Sample records for aging airplane program

  1. 14 CFR 135.422 - Aging airplane inspections and records reviews for multiengine airplanes certificated with nine...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aging airplane inspections and records reviews for multiengine airplanes certificated with nine or fewer passenger seats. 135.422 Section 135.422... Maintenance, and Alterations § 135.422 Aging airplane inspections and records reviews for multiengine...

  2. 14 CFR 135.422 - Aging airplane inspections and records reviews for multiengine airplanes certificated with nine...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Aging airplane inspections and records reviews for multiengine airplanes certificated with nine or fewer passenger seats. 135.422 Section 135.422... Maintenance, and Alterations § 135.422 Aging airplane inspections and records reviews for multiengine...

  3. 14 CFR 135.422 - Aging airplane inspections and records reviews for multiengine airplanes certificated with nine...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Aging airplane inspections and records reviews for multiengine airplanes certificated with nine or fewer passenger seats. 135.422 Section 135.422... Maintenance, and Alterations § 135.422 Aging airplane inspections and records reviews for multiengine...

  4. 14 CFR 135.422 - Aging airplane inspections and records reviews for multiengine airplanes certificated with nine...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Aging airplane inspections and records reviews for multiengine airplanes certificated with nine or fewer passenger seats. 135.422 Section 135.422... Maintenance, and Alterations § 135.422 Aging airplane inspections and records reviews for multiengine...

  5. 14 CFR 135.422 - Aging airplane inspections and records reviews for multiengine airplanes certificated with nine...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Aging airplane inspections and records reviews for multiengine airplanes certificated with nine or fewer passenger seats. 135.422 Section 135.422... Maintenance, and Alterations § 135.422 Aging airplane inspections and records reviews for multiengine...

  6. 14 CFR 121.1105 - Aging airplane inspections and records reviews.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aging airplane inspections and records... Improvements § 121.1105 Aging airplane inspections and records reviews. (a) Applicability. This section applies to all airplanes operated by a certificate holder under this part, except for those airplanes...

  7. 14 CFR 121.1105 - Aging airplane inspections and records reviews.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Aging airplane inspections and records... Improvements § 121.1105 Aging airplane inspections and records reviews. (a) Applicability. This section applies to all airplanes operated by a certificate holder under this part, except for those airplanes...

  8. 14 CFR 121.1105 - Aging airplane inspections and records reviews.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Aging airplane inspections and records... Improvements § 121.1105 Aging airplane inspections and records reviews. (a) Applicability. This section applies to all airplanes operated by a certificate holder under this part, except for those airplanes...

  9. 14 CFR 121.1105 - Aging airplane inspections and records reviews.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Aging airplane inspections and records... Improvements § 121.1105 Aging airplane inspections and records reviews. (a) Applicability. This section applies to all airplanes operated by a certificate holder under this part, except for those airplanes...

  10. 14 CFR 121.1105 - Aging airplane inspections and records reviews.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Aging airplane inspections and records... Improvements § 121.1105 Aging airplane inspections and records reviews. (a) Applicability. This section applies to all airplanes operated by a certificate holder under this part, except for those airplanes...

  11. 75 FR 69745 - Aging Airplane Program: Widespread Fatigue Damage

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... prevent 1.5 days of down time associated with emergency ADs. 3. New Part 26 for Design Approval Holders... because they had high-time airplanes that were near or over their design service goals. They include the... design approval holders to evaluate their airplanes to establish a limit of validity of the engineering...

  12. 77 FR 30877 - Aging Airplane Program: Widespread Fatigue Damage; Technical Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-24

    ... should have been included in Group II, with a compliance time of 48 months. The type certificate data... required design approval holders of certain existing airplanes and all applicants for type certificates of future transport category airplanes to establish a limit of validity of the engineering data that...

  13. 14 CFR 121.407 - Training program: Approval of airplane simulators and other training devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Training program: Approval of airplane... Program § 121.407 Training program: Approval of airplane simulators and other training devices. (a) Each airplane simulator and other training device that is used in a training course permitted under § 121.409...

  14. 14 CFR 121.407 - Training program: Approval of airplane simulators and other training devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Training program: Approval of airplane... Program § 121.407 Training program: Approval of airplane simulators and other training devices. (a) Each airplane simulator and other training device that is used in a training course permitted under § 121.409...

  15. 14 CFR 121.407 - Training program: Approval of airplane simulators and other training devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Training program: Approval of airplane... Program § 121.407 Training program: Approval of airplane simulators and other training devices. (a) Each airplane simulator and other training device that is used in a training course permitted under § 121.409...

  16. 14 CFR 121.407 - Training program: Approval of airplane simulators and other training devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Training program: Approval of airplane... Program § 121.407 Training program: Approval of airplane simulators and other training devices. (a) Each airplane simulator and other training device that is used in a training course permitted under § 121.409...

  17. 14 CFR 121.407 - Training program: Approval of airplane simulators and other training devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Training program: Approval of airplane... Program § 121.407 Training program: Approval of airplane simulators and other training devices. Link to an amendment published at 78 FR 67836, Nov. 12, 2013. (a) Each airplane simulator and other training device...

  18. 14 CFR 129.105 - Aging airplane inspections and records reviews for U.S.-registered multiengine aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Aging airplane inspections and records... § 129.105 Aging airplane inspections and records reviews for U.S.-registered multiengine aircraft. (a... completed the aging airplane inspection and records review required by this section. During the inspection...

  19. 14 CFR 129.105 - Aging airplane inspections and records reviews for U.S.-registered multiengine aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Aging airplane inspections and records... § 129.105 Aging airplane inspections and records reviews for U.S.-registered multiengine aircraft. (a... completed the aging airplane inspection and records review required by this section. During the inspection...

  20. 14 CFR 129.105 - Aging airplane inspections and records reviews for U.S.-registered multiengine aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Aging airplane inspections and records... § 129.105 Aging airplane inspections and records reviews for U.S.-registered multiengine aircraft. (a... completed the aging airplane inspection and records review required by this section. During the inspection...

  1. 14 CFR 129.105 - Aging airplane inspections and records reviews for U.S.-registered multiengine aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aging airplane inspections and records... § 129.105 Aging airplane inspections and records reviews for U.S.-registered multiengine aircraft. (a... completed the aging airplane inspection and records review required by this section. During the inspection...

  2. 14 CFR 129.105 - Aging airplane inspections and records reviews for U.S.-registered multiengine aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Aging airplane inspections and records... § 129.105 Aging airplane inspections and records reviews for U.S.-registered multiengine aircraft. (a... completed the aging airplane inspection and records review required by this section. During the inspection...

  3. Sensor equipment of the German earth scientific airplane program

    NASA Technical Reports Server (NTRS)

    Seige, P.

    1975-01-01

    The German airplane program for earth scientific research supports the work of a vast staff of earth scientists from universities and federal agencies. Due to their fields of interest, which are in oceanography, hydrology, geology, ecology, and forestry, five test areas were selected which are spread all over Germany. The sensor package, which was designed in accordance with the requirements of this group of scientists, will be installed in a DO 28 D2 type airplane. The sensor equipment consists of a series of 70-mm cameras having different film/filter combinations, a photogrammetric camera, an infrared radiometer, an 11-channel multispectral line scanner, a LANDSAT-compatible radiometer, and a complex avionic system. Along with the airplane, a truck will be equipped with a set of radiometers and other sensor devices for extensive ground-truth measurement; this also includes a cherry picker.

  4. 77 FR 55105 - Aging Airplane Program: Widespread Fatigue Damage; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-07

    ... final rule published November 15, 2010. The final rule required design approval holders of certain... compliance dates of Sec. Sec. 26.21, 121.1115, and 129.115 for Airbus A310 and A300-600 series airplanes... A300 B4-203 30 34,000 FC A300-600 Series 60 30,000 FC/67,500 FH A310-200 Series 60 40,000 FC/60,000 FH...

  5. Proceedings of the International Conference on Aging Airplanes: June 1-3, 1988

    DOT National Transportation Integrated Search

    1988-08-01

    The purpose of this report is to provide a complete overview of the Federal Aviation Administration International Conference on Aging Airplanes held in Arlington, Virginia, on June 1-3, 1988. The conference was attended by approximately 400 represent...

  6. Small Airplane Certification Compliance Program

    DOT National Transportation Integrated Search

    1997-01-02

    This advisory circular (AC) provides a compilation of historically acceptable means of compliance to specifically selected sections of Part 23 of the Federal Aviation Regulations that have become burdensome for small low performance airplanes to show...

  7. Fatigue life estimation program for Part 23 airplanes, `AFS.FOR`

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaul, S.K.

    1993-12-31

    The purpose of this paper is to introduce to the general aviation industry a computer program which estimates the safe fatigue life of any Federal Aviation Regulation (FAR) Part 23 airplane. The algorithm uses the methodology (Miner`s Linear Cumulative Damage Theory) and the various data presented in the Federal Aviation Administration (FAA) Report No. AFS-120-73-2, dated May 1973. The program is written in FORTRAN 77 language and is executable on a desk top personal computer. The program prompts the user for the input data needed and provides a variety of options for its intended use. The program is envisaged tomore » be released through issuance of a FAA report, which will contain the appropriate comments, instructions, warnings and limitations.« less

  8. A study of commuter airplane design optimization

    NASA Technical Reports Server (NTRS)

    Roskam, J.; Wyatt, R. D.; Griswold, D. A.; Hammer, J. L.

    1977-01-01

    Problems of commuter airplane configuration design were studied to affect a minimization of direct operating costs. Factors considered were the minimization of fuselage drag, methods of wing design, and the estimated drag of an airplane submerged in a propellor slipstream; all design criteria were studied under a set of fixed performance, mission, and stability constraints. Configuration design data were assembled for application by a computerized design methodology program similar to the NASA-Ames General Aviation Synthesis Program.

  9. 76 FR 27168 - Airmen Transition to Experimental or Unfamiliar Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    ... airplanes. The current edition of AC 90-89, Amateur-Built and Ultralight Flight Testing Handbook, provides information on such testing. However, if a pilot is planning on participating in a flight-test program in an... airplanes and to flight instructors who teach in these airplanes. This information and guidance contains...

  10. 77 FR 21404 - Airworthiness Directives; Lockheed Martin Corporation/Lockheed Martin Aeronautics Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... Structural Inspection Document (SSID), SMP 515-C-SSID, Change 1, dated September 10, 2010 (``the SSID... programs. The SSID can be used to show compliance for the baseline inspections for section 121.1109(c)(1) of the Aging Airplane Safety Rule (section 121.1109(c)(1) of the Federal Aviation Regulations (14 CFR...

  11. OPDOT: A computer program for the optimum preliminary design of a transport airplane

    NASA Technical Reports Server (NTRS)

    Sliwa, S. M.; Arbuckle, P. D.

    1980-01-01

    A description of a computer program, OPDOT, for the optimal preliminary design of transport aircraft is given. OPDOT utilizes constrained parameter optimization to minimize a performance index (e.g., direct operating cost per block hour) while satisfying operating constraints. The approach in OPDOT uses geometric descriptors as independent design variables. The independent design variables are systematically iterated to find the optimum design. The technical development of the program is provided and a program listing with sample input and output are utilized to illustrate its use in preliminary design. It is not meant to be a user's guide, but rather a description of a useful design tool developed for studying the application of new technologies to transport airplanes.

  12. Phase 2 program on ground test of refanned JT8D turbofan engines and nacelles for the 727 airplane. Volume 4: Airplane evaluation and analysis

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The retrofit of JT8D-109 (refan) engines are evaluated on a 727-200 airplane in terms of airworthiness, performance, and noise. Design of certifiable hardware, manufacture, and ground testing of the essential nacelle components is included along with analysis of the certifiable airplane design to ensure airworthiness compliance and to predict the in-flight performance and noise characteristics of the modified airplane. The analyses confirm that the 727 refan airplane is certifiable. The refan airplane range would be 15% less that of the baseline airplane and block fuel would be increased by 1.5% to 3%. However, with this particular 727-200 model, with a brake release gross weight of 172,500 lb (78,245 kg), it is possible to operate the airplane (with minor structural modifications) at higher gross weights and increase the range up to 15% over the 727-200 (baseline) airplane. The refan airplane FAR Part 36 noise levels would be 6 to 8 EPNdB (effective perceived noise in decibels) below the baseline. Noise footprint studies showed that approach noise contour areas are small compared to takeoff areas. The 727 refan realizes a 68% to 83% reduction in annoyance-weighted area when compared to the 727-200 over a range of gross weights and operational procedures.

  13. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is a...

  14. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors... section and § 121.414: (1) A flight instructor (airplane) is a person who is qualified to instruct in an...

  15. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is a...

  16. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is a...

  17. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is a...

  18. 78 FR 42720 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    ... airplane reaching its limit of validity (LOV) of the engineering data that support the established structural maintenance program. For certain airplanes, this proposed AD would require modification of the web... would require an inspection for cracks in the web, and repair or modification as applicable. We are...

  19. 78 FR 65185 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ... airplane reaching its limit of validity (LOV) of the engineering data that support the established structural maintenance program. This AD requires, for certain airplanes, a modification of the web of the... cracks in the web, and repair or modification as applicable. We are issuing this AD to prevent cracking...

  20. 14 CFR 121.409 - Training courses using airplane simulators and other training devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Training courses using airplane simulators... Program § 121.409 Training courses using airplane simulators and other training devices. (a) Training courses utilizing airplane simulators and other training devices may be included in the certificate holder...

  1. 14 CFR 121.409 - Training courses using airplane simulators and other training devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Training courses using airplane simulators... Program § 121.409 Training courses using airplane simulators and other training devices. (a) Training courses utilizing airplane simulators and other training devices may be included in the certificate holder...

  2. 14 CFR 121.409 - Training courses using airplane simulators and other training devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Training courses using airplane simulators... Program § 121.409 Training courses using airplane simulators and other training devices. (a) Training courses utilizing airplane simulators and other training devices may be included in the certificate holder...

  3. 14 CFR 121.409 - Training courses using airplane simulators and other training devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Training courses using airplane simulators... Program § 121.409 Training courses using airplane simulators and other training devices. (a) Training courses utilizing airplane simulators and other training devices may be included in the certificate holder...

  4. 14 CFR 36.7 - Acoustical change: Transport category large airplanes and jet airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... airplanes and jet airplanes. 36.7 Section 36.7 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 36.7 Acoustical change: Transport category large airplanes and jet airplanes. (a) Applicability. This section applies to all transport category large airplanes and jet airplanes for which an acoustical change...

  5. 14 CFR 36.7 - Acoustical change: Transport category large airplanes and jet airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... airplanes and jet airplanes. 36.7 Section 36.7 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 36.7 Acoustical change: Transport category large airplanes and jet airplanes. (a) Applicability. This section applies to all transport category large airplanes and jet airplanes for which an acoustical change...

  6. 14 CFR 36.7 - Acoustical change: Transport category large airplanes and jet airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... airplanes and jet airplanes. 36.7 Section 36.7 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 36.7 Acoustical change: Transport category large airplanes and jet airplanes. (a) Applicability. This section applies to all transport category large airplanes and jet airplanes for which an acoustical change...

  7. 14 CFR 121.409 - Training courses using airplane simulators and other training devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Training courses using airplane simulators... Program § 121.409 Training courses using airplane simulators and other training devices. Link to an amendment published at 78 FR 67837, Nov. 12, 2013. (a) Training courses utilizing airplane simulators and...

  8. Small-scale fixed wing airplane software verification flight test

    NASA Astrophysics Data System (ADS)

    Miller, Natasha R.

    The increased demand for micro Unmanned Air Vehicles (UAV) driven by military requirements, commercial use, and academia is creating a need for the ability to quickly and accurately conduct low Reynolds Number aircraft design. There exist several open source software programs that are free or inexpensive that can be used for large scale aircraft design, but few software programs target the realm of low Reynolds Number flight. XFLR5 is an open source, free to download, software program that attempts to take into consideration viscous effects that occur at low Reynolds Number in airfoil design, 3D wing design, and 3D airplane design. An off the shelf, remote control airplane was used as a test bed to model in XFLR5 and then compared to flight test collected data. Flight test focused on the stability modes of the 3D plane, specifically the phugoid mode. Design and execution of the flight tests were accomplished for the RC airplane using methodology from full scale military airplane test procedures. Results from flight test were not conclusive in determining the accuracy of the XFLR5 software program. There were several sources of uncertainty that did not allow for a full analysis of the flight test results. An off the shelf drone autopilot was used as a data collection device for flight testing. The precision and accuracy of the autopilot is unknown. Potential future work should investigate flight test methods for small scale UAV flight.

  9. 14 CFR 36.7 - Acoustical change: Transport category large airplanes and jet airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... airplanes and jet airplanes. 36.7 Section 36.7 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... paragraph (b) of this section: (1) Airplanes with high bypass ratio jet engines. For an airplane that has jet engines with a bypass ratio of 2 or more before a change in type design— (i) The airplane, after...

  10. 14 CFR 36.7 - Acoustical change: Transport category large airplanes and jet airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... airplanes and jet airplanes. 36.7 Section 36.7 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... paragraph (b) of this section: (1) Airplanes with high bypass ratio jet engines. For an airplane that has jet engines with a bypass ratio of 2 or more before a change in type design— (i) The airplane, after...

  11. Airplane stability calculations with a card programmable pocket calculator

    NASA Technical Reports Server (NTRS)

    Sherman, W. L.

    1978-01-01

    Programs are presented for calculating airplane stability characteristics with a card programmable pocket calculator. These calculations include eigenvalues of the characteristic equations of lateral and longitudinal motion as well as stability parameters such as the time to damp to one-half amplitude or the damping ratio. The effects of wind shear are included. Background information and the equations programmed are given. The programs are written for the International System of Units, the dimensional form of the stability derivatives, and stability axes. In addition to programs for stability calculations, an unusual and short program is included for the Euler transformation of coordinates used in airplane motions. The programs have been written for a Hewlett Packard HP-67 calculator. However, the use of this calculator does not constitute an endorsement of the product by the National Aeronautics and Space Administration.

  12. Results of a Cyclic Load Test of an RB-47E Airplane

    NASA Technical Reports Server (NTRS)

    Huston, Wilber B.

    1959-01-01

    Results of a cyclic load test made by NASA on an EB-47E airplane are given. The test reported on is for one of three B-47 airplanes in a test program set up by the U. S. Air Force to evaluate the effect of wing structural reinforcements on fatigue life. As a result of crack development in the upper fuselage longerons of the other two airplanes in the program, a longeron and fuselage skin modification was incorporated early in the test. Fuselage strain-gage measurements made before and after the longeron modification and wing strain-gage measurements made only after wing reinforcement are summarized. The history of crack development and repair is given in detail. Testing was terminated one sequence short of the planned end of the program with the occurrence of a major crack in the lower right wing skin.

  13. Advanced Configurations for Very Large Subsonic Transport Airplanes

    NASA Technical Reports Server (NTRS)

    McMasters, John H.; Paisley, David J.; Hubert, Richard J.; Kroo, Ilan; Bofah, Kwasi K.; Sullivan, John P.; Drela, Mark

    1996-01-01

    Recent aerospace industry interest in developing a subsonic commercial transport airplane with 50 percent greater passenger capacity than the largest existing aircraft in this category (the Boeing 747-400 with approximately 400-450 seats) has generated a range of proposals based largely on the configuration paradigm established nearly 50 years ago with the Boeing B-47 bomber. While this basic configuration paradigm has come to dominate subsonic commercial airplane development since the advent of the Boeing 707/Douglas DC-8 in the mid-1950's, its extrapolation to the size required to carry more than 600-700 passengers raises several questions. To explore these and a number of related issues, a team of Boeing, university, and NASA engineers was formed under the auspices of the NASA Advanced Concepts Program. The results of a Research Analysis focused on a large, unconventional transport airplane configuration for which Boeing has applied for a patent are the subject of this report. It should be noted here that this study has been conducted independently of the Boeing New Large Airplane (NLA) program, and with the exception of some generic analysis tools which may be common to this effort and the NLA (as will be described later), no explicit Boeing NLA data other than that published in the open literature has been used in the conduct of the study reported here.

  14. General problem of the airplane

    NASA Technical Reports Server (NTRS)

    Richard, Maurice; Richard, Paul

    1922-01-01

    A series of equations relating to airplanes are given and examples listed. Some of the equations listed include: the speed, altitude and carrying capacity of various airplanes; weight of an airplane; weight of various parts of an airplane; the polars of the wings; speeds of airplanes; radius of action.

  15. Stability of airplanes

    NASA Technical Reports Server (NTRS)

    Warner, Edward P

    1922-01-01

    The author attempts to correct the misconception that piloting an airplane requires extraordinary skill and balance. He also tries to show that airplanes are extremely stable in flight. Some of the major points covered in this article include: automatic pilots, airplanes designed to be stable, and the reliance on mathematics to help in designing stable aircraft.

  16. 78 FR 69594 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-20

    ... Section (ALS) Part 4--Aging Systems Maintenance, Revision 03, dated September 9, 2011. The replacement requirements and thresholds for parts originally defined in the NPRM are now contained in Airbus A330 ALS Part... airplanes and proposes to mandate the requirements now contained in Airbus A330 ALS Part 4--Aging Systems...

  17. Shuttle Laser Technology Experiment Facility (LTEF)-to-airplane lasercom experiment: Airplane considerations

    NASA Technical Reports Server (NTRS)

    Kalil, Ford

    1990-01-01

    NASA is considering the use of various airplanes for a Shuttle Laser Technology Experiment Facility (LTEF)-to-Airplane laser communications experiment. As supporting documentation, pertinent technical details are included about the potential use of airplanes located at Ames Research Center and Wallops Flight Facility. The effects and application of orbital mechanics considerations are also presented, including slant range, azimuth, elevation, and time. The pros and cons of an airplane equipped with a side port with a bubble window versus a top port with a dome are discussed.

  18. Development of a Mars Airplane Entry, Descent, and Flight Trajectory

    NASA Technical Reports Server (NTRS)

    Murray, James E.; Tartabini, Paul V.

    2001-01-01

    An entry, descent, and flight (EDF) trajectory profile for a Mars airplane mission is defined as consisting of the following elements: ballistic entry of an aeroshell; supersonic deployment of a decelerator parachute; subsonic release of a heat shield; release, unfolding, and orientation of an airplane to flight attitude; and execution of a pull up maneuver to achieve trimmed, horizontal flight. Using the Program to Optimize Simulated Trajectories (POST) a trajectory optimization problem was formulated. Model data representative of a specific Mars airplane configuration, current models of the Mars surface topography and atmosphere, and current estimates of the interplanetary trajectory, were incorporated into the analysis. The goal is to develop an EDF trajectory to maximize the surface-relative altitude of the airplane at the end of a pull up maneuver, while subject to the mission design constraints. The trajectory performance was evaluated for three potential mission sites and was found to be site-sensitive. The trajectory performance, examined for sensitivity to a number of design and constraint variables, was found to be most sensitive to airplane mass, aerodynamic performance characteristics, and the pull up Mach constraint. Based on the results of this sensitivity study, an airplane-drag optimized trajectory was developed that showed a significant performance improvement.

  19. Reconstruction of the 1994 Pittsburgh Airplane Accident Using a Computer Simulation

    NASA Technical Reports Server (NTRS)

    Parks, Edwin K.; Bach, Ralph E., Jr.; Shin, Jae Ho

    1998-01-01

    On September 8, 1994, a Boeing 737-300 passenger airplane was on a downwind approach to the Pittsburgh International Airport at an altitude of 5000 feet above ground level (6000 feet MSL). While in a shallow left turn onto a downwind approach heading, the airplane crossed into the vortex trail of a Boeing 727 flying in the same approach pattern about 4 miles ahead. The B-737 airplane rolled and turned sharply to the left, exited the vortex wake and plunged into the ground. Weather was not a factor in the accident. The airplane was equipped with a 11+ channel digital Flight Data Recorder (FDR) and a multiple channel Cockpit Voice Recorder (CVR). Both recorders were recovered from the crash site and provided excellent data for the development of an accident scenario. Radar tracking of the two airplanes as well as the indicated air speed (IAS) perturbations clearly visible on the B-737 FDR recordings indicate that the upset was apparently initiated by the airplane's crossing into the wake of the B-727 flying ahead in the same traffic pattern. A 6 degree-of-freedom simulation program for the B-737 airplane using MATLAB and SIMULINK was constructed. The simulation was initialized at the stabilized flight conditions of the airplane about 13 seconds prior to its entry into the vortex trail of the B-727 airplane. By assuming a certain combination of control inputs, it was possible to produce a simulated motion that closely matched that recorded on the FDR.

  20. 14 CFR 91.1037 - Large transport category airplanes: Turbine engine powered; Limitations; Destination and...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Large transport category airplanes: Turbine....1037 Large transport category airplanes: Turbine engine powered; Limitations; Destination and alternate airports. (a) No program manager or any other person may permit a turbine engine powered large transport...

  1. 14 CFR 91.1037 - Large transport category airplanes: Turbine engine powered; Limitations; Destination and...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Large transport category airplanes: Turbine....1037 Large transport category airplanes: Turbine engine powered; Limitations; Destination and alternate airports. (a) No program manager or any other person may permit a turbine engine powered large transport...

  2. 14 CFR 91.1037 - Large transport category airplanes: Turbine engine powered; Limitations; Destination and...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Large transport category airplanes: Turbine....1037 Large transport category airplanes: Turbine engine powered; Limitations; Destination and alternate airports. (a) No program manager or any other person may permit a turbine engine powered large transport...

  3. General airplane performance

    NASA Technical Reports Server (NTRS)

    Rockfeller, W C

    1939-01-01

    Equations have been developed for the analysis of the performance of the ideal airplane, leading to an approximate physical interpretation of the performance problem. The basic sea-level airplane parameters have been generalized to altitude parameters and a new parameter has been introduced and physically interpreted. The performance analysis for actual airplanes has been obtained in terms of the equivalent ideal airplane in order that the charts developed for use in practical calculations will for the most part apply to any type of engine-propeller combination and system of control, the only additional material required consisting of the actual engine and propeller curves for propulsion unit. Finally, a more exact method for the calculation of the climb characteristics for the constant-speed controllable propeller is presented in the appendix.

  4. Definition of 1992 Technology Aircraft Noise Levels and the Methodology for Assessing Airplane Noise Impact of Component Noise Reduction Concepts

    NASA Technical Reports Server (NTRS)

    Kumasaka, Henry A.; Martinez, Michael M.; Weir, Donald S.

    1996-01-01

    This report describes the methodology for assessing the impact of component noise reduction on total airplane system noise. The methodology is intended to be applied to the results of individual study elements of the NASA-Advanced Subsonic Technology (AST) Noise Reduction Program, which will address the development of noise reduction concepts for specific components. Program progress will be assessed in terms of noise reduction achieved, relative to baseline levels representative of 1992 technology airplane/engine design and performance. In this report, the 1992 technology reference levels are defined for assessment models based on four airplane sizes - an average business jet and three commercial transports: a small twin, a medium sized twin, and a large quad. Study results indicate that component changes defined as program final goals for nacelle treatment and engine/airframe source noise reduction would achieve from 6-7 EPNdB reduction of total airplane noise at FAR 36 Stage 3 noise certification conditions for all of the airplane noise assessment models.

  5. Trade Study of Multiple Thruster Options for the Mars Airplane Concept

    NASA Technical Reports Server (NTRS)

    Kuhl, Christopher A.; Gayle, Steven W.; Hunter, Craig A.; Kenney, Patrick S.; Scola, Salvatore; Paddock, David A.; Wright, Henry S.; Gasbarre, Joseph F.

    2009-01-01

    A trade study was performed at NASA Langley Research Center under the Planetary Airplane Risk Reduction (PARR) project (2004-2005) to examine the option of using multiple, smaller thrusters in place of a single large thruster on the Mars airplane concept with the goal to reduce overall cost, schedule, and technical risk. The 5-lbf (22N) thruster is a common reaction control thruster on many satellites. Thousands of these types of thrusters have been built and flown on numerous programs, including MILSTAR and Intelsat VI. This study has examined the use of three 22N thrusters for the Mars airplane propulsion system and compared the results to those of the baseline single thruster system.

  6. Flight-test experience of a helicopter encountering an airplane trailing vortex

    NASA Technical Reports Server (NTRS)

    Dunham, R. E., Jr.; Holbrook, G. T.; Campbell, R. L.; Van Gunst, R. W.; Mantay, W. R.

    1976-01-01

    This paper presents results of a flight-test experiment of a UH-1H helicopter encountering the vortex wake of a C-54 airplane. The helicopter was instrumented to record the pilot control inputs, determine the upset experience, and measure critical loads within the rotor system. During the flight-test program 132 penetrations of the vortex wake were made by the helicopter at separation distances from 3/8 to 6-1/2 nautical miles. Test results indicated that the helicopter upsets and the vortex induced blade loads experienced were minimal and well within safe limits. The upsets were very mild when compared to a typical response of a small airplane to the vortex wake of the C-54 airplane.

  7. 78 FR 26716 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... currently requires a repetitive inspection program on certain check valves in the hydraulic systems that... hydraulic systems on airplanes that have had a certain modification embodied during production or in-service... hydraulic leaks, possibly leading to the loss of all three hydraulic systems and consequent loss of control...

  8. 14 CFR 23.3 - Airplane categories.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Airplane categories. 23.3 Section 23.3... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES General § 23.3 Airplane categories. (a) The normal category is limited to airplanes that have a seating configuration, excluding pilot...

  9. 14 CFR 23.3 - Airplane categories.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Airplane categories. 23.3 Section 23.3... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES General § 23.3 Airplane categories. (a) The normal category is limited to airplanes that have a seating configuration, excluding pilot...

  10. 14 CFR 23.3 - Airplane categories.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Airplane categories. 23.3 Section 23.3... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES General § 23.3 Airplane categories. (a) The normal category is limited to airplanes that have a seating configuration, excluding pilot...

  11. 14 CFR 23.3 - Airplane categories.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Airplane categories. 23.3 Section 23.3... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES General § 23.3 Airplane categories. (a) The normal category is limited to airplanes that have a seating configuration, excluding pilot...

  12. 14 CFR 23.3 - Airplane categories.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Airplane categories. 23.3 Section 23.3... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES General § 23.3 Airplane categories... airplanes that have a seating configuration, excluding pilot seats, of nine or less, a maximum certificated...

  13. 77 FR 37797 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-25

    ... Airworthiness Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), Department of... Airbus Model A330-200 series airplanes; Airbus Model A330-200 Freighter series airplanes; Airbus Model A330-300 series airplanes; Airbus Model A340-200 series airplanes; and Airbus Model A340-300 series...

  14. Follow-On Studies for Design Definition of a Lift/Cruise Fan Technology V/STOL Airplane, Volume 1

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A three engine, three fan V/STOL airplane was designed for use as a Research Technology Airplane in proof-of-concept of a candidate configuration for use as a Navy multimission airplane. Use of mechanically interconnected variable pitch fans is made to accommodate power transfer for flight control in hover and to provide flight capability in the event of a single engine failure. The airplane is a modification of a T-39A transport. Design definition is provided for high risk propulsion components and a development test program is defined.

  15. 14 CFR 125.75 - Airplane flight manual.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane flight manual. 125.75 Section 125... Airplane flight manual. (a) Each certificate holder shall keep a current approved Airplane Flight Manual or... approved Airplane Flight Manual or the approved equivalent aboard each airplane it operates. A certificate...

  16. 14 CFR 125.75 - Airplane flight manual.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane flight manual. 125.75 Section 125... Airplane flight manual. (a) Each certificate holder shall keep a current approved Airplane Flight Manual or... approved Airplane Flight Manual or the approved equivalent aboard each airplane it operates. A certificate...

  17. 14 CFR 125.75 - Airplane flight manual.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane flight manual. 125.75 Section 125... Airplane flight manual. (a) Each certificate holder shall keep a current approved Airplane Flight Manual or... approved Airplane Flight Manual or the approved equivalent aboard each airplane it operates. A certificate...

  18. Metal Airplane Construction

    NASA Technical Reports Server (NTRS)

    1926-01-01

    It has long been thought that metal construction of airplanes would involve an increase in weight as compared with wood construction. Recent experience has shown that such is not the case. This report describes the materials used, treatment of, and characteristics of metal airplane construction.

  19. 76 FR 79560 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-22

    ...-1323; Directorate Identifier 2010-NM-212-AD] RIN 2120-AA64 Airworthiness Directives; Airbus Airplanes... airplanes; Model A330-223F and -243F airplanes; and Model A340-200, -300, -500, and -600 series airplanes... airplane flight manual. We are proposing this AD to prevent movement of the elevators to zero position...

  20. 14 CFR 125.93 - Airplane limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane limitations. 125.93 Section 125.93...: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Requirements § 125.93 Airplane...

  1. 14 CFR 125.93 - Airplane limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane limitations. 125.93 Section 125.93...: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Requirements § 125.93 Airplane...

  2. 14 CFR 125.93 - Airplane limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane limitations. 125.93 Section 125.93...: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Requirements § 125.93 Airplane...

  3. 14 CFR 125.93 - Airplane limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane limitations. 125.93 Section 125.93...: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Requirements § 125.93 Airplane...

  4. 14 CFR 125.93 - Airplane limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane limitations. 125.93 Section 125.93...: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Requirements § 125.93 Airplane...

  5. The Airplane Cabin Microbiome.

    PubMed

    Weiss, Howard; Hertzberg, Vicki Stover; Dupont, Chris; Espinoza, Josh L; Levy, Shawn; Nelson, Karen; Norris, Sharon

    2018-06-06

    Serving over three billion passengers annually, air travel serves as a conduit for infectious disease spread, including emerging infections and pandemics. Over two dozen cases of in-flight transmissions have been documented. To understand these risks, a characterization of the airplane cabin microbiome is necessary. Our study team collected 229 environmental samples on ten transcontinental US flights with subsequent 16S rRNA sequencing. We found that bacterial communities were largely derived from human skin and oral commensals, as well as environmental generalist bacteria. We identified clear signatures for air versus touch surface microbiome, but not for individual types of touch surfaces. We also found large flight-to-flight beta diversity variations with no distinguishing signatures of individual flights, rather a high between-flight diversity for all touch surfaces and particularly for air samples. There was no systematic pattern of microbial community change from pre- to post-flight. Our findings are similar to those of other recent studies of the microbiome of built environments. In summary, the airplane cabin microbiome has immense airplane to airplane variability. The vast majority of airplane-associated microbes are human commensals or non-pathogenic, and the results provide a baseline for non-crisis-level airplane microbiome conditions.

  6. The Airplane Experiment.

    ERIC Educational Resources Information Center

    Larson, Lee; Grant, Roderick

    1991-01-01

    Presents an experiment to investigate centripetal force and acceleration that utilizes an airplane suspended on a string from a spring balance. Investigates the possibility that lift on the wings of the airplane accounts for the differences between calculated tension and measured tension on the string. (MDH)

  7. Highly integrated digital engine control system on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Haering, E. A., Jr.

    1984-01-01

    The Highly Integrated Digital Electronic Control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine/airframe control systems. This system is being used on the F-15 airplane. An integrated flightpath management mode and an integrated adaptive engine stall margin mode are implemented into the system. The adaptive stall margin mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the engine stall margin are continuously computed; the excess stall margin is used to uptrim the engine for more thrust. The integrated flightpath management mode optimizes the flightpath and throttle setting to reach a desired flight condition. The increase in thrust and the improvement in airplane performance is discussed.

  8. 78 FR 9798 - Airworthiness Directives; Dassault Aviation Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... Dassault Aviation Myst[egrave]re-Falcon 50 Aircraft Maintenance Manual (AMM) chapter 5-40 and approved by... manufacturer revision to the airplane maintenance manual (AMM) that introduces new or more restrictive maintenance requirements and airworthiness limitations. This AD requires revising the maintenance program to...

  9. 77 FR 10409 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ...; Model A310 series airplanes; Model A300 B4-600, B4-600R, and F4-600R series airplanes, and Model C4-605R... Model A300 B4-603, B4-620, and B4-622 airplanes, Model A300 B4-605R and B4-622R airplanes, Model A300 F4-605R and F4- 622R airplanes, and Model A300 C4-605R Variant F airplanes. (d) Subject Air Transport...

  10. 77 FR 24367 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-24

    ... Airworthiness Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), Department of... Airbus Model A300 B4-2C, B4-103, and B4-203 airplanes; Model A300 B4- 600, B4-600R, and F4-600R series airplanes, and Model C4-605R Variant F airplanes (collectively called A300-600 series airplanes); and Model...

  11. A study of commuter airplane design optimization

    NASA Technical Reports Server (NTRS)

    Keppel, B. V.; Eysink, H.; Hammer, J.; Hawley, K.; Meredith, P.; Roskam, J.

    1978-01-01

    The usability of the general aviation synthesis program (GASP) was enhanced by the development of separate computer subroutines which can be added as a package to this assembly of computerized design methods or used as a separate subroutine program to compute the dynamic longitudinal, lateral-directional stability characteristics for a given airplane. Currently available analysis methods were evaluated to ascertain those most appropriate for the design functions which the GASP computerized design program performs. Methods for providing proper constraint and/or analysis functions for GASP were developed as well as the appropriate subroutines.

  12. 78 FR 6247 - Airworthiness Directives; the Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ... Company Model 757 airplanes. The existing AD currently requires revising the maintenance program by... for ignition sources inside fuel tanks caused by latent failures, alterations, repairs, or maintenance... CONTACT: Kevin Nguyen, Aerospace Engineer, Propulsion Branch, ANM-140S, FAA, Seattle Aircraft...

  13. Simulator study of vortex encounters by a twin-engine, commercial, jet transport airplane

    NASA Technical Reports Server (NTRS)

    Hastings, E. C., Jr.; Keyser, G. L., Jr.

    1982-01-01

    A simulator study of vortex encounters was conducted for a twin-engine, commercial, jet transport airplane encountering the vortex flow field of a heavy, four-engine, commercial, jet transport airplane in the final-approach configuration. The encounters were conducted with fixed controls and with a pilot using a state-of-the-art, manual-control system. Piloted encounters with the base-line vortex flow field out of ground effect (unattenuated) resulted in initial bank-angle excursions greater than 40 deg, coupled with initial sideslip-angle excursions greater than 10 deg. The severity of these initial upsets was significantly reduced when the vortex center was moved laterally or vertically away from the flight path of the encountering airplane. Smaller reductions occurred when the flow field was attenuated by the flight spoilers on the generating airplane. The largest reduction in the severity of the initial upsets, however, was from aging in ground effect. The severity of the initial upsets of the following airplane was relatively unaffected by the approach speed. Increasing the lift coefficient of the generating airplane resulted in an increase in the severity of the initial upsets.

  14. 78 FR 20844 - Airworthiness Directives; Bombardier, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... limitation tasks. We are proposing this AD to prevent flap system failure, and consequent reduced landing performance of the airplane. DATES: We must receive comments on this proposed AD by May 23, 2013. ADDRESSES..., through an actuator sampling program, the performance of the flap system since the introduction of...

  15. 78 FR 27015 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-09

    ... Airworthiness Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), Department of... Airbus Model A330-200 and A330-300 series airplanes, and Model A340-200 and A340-300 series airplanes... seal on a solenoid. This AD requires, depending on airplane configuration, modifying three flight...

  16. 77 FR 48469 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-14

    ...-0808; Directorate Identifier 2010-NM-170-AD] RIN 2120-AA64 Airworthiness Directives; Airbus Airplanes... airplanes, and Model A340-200 and A340-300 series airplanes. This proposed AD was prompted by reports of an... require, depending on airplane configuration, modifying three flight control primary computers (FCPCs...

  17. 78 FR 68347 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-14

    ... Airworthiness Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), Department of...-200, A340- 300, A340-500, and A340-600 series airplanes. AD 2009-04-07 required revising the airplane... reference unit (ADIRU) from providing erroneous data to other airplane systems. AD 2011-02-09 required...

  18. Prediction of jump phenomena in roll-coupled maneuvers of airplanes

    NASA Technical Reports Server (NTRS)

    Schy, A. A.; Hannah, M. E.

    1976-01-01

    An easily computerized analytical method is developed for identifying critical airplane maneuvers in which nonlinear rotational coupling effects may cause sudden jumps in the response to pilot's control inputs. Fifth and ninth degree polynomials for predicting multiple pseudo-steady states of roll-coupled maneuvers are derived. The program calculates the pseudo-steady solutions and their stability. The occurrence of jump-like responses for several airplanes and a variety of maneuvers is shown to correlate well with the appearance of multiple stable solutions for critical control combinations. The analysis is extended to include aerodynamics nonlinear in angle of attack.

  19. 76 FR 77934 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-15

    ...-1321; Directorate Identifier 2011-NM-045-AD] RIN 2120-AA64 Airworthiness Directives; Airbus Airplanes...: We propose to adopt a new airworthiness directive (AD) for certain Airbus Model A319 series airplanes, Model A320-211, -212, -214, -231, -232, and -233 airplanes, and Model A321 series airplanes that would...

  20. 77 FR 24829 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-26

    ... Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), Department of Transportation (DOT... and -300 series airplanes; Model A330-223F and -243F airplanes; and Model A340-200, -300, -500, and -600 series airplanes. This AD was prompted by a report that during the evaluation of engine failures...

  1. Exploring Venus by Solar Airplane

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2001-01-01

    A solar-powered airplane is proposed to explore the atmospheric environment of Venus. Venus has several advantages for a solar airplane. At the top of the cloud level, the solar intensity is comparable to or greater than terrestrial solar intensities. The Earthlike atmospheric pressure means that the power required for flight is lower for Venus than that of Mars, and the slow rotation of Venus allows an airplane to be designed for continuous sunlight, with no energy storage needed for night-time flight. These factors mean that Venus is perhaps the easiest planet in the solar system for flight of a long-duration solar airplane.

  2. The X-15 airplane - Lessons learned

    NASA Technical Reports Server (NTRS)

    Dana, William H.

    1993-01-01

    The X-15 rocket research airplane flew to an altitude of 354,000 ft and reached Mach 6.70. In almost 200 flights, this airplane was used to gather aerodynamic-heating, structural loads, stability and control, and atmospheric-reentry data. This paper describes the origins, design, and operation of the X-15 airplane. In addition, lessons learned from the X-15 airplane that are applicable to designing and testing the National Aero-Space Plane are discussed.

  3. 14 CFR 125.75 - Airplane flight manual.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane flight manual. 125.75 Section 125... OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6... Airplane flight manual. (a) Each certificate holder shall keep a current approved Airplane Flight Manual or...

  4. 78 FR 9787 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... Airworthiness Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), Department of... Airbus Model A300 B4-600, B4-600R, and F4-600R series airplanes, and Model A300 C4-605R Variant F airplanes (collectively called Model A300- 600 series airplanes); and Airbus [[Page 9788

  5. 14 CFR 125.75 - Airplane flight manual.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane flight manual. 125.75 Section 125... OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6... Airplane flight manual. (a) Each certificate holder shall keep a current approved Airplane Flight Manual or...

  6. Flight test evaluation of a separate surface attitude command control system on a Beech 99 airplane

    NASA Technical Reports Server (NTRS)

    Gee, S. W.; Jenks, G. E.; Roskam, J.; Stone, R. L.

    1976-01-01

    A joint NASA/university/industry program was conducted to flight evaluate a potentially low cost separate surface implementation of attitude command in a Beech 99 airplane. Saturation of the separate surfaces was the primary cause of many problems during development. Six experienced professional pilots who made simulated instrument flight evaluations experienced improvements in airplane handling qualities in the presence of turbulence and a reduction in pilot workload. For ride quality, quantitative data show that the attitude command control system results in all cases of airplane motion being removed from the uncomfortable ride region.

  7. Highly integrated digital engine control system on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Haering, E. A., Jr.

    1984-01-01

    The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. This system is being used on the F-15 airplane at the Dryden Flight Research Facility of NASA Ames Research Center. An integrated flightpath management mode and an integrated adaptive engine stall margin mode are being implemented into the system. The adaptive stall margin mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the engine stall margin are continuously computed; the excess stall margin is used to uptrim the engine for more thrust. The integrated flightpath management mode optimizes the flightpath and throttle setting to reach a desired flight condition. The increase in thrust and the improvement in airplane performance is discussed in this paper.

  8. Air resistance measurements on actual airplane parts

    NASA Technical Reports Server (NTRS)

    Weiselsberger, C

    1923-01-01

    For the calculation of the parasite resistance of an airplane, a knowledge of the resistance of the individual structural and accessory parts is necessary. The most reliable basis for this is given by tests with actual airplane parts at airspeeds which occur in practice. The data given here relate to the landing gear of a Siemanms-Schuckert DI airplane; the landing gear of a 'Luftfahrzeug-Gesellschaft' airplane (type Roland Dlla); landing gear of a 'Flugzeugbau Friedrichshafen' G airplane; a machine gun, and the exhaust manifold of a 269 HP engine.

  9. Airplane Upset Training Evaluation Report

    NASA Technical Reports Server (NTRS)

    Gawron, Valerie J.; Jones, Patricia M. (Technical Monitor)

    2002-01-01

    Airplane upset accidents are a leading factor in hull losses and fatalities. This study compared five types of airplane-upset training. Each group was composed of eight, non-military pilots flying in their probationary year for airlines operating in the United States. The first group, 'No aero / no upset,' was made up of pilots without any airplane upset training or aerobatic flight experience; the second group, 'Aero/no upset,' of pilots without any airplane-upset training but with aerobatic experience; the third group, 'No aero/upset,' of pilots who had received airplane-upset training in both ground school and in the simulator; the fourth group, 'Aero/upset,' received the same training as Group Three but in addition had aerobatic flight experience; and the fifth group, 'In-flight' received in-flight airplane upset training using an instrumented in-flight simulator. Recovery performance indicated that clearly training works - specifically, all 40 pilots recovered from the windshear upset. However few pilots were trained or understood the use of bank to change the direction of the lift vector to recover from nose high upsets. Further, very few thought of, or used differential thrust to recover from rudder or aileron induced roll upsets. In addition, recovery from icing-induced stalls was inadequate.

  10. The performance of child restraint devices in transport airplane passenger seats.

    DOT National Transportation Integrated Search

    1994-09-01

    The performance of child restraint devices (CRDs) in commercial transport airplane passenger seats was evaluated by a dynamic impact test program. Background information on the policies and regulations related to child restraints is summarized. Tests...

  11. 14 CFR 23.1437 - Accessories for multiengine airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Accessories for multiengine airplanes. 23... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 23.1437 Accessories for multiengine airplanes. For multiengine airplanes...

  12. 14 CFR 23.1437 - Accessories for multiengine airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Accessories for multiengine airplanes. 23... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 23.1437 Accessories for multiengine airplanes. For multiengine airplanes...

  13. 14 CFR 23.1437 - Accessories for multiengine airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Accessories for multiengine airplanes. 23... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 23.1437 Accessories for multiengine airplanes. For multiengine airplanes...

  14. Ageing airplane repair assessment program for Airbus A300

    NASA Technical Reports Server (NTRS)

    Gaillardon, J. M.; Schmidt, HANS-J.; Brandecker, B.

    1992-01-01

    This paper describes the current status of the repair categorization activities and includes all details about the methodologies developed for determination of the inspection program for the skin on pressurized fuselages. For inspection threshold determination two methods are defined based on fatigue life approach, a simplified and detailed method. The detailed method considers 15 different parameters to assess the influences of material, geometry, size location, aircraft usage, and workmanship on the fatigue life of the repair and the original structure. For definition of the inspection intervals a general method is developed which applies to all concerned repairs. For this the initial flaw concept is used by considering 6 parameters and the detectable flaw sizes depending on proposed nondestructive inspection methods. An alternative method is provided for small repairs allowing visual inspection with shorter intervals.

  15. 14 CFR 121.605 - Airplane equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane equipment. 121.605 Section 121.605..., FLAG, AND SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.605 Airplane equipment. No person may dispatch or release an airplane unless it is airworthy and is equipped as prescribed in § 121...

  16. 14 CFR 121.605 - Airplane equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane equipment. 121.605 Section 121.605..., FLAG, AND SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.605 Airplane equipment. No person may dispatch or release an airplane unless it is airworthy and is equipped as prescribed in § 121...

  17. 14 CFR 121.605 - Airplane equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane equipment. 121.605 Section 121.605..., FLAG, AND SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.605 Airplane equipment. No person may dispatch or release an airplane unless it is airworthy and is equipped as prescribed in § 121...

  18. 14 CFR 121.605 - Airplane equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane equipment. 121.605 Section 121.605..., FLAG, AND SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.605 Airplane equipment. No person may dispatch or release an airplane unless it is airworthy and is equipped as prescribed in § 121...

  19. 14 CFR 121.605 - Airplane equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane equipment. 121.605 Section 121.605..., FLAG, AND SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.605 Airplane equipment. No person may dispatch or release an airplane unless it is airworthy and is equipped as prescribed in § 121...

  20. 77 FR 24137 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-23

    ... Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule... Register. That AD applies to all Airbus Model A300 B4-600, B4-600R, and F4-600R series airplanes, Model... Airbus Model A300 B4-600, B4- 600R, and F4-600R series airplanes, Model A300 C4-605R Variant F airplanes...

  1. Prolonging Microgravity on Parabolic Airplane Flights

    NASA Technical Reports Server (NTRS)

    Robinson, David W.

    2003-01-01

    Three techniques have been proposed to prolong the intervals of time available for microgravity experiments aboard airplanes flown along parabolic trajectories. Typically, a pilot strives to keep an airplane on such a trajectory during a nominal time interval as long as 25 seconds, and an experimental apparatus is released to float freely in the airplane cabin to take advantage of the microgravitational environment of the trajectory for as long as possible. It is usually not possible to maintain effective microgravity during the entire nominal time interval because random aerodynamic forces and fluctuations in pilot control inputs cause the airplane to deviate slightly from a perfect parabolic trajectory, such that the freely floating apparatus bumps into the ceiling, floor, or a wall of the airplane before the completion of the parabola.

  2. 14 CFR 125.355 - Airplane equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane equipment. 125.355 Section 125.355...: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Release Rules § 125.355 Airplane...

  3. 14 CFR 125.355 - Airplane equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane equipment. 125.355 Section 125.355...: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Release Rules § 125.355 Airplane...

  4. 14 CFR 125.355 - Airplane equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane equipment. 125.355 Section 125.355...: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Release Rules § 125.355 Airplane...

  5. 14 CFR 125.355 - Airplane equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane equipment. 125.355 Section 125.355...: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Release Rules § 125.355 Airplane...

  6. 14 CFR 125.355 - Airplane equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane equipment. 125.355 Section 125.355...: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Release Rules § 125.355 Airplane...

  7. 77 FR 10403 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ... provided guidance for this determination in Advisory Circular (AC) 25.1529-1A. (d) Subject Joint Aircraft... Limitations Section of the maintenance planning data (MPD) document. Since we issued that AD, a re-evaluation... revise the maintenance program to incorporate an additional limitation, and would add airplanes to the...

  8. Dynamic stability and handling qualities tests on a highly augmented, statically unstable airplane

    NASA Technical Reports Server (NTRS)

    Gera, Joseph; Bosworth, John T.

    1987-01-01

    Initial envelope clearance and subsequent flight testing of a new, fully augmented airplane with an extremely high degree of static instability can place unusual demands on the flight test approach. Previous flight test experience with these kinds of airplanes is very limited or nonexistent. The safe and efficient flight testing may be further complicated by a multiplicity of control effectors that may be present on this class of airplanes. This paper describes some novel flight test and analysis techniques in the flight dynamics and handling qualities area. These techniques were utilized during the initial flight envelope clearance of the X-29A aircraft and were largely responsible for the completion of the flight controls clearance program without any incidents or significant delays.

  9. An experimental and theoretical investigation of deposition patterns from an agricultural airplane

    NASA Technical Reports Server (NTRS)

    Morris, D. J.; Croom, C. C.; Vandam, C. P.; Holmes, B. J.

    1984-01-01

    A flight test program has been conducted with a representative agricultural airplane to provide data for validating a computer program model which predicts aerially applied particle deposition. Test procedures and the data from this test are presented and discussed. The computer program features are summarized, and comparisons of predicted and measured particle deposition are presented. Applications of the computer program for spray pattern improvement are illustrated.

  10. Experimental test of airplane boarding methods

    DOE PAGES

    Steffen, Jason H.; Hotchkiss, Jon

    2011-10-26

    We report the results of an experimental comparison of different airplane boarding methods. This test was conducted in a mock 757 fuselage, located on a Southern California soundstage, with 12 rows of six seats and a single aisle. Five methods were tested using 72 passengers of various ages. We found a significant reduction in the boarding times of optimized methods over traditional methods. These improved methods, if properly implemented, could result in a significant savings to airline companies. The process of boarding an airplane is of interest to a variety of groups. The public is interested both as a curiosity,more » as it is something that they may regularly experience, and as a consumer, as their experiences good or bad can affect their loyalties. Airline companies and their employees also have a stake in an efficient boarding procedure as time saved in the boarding process may result is monetary savings, in the quality of interactions with passengers, and in the application of human resources to the general process of preparing an airplane for departure. A recent study (Nyquist and McFadden, 2008) indicates that the average cost to an airline company for each minute of time spent at the terminal is roughly $30. Thus, each minute saved in the turn-around time of a flight has the potential to generate over $16,000,000 in annual savings (assuming an average of 1500 flights per day). While the boarding process may not be the primary source of delay in returning an airplane to the skies, reducing the boarding time may effectively eliminate passenger boarding as a contributor in any meaningful measure. Consequently, subsequent efforts to streamline the other necessary tasks, such as refueling and maintenance, would be rewarded with a material reduction in time at the gate for each flight.« less

  11. The value of early flight evaluation of propulsion concepts using the NASA F-15 research airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Ray, Ronald J.

    1987-01-01

    The value of early flight evaluation of propulsion and propulsion control concepts was demonstrated on the NASA F-15 airplane in programs such as highly integrated digital electronic control (HIDEC), the F100 engine model derivative (EMD), and digital electronic engine control (DEEC). (In each case, the value of flight demonstration was conclusively demonstrated). This paper described these programs, and discusses the results that were not expected, based on ground test or analytical prediction. The role of flight demonstration in facilitating transfer of technology from the laboratory to operational airplanes is discussed.

  12. Directional Stability of Towed Airplanes

    NASA Technical Reports Server (NTRS)

    Soehne, W.

    1956-01-01

    So far, very careful investigations have been made regarding the flight properties, in particular the static and dynamic stability, of engine-propelled aircraft and of untowed gliders. In contrast, almost no investigations exist regarding the stability of airplanes towed by a towline. Thus, the following report will aim at investigating the directional stability of the towed airplane and, particularly, at determining what parameters of the flight attitude and what configuration properties affect the stability. The most important parameters of the flight attitude are the dynamic pressure, the aerodynamic coefficients of the flight attitude, and the climbing angle. Among the configuration properties, the following exert the greatest influence on the stability: the tow-cable length, the tow-cable attachment point, the ratio of the wing loadings of the towing and the towed airplanes, the moments of inertia, and the wing dihedral of the towed airplane. In addition, the size and shape of the towed airplane vertical tail, the vertical tail length, and the fuselage configuration are decisive factors in determining the yawing moment and side force due to sideslip, respectively.

  13. Time-History Data of Maneuvers Performed by a Republic F84G Airplane During Squadron Operational Training

    NASA Technical Reports Server (NTRS)

    Hamer, Harold A.; Mayo, Alton P.

    1953-01-01

    Preliminary results of one phase of a control-motion study program involving several jet fighter-type airplanes are presented in time-history form and are summarized as maximum measured quantities plotted against indicated airspeed. The results pertain to approximately 1,000 maneuvers performed by a Republic F-84G jet-fighter airplane during squadron operational training. The data include most tactical maneuvers of which the F-84G airplane is capable. Maneuvers were performed at pressure altitudes of 0 to 30,000 feet with indicated airspeeds ranging from the stalling speed to approximately 515 knots.

  14. 77 FR 70366 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-26

    ... Airworthiness Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), Department of... Airbus Model A330-243, -243F, -341, -342, and -343 airplanes equipped with Rolls-Royce Trent 700 engines...: Vladimir Ulyanov, Aerospace Engineer, International Branch, ANM-116, Transport Airplane Directorate, FAA...

  15. 76 FR 50706 - Airworthiness Directives; SOCATA Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ...-0868; Directorate Identifier 2011-CE-027-AD] RIN 2120-AA64 Airworthiness Directives; SOCATA Airplanes... SOCATA Model TBM 700 Airplanes. This proposed AD results from mandatory continuing airworthiness... copies of the referenced service information at the FAA, Small Airplane Directorate, 901 Locust, Kansas...

  16. Interaction Between Air Propellers and Airplane Structures

    NASA Technical Reports Server (NTRS)

    Durand, W F

    1927-01-01

    The purpose of this investigation was the determination of the character and amount of interaction between air propellers as usually mounted on airplanes and the adjacent parts of the airplane structure - or, more specifically, those parts of the airplane structure within the wash of the propeller, and capable of producing any significant effect on propeller performance. In report no. 177 such interaction between air propellers and certain simple geometrical forms was made the subject of investigation and report. The present investigation aims to carry this general study one stage further by substituting actual airplane structures for the simple geometrical forms. From the point of view of the present investigation, the airplane structures, viewed as an obstruction in the wake of the propeller, must also be viewed as a necessary part of the airplane and not as an appendage which might be installed or removed at will. (author)

  17. Optimal back-to-front airplane boarding.

    PubMed

    Bachmat, Eitan; Khachaturov, Vassilii; Kuperman, Ran

    2013-06-01

    The problem of finding an optimal back-to-front airplane boarding policy is explored, using a mathematical model that is related to the 1+1 polynuclear growth model with concave boundary conditions and to causal sets in gravity. We study all airplane configurations and boarding group sizes. Optimal boarding policies for various airplane configurations are presented. Detailed calculations are provided along with simulations that support the main conclusions of the theory. We show that the effectiveness of back-to-front policies undergoes a phase transition when passing from lightly congested airplanes to heavily congested airplanes. The phase transition also affects the nature of the optimal or near-optimal policies. Under what we consider to be realistic conditions, optimal back-to-front policies lead to a modest 8-12% improvement in boarding time over random (no policy) boarding, using two boarding groups. Having more than two groups is not effective.

  18. Stall-proof Airplanes

    NASA Technical Reports Server (NTRS)

    Lachmann, G

    1927-01-01

    My lecture has to do with the following questions. Is the danger of stalling necessarily inherent in the airplane in its present form and structure, or can it be diminished or eliminated by suitable means? Do we possess such means or devices and how must they operate? In this connection I will devote special attention to the exhibition of stall-proof airplanes by Fokker under the auspices of the English Air Ministry, which took place in Croyden last April.

  19. 78 FR 7261 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... Airworthiness Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), Department of... Airbus Model A310-203 airplanes. This AD was prompted by a report of an analysis that demonstrated a...-116, Transport Airplane Directorate, FAA, 1601 Lind Avenue SW., Renton, WA 98057-3356; telephone (425...

  20. 78 FR 53640 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    ... Airworthiness Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), Department of... Airbus Model A330-200 Freighter series airplanes; Model A330-200 and - 300 series airplanes, and Model... of the forward or aft cargo door. To address this condition, Airbus issued four separate Alert...

  1. 78 FR 53638 - Airworthiness Directives; Bombardier, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    .... Model CL-600-2C10 (Regional Jet Series 700, 701, & 702) airplanes, Model CL-600-2D15 (Regional Jet Series 705) airplanes, Model CL-600-2D24 (Regional Jet Series 900) airplanes, and Model CL- 600-2E25 (Regional Jet Series 1000) airplanes. This AD was prompted by reports of erratic pitch movement and...

  2. 77 FR 67267 - Airworthiness Directives; Bombardier, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-09

    ... (AD) for certain Bombardier, Inc. Model CL-600-2C10 (Regional Jet Series 700, 701, & 702) airplanes, Model CL-600-2D15 (Regional Jet Series 705) airplanes, Model CL-600-2D24 (Regional Jet Series 900) airplanes, and Model CL- 600-2E25 (Regional Jet Series 1000) airplanes. This AD was prompted by a report...

  3. 77 FR 49389 - Airworthiness Directives; Revo, Incorporated Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-16

    ..., Incorporated Models COLONIAL C-1, COLONIAL C-2, LAKE LA-4, LAKE LA-4A, LAKE LA-4P, and LAKE LA-4-200 airplanes... COLONIAL C-1 airplanes are identical in every other respect to those installed on the airplanes referenced... COLONIAL C-1 airplanes to the Applicability, and add an optional terminating action for the requirements...

  4. 78 FR 31386 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-24

    ... Airworthiness Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), Department of...) for all Airbus Model A330-200 and -300 series airplanes; and Model A340-200, -300, -500, and -600 series airplanes. That AD currently requires a one-time detailed inspection of both main landing gear...

  5. 77 FR 42952 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ... Airworthiness Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), Department of... Airbus Model A318-112 and -121 airplanes; Model A319-111, -112, -115, - 132, and -133 airplanes; Model... MCAI states: During structural part assembly in Airbus production line, some nuts Part Number (P/N...

  6. Annoyance caused by propeller airplane flyover noise

    NASA Technical Reports Server (NTRS)

    Mccurdy, D. A.; Powell, C. A.

    1984-01-01

    Laboratory experiments were conducted to provide information on quantifying the annoyance response of people to propeller airplane noise. The items of interest were current noise metrics, tone corrections, duration corrections, critical band corrections, and the effects of engine type, operation type, maximum takeoff weight, blade passage frequency, and blade tip speed. In each experiment, 64 subjects judged the annoyance of recordings of propeller and jet airplane operations presented at d-weighted sound pressure levels of 70, 80, and 90 dB in a testing room which simulates the outdoor acoustic environment. The first experiment examined 11 propeller airplanes with maximum takeoff weights greater than or equal to 5700 kg. The second experiment examined 14 propeller airplanes weighting 5700 kg or less. Five jet airplanes were included in each experiment. For both the heavy and light propeller airplanes, perceived noise level and perceived level (Stevens Mark VII procedure) predicted annoyance better than other current noise metrics.

  7. 14 CFR 121.141 - Airplane flight manual.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane flight manual. 121.141 Section 121... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Manual Requirements § 121.141 Airplane flight manual. (a) Each certificate holder shall keep a current approved airplane flight manual for each type of...

  8. 14 CFR 121.141 - Airplane flight manual.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane flight manual. 121.141 Section 121... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Manual Requirements § 121.141 Airplane flight manual. (a) Each certificate holder shall keep a current approved airplane flight manual for each type of...

  9. 14 CFR 121.141 - Airplane flight manual.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane flight manual. 121.141 Section 121... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Manual Requirements § 121.141 Airplane flight manual. (a) Each certificate holder shall keep a current approved airplane flight manual for each type of...

  10. 14 CFR 121.141 - Airplane flight manual.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane flight manual. 121.141 Section 121... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Manual Requirements § 121.141 Airplane flight manual. (a) Each certificate holder shall keep a current approved airplane flight manual for each type of...

  11. 14 CFR 121.570 - Airplane evacuation capability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane evacuation capability. 121.570... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.570 Airplane evacuation capability. (a) No person may cause an airplane carrying passengers to be moved on the surface, take off, or...

  12. 77 FR 70369 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-26

    ... Airworthiness Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), Department of... Airbus Model A318, A319, A320, and A321 series airplanes. This AD was prompted by reports of the escape... the escape slide raft, which could result in delayed evacuation from the airplane during an emergency...

  13. 14 CFR 121.141 - Airplane flight manual.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane flight manual. 121.141 Section 121... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Manual Requirements § 121.141 Airplane flight manual. (a) Each certificate holder shall keep a current approved airplane flight manual for each type of...

  14. 78 FR 52414 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-23

    ... Airworthiness Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), Department of... Airbus Model A320-214, -232 and -233 airplanes; and Model A321-211, - 213, and -231 airplanes. This AD... Service Information Airbus requested that we revise the NPRM (77 FR 63270, October 16, 2012) to reflect...

  15. 14 CFR 121.570 - Airplane evacuation capability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane evacuation capability. 121.570... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.570 Airplane evacuation capability. (a) No person may cause an airplane carrying passengers to be moved on the surface, take off, or...

  16. 14 CFR 121.570 - Airplane evacuation capability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane evacuation capability. 121.570... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.570 Airplane evacuation capability. (a) No person may cause an airplane carrying passengers to be moved on the surface, take off, or...

  17. 14 CFR 121.570 - Airplane evacuation capability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane evacuation capability. 121.570... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.570 Airplane evacuation capability. (a) No person may cause an airplane carrying passengers to be moved on the surface, take off, or...

  18. 14 CFR 121.570 - Airplane evacuation capability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane evacuation capability. 121.570... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.570 Airplane evacuation capability. (a) No person may cause an airplane carrying passengers to be moved on the surface, take off, or...

  19. Measurements of the Basic SR-71 Airplane Near-Field Signature

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.; Whitmore, Stephen A.; Ehernberger, L. J.

    1999-01-01

    Airplane design studies have developed configuration concepts that may produce lower sonic boom annoyance levels. Since lower noise designs differ significantly from other HSCT designs, it is necessary to accurately assess their potential before HSCT final configuration decisions are made. Flight tests to demonstrate lower noise design capability by modifying an existing airframe have been proposed for the Mach 3 SR-71 reconnaissance airplane. To support the modified SR-71 proposal, baseline in-flight measurements were made of the unmodified aircraft. These measurements of SR-71 near-field sonic boom signatures were obtained by an F-16XL probe airplane at flightpath separation distances ranging from approximately 740 to 40 ft. This paper discusses the methods used to gather and analyze the flight data, and makes comparisons of these flight data with CFD results from Douglas Aircraft Corporation and NASA Langley Research Center. The CFD solutions were obtained for the near-field flow about the SR-71, and then propagated to the flight test measurement location using the program MDBOOM.

  20. 14 CFR 125.91 - Airplane requirements: General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane requirements: General. 125.91... AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Requirements...

  1. 76 FR 61555 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-05

    ... pieces unit welded, instead of 4 pieces unit with 3 welds (old design) as pictured in Appendix 1 of this... pre-modification 02447. Blue and Green. A300 airplanes post-modification 02447 Blue. A300-600 airplanes Blue. A310 airplanes Green. Table 2--Applicable Service Information Airbus Mandatory Service...

  2. 77 FR 65799 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... Airworthiness Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), Department of... Airbus Model A330-200 freighter series airplanes, Model A330-200 and - 300 series airplanes, and Model... [Amended] 0 2. The FAA amends Sec. 39.13 by adding the following new AD: 2012-21-20 Airbus: Amendment 39...

  3. 14 CFR 125.91 - Airplane requirements: General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane requirements: General. 125.91... AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Requirements...

  4. 14 CFR 125.91 - Airplane requirements: General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane requirements: General. 125.91... AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Requirements...

  5. 14 CFR 125.91 - Airplane requirements: General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane requirements: General. 125.91... AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Requirements...

  6. 14 CFR 125.91 - Airplane requirements: General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane requirements: General. 125.91... AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Requirements...

  7. 14 CFR 91.1037 - Large transport category airplanes: Turbine engine powered; Limitations; Destination and...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....1037 Large transport category airplanes: Turbine engine powered; Limitations; Destination and alternate airports. (a) No program manager or any other person may permit a turbine engine powered large transport... and terrain. (c) A program manager or other person flying a turbine engine powered large transport...

  8. 14 CFR 91.1037 - Large transport category airplanes: Turbine engine powered; Limitations; Destination and...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....1037 Large transport category airplanes: Turbine engine powered; Limitations; Destination and alternate airports. (a) No program manager or any other person may permit a turbine engine powered large transport... and terrain. (c) A program manager or other person flying a turbine engine powered large transport...

  9. A Hardware-in-the-Loop Simulator for Software Development for a Mars Airplane

    NASA Technical Reports Server (NTRS)

    Slagowski, Stefan E.; Vican, Justin E.; Kenney, P. Sean

    2007-01-01

    Draper Laboratory recently developed a Hardware-In-The-Loop Simulator (HILSIM) to provide a simulation of the Aerial Regional-scale Environmental Survey (ARES) airplane executing a mission in the Martian environment. The HILSIM was used to support risk mitigation activities under the Planetary Airplane Risk Reduction (PARR) program. PARR supported NASA Langley Research Center's (LaRC) ARES proposal efforts for the Mars Scout 2011 opportunity. The HILSIM software was a successful integration of two simulation frameworks, Draper's CSIM and NASA LaRC's Langley Standard Real-Time Simulation in C++ (LaSRS++).

  10. Analysis of Stresses in German Airplanes

    NASA Technical Reports Server (NTRS)

    Hoff, Wilhelm

    1923-01-01

    This report contains an account of the origin of the views and fundamental principles underlying the construction of German airplanes during the war. The report contains a detailed discussion of the aerodynamic principles and their use in determining the strength of airplanes, the analysis of the strength qualities of materials and in the construction, the calculated strength of air flows and a description of tests made in determining the strength of airplanes.

  11. Recurring norovirus transmission on an airplane.

    PubMed

    Thornley, Craig N; Emslie, Nicola A; Sprott, Tim W; Greening, Gail E; Rapana, Jackie P

    2011-09-01

    Previously reported outbreaks of norovirus gastroenteritis associated with aircraft have been limited to transmission during a single flight sector. During October 2009, an outbreak of diarrhea and vomiting occurred among different groups of flight attendants who had worked on separate flight sectors on the same airplane. We investigated the cause of the outbreak and whether the illnesses were attributable to work on the airplane. Information was obtained from flight attendants on demographic characteristics, symptoms, and possible transmission risk factors. Case patients were defined as flight attendants with diarrhea or vomiting <51 hours after the end of their first flight sector on the airplane during 13-18 October 2009. Stool samples were tested for norovirus RNA. A passenger had vomited on the Boeing 777-200 airplane on the 13 October flight sector. Sixty-three (82%) of 77 flight attendants who worked on the airplane during 13-18 October provided information, and 27 (43%) met the case definition. The attack rate among flight attendants decreased significantly over successive flight sectors from 13 October onward (P < .001). Working as a supervisor was independently associated with development of illness (adjusted odds ratio, 5.8; 95% confidence interval, 1.3-25.6). Norovirus genotype GI.6 was detected in stool samples from 2 case patients who worked on different flight sectors. Sustained transmission of norovirus is likely to have occurred because of exposures on this airplane during successive flight sectors. Airlines should make provision for adequate disinfection of airplanes with use of products effective against norovirus and other common infectious agents after vomiting has occurred.

  12. 14 CFR 125.407 - Maintenance log: Airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Maintenance log: Airplanes. 125.407 Section... OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6... Maintenance log: Airplanes. (a) Each person who takes corrective action or defers action concerning a reported...

  13. 77 FR 64701 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-23

    ... Airworthiness Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), Department of... Airbus Model A300 series airplanes; Model A310 series airplanes; and Model A300 B4-600, B4-600R, and F4... that the AD be effective after Airbus completes certifying the improved design for the fuel pump half...

  14. 14 CFR 125.407 - Maintenance log: Airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Maintenance log: Airplanes. 125.407 Section... OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6... Maintenance log: Airplanes. (a) Each person who takes corrective action or defers action concerning a reported...

  15. 14 CFR 125.407 - Maintenance log: Airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Maintenance log: Airplanes. 125.407 Section... OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6... Maintenance log: Airplanes. (a) Each person who takes corrective action or defers action concerning a reported...

  16. 14 CFR 125.407 - Maintenance log: Airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Maintenance log: Airplanes. 125.407 Section... OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6... Maintenance log: Airplanes. (a) Each person who takes corrective action or defers action concerning a reported...

  17. 14 CFR 125.407 - Maintenance log: Airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Maintenance log: Airplanes. 125.407 Section... OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6... Maintenance log: Airplanes. (a) Each person who takes corrective action or defers action concerning a reported...

  18. The evolution of airplanes

    NASA Astrophysics Data System (ADS)

    Bejan, A.; Charles, J. D.; Lorente, S.

    2014-07-01

    The prevailing view is that we cannot witness biological evolution because it occurred on a time scale immensely greater than our lifetime. Here, we show that we can witness evolution in our lifetime by watching the evolution of the flying human-and-machine species: the airplane. We document this evolution, and we also predict it based on a physics principle: the constructal law. We show that the airplanes must obey theoretical allometric rules that unite them with the birds and other animals. For example, the larger airplanes are faster, more efficient as vehicles, and have greater range. The engine mass is proportional to the body size: this scaling is analogous to animal design, where the mass of the motive organs (muscle, heart, lung) is proportional to the body size. Large or small, airplanes exhibit a proportionality between wing span and fuselage length, and between fuel load and body size. The animal-design counterparts of these features are evident. The view that emerges is that the evolution phenomenon is broader than biological evolution. The evolution of technology, river basins, and animal design is one phenomenon, and it belongs in physics.

  19. 78 FR 70003 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    ... Airworthiness Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking (NPRM). SUMMARY: We propose to adopt a new airworthiness directive (AD) for all Airbus Model A300 series airplanes; Airbus Model A300 B4-600, B4-600R, and F4-600R series airplanes, and Model...

  20. Design definition study of a NASA/Navy lift/cruise fan technology V/STOL airplane: Risk assessment addendum to the final report

    NASA Technical Reports Server (NTRS)

    Zabinsky, J. M.; Burnham, R. W.; Flora, C. C.; Gotlieb, P.; Grande, D. L.; Gunnarson, D. W.; Howard, W. M.; Hunt, D.; Jakubowski, G. W.; Johnson, P. E.

    1975-01-01

    An assessment of risk, in terms of delivery delays, cost overrun, and performance achievement, associated with the V/STOL technology airplane is presented. The risk is discussed in terms of weight, structure, aerodynamics, propulsion, mechanical drive, and flight controls. The analysis ensures that risks associated with the design and development of the airplane will be eliminated in the course of the program and a useful technology airplane that meets the predicted cost, schedule, and performance can be produced.

  1. Simulation of Dynamics of a Flexible Miniature Airplane

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.

    2005-01-01

    A short report discusses selected aspects of the development of the University of Florida micro-aerial vehicle (UFMAV) basically, a miniature airplane that has a flexible wing and is representative of a new class of airplanes that would operate autonomously or under remote control and be used for surveillance and/or scientific observation. The flexibility of the wing is to be optimized such that passive deformation of the wing in the presence of aerodynamic disturbances would reduce the overall response of the airplane to disturbances, thereby rendering the airplane more stable as an observation platform. The aspect of the development emphasized in the report is that of computational simulation of dynamics of the UFMAV in flight, for the purpose of generating mathematical models for use in designing control systems for the airplane. The simulations are performed by use of data from a wind-tunnel test of the airplane in combination with commercial software, in which are codified a standard set of equations of motion of an airplane, and a set of mathematical routines to compute trim conditions and extract linear state space models.

  2. 77 FR 5195 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ... 747-400D series airplanes; and Model 747-200B series airplanes having a stretched upper deck. The...; and Model 747-200B series airplanes having a stretched upper deck. The original NPRM was published in... having a stretched upper deck; certificated in any category; excluding airplanes that have been converted...

  3. 14 CFR 21.5 - Airplane or Rotorcraft Flight Manual.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Airplane or Rotorcraft Flight Manual. 21.5... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General § 21.5 Airplane or Rotorcraft Flight Manual. (a) With each airplane or rotorcraft not type certificated with an Airplane or Rotorcraft Flight Manual and...

  4. 14 CFR 21.5 - Airplane or Rotorcraft Flight Manual.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Airplane or Rotorcraft Flight Manual. 21.5... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General § 21.5 Airplane or Rotorcraft Flight Manual. (a) With each airplane or rotorcraft not type certificated with an Airplane or Rotorcraft Flight Manual and...

  5. 14 CFR 21.5 - Airplane or Rotorcraft Flight Manual.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Airplane or Rotorcraft Flight Manual. 21.5... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General § 21.5 Airplane or Rotorcraft Flight Manual. (a) With each airplane or rotorcraft not type certificated with an Airplane or Rotorcraft Flight Manual and...

  6. 14 CFR 21.5 - Airplane or Rotorcraft Flight Manual.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Airplane or Rotorcraft Flight Manual. 21.5... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General § 21.5 Airplane or Rotorcraft Flight Manual. (a) With each airplane or rotorcraft that was not type certificated with an Airplane or Rotorcraft Flight Manual...

  7. 14 CFR 91.821 - Civil supersonic airplanes: Noise limits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Civil supersonic airplanes: Noise limits... Noise Limits § 91.821 Civil supersonic airplanes: Noise limits. Except for Concorde airplanes having... airplane that does not comply with Stage 2 noise limits of part 36 in effect on October 13, 1977, using...

  8. 14 CFR 91.821 - Civil supersonic airplanes: Noise limits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Civil supersonic airplanes: Noise limits... Noise Limits § 91.821 Civil supersonic airplanes: Noise limits. Except for Concorde airplanes having... airplane that does not comply with Stage 2 noise limits of part 36 in effect on October 13, 1977, using...

  9. 14 CFR 21.5 - Airplane or Rotorcraft Flight Manual.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Airplane or Rotorcraft Flight Manual. 21.5... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General § 21.5 Airplane or Rotorcraft Flight Manual. Link to an..., 2010. (a) With each airplane or rotorcraft that was not type certificated with an Airplane or...

  10. 14 CFR 91.821 - Civil supersonic airplanes: Noise limits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Civil supersonic airplanes: Noise limits... Noise Limits § 91.821 Civil supersonic airplanes: Noise limits. Except for Concorde airplanes having... airplane that does not comply with Stage 2 noise limits of part 36 in effect on October 13, 1977, using...

  11. 14 CFR 91.821 - Civil supersonic airplanes: Noise limits.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Civil supersonic airplanes: Noise limits... Noise Limits § 91.821 Civil supersonic airplanes: Noise limits. Except for Concorde airplanes having... airplane that does not comply with Stage 2 noise limits of part 36 in effect on October 13, 1977, using...

  12. 14 CFR 91.821 - Civil supersonic airplanes: Noise limits.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Civil supersonic airplanes: Noise limits... Noise Limits § 91.821 Civil supersonic airplanes: Noise limits. Except for Concorde airplanes having... airplane that does not comply with Stage 2 noise limits of part 36 in effect on October 13, 1977, using...

  13. Exposure to flame retardant chemicals on commercial airplanes.

    PubMed

    Allen, Joseph G; Stapleton, Heather M; Vallarino, Jose; McNeely, Eileen; McClean, Michael D; Harrad, Stuart J; Rauert, Cassandra B; Spengler, John D

    2013-02-16

    Flame retardant chemicals are used in materials on airplanes to slow the propagation of fire. These chemicals migrate from their source products and can be found in the dust of airplanes, creating the potential for exposure. To characterize exposure to flame retardant chemicals in airplane dust, we collected dust samples from locations inside 19 commercial airplanes parked overnight at airport gates. In addition, hand-wipe samples were also collected from 9 flight attendants and 1 passenger who had just taken a cross-country (USA) flight. The samples were analyzed for a suite of flame retardant chemicals. To identify the possible sources for the brominated flame retardants, we used a portable XRF analyzer to quantify bromine concentrations in materials inside the airplanes. A wide range of flame retardant compounds were detected in 100% of the dust samples collected from airplanes, including BDEs 47, 99, 153, 183 and 209, tris(1,3-dichloro-isopropyl)phosphate (TDCPP), hexabromocyclododecane (HBCD) and bis-(2-ethylhexyl)-tetrabromo-phthalate (TBPH). Airplane dust contained elevated concentrations of BDE 209 (GM: 500 ug/g; range: 2,600 ug/g) relative to other indoor environments, such as residential and commercial buildings, and the hands of participants after a cross-country flight contained elevated BDE 209 concentrations relative to the general population. TDCPP, a known carcinogen that was removed from use in children's pajamas in the 1970's although still used today in other consumer products, was detected on 100% of airplanes in concentrations similar to those found in residential and commercial locations. This study adds to the limited body of knowledge regarding exposure to flame retardants on commercial aircraft, an environment long hypothesized to be at risk for maximum exposures due to strict flame retardant standards for aircraft materials. Our findings indicate that flame retardants are widely used in many airplane components and all airplane types, as

  14. 78 FR 4051 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-18

    ...-400D, 747-400F, 747SR, and 747SP series airplanes; and certain Model 757-200, -200PF, and -300 series... Model 757 series airplanes. This new AD adds airplanes to the applicability and revises the initial compliance times for those airplanes. This AD was prompted by reports of problems associated with the...

  15. 14 CFR 91.853 - Final compliance: Civil subsonic airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Final compliance: Civil subsonic airplanes... Noise Limits § 91.853 Final compliance: Civil subsonic airplanes. Except as provided in § 91.873, after... airplane subject to § 91.801(c) of this subpart, unless that airplane has been shown to comply with Stage 3...

  16. 14 CFR 91.853 - Final compliance: Civil subsonic airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Final compliance: Civil subsonic airplanes... Noise Limits § 91.853 Final compliance: Civil subsonic airplanes. Except as provided in § 91.873, after... airplane subject to § 91.801(c) of this subpart, unless that airplane has been shown to comply with Stage 3...

  17. 14 CFR 91.853 - Final compliance: Civil subsonic airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Final compliance: Civil subsonic airplanes... Noise Limits § 91.853 Final compliance: Civil subsonic airplanes. Except as provided in § 91.873, after... airplane subject to § 91.801(c) of this subpart, unless that airplane has been shown to comply with Stage 3...

  18. 14 CFR 91.853 - Final compliance: Civil subsonic airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Final compliance: Civil subsonic airplanes... Noise Limits § 91.853 Final compliance: Civil subsonic airplanes. Except as provided in § 91.873, after... airplane subject to § 91.801(c) of this subpart, unless that airplane has been shown to comply with Stage 3...

  19. 14 CFR 91.853 - Final compliance: Civil subsonic airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Final compliance: Civil subsonic airplanes... Noise Limits § 91.853 Final compliance: Civil subsonic airplanes. Except as provided in § 91.873, after... airplane subject to § 91.801(c) of this subpart, unless that airplane has been shown to comply with Stage 3...

  20. Trend of airplane flight characteristics

    NASA Technical Reports Server (NTRS)

    Von Koppen, Joachim

    1933-01-01

    This report describes the development of airplane characteristics since the war and indicates the direction development should take in the immediate future. Some of the major topics include: the behavior of an airplane about its lateral, vertical, and longitudinal axes. Behavior at large angles of attack and landing characteristics are also included.

  1. 14 CFR 121.303 - Airplane instruments and equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane instruments and equipment. 121.303... Airplane instruments and equipment. (a) Unless otherwise specified, the instrument and equipment... airspeed limitation and item of related information in the Airplane Flight Manual and pertinent placards...

  2. 14 CFR 121.303 - Airplane instruments and equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane instruments and equipment. 121.303... Airplane instruments and equipment. (a) Unless otherwise specified, the instrument and equipment... airspeed limitation and item of related information in the Airplane Flight Manual and pertinent placards...

  3. 14 CFR 121.303 - Airplane instruments and equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane instruments and equipment. 121.303... Airplane instruments and equipment. (a) Unless otherwise specified, the instrument and equipment... airspeed limitation and item of related information in the Airplane Flight Manual and pertinent placards...

  4. 14 CFR 121.303 - Airplane instruments and equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane instruments and equipment. 121.303... Airplane instruments and equipment. (a) Unless otherwise specified, the instrument and equipment... airspeed limitation and item of related information in the Airplane Flight Manual and pertinent placards...

  5. 14 CFR 121.303 - Airplane instruments and equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane instruments and equipment. 121.303... Airplane instruments and equipment. (a) Unless otherwise specified, the instrument and equipment... airspeed limitation and item of related information in the Airplane Flight Manual and pertinent placards...

  6. 77 FR 24759 - Aviation Rulemaking Advisory Committee Meeting on Transport Airplane and Engine Issues

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-25

    ... Harmonization Working Group Report. Materials Flammability Working Group Report. Aging Airplanes Working Group... meeting documents, please contact the person listed in the FOR FURTHER INFORMATION CONTACT section. Sign...

  7. The Development of German Army Airplanes During the War

    NASA Technical Reports Server (NTRS)

    Wilhelm, Hoff

    1921-01-01

    The author, who was a captain of the Reserves in the Technical Department of the Aviation Division (Board of Airplane Experts) during the war, shows what means were taken for the creation of new airplane types and what tests were employed for trying out their flying properties, capacities and structural reliability. The principal representative types of each of the classes of airplanes are described and the characteristics of the important structural parts are discussed. Data regarding the number of airplanes at the front and the flying efficiency of the various classes of airplanes are given.

  8. 14 CFR 121.159 - Single-engine airplanes prohibited.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Single-engine airplanes prohibited. 121.159 Section 121.159 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... airplanes prohibited. No certificate holder may operate a single-engine airplane under this part. [Doc. No...

  9. 78 FR 65190 - Airworthiness Directives; Bombardier, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ... altitude indications, and consequent loss of control of the airplane. DATES: This AD becomes effective... result in erroneous airspeed and altitude indications [and consequent loss of control of the airplane... indications, and consequent loss of control of the airplane. (f) Compliance You are responsible for having the...

  10. 14 CFR 23.71 - Glide: Single-engine airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Glide: Single-engine airplanes. 23.71... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.71 Glide: Single-engine airplanes. The maximum horizontal distance traveled in still air, in nautical miles...

  11. 14 CFR 121.159 - Single-engine airplanes prohibited.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Single-engine airplanes prohibited. 121.159 Section 121.159 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... airplanes prohibited. No certificate holder may operate a single-engine airplane under this part. [Doc. No...

  12. 14 CFR 23.71 - Glide: Single-engine airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Glide: Single-engine airplanes. 23.71... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.71 Glide: Single-engine airplanes. The maximum horizontal distance traveled in still air, in nautical miles...

  13. 14 CFR 23.71 - Glide: Single-engine airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Glide: Single-engine airplanes. 23.71... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.71 Glide: Single-engine airplanes. The maximum horizontal distance traveled in still air, in nautical miles...

  14. 14 CFR 121.159 - Single-engine airplanes prohibited.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Single-engine airplanes prohibited. 121.159 Section 121.159 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... airplanes prohibited. No certificate holder may operate a single-engine airplane under this part. [Doc. No...

  15. 14 CFR 121.159 - Single-engine airplanes prohibited.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Single-engine airplanes prohibited. 121.159 Section 121.159 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... airplanes prohibited. No certificate holder may operate a single-engine airplane under this part. [Doc. No...

  16. 14 CFR 121.159 - Single-engine airplanes prohibited.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Single-engine airplanes prohibited. 121.159 Section 121.159 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... airplanes prohibited. No certificate holder may operate a single-engine airplane under this part. [Doc. No...

  17. A knowledge-based design framework for airplane conceptual and preliminary design

    NASA Astrophysics Data System (ADS)

    Anemaat, Wilhelmus A. J.

    The goal of work described herein is to develop the second generation of Advanced Aircraft Analysis (AAA) into an object-oriented structure which can be used in different environments. One such environment is the third generation of AAA with its own user interface, the other environment with the same AAA methods (i.e. the knowledge) is the AAA-AML program. AAA-AML automates the initial airplane design process using current AAA methods in combination with AMRaven methodologies for dependency tracking and knowledge management, using the TechnoSoft Adaptive Modeling Language (AML). This will lead to the following benefits: (1) Reduced design time: computer aided design methods can reduce design and development time and replace tedious hand calculations. (2) Better product through improved design: more alternative designs can be evaluated in the same time span, which can lead to improved quality. (3) Reduced design cost: due to less training and less calculation errors substantial savings in design time and related cost can be obtained. (4) Improved Efficiency: the design engineer can avoid technically correct but irrelevant calculations on incomplete or out of sync information, particularly if the process enables robust geometry earlier. Although numerous advancements in knowledge based design have been developed for detailed design, currently no such integrated knowledge based conceptual and preliminary airplane design system exists. The third generation AAA methods are tested over a ten year period on many different airplane designs. Using AAA methods will demonstrate significant time savings. The AAA-AML system will be exercised and tested using 27 existing airplanes ranging from single engine propeller, business jets, airliners, UAV's to fighters. Data for the varied sizing methods will be compared with AAA results, to validate these methods. One new design, a Light Sport Aircraft (LSA), will be developed as an exercise to use the tool for designing a new airplane

  18. 78 FR 63847 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Airplane Electronic System Security...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... design feature associated with the architecture and connectivity capabilities of the airplanes' computer... the comment for an association, business, labor union, etc.). DOT's complete Privacy Act Statement can... architecture for the Embraer Model EMB-550 series of airplanes is composed of several connected networks. This...

  19. Agricultural Airplane Mission Time Structure Characteristics

    NASA Technical Reports Server (NTRS)

    Jewel, J. W., Jr.

    1982-01-01

    The time structure characteristics of agricultural airplane missions were studied by using records from NASA VGH flight recorders. Flight times varied from less than 3 minutes to more than 103 minutes. There was a significant reduction in turning time between spreading runs as pilot experience in the airplane type increased. Spreading runs accounted for only 25 to 29 percent of the flight time of an agricultural airplane. Lowering the longitudinal stick force appeared to reduce both the turning time between spreading runs and pilot fatigue at the end of a working day.

  20. 14 CFR 135.398 - Commuter category airplanes performance operating limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Commuter category airplanes performance... ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.398 Commuter category airplanes performance operating limitations. (a) No person may operate a commuter category airplane unless...

  1. 14 CFR 135.398 - Commuter category airplanes performance operating limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Commuter category airplanes performance... ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.398 Commuter category airplanes performance operating limitations. (a) No person may operate a commuter category airplane unless...

  2. 14 CFR 135.398 - Commuter category airplanes performance operating limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Commuter category airplanes performance... ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.398 Commuter category airplanes performance operating limitations. (a) No person may operate a commuter category airplane unless...

  3. Comparison of wind velocity in thunderstorms determined from measurements by a ground-based Doppler radar and an F-106B airplane

    NASA Technical Reports Server (NTRS)

    Usry, J. W.; Dunham, R. E., Jr.; Lee, J. T.

    1985-01-01

    As a part of the NASA Storm Hazards Program, the wind velocity in several thunderstorms was measured by an F-106B instrumented airplane and a ground-based Doppler radar. The results of five airplane penetrations of two storms in 1980 and six penetrations of one storm in 1981 are given. Comparisons were made between the radial wind velocity components measured by the radar and the airplane. The correlation coefficients for the 1980 data and part of the 1981 data were 0.88 and 0.78, respectively. It is suggested that larger values for these coefficients may be obtained by improving the experimental technique and in particular by slaving the radar to track the airplane during such tests.

  4. 78 FR 21700 - Aviation Rulemaking Advisory Committee Meeting on Transport Airplane and Engine Issues

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-11

    ... Report Flight Controls Harmonization Working Group Report Aging Airplanes Working Group Report Engine... person listed in the FOR FURTHER INFORMATION CONTACT section. Sign and oral interpretation, as well as a...

  5. Exposure to flame retardant chemicals on commercial airplanes

    PubMed Central

    2013-01-01

    Background Flame retardant chemicals are used in materials on airplanes to slow the propagation of fire. These chemicals migrate from their source products and can be found in the dust of airplanes, creating the potential for exposure. Methods To characterize exposure to flame retardant chemicals in airplane dust, we collected dust samples from locations inside 19 commercial airplanes parked overnight at airport gates. In addition, hand-wipe samples were also collected from 9 flight attendants and 1 passenger who had just taken a cross-country (USA) flight. The samples were analyzed for a suite of flame retardant chemicals. To identify the possible sources for the brominated flame retardants, we used a portable XRF analyzer to quantify bromine concentrations in materials inside the airplanes. Results A wide range of flame retardant compounds were detected in 100% of the dust samples collected from airplanes, including BDEs 47, 99, 153, 183 and 209, tris(1,3-dichloro-isopropyl)phosphate (TDCPP), hexabromocyclododecane (HBCD) and bis-(2-ethylhexyl)-tetrabromo-phthalate (TBPH). Airplane dust contained elevated concentrations of BDE 209 (GM: 500 ug/g; range: 2,600 ug/g) relative to other indoor environments, such as residential and commercial buildings, and the hands of participants after a cross-country flight contained elevated BDE 209 concentrations relative to the general population. TDCPP, a known carcinogen that was removed from use in children’s pajamas in the 1970’s although still used today in other consumer products, was detected on 100% of airplanes in concentrations similar to those found in residential and commercial locations. Conclusion This study adds to the limited body of knowledge regarding exposure to flame retardants on commercial aircraft, an environment long hypothesized to be at risk for maximum exposures due to strict flame retardant standards for aircraft materials. Our findings indicate that flame retardants are widely used in many

  6. 14 CFR 91.605 - Transport category civil airplane weight limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Transport category civil airplane weight... civil airplane weight limitations. (a) No person may take off any transport category airplane (other than a turbine-engine-powered airplane certificated after September 30, 1958) unless— (1) The takeoff...

  7. 14 CFR 91.605 - Transport category civil airplane weight limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Transport category civil airplane weight... civil airplane weight limitations. (a) No person may take off any transport category airplane (other than a turbine-engine-powered airplane certificated after September 30, 1958) unless— (1) The takeoff...

  8. 14 CFR 91.605 - Transport category civil airplane weight limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Transport category civil airplane weight... civil airplane weight limitations. (a) No person may take off any transport category airplane (other than a turbine-engine-powered airplane certificated after September 30, 1958) unless— (1) The takeoff...

  9. Flight test experience with high-alpha control system techniques on the F-14 airplane

    NASA Technical Reports Server (NTRS)

    Gera, J.; Wilson, R. J.; Enevoldson, E. K.; Nguyen, L. T.

    1981-01-01

    Improved handling qualities of fighter aircraft at high angles of attack can be provided by various stability and control augmentation techniques. NASA and the U.S. Navy are conducting a joint flight demonstration of these techniques on an F-14 airplane. This paper reports on the flight test experience with a newly designed lateral-directional control system which suppresses such high angle of attack handling qualities problems as roll reversal, wing rock, and directional divergence while simultaneously improving departure/spin resistance. The technique of integrating a piloted simulation into the flight program was used extensively in this program. This technique had not been applied previously to high angle of attack testing and required the development of a valid model to simulate the test airplane at extremely high angles of attack.

  10. 75 FR 70863 - Airworthiness Directives; The Boeing Company Model 747 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... airworthiness directive (AD) for certain Model 747 airplanes. The original NPRM would have required measuring... action if necessary. The original NPRM also would have required a revision to the maintenance program to incorporate airworthiness limitation (AWL) No. 28-AWL-21 or AWL No. 28-AWL-27, as applicable. The original...

  11. Airplane Ear

    MedlinePlus

    ... to severe hearing loss Ringing in your ear (tinnitus) Spinning sensation (vertigo) Vomiting resulting from vertigo Bleeding ... complications may include: Permanent hearing loss Ongoing (chronic) tinnitus Prevention Follow these tips to avoid airplane ear: ...

  12. Phase 2 program on ground test of refanned JT8D turbofan engines and nacelles for the 727 airplane. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The propulsion performance, acoustic, structural, and systems changes to a 727-200 airplane retrofitted with a refan modification of the JT8D turbofan engine are evaluated. Model tests, design of certifiable airplane retrofit kit hardware, manufacture of test hardware, ground test of a current production JT8D engine, followed by test of the same engine modified to the refan configuration, detailed analyses of the retrofit impact on airplane airworthiness, performance, and noise, and a preliminary analysis of retrofit costs are included. Results indicate that the refan retrofit of the 727-200 would be certifiable and would result in a 6-to 8 EPNdb reduction in effective perceived noise level (EPNL) at the FAR 36 measuring points and an annoyance-weighted footprint area reduction of 68% to 83%. The installed refan engine is estimated to provide 14% greater takeoff thrust at zero velocity and 10% greater thrust at 100 kn (51.4 m/s). There would be an approximate 0.6% increase in cruise specific fuel consumption (SFC). The refan engine performance in conjunction with the increase in stalled weight results in a range reduction of approximately 15% over the unmodified airplane at the same brake release gross weight (BRGW), with a block fuel increase of 1.5% to 3%. With the particular model 727 that was studied, however, it is possible to operate the airplane (with minor structural modifications) at a higher BRGW and increase the range up to approximately 15% relative to the nonrefanned airplane (with equal or slightly increased noise levels). The JT8D refan engine also improves the limited-field range of the airplane.

  13. 14 CFR 121.207 - Provisionally certificated airplanes: Operating limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Provisionally certificated airplanes... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.207 Provisionally certificated airplanes: Operating limitations. In...

  14. 14 CFR 121.207 - Provisionally certificated airplanes: Operating limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Provisionally certificated airplanes... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.207 Provisionally certificated airplanes: Operating limitations. In...

  15. 14 CFR 121.207 - Provisionally certificated airplanes: Operating limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Provisionally certificated airplanes... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.207 Provisionally certificated airplanes: Operating limitations. In...

  16. 14 CFR 121.207 - Provisionally certificated airplanes: Operating limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Provisionally certificated airplanes... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.207 Provisionally certificated airplanes: Operating limitations. In...

  17. 14 CFR 121.207 - Provisionally certificated airplanes: Operating limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Provisionally certificated airplanes... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.207 Provisionally certificated airplanes: Operating limitations. In...

  18. 77 FR 16490 - Airworthiness Directives; Bombardier, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-21

    ...-2C10 (Regional Jet Series 700, 701, & 702) airplanes, Model CL-600-2D15 (Regional Jet Series 705) airplanes, and Model CL-600-2D24 (Regional Jet Series 900) airplanes. This proposed AD was prompted by... and fuel tubes, and protective shields on the rudder quadrant support-beam in the aft equipment...

  19. Solar-powered airplane design for long-endurance, high-altitude flight

    NASA Technical Reports Server (NTRS)

    Youngblood, J. W.; Talay, T. A.

    1982-01-01

    This paper describes the performance analysis and design of a solar-powered airplane for long-endurance, unmanned, high-altitude cruise flight utilizing electric propulsion and solar energy collection/storage devices. For a fixed calendar date and geocentric latitude, the daily energy balance, airplane sizing, and airplane aerodynamics relations combine to determine airplane size and geometry to meet mission requirements. Vehicle component weight loadings, aerodynamic parameters, and current and projected values of power train component characteristics form the basis of the solution. For a specified mission, a candidate airplane design is presented to demonstrate the feasibility of solar-powered long endurance flight. Parametric data are presented to illustrate the airplane's mission flexibility.

  20. Rapid Airplane Parametric Input Design (RAPID)

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.

    1995-01-01

    ADIFOR to the grid generation program. The output of ADIFOR is a new source code containing the old code plus expressions for derivatives of specified dependent variables (grid coordinates) with respect to specified independent variables (design parameters). The RAPID methodology and software provide a means of rapidly defining numerical prototypes, grids, and grid sensitivity of a class of airplane configurations. This technology and software is highly useful for CFD research for preliminary design and optimization processes.

  1. 14 CFR 121.189 - Airplanes: Turbine engine powered: Takeoff limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplanes: Turbine engine powered: Takeoff... Limitations § 121.189 Airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a turbine engine powered airplane may take off that airplane at a weight greater than that listed in the...

  2. 14 CFR 121.189 - Airplanes: Turbine engine powered: Takeoff limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplanes: Turbine engine powered: Takeoff... Limitations § 121.189 Airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a turbine engine powered airplane may take off that airplane at a weight greater than that listed in the...

  3. 14 CFR 91.805 - Final compliance: Subsonic airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Final compliance: Subsonic airplanes. 91... § 91.805 Final compliance: Subsonic airplanes. Except as provided in §§ 91.809 and 91.811, on and after January 1, 1985, no person may operate to or from an airport in the United States any subsonic airplane...

  4. 14 CFR 91.805 - Final compliance: Subsonic airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Final compliance: Subsonic airplanes. 91... § 91.805 Final compliance: Subsonic airplanes. Except as provided in §§ 91.809 and 91.811, on and after January 1, 1985, no person may operate to or from an airport in the United States any subsonic airplane...

  5. 14 CFR 91.805 - Final compliance: Subsonic airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Final compliance: Subsonic airplanes. 91... § 91.805 Final compliance: Subsonic airplanes. Except as provided in §§ 91.809 and 91.811, on and after January 1, 1985, no person may operate to or from an airport in the United States any subsonic airplane...

  6. 14 CFR 91.805 - Final compliance: Subsonic airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Final compliance: Subsonic airplanes. 91... § 91.805 Final compliance: Subsonic airplanes. Except as provided in §§ 91.809 and 91.811, on and after January 1, 1985, no person may operate to or from an airport in the United States any subsonic airplane...

  7. 14 CFR 91.805 - Final compliance: Subsonic airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Final compliance: Subsonic airplanes. 91... § 91.805 Final compliance: Subsonic airplanes. Except as provided in §§ 91.809 and 91.811, on and after January 1, 1985, no person may operate to or from an airport in the United States any subsonic airplane...

  8. It's time to reinvent the general aviation airplane

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1988-01-01

    Current designs for general aviation airplanes have become obsolete, and avenues for major redesign must be considered. New designs should incorporate recent advances in electronics, aerodynamics, structures, materials, and propulsion. Future airplanes should be optimized to operate satisfactorily in a positive air traffic control environment, to afford safety and comfort for point-to-point transportation, and to take advantage of automated manufacturing techniques and high production rates. These requirements have broad implications for airplane design and flying qualities, leading to a concept for the Modern Equipment General Aviation (MEGA) airplane. Synergistic improvements in design, production, and operation can provide a much needed fresh start for the general aviation industry and the traveling public. In this investigation a small four place airplane is taken as the reference, although the proposed philosophy applies across the entire spectrum of general aviation.

  9. Modeling of terminal-area airplane fuel consumption

    DOT National Transportation Integrated Search

    2009-08-01

    Accurate modeling of airplane fuel consumption is necessary for air transportation policy-makers to properly : adjudicate trades between competing environmental and economic demands. Existing public models used for : computing terminal-area airplane ...

  10. 14 CFR 129.25 - Airplane security.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane security. 129.25 Section 129.25 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... AND FOREIGN OPERATORS OF U.S.-REGISTERED AIRCRAFT ENGAGED IN COMMON CARRIAGE General § 129.25 Airplane...

  11. 14 CFR 129.25 - Airplane security.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane security. 129.25 Section 129.25 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... AND FOREIGN OPERATORS OF U.S.-REGISTERED AIRCRAFT ENGAGED IN COMMON CARRIAGE General § 129.25 Airplane...

  12. 14 CFR 129.25 - Airplane security.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane security. 129.25 Section 129.25 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... AND FOREIGN OPERATORS OF U.S.-REGISTERED AIRCRAFT ENGAGED IN COMMON CARRIAGE General § 129.25 Airplane...

  13. 14 CFR 129.25 - Airplane security.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane security. 129.25 Section 129.25 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... AND FOREIGN OPERATORS OF U.S.-REGISTERED AIRCRAFT ENGAGED IN COMMON CARRIAGE General § 129.25 Airplane...

  14. 14 CFR 129.25 - Airplane security.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane security. 129.25 Section 129.25 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... AND FOREIGN OPERATORS OF U.S.-REGISTERED AIRCRAFT ENGAGED IN COMMON CARRIAGE General § 129.25 Airplane...

  15. Flight test evaluation of drag effects on surface coatings on the NASA Boeing 737 TCV airplane

    NASA Technical Reports Server (NTRS)

    George-Falvy, D.; Sikavi, D. A.

    1981-01-01

    A flight test program was conducted in which the effects of various surface coatings on aerodynamic drag were investigated; results of this program are described in this report. The tests were conducted at NASA-Langley Research Center on the terminal configured vehicle (TCV) Boeing 737 research airplane. The Boeing Company, as contractor with NASA under the Energy Efficient Transport (EET) program, planned and evaluated the experiment. The NASA-TCV Program Office coordinated the experiment and performed the flight tests. The principal objective of the test was to evaluate the drag reduction potential of an elastomeric polyurethane surface coating, CAAPCO B-274, which also has been considered for application on transport airplanes to protect leading edges from erosion. The smooth surface achievable with this type of coating held some promise of reducing the skin friction drag as compared to conventional production type aircraft surfaces, which are usually anodized bare metal or coated with corrosion protective paint. Requirements for high precision measurements were the principal considerations in the experiment.

  16. Rubber airplane: Constraint-based component-modeling for knowledge representation in computer-aided conceptual design

    NASA Technical Reports Server (NTRS)

    Kolb, Mark A.

    1990-01-01

    Viewgraphs on Rubber Airplane: Constraint-based Component-Modeling for Knowledge Representation in Computer Aided Conceptual Design are presented. Topics covered include: computer aided design; object oriented programming; airfoil design; surveillance aircraft; commercial aircraft; aircraft design; and launch vehicles.

  17. 78 FR 14162 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    ... Airbus Model A310-203, -204, -222, -304, -322, and -324 airplanes. This AD was prompted by a design... Airbus Model A310-203, -204, -222, -304, - 322, and -324 airplanes, certificated in any category...

  18. Ground-to-Flight Handling Qualities Comparisons for a High Performance Airplane

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Glaab, Louis J.; Brown, Philip W.; Phillips, Michael R.

    1995-01-01

    A flight test program was conducted in conjunction with a ground-based piloted simulation study to enable a comparison of handling qualities ratings for a variety of maneuvers between flight and simulation of a modern high performance airplane. Specific objectives included an evaluation of pilot-induced oscillation (PIO) tendencies and a determination of maneuver types which result in either good or poor ground-to-flight pilot handling qualities ratings. A General Dynamics F-16XL aircraft was used for the flight evaluations, and the NASA Langley Differential Maneuvering Simulator was employed for the ground based evaluations. Two NASA research pilots evaluated both the airplane and simulator characteristics using tasks developed in the simulator. Simulator and flight tests were all conducted within approximately a one month time frame. Maneuvers included numerous fine tracking evaluations at various angles of attack, load factors and speed ranges, gross acquisitions involving longitudinal and lateral maneuvering, roll angle captures, and an ILS task with a sidestep to landing. Overall results showed generally good correlation between ground and flight for PIO tendencies and general handling qualities comments. Differences in pilot technique used in simulator evaluations and effects of airplane accelerations and motions are illustrated.

  19. 77 FR 47267 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-08

    ... stretched upper deck. The existing AD currently requires repetitively inspecting for cracking or...; and Model 747-200B series airplanes having a stretched upper deck. The original NPRM (74 FR 33377... airplanes having a stretched upper deck; certificated in any category; excluding airplanes that have been...

  20. 14 CFR 121.161 - Airplane limitations: Type of route.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane limitations: Type of route. 121... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Aircraft Requirements § 121.161 Airplane... specifications, no certificate holder may operate a turbine-engine-powered airplane over a route that contains a...

  1. 14 CFR 121.161 - Airplane limitations: Type of route.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane limitations: Type of route. 121... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Aircraft Requirements § 121.161 Airplane... specifications, no certificate holder may operate a turbine-engine-powered airplane over a route that contains a...

  2. 14 CFR 121.161 - Airplane limitations: Type of route.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane limitations: Type of route. 121... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Aircraft Requirements § 121.161 Airplane... specifications, no certificate holder may operate a turbine-engine-powered airplane over a route that contains a...

  3. 14 CFR 121.161 - Airplane limitations: Type of route.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane limitations: Type of route. 121... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Aircraft Requirements § 121.161 Airplane... specifications, no certificate holder may operate a turbine-engine-powered airplane over a route that contains a...

  4. 14 CFR 121.161 - Airplane limitations: Type of route.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane limitations: Type of route. 121... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Aircraft Requirements § 121.161 Airplane... specifications, no certificate holder may operate a turbine-engine-powered airplane over a route that contains a...

  5. 77 FR 40832 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-11

    ... ability of the flight crew to read primary displays for airplane attitude, altitude, or airspeed, and... displays for airplane attitude, altitude, or airspeed, and consequently reduce the ability of the flight...) malfunctions, which could affect the ability of the flight crew to read primary displays for airplane attitude...

  6. Precision controllability of the YF-17 airplane

    NASA Technical Reports Server (NTRS)

    Sisk, T. R.; Mataeny, N. W.

    1980-01-01

    A flying qualities evaluation conducted on the YF-17 airplane permitted assessment of its precision controllability in the transonic flight regime over the allowable angle of attack range. The precision controllability (tailchase tracking) study was conducted in constant-g and windup turn tracking maneuvers with the command augmentation system (CAS) on, automatic maneuver flaps, and the caged pipper gunsight depressed 70 mils. This study showed that the YF-17 airplane tracks essentially as well at 7 g's to 8 g's as earlier fighters did at 4 g's to 5 g's before they encountered wing rock. The pilots considered the YF-17 airplane one of the best tracking airplanes they had flown. Wing rock at the higher angles of attack degraded tracking precision, and lack of control harmony made precision controllability more difficult. The revised automatic maneuver flap schedule incorporated in the airplane at the time of the tests did not appear to be optimum. The largest tracking errors and greatest pilot workload occurred at high normal load factors at low angles of attack. The pilots reported that the high-g maneuvers caused some tunnel vision and that they found it difficult to think clearly after repeated maneuvers.

  7. 14 CFR 121.503 - Flight time limitations: Pilots: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Pilots: airplanes... Operations § 121.503 Flight time limitations: Pilots: airplanes. (a) A certificate holder conducting supplemental operations may schedule a pilot to fly in an airplane for eight hours or less during any 24...

  8. 14 CFR 121.503 - Flight time limitations: Pilots: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Pilots: airplanes... Operations § 121.503 Flight time limitations: Pilots: airplanes. (a) A certificate holder conducting supplemental operations may schedule a pilot to fly in an airplane for eight hours or less during any 24...

  9. 14 CFR 121.503 - Flight time limitations: Pilots: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Pilots: airplanes... Operations § 121.503 Flight time limitations: Pilots: airplanes. (a) A certificate holder conducting supplemental operations may schedule a pilot to fly in an airplane for eight hours or less during any 24...

  10. 14 CFR 121.503 - Flight time limitations: Pilots: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Pilots: airplanes... Operations § 121.503 Flight time limitations: Pilots: airplanes. (a) A certificate holder conducting supplemental operations may schedule a pilot to fly in an airplane for eight hours or less during any 24...

  11. 14 CFR 121.503 - Flight time limitations: Pilots: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Pilots: airplanes... Operations § 121.503 Flight time limitations: Pilots: airplanes. (a) A certificate holder conducting supplemental operations may schedule a pilot to fly in an airplane for eight hours or less during any 24...

  12. Differential equations in airplane mechanics

    NASA Technical Reports Server (NTRS)

    Carleman, M T

    1922-01-01

    In the following report, we will first draw some conclusions of purely theoretical interest, from the general equations of motion. At the end, we will consider the motion of an airplane, with the engine dead and with the assumption that the angle of attack remains constant. Thus we arrive at a simple result, which can be rendered practically utilizable for determining the trajectory of an airplane descending at a constant steering angle.

  13. The Aging Well through Interaction and Scientific Education (AgeWISE) Program.

    PubMed

    O'Connor, Maureen K; Kraft, Malissa L; Daley, Ryan; Sugarman, Michael A; Clark, Erika L; Scoglio, Arielle A J; Shirk, Steven D

    2017-12-08

    We conducted a randomized controlled trial of the Aging Well through Interaction and Scientific Education (AgeWISE) program, a 12-week manualized cognitive rehabilitation program designed to provide psychoeducation to older adults about the aging brain, lifestyle factors associated with successful brain aging, and strategies to compensate for age related cognitive decline. Forty-nine cognitively intact participants ≥ 60 years old were randomly assigned to the AgeWISE program (n = 25) or a no-treatment control group (n = 24). Questionnaire data were collected prior to group assignment and post intervention. Two-factor repeated-measures analyses of covariance (ANCOVAs) were used to compare group outcomes. Upon completion, participants in the AgeWISE program reported increases in memory contentment and their sense of control in improving memory; no significant changes were observed in the control group. Surprisingly, participation in the group was not associated with significant changes in knowledge of memory aging, perception of memory ability, or greater use of strategies. The AgeWISE program was successfully implemented and increased participants' memory contentment and their sense of control in improving memory in advancing age. This study supports the use of AgeWISE to improve perspectives on healthy cognitive aging.

  14. Joint NASA/USAF Airborne Field Mill Program - Operation and safety considerations during flights of a Lear 28 airplane in adverse weather

    NASA Technical Reports Server (NTRS)

    Fisher, Bruce D.; Phillips, Michael R.; Maier, Launa M.

    1992-01-01

    A NASA Langley Research Center Learjet 28 research airplane was flown in various adverse weather conditions in the vicinity of the NASA Kennedy Space Center from 1990-1992 to measure airborne electric fields during the Joint NASA/USAF Airborne Field Mill Program. The objective of this program was to characterize the electrical activity in various weather phenomena common to the NASA-Kennedy area in order to refine Launch Commit Criteria for natural and triggered lightning. The purpose of the program was to safely relax the existing launch commit criteria, thereby increasing launch availability and reducing the chance for weather holds and delays. This paper discusses the operational conduct of the flight test, including environmental/safety considerations, aircraft instrumentation and modification, test limitations, flight procedures, and the procedures and responsibilities of the personnel in the ground station. Airborne field mill data were collected for all the Launch Commit Criteria during two summer and two winter deployments. These data are now being analyzed.

  15. 14 CFR 61.159 - Aeronautical experience: Airplane category rating.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aeronautical experience: Airplane category... Transport Pilots § 61.159 Aeronautical experience: Airplane category rating. (a) Except as provided in... certificate with an airplane category and class rating must have at least 1,500 hours of total time as a pilot...

  16. 14 CFR 61.159 - Aeronautical experience: Airplane category rating.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Aeronautical experience: Airplane category... Transport Pilots § 61.159 Aeronautical experience: Airplane category rating. (a) Except as provided in... certificate with an airplane category and class rating must have at least 1,500 hours of total time as a pilot...

  17. 14 CFR 61.159 - Aeronautical experience: Airplane category rating.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Aeronautical experience: Airplane category... Transport Pilots § 61.159 Aeronautical experience: Airplane category rating. (a) Except as provided in... certificate with an airplane category and class rating must have at least 1,500 hours of total time as a pilot...

  18. 14 CFR 61.159 - Aeronautical experience: Airplane category rating.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Aeronautical experience: Airplane category... Transport Pilots § 61.159 Aeronautical experience: Airplane category rating. (a) Except as provided in... certificate with an airplane category and class rating must have at least 1,500 hours of total time as a pilot...

  19. 14 CFR 61.159 - Aeronautical experience: Airplane category rating.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Aeronautical experience: Airplane category... Transport Pilots § 61.159 Aeronautical experience: Airplane category rating. (a) Except as provided in... certificate with an airplane category and class rating must have at least 1,500 hours of total time as a pilot...

  20. 78 FR 78701 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ... the time given in AD 2011-12-09. (i) Ground Fault Interrupt (GFI) Relay Position Change For airplanes... Company Model 737-300, -400, and -500 series airplanes. This AD was prompted by fuel system reviews... Model 737-300, -400, and - 500 series airplanes; certificated in any category; identified as Groups 5, 6...

  1. 77 FR 6685 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... proposed AD reduces compliance times for Model 767-400ER series airplanes. In addition, this proposed AD...). This proposed AD would reduce the compliance times for Model 767-400ER series airplanes. In addition... airplanes, the existing AD also requires a one- time inspection to determine if a tool runout option has...

  2. 77 FR 71357 - Airworthiness Directives; Pacific Aerospace Limited Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-30

    ... adding a requirement to install station marking placards inside the rear cabin walls and inserting a... airplanes. This proposed AD also retains all actions in AD 2010-20-18, Amendment 39-16453 (75 FR 59606... for All Airplanes (Both Turbine and Piston Engine Airplanes) Retained From AD 2010-20-18, Amendment 39...

  3. English airplane construction

    NASA Technical Reports Server (NTRS)

    Schwencke, D

    1930-01-01

    English airplane construction is presented with a particular emphasis on metal construction techniques. Steel rib and fuselage construction are discussed as well as the use of duralumin in construction.

  4. Flight and wind-tunnel comparisons of the inlet-airframe interaction of the F-15 airplane

    NASA Technical Reports Server (NTRS)

    Webb, L. D.; Andriyich-Varda, D.; Whitmore, S. A.

    1984-01-01

    The design of inlets and nozzles and their interactions with the airplane which may account for a large percentage of the total drag of modern high performance aircraft is discussed. The inlet/airframe interactions program and the flight tests conducted is described. Inlet drag and lift data from a 7.5% wind-tunnel model are compared with data from an F-15 airplane with instrumentation to match the model. Pressure coefficient variations with variable cowl angles, capture ratios, examples of flow interactions and angles of attack are for Mach numbers of 0.6, 0.9, 1.2, and 1.5 are presented.

  5. 75 FR 81430 - Airworthiness Directives; The Boeing Company Model 747 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... skin and the skin splice plate; for certain airplanes, an inspection for steel cross-shaped doublers on... body skin and the skin splice plate; for certain airplanes, an inspection for steel cross- shaped... done on these 14 airplanes can be unique to each airplane and are different from the repair...

  6. Headache during airplane travel ("airplane headache"): first case in Greece.

    PubMed

    Kararizou, Evangelia; Anagnostou, Evangelos; Paraskevas, George P; Vassilopoulou, Sofia D; Naoumis, Dimitrios; Kararizos, Grigoris; Spengos, Konstantinos

    2011-08-01

    Headache related to airplane flights is rare. We describe a 37-year-old female patient with multiple intense, jabbing headache episodes over the last 3 years that occur exclusively during airplane flights. The pain manifests during take-off and landing, and is located always in the left retro-orbital and frontotemporal area. It is occasionally accompanied by dizziness, but no additional symptoms occur. Pain intensity diminishes and disappears after 15-20 min. Apart from occasional dizziness, no other symptoms occur. The patient has a history of tension-type headache and polycystic ovaries. Blood tests and imaging revealed no abnormalities. Here, we present the first case in Greece. We review the current literature on this rare syndrome and discuss on possible pathophysiology and the investigation of possible co-factors such as anxiety and depression.

  7. Design of a Mars Airplane Propulsion System for the Aerial Regional-Scale Environmental Survey (ARES) Mission Concept

    NASA Technical Reports Server (NTRS)

    Kuhl. Christopher A.

    2009-01-01

    The Aerial Regional-Scale Environmental Survey (ARES) is a Mars exploration mission concept with the goal of taking scientific measurements of the atmosphere, surface, and subsurface of Mars by using an airplane as the payload platform. ARES team first conducted a Phase-A study for a 2007 launch opportunity, which was completed in May 2003. Following this study, significant efforts were undertaken to reduce the risk of the atmospheric flight system, under the NASA Langley Planetary Airplane Risk Reduction Project. The concept was then proposed to the Mars Scout program in 2006 for a 2011 launch opportunity. This paper summarizes the design and development of the ARES airplane propulsion subsystem beginning with the inception of the ARES project in 2002 through the submittal of the Mars Scout proposal in July 2006.

  8. 14 CFR 121.177 - Airplanes: Reciprocating engine-powered: Takeoff limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplanes: Reciprocating engine-powered... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.177 Airplanes: Reciprocating engine-powered: Takeoff limitations. (a...

  9. 14 CFR 121.175 - Airplanes: Reciprocating engine-powered: Weight limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplanes: Reciprocating engine-powered... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.175 Airplanes: Reciprocating engine-powered: Weight limitations. (a...

  10. 14 CFR 121.175 - Airplanes: Reciprocating engine-powered: Weight limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplanes: Reciprocating engine-powered... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.175 Airplanes: Reciprocating engine-powered: Weight limitations. (a...

  11. 14 CFR 121.177 - Airplanes: Reciprocating engine-powered: Takeoff limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplanes: Reciprocating engine-powered... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.177 Airplanes: Reciprocating engine-powered: Takeoff limitations. (a...

  12. 14 CFR 121.175 - Airplanes: Reciprocating engine-powered: Weight limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplanes: Reciprocating engine-powered... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.175 Airplanes: Reciprocating engine-powered: Weight limitations. (a...

  13. 14 CFR 121.177 - Airplanes: Reciprocating engine-powered: Takeoff limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplanes: Reciprocating engine-powered... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.177 Airplanes: Reciprocating engine-powered: Takeoff limitations. (a...

  14. 14 CFR 121.175 - Airplanes: Reciprocating engine-powered: Weight limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplanes: Reciprocating engine-powered... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.175 Airplanes: Reciprocating engine-powered: Weight limitations. (a...

  15. 14 CFR 121.175 - Airplanes: Reciprocating engine-powered: Weight limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplanes: Reciprocating engine-powered... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.175 Airplanes: Reciprocating engine-powered: Weight limitations. (a...

  16. 14 CFR 121.177 - Airplanes: Reciprocating engine-powered: Takeoff limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplanes: Reciprocating engine-powered... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.177 Airplanes: Reciprocating engine-powered: Takeoff limitations. (a...

  17. 14 CFR 121.177 - Airplanes: Reciprocating engine-powered: Takeoff limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplanes: Reciprocating engine-powered... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.177 Airplanes: Reciprocating engine-powered: Takeoff limitations. (a...

  18. Precision controllability of the F-15 airplane

    NASA Technical Reports Server (NTRS)

    Sisk, T. R.; Matheny, N. W.

    1979-01-01

    A flying qualities evaluation conducted on a preproduction F-15 airplane permitted an assessment to be made of its precision controllability in the high subsonic and low transonic flight regime over the allowable angle of attack range. Precision controllability, or gunsight tracking, studies were conducted in windup turn maneuvers with the gunsight in the caged pipper mode and depressed 70 mils. This evaluation showed the F-15 airplane to experience severe buffet and mild-to-moderate wing rock at the higher angles of attack. It showed the F-15 airplane radial tracking precision to vary from approximately 6 to 20 mils over the load factor range tested. Tracking in the presence of wing rock essentially doubled the radial tracking error generated at the lower angles of attack. The stability augmentation system affected the tracking precision of the F-15 airplane more than it did that of previous aircraft studied.

  19. A study of the factors affecting the range of airplanes

    NASA Technical Reports Server (NTRS)

    Biermann, David

    1937-01-01

    A study was made of the most important factors affecting the range of airplanes. Numerical examples are given showing the effects of different variables on the range of a two-engine airplane. The takeoff problems of long-range airplanes are analyzed.

  20. Development and Evaluation of an Airplane Fuel Tank Ullage Composition Model. Volume 2. Experimental Determination of Airplane Fuel Tank Ullage Compositions

    DTIC Science & Technology

    1987-10-01

    Airplane Fuel Tank Ullage Compositions ~C A. J. Roth BOEING MILITARY AIRPLANE COMPANY P. 0. Box 3707 Seattle, Washington 98124-2207 October 1987 FINAL...controlled mission simulations were made using the ModComp computer to control the Simulated Aircraft Fuel Tank Environment ( SAFTEI facility at Wright...of this report. iii PREFACE This is a final report of work conducted under F33615-84-C-2431 and submitted by the Boeing Military Airplane Company

  1. 78 FR 68352 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-14

    ... Airworthiness Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), Department of... Airbus Model A330-223F, -223, -321, -322, and -323 airplanes. This AD was prompted by fatigue load... this AD, contact Airbus SAS, Airworthiness Office--EAL, 1 Rond Point Maurice Bellonte, 31707 Blagnac...

  2. 77 FR 19067 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... Airworthiness Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), Department of... directive (AD) for certain Airbus Model A321-131, -211, -212, and -231 airplanes. This AD requires a.... Relevant Service Information Airbus has issued Mandatory Service Bulletin A320-57-1120, Revision 01...

  3. Injuries to seat occupants of light airplanes.

    DOT National Transportation Integrated Search

    1989-02-01

    A series of 55 light-airplane accidents was examined in an effort to demonstrate the role of seats in the genesis of injury in seat occupants. Good engineering, design of airplane seats is an important related issue which is not treated in this study...

  4. Active Aging Promotion: Results from the Vital Aging Program

    PubMed Central

    Caprara, Mariagiovanna; Molina, María Ángeles; Schettini, Rocío; Santacreu, Marta; Orosa, Teresa; Mendoza-Núñez, Víctor Manuel; Rojas, Macarena; Fernández-Ballesteros, Rocío

    2013-01-01

    Active aging is one of the terms in the semantic network of aging well, together with others such as successful, productive, competent aging. All allude to the new paradigm in gerontology, whereby aging is considered from a positive perspective. Most authors in the field agree active aging is a multidimensional concept, embracing health, physical and cognitive fitness, positive affect and control, social relationships and engagement. This paper describes Vital Aging, an individual active aging promotion program implemented through three modalities: Life, Multimedia, and e-Learning. The program was developed on the basis of extensive evidence about individual determinants of active aging. The different versions of Vital Aging are described, and four evaluation studies (both formative and summative) are reported. Formative evaluation reflected participants' satisfaction and expected changes; summative evaluations yielded some quite encouraging results using quasi-experimental designs: those who took part in the programs increased their physical exercise, significantly improved their diet, reported better memory, had better emotional balance, and enjoyed more cultural, intellectual, affective, and social activities than they did before the course, thus increasing their social relationships. These results are discussed in the context of the common literature within the field and, also, taking into account the limitations of the evaluations accomplished. PMID:23476644

  5. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Newly produced airplanes: Fuel tank... TRANSPORTATION AIRCRAFT CONTINUED AIRWORTHINESS AND SAFETY IMPROVEMENTS FOR TRANSPORT CATEGORY AIRPLANES Fuel Tank Flammability § 26.39 Newly produced airplanes: Fuel tank flammability. (a) Applicability: This...

  6. 14 CFR 121.189 - Airplanes: Turbine engine powered: Takeoff limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplanes: Turbine engine powered: Takeoff... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.189 Airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a...

  7. 14 CFR 121.189 - Airplanes: Turbine engine powered: Takeoff limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplanes: Turbine engine powered: Takeoff... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.189 Airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a...

  8. 14 CFR 121.189 - Airplanes: Turbine engine powered: Takeoff limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplanes: Turbine engine powered: Takeoff... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.189 Airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a...

  9. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Newly produced airplanes: Fuel tank... TRANSPORTATION AIRCRAFT CONTINUED AIRWORTHINESS AND SAFETY IMPROVEMENTS FOR TRANSPORT CATEGORY AIRPLANES Fuel Tank Flammability § 26.39 Newly produced airplanes: Fuel tank flammability. (a) Applicability: This...

  10. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Newly produced airplanes: Fuel tank... TRANSPORTATION AIRCRAFT CONTINUED AIRWORTHINESS AND SAFETY IMPROVEMENTS FOR TRANSPORT CATEGORY AIRPLANES Fuel Tank Flammability § 26.39 Newly produced airplanes: Fuel tank flammability. (a) Applicability: This...

  11. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Newly produced airplanes: Fuel tank... TRANSPORTATION AIRCRAFT CONTINUED AIRWORTHINESS AND SAFETY IMPROVEMENTS FOR TRANSPORT CATEGORY AIRPLANES Fuel Tank Flammability § 26.39 Newly produced airplanes: Fuel tank flammability. (a) Applicability: This...

  12. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Newly produced airplanes: Fuel tank... TRANSPORTATION AIRCRAFT CONTINUED AIRWORTHINESS AND SAFETY IMPROVEMENTS FOR TRANSPORT CATEGORY AIRPLANES Fuel Tank Flammability § 26.39 Newly produced airplanes: Fuel tank flammability. (a) Applicability: This...

  13. Detection of a poorly resolved airplane using SWIR polarization imaging

    NASA Astrophysics Data System (ADS)

    Dahl, Laura M.; Shaw, Joseph A.; Chenault, David B.

    2016-05-01

    Polarization can be used to detect manmade objects on the ground and in the air, as it provides additional information beyond intensity and color. Skylight can be strongly polarized, so the detection of airplanes in flight requires careful consideration of the skylight degree and angle of polarization (DoLP, AoP). In this study, we detect poorly resolved airplanes (>= 4 pixels on target) in flight during daytime partly cloudy and smoky conditions in Bozeman, Montana. We used a Polaris Sensor Technologies SWIR-MWIR rotating imaging polarimeter to measure the polarization signatures of airplanes and the surrounding skylight from 1.5 to 1.8 μm in the short-wave infrared (SWIR). An airplane flying in a clear region of partly cloudy sky was found to be 69% polarized at an elevation angle of 13° with respect to the horizon and the surrounding skylight was 4-8% polarized (maximum skylight DoLP was found to be 7-14% at an elevation angle of 50°). As the airplane increased in altitude, the DoLP for both airplane and surrounding sky pixels increased as the airplane neared the band of maximum sky polarization. We also observed that an airplane can be less polarized than its surrounding skylight when there is heavy smoke present. In such a case, the airplane was 30-38% polarized at an elevation angle of 17°, while the surrounding skylight was approximately 40% polarized (maximum skylight DoLP was 40-55% at an elevation angle of 34°). In both situations the airplane was most consistently observed in DoLP images rather than S0 or AoP images. In this paper, we describe the results in detail and discuss how this phenomenology could detect barely resolved aircrafts.

  14. Fuzzy Logic Decoupled Lateral Control for General Aviation Airplanes

    NASA Technical Reports Server (NTRS)

    Duerksen, Noel

    1997-01-01

    It has been hypothesized that a human pilot uses the same set of generic skills to control a wide variety of aircraft. If this is true, then it should be possible to construct an electronic controller which embodies this generic skill set such that it can successfully control different airplanes without being matched to a specific airplane. In an attempt to create such a system, a fuzzy logic controller was devised to control aileron or roll spoiler position. This controller was used to control bank angle for both a piston powered single engine aileron equipped airplane simulation and a business jet simulation which used spoilers for primary roll control. Overspeed, stall and overbank protection were incorporated in the form of expert systems supervisors and weighted fuzzy rules. It was found that by using the artificial intelligence techniques of fuzzy logic and expert systems, a generic lateral controller could be successfully used on two general aviation aircraft types that have very different characteristics. These controllers worked for both airplanes over their entire flight envelopes. The controllers for both airplanes were identical except for airplane specific limits (maximum allowable airspeed, throttle ]ever travel, etc.). This research validated the fact that the same fuzzy logic based controller can control two very different general aviation airplanes. It also developed the basic controller architecture and specific control parameters required for such a general controller.

  15. Evolution of Aging Theories: Why Modern Programmed Aging Concepts Are Transforming Medical Research.

    PubMed

    Goldsmith, Theodore C

    2016-12-01

    Programmed aging refers to the idea that senescence in humans and other organisms is purposely caused by evolved biological mechanisms to obtain an evolutionary advantage. Until recently, programmed aging was considered theoretically impossible because of the mechanics of the evolution process, and medical research was based on the idea that aging was not programmed. Theorists struggled for more than a century in efforts to develop non-programmed theories that fit observations, without obtaining a consensus supporting any non-programmed theory. Empirical evidence of programmed lifespan limitations continued to accumulate. More recently, developments, especially in our understanding of biological inheritance, have exposed major issues and complexities regarding the process of evolution, some of which explicitly enable programmed aging of mammals. Consequently, science-based opposition to programmed aging has dramatically declined. This progression has major implications for medical research, because the theories suggest that very different biological mechanisms are ultimately responsible for highly age-related diseases that now represent most research efforts and health costs. Most particularly, programmed theories suggest that aging per se is a treatable condition and suggest a second path toward treating and preventing age-related diseases that can be exploited in addition to the traditional disease-specific approaches. The theories also make predictions regarding the nature of biological aging mechanisms and therefore suggest research directions. This article discusses developments of evolutionary mechanics, the consequent programmed aging theories, and logical inferences concerning biological aging mechanisms. It concludes that major medical research organizations cannot afford to ignore programmed aging concepts in assigning research resources and directions.

  16. 77 FR 65808 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... Airworthiness Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), Department of... Airbus Model A320-214 and -232 airplanes. This AD was prompted by reports that medium-head fasteners were... installation of upper panels on Frame 35 in Airbus A320 final assembly line. Investigations revealed that...

  17. 77 FR 19065 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... Airworthiness Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), Department of... directive (AD) for all Airbus Model A340-600 series airplanes. This AD requires a detailed inspection for.... Relevant Service Information Airbus has issued All Operators Telex A340-25A5191, dated January 18, 2011...

  18. 78 FR 17071 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), Department of Transportation (DOT). ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for certain Airbus Model A330-200, -300, and -200 Freighter series airplanes; and all Airbus Model A340-200 and -300 series...

  19. An Evaluation of Very Large Airplanes and Alternative Fuels

    DTIC Science & Technology

    1976-12-01

    fuel alternatives II selected for detailed analysis. Conceptual de- signs of airplanes using each of these fuels were developed and estimates were made...recomnendations are made pertaining both to alternative fuels and to advanced-technolo.qy large airplanes. Future research and development ...recommendations with respect to very large airplanes and alternative fuels . Appropriate future research and development activities are also identified

  20. 14 CFR 36.1583 - Noncomplying agricultural and fire fighting airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... airplanes. 36.1583 Section 36.1583 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Limitations and Information § 36.1583 Noncomplying agricultural and fire fighting airplanes. (a) This section applies to propeller-driven, small airplanes that— (1) Are designed for “agricultural aircraft operations...

  1. 14 CFR 36.1583 - Noncomplying agricultural and fire fighting airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... airplanes. 36.1583 Section 36.1583 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Limitations and Information § 36.1583 Noncomplying agricultural and fire fighting airplanes. (a) This section applies to propeller-driven, small airplanes that— (1) Are designed for “agricultural aircraft operations...

  2. 14 CFR 36.1583 - Noncomplying agricultural and fire fighting airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... airplanes. 36.1583 Section 36.1583 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Limitations and Information § 36.1583 Noncomplying agricultural and fire fighting airplanes. (a) This section applies to propeller-driven, small airplanes that— (1) Are designed for “agricultural aircraft operations...

  3. 14 CFR 36.1583 - Noncomplying agricultural and fire fighting airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... airplanes. 36.1583 Section 36.1583 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Limitations and Information § 36.1583 Noncomplying agricultural and fire fighting airplanes. (a) This section applies to propeller-driven, small airplanes that— (1) Are designed for “agricultural aircraft operations...

  4. 14 CFR 61.160 - Aeronautical experience-airplane category restricted privileges.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Aeronautical experience-airplane category... INSTRUCTORS Airline Transport Pilots § 61.160 Aeronautical experience—airplane category restricted privileges... pilot may apply for an airline transport pilot certificate with an airplane category multiengine class...

  5. 14 CFR 36.1583 - Noncomplying agricultural and fire fighting airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... airplanes. 36.1583 Section 36.1583 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Limitations and Information § 36.1583 Noncomplying agricultural and fire fighting airplanes. (a) This section applies to propeller-driven, small airplanes that— (1) Are designed for “agricultural aircraft operations...

  6. Summary of spin technology as related to light general-aviation airplanes

    NASA Technical Reports Server (NTRS)

    Bowman, J. S., Jr.

    1971-01-01

    A summary was made of all NASA (and NACA) research and experience related to the spin and recovery characteristics of light personal-owner-type general-aviation airplanes. Very little of the research deals with light general-aviation airplanes as such, but many of the airplanes and models tested before and during World War II were similar to present-day light general-aviation airplanes with regard to the factors that are important in spinning. The material is based mainly on the results of spin-tunnel tests of free-spinning dynamically scaled models of about 100 different airplane designs and, whenever possible, includes correlation with full-scale spin tests. The research results are discussed in terms of airplane design considerations and the proper use of controls for recovery.

  7. Preparing the workforce for healthy aging programs: the Skills for Healthy Aging Resources and Programs (SHARP) model.

    PubMed

    Frank, Janet C; Altpeter, Mary; Damron-Rodriguez, JoAnn; Driggers, Joann; Lachenmayr, Susan; Manning, Colleen; Martinez, Dana M; Price, Rachel M; Robinson, Patricia

    2014-10-01

    Current public health and aging service agency personnel have little training in gerontology, and virtually no training in evidence-based health promotion and disease management programs for older adults. These programs are rapidly becoming the future of our community-based long-term care support system. The purpose of this project was to develop and test a model community college career technical education program, Skills for Healthy Aging Resources and Programs (SHARP), for undergraduate college students, current personnel in aging service and community organizations, and others interested in retraining. A multidisciplinary cross-sector team from disciplines of public health, sociology, gerontology and nursing developed four competency-based courses that focus on healthy aging, behavior change strategies, program management, an internship, and an option for leader training in the Chronic Disease Self-Management Program. To enhance implementation and fidelity, intensive faculty development training was provided to all instructors and community agency partners. Baseline and postprogram evaluation of competencies for faculty and students was conducted. Process evaluation for both groups focused on satisfaction with the curricula and suggestions for program improvement. SHARP has been piloted five times at two community colleges. Trainees (n = 113) were primarily community college students (n = 108) and current aging service personnel (n = 5). Statistically significant improvements in all competencies were found for both faculty and students. Process evaluation outcomes identified the needed logical and component adaptations to enhance the feasibility of program implementation, dissemination, and student satisfaction. The SHARP program provides a well-tested, evidence-based effective model for addressing workforce preparation in support of healthy aging service program expansion and delivery. © 2014 Society for Public Health Education.

  8. Measured Engine Installation Effects of Four Civil Transport Airplanes

    NASA Technical Reports Server (NTRS)

    Senzig, David A.; Fleming, Gregg G.; Shepherd, Kevin P.

    2001-01-01

    The Federal Aviation Administration's Integrated Noise Model (INM) is one of the primary tools for land use planning around airports. The INM currently calculates airplane noise lateral attenuation using the methods contained in the Society of Automotive Engineer's Aerospace Information Report No. 1751 (SAE AIR 1751). Researchers have noted that improved lateral attenuation algorithms may improve airplane noise prediction. The authors of SAE AIR 1751 based existing methods on empirical data collected from flight tests using 1960s-technology airplanes with tail-mounted engines. To determine whether the SAE AIR 1751 methods are applicable for predicting the engine installation component of lateral attenuation for airplanes with wing-mounted engines, the National Aeronautics and Space Administration (NASA) sponsored a series of flight tests during September 2000 at their Wallops Flight Facility. Four airplanes, a Boeing 767-400, a Douglas DC-9, a Dassault Falcon 2000, and a Beech KingAir, were flown through a 20 microphone array. The airplanes were flown through the array at various power settings, flap settings, and altitudes to simulate take-off and arrival configurations. This paper presents the preliminary findings of this study.

  9. 78 FR 14647 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-07

    ... Airworthiness Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), Department of... (AD) for certain Airbus Model A310-204, -222, -304, -322, and -324 airplanes. This AD was prompted by... the Airbus A310 Airworthiness Limitation Section (ALS) Part 1 and bolts must be replaced at or before...

  10. 78 FR 60667 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-02

    ... Airworthiness Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), Department of... all Airbus Model A318, A319, A320, and A321 series airplanes. AD 2012- 26-51 required revising the...''), to correct an unsafe condition for the specified products. The MCAI states: Recently, an Airbus A330...

  11. 78 FR 52405 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-23

    ... Airworthiness Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), Department of... Airbus Model A330-300, A340-200, and A340-300 series airplanes. This AD was prompted by a determination... Airbus: Amendment 39-17549. Docket No. FAA-2013-0335; Directorate Identifier 2012-NM-187-AD. [[Page 52407...

  12. 14 CFR 23.1045 - Cooling test procedures for turbine engine powered airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... powered airplanes. 23.1045 Section 23.1045 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... CATEGORY AIRPLANES Powerplant Cooling § 23.1045 Cooling test procedures for turbine engine powered airplanes. (a) Compliance with § 23.1041 must be shown for all phases of operation. The airplane must be...

  13. 14 CFR 23.1045 - Cooling test procedures for turbine engine powered airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... powered airplanes. 23.1045 Section 23.1045 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... CATEGORY AIRPLANES Powerplant Cooling § 23.1045 Cooling test procedures for turbine engine powered airplanes. (a) Compliance with § 23.1041 must be shown for all phases of operation. The airplane must be...

  14. 14 CFR 23.1045 - Cooling test procedures for turbine engine powered airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... powered airplanes. 23.1045 Section 23.1045 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... CATEGORY AIRPLANES Powerplant Cooling § 23.1045 Cooling test procedures for turbine engine powered airplanes. (a) Compliance with § 23.1041 must be shown for all phases of operation. The airplane must be...

  15. 14 CFR 121.195 - Airplanes: Turbine engine powered: Landing limitations: Destination airports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplanes: Turbine engine powered: Landing... Performance Operating Limitations § 121.195 Airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered airplane may take off that airplane at...

  16. 14 CFR 121.195 - Airplanes: Turbine engine powered: Landing limitations: Destination airports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplanes: Turbine engine powered: Landing... Performance Operating Limitations § 121.195 Airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered airplane may take off that airplane at...

  17. Flight Test of the F/A-18 Active Aeroelastic Wing Airplane

    NASA Technical Reports Server (NTRS)

    Clarke, Robert; Allen, Michael J.; Dibley, Ryan P.; Gera, Joseph; Hodgkinson, John

    2005-01-01

    Successful flight-testing of the Active Aeroelastic Wing airplane was completed in March 2005. This program, which started in 1996, was a joint activity sponsored by NASA, Air Force Research Laboratory, and industry contractors. The test program contained two flight test phases conducted in early 2003 and early 2005. During the first phase of flight test, aerodynamic models and load models of the wing control surfaces and wing structure were developed. Design teams built new research control laws for the Active Aeroelastic Wing airplane using these flight-validated models; and throughout the final phase of flight test, these new control laws were demonstrated. The control laws were designed to optimize strategies for moving the wing control surfaces to maximize roll rates in the transonic and supersonic flight regimes. Control surface hinge moments and wing loads were constrained to remain within hydraulic and load limits. This paper describes briefly the flight control system architecture as well as the design approach used by Active Aeroelastic Wing project engineers to develop flight control system gains. Additionally, this paper presents flight test techniques and comparison between flight test results and predictions.

  18. Flight test evaluation of a separate surface attitude command control system on a Beech 99 airplane

    NASA Technical Reports Server (NTRS)

    Gee, S. W.; Jenks, G. E.; Roskam, J.; Stone, R. L.

    1976-01-01

    A joint NASA/university/industry program was conducted to flight evaluate a potentially low cost separate surface implementation of attitude command in a Beech 99 airplane. Saturation of the separate surfaces was the primary cause of many problems during development. Six experienced professional pilots made simulated instrument flight evaluations in light-to-moderate turbulence. They were favorably impressed with the system, particularly with the elimination of control force transients that accompanied configuration changes. For ride quality, quantitative data showed that the attitude command control system resulted in all cases of airplane motion being removed from the uncomfortable ride region.

  19. Airplane Stress Analysis

    NASA Technical Reports Server (NTRS)

    Zahm, A F; Crook, L H

    1918-01-01

    Report presents stress analysis of individual components of an airplane. Normal and abnormal loads, sudden loads, simple stresses, indirect simple stresses, resultant unit stress, repetitive and equivalent stress, maximum steady load and stress are considered.

  20. Practical stability and controllability of airplanes

    NASA Technical Reports Server (NTRS)

    Norton, F H

    1923-01-01

    The effect of the characteristics of an airplane on balance, stability, and controllability, based on free flight tests, is discussed particularly in respect to the longitudinal motion. It is shown that the amount of longitudinal stability can be varied by changing the position of the center of gravity or by varying the aspect ratio of the tail plane, and that the stability for any particular air speed can be varied by changing the camber of the tail plane. It is found that complete longitudinal stability may be obtained even when the tail plane is at all times a lifting surface. Empirical values are given for the characteristics of a new airplane for producing any desired amount of stability and control, or to correct the faults of an airplane already constructed. (author)

  1. 78 FR 78694 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ... all Airbus Model A330-200 and -300 series airplanes, and Model A340-200 and -300 series airplanes. AD..., and corrective actions if needed. This new AD expands the applicability, reduces the compliance time... the comment received. Request To Change Compliance Time US Airways requested that we change the...

  2. 78 FR 60798 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-02

    ...-0363; Directorate Identifier 2013-NM-031-AD] RIN 2120-AA64 Airworthiness Directives; Airbus Airplanes... directive (AD) for all Airbus Model A330-200, -300 and -200 Freighter series airplanes, and Model A340-200... information identified in this proposed AD, contact Airbus SAS--Airworthiness Office--EAL, 1 Rond Point...

  3. 78 FR 19085 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ... Airworthiness Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), Department of... Airbus Model A318, A319, A320, and A321 series airplanes. This AD was prompted by reports of oil residue... (MCAI) states: During Airbus Final Assembly Line flight tests, AoA [angle of attack] data from two...

  4. 77 FR 75825 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... Airworthiness Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), Department of... Airbus Model A330-200 and -300 series airplanes. This AD was prompted by a report of a prematurely... [Amended] 0 2. The FAA amends Sec. 39.13 by adding the following new AD: 2012-25-12 Airbus: Amendment 39...

  5. 78 FR 21227 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ... Airworthiness Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), Department of... Airbus Model A330-200, A330-200 Freighter, A330-300, A340-200, and A340-300 series airplanes; and Model... that, due to similar design, the enhanced MLG bogie pivot pin (Airbus modification 54500) could also be...

  6. 14 CFR 121.197 - Airplanes: Turbine engine powered: Landing limitations: Alternate airports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplanes: Turbine engine powered: Landing... Performance Operating Limitations § 121.197 Airplanes: Turbine engine powered: Landing limitations: Alternate... turbine engine powered airplane unless (based on the assumptions in § 121.195 (b)) that airplane at the...

  7. 14 CFR 121.197 - Airplanes: Turbine engine powered: Landing limitations: Alternate airports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplanes: Turbine engine powered: Landing... Performance Operating Limitations § 121.197 Airplanes: Turbine engine powered: Landing limitations: Alternate... turbine engine powered airplane unless (based on the assumptions in § 121.195 (b)) that airplane at the...

  8. Relative Economy of Different Methods of Airplane Construction

    NASA Technical Reports Server (NTRS)

    Herrmann, H

    1931-01-01

    A comparison of the relative economy of airplane construction shows that monoplanes are cheaper than biplanes; that all-metal construction is much more expensive than mixed construction; that multi-engine airplanes are more expensive than single-engine types of the same carrying capacity and speed;that the cost of airplanes is materially reduced by increasing their size without increasing the number of engines. The greatest economy usually coincides with the best aerodynamic and static conditions and the cost is always increased by safety requirements.

  9. Fuzzy Logic Decoupled Longitudinal Control for General Aviation Airplanes

    NASA Technical Reports Server (NTRS)

    Duerksen, Noel

    1996-01-01

    It has been hypothesized that a human pilot uses the same set of generic skills to control a wide variety of aircraft. If this is true, then it should be possible to construct an electronic controller which embodies this generic skill set such that it can successfully control difference airplanes without being matched to a specific airplane. In an attempt to create such a system, a fuzzy logic controller was devised to control throttle position and another to control elevator position. These two controllers were used to control flight path angle and airspeed for both a piston powered single engine airplane simulation and a business jet simulation. Overspeed protection and stall protection were incorporated in the form of expert systems supervisors. It was found that by using the artificial intelligence techniques of fuzzy logic and expert systems, a generic longitudinal controller could be successfully used on two general aviation aircraft types that have very difference characteristics. These controllers worked for both airplanes over their entire flight envelopes including configuration changes. The controllers for both airplanes were identical except for airplane specific limits (maximum allowable airspeed, throttle lever travel, etc.). The controllers also handled configuration changes without mode switching or knowledge of the current configuration. This research validated the fact that the same fuzzy logic based controller can control two very different general aviation airplanes. It also developed the basic controller architecture and specific control parameters required for such a general controller.

  10. Airplane takeoff and landing performance monitoring system

    NASA Technical Reports Server (NTRS)

    Middleton, David B. (Inventor); Srivatsan, Raghavachari (Inventor); Person, Lee H., Jr. (Inventor)

    1994-01-01

    The invention is a real-time takeoff and landing performance monitoring system for an aircraft which provides a pilot with graphic and metric information to assist in decisions related to achieving rotation speed (VR) within the safe zone of a runway, or stopping the aircraft on the runway after landing or take-off abort. The system processes information in two segments: a pretakeoff segment and a real-time segment. One-time inputs of ambient conditions and airplane configuration information are used in the pretakeoff segment to generate scheduled performance data. The real-time segment uses the scheduled performance data, runway length data and transducer measured parameters to monitor the performance of the airplane throughout the takeoff roll. Airplane acceleration and engine-performance anomalies are detected and annunciated. A novel and important feature of this segment is that it updates the estimated runway rolling friction coefficient. Airplane performance predictions also reflect changes in head wind occurring as the takeoff roll progresses. The system provides a head-down display and a head-up display. The head-up display is projected onto a partially reflective transparent surface through which the pilot views the runway. By comparing the present performance of the airplane with a continually predicted nominal performance based upon given conditions, performance deficiencies are detected by the system and conveyed to pilot in form of both elemental information and integrated information.

  11. Airplane takeoff and landing performance monitoring system

    NASA Technical Reports Server (NTRS)

    Middleton, David B. (Inventor); Srivatsan, Raghavachari (Inventor); Person, Jr., Lee H. (Inventor)

    1991-01-01

    The invention is a real-time takeoff and landing performance monitoring system for an aircraft which provides a pilot with graphic and metric information to assist in decisions related to achieving rotation speed (V.sub.R) within the safe zone of a runway, or stopping the aircraft on the runway after landing or take-off abort. The system processes information in two segments: a pretakeoff segment and a real-time segment. One-time inputs of ambient conditions and airplane configuration information are used in the pretakeoff segment to generate scheduled performance data. The real-time segment uses the scheduled performance data, runway length data and transducer measured parameters to monitor the performance of the airplane throughout the takeoff roll. Airplane and engine performance deficiencies are detected and annunciated. A novel and important feature of this segment is that it updates the estimated runway rolling friction coefficient. Airplane performance predictions also reflect changes in head wind occurring as the takeoff roll progresses. The system provides a head-down display and a head-up display. The head-up display is projected onto a partially reflective transparent surface through which the pilot views the runway. By comparing the present performance of the airplane with a predicted nominal performance based upon given conditions, performance deficiencies are detected by the system.

  12. Airplane takeoff and landing performance monitoring system

    NASA Technical Reports Server (NTRS)

    Middleton, David B. (Inventor); Srivatsan, Raghavachari (Inventor); Person, Jr., Lee H. (Inventor)

    1996-01-01

    The invention is a real-time takeoff and landing performance monitoring system for an aircraft which provides a pilot with graphic and metric information to assist in decisions related to achieving rotation speed (V.sub.R) within the safe zone of a runway, or stopping the aircraft on the runway after landing or take-off abort. The system processes information in two segments: a pretakeoff segment and a real-time segment. One-time inputs of ambient conditions and airplane configuration information are used in the pretakeoff segment to generate scheduled performance data. The real-time segment uses the scheduled performance data, runway length data and transducer measured parameters to monitor the performance of the airplane throughout the takeoff roll. Airplane acceleration and engine-performance anomalies are detected and annunciated. A novel and important feature of this segment is that it updates the estimated runway rolling friction coefficient. Airplane performance predictions also reflect changes in head wind occurring as the takeoff roll progresses. The system provides a head-down display and a head-up display. The head-up display is projected onto a partially reflective transparent surface through which the pilot views the runway. By comparing the present performance of the airplane with a continually predicted nominal performance based upon given conditions, performance deficiencies are detected by the system and conveyed to pilot in form of both elemental information and integrated information.

  13. 77 FR 19071 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... Airworthiness Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), Department of... directive (AD) for certain Airbus Model A330-200, A330-300, A340-500, and A340-600 series airplanes. This AD...: During structural part assembly in Airbus production line, some nuts Part Number (P/N) ASNA2531-4 were...

  14. 77 FR 57003 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-17

    ... Airworthiness Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), Department of... Airbus Model A318, A319, and A320 series airplanes. This AD was prompted by a report of a torn out.... The FAA amends Sec. 39.13 by adding the following new AD: 2012-18-12 Airbus: Amendment 39-17189...

  15. 78 FR 71996 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-02

    ... Airworthiness Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), Department of... Airbus Model A318-112, A319-111, A319-112, A319-115, A319-132, and A319-133 airplanes. This AD was... developing this AD. We have considered the comments received. Request To Refer to Revised EASA AD Airbus...

  16. Results of a preliminary investigation of inlet unstart on a high-speed civil transport airplane concept

    NASA Technical Reports Server (NTRS)

    Domack, Christopher S.

    1992-01-01

    The aircraft design engineer of today is tasked with satisfying an increasing number of conflicting requirements. The fact that conflict in these requirements may be technically, economically, or politically motivated usually compounds the difficulty of determining the best solution to a design issue. In this regard, propulsion/airframe integration for supersonic airplanes must rank as one of the most challenging aspects of airplane design. For the cruise Mach numbers currently being considered for High-Speed Civil Transport (HSCT) airplanes, the inlet requirements of low drag, low bleed flow, and high pressure recovery appear to be best met with a mixed-compression design. Unfortunately, these desirable attributes come with a highly undesirable companion: the inlet unstart phenomenon. Concern over the effects of a mixed-compression inlet unstart on the vehicle dynamics of large, high-speed aircraft is not new; a comprehensive wind-tunnel study addressing the problem was published in 1962. Additional investigations of the problem were made throughout the United States SST program and the follow-on NASA program into the late 1970's. The current study sought to examine the magnitude of the problem in order to determine if an inlet unstart posed a potential hazard severe enough to preclude the use of mixed-compression inlets on proposed HSCT concepts.

  17. 14 CFR 121.205 - Nontransport category airplanes: Landing limitations: Alternate airport.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Nontransport category airplanes: Landing... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.205 Nontransport category airplanes: Landing limitations: Alternate...

  18. 14 CFR 121.205 - Nontransport category airplanes: Landing limitations: Alternate airport.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Nontransport category airplanes: Landing... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.205 Nontransport category airplanes: Landing limitations: Alternate...

  19. 14 CFR 121.205 - Nontransport category airplanes: Landing limitations: Alternate airport.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Nontransport category airplanes: Landing... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.205 Nontransport category airplanes: Landing limitations: Alternate...

  20. 14 CFR 121.205 - Nontransport category airplanes: Landing limitations: Alternate airport.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Nontransport category airplanes: Landing... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.205 Nontransport category airplanes: Landing limitations: Alternate...

  1. 14 CFR 121.205 - Nontransport category airplanes: Landing limitations: Alternate airport.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Nontransport category airplanes: Landing... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.205 Nontransport category airplanes: Landing limitations: Alternate...

  2. 14 CFR 121.203 - Nontransport category airplanes: Landing limitations: Destination airport.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Nontransport category airplanes: Landing...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.203 Nontransport category airplanes: Landing limitations: Destination...

  3. 14 CFR 121.203 - Nontransport category airplanes: Landing limitations: Destination airport.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Nontransport category airplanes: Landing...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.203 Nontransport category airplanes: Landing limitations: Destination...

  4. 14 CFR 121.203 - Nontransport category airplanes: Landing limitations: Destination airport.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Nontransport category airplanes: Landing...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.203 Nontransport category airplanes: Landing limitations: Destination...

  5. 14 CFR 121.203 - Nontransport category airplanes: Landing limitations: Destination airport.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Nontransport category airplanes: Landing...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.203 Nontransport category airplanes: Landing limitations: Destination...

  6. 14 CFR 91.863 - Transfers of Stage 2 airplanes with base level.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Transfers of Stage 2 airplanes with base... Noise Limits § 91.863 Transfers of Stage 2 airplanes with base level. (a) Stage 2 airplanes may be... the corresponding number of Stage 2 airplanes. (b) No portion of a U.S. operator's base level...

  7. 14 CFR 91.863 - Transfers of Stage 2 airplanes with base level.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Transfers of Stage 2 airplanes with base... Noise Limits § 91.863 Transfers of Stage 2 airplanes with base level. (a) Stage 2 airplanes may be... the corresponding number of Stage 2 airplanes. (b) No portion of a U.S. operator's base level...

  8. 14 CFR 91.863 - Transfers of Stage 2 airplanes with base level.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Transfers of Stage 2 airplanes with base... Noise Limits § 91.863 Transfers of Stage 2 airplanes with base level. (a) Stage 2 airplanes may be... the corresponding number of Stage 2 airplanes. (b) No portion of a U.S. operator's base level...

  9. 14 CFR 91.863 - Transfers of Stage 2 airplanes with base level.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Transfers of Stage 2 airplanes with base... Noise Limits § 91.863 Transfers of Stage 2 airplanes with base level. (a) Stage 2 airplanes may be... the corresponding number of Stage 2 airplanes. (b) No portion of a U.S. operator's base level...

  10. 77 FR 40485 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ... Airworthiness Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), Department of... (AD) for all Airbus Model A300 series airplanes; all Model A300 B4-600, B4-600R, and F4-600R series... new AD: 2012-13-06 Airbus: Amendment 39-17108. Docket No. FAA-2012-0040; Directorate Identifier 2011...

  11. 78 FR 68355 - Airworthiness Directives; Dassault Aviation Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-14

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 39 [Docket No. FAA-2013... Airworthiness Directives; Dassault Aviation Airplanes AGENCY: Federal Aviation Administration (FAA), Department... (AD) for all Dassault Aviation Model Fan Jet Falcon; Model Mystere-Falcon 200 airplanes; and Model...

  12. Crash tests of four identical high-wing single-engine airplanes

    NASA Technical Reports Server (NTRS)

    Vaughan, V. L., Jr.; Hayduk, R. J.

    1980-01-01

    Four identical four place, high wing, single engine airplane specimens with nominal masses of 1043 kg were crash tested at the Langley Impact Dynamics Research Facility under controlled free flight conditions. These tests were conducted with nominal velocities of 25 m/sec along the flight path angles, ground contact pitch angles, and roll angles. Three of the airplane specimens were crashed on a concrete surface; one was crashed on soil. Crash tests revealed that on a hard landing, the main landing gear absorbed about twice the energy for which the gear was designed but sprang back, tending to tip the airplane up to its nose. On concrete surfaces, the airplane impacted and remained in the impact attitude. On soil, the airplane flipped over on its back. The crash impact on the nose of the airplane, whether on soil or concrete, caused massive structural crushing of the forward fuselage. The liveable volume was maintained in both the hard landing and the nose down specimens but was not maintained in the roll impact and nose down on soil specimens.

  13. Amphibious Airplane

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The airplane pictured is the new Air Shark I, a four-place amphibian that makes extensive use of composite materials and cruises at close to 200 miles per hour under power from a 200-horsepower engine. Air Shark I is a "homebuilt" airplane, assembled from a kit of parts and components furnished by Freedom Master Corporation, Satellite Beach, Florida. The airplane incorporates considerable NASA technology and its construction benefited from research assistance provided by Kennedy Space Center (KSC) In designing the Shark, company president Arthur M. Lueck was able to draw on NASA's aeronautical technology bank through KSC's computerized "recon" library. As a result of his work at KSC, the wing of the Air Shark I is a new airfoil developed by Langley Research Center for light aircraft. In addition, Lueck opted for NASA-developed "winglets," vertical extensions of the wing that reduce drag by smoothing air turbulence at the wingtips. The NASA technology bank also contributed to the hull design. Lueck is considering application of NASA laminar flow technology-means of smoothing the airflow over wing and fuselage-to later models for further improvement of the Shark's aerodynamic efficiency. A materials engineer, Lueck employed his own expertise in designing and selecting the materials for the composite segments, which include all structural members, exposed surfaces and many control components. The materials are fiber reinforced plastics, or FRP They offer a high strength-to-weight ratio, with a nominal strength rating about one and a half times that of structural steel. They provide other advantages: the materials can be easily molded into finished shapes without expensive tooling or machining, and they are highly corrosion resistant. The first homebuilt to be offered by Freedom Master, Air Shark I completed air and water testing in mid-1985 and the company launched production of kits.

  14. Calculation of the Lateral Stability of a Directly Coupled Tandem-Towed Fighter Airplane and Correlation with Experimental Data

    NASA Technical Reports Server (NTRS)

    Shanks, Robert E.

    1958-01-01

    A theoretical method is presented for predicting the dynamic lateral stability characteristics of an airplane towed in tandem by a much larger airplane. Values of period and time to damp to one-half amplitude and rolling motions calculated by an analog computer have been correlated with results of two experimental investigations conducted in the Langley free-flight tunnel which were part of a U.S. Air Force program (Project FICON) to develop a satisfactory arrangement by which a bomber could tow a parasite fighter. In general, the theoretical results agree with the experimental results.

  15. 77 FR 50644 - Airworthiness Directives; Cessna Airplane Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... airplanes that have P/N 1134104-1 or 1134104-5 A/C compressor motor installed; an aircraft logbook check for... following: (1) Inspect the number of hours on the A/C compressor hour meter; and (2) Check the aircraft.... Do the replacement following Cessna Aircraft Company Model 525 Maintenance Manual, Revision 23, dated...

  16. 14 CFR 121.181 - Airplanes: Reciprocating engine-powered: En route limitations: One engine inoperative.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplanes: Reciprocating engine-powered: En... OPERATIONS Airplane Performance Operating Limitations § 121.181 Airplanes: Reciprocating engine-powered: En... person operating a reciprocating engine powered airplane may take off that airplane at a weight, allowing...

  17. 14 CFR 121.181 - Airplanes: Reciprocating engine-powered: En route limitations: One engine inoperative.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplanes: Reciprocating engine-powered: En... OPERATIONS Airplane Performance Operating Limitations § 121.181 Airplanes: Reciprocating engine-powered: En... person operating a reciprocating engine powered airplane may take off that airplane at a weight, allowing...

  18. 14 CFR 121.181 - Airplanes: Reciprocating engine-powered: En route limitations: One engine inoperative.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplanes: Reciprocating engine-powered: En... OPERATIONS Airplane Performance Operating Limitations § 121.181 Airplanes: Reciprocating engine-powered: En... person operating a reciprocating engine powered airplane may take off that airplane at a weight, allowing...

  19. 14 CFR 121.181 - Airplanes: Reciprocating engine-powered: En route limitations: One engine inoperative.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplanes: Reciprocating engine-powered: En... OPERATIONS Airplane Performance Operating Limitations § 121.181 Airplanes: Reciprocating engine-powered: En... person operating a reciprocating engine powered airplane may take off that airplane at a weight, allowing...

  20. 14 CFR 121.181 - Airplanes: Reciprocating engine-powered: En route limitations: One engine inoperative.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplanes: Reciprocating engine-powered: En... OPERATIONS Airplane Performance Operating Limitations § 121.181 Airplanes: Reciprocating engine-powered: En... person operating a reciprocating engine powered airplane may take off that airplane at a weight, allowing...

  1. Predicting Tail Buffet Loads of a Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Pototzky, Anthony S.

    2006-01-01

    Buffet loads on aft aerodynamic surfaces pose a recurring problem on most twin-tailed fighter airplanes: During maneuvers at high angles of attack, vortices emanating from various surfaces on the forward parts of such an airplane (engine inlets, wings, or other fuselage appendages) often burst, immersing the tails in their wakes. Although these vortices increase lift, the frequency contents of the burst vortices become so low as to cause the aft surfaces to vibrate destructively. Now, there exists a new analysis capability for predicting buffet loads during the earliest design phase of a fighter-aircraft program. In effect, buffet pressures are applied to mathematical models in the framework of a finite-element code, complete with aeroelastic properties and working knowledge of the spatiality of the buffet pressures for all flight conditions. The results of analysis performed by use of this capability illustrate those vibratory modes of a tail fin that are most likely to be affected by buffet loads. Hence, the results help in identifying the flight conditions during which to expect problems. Using this capability, an aircraft designer can make adjustments to the airframe and possibly the aerodynamics, leading to a more robust design.

  2. 78 FR 9581 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-11

    ... Airworthiness Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), Department of... Airbus Model A300 B4-600, B4-600R, and F4-600R series airplanes, and Model A300 C4-605R Variant F...-03-11 Airbus: Amendment 39-17346. Docket No. FAA-2012-1002; Directorate Identifier 2012-NM-052-AD. (a...

  3. 77 FR 51717 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-27

    ... Airworthiness Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of... applies to certain Airbus Model A300 B4-2C, B4-103, and B4- 203 airplanes; and Model A300 B4-601, B4-603... information identified in this proposed AD, contact Airbus SAS--EAW (Airworthiness Office), 1 Rond Point...

  4. 78 FR 15874 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-13

    ... Airworthiness Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), Department of... Airbus Model A300 B4-600, B4-600R, and F4-600R series airplanes, and Model A300 C4-605R Variant F... ground threat avoidance, an Airbus A310 aeroplane experienced an uncommanded slide back of the co-pilot...

  5. 77 FR 58785 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-24

    ...-620, B4-605R, and B4-622R airplanes. This proposed AD was prompted by a report that the door frame... operate safely. This proposed AD would require reinforcing of the door frame shells of passenger doors 2... door frame shells, which could result in in-flight decompression of the airplane and consequent injury...

  6. 14 CFR 125.375 - Fuel supply: Nonturbine and turbopropeller-powered airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...-powered airplanes. 125.375 Section 125.375 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS CERTIFICATION AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE... AIRCRAFT Flight Release Rules § 125.375 Fuel supply: Nonturbine and turbopropeller-powered airplanes. (a...

  7. 14 CFR 135.397 - Small transport category airplane performance operating limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Small transport category airplane... PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.397 Small transport category airplane performance operating limitations. (a) No person may operate a reciprocating engine...

  8. 14 CFR 125.375 - Fuel supply: Nonturbine and turbopropeller-powered airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...-powered airplanes. 125.375 Section 125.375 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS CERTIFICATION AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE... AIRCRAFT Flight Release Rules § 125.375 Fuel supply: Nonturbine and turbopropeller-powered airplanes. (a...

  9. 14 CFR 125.375 - Fuel supply: Nonturbine and turbopropeller-powered airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...-powered airplanes. 125.375 Section 125.375 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS CERTIFICATION AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE... AIRCRAFT Flight Release Rules § 125.375 Fuel supply: Nonturbine and turbopropeller-powered airplanes. (a...

  10. 14 CFR 135.397 - Small transport category airplane performance operating limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Small transport category airplane... PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.397 Small transport category airplane performance operating limitations. (a) No person may operate a reciprocating engine...

  11. 14 CFR 135.397 - Small transport category airplane performance operating limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Small transport category airplane... PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.397 Small transport category airplane performance operating limitations. (a) No person may operate a reciprocating engine...

  12. 14 CFR 135.397 - Small transport category airplane performance operating limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Small transport category airplane... PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.397 Small transport category airplane performance operating limitations. (a) No person may operate a reciprocating engine...

  13. 14 CFR 125.375 - Fuel supply: Nonturbine and turbopropeller-powered airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...-powered airplanes. 125.375 Section 125.375 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS CERTIFICATION AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE... AIRCRAFT Flight Release Rules § 125.375 Fuel supply: Nonturbine and turbopropeller-powered airplanes. (a...

  14. 14 CFR 135.397 - Small transport category airplane performance operating limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Small transport category airplane... PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.397 Small transport category airplane performance operating limitations. (a) No person may operate a reciprocating engine...

  15. 14 CFR 125.375 - Fuel supply: Nonturbine and turbopropeller-powered airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...-powered airplanes. 125.375 Section 125.375 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS CERTIFICATION AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE... AIRCRAFT Flight Release Rules § 125.375 Fuel supply: Nonturbine and turbopropeller-powered airplanes. (a...

  16. Preliminary Investigation of the Flying Qualities of Airplanes

    NASA Technical Reports Server (NTRS)

    Soule, H A

    1940-01-01

    The National Advisory Committee for Aeronautics is undertaking an investigation of the flying qualities of airplanes. The work consists in the determination of the significant qualities susceptible of measurement, the development of the instruments required to make the measurements, and the accumulation of data on the flying qualities of existing airplanes, which data are to serve as a basis for quantitative specifications for the flying qualities of future designs. A tentative schedule of measurable flying qualities has been prepared and the instruments needed for their measurements have been assembled. A trial of the schedule and the instruments has been made using the Stinson SR-8e airplane. The results showed that, although the original schedule and instruments are basically satisfactory some further development is required to eliminate nonessential items and to expedite flight testing. The report describes and discusses the work done with this airplane.

  17. 77 FR 73908 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-12

    ... affect the ability of the flightcrew to read primary displays for airplane attitude, altitude, or... the ability of the flightcrew to read primary displays for airplane attitude, altitude, or airspeed...

  18. Class 2 design update for the family of commuter airplanes

    NASA Technical Reports Server (NTRS)

    Creighton, Thomas R.; Hendrich, Louis J.

    1987-01-01

    This is the final report of seven on the design of a family of commuter airplanes. This design effort was performed in fulfillment of NASA/USRA grant NGT-8001. Its contents are as follows: (1) the class 1 baseline designs for the commuter airplane family; (2) a study of takeoff weight penalties imposed on the commuter family due to implementing commonality objectives; (3) component structural designs common to the commuter family; (4) details of the acquisition and operating economics of the commuter family, i.e., savings due to production commonality and handling qualities commonality are determined; (5) discussion of the selection of an advanced turboprop propulsion system for the family of commuter airplanes, and (6) a proposed design for an SSSA controller design to achieve similar handling for all airplanes. Final class 2 commuter airplane designs are also presented.

  19. Supersonic airplane study and design

    NASA Technical Reports Server (NTRS)

    Cheung, Samson

    1993-01-01

    A supersonic airplane creates shocks which coalesce and form a classical N-wave on the ground, forming a double bang noise termed sonic boom. A recent supersonic commercial transport (the Concorde) has a loud sonic boom (over 100 PLdB) and low aerodynamic performance (cruise lift-drag ratio 7). To enhance the U.S. market share in supersonic transport, an airframer's market risk for a low-boom airplane has to be reduced. Computational fluid dynamics (CFD) is used to design airplanes to meet the dual constraints of low sonic boom and high aerodynamic performance. During the past year, a research effort was focused on three main topics. The first was to use the existing design tools, developed in past years, to design one of the low-boom wind-tunnel configurations (Ames Model 3) for testing at Ames Research Center in April 1993. The second was to use a Navier-Stokes code (Overflow) to support the Oblique-All-Wing (OAW) study at Ames. The third was to study an optimization technique applied on a Haack-Adams body to reduce aerodynamic drag.

  20. Childhood headache attributed to airplane travel: a case report.

    PubMed

    Rogers, Kirsty; Rafiq, Nadia; Prabhakar, Prab; Ahmed, Mas

    2015-05-01

    Headache attributed to airplane flights is a rare form of headache disorder. This case study describes an 11-year-old girl with recurrent, severe, frontal headaches occurring during airplane travel. The episodes were associated with dizziness and facial pallor but no additional symptoms and showed spontaneous resolution on landing. Blood tests and imaging revealed no abnormalities. The present case fulfils the criteria for airplane headache recently included in the revised edition of the International Classification of Headache Disorders (ICHD-III Beta). Only a few cases of airplane headache have been reported in children. To our knowledge, this is the fourth case. We review the current literature on this rare syndrome and discuss various proposed pathophysiological mechanisms. © The Author(s) 2014.

  1. Lateral-directional aerodynamic characteristics of light, twin-engine, propeller driven airplanes

    NASA Technical Reports Server (NTRS)

    Wolowicz, C. H.; Yancey, R. B.

    1972-01-01

    Analytical procedures and design data for predicting the lateral-directional static and dynamic stability and control characteristics of light, twin engine, propeller driven airplanes for propeller-off and power-on conditions are reported. Although the consideration of power effects is limited to twin engine airplanes, the propeller-off considerations are applicable to single engine airplanes as well. The procedures are applied to a twin engine, propeller driven, semi-low-wing airplane in the clean configuration through the linear lift range. The calculated derivative characteristics are compared with wind tunnel and flight data. Included in the calculated characteristics are the spiral mode, roll mode, and Dutch roll mode over the speed range of the airplane.

  2. 14 CFR 135.399 - Small nontransport category airplane performance operating limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Small nontransport category airplane... PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.399 Small nontransport category airplane performance operating limitations. (a) No person may operate a reciprocating engine or...

  3. 14 CFR 135.399 - Small nontransport category airplane performance operating limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Small nontransport category airplane... PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.399 Small nontransport category airplane performance operating limitations. (a) No person may operate a reciprocating engine or...

  4. 14 CFR 135.399 - Small nontransport category airplane performance operating limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Small nontransport category airplane... PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.399 Small nontransport category airplane performance operating limitations. (a) No person may operate a reciprocating engine or...

  5. 14 CFR 135.399 - Small nontransport category airplane performance operating limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Small nontransport category airplane... PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.399 Small nontransport category airplane performance operating limitations. (a) No person may operate a reciprocating engine or...

  6. 14 CFR 135.399 - Small nontransport category airplane performance operating limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Small nontransport category airplane... PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.399 Small nontransport category airplane performance operating limitations. (a) No person may operate a reciprocating engine or...

  7. 78 FR 20229 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... Airworthiness Directives; The Boeing Company Airplanes AGENCY: Federal Aviation Administration (FAA), DOT... Boeing Company Model 737-600, -700, -700C, -800, -900, and -900ER series airplanes. That AD currently... 20231

  8. An Accurate Method for Measuring Airplane-Borne Conformal Antenna's Radar Cross Section

    NASA Astrophysics Data System (ADS)

    Guo, Shuxia; Zhang, Lei; Wang, Yafeng; Hu, Chufeng

    2016-09-01

    The airplane-borne conformal antenna attaches itself tightly with the airplane skin, so the conventional measurement method cannot determine the contribution of the airplane-borne conformal antenna to its radar cross section (RCS). This paper uses the 2D microwave imaging to isolate and extract the distribution of the reflectivity of the airplane-borne conformal antenna. It obtains the 2D spatial spectra of the conformal antenna through the wave spectral transform between the 2D spatial image and the 2D spatial spectrum. After the interpolation from the rectangular coordinate domain to the polar coordinate domain, the spectral domain data for the variation of the scatter of the conformal antenna with frequency and angle is obtained. The experimental results show that the measurement method proposed in this paper greatly enhances the airplane-borne conformal antenna's RCS measurement accuracy, essentially eliminates the influences caused by the airplane skin and more accurately reveals the airplane-borne conformal antenna's RCS scatter properties.

  9. Planetary Airplane Extraction System Development and Subscale Testing

    NASA Technical Reports Server (NTRS)

    Teter, John E., Jr.

    2006-01-01

    The Aerial Regional-scale Environmental Survey (ARES) project employs an airplane as the science platform from which to collect science data in the previously inaccessible, thin atmosphere of Mars. In order for the airplane to arrive safely in the Martian atmosphere a number of sequences must occur. A critical element in the entry sequence at Mars is an extraction maneuver to separate the airplane quickly (in less than a second) from its protective backshell to reduce the possibility of re-contact, potentially leading to mission failure. This paper describes the development, testing, and lessons learned from building a 1/3 scale model of this airplane extraction system. This design, based on the successful Mars Exploration Rover (MER) extraction mechanism, employs a series of trucks rolling along tracks located on the surface of the central parachute can. Numerous tests using high speed video were conducted at the Langley Research Center (LaRC) to validate this concept. One area of concern was that that although the airplane released cleanly, a pitching moment could be introduced. While targeted for a Mars mission, this concept will enable environmental surveys by aircraft in other planetary bodies with a sensible atmosphere such as Venus or Saturn s moon, Titan.

  10. Planetary Airplane Extraction System Development and Subscale Testing

    NASA Technical Reports Server (NTRS)

    Teter, John E., Jr.

    2006-01-01

    The Aerial Regional-scale Environmental Survey (ARES) project will employ an airplane as the science platform from which to collect science data in the previously inaccessible, thin atmosphere of Mars. In order for the airplane to arrive safely in the Martian atmosphere, a number of sequences must occur. A critical element in the entry sequence at Mars is an extraction maneuver to separate the airplane quickly (in less than a second) from its protective backshell to reduce the possibility of re-contact, potentially leading to mission failure. This paper describes the development, testing, and lessons learned from building a 1/3 scale model of this airplane extraction system. This design, based on the successful Mars Exploration Rover (MER) extraction mechanism, employs a series of trucks rolling along tracks located on the surface of the central parachute can. Numerous tests using high speed video were conducted at the Langley Research Center to validate this concept. One area of concern was that that although the airplane released cleanly, a pitching moment could be introduced. While targeted for a Mars mission, this concept will enable environmental surveys by aircraft in other planetary bodies with a sensible atmosphere such as Venus or Saturn's moon, Titan.

  11. 77 FR 12166 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... airplane has one or two attach brackets on the left wing prior to accomplishing the required rework... configuration before the rework. We disagree with adding an inspection to determine the airplane configuration...

  12. 14 CFR 135.393 - Large nontransport category airplanes: Landing limitations: Destination airports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... category airplane may take off that airplane at a weight that— (1) Allowing for anticipated consumption of... assumed that— (1) The airplane passes directly over the intersection of the obstruction clearance plane...

  13. 14 CFR 91.219 - Altitude alerting system or device: Turbojet-powered civil airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...: Turbojet-powered civil airplanes. 91.219 Section 91.219 Aeronautics and Space FEDERAL AVIATION... system or device: Turbojet-powered civil airplanes. (a) Except as provided in paragraph (d) of this section, no person may operate a turbojet-powered U.S.-registered civil airplane unless that airplane is...

  14. 14 CFR 91.219 - Altitude alerting system or device: Turbojet-powered civil airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...: Turbojet-powered civil airplanes. 91.219 Section 91.219 Aeronautics and Space FEDERAL AVIATION... system or device: Turbojet-powered civil airplanes. (a) Except as provided in paragraph (d) of this section, no person may operate a turbojet-powered U.S.-registered civil airplane unless that airplane is...

  15. 14 CFR 91.219 - Altitude alerting system or device: Turbojet-powered civil airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...: Turbojet-powered civil airplanes. 91.219 Section 91.219 Aeronautics and Space FEDERAL AVIATION... system or device: Turbojet-powered civil airplanes. (a) Except as provided in paragraph (d) of this section, no person may operate a turbojet-powered U.S.-registered civil airplane unless that airplane is...

  16. 14 CFR 91.219 - Altitude alerting system or device: Turbojet-powered civil airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...: Turbojet-powered civil airplanes. 91.219 Section 91.219 Aeronautics and Space FEDERAL AVIATION... system or device: Turbojet-powered civil airplanes. (a) Except as provided in paragraph (d) of this section, no person may operate a turbojet-powered U.S.-registered civil airplane unless that airplane is...

  17. 14 CFR 91.219 - Altitude alerting system or device: Turbojet-powered civil airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...: Turbojet-powered civil airplanes. 91.219 Section 91.219 Aeronautics and Space FEDERAL AVIATION... system or device: Turbojet-powered civil airplanes. (a) Except as provided in paragraph (d) of this section, no person may operate a turbojet-powered U.S.-registered civil airplane unless that airplane is...

  18. Role of Meteorology in Flights of a Solar-Powered Airplane

    NASA Technical Reports Server (NTRS)

    Donohue, Casey

    2004-01-01

    In the summer of 2001, the Helios prototype solar-powered uninhabited aerial vehicle (UAV) [a lightweight, remotely piloted airplane] was deployed to the Pacific Missile Range Facility (PMRF), at Kauai, Hawaii, in an attempt to fly to altitudes above 100,000 ft (30.48 km). The goal of flying a UAV to such high altitudes has been designated a level-I milestone of the NASA Environmental Research Aircraft and Sensor Technology (ERAST) program. In support of this goal, meteorologists from NASA Dryden Flight Research Center were sent to PMRF, as part of the flight crew, to provide current and forecast weather information to the pilots, mission directors, and planners. Information of this kind is needed to optimize flight conditions for peak aircraft performance and to enable avoidance of weather conditions that could adversely affect safety. In general, the primary weather data of concern for ground and flight operations are wind speeds (see Figure 1). Because of its long wing span [247 ft (.75 m)] and low weight [1,500 to 1,600 lb (about 680 to 726 kg)], the Helios airplane is sensitive to wind speeds exceeding 7 kn (3.6 m/s) at the surface. Also, clouds are of concern because they can block sunlight needed to energize an array of solar photovoltaic cells that provide power to the airplane. Vertical wind shear is very closely monitored in order to prevent damage or loss of control due to turbulence.

  19. 14 CFR 121.509 - Flight time limitations: Four pilot crews: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...: airplanes. 121.509 Section 121.509 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.509 Flight time limitations: Four pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...

  20. 14 CFR 121.507 - Flight time limitations: Three pilot crews: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...: airplanes. 121.507 Section 121.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.507 Flight time limitations: Three pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...

  1. 14 CFR 121.509 - Flight time limitations: Four pilot crews: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...: airplanes. 121.509 Section 121.509 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.509 Flight time limitations: Four pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...

  2. 14 CFR 121.507 - Flight time limitations: Three pilot crews: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...: airplanes. 121.507 Section 121.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.507 Flight time limitations: Three pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...

  3. 14 CFR 121.507 - Flight time limitations: Three pilot crews: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...: airplanes. 121.507 Section 121.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.507 Flight time limitations: Three pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...

  4. 14 CFR 121.507 - Flight time limitations: Three pilot crews: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...: airplanes. 121.507 Section 121.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.507 Flight time limitations: Three pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...

  5. 14 CFR 121.509 - Flight time limitations: Four pilot crews: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...: airplanes. 121.509 Section 121.509 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.509 Flight time limitations: Four pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...

  6. 14 CFR 121.509 - Flight time limitations: Four pilot crews: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...: airplanes. 121.509 Section 121.509 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.509 Flight time limitations: Four pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...

  7. 14 CFR 121.509 - Flight time limitations: Four pilot crews: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...: airplanes. 121.509 Section 121.509 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.509 Flight time limitations: Four pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...

  8. 14 CFR 121.507 - Flight time limitations: Three pilot crews: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...: airplanes. 121.507 Section 121.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.507 Flight time limitations: Three pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...

  9. Predicted performance benefits of an adaptive digital engine control system of an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Myers, L. P.; Ray, R. J.

    1985-01-01

    The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrating engine-airframe control systems. Currently this is accomplished on the NASA Ames Research Center's F-15 airplane. The two control modes used to implement the systems are an integrated flightpath management mode and in integrated adaptive engine control system (ADECS) mode. The ADECS mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the available engine stall margin are continually computed. The excess stall margin is traded for thrust. The predicted increase in engine performance due to the ADECS mode is presented in this report.

  10. 77 FR 26937 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-08

    ... Airworthiness Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), Department of...) for certain Airbus Model A300 B2-1C, B2K-3C, B2-203, B4-2C, B4-103, and B4-203 airplanes; and Model... Airbus Service Bulletins (SB) A300-57-0235 and A300-57-6088 * * *. Subsequently, new cases of cracks were...

  11. Design Oriented Structural Modeling for Airplane Conceptual Design Optimization

    NASA Technical Reports Server (NTRS)

    Livne, Eli

    1999-01-01

    The main goal for research conducted with the support of this grant was to develop design oriented structural optimization methods for the conceptual design of airplanes. Traditionally in conceptual design airframe weight is estimated based on statistical equations developed over years of fitting airplane weight data in data bases of similar existing air- planes. Utilization of such regression equations for the design of new airplanes can be justified only if the new air-planes use structural technology similar to the technology on the airplanes in those weight data bases. If any new structural technology is to be pursued or any new unconventional configurations designed the statistical weight equations cannot be used. In such cases any structural weight estimation must be based on rigorous "physics based" structural analysis and optimization of the airframes under consideration. Work under this grant progressed to explore airframe design-oriented structural optimization techniques along two lines of research: methods based on "fast" design oriented finite element technology and methods based on equivalent plate / equivalent shell models of airframes, in which the vehicle is modelled as an assembly of plate and shell components, each simulating a lifting surface or nacelle / fuselage pieces. Since response to changes in geometry are essential in conceptual design of airplanes, as well as the capability to optimize the shape itself, research supported by this grant sought to develop efficient techniques for parametrization of airplane shape and sensitivity analysis with respect to shape design variables. Towards the end of the grant period a prototype automated structural analysis code designed to work with the NASA Aircraft Synthesis conceptual design code ACS= was delivered to NASA Ames.

  12. 14 CFR 23.71 - Glide: Single-engine airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Glide: Single-engine airplanes. 23.71 Section 23.71 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Glide: Single-engine airplanes. The maximum horizontal distance traveled in still air, in nautical miles...

  13. 14 CFR 23.71 - Glide: Single-engine airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Glide: Single-engine airplanes. 23.71 Section 23.71 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Glide: Single-engine airplanes. The maximum horizontal distance traveled in still air, in nautical miles...

  14. 77 FR 12158 - Airworthiness Directives; Bombardier, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... limited to not more than 0.78 Mach. (6) The climb ceiling obtained from the Flight Planning and Cruise... damage to airplane structure, which could adversely affect the airplane's continued safe flight and... requirements.'' Under that section, Congress charges the FAA with promoting safe flight of civil aircraft in...

  15. Variable-Structure Control of a Model Glider Airplane

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Anderson, Mark R.

    2008-01-01

    A variable-structure control system designed to enable a fuselage-heavy airplane to recover from spin has been demonstrated in a hand-launched, instrumented model glider airplane. Variable-structure control is a high-speed switching feedback control technique that has been developed for control of nonlinear dynamic systems.

  16. 78 FR 22806 - Airworthiness Directives; Bombardier, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-17

    ... indications, and consequent loss of control of the airplane. DATES: We must receive comments on this proposed... corrected, may result in erroneous airspeed and altitude indications [and consequent loss of control of the... consequent loss of control of the airplane. (f) Compliance You are responsible for having the actions...

  17. 78 FR 18531 - Airworthiness Directives; Learjet Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ... cause damage to various components, including the MLG squat switches, brake hydraulic tubes, wheel speed... airplanes. This proposed AD was prompted by a report of a high-speed rejected takeoff caused by all four... necessary; and, for certain airplanes; installing a new wheel speed detect box assembly, nutplates, and...

  18. Engine installation effects of four civil transport airplanes : Wallops Flight Facility study

    DOT National Transportation Integrated Search

    2003-10-31

    This report examines the effects of airplane geometrical configuration on the acoustic directivity characteristics and on the propagation of airplane noise. This effect of airplane geometry is referred to in this report as engine installation effe...

  19. 14 CFR 121.505 - Flight time limitations: Two pilot crews: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...: airplanes. 121.505 Section 121.505 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.505 Flight time limitations: Two pilot crews: airplanes. (a) If a certificate holder... relieve that pilot of all duty with it during that rest period. (b) No pilot of an airplane that has a...

  20. 14 CFR 125.175 - Protection of other airplane components against fire.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Protection of other airplane components... CERTIFICATION AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD... Requirements § 125.175 Protection of other airplane components against fire. (a) Except as provided in...

  1. 14 CFR 121.277 - Protection of other airplane components against fire.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Protection of other airplane components....277 Protection of other airplane components against fire. (a) Except as provided in paragraph (b) of this section, all airplane surfaces aft of the nacelles in the area of one nacelle diameter on both...

  2. 14 CFR 121.505 - Flight time limitations: Two pilot crews: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...: airplanes. 121.505 Section 121.505 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.505 Flight time limitations: Two pilot crews: airplanes. (a) If a certificate holder... relieve that pilot of all duty with it during that rest period. (b) No pilot of an airplane that has a...

  3. 14 CFR 125.175 - Protection of other airplane components against fire.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Protection of other airplane components... CERTIFICATION AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD... Requirements § 125.175 Protection of other airplane components against fire. (a) Except as provided in...

  4. 14 CFR 121.277 - Protection of other airplane components against fire.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Protection of other airplane components....277 Protection of other airplane components against fire. (a) Except as provided in paragraph (b) of this section, all airplane surfaces aft of the nacelles in the area of one nacelle diameter on both...

  5. 14 CFR 125.175 - Protection of other airplane components against fire.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Protection of other airplane components... CERTIFICATION AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD... Requirements § 125.175 Protection of other airplane components against fire. (a) Except as provided in...

  6. 14 CFR 121.505 - Flight time limitations: Two pilot crews: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...: airplanes. 121.505 Section 121.505 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.505 Flight time limitations: Two pilot crews: airplanes. (a) If a certificate holder... relieve that pilot of all duty with it during that rest period. (b) No pilot of an airplane that has a...

  7. 14 CFR 121.277 - Protection of other airplane components against fire.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Protection of other airplane components....277 Protection of other airplane components against fire. (a) Except as provided in paragraph (b) of this section, all airplane surfaces aft of the nacelles in the area of one nacelle diameter on both...

  8. 14 CFR 121.505 - Flight time limitations: Two pilot crews: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...: airplanes. 121.505 Section 121.505 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.505 Flight time limitations: Two pilot crews: airplanes. (a) If a certificate holder... relieve that pilot of all duty with it during that rest period. (b) No pilot of an airplane that has a...

  9. 14 CFR 121.505 - Flight time limitations: Two pilot crews: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...: airplanes. 121.505 Section 121.505 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.505 Flight time limitations: Two pilot crews: airplanes. (a) If a certificate holder... relieve that pilot of all duty with it during that rest period. (b) No pilot of an airplane that has a...

  10. 14 CFR 121.277 - Protection of other airplane components against fire.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Protection of other airplane components....277 Protection of other airplane components against fire. (a) Except as provided in paragraph (b) of this section, all airplane surfaces aft of the nacelles in the area of one nacelle diameter on both...

  11. 14 CFR 125.175 - Protection of other airplane components against fire.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Protection of other airplane components... CERTIFICATION AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD... Requirements § 125.175 Protection of other airplane components against fire. (a) Except as provided in...

  12. 14 CFR 125.175 - Protection of other airplane components against fire.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Protection of other airplane components... CERTIFICATION AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD... Requirements § 125.175 Protection of other airplane components against fire. (a) Except as provided in...

  13. 14 CFR 121.277 - Protection of other airplane components against fire.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Protection of other airplane components....277 Protection of other airplane components against fire. (a) Except as provided in paragraph (b) of this section, all airplane surfaces aft of the nacelles in the area of one nacelle diameter on both...

  14. 14 CFR 36.9 - Acoustical change: Propeller-driven small airplanes and propeller-driven commuter category...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... airplanes and propeller-driven commuter category airplanes. 36.9 Section 36.9 Aeronautics and Space FEDERAL... AIRWORTHINESS CERTIFICATION General § 36.9 Acoustical change: Propeller-driven small airplanes and propeller-driven commuter category airplanes. For propeller-driven small airplanes in the primary, normal, utility...

  15. 14 CFR 36.9 - Acoustical change: Propeller-driven small airplanes and propeller-driven commuter category...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... airplanes and propeller-driven commuter category airplanes. 36.9 Section 36.9 Aeronautics and Space FEDERAL... AIRWORTHINESS CERTIFICATION General § 36.9 Acoustical change: Propeller-driven small airplanes and propeller-driven commuter category airplanes. For propeller-driven small airplanes in the primary, normal, utility...

  16. 14 CFR 36.9 - Acoustical change: Propeller-driven small airplanes and propeller-driven commuter category...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... airplanes and propeller-driven commuter category airplanes. 36.9 Section 36.9 Aeronautics and Space FEDERAL... AIRWORTHINESS CERTIFICATION General § 36.9 Acoustical change: Propeller-driven small airplanes and propeller-driven commuter category airplanes. For propeller-driven small airplanes in the primary, normal, utility...

  17. 14 CFR 36.9 - Acoustical change: Propeller-driven small airplanes and propeller-driven commuter category...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... airplanes and propeller-driven commuter category airplanes. 36.9 Section 36.9 Aeronautics and Space FEDERAL... AIRWORTHINESS CERTIFICATION General § 36.9 Acoustical change: Propeller-driven small airplanes and propeller-driven commuter category airplanes. For propeller-driven small airplanes in the primary, normal, utility...

  18. 14 CFR 36.9 - Acoustical change: Propeller-driven small airplanes and propeller-driven commuter category...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... airplanes and propeller-driven commuter category airplanes. 36.9 Section 36.9 Aeronautics and Space FEDERAL... AIRWORTHINESS CERTIFICATION General § 36.9 Acoustical change: Propeller-driven small airplanes and propeller-driven commuter category airplanes. For propeller-driven small airplanes in the primary, normal, utility...

  19. Airplane takeoff and landing performance monitoring system

    NASA Technical Reports Server (NTRS)

    Middleton, David B. (Inventor); Srivatsan, Raghavachari (Inventor); Person, Lee H. (Inventor)

    1989-01-01

    The invention is a real-time takeoff and landing performance monitoring system which provides the pilot with graphic and metric information to assist in decisions related to achieving rotation speed (V sub R) within the safe zone of the runway or stopping the aircraft on the runway after landing or take off abort. The system processes information in two segments: a pretakeoff segment and a real-time segment. One-time inputs of ambient conditions and airplane configuration information are used in the pretakeoff segment to generate scheduled performance data. The real-time segment uses the scheduled performance data, runway length data and transducer measured parameters to monitor the performance of the airplane throughout the takeoff roll. An important feature of this segment is that it updates the estimated runway rolling friction coefficient. Airplane performance predictions also reflect changes in headwind occurring as the takeoff roll progresses. The system displays the position of the airplane on the runway, indicating runway used and runway available, summarizes the critical information into a situation advisory flag, flags engine failures and off-nominal acceleration performance, and indicates where on the runway particular events such as decision speed (V sub 1), rotation speed (V sub R) and expected stop points will occur based on actual or predicted performance. The display also indicates airspeed, wind vector, engine pressure ratios, second segment climb speed, and balanced field length (BFL). The system detects performance deficiencies by comparing the airplane's present performance with a predicted nominal performance based upon the given conditions.

  20. Approach and Landing Investigation at Lift-Drag Ratios of 2 to 4 Utilizing a Straight-Wing Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Matranga, Gene J.; Armstrong, Neil A.

    1959-01-01

    A series of landings was performed with a straight-wing airplane to evaluate the effect of low lift-drag ratios on approach and landing characteristics. Landings with a peak lift-drag ratio as low as 3 were performed by altering the airplane configuration (extending speed brakes, flaps, and gear and reducing throttle setting). As lift-drag ratio was reduced, it was necessary either to make the landing pattern tighter or to increase initial altitude, or both. At the lowest lift-drag ratio the pilots believed a 270 deg overhead pattern was advisable because of the greater ease afforded in visually positioning the airplane. The values of the pertinent flare parameters increased with the reduction of lift-drag ratio. These parameters included time required for final flare; speed change during final flare; and altitude, glide slope, indicated airspeed, and vertical velocity at initiation of final flare. The pilots believed that the tolerable limit was reached with this airplane in the present configuration, and that if, because of a further reduction in lift-drag ratio, more severe approaches than those experienced in this program were attempted, additional aids would be required to determine the flare-initiation point.

  1. 77 FR 55163 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-07

    ... directive (AD) for certain Airbus Model A330-200, A330-300, A340-200, and A340- 300 series airplanes; and... Model A330-200, A330- 200 Freighter, A330-300, A340-200, and A340-300 series airplanes; and Model A340... measure, EASA issued AD 2011-0040 to require a one-time [detailed] inspection of the MLG (all types of...

  2. Development of Laser Propulsion and Tracking System for Laser-Driven Micro-Airplane

    NASA Astrophysics Data System (ADS)

    Ishikawa, Hiroyasu; Kajiwara, Itsuro; Hoshino, Kentaro; Yabe, Takashi; Uchida, Shigeaki; Shimane, Yoshichika

    2004-03-01

    The purposes of this paper are to improve the control performance of the developed laser tracking system and to develop an integrated laser propulsion/tracking system for realizing a continuous flight and control of the micro-airplane. The laser propulsion is significantly effective to achieve the miniaturization and lightening of the micro-airplane. The laser-driven micro-airplane has been studied with a paper-craft airplane and YAG laser, resulting in a successful glide of the airplane. In the next stage of the laser-driven micro-airplane development, the laser tracking is expected as key technologies to achieve continuous propulsion. Furthermore, the laser propulsion system should be combined with the laser tracking system to supply continuous propulsion. Experiments are carried out to evaluate the performance of the developed laser tracking system and integrated laser propulsion/tracking system.

  3. Weight estimation techniques for composite airplanes in general aviation industry

    NASA Technical Reports Server (NTRS)

    Paramasivam, T.; Horn, W. J.; Ritter, J.

    1986-01-01

    Currently available weight estimation methods for general aviation airplanes were investigated. New equations with explicit material properties were developed for the weight estimation of aircraft components such as wing, fuselage and empennage. Regression analysis was applied to the basic equations for a data base of twelve airplanes to determine the coefficients. The resulting equations can be used to predict the component weights of either metallic or composite airplanes.

  4. 14 CFR 121.187 - Airplanes: Reciprocating engine-powered: Landing limitations: Alternate airport.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplanes: Reciprocating engine-powered...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.187 Airplanes: Reciprocating engine-powered: Landing limitations...

  5. 14 CFR 121.185 - Airplanes: Reciprocating engine-powered: Landing limitations: Destination airport.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplanes: Reciprocating engine-powered...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.185 Airplanes: Reciprocating engine-powered: Landing limitations...

  6. 14 CFR 121.185 - Airplanes: Reciprocating engine-powered: Landing limitations: Destination airport.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplanes: Reciprocating engine-powered...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.185 Airplanes: Reciprocating engine-powered: Landing limitations...

  7. 14 CFR 121.185 - Airplanes: Reciprocating engine-powered: Landing limitations: Destination airport.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplanes: Reciprocating engine-powered...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.185 Airplanes: Reciprocating engine-powered: Landing limitations...

  8. 14 CFR 121.187 - Airplanes: Reciprocating engine-powered: Landing limitations: Alternate airport.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplanes: Reciprocating engine-powered...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.187 Airplanes: Reciprocating engine-powered: Landing limitations...

  9. 14 CFR 121.185 - Airplanes: Reciprocating engine-powered: Landing limitations: Destination airport.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplanes: Reciprocating engine-powered...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.185 Airplanes: Reciprocating engine-powered: Landing limitations...

  10. 14 CFR 121.187 - Airplanes: Reciprocating engine-powered: Landing limitations: Alternate airport.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplanes: Reciprocating engine-powered...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.187 Airplanes: Reciprocating engine-powered: Landing limitations...

  11. 14 CFR 121.187 - Airplanes: Reciprocating engine-powered: Landing limitations: Alternate airport.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplanes: Reciprocating engine-powered...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.187 Airplanes: Reciprocating engine-powered: Landing limitations...

  12. 14 CFR 121.187 - Airplanes: Reciprocating engine-powered: Landing limitations: Alternate airport.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplanes: Reciprocating engine-powered...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.187 Airplanes: Reciprocating engine-powered: Landing limitations...

  13. Design and analysis of a fuel-efficient single-engine, turboprop-powered, business airplane

    NASA Technical Reports Server (NTRS)

    Martin, G. L.; Everest, D. E., Jr.; Lovell, W. A.; Price, J. E.; Walkley, K. B.; Washburn, G. F.

    1981-01-01

    The speed, range, payload, and fuel efficiency of a general aviation airplane powered by one turboprop engine was determined and compared to a twin engine turboprop aircraft. An airplane configuration was developed which can carry six people for a noreserve range of 2,408 km at a cruise speed above 154 m/s, and a cruise altitude of about 9,144 m. The cruise speed is comparable to that of the fastest of the current twin turboprop powered airplanes. It is found that the airplane has a cruise specific range greater than all twin turboprop engine airplanes flying in its speed range and most twin piston engine airplanes flying at considerably slower cruise airspeeds.

  14. A Mars airplane. [for Mars environment surveys

    NASA Technical Reports Server (NTRS)

    Clarke, V. C.; Kerem, A.; Lewis, R.

    1979-01-01

    An airplane specifically designed for Mars flight is described, emphasizing its conceivable role as an aerial surveyor for visual imaging, gamma-ray and IR reflectance spectroscopy, studies of atmospheric composition and dynamics, and gravity-field, magnetic-field, and electromagnetic sounding. Possible imaging systems and surveying tasks are considered, along with a plausible mission scenario for a fleet of 12 airplanes, which would be taken to Mars in squadrons of four by three Shuttle/IUS Twin Stage/spacecraft carriers. A basic configuration closely resembling that of a competition glider is examined, and four types of airplane are discussed: hydrazine-powered cruisers and landers and electrically powered cruisers and landers. Attention is given to navigation, guidance, and control avionics, vehicle weight, the use of composite materials for the wing, and flight testing on earth.

  15. 14 CFR 121.197 - Airplanes: Turbine engine powered: Landing limitations: Alternate airports.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplanes: Turbine engine powered: Landing... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.197 Airplanes: Turbine engine powered: Landing limitations: Alternate...

  16. 14 CFR 121.195 - Airplanes: Turbine engine powered: Landing limitations: Destination airports.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplanes: Turbine engine powered: Landing...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.195 Airplanes: Turbine engine powered: Landing limitations...

  17. 14 CFR 121.197 - Airplanes: Turbine engine powered: Landing limitations: Alternate airports.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplanes: Turbine engine powered: Landing... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.197 Airplanes: Turbine engine powered: Landing limitations: Alternate...

  18. 14 CFR 121.195 - Airplanes: Turbine engine powered: Landing limitations: Destination airports.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplanes: Turbine engine powered: Landing...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.195 Airplanes: Turbine engine powered: Landing limitations...

  19. 14 CFR 121.195 - Airplanes: Turbine engine powered: Landing limitations: Destination airports.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplanes: Turbine engine powered: Landing...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.195 Airplanes: Turbine engine powered: Landing limitations...

  20. 14 CFR 121.197 - Airplanes: Turbine engine powered: Landing limitations: Alternate airports.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplanes: Turbine engine powered: Landing... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.197 Airplanes: Turbine engine powered: Landing limitations: Alternate...

  1. Airplane Balance

    NASA Technical Reports Server (NTRS)

    Huguet, L

    1921-01-01

    The authors argue that the center of gravity has a preponderating influence on the longitudinal stability of an airplane in flight, but that manufacturers, although aware of this influence, are still content to apply empirical rules to the balancing of their airplanes instead of conducting wind tunnel tests. The author examines the following points: 1) longitudinal stability, in flight, of a glider with coinciding centers; 2) the influence exercised on the stability of flight by the position of the axis of thrust with respect to the center of gravity and the whole of the glider; 3) the stability on the ground before taking off, and the influence of the position of the landing gear. 4) the influence of the elements of the glider on the balance, the possibility of sometimes correcting defective balance, and the valuable information given on this point by wind tunnel tests; 5) and a brief examination of the equilibrium of power in horizontal flight, where the conditions of stability peculiar to this kind of flight are added to previously existing conditions of the stability of the glider, and interfere in fixing the safety limits of certain evolutions.

  2. Comparison of predicted and measured drag for a single-engine airplane

    NASA Technical Reports Server (NTRS)

    Ward, D. T.; Taylor, F. C.; Doo, J. T. P.

    1985-01-01

    Renewed interest in natural laminar flow (NLF) has rekindled designers' concerns that manufacturing deviations, (loss of surface contours or other surface imperfections) may destroy the effectiveness of NLF for an operational airplane. This paper reports on experimental research that compares predicted and measured boundary layer transition, total drag, and two-dimensional drag coefficients for three different wing surface conditions on an airplane typical of general aviation manufacturing technology. The three flight test phases included: (1) assessment of an unpainted airframe, (2) flight tests of the same airplane after painstakingly filling and sanding the wings to design contours, and (3) similar measurements after this airplane was painted. In each flight phase, transition locations were monitored using either sublimating chemicals or pigmented oil. As expected, total drag changes were difficult to measure. Two-dimensional drag coefficients were estimated using the Eppler-Somers code and measured with a wake rake in a method very similar to Jones' pitot traverse method. The net change in two-dimensional drag was approximately 20 counts between the unpainted airplane and the 'hand-smoothed' airplane for typical cruise flight conditions.

  3. An evaluation of very large airplanes and alternative fuels. Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikolowsky, W.T.; Noggle, L.W.; Hederman, W.F.

    1976-12-01

    Very large airplanes using alternative fuels are examined in the context of existing and possible future Air Force missions. Synthetic jet fuel (JP), liquid methane, liquid hydrogen, and nuclear propulsion are the fuel alternatives selected for detailed analysis. Conceptual designs of airplanes using each of these fuels were developed and estimates were made of their lifecycle cost and life-cycle energy consumption. Mission analyses were performed to determine the effectiveness of the alternative airplanes in strategic airlift specifically and in the station-keeping role in general. Results indicate that for most military applications airplanes with gross weights in excess of one millionmore » pounds promise to be superior to any comtemporary airplanes in terms of cost-effectiveness and energy-hydrocarbon jet fuel, whether manufactured from oil shale, coal or crude oil, remains the most attractive aviation fuel for future Air Force use. Policy recommendations are made pertaining both to alternative fuels and to advanced-technology large airplanes. Future research and developments are also identified.« less

  4. 78 FR 42724 - Airworthiness Directives; Beechcraft Corporation Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    ... certain Beechcraft Corporation Models 1900, 1900C, and 1900D airplanes. AD 2011-27-51 currently requires... deformation to the weight and/or weight bracket with corrective action as necessary. Since we issued AD 2011..., January 18, 2012), for certain Hawker Beechcraft Corporation Models 1900, 1900C, and 1900D airplanes. AD...

  5. 77 FR 74579 - Airworthiness Directives; Gulfstream Aerospace Corporation Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-17

    ... Airworthiness Directives; Gulfstream Aerospace Corporation Airplanes AGENCY: Federal Aviation Administration... directive (AD) for certain Gulfstream Aerospace Corporation Model GIV-X airplanes. This AD requires... Aerospace Corporation, Technical Publications Dept., P.O. Box 2206, Savannah, GA 31402-2206; telephone 800...

  6. 14 CFR 135.393 - Large nontransport category airplanes: Landing limitations: Destination airports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Large nontransport category airplanes... PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.393 Large nontransport category airplanes: Landing limitations: Destination airports. (a) No person operating a large nontransport...

  7. 14 CFR 135.393 - Large nontransport category airplanes: Landing limitations: Destination airports.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Large nontransport category airplanes... PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.393 Large nontransport category airplanes: Landing limitations: Destination airports. (a) No person operating a large nontransport...

  8. 14 CFR 135.393 - Large nontransport category airplanes: Landing limitations: Destination airports.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Large nontransport category airplanes... PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.393 Large nontransport category airplanes: Landing limitations: Destination airports. (a) No person operating a large nontransport...

  9. 14 CFR 135.393 - Large nontransport category airplanes: Landing limitations: Destination airports.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Large nontransport category airplanes... PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.393 Large nontransport category airplanes: Landing limitations: Destination airports. (a) No person operating a large nontransport...

  10. 14 CFR 121.329 - Supplemental oxygen for sustenance: Turbine engine powered airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... engine powered airplanes. 121.329 Section 121.329 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Equipment Requirements § 121.329 Supplemental oxygen for sustenance: Turbine engine powered airplanes. (a) General. When operating a turbine engine powered airplane, each certificate holder shall equip the...

  11. 14 CFR 121.329 - Supplemental oxygen for sustenance: Turbine engine powered airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... engine powered airplanes. 121.329 Section 121.329 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Equipment Requirements § 121.329 Supplemental oxygen for sustenance: Turbine engine powered airplanes. (a) General. When operating a turbine engine powered airplane, each certificate holder shall equip the...

  12. 14 CFR 135.395 - Large nontransport category airplanes: Landing limitations: Alternate airports.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...: Landing limitations: Alternate airports. 135.395 Section 135.395 Aeronautics and Space FEDERAL AVIATION... category airplanes: Landing limitations: Alternate airports. No person may select an airport as an alternate airport for a large nontransport category airplane unless that airplane (at the weight anticipated...

  13. 14 CFR 135.395 - Large nontransport category airplanes: Landing limitations: Alternate airports.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...: Landing limitations: Alternate airports. 135.395 Section 135.395 Aeronautics and Space FEDERAL AVIATION... category airplanes: Landing limitations: Alternate airports. No person may select an airport as an alternate airport for a large nontransport category airplane unless that airplane (at the weight anticipated...

  14. 78 FR 42417 - Airworthiness Directives; Pilatus Aircraft Ltd. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ... certain Pilatus Aircraft Ltd. Model PC-6/B2-H4 airplanes. This AD results from mandatory continuing... Aircraft Ltd. Model PC-6/B2-H4 airplanes, serial numbers 735, 863, 909, 923, 948, 956, 958, 977, 978, 979...

  15. Summary of Information Relating to Gust Loads on Airplanes

    NASA Technical Reports Server (NTRS)

    Donely, Philip

    1950-01-01

    Available information on gust structure, airplane reactions, and pertinent operating statistics has been examined. This report attempts to coordinate this information with reference to the prediction of gust loads on airplanes. The material covered represents research up to October 1947. (author)

  16. Pilotless Airplanes

    DTIC Science & Technology

    1989-07-05

    FTD/SDAWS/Capt Craven Approved for public release; Distribution unlimited. THIS TRANSLATION IS A RENDITION OF THE ORIGI- NAL FOREIGN TEXT WITHOUT ANY...and electronic computers also spurred advances in the field of pilotless airplanes. During this period the turbine jet engine underwent a very strong...Contains the Doppler radar frequency tracking device; alternator and flight-guidance computer ; the flight control box; the remote control receiver; the

  17. Automated airplane surface generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R.E.; Cordero, Y.; Jones, W.

    1996-12-31

    An efficient methodology and software axe presented for defining a class of airplane configurations. A small set of engineering design parameters and grid control parameters govern the process. The general airplane configuration has wing, fuselage, vertical tall, horizontal tail, and canard components. Wing, canard, and tail surface grids axe manifested by solving a fourth-order partial differential equation subject to Dirichlet and Neumann boundary conditions. The design variables are incorporated into the boundary conditions, and the solution is expressed as a Fourier series. The fuselage is described by an algebraic function with four design parameters. The computed surface grids are suitablemore » for a wide range of Computational Fluid Dynamics simulation and configuration optimizations. Both batch and interactive software are discussed for applying the methodology.« less

  18. Effects of Ice Formations on Airplane Performance in Level Cruising Flight

    NASA Technical Reports Server (NTRS)

    Preston, G. Merritt; Blackman, Calvin C.

    1948-01-01

    A flight investigation in natural icing conditions was conducted by the NACA to determine the effect of ice accretion on airplane performance. The maximum loss in propeller efficiency encountered due to ice formation on the propeller blades was 19 percent. During 87 percent of the propeller icing encounters, losses of 10 percent or less were observed. Ice formations on all of the components of the airplane except the propellers during one icing encounter resulted in an increase in parasite drag of the airplane of 81 percent. The control response of the airplane in this condition was marginal.

  19. Tribal Aging Programs: A Basic Guide.

    ERIC Educational Resources Information Center

    National Indian Council on Aging, Albuquerque, NM.

    A national training session for administrators of tribal aging programs held by the National Indian Council on Aging in November 1979 was the basis for the training manual. The seven chapter titles reflect workshop topics with the text of each chapter incorporating material presented in the workshops and examples of model programs on reservations.…

  20. An analysis of the stability of an airplane with free controls

    NASA Technical Reports Server (NTRS)

    Jones, Robert T; Cohen, Doris

    1941-01-01

    Report presents the results of an investigation made of the essentials to the stability of an airplane with free control surfaces. Calculations are based on typical airplane characteristics with certain factors varied to cover a range of current designs. Stability charts are included to show the limiting values of the aerodynamic hinge moments and the weight hinge moments of the control surfaces for various positions of the center of gravity of the airplane and for control systems with various moments of inertia. The effects of reducing the chord and of eliminating the floating tendency of the surface, of changing the wing loading, and of decreasing the radius of gyration of the airplane are also indicated. An investigation has also been made of the nature of the motion of the airplane with controls free and of the modes of instability that may occur.