies to increase the relevance and productivity of these types of investigations.

  3. Progress in Protective Coatings for Aircraft Gas Turbines: A Review of NASA Sponsored Research

    NASA Technical Reports Server (NTRS)

    Merutka, J. P.

    1981-01-01

    Problems associated with protective coatings for advanced aircraft gas turbines are reviewed. Metallic coatings for preventing titanium fires in compressors are identified. Coatings for turbine section are also considered, Ductile aluminide coatings for protecting internal turbine-blade cooling passage surface are also identified. Composite modified external overlay MCrAlY coatings deposited by low-pressure plasma spraying are found to be better in surface protection capability than vapor deposited MCrAlY coatings. Thermal barrier coating (TBC), studies are presented. The design of a turbine airfoil is integrated with a TBC, and computer-aided manufacturing technology is applied.

  4. Aircraft operations management manual

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The NASA aircraft operations program is a multifaceted, highly diverse entity that directly supports the agency mission in aeronautical research and development, space science and applications, space flight, astronaut readiness training, and related activities through research and development, program support, and mission management aircraft operations flights. Users of the program are interagency, inter-government, international, and the business community. This manual provides guidelines to establish policy for the management of NASA aircraft resources, aircraft operations, and related matters. This policy is an integral part of and must be followed when establishing field installation policy and procedures covering the management of NASA aircraft operations. Each operating location will develop appropriate local procedures that conform with the requirements of this handbook. This manual should be used in conjunction with other governing instructions, handbooks, and manuals.

  5. A study of the stable boundary layer in strong gap flows in northwest Greenland using a research aircraft

    NASA Astrophysics Data System (ADS)

    Heinemann, Günther; Drüe, Clemens

    2016-04-01

    Gap flows and the stable boundary layer (SBL) were studied in northwest Greenland during the aircraft-based experiment IKAPOS (Investigation of Katabatic winds and Polynyas during Summer) in June 2010. The measurements were performed using the research aircraft POLAR 5 of Alfred Wegener Institute (AWI, Bremerhaven). Besides navigational and basic meteorological instrumentation, the aircraft was equipped with radiation and surface temperature sensors, two laser altimeters, and video and digital cameras. In order to determine turbulent heat and momentum fluxes, POLAR 5 was instrumented with a turbulence measurement system collecting data on a nose boom with a sampling rate of 100 Hz. In the area of the Nares Strait a stable, but fully turbulent boundary layer with strong winds of 15 m s-1 to 20 m s-1 was found during conditions of relatively warm synoptically induced northerly winds through the Nares Strait. Strong surface inversions were present in the lowest 100 m to 200 m. As a consequence of channeling effects a well-pronounced low-level jet (LLJ) system was documented. The channeling process is consistent with gap flow theory and can be shown to occur at the topographic gap between Greenland and Canada represented by the Smith Sound. While the flow through the gap and over the surrounding mountains leads to the lowering of isotropic surfaces and the acceleration of the flow, the strong turbulence associated with the LLJ leads to the development of an internal thermal SBL past the gap. Turbulence statistics in this fully turbulent SBL can be shown to follow the local scaling behaviour.

  6. Science of aging knowledge environment: one-stop shopping for researchers in the field of aging.

    PubMed

    Strauss, Evelyn; LaMarco, Kelly

    2002-12-01

    The Science of Aging Knowledge Environment (SAGE KE) was launched in October 2001 to provide an online information source and community-building tool. The site offers a wide range of features, including original commentary articles, a database of genes and interventions related to aging, and a calendar of meetings and events. Users may initiate discussions and post comments on the articles; these features are intended to promote interaction between researchers in the field and to ensure the timeliness of information posted. This paper details SAGE KE's contents and offers suggestions about how to customize the site to save time and maximize information acquisition and exchange.

  7. Hybrid upper surface blown flap propulsive-lift concept for the quiet short-haul research aircraft

    NASA Technical Reports Server (NTRS)

    Cochrane, J. A.; Carros, R. J.

    1975-01-01

    The hybrid upper surface blowing concept consists of wing-mounted turbofan engines with a major portion of the fan exhaust directed over the wing upper surface to provide high levels of propulsive lift, but with a portion of the fan airflow directed over selected portions of the airframe to provide boundary layer control. NASA-sponsored preliminary design studies identified the hybrid upper surface blowing concept as the best propulsive lift concept to be applied to the Quiet Short-Haul Research Aircraft (QSRA) that is planned as a flight facility to conduct flight research at low noise levels high approach lift coefficients, and steep approaches. Data from NASA in-house and NASA-sponsored small and large-scale wind tunnel tests of various configurations using this concept are presented.

  8. A flight evaluation of a trailing anemometer for low-speed calibrations of airspeed systems on research aircraft

    NASA Technical Reports Server (NTRS)

    Fisher, B. D.; Holmes, B. J.; Stough, H. P., III

    1978-01-01

    Research airspeed systems on three low-speed general aviation airplanes were calibrated by the trailing anemometer method. Each airplane was fitted with an NASA pitot-static pressure tube mounted on either a nose or wing boom. The uncalibrated airspeed systems contained residual static-pressure position errors which were too large for high-accuracy flight research applications. The trailing anemometer calibration was in agreement with the tower flyby calibration for the one aircraft for which the comparison was made. The continuous deceleration technique for the trailing anemometer method offers reduced test time with no appreciable loss of accuracy for airspeed systems with pitot-static system lag characteristics similar to those described.

  9. Soil analyses and evaluations at the impact dynamics research facility for two full-scale aircraft crash tests

    NASA Technical Reports Server (NTRS)

    Cheng, R. Y. K.

    1977-01-01

    The aircraft structural crash behavior and occupant survivability for aircraft crashes on a soil surface was studied. The results of placement, compaction, and maintenance of two soil test beds are presented. The crators formed by the aircraft after each test are described.

  10. Ageing with elegans: a research proposal to map healthspan pathways.

    PubMed

    Luyten, Walter; Antal, Peter; Braeckman, Bart P; Bundy, Jake; Cirulli, Francesca; Fang-Yen, Christopher; Fuellen, Georg; Leroi, Armand; Liu, Qingfei; Martorell, Patricia; Metspalu, Andres; Perola, Markus; Ristow, Michael; Saul, Nadine; Schoofs, Liliane; Siems, Karsten; Temmerman, Liesbet; Smets, Tina; Wolk, Alicja; Rattan, Suresh I S

    2016-08-01

    Human longevity continues to increase world-wide, often accompanied by decreasing birth rates. As a larger fraction of the population thus gets older, the number of people suffering from disease or disability increases dramatically, presenting a major societal challenge. Healthy ageing has therefore been selected by EU policy makers as an important priority ( http://www.healthyageing.eu/european-policies-and-initiatives ); it benefits not only the elderly but also their direct environment and broader society, as well as the economy. The theme of healthy ageing figures prominently in the Horizon 2020 programme ( https://ec.europa.eu/programmes/horizon2020/en/h2020-section/health-demographic-change-and-wellbeing ), which has launched several research and innovation actions (RIA), like "Understanding health, ageing and disease: determinants, risk factors and pathways" in the work programme on "Personalising healthcare" ( https://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/693-phc-01-2014.html ). Here we present our research proposal entitled "ageing with elegans" (AwE) ( http://www.h2020awe.eu/ ), funded by this RIA, which aims for better understanding of the factors causing health and disease in ageing, and to develop evidence-based prevention, diagnostic, therapeutic and other strategies. The aim of this article, authored by the principal investigators of the 17 collaborating teams, is to describe briefly the rationale, aims, strategies and work packages of AwE for the purposes of sharing our ideas and plans with the biogerontological community in order to invite scientific feedback, suggestions, and criticism.

  11. Preliminary results for an aeromagnetic survey flown over Italy using the HALO (High Altitude and LOng range) research aircraft

    NASA Astrophysics Data System (ADS)

    Lesur, V.; Gebler, A.; Schachtschneider, R.

    2012-12-01

    In June 2012 the GEOHALO mission was flown over Italy using the high altitude and long-range German research aircraft HALO (Gulfstream jet - G550). One goal of the mission was to demonstrate the feasibility of using geodetic and geophysical instrumentation on such fast flying aircraft. Several types of data were acquired including gravity, GNSS signals (reflectometry, spectrometry and occultation), laser altimetry and magnetic data. The magnetic data were collected through two independent acquisition chains placed inside under-wing containers. Each chain included a total intensity cesium magnetometer, a three-component fluxgate magnetometer, several temperature censors and a digitizer. Magnetic and temperature data were collected at a 10 Hz sampling rate. Seven parallel profiles, each around 1000 km long, were flown over the Apennine peninsula from north-west to south-east. The flight altitude was about 3500 m and the survey line spacing around 40 km. These long profiles were complemented by four crossing profiles, and a repeated flight line at a higher altitude (approx. 10500 m). The ground speed during the flight was generally around 125 m/s (450 km/h). The output from the first steps of the magnetic data processing will be shown. The measured magnetic data appear to be consistent with the expected signal.

  12. Static investigation of the circulation control wing/upper surface blowing concept applied to the quiet short haul research aircraft

    NASA Technical Reports Server (NTRS)

    Eppel, J. C.; Shovlin, M. D.; Jaynes, D. N.; Englar, R. J.; Nichols, J. H., Jr.

    1982-01-01

    Full scale static investigations were conducted on the Quiet Short Haul Research Aircraft (QSRA) to determine the thrust deflecting capabilities of the circulation control wing/upper surface blowing (CCW/USB) concept. This scheme, which combines favorable characteristics of both the A-6/CCW and QSRA, employs the flow entrainment properties of CCW to pneumatically deflect engine thrust in lieu of the mechanical USB flap system. Results show that the no moving parts blown system produced static thrust deflections in the range of 40 deg to 97 deg (depending on thrust level) with a CCW pressure of 208,900 Pa (30.3 psig). In addition, the ability to vary horizontal forces from thrust to drag while maintaining a constant vertical (or lift) value was demonstrated by varying the blowing pressure. The versatility of the CCW/USB system, if applied to a STOL aircraft, was confirmed, where rapid conversion from a high drag approach mode to a thrust recovering waveoff or takeoff configuration could be achieved by nearly instantaneous blowing pressure variation.

  13. A Research Needs Workshop on Effects of Aircraft Noise and Sonic Booms on Fish and Wildlife Held in Estes Park, Colorado on 18-21 April 1988

    DTIC Science & Technology

    1988-08-01

    34 ,- EFET OF AIRCRAFT NOISE-AND SONIC BOOMS ON- FISH AND WILDLFE: SA RESEARCH NEEDS WORKSHOP z < DTI-C MS~IJ IISS ’EFFETS O AICRAF NO Engineering and...Services Center "D~to RTB LnNSAMNEY,U.S. Air ForceISH AD WEj Fish and Wildlife Service U.S. Department of the Interior I1 . .. . ..m z m - m m m mloE...I l l I l l ~ n .. / ESL-TR-88-64 NERC-88/23 /AAugust 1988 August 1988 EFFECTS OF AIRCRAFT NOISE AND SONIC BOOMS ON FISH AND WILDLIFE: A RESEARCH

  14. A method for identifying research priorities for health systems research on health and aging.

    PubMed

    Sivananthan, Saskia N; Chambers, Larry W

    2013-01-01

    A rapid and feasible priority-setting method conducted within a limited budget was used to identify research topics that would have an influence on health services for older adults. Health and aging researchers, policy makers, and caregivers were recruited to complete Delphi surveys that generated and ranked topics and identified other potential researchers. An interdisciplinary team of researchers was selected to produce and submit a proposal to a peer-review-granting agency. This method can be adapted by organizations to determine the focus of their research agenda and to engage individuals for collaboration on future research projects.

  15. Methane and nitrous oxide measurements onboard the UK Atmospheric Research Aircraft using quantum cascade laser spectrometry (QCL)

    NASA Astrophysics Data System (ADS)

    Muller, J. B.; O'Shea, S.; Dorsey, J.; Bauguitte, S.; Cain, M.; Allen, G.; Percival, C. J.; Gallagher, M. W.

    2012-12-01

    A Aerodyne Research© Mini-Quantum Cascade Laser (QCL) spectrometer was installed on the UK Facility of Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft and employed during summer 2012. Methane (CH4) and nitrous oxide (N2O) concentrations were measured within the Arctic Circle as part of the MAMM project (Methane and other greenhouse gases in the Arctic - Measurements, process studies and Modelling) as well as around the UK as part of the ClearfLo project (Clean Air for London). A range of missions were flown, including deep vertical profiles up to the stratosphere, providing concentration profiles of CH4 and N2O, as well as low altitude level runs exploring near surface diffuse emission sources such as the wetlands in Arctic Lapland and point emissions sources such as gas platforms off the UK coast. Significant pollution plumes were observed both in the Arctic and around the UK with elevated CH4 concentrations, as well as enhanced CO, O3 and aerosol levels. The NAME Lagrangian particle dispersion model will be used to investigate the origins of these CH4 plumes to identify the locations of the emissions sources. The first set of flights using QCL on the FAAM research aircraft have been successful and regular in-flight calibrations (high/low span) and target concentrations were used to determine instrument accuracy and precision. Additional data quality control checks could be made by comparison with an onboard Los Gatos Fast Greenhouse Gas Analyser (FGGA) for CO2 and CH4 and provide the basis for further instrument development and implementation for future Arctic MAMM flights during spring and summer 2013.

  16. Recent developments in rotary-balance testing of fighter aircraft configurations at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Malcolm, G. N.; Schiff, L. B.

    1985-01-01

    Two rotary balance apparatuses were developed for testing airplane models in a coning motion. A large scale apparatus, developed for use in the 12-Foot Pressure Wind tunnel primarily to permit testing at high Reynolds numbers, was recently used to investigate the aerodynamics of 0.05-scale model of the F-15 fighter aircraft. Effects of Reynolds number, spin rate parameter, model attitude, presence of a nose boom, and model/sting mounting angle were investigated. A smaller apparatus, which investigates the aerodynamics of bodies of revolution in a coning motion, was used in the 6-by-6 foot Supersonic Wind Tunnel to investigate the aerodynamic behavior of a simple representation of a modern fighter, the Standard Dynamic Model (SDM). Effects of spin rate parameter and model attitude were investigated. A description of the two rigs and a discussion of some of the results obtained in the respective test are presented.

  17. IR radiation characteristics and operating range research for a quad-rotor unmanned aircraft vehicle.

    PubMed

    Gong, Mali; Guo, Rui; He, Sifeng; Wang, Wei

    2016-11-01

    The security threats caused by multi-rotor unmanned aircraft vehicles (UAVs) are serious, especially in public places. To detect and control multi-rotor UAVs, knowledge of IR characteristics is necessary. The IR characteristics of a typical commercial quad-rotor UAV are investigated in this paper through thermal imaging with an IR camera. Combining the 3D geometry and IR images of the UAV, a 3D IR characteristics model is established so that the radiant power from different views can be obtained. An estimation of operating range to detect the UAV is calculated theoretically using signal-to-noise ratio as the criterion. Field experiments are implemented with an uncooled IR camera in an environment temperature of 12°C and a uniform background. For the front view, the operating range is about 150 m, which is close to the simulation result of 170 m.

  18. Definition of propulsion system for V/STOL research and technology aircraft

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Wind tunnel test support, aircraft contractor support, a propulsion system computer card deck, preliminary design studies, and propulsion system development plan are reported. The Propulsion system consists of two lift/cruise turbofan engines, one turboshaft engine and one lift fan connected together with shafting into a combiner gearbox. Distortion parameter levels from 40 x 80 test data were within the established XT701-AD-700 limits. The three engine-three fan system card deck calculates either vertical or conventional flight performance, installed or uninstalled. Design study results for XT701 engine modifications, bevel gear cross shaft location, fixed and tilt fan frames and propulsion system controls are described. Optional water-alcohol injection increased total net thrust 10.3% on a 90 F day. Engines have sufficient turbine life for 500 hours of the RTA duty cycle.

  19. Fiber Optic Experience with the Smart Actuation System on the F-18 Systems Research Aircraft

    NASA Technical Reports Server (NTRS)

    Zavala, Eddie

    1997-01-01

    High bandwidth, immunity to electromagnetic interference, and potential weight savings have led to the development of fiber optic technology for future aerospace vehicle systems. This technology has been incorporated in a new smart actuator as the primary communication interface. The use of fiber optics simplified system integration and significantly reduced wire count. Flight test results showed that fiber optics could be used in aircraft systems and identified critical areas of development of fly-by-light technology. This paper documents the fiber optic experience gained as a result of this program, and identifies general design considerations that could be used in a variety of specific applications of fiber optic technology. Environmental sensitivities of fiber optic system components that significantly contribute to optical power variation are discussed. Although a calibration procedure successfully minimized the effect of fiber optic sensitivities, more standardized calibration methods are needed to ensure system operation and reliability in future aerospace vehicle systems.

  20. Flight Demonstration of X-33 Vehicle Health Management System Components on the F/A-18 Systems Research Aircraft

    NASA Technical Reports Server (NTRS)

    Schweikhard, Keith A.; Richards, W. Lance; Theisen, John; Mouyos, William; Garbos, Raymond; Schkolnik, Gerald (Technical Monitor)

    1998-01-01

    The X-33 reusable launch vehicle demonstrator has identified the need to implement a vehicle health monitoring system that can acquire data that monitors system health and performance. Sanders, a Lockheed Martin Company, has designed and developed a commercial off-the-shelf (COTS)-based open architecture system that implements a number of technologies that have not been previously used in a flight environment. NASA Dryden Flight Research Center and Sanders teamed to demonstrate that the distributed remote health nodes, fiber optic distributed strain sensor, and fiber distributed data interface communications components of the X-33 vehicle health management (VHM) system could be successfully integrated and flown on a NASA F-18 aircraft. This paper briefly describes components of X-33 VHM architecture flown at Dryden and summarizes the integration and flight demonstration of these X-33 VHM components. Finally, it presents early results from the integration and flight efforts.

  1. Flight Demonstration of X-33 Vehicle Health Management System Components on the F/A-18 Systems Research Aircraft

    NASA Technical Reports Server (NTRS)

    Schweikhard, Keith A.; Richards, W. Lance; Theisen, John; Mouyos, William; Garbos, Raymond

    2001-01-01

    The X-33 reusable launch vehicle demonstrator has identified the need to implement a vehicle health monitoring system that can acquire data that monitors system health and performance. Sanders, a Lockheed Martin Company, has designed and developed a COTS-based open architecture system that implements a number of technologies that have not been previously used in a flight environment. NASA Dryden Flight Research Center and Sanders teamed to demonstrate that the distributed remote health nodes, fiber optic distributed strain sensor, and fiber distributed data interface communications components of the X-33 vehicle health management (VHM) system could be successfully integrated and flown on a NASA F-18 aircraft. This paper briefly describes components of X-33 VHM architecture flown at Dryden and summarizes the integration and flight demonstration of these X-33 VHM components. Finally, it presents early results from the integration and flight efforts.

  2. A Model for Space Shuttle Orbiter Tire Side Forces Based on NASA Landing Systems Research Aircraft Test Results

    NASA Technical Reports Server (NTRS)

    Carter, John F.; Nagy, Christopher J.; Barnicki, Joseph S.

    1997-01-01

    Forces generated by the Space Shuttle orbiter tire under varying vertical load, slip angle, speed, and surface conditions were measured using the Landing System Research Aircraft (LSRA). Resulting data were used to calculate a mathematical model for predicting tire forces in orbiter simulations. Tire side and drag forces experienced by an orbiter tire are cataloged as a function of vertical load and slip angle. The mathematical model is compared to existing tire force models for the Space Shuttle orbiter. This report describes the LSRA and a typical test sequence. Testing methods, data reduction, and error analysis are presented. The LSRA testing was conducted on concrete and lakebed runways at the Edwards Air Force Flight Test Center and on concrete runways at the Kennedy Space Center (KSC). Wet runway tire force tests were performed on test strips made at the KSC using different surfacing techniques. Data were corrected for ply steer forces and conicity.

  3. Research aircraft observations of the mesoscale and microscale structure of a cold front over the eastern Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Bond, Nicholas A.; Shapiro, M. A.

    1991-01-01

    The structure of an oceanic cold front is described on the basis of research aircraft observations taken during the Ocean Storms field experiment. Synoptic and mesoscale analyses compare the structure of an upper-level jet-front system observed slightly downstream from the wind speed maximum to its structure in the upstream entrance region. Stratospheric potential vorticity and ozone were found within the frontal zone down to about 800 mb. Microscale analyses of the front near the sea surface were carried out for a portion of the front having the signature of a 'rope' cloud in satellite imagery. A narrow (less than 1 km) zone of upward motion (about 4 m/s) and of horizontal shear (about 0.01/s) characterized the front near the surface. Significant alongfront variability was found, including lateral displacements in the frontal zone where there were weaker updrafts.

  4. Lewis icing research tunnel test of the aerodynamic effects of aircraft ground deicing/anti-icing fluids

    NASA Technical Reports Server (NTRS)

    Runyan, L. James; Zierten, Thomas A.; Hill, Eugene G.; Addy, Harold E., Jr.

    1992-01-01

    A wind tunnel investigation of the effect of aircraft ground deicing/anti-icing fluids on the aerodynamic characteristics of a Boeing 737-200ADV airplane was conducted. The test was carried out in the NASA Lewis Icing Research Tunnel. Fluids tested include a Newtonian deicing fluid, three non-Newtonian anti-icing fluids commercially available during or before 1988, and eight new experimental non-Newtonian fluids developed by four fluid manufacturers. The results show that fluids remain on the wind after liftoff and cause a measurable lift loss and drag increase. These effects are dependent on the high-lift configuration and on the temperature. For a configuration with a high-lift leading-edge device, the fluid effect is largest at the maximum lift condition. The fluid aerodynamic effects are related to the magnitude of the fluid surface roughness, particularly in the first 30 percent chord. The experimental fluids show a significant reduction in aerodynamic effects.

  5. Transonic aerodynamic characteristics of a supersonic cruise aircraft research model with the engines suspended above the wing

    NASA Technical Reports Server (NTRS)

    Mercer, C. E.; Carson, G. T., Jr.

    1979-01-01

    The influence of upper-surface nacelle exhaust flow on the aerodynamic characteristics of a supersonic cruise aircraft research configuration was investigated in a 16 foot transonic tunnel over a range of Mach numbers from 0.60 to 1.20. The arrow-wing transport configuration with engines suspended over the wing was tested at angles of attack from -4 deg to 6 deg and jet total pressure ratios from 1 to approximately 13. Wing-tip leading edge flap deflections of -10 deg to 10 deg were tested with the wing-body configuration. Various nacelle locations (chordwise, spanwise, and vertical) were tested over the ranges of Mach numbers, angles of attack, and jet total-pressure ratios. The results show that reflecting the wing-tip leading edge flap from 0 deg to -10 deg increased the maximum lift-drag ratio by 1.0 at subsonic speeds. Jet exhaust interference effects were negligible.

  6. Recent progress in research pertaining to estimates of gas-side heat transfer in an aircraft gas turbine

    NASA Technical Reports Server (NTRS)

    Graham, Robert W.

    1989-01-01

    A decade ago several important fundamental heat transfer phenomena were identified which were considered basic to the ability to predict heat transfer loads in aircraft gas turbines. The progress in addressing these fundamentals over the past ten years is assessed. Much reseach effort has been devoted to their study in university, industry and government labs and significant progress has been achieved. Advances in computer technology have enabled the modeling of complex 3-D fluid flow in gas turbines so necessary for heat transfer calculations. Advances in instrumentation plus improved data acquisition have brought about more reliable data sets. While much has advanced in the 1980's, much challenging research remains to be done. Several of these areas are suggested.

  7. The Aircraft Morphing Program

    NASA Technical Reports Server (NTRS)

    Wlezien, R. W.; Horner, G. C.; McGowan, A. R.; Padula, S. L.; Scott, M. A.; Silcox, R. J.; Simpson, J. O.

    1998-01-01

    In the last decade smart technologies have become enablers that cut across traditional boundaries in materials science and engineering. Here we define smart to mean embedded actuation, sensing, and control logic in a tightly coupled feedback loop. While multiple successes have been achieved in the laboratory, we have yet to see the general applicability of smart devices to real aircraft systems. The NASA Aircraft Morphing program is an attempt to couple research across a wide range of disciplines to integrate smart technologies into high payoff aircraft applications. The program bridges research in seven individual disciplines and combines the effort into activities in three primary program thrusts. System studies are used to assess the highest- payoff program objectives, and specific research activities are defined to address the technologies required for development of smart aircraft systems. In this paper we address the overall program goals and programmatic structure, and discuss the challenges associated with bringing the technologies to fruition.

  8. Aircraft Morphing program

    NASA Astrophysics Data System (ADS)

    Wlezien, Richard W.; Horner, Garnett C.; McGowan, Anna-Maria R.; Padula, Sharon L.; Scott, Michael A.; Silcox, Richard J.; Harrison, Joycelyn S.

    1998-06-01

    In the last decade smart technologies have become enablers that cut across traditional boundaries in materials science and engineering. Here we define smart to mean embedded actuation, sensing, and control logic in a tightly coupled feedback loop. While multiple successes have been achieved in the laboratory, we have yet to see the general applicability of smart devices to real aircraft systems. The NASA Aircraft Morphing program is an attempt to couple research across a wide range of disciplines to integrate smart technologies into high payoff aircraft applications. The program bridges research in seven individual disciplines and combines the effort into activities in three primary program thrusts. System studies are used to assess the highest-payoff program objectives, and specific research activities are defined to address the technologies required for development of smart aircraft systems. In this paper we address the overall program goals and programmatic structure, and discuss the challenges associated with bringing the technologies to fruition.

  9. ALADINA - an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Altstädter, B.; Platis, A.; Wehner, B.; Scholtz, A.; Wildmann, N.; Hermann, M.; Käthner, R.; Baars, H.; Bange, J.; Lampert, A.

    2015-04-01

    This paper presents the unmanned research aircraft Carolo P360 "ALADINA" (Application of Light-weight Aircraft for Detecting IN situ Aerosol) for investigating the horizontal and vertical distribution of ultrafine particles in the atmospheric boundary layer (ABL). It has a wingspan of 3.6 m, a maximum take-off weight of 25 kg and is equipped with aerosol instrumentation and meteorological sensors. A first application of the system, together with the unmanned research aircraft MASC (Multi-Purpose Airborne Carrier) of the Eberhard Karls University of Tübingen (EKUT), is described. As small payload for ALADINA, two condensation particle counters (CPC) and one optical particle counter (OPC) were miniaturised by re-arranging the vital parts and composing them in a space-saving way in the front compartment of the airframe. The CPCs are improved concerning the lower detection threshold and the response time to less than 1.3 s. Each system was characterised in the laboratory and calibrated with test aerosols. The CPCs are operated in this study with two different lower detection threshold diameters of 11 and 18 nm. The amount of ultrafine particles, which is an indicator for new particle formation, is derived from the difference in number concentrations of the two CPCs (ΔN). Turbulence and thermodynamic structure of the boundary layer are described by measurements of fast meteorological sensors that are mounted at the aircraft nose. A first demonstration of ALADINA and a feasibility study were conducted in Melpitz near Leipzig, Germany, at the Global Atmosphere Watch (GAW) station of the Leibniz Institute for Tropospheric Research (TROPOS) on 2 days in October 2013. There, various ground-based instruments are installed for long-term atmospheric monitoring. The ground-based infrastructure provides valuable additional background information to embed the flights in the continuous atmospheric context and is used for validation of the airborne results. The development of the

  10. ALADINA - an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Altstädter, B.; Platis, A.; Wehner, B.; Scholtz, A.; Lampert, A.; Wildmann, N.; Hermann, M.; Käthner, R.; Bange, J.; Baars, H.

    2014-12-01

    This paper presents the unmanned research aircraft Carolo P360 "ALADINA" (Application of Light-weight Aircraft for Detecting IN-situ Aerosol) for investigating the horizontal and vertical distribution of ultrafine particles in the atmospheric boundary layer (ABL). It has a wingspan of 3.6 m, a maximum take-off weight of 25 kg and is equipped with aerosol instrumentation and meteorological sensors. A first application of the system, together with the unmanned research aircraft MASC (Multi-Purpose Airborne Carrier) of the Eberhard-Karls University of Tübingen (EKUT), is described. As small payload for ALADINA, two condensation particle counters (CPC) and one optical particle counter (OPC) were miniaturized by re-arranging the vital parts and composing them in a space saving way in the front compartment of the airframe. The CPCs are improved concerning the lower detection threshold and the response time. Each system was characterized in the laboratory and calibrated with test aerosols. The CPCs are operated with two different lower detection threshold diameters of 6 and 18 nm. The amount of ultrafine particles, which is an indicator for new particle formation, is derived from the difference in number concentrations of the two CPCs. Turbulence and thermodynamic structure of the boundary layer are described by measurements of fast meteorological sensors that are mounted at the aircraft nose. A first demonstration of ALADINA and a feasibility study were conducted in Melpitz near Leipzig, Germany, at the Global Atmosphere Watch (GAW) station of the Leibniz Institute for Tropospheric Research (TROPOS) on two days in October 2013. There, various ground-based instruments are installed for long-term atmospheric monitoring. The ground-based infrastructure provides valuable additional background information to embed the flights in the continuous atmospheric context and is used for validation of the airborne results. The development of the boundary layer, derived from

  11. HIV and Aging Research in Women: An Overview.

    PubMed

    Stoff, David M; Colosi, Deborah; Rubtsova, Anna; Wingood, Gina

    2016-12-01

    This paper reviews some background issues as a foundation to place the ensuing supplement papers of this special issue section in context. The articles in this special supplement issue deepen and expand our understanding of biomedical, neurocognitive, and psychosocial aspects involved in human immunodeficiency virus (HIV) of older women, primarily through the use of the Women's Interagency HIV Study (WIHS) prospective cohort study. As it relates to research on the intersection between HIV and aging in women, we discuss (i) epidemiology as introduction, (ii) the cohort study design featuring the WIHS, (iii) definitions, (iv) models, and (v) section articles.

  12. Advanced ATC: An aircraft perspective

    NASA Technical Reports Server (NTRS)

    Credeur, Leonard; Williams, David H.; Howell, William E.; Spitzer, Cary R.

    1986-01-01

    The principal operational improvements desired by commercial aircraft operators in the United States are efficient aircraft operations and delay reductions at the major terminals. Efforts underway within the Advanced Transport Operating Systems Program at the Langley Research Center to provide a technology basis for reducing delay while improving aircraft efficiency are discussed. The principal thrust is the development of time-based traffic control concepts which could be used within the framework of the upgraded National Airspace System and which would allow conventionally equipped aircraft to operate in a manner compatible with advanced aircraft.

  13. Experimental and numerical research on the aerodynamics of unsteady moving aircraft

    NASA Astrophysics Data System (ADS)

    Bergmann, Andreas; Huebner, Andreas; Loeser, Thomas

    2008-02-01

    For the experimental determination of the dynamic wind tunnel data, a new combined motion test capability was developed at the German-Dutch Wind Tunnels DNW for their 3 m Low Speed Wind Tunnel NWB in Braunschweig, Germany, using a unique six degree-of-freedom test rig called ‘Model Positioning Mechanism’ (MPM) as an improved successor to the older systems. With that cutting-edge device, several transport aircraft configurations including a blended wing body configuration were tested in different modes of oscillatory motions roll, pitch and yaw as well as delta-wing geometries like X-31 equipped with remote controlled rudders and flaps to be able to simulate realistic flight maneuvers, e.g., a Dutch Roll. This paper describes the motivation behind these tests and the test setup and in addition gives a short introduction into time accurate maneuver-testing capabilities incorporating models with remote controlled control surfaces. Furthermore, the adaptation of numerical methods for the prediction of dynamic derivatives is described and some examples with the DLR-F12 configuration will be given. The calculations are based on RANS-solution using the finite volume parallel solution algorithm with an unstructured discretization concept (DLR TAU-code).

  14. Aging

    PubMed Central

    Park, Dong Choon

    2013-01-01

    Aging is initiated based on genetic and environmental factors that operate from the time of birth of organisms. Aging induces physiological phenomena such as reduction of cell counts, deterioration of tissue proteins, tissue atrophy, a decrease of the metabolic rate, reduction of body fluids, and calcium metabolism abnormalities, with final progression onto pathological aging. Despite the efforts from many researchers, the progression and the mechanisms of aging are not clearly understood yet. Therefore, the authors would like to introduce several theories which have gained attentions among the published theories up to date; genetic program theory, wear-and-tear theory, telomere theory, endocrine theory, DNA damage hypothesis, error catastrophe theory, the rate of living theory, mitochondrial theory, and free radical theory. Although there have been many studies that have tried to prevent aging and prolong life, here we introduce a couple of theories which have been proven more or less; food, exercise, and diet restriction. PMID:24653904

  15. Professor Age and Research Assistant Ratings of Passive-Avoidant and Proactive Leadership: The Role of Age-Related Work Concerns and Age Stereotypes

    ERIC Educational Resources Information Center

    Zacher, Hannes; Bal, P. Matthijs

    2012-01-01

    Recent research has shown that, in general, older professors are rated to have more passive-avoidant leadership styles than younger professors by their research assistants. The current study investigated professors' age-related work concerns and research assistants' favorable age stereotypes as possible explanations for this finding. Data came…

  16. OVRhyp, Scramjet Test Aircraft

    NASA Technical Reports Server (NTRS)

    Aslan, J.; Bisard, T.; Dallinga, S.; Draper, K.; Hufford, G.; Peters, W.; Rogers, J.

    1990-01-01

    A preliminary design for an unmanned hypersonic research vehicle to test scramjet engines is presented. The aircraft will be launched from a carrier aircraft at an altitude of 40,000 feet at Mach 0.8. The vehicle will then accelerate to Mach 6 at an altitude of 100,000 feet. At this stage the prototype scramjet will be employed to accelerate the vehicle to Mach 10 and maintain Mach 10 flight for 2 minutes. The aircraft will then decelerate and safely land.

  17. Flight evaluation of advanced controls and displays for transition and landing on the NASA V/STOL systems research aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, James A.; Stortz, Michael W.; Borchers, Paul F.; Moralez, Ernesto, III

    1996-01-01

    Flight experiments were conducted on Ames Research Center's V/STOL Systems Research Aircraft (VSRA) to assess the influence of advanced control modes and head-up displays (HUD's) on flying qualities for precision approach and landing operations. Evaluations were made for decelerating approaches to hover followed by a vertical landing and for slow landings for four control/display mode combinations: the basic YAV-8B stability augmentation system; attitude command for pitch, roll, and yaw; flightpath/acceleration command with translational rate command in the hover; and height-rate damping with translational-rate command. Head-up displays used in conjunction with these control modes provided flightpath tracking/pursuit guidance and deceleration commands for the decelerating approach and a mixed horizontal and vertical presentation for precision hover and landing. Flying qualities were established and control usage and bandwidth were documented for candidate control modes and displays for the approach and vertical landing. Minimally satisfactory bandwidths were determined for the translational-rate command system. Test pilot and engineer teams from the Naval Air Warfare Center, the Boeing Military Airplane Group, Lockheed Martin, McDonnell Douglas Aerospace, Northrop Grumman, Rolls-Royce, and the British Defense Research Agency participated in the program along with NASA research pilots from the Ames and Lewis Research Centers. The results, in conjunction with related ground-based simulation data, indicate that the flightpath/longitudinal acceleration command response type in conjunction with pursuit tracking and deceleration guidance on the HUD would be essential for operation to instrument minimums significantly lower than the minimums for the AV-8B. It would also be a superior mode for performing slow landings where precise control to an austere landing area such as a narrow road is demanded. The translational-rate command system would reduce pilot workload for

  18. Aircraft-vehicle system interaction. An evaluation of NASA's program in human factors research

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Research in the areas of man machine interaction and human factors engineering are assessed in relation to improved effeciency and aviation safety. The appropriateness, relevance, adequacy, and timeliness of the research is evaluated, and recommendations are provided regarding the objectives, approach and content.

  19. Engaging Students in Aging Research through the Academic Research Enhancement Award Program

    ERIC Educational Resources Information Center

    Butler, Sandra S.

    2014-01-01

    This article describes the R15, Academic Research Enhancement Award (AREA) mechanism available through the National Institutes of Health (NIH) for institutions that do not typically receive substantial NIH funding. Equipped with training received at the St. Scholastica National Institute on Social Work and Aging, I was able to secure AREA funding…

  20. Hyper-X Research Vehicle - Artist Concept Mounted on Pegasus Rocket Attached to B-52 Launch Aircraft

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This artist's concept depicts the Hyper-X research vehicle riding on a booster rocket prior to being launched by the Dryden Flight Research Center's B-52 at about 40,000 feet. The X-43A was developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry

  1. V/STOL tilt rotor research aircraft. Volume 1: General information, revision C

    NASA Technical Reports Server (NTRS)

    Kimbell, M.; Whitener, A.

    1980-01-01

    The configuration, operation and maintenance requirements for the contractor-furnished portion of the XV-15 research instrumentation and data acquisition system are defined. Descriptions of systems operation, maintenance and checkout procedures, and cable designations are given.

  2. Nondestructive inspection of bonded composite doublers for aircraft

    NASA Astrophysics Data System (ADS)

    Roach, Dennis P.; Moore, David; Walkington, Phillip D.

    1996-11-01

    One of the major thrusts established under the FAA's National Aging Aircraft Research Program is to foster new technologies associated with civil aircraft maintenance. Recent DOD and other government developments in the use of bonded composite doublers on metal structures has supported the need for research and validation of such doubler applications on US certificated airplanes. Composite doubler technology is rapidly maturing and shows promise of cost savings on aging aircraft. While there have been numerous studies and military aircraft installations of composite doublers, the technology has not been certified for use on commercial aircraft. Before the use of composite doublers can be accepted by the civil aviation industry, it is imperative that methods be developed which can quickly and reliably assess the integrity of the doubler. In this study, a specific composite application was chosen on an L-1011 aircraft in order to focus the tasks on application and operation issues. Primary among inspection requirements for these doublers is the identification of disbonds, between the composite laminate and aluminum parent material, and delaminations in the composite laminate. Surveillance of cracks or corrosion in the inspection (NDI) method can inspect for every flaw type, therefore it is important to be aware of available NDI techniques and to properly address their capabilities and limitations. This paper reports on a series of NDI tests which have been conducted on laboratory test structures and on a fuselage section cut from a retired L-1011 aircraft. Specific challenges, unique to bonded composite doubler applications, will be highlighted. In order to quickly integrate this technology into existing aircraft maintenance depots, the use of conventional NDI, ultrasonics, x-ray, and eddy current, is stressed. The application of these NDI technique to composite doublers and the results from test specimens, which were loaded to provide a changing flaw profile, are

  3. Structural Health Monitoring of AN Aircraft Joint

    NASA Astrophysics Data System (ADS)

    Mickens, T.; Schulz, M.; Sundaresan, M.; Ghoshal, A.; Naser, A. S.; Reichmeider, R.

    2003-03-01

    A major concern with ageing aircraft is the deterioration of structural components in the form of fatigue cracks at fastener holes, loose rivets and debonding of joints. These faults in conjunction with corrosion can lead to multiple-site damage and pose a hazard to flight. Developing a simple vibration-based method of damage detection for monitoring ageing structures is considered in this paper. The method is intended to detect damage during operation of the vehicle before the damage can propagate and cause catastrophic failure of aircraft components. It is typical that only a limited number of sensors could be used on the structure and damage can occur anywhere on the surface or inside the structure. The research performed was to investigate use of the chirp vibration responses of an aircraft wing tip to detect, locate and approximately quantify damage. The technique uses four piezoelectric patches alternatively as actuators and sensors to send and receive vibration diagnostic signals.Loosening of selected screws simulated damage to the wing tip. The results obtained from the testing led to the concept of a sensor tape to detect damage at joints in an aircraft structure.

  4. Design of a high-performance rotary stratified-charge research aircraft engine

    NASA Technical Reports Server (NTRS)

    Jones, C.; Mount, R. E.

    1984-01-01

    The power section for an advanced rotary stratified-charge general aviation engine has been designed under contract to NASA. The single-rotor research engine of 40 cubic-inches displacement (RCI-40), now being procured for test initiation this summer, is targeted for 320 T.O. horse-power in a two-rotor production engine. The research engine is designed for operating on jet-fuel, gasoline or diesel fuel and will be used to explore applicable advanced technologies and to optimize high output performance variables. Design of major components of the engine is described in this paper.

  5. Researcher's guide to the NASA Ames Flight Simulator for Advanced Aircraft (FSAA)

    NASA Technical Reports Server (NTRS)

    Sinacori, J. B.; Stapleford, R. L.; Jewell, W. F.; Lehman, J. M.

    1977-01-01

    Performance, limitations, supporting software, and current checkout and operating procedures are presented for the flight simulator, in terms useful to the researcher who intends to use it. Suggestions to help the researcher prepare the experimental plan are also given. The FSAA's central computer, cockpit, and visual and motion systems are addressed individually but their interaction is considered as well. Data required, available options, user responsibilities, and occupancy procedures are given in a form that facilitates the initial communication required with the NASA operations' group.

  6. Real-Time Simulation Computation System. [for digital flight simulation of research aircraft

    NASA Technical Reports Server (NTRS)

    Fetter, J. L.

    1981-01-01

    The Real-Time Simulation Computation System, which will provide the flexibility necessary for operation in the research environment at the Ames Research Center is discussed. Designing the system with common subcomponents and using modular construction techniques enhances expandability and maintainability qualities. The 10-MHz series transmission scheme is the basis of the Input/Output Unit System and is the driving force providing the system flexibility. Error checking and detection performed on the transmitted data provide reliability measurements and assurances that accurate data are received at the simulators.

  7. The insertion of human dynamics models in the flight control loops of V/STOL research aircraft. Appendix 2: The optimal control model of a pilot in V/STOL aircraft control loops

    NASA Technical Reports Server (NTRS)

    Zipf, Mark E.

    1989-01-01

    An overview is presented of research work focussed on the design and insertion of classical models of human pilot dynamics within the flight control loops of V/STOL aircraft. The pilots were designed and configured for use in integrated control system research and design. The models of human behavior that were considered are: McRuer-Krendel (a single variable transfer function model); and Optimal Control Model (a multi-variable approach based on optimal control and stochastic estimation theory). These models attempt to predict human control response characteristics when confronted with compensatory tracking and state regulation tasks. An overview, mathematical description, and discussion of predictive limitations of the pilot models is presented. Design strategies and closed loop insertion configurations are introduced and considered for various flight control scenarios. Models of aircraft dynamics (both transfer function and state space based) are developed and discussed for their use in pilot design and application. Pilot design and insertion are illustrated for various flight control objectives. Results of pilot insertion within the control loops of two V/STOL research aricraft (Sikorski Black Hawk UH-60A, McDonnell Douglas Harrier II AV-8B) are presented and compared against actual pilot flight data. Conclusions are reached on the ability of the pilot models to adequately predict human behavior when confronted with similar control objectives.

  8. Aircraft Design

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H. (Inventor); Uden, Edward (Inventor)

    2016-01-01

    The present invention is an aircraft wing design that creates a bell shaped span load, which results in a negative induced drag (induced thrust) on the outer portion of the wing; such a design obviates the need for rudder control of an aircraft.

  9. Unmanned Aircraft Systems at NASA Dryden

    NASA Video Gallery

    NASA Dryden has a heritage of developmental and operational experience with unmanned aircraft systems. Work on Boeing's sub-scale X-36 Tailless Fighter Agility Research Aircraft, X-48 Blended Wing ...

  10. Aircraft Research and Technology for Antimisting Kerosene Conference, February 18-19, 1981.

    DTIC Science & Technology

    1981-06-01

    GROUP, U.T.C.) By Harold W. Schmidt NASA Lewis Research Center I’m going to discuss the results of an evaluation of the use of antimisting kerosene in...Aerospace Corp. General Electric Co. 14-3 J. N. Stratton W. Suiter , Jr. Com. on Public Works & Transp. ICI Americas, Inc. House of Representatives R. L

  11. Start Up Research Effort in Fluid Mechanics. Advanced Methods for Acoustic and Thrust Benefits for Aircraft Engine Nozzle

    NASA Technical Reports Server (NTRS)

    White, Samuel G.; Gilinsky, Mikhail M.

    1997-01-01

    In accordance with the project plan for the report period in the proposal titled above, HU and FML teams investigated two sets of concepts for reduction of noise and improvement in efficiency for jet exhaust nozzles of aircraft engines and screws for mixers, fans, propellers and boats. The main achievements in the report period are: (a) Publication of the paper in the AIAA Journal, which described our concepts and some results. (b) The Award in the Civil Research and Development Foundation (CRDF) competition. This 2 year grant for Hampton University (HU) and Central AeroHydrodynamic Institute (TSAGI, Moscow, Russia) supports the research implementation under the current NASA FAR grant. (c) Selection for funding by NASA HQ review panel of the Partnership Awards Concept Paper. This two year grant also will support our current FAR grant. (d) Publication of a Mobius Strip concept in NASA Technical Briefs, June, 1996, and a great interest of many industrial companies in this invention. Successful experimental results with the Mobius shaped screw for mixers, which save more than 30% of the electric power by comparison with the standard screws. Creation of the scientific-popular video-film which can be used for commercial and educational purposes. (e) Organization work, joint meetings and discussions of the NASA LARC JNL Team and HU professors and administration for the solution of actual problems and effective work of the Fluid Mechanics Laboratory at Hampton University. In this report the main designs are enumerated. It also contains for both concept sets: (1) the statement of the problem for each design, some results, publications, inventions, patents, our vision for continuation of this research, and (2) present and expected problems in the future.

  12. Real-time flutter analysis of an active flutter-suppression system on a remotely piloted research aircraft

    NASA Technical Reports Server (NTRS)

    Gilyard, G. B.; Edwards, J. W.

    1983-01-01

    Flight flutter-test results of the first aeroelastic research wing (ARW-1) of NASA's drones for aerodynamic and structural testing program are presented. The flight-test operation and the implementation of the active flutter-suppression system are described as well as the software techniques used to obtain real-time damping estimates and the actual flutter testing procedure. Real-time analysis of fast-frequency aileron excitation sweeps provided reliable damping estimates. The open-loop flutter boundary was well defined at two altitudes; a maximum Mach number of 0.91 was obtained. Both open-loop and closed-loop data were of exceptionally high quality. Although the flutter-suppression system provided augmented damping at speeds below the flutter boundary, an error in the implementation of the system resulted in the system being less stable than predicted. The vehicle encountered system-on flutter shortly after crossing the open-loop flutter boundary on the third flight and was lost. The aircraft was rebuilt. Changes made in real-time test techniques are included.

  13. Study of heat sink thermal protection systems for hypersonic research aircraft

    NASA Technical Reports Server (NTRS)

    Vahl, W. A.; Edwards, C. L. W.

    1978-01-01

    The feasibility of using a single metallic heat sink thermal protection system (TPS) over a projected flight test program for a hypersonic research vehicle was studied using transient thermal analyses and mission performance calculations. Four materials, aluminum, titanium, Lockalloy, and beryllium, as well as several combinations, were evaluated. Influence of trajectory parameters were considered on TPS and mission performance for both the clean vehicle configuration as well as with an experimental scramjet mounted. From this study it was concluded that a metallic heat sink TPS can be effectively employed for a hypersonic research airplane flight envelope which includes dash missions in excess of Mach 8 and 60 seconds of cruise at Mach numbers greater than 6. For best heat sink TPS match over the flight envelope, Lockalloy and titanium appear to be the most promising candidates

  14. Predicted flight characteristics of the augmentor wing jet STOL research aircraft

    NASA Technical Reports Server (NTRS)

    Spitzer, R. E.

    1972-01-01

    An existing deHavilland C-8A airplane has been modified into an augmentor wing flight test vehicle. Research objectives are to verify the augmentor flap concept and to produce data for STOL airworthiness criteria. The Modified C-8A provides the means for jet-STOL flight research down to a 60 knot approach speed. The airplane has a high thrust-to-weight ratio, high-lift flap system, vectored thrust, powerful flight controls, and lateral-directional stability augmentation system. Normal performance and handling qualities are expected to be satisfactory. Analysis and piloted simulator results indicate that stability and control characteristics in conventional flight are rated satisfactory. Handling qualities in the STOL regime are also generally satisfactory, although pilot workload is high about the longitudinal axis.

  15. Aircraft Wheel Life Assessment

    DTIC Science & Technology

    1993-07-01

    responsible for a significant amount of aircraft dam - age. Many such wheel failures have been catastrophic, resulting in a sudden loss of tire inflation...Fatigue Crack Growth," Fatigue and Fracture in Engineering Materials and Structures, Vol. 10, 419-428, 1987. Cox, B. N., Pardee , W., and Morris, W. L

  16. Environmental research brief: Pollution prevention assessment for a manufacturer of aircraft landing gear

    SciTech Connect

    Jendrucko, R.J.; Morton, S.D.; Thomas, T.M.; Looby, G.P.

    1995-08-01

    The US Environmental Protection Agency (EPA) has funded a Pilot project to assist small and medium-size manufacture who want to minimize their generation of waste but who lac the expertise to do so. In an effort to assist these manufacturers Waste Minimization Assessment Centers (WMACs) we established at selected universities and procedures were adapted from the EPA Waste Minimization Opportunity Assessment Manual. The WMAC team at the University of Tennessee performed an assessment at a plant that manufactures outboard motors for water craft. Three basic subunits received from other manufacturing plants undergo primarily painting and assembly operations in order to produce the final product. The team`s report, detailing findings and recommendations, indicated that paint overspray waste and spent clean-up solvent are generated in large quantities and that significant cost savings could be achieved by installing robotic paint application equipment. This Research Brief was developed by the principal investigators and EPA`s National Risk Management Research Laboratory, Cincinnati, OH, to announce key findings of an ongoing research project that is fully documented in a separate report of the same title available from University City Science Center.

  17. Probing Aircraft Flight Test Hazard Mitigation for the Alternative Fuel Effects on Contrails & Cruise Emissions (ACCESS) Research Team

    NASA Technical Reports Server (NTRS)

    Kelly, Michael J.

    2013-01-01

    The Alternative Fuel Effects on Contrails & Cruise Emissions (ACCESS) Project Integration Manager requested in July 2012 that the NASA Engineering and Safety Center (NESC) form a team to independently assess aircraft structural failure hazards associated with the ACCESS experiment and to identify potential flight test hazard mitigations to ensure flight safety. The ACCESS Project Integration Manager subsequently requested that the assessment scope be focused predominantly on structural failure risks to the aircraft empennage raft empennage.

  18. A Review of Research and Development in Crashworthiness of General Aviation Aircraft: Seats, Restraints and Floor Structures

    DTIC Science & Technology

    1990-02-01

    accident rates in general aviation. 3 q’ ) RtSUM~k Une recherche documentaire a W effectude afin de determiner l’dtat de nos connaissances sur les aspects...extensive computer analyses are necessary because the costs of full-scale aircraft tests are prohibitive. Wittlin 4 1) briefly outlined aircraft crash...subfloors. These analyses are required to defint the requirements for retrofit and new designs. The introduction of the FAA regulations [681 on dynamic

  19. A piloted evaluation of an oblique-wing research aircraft motion simulation with decoupling control laws

    NASA Technical Reports Server (NTRS)

    Kempel, Robert W.; Mcneill, Walter E.; Gilyard, Glenn B.; Maine, Trindel A.

    1988-01-01

    The NASA Ames Research Center developed an oblique-wing research plane from NASA's digital fly-by-wire airplane. Oblique-wing airplanes show large cross-coupling in control and dynamic behavior which is not present on conventional symmetric airplanes and must be compensated for to obtain acceptable handling qualities. The large vertical motion simulator at NASA Ames-Moffett was used in the piloted evaluation of a proposed flight control system designed to provide decoupled handling qualities. Five discrete flight conditions were evaluated ranging from low altitude subsonic Mach numbers to moderate altitude supersonic Mach numbers. The flight control system was effective in generally decoupling the airplane. However, all participating pilots objected to the high levels of lateral acceleration encountered in pitch maneuvers. In addition, the pilots were more critical of left turns (in the direction of the trailing wingtip when skewed) than they were of right turns due to the tendency to be rolled into the left turns and out of the right turns. Asymmetric side force as a function of angle of attack was the primary cause of lateral acceleration in pitch. Along with the lateral acceleration in pitch, variation of rolling and yawing moments as functions of angle of attack caused the tendency to roll into left turns and out of right turns.

  20. Proposing a Center on Aging and Well-Being: Research, Education, and Practice Considerations

    ERIC Educational Resources Information Center

    Lindenbach, Jeannette M.; Jessup-Falcioni, Heather

    2016-01-01

    This environmental scan aimed to discover research interests and educational needs of faculty, graduate, and undergraduate students to inspire research, education, and practice in the development of a center on aging and well-being for older adults. The scan consisted of a search of university faculty and researchers regarding research on aging; a…

  1. An integrated study of structures, aerodynamics and controls on the forward swept wing X-29A and the oblique wing research aircraft

    NASA Technical Reports Server (NTRS)

    Dawson, Kenneth S.; Fortin, Paul E.

    1987-01-01

    The results of an integrated study of structures, aerodynamics, and controls using the STARS program on two advanced airplane configurations are presented. Results for the X-29A include finite element modeling, free vibration analyses, unsteady aerodynamic calculations, flutter/divergence analyses, and an aeroservoelastic controls analysis. Good correlation is shown between STARS results and various other verified results. The tasks performed on the Oblique Wing Research Aircraft include finite element modeling and free vibration analyses.

  2. ANALYSIS OF AIRCRAFT MOTIONS

    NASA Technical Reports Server (NTRS)

    Wingrove, R. C.

    1994-01-01

    This program was developed by Ames Research Center, in cooperation with the National Transportation Safety Board, as a technique for deriving time histories of an aircraft's motion from Air Traffic Control (ATC) radar records. This technique uses the radar range and azimuth data, along with the downlinked altitude data, to derive an expanded set of data which includes airspeed, lift, attitude angles (pitch, roll, and heading), etc. This technique should prove useful as a source of data in the investigation of commercial airline accidents and in the analysis of accidents involving aircraft which do not have onboard data recorders (e.g., military, short-haul, and general aviation). The technique used to determine the aircraft motions involves smoothing of raw radar data. These smoothed results, in combination with other available information (wind profiles and aircraft performance data), are used to derive the expanded set of data. This program uses a cubic least-square fit to smooth the raw data. This moving-arc procedure provides a smoothed time history of the aircraft position, the inertial velocities, and accelerations. Using known winds, these inertial data are transformed to aircraft stability axes to provide true airspeed, thrust-drag, lift, and roll angle. Further derivation, based on aircraft dependent performance data, can determine the aircraft angle of attack, pitch, and heading angle. Results of experimental tests indicate that values derived from ATC radar records using this technique agree favorably with airborne measurements. This program is written in FORTRAN IV to be executed in the batch mode, and has been implemented on a CDC 6000 series computer with a central memory requirement of 64k (octal) of 60 bit words.

  3. NASA's F-15B Research Testbed aircraft flies in the supersonic shock wave of a U.S. Navy F-5E as par

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's F-15B Research Testbed aircraft recently flew in the supersonic shock wave of a U.S. Navy F-5E in support of the F-5 Shaped Sonic Boom Demonstration (SSBD) project, part of the Defense Advanced Research Projects Agency's (DARPA) Quiet Supersonic Platform (QSP) program. The flights originated from the NASA Dryden Flight Research Center at Edwards, California. Four flights were flown in order to measure the F-5E's near-field (close-up) sonic boom signature at Mach 1.4, during which more than 50 shockwave patterns were measured at distances as close as 100 feet below the F-5E.

  4. Aircraft Flutter Testing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Wilmer Reed gained international recognition for his innovative research, contributions and patented ideas relating to flutter and aeroelasticity of aerospace vehicles at Langley Research Center. In the early 1980's, Reed retired from Langley and joined the engineering staff of Dynamic Engineering Inc. While at DEI, Reed conceived and patented the DEI Flutter Exciter, now used world-wide in flight flutter testing of new or modified aircraft designs. When activated, the DEI Flutter Exciter alternately deflects the airstream upward and downward in a rapid manner, creating a force similar to that produced by an oscillating trailing edge flap. The DEI Flutter Exciter is readily adaptable to a variety of aircraft.

  5. Aircraft engine pollution reduction

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1972-01-01

    The effect of engine operation on the types and levels of the major aircraft engine pollutants is described and the major factors governing the formation of these pollutants during the burning of hydrocarbon fuel are discussed. Methods which are being explored to reduce these pollutants are discussed and their application to several experimental research programs are pointed out. Results showing significant reductions in the levels of carbon monoxide, unburned hydrocarbons, and oxides of nitrogen obtained from experimental combustion research programs are presented and discussed to point out potential application to aircraft engines.

  6. Research on the Effects of Fatigue within the Corporate/Business Aircraft Environment

    NASA Technical Reports Server (NTRS)

    Neri, David F.; Rosekind, Mark R.; Co, Elizabeth L.; Gregory, Kevin B.; Miller, Donna L.

    1997-01-01

    In 1980, responding to a Congressional request, NASA Ames Research Center created a program to examine whether 'there is a safety problem of uncertain magnitude, due to transmeridian flying and a potential problem due to fatigue in association with various factors found in air transport operations.' The NASA Ames Fatigue/Jet Lag Program was created to collect systematic, scientific information on fatigue, sleep, circadian rhythms, and performance in flight operations. Three Program goals were established and continue to guide research efforts to: (1) determine the extent of fatigue, sleep loss, and circadian disruption in flight operations; (2) determine the impact of these factors on flight crew performance; (3) develop and evaluate countermeasures to mitigate the adverse effects of these factors and maximize flight crew performance and alertness. Since 1980, studies have been conducted in a variety of aviation environments, in controlled laboratory environments, as well as in a full-mission flight simulation. Early studies included investigations of short-haul, long-haul, and overnight cargo flight crews. In 1991, the name of the program was changed to the Fatigue Countermeasures Program to provide a greater emphasis on the development and evaluation of countermeasures. More recent work has examined the effects of planned cockpit rest as an operational countermeasure and provided analyses of the pertinent sleep/duty factors preceding an aviation accident at Guantanamo Bay, Cuba. The Short-Haul study examined the extent of sleep loss, circadian disruption, and fatigue engendered by flying commercial short-haul air transport operations (flight legs less than eight hours). This was one of the first field studies conducted by the NASA program and provided unique insight into the physiological and subjective effects of flying commercial short-haul operations. It demonstrated that a range of measures could be obtained in an operational environment without disturbing

  7. Aircraft Cabin Environmental Quality Sensors

    SciTech Connect

    Gundel, Lara; Kirchstetter, Thomas; Spears, Michael; Sullivan, Douglas

    2010-05-06

    The Indoor Environment Department at Lawrence Berkeley National Laboratory (LBNL) teamed with seven universities to participate in a Federal Aviation Administration (FAA) Center of Excellence (COE) for research on environmental quality in aircraft. This report describes research performed at LBNL on selecting and evaluating sensors for monitoring environmental quality in aircraft cabins, as part of Project 7 of the FAA's COE for Airliner Cabin Environmental Research (ACER)1 effort. This part of Project 7 links to the ozone, pesticide, and incident projects for data collection and monitoring and is a component of a broader research effort on sensors by ACER. Results from UCB and LBNL's concurrent research on ozone (ACER Project 1) are found in Weschler et al., 2007; Bhangar et al. 2008; Coleman et al., 2008 and Strom-Tejsen et al., 2008. LBNL's research on pesticides (ACER Project 2) in airliner cabins is described in Maddalena and McKone (2008). This report focused on the sensors needed for normal contaminants and conditions in aircraft. The results are intended to complement and coordinate with results from other ACER members who concentrated primarily on (a) sensors for chemical and biological pollutants that might be released intentionally in aircraft; (b) integration of sensor systems; and (c) optimal location of sensors within aircraft. The parameters and sensors were selected primarily to satisfy routine monitoring needs for contaminants and conditions that commonly occur in aircraft. However, such sensor systems can also be incorporated into research programs on environmental quality in aircraft cabins.

  8. A golden age of pioneering nurse research is imagined.

    PubMed

    Adams, John

    2016-05-11

    James P Smith's polemic (letters May 4) railing against the dominance of academic researchers at the recent RCN Research Conference is puzzling since it is Britain's premier academic research conference.

  9. Peptide regulation of aging: 35-year research experience.

    PubMed

    Khavinson, V Kh; Anisimov, V N

    2009-07-01

    The authors sum up the results of many-year studies of mechanisms of aging and efficiency of peptide bioregulators in the prevention of age-specific diseases. Data on the effects of peptides, evaluated by the up-to-date methods, are presented. A molecular model of complementary interactions between short peptides and gene promotor sites, underlying the initiation of protein synthesis, is proposed. Prospects of peptide bioregulators in prevention of early aging are discussed.

  10. Research on Rural Ageing: Where Have We Got to and Where Are We Going in Europe?

    ERIC Educational Resources Information Center

    Burholt, Vanessa; Dobbs, Christine

    2012-01-01

    This paper examines the extent to which rural studies conducted in Europe (compared to other countries in the Global North) have addressed the phenomenon of rural ageing. Through a review of the literature published on rural ageing research in the last decade, it compares the research goals identified by the International Rural Ageing Project…

  11. Evaluation of a Training Program in Aging Research for Social Work Faculty

    ERIC Educational Resources Information Center

    Mehrotra, Chandra M.; Townsend, Aloen; Berkman, Barbara

    2013-01-01

    Since 2004, we have offered a postgraduate training program in aging research for social work faculty from across the country. The overarching goal of the program is to expand the pool of social work faculty engaged in aging research. This, in turn, will reinvigorate participants' teaching; prepare them to update aging-related content in the…

  12. Follow-Up Evaluation of a Faculty Training Program in Aging Research

    ERIC Educational Resources Information Center

    Mehrotra, Chandra M.

    2006-01-01

    In collaboration with distinguished scholars and National Institute on Aging (NIA) staff, we designed, implemented, and evaluated a research training program in aging for psychology faculty from 4-year colleges. The goal of the program was to build and sustain a community of college faculty committed to conducting aging research, incorporating…

  13. Aircraft Observations of Aerosol Composition and Ageing in New England and Mid-Atlantic States during the Summer 2002 New England Air Quality Study Field Campaign

    SciTech Connect

    Kleinman, Lawrence I.; Daum, Peter H.; Lee, Y.- N.; Senum, Gunar; Springston, Stephen R.; Wang, Jian; Berkowitz, Carl M.; Hubbe, John M.; Zaveri, Rahul A.; Brechtel, Fred J.; Jayne, J. T.; Onasch, Timothy B.; Worsnop, Douglas R.

    2007-05-11

    Aerosol chemical composition, size distributions, and optical properties were measured during 17 aircraft flights in New England and Middle Atlantic States as part of the summer 2002 NEAQS field campaign. An Aerodyne Aerosol Mass Spectrometer (AMS) was operated with a measurement cycle of 30 s, about an order of magnitude faster than used for ground-based measurements. Noise levels within a single measurement period were sub μg m-3. Volume data derived from the AMS were compared with volume measurements from a PCASP optical particle detector and an Scanning Mobility Particle Spectrometer (SMPS); calculated light scattering was compared with measured values from an integrating nephelometer. The median ratio for AMS/SMPS volume was 1.25; the median ratio for AMS/nephelometer scattering was 1.18. Size spectra were compared for subsets of samples with different effective diameters (Deff). There is good agreement between the AMS, PCASP, and SMPS spectra for larger values of Deff but an unexplained over-prediction in the AMS for small values. A dependence of the AMS collection efficiency on aerosol acidity was quantified by a comparison between AMS and PCASP volumes in 2 high sulfate plumes. Average aerosol concentrations were 11 μg m-3. The organic content was high in comparison to monitoring data from the IMPROVE network, varying from 70% in clean air to 40% in high concentration sulfate plumes. The ratio of organic aerosol to CO and light absorption acting were examined as a function of photochemical age. CO is a conservative tracer for urban emissions and light absorption is a surrogate for black carbon which is also conservative. Comparisons were made to surface ratios measured under conditions where there is little secondary organic aerosol (SOA). An increase in these ratios relative to surface values indicates that 70 - 80% of the organic aerosol in polluted air masses was secondary. Most of this SOA is rapidly formed within a few hours. At longer time scales

  14. Missing data: a special challenge in aging research.

    PubMed

    Hardy, Susan E; Allore, Heather; Studenski, Stephanie A

    2009-04-01

    Scientific evidence should guide clinical care, but special methodological challenges influence interpretation of the medical literature pertaining to older adults. Missing data, ranging from lack of individual items in questionnaires to complete loss to follow-up, affect the quality of the evidence and are more likely to occur in studies of older adults because older adults have more health and functional problems that interfere with all aspects of data collection than do younger people. The purpose of this article is to promote knowledge about the risks and consequences of missing data in clinical aging research and to provide an organized approach to prevention and management. Although it is almost never possible to achieve complete data capture, efforts to prevent missing data are more effective than analytical "cure." Strategies to prevent missing data include selecting a primary outcome that is easy to determine and devising valid alternate definitions, adapting data collection to the special needs of the target population, pilot testing data collection plans, and monitoring missing data rates during the study and adapting data collection procedures as needed. Key steps in the analysis of missing data include assessing the extent and types of missing data before analysis, exploring potential mechanisms that contributed to the missing data, and using multiple analytical approaches to assess the effect of missing data on the results. Manuscripts should disclose rates of missing data and losses to follow-up, compare dropouts with participants who completed the study, describe how missing data were managed in the analysis phase, and discuss the potential effect of missing data on the conclusions of the study.

  15. Alternative aircraft fuels technology

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1976-01-01

    NASA is studying the characteristics of future aircraft fuels produced from either petroleum or nonpetroleum sources such as oil shale or coal. These future hydrocarbon based fuels may have chemical and physical properties that are different from present aviation turbine fuels. This research is aimed at determining what those characteristics may be, how present aircraft and engine components and materials would be affected by fuel specification changes, and what changes in both aircraft and engine design would be required to utilize these future fuels without sacrificing performance, reliability, or safety. This fuels technology program was organized to include both in-house and contract research on the synthesis and characterization of fuels, component evaluations of combustors, turbines, and fuel systems, and, eventually, full-scale engine demonstrations. A review of the various elements of the program and significant results obtained so far are presented.

  16. Aircraft Steels

    DTIC Science & Technology

    2009-02-19

    NAWCADPAX/TR-2009/ 12 AIRCRAFT STEELS by E. U. Lee R. Taylor C. Lei H. C. Sanders 19 February 2009...MARYLAND NAWCADPAX/TR-2009/ 12 19 February 2009 AIRCRAFT STEELS by E. U. Lee R. Taylor C. Lei H. C. Sanders...Prescribed by ANSI Std. Z39-18 NAWCADPAX/TR-2009/ 12 ii SUMMARY Five high strength and four stainless steels have been studied, identifying their

  17. [White House Conference on Aging, 1981. Research in Aging. Report and Executive Summary of the Technical Committee.

    ERIC Educational Resources Information Center

    Birren, James E.; And Others

    This Technical Committee Report provides an overview and historical sketch of research in aging and proposes a need for new knowledge. An examination of key issues notes the difficulty in assigning priority to research topics, and identifies emerging issues of public concern including: (1) physical health (alcohol and drugs, falls and accidents,…

  18. Follow on Research for Multi-Utility Technology Test Bed Aircraft at NASA Dryden Flight Research Center (FY13 Progress Report)

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi

    2013-01-01

    Modern aircraft employ a significant fraction of their weight in composite materials to reduce weight and improve performance. Aircraft aeroservoelastic models are typically characterized by significant levels of model parameter uncertainty due to the composite manufacturing process. Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of Multi Utility Technology Test-bed (MUTT) aircraft is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of MUTT aircraft. The ground vibration test-validated structural dynamic finite element model of the MUTT aircraft is created in this study. The structural dynamic finite element model of MUTT aircraft is improved using the in-house Multi-disciplinary Design, Analysis, and Optimization tool. In this study, two different weight configurations of MUTT aircraft have been improved simultaneously in a single model tuning procedure.

  19. Impact analysis of composite aircraft structures

    NASA Technical Reports Server (NTRS)

    Pifko, Allan B.; Kushner, Alan S.

    1993-01-01

    The impact analysis of composite aircraft structures is discussed. Topics discussed include: background remarks on aircraft crashworthiness; comments on modeling strategies for crashworthiness simulation; initial study of simulation of progressive failure of an aircraft component constructed of composite material; and research direction in composite characterization for impact analysis.

  20. Effects of aircraft noise and sonic booms on fish and wildlife: results of a survey of u. s. fish and wildlife service endangered species and ecological services field offices, refuges, hatcheries, and research centers

    SciTech Connect

    Gladwin, D.N.; Asherin, D.A.; Manci, K.M.

    1988-06-01

    The National Ecology Research Center (Center), as part of an ongoing research study on the effects of low-altitude aircraft operations on fish and wildlife, conducted a survey in January 1987 of all U.S. Fish and Wildlife Service (Service) regional directors, research center directors, Ecological Services and Endangered Species field offices supervisors, refuge manager, and hatchery manager. The objective of the survey was to determine the nature and extent of aircraft-induced impacts on fish and wildlife species, populations, and habitat utilization. The field-installation managers and biologists were asked to provide background information or data on fish and wildlife reactions to low-altitude aircraft disturbances, including physiological, behavioral, and reproductive/population effects. Specifically, the survey asked for information such as: observations pf amo,a; reaction(s) to aircraft operations, e.g., desert bighorn sheep scare behavior in response to aircraft overflights and hatchery fish seizures and death following intense sonic booms; and instances of areas where aircraft noise is known or believed to be responsible for reduced population size, e.g. areas along heavily used aircraft flight corridors where breeding waterfowl densities are lower than in similar habitat away from the noise area.

  1. Pilot Comments From the Boeing High Speed Research Aircraft, Cycle 3, Simulation Study of the Effects of Aeroservoelasticity (LaRC.3)

    NASA Technical Reports Server (NTRS)

    Bailey, Melvin L. (Editor)

    2000-01-01

    This is a compilation of pilot comments from the Boeing High Speed Research Aircraft, Cycle 3, simulation study (LaRC.3) of the effects of aeroservoelasticity, conducted from October to December 1997 at NASA Langley Research Center. This simulation study was conducted using the Visual Motion Simulator. The comments are from direct tape transcriptions and have been edited for spelling only. These comments were made on tape following the completion of each flight card, immediately after the pilot was satisfied with his practice and data recording runs. Six pilots were used in the evaluation and they are identified as pilots A through F.

  2. Increasing the Value of Age: Guidance in Employers' Age Management Strategies. Research Paper No 44

    ERIC Educational Resources Information Center

    Cedefop - European Centre for the Development of Vocational Training, 2015

    2015-01-01

    The European active population is ageing. In the face of growing skills shortages, both national States and employers need to prolong the working lives of their most experienced workers. While enterprises strive to respond to this challenge, most still have not fully explored the potential of guidance activities in addressing age-related issues in…

  3. A review of supervised machine learning applied to ageing research.

    PubMed

    Fabris, Fabio; Magalhães, João Pedro de; Freitas, Alex A

    2017-04-01

    Broadly speaking, supervised machine learning is the computational task of learning correlations between variables in annotated data (the training set), and using this information to create a predictive model capable of inferring annotations for new data, whose annotations are not known. Ageing is a complex process that affects nearly all animal species. This process can be studied at several levels of abstraction, in different organisms and with different objectives in mind. Not surprisingly, the diversity of the supervised machine learning algorithms applied to answer biological questions reflects the complexities of the underlying ageing processes being studied. Many works using supervised machine learning to study the ageing process have been recently published, so it is timely to review these works, to discuss their main findings and weaknesses. In summary, the main findings of the reviewed papers are: the link between specific types of DNA repair and ageing; ageing-related proteins tend to be highly connected and seem to play a central role in molecular pathways; ageing/longevity is linked with autophagy and apoptosis, nutrient receptor genes, and copper and iron ion transport. Additionally, several biomarkers of ageing were found by machine learning. Despite some interesting machine learning results, we also identified a weakness of current works on this topic: only one of the reviewed papers has corroborated the computational results of machine learning algorithms through wet-lab experiments. In conclusion, supervised machine learning has contributed to advance our knowledge and has provided novel insights on ageing, yet future work should have a greater emphasis in validating the predictions.

  4. Methods for structuring scientific knowledge from many areas related to aging research.

    PubMed

    Zhavoronkov, Alex; Cantor, Charles R

    2011-01-01

    Aging and age-related disease represents a substantial quantity of current natural, social and behavioral science research efforts. Presently, no centralized system exists for tracking aging research projects across numerous research disciplines. The multidisciplinary nature of this research complicates the understanding of underlying project categories, the establishment of project relations, and the development of a unified project classification scheme. We have developed a highly visual database, the International Aging Research Portfolio (IARP), available at AgingPortfolio.org to address this issue. The database integrates information on research grants, peer-reviewed publications, and issued patent applications from multiple sources. Additionally, the database uses flexible project classification mechanisms and tools for analyzing project associations and trends. This system enables scientists to search the centralized project database, to classify and categorize aging projects, and to analyze the funding aspects across multiple research disciplines. The IARP is designed to provide improved allocation and prioritization of scarce research funding, to reduce project overlap and improve scientific collaboration thereby accelerating scientific and medical progress in a rapidly growing area of research. Grant applications often precede publications and some grants do not result in publications, thus, this system provides utility to investigate an earlier and broader view on research activity in many research disciplines. This project is a first attempt to provide a centralized database system for research grants and to categorize aging research projects into multiple subcategories utilizing both advanced machine algorithms and a hierarchical environment for scientific collaboration.

  5. Methods for Structuring Scientific Knowledge from Many Areas Related to Aging Research

    PubMed Central

    Zhavoronkov, Alex; Cantor, Charles R.

    2011-01-01

    Aging and age-related disease represents a substantial quantity of current natural, social and behavioral science research efforts. Presently, no centralized system exists for tracking aging research projects across numerous research disciplines. The multidisciplinary nature of this research complicates the understanding of underlying project categories, the establishment of project relations, and the development of a unified project classification scheme. We have developed a highly visual database, the International Aging Research Portfolio (IARP), available at AgingPortfolio.org to address this issue. The database integrates information on research grants, peer-reviewed publications, and issued patent applications from multiple sources. Additionally, the database uses flexible project classification mechanisms and tools for analyzing project associations and trends. This system enables scientists to search the centralized project database, to classify and categorize aging projects, and to analyze the funding aspects across multiple research disciplines. The IARP is designed to provide improved allocation and prioritization of scarce research funding, to reduce project overlap and improve scientific collaboration thereby accelerating scientific and medical progress in a rapidly growing area of research. Grant applications often precede publications and some grants do not result in publications, thus, this system provides utility to investigate an earlier and broader view on research activity in many research disciplines. This project is a first attempt to provide a centralized database system for research grants and to categorize aging research projects into multiple subcategories utilizing both advanced machine algorithms and a hierarchical environment for scientific collaboration. PMID:21799912

  6. Ethical Research in the Information Age: Beginning the Dialog.

    ERIC Educational Resources Information Center

    Schrum, Lynne

    1997-01-01

    Qualitative researchers who study electronic communities or describe online communications must change their research tools and adapt their activities to new environments to continue ethical practices. Possibilities of online research within the context of ethical qualitative practice are explored, and suggestions are offered for appropriate ways…

  7. Reconceptualizing Design Research in the Age of Mobile Learning

    ERIC Educational Resources Information Center

    Bannan, Brenda; Cook, John; Pachler, Norbert

    2016-01-01

    The purpose of this paper is to begin to examine how the intersection of mobile learning and design research prompts the reconceptualization of research and design individually as well as their integration appropriate for current, complex learning environments. To fully conceptualize and reconceptualize design research in mobile learning, the…

  8. Pilotless Aircraft Research Division

    NASA Technical Reports Server (NTRS)

    1950-01-01

    Sperry Model 10 Velocimeter, Doppler radar at Wallops Island with trackers P.R. Mears and J. Quillen. Metallic ears pointed to the heavens, this radio tracking device kept tabs on Wallops rocket firings. Joseph Shortal has described this Doppler radar as follows: 'The Doppler radar was a genuine asset to PARD; it made possible the direct determination of velocity and allowed the measurement of drag for such simple models as the RM-2 and RM-5 types. Doppler radars were used in every launching from Wallops.' 'In cooperation with the Army's Aberdeen Proving Ground, specifications for a more powerful Doppler radar were prepared. A 150-watt radar which its manufacturer, Sperry Gyroscope Corp., called the Model 10 Velocimeter, was purchased. This radar was mounted on a SCR-547 trailer, which led Langley men to call it the TPS-547 radar for some time. This radar had a range of approximately five miles and was the first of a series of this type in use at Wallops for many years.' 'One operator directed the dishes toward the target in azimuth while the other operator controlled the elevation (The fact that two operators with independent gun sights and earphones could coordinate their efforts in this fashion surprised many 'experts'.). The Doppler radars were always located near the launcher and the operators normally served in the dual capacity of rocket technicians. After the Velocimeter was placed in operation, the TPS-5 radars were no longer used.' Photograph published in Winds of Change, a 75th Anniversary NASA publication (page 74), by James Schultz. Published in Joseph A. Shortal, History of Wallops Station: Origins and Activities Through 1949, (Wallops Island, VA: National Aeronautics and Space Administration, Wallops Station, nd), Comment Edition. Photograph published in A New Dimension; Wallops Island Flight Test Range: The First Fifteen Years by Joseph Adams Shortal. A NASA publication (page 99).

  9. Pilotless Aircraft Research Division

    NASA Technical Reports Server (NTRS)

    1945-01-01

    The launching of the first rocket at the NACA's Wallop's Island Facility on June 27, 1945. Joseph Shortal described this launch as follows: 'The initial operations on June 27, 1945 on Wallops were to check the tracking station location and operation, check the use of CW (Doppler radar for measuring velocities of missiles and to gain experience with actual rockets. Five 3.25 inch rockets were fired at 39.4 elevation angle, and one each at 33.7, 29.3, and 21.5. All were fired in a direction parallel to the beach to simulate the first Tiamat missile launching. Four of the eight rockets were tracked satisfactorily by the SCR-584 radar located at the mainland tracking station 2 and a strong signal was obtained on the CW radar. As [Ray W.] Hooker stated in his official report on the operations, 'In general, the operation was successful.' [Germain S.] Brown, in his diary expressed it this way: 'Hooker and gang arrived by B24 at 10:30. Went to Island and launched about eight rockets with satisfactory results. Lt. Rucker and 3 Navy enlisted men assisted us.' 'For this operation the rockets and the ordnance personnel were supplied by the Patuxent Naval Air Station. Navy Buaer had established a special project to cover this cooperation with NACA.' Excerpts from Joseph Shortal's history of Wallops Station.

  10. Challenges and Issues with the Further Aging of U.S. Air Force Aircraft: Policy Options for Effective Life-Cycle Management of Resources

    DTIC Science & Technology

    2009-01-01

    simpler and less expensive, by current standards, contributed to their short service lives, as operators often were attracted to newer aircraft that were...institutionally. Although the jet aircraft’s speed advantage over propeller-driven aircraft made it very attractive for both military and civil...bubbling up or flaking of material, similar to the flaking of lumber that has been attacked by termites (Figures 3.2 and 3.3). It generally is agreed that

  11. High altitude reconnaissance aircraft

    NASA Technical Reports Server (NTRS)

    Yazdo, Renee Anna; Moller, David

    1990-01-01

    At the equator the ozone layer ranges from 65,000 to 130,000 plus feet, which is beyond the capabilities of the ER-2, NASA's current high altitude reconnaissance aircraft. The Universities Space Research Association, in cooperation with NASA, is sponsoring an undergraduate program which is geared to designing an aircraft that can study the ozone layer at the equator. This aircraft must be able to cruise at 130,000 feet for six hours at Mach 0.7, while carrying 3,000 lbs. of payload. In addition, the aircraft must have a minimum range of 6,000 miles. In consideration of the novel nature of this project, the pilot must be able to take control in the event of unforeseen difficulties. Three aircraft configurations were determined to be the most suitable - a joined-wing, a biplane, and a twin-boom conventional airplane. The performance of each configuration was analyzed to investigate the feasibility of the project.

  12. Analysis of NTSB Aircraft-Assisted Pilot Suicides: 1982-2014.

    PubMed

    Politano, P Michael; Walton, Robert O

    2016-04-01

    On March 24, 2015, a Germanwings aircraft crashed in the Alps. The suicidal copilot killed himself and 150 others. Pilot suicide is rare, but does happen. This research analyzed the National Transportation Safety Board's accident database (eADMS) looking for pilots who died by suicide in flight. Fifty-one suicides were identified. Gender, age, and other characteristics were examined. Average age of suicidal pilots was 38, significantly different from the average age of 45 for all male pilots involved in aircraft accidents. A discriminant function accurately identified suicidal incidents at 96%. There was a high false-positive rate limiting the usefulness of the discriminant function.

  13. Invertebrates as model organisms for research on aging biology

    PubMed Central

    Murthy, Mahadev; Ram, Jeffrey L.

    2015-01-01

    Invertebrate model systems, such as nematodes and fruit flies, have provided valuable information about the genetics and cellular biology involved in aging. However, limitations of these simple, genetically tractable organisms suggest the need for other model systems, some of them invertebrate, to facilitate further advances in the understanding of mechanisms of aging and longevity in mammals, including humans. This paper introduces 10 review articles about the use of invertebrate model systems for the study of aging by authors who participated in an ‘NIA-NIH symposium on aging in invertebrate model systems’ at the 2013 International Congress for Invertebrate Reproduction and Development. In contrast to the highly derived characteristics of nematodes and fruit flies as members of the superphylum Ecdysozoa, cnidarians, such as Hydra, are more ‘basal’ organisms that have a greater number of genetic orthologs in common with humans. Moreover, some other new model systems, such as the urochordate Botryllus schlosseri, the tunicate Ciona, and the sea urchins (Echinodermata) are members of the Deuterostomia, the same superphylum that includes all vertebrates, and thus have mechanisms that are likely to be more closely related to those occurring in humans. Additional characteristics of these new model systems, such as the recent development of new molecular and genetic tools and a more similar pattern to humans of regeneration and stem cell function suggest that these new model systems may have unique advantages for the study of mechanisms of aging and longevity. PMID:26241448

  14. Aircraft Design Analysis

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The helicopter pictured is the twin-turbine S-76, produced by Sikorsky Aircraft division of United Technologies, Stratford, Connecticut. It is the first transport helicopter ever dey n e d purely as a commercial vehicle rather than an adaptation of a military design. Being built in large numbers for customers in 16 countries, the S-76 is intended for offshore oil rig support, executive transportation and general utility service. The craft carries 12 passengers plus a crew of two and has a range of more than 450 miles-yet it weighs less than 10,000 pounds. Significant weight reduction was achieved by use of composite materials, which are generally lighter but stronger than conventional aircraft materials. NASA composite technology played a part in development of the S-76. Under contract with NASA's Langley Research Center, Sikorsky Aircraft designed and flight-tested a helicopter airframe of advanced composite materials.

  15. DOE-sponsored cable aging research at Sandia National Laboratories

    SciTech Connect

    Gillen, K.T.; Clough, R.L.; Celina, M.; Wise, J.; Malone, G.M.

    1995-12-01

    Cables have been identified as critical components requiring detailed technical evaluation for extending the lifetime of Light Water Reactors beyond 40 years. This paper highlights some of the DOE-sponsored cable aging studies currently underway at Sandia. These studies are focused on two important issues: the validity of the often-used Arrhenius thermal aging prediction method and methods for predicting lifetimes in combined thermal-radiation environments. Accelerated thermal aging results are presented for three cable jacket and insulation materials, which indicate that hardening of the outside surface has an Arrhenius temperature dependence and correlates well with reductions in ultimate tensile elongation. This suggests that the indentor approach is a promising NDE technique for cable jacket and unjacketed insulation materials installed in thermally-dominated regions of nuclear power plants.

  16. Pathfinder aircraft flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Pathfinder research aircraft's wing structure is clearly defined as it soars under a clear blue sky during a test flight from Dryden Flight Research Center, Edwards, California, in November of 1996. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  17. International Trends and Perspectives: Aging. International Research Document No. 12.

    ERIC Educational Resources Information Center

    Siegel, Jacob S.; Hoover, Sally L.

    This report considers demographic conditions and prospects for the countries of the world with respect to aging. Particular attention is paid to the implications for health care. The information analyzed and presented in this report was obtained from the latest population projections published by the United Nations. The countries are generally…

  18. Learning Design Research: Advancing Pedagogies in the Digital Age

    ERIC Educational Resources Information Center

    Dobozy, Eva

    2013-01-01

    Learning design research (LDR) is establishing itself as a separate and specialised field of educational research. Worldwide, technology-mediated learning experiences in higher and further education are on the increase. LDR investigates their success in providing effective outcomes-based and personalised learning experiences. This paper reports on…

  19. Institutional Research in Australasia: Coming of Age or Coming Unstuck?

    ERIC Educational Resources Information Center

    Hanlon, Martin; Rothery, Michael; Daldy, Rob

    2011-01-01

    The scope of institutional research (IR) undertaken in Australasian universities is progressively expanding. A traditional focus on student life cycle elements such as enrolment, retention and satisfaction has been complemented for some years now by other areas of focus including research performance and community engagement. More recently,…

  20. Research in the Biotech Age: Can Informational Privacy Compete?

    ERIC Educational Resources Information Center

    Peekhaus, Wilhelm

    2008-01-01

    This article examines the privacy of personal medical information in the health research context. Arguing that biomedical research in Canada has been caught up in the government's broader neoliberal policy agenda that has positioned biotechnology as a strategic driver of economic growth, the author discusses the tension between informational…