Science.gov

Sample records for aging durability procedures

  1. 40 CFR Appendix Ix to Part 86 - Experimentally Determining the R-Factor for Bench Aging Durability Procedures

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the R-Factor for Bench Aging Durability Procedures The R-Factor is the catalyst thermal reactivity... several catalysts (minimum of 3 of the same catalyst design) at different control temperatures between the normal operating temperature and the damage limit temperature. Measure emissions (or...

  2. 40 CFR Appendix Ix to Part 86 - Experimentally Determining the R-Factor for Bench Aging Durability Procedures

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the R-Factor for Bench Aging Durability Procedures The R-Factor is the catalyst thermal reactivity... several catalysts (minimum of 3 of the same catalyst design) at different control temperatures between the normal operating temperature and the damage limit temperature. Measure emissions (or...

  3. 40 CFR Appendix Ix to Part 86 - Experimentally Determining the R-Factor for Bench Aging Durability Procedures

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-Factor for Bench Aging Durability Procedures The R-Factor is the catalyst thermal reactivity coefficient... several catalysts (minimum of 3 of the same catalyst design) at different control temperatures between the normal operating temperature and the damage limit temperature. Measure emissions (or...

  4. 40 CFR Appendix Ix to Part 86 - Experimentally Determining the R-Factor for Bench Aging Durability Procedures

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... in § 86.1826-08(d)(4). 3. Plot emissions (or catalyst inefficiency) versus aging time for each.... Plot the natural log (ln) of the slope of each best-fit line (determined in step 4) along the...

  5. 40 CFR Appendix Ix to Part 86 - Experimentally Determining the R-Factor for Bench Aging Durability Procedures

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... in § 86.1826-08(d)(4). 3. Plot emissions (or catalyst inefficiency) versus aging time for each.... Plot the natural log (ln) of the slope of each best-fit line (determined in step 4) along the...

  6. Durability of a novel durable bait for control of subterranean termites (Isoptera: Rhinotermitidae): results of five-year field aging studies.

    PubMed

    Eger, J E; Hamm, R L; Demark, J J; Chin-Heady, E; Tolley, M P; Benson, E P; Zungoli, P A; Smith, M S; Spomer, N A

    2014-06-01

    A durable termite bait containing 0.5% noviflumuron was evaluated for physical durability, retention of active ingredient, consumption by termites, and toxicity to termites over 5 yr in field studies at locations in Indiana, Mississippi, and South Carolina. Plots in Indiana and Mississippi included both natural rainfall and irrigated plots, while plots in South Carolina received only natural rainfall. Samples collected every 3 mo for the first 4 yr were evaluated for consumption with a 7 d no-choice bioassay using Reticulitermes flavipes (Kollar). Consumption and toxicity of 5 yr samples were evaluated in similar bioassays conducted for 42 d. Durable baits received from field sites had some cracking, and a small amount of external flaking, but no major deterioration based on visual observation. There were no significant differences in noviflumuron concentration over the 5-yr period and no trend toward reduced concentrations of noviflumuron over time. Consumption of aged durable baits over 4 yr was variable, but termites usually consumed more aged durable bait than fresh durable bait and the differences were frequently significant. There were some exceptions, but termites consumed significantly more fresh durable bait than aged durable bait in only 4% of observations. When 5 yr samples were evaluated, consumption was lowest for fresh durable bait and termites consumed significantly more aged durable bait from irrigated plots in Indiana and from both natural and irrigated plots in Mississippi than fresh durable bait. Survival of termites fed blank durable bait was significantly higher than that for termites fed any of the baits containing noviflumuron and there were no significant differences in survival among the noviflumuron durable baits. Our results suggest that the bait would be durable for at least 5 yr and possibly longer under most environmental conditions.

  7. 40 CFR 86.1823-08 - Durability demonstration procedures for exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... do not use a catalyst as the principle after-treatment emission control device. This procedure requires installation of the catalyst-plus-oxygen-sensor system on a catalyst aging bench. Aging on the... the bench aging time (BAT) equation. The BAT equation requires, as input, catalyst...

  8. 40 CFR 86.1823-08 - Durability demonstration procedures for exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... do not use a catalyst as the principle after-treatment emission control device. This procedure requires installation of the catalyst-plus-oxygen-sensor system on a catalyst aging bench. Aging on the... the bench aging time (BAT) equation. The BAT equation requires, as input, catalyst...

  9. 40 CFR 86.1823-08 - Durability demonstration procedures for exhaust emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... do not use a catalyst as the principle after-treatment emission control device. This procedure requires installation of the catalyst-plus-oxygen-sensor system on a catalyst aging bench. Aging on the... the bench aging time (BAT) equation. The BAT equation requires, as input, catalyst...

  10. 40 CFR 86.1823-08 - Durability demonstration procedures for exhaust emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... vehicles or vehicles which do not use a catalyst as the principle after-treatment emission control device. This procedure requires installation of the catalyst-plus-oxygen-sensor system on a catalyst aging... time calculated from the bench aging time (BAT) equation. The BAT equation requires, as input,...

  11. 40 CFR 86.1823-08 - Durability demonstration procedures for exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... diesel fueled vehicles or vehicles which do not use a catalyst as the principle after-treatment emission control device. This procedure requires installation of the catalyst-plus-oxygen-sensor system on a catalyst aging bench. Aging on the bench is conducted by following the standard bench cycle (SBC) for...

  12. 40 CFR 86.1823-01 - Durability demonstration procedures for exhaust emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...), bench aging of individual components or systems, or other approaches approved by the Administrator. (A) For whole vehicle mileage accumulation programs, all emission control components and systems... period. (B) Bench procedures shall simulate the aging of components or systems over the applicable...

  13. 40 CFR 86.1823-01 - Durability demonstration procedures for exhaust emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-use driving), bench aging of individual components or systems, or other approaches approved by the Administrator. (A) For whole vehicle mileage accumulation programs, all emission control components and systems... period. (B) Bench procedures shall simulate the aging of components or systems over the applicable...

  14. 40 CFR 86.1823-01 - Durability demonstration procedures for exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-use driving), bench aging of individual components or systems, or other approaches approved by the Administrator. (A) For whole vehicle mileage accumulation programs, all emission control components and systems... period. (B) Bench procedures shall simulate the aging of components or systems over the applicable...

  15. 40 CFR 86.1823-01 - Durability demonstration procedures for exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-use driving), bench aging of individual components or systems, or other approaches approved by the Administrator. (A) For whole vehicle mileage accumulation programs, all emission control components and systems... period. (B) Bench procedures shall simulate the aging of components or systems over the applicable...

  16. 40 CFR 86.1823-01 - Durability demonstration procedures for exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-use driving), bench aging of individual components or systems, or other approaches approved by the Administrator. (A) For whole vehicle mileage accumulation programs, all emission control components and systems... period. (B) Bench procedures shall simulate the aging of components or systems over the applicable...

  17. Durable Medical Equipment for Children With Spinal Cord Dysfunction: Implications of Age and Level of Injury

    PubMed Central

    Nelson, Virginia S

    2007-01-01

    Background: Children with spinal cord dysfunction interact with their environment in different ways than their able-bodied peers. To enable them to participate in typical, age-appropriate activities, they must be provided with various types of equipment. Choosing from available options involves a team approach. Summary: This article discusses general types of durable medical equipment for mobility (wheelchairs, strollers, standers), communication (including augmentative communication devices and computers), self-care, and recreation. Provision of this equipment for these children enhances their ability to learn and to take part in everyday activities and improves their quality of life. PMID:17874704

  18. 40 CFR Appendix I to Subpart V of... - Recommended Test Procedures and Test Criteria and Recommended Durability Procedures To...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... closing temperature shall be measured on an increasing temperature change. C. Carburetor Accelerator Pumps.... Reserved for Camshafts N. Reserved for Pistons O. Oxidizing Catalytic Converters 1. Test Procedures...

  19. 40 CFR Appendix I to Subpart V of... - Recommended Test Procedures and Test Criteria and Recommended Durability Procedures To...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... closing temperature shall be measured on an increasing temperature change. C. Carburetor Accelerator Pumps.... Reserved for Camshafts N. Reserved for Pistons O. Oxidizing Catalytic Converters 1. Test Procedures...

  20. 40 CFR Appendix I to Subpart V of... - Recommended Test Procedures and Test Criteria and Recommended Durability Procedures To...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... closing temperature shall be measured on an increasing temperature change. C. Carburetor Accelerator Pumps.... Reserved for Camshafts N. Reserved for Pistons O. Oxidizing Catalytic Converters 1. Test Procedures...

  1. 40 CFR Appendix I to Subpart V of... - Recommended Test Procedures and Test Criteria and Recommended Durability Procedures To...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... closing temperature shall be measured on an increasing temperature change. C. Carburetor Accelerator Pumps.... Reserved for Camshafts N. Reserved for Pistons O. Oxidizing Catalytic Converters 1. Test Procedures...

  2. 40 CFR Appendix I to Subpart V of... - Recommended Test Procedures and Test Criteria and Recommended Durability Procedures To...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... closing temperature shall be measured on an increasing temperature change. C. Carburetor Accelerator Pumps.... Reserved for Camshafts N. Reserved for Pistons O. Oxidizing Catalytic Converters 1. Test Procedures...

  3. New analysis and design procedures for ensuring gas turbine blades and adhesive bonded joints structural integrity and durability

    NASA Astrophysics Data System (ADS)

    Yen, Hsin-Yi

    Most load-carrying structural systems under severe operating conditions such as gas turbine engines usually demand durability, high reliability, light weight, and high performance. In turn, as it has been reported, a number of structural failures have occurred in aircraft engines during development testing and operational service. In order to prevent failures of turbine engines, the turbine blade vibration must be attenuated to an acceptable level. To achieve this goal, the blade has to be provided with higher damping, either externally or internally. The objective of this study is to explore the feasibility of using a stress dependent magnetomechanical surface coating material for enhancing high damping capacity on turbine blades. The results show that a 2% or 4% of blade thickness free surface magnetomechanical coating layer has a significant contribution to the damping enhancement and the reduction of vibratory stresses at various low and high frequency vibration modes under either non-rotating or rotating conditions. Similar to the blade failure, the structural reliability and safety of the adhesive bonded joint, one of the most commonly used structural joint designs in the aerospace industry, is also a serious concern of the aircraft design community. Adhesive joints easily become weaker due to environmental degradation and/or improper manufacturing procedures. This often reduces structural durability and reliability significantly. This motivates us to develop a new finite element tool/procedure for assessing the interfacial disbonding mechanics of the single-lap joint with various imperfectly-bonded conditions in order to predict the adhesive bonded joint's strength more precisely during its service period. According to these conclusions, a new three-dimensional graphic mesh has been created to display the maximum stress variations under different amounts and sizes of disbonded area. This new procedure can be used as a basis for the development of a bonded

  4. New analysis and design procedures for ensuring gas turbine blades' and adhesive-bonded joints' structural integrity and durability

    NASA Astrophysics Data System (ADS)

    Yen, Hsin-Yi

    Most load-carrying structural systems under severe operating conditions such as gas turbine engines usually demand durability, high reliability, light weight, and high performance. In turn, as it has been reported, a number of structural failures have occurred in aircraft engines during development testing and operational service. In order to prevent failures of turbine engines, the turbine blade vibration must be attenuated to an acceptable level. To achieve this goal, the blade has to be provided with higher damping, either externally or internally. The objective of this study is to explore the feasibility of using a stress dependent magnetomechanical surface coating material for enhancing high damping capacity on turbine blades. The results show that a 2% or 4% of blade thickness free surface magnetomechanical coating layer has a significant contribution to the damping enhancement and the reduction of vibratory stresses at various low and high frequency vibration modes under either non-rotating or rotating conditions. Similar to the blade failure, the structural reliability and safety of the adhesive bonded joint, one of the most commonly used structural joint designs in the aerospace industry, is also a serious concern of the aircraft design community. Adhesive joints easily become weaker due to environmental degradation and/or improper manufacturing procedures. This often reduces structural durability and reliability significantly. This motivates us to develop a new finite element tool/procedure for assessing the interfacial disbonding mechanics of the single-lap joint with various imperfectly-bonded conditions in order to predict the adhesive bonded joint's strength more precisely during its service period. According to these conclusions, a new three-dimensional graphic mesh has been created to display the maximum stress variations under different amounts and sizes of disbonded area. This new procedure can be used as a basis for the development of a bonded

  5. 40 CFR 86.1824-08 - Durability demonstration procedures for evaporative emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... permeability of evaporative and fuel system components. The manufacturer must also provide information... control systems. Manufacturers may base the bench procedure on an evaluation the following potential... manufacturer begins its mileage accumulation. The manufacturer must also provide information acceptable to...

  6. 40 CFR 86.1824-08 - Durability demonstration procedures for evaporative emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... permeability of evaporative and fuel system components. The manufacturer must also provide information... control systems. Manufacturers may base the bench procedure on an evaluation the following potential... manufacturer begins its mileage accumulation. The manufacturer must also provide information acceptable to...

  7. 40 CFR 86.1824-08 - Durability demonstration procedures for evaporative emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... permeability of evaporative and fuel system components. The manufacturer must also provide information... control systems. Manufacturers may base the bench procedure on an evaluation the following potential... manufacturer begins its mileage accumulation. The manufacturer must also provide information acceptable to...

  8. 40 CFR 86.1824-08 - Durability demonstration procedures for evaporative emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... permeability of evaporative and fuel system components. The manufacturer must also provide information... control systems. Manufacturers may base the bench procedure on an evaluation the following potential... manufacturer begins its mileage accumulation. The manufacturer must also provide information acceptable to...

  9. 40 CFR 86.1825-08 - Durability demonstration procedures for refueling emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... evaporative/refueling control systems. Manufacturers may base the bench procedure on an evaluation the... results of the emission data vehicles. The deterioration factor must be based on a linear regression, or an other regression technique approved in advance by the Administrator. The DF will be calculated...

  10. 40 CFR 86.1824-08 - Durability demonstration procedures for evaporative emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... evaporative and fuel system components. The manufacturer must also provide information acceptable to the... control systems. Manufacturers may base the bench procedure on an evaluation the following potential... accumulation. The manufacturer must also provide information acceptable to the Administrator to indicate...

  11. Rapid evaluation of the durability of cortical neural implants using accelerated aging with reactive oxygen species

    NASA Astrophysics Data System (ADS)

    Takmakov, Pavel; Ruda, Kiersten; Phillips, K. Scott; Isayeva, Irada S.; Krauthamer, Victor; Welle, Cristin G.

    2015-04-01

    Objective. A challenge for implementing high bandwidth cortical brain-machine interface devices in patients is the limited functional lifespan of implanted recording electrodes. Development of implant technology currently requires extensive non-clinical testing to demonstrate device performance. However, testing the durability of the implants in vivo is time-consuming and expensive. Validated in vitro methodologies may reduce the need for extensive testing in animal models. Approach. Here we describe an in vitro platform for rapid evaluation of implant stability. We designed a reactive accelerated aging (RAA) protocol that employs elevated temperature and reactive oxygen species (ROS) to create a harsh aging environment. Commercially available microelectrode arrays (MEAs) were placed in a solution of hydrogen peroxide at 87 °C for a period of 7 days. We monitored changes to the implants with scanning electron microscopy and broad spectrum electrochemical impedance spectroscopy (1 Hz-1 MHz) and correlated the physical changes with impedance data to identify markers associated with implant failure. Main results. RAA produced a diverse range of effects on the structural integrity and electrochemical properties of electrodes. Temperature and ROS appeared to have different effects on structural elements, with increased temperature causing insulation loss from the electrode microwires, and ROS concentration correlating with tungsten metal dissolution. All array types experienced impedance declines, consistent with published literature showing chronic (>30 days) declines in array impedance in vivo. Impedance change was greatest at frequencies <10 Hz, and smallest at frequencies 1 kHz and above. Though electrode performance is traditionally characterized by impedance at 1 kHz, our results indicate that an impedance change at 1 kHz is not a reliable predictive marker of implant degradation or failure. Significance. ROS, which are known to be present in vivo, can create

  12. Thermoclastic and cryoclastic action on calcareous building stone: durability to artificial ageing

    NASA Astrophysics Data System (ADS)

    Germinario, Luigi; Andriani, Gioacchino Francesco; Laviano, Rocco

    2014-05-01

    were petrographically characterized through optical microscopy on thin section, followed by a geotechnical parameterization with petrophysical measurements (dry density, total porosity, MIP porosity) and indirect ultrasonic and sclerometric tests. Then, after every 20 ageing cycles, the same tests stated above were carried out; in addition, the measurement of residual strains and SEM observations were performed. With this methodology, the gradual modifications in fabric, petrophysical and mechanical properties of the tested stone were analyzed. The results revealed a high durability of the material to the conditions of ageing experimented. The main modifications of the samples concerned fabric, i.e. microcracking due to thermoclastic and cryoclastic action, which occurred only in limited areas for an uneven distribution of internal stresses. For this reason, no evident effects on the macroscopic integrity and physico-mechanical performance were noted, whereas the stone almost preserved the original strength and elasticity. Finally, the data gathered were used to suggest a method for the evaluation of the vulnerability of "pietra gentile" to freeze-thaw microcracking, based on the peculiar porosimetric distribution and the environmental conditions of weathering. New information are globally provided about a stone material that has been largely used in the Apulian monumental heritage, but has received scarce attention from the archaeometric research so far.

  13. 40 CFR 86.1824-01 - Durability demonstration procedures for evaporative emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... evaporative and fuel system components. The manufacturer must also provide information acceptable to the... aging of individual components or systems, or other approaches approved by the Administrator. (i) For whole vehicle mileage accumulation programs, all emission control components and systems (including...

  14. 40 CFR 86.1824-01 - Durability demonstration procedures for evaporative emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... evaporative and fuel system components. The manufacturer must also provide information acceptable to the... aging of individual components or systems, or other approaches approved by the Administrator. (i) For whole vehicle mileage accumulation programs, all emission control components and systems (including...

  15. 40 CFR 86.1824-01 - Durability demonstration procedures for evaporative emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... evaporative and fuel system components. The manufacturer must also provide information acceptable to the... aging of individual components or systems, or other approaches approved by the Administrator. (i) For whole vehicle mileage accumulation programs, all emission control components and systems (including...

  16. 40 CFR 86.1825-01 - Durability demonstration procedures for refueling emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... systems, or other approaches approved by the Administrator. (i) For whole vehicle mileage accumulation programs, all emission control components and systems (including both hardware and software) must be... aging of components or systems over the applicable useful life and shall simulate driving patterns...

  17. 40 CFR 86.1824-01 - Durability demonstration procedures for evaporative emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... evaporative and fuel system components. The manufacturer must also provide information acceptable to the... aging of individual components or systems, or other approaches approved by the Administrator. (i) For whole vehicle mileage accumulation programs, all emission control components and systems (including...

  18. 40 CFR 86.1825-01 - Durability demonstration procedures for refueling emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... components or systems, or other approaches approved by the Administrator. (i) For whole vehicle mileage accumulation programs, all emission control components and systems (including both hardware and software) must... simulate the aging of components or systems over the applicable useful life and shall simulate...

  19. 40 CFR 86.1825-01 - Durability demonstration procedures for refueling emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... components or systems, or other approaches approved by the Administrator. (i) For whole vehicle mileage accumulation programs, all emission control components and systems (including both hardware and software) must... simulate the aging of components or systems over the applicable useful life and shall simulate...

  20. 40 CFR 86.1824-01 - Durability demonstration procedures for evaporative emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... evaporative and fuel system components. The manufacturer must also provide information acceptable to the... aging of individual components or systems, or other approaches approved by the Administrator. (i) For whole vehicle mileage accumulation programs, all emission control components and systems (including...

  1. 40 CFR 86.1825-01 - Durability demonstration procedures for refueling emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... components or systems, or other approaches approved by the Administrator. (i) For whole vehicle mileage accumulation programs, all emission control components and systems (including both hardware and software) must... simulate the aging of components or systems over the applicable useful life and shall simulate...

  2. 40 CFR 86.1825-01 - Durability demonstration procedures for refueling emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... components or systems, or other approaches approved by the Administrator. (i) For whole vehicle mileage accumulation programs, all emission control components and systems (including both hardware and software) must... simulate the aging of components or systems over the applicable useful life and shall simulate...

  3. School age test or procedure preparation

    MedlinePlus

    ... someone else who is helping with the procedure. Physical contact can help reduce pain and anxiety. Distract your child with books, bubbles, games, hand-held video games, or other activities. PLAY PREPARATION Children often ...

  4. Proton exchange membrane fuel cell model for aging predictions: Simulated equivalent active surface area loss and comparisons with durability tests

    NASA Astrophysics Data System (ADS)

    Robin, C.; Gérard, M.; Quinaud, M.; d'Arbigny, J.; Bultel, Y.

    2016-09-01

    The prediction of Proton Exchange Membrane Fuel Cell (PEMFC) lifetime is one of the major challenges to optimize both material properties and dynamic control of the fuel cell system. In this study, by a multiscale modeling approach, a mechanistic catalyst dissolution model is coupled to a dynamic PEMFC cell model to predict the performance loss of the PEMFC. Results are compared to two 2000-h experimental aging tests. More precisely, an original approach is introduced to estimate the loss of an equivalent active surface area during an aging test. Indeed, when the computed Electrochemical Catalyst Surface Area profile is fitted on the experimental measures from Cyclic Voltammetry, the computed performance loss of the PEMFC is underestimated. To be able to predict the performance loss measured by polarization curves during the aging test, an equivalent active surface area is obtained by a model inversion. This methodology enables to successfully find back the experimental cell voltage decay during time. The model parameters are fitted from the polarization curves so that they include the global degradation. Moreover, the model captures the aging heterogeneities along the surface of the cell observed experimentally. Finally, a second 2000-h durability test in dynamic operating conditions validates the approach.

  5. MARK-AGE standard operating procedures (SOPs): A successful effort.

    PubMed

    Moreno-Villanueva, María; Capri, Miriam; Breusing, Nicolle; Siepelmeyer, Anne; Sevini, Federica; Ghezzo, Alessandro; de Craen, Anton J M; Hervonen, Antti; Hurme, Mikko; Schön, Christiane; Grune, Tilman; Franceschi, Claudio; Bürkle, Alexander

    2015-11-01

    Within the MARK-AGE project, a population study (3337 subjects) was conducted to identify a set of biomarkers of ageing which, as a combination of parameters with appropriate weighting, would measure biological age better than any single marker. The MARK-AGE project involves 14 European countries and a total of 26 research centres. In such a study, standard operating procedures (SOPs) are an essential task, which are binding for all MARK-AGE Beneficiaries. The SOPs cover all aspects of subject's recruitment, collection, shipment and distribution of biological samples (blood and its components, buccal mucosa cells or BMC and urine) as well as the anthropometric measurements and questionnaires.

  6. Modeling the durability of ZOSTAVAX® vaccine efficacy in people ≥60 years of age.

    PubMed

    Li, Xiaoming; Zhang, Jane H; Betts, Robert F; Morrison, Vicki A; Xu, Ruifeng; Itzler, Robbin F; Acosta, Camilo J; Dasbach, Erik J; Pellissier, James M; Johnson, Gary R; Chan, Ivan S F

    2015-03-17

    Since 2006, the vaccine, ZOSTAVAX(®), has been licensed to prevent herpes zoster. Only limited clinical follow-up data are available to evaluate duration of protection, an important consideration when developing HZ vaccination policy recommendations. Four Poisson regression models were developed based on an integrated analysis of data from the Shingles Prevention Study and its Short Term Persistence extension to estimate the effects of years-since-vaccination and chronological-age on vaccine efficacy among people ≥60 years old. The models included number of HZ cases parsed into categories by chronological-age and time-since-vaccination as the dependent variable with different explanatory variables in each model. In all models, the interaction between vaccine-group and chronological-age was statistically significant indicating that vaccine efficacy decreases with the expected effects of advancing age but the interaction between vaccine-group and time-since-vaccination was not statistically significant indicating that much of the reduction in vaccine efficacy over time-since-vaccination can be explained by increasing age.

  7. Improved activity and durability of Rh-based three-way catalyst under diverse aging atmospheres by ZrO2 support.

    PubMed

    Cao, Yidan; Ran, Rui; Wu, Xiaodong; Zhao, Baohuai; Weng, Duan

    2017-02-01

    The catalytic activity and durability of Rh/ZrO2 catalyst were investigated compared with Rh/Al2O3 catalyst under diverse aging atmospheres, including lean, rich and lean-rich cyclic aging atmospheres, to simulate the real working conditions of three-way catalyst. Oxidation states and microstructures of rhodium species were investigated to correlate with the catalytic performance of the catalysts. The catalytic performance and durability of the Rh catalyst under diverse aging atmospheres were drastically enhanced by ZrO2 support. ZrO2 support was confirmed to be able to effectively inhibit rhodium sintering even under diverse aging conditions. It can also successfully keep Rh species in an active low-valence state on the surface of the catalyst. The superiority of ZrO2 support compared to Al2O3 was verified by the Rh-based monolith catalyst.

  8. Predicting the ageing and the long-term durability of organic polymer solar cells

    NASA Astrophysics Data System (ADS)

    Gardette, Jean-Luc; Rivaton, Agnès; Thérias, Sandrine; Chambon, Sylvain; Manceau, Matthieu; Gaume, Julien

    2010-06-01

    Organic solar cells based on conductive polymers exhibit a unique combination of properties which include low cost, flexibility and large surface processability. Organic photovoltaic could then prevail for some applications alongside silicon, such as nomad or indoor. To achieve this objective, the sustainability of the initial properties in conditions of use of the cell is required, since it could be a lock to the emergence of these devices in the market. The polymers used in solar cells are indeed known to exhibit low resistance to environmental constraints, in particular to the combined action of sunlight, oxygen and water. We present recent results on both the accelerated artificial and the natural outdoors ageing of MDMO-PPV (Poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-Phenylenevinylene) and P3HT/PCBM blends poly(3-hexylthiophene) (P3HT) (methano-fullerene[6,6]-phenyl C61-butyric acid methyl ester) ([60] PCBM). The influence of various parameters such as the temperature and the presence of oxygen were studied. The modifications of the chemical structure of both the components of the blend were monitored by spectroscopic analysis (infrared, UV-visible), the morphology of the blends was analysed by AFM and XRD and the photovoltaic performances all along the exposure were recorded. Two important results have been pointed out: on one hand, the Achilles heel of the chemical structure of MDMO-PPV and P3HT under the impact of light has been evidenced. On the other hand, it has been shown that P3HT:PCBM blends are much more stable than MDMO:PCBM blends whatever the conditions of ageing are. Results show that a convenient encapsulation can ensure a promising lifetime of P3HT/PCBM blends in real conditions of use. This work also focuses on this last point and proposes to study and try to understand the behavior of the materials used in the active layer when submitted to photoaging and thermal aging in the absence of oxygen. To fulfil very good encapsulation, glass

  9. Procedural Complexity of the Age Discrimination in Employment Act: An Age-Old Problem.

    ERIC Educational Resources Information Center

    Sheeder, Robert E.

    1980-01-01

    The procedural prerequisites to an Age Discrimination in Employment Act (ADEA) action are examined. The 1978 amendments to the Act as well as the leading decisions involving procedural matters are discussed. Available from The Duquesne Law Review, 901 Rockwell Hall, 600 Forbes Ave., Pittsburgh, PA 15219. (Author/MLF)

  10. Age-related differences in perceptuomotor procedural learning in children.

    PubMed

    Lejeune, Caroline; Catale, Corinne; Schmitz, Xavier; Quertemont, Etienne; Meulemans, Thierry

    2013-10-01

    Procedural learning is generally considered to proceed in a series of phases, with cognitive resources playing an important role during the initial step. From a developmental perspective, little is known about the development of procedural learning or the role played by explicit cognitive processes during learning. The main objectives of this study were (a) to determine whether procedural learning performance improves with age by comparing groups of 7-year-old children, 10-year-old children, and adults and (b) to investigate the role played by executive functions during the acquisition in these three age groups. The 76 participants were assessed on a computerized adaptation of the mirror tracing paradigm. Results revealed that the youngest children had more difficulty in adapting to the task (they were slower and committed more errors at the beginning of the learning process) than 10-year-olds, but despite this age effect observed at the outset, all children improved performance across trials and transferred their skill to a different figure as well as adults. Correlational analyses showed that inhibition abilities play a key role in the performance of 10-year-olds and adults at the beginning of the learning but not in that of 7-year-olds. Overall, our results suggest that the age-related differences observed in our procedural learning task are at least partly due to the differential involvement of inhibition abilities, which may facilitate learning (so long as they are sufficiently developed) during the initial steps of the learning process; however, they would not be a necessary condition for skill learning to occur.

  11. 40 CFR 610.33 - Durability tests.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Durability tests. 610.33 Section 610... RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria § 610.33 Durability tests. The Administrator may determine that a device under evaluation will require durability testing...

  12. 40 CFR 610.33 - Durability tests.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Durability tests. 610.33 Section 610... RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria § 610.33 Durability tests. The Administrator may determine that a device under evaluation will require durability testing...

  13. 40 CFR 610.33 - Durability tests.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Durability tests. 610.33 Section 610... RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria § 610.33 Durability tests. The Administrator may determine that a device under evaluation will require durability testing...

  14. 40 CFR 610.33 - Durability tests.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Durability tests. 610.33 Section 610... RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria § 610.33 Durability tests. The Administrator may determine that a device under evaluation will require durability testing...

  15. WOODSTOVE DURABILITY TESTING PROTOCOL

    EPA Science Inventory

    The report discusses the development of an accelerated laboratory test to simulate in-home woodstove aging and degradation. nown as a stress test, the protocol determines the long-term durability of woodstove models in a 1- to 2-week time frame. wo avenues of research have been t...

  16. A facile reflux procedure to increase active surface sites form highly active and durable supported palladium@platinum bimetallic nanodendrites

    NASA Astrophysics Data System (ADS)

    Wang, Qin; Li, Yingjun; Liu, Baocang; Xu, Guangran; Zhang, Geng; Zhao, Qi; Zhang, Jun

    2015-11-01

    A series of well-dispersed bimetallic Pd@Pt nanodendrites uniformly supported on XC-72 carbon black are fabricated by using different capping agents. These capping agents are essential for the branched morphology control. However, the surfactant adsorbed on the nanodendrites surface blocks the access of reactant molecules to the active surface sites, and the catalytic activities of these bimetallic nanodendrites are significantly restricted. Herein, a facile reflux procedure to effectively remove the capping agent molecules without significantly affecting their sizes is reported for activating supported nanocatalysts. More significantly, the structure and morphology of the nanodendrites can also be retained, enhancing the numbers of active surface sites, catalytic activity and stability toward methanol and ethanol electro-oxidation reactions. The as-obtained hot water reflux-treated Pd@Pt/C catalyst manifests superior catalytic activity and stability both in terms of surface and mass specific activities, as compared to the untreated catalysts and the commercial Pt/C and Pd/C catalysts. We anticipate that this effective and facile removal method has more general applicability to highly active nanocatalysts prepared with various surfactants, and should lead to improvements in environmental protection and energy production.

  17. Duct Tape Durability Testing

    SciTech Connect

    Sherman, Max H.; Walker, Iain S.

    2004-04-01

    Duct leakage is a major source of energy loss in residential buildings. Most duct leakage occurs at the connections to registers, plenums, or branches in the duct system. At each of these connections, a method of sealing the duct system is required. Typical sealing methods include tapes or mastics applied around the joints in the system. Field examinations of duct systems have shown that taped seals tend to fail over extended periods of time. The Lawrence Berkeley National Laboratory (LBNL) has been testing sealant durability for several years using accelerated test methods and found that typical duct tape (i.e., cloth-backed tapes with natural rubber adhesives) fails more rapidly than other duct sealants. This report summarizes the results of duct sealant durability testing over two years for four UL 181B-FX listed duct tapes (two cloth tapes, a foil tape and an Oriented Polypropylene (OPP) tape). One of the cloth tapes was specifically developed in collaboration with a tape manufacturer to perform better in our durability testing. The tests involved the aging of common ''core-to-collar joints'' of flexible duct to sheet metal collars. Periodic air leakage tests and visual inspection were used to document changes in sealant performance. After two years of testing, the flex-to-collar connections showed little change in air leakage, but substantial visual degradation from some products. A surprising experimental result was failure of most of the clamps used to mechanically fasten the connections. This indicates that the durability of clamps also need to be addressed ensure longevity of the duct connection. An accelerated test method developed during this study has been used as the basis for an ASTM standard (E2342-03).

  18. 40 CFR 1065.415 - Durability demonstration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 1065.415 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Engine Selection, Preparation, and Maintenance § 1065.415 Durability.... Perform emission tests to determine deterioration factors consistent with good engineering...

  19. AGEING PROCEDURES ON LITHIUM BATTERIES IN AN INTERNATIONAL COLLABORATION CONTEXT

    SciTech Connect

    Jeffrey R. Belt; Ira Bloom; Mario Conte; Fiorentino Valerio Conte; Kenji Morita; Tomohiko Ikeya; Jens Groot

    2010-11-01

    The widespread introduction of electrically-propelled vehicles is currently part of many political strategies and introduction plans. These new vehicles, ranging from limited (mild) hybrid to plug-in hybrid to fully-battery powered, will rely on a new class of advanced storage batteries, such as those based on lithium, to meet different technical and economical targets. The testing of these batteries to determine the performance and life in the various applications is a time-consuming and costly process that is not yet well developed. There are many examples of parallel testing activities that are poorly coordinated, for example, those in Europe, Japan and the US. These costs and efforts may be better leveraged through international collaboration, such as that possible within the framework of the International Energy Agency. Here, a new effort is under development that will establish standardized, accelerated testing procedures and will allow battery testing organizations to cooperate in the analysis of the resulting data. This paper reviews the present state-of-the-art in accelerated life testing in Europe, Japan and the US. The existing test procedures will be collected, compared and analyzed with the goal of international collaboration.

  20. Facial rejuvenation for middle-aged women: a combined approach with minimally invasive procedures

    PubMed Central

    Goldman, Alberto; Wollina, Uwe

    2010-01-01

    Facial rejuvenation is a significant process involved in restoring youthfulness. The introduction of less invasive procedures has increased acceptance of such procedures. Often a combination of different techniques allows individualized treatment with optimal outcomes. Furthermore, this leads to a natural look without a significant downtime. We report herein the use of such a combined approach in middle-aged women with particular emphasis on botulinum toxin type A, dermal fillers, and chemical peels. PMID:20924438

  1. Durable solar mirror films

    DOEpatents

    O'Neill, Mark B.; Henderson, Andrew J.; Hebrink, Timothy J.; Katare, Rajesh K.; Jing, Naiyong; North, Diane; Peterson, Eric M.

    2017-02-14

    The present disclosure generally relates to durable solar mirror films, methods of making durable solar mirror films, and constructions including durable solar mirror films. In one embodiment, the present disclosure relates to a solar mirror film comprising: a multilayer optical film layer including having a coefficient of hygroscopic expansion of less than about 30 ppm per percent relative humidity; and a reflective layer having a coefficient of hygroscopic expansion.

  2. Age difference in dual-task interference effects on procedural learning in children.

    PubMed

    Lejeune, Caroline; Desmottes, Lise; Catale, Corinne; Meulemans, Thierry

    2015-01-01

    The current study aimed to investigate the role played by explicit mechanisms during procedural learning in two age groups of children (7 and 10 years) using a dual-task paradigm. To do this, we explored the effect of an interference task during the early and late phases of a mirror tracing learning task. The results showed a differential impact of the secondary task on the two age groups, but only during the first learning phase; the performance of 10-year-olds was affected by the second task, whereas in 7-year-olds no performance difference was found between the single- and dual-task conditions. Overall, our study suggests that there are differences in the amount of effortful processing in which 7- and 10-year-olds engage at the beginning of the learning process; procedural learning in young children is mainly implicit, as attested by its lesser sensitivity to an interference task, whereas high-level explicit mechanisms seem to contribute to the procedural performance of 10-year-olds. However, these explicit mechanisms, even if they have an effect on performance, might not have an impact on the learning curve given that no difference in rate of acquisition was found between age groups. These findings are discussed in the light of classical conceptions of procedural learning.

  3. A revised burial dose estimation procedure for optical dating of youngand modern-age sediments

    USGS Publications Warehouse

    Arnold, L.J.; Roberts, R.G.; Galbraith, R.F.; DeLong, S.B.

    2009-01-01

    The presence of genuinely zero-age or near-zero-age grains in modern-age and very young samples poses a problem for many existing burial dose estimation procedures used in optical (optically stimulated luminescence, OSL) dating. This difficulty currently necessitates consideration of relatively simplistic and statistically inferior age models. In this study, we investigate the potential for using modified versions of the statistical age models of Galbraith et??al. [Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., Olley, J.M., 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: Part I, experimental design and statistical models. Archaeometry 41, 339-364.] to provide reliable equivalent dose (De) estimates for young and modern-age samples that display negative, zero or near-zero De estimates. For this purpose, we have revised the original versions of the central and minimum age models, which are based on log-transformed De values, so that they can be applied to un-logged De estimates and their associated absolute standard errors. The suitability of these 'un-logged' age models is tested using a series of known-age fluvial samples deposited within two arroyo systems from the American Southwest. The un-logged age models provide accurate burial doses and final OSL ages for roughly three-quarters of the total number of samples considered in this study. Sensitivity tests reveal that the un-logged versions of the central and minimum age models are capable of producing accurate burial dose estimates for modern-age and very young (<350??yr) fluvial samples that contain (i) more than 20% of well-bleached grains in their De distributions, or (ii) smaller sub-populations of well-bleached grains for which the De values are known with high precision. Our results indicate that the original (log-transformed) versions of the central and minimum age models are still preferable for most routine dating applications

  4. Age and gender disparities in the risk of carotid revascularization procedures.

    PubMed

    Giannopoulos, Sotirios; Katsanos, Aristeidis H; Vasdekis, Spyros N; Boviatsis, Efstathios; Voumvourakis, Konstantinos Iota; Tsivgoulis, Georgios

    2013-10-01

    The potential effect of age and gender stratification in the outcome of patients with carotid artery stenosis undergoing carotid revascularization procedures (CRP) may have important implications in clinical practice. Both European Stroke Organization and American Heart Association guidelines suggest that age and sex should be taken into account when selecting a CRP for an individual patient. We reviewed available literature data through Medline and Embase. Our search was based on the combination of terms: age, gender, sex, carotid artery stenosis, carotid artery stenting (CAS) and carotid endarterectomy (CEA). Postoperative stroke and mortality rates increased with age after any CRP (CEA or CAS), especially in patients aged over 75 years. Older patients with carotid artery stenosis undergoing CAS were found to have a nearly double risk of stroke or death compared with CEA, while CEA was found to benefit more patients aged over 70 years with symptomatic carotid artery stenosis. Male patients with symptomatic or asymptomatic carotid artery stenosis had lower stroke/mortality rates and benefited more from CEA compared with females. For the periprocedural risk of stroke or death in patients with carotid artery stenosis after CAS no sex differences were found. Therefore, CEA appears to have lower perioperative risks than CAS in patients aged over 70 years, and thus should be the treatment of choice if not contraindicated. The periprocedural risk of CEA is lower in men than in women, while there was no effect of gender on the periprocedural risk of CAS.

  5. Durability of an inorganic polymer concrete coating

    NASA Astrophysics Data System (ADS)

    Wasserman, Kenneth

    The objective of the research program reported in this thesis is to evaluate the durability of an inorganic polymer composite coating exposed to freeze/thaw cycling and wet-dry cycling. Freeze/thaw cycling is performed following ASTM D6944-09 Standard Practice for Resistance of Cured Coatings to Thermal Cycling and wet/dry cycling is performed following guidelines set forth in a thesis written by Ronald Garon at Rutgers University. For both sets of experiments, four coating mixture proportions were evaluated. The variables were: silica/alumina ratio, mixing protocol using high shear and normal shear mixing, curing temperatures of 70 and 120 degrees Fahrenheit and use of nano size constituent materials. The mix with highest silica/alumina ratio was designated as Mix 1 and mixes with lower ratios were designated as Mix 2 and Mix 3. Mix 4 had nano silica particles. Four prisms were used for each variable including control that had no coating. The performance of the coating was evaluated using adhesion strength measured using: ASTM D7234 Test Method for Pull-Off Strength of Coatings on Concrete Using Portable Adhesion Testers. Tests were performed after every five consecutive cycles of thermal conditioning and six consecutive cycles of wet-dry exposure. Results from the thermal cycling and wet-dry testing demonstrate that all coating formulations are durable. The minimum adhesion strength was 300 psi even though a relatively weak base concrete surface was chosen for the study. The weak surface was chosen to simulate aged concrete surfaces present in actual field conditions. Due to the inherent nature of the test procedure the variation in test results is high. However, based on the test results, high shear mixer and high temperature curing are not recommended. As expected nano size constituent materials provide better performance.

  6. Age-related changes in the cerebral substrates of cognitive procedural learning.

    PubMed

    Hubert, Valérie; Beaunieux, Hélène; Chételat, Gaël; Platel, Hervé; Landeau, Brigitte; Viader, Fausto; Desgranges, Béatrice; Eustache, Francis

    2009-04-01

    Cognitive procedural learning occurs in three qualitatively different phases (cognitive, associative, and autonomous). At the beginning of this process, numerous cognitive functions are involved, subtended by distinct brain structures such as the prefrontal and parietal cortex and the cerebellum. As the learning progresses, these cognitive components are gradually replaced by psychomotor abilities, reflected by the increasing involvement of the cerebellum, thalamus, and occipital regions. In elderly subjects, although cognitive studies have revealed a learning effect, performance levels differ during the acquisition of a procedure. The effects of age on the learning of a cognitive procedure have not yet been examined using functional imaging. The aim of this study was therefore to characterize the cerebral substrates involved in the learning of a cognitive procedure, comparing a group of older subjects with young controls. For this purpose, we performed a positron emission tomography activation study using the Tower of Toronto task. A direct comparison of the two groups revealed the involvement of a similar network of brain regions at the beginning of learning (cognitive phase). However, the engagement of frontal and cingulate regions persisted in the older group as learning continued, whereas it ceased in the younger controls. We assume that this additional activation in the older group during the associative and autonomous phases reflected compensatory processes and the fact that some older subjects failed to fully automate the procedure.

  7. Motor Skills Enhance Procedural Memory Formation and Protect against Age-Related Decline

    PubMed Central

    Müller, Nils C. J.; Genzel, Lisa; Konrad, Boris N.; Pawlowski, Marcel; Neville, David; Fernández, Guillén; Steiger, Axel

    2016-01-01

    The ability to consolidate procedural memories declines with increasing age. Prior knowledge enhances learning and memory consolidation of novel but related information in various domains. Here, we present evidence that prior motor experience–in our case piano skills–increases procedural learning and has a protective effect against age-related decline for the consolidation of novel but related manual movements. In our main experiment, we tested 128 participants with a sequential finger-tapping motor task during two sessions 24 hours apart. We observed enhanced online learning speed and offline memory consolidation for piano players. Enhanced memory consolidation was driven by a strong effect in older participants, whereas younger participants did not benefit significantly from prior piano experience. In a follow up independent control experiment, this compensatory effect of piano experience was not visible after a brief offline period of 30 minutes, hence requiring an extended consolidation window potentially involving sleep. Through a further control experiment, we rejected the possibility that the decreased effect in younger participants was caused by training saturation. We discuss our results in the context of the neurobiological schema approach and suggest that prior experience has the potential to rescue memory consolidation from age-related cognitive decline. PMID:27333186

  8. Photovoltaic module performance and durability following long-term field exposure

    SciTech Connect

    Ellibee, D.E.; Hansen, B.R.; King, D.L.; Kratochvil, J.A.; Quintana, M.A.

    1998-09-08

    Our investigations of both new and field-aged photovoltaic modules have indicated that, in general, today's commercially available modules area highly reliable product. However, by using new test procedures, subtle failure mechanisms have also been identified that must be addressed in order to achieve 30-year module lifetimes. This paper summarizes diagnostic test procedures, results, and implications of in-depth investigations of the performance and durability characteristics of commercial modules after long-term field exposure. A collaborative effort with U.S. module manufacturers aimed at achieving 30-year module lifetimes is also described.

  9. Durable recovery of the macular architecture and functionality of a diagnosed age-related macular degeneration 1 year after a single intravitreal injection of dobesilate.

    PubMed

    Cuevas, P; Outeiriño, L A; Azanza, C; Giménez-Gallego, G

    2013-11-13

    Among the age-related diseases that affect vision, age-related macular degeneration is the most frequent cause of blindness in patients older than 60 years. In this communication, we report the full anatomical and functional recovery of a patient diagnosed with wet age-related macular degeneration 1 year after a single intravitreal injection of dobesilate.

  10. Durable recovery of the macular architecture and functionality of a diagnosed age-related macular degeneration 1 year after a single intravitreal injection of dobesilate

    PubMed Central

    Cuevas, P; Outeiriño, L A; Azanza, C; Giménez-Gallego, G

    2013-01-01

    Among the age-related diseases that affect vision, age-related macular degeneration is the most frequent cause of blindness in patients older than 60 years. In this communication, we report the full anatomical and functional recovery of a patient diagnosed with wet age-related macular degeneration 1 year after a single intravitreal injection of dobesilate. PMID:24225910

  11. Facile preparation of super durable superhydrophobic materials.

    PubMed

    Wu, Lei; Zhang, Junping; Li, Bucheng; Fan, Ling; Li, Lingxiao; Wang, Aiqin

    2014-10-15

    The low stability, complicated and expensive fabrication procedures seriously hinder practical applications of superhydrophobic materials. Here we report an extremely simple method for preparing super durable superhydrophobic materials, e.g., textiles and sponges, by dip coating in fluoropolymers (FPs). The morphology, surface chemical composition, mechanical, chemical and environmental stabilities of the superhydrophobic textiles were investigated. The results show how simple the preparation of super durable superhydrophobic textiles can be! The superhydrophobic textiles outperform their natural counterparts and most of the state-of-the-art synthetic superhydrophobic materials in stability. The intensive mechanical abrasion, long time immersion in various liquids and repeated washing have no obvious influence on the superhydrophobicity. Water drops are spherical in shape on the samples and could easily roll off after these harsh stability tests. In addition, this simple dip coating approach is applicable to various synthetic and natural textiles and can be easily scaled up. Furthermore, the results prove that a two-tier roughness is helpful but not essential with regard to the creation of super durable superhydrophobic textiles. The combination of microscale roughness of textiles and materials with very low surface tension is enough to form super durable superhydrophobic textiles. According to the same procedure, superhydrophobic polyurethane sponges can be prepared, which show high oil absorbency, oil/water separation efficiency and stability.

  12. Durable metallized polymer mirror

    DOEpatents

    Schissel, Paul O.; Kennedy, Cheryl E.; Jorgensen, Gary J.; Shinton, Yvonne D.; Goggin, Rita M.

    1994-01-01

    A metallized polymer mirror construction having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate.

  13. Durable metallized polymer mirror

    DOEpatents

    Schissel, P.O.; Kennedy, C.E.; Jorgensen, G.J.; Shinton, Y.D.; Goggin, R.M.

    1994-11-01

    A metallized polymer mirror construction is disclosed having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate. 6 figs.

  14. Durability of oxygen sensors

    NASA Astrophysics Data System (ADS)

    Snapp, L.

    1985-03-01

    This report describes the results of dynamometer and vehicle durability testing from a variety of sources, as well as common causes of failure for oxygen sensors. The data indicates that oxygen sensors show low failure rates, even at mileages of 80,000 miles and beyond.

  15. The Successful Aging after Elective Surgery (SAGES) Study: Cohort Description and Data Quality Procedures

    PubMed Central

    Jones, Richard N.; Alsop, David C.; Fong, Tamara G.; Metzger, Eran; Cooper, Zara

    2015-01-01

    Background/Objectives Delirium is the most common complication of major elective surgery in older patients. The Successful Aging after Elective Surgery (SAGES) study was designed to examine novel risk factors and long-term outcomes associated with delirium. This report describes the cohort, quality assurance procedures, and results. Design Long-term prospective cohort study. Setting Three academic medical centers. Participants A total of 566 patients age 70 and older without recognized dementia scheduled for elective major surgery. Measurements Participants were assessed preoperatively, daily during hospitalization, and at variable monthly intervals for up to 36 months post-discharge. Delirium was assessed in hospital by trained study staff. Study outcomes included cognitive and physical function. Novel risk factors for delirium were assessed including genetic and plasma biomarkers, neuroimaging markers, and cognitive reserve markers. Interrater reliability (kappa and weighted kappa) was assessed for key variables in 119 of the patient interviews. Results Participants were an average of 77 years old and 58% were female. The majority of patients (81%) were undergoing orthopedic surgery and 24% developed delirium post-operatively. Over 95% of eligible patients were followed for 18 months. There was >99% capture of key study outcomes (cognitive and functional status) at every study interview and interrater reliability was high (weighted kappas for delirium = 0.92 and for overall cognitive and functional outcomes = 0.94 -1.0). Completion rates for plasma biomarkers (4 timepoints) were 95%-99% and for neuroimaging (one year follow-up) was 86%. Conclusion The SAGES study will contribute to the understanding of novel risk factors, pathophysiology and long-term outcomes of delirium. This manuscript describes the cohort and data quality procedures, and will serve as a reference source for future studies based on SAGES. PMID:26662213

  16. Investigating the Structure of the WJ-III Cognitive in Early School Age through Two Exploratory Bifactor Analysis Procedures

    ERIC Educational Resources Information Center

    Dombrowski, Stefan C.

    2014-01-01

    Two exploratory bifactor methods (e.g., Schmid-Leiman [SL] and exploratory bifactor analysis [EBFA]) were used to investigate the structure of the Woodcock-Johnson III (WJ-III) Cognitive in early school age (age 6-8). The SL procedure is recognized by factor analysts as a preferred method for EBFA. Jennrich and Bentler recently developed an…

  17. Combustor liner durability analysis

    NASA Technical Reports Server (NTRS)

    Moreno, V.

    1981-01-01

    An 18 month combustor liner durability analysis program was conducted to evaluate the use of advanced three dimensional transient heat transfer and nonlinear stress-strain analyses for modeling the cyclic thermomechanical response of a simulated combustor liner specimen. Cyclic life prediction technology for creep/fatigue interaction is evaluated for a variety of state-of-the-art tools for crack initiation and propagation. The sensitivity of the initiation models to a change in the operating conditions is also assessed.

  18. Durability of Waste Glass Flax Fiber Reinforced Mortar

    NASA Astrophysics Data System (ADS)

    Aly, M.; Hashmi, M. S. J.; Olabi, A. G.; Messeiry, M.

    2011-01-01

    The main concern for natural fibre reinforced mortar composites is the durability of the fibres in the alkaline environment of cement. The composites may undergo a reduction in strength as a result of weakening of the fibres by a combination of alkali attack and fibre mineralisation. In order to enhance the durability of natural fiber reinforced cement composites several approaches have been studied including fiber impregnation, sealing of the matrix pore system and reduction of matrix alkalinity through the use of pozzolanic materials. In this study waste glass powder was used as a pozzolanic additive to improve the durability performance of flax fiber reinforced mortar (FFRM). The durability of the FFRM was studied by determining the effects of ageing in water and exposure to wetting and drying cycles; on the microstructures and flexural behaviour of the composites. The mortar tests demonstrated that the waste glass powder has significant effect on improving the durability of FFRM.

  19. Durability of waste glass flax fiber reinforced mortar

    SciTech Connect

    Aly, M.; Hashmi, M. S. J.; Olabi, A. G.; Messeiry, M.

    2011-01-17

    The main concern for natural fibre reinforced mortar composites is the durability of the fibres in the alkaline environment of cement. The composites may undergo a reduction in strength as a result of weakening of the fibres by a combination of alkali attack and fibre mineralisation. In order to enhance the durability of natural fiber reinforced cement composites several approaches have been studied including fiber impregnation, sealing of the matrix pore system and reduction of matrix alkalinity through the use of pozzolanic materials. In this study waste glass powder was used as a pozzolanic additive to improve the durability performance of flax fiber reinforced mortar (FFRM). The durability of the FFRM was studied by determining the effects of ageing in water and exposure to wetting and drying cycles; on the microstructures and flexural behaviour of the composites. The mortar tests demonstrated that the waste glass powder has significant effect on improving the durability of FFRM.

  20. (Durability of building materials and components)

    SciTech Connect

    Naus, D.J.

    1990-11-27

    The traveler participated in the fourth meeting of RILEM 100-TSL, Techniques for Service Life Prediction,'' and The Fifth International Conference on Durability of Building Materials and Components.'' In addition, the traveler met with staff members at Taywood Engineering Ltd., Electricite de France, and AEA Technology. The meeting pertained to performance of concrete materials in nuclear power plant structures, time variation of concrete material properties, methods for evaluating concrete structures, and modeling to predict the effects of degradation factors on concrete materials. As many of the concrete structures in general civil engineering applications as well as nuclear power plant applications in Europe are aging, there is increasing emphasis on assessing the durability of these structures. Information was provided of direct application to the Structural Aging Program which would not have been available without these visits. Of equal, or possibly more importance, was the individual contacts established at the organizations visited. Each organization was extremely interested in both the approach and scope of the Structural Aging Program and requested that they be informed of progress. The initial steps were taken to cooperate with several of these researchers and this should help the Structural Aging Program keep abreast of related European activities. In summary, information obtained during this trip will benefit the ongoing Structural Aging Program by informing Oak Ridge National Laboratory (ORNL) of the extensive European research programs addressing the durability of concrete structures, and also by forming and strengthening acquaintances with counterparts in other countries, thus enhancing the basis for possible international cooperation.

  1. DURABLE GLASS FOR THOUSANDS OF YEARS

    SciTech Connect

    Jantzen, C.

    2009-12-04

    The durability of natural glasses on geological time scales and ancient glasses for thousands of years is well documented. The necessity to predict the durability of high level nuclear waste (HLW) glasses on extended time scales has led to various thermodynamic and kinetic approaches. Advances in the measurement of medium range order (MRO) in glasses has led to the understanding that the molecular structure of a glass, and thus the glass composition, controls the glass durability by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. During the early stages of glass dissolution, a 'gel' layer resembling a membrane forms through which ions exchange between the glass and the leachant. The hydrated gel layer exhibits acid/base properties which are manifested as the pH dependence of the thickness and nature of the gel layer. The gel layer ages into clay or zeolite minerals by Ostwald ripening. Zeolite mineral assemblages (higher pH and Al{sup 3+} rich glasses) may cause the dissolution rate to increase which is undesirable for long-term performance of glass in the environment. Thermodynamic and structural approaches to the prediction of glass durability are compared versus Ostwald ripening.

  2. Low Cost, Durable Seal

    SciTech Connect

    Roberts, George; Parsons, Jason; Friedman, Jake

    2010-12-17

    Seal durability is critical to achieving the 2010 DOE operational life goals for both stationary and transportation PEM fuel cell stacks. The seal material must be chemically and mechanically stable in an environment consisting of aggressive operating temperatures, humidified gases, and acidic membranes. The seal must also be producible at low cost. Currentlyused seal materials do not meet all these requirements. This project developed and demonstrated a high consistency hydrocarbon rubber seal material that was able to meet the DOE technical and cost targets. Significant emphasis was placed on characterization of the material and full scale molding demonstrations.

  3. Effect of a water-maze procedure on the redox mechanisms in brain parts of aged rats

    PubMed Central

    Krivova, Natalia A.; Zaeva, Olga B.; Grigorieva, Valery A.

    2015-01-01

    The Morris water maze (MWM) is a tool for assessment of age-related modulations spatial learning and memory in laboratory rats. In our work was investigated the age-related decline of MWM performance in 11-month-old rats and the effect exerted by training in the MWM on the redox mechanisms in rat brain parts. Young adult (3-month-old) and aged (11-month-old) male rats were trained in the MWM. Intact animals of the corresponding age were used as the reference groups. The level of pro- and antioxidant capacity in brain tissue homogenates was assessed using the chemiluminescence method. A reduced performance in the MWM test was found in 11-month-old rats: at the first day of training they showed only 30% of successful MWM trials. However, at the last training day the percentage of successful trials was equal for young adult and aged animals. This indicates that the aged 11-month-old rats can successfully learn in MWM. Therewith, the MWM spatial learning procedure itself produces changes in different processes of redox homeostasis in 11-month-old and 3-month-old rats as compared to intact animals. Young adult rats showed a decrease in prooxidant capacity in all brain parts, while 11-month-old rats demonstrated an increase in antioxidant capacity in the olfactory bulb, pons + medulla oblongata and frontal lobe cortex. Hence, the MWM procedure activates the mechanisms that restrict the oxidative stress in brain parts. The obtained results may be an argument for further development of the animal training procedures aimed to activate the mechanisms that can prevent the age-related deterioration of performance in the learning test. This may be useful not only for the development of training procedures applicable to human patients with age-related cognitive impairments, but also for their rehabilitation. PMID:25814952

  4. Urban Decline and Durable Housing.

    ERIC Educational Resources Information Center

    Glaeser, Edward L.; Gyourko, Joseph

    2005-01-01

    Urban decline is not the mirror image of growth, and durable housing is the primary reason the nature of decline is so different. This paper presents a model of urban decline with durable housing and verifies these implications of the model: (1) city growth rates are skewed so that cities grow more quickly than they decline; (2) urban decline is…

  5. Evaluation and improvement of frost durability of clay bricks

    NASA Astrophysics Data System (ADS)

    Koroth, Surej Raghavan

    In cold regions like Canada, frost action was reported to be the major cause of disintegration of brick veneer. Two approaches to ensure frost durability of clay bricks were studied in this research. One involved the evaluation of durability, while the other studied the improvement of durability through impregnation. In order to carry out these studies, three major objectives were set out for this research. They were: (1) to develop an index to evaluate frost durability, (2) to investigate the feasibility of using nondestructive methods to evaluate durability, and (3) to study the effect of impregnation with different materials on improving durability. It was intended in this research to develop a general durability index for clay bricks, irrespective of the manufacturing process adopted. The performance of the brick was studied using laboratory freeze-thaw test. As the time and facility requirements necessary for the unidirectional freezing test were beyond the constraints which existed in this research, an accelerated omnidirectional freeze-thaw test was used. This fact must be considered while interpreting the results from the freeze-thaw test. The study carried out to compare the performance of existing durability indices showed that they had limitations in reliably assessing durability. Therefore new durability indices were developed based on water absorption properties of bricks. These indices were found to overcome the limitations of existing indices. The feasibility study on nondestructive evaluation of durability was carried out using ultrasonic pulse velocity. New durability provisions were derived based on pulse velocity, using ASTM C216 specifications. At this stage it can be used only along with the ASTM method but it can avoid the time consuming ASTM procedure in many cases. Studies on impregnated bricks showed that there was a general shifting of pore sizes towards lower diameter region. Paraffin impregnated brick showed excellent freeze

  6. The Cu, Mn and Zn concentration of sheep wool: influence of washing procedures, age and colour of matrix.

    PubMed

    Hawkins, D P; Ragnarsdóttir, K V

    2009-06-15

    No standard or wholly proven method to determine the trace metal status of human or animal 'hair' yet exists. It is well known that hair-metal concentrations are highly influenced by washing procedures applied before analysis. A novel method to determine the efficiency of washing procedures at removing exogenous contaminants was devised. It was shown that suitability of washing procedures was element-specific and increased sonication time during washing progressively removed more Mn and Zn from sheep wool. The efficiency of exogenous contaminant removal by including sonication during washing was also dependent on the efficiency of procedures under study. The Cu, Mn and Zn concentration, and thus exogenous contaminant level, of sheep wool increased in tandem with its age. Additionally, Cu and Zn concentrations of black wool were significantly higher than white wool: a relationship ascribed to melanins. This investigation shows the necessity to standardise procedures used during analysis of 'hair' fibres, and to assess each washing procedure for each element before performing routine analysis.

  7. Designing durable icephobic surfaces

    PubMed Central

    Golovin, Kevin; Kobaku, Sai P. R.; Lee, Duck Hyun; DiLoreto, Edward T.; Mabry, Joseph M.; Tuteja, Anish

    2016-01-01

    Ice accretion has a negative impact on critical infrastructure, as well as a range of commercial and residential activities. Icephobic surfaces are defined by an ice adhesion strength τice < 100 kPa. However, the passive removal of ice requires much lower values of τice, such as on airplane wings or power lines (τice < 20 kPa). Such low τice values are scarcely reported, and robust coatings that maintain these low values have not been reported previously. We show that, irrespective of material chemistry, by tailoring the cross-link density of different elastomeric coatings and by enabling interfacial slippage, it is possible to systematically design coatings with extremely low ice adhesion (τice < 0.2 kPa). These newfound mechanisms allow for the rational design of icephobic coatings with virtually any desired ice adhesion strength. By using these mechanisms, we fabricate extremely durable coatings that maintain τice < 10 kPa after severe mechanical abrasion, acid/base exposure, 100 icing/deicing cycles, thermal cycling, accelerated corrosion, and exposure to Michigan wintery conditions over several months. PMID:26998520

  8. Designing durable icephobic surfaces.

    PubMed

    Golovin, Kevin; Kobaku, Sai P R; Lee, Duck Hyun; DiLoreto, Edward T; Mabry, Joseph M; Tuteja, Anish

    2016-03-01

    Ice accretion has a negative impact on critical infrastructure, as well as a range of commercial and residential activities. Icephobic surfaces are defined by an ice adhesion strength τice < 100 kPa. However, the passive removal of ice requires much lower values of τice, such as on airplane wings or power lines (τice < 20 kPa). Such low τice values are scarcely reported, and robust coatings that maintain these low values have not been reported previously. We show that, irrespective of material chemistry, by tailoring the cross-link density of different elastomeric coatings and by enabling interfacial slippage, it is possible to systematically design coatings with extremely low ice adhesion (τice < 0.2 kPa). These newfound mechanisms allow for the rational design of icephobic coatings with virtually any desired ice adhesion strength. By using these mechanisms, we fabricate extremely durable coatings that maintain τice < 10 kPa after severe mechanical abrasion, acid/base exposure, 100 icing/deicing cycles, thermal cycling, accelerated corrosion, and exposure to Michigan wintery conditions over several months.

  9. Effects of aging procedures on the molecular, biochemical, morphological, and mechanical properties of vacuum-formed retainers.

    PubMed

    Ahn, Hyo-Won; Ha, Hye-Ryun; Lim, Ho-Nam; Choi, Samjin

    2015-11-01

    The influence of intraoral exposure procedures on the physical characteristics of thermoplastic vacuum-formed retainers (VFRs) is still unclear. The effects of thermoforming and intraoral use on the molecular, chemical, morphological, and mechanical properties of thermoplastic VFRs were investigated. VFRs with a 0.8-mm-thick thermoplastic PETG sheet acquired from 48 patients were investigated with two aging procedures, including vacuum forming and intraoral exposure, for 2-week and 6-month. Eight evaluating sites for thermoplastic VFRs were assessed with seven analytical techniques. LM, SEM, and AFM microscopic findings showed that the surface characteristics increased with increasing in vivo exposure time (a four-fold increase) and varied depending on the sites evaluated (an occlusal surface). Raman and EDX spectroscopic findings showed that aging procedures led to a significant change in the molecular composition of VFRs, leading to a decrease in the composition rate of carbon (C) and the presence of silicon (Si), phosphorus (P), and calcium (Ca). Compressive strength and tensile tests showed that aging procedures led to a significant increase (P<0.01) in ultimate tensile strength, elastic modulus, the stored energy at a 6-mm deflection (u6 mm), and the compressed load at a 3-mm deflection (σ3 mm). Thermoforming led to a smoother surface and no crystallization of PETG sheets. Intraoral exposure accelerated changes in surface morphology, tensile strength, and elastic modulus of VFRs. This change was site-specific and enhanced with an increase in intraoral exposure time. Therefore, thermoforming and in vivo oral exposure procedures led to the molecular, morphological, and mechanical properties of thermoplastic VFRs.

  10. Durability Evaluation of Superconducting Magnets

    NASA Astrophysics Data System (ADS)

    Inoue, Akihiko; Ogata, Masafumi; Nakauchi, Masahiko; Asahara, Tetsuo; Herai, Toshiki; Nishikawa, Yoichi

    2006-06-01

    It is one of the most essential things to verify the durability of devices and components of JR-Maglev system to realize the system into the future inauguration. Since the load requirements were insufficient in terms of the durability under vibrations under mere running tests carried out on Yamanashi Maglev Test Line hereinafter referred to YMTL, we have developed supplemental method with bench tests. Superconducting magnets hereinafter referred to SCM as used in the experimental running for the last seven years on the YMTL were brought to Kunitachi Technical Research Institute; we conducted tests to evaluate the durability of SCM up to a period of the service life in commercial use. The test results have indicated that no irregularity in each part of SCM proving that SCM are sufficiently durable for the practical application.

  11. Intermediate Ethanol Blends Catalyst Durability Program

    SciTech Connect

    West, Brian H; Sluder, Scott; Knoll, Keith; Orban, John; Feng, Jingyu

    2012-02-01

    In the summer of 2007, the U.S. Department of Energy (DOE) initiated a test program to evaluate the potential impacts of intermediate ethanol blends (also known as mid-level blends) on legacy vehicles and other engines. The purpose of the test program was to develop information important to assessing the viability of using intermediate blends as a contributor to meeting national goals for the use of renewable fuels. Through a wide range of experimental activities, DOE is evaluating the effects of E15 and E20 - gasoline blended with 15% and 20% ethanol - on tailpipe and evaporative emissions, catalyst and engine durability, vehicle driveability, engine operability, and vehicle and engine materials. This report provides the results of the catalyst durability study, a substantial part of the overall test program. Results from additional projects will be reported separately. The principal purpose of the catalyst durability study was to investigate the effects of adding up to 20% ethanol to gasoline on the durability of catalysts and other aspects of the emissions control systems of vehicles. Section 1 provides further information about the purpose and context of the study. Section 2 describes the experimental approach for the test program, including vehicle selection, aging and emissions test cycle, fuel selection, and data handling and analysis. Section 3 summarizes the effects of the ethanol blends on emissions and fuel economy of the test vehicles. Section 4 summarizes notable unscheduled maintenance and testing issues experienced during the program. The appendixes provide additional detail about the statistical models used in the analysis, detailed statistical analyses, and detailed vehicle specifications.

  12. Durability of Expedient Repair Materials

    DTIC Science & Technology

    1993-03-01

    by the Flofida Department of Transportation. I&. SUWIUET" TERMS 󈧓. NUMBER OF 1A1ES Expedient Repair Materials 21PAGE Shotcrete Air Force Base...produced by CTS Cemem Company. A dry process shotcrete standard, MicrosilR, and a State of Florida corrosion - resistant concrete system, referred to as...34 durability of the rapid repair materials tested by conventional methods for determining durability. E. CONCLUSIONS The blended Rapid-SetR shotcrete system

  13. Background Interference Procedure: A Means of Assessing Neurologic Dysfunction in School-Age Children

    ERIC Educational Resources Information Center

    Kenny, Thomas J.

    1971-01-01

    The Bender Gestalt test incorporating the Background Interference Procedure was administered to three groups of children. The BIP yielded significantly higher scores for the brain damaged group, while the scores of the controls and emotionally disturbed children did not differ. (Author)

  14. Hearing Screening Procedures for Infants and Toddlers, Early Childhood & School Age Children.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Health, St. Paul.

    This manual describes the screening procedures used to identify infants and children in need of further diagnosis and treatment for hearing loss in Minnesota. It is intended for use by Community Health Service agencies, school health programs, Head Start agencies, and voluntary agencies, and should be used as a post-training reference. Newborn…

  15. Effect of thermal and irradiation aging simulation procedures on polymer properties

    SciTech Connect

    Bustard, L.D.; Minor, E.; Chenion, J.; Carlin, F.; Alba, C.; Gaussens, G.; LeMeur, M.

    1984-04-01

    Prior to initiating a qualification test on safety-related equipment, the testing sequence for thermal and irradiation aging exposures must be chosen. Likewise, the temperature during irradiation must be selected. Typically, U.S. qualification efforts employ ambient temperature irradiation, while French qualification efforts employ 70/sup 0/C irradiations. For several polymer materials, the influence of the thermal and irradiation aging sequence, as well as the irradiation temperature (ambient versus 70/sup 0/C), has been investigated in preparation for Loss-of-Coolant Accident simulated tests. Ultimate tensile properties at completion of aging are presented for three XLPO and XLPE, five EPR and EPDM, two CSPE (HYPALON), one CPE, one VAMAC, one polydiallylphtalate, and one PPS material. Bend test results at completion of aging are presented for two TEFZEL materials. Permanent set after compression results are presented for three EPR, one VAMAC, one BUNA N, one Silicone, and one Viton material.

  16. Contrast medium administration in the elderly patient: is advancing age an independent risk factor for contrast nephropathy after angiographic procedures?

    PubMed

    Detrenis, Simona; Meschi, Michele; Bertolini, Laura; Savazzi, Giorgio

    2007-02-01

    Contrast medium-induced nephropathy (CMIN) is the third leading cause of hospital-acquired acute renal dysfunction. Even if the number of patients over 75 years of age undergoing diagnostic and/or interventional procedures and requiring administration of contrast medium (CM) is growing constantly, at present there is no definitive consensus regarding the role of advancing age and related morphologic or functional renal changes as an independent risk factor for CMIN. The authors review the evidence from recent medical literature on the definition, pathophysiology, and clinical presentation of CMIN as well as therapeutic approaches to its prophylaxis. Attention is focused on advancing age as a preexisting physiologic condition that is, per se, able to predispose the patient to CM-induced renal impairment, assuming that every elderly patient is potentially at risk for CMIN.

  17. Simulator Sickness During Emergency Procedures Training in a Helicopter Simulator: Age, Flight Experience, and Amount Learned

    DTIC Science & Technology

    2007-09-01

    drivers are more susceptible than male drivers" (Hein, p. 610). Age. Walt Disney World’s "Mission: Space" thrill ride left some older riders gulping...since those with more flight hrs naturally tend to fall into older age groups. (McGuinness et al., 1981, p. 25) 3. The SS symptoms reported by the...symptomatology and are useful for determining the pattern of discomfort produced by a given simulator. All scores have as their lowest level a natural zero (no

  18. 40 CFR Appendix Viii to Part 86 - Aging Bench Equipment and Procedures

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... injection at the inlet face of the catalyst. a. The EPA standard aging bench consists of an engine, engine... dynamometer, or a burner that provides the correct exhaust conditions), as long as the catalyst inlet... appendix. If the bench has more than one exhaust stream, multiple catalyst systems may be...

  19. 40 CFR Appendix Viii to Part 86 - Aging Bench Equipment and Procedures

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... injection at the inlet face of the catalyst. a. The EPA standard aging bench consists of an engine, engine... dynamometer, or a burner that provides the correct exhaust conditions), as long as the catalyst inlet... appendix. If the bench has more than one exhaust stream, multiple catalyst systems may be...

  20. 40 CFR Appendix Viii to Part 86 - Aging Bench Equipment and Procedures

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... injection at the inlet face of the catalyst. a. The EPA standard aging bench consists of an engine, engine... dynamometer, or a burner that provides the correct exhaust conditions), as long as the catalyst inlet... appendix. If the bench has more than one exhaust stream, multiple catalyst systems may be...

  1. 40 CFR Appendix Viii to Part 86 - Aging Bench Equipment and Procedures

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... injection at the inlet face of the catalyst. a. The EPA standard aging bench consists of an engine, engine... dynamometer, or a burner that provides the correct exhaust conditions), as long as the catalyst inlet... appendix. If the bench has more than one exhaust stream, multiple catalyst systems may be...

  2. 40 CFR Appendix Viii to Part 86 - Aging Bench Equipment and Procedures

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... injection at the inlet face of the catalyst. a. The EPA standard aging bench consists of an engine, engine... dynamometer, or a burner that provides the correct exhaust conditions), as long as the catalyst inlet... appendix. If the bench has more than one exhaust stream, multiple catalyst systems may be...

  3. Society for Vascular Surgery (SVS) Vascular Registry evaluation of comparative effectiveness of carotid revascularization procedures stratified by Medicare age

    PubMed Central

    Jim, Jeffrey; Rubin, Brian G.; Ricotta, Joseph J.; Kenwood, Christopher T.; Siami, Flora S.; Sicard, Gregorio A.

    2017-01-01

    Objective Recent randomized controlled trials have shown that age significantly affects the outcome of carotid revascularization procedures. This study used data from the Society for Vascular Surgery Vascular Registry (VR) to report the influence of age on the comparative effectiveness of carotid endarterectomy (CEA) and carotid artery stenting (CAS). Methods VR collects provider-reported data on patients using a Web-based database. Patients were stratified by age and symptoms. The primary end point was the composite outcome of death, stroke, or myocardial infarction (MI) at 30 days. Results As of December 7, 2010, there were 1347 CEA and 861 CAS patients aged <65 years and 4169 CEA and 2536 CAS patients aged ≥65 years. CAS patients in both age groups were more likely to have a disease etiology of radiation or restenosis, be symptomatic, and have more cardiac comorbidities. In patients aged <65 years, the primary end point (5.23% CAS vs 3.56% CEA; P = .065) did not reach statistical significance. Subgroup analyses showed that CAS had a higher combined death/stroke/MI rate (4.44% vs 2.10%; P < .031) in asymptomatic patients but there was no difference in the symptomatic (6.00% vs 5.47%; P = .79) group. In patients aged ≥65 years, CEA had lower rates of death (0.91% vs 1.97%; P < .01), stroke (2.52% vs 4.89%; P < .01), and composite death/stroke/MI (4.27% vs 7.14%; P < .01). CEA in patients aged ≥65 years was associated with lower rates of the primary end point in symptomatic (5.27% vs 9.52%; P < .01) and asymptomatic (3.31% vs 5.27%; P < .01) subgroups. After risk adjustment, CAS patients aged ≥65 years were more likely to reach the primary end point. Conclusions Compared with CEA, CAS resulted in inferior 30-day outcomes in symptomatic and asymptomatic patients aged ≥65 years. These findings do not support the widespread use of CAS in patients aged ≥65 years. PMID:22459755

  4. Enhanced stress durability of nano resonators with scandium doped electrodes

    SciTech Connect

    Nuessl, R.; Jewula, T.; Binninger, C.; Drozd, R.; Ruile, W.; Beckmeier, D.; Sulima, T.; Eisele, I.; Hansch, W.

    2010-11-15

    To explore mechanical stress durability of thin aluminum-scandium (AlSc) films, 0.86 GHz nano resonators with AlSc electrodes have been manufactured. Four different samples have been prepared altering the Sc content in the alloy between 0.0% and 2.5%. A final lift-off step accomplished manufacture procedure of the devices. The resonators have been operated with heavy load to determine power durability. The resonators with AlSc electrodes show increased power durability compared to conventional Al metallized devices. Texture and grain structure of all films have been investigated by means of electron backscatter diffraction (EBSD) and atomic force microscopy (AFM). Material fatigue of electrodes has been visualized by scanning electron microscopy (SEM). The refined grain structure of these alloys can explain the enhanced mechanical stress durability of AlSc electrodes. - Research Highlights: {yields}Enhanced power durability of SAW devices with Sc doped electrodes. {yields}Refined grain structure of Sc doped Al films. {yields}Sudden device breakdown of highly Sc doped devices.

  5. Durable silver coating for mirrors

    DOEpatents

    Wolfe, Jesse D.; Thomas, Norman L.

    2000-01-01

    A durable multilayer mirror includes reflective layers of aluminum and silver and has high reflectance over a broad spectral range from ultraviolet to visible to infrared. An adhesion layer of a nickel and/or chromium alloy or nitride is deposited on an aluminum surface, and a thin layer of silver is then deposited on the adhesion layer. The silver layer is protected by a passivation layer of a nickel and/or chromium alloy or nitride and by one or more durability layers made of metal oxides and typically a first layer of metal nitride. The durability layers may include a composite silicon aluminum nitride and an oxinitride transition layer to improve bonding between nitride and oxide layers.

  6. Evidence for a little ice age and recent warming from a borehole temperature data inversion procedure

    SciTech Connect

    Fivez, J.; Thoen, J.

    2004-11-15

    In this article, we apply our analytical theory, published earlier in this journal, to obtain information on the earth surface temperature history from some borehole temperature data. Compared to the results of the five different methods applied to the same temperature data, our method seems to be easier, assumption-free, and yields internally consistent results. The results suggest a cooling a few centuries ago, followed by a continuing warming up to these days, in agreement with a little ice age scenario.

  7. Play and video effects on mood and procedure behaviors in school-aged children visiting the pediatrician.

    PubMed

    Burns-Nader, Sherwood; Hernandez-Reif, Maria; Thoma, Stephen J

    2013-10-01

    This study examines how different types of activities, including medical play, typical play, and videos, affect the mood and behaviors of children visiting a pediatric office. Seventy-two school-aged children visiting a pediatrician's office were randomly assigned to 1 of 4 groups: medical play, medical information video, typical play, and nonmedical information video control. Children completed a mood self-report measure and their behaviors were recorded during triage by nurses. The medical information video improved the school-aged children's mood. Children in the medical information video displayed less difficult behaviors during procedures than the medical play group. The findings suggest that providing information about medical equipment through a video of a child engaging in medical play may benefit children visiting the pediatrician.

  8. Developmental Changes in Accommodation Evidenced by an Ultrabiomicroscopy Procedure in Patients of Different Ages

    PubMed Central

    Benozzi, Giovanna; Leiro, Juliana; Facal, Sonia; Perez, Cristian; Benozzi, Jorge; Orman, Betina

    2013-01-01

    We demonstrate that changes in the behaviour of the contractile ciliary muscle accompanied by augmented rigidity of the lens are the most important aspects in the loss of accommodation. With ultrabiomicroscopy (UBM), we demonstrated that the performance of the ciliary muscle is diminished and accompanied by rigidity of the lens. Both lens thickness and trabecular-ciliary process distance (TCPD) were the parameters that showed major alterations with the loss of accommodation in patients of different ages. The results indicated that the differences between these parameters in farsightedness and nearsightedness in the different groups of patients were positively correlated. PMID:24600634

  9. Compositional threshold for Nuclear Waste Glass Durability

    SciTech Connect

    Kruger, Albert A.; Farooqi, Rahmatullah; Hrma, Pavel R.

    2013-04-24

    Within the composition space of glasses, a distinct threshold appears to exist that separates "good" glasses, i.e., those which are sufficiently durable, from "bad" glasses of a low durability. The objective of our research is to clarify the origin of this threshold by exploring the relationship between glass composition, glass structure and chemical durability around the threshold region.

  10. Durability of cervical disc arthroplasties and its influence factors

    PubMed Central

    Chen, Chao; Zhang, Xiaolin; Ma, Xinlong

    2017-01-01

    Abstract Background: The durability of cervical disc arthroplasties (CDA) may vary significantly because of different designs and implanting techniques of the devices. Nevertheless, the comparative durability remains unknown. Objectives: We aimed to assess the durability of CDAs in at least 2-year follow-up. We analyzed the classifications and causes of secondary surgical procedures, as well as the structural designs of the devices that might influence the durability. Methods: PubMed, Medline, Embase, and Cochrane Central Register of Controlled Trials were searched from the inception of each database to September 2015 using the following Keywords: “cervical disc replacement” OR “cervical disc arthroplasty” AND “randomized controlled trial (RCT).” Publication language was restricted to English. The primary outcome was the rate of secondary surgical procedures following CDA or anterior cervical decompression and fusion (ACDF). Pairwise meta-analysis and a Bayesian network meta-analysis were carried out using Review Manager v5.3.5 and WinBUGS version 1.4.3, respectively. Quality of evidence was appraised by Grading of Recommendations Assessment, Development and Evaluation methodology. Results: Twelve RCTs that met the eligibility criteria were included. Follow-up ranged from 2 years to 7 years. A total of 103 secondary surgical procedures were performed. The most frequent classification of secondary surgical procedures was reoperation (48/103) and removal (47/103). Revision (3/103) and supplementary fixation (2/103) were rare. Adjacent-level diseases were the most common cause of reoperations. The rates of secondary surgical procedures were significantly lower in Mobi-C, Prestige, Prodisc-C, Secure-C group than in ACDF group. No significant difference was detected between Bryan, PCM, Kineflex-C, Discover, and ACDF. Mobi-C, Secure-C, and Prodisc-C ranked the best, the second best, the third best, respectively. Conclusions: We concluded that Mobi-C, Secure

  11. Cortisol levels in former preterm children at school age are predicted by neonatal procedural pain-related stress.

    PubMed

    Brummelte, Susanne; Chau, Cecil M Y; Cepeda, Ivan L; Degenhardt, Amanda; Weinberg, Joanne; Synnes, Anne R; Grunau, Ruth E

    2015-01-01

    Early life stress can alter hypothalamic pituitary adrenal (HPA) axis function. Differences in cortisol levels have been found in preterm infants exposed to substantial procedural stress during neonatal intensive care, compared to infants born full-term, but only a few studies investigated whether altered programming of the HPA axis persists past toddler age. Further, there is a dearth of knowledge of what may contribute to these changes in cortisol. This prospective cohort study examined the cortisol profiles in response to the stress of cognitive assessment, as well as the diurnal rhythm of cortisol, in children (n=129) born at varying levels of prematurity (24-32 weeks gestation) and at full-term (38-41 weeks gestation), at age 7 years. Further, we investigated the relationships among cortisol levels and neonatal procedural pain-related stress (controlling for multiple medical confounders), concurrent maternal factors (parenting stress, depressive and anxiety symptoms) and children's behavioral problems. For each aim we investigate acute cortisol response profiles to a cognitive challenge as well as diurnal cortisol patterns at home. We hypothesized that children born very preterm will differ in their pattern of cortisol secretion from children born full-term, possibly depended on concurrent child and maternal factors, and that exposure to neonatal pain-related stress would be associated with altered cortisol secretion in children born very preterm, possibly in a sex-dependent way. Saliva samples were collected from 7-year old children three times during a laboratory visit for assessment of cognitive and executive functions (pretest, mid-test, end-study day acute stress profile) and at four times over two consecutive non-school days at home (i.e. morning, mid-morning, afternoon and bedtime-diurnal rhythm profile). We found that cortisol profiles were similar in preterm and full-term children, albeit preterms had slightly higher cortisol at bedtime compared to

  12. Durable antistatic coating for polymethylmethacrylate

    NASA Technical Reports Server (NTRS)

    Hadek, V.; Somoano, R. B.; Rembaum, A. (Inventor)

    1977-01-01

    A durable antistatic coating is achieved on polymethylmethacrylate plastic without affecting its optical clarity by applying to the surface of the plastic a low molecular weight solvent having a high electron affinity and a high dipole moment, such as acentonitrile or nitromethane alone or in the presence of photopolymerizable monomer. The treated polymethylmethacrylate plastic dissipates most of the induced electrostatic charge and retains its optical clarity. The antistatic behavior persists after washing, rubbing and vacuum treatment.

  13. Medicare and durable medical equipment.

    PubMed

    Coviello, Amy

    2002-01-01

    Medicare coverage of wheelchairs, hospital beds and other durable medical equipment (DME) is a major source of confusion for people with Medicare, their families and the professionals who work with them. Yet, consumer publications rarely touch on it. In this brief we offer an overview of DME coverage issues and payment policies, including potential costs for consumers and their rights to appeal denials of payment.

  14. Effect of glass composition on waste form durability: A critical review

    SciTech Connect

    Ellison, A.J.G.; Mazer, J.J.; Ebert, W.L.

    1994-11-01

    This report reviews literature concerning the relationship between the composition and durability of silicate glasses, particularly glasses proposed for immobilization of radioactive waste. Standard procedures used to perform durability tests are reviewed. It is shown that tests in which a low-surface area sample is brought into contact with a very large volume of solution provide the most accurate measure of the intrinsic durability of a glass composition, whereas high-surface area/low-solution volume tests are a better measure of the response of a glass to changes in solution chemistry induced by a buildup of glass corrosion products. The structural chemistry of silicate and borosilicate glasses is reviewed to identify those components with the strongest cation-anion bonds. A number of examples are discussed in which two or more cations engage in mutual bonding interactions that result in minima or maxima in the rheologic and thermodynamic properties of the glasses at or near particular optimal compositions. It is shown that in simple glass-forming systems such interactions generally enhance the durability of glasses. Moreover, it is shown that experimental results obtained for simple systems can be used to account for durability rankings of much more complex waste glass compositions. Models that purport to predict the rate of corrosion of glasses in short-term durability tests are evaluated using a database of short-term durability test results for a large set of glass compositions. The predictions of these models correlate with the measured durabilities of the glasses when considered in large groupings, but no model evaluated in this review provides accurate estimates of durability for individual glass compositions. Use of these models in long-term durability models is discussed. 230 refs.

  15. Durability Improvements Through Degradation Mechanism Studies

    SciTech Connect

    Borup, Rodney L.; Mukundan, Rangachary; Spernjak, Dusan; Baker, Andrew M.; Lujan, Roger W.; Langlois, David Alan; Ahluwalia, Rajesh; Papadia, D. D.; Weber, Adam Z.; Kusoglu, Ahmet; Shi, Shouwnen; More, K. L.; Grot, Steve

    2015-08-03

    The durability of polymer electrolyte membrane (PEM) fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. By investigating cell component degradation modes and defining the fundamental degradation mechanisms of components and component interactions, new materials can be designed to improve durability. To achieve a deeper understanding of PEM fuel cell durability and component degradation mechanisms, we utilize a multi-institutional and multi-disciplinary team with significant experience investigating these phenomena.

  16. Concrete Durability: A Multibillion-Dollar Opportunity

    DTIC Science & Technology

    1987-01-01

    1985. Durability of building materials: Durability research in the United States and the influence of RILEM on durability research. Materiaux et...the porosity, microstructure. and permeability of the final concrete and, to a large * extent, its resistance to environmental attack. This is well...to resist dilation induced by freezing. Large-sized aggregate pieces are far more susceptible than small-sized pieces of aggregate of the same type and

  17. Moisture Durability with Vapor-Permeable Insulating Sheathing

    SciTech Connect

    Lepage, R.; Lstiburek, J.

    2013-09-01

    Exterior sheathing insulation is an effective strategy in increasing the overall R-value of wall assemblies; other benefits include decreasing the effects of thermal bridging and increasing the moisture durability of the built assembly. Vapor-permeable exterior insulation, such as mineral board or expanded polystyrene foam, are one such product that may be used to achieve these benefits. However, uncertainty exists on the effects of inward driven moisture and the interaction of increased sheathing temperatures on the moisture durability of the edifice. To address these concerns, Building Science Corporation (BSC) conducted a series of hygrothermal models for cities representing a range of different climate zones. This report describes the research project, key research questions, and the procedures utilized to analyse the problems.

  18. Environmental durability of polymer concrete

    SciTech Connect

    Palmese, G.R.; Chawalwala, A.J.

    1996-12-31

    Over the past two decades, polymer concrete has increasingly been used for a number of applications including piping, machine bases, chemically resistant flooring, and bridge overlays. Currently, the use of polymer concrete as a wear surface for polymeric composite bridge decks is being investigated. Polymer concrete is a particulate composite comprised of mineral aggregate bound by a polymeric matrix. Such materials possess significantly higher mechanical properties than Portland cement concrete. However, the mechanical characteristics and environmental durability of polymer concrete are influenced by a number of factors. Among these are the selection of aggregate and resin, surface treatment, and cure conditions. In this work the influence of matrix selection and cure history on the environmental durability of polymer concrete was investigated. Particular attention was given to the effects of water on composite properties and to the mechanisms by which degradation occurs. The basalt-based polymer concrete systems investigated were susceptible to attack by water. Furthermore, results suggest that property loss associated with water exposure was primarily a result of interfacial weakening.

  19. Impact of age on access site-related outcomes in 469,983 percutaneous coronary intervention procedures: Insights from the British Cardiovascular Intervention Society.

    PubMed

    Anderson, Simon G; Ratib, Karim; Myint, Phyo K; Keavney, Bernard; Kwok, Chun Shing; Zaman, Azfar; Ludman, Peter F; de Belder, Mark A; Nolan, James; Mamas, Mamas A

    2015-11-15

    We investigate adoption of the TRA in different age groups and study the relationship between age and access site related outcomes in a national cohort of patients undergoing PCI in the UK. Previous studies have reported conflicting data on radial access site adoption between different age groups, with age an independent predictor of failure of procedures undertaken through the radial approach. Age and access site related outcomes (based on transradial (TRA) and transfemoral (TFA) access) were studied in 469,983 PCI procedures undertaken in the UK from 2006 to 2012 in the age groups; <60, 60-<70, 70-<80, and ≥80 in the British Cardiovascular Intervention Society database. We studied access site practice in 469,983 patients who underwent PCI procedures in the United Kingdom. TRA utilization increased from 17.5% to 65.6% in the age group <60, and 16.6% to 54.5% in the age group ≥80 between 2006 and 2012. TRA was independently associated with decreased 30-day mortality in all age groups (<60: OR 0.64; 95% CI 0.54-0.74, P < 0.0001; 60-<70: OR 0.65; 95% CI 0.57-75, P < 0.0001, 70-<80: OR 0.58 (0.52-0.65, P < 0.0001 and ≥80: OR 0.65 (0.57-0.73, P < 0.0001). Adoption of the TRA for PCI has occurred least in older patients in the UK despite similar associations between TRA use and decreased 30-day mortality observed in all age groups.

  20. Durable Solutions for Developing Country Refugees.

    ERIC Educational Resources Information Center

    Stein, Barry N.

    1986-01-01

    There are only three durable solutions to the refugee problem--voluntary repatriation, local settlement, and third-country resettlement--and all depend on political will, diplomacy, and statesmanship. It is important to remember, however, that humanitarian concerns must outweigh costs consciousness when durable solutions are sought. (Author/GC)

  1. Environmental Durability of Electroplated Black Chromium

    NASA Technical Reports Server (NTRS)

    Lowery, J. R.

    1983-01-01

    Report describes tests of durability of electroplated black chromium coatings on solar-collector panels in rural, industrial, and seacoast environments for 60, 36, and 13 months, respectively. Black-chromium coating showed exceptionally-good optical durability in all three environments.

  2. Development of a high-temperature durable catalyst for use in catalytic combustors for advanced automotive gas turbine engines

    NASA Technical Reports Server (NTRS)

    Tong, H.; Snow, G. C.; Chu, E. K.; Chang, R. L. S.; Angwin, M. J.; Pessagno, S. L.

    1981-01-01

    Durable catalytic reactors for advanced gas turbine engines were developed. Objectives were: to evaluate furnace aging as a cost effective catalytic reactor screening test, measure reactor degradation as a function of furnace aging, demonstrate 1,000 hours of combustion durability, and define a catalytic reactor system with a high probability of successful integration into an automotive gas turbine engine. Fourteen different catalytic reactor concepts were evaluated, leading to the selection of one for a durability combustion test with diesel fuel for combustion conditions. Eight additional catalytic reactors were evaluated and one of these was successfully combustion tested on propane fuel. This durability reactor used graded cell honeycombs and a combination of noble metal and metal oxide catalysts. The reactor was catalytically active and structurally sound at the end of the durability test.

  3. Ceramics: Durability and radiation effects

    SciTech Connect

    Ewing, R.C.; Lutze, W.; Weber, W.J.

    1996-05-01

    At present, there are three seriously considered options for the disposition of excess weapons plutonium: (1) incorporation, partial burn-up and direct disposal of MOX-fuel; (2) vitrification with defense waste and disposal as glass {open_quotes}logs{close_quotes}; (3) deep borehole disposal. The first two options provide a safeguard due to the high activity of fission products in the irradiated fuel and the defense waste. The latter option has only been examined in a preliminary manner, and the exact form of the plutonium has not been identified. In this paper, we review the potential for the immobilization of plutonium in highly durable crystalline ceramics apatite, pyrochlore, zirconolite, monazite and zircon. Based on available data, we propose zircon as the preferred crystalline ceramic for the permanent disposition of excess weapons plutonium.

  4. Permanence and durability of digital prints on paper

    NASA Astrophysics Data System (ADS)

    Černič, M.; Dolenc, J.; Scheicher, L.

    2006-06-01

    The paper used as a printing substrate in electro photographical techniques should achieve appropriate structure, surface and optical properties as well as thermal stability. Printing products are often exposed to negative influence from external climate conditions. Surface treatment with varnishing and lamination is a common solution for protecting the final products against light, higher temperatures and elevated relative humidity. In the context of the applied research done in cooperation with the printing industry we studied permanence and durability of paper, image of prints and final printed product. We were also examining the influence of accelerated artificial ageing of paper and colour prints in electro photographic printing technique (Xeikon), with two types of surface treatment on the quality of the printed products. Determination of basic physical, chemical and surface characteristics (mechanical strength, optical and colorimetric characteristics of paper) as well as the evaluation of permanence according to EN ISO 9706 (∞) have shown unsuitable optical and colorimetric properties of paper. The evaluation of durability of paper and prints after accelerated artificial ageing according to the EN ISO 5630-3 standard indicates unsuitable optical and colorimetric properties, which consequently cause low optical and colorimetric stability. Colour prints with a surface protection of polymer varnish or foil protection are very unstable, causing deterioration of colour, contrasts and colour balance. The results of research work are very useful for the evaluation of durable printing paper used for various new digital printing systems and for evaluation of printing material of permanent quality.

  5. Chemical durability of glasses obtained by vitrification of industrial wastes.

    PubMed

    Pisciella, P; Crisucci, S; Karamanov, A; Pelino, M

    2001-01-01

    The vitrification of zinc-hydrometallurgy wastes, electric arc furnace dust (EAFD), drainage mud, and granite mud was shown to immobilize the hazardous components in these wastes. Batch compositions were prepared by mixing the wastes with glass-cullet and sand to force the final glass composition into the glass forming region of the SiO2-Fe2O3-(CaO, MgO) system. The vitrification was carried out in the 1400-1450 degrees C temperature range followed by quenching in water or on stainless steel mold. The United States (US) Environmental Protection Agency (EPA) toxic characterization leaching procedure (TCLP) test was used as a standard method for evaluating the leachability of the elements in the glasses and glass-ceramics samples made with different percentages of wastes. The results for EAFD glasses highlighted that the chemical stability is influenced by the glass structure formed, which, in turn, depends on the Si/O ratio in the glass. The chemical durability of jarosite glasses and glass-ceramics was evaluated by 24 h contact in NaOH, HCl and Na2CO3, at 95 degrees C. Jarosite glass-ceramics containing pyroxene (J40) are more durable than the parent glass in HCl. Jarosite glass-ceramics containing magnetite type spinels (J50) have a durability similar to the parent glass and even lower in HCl because the magnetite is soluble in HCl.

  6. Highly Dispersed Alloy Catalyst for Durability

    SciTech Connect

    Vivek S. Murthi; Izzo, Elise; Bi, Wu; Guerrero, Sandra; Protsailo, Lesia

    2013-01-08

    Achieving DOE's stated 5000-hr durability goal for light-duty vehicles by 2015 will require MEAs with characteristics that are beyond the current state of the art. Significant effort was placed on developing advanced durable cathode catalysts to arrive at the best possible electrode for high performance and durability, as well as developing manufacturing processes that yield significant cost benefit. Accordingly, the overall goal of this project was to develop and construct advanced MEAs that will improve performance and durability while reducing the cost of PEMFC stacks. The project, led by UTC Power, focused on developing new catalysts/supports and integrating them with existing materials (membranes and gas diffusion layers (GDLs)) using state-of-the-art fabrication methods capable of meeting the durability requirements essential for automotive applications. Specifically, the project work aimed to lower platinum group metals (PGM) loading while increasing performance and durability. Appropriate catalysts and MEA configuration were down-selected that protects the membrane, and the layers were tailored to optimize the movements of reactants and product water through the cell to maximize performance while maintaining durability.

  7. Durability of Polymeric Encapsulation Materials for Concentrating Photovoltaic Systems (Poster)

    SciTech Connect

    Miller, D. C.; Kempe, M. D.; Araki, K.; Kennedy, C. E.; Kurtz, S. R.

    2011-02-01

    Polymeric encapsulation materials are typically used in concentrating photovoltaic (CPV) modules to protect the cell from the field environment. Because it is physically located adjacent to the cell, the encapsulation is exposed to a high optical flux, often including light in the ultraviolet (UV) and infrared (IR) wavelengths. The durability of encapsulants used in CPV modules is critical to the technology, but is presently not well understood. This work seeks to identify the appropriate material types, field-induced failure mechanisms, and factors of influence (if possible) of polymeric encapsulation. These results will ultimately be weighed against those of future qualification and accelerated life test procedures.

  8. Phase VI Glove Durability Testing

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn C.

    2010-01-01

    The current state-of-the-art space suit gloves, the Phase VI gloves, have an operational life of 25 - 8 hour Extravehicular Activities (EVAs) in a clean, controlled ISS environment. Future planetary outpost missions create the need for space suit gloves which can endure up to 90 - 8 hour traditional EVAs or 576 - 45 minute suit port-based EVAs in a dirty, uncontrolled planetary environment. Prior to developing improved space suit gloves for use in planetary environments, it is necessary to understand how the current state-of-the-art performs in these environments. The Phase VI glove operational life has traditionally been certified through cycle testing consisting of ISS-based tasks in a clean environment, and glove durability while performing planetary EVA tasks in a dirty environment has not previously been characterized. Testing was performed in the spring of 2010 by the NASA Johnson Space Center Crew and Thermal Systems Division to characterize the durability of the Phase VI Glove and identify areas of the glove design which need improvement to meet the requirements of future NASA missions. Lunar simulant was used in this test to help replicate the dirty lunar environment, and generic planetary surface EVA tasks were performed during testing. A total of 50 manned, pressurized test sessions were completed in the Extravehicular Mobility Unit (EMU) using one pair of Phase VI gloves as the test article. The 50 test sessions were designed to mimic the total amount of pressurized cycling the gloves would experience over a 6 month planetary outpost mission. The gloves were inspected at periodic intervals throughout testing, to assess their condition at various stages in the test and to monitor the gloves for failures. Additionally, motion capture and force data were collected during 18 of the 50 test sessions to assess the accuracy of the cycle model predictions used in testing and to feed into the development of improved cycle model tables. This paper provides a

  9. Phase VI Glove Durability Testing

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn

    2011-01-01

    The current state-of-the-art space suit gloves, the Phase VI gloves, have an operational life of 25 -- 8 hour Extravehicular Activities (EVAs) in a dust free, manufactured microgravity EVA environment. Future planetary outpost missions create the need for space suit gloves which can endure up to 90 -- 8 hour traditional EVAs or 576 -- 45 minute suit port-based EVAs in a dirty, uncontrolled planetary environment. Prior to developing improved space suit gloves for use in planetary environments, it is necessary to understand how the current state-of-the-art performs in these environments. The Phase VI glove operational life has traditionally been certified through cycle testing consisting of International Space Station (ISS)-based EVA tasks in a clean environment, and glove durability while performing planetary EVA tasks in a dirty environment has not previously been characterized. Testing was performed in the spring of 2010 by the NASA Johnson Space Center (JSC) Crew and Thermal Systems Division (CTSD) to characterize the durability of the Phase VI Glove and identify areas of the glove design which need improvement to meet the requirements of future NASA missions. Lunar simulant was used in this test to help replicate the dirty lunar environment, and generic planetary surface EVA tasks were performed during testing. A total of 50 manned, pressurized test sessions were completed in the Extravehicular Mobility Unit (EMU) using one pair of Phase VI gloves as the test article. The 50 test sessions were designed to mimic the total amount of pressurized cycling the gloves would experience over a 6 month planetary outpost mission. The gloves were inspected periodically throughout testing, to assess their condition at various stages in the test and to monitor the gloves for failures. Additionally, motion capture and force data were collected during 18 of the 50 test sessions to assess the accuracy of the cycle model predictions used in testing and to feed into the

  10. Environmental durability of adhesively bonded joints

    NASA Astrophysics Data System (ADS)

    Butkus, Lawrence Michael

    The goal of this project was to evaluate the environmental durability of adhesively bonded aircraft joints using fracture mechanics. Three aerospace adhesives, two epoxies and one polyimide, were investigated. Adhesive specimens were tested for tensile and toughness behavior. Bonded joint specimens were subject to Mode I, Mode II, and mixed mode fracture and fatigue tests. Prior to testing, selected specimens were exposed for up to 10,000 hours to isothermal and thermally cyclic conditions similar to aircraft service environments. Analysis was accomplished using finite element programs and closed-form solutions. Environmental exposure caused reductions in the failure strain, strength, and toughness, of the adhesive specimens and in the toughness and fatigue threshold of the bonded joint specimens. Specimens exposed to high temperature and humidity prior to testing and those tested at low temperatures indicative of high altitude operations experienced the most significant toughness losses. Results are discussed in terms of their relationship to bonded joint design and should prove valuable to efforts aimed at extending the lives of aging aircraft using bonded repairs as well as to efforts focused on using adhesive bonding for future aerospace structures.

  11. Aging

    PubMed Central

    Park, Dong Choon

    2013-01-01

    Aging is initiated based on genetic and environmental factors that operate from the time of birth of organisms. Aging induces physiological phenomena such as reduction of cell counts, deterioration of tissue proteins, tissue atrophy, a decrease of the metabolic rate, reduction of body fluids, and calcium metabolism abnormalities, with final progression onto pathological aging. Despite the efforts from many researchers, the progression and the mechanisms of aging are not clearly understood yet. Therefore, the authors would like to introduce several theories which have gained attentions among the published theories up to date; genetic program theory, wear-and-tear theory, telomere theory, endocrine theory, DNA damage hypothesis, error catastrophe theory, the rate of living theory, mitochondrial theory, and free radical theory. Although there have been many studies that have tried to prevent aging and prolong life, here we introduce a couple of theories which have been proven more or less; food, exercise, and diet restriction. PMID:24653904

  12. Method of determining glass durability

    DOEpatents

    Jantzen, C.M.; Pickett, J.B.; Brown, K.G.; Edwards, T.B.

    1998-12-08

    A process is described for determining one or more leachate concentrations of one or more components of a glass composition in an aqueous solution of the glass composition by identifying the components of the glass composition, including associated oxides, determining a preliminary glass dissolution estimator, {Delta}G{sub p}, based upon the free energies of hydration for the component reactant species, determining an accelerated glass dissolution function, {Delta}G{sub a}, based upon the free energy associated with weak acid dissociation, {Delta}G{sub a}{sup WA}, and accelerated matrix dissolution at high pH, {Delta}G{sub a}{sup SB} associated with solution strong base formation, and determining a final hydration free energy, {Delta}G{sub f}. This final hydration free energy is then used to determine leachate concentrations for elements of interest using a regression analysis and the formula log{sub 10}(N C{sub i}(g/L))=a{sub i} + b{sub i}{Delta}G{sub f}. The present invention also includes a method to determine whether a particular glass to be produced will be homogeneous or phase separated. The present invention is also directed to methods of monitoring and controlling processes for making glass using these determinations to modify the feedstock materials until a desired glass durability and homogeneity is obtained. 4 figs.

  13. Method of determining glass durability

    DOEpatents

    Jantzen, Carol Maryanne; Pickett, John Butler; Brown, Kevin George; Edwards, Thomas Barry

    1998-01-01

    A process for determining one or more leachate concentrations of one or more components of a glass composition in an aqueous solution of the glass composition by identifying the components of the glass composition, including associated oxides, determining a preliminary glass dissolution estimator, .DELTA.G.sub.p, based upon the free energies of hydration for the component reactant species, determining an accelerated glass dissolution function, .DELTA.G.sub.a, based upon the free energy associated with weak acid dissociation, .DELTA.G.sub.a.sup.WA, and accelerated matrix dissolution at high pH, .DELTA.G.sub.a.sup.SB associated with solution strong base formation, and determining a final hydration free energy, .DELTA.G.sub.f. This final hydration free energy is then used to determine leachate concentrations for elements of interest using a regression analysis and the formula log.sub.10 (N C.sub.i (g/L))=a.sub.i +b.sub.i .DELTA.G.sub.f. The present invention also includes a method to determine whether a particular glass to be produced will be homogeneous or phase separated. The present invention is also directed to methods of monitoring and controlling processes for making glass using these determinations to modify the feedstock materials until a desired glass durability and homogeneity is obtained.

  14. Durable coatings for IR windows

    NASA Astrophysics Data System (ADS)

    Goldman, Lee M.; Jha, Santosh K.; Gunda, Nilesh; Cooke, Rick; Agarwal, Neeta; Sastri, Suri A.; Harker, Alan; Kirsch, Jim

    2005-05-01

    Durable coatings of silicon-carbon-oxy-nitride (a.k.a. SiCON) are being developed to protect high-speed missile windows from the environmental loads during flight. Originally developed at Rockwell Scientific Corporation (RSC) these coatings exhibited substantial promise, but were difficult to deposit. Under a DoD DARPA SBIR Phase I program, Surmet Corporation, working closely with RSC, is depositing these coatings using an innovative vacuum vapor deposition process. High rate of coating deposition and the ease of manipulating the process variables, make Surmet"s process suitable for the deposition of substantially thick films (up to 30 μm) with precisely controlled chemistry. Initial work has shown encouraging results, and the refinement of the coating and coating process is still underway. Coupons of SiN and SiCON coatings with varying thickness on a variety of substrates such as Si-wafer, ZnS and ALON were fabricated and used for the study. This paper will present and discuss the results of SiN and SiCON coatings deposition and characterization (physical, mechanical and optical properties) as a basis for evaluating their suitability for high speed missile windows application.

  15. Durability of Composite Materials and Structures

    DTIC Science & Technology

    2009-11-02

    Michigan State University Composite Materials and Structures Center 2100 Engineering Building , East Lansing, MI 48824-1226 6.1 Objectives The...DATES COVERED (From - To) February 7, 2005 - January 31. 2009 4. TITLE AND SUBTITLE DURABILITY OF COMPOSITE MATERIALS AND STRUCTURES 5a...Manager: Dr. Yapa D.S. Rajapakse Office of Naval Research 875 N. Randolph Street Arlington, VA 22203-1995 DURABILITY OF COMPOSITE MATERIALS AND

  16. Mechanistic Enhancement of SOFC Cathode Durability

    SciTech Connect

    Wachsman, Eric

    2016-02-01

    Durability of solid oxide fuel cells (SOFC) under “real world” conditions is an issue for commercial deployment. In particular cathode exposure to moisture, CO2, Cr vapor (from interconnects and BOP), and particulates results in long-term performance degradation issues. Here, we have conducted a multi-faceted fundamental investigation of the effect of these contaminants on cathode performance degradation mechanisms in order to establish cathode composition/structures and operational conditions to enhance cathode durability.

  17. Nap it or leave it in the elderly: A nap after practice relaxes age-related limitations in procedural memory consolidation.

    PubMed

    Korman, M; Dagan, Y; Karni, A

    2015-10-08

    Using a training protocol that effectively induces procedural memory consolidation (PMC) in young adults, we show that older adults are good learners, robustly improving their motor performance during training. However, performance declined over the day, and overnight 'offline' consolidation phase performance gains were under-expressed. A post-training nap countered these deficits. PMC processes are preserved but under-engaged in the elderly; sleep can relax some of the age-related constraints on long-term plasticity.

  18. The Ross II procedure: pulmonary autograft in the mitral position.

    PubMed

    Athanasiou, Thanos; Cherian, Ashok; Ross, Donald

    2004-10-01

    The surgical management of mitral valve disease in women of childbearing age, young patients, and children with congenital mitral valve defects is made difficult by the prospect of lifelong anticoagulation. We suggest the use of a pulmonary autograft in the mitral position (Ross II procedure) as an alternative surgical technique. We present a review of the literature, historical perspectives, indications, selection criteria, and surgical technique for the Ross II procedure. Our literature search identified 14 studies that reported results from the Ross II operation. Performed in 103 patients, the overall in-hospital mortality was 7 (6.7%), with a late mortality of 10 (9%). Although further research is needed, current evidence suggests the Ross II operation is a valuable alternative in low-risk young patients where valve durability and the complication rate from other procedures is unsatisfactory and anticoagulation not ideal.

  19. Durability Assessment of Gamma Tial

    NASA Technical Reports Server (NTRS)

    Draper, Susan L.; Lerch, Bradley A.; Pereira, J. Michael; Miyoshi, Kazuhisa; Arya, Vinod K.; Zhuang, Wyman

    2004-01-01

    Gamma TiAl was evaluated as a candidate alloy for low-pressure turbine blades in aeroengines. The durability of g-TiAl was studied by examining the effects of impact or fretting on its fatigue strength. Cast-to-size Ti-48Al-2Cr-2Nb was studied in impact testing with different size projectiles at various impact energies as the reference alloy and subsequently fatigue tested. Impacting degraded the residual fatigue life. However, under the ballistic impact conditions studied, it was concluded that the impacts expected in an aeroengine would not result in catastrophic damage, nor would the damage be severe enough to result in a fatigue failure under the anticipated design loads. In addition, other gamma alloys were investigated including another cast-to-size alloy, several cast and machined specimens, and a forged alloy. Within this Ti-48-2-2 family of alloys aluminum content was also varied. The cracking patterns as a result of impacting were documented and correlated with impact variables. The cracking type and severity was reasonably predicted using finite element models. Mean stress affects were also studied on impact-damaged fatigue samples. The fatigue strength was accurately predicted based on the flaw size using a threshold-based, fracture mechanics approach. To study the effects of wear due to potential applications in a blade-disk dovetail arrangement, the machined Ti-47-2-2 alloy was fretted against In-718 using pin-on-disk experiments. Wear mechanisms were documented and compared to those of Ti-6Al-4V. A few fatigue samples were also fretted and subsequently fatigue tested. It was found that under the conditions studied, the fretting was not severe enough to affect the fatigue strength of g-TiAl.

  20. Durability of polymer composite materials

    NASA Astrophysics Data System (ADS)

    Liu, Liu

    The purpose of this research is to examine structural durability of advanced composite materials under critical loading conditions, e.g., combined thermal and mechanical loading and shear fatigue loading. A thermal buckling model of a burnt column, either axially restrained or under an axial applied force was developed. It was predicted that for a column exposed to the high heat flux under simultaneous constant compressive load, the response of the column is the same as that of an imperfection column; the instability of the burnt column happens. Based on the simplified theoretical prediction, the post-fire compressive behavior of fiberglass reinforced vinyl-ester composite columns, which have been exposed to high heat flux for a certain time was investigated experimentally, the post-fire compressive strength, modulus and failure mode were determined. The integrity of the same column under constant compressive mechanical loading combined with heat flux exposure was examined using a specially designed mechanical loading fixture that mounted directly below a cone calorimeter. All specimens in the experiments exhibited compressive instability. The experimental results show a thermal bending moment exists and has a significant influence on the structural behavior, which verified the thermal buckling model. The trend of response between the deflection of the column and exposure time is similar to that predicted by the model. A new apparatus was developed to study the monotonic shear and cyclic-shear behavior of sandwich structures. Proof-of-concept experiments were performed using PVC foam core polymeric sandwich materials. Shear failure occurred by the extension of cracks parallel to the face-sheet/core interface, the shear modulus degraded with the growth of fatigue damage. Finite element analysis was conducted to determine stress distribution in the proposed specimen geometry used in the new technique. Details for a novel apparatus used for the fatigue testing of thin

  1. Fatigue behaviour analysis for the durability prequalification of strengthening mortars

    NASA Astrophysics Data System (ADS)

    Bocca, P.; Grazzini, A.; Masera, D.

    2011-07-01

    An innovative laboratory procedure used as a preliminary design stage for the pre-qualification of strengthening mortars applied to historical masonry buildings is described. In the analysis of the behaviour of masonry structures and their constituent materials, increasing importance has been assumed by the study of the long-term evolution of deformation and mechanical characteristics, which may be affected by both loading and environmental conditions. Through static and fatigue tests on mixed specimens historical brick-reinforced mortar it has been possible to investigate the durability of strengthening materials, in order to select, from a range of alternatives, the most suitable for the historical masonry. Cyclic fatigue stress has been applied to accelerate the static creep and to forecast the corresponding creep behaviour of the historical brick-strengthening mortar system under static long-time loading. This methodology has proved useful in avoiding the errors associated with materials that are not mechanically compatible and guarantees the durability of strengthening work. The experimental procedure has been used effectively in the biggest restoration building site in Europe, the Royal Palace of Venaria, and it is in progress of carrying out at the Special Natural Reserve of the Sacro Monte di Varallo, in Piedmont (Italy).

  2. Tungsten materials as durable catalyst supports for fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Perchthaler, M.; Ossiander, T.; Juhart, V.; Mitzel, J.; Heinzl, C.; Scheu, C.; Hacker, V.

    2013-12-01

    Durable platinum catalyst support materials, e.g. tungsten carbide (WC), tungsten oxide (WOx) and self-synthesized tungsten oxide (WOxs) were evaluated for the use in High-Temperature Proton Exchange Fuel Cells (HT-PEM) based on phosphoric acid doped polybenzimidazole as electrolyte. The support materials and the catalyst loaded support materials were characterized ex-situ by cyclic voltammetry in HClO4, potential cycling, CO-stripping, electron microscopy and X-ray diffraction measurements. The tungsten oxide and tungsten carbide based supported catalysts were compared to High Surface Area Carbon (HSAC), each coated with platinum via the same in-house manufacturing procedures. The in-house manufacturing procedures resulted in catalyst particle sizes on HSAC of 3-4 nm with a uniform distribution. The in-situ Potential Cycling experiments of WOx or WOxs supported catalysts showed much lower degradation rates compared to High Surface Area Carbons. The formation of WOx species on WC was proven by ex- and in-situ cyclic voltammetric studies and thermogravimetric analyses. X-ray diffraction, ex-situ cyclic voltammetry and in-situ cyclic voltammetry showed that WOx is formed from WC as starting material under oxidizing conditions. Finally a 1000 h durability test with WOx as catalyst support material on the anode was done in a HT-PEM fuel cell with reformed methanol on the anode.

  3. Erectile Function Durability Following Permanent Prostate Brachytherapy

    SciTech Connect

    Taira, Al V.; Merrick, Gregory S.; Galbreath, Robert W.; Butler, Wayne M.; Wallner, Kent E.; Kurko, Brian S.; Anderson, Richard; Lief, Jonathan H.

    2009-11-01

    Purpose: To evaluate long-term changes in erectile function following prostate brachytherapy. Methods and Materials: This study included 226 patients with prostate cancer and preimplant erectile function assessed by the International Index of Erectile Function-6 (IIEF-6) who underwent brachytherapy in two prospective randomized trials between February 2001 and January 2003. Median follow-up was 6.4 years. Pre- and postbrachytherapy potency was defined as IIEF-6 >= 13 without pharmacologic or mechanical support. The relationship among clinical, treatment, and dosimetric parameters and erectile function was examined. Results: The 7-year actuarial rate of potency preservation was 55.6% with median postimplant IIEF of 22 in potent patients. Potent patients were statistically younger (p = 0.014), had a higher preimplant IIEF (p < 0.001), were less likely to be diabetic (p = 0.002), and were more likely to report nocturnal erections (p = 0.008). Potency preservation in men with baseline IIEF scores of 29-30, 24-28, 18-23, and 13-17 were 75.5% vs. 73.6%, 51.7% vs. 44.8%, 48.0% vs. 40.0%, and 23.5% vs. 23.5% in 2004 vs. 2008. In multivariate Cox regression analysis, preimplant IIEF, hypertension, diabetes, prostate size, and brachytherapy dose to proximal penis strongly predicted for potency preservation. Impact of proximal penile dose was most pronounced for men with IIEF of 18-23 and aged 60-69. A significant minority of men who developed postimplant impotence ultimately regained erectile function. Conclusion: Potency preservation and median IIEF scores following brachytherapy are durable. Thoughtful dose sparing of proximal penile structures and early penile rehabilitation may further improve these results.

  4. Development of film- and- fabric composite materials durability assessing methodology under time-dependent influences of temperature and solar radiation

    NASA Astrophysics Data System (ADS)

    Kayumov, R. A.; Muhamedova, I. Z.; Suleymanov, A. M.; Tazyukov, B. F.

    2016-11-01

    In this paper, we present the design of stress-strain state calculation and film-and- fabric composite materials durability under stresses and solar radiation. We have constructed a two-dimensional finite-state-element computer model of the deforming process of the low- level cell of film-and-fabric-based composite material for the evaluation of its durability which takes into account non-linear viscoelasticity, temperature variations, ageing of the material, the process of upbuilding of microdamage and photodegradation. Qualitative research of operational factors influence (UV, temperature) on film-and-fabric composite materials durability was conducted.

  5. A Randomized Controlled Trial of Two Syntactic Treatment Procedures with Cantonese-Speaking, School-Age Children with Language Disorders

    ERIC Educational Resources Information Center

    To, Carol K. S.; Lui, Hoi Ming; Li, Xin Xin; Lam, Gary Y. H

    2015-01-01

    Purpose: In this study, we aimed to evaluate the efficacy of sentence-combining (SC) and narrative-based (NAR) intervention approaches to syntax intervention using a randomized-controlled-trial design. Method: Fifty-two Cantonese-speaking, school-age children with language impairment were assigned randomly to either the SC or the NAR treatment…

  6. Technical note: The two step procedure (TSP) for the determination of age at death of adult human remains in forensic cases.

    PubMed

    Baccino, Eric; Sinfield, Laura; Colomb, Sophie; Baum, Thierry Pascal; Martrille, Laurent

    2014-11-01

    This paper presents the principles and results of TSP (the two step procedure), a comprehensive (combined) method of age estimation in mature human skeletal remains. The first step consists of the examination of the pubic symphysis using the Suchey-Brooks system for a "pre-choice". Then for SBS phases I, II, III, (young adults up to about 40) the age estimate is given using the chronological interval corresponding to each phase. For SBS phase is IV, V or VI (mature adults, about 40 to 60), then (second step) the dental method of Lamendin (using single rooted tooth) will be applied alone. Both methods are fast, easy to learn and to use (requiring no preparation except cleaning soft tissues from the pubic bone) and are not expensive, making TSP usable by all pathologists or anthropologists in any Forensic unit. It is also of great practical use in mass disaster and mass grave situation. After 15 years of use, a literature review and four evaluation studies we confirm that TSP is more accurate than any single method for aging adults and at least as good as more complicated combined methods. Despite its advantages TSP is, like all other aging methods, not efficient in adults over 65 years of age.

  7. Dental adhesion: mechanism, techniques and durability.

    PubMed

    Manuja, N; Nagpal, R; Pandit, I K

    2012-01-01

    Contemporary dental adhesives show favorable immediate results in terms of bonding effectiveness. However, the durability of resin-dentin bonds is their major problem. It appears that simplification of adhesive techniques is rather detrimental to the long-term stability of resin-tooth interface. The hydrostatic pulpal pressure, the dentinal fluid flow and the increased dentinal wetness in vital dentin can affect the intimate interaction of certain dentin adhesives with dentinal tissue. Bond degradation occurs via water sorption, hydrolysis of ester linkages of methacrylate resins, and activation of endogenous dentin matrix metalloproteinases. The three-step etch-and-rinse adhesives still remain the gold standard in terms of durability. This review discusses the fundamental process of adhesion to enamel and dentin with different adhesive techniques, factors affecting the long-term bonding performance of modern adhesives and addresses the current perspectives for improving bond durability.

  8. A generalized definition for waste form durability.

    SciTech Connect

    Fanning, T. H.; Bauer, T. H.; Morris, E. E.; Wigeland, R. A.

    2002-06-26

    When evaluating waste form performance, the term ''durability'' often appears in casual discourse, but in the technical literature, the focus is often on waste form ''degradation'' in terms of mass lost per unit area per unit time. Waste form degradation plays a key role in developing models of the long-term performance in a repository environment, but other factors also influence waste form performance. These include waste form geometry; density, porosity, and cracking; the presence of cladding; in-package chemistry feedback; etc. The paper proposes a formal definition of waste form ''durability'' which accounts for these effects. Examples from simple systems as well as from complex models used in the Total System Performance Assessment of Yucca Mountain are provided. The application of ''durability'' in the selection of bounding models is also discussed.

  9. The ageing and myasthenic thymus: a morphometric study validating a standard procedure in the histological workup of thymic specimens.

    PubMed

    Ströbel, Philipp; Moritz, Regina; Leite, Maria Isabel; Willcox, Nick; Chuang, Wen-Yu; Gold, Ralf; Nix, Wilfred; Schalke, Berthold; Kiefer, Reinhard; Müller-Hermelink, Hans-Konrad; Jaretzki Iii, Alfred; Newsom-Davis, John; Marx, Alexander

    2008-09-15

    The thymus is believed to play an important role in the pathogenesis of myasthenia gravis (MG). The 80% of MG patients with anti-acetylcholine receptor autoantibodies fall into three clinical subgroups: 1) thymoma; 2) early-onset MG (<age of 40; EOMG) and 3) late-onset (LOMG; onset after 40). Thymectomy is widely used in EOMG, but its benefits have not been established in randomized controlled trials. A multicenter international trial (MGTX) currently seeks to determine whether thymectomy reduces corticosteroid requirements, and to look for correlations with thymic histology. We here describe the validated, standardized histological workup and reporting system used in this trial.

  10. Polylactic Acid-Based Polymer Blends for Durable Applications

    NASA Astrophysics Data System (ADS)

    Finniss, Adam

    , showing that no matter the treatment or formulation, PLA achieved a maximum of 30-35 percent crystallinity. Samples receiving no treatment as well as those with annealing, the addition of graphene, and in some cases annealing/graphene were subjected to both solvent and hydrolytic degradation in order to find the most stable blend or treatment. Both pellets and molded parts of varying thicknesses were investigated to evaluate the effect of diffusional resistance on long term durability. It was determined that while the addition of crystallinity or graphene platelets can provide a temporary barrier against diffusion of attacking species, PLA polymer itself is not dimensionally stable over the long lifecycle required for durable applications such as for automotive parts. In fact, PLA-only molded panels aged in distilled water at 50°C for 42 days experienced over 99% viscosity loss regardless of which treatment was applied, and nearly all mechanical strength was lost during this time. Furthermore, while the addition of graphene and the heat treatment produced diffusion barriers which could slightly enhance PLA's degradation resistance, the treatments caused the already fragile polymer to become very brittle. Solvent degradation experiments also showed that molded parts containing more than 40% PLA loading lost in excess of 75% of the original viscosity no matter what treatment was used. This showed that these materials are likely to fail well before a sufficiently long lifecycle for durable goods is achieved. Polycarbonate rich blends with less than 30% PLA as the dispersed phase showed excellent property retention after the accelerated aging tests. Formulations with up to 20% PLA content had degradation results that were nearly identical to those of 100% polycarbonate, which literature has shown to have useful lifecycles for durable applications of up to 20 years. By completely encapsulating the PLA in the polycarbonate matrix, which occurred at about 30% PLA by maximum, it

  11. Is the Cloze Procedure Appropriate to Evaluate Health Literacy in Older Individuals? Age Effects in the Test of Functional Health Literacy in Adults

    PubMed Central

    Ownby, Raymond L.; Acevedo, Amarilis; Waldrop-Valverde, Drenna; Jacobs, Robin J.

    2014-01-01

    Health literacy has received increasing attention because of its importance for older individuals' health, as studies have shown a close relation between older individuals' health literacy and their health. Research also suggests that older individuals have low levels of health literacy, but this finding is variable and may depend on which health literacy test is used. Older individuals assessed with the Test of Functional Health Literacy (TOFHLA) score lower than younger individuals, but a previous study suggested that this may result from age-related differential item functioning (DIF) on the TOFHLA. The study reported here assessed age-related DIF in a sample of community-dwelling volunteers. Twenty-two percent of items were differentially more difficult for older individuals independent of their overall ability, and when these items were eliminated from the total score, age differences were no longer found. Performance on a working memory task predicted older but not younger individuals' performance on the age-related items. At least part of older individuals' apparent deficits in health literacy when assessed by the TOFHLA may be related to DIF on its items. The TOFHLA, and any measure that employs the cloze procedure to evaluate reading comprehension, should be used cautiously in older individuals. PMID:25295191

  12. Electrochemical impedance spectroscopy for lithium-ion cells: Test equipment and procedures for aging and fast characterization in time and frequency domain

    NASA Astrophysics Data System (ADS)

    Lohmann, Nils; Weßkamp, Patrick; Haußmann, Peter; Melbert, Joachim; Musch, Thomas

    2015-01-01

    New test equipment and characterization methods for aging investigations on lithium-ion cells for automotive applications are presented in this work. Electrochemical impedance spectroscopy (EIS) is a well-established method for cell characterization and analyzing electrochemical processes. In order to integrate this method into long-term aging studies with real driving currents, new test equipment is mandatory. The presented test equipment meets the demands for high current, wide bandwidth and precise measurement. This allows the cells to be cycled and characterized without interruption for changing the test device. The characterization procedures must be of short duration and have a minimum charge-throughput for negligible influence on the aging effect. This work presents new methods in the time and the frequency domain for obtaining the impedance spectrum which allow a flexible trade-off between measurement performance, time consumption and charge-throughput. In addition to sinusoidal waveforms, rectangular, Gaussian and sin(x)/x pulses are applied for EIS. The performance of the different methods is discussed. Finally, the time domain analysis is applied with real driving currents which provides impedance spectra for state of charge estimation considering aging effects in the car.

  13. Evaluation of the durability of composite tidal turbine blades.

    PubMed

    Davies, Peter; Germain, Grégory; Gaurier, Benoît; Boisseau, Amélie; Perreux, Dominique

    2013-02-28

    The long-term reliability of tidal turbines is critical if these structures are to be cost effective. Optimized design requires a combination of material durability models and structural analyses. Composites are a natural choice for turbine blades, but there are few data available to predict material behaviour under coupled environmental and cycling loading. The present study addresses this problem, by introducing a multi-level framework for turbine blade qualification. At the material scale, static and cyclic tests have been performed, both in air and in sea water. The influence of ageing in sea water on fatigue performance is then quantified, and much lower fatigue lives are measured after ageing. At a higher level, flume tank tests have been performed on three-blade tidal turbines. Strain gauging of blades has provided data to compare with numerical models.

  14. Advanced Durability Analysis. Volume 1. Analytical Methods

    DTIC Science & Technology

    1987-07-31

    for microstruc .- tural behavior . This approach for representing the IFQ, when properly used, can provide reasonable durability analysis rt,- sults for...equivalent initial flaw size distribution (EIFSD) function. Engineering principles rather than mechanistic-based theories for microstructural behavior are...accurate EIFS distribution and a service crack growth behavior . The determinations of EIFS distribution have been described in detail previously. In this

  15. 14 CFR 33.19 - Durability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: AIRCRAFT ENGINES Design and Construction; General § 33.19 Durability. (a) Engine design and... design of the compressor and turbine rotor cases must provide for the containment of damage from rotor blade failure. Energy levels and trajectories of fragments resulting from rotor blade failure that...

  16. 14 CFR 33.19 - Durability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: AIRCRAFT ENGINES Design and Construction; General § 33.19 Durability. (a) Engine design and... design of the compressor and turbine rotor cases must provide for the containment of damage from rotor blade failure. Energy levels and trajectories of fragments resulting from rotor blade failure that...

  17. 14 CFR 33.19 - Durability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: AIRCRAFT ENGINES Design and Construction; General § 33.19 Durability. (a) Engine design and... design of the compressor and turbine rotor cases must provide for the containment of damage from rotor blade failure. Energy levels and trajectories of fragments resulting from rotor blade failure that...

  18. 14 CFR 33.19 - Durability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: AIRCRAFT ENGINES Design and Construction; General § 33.19 Durability. (a) Engine design and... design of the compressor and turbine rotor cases must provide for the containment of damage from rotor blade failure. Energy levels and trajectories of fragments resulting from rotor blade failure that...

  19. 14 CFR 33.19 - Durability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: AIRCRAFT ENGINES Design and Construction; General § 33.19 Durability. (a) Engine design and... design of the compressor and turbine rotor cases must provide for the containment of damage from rotor blade failure. Energy levels and trajectories of fragments resulting from rotor blade failure that...

  20. Machine tests crease durability of sheet materials

    NASA Technical Reports Server (NTRS)

    Jones, L. K.; Stanford, H. B.

    1964-01-01

    To test the crease resistance of sheet materials, the mid-section is folded over crease-control blades. One end is clamped to a motor-driven eccentric, the other to a spring, and durability is measured by the cycles required to produce failure.

  1. 14 CFR 35.19 - Durability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS Design and Construction § 35.19 Durability. Each part of the propeller must be designed and constructed to minimize the development of any unsafe condition of the propeller...

  2. Your Medicare Coverage: Durable Medical Equipment (DME) Coverage

    MedlinePlus

    ... Search Medicare.gov for covered items Durable medical equipment (DME) coverage How often is it covered? Medicare ... B (Medical Insurance) covers medically necessary durable medical equipment (DME) that your doctor prescribes for use in ...

  3. Perioperative normothermia depends on intraoperative warming procedure, extent of the surgical intervention and age of the experimental animal.

    PubMed

    Felies, Melanie; Poppendieck, Sonja; Nave, Heike

    2005-11-04

    The maintenance of a physiological body temperature during and early after surgical interventions in experimental animals such as rodents is often neglected. Therefore the positive influence of an adequate use of warming blankets (WB) on the rectal body temperature in rats was investigated during two different surgical interventions, with a special focus on possible differences between young adult (2.5+/-0.14 months) and adult animals (9.3+/-0.13 months). Anesthesia was induced with isoflurane short inhalation and maintained with ketamine and domitor intramuscularly. Animals were divided into ten groups according to (a) the age of the animals, (b) the temperature of the WB and (c) the kind of surgical intervention (either an intravenous [i.v.] cannulation of the right external jugular vein or an intra-aortal implantation of a telemetric transmitter or both). Results clearly show that the surface temperature of the WB has a major impact on the perioperative thermoregulation. The rectal body temperature of animals operated on a cooler WB dramatically decreased depending on the age of the rat and also on the extent of the surgical intervention. The opening of the abdominal cavity in older rats resulted in a severe hypothermia: they lost 5.6 degrees C compared to 3.2 degrees C in the young adult rats. The implantation of the i.v. catheter had no serious effect on the thermoregulation. In conclusion, the results clearly show that an adequate perioperative warming system positively influences the postoperative outcome in young adult and most notably in adult rats and thus enables early postoperative experiments without effects on measured parameters.

  4. The durability of superhydrophobic films

    NASA Astrophysics Data System (ADS)

    Wang, Shing-Dar; Jiang, Ya-Syuan

    2015-12-01

    Superhydrophobic sol-gels, spin-coated on a glass substrate, were synthesized by varying the hexamethyldisilazane/tetraethoxysilane ratio (Ratio) from 1 to 2. A simple heat treatment at 200 °C for 2 h, an additional prolonged heat treatment at 200 °C for 24 h, and an additional prolonged electric field aging for 24 h with specimens connected to the positive or negative electrodes were performed. The specimens were subjected to a water impact test (WIT) for 2 h, and water contact angle (WCA) and sliding angle (SA) were measured before and after WIT. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy were employed to analyze the variations of elements and functional groups in the hydrophobic film before and after the WIT. The variations of area ratio of XPS deconvolution peaks showed that during the WIT more SiO2 groups than OSi(CH3)3 groups were washed away in the hydrophobic film. Molecular simulation provided a complete image showing the molecules constituting the surface of the hydrophobic film before and after WIT. The additional heat and electric field treatment induced Sisbnd OH network and vertical arrays of hydroxyl chains, respectively, which exerted viscous forces on the water drops but also mitigated the impact strength of the water column. Hence, before WIT, the specimen with a simple heat treatment at 200 °C for 2 h exhibited the highest WCA and lowest SA. After the WIT at a Ratio of 1.6, 1.8, and 2, SA increased in the following order: additional 24-h heat-treated specimen < electric field aging negative electrode specimen < electric field aging positive electrode specimen < simple heat-treated specimen.

  5. Coating-Substrate Systems for Thermomechanically Durable Turbine Airfoils

    DTIC Science & Technology

    2015-06-30

    Technical Report 4. TITLE AND SUBTITLE Coating - Substrate Systems for Thermomechanically Durable Turbine Airfoils 6. AUTHOR(S) Dr. Tresa Pollock 3...Thermomechanically Durable Turbine Airfoils Final Report ONRGrant#N00014-l 1-1-0616 Technical Contact (Principal Investigator) Tresa M. Pollock Materials...Substrate Systems for Thermomechanically Durable Turbine Airfoils 1. Summary In the severe operating environments encountered in Naval ship

  6. Development of a high-temperature durable catalyst for use in catalytic combustors for advanced automotive gas turbine engines

    SciTech Connect

    Tong, H; Snow, G C; Chu, E K :; Chang, R L.S.; Angwin, M J; Pessagno, S L

    1981-09-01

    An experimental program was performed to develop durable catalytic reactors for advanced gas turbine engines. This program was performed as part of DOE's Gas Turbine Highway Vehicle Systems Project. Objectives of this program were to evaluate furnace aging as a cost-effective catalytic reactor screening test, measure reactor degradation as a function of furnace aging, demonstrate 1000 h of combustion durability, and define a catalytic reactor system with a high probability of successfful integration into an automotive gas turbine engine. In the first phase of this program, 14 different catalytic reactor concepts were evaluated, leading to the selection of one for a durability combustion test with diesel fuel at 1700 K combustion coditions. The durability reactor, a proprietary UOP noble metal catalyst, failed structurally after about 136 h and the catalyst was essentially inactive after about 226 h. In Phase II, eight additional catalytic reactors were evalated and one of these was sucessfully combustion-tested for 1000 h at 1700 K on propane fuel. This durability reactor used graded-cell honeycombs and a combination of noble metal and metal oxide catalysts. The reactor was catalytically active and structurally sound at the end of the durability test.

  7. NBS solar collector durability/reliability test program

    NASA Astrophysics Data System (ADS)

    Waksman, D.; Thomas, W. C.; Streed, E. R.

    1984-09-01

    Efforts in the development of reliability/durability tests for solar collectors and their materials have been hampered by the lack of real time conditions. Research undertaken at the National Bureau of Standards (NBS) to help generate the data required to develop methods for predicting the long term durability and reliability of flat plate solar collectors and their materials is discussed. Eight different types of flat plate solar collectors were exposed outdoors at four sites located in different climatic regions. Small scale cover and absorbed materials coupon specimens consisting of samples taken from a collector of each of the eight types used and a number of additional materials were exposed concurrently with the full size collectors. Periodic measurements were made of collector and materials performance as a function of outdoor exposure time. Indoor laboratory aging tests were conducted concurrently on specimens of the same materials to provide a basis for comparison with the outdoor exposure tests. The results obtained in this test program are presented.

  8. The extraction of aged polycyclic aromatic hydrocarbon (PAH) residues from a clay soil using sonication and a Soxhlet procedure: a comparative study.

    PubMed

    Guerin, T F

    1999-02-01

    A sonication method was compared with Soxhlet extraction for recovering polycyclic aromatic hydrocarbons (PAH) from a clay soil that had been contaminated with tar materials for several decades. Using sonication over an 8 h extraction period, maximum extraction of the 16 US EPA priority PAH was obtained with dichloromethane (DCM)-acetone (1 + 1). The same procedure using hexane-acetone (1 + 1) recovered 86% of that obtained using DCM-acetone (1 + 1). PAH recovery was dependent on time of extraction up to a period of 8 h. The sonication procedure showed that individual PAH are extracted at differing rates depending on the number of fused rings in the molecule. Soxhlet extraction [with DCM-acetone (1 + 1)] over an 8 h period recovered 95% of the PAH removed by the sonication procedure using DCM-acetone (1 + 1), indicating that rigorous sonication can achieve PAH recoveries similar to those obtained by Soxhlet extraction. The lower recovery with the Soxhlet extraction was explained by the observed losses of the volatile PAH components after 1-4 h of extraction. The type of solvent used, the length of time of extraction and extraction method influenced the quantification of PAH in the soil. Therefore, the study has implications for PAH analyses in soils and sediments, and particularly for contaminated site assessments where the data from commercial laboratories are being used. The study emphasizes the importance of establishing (and being consistent in the application of) a vigorous extraction, particularly for commercial laboratories that handle samples of soil in batches (at different times) from a single site investigation or remediation process. The strong binding of PAH to soil, forming aged residues, has significant implications for extraction efficiency. This paper illustrates the problem of the underestimation of PAH using the US EPA method 3550, specifically where a surrogate spike is routinely employed and the efficiency of the extraction procedure for aged

  9. Completion of a Durable Power of Attorney for Health Care: What Does Cognition Have to Do with It?

    ERIC Educational Resources Information Center

    McGuire, Lisa C.; Rao, Jaya K.; Anderson, Lynda A.; Ford, Earl S.

    2007-01-01

    Purpose: This study examined the association between cognitive functioning and completion of a durable power of attorney for health care. Design and Methods: Participants were from the Second Longitudinal Study on Aging (LSOA II), a nationally representative sample of community-dwelling persons who were at least 70 years of age at the time of…

  10. A prospective, randomized, double blinded comparison of intranasal dexmedetomodine vs intranasal ketamine in combination with intravenous midazolam for procedural sedation in school aged children undergoing MRI

    PubMed Central

    Ibrahim, Mohamed

    2014-01-01

    Background: For optimum magnetic resonance imaging (MRI) image quality and to ensure precise diagnosis, patients have to remain motionless. We studied the effects of intranasal dexmedetomidine and ketamine with intravenous midazolam for pre-procedural and procedural sedation in school aged children. Patients and Methods: Children were randomly allocated to one of two groups: (Group D) received intranasal dexmedetomidine 3 μg kg–1 and (Group K) received intranasal ketamine 7 mg kg–1. Sedation levels 10, 20 and 30 min after drug instillation were evaluated using a Modified Ramsay sedation scale. A 4-point score was used to evaluate patients when they were separated from their parents and their response to intravenous cannulation. Results: The two groups were comparable in terms of the child's anxiety at presentation (P = 0.245). We observed that Group K achieved faster sedation at 10 min point with P < 0.05. A comparable sedation score at 20 and 30 min were noted. The two groups were comparable regarding to the child's acceptance of nasal administration (P = 0.65). The sedation failure rate was insignificantly differ between groups (13.7% vs. 20.6% for Group D and K respectively). Heart rate and systolic blood pressure showed a significant difference between the two groups starting from the point of 20 min. Conclusion: Intranasal dexmedetomidine 3 μg kg–1 or ketamine 7 mg kg–1 can be used safely and effectively to induce a state of moderate conscious sedation and to facilitate parents’ separation and IV cannulation. Addition of midazolam in a dose not sufficient alone to produce the target sedation achieved our goal of deep level of sedation suitable for MRI procedure. PMID:25886223

  11. Durability Testing of Commercial Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Schienle, J. L.

    1996-01-01

    Technical efforts by AlliedSignal Engines in DOE/NASA-funded project from February, 1978 through December, 1995 are reported in the fields ceramic materials for gas turbine engines and cyclic thermal durability testing. A total of 29 materials were evaluated in 40 cyclic oxidation exposure durability tests. Ceramic test bars were cyclically thermally exposed to a hot combustion environment at temperatures up to 1371 C (2500 F) for periods of up to 3500 hours, simulating conditions typically encountered by hot flowpath components in an automotive gas turbine engine. Before and after exposure, quarter-point flexure strength tests were performed on the specimens, and fractography examinations including scanning electron microscopy (SEM) were performed to determine failure origins.

  12. Creep Behavior and Durability of Cracked CMC

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Fox, Dennis; Smith, Craig

    2015-01-01

    To understand failure mechanisms and durability of cracked Ceramic matrix composites (CMCs), Melt Infiltration (MI) SiCSiC composites with Sylramic-iBN fibers and full Chemical vapour infiltration SiCSiC composites with Sylramic-ion bombarded BN (iBN) and Hi-Nicalon -S fibers were pre-cracked between 150 to 200 megapascal and then creep and Sustained Peak Low Cycle Fatigue (SPLCF) tested at 13150 C at stress levels from 35 to 103 megapascal for up to 200 hours under furnace and burner rig conditions. In addition creep testing was also conducted on pre-cracked full Chemical vapour infiltration SiCSiC composites at 14500 C between 35 and 103 megapascal for up to 200 hours under furnace conditions. If the specimens survived the 200 hour durability tests, then they were tensile tested at room temperature to determine their residual tensile properties. The failed specimens were examined by Scanning electron microscope (SEM) to determine the failure modes and mechanisms. The influence of crack healing matrix, fiber types, crack density, testing modes and interface oxidation on durability of cracked Ceramic matrix composites (CMCs) will be discussed.

  13. Durability Evaluation of Reversible Solid Oxide Cells

    SciTech Connect

    Xiaoyu Zhang; James E. O'Brien; Robert C. O'Brien; Gregory K. Housley

    2013-11-01

    An experimental investigation on the performance and durability of single solid oxide cells (SOCs) is under way at the Idaho National Laboratory. Reversible operation of SOCs includes electricity generation in the fuel cell mode and hydrogen generation in the electrolysis mode. Degradation is a more significant issue when operating SOCs in the electrolysis mode. In order to understand and mitigate the degradation issues in high temperature electrolysis, single SOCs with different configurations from several manufacturers have been evaluated for initial performance and long-term durability. A new test apparatus for single cell and small stack tests has been developed for this purpose. Cells were obtained from four industrial partners. Cells from Ceramatec Inc. and Materials and Systems Research Inc. (MSRI) showed improved durability in electrolysis mode compared to previous stack tests. Cells from Saint Gobain Advanced Materials Inc. (St. Gobain) and SOFCPower Inc. demonstrated stable performance in the fuel cell mode, but rapid degradation in the electrolysis mode, especially at high current density. Electrolyte-electrode delamination was found to have a significant impact on degradation in some cases. Enhanced bonding between electrolyte and electrode and modification of the electrode microstructure helped to mitigate degradation. Polarization scans and AC impedance measurements were performed during the tests to characterize cell performance and degradation.

  14. Experimental study on durability improvement of fly ash concrete with durability improving admixture.

    PubMed

    Quan, Hong-zhu; Kasami, Hideo

    2014-01-01

    In order to improve the durability of fly ash concrete, a series of experimental studies are carried out, where durability improving admixture is used to reduce drying shrinkage and improve freezing-thawing resistance. The effects of durability improving admixture, air content, water-binder ratio, and fly ash replacement ratio on the performance of fly ash concrete are discussed in this paper. The results show that by using durability improving admixture in nonair-entraining fly ash concrete, the compressive strength of fly ash concrete can be improved by 10%-20%, and the drying shrinkage is reduced by 60%. Carbonation resistance of concrete is roughly proportional to water-cement ratio regardless of water-binder ratio and fly ash replacement ratio. For the specimens cured in air for 2 weeks, the freezing-thawing resistance is improved. In addition, by making use of durability improving admixture, it is easier to control the air content and make fly ash concrete into nonair-entraining one. The quality of fly ash concrete is thereby optimized.

  15. Sequential Hybrid Procedure for Persistent Atrial Fibrillation

    PubMed Central

    Bulava, Alan; Mokracek, Ales; Hanis, Jiri; Kurfirst, Vojtech; Eisenberger, Martin; Pesl, Ladislav

    2015-01-01

    Background Catheter ablation of persistent atrial fibrillation yields an unsatisfactorily high number of failures. The hybrid approach has recently emerged as a technique that overcomes the limitations of both surgical and catheter procedures alone. Methods and Results We investigated the sequential (staged) hybrid method, which consists of a surgical thoracoscopic radiofrequency ablation procedure followed by radiofrequency catheter ablation 6 to 8 weeks later using the CARTO 3 mapping system. Fifty consecutive patients (mean age 62±7 years, 32 males) with long‐standing persistent atrial fibrillation (41±34 months) and a dilated left atrium (>45 mm) were included and prospectively followed in an unblinded registry. During the electrophysiological part of the study, all 4 pulmonary veins were found to be isolated in 36 (72%) patients and a complete box‐lesion was confirmed in 14 (28%) patients. All gaps were successfully re‐ablated. Twelve months after the completed hybrid ablation, 47 patients (94%) were in normal sinus rhythm (4 patients with paroxysmal atrial fibrillation required propafenone and 1 patient underwent a redo catheter procedure). The majority of arrhythmias recurred during the first 3 months. Beyond 12 months, there were no arrhythmia recurrences detected. The surgical part of the procedure was complicated by 7 (13.7%) major complications, while no serious adverse events were recorded during the radiofrequency catheter part of the procedure. Conclusions The staged hybrid epicardial–endocardial treatment of long‐standing persistent atrial fibrillation seems to be extremely effective in maintenance of normal sinus rhythm compared to radiofrequency catheter or surgical ablation alone. Epicardial ablation alone cannot guarantee durable transmural lesions. Clinical Trial Registration URL: www.ablace.cz Unique identifier: cz‐060520121617 PMID:25809548

  16. Durability Testing of Fluidized Bed Steam Reforming Products

    SciTech Connect

    JANTZEN, CAROL M.; PAREIZS, JOHN M.; LORIER, TROY H.; MARRA, JAMES C.

    2005-07-01

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of radioactive wastes but especially aqueous high sodium wastes at the Hanford site, at the Idaho National Laboratory (INL), and at the Savannah River Site (SRS). The FBSR technology converts organic compounds to CO{sub 2} and H{sub 2}O, converts nitrate/nitrite species to N{sub 2}, and produces a solid residue through reactions with superheated steam, the fluidizing media. If clay is added during processing a ''mineralized'' granular waste form can be produced. The mineral components of the waste form are primarily Na-Al-Si (NAS) feldspathoid minerals with cage-like and ring structures and iron bearing spinel minerals. The cage and ring structured minerals atomically bond radionuclides like Tc{sup 99} and Cs{sup 137} and anions such as SO{sub 4}, I, F, and Cl. The spinel minerals appear to stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Durability testing of the FBSR products was performed using ASTM C1285 (Product Consistency Test) and the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP). The FBSR mineral products (bed and fines) evaluated in this study were found to be two orders of magnitude more durable than the Hanford Low Activity Waste (LAW) glass requirement of 2 g/m{sup 2} release of Na{sup +}. The PCT responses for the FBSR samples tested were consistent with results from previous FBSR Hanford LAW product testing. Differences in the response can be explained by the minerals formed and their effects on PCT leachate chemistry.

  17. Durability of Cement Composites Reinforced with Sisal Fiber

    NASA Astrophysics Data System (ADS)

    Wei, Jianqiang

    This dissertation focuses mainly on investigating the aging mechanisms and degradation kinetics of sisal fiber, as well as the approaches to mitigate its degradation in the matrix of cement composites. In contrast to previous works reported in the literature, a novel approach is proposed in this study to directly determine the fiber's degradation rate by separately studying the composition changes, mechanical and physical properties of the embedded sisal fibers. Cement hydration is presented to be a crucial factor in understanding fiber degradation behavior. The degradation mechanisms of natural fiber consist of mineralization of cell walls, alkali hydrolysis of lignin and hemicellulose, as well as the cellulose decomposition which includes stripping of cellulose microfibrils and alkaline hydrolysis of amorphous regions in cellulose chains. Two mineralization mechanisms, CH-mineralization and self-mineralization, are proposed. The degradation kinetics of sisal fiber in the cement matrix are also analyzed and a model to predict the degradation rate of cellulose for natural fiber embedded in cement is outlined. The results indicate that the time needed to completely degrade the cellulose in the matrix with cement replacement by 30wt.% metakaolin is 13 times longer than that in pure cement. A novel and scientific method is presented to determine accelerated aging conditions, and to evaluating sisal fiber's degradation rate and durability of natural fiber-reinforced cement composites. Among the static aggressive environments, the most effective approach for accelerating the degradation of natural fiber in cement composites is to soak the samples or change the humidity at 70 °C and higher temperature. However, the dynamic wetting and drying cycling treatment has a more accelerating effect on the alkali hydrolysis of fiber's amorphous components evidenced by the highest crystallinity indices, minimum content of holocellulose, and lowest tensile strength. Based on the

  18. Durable fear memories require PSD-95

    PubMed Central

    Fitzgerald, Paul J.; Pinard, Courtney R.; Camp, Marguerite C.; Feyder, Michael; Sah, Anupam; Bergstrom, Hadley; Graybeal, Carolyn; Liu, Yan; Schlüter, Oliver; Grant, Seth G.N.; Singewald, Nicolas; Xu, Weifeng; Holmes, Andrew

    2014-01-01

    Traumatic fear memories are highly durable but also dynamic, undergoing repeated reactivation and rehearsal over time. While overly persistent fear memories underlie anxiety disorders such as posttraumatic stress disorder, the key neural and molecular mechanisms underlying fear memory durability remain unclear. Post-synaptic density 95 (PSD-95) is a synaptic protein regulating glutamate receptor anchoring, synaptic stability and certain types of memory. Employing a loss-of-function mutant mouse lacking the guanylate kinase domain of PSD-95 (PSD-95GK), we analyzed the contribution of PSD-95 to fear memory formation and retrieval, and sought to identify the neural basis of PSD-95-mediated memory maintenance using ex vivo immediate-early gene mapping, in vivo neuronal recordings and viral-mediated knockdown approaches. We show that PSD-95 is dispensable for the formation and expression of recent fear memories, but essential for the formation of precise and flexible fear memories and for the maintenance of memories at remote time points. The failure of PSD-95GK mice to retrieve remote cued fear memories was associated with hypoactivation of the infralimbic cortex (IL) (not anterior cingulate (ACC) or prelimbic cortex), reduced IL single-unit firing and bursting, and attenuated IL gamma and theta oscillations. Adeno-associated PSD-95 virus-mediated knockdown in the IL, not ACC, was sufficient to impair recent fear extinction and remote fear memory, and remodel IL dendritic spines. Collectively, these data identify PSD-95 in the IL as a critical mechanism supporting the durability of fear memories over time. These preclinical findings have implications for developing novel approaches to treating trauma-based anxiety disorders that target the weakening of overly persistent fear memories. PMID:25510511

  19. Durable fear memories require PSD-95.

    PubMed

    Fitzgerald, P J; Pinard, C R; Camp, M C; Feyder, M; Sah, A; Bergstrom, H C; Graybeal, C; Liu, Y; Schlüter, O M; Grant, S G; Singewald, N; Xu, W; Holmes, A

    2015-07-01

    Traumatic fear memories are highly durable but also dynamic, undergoing repeated reactivation and rehearsal over time. Although overly persistent fear memories underlie anxiety disorders, such as posttraumatic stress disorder, the key neural and molecular mechanisms underlying fear memory durability remain unclear. Postsynaptic density 95 (PSD-95) is a synaptic protein regulating glutamate receptor anchoring, synaptic stability and certain types of memory. Using a loss-of-function mutant mouse lacking the guanylate kinase domain of PSD-95 (PSD-95(GK)), we analyzed the contribution of PSD-95 to fear memory formation and retrieval, and sought to identify the neural basis of PSD-95-mediated memory maintenance using ex vivo immediate-early gene mapping, in vivo neuronal recordings and viral-mediated knockdown (KD) approaches. We show that PSD-95 is dispensable for the formation and expression of recent fear memories, but essential for the formation of precise and flexible fear memories and for the maintenance of memories at remote time points. The failure of PSD-95(GK) mice to retrieve remote cued fear memory was associated with hypoactivation of the infralimbic (IL) cortex (but not the anterior cingulate cortex (ACC) or prelimbic cortex), reduced IL single-unit firing and bursting, and attenuated IL gamma and theta oscillations. Adeno-associated virus-mediated PSD-95 KD in the IL, but not the ACC, was sufficient to impair recent fear extinction and remote fear memory, and remodel IL dendritic spines. Collectively, these data identify PSD-95 in the IL as a critical mechanism supporting the durability of fear memories over time. These preclinical findings have implications for developing novel approaches to treating trauma-based anxiety disorders that target the weakening of overly persistent fear memories.

  20. Durability of polymers for containment barriers

    SciTech Connect

    Heiser, J.; Milian, L.; Clinton, J.; Colombo, P.

    1994-12-31

    Brookhaven National Laboratory has been involved in several tasks to develop, demonstrate, and implement advanced polymer materials for use in subsurface barriers throughout the US Department of Energy complex. Binders investigated as barrier composites include polyester styrenes, vinylester styrenes, high-molecular-weight acrylics, sulfur polymer cement, bitumen, and a furfuryl-alcohol-based furan polymer. These materials have been extensively used in many commercial applications, e.g., in sewage and brine handling systems and electrolytic baths. They have also been used by the US Army Corps of Engineers to repair dams and canal locks, and by the Federal highway Administration for bridge deck and highway repairs. Their impermeability to gases and liquids, combined with resistance to radiation and to acidic and alkaline environments, make polymer grouts candidates for high-quality, durable barriers. Laboratory testing and evaluation of polymer composites has been ongoing since early 1992. A series of resistance tests were used to determine the performance and durability characteristics of a variety of polymer composites. This paper details the results of this characterization that pertain to the Hanford Site underground storage tanks. Testing includes wet-dry cycling, chemical resistivity to ground water, base, solvent and a surrogate nitrate tank brine, resistance to irradiation, and hydraulic conductivity. Performance values indicate that polymers can meet the requirements for containment barriers for underground storage tanks at the Hanford tank farm, including the high-heat tanks. Appropriate choices of binder and aggregate, followed by appropriate, site-specific compatibility testing will result in a durable, high-strength, low-permeability barrier.

  1. Effects of mineral additions on durability and physico-mechanical properties of mortar

    NASA Astrophysics Data System (ADS)

    Logbi, A.; Kriker, A.; Snisna, Z.

    2017-02-01

    This paper consists of an experimental study of the effect of some mineral admixtures on the properties of mortar. Blast furnace Slag of El-Hadjar, natural pozzolan of Beni saf and limestone of Ghardaia, all from Algeria, are crushed in high fineness and incorporated in the cement with different contents (15 % 20 % and 10%) respectively, in order to perform the physico-mechanical characteristics and durability of the mortar. The replacement of cement by 15% of natural pozzolan, or 20% of the Blast furnace Slag improves the mechanical performances of mortar in early and long ages than the mortar without additions, but 10% of limestone fillers have a positive effect only at early age. For durability the three additions have developed a beneficial effect on mechanical resistance under the free aquifers water, while their effects are different on capillary absorption.

  2. Advanced Face Gear Surface Durability Evaluations

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Heath, Gregory F.

    2016-01-01

    The surface durability life of helical face gears and isotropic super-finished (ISF) face gears was investigated. Experimental fatigue tests were performed at the NASA Glenn Research Center. Endurance tests were performed on 10 sets of helical face gears in mesh with tapered involute helical pinions, and 10 sets of ISF-enhanced straight face gears in mesh with tapered involute spur pinions. The results were compared to previous tests on straight face gears. The life of the ISF configuration was slightly less than that of previous tests on straight face gears. The life of the ISF configuration was slightly greater than that of the helical configuration.

  3. Durable, Low-Surface-Energy Treatments

    NASA Technical Reports Server (NTRS)

    Willis, Paul B.; Mcelroy, Paul M.; Hickey, Gregory S.

    1992-01-01

    Chemical treatment for creation of durable, low-surface-energy coatings for glass, ceramics and other protonated surfaces easily applied, and creates very thin semipermanent film with extremely low surface tension. Exhibits excellent stability; surfaces retreated if coating becomes damaged or eroded. Uses include water-repellent surfaces, oil-repellent surfaces, antimigration barriers, corrosion barriers, mold-release agents, and self-cleaning surfaces. Film resists wetting by water, alcohols, hydrocarbon solvents, and silicone oil. Has moderate resistance to abrasion, such as rubbing with cloths, and compression molding to polymers and composite materials.

  4. Chemistry of Durable and Regenerable Biocidal Textiles

    NASA Astrophysics Data System (ADS)

    Sun, Gang; Worley, S. Dave

    2005-01-01

    Unlike the widely used slow-releasing biocidal mechanism now employed in biocidal textiles, a novel regenerable process, based on a regeneration principle and halamine chemistry, has been developed in antimicrobial finishing of textiles. Halamine-modified textile materials demonstrate durable and regenerable antimicrobial functions and execute rapid inactivation of a broad spectrum of microorganisms by contact without yielding drug resistance. The unique properties of the products render them useful materials for medical-use and hygienic textiles. The chemistry of the biocidal materials is be discussed. See Featured Molecules .

  5. Environmental durability of electroplated black chromium

    NASA Technical Reports Server (NTRS)

    Lowery, J. R.

    1981-01-01

    A study was undertaken to determine the durability of nickel-black chromium plated aluminum in an outdoor rural industrial, and seacoast environment. Test panels were exposed to these environments for 60, 36, and 13 months, respectively. The results of this study showed that no significant optical degradation occurred from exposure to either of these environments, although a considerable amount of corrosion occurred on the panels exposed to the seacoast environment. The rural and industrial atmosphere produced only a slight amount of corrosion on test panels.

  6. Durability of Polymeric Glazing and Absorber Materials

    SciTech Connect

    Jorgensen, G.; Terwilliger, K.; Bingham, C.; Lindquist, C.; Milbourne, M.

    2005-11-01

    The Solar Heating and Lighting Program has set the goal of reducing the cost of solar water heating systems by at least 50%. An attractive approach to such large cost reduction is to replace glass and metal parts with less-expensive, lighter-weight, more-integrated polymeric components. The key challenge with polymers is to maintain performance and assure requisite durability for extended lifetimes. We have begun evaluation of several new UV-screened polycarbonate sheet glazing constructions. This has involved interactions with several major polymer industry companies to obtain improved candidate samples. Proposed absorber materials were tested for UV resistance, and appear adequate for unglazed ICS absorbers.

  7. Combined Hydrophobicity and Mechanical Durability through Surface Nanoengineering

    PubMed Central

    Elliott, Paul R.; Stagon, Stephen P.; Huang, Hanchen; Furrer, David U.; Burlatsky, Sergei F.; Filburn, Thomas P.

    2015-01-01

    This paper reports combined hydrophobicity and mechanical durability through the nanoscale engineering of surfaces in the form of nanorod-polymer composites. Specifically, the hydrophobicity derives from nanoscale features of mechanically hard ZnO nanorods and the mechanical durability derives from the composite structure of a hard ZnO nanorod core and soft polymer shell. Experimental characterization correlates the morphology of the nanoengineered surfaces with the combined hydrophobicity and mechanical durability, and reveals the responsible mechanisms. Such surfaces may find use in applications, such as boat hulls, that benefit from hydrophobicity and require mechanical durability. PMID:25851026

  8. Combined hydrophobicity and mechanical durability through surface nanoengineering

    DOE PAGES

    Elliott, Paul R.; Stagon, Stephen P.; Huang, Hanchen; ...

    2015-04-08

    This paper reports combined hydrophobicity and mechanical durability through the nanoscale engineering of surfaces in the form of nanorod-polymer composites. Specifically, the hydrophobicity derives from nanoscale features of mechanically hard ZnO nanorods and the mechanical durability derives from the composite structure of a hard ZnO nanorod core and soft polymer shell. Experimental characterization correlates the morphology of the nanoengineered surfaces with the combined hydrophobicity and mechanical durability, and reveals the responsible mechanisms. Such surfaces may find use in applications, such as boat hulls, that benefit from hydrophobicity and require mechanical durability.

  9. Durability of ITO-MgF2 Films for Space-Inflatable Polymer Structures

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Waters, Deborah L.; Schieman, David A.; Hambourger, Paul D.

    2003-01-01

    This paper presents results from ITO-MgF2 film durability evaluations that included tape peel, fold, thermal cycle, and AO exposure testing. Polymer coupon preparation is described as well as ITO-MgF2 film deposition equipment, procedures and film characterization. Durability testing methods are also described. The pre- and post-test condition of the films is assessed visually, microscopically, and electrically. Results show that at 500 ITO - 9 vol% MgF2 film is suitable to protect polymer surfaces, such as those used in space-inflatable structures of the PowerSphere microsatellite concept, during a 1-year Earth orbiting mission. Future plans for ground-based and orbital testing of this film are also discussed.

  10. Laundering durable antibacterial cotton fabrics grafted with pomegranate-shaped polymer wrapped in silver nanoparticle aggregations

    PubMed Central

    Liu, Hanzhou; Lv, Ming; Deng, Bo; Li, Jingye; Yu, Ming; Huang, Qing; Fan, Chunhai

    2014-01-01

    To improve the laundering durability of the silver functionalized antibacterial cotton fabrics, a radiation-induced coincident reduction and graft polymerization is reported herein where a pomegranate-shaped silver nanoparticle aggregations up to 500 nm can be formed due to the coordination forces between amino group and silver and the wrapping procedure originated from the coincident growth of the silver nanoparticles and polymer graft chains. This pomegranate-shaped silver NPAs functionalized cotton fabric exhibits outstanding antibacterial activities and also excellent laundering durability, where it can inactivate higher than 90% of both E. coli and S. aureus even after 50 accelerated laundering cycles, which is equivalent to 250 commercial or domestic laundering cycles. PMID:25082297

  11. Evaluation of models of waste glass durability

    SciTech Connect

    Ellison, A.

    1995-08-01

    The main variable under the control of the waste glass producer is the composition of the glass; thus a need exists to establish functional relationships between the composition of a waste glass and measures of processability, product consistency, and durability. Many years of research show that the structure and properties of a glass depend on its composition, so it seems reasonable to assume that there also is relationship between the composition of a waste glass and its resistance to attack by an aqueous solution. Several models have been developed to describe this dependence, and an evaluation their predictive capabilities is the subject of this paper. The objective is to determine whether any of these models describe the ``correct`` functional relationship between composition and corrosion rate. A more thorough treatment of the relationships between glass composition and durability has been presented elsewhere, and the reader is encouraged to consult it for a more detailed discussion. The models examined in this study are the free energy of hydration model, developed at the Savannah River Laboratory, the structural bond strength model, developed at the Vitreous State Laboratory at the Catholic University of America, and the Composition Variation Study, developed at Pacific Northwest Laboratory.

  12. Mechanically durable superhydrophobic surfaces prepared by abrading

    NASA Astrophysics Data System (ADS)

    Wang, Fajun; Yu, Shan; Ou, Junfei; Xue, Mingshan; Li, Wen

    2013-09-01

    Superhydrophobic surfaces with both excellent mechanical durability and easy reparability based on polytetrafluoroethylene/room temperature vulcanized silicone rubber (PTFE/RTVSR) composites were prepared by a simple abrading method. The surface energy of RTVSR matrix decreased with the increasing volume fraction of PTFE particles, and the surface rough microstructures of the composites were created by abrading. A water droplet on the surface exhibited a contact angle of about 165° ± 3.4° and a sliding angle of about 7.3° ± 1.9°. Such superhydrophobic surfaces showed strong mechanical durability against sandpaper because the surfaces were prepared in the way of mechanical abrasion, and the fresh exposed surfaces were still superhydrophobic. In addition, the micro-structures on the elastic surface of the composite will be compressed by elastic deformation to avoid being broken during the friction cycles when cotton fabric was used as an abrasion surface. The deformation will rebound to renew the original surface structures when the load is withdrawn. Therefore, the elastic PTFE/RTVSR composites are of advantage to construct superhydrophobic surfaces with better abrasion resistance. More importantly, such superhydrophobicity can be repaired by a simple abrading regeneration process within a few minutes when the surface is damaged or polluted by organic contaminant.

  13. Converting mixed waste into durable glass

    SciTech Connect

    Ruller, J.A.; Greenman, W.G.

    1994-12-31

    Radioactive, hazardous and mixed contamination of soils and sediments within the Weapons Complex is widespread and estimated to total billions of cubic meters. The cost to remediate this contamination, as well as the contaminated surface and groundwaters, buildings and facilities has been estimated to be up to $300 billion over the next 30 years and up to $30 billion over the next five years. Progress towards cleaning the Weapons Complex depends upon the development of new remediation technologies. The remediation of contaminated soils and sludges ultimately rests on the immobilization of radioactive and hazardous contaminants into a solid wasteform that is leach resistant to aqueous corrosion and other forms of degradation (such as thermal cycling and biological attack) and is highly durable. In addition, the process to immobilize the contaminants should concentrate the contaminants into the smallest volume to reduce disposal/storage and transportation costs. GTS Duratek and the Vitreous State Laboratory of The Catholic University of America have successfully demonstrated that several different waste streams can be converted into a durable, leach-resistant glass that will also lower waste volumes. In this paper, the authors discuss these successes for soils and sludges from three separate US Department of Energy sites. The sites are: the K-25 facility; the Weldon Spring site; and Fernald, Ohio.

  14. CHP Fuel Cell Durability Demonstration - Final Report

    SciTech Connect

    Petrecky, James; Ashley, Christopher J

    2014-07-21

    Plug Power has managed a demonstration project that has tested multiple units of its high-temperature, PEM fuel cell system in micro-combined heat and power (μ-CHP) applications in California. The specific objective of the demonstration project was to substantiate the durability of GenSys Blue, and, thereby, verify its technology and commercial readiness for the marketplace. In the demonstration project, Plug Power, in partnership with the National Fuel Cell Research Center (NFCRC) at the University of California, Irvine (UCI), and Sempra, will execute two major tasks: • Task 1: Internal durability/reliability fleet testing. Six GenSys Blue units will be built and will undergo an internal test regimen to estimate failure rates. This task was modified to include 3 GenSys Blue units installed in a lab at UCI. • Task 2: External customer testing. Combined heat and power units will be installed and tested in real-world residential and/or light commercial end user locations in California.

  15. Durability Assessment of TiAl Alloys

    NASA Technical Reports Server (NTRS)

    Draper, Susan L.; Lerch, Bradley A.

    2008-01-01

    The durability of TiAl is a prime concern for the implementation of TiAl into aerospace engines. Two durability issues, the effect of high temperature exposure on mechanical properties and impact resistance, have been investigated and the results are summarized in this paper. Exposure to elevated temperatures has been shown to be detrimental to the room temperature ductility of gamma alloys with the most likely mechanisms being the ingress of interstitials from the surface. Fluorine ion implantation has been shown to improve the oxidation resistance of gamma alloys, and ideally it could also improve the environmental embrittlement of high Nb content TiAl alloys. The effect of F ion implantation on the surface oxidation and embrittlement of a third generation, high Nb content TiAl alloy (Ti-45Al-5Nb-B-C) were investigated. Additionally, the ballistic impact resistance of a variety of gamma alloys, including Ti-48Al-2Cr- 2Nb, Ti-47Al-2Cr-2Nb, ABB-2, ABB-23, NCG359E, 95A and Ti-45Al-5Nb-B-C was accessed. Differences in the ballistic impact properties of the various alloys will be discussed, particularly with respect to their manufacturing process, microstructure, and tensile properties.

  16. Durable Nanocomposites for Superhydrophobicity and Superoleophobicity

    NASA Astrophysics Data System (ADS)

    Steele, Adam

    Anti-wetting surfaces and materials have the potential for dramatic performance improvements such as drag reduction on marine vehicles and fluid power systems as well as anti-fouling on aircraft and wind turbines. Although a wide variety of synthetic superhydrophobic surfaces have been developed and investigated, several critical obstacles remain before industrial application can be realized, including: (1) large surface area application, (2) multi-liquid anti-wetting, (3) environmentally friendly compositions, (4) mechanical durability and adhesion, and (5) long-term performance. In this dissertation, nanocomposite coatings have been investigated to generate high performance anti-wetting surfaces that address these obstacles which may enable application on wind turbine blades. Solution processable materials were used which self-assemble to create anti-wetting nanocomposite surfaces upon spray coating and curing. As a result, the first superoleophobic nanocomposite, the first environmentally friendly superhydrophobic compositions, and the first highly durable superhydrophobic nanocomposite coatings were created. Furthermore, the mechanisms leading to this improved performance were studied.

  17. Study on durability for thermal cycle of planar SOFC

    SciTech Connect

    Ando, Motoo; Nakata, Kei-ichi; Wakayama, Sin-ichi

    1996-12-31

    TONEN CORPORATION has developed planar type SOFC since 1986. We demonstrated the output of 1.3 kW in 1991 and 5.1 kW in 1995. Simultaneously we have studied how to raise electric efficiency and reliability utilizing hydrogen and propane as fuel. Durability for thermal cycle is one of the most important problems of planar SOFC to make it more practical. The planar type SOFC is made up of separator, zirconia electrolyte and glass sealant. The thermal expansion of these components are expected to be the same value, however, they still possess small differences. In this situation, a thermal cycle causes a thermal stress due to the difference of the cell components and is often followed by a rupture in cell components, therefore, the analysis of the thermal stress should give us much useful information. The thermal cycle process consists of a heating up and cooling down procedure. Zirconia electrolyte is not bonded to the separator under the condition of the initial heating up procedure, and glass sealant becomes soft or melts and glass seals spaces between the zirconia and separator. The glass sealant becomes harder with the cooling down procedure. Moreover, zirconia is tightly bonded with separator below a temperature which is defined as a constraint temperature and thermal stress also occurs. This indicates that the heating up process relaxes the thermal stress and the cooling down increases it. In this paper, we simulated dependence of the stress on the sealing configuration, thermal expansion of sealant and constraint temperature of sealant glass. Furthermore, we presented SOFC electrical properties after a thermal cycle.

  18. Durable Airtightness in Single-Family Dwellings - Field Measurementsand Analysis

    DOE PAGES

    Chan, Wanyu R.; Walker, Iain S.; Sherman, Max H.

    2015-06-01

    Here, durability of the building envelope is important to new homes that are increasingly built with improved levels of airtightness. It is also important to weatherized homes such that energy savings from retrofit measures, such as air sealing, are persistent. This paper presents a comparison of air leakage measurements collected in November 2013 through March 2014, with two sets of prior data collected between 2001-2003 from 17 new homes located near Atlanta, GA, and 17 homes near Boise, ID that were weatherized in 2007- 2008. The purpose of the comparison is to determine if there are changes to the airtightnessmore » of building envelopes over time. The air leakage increased in all but one of the new homes, with a mean increase of about 25%. The weatherized homes also showed an increase in the mean air leakage (12%). A regression analysis was performed to describe the relationship between prior and current measurements in terms of normalized leakage (NL). The best estimate of the ageing factor predicts a 15% increase in NL over ten years. Further analysis using ResDB data (LBNL’s Residential Diagnostic Database) showed the expected changes in air leakage if ageing were modelled. These results imply the need to examine the causes of increased leakage and methods to avoid them. This increase in leakage with time should be accounted for in long-term population-wide energy savings estimates, such as those used in ratings or energy savings programs.« less

  19. Durable Airtightness in Single-Family Dwellings - Field Measurementsand Analysis

    SciTech Connect

    Chan, Wanyu R.; Walker, Iain S.; Sherman, Max H.

    2015-06-01

    Here, durability of the building envelope is important to new homes that are increasingly built with improved levels of airtightness. It is also important to weatherized homes such that energy savings from retrofit measures, such as air sealing, are persistent. This paper presents a comparison of air leakage measurements collected in November 2013 through March 2014, with two sets of prior data collected between 2001-2003 from 17 new homes located near Atlanta, GA, and 17 homes near Boise, ID that were weatherized in 2007- 2008. The purpose of the comparison is to determine if there are changes to the airtightness of building envelopes over time. The air leakage increased in all but one of the new homes, with a mean increase of about 25%. The weatherized homes also showed an increase in the mean air leakage (12%). A regression analysis was performed to describe the relationship between prior and current measurements in terms of normalized leakage (NL). The best estimate of the ageing factor predicts a 15% increase in NL over ten years. Further analysis using ResDB data (LBNL’s Residential Diagnostic Database) showed the expected changes in air leakage if ageing were modelled. These results imply the need to examine the causes of increased leakage and methods to avoid them. This increase in leakage with time should be accounted for in long-term population-wide energy savings estimates, such as those used in ratings or energy savings programs.

  20. Durable Airtightness in Single-Family Dwellings: Field Measurements

    SciTech Connect

    Chan, Wanyu R.; Walker, Iain S.; Sherman, Max H.

    2015-06-01

    Durability of building envelope is important to new homes that are increasingly built with improved levels of airtightness. It is also important to weatherized homes such that energy savings from retrofit measures, such as air sealing, are persistent. We presented a comparison of air leakage measurements collected in November 2013 through March 2014, with two sets of prior data collected between 2001-2003 from 17 new homes located near Atlanta, GA, and 17 homes near Boise, ID that were weatherized in 2007-2008. The purpose of the comparison is to determine if there are changes to the airtightness of building envelopes over time. The air leakage increased in all but one of the new homes, with a mean increase of about 25%. The weatherized homes also showed an increase in the mean air leakage (12%). We performed a regression analysis to describe the relationship between prior and current measurements in terms of normalized leakage (NL). The best estimate of the aging factor predicts a 15% increase in NL over ten years. Further analysis using ResDB data (LBNL’s Residential Diagnostic Database) showed the expected changes in air leakage if aging were modeled. These results imply that we should examine the causes of increased leakage and methods to avoid them. This increase in leakage with time should be accounted for in long-term population-wide energy savings estimates, such as those used in ratings or energy savings programs.

  1. 40 CFR 94.219 - Durability data engine selection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Durability data engine selection. 94... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions § 94.219 Durability data engine selection. (a) For Category 1 and Category 2 engines, the manufacturer shall...

  2. 40 CFR 94.219 - Durability data engine selection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Durability data engine selection. 94... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions § 94.219 Durability data engine selection. (a) For Category 1 and Category 2 engines, the manufacturer shall...

  3. 40 CFR 94.219 - Durability data engine selection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Durability data engine selection. 94... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions § 94.219 Durability data engine selection. (a) For Category 1 and Category 2 engines, the manufacturer shall...

  4. 40 CFR 94.219 - Durability data engine selection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Durability data engine selection. 94... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions § 94.219 Durability data engine selection. (a) For Category 1 and Category 2 engines, the manufacturer shall...

  5. Effect of Unprofessional Supervision on Durability of Buildings.

    PubMed

    Yahaghi, Javad

    2017-02-02

    The durability of buildings which depends on the nature of the supervisory system used in their construction is an important feature of the construction industry. This article tries to draw the readers' attention to the effect of untrained and unprofessional building supervisors and their unethical performance on the durability of buildings.

  6. Durability of Silicate Glasses: An Historical Approach

    SciTech Connect

    Farges, Francois; Etcheverry, Marie-Pierre; Haddi, Amine; Trocellier, Patrick; Curti, Enzo; Brown, Gordon E., Jr.; /SLAC, SSRL

    2007-01-02

    We present a short review of current theories of glass weathering, including glass dissolution, and hydrolysis of nuclear waste glasses, and leaching of historical glasses from an XAFS perspective. The results of various laboratory leaching experiments at different timescales (30 days to 12 years) are compared with results for historical glasses that were weathered by atmospheric gases and soil waters over 500 to 3000 years. Good agreement is found between laboratory experiments and slowly leached historical glasses, with a strong enrichment of metals at the water/gel interface. Depending on the nature of the transition elements originally dissolved in the melt, increasing elemental distributions are expected to increase with time for a given glass durability context.

  7. Lightweight, durable lead-acid batteries

    DOEpatents

    Lara-Curzio, Edgar; An, Ke; Kiggans, Jr., James O; Dudney, Nancy J; Contescu, Cristian I; Baker, Frederick S; Armstrong, Beth L

    2013-05-21

    A lightweight, durable lead-acid battery is disclosed. Alternative electrode materials and configurations are used to reduce weight, to increase material utilization and to extend service life. The electrode can include a current collector having a buffer layer in contact with the current collector and an electrochemically active material in contact with the buffer layer. In one form, the buffer layer includes a carbide, and the current collector includes carbon fibers having the buffer layer. The buffer layer can include a carbide and/or a noble metal selected from of gold, silver, tantalum, platinum, palladium and rhodium. When the electrode is to be used in a lead-acid battery, the electrochemically active material is selected from metallic lead (for a negative electrode) or lead peroxide (for a positive electrode).

  8. Lightweight, durable lead-acid batteries

    DOEpatents

    Lara-Curzio, Edgar; An, Ke; Kiggans, Jr., James O.; Dudney, Nancy J.; Contescu, Cristian I.; Baker, Frederick S.; Armstrong, Beth L.

    2011-09-13

    A lightweight, durable lead-acid battery is disclosed. Alternative electrode materials and configurations are used to reduce weight, to increase material utilization and to extend service life. The electrode can include a current collector having a buffer layer in contact with the current collector and an electrochemically active material in contact with the buffer layer. In one form, the buffer layer includes a carbide, and the current collector includes carbon fibers having the buffer layer. The buffer layer can include a carbide and/or a noble metal selected from of gold, silver, tantalum, platinum, palladium and rhodium. When the electrode is to be used in a lead-acid battery, the electrochemically active material is selected from metallic lead (for a negative electrode) or lead peroxide (for a positive electrode).

  9. Thermal fatigue durability for advanced propulsion materials

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    1989-01-01

    A review is presented of thermal and thermomechanical fatigue (TMF) crack initiation life prediction and cyclic constitutive modeling efforts sponsored recently by the NASA Lewis Research Center in support of advanced aeronautical propulsion research. A brief description is provided of the more significant material durability models that were created to describe TMF fatigue resistance of both isotropic and anisotropic superalloys, with and without oxidation resistant coatings. The two most significant crack initiation models are the cyclic damage accumulation model and the total strain version of strainrange partitioning. Unified viscoplastic cyclic constitutive models are also described. A troika of industry, university, and government research organizations contributed to the generation of these analytic models. Based upon current capabilities and established requirements, an attempt is made to project which TMF research activities most likely will impact future generation propulsion systems.

  10. DROP: Durable Reconnaissance and Observation Platform

    NASA Technical Reports Server (NTRS)

    Parness, Aaron; McKenzie, Clifford F.

    2012-01-01

    Robots have been a valuable tool for providing a remote presence in areas that are either inaccessible or too dangerous for humans. Having a robot with a high degree of adaptability becomes crucial during such events. The adaptability that comes from high mobility and high durability greatly increases the potential uses of a robot in these situations, and therefore greatly increases its usefulness to humans. DROP is a lightweight robot that addresses these challenges with the capability to survive large impacts, carry a usable payload, and traverse a variety of surfaces, including climbing vertical surfaces like wood, stone, and concrete. The platform is crash-proof, allowing it to be deployed in ways including being dropped from an unmanned aerial vehicle or thrown from a large MSL-class (Mars Science Laboratory) rover.

  11. Durable fiber reinforced self-compacting concrete

    SciTech Connect

    Corinaldesi, V.; Moriconi, G

    2004-02-01

    In order to produce thin precast elements, a self-compacting concrete was prepared. When manufacturing these elements, homogenously dispersed steel fibers instead of ordinary steel-reinforcing mesh were added to the concrete mixture at a dosage of 10% by mass of cement. An adequate concrete strength class was achieved with a water to cement ratio of 0.40. Compression and flexure tests were carried out to assess the safety of these thin concrete elements. Moreover, serviceability aspects were taken into consideration. Firstly, drying shrinkage tests were carried out in order to evaluate the contribution of steel fibers in counteracting the high concrete strains due to a low aggregate-cement ratio. Secondly, the resistance to freezing and thawing cycles was investigated on concrete specimens in some cases superficially treated with a hydrophobic agent. Lastly, both carbonation and chloride penetration tests were carried out to assess durability behavior of this concrete mixture.

  12. Durability of Polymeric Glazing and Absorber Materials

    SciTech Connect

    Jorgensen, G.; Terwilliger, K.; Bingham, C.; Milbourne, M.

    2005-01-01

    The Solar Heating and Lighting Program has set the goal of reducing the cost of solar water heating systems by at least 50%. An attractive approach to such large cost reduction is to replace glass and metal parts with less-expensive, lighter-weight, more-integrated polymeric components. The key challenge with polymers is to maintain performance and assure requisite durability for extended lifetimes. The objective of this task is to quantify lifetimes through measurement of the optical and mechanical stability of candidate polymeric glazing and absorber materials. Polycarbonate sheet glazings, as proposed by two industry partners, have been tested for resistance to UV radiation with three complementary methods. Incorporation of a specific 2-mil thick UV-absorbing screening layer results in glazing lifetimes of at least 15 years; improved screens promise even longer lifetimes. Proposed absorber materials were tested for creep and embrittlement under high temperature, and appear adequate for planned ICS absorbers.

  13. Durability of incinerator ash waste encapsulated in modified sulfur cement

    SciTech Connect

    Kalb, P.D.; Heiser, J.H. III; Pietrzak, R.; Colombo, P.

    1991-01-01

    Waste form stability under anticipated disposal conditions is an important consideration for ensuring continued isolation of contaminants from the accessible environment. Modified sulfur cement is a relatively new material and has only recently been applied as a binder for encapsulation of mixed wastes. Little data are available concerning its long-term durability. Therefore, a series of property evaluation tests for both binder and waste-binder combinations have been conducted to examine potential waste form performance under storage and disposal conditions. These tests include compressive strength, biodegradation, radiation stability, water immersion, thermal cycling, and leaching. Waste form compressive strength increased with ash waste loadings to 30.5 MPa at a maximum incinerator ash loading of 43 wt %. Biodegradation testing resulted in no visible microbial growth of either bacteria or fungi. Initial radiation stability testing did not reveal statistically significant deterioration in structural integrity. Results of 90 day water immersion tests were dependent on the type of ash tested. There were no statistically significant changes in compressive strength detected after completion of thermal cycle testing. Radionuclides from ash waste encapsulated in modified sulfur cement leached between 5 and 8 orders of magnitude slower than the leach index criterion established by the Nuclear Regulatory Commission (NRC) for low-level radioactive waste. Modified sulfur cement waste forms containing up to 43 wt % incinerator fly ash passed EPA Toxicity Characteristic Leaching Procedure (TCLP) criteria for lead and cadmium leachability. 11 refs., 2 figs., 5 tabs.

  14. Prediction of glass durability as a function of environmental conditions

    SciTech Connect

    Jantzen, C M

    1988-01-01

    A thermodynamic model of glass durability is applied to natural, ancient, and nuclear waste glasses. The durabilities of over 150 different natural and man-made glasses, including actual ancient Roman and Islamic glasses (Jalame ca. 350 AD, Nishapur 10-11th century AD and Gorgon 9-11th century AD), are compared. Glass durability is a function of the thermodynamic hydration free energy, ..delta..G/sub hyd/, which can be calculated from glass composition and solution pH. The durability of the most durable nuclear waste glasses examined was /approximately/10/sup 6/ years. The least durable waste glass formulations were comparable in durability to the most durable simulated medieval window glasses of /approximately/10/sup 3/ years. In this manner, the durability of nuclear waste glasses has been interpolated to be /approximately/10/sup 6/ years and no less than 10/sup 3/ years. Hydration thermodynamics have been shown to be applicable to the dissolution of glass in various natural environments. Groundwater-glass interactions relative to geologic disposal of nuclear waste, hydration rind dating of obsidians, andor other archeological studies can be modeled, e.g., the relative durabilities of six simulated medieval window glasses have been correctly predicted for both laboratory (one month) and burial (5 years) experiments. Effects of solution pH on glass dissolution has been determined experimentally for the 150 different glasses and can be predicted theoretically by hydration thermodynamics. The effects of solution redox on dissolution of glass matrix elements such as SI and B have shown to be minimal. The combined effects of solution pH and Eh have been described and unified by construction of thermodynamically calculated Pourbaix (pH-Eh) diagrams for glass dissolution. The Pourbaix diagrams have been quantified to describe glass dissolution as a function of environmental conditions by use of the data derived from hydration thermodynamics. 56 refs., 7 figs.

  15. Primer on Durability of Nuclear Power Plant Reinforced Concrete Structures - A Review of Pertinent Factors

    SciTech Connect

    Naus, Dan J

    2007-02-01

    The objective of this study was to provide a primer on the environmental effects that can affect the durability of nuclear power plant concrete structures. As concrete ages, changes in its properties will occur as a result of continuing microstructural changes (i.e., slow hydration, crystallization of amorphous constituents, and reactions between cement paste and aggregates), as well as environmental influences. These changes do not have to be detrimental to the point that concrete will not be able to meet its performance requirements. Concrete, however, can suffer undesirable changes with time because of improper specifications, a violation of specifications, or adverse performance of its cement paste matrix or aggregate constituents under either physical or chemical attack. Contained in this report is a discussion on concrete durability and the relationship between durability and performance, a review of the historical perspective related to concrete and longevity, a description of the basic materials that comprise reinforced concrete, and information on the environmental factors that can affect the performance of nuclear power plant concrete structures. Commentary is provided on the importance of an aging management program.

  16. Volvo Penta 4.3 GL E15 Emissions and Durability Test

    SciTech Connect

    Zoubul, G.; Cahoon, M.; Kolb, R.

    2011-10-01

    A new Volvo Penta carbureted 4.3 GL engine underwent emissions and dynamometer durability testing from break-in to expected end of life using an accelerated ICOMIA marine emissions cycle and E15 fuel. Only ethanol content was controlled. All aging used splash-blended E15 fuel. Exhaust emissions, exhaust gas temperature, torque, power, barometric pressure, air temperature, and fuel flow were measured at five intervals using site-blended E15 aging fuel and certification fuel (E0). The durability test cycle showed no noticeable impact on mechanical durability or engine power. Emissions performance degraded beyond the certification limit for this engine family, mostly occurring by 28% of expected life. Such degradation is inconsistent with prior experience. Comparisons showed that E15 resulted in lower CO and HC, but increased NOX, as expected for non-feedback-controlled carbureted engines with increased oxygen in the fuel. Fuel consumption also increased with E15 compared with E0. Throughout testing, poor starting characteristics were exhibited on E15 fuel for hot re-start and cold-start. Cranking time to start and smooth idle was roughly doubled compared with typical E0 operation. The carburetor was factory-set for lean operation to ensure emissions compliance. Test protocols did not include carburetor adjustment to account for increased oxygen in the E15 fuel.

  17. Effect of Sizings on the Durability of High Temperature Polymer Composites

    NASA Technical Reports Server (NTRS)

    Allred, Ronald E.; Shin, E. Eugene; Inghram, Linda; McCorkle, Linda; Papadopoulos, Demetrios; Wheeler, Donald; Sutter, James K.

    2003-01-01

    To increase performance and durability of high-temperature composite for potential rocket engine components, it is necessary to optimize wetting and interfacial bonding between high modulus carbon fibers and high-temperature polyimide resins. Sizing commercially supplied on most carbon fiber are not compatible with polyimides. In this study, the chemistry of sizing on two high modulus carbon fiber (M40J and M60J, Tiray) was characterized. A continuous desizling system that uses an environmentally friendly chemical-mechanical process was developed for tow level fiber. Composites were fabricated with fibers containing the manufacturer's sizing, desized, and further treated with a reactive finish. Results of room-temperature tests after thermal aging show that the reactive finish produces a higher strength and more durable interface compared to the manufacturer's sizing. When exposed to moisture blistering tests, however, the butter bonded composite displayed a tendency to delaminate, presumably due to trapping of volatiles.

  18. Overview of ORNL/NRC programs addressing durability of concrete structures

    SciTech Connect

    Naus, D.J.; Oland, C.B.

    1994-06-01

    The role of reinforced concrete relative to its applications as either safety-related structures in nuclear power or engineered barriers of low-level radioactive waste disposal facilities is described. Factors that can affect the long-term durability of reinforced concrete are identified. Overviews are presented of the Structural Aging Program, which is addressing the aging management of safety-related concrete structures in nuclear power plants, and the Permeability Test Methods and Data Program, which is identifying pertinent data and information for use in performance assessments of engineered barriers for low-level radioactive waste disposal.

  19. Prevalence and monthly distribution of head lice using two diagnostic procedures in several age groups in Uberlândia, State of Minas Gerais, Southeastern Brazil.

    PubMed

    Borges, Raquel; Silva, Juliana J; Rodrigues, Rosângela M; Mendes, Júlio

    2007-01-01

    Some epidemiological characteristics of head lice, Pediculus capitis, were studied using two procedures: cut hair analysis and head inspection. Higher prevalence rates were observed in the middle and at the end of the school terms. Both procedures indicated that children were the main reservoir for this type of pediculosis in Uberlândia.

  20. A nonlinear viscoelastic approach to durability predictions for polymer based composite structures

    NASA Technical Reports Server (NTRS)

    Brinson, Hal F.

    1991-01-01

    Current industry approaches for the durability assessment of metallic structures are briefly reviewed. For polymer based composite structures, it is suggested that new approaches must be adopted to include memory or viscoelastic effects which could lead to delayed failures that might not be predicted using current techniques. A durability or accelerated life assessment plan for fiber reinforced plastics (FRP) developed and documented over the last decade or so is reviewed and discussed. Limitations to the plan are outlined and suggestions to remove the limitations are given. These include the development of a finite element code to replace the previously used lamination theory code and the development of new specimen geometries to evaluate delamination failures. The new DCB model is reviewed and results are presented. Finally, it is pointed out that new procedures are needed to determine interfacial properties and current efforts underway to determine such properties are reviewed. Suggestions for additional efforts to develop a consistent and accurate durability predictive approach for FRP structures are outlined.

  1. A nonlinear viscoelastic approach to durability predictions for polymer based composite structures

    NASA Technical Reports Server (NTRS)

    Brinson, Hal F.; Hiel, C. C.

    1990-01-01

    Current industry approaches for the durability assessment of metallic structures are briefly reviewed. For polymer based composite structures, it is suggested that new approaches must be adopted to include memory or viscoelastic effects which could lead to delayed failures that might not be predicted using current techniques. A durability or accelerated life assessment plan for fiber reinforced plastics (FRP) developed and documented over the last decade or so is reviewed and discussed. Limitations to the plan are outlined and suggestions to remove the limitations are given. These include the development of a finite element code to replace the previously used lamination theory code and the development of new specimen geometries to evaluate delamination failures. The new DCB model is reviewed and results are presented. Finally, it is pointed out that new procedures are needed to determine interfacial properties and current efforts underway to determine such properties are reviewed. Suggestions for additional efforts to develop a consistent and accurate durability predictive approach for FRP structures is outlined.

  2. Durability patch and damage dosimeter: a portable battery-powered data acquisition computer and durability patch design process

    NASA Astrophysics Data System (ADS)

    Haugse, Eric D.; Johnson, Patrick E.; Smith, David L.; Rogers, Lynn C.

    2000-05-01

    Repairs of secondary structure can be accomplished by restoring structural integrity at the damaged area and increasing the structure's damping in the repair region. Increased damping leads to a reduction in resonant response and a repair that will survive for the life of the aircraft. In order to design a repair with effective damping properties, the in-service structural strains and temperatures must be known. A rugged, small and lightweight data acquisition unit called the Damage Dosimeter has been developed to accomplish this task with minimal impact to the aircraft system. Running autonomously off of battery power, the Damage Dosimeter measures three channels of strain at sample rates as high as 15 kilo-samples per second and a single channel of temperature. It merges the functionality of both analog signal conditioning and a digital single board computer on one 3.5 by 5 inch card. The Damage Dosimeter allows an engineer to easily instrument an in-service aircraft to assess the structural response characteristics necessary to properly select damping materials. This information in conjunction with analysis and design procedures can be used to design a repair with optimum effectiveness. This paper will present the motivation behind the development of the Damage Dosimeter along with an overview of its functional capabilities and design. In-service flight data and analysis results will be discussed for two applications. The paper will also describe how the Damage Dosimeter is used to enable the Durability Patch design process.

  3. Designing Self-Healing Superhydrophobic Surfaces with Exceptional Mechanical Durability.

    PubMed

    Golovin, Kevin; Boban, Mathew; Mabry, Joseph M; Tuteja, Anish

    2017-03-29

    The past decade saw a drastic increase in the understanding and applications of superhydrophobic surfaces (SHSs). Water beads up and effortlessly rolls off a SHS due to its combination of low surface energy and texture. Whether being used for drag reduction, stain repellency, self-cleaning, fog harvesting, or heat transfer applications (to name a few), the durability of a SHS is critically important. Although a handful of purportedly durable SHSs have been reported, there are still no criteria available for systematically designing a durable SHS. In the first part of this work, we discuss two new design parameters that can be used to develop mechanically durable SHSs via the spray coating of different binders and fillers. These parameters aid in the rational selection of material components and allow one to predict the capillary resistance to wetting of any SHS from a simple topographical analysis. We show that not all combinations of sprayable components generate SHSs, and mechanically durable components do not necessarily generate mechanically durable SHSs. Moreover, even the most durable SHSs can eventually become damaged. In the second part, utilizing our new parameters, we design and fabricate physically and chemically self-healing SHSs. The most promising surface is fabricated from a fluorinated polyurethane elastomer (FPU) and the extremely hydrophobic small molecule 1H,1H,2H,2H-heptadecafluorodecyl polyhedral oligomeric silsesquioxane (F-POSS). A sprayed FPU/F-POSS surface can recover its superhydrophobicity even after being abraded, scratched, burned, plasma-cleaned, flattened, sonicated, and chemically attacked.

  4. The effect of quench rate on the TCLP and PCT durability of environmental waste glass

    SciTech Connect

    Resce, J.L.; Wolff, B.M.; Jurgensen, A.R.

    1995-12-31

    The effect of quench rate and the resulting devitrification on the durability of environmental waste glasses was examined for a set of 16 model glasses. The glasses were derived from a large glass composition space, i.e. {open_quotes}hyperspace glasses,{close_quotes} which were previously developed. In this study, a subset of this space has been examined for chemical durability by both the 7-Day Product Consistency Test (PCT) and the Toxicity Characteristic Leaching Procedure (TCLP) tests. This subspace is composed of six variable components (Fe{sub 2}O{sub 3}, SiO{sub 2}, Al{sub 2}O{sub 3}, B{sub 2}O{sub 3}, Na{sub 2}O, and CaO) and three fixed-level components (BaO, PbO, and NiO). The approximate oxide composition of each glass is listed. The glass melts were cast into molds to produce disks, which were quenched at two different rates. The PCT sodium normalized release rate (NaRR) and the TCLP releases of Ni and Ba for both the low and high Fe{sub 2}O{sub 3} glasses are reported. These results show that there is almost no devitrification with either quench rate for the low iron glasses, and that there is negligible change in durability. For the high iron glasses, however, some of the slow quenched glasses are significantly more devitrified and crystalline. In some glasses, this increased crystallinity was found to lower the NaNRR and Ba TCLP durability. TCLP Ni release was negligible in both cases.

  5. Durability of high performance concrete in magnesium brine

    SciTech Connect

    Tumidajski, P.J.; Chan, G.W.

    1996-04-01

    The durability of six concretes exposed to magnesium brine was monitored for 24 months. These concretes incorporated ground granulated blast furnace slag, silica fume, and fly ash. The Young`s moduli, chloride penetrations, and median pore diameters were measured. There was a cyclic nature to these properties due to the complicated interaction of hydration with magnesium, chloride and sulfate attack. Mineral admixtures, in combination with a long initial cure, provided the most durable concrete. Concrete with 65% slag had the best overall durability to the brines tested.

  6. Durability of success after rectocele repair.

    PubMed

    López, A; Anzén, B; Bremmer, S; Mellgren, A; Nilsson, B Y; Zetterström, J; Holmström, B

    2001-01-01

    The purpose of the study was to determine the durability of success after rectocele repair and to evaluate parameters that might influence long-term results. Twenty-five patients with rectocele were prospectively evaluated both clinically and physiologically. Follow-up was performed twice, at 1 and 5.1 years postoperatively. Twenty-four patients had a long-term follow-up; 21/23 patients (91%) with preoperative symptoms of rectal emptying difficulty reported improvement of their symptoms and 9 of 12 (75%) with preoperative symptoms of pelvic heaviness reported relief at long-term follow-up. All 5 patients with preoperative pathologic transit study had various degrees of rectal emptying difficulty at long-term follow-up. Three of 5 patients with preoperative paradoxical sphincter reaction (PSR) at electromyography (EMG) reported improvement of the symptoms of rectal emptying difficulty at long-term follow-up. Surgery for rectocele is associated with improved symptoms in a majority of patients which are sustained long term. Patients with pathologic transit study may have a less favorable symptomatic outcome. The clinical significance of PSR needs further study.

  7. Teeth: Among Nature's Most Durable Biocomposites

    NASA Astrophysics Data System (ADS)

    Lawn, Brian R.; Lee, James J.-W.; Chai, Herzl

    2010-08-01

    This paper addresses the durability of natural teeth from a materials perspective. Teeth are depicted as smart biocomposites, highly resistant to cumulative deformation and fracture. Favorable morphological features of teeth at both macroscopic and microscopic levels contribute to an innate damage tolerance. Damage modes are activated readily within the brittle enamel coat but are contained from spreading catastrophically into the vulnerable tooth interior in sustained occlusal loading. Although tooth enamel contains a multitude of microstructural defects that can act as sources of fracture, substantial overloads are required to drive any developing cracks to ultimate failure—nature's strategy is to contain damage rather than avoid it. Tests on model glass-shell systems simulating the basic elements of the tooth enamel/dentin layer structure help to identify important damage modes. Fracture and deformation mechanics provide a basis for analyzing critical conditions for each mode, in terms of characteristic tooth dimensions and materials properties. Comparative tests on extracted human and animal teeth confirm the validity of the model test approach and point to new research directions. Implications in biomechanics, especially as they relate to dentistry and anthropology, are outlined.

  8. Durability of PEM Fuel Cell Membranes

    NASA Astrophysics Data System (ADS)

    Huang, Xinyu; Reifsnider, Ken

    Durability is still a critical limiting factor for the commercialization of polymer electrolyte membrane (PEM) fuel cells, a leading energy conversion technology for powering future hydrogen fueled automobiles, backup power systems (e.g., for base transceiver station of cellular networks), portable electronic devices, etc. Ionic conducting polymer (ionomer) electrolyte membranes are the critical enabling materials for the PEM fuel cells. They are also widely used as the central functional elements in hydrogen generation (e.g., electrolyzers), membrane cell for chlor-alkali production, etc. A perfluorosulfonic acid (PFSA) polymer with the trade name Nafion® developed by DuPont™ is the most widely used PEM in chlor-alkali cells and PEM fuel cells. Similar PFSA membranes have been developed by Dow Chemical, Asahi Glass, and lately Solvay Solexis. Frequently, such membranes serve the dual function of reactant separation and selective ionic conduction between two otherwise separate compartments. For some applications, the compromise of the "separation" function via the degradation and mechanical failure of the electrolyte membrane can be the life-limiting factor; this is particularly the case for PEM in hydrogen/oxygen fuel cells.

  9. Delamination durability of composite materials for rotorcraft

    NASA Technical Reports Server (NTRS)

    Obrien, T. Kevin

    1988-01-01

    Delamination is the most commonly observed failure mode in composite rotorcraft dynamic components. Although delamination may not cause immediate failure of the composite part, it often precipitates component repair or replacement, which inhibits fleet readiness, and results in increased life cycle costs. A fracture mechanics approach for analyzing, characterizing, and designing against delamination will be outlined. Examples of delamination problems will be illustrated where the strain energy release rate associated with delamination growth was found to be a useful generic parameter, independent of thickness, layup, and delamination source, for characterizing delamination failure. Several analysis techniques for calculating strain energy release rates for delamination from a variety of sources will be outlined. Current efforts to develop ASTM standard test methods for measuring interlaminar fracture toughness and developing delamination failure criteria will be reviewed. A technique for quantifying delamination durability due to cyclic loading will be presented. The use of this technique for predicting fatigue life of composite laminates and developing a fatigue design philosophy for composite structural components will be reviewed.

  10. Durability Evaluation of Selected Solid Lubricating Films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    2001-01-01

    An investigation was conducted to examine the coefficients of friction, wear rates, and durability of bonded molybdenum disulfide (MoS2), magnetron-sputtered MoS2, ion-plated silver, ion-plated lead, magnetron-sputtered diamondlike carbon (MS DLC), and plasma-assisted, chemical-vapor-deposited DLC (PACVD DLC) films in sliding contact with 6-mm-diameter AISI 440C stainless steel balls. Unidirectional ball-on-disk sliding friction experiments were conducted with a load of 5.9 N and a sliding velocity of 0.2 m/s at room temperature in three environments: ultrahigh vacuum (vacuum pressure, 7 x 10(exp -7) Pa), humid air (relative humidity, approx. 20 percent), and dry nitrogen (relative humidity, less than 1 percent). The main criteria for judging the performance of the solid lubricating films were coefficient of friction and wear rate, which had to be less than 0.3 and on the order of 10(exp -6) cu mm/N.m or less, respectively. The bonded MoS2 and magnetron-sputtered MoS2 films met the criteria in all three environments. The ion-plated lead and silver films met the criteria only in ultrahigh vacuum but failed in humid air and in dry nitrogen. The MS DLC and PACVD DLC films met the requirements in humid air and dry nitrogen but failed in ultrahigh vacuum.

  11. Optical enhancing durable anti-reflective coating

    DOEpatents

    Maghsoodi, Sina; Varadarajan, Aravamuthan; Movassat, Meisam

    2016-07-05

    Disclosed herein are polysilsesquioxane based anti-reflective coating (ARC) compositions, methods of preparation, and methods of deposition on a substrate. In embodiments, the polysilsesquioxane of this disclosure is prepared in a two-step process of acid catalyzed hydrolysis of organoalkoxysilane followed by addition of tetralkoxysilane that generates silicone polymers with >40 mol % silanol based on Si-NMR. These high silanol siloxane polymers are stable and have a long shelf-life in the polar organic solvents at room temperature. Also disclosed are low refractive index ARC made from these compositions with and without additives such as porogens, templates, Si--OH condensation catalyst and/or nanofillers. Also disclosed are methods and apparatus for applying coatings to flat substrates including substrate pre-treatment processes, coating processes including flow coating and roll coating, and coating curing processes including skin-curing using hot-air knives. Also disclosed are coating compositions and formulations for highly tunable, durable, highly abrasion-resistant functionalized anti-reflective coatings.

  12. High gain durable anti-reflective coating

    DOEpatents

    Maghsoodi, Sina; Brophy, Brenor L.; Colson, Thomas E.; Gonsalves, Peter R.; Abrams, Ze'ev R.

    2016-07-26

    Disclosed herein are polysilsesquioxane-based anti-reflective coating (ARC) compositions, methods of preparation, and methods of deposition on a substrate. In one embodiment, the polysilsesquioxane of this disclosure is prepared in a two-step process of acid catalyzed hydrolysis of organoalkoxysilane followed by addition of tetralkoxysilane that generates silicone polymers with >40 mol % silanol based on Si-NMR. These high silanol siloxane polymers are stable and have a long shelf-life in polar organic solvents at room temperature. Also disclosed are low refractive index ARC made from these compositions with and without additives such as porogens, templates, thermal radical initiator, photo radical initiators, crosslinkers, Si--OH condensation catalyst and nano-fillers. Also disclosed are methods and apparatus for applying coatings to flat substrates including substrate pre-treatment processes, coating processes and coating curing processes including skin-curing using hot-air knives. Also disclosed are coating compositions and formulations for highly tunable, durable, highly abrasion-resistant functionalized anti-reflective coatings.

  13. Durability of Alkali Activated Blast Furnace Slag

    NASA Astrophysics Data System (ADS)

    Ellis, K.; Alharbi, N.; Matheu, P. S.; Varela, B.; Hailstone, R.

    2015-11-01

    The alkali activation of blast furnace slag has the potential to reduce the environmental impact of cementitious materials and to be applied in geographic zones where weather is a factor that negatively affects performance of materials based on Ordinary Portland Cement. The scientific literature provides many examples of alkali activated slag with high compressive strengths; however research into the durability and resistance to aggressive environments is still necessary for applications in harsh weather conditions. In this study two design mixes of blast furnace slag with mine tailings were activated with a potassium based solution. The design mixes were characterized by scanning electron microscopy, BET analysis and compressive strength testing. Freeze-thaw testing up to 100 freeze-thaw cycles was performed in 10% road salt solution. Our findings included compressive strength of up to 100 MPa after 28 days of curing and 120 MPa after freeze-thaw testing. The relationship between pore size, compressive strength, and compressive strength after freeze-thaw was explored.

  14. Accelerated Durability Testing of Electrochromic Windows

    SciTech Connect

    Tracy, C. E.; Zhang, J. G.; Benson, D. K.; Czanderna, A. W.; Deb, S. K.

    1998-12-29

    Prototype electrochromic windows made by several different U.S. companies have been tested in our laboratory for their long-term durability. Samples were subjected to alternate coloring and bleaching voltage cycles while exposed to simulated on 1-sun irradiance in a temperature-controlled environmental chamber with low relative humidity. The samples inside the chamber were tested under a matrix of different conditions. These conditions include: cycling at different temperatures (65 C, 85 C, and 107 C) under the irradiance, cycling versus no-cycling under the same irradiance and temperature, testing with different voltage waveforms and duty cycles with the same irradiance and temperature, cycling under various filtered irradiance intensities, and simple thermal exposure with no irradiance or cycling. The electro-optical characteristics of the samples were measured between 350 and 1,100 nm every 4,000 cycles for up to 20,000 cycles. Photographs of the samples were taken periodically wi th a digital camera to record cosmetic defects, the extent of residual coloration, and overall coloration and bleaching uniformity of the samples. Our results indicate that the most important cause of degradation is the combination of continuous cycling, elevated temperature, and irradiance. The relative importance of these variables, when considered synergistically or separately, depends on the particular device materials and design.

  15. Durable clinical benefit following Sr90 Beta irradiation therapy for in-stent restenosis in high-volume community practice.

    PubMed

    Young, John J; Marcus, Daniel P; Abbottsmith, Charles W; Broderick, Thomas M; Choo, Joseph K; Runyon, John Paul; Schneider, John F; Shimshak, Thomas M; Geier, Rodney P; Kereiakes, Dean J

    2003-01-01

    Although randomized clinical trials have demonstrated efficacy of coronary irradiation versus placebo for the treatment of in-stent restenosis (ISR), durable long-term benefit in community practice is less well defined. From January 1, 2001, through June 30, 2002, consecutive percutaneous coronary intervention (n = 3,869) were analyzed at our center with a total of 330 patients undergoing coronary irradiation for ISR (53, Ir192; 12, P32; 265 Novoste Sr90). Novoste Sr90 was successfully performed in 265 of 270 (98%) of patients attempted by 10 operators. The mean patient age was 63 years (range 35 90) with 55% male (145/265) and 45% female (120/265). ISR anatomic subsets included multi-lesion (45/265; 17%), multi-vessel (27/265; 10.0%) and saphenous vein graft (16/265; 6.0%) interventions. At a mean follow-up of 10.5 2.8 (SD) months, fifty-three (20%) of the Novoste Sr90 treated patients had returned for symptoms requiring repeat angiography. Of these, 23 patients had repeat percutaneous coronary intervention (PCI) including 2 target site revascularizations (TSR), twelve non-TSR (distinct from the radiated segment of the target vessel), and 9 non-target vessel revascularizations (TVR). Coronary artery bypass surgery was performed in 11 total patients, 4 due to TSR, and 7 due to non-TVR. Clinical TSR was 2.3% (6/265) and TVR was 6.8% (18/265). In conclusion, the Novoste SR90 Beta-Cath System for the treatment of ISR is associated with a high procedural success rate and low TSR and TVR. Revascularization in follow-up is predominantly due to progressive disease outside the radiated segment and aggressive secondary prevention, especially prolonged anti-platelet therapy, appear critical to long-term procedural success.

  16. The Association Between Household Consumer Durable Assets and Maternal Health-Seeking Behavior in Ghana.

    PubMed

    Ansong, Eric

    2015-01-01

    This article examined the association between household consumer durable assets and maternal health-seeking behavior. Several studies have suggested a relationship between households' socioeconomic status (SES) and health outcomes. However, SES is a multidimensional concept that encompasses variables, such as wealth, education, and income. By grouping these variables together as one construct, prior studies have not provided enough insight into possible independent associations with health outcomes. This study used data from the 2008 Ghana Demographic and Health Survey of 2,065 women aged between 15 and 49 years to examine the association between household consumer durables (a component of SES) and maternal health-seeking behavior in Ghana. Results from a set of generalized linear models indicated that household consumer durable assets were positively associated with four measures of maternal health-seeking behaviors, namely, seeking prenatal care from skilled health personnel, delivery by skilled birth attendant, place of delivery, and the number of antenatal visits. Also, households with more assets whose residents lived in urban areas were more likely to use skilled health personnel before and during delivery, and at an approved health facility, compared those who lived in rural areas. Implications for health interventions and policies that focus on the most vulnerable households are discussed.

  17. Preliminary investigation of magneto-rheological fluid durability in continuous slippage clutch

    NASA Astrophysics Data System (ADS)

    Desrosiers, J.-F.; Lucking Bigué, J.-P.; Denninger, M.; Julió, G.; Plante, J.-S.; Charron, F.

    2013-02-01

    Magneto-rheological (MR) devices, such as dampers, engine mounts and clutches, are now appearing in the ground vehicle industry. Although important work has been directed to assess the longevity of MR dampers, few studies have targeted the aspect of magnetorheological fluid (MRF) durability when used in continuous shear, such as in MR clutches. The objective of this research is to identify the degradation phenomena associated with MRF used in continuous shear and to understand the main causes and effects, in order to propose design improvements to enhance clutch durability. Experiments are conducted on two test benches in order to reproduce MRF aging in a controlled environment and to evaluate the proposed solutions. The effect of the operating conditions (shear rate, shear stress and temperature) on the long term degradation of the torque-current relationship is evaluated. Two degradation phenomena are identified: base oil expansion and particle oxidation. The dominant failure mode of the tested clutches is a MRF leakage resulting from the base oil expansion which occurs between 1.5 MJ/mL and 9 MJ/mL of dissipated energy depending of the operating conditions. Two solutions are proposed to extend clutch durability: 1- MRF circulation and 2-compliant elements.

  18. Durability of polymeric encapsulation materials in a PMMA/glass concentrator photovoltaic system: Durability of polymeric encapsulation materials

    SciTech Connect

    Miller, David C.; Kempe, Michael D.; Muller, Matthew T.; Gray, Matthew H.; Araki, Kenji; Kurtz, Sarah R.

    2016-07-13

    The durability of polymeric encapsulation materials was examined using outdoor exposure at the nominal geometric concentration of 500 suns. The results for 36-month cumulative field deployment are presented for materials including: poly(ethylene-co-vinyl acetate), (EVA); polyvinyl butyral (PVB); ionomer; polyethylene/polyoctene copolymer (PO); thermoplastic polyurethane (TPU); poly(dimethylsiloxane) (PDMS); poly(diphenyl dimethyl siloxane) (PDPDMS); and poly(phenyl-methyl siloxane) (PPMS). Measurements of the field conditions including ambient temperature and ultraviolet (UV) dose were recorded at the test site during the experiment. Measurements for the experiment included optical transmittance (with subsequent analysis of solar-weighted transmittance, UV cut-off wavelength, and yellowness index), mass, visual photography, photoelastic imaging, and fluorescence spectroscopy. While the results to date for EVA are presented and discussed, examination here focuses more on the siloxane materials. A specimen recently observed to fail by thermal decomposition is discussed in terms of the implementation of the experiment as well as its fluorescence signature, which was observed to become more pronounced with age. Modulated thermogravimetry (allowing determination of the activation energy of thermal decomposition) was performed on a subset of the siloxanes to quantify the propensity for decomposition at elevated temperatures. Supplemental, Pt-catalyst- and primer-solutions as well as peroxide-cured PDMS specimens were examined to assess the source of the luminescence. The results of the study including the change in optical transmittance, observed failure modes, and subsequent analyses of the failure modes are described in the conclusions.

  19. Nanocomposites for Improved Physical Durability of Porous PVDF Membranes

    PubMed Central

    Lai, Chi Yan; Groth, Andrew; Gray, Stephen; Duke, Mikel

    2014-01-01

    Current commercial polymer membranes have shown high performance and durability in water treatment, converting poor quality waters to higher quality suitable for drinking, agriculture and recycling. However, to extend the treatment into more challenging water sources containing abrasive particles, micro and ultrafiltration membranes with enhanced physical durability are highly desirable. This review summarises the current limits of the existing polymeric membranes to treat harsh water sources, followed by the development of nanocomposite poly(vinylidene fluoride) (PVDF) membranes for improved physical durability. Various types of nanofillers including nanoparticles, carbon nanotubes (CNT) and nanoclays were evaluated for their effect on flux, fouling resistance, mechanical strength and abrasion resistance on PVDF membranes. The mechanisms of abrasive wear and how the more durable materials provide resistance was also explored. PMID:24957121

  20. Durability of styrene-butadiene latex modified concrete

    SciTech Connect

    Shaker, F.A.; El-Dieb, A.S.; Reda, M.M.

    1997-05-01

    The durability of reinforced concrete structures represents a major concern to many investigators. The use of latex modified concrete (LMC) in construction has urged researchers to review and investigate its different properties. This study is part of a comprehensive investigation carried on the use of polymers in concrete. The main objective of this study to investigate and evaluate the main durability aspects of Styrene-Butadiene latex modified concrete (LMC) compared to those of conventional concrete. Also, the main microstructural characteristics of LMC were studied using a Scanning Electron Microscope (SEM). The SEM investigation of the LMC showed major differences in its microstructure compared to that of the conventional concrete. The LMC proved to be superior in its durability compared to the durability of conventional concrete especially its water tightness (measured by water penetration, absorption, and sorptivity tests), abrasion, corrosion, and sulphate resistance.

  1. Nanocomposites for Improved Physical Durability of Porous PVDF Membranes.

    PubMed

    Lai, Chi Yan; Groth, Andrew; Gray, Stephen; Duke, Mikel

    2014-02-24

    Current commercial polymer membranes have shown high performance and durability in water treatment, converting poor quality waters to higher quality suitable for drinking, agriculture and recycling. However, to extend the treatment into more challenging water sources containing abrasive particles, micro and ultrafiltration membranes with enhanced physical durability are highly desirable. This review summarises the current limits of the existing polymeric membranes to treat harsh water sources, followed by the development of nanocomposite poly(vinylidene fluoride) (PVDF) membranes for improved physical durability. Various types of nanofillers including nanoparticles, carbon nanotubes (CNT) and nanoclays were evaluated for their effect on flux, fouling resistance, mechanical strength and abrasion resistance on PVDF membranes. The mechanisms of abrasive wear and how the more durable materials provide resistance was also explored.

  2. Durability of Bricks Coated with Red mud Based Geopolymer Paste

    NASA Astrophysics Data System (ADS)

    Singh, Smita; Basavanagowda, S. N.; Aswath, M. U.; Ranganath, R. V.

    2016-09-01

    The present study is undertaken to assess the durability of concrete blocks coated with red mud - fly ash based geopolymer paste. Concrete blocks of size 200 x 200 x 100mm were coated with geopolymer paste synthesized by varying the percentages of red mud and fly ash. Uncoated concrete blocks were also tested for the durability for comparison. In thermal resistance test, the blocks were subjected to 600°C for an hour whereas in acid resistance test, they were kept in 5% sulphuric acid solution for 4 weeks. The specimens were thereafter studied for surface degradation, strength loss and weight loss. Pastes with red mud percentage greater than 50% developed lot of shrinkage cracks. The blocks coated with 30% and 50% red mud paste showed better durability than the other blocks. The use of blocks coated with red mud - fly ash geopolymer paste improves the aesthetics, eliminates the use of plaster and improves the durability of the structure.

  3. Rheological investigation of the shear strength, durability, and recovery of alginate rafts formed by antacid medication in varying pH environments.

    PubMed

    Elliott, Brooke M; Steckbeck, Kathleen E; Murray, Lisa R; Erk, Kendra A

    2013-11-30

    The mechanical response of alginate rafts formed by mixing liquid alginate antacid medication (Gaviscon Extra Strength Liquid Antacid) with acidic solutions was investigated by deforming isolated rafts in a shear rheometer. As rafts were deformed to varying magnitudes of applied strain, rheological parameters were identified and related to the overall strength, durability, and recoverability of rafts formed at different pH (1.1-1.7) and aging conditions (0.5-4 h). Rafts formed in the lowest acidity solutions (pH 1.4, 1.7) were elastically weak ( G'₀ = 60 , 42 Pa for un-aged raft) yet maintained their elasticity during applied shear deformation to large values of strain (γc∼90%, 50%, where G'≈G″), and displayed a low-to-moderate level of elastic recovery following large-strain deformation. Rafts formed in the highest acidity solution had the greatest strength ( G'₀ = 500 Pa for un-aged raft and 21.5 kPa for rafts after 0.5 h of aging), reduced durability (γc∼2.5%, independent of aging), and displayed the greatest recoverability. A trade-off existed between un-aged raft strength and durability while recovery was dependent on durability, solution pH, and age. Rheometry-based evaluations of alginate rafts could be used for the informed design of future gastric retention and antacid products.

  4. Durability of anti-graffiti coatings on stone: natural vs accelerated weathering.

    PubMed

    Carmona-Quiroga, Paula M; Jacobs, Robert M J; Martínez-Ramírez, Sagrario; Viles, Heather A

    2017-01-01

    Extending the use of novel anti-graffiti coatings to built heritage could be of particular interest providing the treatments are efficient enough in facilitating graffiti removal and long-lasting to maintain their protective properties without interfering with the durability of the substrates. However, studies of the durability of these coatings are scarce and have been mainly carried out under accelerated weathering conditions, the most common practice for assessing the durability of materials but one that does not reproduce accurately natural working conditions. The present study aimed to assess the durability of the anti-graffiti protection afforded by two anti-graffiti treatments (a water dispersion of polyurethane with a perfluoropolyether backbone and a water based crystalline micro wax) on Portland limestone and Woodkirk sandstone after 1 year of outdoor exposure in the South of England with periodic painting and cleaning episodes taking place. A parallel study under artificial weathering conditions in a QUV chamber for 2000 hours was also carried out. Changes to the coatings were assessed by measuring colour, gloss, water-repellency, roughness and microstructure, the latter through micro-Raman and optical microscope observations, periodically during the experiments. The results show that both anti-graffiti treatments deteriorated under both artificial and natural weathering conditions. For the polyurethane based anti-graffiti treatment, artificial ageing produced more deterioration than 1 year of outdoor exposure in the south of England due to loss of adhesion from the stones, whereas for micro wax coating there were no substantial differences between the two types of weathering.

  5. Durability of anti-graffiti coatings on stone: natural vs accelerated weathering

    PubMed Central

    Jacobs, Robert M. J.; Martínez-Ramírez, Sagrario; Viles, Heather A.

    2017-01-01

    Extending the use of novel anti-graffiti coatings to built heritage could be of particular interest providing the treatments are efficient enough in facilitating graffiti removal and long-lasting to maintain their protective properties without interfering with the durability of the substrates. However, studies of the durability of these coatings are scarce and have been mainly carried out under accelerated weathering conditions, the most common practice for assessing the durability of materials but one that does not reproduce accurately natural working conditions. The present study aimed to assess the durability of the anti-graffiti protection afforded by two anti-graffiti treatments (a water dispersion of polyurethane with a perfluoropolyether backbone and a water based crystalline micro wax) on Portland limestone and Woodkirk sandstone after 1 year of outdoor exposure in the South of England with periodic painting and cleaning episodes taking place. A parallel study under artificial weathering conditions in a QUV chamber for 2000 hours was also carried out. Changes to the coatings were assessed by measuring colour, gloss, water-repellency, roughness and microstructure, the latter through micro-Raman and optical microscope observations, periodically during the experiments. The results show that both anti-graffiti treatments deteriorated under both artificial and natural weathering conditions. For the polyurethane based anti-graffiti treatment, artificial ageing produced more deterioration than 1 year of outdoor exposure in the south of England due to loss of adhesion from the stones, whereas for micro wax coating there were no substantial differences between the two types of weathering. PMID:28231301

  6. Durability of Hydrophobic Coatings for Superhydrophobic Aluminum Oxide

    SciTech Connect

    Jenner, Elliot; Barbier, Charlotte N; D'Urso, Brian R

    2013-01-01

    Robust and easily produced Superhydrophobic surfaces are of great interest for mechanical applications, including drag reduction and MEMS. We produce novel superhydrophobic surfaces with several different coatings and tested the durability of each of these coatings with respect to long term immersion in water in order to determine the most long-lasting surface preparation. A pair of combinations of spin on polymers, surface features, and adhesion promoters was found that provide long term durability.

  7. Lightweight, Durable Army Antennas Using Carbon Nanotube Technology

    DTIC Science & Technology

    2013-01-01

    Chapter 1. Keller, S. D.; Zaghloul, A. I.; Shanov, V.; Schulz, M. J.; Mast, D. B. Carbon Nanotube Yarn and Sheet for Electromagnetics- Antennas...Lightweight, Durable Army Antennas Using Carbon Nanotube Technology (Final Report) by Steven D. Keller and Amir I. Zaghloul ARL-TR-6323...1197 ARL-TR-6323 January 2013 Lightweight, Durable Army Antennas Using Carbon Nanotube Technology (Final Report) Steven D. Keller and

  8. Bonding Durability of Four Adhesive Systems

    PubMed Central

    Seyed Tabai, Elaheh; Mohammadi Basir, Mahshid

    2015-01-01

    Objectives: This study aimed to compare the durability of four adhesive systems by assessing their microtensile bond strength (MTBS) and microleakage during six months of water storage. Materials and Methods: A total of 128 human third molars were used. The adhesives tested were Scotch Bond Multipurpose (SBMP), Single Bond (SB), Clearfil-SE bond (CSEB), and All-Bond SE (ABSE). After sample preparation for MTBS testing, the microspecimens were subjected to microtensile tester after one day and six months of water storage. For microleakage evaluation, facial and lingual class V cavities were prepared and restored with composite. After thermocycling, microleakage was evaluated. Bond strength values were subjected to one-way ANOVA and Tamhane’s test, and the microleakage data were analyzed by the Kruskal-Wallis, Dunn, Mann Whitney and Wilcoxon tests (P<0.05). Results: Single Bond yielded the highest and ABSE yielded the lowest bond strength at one day and six months. Short-term bond strength of SBMP and CSEB was similar. After six months, a significant decrease in bond strength was observed in ABSE and SBMP groups. At one day, ABSE showed the highest microleakage at the occlusal margin; however, at the gingival margin, there was no significant difference among groups. Long-term microleakage of all groups at the occlusal margins was similar, whilst gingival margins of SBMP and SB showed significantly higher microleakage. Conclusion: The highest MTBS and favorable sealability were obtained by Clearfil SE bond. Water storage had no effect on microleakage of self-etch adhesives at the gingival margin or MTBS of CSEB and SB. PMID:27123015

  9. Effects of sample aging on total cholesterol values determined by the automated ferric chloride-sulfuric acid and Liebermann-Burchard procedures.

    PubMed

    Wood, P D; Bachorik, P S; Albers, J J; Stewart, C C; Winn, C; Lippel, K

    1980-04-01

    To investigate the comparability of three commonly used methods for determination of total cholesterol in plasma in several studies, we used fresh plasma samples as well as plasmas and reference sera that had been stored frozen at -15 degrees C for as long as several years. Duplicate determinations by the manual method of Abell et al. (J. Biol. Chem. 195: 357, 1952) were compared with estimates from one to five continuous-flow analyzers by the ferric chloride-sulfuric acid procedure and also with estimates from five to 13 continuous-flow analyzers by the Liebermann-Burchard procedure with calibrator, as part of the laboratory standardization activities of the Lipid Research Clinics. The agreement among all three procedures was generally within acceptable limits (within 5% of the manual method) when plasmas or sera were fresh or had been frozen for less than one month. Results by the manual method of Abell et al. agreed well with those by the automated Liebermann-Burchard method for samples that had been stored at -15 degrees C for as long as two years. However, the automated ferric chloride-sulfuric acid procedure often showed unacceptably high values (as compared with those from the manual method) for samples that had been stored frozen for a year or more. With the ferric chloride-sulfuric acid method, measured cholesterol concentration increased about 2.5% per year of storage for at least two years. We conclude that reference sera of plasmas that have been kept in long-term frozen storage (-15 degrees C) are not suitable for ongoing standardization of the automated ferric chloride-sulfuric acid assay for cholesterol.

  10. Cilostazol May Improve Maturation Rates and Durability of Vascular Access for Hemodialysis.

    PubMed

    Russell, Todd E; Kasper, Gregory C; Seiwert, Andrew J; Comerota, Anthony J; Lurie, Fedor

    2017-01-01

    Cilostazol is effective in controlling pathophysiological pathways similar or identical to those involved in nonmaturation and failure of the arteriovenous access. This case-control study examined whether cilostazol would improve maturation rates and durability of vascular access for hemodialysis. The treatment group included 33 patients who received cilostazol for ≥30 days prior to creation of a dialysis access and continued with cilostazol therapy for ≥60 days after surgery. The matched (gender, age, race, diabetes, and the year of surgery) control group included 116 patients who underwent the same procedure but did not receive cilostazol prior to and at least 3 months after surgery. Primary outcomes were maturation and, for those that matured, time of functioning access, defined as the time from the first use to irreparable failure of the access. Secondary outcomes were time to maturation, complications, and time to first complication. Study group patients were 3.8 times more likely to experience fistula maturation compared to the controls (88% vs 66%, RR = 3.8, 95% confidence interval: 1.3-11.6, P = .016). Fewer patients in the study group had complications (76% vs 92%, P = .025), and the time from construction of the fistula to the first complication was longer (345.6 ± 441 days vs 198.3 ± 185.0 days, P = .025). Time to maturation was similar in both groups (119.3 ± 62.9 days vs 100.2 ± 61.7 days, P = .2). However, once matured, time to failure was significantly longer in the treatment group (903.7 ± 543.6 vs 381.6 ± 317.2 days, P = .001). Multivariate analysis confirmed that the likelihood of maturation was significantly higher in the treatment group patients. These results suggest that dialysis access patients may benefit from preoperative and postoperative cilostazol therapy. If confirmed by a randomized trial, this treatment will have a major beneficial impact on patients dependent on a well-functioning access for their hemodialysis.

  11. Reliability-based analysis and design optimization for durability

    NASA Astrophysics Data System (ADS)

    Choi, Kyung K.; Youn, Byeng D.; Tang, Jun; Hardee, Edward

    2005-05-01

    In the Army mechanical fatigue subject to external and inertia transient loads in the service life of mechanical systems often leads to a structural failure due to accumulated damage. Structural durability analysis that predicts the fatigue life of mechanical components subject to dynamic stresses and strains is a compute intensive multidisciplinary simulation process, since it requires the integration of several computer-aided engineering tools and considerable data communication and computation. Uncertainties in geometric dimensions due to manufacturing tolerances cause the indeterministic nature of the fatigue life of a mechanical component. Due to the fact that uncertainty propagation to structural fatigue under transient dynamic loading is not only numerically complicated but also extremely computationally expensive, it is a challenging task to develop a structural durability-based design optimization process and reliability analysis to ascertain whether the optimal design is reliable. The objective of this paper is the demonstration of an integrated CAD-based computer-aided engineering process to effectively carry out design optimization for structural durability, yielding a durable and cost-effectively manufacturable product. This paper shows preliminary results of reliability-based durability design optimization for the Army Stryker A-Arm.

  12. Fast test for the durability of PEM fuel cell catalysts

    SciTech Connect

    Shao, Yuyan; Kou, Rong; Wang, Jun; Kwak, Ja Hun; Viswanathan, Vilayanur V.; Wang, Yong; Liu, Jun; Lin, Yuehe

    2008-10-12

    ETek Pt/C catalyst was used as standard materials to develop a new test protocol for fast screening durable catalyst for PEM fuel cells. Potential step (Pstep) method with the upper potential of 1.4V and the potential-static (Pstat) holding at 1.4 V or 1.2V are used to degrade the catalyst. The degradation in the electrochemical surface area (ESA) for Pt/C under Pstep conditions is greatly accelerated as compared with other conditions. The durability of Pt/Vulcan and Pt/CNT were studied using the new protocol with the electrochemical stressing of Pstep(1.4V/0.6V), which provided the same results as those tested using conventional protocols: Pt/CNT is more durable than Pt/Vulcan. This confirms that the new protocol works well in screening catalyst in terms of durability. The new protocol can differentiate the durability of electrocatalysts by shortening the test time to several hours. It is reliable and time-efficient.

  13. Relative sliding durability of candidate high temperature fiber seal materials

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Steinetz, Bruce M.

    1992-01-01

    The relative sliding durability behavior of six candidate ceramic fibers for high temperature sliding seal applications is reviewed and compared. Pin on disk tests were used to evaluate potential seal materials by sliding a tow or bundle of the candidate ceramic fiber against a superalloy test disk. Tests were conducted in air under a 2.65 N load, at a sliding velocity of 0.025 m/sec and at temperatures from 25 to 900 C. Friction was measured during the tests and fiber wear, indicated by the extent of fibers broken in the tow or bundle, was measured at the end of each test. For most of the fibers, friction and wear increase with test temperature. The relative fiber durability ranking correlates with tensile strength, indicating that tensile data, which is more readily available than sliding durability data, may be useful in predicting fiber wear behavior under various conditions. A dimensional analysis of the wear data shows that the fiber durability is related to a dimensionless durability ratio which represents the ratio of the fiber strength to the fiber stresses imposed by sliding. The analysis is applicable to fibers with similar diameters and elastic moduli. Based upon the results of the research program, three fiber candidates are recommended for further study as potential seal materials. They are a silicon based complex carbide-oxide fiber, an alumina-boria-silica and an aluminosilicate fiber.

  14. Bases for extrapolating materials durability in fuel storage pools

    SciTech Connect

    Johnson, A.B. Jr.

    1994-12-01

    A major body of evidence indicates that zirconium alloys have the most consistent and reliable durability in wet storage, justifying projections of safe wet storage greater than 50 y. Aluminum alloys have the widest range of durabilities in wet storage; systematic control and monitoring of water chemistry have resulted in low corrosion rates for more than two decades on some fuels and components. However, cladding failures have occurred in a few months when important parameters were not controlled. Stainless steel is extremely durable when stress, metallurgical and water chemistry factors are controlled. LWR SS cladding has survived for 25 y in wet storage. However, sensitized, stressed SS fuels and components have seriously degraded in fuel storage pools (FSPs) at {approximately} 30 C. Satisfactory durability of fuel assembly and FSP component materials in extended wet storage requires investments in water quality management and surveillance, including chemical and biological factors. The key aspect of the study is to provide storage facility operators and other decision makers a basis to judge the durability of a given fuel type in wet storage as a prelude to basing other fuel management plans (e.g. dry storage) if wet storage will not be satisfactory through the expected period of interim storage.

  15. Improved Durability of SOEC Stacks for High Temperature Electrolysis

    SciTech Connect

    James E. O'Brien; Robert C. O'Brien; Xiaoyu Zhang; Joseph J. Hartvigsen; Greg Tao

    2013-01-01

    High temperature steam electrolysis is a promising technology for efficient and sustainable large-scale hydrogen production. Solid oxide electrolysis cells (SOECs) are able to utilize high temperature heat and electric power from advanced high-temperature nuclear reactors or renewable sources to generate carbon-free hydrogen at large scale. However, long term durability of SOECs needs to be improved significantly before commercialization of this technology can be realized. A degradation rate of 1%/khr or lower is proposed as a threshold value for commercialization of this technology. Solid oxide electrolysis stack tests have been conducted at Idaho National Laboratory to demonstrate recent improvements in long-term durability of SOECs. Electrolyte-supported and electrode-supported SOEC stacks were provided by Ceramatec Inc. and Materials and Systems Research Inc. (MSRI), respectively, for these tests. Long-term durability tests were generally operated for a duration of 1000 hours or more. Stack tests based on technologies developed at Ceramatec and MSRI have shown significant improvement in durability in the electrolysis mode. Long-term degradation rates of 3.2%/khr and 4.6%/khr were observed for MSRI and Ceramatec stacks, espectively. One recent Ceramatec stack even showed negative degradation (performance improvement) over 1900 hours of operation. Optimization of electrode materials, interconnect coatings, and electrolyte-electrode interface microstructures contribute to better durability of SOEC stacks.

  16. Building, Testing, and Post Test Analysis of Durability Heat Pipe No.6

    SciTech Connect

    MOSS, TIMOTHY A.

    2002-03-01

    The Solar Thermal Program at Sandia supports work developing dish/Stirling systems to convert solar energy into electricity. Heat pipe technology is ideal for transferring the energy of concentrated sunlight from the parabolic dish concentrators to the Stirling engine heat tubes. Heat pipes can absorb the solar energy at non-uniform flux distributions and release this energy to the Stirling engine heater tubes at a very uniform flux distribution thus decoupling the design of the engine heater head from the solar absorber. The most important part of a heat pipe is the wick, which transports the sodium over the heated surface area. Bench scale heat pipes were designed and built to more economically, both in time and money, test different wicks and cleaning procedures. This report covers the building, testing, and post-test analysis of the sixth in a series of bench scale heat pipes. Durability heat pipe No.6 was built and tested to determine the effects of a high temperature bakeout, 950 C, on wick corrosion during long-term operation. Previous tests showed high levels of corrosion with low temperature bakeouts (650-700 C). Durability heat pipe No.5 had a high temperature bakeout and reflux cleaning and showed low levels of wick corrosion after long-term operation. After testing durability heat pipe No.6 for 5,003 hours at an operating temperature of 750 C, it showed low levels of wick corrosion. This test shows a high temperature bakeout alone will significantly reduce wick corrosion without the need for costly and time consuming reflux cleaning.

  17. Durability/life of fiber composites in hygrothermomechanical environments

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1981-01-01

    Statistical analysis and multiple regression were used to determine and quantify the significant hygrothermomechanical variables which infuence the tensile durability/life (cycle loading, fatigue) of boron-fiber/epoxy-matrix (B/E) and high-modulus-fiber/epoxy-matrix (HMS/E) composites. The use of the multiple regression analysis reduced the variables from fifteen, assumed initially, to six or less with a probability of greater than 0.999. The reduced variables were used to derive predictive models for compression an intralaminar shear durability/life of B/E and HMS/E composites assuming isoparametric fatigue behavior. The predictive models were subsequently generalized to predict the durability/life of graphite-fiber-r generalized model is of simple form, predicts conservative values compared with measured data and should be adequate for use in preliminary designs.

  18. Understanding the Durability of a Fire Department Wellness Program

    PubMed Central

    Mabry, Linda; Elliot, Diane L.; MacKinnon, David P.; Thoemmes, Felix; Kuehl, Kerry S.

    2013-01-01

    Objectives To understand the influences associated with durability and diffusion of benefits of a fire service wellness program. Methods Qualitative assessment of group interviews. Results Five years following a controlled worksite wellness trial, behavioral improvements were durable and had diffused to control participants. These findings were associated with firefighters’ team orientation, enacted healthy norms and competitiveness regarding the results of annual health assessments. The original intervention trial appeared to initiate individual change that coalesced into group effects. Secondary influences included increasing public awareness about health, newly hired younger firefighters, and a modicum of administrative support. Culture shift was achieved at the workplace. Conclusions Although the fire service is a unique occupation, these findings suggest general strategies to achieve durable positive health change in other occupational settings. PMID:23985292

  19. Highly durable graphene nanoplatelets supported Pt nanocatalysts for oxygen reduction

    SciTech Connect

    Shao, Yuyan; Zhang, Sheng; Wang, Chong M.; Nie, Zimin; Liu, Jun; Wang, Yong; Lin, Yuehe

    2010-06-01

    We report graphene nanoplatelets (GNP), which exhibit the advantages of both single-layer graphene and highly graphitic carbon, as a durable alternative support material for Pt nanoparticles for oxygen reduction in fuel cells. Pt nanoparticles are deposited on poly(diallyldimethylammonium chloride)(PDDA)-coated GNP, and characterized with transmission electron microscopy, X-ray diffraction, Raman spectra, and electrochemical tests. Pt/GNP exhibits greatly enhanced electrochemical durability (2-3 times that of Pt/CNT and commercial Etek Pt/C). These are attributed to the intrinsic high graphitization degree of GNP and the enhanced Pt-carbon interaction in Pt/GNP. If considering that GNP can be easily mass produced from graphite, GNP is a promising, low-cost, and durable electrocatalyst support for oxygen reduction in fuel cells.

  20. Stirling engine - Approach for long-term durability assessment

    NASA Astrophysics Data System (ADS)

    Tong, Michael T.; Bartolotta, Paul A.; Halford, Gary R.; Freed, Alan D.

    The approach employed by NASA Lewis for the long-term durability assessment of the Stirling engine hot-section components is summarized. The approach consists of: preliminary structural assessment; development of a viscoplastic constitutive model to accurately determine material behavior under high-temperature thermomechanical loads; an experimental program to characterize material constants for the viscoplastic constitutive model; finite-element thermal analysis and structural analysis using a viscoplastic constitutive model to obtain stress/strain/temperature at the critical location of the hot-section components for life assessment; and development of a life prediction model applicable for long-term durability assessment at high temperatures. The approach should aid in the provision of long-term structural durability and reliability of Stirling engines.

  1. A 10-Year, Single Tertiary Care Center Experience on the Durability of Infliximab in Pediatric Inflammatory Bowel Disease

    PubMed Central

    Vahabnezhad, Elaheh; Rabizadeh, Shervin; Dubinsky, Marla C.

    2017-01-01

    Background Despite increasing use of infliximab (IFX) in children with Crohn’s disease (CD) and ulcerative colitis (UC), long-term durability and safety of IFX beyond 1 year is limited in pediatric inflammatory bowel disease. Methods We performed a 10-year single-center retrospective cohort study of 188 patients initiating IFX at <21 years of age with 1-year minimum follow-up. Data were retrieved from medical records. IFX outcomes were defined as sustained remission in the absence of dose modification (sustained durable remission), recaptured response, and treatment failure. Adverse events, anti-infliximab antibodies (ATI), and role of concomitant low-dose oral methotrexate (<10 mg/wk) on IFX durability were analyzed. Univariate associations and survival analysis were performed. Results As of the last follow-up, 39% of patients with CD and 29% of patients with UC achieved sustained durable remission and another 60% recaptured and maintained response. For CD, 88% remained on IFX at 1 year, 80% at 2 years, and 82% at 5 years. In UC, 70% avoided colectomy at 1 year. Of IFX failures, 25% with CD and 11% with UC developed ATI. The most common adverse event causing cessation of therapy was infusion reactions. Treatment limiting recurrent infections occurred in <1%, and 1 patient developed lymphoproliferative disease. Low-dose methotrexate did not influence any IFX outcomes. Conclusions IFX is safe and effective for long-term maintenance therapy in pediatric patients with inflammatory bowel disease. IFX dose intensification can optimize durability and overcome loss of response. Loss of response is likely affected by development of ATI. Higher doses of oral methotrexate may be needed to optimize IFX. PMID:24552827

  2. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect

    Jha, M.C.; Baltich, L.K.

    1987-02-23

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  3. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect

    Silaban, A.; Harrison, D.P. . Dept. of Chemical Engineering)

    1989-05-02

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such as size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  4. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect

    Jha, M.C.; Berggren, M.H.

    1989-05-02

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  5. High performance, durable polymers including poly(phenylene)

    DOEpatents

    Fujimoto, Cy; Pratt, Harry; Anderson, Travis Mark

    2017-02-28

    The present invention relates to functionalized polymers including a poly(phenylene) structure. In some embodiments, the polymers and copolymers of the invention include a highly localized concentration of acidic moieties, which facilitate proton transport and conduction through networks formed from these polymers. In addition, the polymers can include functional moieties, such as electron-withdrawing moieties, to protect the polymeric backbone, thereby extending its durability. Such enhanced proton transport and durability can be beneficial for any high performance platform that employs proton exchange polymeric membranes, such as in fuel cells or flow batteries.

  6. Durability assessments of concrete using electrical properties and acoustic emission testing

    NASA Astrophysics Data System (ADS)

    Todak, Heather N.

    Premature damage deterioration has been observed in pavement joints throughout the Midwestern region of the United States. Over time, severe joint damage creates a transportation safety concern and the necessary repairs can be an extreme economic burden. The deterioration is due in part to freeze-thaw damage associated with fluid accumulation at the pavement joints. This very preventable problem is an indication that current specifications and construction practices for freeze-thaw durability of concrete are inadequate. This thesis serves to create a better understanding of moisture ingress, freeze-thaw damage mechanisms, and the effect of variations in mixture properties on freeze-thaw behavior of concrete. The concepts of the nick point degree of saturation, sorptivity rates, and critical degree of saturation are discussed. These factors contribute to service life, defined in this study as the duration of time a concrete element remains below levels of critical saturation which are required for damage development to initiate. A theoretical model and a simple experimental procedure are introduced which help determine the nick point for a series of 32 concrete mixtures with unique mixture proportions and air entrainment properties. This simple experimental procedure is also presented as a method to measure important electrical properties in order to establish the formation factor, a valuable measure of concrete transport properties. The results of freeze-thaw testing with acoustic emission monitoring are presented to help understand and quantify damage development in concrete specimens when conditioned to various degrees of saturation. This procedure was used to study the relationship between air entrainment properties and the critical degree of saturation. Applying the concepts of degree of saturation and sorptivity, a performance-based model is proposed as a new approach to specifications for freeze-thaw durability. Finally, a conceptual model is presented to

  7. Hydroxyapatite (HA) coating appears to be of benefit for implant durability of tibial components in primary total knee arthroplasty

    PubMed Central

    2011-01-01

    Background It is unclear whether there is a clinical benefit to adding hydroxyapatite (HA) coatings to total knee implants, especially with the tibial component, where failure of the implant more often occurs. A systematic review of the literature was undertaken to identify all prospective randomized trials for determining whether the overall clinical results (as a function of durability, function, and adverse events) favored HA-coated tibial components. Methods A comprehensive literature search was performed for the years 1990 to September 16, 2010. We restricted our search to randomized controlled trials involving participants receiving either an HA-coated tibia or other forms of tibial fixation. The primary outcome measures evaluated were durability, function, and acute adverse events. Results Data from 926 evaluable primary total knee implants in 14 studies were analyzed. Using an RSA definition for durability, HA-coated tibial components (porous or press-fit) without screw fixation were less likely to be unstable at 2 years than porous and cemented metal-backed tibial components (RR = 0.58, 95% CI: 0.34–0.98; p = 0.04, I2 = 39%, M-H random effects model). There was no significant difference in durability, as measured from revision and evaluated at 2 and 8–10 years, between groups. Also, functional status using different validated measures showed no significant difference at 2 and 5 years, no matter what measure was used. Lastly, there was no significant difference in adverse events. Limitations included small numbers of evaluable patients (≤ 50) in 7 of the 14 trials identified, and a lack of “hard” evidence of durability with need for replacement (i.e. frank failure, pain, or loss of functionality). Interpretation In patients > 65 years of age, an HA-coated tibial implant may provide better durability than other forms of tibial fixation. Larger trials should be undertaken comparing the long-term durability, function, and adverse events of HA

  8. Durability of Ti-6Al-4V/LaRC-PETI-5 adhesive bonded system for HSCT applications

    SciTech Connect

    Parvatareddy, H.; Pasricha, A.; Dillard, D.A.; Dillard, J.G.

    1996-12-31

    Structural adhesive joints are being widely used and studied as alternatives to conventional fasteners in the aerospace, automotive, and other industries. Adhesive bonding offers advantages such as lower weight and lower manufacturing costs. Furthermore, high performance adhesives which are currently being synthesized (e.g. epoxies, phenolics, acrylics, thermoplastic polyimides) offer other useful properties such as higher modulus, higher toughness, and stability at high temperatures. In the present study, the durability of the Ti-6Al-4V/LaRC PETI-5 adhesive bonded system is being evaluated utilizing double cantilever beam (DCB) fracture specimens. These DCB tests have been used extensively to study adhesive joints. The current study is part of a comprehensive study to develop a durable material system for application in the proposed mach 2.4 high speed civil transport (HSCT) aircraft. According to the design criteria, the material system to be used on the aircraft should be durable for over 60,000 hours of flight encountering temperatures during flight in the range of 177{degrees}C. Physical aging and chemical aging of the adhesive material are some of the important issues which have to be evaluated and taken into consideration for predicting the bond durability. In order to simulate the service environment conditions of the HSCT, the Ti-6Al-4V/LaRC PETI-5 bonds were aged in one of three temperatures; 150, 177, and 204{degrees}C, at one of three different environments; atmospheric air, and reduced air pressures of 2 psi air (13.8 KPa) and 0.2 psi air (1.38 KPa).

  9. Application of advanced methods for durability assessment of new absorber coatings

    NASA Astrophysics Data System (ADS)

    Frei, Ulrich; Brunold, Stefan; Koehl, Michael; Brucker, Franz; Carlsson, Bo; Moeller, K.

    1995-08-01

    Accelerated life testing of solar energy materials has been one of the main topics within the former Task X 'Solar Materials Research and Development' of the International Energy Agency (IEA) Solar Heating and Cooling Programme. In the case study of some selective solar absorber coating materials for domestic hot water systems procedures are presented for service time assessment, applicable for example to absorber coating materials. As a continuation of the finalized Task X a working group, 'Materials in Solar Thermal Systems' also in the framework of the International Energy Agency (IEA) 'Solar Heating and Cooling Programme' was initiated. One of the first projects is described here. Its aim is to investigate the conformity of the durability assessment, applied on solar absorber coatings tested by different laboratories. Each lab is working independently, this means there is no information exchange between the labs until the results are on paper. Test samples are delivered by the participants. Four different absorber coatings are identified to be useful for the project. The coating materials as well as the production procedures of the coatings are not relevant for the study, therefore no information is given. The experimental procedures as well as the judgement over the different absorber coatings are described in detail. Some comparisons between individual results of the different labs indicates possible weaknesses and further necessary refinements. Finally, expected costs for the whole procedure are presented.

  10. Laboratory Evaluations of Durability of Southern Pine Pressure Treated With Extractives From Durable Wood Species.

    PubMed

    Kirker, G T; Bishell, A B; Lebow, P K

    2016-02-01

    Extracts from sawdust of four naturally durable wood species [Alaskan yellow cedar, AYC, Cupressus nootkanansis D. Don 1824; eastern red cedar, ERC, Juniperus virginiana L.; honey mesquite, HM, Prosopis glandulosa Torr.; and black locust, BL, Robinia pseudoacacia L.] were used to treat southern pine, Pt, Pinus taeda L. sapwood blocks. Extractive treated blocks were evaluated for decay resistance in standard soil bottle fungal assays challenged with brown and white rot decay fungi. Results showed that extractives did impart some improvement to decay resistance of Pt blocks. BL- and HM-treated Pt blocks were also used in choice and no-choice assays to determine feeding preference and damage by eastern subterranean termites (Reticulitermes flavipes) Kollar. Minimal feeding on treated blocks was seen in both choice and no-choice assays. In choice assays, there was similar mortality between HM and BL arenas; however, in no-choice assays, complete mortality was recorded for HM-treated Pt and high mortality was seen with BL-treated Pt. Subsequent dose mortality termite assays showed HM to be effective in killing R. flavipes at low concentrations. Both HM and BL show promise as deterrents or termiticidal protectants and will be further evaluated in field studies.

  11. Durable Tactile Glove for Human or Robot Hand

    NASA Technical Reports Server (NTRS)

    Butzer, Melissa; Diftler, Myron A.; Huber, Eric

    2010-01-01

    A glove containing force sensors has been built as a prototype of tactile sensor arrays to be worn on human hands and anthropomorphic robot hands. The force sensors of this glove are mounted inside, in protective pockets; as a result of this and other design features, the present glove is more durable than earlier models.

  12. Gene pyramiding enhances durable blast disease resistance in rice.

    PubMed

    Fukuoka, Shuichi; Saka, Norikuni; Mizukami, Yuko; Koga, Hironori; Yamanouchi, Utako; Yoshioka, Yosuke; Hayashi, Nagao; Ebana, Kaworu; Mizobuchi, Ritsuko; Yano, Masahiro

    2015-01-14

    Effective control of blast, a devastating fungal disease of rice, would increase and stabilize worldwide food production. Resistance mediated by quantitative trait loci (QTLs), which usually have smaller individual effects than R-genes but confer broad-spectrum or non-race-specific resistance, is a promising alternative to less durable race-specific resistance for crop improvement, yet evidence that validates the impact of QTL combinations (pyramids) on the durability of plant disease resistance has been lacking. Here, we developed near-isogenic experimental lines representing all possible combinations of four QTL alleles from a durably resistant cultivar. These lines enabled us to evaluate the QTLs singly and in combination in a homogeneous genetic background. We present evidence that pyramiding QTL alleles, each controlling a different response to M. oryzae, confers strong, non-race-specific, environmentally stable resistance to blast disease. Our results suggest that this robust defence system provides durable resistance, thus avoiding an evolutionary "arms race" between a crop and its pathogen.

  13. Ancient analogues concerning stability and durability of cementitious wasteform

    SciTech Connect

    Jiang, W.; Roy, D.M.

    1994-12-31

    The history of cementitious materials goes back to ancient times. The Greeks and Romans used calcined limestone and later developed pozzolanic cement by grinding together lime and volcanic ash called {open_quotes}pozzolan{close_quotes} which was first found near Port Pozzuoli, Italy. The ancient Chinese used lime-pozzolanic mixes to build the Great Wall. The ancient Egyptians used calcined impure gypsum to build the Great Pyramid of Cheops. The extraordinary stability and durability of these materials has impressed us, when so much dramatically damaged infrastructure restored by using modern portland cement now requires rebuilding. Stability and durability of cementitious materials have attracted intensive research interest and contractors` concerns, as does immobilization of radioactive and hazardous industrial waste in cementitious materials. Nuclear waste pollution of the environment and an acceptable solution for waste management and disposal constitute among the most important public concerns. The analogy of ancient cementitious materials to modern Portland cement could give us some clues to study their stability and durability. This present study examines selected results of studies of ancient building materials from France, Italy, China, and Egypt, combined with knowledge obtained from the behavior of modern portland cement to evaluate the potential for stability and durability of such materials in nuclear waste forms.

  14. A Simplified Diagnostic Method for Elastomer Bond Durability

    NASA Technical Reports Server (NTRS)

    White, Paul

    2009-01-01

    A simplified method has been developed for determining bond durability under exposure to water or high humidity conditions. It uses a small number of test specimens with relatively short times of water exposure at elevated temperature. The method is also gravimetric; the only equipment being required is an oven, specimen jars, and a conventional laboratory balance.

  15. Generator Set Durability Testing Using 25% ATJ Fuel Blend

    DTIC Science & Technology

    2016-02-01

    FMTV – Family of Medium Tactical Vehicles GEP – General Engine Products HC – hydrocarbon HEUI – hydraulically actuated, electronically controlled...loggers: Campbell Scientific model CR3000. Thirty thermocouples were used on each generator , along with five pressure transducers. Voltage, current...UNCLASSIFIED UNCLASSIFIED GENERATOR SET DURABILITY TESTING USING 25% ATJ FUEL BLEND INTERIM REPORT TFLRF No. 476 by Gregory A. T

  16. Recent advances in the mechanical durability of superhydrophobic materials.

    PubMed

    Milionis, Athanasios; Loth, Eric; Bayer, Ilker S

    2016-03-01

    Large majority of superhydrophobic surfaces have very limited mechanical wear robustness and long-term durability. This problem has restricted their utilization in commercial or industrial applications and resulted in extensive research efforts on improving resistance against various types of wear damage. In this review, advances and developments since 2011 in this field will be covered. As such, we summarize progress on fabrication, design and understanding of mechanically durable superhydrophobic surfaces. This includes an overview of recently published diagnostic techniques for probing and demonstrating tribo-mechanical durability against wear and abrasion as well as other effects such as solid/liquid spray or jet impact and underwater resistance. The review is organized in terms of various types of mechanical wear ranging from substrate adhesion, tangential surface abrasion, and dynamic impact to ultrasonic processing underwater. In each of these categories, we highlight the most successful approaches to produce robust surfaces that can maintain their non-wetting state after the wear or abrasive action. Finally, various recommendations for improvement of mechanical wear durability and its quantitative evaluation are discussed along with potential future directions towards more systematic testing methods which will also be acceptable for industry.

  17. Structural Integrity and Durability of Reusable Space Propulsion Systems

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A two-day conference on the structural integrity and durability of reusable space propulsion systems was held on May 12 and 13, 1987, at the NASA Lewis research Center. Aerothermodynamic loads; instrumentation; fatigue, fracture, and constitutive modeling; and structural dynamics were discussed.

  18. Application of Kingview and PLC in friction durability test system

    NASA Astrophysics Data System (ADS)

    Gao, Yinhan; Cui, Jing; Yang, Kaiyu; Ke, Hui; Song, Bing

    2013-01-01

    Using PLC and Kingview software, a friction durability test system is designed. The overall program, hardware configuration, software structure and monitoring interface are described in detail. PLC ensures the stability of data acquisition, and the KingView software makes the HMI easy to manipulate. The practical application shows that the proposed system is cheap, economical and highly reliable.

  19. Durability-based design criteria for an automotive structural composite

    SciTech Connect

    Corum, J.M.; Battiste, R.L.; Brinkman, C.R.; Ren, W.; Ruggles, M.B.; Yahr, G.T.

    1998-11-01

    Before composite structures can be widely used in automotive applications, their long-term durability must be assured. The Durability of Lightweight Composite Structures Project at Oak Ridge National Laboratory was established by the US Department of Energy to help provide that assurance. The project is closely coordinated with the Automotive Composites Consortium. The experimentally-based, durability-driven design criteria described in this paper are the result of the initial project thrust. The criteria address a single reference composite, which is an SRIM (Structural Reaction Injection Molded) polyurethane, reinforced with continuous strand, swirl-mat E-glass fibers. The durability issues addressed include the effects of cyclic and sustained loadings, temperature, automotive fluid environments, and low-energy impacts (e.g., tool drops and roadway kickups) on strength, stiffness, and deformation. The criteria provide design analysis guidance, a multiaxial strength criterion, time-independent and time-dependent allowable stresses, rules for cyclic loading, and damage tolerance design guidance. Environmental degradation factors and the degrading effects of prior loadings are included. Efforts are currently underway to validate the criteria by application to a second random-glass-fiber composite. Carbon-fiber composites are also being addressed.

  20. Impact of Biodiesel Impurities on the Performance and Durability of DOC, DPF and SCR Technologies

    SciTech Connect

    Williams, A.; McCormick, R.; Luecke, J.; Brezny, R.; Geisselmann, A.; Voss, K.; Hallstrom, K.; Leustek, M.; Parsons, J.; Abi-Akar, H.

    2011-06-01

    It is estimated that operating continuously on a B20 fuel containing the current allowable ASTM specification limits for metal impurities in biodiesel could result in a doubling of ash exposure relative to lube-oil derived ash. The purpose of this study was to determine if a fuel containing metals at the ASTM limits could cause adverse impacts on the performance and durability of diesel emission control systems. An accelerated durability test method was developed to determine the potential impact of these biodiesel impurities. The test program included engine testing with multiple DPF substrate types as well as DOC and SCR catalysts. The results showed no significant degradation in the thermo-mechanical properties of cordierite, aluminum titanate, or silicon carbide DPFs after exposure to 150,000 mile equivalent biodiesel ash and thermal aging. However, exposure of a cordierite DPF to 435,000 mile equivalent aging resulted in a 69% decrease in the thermal shock resistance parameter. It is estimated that the additional ash from 150,000 miles of biodiesel use would also result in a moderate increases in exhaust backpressure for a DPF. A decrease in DOC activity was seen after exposure to 150,000 mile equivalent aging, resulting in higher HC slip and a reduction in NO{sub 2} formation. The metal-zeolite SCR catalyst experienced a slight loss in activity after exposure to 435,000 mile equivalent aging. This catalyst, placed downstream of the DPF, showed a 5% reduction in overall NOx conversion activity over the HDDT test cycle.

  1. Multi-factor Effects on the Durability of Recycle Aggregate Concrete

    NASA Astrophysics Data System (ADS)

    Ma, Huan; Cui, Yu-Li; Zhu, Wen-Yu; Xie, Xian-Jie

    2016-05-01

    Recycled Aggregate Concrete (RAC) was prepared with different recycled aggregate replacement ratio, 0, 30%, 70% and 100% respectively. The performances of RAC were examined by the freeze-thaw cycle, carbonization and sulfate attack to assess the durability. Results show that test sequence has different effects on the durability of RAC; the durability is poorer when carbonation experiment was carried out firstly, and then other experiment was carried out again; the durability is better when recycled aggregate replacement ratio is 70%.

  2. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    SciTech Connect

    Berggren, M.H.; Jha, M.C.

    1989-10-01

    AMAX Research Development Center (AMAX R D) investigated methods for enhancing the reactivity and durability of zinc ferrite desulfurization sorbents. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For this program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such as size, strength, and specific surface area during 10 cycles of sulfidation and oxidation. Two base case sorbents, a spherical pellet and a cylindrical extrude used in related METC-sponsored projects, were used to provide a basis for the aimed enhancement in durability and reactivity. Sorbent performance was judged on the basis of physical properties, single particle kinetic studies based on thermogravimetric (TGA) techniques, and multicycle bench-scale testing of sorbents. A sorbent grading system was utilized to quantify the characteristics of the new sorbents prepared during the program. Significant enhancements in both reactivity and durability were achieved for the spherical pellet shape over the base case formulation. Overall improvements to reactivity and durability were also made to the cylindrical extrude shape. The primary variables which were investigated during the program included iron oxide type, zinc oxide:iron oxide ratio, inorganic binder concentration, organic binder concentration, and induration conditions. The effects of some variables were small or inconclusive. Based on TGA studies and bench-scale tests, induration conditions were found to be very significant.

  3. The Assessment and Non-Pharmacologic Treatment of Procedural Pain from Infancy to School Age Through a Developmental Lens: A Synthesis of Evidence with Recommendations

    PubMed Central

    Thrane, Susan E.; Wanless, Shannon; Cohen, Susan M.; Danford, Cynthia A.

    2015-01-01

    Introduction The 2011 IOM report stated that pain management in children is often lacking especially during routine medical procedures. The purpose of this review is to bring a developmental lens to the challenges in assessment and non-pharmacologic treatment of pain in young children. Method A synthesis of the findings from an electronic search of PubMed and the university library using the keywords pain, assessment, treatment, alternative, complementary, integrative, infant, toddler, preschool, young, pediatric, and child was completed. A targeted search identified additional sources for best evidence. Results Assessment of developmental cues is essential. For example, crying, facial expression, and body posture are behaviors in infancy that indicate pain: However in toddlers these same behaviors are not necessarily indicative of pain. Preschoolers need observation scales in combination with self-report while for older children self-report is the gold standard. Pain management in infants includes swaddling and sucking. However for toddlers, preschoolers and older children, increasingly sophisticated distraction techniques such as easily implemented non-pharmacologic pain management strategies include reading stories, watching cartoons, or listening to music. Discussion A developmental approach to assessing and treating pain is critical. Swaddling, picture books, or blowing bubbles are easy and effective when used at the appropriate developmental stage and relieve both physical and emotional pain. Untreated pain in infants and young children may lead to increased pain perception and chronic pain in adolescents and adults. Continued research in the non-pharmacological treatment of pain is an important part of the national agenda. PMID:26424196

  4. Durability of base course construction using lime stabilized fly ash and flue gas desulfurization sludge by-product

    SciTech Connect

    Beeghly, J.H.; Amaya, P.J.

    1996-12-31

    Fourteen coal-fired power plants in the Ohio Valley totaling 13,500 MW`s use the magnesium-enhanced lime flue gas desulfurization (FGD) scrubbing process. The discharge of these scrubbers is an aqueous slurry of water containing magnesium and calcium sulfites, and solid particles of calcium sulfite and calcium sulfate. Most of these plants dewater the FGD sludge and mix the 35--45% solids cake with coal fly ash and/or bottom ash and pulverized quicklime to cause a cementitious chemical reaction. This type of pozzolanic and hydration reaction can be described as lime reacting with alumina from the fly ash which in turn react with the calcium sulfite and sulfate FGD waste to form ettringite minerals. With a proper mix design and compaction, the resulting material can be used in a beneficial application as a roller compacted FGD base course (RCFGD) for pavement construction. The mix design procedure for RCFGD is described; it includes extra fly ash and lime materials than that used for landfill disposal to yield additional strength and durability. RCFGD was produced in a portable pug mill and placed trying several at a 10,000 sq. ft. cattle feedlot. Mix design criteria and factors affecting strength and durability are discussed. Results of unconfined compression tests as well as of durability tests are reviewed.

  5. Durable antimicrobial finishing of cellulose with QSA silicone by supercritical adsorption

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Niu, Mengqi; Yuan, Shu; Teng, Hongni

    2013-01-01

    This study demonstrated a generic and simple approach to generate durable antibacterial ability on cellulose without using covalently bonding tethering groups that limit the structure design. CO2-philic silicone with quaternary ammonium salt (QAS) pendants was synthesized through hydrosilylation reaction of poly(methylhydrosiloxane) (PMHS) and 2-(dimethylamino)ethyl acrylate in the presence of platinum-based catalyst and subsequent quaternization with 1-bromohexane. The resultant QAS silicone was deposited onto cellulose by adsorption from supercritical CO2 (scCO2) to provide potent biocidal activities against Staphylococcus aureus and Escherichia coli. Presented data also showed that the antibacterial layer was very stable toward washing and UV irradiation owning to the low surface tension and relatively high bond energy of the backbone of silicone. This procedure is applicable to substrates of other shape and chemistry.

  6. Bright and durable field emission source derived from refractory taylor cones

    DOEpatents

    Hirsch, Gregory

    2016-12-20

    A method of producing field emitters having improved brightness and durability relying on the creation of a liquid Taylor cone from electrically conductive materials having high melting points. The method calls for melting the end of a wire substrate with a focused laser beam, while imposing a high positive potential on the material. The resulting molten Taylor cone is subsequently rapidly quenched by cessation of the laser power. Rapid quenching is facilitated in large part by radiative cooling, resulting in structures having characteristics closely matching that of the original liquid Taylor cone. Frozen Taylor cones thus obtained yield desirable tip end forms for field emission sources in electron beam applications. Regeneration of the frozen Taylor cones in-situ is readily accomplished by repeating the initial formation procedures. The high temperature liquid Taylor cones can also be employed as bright ion sources with chemical elements previously considered impractical to implement.

  7. 30 CFR 817.73 - Disposal of excess spoil: Durable rock fills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Disposal of excess spoil: Durable rock fills...-UNDERGROUND MINING ACTIVITIES § 817.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement...

  8. 30 CFR 816.73 - Disposal of excess spoil: Durable rock fills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Disposal of excess spoil: Durable rock fills...-SURFACE MINING ACTIVITIES § 816.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement...

  9. 30 CFR 816.73 - Disposal of excess spoil: Durable rock fills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Disposal of excess spoil: Durable rock fills...-SURFACE MINING ACTIVITIES § 816.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement...

  10. 30 CFR 816.73 - Disposal of excess spoil: Durable rock fills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Disposal of excess spoil: Durable rock fills...-SURFACE MINING ACTIVITIES § 816.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement...

  11. 30 CFR 816.73 - Disposal of excess spoil: Durable rock fills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Disposal of excess spoil: Durable rock fills...-SURFACE MINING ACTIVITIES § 816.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement...

  12. 30 CFR 816.73 - Disposal of excess spoil: Durable rock fills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Disposal of excess spoil: Durable rock fills...-SURFACE MINING ACTIVITIES § 816.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement...

  13. 30 CFR 817.73 - Disposal of excess spoil: Durable rock fills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Disposal of excess spoil: Durable rock fills...-UNDERGROUND MINING ACTIVITIES § 817.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement...

  14. 30 CFR 817.73 - Disposal of excess spoil: Durable rock fills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Disposal of excess spoil: Durable rock fills...-UNDERGROUND MINING ACTIVITIES § 817.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement...

  15. 30 CFR 817.73 - Disposal of excess spoil: Durable rock fills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Disposal of excess spoil: Durable rock fills...-UNDERGROUND MINING ACTIVITIES § 817.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement...

  16. 30 CFR 817.73 - Disposal of excess spoil: Durable rock fills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Disposal of excess spoil: Durable rock fills...-UNDERGROUND MINING ACTIVITIES § 817.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement...

  17. 42 CFR 410.38 - Durable medical equipment: Scope and conditions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Durable medical equipment: Scope and conditions... Services § 410.38 Durable medical equipment: Scope and conditions. (a) Medicare Part B pays for the rental or purchase of durable medical equipment, including iron lungs, oxygen tents, hospital beds,...

  18. 40 CFR 86.1824-07 - Durability demonstration procedures for evaporative emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles §...

  19. 40 CFR 86.1824-07 - Durability demonstration procedures for evaporative emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles §...

  20. 40 CFR 86.1824-07 - Durability demonstration procedures for evaporative emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles §...

  1. 40 CFR 86.1824-07 - Durability demonstration procedures for evaporative emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles §...

  2. 40 CFR 86.1824-07 - Durability demonstration procedures for evaporative emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... VEHICLES AND ENGINES General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1824-07...

  3. Test Operations Procedure (TOP) 01-1-065 Accelerated Corrosion Durability

    DTIC Science & Technology

    2013-10-15

    c. Conductivity meter. d. Dry Film thickness gauge. e. Digital camera. f. Glass bead blaster. g. Large solution mixing tanks. 3...consist of low-pressure, high volume water. If necessary, local areas of heavily caked mud may be removed at any time. g. Maintenance and PMCS...sodium chloride (NaCl) solution, by weight, mixed with water. The vehicle will pass through the trough at different entry speeds such as 56, 40

  4. 40 CFR 86.1825-08 - Durability demonstration procedures for refueling emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the emission deterioration of evaporative/refueling control systems. Manufacturers may base the bench... regression, or an other regression technique approved in advance by the Administrator. The DF will be... (e.g., 4000-mile) evaporative level from the regression analysis. The full useful life...

  5. 40 CFR 86.1825-08 - Durability demonstration procedures for refueling emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the emission deterioration of evaporative/refueling control systems. Manufacturers may base the bench... regression, or an other regression technique approved in advance by the Administrator. The DF will be... (e.g., 4000-mile) evaporative level from the regression analysis. The full useful life...

  6. 40 CFR 86.1825-08 - Durability demonstration procedures for refueling emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the emission deterioration of evaporative/refueling control systems. Manufacturers may base the bench... regression, or an other regression technique approved in advance by the Administrator. The DF will be... (e.g., 4000-mile) evaporative level from the regression analysis. The full useful life...

  7. 40 CFR 86.1825-08 - Durability demonstration procedures for refueling emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the emission deterioration of evaporative/refueling control systems. Manufacturers may base the bench... regression, or an other regression technique approved in advance by the Administrator. The DF will be... (e.g., 4000-mile) evaporative level from the regression analysis. The full useful life...

  8. Probabilistic durability assessment of concrete structures in marine environments: Reliability and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Yu, Bo; Ning, Chao-lie; Li, Bing

    2017-03-01

    A probabilistic framework for durability assessment of concrete structures in marine environments was proposed in terms of reliability and sensitivity analysis, which takes into account the uncertainties under the environmental, material, structural and executional conditions. A time-dependent probabilistic model of chloride ingress was established first to consider the variations in various governing parameters, such as the chloride concentration, chloride diffusion coefficient, and age factor. Then the Nataf transformation was adopted to transform the non-normal random variables from the original physical space into the independent standard Normal space. After that the durability limit state function and its gradient vector with respect to the original physical parameters were derived analytically, based on which the first-order reliability method was adopted to analyze the time-dependent reliability and parametric sensitivity of concrete structures in marine environments. The accuracy of the proposed method was verified by comparing with the second-order reliability method and the Monte Carlo simulation. Finally, the influences of environmental conditions, material properties, structural parameters and execution conditions on the time-dependent reliability of concrete structures in marine environments were also investigated. The proposed probabilistic framework can be implemented in the decision-making algorithm for the maintenance and repair of deteriorating concrete structures in marine environments.

  9. Reflectivity, polarization properties, and durability of metallic mirror coatings for the European Solar Telescope

    NASA Astrophysics Data System (ADS)

    Feller, A.; Krishnappa, N.; Pleier, O.; Hirzberger, J.; Jobst, P. J.; Schürmann, M.

    2012-09-01

    In the context of the conceptual design study for the European Solar Telescope (EST) we have investigated different metallic mirror coatings in terms of reflectivity, polarization properties and durability. Samples of the following coating types have been studied: bare aluminum, silver with different dielectric layers for protection and UV enhancement, and an aluminum-silver combination. From 2009 to 2011 we have carried out a long-term durability test under realistic observing conditions at the VTT solar telescope of the Observatorio del Teide (Tenerife, Spain), accompanied by repeated reflectivity measurements in the EST spectral working range (0.3 - 20 μm), and by polarization measurements in the visible range. The test results allow us to find the optimum coatings for the different mirrors in the EST beampath and to eventually assess aging effects and re-coating cycles. The results of the polarization measurements are a valuable input for an EST telescope polarization model, helping to meet the stringent requirements on polarimetric accuracy.

  10. Evolutionary model of an anonymous consumer durable market

    NASA Astrophysics Data System (ADS)

    Kaldasch, Joachim

    2011-07-01

    An analytic model is presented that considers the evolution of a market of durable goods. The model suggests that after introduction goods spread always according to a Bass diffusion. However, this phase will be followed by a diffusion process for durable consumer goods governed by a variation-selection-reproduction mechanism and the growth dynamics can be described by a replicator equation. The theory suggests that products play the role of species in biological evolutionary models. It implies that the evolution of man-made products can be arranged into an evolutionary tree. The model suggests that each product can be characterized by its product fitness. The fitness space contains elements of both sites of the market, supply and demand. The unit sales of products with a higher product fitness compared to the mean fitness increase. Durables with a constant fitness advantage replace other goods according to a logistic law. The model predicts in particular that the mean price exhibits an exponential decrease over a long time period for durable goods. The evolutionary diffusion process is directly related to this price decline and is governed by Gompertz equation. Therefore it is denoted as Gompertz diffusion. Describing the aggregate sales as the sum of first, multiple and replacement purchase the product life cycle can be derived. Replacement purchase causes periodic variations of the sales determined by the finite lifetime of the good (Juglar cycles). The model suggests that both, Bass- and Gompertz diffusion may contribute to the product life cycle of a consumer durable. The theory contains the standard equilibrium view of a market as a special case. It depends on the time scale, whether an equilibrium or evolutionary description is more appropriate. The evolutionary framework is used to derive also the size, growth rate and price distribution of manufacturing business units. It predicts that the size distribution of the business units (products) is lognormal

  11. Predictive values derived from lower wisdom teeth developmental stages on orthopantomograms to calculate the chronological age in adolescence and young adults as a prerequisite to obtain age-adjusted informed patient consent prior to elective surgical procedures in young patients with incomplete or mismatched personal data.

    PubMed

    Friedrich, Reinhard E; Schmidt, Kirsten; Treszl, András; Kersten, Jan F

    2016-01-01

    Introduction: Surgical procedures require informed patient consent, which is mandatory prior to any procedure. These requirements apply in particular to elective surgical procedures. The communication with the patient about the procedure has to be comprehensive and based on mutual understanding. Furthermore, the informed consent has to take into account whether a patient is of legal age. As a result of large-scale migration, there are eventually patients planned for medical procedures, whose chronological age can't be assessed reliably by physical inspection alone. Age determination based on assessing wisdom tooth development stages can be used to help determining whether individuals involved in medical procedures are of legal age, i.e., responsible and accountable. At present, the assessment of wisdom tooth developmental stages barely allows a crude estimate of an individual's age. This study explores possibilities for more precise predictions of the age of individuals with emphasis on the legal age threshold of 18 years. Material and Methods: 1,900 dental orthopantomograms (female 938, male 962, age: 15-24 years), taken between the years 2000 and 2013 for diagnosis and treatment of diseases of the jaws, were evaluated. 1,895 orthopantomograms (female 935, male 960) of 1,804 patients (female 872, male 932) met the inclusion criteria. The archives of the Department of Diagnostic Radiology in Dentistry, University Medical Center Hamburg-Eppendorf, and of an oral and maxillofacial office in Rostock, Germany, were used to collect a sufficient number of radiographs. An effort was made to achieve almost equal distribution of age categories in this study group; 'age' was given on a particular day. The radiological criteria of lower third molar investigation were: presence and extension of periodontal space, alveolar bone loss, emergence of tooth, and stage of tooth mineralization (according to Demirjian). Univariate and multivariate general linear models were calculated

  12. Marginal sealing durability of two contemporary self-etch adhesives.

    PubMed

    Khoroushi, Maryam; Mansoori, Mahsa

    2012-01-01

    Introduction. Sealing abilities of two self-etch adhesives were evaluated after two aging processes: storage in water and thermocycling. Materials and Methods. Cl V cavities were prepared on the buccal and lingual aspects of 48 human premolars, with cervical margins 1 mm below the CEJ. Clearfil Protect Bond (CPB) and BeautiBond (BB) (two-step and one-step self-etch adhesives, resp.) were applied, each to half of the cavities and restored with composite resin. Each group was randomly subdivided into 4 subgroups (n = 12) and evaluated for dye penetration after 24 hours, after 3000 thermocycling rounds, after a 6-month water storage, and after 3000 thermocycling rounds plus 6-month water storage, respectively. Data was analyzed using SPSS 11.5 and Kruskal-Wallis and Mann-Whitney U tests (α = 0.05). Results. There were no significant differences in enamel and dentin microleakage between the adhesives (P = 0.683; P = 0.154). Furthermore, no significant differences were observed in enamel microleakage of each one of CPB and BB (P = 0.061 and P = 0.318, resp.). However, significant decrease was observed in subgroups 3 and 4 (P = 0.001) for CPB dentinal margins. Conclusion. In this study, limited aging procedures had no influence on marginal integrity of composite resin restorations bonded with self-etch adhesives of CPB and BB. Furthermore, CPB dentinal sealing improved after aging.

  13. Marginal Sealing Durability of Two Contemporary Self-Etch Adhesives

    PubMed Central

    Khoroushi, Maryam; Mansoori, Mahsa

    2012-01-01

    Introduction. Sealing abilities of two self-etch adhesives were evaluated after two aging processes: storage in water and thermocycling. Materials and Methods. Cl V cavities were prepared on the buccal and lingual aspects of 48 human premolars, with cervical margins 1 mm below the CEJ. Clearfil Protect Bond (CPB) and BeautiBond (BB) (two-step and one-step self-etch adhesives, resp.) were applied, each to half of the cavities and restored with composite resin. Each group was randomly subdivided into 4 subgroups (n = 12) and evaluated for dye penetration after 24 hours, after 3000 thermocycling rounds, after a 6-month water storage, and after 3000 thermocycling rounds plus 6-month water storage, respectively. Data was analyzed using SPSS 11.5 and Kruskal-Wallis and Mann-Whitney U tests (α = 0.05). Results. There were no significant differences in enamel and dentin microleakage between the adhesives (P = 0.683; P = 0.154). Furthermore, no significant differences were observed in enamel microleakage of each one of CPB and BB (P = 0.061 and P = 0.318, resp.). However, significant decrease was observed in subgroups 3 and 4 (P = 0.001) for CPB dentinal margins. Conclusion. In this study, limited aging procedures had no influence on marginal integrity of composite resin restorations bonded with self-etch adhesives of CPB and BB. Furthermore, CPB dentinal sealing improved after aging. PMID:22611501

  14. Predictive values derived from lower wisdom teeth developmental stages on orthopantomograms to calculate the chronological age in adolescence and young adults as a prerequisite to obtain age-adjusted informed patient consent prior to elective surgical procedures in young patients with incomplete or mismatched personal data

    PubMed Central

    Friedrich, Reinhard E.; Schmidt, Kirsten; Treszl, András; Kersten, Jan F.

    2016-01-01

    Introduction: Surgical procedures require informed patient consent, which is mandatory prior to any procedure. These requirements apply in particular to elective surgical procedures. The communication with the patient about the procedure has to be comprehensive and based on mutual understanding. Furthermore, the informed consent has to take into account whether a patient is of legal age. As a result of large-scale migration, there are eventually patients planned for medical procedures, whose chronological age can’t be assessed reliably by physical inspection alone. Age determination based on assessing wisdom tooth development stages can be used to help determining whether individuals involved in medical procedures are of legal age, i.e., responsible and accountable. At present, the assessment of wisdom tooth developmental stages barely allows a crude estimate of an individual’s age. This study explores possibilities for more precise predictions of the age of individuals with emphasis on the legal age threshold of 18 years. Material and Methods: 1,900 dental orthopantomograms (female 938, male 962, age: 15–24 years), taken between the years 2000 and 2013 for diagnosis and treatment of diseases of the jaws, were evaluated. 1,895 orthopantomograms (female 935, male 960) of 1,804 patients (female 872, male 932) met the inclusion criteria. The archives of the Department of Diagnostic Radiology in Dentistry, University Medical Center Hamburg-Eppendorf, and of an oral and maxillofacial office in Rostock, Germany, were used to collect a sufficient number of radiographs. An effort was made to achieve almost equal distribution of age categories in this study group; ‘age’ was given on a particular day. The radiological criteria of lower third molar investigation were: presence and extension of periodontal space, alveolar bone loss, emergence of tooth, and stage of tooth mineralization (according to Demirjian). Univariate and multivariate general linear models were

  15. Moisture Durability with Vapor-Permeable Insulating Sheathing

    SciTech Connect

    Lepage, R.; Lstiburek, J.

    2013-09-01

    Exterior sheathing insulation is an effective strategy in increasing the overall R-value of wall assemblies; other benefits include decreasing the effects of thermal bridging and increasing the moisture durability of the built assembly. Vapor-permeable exterior insulation, such as mineral board or expanded polystyrene foam, are one such product that may be used to achieve these benefits. However,uncertainty exists on the effects of inward driven moisture and the interaction of increased sheathing temperatures on the moisture durability of the edifice. To address these concerns, Building Science Corporation (BSC) conducted a series of hygrothermal models for cities representing a range of different climate zones. This report describes the research project, key research questions, and theprocedures utilized to analyse the problems.

  16. Electrical Switchability and Dry-Wash Durability of Conductive Textiles

    NASA Astrophysics Data System (ADS)

    Wu, Bangting; Zhang, Bowu; Wu, Jingxia; Wang, Ziqiang; Ma, Hongjuan; Yu, Ming; Li, Linfan; Li, Jingye

    2015-06-01

    There is growing interest in the area of conductive textiles in the scientific and industrial community. Herein, we successfully prepared a conductive textile via covalently grafting polyaniline (PANI) onto cotton by a multi-step treatment process. The conductivity of the resultant fabric could be tuned by immersing in water having different pH values. The conductive and insulating properties of the textile could be conveniently switched by alternately immersing in acidic and alkaline bath solutions. Most importantly, the resultant conductive fabrics were able to withstand 40 simulated dry-wash cycles, with almost no decay in the electrical conductivity, indicating their excellent dry-wash durability. The present strategy for fabricating conductive fabrics with excellent switchability of electrical properties and dry-wash durability is expected to provide inspiration for the production of multifunctional conductive textiles for use in hash or sensitive conditions.

  17. Durability Challenges for Next Generation of Gas Turbine Engine Materials

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    2012-01-01

    Aggressive fuel burn and carbon dioxide emission reduction goals for future gas turbine engines will require higher overall pressure ratio, and a significant increase in turbine inlet temperature. These goals can be achieved by increasing temperature capability of turbine engine hot section materials and decreasing weight of fan section of the engine. NASA is currently developing several advanced hot section materials for increasing temperature capability of future gas turbine engines. The materials of interest include ceramic matrix composites with 1482 - 1648 C temperature capability, advanced disk alloys with 815 C capability, and low conductivity thermal barrier coatings with erosion resistance. The presentation will provide an overview of durability challenges with emphasis on the environmental factors affecting durability for the next generation of gas turbine engine materials. The environmental factors include gaseous atmosphere in gas turbine engines, molten salt and glass deposits from airborne contaminants, impact from foreign object damage, and erosion from ingestion of small particles.

  18. Engine cyclic durability by analysis and material testing

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Halford, G. R.

    1983-01-01

    The problem of calculating turbine engine component durability is addressed. Nonlinear, finite-element structural analyses, cyclic constitutive behavior models, and an advanced creep-fatigue life prediction method called strainrange partitioning were assessed for their applicability to the solution of durability problems in hot-section components of gas turbine engines. Three different component or subcomponent geometries are examined: a stress concentration in a turbine disk; a louver lip of a half-scale combustor liner; and a squealer tip of a first-stage high-pressure turbine blade. Cyclic structural analyses were performed for all three problems. The computed strain-temperature histories at the critical locations of the combustor linear and turbine blade components were imposed on smooth specimens in uniaxial, strain-controlled, thermomechanical fatigue tests of evaluate the structural and life analysis methods.

  19. Mechanical durability of superhydrophobic and oleophobic copper meshes

    NASA Astrophysics Data System (ADS)

    Yin, Linting; Yang, Jin; Tang, Yongcai; Chen, Lin; Liu, Can; Tang, Hua; Li, Changsheng

    2014-10-01

    We developed a simple and inexpensive method to prepare the superhydrophobic and oleophobic copper meshes with rough structures fabrication and chemical modification. The achieved surfaces displayed liquid-repellent toward water and several organic liquids (such as hexadecane), which possessed much lower surface tension than that of water. Liquid repellency of the fabricated superhydrophobic copper mesh was demonstrated by visible experiment results and contact angle measurements. Even if the superhydrophobic copper mesh was rolled up, it still kept the superhydrophobicity. The mechanical durability was investigated by finger touch and mechanical abrasion tests. The results indicated that the copper mesh can maintain its superhydrophobicity against an abrasion length of 300 cm under a high pressure (77.2 kPa). The superhydrophobicity and oleophobicity, combined with mechanical durability, would promote the superhydrophobic surface to practical application in industry in the future.

  20. Effect of mechanical loading on the electrical durability of polymers

    NASA Astrophysics Data System (ADS)

    Slutsker, A. I.; Veliev, T. M.; Alieva, I. K.; Alekperov, V. A.; Polikarpov, Yu. I.; Karov, D. D.

    2017-01-01

    A decrease in the electrical durability, which is defined as an amount of time required for dielectric breakdown at a constant electric field strength, of polyethylene and Lavsan (polyethylene terephthalate) films under tensile loading is registered in a temperature range from 100 to 300 K. It is established that the pulling apart of the axes of neighbor chain molecules in consequence of tensile loading gives rise to a decrease in the energy level of the intermolecular electron traps. In the amorphous region of a polymer, this accelerates the release of electrons from the traps through over-barrier transitions at higher temperatures ranging from about 230 to 350 K and quantum tunneling transitions at lower temperatures in the range from about 80 to 200 K. As a result, the time required for the formation of a critical space charge, i.e., the waiting period of dielectric breakdown, decreases, which means a reduction in the electrical durability of polymers.

  1. The durability of stabilized flue gas desulfurization sludge

    SciTech Connect

    Chen, X.; Wolfe, W.E.; Hargraves, M.D.

    1995-12-31

    The effects of freeze-thaw cycling on the strength and durability of samples of compacted, stabilized, wet flue gas desulfurization (FGD) by-products are reported. The results of laboratory tests show a clear relationship between higher water contents and increasing vulnerability to freeze-thaw effects. In the samples tested, water contents at or above 40% were characteristic of all the freeze-thaw specimens exhibiting low strengths. Lime content and curing time were also shown to have a marked influence on the durability of the FGD material. It was shown that samples can maintain good strength under freeze-thaw conditions provided 5% lime was added before compaction and the time from compaction to first freeze was at least 60 days.

  2. Method for improving the durability of ion insertion materials

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Cheong, Hyeonsik M.

    2002-01-01

    The invention provides a method of protecting an ion insertion material from the degradative effects of a liquid or gel-type electrolyte material by disposing a protective, solid ion conducting, electrically insulating, layer between the ion insertion layer and the liquid or gel-type electrolyte material. The invention further provides liquid or gel-type electrochemical cells having improved durability having a pair of electrodes, a pair of ion insertion layers sandwiched between the pair of electrodes, a pair of solid ion conducting layers sandwiched between the ion insertion layers, and a liquid or gel-type electrolyte material disposed between the solid ion conducting layers, where the solid ion conducting layer minimizes or prevents degradation of the faces of the ion insertion materials facing the liquid or gel-type electrolyte material. Electrochemical cells of this invention having increased durability include secondary lithium batteries and electrochromic devices.

  3. Durability of Polymeric Coatings: Cyclic Loading and Free Volumes

    NASA Astrophysics Data System (ADS)

    Chen, Hongmin; Peng, Qinghua; Wu, Yichu; Li, Ying; Zhang, Junjie; Sandreczki, T. C.; Zhang, Renwu; Jean, Y. C.; Richardson, J. R.

    2002-03-01

    The mechanical durability of seven commercially polymeric coatings is investigated using slow positron beam techniques to monitor changes in sub nanometer defects during the cyclic loading process. Doppler broadened energy spectra and positron annihilation lifetime measurements were performed as a function of the slow positron energy at different periods of cycling loading. The positron annihilation dada show that both S-defect parameter and ortho-positronium intensity decrease as the loading cycles increase. The results indicate a loss of free volumes due to mechanical loading and cycling. A direct correlation between the loss of free-volume parameter and of loading cycle is observed. This is interpreted as that durability of polymeric coatings is controlled by the atomic level defects. It is shown that the slow positron beam is very successful probe in detecting the very early stages of coating degradation due to mechanical processes. Supported by NSF-CMS-9812717

  4. Electrical Switchability and Dry-Wash Durability of Conductive Textiles

    PubMed Central

    Wu, Bangting; Zhang, Bowu; Wu, Jingxia; Wang, Ziqiang; Ma, Hongjuan; Yu, Ming; Li, Linfan; Li, Jingye

    2015-01-01

    There is growing interest in the area of conductive textiles in the scientific and industrial community. Herein, we successfully prepared a conductive textile via covalently grafting polyaniline (PANI) onto cotton by a multi-step treatment process. The conductivity of the resultant fabric could be tuned by immersing in water having different pH values. The conductive and insulating properties of the textile could be conveniently switched by alternately immersing in acidic and alkaline bath solutions. Most importantly, the resultant conductive fabrics were able to withstand 40 simulated dry-wash cycles, with almost no decay in the electrical conductivity, indicating their excellent dry-wash durability. The present strategy for fabricating conductive fabrics with excellent switchability of electrical properties and dry-wash durability is expected to provide inspiration for the production of multifunctional conductive textiles for use in hash or sensitive conditions. PMID:26066704

  5. High Performance and Durable Low PGM Cathode Catalysts

    SciTech Connect

    Wang, Yong; Liu, Jun; Shao, Yuyan; Cheng, Yingwen; Borup, Rodney L.; Rockward, Tommy; Brosha, Eric Lanich

    2015-08-17

    There is a strong need to decrease the amount of Pt electrocatalyst used in fuel cells and increase its durability for transportation application. Conventional strategies include Pt nanocrystals and Pt alloy with well-controlled structures, durable carbon support, non-carbon support, etc. We have developed the so-called “metal-metal oxide-carbon” triple junction concept to stabilize Pt and protect carbon from corrosion. It also improved the activity of Pt. The good performance was not achieved in fuel cell test mainly because of the transport issue due to the use of 2D graphene. In this project, our main goal is to demonstrate the concept in fuel cell device test using 3D porous graphene as support so that the transport issue could be addressed.

  6. Mechanically driven light-generator with high durability

    NASA Astrophysics Data System (ADS)

    Moon Jeong, Soon; Song, Seongkyu; Lee, Soo-Keun; Choi, Byeongdae

    2013-02-01

    Mechanically activated luminescence from solids (mechanoluminescence) is a classical optical phenomenon induced in a substance when stressed or cleaved. However, no practical application has been realized due to its low luminescent intensity and lack of reproducibility. We demonstrate highly bright and durable mechanoluminescent flexible composite films with a brightness of ˜120 cd/m2 and durability over ˜100 000 repeated mechanical stresses by using a combination of copper-doped zinc sulfide (ZnS:Cu) particles and polydimethylsiloxane. Furthermore, the possibility of mechanoluminescent color-tuning by changing the repetitive stress rate on the composite films is also suggested. These findings can open a window for developing smart systems and opto-mechanical devices.

  7. Dental Procedures.

    PubMed

    Ramponi, Denise R

    2016-01-01

    Dental problems are a common complaint in emergency departments in the United States. There are a wide variety of dental issues addressed in emergency department visits such as dental caries, loose teeth, dental trauma, gingival infections, and dry socket syndrome. Review of the most common dental blocks and dental procedures will allow the practitioner the opportunity to make the patient more comfortable and reduce the amount of analgesia the patient will need upon discharge. Familiarity with the dental equipment, tooth, and mouth anatomy will help prepare the practitioner for to perform these dental procedures.

  8. Durable and efficient laser for a space-based rangefinder

    NASA Astrophysics Data System (ADS)

    Polyakov, V. M.; Vitkin, V. V.

    2015-07-01

    We demonstrate a durable and efficient 3 mJ 10 ns 100 Hz Nd:YAG laser developed with a view to the space borne operation. We discuss the cavity construction design principle, the approach to high efficiency and the smooth pulse operation. The experimental investigation for the best pair of Q-switch transmission and output coupler reflection coefficient is considered. The factors influencing the pulse shape are analyzed. The 100 Hz operation with good beam quality is demonstrated.

  9. Advances in Understanding Durability of the Building Envelope: ORNL Research

    SciTech Connect

    Kehrer, Manfred; Desjarlais, Andre Omer

    2013-01-01

    Moisture, and its accompanying outriders things like mold, corrosion, freeze damage, and decay present powerful threats to the durability and long-term performance of a building envelope. Miscalculating the impact of environmental factors like rain, solar radiation, temperature, humidity, and indoor sources of moisture can cause significant damage to many types of building envelope components and materials, and also can lead to unhealthy indoor living environments.

  10. Durable zinc ferrite sorbent pellets for hot coal gas desulfurization

    DOEpatents

    Jha, Mahesh C.; Blandon, Antonio E.; Hepworth, Malcolm T.

    1988-01-01

    Durable, porous sulfur sorbents useful in removing hydrogen sulfide from hot coal gas are prepared by water pelletizing a mixture of fine zinc oxide and fine iron oxide with inorganic and organic binders and small amounts of activators such as sodium carbonate and molybdenite; the pellets are dried and then indurated at a high temperature, e.g., 1800.degree. C., for a time sufficient to produce crush-resistant pellets.

  11. Durability of Continuous Fiber Reinforced Metal Matrix Composites

    DTIC Science & Technology

    1987-10-01

    Wright-Patterson Air Force Base, Ohio, under contract F33615-83-C-3219, Project 2401, Work Unit 24010167, "Durability of Continuous Fiber Metal...determine the range of fatigue failure modes found by previous investigators. Testing performed under MCAIR IRAD had previously shown that failure modes... under tension loading. The fatigue sensitivity is the ratio of net stress in a notched specimen to that in an unnotched specimen at a given life

  12. Use of recycled fine aggregate in concretes with durable requirements.

    PubMed

    Zega, Claudio Javier; Di Maio, Angel Antonio

    2011-11-01

    The use of construction waste materials as aggregates for concrete production is highly attractive compared to the use of non-renewable natural resources, promoting environmental protection and allowing the development of a new raw material. Several countries have recommendations for the use of recycled coarse aggregate in structural concrete, whereas the use of the fine fraction is limited because it may produce significant changes in some properties of concrete. However, during the last decade the use of recycled fine aggregates (RFA) has achieved a great international interest, mainly because of economic implications related to the shortage of natural sands suitable for the production of concrete, besides to allow an integral use of this type of waste. In this study, the durable behaviour of structural concretes made with different percentage of RFA (0%, 20%, and 30%) is evaluated. Different properties related to the durability of concretes such as absorption, sorptivity, water penetration under pressure, and carbonation are determined. In addition, the results of compressive strength, static modulus of elasticity and drying shrinkage are presented. The obtained results indicate that the recycled concretes have a suitable resistant and durable behaviour, according to the limits indicated by different international codes for structural concrete.

  13. The durability of silicone versus latex mock arteries.

    PubMed

    Conti, J C; Strope, E R; Goldenberg, L M; Price, K S

    2001-01-01

    Latex mock arteries used in medical device testing allow researchers to evaluate mechanical characteristics of intravascular medical products without using animal or human clinical studies for this data. Such intravascular situations include determining properties such as drag and steerability of catheters, recoil of vascular stents, and clinician training. In fatigue testing, the latex mock arteries are used to receive deployed products and are then repeatedly pressurized at biologically relevant pressures to determine the long term durability of the product. By matching dimensions and pressure-volume relationships (compliance) of these latex tubes, researchers have a reliable means to evaluate and predict product lifetimes. The problem with latex mock arteries is two-fold: First, they are opaque so the product inside the artery cannot be seen during evaluation of the integrity of the product or during clinical training sessions. Second, latex tubes fatigue; therefore, the loading that they place on the internalized products varies with time. During long term durability studies, latex tubes may have to be replaced as often as every 100 million cycles. This can be problematic with products that are difficult to redeploy. We have developed a clear silicone mock artery system that allows us to fabricate three-dimensional objects, including tubes with precise geometric and mechanical properties. Our evaluations show that the mock arteries can be stressed up to 400 million cycles with little or no change in mechanical properties. We are in the process of continuing evaluations to determine long term durability.

  14. Durability of organobentonite-amended liner for decelerating chloroform transport.

    PubMed

    He, Shichong; Zhu, Lizhong

    2016-04-01

    Chloroform is added to landfill for suppressing methane generation, which however may transport through landfill liners and lead to contamination of groundwater. To decelerate chloroform transport, the enhanced sorption ability of clay liners following organobentonite addition was tested. In this study, we used batch sorption to evaluate sorption capacity of chloroform to organobentonite, followed by column tests and model simulations for assessing durability of different liners. Results show that adding 10% CTMAB-bentonite (organobentonite synthesized using cetyltrimethylammonium bromide) increased the duration of a bentonite liner by 88.5%. CTMAB-bentonite consistently showed the highest sorption capacity (Qm) among six typical organobentonites under various environmental conditions. The removal rate of chloroform by CTMAB-bentonite was 3.6-23 times higher than that by natural soils. According to the results derived by model simulation, a 70-cm 10% CTMAB-bentonite liner exhibited much better durability than a 100-cm compact clay liner (CCL) and natural bentonite liner evidenced by the delayed and lower peak of eluent concentration. A minimum thickness of 65.8 cm of the 10% CTMAB-bentonite liner could completely sorb the chloroform in a 100-m-high landfill. The 10% CTMAB-bentonite liner exhibiting much better durability has the promise for reducing environmental risk of chloroform in landfill.

  15. Freeze-Thaw Durability of Air-Entrained Concrete

    PubMed Central

    Shang, Huai-Shuai; Yi, Ting-Hua

    2013-01-01

    One of the most damaging actions affecting concrete is the abrupt temperature change (freeze-thaw cycles). The types of deterioration of concrete structures by cyclic freeze-thaw can be largely classified into surface scaling (characterized by the weight loss) and internal crack growth (characterized by the loss of dynamic modulus of elasticity). The present study explored the durability of concrete made with air-entraining agent subjected to 0, 100, 200, 300, and 400 cycles of freeze-thaw. The experimental study of C20, C25, C30, C40, and C50 air-entrained concrete specimens was completed according to “the test method of long-term and durability on ordinary concrete” GB/T 50082-2009. The dynamic modulus of elasticity and weight loss of specimens were measured after different cycles of freeze-thaw. The influence of freeze-thaw cycles on the relative dynamic modulus of elasticity and weight loss was analyzed. The findings showed that the dynamic modulus of elasticity and weight decreased as the freeze-thaw cycles were repeated. They revealed that the C30, C40, and C50 air-entrained concrete was still durable after 300 cycles of freeze-thaw according to the experimental results. PMID:23576906

  16. Bio-inspired durable, superhydrophobic magnetic particles for oil/water separation.

    PubMed

    Zhang, Liang; Li, Lili; Dang, Zhi-Min

    2016-02-01

    In the present study, superhydrophobic and superoleophilic microparticles with magnetic property were fabricated by combining the oxidation and self-polymerization of dopamine and formation of Fe3O4 nanoparticles on the surface of the polydopamine (PDA) particles, followed by modification with low surface energy material. The modified PDA/Fe3O4 particles showed high water repellency with contact angle (CA) measured at 153.7±1.6° and high oil affinity. The superhydrophobic microparticles preserved high water CA after aging test, showing excellent durability. The microparticles were employed to effectively remove oil from water in different routes. Superhydrophobic sponge was prepared by modifying with the achieved microparticles. The sponge exhibited high absorption capability of oil, with weight gains ranging from 1348% to 7268%. The results suggest this work might provide a promising candidate for oily pollutants/water separation and transportation.

  17. Impact of Biodiesel Impurities on the Performance and Durability of DOC, DPF and SCR Technologies: Preprint

    SciTech Connect

    Williams, A.; McCormick, R.; Luecke, J.; Brezny, R.; Geisselmann, A.; Voss, K.; Hallstrom, K.; Leustek, M.; Parsons, J.; Abi-Akar, H.

    2011-04-01

    An accelerated durability test method determined the potential impact of biodiesel ash impurities, including engine testing with multiple diesel particulate filter substrate types, as well as diesel oxidation catalyst and selective catalyst reduction catalysts. The results showed no significant degradation in the thermo-mechanical properties of a DPF after exposure to 150,000-mile equivalent biodiesel ash and thermal aging. However, exposure to 435,000-mile equivalent aging resulted in a 69% decrease in thermal shock resistance. A decrease in DOC activity was seen after exposure to 150,000-mile equivalent aging, resulting in higher hydrocarbon slip and a reduction in NO2 formation. The SCR catalyst experienced a slight loss in activity after exposure to 435,000-mile equivalent aging. The SCR catalyst, placed downstream of the DPF and exposed to B20 exhaust suffered a 5% reduction in overall NOx conversion activity over the HDDT test cycle. It is estimated that the additional ash from 150,000 miles of biodiesel use would also result in a moderate increases in exhaust backpressure for a DPF. The results of this study suggest that long-term operation with B20 at the current specification limits for alkali and alkaline earth metal impurities will adversely impact the performance of DOC, DPF and SCR systems.

  18. Upper Airway Stimulation for Obstructive Sleep Apnea: Durability of the Treatment Effect at 18 Months

    PubMed Central

    Strollo, Patrick J.; Gillespie, M. Boyd; Soose, Ryan J.; Maurer, Joachim T.; de Vries, Nico; Cornelius, Jason; Hanson, Ronald D.; Padhya, Tapan A.; Steward, David L.; Woodson, B. Tucker; Verbraecken, Johan; Vanderveken, Olivier M.; Goetting, Mark G.; Feldman, Neil; Chabolle, Frédéric; Badr, M. Safwan; Randerath, Winfried; Strohl, Kingman P.

    2015-01-01

    Objective: To determine the stability of improvement in polysomnographic measures of sleep disordered breathing, patient reported outcomes, the durability of hypoglossal nerve recruitment and safety at 18 months in the Stimulation Treatment for Apnea Reduction (STAR) trial participants. Design: Prospective multicenter single group trial with participants serving as their own controls. Setting: Twenty-two community and academic sleep medicine and otolaryngology practices. Measurements: Primary outcome measures were the apnea-hypopnea index (AHI) and the 4% oxygen desaturation index (ODI). Secondary outcome measures were the Epworth Sleepiness Scale (ESS), the Functional Outcomes of Sleep Questionnaire (FOSQ), and oxygen saturation percent time < 90% during sleep. Stimulation level for each participant was collected at three predefined thresholds during awake testing. Procedure- and/or device-related adverse events were reviewed and coded by the Clinical Events Committee Results: The median AHI was reduced by 67.4% from the baseline of 29.3 to 9.7/h at 18 mo. The median ODI was reduced by 67.5% from 25.4 to 8.6/h at 18 mo. The FOSQ and ESS improved significantly at 18 mo compared to baseline values. The functional threshold was unchanged from baseline at 18 mo. Two participants experienced a serious device-related adverse event requiring neurostimulator repositioning and fixation. No tongue weakness reported at 18 mo. Conclusion: Upper airway stimulation via the hypoglossal nerve maintained a durable effect of improving airway stability during sleep and improved patient reported outcomes (Epworth Sleepiness Scale and Functional Outcomes of Sleep Questionnaire) without an increase of the stimulation thresholds or tongue injury at 18 mo of follow-up. Citation: Strollo PJ, Gillespie MB, Soose RJ, Maurer JT, de Vries N, Cornelius J, Hanson RD, Padhya TA, Steward DL, Woodson BT, Verbraecken J, Vanderveken OM, Goetting MG, Feldman N, Chabolle F, Badr MS, Randerath W

  19. Predictive Nomogram for the Durability of Pain Relief From Gamma Knife Radiation Surgery in the Treatment of Trigeminal Neuralgia

    SciTech Connect

    Lucas, John T.; Nida, Adrian M.; Isom, Scott; Marshall, Kopriva; Bourland, John D.; Laxton, Adrian W.; Tatter, Stephen B.; Chan, Michael D.

    2014-05-01

    Purpose: To determine factors associated with the durability of stereotactic radiation surgery (SRS) for treatment of trigeminal neuralgia (TN). Methods and Materials: Between 1999 and 2008, 446 of 777 patients with TN underwent SRS and had evaluable follow-up in our electronic medical records and phone interview records. The median follow-up was 21.2 months. The Barrow Neurologic Institute (BNI) pain scale was used to determine pre- and post-SRS pain. Dose-volume anatomical measurements, Burchiel pain subtype, pain quality, prior procedures, and medication usage were included in this retrospective cohort to identify factors impacting the time to BNI 4-5 pain relapse by using Cox proportional hazard regression. An internet-based nomogram was constructed based on predictive factors of durable relief pre- and posttreatment at 6-month intervals. Results: Rates of freedom from BNI 4-5 failure at 1, 3, and 5 years were 84.5%, 70.4%, and 46.9%, respectively. Pain relief was BNI 1-3 at 1, 3, and 5 years in 86.1%, 74.3%, and 51.3% of type 1 patients; 79.3%, 46.2%, and 29.3% of type 2 patients; and 62.7%, 50.2%, and 25% of atypical facial pain patients. BNI type 1 pain score was achieved at 1, 3, and 5 years in 62.9%, 43.5%, and 22.0% of patients with type 1 pain and in 47.5%, 25.2%, and 9.2% of type 2 patients, respectively. Only 13% of patients with atypical facial pain achieved BNI 1 response; 42% of patients developed post-Gamma Knife radiation surgery (GKRS) trigeminal dysfunction. Multivariate analysis revealed that post-SRS numbness (hazard ratio [HR], 0.47; P<.0001), type 1 (vs type 2) TN (HR, 0.6; P=.02), and improved post-SRS BNI score at 6 months (HR, 0.009; P<.0001) were predictive of a durable pain response. Conclusions: The durability of SRS for TN depends on the presenting Burchiel pain type, the post-SRS BNI score, and the presence of post-SRS facial numbness. The durability of pain relief can be estimated pre- and posttreatment by using our

  20. Durability of Low Platinum Fuel Cells Operating at High Power Density

    SciTech Connect

    Polevaya, Olga; Blanchet, Scott; Ahluwalia, Rajesh; Borup, Rod; Mukundan, Rangachary

    2014-03-19

    Understanding and improving the durability of cost-competitive fuel cell stacks is imperative to successful deployment of the technology. Stacks will need to operate well beyond today’s state-of-the-art rated power density with very low platinum loading in order to achieve the cost targets set forth by DOE ($15/kW) and ultimately be competitive with incumbent technologies. An accelerated cost-reduction path presented by Nuvera focused on substantially increasing power density to address non-PGM material costs as well as platinum. The study developed a practical understanding of the degradation mechanisms impacting durability of fuel cells with low platinum loading (≤0.2mg/cm2) operating at high power density (≥1.0W/cm2) and worked out approaches for improving the durability of low-loaded, high-power stack designs. Of specific interest is the impact of combining low platinum loading with high power density operation, as this offers the best chance of achieving long-term cost targets. A design-of-experiments approach was utilized to reveal and quantify the sensitivity of durability-critical material properties to high current density at two levels of platinum loading (the more conventional 0.45 mgPt.cm–1 and the much lower 0.2 mgPt.cm–2) across several cell architectures. We studied the relevance of selected component accelerated stress tests (AST) to fuel cell operation in power producing mode. New stress tests (NST) were designed to investigate the sensitivity to the addition of electrical current on the ASTs, along with combined humidity and load cycles and, eventually, relate to the combined city/highway drive cycle. Changes in the cathode electrochemical surface area (ECSA) and average oxygen partial pressure on the catalyst layer with aging under AST and NST protocols were compared based on the number of completed cycles. Studies showed elevated sensitivity of Pt growth to the potential limits and the initial particle size distribution. The ECSA loss

  1. Engine rotor health monitoring: an experimental approach to fault detection and durability assessment

    NASA Astrophysics Data System (ADS)

    Abdul-Aziz, Ali; Woike, Mark R.; Clem, Michelle; Baaklini, George

    2015-03-01

    Efforts to update and improve turbine engine components in meeting flights safety and durability requirements are commitments that engine manufacturers try to continuously fulfill. Most of their concerns and developments energies focus on the rotating components as rotor disks. These components typically undergo rigorous operating conditions and are subject to high centrifugal loadings which subject them to various failure mechanisms. Thus, developing highly advanced health monitoring technology to screen their efficacy and performance is very essential to their prolonged service life and operational success. Nondestructive evaluation techniques are among the many screening methods that presently are being used to pre-detect hidden flaws and mini cracks prior to any appalling events occurrence. Most of these methods or procedures are confined to evaluating material's discontinuities and other defects that have mature to a point where failure is eminent. Hence, development of more robust techniques to pre-predict faults prior to any catastrophic events in these components is highly vital. This paper is focused on presenting research activities covering the ongoing research efforts at NASA Glenn Research Center (GRC) rotor dynamics laboratory in support of developing a fault detection system for key critical turbine engine components. Data obtained from spin test experiments of a rotor disk that relates to investigating behavior of blade tip clearance, tip timing and shaft displacement based on measured data acquired from sensor devices such as eddy current, capacitive and microwave are presented. Additional results linking test data with finite element modeling to characterize the structural durability of a cracked rotor as it relays to the experimental tests and findings is also presented. An obvious difference in the vibration response is shown between the notched and the baseline no notch rotor disk indicating the presence of some type of irregularity.

  2. Durability testing at one atmosphere of advanced catalysts and catalyst supports for automotive gas turbine engine combustors, part 1

    NASA Technical Reports Server (NTRS)

    Heck, R. M.; Chang, M.; Hess, H.; Carrubba, R.

    1977-01-01

    The durability of catalysts and catalyst supports in a combustion environment was experimentally demonstrated. A test of 1000 hours duration was completed with two catalysts, using diesel fuel and operating at catalytically supported thermal combustion conditions. The performance of the catalysts was determined by monitoring emissions throughout the test, and by examining the physical condition of the catalyst core at the conclusion of the test. The test catalysts proved to be capable of low emissions operation after 1000 hours diesel aging, with no apparent physical degradation of the catalyst support.

  3. Advances in Thin Film Thermocouple Durability Under High Temperature and Pressure Testing Conditions

    NASA Technical Reports Server (NTRS)

    Martin, Lisa C.; Fralick, Gustave C.; Taylor, Keith F.

    1999-01-01

    Thin film thermocouples for measuring material surface temperature have been previously demonstrated on several material systems and in various hostile test environments. A well-developed thin film fabrication procedure utilizing shadow masking for patterning the sensors elements had produced thin films with sufficient durability for applications in high temperature and pressure environments that exist in air-breathing and hydrogen-fueled burner rig and engine test facilities. However, while shadow masking had been a reliable method for specimens with flat and gently curved surfaces, it had not been consistently reliable for use on test components with sharp contours. This work reports on the feasibility of utilizing photolithography processing for patterning thin film thermocouples. Because this patterning process required changes in the thin film deposition process from that developed for shadow masking, the effect of these changes on thin film adherence during burner rig testing was evaluated. In addition to the results of changing the patterning method, the effects on thin film adherence of other processes used in the thin film fabrication procedure is also presented.

  4. Aging and cosmetic enhancement

    PubMed Central

    Honigman, Roberta; Castle, David J

    2006-01-01

    Obsession with a youthful appearance has become commonplace in modern society and has resulted in an upswing in cosmetic procedures trying to reverse the aging process. We selectively review the literature on aging and cosmetic surgery, with particular regard for the aging face. We pay attention to psychosocial aspects of response to such cosmetic procedures, both in terms of outcome and with respect to risk factors for a poor outcome. PMID:18044108

  5. Therma1 Conductivity and Durability of Advanced Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2003-01-01

    Thermal barrier coatings (TBCs) will play a crucial role in advanced gas turbine engines because of their ability to further increase engine operating temperature and reduce cooling, thus helping to achieve engine emission and efficiency goals. Future TBCs must be designed with increased phase stability, lower thermal conductivity, and improved sintering and thermal stress resistance in order to effectively protect engine hot-section components. Advanced low conductivity TBCs are being developed at NASA by incorporating multi-component oxide dopants into zirconia-yttria or hafnia-yttria to promote the formation of thermodynamically stable defect clusters within the coating structures. This presentation will primarily focus on thermal conductivity and durability of the novel defect cluster thermal barrier coatings for turbine airfoil and combustor applications, determined by a unique CO2 laser heat-flux approach. The laser heat-flux testing approach emphasizes the real-time monitoring and assessment of the coating thermal conductivity under simulated engine temperature and thermal gradient conditions. The conductivity increase due to coating sintering (and/or phase change) and the conductivity decrease due to coating delamination have been determined under steady-state, cyclic, uniform or non-uniform heat-flux conditions. The coating radiation flux resistance has been evaluated by varying coating thermal gradients, and also by using a laser-heated radiative-flux source. Advanced multi-component TBC systems have been shown to have significantly reduced thermal conductivity and improved high temperature stability due to the nano-sized, low mobility defect clusters associated with the paired rare earth dopant additions. The effect of oxide defect cluster dopants on coating thermal conductivity, thermal stability and furnace cyclic durability will also be discussed. The current low conductivity TBC systems have demonstrated long-term cyclic durability at very high

  6. Advanced Stirling Convertor Durability Testing: Plans and Interim Results

    NASA Technical Reports Server (NTRS)

    Meer, Dave; Oriti, Sal

    2012-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Corporation (LM), and NASA Glenn Research Center (GRC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. In support of this program, NASA?s Glenn Research Center (GRC) has been involved in testing Stirling convertors, including the Advanced Stirling Convertor (ASC), for use in the ASRG. This testing includes electromagnetic interference/compatibility (EMI/EMC), structural dynamics, advanced materials, organics, and unattended extended operation. The purpose of the durability tests is to experimentally demonstrate the margins in the ASC design. Due to the high value of the hardware, previous ASC tests focused on establishing baseline performance of the convertors within the nominal operating conditions. The durability tests present the first planned extension of the operating conditions into regions beyond those intended to meet the product spec, where the possibility exists of lateral contact, overstroke, or over-temperature events. These tests are not intended to cause damage that would shorten the life of the convertors, so they can transition into extended operation at the conclusion of the tests. This paper describes the four tests included in the durability test sequence: 1) start/stop cycling, 2) exposure to constant acceleration in the lateral and axial directions, 3) random vibration at increased piston amplitude to induce contact events, and 4) overstroke testing to simulate potential failures during processing or during the mission life where contact events could occur. The paper also summarizes the analysis and simulation used to predict the results of each of these tests.

  7. Advanced Stirling Convertor Durability Testing: Plans and Interim Results

    NASA Technical Reports Server (NTRS)

    Meer, David W.; Oriti, Salvatore M.

    2012-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Corporation (LM), and NASA Glenn Research Center (GRC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. In support of this program, GRC has been involved in testing Stirling convertors, including the Advanced Stirling Convertor (ASC), for use in the ASRG. This testing includes electromagnetic interference/compatibility (EMI/EMC), structural dynamics, advanced materials, organics, and unattended extended operation. The purpose of the durability tests is to experimentally demonstrate the margins in the ASC design. Due to the high value of the hardware, previous ASC tests focused on establishing baseline performance of the convertors within the nominal operating conditions. The durability tests present the first planned extension of the operating conditions into regions beyond those intended to meet the product spec, where the possibility exists of lateral contact, overstroke, or over-temperature events. These tests are not intended to cause damage that would shorten the life of the convertors, so they can transition into extended operation at the conclusion of the tests. This paper describes the four tests included in the durability test sequence: 1) start/stop cycling, 2) exposure to constant acceleration in the lateral and axial directions, 3) random vibration at increased piston amplitude to induce contact events, and 4) overstroke testing to simulate potential failures during processing or during the mission life where contact events could occur. The paper also summarizes the analysis and simulation used to predict the results of each of these tests.

  8. Durability testing of antireflection coatings for solar applications

    NASA Astrophysics Data System (ADS)

    Jorgensen, Gary J.; Brunold, Stefan; Koehl, Michael; Nostell, Per; Oversloot, Henk; Roos, Arne

    1999-10-01

    Antireflection (AR) coatings can be incorporated into highly transmitting glazings that, depending upon their cost, performance, and durability of optical properties, can be economically viable in solar collectors, agricultural greenhouses, and PV systems. A number of AR-coated glazings have been prepared under the auspices of the International Energy Agency Working Group on Durability of Materials for Solar Thermal Collectors. The AR coatings are of two types, including (1) various sol-gels applied to glass and (2) an embossed treatment of sheet acrylic. Typically, for unweathered glazings, a 4 - 5% increase in solar-weighted transmittance has been achieved. For AR-coated glass, reflectance values as low as 0.5% - 0.7% at selected wavelengths (680 - 720 nm) were obtained. To determine the durability of the hemispherical transmittance, several collaborating countries are testing these materials both outdoors and in accelerated weathering chambers. All materials exposed outdoors are affixed to mini-collector boxes to simulate flat-plate collector conditions. Results for candidate AR coatings weathered at geographically disperse outdoor test sites exhibit changes in spectral transmittance primarily in the high visible range (600 - 700 nm). Accelerated testing at measured levels of simulated solar irradiance, and at different constant levels of temperature and relative humidity have been performed in different countries. Parallel testing with different levels of laboratory-controlled relevant stress factors permits the time-dependent performance of these materials to be compared with measured results from in-service outdoor exposure conditions. Coating adhesion and performance loss resulting from dirt and dust retention are also discussed.

  9. Chemically durable phosphate glasses and a method for their preparation

    DOEpatents

    Day, D.E.; Wilder, J.A. Jr.

    The chemical durability of alkali phosphate glasses is improved by incorporation of up to 23 weight percent of nitrogen. A typical phosphate glass contains: 10 to 60 mole % of Li/sub 2/O, Na/sub 2/O or K/sub 2/O; 5 to 40 mole % of BaO or CaO; 0 to 1 to 10 mole % of Al/sub 2/O/sub 3/; and 40 to 70 mole % of P/sub 2/O/sub 5/. Nitrides, such as AlN, are the favored additives.

  10. Durability of Polymeric Encapsulation Materials for Concentrating Photovoltaic Systems (Presentation)

    SciTech Connect

    Miller, D. C.; Muller, M.; Kempe, M. D.; Araki, K.; Kennedy, C. E.; Kurtz, S. R.

    2011-04-01

    Presented at the 7th International Conference on Concentrating Photovoltaic Systems (CPV-7), 4-6 April 2011, Las Vegas, Nevada. Many concentrating photovoltaic (CPV) systems use a polymeric encapsulant to couple an optical component and/or coverglass to the cell. In that location, the encapsulation improves the transmission of concentrated optical flux through interfaces(s) while protecting the cell from the environment. The durability of encapsulation materials, however, is not well established relative to the desired service life of 30 years. Therefore, we have initiated a screen test to identify the field-induced failure modes for a variety of popular PV encapsulation materials.

  11. Durable, Low-cost, Improved Fuel Cell Membranes

    SciTech Connect

    Chris Roger; David Mountz; Wensheng He; Tao Zhang

    2011-03-17

    The development of low cost, durable membranes and membranes electrode assemblies (MEAs) that operate under reduced relative humidity (RH) conditions remain a critical challenge for the successful introduction of fuel cells into mass markets. It was the goal of the team lead by Arkema, Inc. to address these shortages. Thus, this project addresses the following technical barriers from the fuel cells section of the Hydrogen Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan: (A) Durability (B) Cost Arkema’s approach consisted of using blends of polyvinylidenefluoride (PVDF) and proprietary sulfonated polyelectrolytes. In the traditional approach to polyelectrolytes for proton exchange membranes (PEM), all the required properties are “packaged” in one macromolecule. The properties of interest include proton conductivity, mechanical properties, durability, and water/gas transport. This is the case, for example, for perfluorosulfonic acid-containing (PFSA) membranes. However, the cost of these materials is high, largely due to the complexity and the number of steps involved in their synthesis. In addition, they suffer other shortcomings such as mediocre mechanical properties and insufficient durability for some applications. The strength and originality of Arkema’s approach lies in the decoupling of ion conductivity from the other requirements. Kynar® PVDF provides an exceptional combination of properties that make it ideally suited for a membrane matrix (Kynar® is a registered trademark of Arkema Inc.). It exhibits outstanding chemical resistance in highly oxidative and acidic environments. In work with a prior grant, a membrane known as M41 was developed by Arkema. M41 had many of the properties needed for a high performance PEM, but had a significant deficiency in conductivity at low RH. In the first phase of this work, the processing parameters of M41 were explored as a means to increase its proton

  12. PEM Fuel Cell Freeze Durability and Cold Start Project

    SciTech Connect

    Patterson, T.; O'Neill, Jonathan

    2008-01-02

    UTC has taken advantage of the unique water management opportunities inherent in micro-porous bipolar-plates to improve the cold-start performance of its polymer electrolyte fuel cells (PEFC). Diagnostic experiments were used to determine the limiting factors in micro-porous plate PEFC freeze performance and the causes of any performance decay. Alternative cell materials were evaluated for their freeze performance. Freeze-thaw cycling was also performed to determine micro-porous plate PEFC survivability. Data from these experiments has formed the basis for continuing development of advanced materials capable of supporting DOE's cold-start and durability objectives.

  13. Toward improved durability in advanced aircraft engine hot sections

    NASA Technical Reports Server (NTRS)

    Sokolowski, Daniel E. (Editor)

    1989-01-01

    The conference on durability improvement methods for advanced aircraft gas turbine hot-section components discussed NASA's Hot Section Technology (HOST) project, advanced high-temperature instrumentation for hot-section research, the development and application of combustor aerothermal models, and the evaluation of a data base and numerical model for turbine heat transfer. Also discussed are structural analysis methods for gas turbine hot section components, fatigue life-prediction modeling for turbine hot section materials, and the service life modeling of thermal barrier coatings for aircraft gas turbine engines.

  14. Thermal cyclic durability testing of ceramic materials for turbine engines

    NASA Technical Reports Server (NTRS)

    Lindberg, L. J.

    1986-01-01

    The thermal cyclic durability of commercial ceramic materials for turbine engines was under evaluation since 1978. Ceramic materials are exposed to cyclic diesel-fired burner exhaust at either 1204 or 1371 C (2200 or 2500 F) for up to 3500 hours. The test conditions are selected to simulate the environment experienced by the hot flow path components in an automotive gas turbine engine. The silicon nitride and silicon carbide materials tested are the same ceramic materials currently used on the AGT100 and AGT101 ceramic turbine engine program.

  15. Water-thinnable polymers for durable coatings for different materials

    SciTech Connect

    Jankowski, Piotr Kijowska, Dorota

    2014-05-15

    The methods of obtaining water-thinnable polymers - water-thinnable unsaturated polyester resins (WTUPR) - by polycondensation were elaborate and optimized. As hydrophilic monomers different types of sulfonate monomers were used. The monomers, with sulfonate groups and other reactive groups, were obtained by sulfonation of organic compounds with satisfactory yield. All products were analyzed by {sup 1}H NMR and {sup 13}C NMR spectra. WTUPR were used as polymeric binders for coatings applications. Coatings with relatively high pendulum hardness, good properties and durability, useful for practical applications, were obtained. Typical existing equipment for the production of unsaturated polyester resins can be applied for the industrial preparation of WTUPR.

  16. Durable silver thin film coating for diffraction gratings

    DOEpatents

    Wolfe, Jesse D.; Britten, Jerald A.; Komashko, Aleksey M.

    2006-05-30

    A durable silver film thin film coated non-planar optical element has been developed to replace Gold as a material for fabricating such devices. Such a coating and resultant optical element has an increased efficiency and is resistant to tarnishing, can be easily stripped and re-deposited without modifying underlying grating structure, improves the throughput and power loading of short pulse compressor designs for ultra-fast laser systems, and can be utilized in variety of optical and spectrophotometric systems, particularly high-end spectrometers that require maximized efficiency.

  17. Durable innovative solar optical materials: The international challenge

    NASA Astrophysics Data System (ADS)

    Lampert, C. M.

    1982-07-01

    A variety of optical coatings is discussed in the context of solar energy utilization. Well known coatings such as heat mirrors, selective absorbers, and reflective films are covered briefly. Emphasis is placed on the materials limitations and design choices for various lesser known optical coatings and materials. Physical and optical properties are detailed for protective antireflection films, fluorescent concentrator materials, holographic films, cold mirrors, radiative cooling surfaces, and optical switching films including electrochromic, thermochromic, photochromic, and liquid crystal types. For many of these materials research is only now being considered, and various design and durability issues must be addressed.

  18. Durable innovative solar optical materials - the international challenge

    NASA Astrophysics Data System (ADS)

    Lampert, Carl M.

    1982-04-01

    A variety of optical coatings are discussed in the context of solar energy utilization. Well known coatings such as heat mirrors, selective absorbers, and reflective films are covered briefly. Emphasis is placed on the materials limitations and design choices for various lesser known optical coatings and materials. Physical and optical properties are detailed for protective antireflection films, fluorescent concentrator materials, holographic films, cold mirrors, radiative cooling surfaces, and optical switching films including electrochromic, thermochromic, photochromic, and liquid crystal types. For many of these materials research is only now being considered, and various design and durability issues must be addressed.

  19. Methods for Using Durable Adhesively Bonded Joints for Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III (Inventor); Lundgren, Eric C. (Inventor)

    2016-01-01

    Systems, methods, and apparatus for increasing durability of adhesively bonded joints in a sandwich structure. Such systems, methods, and apparatus includes an first face sheet and an second face sheet as well as an insert structure, the insert structure having a first insert face sheet, a second insert face sheet, and an insert core material. In addition, sandwich core material is arranged between the first face sheet and the second face sheet. A primary bondline may be coupled to the face sheet(s) and the splice. Further, systems, methods, and apparatus of the present disclosure advantageously reduce the load, provide a redundant path, reduce structural fatigue, and/or increase fatigue life.

  20. Durable innovative solar optical materials: the international challenge

    SciTech Connect

    Lampert, C.M.

    1982-01-01

    A variety of optical coatings are discussed in the context of solar energy utilization. Well known coatings such as heat mirrors, selective absorbers, and reflective films are covered briefly. Emphasis is placed on the materials limitations and design choices for various lesser known optical coatings and materials. Physical and optical properties are detailed for protective antireflection films, fluorescent concentrator materials, holographic films, cold mirrors, radiative cooling surfaces, and optical switching films including electrochromic, thermochromic, photochromic, and liquid crystal types. For many of these materials research is only now being considered, and various design and durability issues must be addressed.

  1. Durable zinc oxide-containing sorbents for coal gas desulfurization

    DOEpatents

    Siriwardane, Ranjani V.

    1996-01-01

    Durable zinc-oxide containing sorbent pellets for removing hydrogen sulfide from a gas stream at an elevated temperature are made up to contain titania as a diluent, high-surface-area silica gel, and a binder. These materials are mixed, moistened, and formed into pellets, which are then dried and calcined. The resulting pellets undergo repeated cycles of sulfidation and regeneration without loss of reactivity and without mechanical degradation. Regeneration of the pellets is carried out by contacting the bed with an oxidizing gas mixture.

  2. Structural Integrity and Durability of Reusable Space Propulsion Systems

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A two-day conference on the structural integrity and durability of reusable space propulsion systems was held on 14 to 15 May 1991 at the NASA Lewis Research Center. Presentations were made by industry, university, and government researchers organized into four sessions: (1) aerothermodynamic loads; (2) instrumentation; (3) fatigue, fracture, and constitutive modeling; and (4) structural dynamics. The principle objectives were to disseminate research results and future plans in each of four areas. This publication contains extended abstracts and the visual material presented during the conference. Particular emphasis is placed on the Space Shuttle Main Engine (SSME) and the SSME turbopump.

  3. Structural Durability of Damaged Metallic Panel Repaired with Composite Patches

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon; Chamis, Christos C.

    1997-01-01

    Structural durability/damage tolerance characteristics of an aluminum tension specimen possessing a short crack and repaired by applying a fiber composite surface patch is investigated via computational simulation. The composite patch is made of graphite/epoxy plies with various layups. An integrated computer code that accounts for all possible failure modes is utilized for the simulation of combined fiber-composite/aluminum structural degradation under loading. Damage initiation, growth, accumulation, and propagation to structural fracture are included in the simulation. Results show the structural degradation stages due to tensile loading and illustrate the use of computational simulation for the investigation of a composite patch repaired cracked metallic panel.

  4. Durability of Poly(Methyl Methacrylate) Lenses Used in Concentrating Photovoltaic Modules: Preprint

    SciTech Connect

    Miller, D. C.; Gedvilas, L. M.; To, B.; Kennedy, C. E.; Kurtz, S. R.

    2010-08-01

    Concentrating photovoltaic (CPV) technology has recently gained interest based on their expected low levelized cost of electricity, high efficiency, and scalability. Many CPV systems use Fresnel lenses made of poly(methyl methacrylate)(PMMA) to obtain a high optical flux density. The optical and mechanical durability of such components, however, are not well established relative to the desired service life of 30 years. Specific reliability issues may include: reduced optical transmittance, discoloration, hazing, surface erosion, embrittlement, crack growth, physical aging, shape setting (warpage), and soiling. The initial results for contemporary lens- and material-specimens aged cumulatively to 6 months are presented. The study here uses an environmental chamber equipped with a xenon-arc lamp to age specimens at least 8x the nominal field rate. A broad range in the affected characteristics (including optical transmittance, yellowness index, mass loss, and contact angle) has been observed to date, depending on the formulation of PMMA used. The most affected specimens are further examined in terms of their visual appearance, surface roughness (examined via atomic force microscopy), and molecular structure (via Fourier transform infrared spectroscopy).

  5. Durable silver mirror with ultra-violet thru far infra-red reflection

    DOEpatents

    Wolfe, Jesse D.

    2010-11-23

    A durable highly reflective silver mirror characterized by high reflectance in a broad spectral range of about 300 nm in the UV to the far infrared (.about.10000 nm), as well as exceptional environmental durability. A high absorptivity metal underlayer is used which prevents the formation of a galvanic cell with a silver layer while increasing the reflectance of the silver layer. Environmentally durable overcoat layers are provided to enhance mechanical and chemical durability and protect the silver layer from corrosion and tarnishing, for use in a wide variety of surroundings or climates, including harsh or extreme environments.

  6. Oral isotretinoin in photoaging: objective histological evidence of efficacy and durability*

    PubMed Central

    Bravo, Bruna Souza Felix; Azulay, David Rubem; Luiz, Ronir Raggio; Mandarim-De-Lacerda, Carlos Alberto; Cuzzi, Tullia; Azulay, Mônica Manela

    2015-01-01

    BACKGROUND The off-label use of oral isotretinoin in photoaging is a therapeutic tool that has been used by dermatologists. There are few studies to corroborate its effectiveness and durability. OBJECTIVES To assess, both clinically and histologically, the changes caused by the use of oral isotretinoin in skin photoaging as well as the duration of the effects. METHODS 20 female patients, aged 45-50 years, with phototypes II-VI, none of whom had experienced menopause, were treated with 20mg oral isotretinoin, 3 days a week, for 12 weeks. They underwent clinical analysis and skin biopsies in the pre-auricular region, while histologic cuts enabled assessment of the solar elastosis level and morphologic analysis. RESULTS Clinically, patients, as well as the researching and the assessor physicians, noticed improvement in skin quality. One patient presented severe solar elastosis, 11 manifested the moderate form, while 8 presented the discreet type. According to histological analysis, 65% of the patients revealed alteration in the distribution and thickness of the elastic fibers, which can be interpreted as a histological improvement, while 60% showed an increase in collagen density. We observed an increase in collagen density, from 51.2% to 57.4%, (p=0.004). At the end of the 12-week follow-up period, this density decreased to 54.7% (p=0.050). There was an increase in the density of elastic fibers, from 26.5% to 31.3%, (p=0.02), which had dropped to 27.5% at the end of the 12-week follow-up period. CONCLUSIONS The study confirmed the role of oral isotretinoin in remodeling the extracellular matrix against photoaging, as well as its durability after 12 weeks, especially when we consider collagen fibers. PMID:26375216

  7. Durability of metals from archaeological objects, metal meteorites, and native metals

    SciTech Connect

    Johnson, A.B. Jr.; Francis, B.

    1980-01-01

    Metal durability is an important consideration in the multi-barrier nuclear waste storage concept. This study summarizes the ancient metals, the environments, and factors which appear to have contributed to metal longevity. Archaeological and radiochemical dating suggest that human use of metals began in the period 6000 to 7000 BC. Gold is clearly the most durable, but many objects fashioned from silver, copper, bronze, iron, lead, and tin have survived for several thousand years. Dry environments, such as tombs, appear to be optimum for metal preservation, but some metals have survived in shipwrecks for over a thousand years. The metal meteorites are Fe-base alloys with 5 to 60 wt% Ni and minor amounts of Co, I, and S. Some meteoritic masses with ages estimated to be 5,000 to 20,000 years have weathered very little, while other masses from the same meteorites are in advanced stages of weathering. Native metals are natural metallic ores. Approximately five million tonnes were mined from native copper deposits in Michigan. Copper masses from the Michigan deposits were transported by the Pleistocene glaciers. Areas on the copper surfaces which appear to represent glacial abrasion show minimal corrosion. Dry cooling tower technology has demonstrated that in pollution-free moist environments, metals fare better at temperatures above than below the dewpoint. Thus, in moderate temperature regimes, elevated temperatures may be useful rather than detrimental for exposures of metal to air. In liquid environments, relatively complex radiolysis reactions can occur, particularly where multiple species are present. A dry environment largely obviates radiolysis effects.

  8. Procedural knowledge

    NASA Technical Reports Server (NTRS)

    Georgeff, Michael P.; Lansky, Amy L.

    1986-01-01

    Much of commonsense knowledge about the real world is in the form of procedures or sequences of actions for achieving particular goals. In this paper, a formalism is presented for representing such knowledge using the notion of process. A declarative semantics for the representation is given, which allows a user to state facts about the effects of doing things in the problem domain of interest. An operational semantics is also provided, which shows how this knowledge can be used to achieve particular goals or to form intentions regarding their achievement. Given both semantics, the formalism additionally serves as an executable specification language suitable for constructing complex systems. A system based on this formalism is described, and examples involving control of an autonomous robot and fault diagnosis for NASA's Space Shuttle are provided.

  9. Evaluation of the Durability of Flexible Barrier Materials

    SciTech Connect

    Kempe, Michael D.; Nobles, Dylan L.; Weigel, Mark D.; Nachtigal, Alan K.; Roehrig, Mark A.; Berniard, Tracie J.; Spagnola, Joseph C.; Schubert, Charlene M.

    2015-06-14

    To enable the production of lightweight photovoltaic modules, it is desired to use thin film absorbers on metal substrates in a flexible package. To do this with a polymer based frontsheet, it is estimated that a water vapor transmission rate (WVTR) less than 10-4 g/m2/day must be achieved and maintained through the expected life of the module. Barrier-frontsheet films have been developed at 3M with very low permeation rates and evaluated for their long term durability with respect to WVTR and optical transmittance. After exposure to 2500 h of 10 UV suns at 105 degrees C, one design was found which experienced negligible loss in optical transmission while maintaining a WVTR well below the required 10-4 g/m2/day. Further accelerated tests were conducted at different stress levels. For some less durable designs we were able to obtain degradation acceleration factors suggesting the highest exposure was equal to between 4.4 and 10 y on a roof.

  10. Vitrified metal finishing wastes I. Composition, density and chemical durability.

    PubMed

    Bingham, P A; Hand, R J

    2005-03-17

    Durable phosphate glasses were formed by vitrifying waste filter cakes from two metal finishing operations. Some melts formed crystalline components during cooling. Compositional analysis of dried, heat treated and vitrified samples was made using energy-dispersive X-ray spectroscopy, X-ray fluorescence spectroscopy, inductively-coupled plasma spectroscopy and Leco induction furnace combustion analysis. Hydrolytic dissolution, measured by an adapted product consistency test, was reduced by up to 3 orders of magnitude upon heat treatment or vitrification, surpassing the performance of borosilicate glass in some cases. This was attributed to the high levels of iron and zinc in the wastes, which greatly improve the durability of phosphate glasses. One of the wastes arose from a metal phosphating process and was particularly suitable for vitrification due to its high P2O5 content and favourable melting behaviour. The other waste, which arose from a number of processes, was less suitable as it had a low P2O5 content and during heating it emitted harmful corrosive gases and underwent violent reactions. Substantial volume reductions were obtained by heat treatment and vitrification of both wastes. Compositions and performances of some vitrified wastes were comparable with those of glasses which are under consideration for the immobilisation of toxic and nuclear wastes.

  11. Highly efficient and durable TiN nanofiber electrocatalyst supports.

    PubMed

    Kim, Hyun; Cho, Min Kyung; Kwon, Jeong An; Jeong, Yeon Hun; Lee, Kyung Jin; Kim, Na Young; Kim, Min Jung; Yoo, Sung Jong; Jang, Jong Hyun; Kim, Hyoung-Juhn; Nam, Suk Woo; Lim, Dong-Hee; Cho, EunAe; Lee, Kwan-Young; Kim, Jin Young

    2015-11-28

    To date, carbon-based materials including various carbon nanostructured materials have been extensively used as an electrocatalyst support for proton exchange membrane fuel cell (PEMFC) applications due to their practical nature. However, carbon dissolution or corrosion caused by high electrode potential in the presence of O2 and/or water has been identified as one of the main failure modes for the device operation. Here, we report the first TiN nanofiber (TNF)-based nonwoven structured materials to be constructed via electrospinning and subsequent two-step thermal treatment processes as a support for the PEMFC catalyst. Pt catalyst nanoparticles (NPs) deposited on the TNFs (Pt/TNFs) were electrochemically characterized with respect to oxygen reduction reaction (ORR) activity and durability in an acidic medium. From the electrochemical tests, the TNF-supported Pt catalyst was better and more stable in terms of its catalytic performance compared to a commercially available carbon-supported Pt catalyst. For example, the initial oxygen reduction performance was comparable for both cases, while the Pt/TNF showed much higher durability from an accelerated degradation test (ADT) configuration. It is understood that the improved catalytic roles of TNFs on the supported Pt NPs for ORR are due to the high electrical conductivity arising from the extended connectivity, high inertness to the electrochemical environment and strong catalyst-support interactions.

  12. How to increase the durability of resin-dentin bonds.

    PubMed

    Pashley, David H; Tay, Franklin R; Imazato, Satoshi

    2011-09-01

    Resin-dentin bonds are not as durable as was previously thought. Microtensile bond strengths often fall 30% to 40% in 6 to 12 months. The cause of this poor durability is a combination of the activation of matrix metalloproteinases (MMPs) by weak acids such as lactic acid released by caries-producing bacteria, and acid-etchants used in adhesive bonding systems. These acids uncover and activate matrix-bound MMPs. The other contributing factor is incomplete resin infiltration. If all exposed collagen fibrils were enveloped by resin, the MMPs would not have free access to water, an obligatory requirement of these enzymes. Recently, several inhibitors of MMPs have been added to adhesive primers. Examples include chlorhexidine (CHX), benzalkonium chloride (BAC), and MDPB, an antibacterial monomer used in a two-step self-etching primer adhesive. The advantage of MDPB over CHX and BAC is that it polymerizes with adhesive resins and cannot leach from the hybrid layer. This is an example of what can be termed a "therapeutic adhesive system" that provides anti-MMP activity along with antibacterial qualities.

  13. Durability of conventional concretes containing black rice husk ash.

    PubMed

    Chatveera, B; Lertwattanaruk, P

    2011-01-01

    In this study, black rice husk ash (BRHA) from a rice mill in Thailand was ground and used as a partial cement replacement. The durability of conventional concretes with high water-binder ratios was investigated including drying shrinkage, autogenous shrinkage, depth of carbonation, and weight loss of concretes exposed to hydrochloric (HCl) and sulfuric (H(2)SO(4)) acid attacks. Two different replacement percentages of cement by BRHA, 20% and 40%, and three different water-binder ratios (0.6, 0.7 and 0.8) were used. The ratios of paste volume to void content of the compacted aggregate (γ) were 1.2, 1.4, and 1.6. As a result, when increasing the percentage replacement of BRHA, the drying shrinkage and depth of carbonation reaction of concretes increased. However, the BRHA provides a positive effect on the autogenous shrinkage and weight loss of concretes exposed to hydrochloric and sulfuric acid attacks. In addition, the resistance to acid attack was directly varied with the (SiO(2) + Al(2)O(3) + Fe(2)O(3))/CaO ratio. Results show that ground BRHA can be applied as a pozzolanic material and also improve the durability of concrete.

  14. Progressive Damage Modeling of Durable Bonded Joint Technology

    NASA Technical Reports Server (NTRS)

    Leone, Frank A.; Davila, Carlos G.; Lin, Shih-Yung; Smeltzer, Stan; Girolamo, Donato; Ghose, Sayata; Guzman, Juan C.; McCarville, Duglas A.

    2013-01-01

    The development of durable bonded joint technology for assembling composite structures for launch vehicles is being pursued for the U.S. Space Launch System. The present work is related to the development and application of progressive damage modeling techniques to bonded joint technology applicable to a wide range of sandwich structures for a Heavy Lift Launch Vehicle. The joint designs studied in this work include a conventional composite splice joint and a NASA-patented Durable Redundant Joint. Both designs involve a honeycomb sandwich with carbon/epoxy facesheets joined with adhesively bonded doublers. Progressive damage modeling allows for the prediction of the initiation and evolution of damage. For structures that include multiple materials, the number of potential failure mechanisms that must be considered increases the complexity of the analyses. Potential failure mechanisms include fiber fracture, matrix cracking, delamination, core crushing, adhesive failure, and their interactions. The joints were modeled using Abaqus parametric finite element models, in which damage was modeled with user-written subroutines. Each ply was meshed discretely, and layers of cohesive elements were used to account for delaminations and to model the adhesive layers. Good correlation with experimental results was achieved both in terms of load-displacement history and predicted failure mechanisms.

  15. Enhanced durability of desulfurization sorbents for fluidized-bed applications

    SciTech Connect

    Gupta, R.P.; Gangwal, S.K.

    1991-06-01

    Advanced integrated gasification combined cycle (IGCC) power systems require the development of high-temperature desulfurization sorbents capable of removing hydrogen sulfide from coal gasifier down to very low levels. The objective of this investigation was to identify and demonstrate methods for enhancing the long-term chemical reactivity and mechanical strength of zinc ferrite, a leading regenerable sorbent, for fluidized-bed applications. Fluidized sorbent beds offer significant potential in IGCC systems because of their ability to control the highly exothermic regeneration involved. However, fluidized beds require a durable, attrition-resistant sorbent in the 100--300 {mu}m size range. A bench-scale high-temperature, high- pressure (HTHP) fluidized-bed reactor (7.6-cm I.D.) system capable of operating up to 24 atm and 800{degree}C was designed, built and tested. A total of 175 sulfidation-regeneration cycles were carried out using KRW-type coal gas with various zinc ferrite formulations. A number of sorbent manufacturing techniques including spray drying, impregnation, crushing and screening, and granulation were investigated. While fluidizable sorbents prepared by crushing durable pellets and screening had acceptable sulfur capacity, they underwent excessive attrition during multicycle testing. The sorbent formulations prepared by a proprietary technique were found to have excellent attrition resistance and acceptable chemical reactivity during multicycle testing. However, zinc ferrite was found to be limited to 550{degree}C, beyond which excessive sorbent weakening due to chemical transformations, e.g., iron oxide reduction, was observed.

  16. Integrated approach for investigating the durability of self-consolidating concrete to sulfate attack

    NASA Astrophysics Data System (ADS)

    Bassuoni, Mohamed Tamer F.

    factor from multiple performance criteria was created for the ammonium sulfate exposure. Environmental charts were developed to determine the level of aggression associated with sodium sulfate attack from temperature, RH and degree of wetting-drying expected in service. This novel modeling approach showed promising success in handling complex durability topics such as the sulfate attack of concrete, which involves non-linearity, ambiguity and interface with operator approximation. The current thesis provides needed fundamental knowledge on the durability of a wide scope of SCC mixtures to various sulfate attack exposure scenarios. It elucidates complex deterioration mechanisms and failure modes of cement-based materials under multi-mechanistic aging processes. It also proposes carefully engineered integrated sulfate attack tests that replicate various sulfate attack exposure regimes, which could be refined and standardized in the future. In addition, the current work introduced original knowledge-based smart models capable of handling uncertainty and providing reliable predictions for the behaviour of concrete under external sulfate attack. The models do not require conducting exhaustive laboratory experiments and/or making assumptions, thus facilitating the selection of optimum concrete mixtures for a specified exposure. Overall, this research should effectively contribute to the development of performance-based standards and specifications for, and improvement of durability-based design and life-cycle analysis of concrete structures subjected to external sulfate attack. Keywords. Sulfate attack, self-consolidating concrete, integrated testing, composite cements, air-entrainment, hybrid fibres, full immersion, cations, pH, wetting-drying, partial immersion, freezing-thawing, cyclic cold-hot conditions, flexural loading, thaumasite, salt crystallization, fuzzy, neuro-fuzzy, systems.

  17. Final Report - MEA and Stack Durability for PEM Fuel Cells

    SciTech Connect

    Yandrasits, Michael A.

    2008-02-15

    Proton exchange membrane fuel cells are expected to change the landscape of power generation over the next ten years. For this to be realized one of the most significant challenges to be met for stationary systems is lifetime, where 40,000 hours of operation with less than 10% decay is desired. This project conducted fundamental studies on the durability of membrane electrode assemblies (MEAs) and fuel cell stack systems with the expectation that knowledge gained from this project will be applied toward the design and manufacture of MEAs and stack systems to meet DOE’s 2010 stationary fuel cell stack systems targets. The focus of this project was PEM fuel cell durability – understanding the issues that limit MEA and fuel cell system lifetime, developing mitigation strategies to address the lifetime issues and demonstration of the effectiveness of the mitigation strategies by system testing. To that end, several discoveries were made that contributed to the fundamental understanding of MEA degradation mechanisms. (1) The classically held belief that membrane degradation is solely due to end-group “unzipping” is incorrect; there are other functional groups present in the ionomer that are susceptible to chemical attack. (2) The rate of membrane degradation can be greatly slowed or possibly eliminated through the use of additives that scavenge peroxide or peroxyl radicals. (3) Characterization of GDL using dry gases is incorrect due to the fact that fuel cells operate utilizing humidified gases. The proper characterization method involves using wet gas streams and measuring capillary pressure as demonstrated in this project. (4) Not all Platinum on carbon catalysts are created equally – the major factor impacting catalyst durability is the type of carbon used as the support. (5) System operating conditions have a significant impact of lifetime – the lifetime was increased by an order of magnitude by changing the load profile while all other variables remain

  18. Solubility and durability of cardanol derived plasticizers for soft PVC

    NASA Astrophysics Data System (ADS)

    Greco, Antonio; Ferrari, Francesca; Velardi, Rosario; Frigione, Mariaenrica; Maffezzoli, Alfonso

    2015-12-01

    This work is aimed to study the suitability of cardanol derivatives as primary plasticizer for PVC. The innovative plasticizer is obtained by chemical modification of cardanol, a natural, renewable resource, obtained as a by-product of the cashew nut shell industry. Cardanol derived plasticizers (CDP) were prepared by following various procedures, that allow obtaining different degrees of conversion of cardanol. Rheological and ageing tests were made on soft PVC produced by the addition of CDP;results obtained were compared to soft PVC attained by the use of di-ethyl-hexyl-phthalate (DEHP) and other natural derived plasticizers already used in PVC industry (epoxidated soybean oil, ESBO, and acetic acid ester, AAE).A high dependence on the degree of conversion was found: CDP with a good degree of conversion have similar gelation temperature and diffusion coefficient compared to DEHP based plastisols. Otherwise,CDP with a low degree of conversionshow a higher diffusion coefficient, index of a fast migration of the plasticizer from soft PVC.

  19. POEM, the Prototypical "New NOTES" Procedure and First Successful NOTES Procedure.

    PubMed

    Bechara, Robert; Inoue, Haruhiro

    2016-04-01

    Peroral endoscopic myotomy (POEM) was first performed in 2008 as a novel treatment of achalasia. It is now performed globally, demonstrating the evolution of the first successful natural orifice transluminal endoscopic surgery (NOTES) procedure. There is extensive data demonstrating the safety and efficacy of POEM, and now long-term data has emerged demonstrating that the efficacy is durable. POEM is also being used to successfully treat diffuse esophageal spasm (DES) and jackhammer esophagus. With jackhammer esophagus and DES, inclusion of the lower esophageal sphincter in the myotomy minimizes the risk of symptom development from iatrogenic ineffective esophageal motility.

  20. Study for the prediction of the long-term durability of seismic isolators

    SciTech Connect

    Fujita, T. ); Ishida, K.; Mazda, T.; Nishikawa, I.; Muramatsu, Y.; Hamanaka, T.; Yoshizawa, T.; Sueyasu, T.

    1994-12-01

    The application of seismic rubber isolators is considered as one of the steps in assuring the reliability and safe operation of the Fast Breeder Reactor Plant. In order to propose a precise test method for estimating the durability of seismic isolators, we examined the depth-dependent profiles of tensile properties in thick natural rubber blocks after thermal aging at 60-100[degrees]C. The results of this study established the following conclusions: After thermal aging, the rubber blocks exhibited heterogeneous degradation behavior. These rubber blocks could be divided into two areas, the oxidative degraded area near the surface showing large changes in the properties, and the thermal degraded area in the interior showing small property changes. It was established that the depth of oxidation showed temperature dependence, with greater depth of oxidation at lower temperatures. There was also found to be a linear relationship between the logarithm of the depth of oxidation and the reciprocal of the absolute temperature. As a result, the depths of oxidation at normal temperature may be estimated to depths of 6-10 cm. Having calculated the activation energy at depths of 2 mm each from the surface in the oxidative degraded area, it was found that the activation energy held a fixed value independent of depth. 7 refs., 6 figs., 2 tabs.

  1. Durability of polymeric materials used in zinc/bromine flow batteries

    NASA Astrophysics Data System (ADS)

    Arnold, C., Jr.

    The lifetimes of zinc/bromine flow batteries may be limited by the durability of components which are fabricated from thermoplastic materials and exposed to the bromine-containing electrolyte. Examples of such components are flowframes and carbon-filled plastic electrodes. In early versions of the zinc/bromine battery, flowframes and electrodes were made from polypropylene and copolymers of propylene and ethylene. In later versions of the zinc/bromine battery, polyvinyl chloride (PVC) was used as the material to fabricate flowframes and polyethylene was used as the material used to fabricate both flowframes and electrodes. We found that carbon-plastic electrodes made from polypropylene or polypropylene rich copolymers were swelled and chemically attacked by the bromine-containing electrolytes. As a result, warpage occurred and the battery failed. On the basis of accelerated aging studies we estimated the lifetimes of the electrode and its polypropylene based component to be 96 and 10 months, respectively. The enhanced stability of the electrode was attributed to the presence of carbon which is known to be an antioxidant for thermoxidation. In accelerated exposure tests, bromine-containing electrolytes were also found to attack and leach out the additives used in PVC flowframes. PVC itself was only slightly degraded by the electrolyte. A commercial fluorocarbon, Tefzel, which contains no additives, was determined to be stable in bromine-containing electrolytes and is recommended as a replacement for PVC. Currently, aging studies on carbon-filled polyethylene electrodes are in progress.

  2. Effect of a functional monomer (MDP) on the enamel bond durability of single-step self-etch adhesives.

    PubMed

    Tsuchiya, Kenji; Takamizawa, Toshiki; Barkmeier, Wayne W; Tsubota, Keishi; Tsujimoto, Akimasa; Berry, Thomas P; Erickson, Robert L; Latta, Mark A; Miyazaki, Masashi

    2016-02-01

    The present study aimed to determine the effect of the functional monomer, 10-methacryloxydecyl dihydrogen phosphate (MDP), on the enamel bond durability of single-step self-etch adhesives through integrating fatigue testing and long-term water storage. An MDP-containing self-etch adhesive, Clearfil Bond SE ONE (SE), and an experimental adhesive, MDP-free (MF), which comprised the same ingredients as SE apart from MDP, were used. Shear bond strength (SBS) and shear fatigue strength (SFS) were measured with or without phosphoric acid pre-etching. The specimens were stored in distilled water for 24 h, 6 months, or 1 yr. Although similar SBS and SFS values were obtained for SE with pre-etching and for MF after 24 h of storage in distilled water, SE with pre-etching showed higher SBS and SFS values than MF after storage in water for 6 months or 1 yr. Regardless of the pre-etching procedure, SE showed higher SBS and SFS values after 6 months of storage in distilled water than after 24 h or 1 yr. To conclude, MDP might play an important role in enhancing not only bond strength but also bond durability with respect to repeated subcritical loading after long-term water storage.

  3. 40 CFR 86.1713-99 - Light-duty exhaust durability programs.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Light-duty exhaust durability programs... (CONTINUED) General Provisions for the Voluntary National Low Emission Vehicle Program for Light-Duty Vehicles and Light-Duty Trucks § 86.1713-99 Light-duty exhaust durability programs. The provisions of §...

  4. 75 FR 2105 - Publication of OIG Updated Special Fraud Alert on Telemarketing by Durable Medical Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ... Alert on Telemarketing by Durable Medical Equipment Suppliers AGENCY: Office of Inspector General (OIG... Special Fraud Alert addressing telemarketing by durable medical equipment (DME) suppliers. For the most part, OIG Special Fraud Alerts address national trends in health care fraud, including...

  5. Contact and Bending Durability Calculation for Spiral-Bevel Gears

    NASA Technical Reports Server (NTRS)

    Vijayakar, Sandeep

    2016-01-01

    The objective of this project is to extend the capabilities of the gear contact analysis solver Calyx, and associated packages Transmission3D, HypoidFaceMilled, HypoidFaceHobbed. A calculation process for the surface durability was implemented using the Dowson-Higginson correlation for fluid film thickness. Comparisons to failure data from NASA's Spiral Bevel Gear Fatigue rig were carried out. A bending fatigue calculation has been implemented that allows the use of the stress-life calculation at each individual fillet point. The gears in the NASA test rig did not exhibit any bending fatigue failure, so the bending fatigue calculations are presented in this report by using significantly lowered strength numbers.

  6. Chemical durability of simulated nuclear glasses containing water

    SciTech Connect

    Li, H.; Tomozawa, M.

    1995-04-01

    The chemical durability of simulated nuclear waste glasses having different water contents was studied. Results from the product consistency test (PCT) showed that glass dissolution increased with water content in the glass. This trend was not observed during MCC-1 testing. This difference was attributed to the differences in reactions between glass and water. In the PCT, the glass network dissolution controlled the elemental releases, and water in the glass accelerated the reaction rate. On the other hand, alkali ion exchange with hydronium played an important role in the MCC-1. For the latter, the amount of water introduced into a leached layer from ion-exchange was found to be much greater than that of initially incorporated water in the glass. Hence, the initial water content has no effect on glass dissolution as measured by the MCC-1 test.

  7. Highly efficient and durable TiN nanofiber electrocatalyst supports

    NASA Astrophysics Data System (ADS)

    Kim, Hyun; Cho, Min Kyung; Kwon, Jeong An; Jeong, Yeon Hun; Lee, Kyung Jin; Kim, Na Young; Kim, Min Jung; Yoo, Sung Jong; Jang, Jong Hyun; Kim, Hyoung-Juhn; Nam, Suk Woo; Lim, Dong-Hee; Cho, Eunae; Lee, Kwan-Young; Kim, Jin Young

    2015-11-01

    To date, carbon-based materials including various carbon nanostructured materials have been extensively used as an electrocatalyst support for proton exchange membrane fuel cell (PEMFC) applications due to their practical nature. However, carbon dissolution or corrosion caused by high electrode potential in the presence of O2 and/or water has been identified as one of the main failure modes for the device operation. Here, we report the first TiN nanofiber (TNF)-based nonwoven structured materials to be constructed via electrospinning and subsequent two-step thermal treatment processes as a support for the PEMFC catalyst. Pt catalyst nanoparticles (NPs) deposited on the TNFs (Pt/TNFs) were electrochemically characterized with respect to oxygen reduction reaction (ORR) activity and durability in an acidic medium. From the electrochemical tests, the TNF-supported Pt catalyst was better and more stable in terms of its catalytic performance compared to a commercially available carbon-supported Pt catalyst. For example, the initial oxygen reduction performance was comparable for both cases, while the Pt/TNF showed much higher durability from an accelerated degradation test (ADT) configuration. It is understood that the improved catalytic roles of TNFs on the supported Pt NPs for ORR are due to the high electrical conductivity arising from the extended connectivity, high inertness to the electrochemical environment and strong catalyst-support interactions.To date, carbon-based materials including various carbon nanostructured materials have been extensively used as an electrocatalyst support for proton exchange membrane fuel cell (PEMFC) applications due to their practical nature. However, carbon dissolution or corrosion caused by high electrode potential in the presence of O2 and/or water has been identified as one of the main failure modes for the device operation. Here, we report the first TiN nanofiber (TNF)-based nonwoven structured materials to be constructed via

  8. Durability tests of a five centimeter diameter ion thruster system

    NASA Technical Reports Server (NTRS)

    Nakanishi, S.

    1972-01-01

    A modified Hughes SIT-5 system is being tested for durability at the Lewis Research Center. As of October 1, 1972, the thruster subsystem has logged over 8000 hours of operation. The initial 2023 hours were run with a translating screen thrust vector grid. The thruster is currently operating with an electrostatic type vector grid. Profiles and maps taken at widely separated intervals show that performance and operating characteristics have remained essentially constant. Overall efficiency is about 32 percent and power to thrust ratio is 170 watts per millipound at a specific impulse of 2500 seconds. Telescopic examination of the vector grid shows some sputtering erosion due to charge exchange and direct impingement ions.

  9. The effect of coupling agents on composite durability

    SciTech Connect

    Macturk, K.S.; Schultheisz, C.R.; Hunston, D.L.; Schutte, C.L.

    1996-12-31

    The relationship between fiber surface treatments and glass fiber/epoxy composite durability was investigated. The type of silane coupling agent deposited on the fiber surface was varied, and the single fiber fragmentation test was used to measure strengths of the fiber and the fiber-matrix interface. The samples were tested dry and after conditioned in 75{degrees}C distilled water for up to 10 weeks. With dry samples the interface strengths varied with the reactivity of the silane deposited on the surface. Moisture exposure produced little change in fiber strengths and, for samples containing silane treated fibers, little change in interface strength, even when the silane was unreactive with the epoxy. In contrast, samples containing unsized fibers exhibited significant losses in interface strengths.

  10. Residual stresses and durability in cold drawn eutectoid steel wires

    NASA Astrophysics Data System (ADS)

    Atienza, J. M.; Elices, M.; Ruiz-Hervias, J.; Caballero, L.; Valiente, A.

    2007-04-01

    Prestressing steel wires have excellent mechanical properties but there is a need to improve their durability in aggressive environments. In this work, the influence of residual stresses on the environmentally assisted cracking of these wires is studied. A good correlation has been found between residual stresses at the surface of the wires and the time to rupture during stress corrosion test proposed by the International Federation of Prestressing. Wires with the same microstructure, surface quality and mechanical properties show very different behaviour in aggressive environments depending on their residual stress state. Research shows that environmentally assisted cracking can be improved significantly by acting on the surface residual stresses produced by wire drawing. In addition, in this study a post-drawing treatment to generate compressive residual stresses at the surface of the wires is proposed.

  11. Apparatus and method for laser deposition of durable coatings

    DOEpatents

    Veligdan, James T.; Vanier, Peter; Barletta, Robert E.

    1995-08-15

    Method and apparatus for depositing durable coatings onto the surface of a substrate without heating the entire substrate to high temperatures by using lasers to heat the substrate and dissociate a deposition gas. The apparatus comprises a deposition chamber for enclosing the substrate upon which a coating is to be deposited, gas delivery means for directing a flow of deposition gas on the substrate, a first laser for heating the substrate, and a second laser for irradiating the deposition gas to dissociate the gas. The method includes placing a substrate within a vacuum deposition chamber and directing a flow of deposition gas on the substrate. Then the substrate is heated with a first laser while the deposition gas is irradiated with a second laser to dissociate the deposition gas.

  12. A relational approach to durable poverty, inequality and power.

    PubMed

    Mosse, David

    2010-01-01

    The article argues for what can be called a 'relational' approach to poverty: one that first views persistent poverty as the consequence of historically developed economic and political relations, and second, that emphasises poverty and inequality as an effect of social categorisation and identity, drawing in particular on the experience of adivasis ("tribals") and dalits ("untouchables") subordinated in Indian society. The approach follows Charles Tilly's Durable Inequality in combining Marxian ideas of exploitation and dispossession with Weberian notions of social closure. The article then draws on the work of Steven Lukes, Pierre Bourdieu and Arjun Appadurai to argue for the need to incorporate a multidimensional conception of power; including not only power as the direct assertion of will but also 'agenda-setting power' that sets the terms in which poverty becomes (or fails to become) politicised, and closely related to power as political representation. This sets the basis for discussion of the politics of poverty and exclusion.

  13. Durable vesicles for reconstitution of membrane proteins in biotechnology

    PubMed Central

    Khan, Sanobar; Muench, Stephen P.; Jeuken, Lars J.C.

    2017-01-01

    The application of membrane proteins in biotechnology requires robust, durable reconstitution systems that enhance their stability and support their functionality in a range of working environments. Vesicular architectures are highly desirable to provide the compartmentalisation to utilise the functional transmembrane transport and signalling properties of membrane proteins. Proteoliposomes provide a native-like membrane environment to support membrane protein function, but can lack the required chemical and physical stability. Amphiphilic block copolymers can also self-assemble into polymersomes: tough vesicles with improved stability compared with liposomes. This review discusses the reconstitution of membrane proteins into polymersomes and the more recent development of hybrid vesicles, which blend the robust nature of block copolymers with the biofunctionality of lipids. These novel synthetic vesicles hold great promise for enabling membrane proteins within biotechnologies by supporting their enhanced in vitro performance and could also contribute to fundamental biochemical and biophysical research by improving the stability of membrane proteins that are challenging to work with. PMID:28202656

  14. Environmental Durability and Stress Rupture of EBC/CMCs

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew; Morscher, Gregory N.; Zhu, Dongming

    2012-01-01

    This research focuses on the strength and creep performance of SiC fiber-reinforced SiC ceramic matrix composite (CMC) environmental barrier coating (EBC) systems under complex simulated engine environments. Tensile-strength and stress-rupture testing was conducted to illustrate the material properties under isothermal and thermal gradient conditions. To determine material durability, further testing was conducted under exposure to thermal cycling, thermal gradients and simulated combustion environments. Emphasis is placed on experimental techniques as well as implementation of non-destructive evaluation, including modal acoustic emission and electrical resistivity monitoring, to characterize strength degradation and damage mechanisms. Currently, little is known about the behavior of EBC-CMCs under these conditions; consequently, this work will prove invaluable in the development of structural components for use in high temperature applications.

  15. Durability investigation of a group of strain gage pressure transducers

    NASA Technical Reports Server (NTRS)

    Lederer, P. S.; Hilten, J. S.

    1972-01-01

    A durability investigation was conducted on a group of eighteen bonded-wire strain gage pressure transducers with ranges of 0 to 15 psig and 0 to 100 psig using an improved version of a previously developed technique. Some of the transducers were subjected to 40 million pressure cycles at a 5-Hz rate at laboratory ambient conditions, others were cycled at a temperature of 150 F (65.6 C). The largest change in sensitivity observed was 0.22% for a 100-psig transducer subjected to 40 million pressure cycles at 150 F. The largest change in zero pressure output observed was 0.91% FS for the same transducer. None of the transducers failed completely as a result of cycling at or below full scale pressure.

  16. Apparatus and method for laser deposition of durable coatings

    DOEpatents

    Veligdan, J.T.; Vanier, P.; Barletta, R.E.

    1995-08-15

    Method and apparatus are disclosed for depositing durable coatings onto the surface of a substrate without heating the entire substrate to high temperatures by using lasers to heat the substrate and dissociate a deposition gas. The apparatus comprises a deposition chamber for enclosing the substrate upon which a coating is to be deposited, gas delivery means for directing a flow of deposition gas on the substrate, a first laser for heating the substrate, and a second laser for irradiating the deposition gas to dissociate the gas. The method includes placing a substrate within a vacuum deposition chamber and directing a flow of deposition gas on the substrate. Then the substrate is heated with a first laser while the deposition gas is irradiated with a second laser to dissociate the deposition gas. 1 fig.

  17. The durability of beneficial health effects associated with expressive writing.

    PubMed

    Sloan, Denise M; Feinstein, Brian A; Marx, Brian P

    2009-10-01

    This study examined the durability of benefits associated with expressive writing. Sixty-eight college undergraduates completed measures of physical and psychological health at the beginning of their first year and were then randomized to either an expressive writing or a control writing condition. Changes in physical health, psychological health (i.e., depression, stress, and anxiety), and academic performance were assessed two, four, and six months later. Findings indicated that participants assigned to the expressive writing condition reported less depression symptom severity at the two-month follow-up assessment relative to participants assigned to the control condition. However, these symptom reductions were not observed at any of the subsequent follow-up assessments. No significant changes were reported for physical health complaints, stress symptoms,anxiety symptoms, or academic performance. These findings suggest that,among first-year college students, expressive writing may provide some shortterm relief for certain symptoms.

  18. Moisture Durability Assessment of Selected Well-insulated Wall Assemblies

    SciTech Connect

    Pallin, Simon B.; Boudreaux, Philip R.; Kehrer, Manfred; Hun, Diana E.; Jackson, Roderick K.; Desjarlais, Andre Omer

    2015-12-01

    This report presents the results from studying the hygrothermal performance of two well-insulated wall assemblies, both complying with and exceeding international building codes (IECC 2015 2014, IRC 2015). The hygrothermal performance of walls is affected by a large number of influential parameters (e.g., outdoor and indoor climates, workmanship, material properties). This study was based on a probabilistic risk assessment in which a number of these influential parameters were simulated with their natural variability. The purpose of this approach was to generate simulation results based on laboratory chamber measurements that represent a variety of performances and thus better mimic realistic conditions. In total, laboratory measurements and 6,000 simulations were completed for five different US climate zones. A mold growth indicator (MGI) was used to estimate the risk of mold which potentially can cause moisture durability problems in the selected wall assemblies. Analyzing the possible impact on the indoor climate due to mold was not part of this study. The following conclusions can be reached from analyzing the simulation results. In a hot-humid climate, a higher R-value increases the importance of the airtightness because interior wall materials are at lower temperatures. In a cold climate, indoor humidity levels increase with increased airtightness. Air leakage must be considered in a hygrothermal risk assessment, since air efficiently brings moisture into buildings from either the interior or exterior environment. The sensitivity analysis of this study identifies mitigation strategies. Again, it is important to remark that MGI is an indicator of mold, not an indicator of indoor air quality and that mold is the most conservative indicator for moisture durability issues.

  19. Durability of bonds and clinical success of adhesive restorations

    PubMed Central

    Carvalho, Ricardo M.; Manso, Adriana P.; Geraldeli, Saulo; Tay, Franklin R.; Pashley, David H.

    2013-01-01

    Resin-dentin bond strength durability testing has been extensively used to evaluate the effectiveness of adhesive systems and the applicability of new strategies to improve that property. Clinical effectiveness is determined by the survival rates of restorations placed in non-carious cervical lesions (NCCL). While there is evidence that the bond strength data generated in laboratory studies somehow correlates with the clinical outcome of NCCL restorations, it is questionable whether the knowledge of bonding mechanisms obtained from laboratory testing can be used to justify clinical performance of resin-dentin bonds. There are significant morphological and structural differences between the bonding substrate used in in vitro testing versus the substrate encountered in NCCL. These differences qualify NCCL as a hostile substrate for bonding, yielding bond strengths that are usually lower than those obtained in normal dentin. However, clinical survival time of NCCL restorations often surpass the durability of normal dentin tested in the laboratory. Likewise, clinical reports on the long-term survival rates of posterior composite restorations defy the relatively rapid rate of degradation of adhesive interfaces reported in laboratory studies. This article critically analyzes how the effectiveness of adhesive systems is currently measured, to identify gaps in knowledge where new research could be encouraged. The morphological and chemical analysis of bonded interfaces of resin composite restorations in teeth that had been in clinical service for many years, but were extracted for periodontal reasons, could be a useful tool to observe the ultrastructural characteristics of restorations that are regarded as clinically acceptable. This could help determine how much degradation is acceptable for clinical success. PMID:22192252

  20. Fouling and long-term durability of an integrated forward osmosis and membrane distillation system.

    PubMed

    Husnain, T; Mi, B; Riffat, R

    2015-01-01

    An integrated forward osmosis (FO) and membrane distillation (MD) system has great potential for sustainable wastewater reuse. However, the fouling and long-term durability of the system remains largely unknown. This study investigates the fouling behaviour and efficiency of cleaning procedures of FO and MD membranes used for treating domestic wastewater. Results showed that a significant decline in flux of both FO and MD membranes were observed during treatment of wastewater with organic foulants. However, shear force generated by the increased cross-flow physically removed the loosely attached foulants from the FO membrane surface and resulted in 86-88% recovery of flux by cleaning with tap water. For the MD membrane, almost no flux recovery was achieved due to adsorption of organic foulants on the hydrophobic membrane surface, thus indicating significant irreversible fouling/wetting, which may not be effectively cleaned even with chemical reagents. Long-term (10 d) tests showed consistent performance of the FO membrane by rejecting the contaminants. However, organic foulants reduced the hydrophobicity of the MD membrane, caused wetting problems and allowed contaminants to pass through. The results demonstrate that combination of the FO and MD processes can effectively reduce irreversible membrane fouling and solve the wetting problem of the MD membrane.

  1. Durability of crystalline phase in concrete microstructure modified by the mineral powders: evaluation by nanoindentation tests

    NASA Astrophysics Data System (ADS)

    Rajczakowska, Magdalena; Łydżba, Dariusz

    2016-03-01

    This paper presents the nanoindentation investigation of the evolution of concrete microstructure modified by the Internal Crystallization Technology mineral powders. The samples under study were retrieved from a fragment of a circular concrete lining of the vertical mine shaft at a depth of approximately 1,000 m. Due to the aggressive environment and exposure to contaminated water, the internal surface of the structure was deteriorated, decreasing its strength significantly. The mineral powders were applied directly on the surface lining. The specimens were investigated one month, three months and one year after the application of the aforementioned substance in order to verify the time dependence of the strengthening processes and durability of the crystalline phase. The microstructural changes of concrete were assessed with the use of nanoindentation technique. The testing procedure involved including the previously cut specimens in the epoxy resin and grinding and polishing in order to reduce the surface roughness. As a result of the nanoindentation tests the hardness as well as Young's modulus of the material were evaluated. The results were then compared and statistically analyzed. As a consequence, the disintegration time of the crystalline network in the pores of concrete was identified.

  2. New finishing possibilities for producing durable multifunctional cotton/wool and viscose/wool blended fabrics.

    PubMed

    Ibrahim, N A; El-Zairy, M R; Eid, B M; El-Zairy, E M R; Emam, E M

    2015-03-30

    This research work focuses on the development of a one-bath functional finishing procedure for imparting durable multifunctional properties such as easy care, soft-hand, antibacterial and/or ultra violet (UV) protection to cotton/wool and viscose/wool blends using diverse finishing combinations and formulations. In this study finishing agents such as reactant resin, silicon softeners, 4-hydroxybenzophenone, triclosan, and pigment colorant were selected using magnesium chloride/citric acid as a mixed catalyst and the pad-dry microwave fixation technique. The results reveal that enhancement in the imparted functional properties are governed by type of the finished substrate as well as nature and concentration of finishing formulation components. The finished fabrics still retained high level of functionalities even after 15 consecutive laundering. Surface morphology and composition of selected samples were investigated using scan electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDX) analysis. The mode of interactions was also investigated. Practical applications for multifunctionlization of cellulose/wool blended fabrics are possible using these sorts of proper finishing formulations and unique finishing application method.

  3. Robust Damage-Mitigating Control of Aircraft for High Performance and Structural Durability

    NASA Technical Reports Server (NTRS)

    Caplin, Jeffrey; Ray, Asok; Joshi, Suresh M.

    1999-01-01

    This paper presents the concept and a design methodology for robust damage-mitigating control (DMC) of aircraft. The goal of DMC is to simultaneously achieve high performance and structural durability. The controller design procedure involves consideration of damage at critical points of the structure, as well as the performance requirements of the aircraft. An aeroelastic model of the wings has been formulated and is incorporated into a nonlinear rigid-body model of aircraft flight-dynamics. Robust damage-mitigating controllers are then designed using the H(infinity)-based structured singular value (mu) synthesis method based on a linearized model of the aircraft. In addition to penalizing the error between the ideal performance and the actual performance of the aircraft, frequency-dependent weights are placed on the strain amplitude at the root of each wing. Using each controller in turn, the control system is put through an identical sequence of maneuvers, and the resulting (varying amplitude cyclic) stress profiles are analyzed using a fatigue crack growth model that incorporates the effects of stress overload. Comparisons are made to determine the impact of different weights on the resulting fatigue crack damage in the wings. The results of simulation experiments show significant savings in fatigue life of the wings while retaining the dynamic performance of the aircraft.

  4. Micro-fractures produced in the Cadalso de los Vidrios granite (Madrid) subjected to Freeze-Thaw Durability Testing

    NASA Astrophysics Data System (ADS)

    Freire-Lista, D. M.; Varas-Muriel, M. J.; Fort, R.

    2012-04-01

    A specific leucogranite (fine to medium grain sized) from Cadalso de los Vidrios, Madrid, Spain, from where it takes the name of the stone variety, which is a traditional heritage building material used in Central Spain, was subjected to freezing-thaw durability tests or accelerated artificial ageing tests (according to Spanish standard EN 12371:2001) to assess its durability by means of ultrasonic velocity measurements (a non-destructive technique), and optical and fluorescence petrography using a polarized optical microscope (destructive technique), both techniques used before, during and after laboratory ageing tests, or in other words, what is determined is the improvement or deterioration in some properties. The measurement of the ultrasonic velocity in the leucogranite cubic test specimens along the freezing-thaw cycles shown that the velocity diminishes with the number of cycles, in relation to the decay that the stones were experiencing. This deterioration can be observed by the loss of crystalline minerals in the surface of the analyzed samples and by the micro-fractures appearance up to one centimeter deep, which have been detected by the petrographic techniques previously mentioned. The images taken by means of the fluorescence microscope clearly show the micro-fractures generated during the durability test. These images have been processed and analyzed by the UTHSCSA Image Tool program with the purpose of being able to quantify the degree of decay that this type of crystalline materials undergone, when subjected to a number of freezing-thaw test cycles. It is therefore an effective, reliable and complementary technique to that of the petrography analysis, both optical and fluorescence ones. In the first cycles of the ageing test, the micro-fractures propagate along crystals edges and during the last cycles of the test, intracrystalline micro-fractures are generated, which are developed in different ways depending on the mineralogy of the crystals. Thus

  5. The built heritage in the Southern Italy: problems of decay and significant properties of the building materials with relation to their durability and conservationDECAY AND SIGNIFICANT PROPERTIES OF THE BUILDING MATERIALS WITH RELATION TO THEIR DURABILITY

    NASA Astrophysics Data System (ADS)

    Sileo, M.; Calia, A.

    2012-04-01

    This paper deals with the use of building materials within the built heritage of the Southern Italy, their decay problems and the research of stone parameters material to their durability. The study documents the most common and widespread stone building materials and their forms of decay within the historical-architectural heritage, as well as in the archaeological artifacts. The heavy presence of the decay forms related to granular disgregation and loss of powder material from the surface suggest an high susceptibility of such materials to the disruptive processes induced by water penetration and salt crystallisation. The study of the stone properties and artificial ageing tests in laboratory, carried out by comparing several lithologies, are aimed to understand their response to the decay with relation to the petrophisical and compositional features, with the final purpose to identify durability parameters, usefull for choosing the appropriate conservation measures. In order to this final purpose, further elements of evaluation are drawn by the activity in progress, concerning the monitoring of the conservation treatments carried out on the Baroque heritage of Lecce town (Southern Italy) during the last decades.

  6. Summary of U.S. EPA research on solidified/stabilized waste form long-term durability

    SciTech Connect

    Kirk, D.R.

    1996-12-31

    Successful performance of solidification and stabilization treatment technologies largely depends on the ability of the treated waste to endure long term exposure to physical and chemical stresses. The available test methods to assess durability of treated wastes rely on results from laboratory tests; these procedures rely on freeze/thaw cycles, elevated temperature, and exposure to various solutions to simulate the stresses exerted on a solidified/stabilized (S/S) waste form over time. Unfortunately, none of the methods has been verified as replicating field behavior. In addition, the speciation of contaminants is a critical factor in determining long-term immobilization. Research is needed to cover areas which will address the issues associated with long-term performance of S/S waste forms. This paper discusses technical issues associated with long-term behavior of S/S waste forms and U.S. EPA research addressing these issues.

  7. Mechanical- and oil-durable superhydrophobic polyester materials for selective oil absorption and oil/water separation.

    PubMed

    Wu, Lei; Zhang, Junping; Li, Bucheng; Wang, Aiqin

    2014-01-01

    The low stability and complicated fabrication procedures seriously hindered practical applications of superhydrophobic materials. Here we present a facile approach for preparing durable superhydrophobic polyester materials by dip-coating in a nanocomposite solution of polymerized tetraethoxysilane and n-hexadecyltriethoxysilane. The coated samples exhibit excellent superhydrophobicity, superoleophilicity, mechanical and chemical stabilities. This is attributed to the tight binding of the nanocomposite on the polyester fibers and the inherent stability of silicone. The coated samples can quickly absorb petrol, diesel and crude oil, and show very high selectivity in oil/water separation. In addition, the coated samples could maintain their superhydrophobicity, oil absorption capacity and oil/water selectivity after harsh mechanical damage, 90 days of immersion in oils and ten cycles of absorption-desorption. Moreover, this approach is simple and can be easily scaled up for producing samples on a large size, which makes it very promising for practical oil absorption.

  8. Unanticipated Effects of New Drug Availability on Antiretroviral Durability: Implications for Comparative Effectiveness Research.

    PubMed

    Eaton, Ellen F; Tamhane, Ashutosh R; Burkholder, Greer A; Willig, James H; Saag, Michael S; Mugavero, Michael J

    2016-04-01

    Background.  Durability of antiretroviral (ARV) therapy is associated with improved human immunodeficiency virus (HIV) outcomes. Data on ARV regimen durability in recent years and clinical settings are lacking. Methods.  This retrospective follow-up study included treatment-naive HIV-infected patients initiating ARV therapy between January 2007 and December 2012 in a university-affiliated HIV clinic in the Southeastern United States. Outcome of interest was durability (time to discontinuation) of the initial regimen. Durability was evaluated using Kaplan-Meier survival analyses. Cox proportional hazard analyses was used to evaluate the association among durability and sociodemographic, clinical, and regimen-level factors. Results.  Overall, 546 patients were analyzed. Median durability of all regimens was 39.5 months (95% confidence interval, 34.1-44.4). Commonly prescribed regimens were emtricitabine and tenofovir with efavirenz (51%; median duration = 40.1 months) and with raltegravir (14%; 47.8 months). Overall, 67% of patients had an undetectable viral load at the time of regimen cessation. Discontinuation was less likely with an integrase strand transfer inhibitor (adjusted hazards ratio [aHR] = 0.35, P = .001) or protease inhibitor-based regimen (aHR = 0.45, P = .006) and more likely with a higher pill burden (aHR = 2.25, P = .003) and a later treatment era (aHR = 1.64, P < .001). Conclusions.  Initial ARV regimen longevity declined in recent years contemporaneous with the availability of several new ARV drugs and combinations. Reduced durability mostly results from a preference for newly approved regimens rather than indicating failing therapy, as indicated by viral suppression observed in a majority of patients (67%) prior to regimen cessation. Durability is influenced by extrinsic factors including new drug availability and provider preference. Medication durability must be interpreted carefully in the context of a dynamic treatment landscape.

  9. Atomic Oxygen Durability of Second Surface Silver Microsheet Glass Concentrators

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Jaworske, Donald A.; Smith, Daniela C.; Mroz, Thaddeus S.

    1996-01-01

    Second surface silver microsheet glass concentrators are being developed for potential use in future solar dynamic space power systems. Traditional concentrators are aluminum honeycomb sandwich composites with either aluminum or graphite epoxy face sheets, where a reflective aluminum layer is deposited onto an organic leveling layer on the face sheet. To protect the underlying layers, a SiO2 layer is applied on top of the aluminum reflective layer. These concentrators may be vulnerable to atomic oxygen degradation due to possible atomic oxygen attack of the organic layers at defect sites in the protective and reflective coatings. A second surface microsheet glass concentrator would be inherently more atomic oxygen durable than these first surface concentrators. In addition, a second surface microsheet glass concentrator design provides a smooth optical surface and allows for silver to be used as a reflective layer, which would improve the reflectivity of the concentrator and the performance of the system. A potential threat to the performance of second surface microsheet glass concentrators is atomic oxygen attack of the underlying silver at seams and edges or at micrometeoroid and debris (MMD) impacts sites. Second surface silver microsheet glass concentrator samples were fabricated and tested for atomic oxygen durability. The samples were iteratively exposed to an atomic oxygen environment in a plasma asher. Samples were evaluated for potential degradation at fabrication seams, simulated MMD impact sites, and edges. Optical microscopy was used to evaluate atomic oxygen degradation. Reflectance was obtained for an impacted sample prior to and after atomic oxygen exposure. After an initial atomic oxygen exposure to an effective fluence of approx. 1 x 10(exp 21) atoms/cm(exp 2), oxidation of the silver at defect sites and edges was observed. Exposure to an additional approx. 1 x 10(exp 21) atoms/cm(exp 2) caused no observed increase in oxidation. Oxidation at an

  10. Flexible, Mechanically Durable Aerogel Composites for Oil Capture and Recovery.

    PubMed

    Karatum, Osman; Steiner, Stephen A; Griffin, Justin S; Shi, Wenbo; Plata, Desiree L

    2016-01-13

    More than 30 years separate the two largest oil spills in North American history (the Ixtoc I and Macondo well blowouts), yet the responses to both disasters were nearly identical in spite of advanced material innovation during the same time period. Novel, mechanically durable sorbents could enable (a) sorbent use in the open ocean, (b) automated deployment to minimize workforce exposure to toxic chemicals, and (c) mechanical recovery of spilled oils. Here, we explore the use of two mechanically durable, low-density (0.1-0.2 g cm(-3)), highly porous (85-99% porosity), hydrophobic (water contact angles >120°), flexible aerogel composite blankets as sorbent materials for automated oil capture and recovery: Cabot Thermal Wrap (TW) and Aspen Aerogels Spaceloft (SL). Uptake of crude oils (Iraq and Sweet Bryan Mound oils) was 8.0 ± 0.1 and 6.5 ± 0.3 g g(-1) for SL and 14.0 ± 0.1 and 12.2 ± 0.1 g g(-1) for TW, respectively, nearly twice as high as similar polyurethane- and polypropylene-based devices. Compound-specific uptake experiments and discrimination against water uptake suggested an adsorption-influenced sorption mechanism. Consistent with that mechanism, chemical extraction oil recoveries were 95 ± 2 (SL) and 90 ± 2% (TW), but this is an undesirable extraction route in decentralized oil cleanup efforts. In contrast, mechanical extraction routes are favorable, and a modest compression force (38 N) yielded 44.7 ± 0.5% initially to 42.0 ± 0.4% over 10 reuse cycles for SL and initially 55.0 ± 0.1% for TW, degrading to 30.0 ± 0.2% by the end of 10 cycles. The mechanical integrity of SL deteriorated substantially (800 ± 200 to 80 ± 30 kPa), whereas TW was more robust (380 ± 80 to 700 ± 100 kPa) over 10 uptake-and-compression extraction cycles.

  11. Preparation of durable hydrophobic cellulose fabric from water glass and mixed organosilanes

    NASA Astrophysics Data System (ADS)

    Shang, Song-Min; Li, Zhengxiong; Xing, Yanjun; Xin, John H.; Tao, Xiao-Ming

    2010-12-01

    Durable superhydrophobic cellulose fabric was prepared from water glass and n-octadecyltriethoxysilane (ODTES) with 3-glycidyloxypropyltrimethoxysilane (GPTMS) as crosslinker by sol-gel method. The result showed that the addition of GPTMS could result in a better fixation of silica coating from water glass on cellulose fabric. The silanization of hydrolyzed ODTES at different temperatures and times was studied and optimized. The results showed that silanization time was more important than temperature in forming durable hydrophobic surface. The durability of superhydrophobicity treatment was analyzed by XPS. As a result, the superhydrophobic cotton treated under the optimal condition still remained hydrophobic properties after 50 washing cycles.

  12. Structural Analyses of Stirling Power Convertor Heater Head for Long-Term Reliability, Durability, and Performance

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.; Shah, Ashwin; Arya, Vinod K.; Krause, David L.; Bartolotta, Paul A.

    2002-01-01

    Deep-space missions require onboard electric power systems with reliable design lifetimes of up to 10 yr and beyond. A high-efficiency Stirling radioisotope power system is a likely candidate for future deep-space missions and Mars rover applications. To ensure ample durability, the structurally critical heater head of the Stirling power convertor has undergone extensive computational analyses of operating temperatures (up to 650 C), stresses, and creep resistance of the thin-walled Inconel 718 bill of material. Durability predictions are presented in terms of the probability of survival. A benchmark structural testing program has commenced to support the analyses. This report presents the current status of durability assessments.

  13. Preparation, structure, and in vitro chemical durability of yttrium phosphate microspheres for intra-arterial radiotherapy.

    PubMed

    Kawashita, Masakazu; Matsui, Naoko; Li, Zhixia; Miyazaki, Toshiki; Kanetaka, Hiroyasu

    2011-10-01

    Chemically durable microspheres containing yttrium and/or phosphorus are useful for intra-arterial radiotherapy. In this study, we attempted to prepare yttrium phosphate (YPO₄) microspheres with high chemical durability. YPO₄ microspheres with smooth surfaces and diameters of around 25 μm were successfully obtained when gelatin droplets containing yttrium and phosphate ions were cooled and solidified in a water-in-oil emulsion and then heat-treated at 1100°C. The chemical durability of the heat-treated microspheres in a simulated body fluid at pH = 6 and 7 was high enough for clinical application of intra-arterial radiotherapy.

  14. Durability of sulfonated aromatic polymers for proton-exchange-membrane fuel cells.

    PubMed

    Hou, Hongying; Di Vona, Maria Luisa; Knauth, Philippe

    2011-11-18

    As a key component of proton-exchange-membrane fuel cells (PEMFCs), proton-exchange membranes (PEMs) must continuously withstand very harsh environments during long-term fuel cell operations. With the coming commercialization of PEMFCs, investigations into the durability and degradation of PEMs are becoming more and more urgent and interesting. Herein, various recent attempts and achievements to improve the durability of sulfonated aromatic polymers (SAPs) are reviewed and some further developments are predicted. Extensive investigations into inexpensive SAPs as alternative electrolyte membranes include modification of available polymer materials; design, synthesis, and optimization of new macromolecules; durability testing; and exploring the degradation mechanisms.

  15. Durability of Polymeric Encapsulation Materials for a PMMA/glass Concentrator Photovoltaic System

    SciTech Connect

    Miller, David C.; Kempe, Michael D.; Muller, Matthew T; Gray, Matthew H.; Araki, Kenji; Kurtz, Sarah R.

    2014-04-08

    The durability of polymeric encapsulation materials was examined using outdoor exposure at the nominal geometric concentration of 500 suns. The results for 36 months cumulative field deployment are presented for materials including: poly(ethylene-co-vinyl acetate), (EVA); polyvinyl butyral (PVB); ionomer; polyethylene/ polyoctene copolymer (PO); thermoplastic polyurethane (TPU); poly(dimethylsiloxane) (PDMS); poly(diphenyl dimethyl siloxane) (PDPDMS); and poly(phenyl-methyl siloxane) (PPMS). Measurements of the field conditions including ambient temperature and ultraviolet (UV) dose were recorded at the test site during the experiment. Measurements for the experiment included optical transmittance (with subsequent analysis of solar-weighted transmittance, UV cut-off wavelength, and yellowness index), mass, visual photography, photoelastic imaging, and fluorescence spectroscopy. While the results to date for EVA are presented and discussed, examination here focuses more on the siloxane materials. A specimen recently observed to fail by thermal decomposition is discussed in terms of the implementation of the experiment as well as its fluorescence signature, which was observed to become more pronounced with age. Modulated thermogravimetry (allowing determination of the activation energy of thermal decomposition) was performed on a subset of the siloxanes to quantify the propensity for decomposition at elevated temperatures. Supplemental, Pt-catalyst- and primer-solutions as well as peroxide-cured PDMS specimens were examined to assess the source of the luminescence. The results of the study including the change in optical transmittance, observed failure modes, and subsequent analyses of the failure modes are described in the conclusions.

  16. Epinephrine converts long-term potentiation from transient to durable form in awake rats.

    PubMed

    Korol, D L; Gold, P E

    2008-01-01

    Neuroendocrine responses to an emotional or arousing experience modulate memory for the event. Extensive evidence suggests that epinephrine plays an important role in the regulation of memory formation by emotions and arousal. Some forms of synaptic plasticity are similarly responsive to modulation by stress and arousal. The present experiment examined the effects of epinephrine on induction and maintenance of long-term potentiation (LTP) in awake rats. Rats were prepared with bilaterally implanted electrodes for recording evoked field potentials in dentate granule cells following perforant pathway stimulation. LTP was induced with high-frequency stimulation parameters that resulted in modest early potentiation of the EPSP that decayed within 20 min. Epinephrine enhanced the magnitude of early LTP induction and also extended the durability of LTP from minutes to at least several days. Epinephrine did not alter baseline responses or modulate pre-LTP input-output curves. The enhancement of LTP by epinephrine was dose-dependent, following an inverted-U dose-response curve similar to that seen in memory enhancement experiments, suggesting considerable convergence of epinephrine modulation of memory and LTP. In extending substantially the maintenance of LTP after induction, the present finding offer potential means to study the neurobiology of rapid forgetting seen in aged rodents and other animals and the neurobiology of the impaired forgetting seen in post-traumatic stress disorder.

  17. The Sauvé-Kapandji Procedure

    PubMed Central

    Lluch, Alberto

    2013-01-01

    Arthrodesis is the most reliable and durable surgical procedure for the treatment of a joint disorder, and its only disadvantage is the loss of motion of the fused joint. The distal radioulnar joint can be arthrodesed, while forearm pronation and supination are maintained or even improved by creating a pseudoarthrosis of the ulna just proximal to the arthrodesis. This is known as the Sauvé-Kapandji (S-K) procedure. The Sauvé-Kapandji differs from the Darrach procedure in that it preserves ulnar support of the wrist, as the distal radioulnar ligaments and ulnocarpal ligaments are maintained. Aesthetic appearance is also superior after the S-K procedure, as the normal prominence of the ulnar head, most noticeable when the forearm is in pronation, is maintained. However, the S-K is not free of possible complications, such as nonunion or delayed union of the arthrodesis, fibrous or osseous union at the pseudoarthrosis, and painful instability at the proximal ulna stump. All of these complications can be prevented if a careful surgical technique is used. PMID:24436787

  18. The sauvé-kapandji procedure.

    PubMed

    Lluch, Alberto

    2013-02-01

    Arthrodesis is the most reliable and durable surgical procedure for the treatment of a joint disorder, and its only disadvantage is the loss of motion of the fused joint. The distal radioulnar joint can be arthrodesed, while forearm pronation and supination are maintained or even improved by creating a pseudoarthrosis of the ulna just proximal to the arthrodesis. This is known as the Sauvé-Kapandji (S-K) procedure. The Sauvé-Kapandji differs from the Darrach procedure in that it preserves ulnar support of the wrist, as the distal radioulnar ligaments and ulnocarpal ligaments are maintained. Aesthetic appearance is also superior after the S-K procedure, as the normal prominence of the ulnar head, most noticeable when the forearm is in pronation, is maintained. However, the S-K is not free of possible complications, such as nonunion or delayed union of the arthrodesis, fibrous or osseous union at the pseudoarthrosis, and painful instability at the proximal ulna stump. All of these complications can be prevented if a careful surgical technique is used.

  19. Urbanization, regime type and durability, and environmental degradation in Ghana.

    PubMed

    Adams, Samuel; Adom, Philip Kofi; Klobodu, Edem Kwame Mensah

    2016-12-01

    This study examines the effect of urbanization, income, trade openness, and institutional quality (i.e., regime type and durability) on environmental degradation in Ghana over the period 1965-2011. Using the bounds test approach to cointegration and the Fully Modified Phillip-Hansen (FMPH) technique, the findings show that urbanization, income, trade openness, and institutional quality have long-run cointegration with environmental degradation. Further, the results show that income, trade openness, and institutional quality are negatively associated with environmental degradation. This suggests that income, trade openness, and institutional quality enhance environmental performance. Urbanization, however, is positively related to environmental degradation. Additionally, long-run estimates conditioned on institutional quality reveal that the extent to which trade openness and urbanization enhance environmental performance is largely due to the presence of quality institutions (or democratic institutions). Finally, controlling for structural breaks, we find that trade openness, urbanization, and regime type (i.e., democracy) improve environmental performance significantly after the 1970s except for income.

  20. RDS-21 Face-Gear Surface Durability Tests

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Heath, Gregory F.; Filler, Robert R.; Slaughter, Stephen C.; Fetty, Jason

    2007-01-01

    Experimental fatigue tests were performed to determine the surface durability life of a face gear in mesh with a tapered spur involute pinion. Twenty-four sets of gears were tested at three load levels: 7200, 8185, and 9075 lb-in face gear torque, and 2190 to 3280 rpm face gear speed. The gears were carburized and ground, shot-peened and vibro-honed, and made from VIM-VAR Pyrowear 53 steel per AMS 6308. The tests produced 17 gear tooth spalling failures and 7 suspensions. For all the failed sets, spalling occurred on at least one tooth of all the pinions. In some cases, the spalling initiated a crack in the pinion teeth which progressed to tooth fracture. Also, spalling occurred on some face gear teeth. The AGMA endurance allowable stress for a tapered spur involute pinion in mesh with a face gear was determined to be 275 ksi for the material tested. For the application of a tapered spur involute pinion in mesh with a face gear, proper face gear shim controlled the desired gear tooth contact pattern while proper pinion shim was an effective way of adjusting backlash without severely affecting the contact pattern.

  1. Space environment durability of beta cloth in LDEF thermal blankets

    NASA Technical Reports Server (NTRS)

    Linton, Roger C.; Whitaker, Ann F.; Finckenor, Miria M.

    1993-01-01

    Beta cloth performance for use on long-term space vehicles such as Space Station Freedom (S.S. Freedom) requires resistance to the degrading effects of the space environment. The major issues are retention of thermal insulating properties through maintaining optical properties, preserving mechanical integrity, and generating minimal particulates for contamination-sensitive spacecraft surfaces and payloads. The longest in-flight test of beta cloth's durability was on the Long Duration Exposure Facility (LDEF), where it was exposed to the space environment for 68 months. The LDEF contained 57 experiments which further defined the space environment and its effects on spacecraft materials. It was deployed into low-Earth orbit (LEO) in Apr. 1984 and retrieved Jan. 1990 by the space shuttle. Among the 10,000 plus material constituents and samples onboard were thermal control blankets of multilayer insulation with a beta cloth outer cover and Velcro attachments. These blankets were exposed to hard vacuum, thermal cycling, charged particles, meteoroid/debris impacts, ultraviolet (UV) radiation, and atomic oxygen (AO). Of these space environmental exposure elements, AO appears to have had the greatest effect on the beta cloth. The beta cloth analyzed in this report came from the MSFC Experiment S1005 (Transverse Flat-Plate Heat Pipe) tray oriented approximately 22 deg from the leading edge vector of the LDEF satellite. The location of the tray on LDEF and the placement of the beta cloth thermal blankets are shown. The specific space environment exposure conditions for this material are listed.

  2. Low earth orbital atomic oxygen simulation for materials durability evaluation

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.

    1989-01-01

    The erosion yields of numerous materials have been evaluated in low earth orbital space tests. There appears to be three classes of materials: materials of high erosion yield which include most of the hydrocarbon organic materials; materials which either do not react with atomic oxygen or form self-protecting oxides which allow the underlying material to appear durable to atomic oxygen, and materials with low but nonnegligeable erosion yields, such as fluoropolymers. A NASA atomic oxygen effects test program has been established to utilize collective data from a multitude of simulation facilities to promote an understanding of mechanism and erosion yield dependencies. Atomic oxygen protective coatings for Kapton polymide solar array blankets, fiberglass-epoxy composite mast structures, and solar dynamic power system concentrator surfaces have been identified and evaluated under atomic oxygen exposure in RF plasma asher laboratory tests. The control of defect density in protective coatings appears to be the key to the assurance of long-term protection of oxidizable materials in low earth orbit.

  3. Durability of Polymeric Encapsulation Materials for Concentrating Photovoltaic Systems (Presentation)

    SciTech Connect

    Miller, D. C.; Muller, M.; Kempe, M. D.; Araki, K.; Kennedy, C. E.; Kurtz, S. R.

    2012-03-01

    Many concentrating photovoltaic (CPV) systems use a polymeric encapsulant to couple and optical component and/or coverglass to the cell. In that location, the encapsulation improves the transmission of concentrated optical flux through interface(s), while protecting the cell from the environment. The durability of encapsulation materials, however, is not well established relative to the desired service life of 30 years. Therefore, we have initiated a screen test to identify the field-induced failure modes for a variety of popular PV encapsulation materials. An existing CPV module (with no PV cells present) was modified to accommodate encapsulation specimens. The module (where nominal concentration of solar flux is 500x for the domed-Fresnel design) has been mounted on a tracker in Golden, CO (elevation 1.79 km). Initial results are reported here for 18 months cumulative exposure, including the hottest and coldest months of the past year. Characteristics observed at intervals during that time include: visual appearance, direct and hemispherical transmittance, and mass. Degradation may be assessed from subsequent analysis (including yellowness index and cut-on frequency) relative to the ambient conditions present during field exposure. The fluorescence signature observed of all the silicone specimens is examined here, including possible factors of causation -- the platinum catalyst used in the addition cured materials as well as the primer used to promote adhesion to the quartz substrate and superstrate.

  4. Transparent superwetting nanofilms with enhanced durability at model physiological condition

    PubMed Central

    Hwangbo, Sunghee; Heo, Jiwoong; Lin, Xiangde; Choi, Moonhyun; Hong, Jinkee

    2016-01-01

    There have been many studies on superwetting surfaces owing to the variety of their potential applications. There are some drawbacks to developing these films for biomedical applications, such as the fragility of the microscopic roughness feature that is vital to ensure superwettability. But, there are still only a few studies that have shown an enhanced durability of nanoscale superwetting films at certain extreme environment. In this study, we fabricated intrinsically stable superwetting films using the organosilicate based layer-by-layer (LbL) self-assembly method in order to control nano-sized roughness of the multilayer structures. In order to develop mechanically and chemically robust surfaces, we successfully introduced polymeric silsesquioxane as a building block for LbL assembly with desired fashion. Even in the case that the superhydrophobic outer layers were damaged, the films maintained their superhydrophobicity because of the hydrophobic nature of their inner layers. As a result, we successfully fabricated superwetting nano-films and evaluated their robustness and stability. PMID:26764164

  5. Durability and Damage Tolerance of High Temperature Polymeric Composites

    NASA Technical Reports Server (NTRS)

    Case, Scott W.; Reifsnider, Kenneth L.

    1996-01-01

    Modern durability and damage tolerance predictions for composite material systems rely on accurate estimates of the local stress and material states for each of the constituents, as well as the manner in which the constituents interact. In this work, an number of approaches to estimating the stress states and interactions are developed. First, an elasticity solution is presented for the problem of a penny-shaped crack in an N-phase composite material system opened by a prescribed normal pressure. The stress state around such a crack is then used to estimate the stress concentrations due to adjacent fiber fractures in composite materials. The resulting stress concentrations are then used to estimate the tensile strength of the composite. The predicted results are compared with experimental values. In addition, a cumulative damage model for fatigue is presented. Modifications to the model are made to include the effects of variable amplitude loading. These modifications are based upon the use of remaining strength as a damage metric and the definition of an equivalent generalized time. The model is initially validated using results from the literature. Also, experimental data from APC-2 laminates and IM7/K3B laminates are used in the model. The use of such data for notched laminates requires the use of an effective hole size, which is calculated based upon strain distribution measurements. Measured remaining strengths after fatigue loading are compared with the predicted values for specimens fatigued at room temperature and 350 F (177 C).

  6. Transparent superwetting nanofilms with enhanced durability at model physiological condition

    NASA Astrophysics Data System (ADS)

    Hwangbo, Sunghee; Heo, Jiwoong; Lin, Xiangde; Choi, Moonhyun; Hong, Jinkee

    2016-01-01

    There have been many studies on superwetting surfaces owing to the variety of their potential applications. There are some drawbacks to developing these films for biomedical applications, such as the fragility of the microscopic roughness feature that is vital to ensure superwettability. But, there are still only a few studies that have shown an enhanced durability of nanoscale superwetting films at certain extreme environment. In this study, we fabricated intrinsically stable superwetting films using the organosilicate based layer-by-layer (LbL) self-assembly method in order to control nano-sized roughness of the multilayer structures. In order to develop mechanically and chemically robust surfaces, we successfully introduced polymeric silsesquioxane as a building block for LbL assembly with desired fashion. Even in the case that the superhydrophobic outer layers were damaged, the films maintained their superhydrophobicity because of the hydrophobic nature of their inner layers. As a result, we successfully fabricated superwetting nano-films and evaluated their robustness and stability.

  7. Durable response of intracranial cellular hemangioma to bevacizumab and temozolomide.

    PubMed

    Yeo, Kee Kiat; Puscasiu, Elena; Keating, Robert F; Rood, Brian R

    2013-06-01

    Cellular hemangioma is a subtype of hemangioma that is associated with cellular immaturity and the potential for recurrence. Intracranial location of these lesions is extremely rare, and definitive treatment often requires radical neurosurgical resection. The authors report a case of a 12-year-old boy with a subtemporal cellular hemangioma. He underwent gross-total resection of the tumor, but within 1.5 months the tumor recurred, necessitating a second resection. Because of its proximity to vascular structures, only subtotal resection was possible. Repeat MRI 1 month after the second surgery showed significant tumor recurrence. Given the tumor's demonstrated capacity for recurrence and its proximity to the vein of Labbé and sigmoid sinus, further resection was not indicated. In an effort to limit radiation therapy for this young patient, treatment with bevacizumab and temozolomide was chosen and achieved a complete response that has proven durable for 36 months after cessation of therapy. This is the first report of the successful use of chemotherapy to treat an intracranial hemangioma, a rare condition with limited therapeutic options.

  8. Durability of Intercalated Graphite Epoxy Composites in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Davidson, Michelle L.; Shively, Rhonda

    1996-01-01

    The electrical conductivity of graphite epoxy composites can be substantially increased by intercalating (inserting guest atoms or molecules between the graphene planes) the graphite fibers before composite formation. The resulting high strength, low density, electrically conducting composites have been proposed for EMI shielding in spacecraft. Questions have been raised, however, about their durability in the space environment, especially with respect to outgassing of the intercalates, which are corrosive species such as bromine. To answer those concerns, six samples of bromine intercalated graphite epoxy composites were included in the third Evaluation of Oxygen Interaction with Materials (EOIM-3) experiment flown on the Space Shuttle Discovery (STS-46). Changes in electrical conductivity, optical reflectance, surface texture, and mass loss for SiO2 protected and unprotected samples were measured after being exposed to the LEO environment for 42 hours. SiO2 protected samples showed no degradation, verifying conventional protection strategies are applicable to bromine intercalated composites. The unprotected samples showed that bromine intercalation does not alter the degradation of graphite-epoxy composites. No bromine was detected to have been released by the fibers allaying fears that outgassing could be disruptive to the sensitive electronics the EMI shield is meant to protect.

  9. Durability Tests of a Fiber Optic Corrosion Sensor

    PubMed Central

    Wan, Kai Tai; Leung, Christopher K.Y.

    2012-01-01

    Steel corrosion is a major cause of degradation in reinforced concrete structures, and there is a need to develop cost-effective methods to detect the initiation of corrosion in such structures. This paper presents a low cost, easy to use fiber optic corrosion sensor for practical application. Thin iron film is deposited on the end surface of a cleaved optical fiber by sputtering. When light is sent into the fiber, most of it is reflected by the coating. If the surrounding environment is corrosive, the film is corroded and the intensity of the reflected signal drops significantly. In previous work, the sensing principle was verified by various experiments in laboratory and a packaging method was introduced. In this paper, the method of multiplexing several sensors by optical time domain reflectometer (OTDR) and optical splitter is introduced, together with the interpretation of OTDR results. The practical applicability of the proposed sensors is demonstrated in a three-year field trial with the sensors installed in an aggressive marine environment. The durability of the sensor against chemical degradation and physical degradation is also verified by accelerated life test and freeze-thaw cycling test, respectively. PMID:22737030

  10. Durability of recycled aggregate concrete using pozzolanic materials.

    PubMed

    Ann, K Y; Moon, H Y; Kim, Y B; Ryou, J

    2008-01-01

    In this study, pulverized fuel ash (PFA) and ground granulated blast furnace slag (GGBS) were used to compensate for the loss of strength and durability of concrete containing recycled aggregate. As a result, 30% PFA and 65% GGBS concretes increased the compressive strength to the level of control specimens cast with natural granite gravel, but the tensile strength was still lowered at 28 days. Replacement with PFA and GGBS was effective in raising the resistance to chloride ion penetrability into the concrete body, measured by a rapid chloride ion penetration test based on ASTM C 1202-91. It was found that the corrosion rate of 30% PFA and 65% GGBS concretes was kept at a lower level after corrosion initiation, compared to the control specimens, presumably due to the restriction of oxygen and water access. However, it was less effective in increasing the chloride threshold level for steel corrosion. Hence, it is expected that the corrosion time for 30% PFA and 65% GGBS concrete containing recycled aggregate mostly equates to the corrosion-free life of control specimens.

  11. Durability tests of a fiber optic corrosion sensor.

    PubMed

    Wan, Kai Tai; Leung, Christopher K Y

    2012-01-01

    Steel corrosion is a major cause of degradation in reinforced concrete structures, and there is a need to develop cost-effective methods to detect the initiation of corrosion in such structures. This paper presents a low cost, easy to use fiber optic corrosion sensor for practical application. Thin iron film is deposited on the end surface of a cleaved optical fiber by sputtering. When light is sent into the fiber, most of it is reflected by the coating. If the surrounding environment is corrosive, the film is corroded and the intensity of the reflected signal drops significantly. In previous work, the sensing principle was verified by various experiments in laboratory and a packaging method was introduced. In this paper, the method of multiplexing several sensors by optical time domain reflectometer (OTDR) and optical splitter is introduced, together with the interpretation of OTDR results. The practical applicability of the proposed sensors is demonstrated in a three-year field trial with the sensors installed in an aggressive marine environment. The durability of the sensor against chemical degradation and physical degradation is also verified by accelerated life test and freeze-thaw cycling test, respectively.

  12. Durable pd-based alloy and hydrogen generation membrane thereof

    DOEpatents

    Benn, Raymond C.; Opalka, Susanne M.; Vanderspurt, Thomas Henry

    2010-02-02

    A durable Pd-based alloy is used for a H.sub.2-selective membrane in a hydrogen generator, as in the fuel processor of a fuel cell plant. The Pd-based alloy includes Cu as a binary element, and further includes "X", where "X" comprises at least one metal from group "M" that is BCC and acts to stabilize the .beta. BCC phase for stability during operating temperatures. The metal from group "M" is selected from the group consisting of Fe, Cr, Nb, Ta, V, Mo, and W, with Nb and Ta being most preferred. "X" may further comprise at least one metal from a group "N" that is non-BCC, preferably FCC, that enhances other properties of the membrane, such as ductility. The metal from group "N" is selected from the group consisting of Ag, Au, Re, Ru, Rh, Y, Ce, Ni, Ir, Pt, Co, La and In. The at. % of Pd in the binary Pd--Cu alloy ranges from about 35 at. % to about 55 at. %, and the at. % of "X" in the higher order alloy, based on said binary alloy, is in the range of about 1 at. % to about 15 at. %. The metals are selected according to a novel process.

  13. Superhydrophobic durable coating based on UV-photoreactive silica nanoparticles

    SciTech Connect

    Nahum, T.; Dodiuk, H.; Dotan, A.; Kenig, S.; Lellouche, J. P.

    2015-05-22

    Superhydrophobic surfaces with contact angle (CA) >150 and sliding angle (SA) <10 have been aroused curiosity over the years due to their various applications. Superhydrophobicity can be obtained tailoring the chemistry and the roughness of the surface, mimicking the Lotus flower. Most superhydrophobic surfaces based on secondary bonding lose their roughness in harsh conditions and are unsuitable for practical applications. Photoreactive SiO{sub 2} nanoparticles (NPs) based on benzophenone (BP) can be a very effective tool for formation of reactive species that function as a molecular bridge by covalent bonding between the NP and any polymer matrix with C-C and C-H bonds. The present work focused on thermoset radiation curing urethane acrylate. Upon UV irradiation reactive excited nπ* triplet benzophenone species are formed and react through hydrogen abstraction to form ketyl radicals which interact with a radicals from the UV irradiated polymer matrix to yield covalent bonding. Roughness was achieved by dipping the substrate in SiO{sub 2}@BPs NPs dispersion followed by irradiation. Fluoroalkylsilane was used to obtain hydrophobic top layer. AFM nano manipulation was used to verify the immobilization of NPs. Evaluation of durability was made using air flow at 300 km/hr. Preliminary results indicate the formation of super hydrophobic surfaces (CA>150 and SA<10) with improved stability.

  14. Durability of the accretion disk of millisecond pulsars.

    PubMed

    Michel, F C; Dessler, A J

    1985-05-24

    Pulsars with pulsation periods in the millisecond range are thought to be neutron stars that have acquired an extraordinarily short spin period through the accretion of stellar material spiraling down onto the neutron star from a nearby companion. Nearly all the angular momentum and most of the mass of the companion star is transferred to the neutron star. During this process, wherein the neutron star consumes its companion, it is required that a disk of stellar material be formed around the neutron star. In conventional models it is supposed that the disk is somehow lost when the accretion phase is finished, so that only the rapidly spinning neutron star remains. However, it is possible that, after the accretion phase, a residual disk remains in stable orbit around the neutron star. The end result of such an accretion process is an object that looks much like a miniature (about 100 kilometers), heavy version of Saturn: a central object (the neutron star) surrounded by a durable disk.

  15. New MEA Materials for Improved DMFC Performance, Durability and Cost

    SciTech Connect

    Fletcher, James H.; Campbell, Joseph L.; Cox, Philip; Harrington, William J.

    2013-09-16

    Abstract Project Title: New MEA Materials for Improved DMFC Performance, Durability and Cost The University of North Florida (UNF)--with project partners the University of Florida, Northeastern University, and Johnson Matthey--has recently completed the Department of Energy (DOE) project entitled “New MEA Materials for Improved DMFC Performance, Durability and Cost”. The primary objective of the project was to advance portable fuel cell MEA technology towards the commercial targets as laid out in the DOE R&D roadmap by developing a passive water recovery MEA (membrane electrode assembly). Developers at the University of North Florida identified water management components as an insurmountable barrier to achieving the required system size and weight necessary to achieve the energy density requirements of small portable power applications. UNF developed an innovative “passive water recovery” MEA for direct methanol fuel cells (DMFC) which provides a path to system simplification and optimization. The passive water recovery MEA incorporates a hydrophobic, porous, barrier layer within the cathode electrode, so that capillary pressure forces the water produced at the cathode through holes in the membrane and back to the anode. By directly transferring the water from the cathode to the anode, the balance of plant is very much simplified and the need for heavy, bulky water recovery components is eliminated. At the heart of the passive water recovery MEA is the UNF DM-1 membrane that utilizes a hydrocarbon structure to optimize performance in a DMFC system. The membrane has inherent performance advantages, such as a low methanol crossover (high overall efficiency), while maintaining a high proton conductivity (good electrochemical efficiency) when compared to perfluorinated sulfonic acid membranes such as Nafion. Critically, the membrane provides an extremely low electro-osmotic drag coefficient of approximately one water molecule per proton (versus the 2-3 for

  16. Transparent, durable and thermally stable PDMS-derived superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojiang; Xu, Yang; Ben, Keyang; Chen, Zao; Wang, Yan; Guan, Zisheng

    2015-06-01

    We reported a novel, simple, modification-free process for the preparation of transparent superhydrophobic surfaces by calcining candle-soot-coated polydimethylsiloxane (PDMS) films. Though a calcination process, a candle soot template was gradually removed while robust fibrous and network structures were created on glass. Owing to these structures, the glass substrates were durable and highly transparent with an average transmittance (400-800 nm) of 89.50%, very closed to the bare glass slides (89.70%). These substrates exhibited a water contact angle (WCA) of 163° and a sliding angle (SA) of ∼1°. Importantly, the superhydrophobicity of these surfaces can thermally recover after oil-contamination due to their high thermal stability below 500 °C. Based on these, superhydrophobic fiberglass cotton was also prepared for optimized oil-water separation and air filtration. This method is suitable for large-scale production because it uses inexpensive and environmentally friendly materials and gets rids of sophisticated equipment, special atmosphere and harsh operations.

  17. Durability of SRP Waste Glass - Effects of Pressure and Formation of Surface Layers

    SciTech Connect

    Wicks, G.G.

    2001-10-17

    This report discusses results of an assessment of pressure at anticipated storage temperature on the chemical durability of Savannah River Plant waste glass. Surface interactions were also examined and corrosion mechanisms discussed.

  18. The effect of compositional parameters on the TCLP and PCT durability of environmental glasses

    SciTech Connect

    Resce, J.L.; Overcamp, T.J.; Cicero, C.A.; Bickford, D.F.

    1995-12-01

    The relationship between glass composition and the chemical durability of environmental waste glass is very important for both the development of glass formulations and the prediction of glass durability for process control. The development of such a model is extremely difficult for several reasons. Firstly, chemical durability is dependent upon the type of leach test employed; the leach tests themselves being only crude approximations of actual environmental conditions or long term behavior. Secondly, devitrification or crystallinity can also play a major role in durability, but is much more difficult to quantify. Lastly, the development of any one model for all glass types is impractical because of the wide variety of wastestreams, the heterogeneity of the wastestreams, and the large variety of components within each wastestream. Several ongoing efforts have been directed toward this goal, but as yet, no model has been proven acceptable.

  19. Extremely durable biofouling-resistant metallic surfaces based on electrodeposited nanoporous tungstite films on steel

    PubMed Central

    Tesler, Alexander B.; Kim, Philseok; Kolle, Stefan; Howell, Caitlin; Ahanotu, Onye; Aizenberg, Joanna

    2015-01-01

    Formation of unwanted deposits on steels during their interaction with liquids is an inherent problem that often leads to corrosion, biofouling and results in reduction in durability and function. Here we report a new route to form anti-fouling steel surfaces by electrodeposition of nanoporous tungsten oxide (TO) films. TO-modified steels are as mechanically durable as bare steel and highly tolerant to compressive and tensile stresses due to chemical bonding to the substrate and island-like morphology. When inherently superhydrophilic TO coatings are converted to superhydrophobic, they remain non-wetting even after impingement with yttria-stabilized-zirconia particles, or exposure to ultraviolet light and extreme temperatures. Upon lubrication, these surfaces display omniphobicity against highly contaminating media retaining hitherto unseen mechanical durability. To illustrate the applicability of such a durable coating in biofouling conditions, we modified naval construction steels and surgical instruments and demonstrated significantly reduced marine algal film adhesion, Escherichia coli attachment and blood staining. PMID:26482559

  20. Materials research for high-speed civil transport and generic hypersonics: Composites durability

    NASA Technical Reports Server (NTRS)

    Allen-Lilly, Heather; Cregger, Eric; Hoffman, Daniel; Mccool, Jim

    1995-01-01

    This report covers a portion of an ongoing investigation of the durability of composites for the High Speed Civil Transport (HSCT) program. Candidate HSCT composites need to possess the high-temperature capability required for supersonic flight. This program was designed to initiate the design, analysis, fabrication, and testing of equipment intended for use in validating the long-term durability of materials for the HSCT. This equipment includes thermally actuated compression and tension fixtures, hydraulic-actuated reversible load fixtures, and thermal chambers. This equipment can be used for the durability evaluation of both composite and adhesive materials. Thermally actuated fixtures are recommended for fatigue cycling when long-term thermomechanical fatigue (TMF) data are required on coupon-sized tension or compression specimens. Long term durability testing plans for polymer matrix composite specimens are included.

  1. Monitoring the Durability Performance of Concrete in Nuclear Waste Containment. Technical Progress Report No. 3

    SciTech Connect

    Ulm, Franz-Josef

    2000-03-31

    OAK-B135 Monitoring the Durability Performance of Concrete in Nuclear Waste Containment. Technical Progress Report No. 3(NOTE: Part II A item 1 indicates ''PAPER'', but a report is attached electronically)

  2. State-of-the-Art Fuel Cell Voltage Durability Status: Spring 2013 Composite Data Products

    SciTech Connect

    Kurtz, J.; Sprik, S.; Saur, G.; Peters, M.; Post, M.; Ainscough, C.

    2013-05-01

    This presentation from the U.S. Department of Energy's National Renewable Energy Laboratory includes composite data products (CDPs) produced in 2013 for state-of-the-art fuel cell voltage durability status.

  3. Extremely durable biofouling-resistant metallic surfaces based on electrodeposited nanoporous tungstite films on steel.

    PubMed

    Tesler, Alexander B; Kim, Philseok; Kolle, Stefan; Howell, Caitlin; Ahanotu, Onye; Aizenberg, Joanna

    2015-10-20

    Formation of unwanted deposits on steels during their interaction with liquids is an inherent problem that often leads to corrosion, biofouling and results in reduction in durability and function. Here we report a new route to form anti-fouling steel surfaces by electrodeposition of nanoporous tungsten oxide (TO) films. TO-modified steels are as mechanically durable as bare steel and highly tolerant to compressive and tensile stresses due to chemical bonding to the substrate and island-like morphology. When inherently superhydrophilic TO coatings are converted to superhydrophobic, they remain non-wetting even after impingement with yttria-stabilized-zirconia particles, or exposure to ultraviolet light and extreme temperatures. Upon lubrication, these surfaces display omniphobicity against highly contaminating media retaining hitherto unseen mechanical durability. To illustrate the applicability of such a durable coating in biofouling conditions, we modified naval construction steels and surgical instruments and demonstrated significantly reduced marine algal film adhesion, Escherichia coli attachment and blood staining.

  4. Extremely durable biofouling-resistant metallic surfaces based on electrodeposited nanoporous tungstite films on steel

    NASA Astrophysics Data System (ADS)

    Tesler, Alexander B.; Kim, Philseok; Kolle, Stefan; Howell, Caitlin; Ahanotu, Onye; Aizenberg, Joanna

    2015-10-01

    Formation of unwanted deposits on steels during their interaction with liquids is an inherent problem that often leads to corrosion, biofouling and results in reduction in durability and function. Here we report a new route to form anti-fouling steel surfaces by electrodeposition of nanoporous tungsten oxide (TO) films. TO-modified steels are as mechanically durable as bare steel and highly tolerant to compressive and tensile stresses due to chemical bonding to the substrate and island-like morphology. When inherently superhydrophilic TO coatings are converted to superhydrophobic, they remain non-wetting even after impingement with yttria-stabilized-zirconia particles, or exposure to ultraviolet light and extreme temperatures. Upon lubrication, these surfaces display omniphobicity against highly contaminating media retaining hitherto unseen mechanical durability. To illustrate the applicability of such a durable coating in biofouling conditions, we modified naval construction steels and surgical instruments and demonstrated significantly reduced marine algal film adhesion, Escherichia coli attachment and blood staining.

  5. Recent Advances in Durability and Damage Tolerance Methodology at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Ransom, J. B.; Glaessgen, E. H.; Raju, I. S.; Harris, C. E.

    2007-01-01

    Durability and damage tolerance (D&DT) issues are critical to the development of lighter, safer and more efficient aerospace vehicles. Durability is largely an economic life-cycle design consideration whereas damage tolerance directly addresses the structural airworthiness (safety) of the vehicle. Both D&DT methodologies must address the deleterious effects of changes in material properties and the initiation and growth of damage that may occur during the vehicle s service lifetime. The result of unanticipated D&DT response is often manifested in the form of catastrophic and potentially fatal accidents. As such, durability and damage tolerance requirements must be rigorously addressed for commercial transport aircraft and NASA spacecraft systems. This paper presents an overview of the recent and planned future research in durability and damage tolerance analytical and experimental methods for both metallic and composite aerospace structures at NASA Langley Research Center (LaRC).

  6. Durability and Reliability of Large Diameter HDPE Pipe for Water Main Applications (Web Report 4485)

    EPA Science Inventory

    Research validates HDPE as a suitable material for use in municipal piping systems, and more research may help users maximize their understanding of its durability and reliability. Overall, corrosion resistance, hydraulic efficiency, flexibility, abrasion resistance, toughness, f...

  7. Durability of solvent-free one-step self-etch adhesive under simulated intrapulpal pressure

    PubMed Central

    2015-01-01

    Background There are different solvents presented in simplified adhesives. Bond-1 SF has been developed, which contains neither water nor organic solvents, in order to eliminate technical issues in terms of evaporation of solvents and concerns for the durability of resin-dentin bond. Thus this study was conducted to evaluate the microtensile bond strength (?TBS) of solvent-free and ethanol-based one-step self-etch adhesives to dentin under simulated intrapulpal pressure (IPP). Material and Methods Occlusal surfaces of human molars were prepared to expose mid-dentin depth. Bond-1SF Solvent-Free SE [SF] and AdperTM easy one adhesives [AE] were applied on dentin specimens. Resin composite build up was done in increments. Then specimens were stored under simulated IPP 20 mmHg, immersed in artificial saliva at 37 ºC for 24 hours (24h) and 6 months (6m). Specimens were sectioned into sticks of (1 mm²) to be tested for (?TBS) using a universal testing machine. Both fractured sections of each stick were inspected using a stereomicroscope at 40× magnification to determine the mode of failure. Data were statistically analyzed by Two-way ANOVA of Variance. Results There was no statistically significant difference between the mean ?TBS of both [SF] and [AE] adhesives at both aging periods, 24h and 6m (p< 0.1103) and (p< 0.7148) respectively. Only for [AE] there was statistical significance for aging periods (p< 0.0057*). The most represented modes of failure were adhesive failure at tooth side. Conclusions Under simulated IPP solvent-free adhesive [SF] had comparable performance as ethanol-based adhesive [AE] when bonded to dentin substrate. Key words:Bond strength, dentin, simulated intrapulpal pressure, self-etch adhesives, solvents. PMID:26535091

  8. Test Plans. Lightweight Durable TPS: Tasks 1,2,4,5, and 6

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.; Tu, Tina

    1994-01-01

    The objective of this task is to develop the fluted core flexible blankets, also referred to as the Tailorable Advanced Blanket Insulation (TABI), to a technology readiness level (TRL) of 6. This task is one of the six tasks under TA 3, Lightweight Durable TPS study, of the Single Stage to Orbit (SSTO) program. The purpose of this task is to develop a durable and low maintenance flexible TPS blanket material to be implemented on the SSTO vehicle.

  9. Non linear viscoelasticity applied for the study of durability of polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Cardon, A.; Brinson, H. F.; Hiel, C. C.

    1989-01-01

    A methodology is described for the durability analysis of polymer matrix composites, based on nonlinear viscoelasticity theory. The durability analysis is performed on the basis of a certain number of tests carried out on limited and, if possible, short time scale by the use of accelerating factors. The method was applied to thermomatrix composites under uniaxial and biaxial loadings, showing satisfactory agreement between the life-time predictions and the published data on real-time behavior.

  10. Bariatric Surgery Procedures

    MedlinePlus

    ... Center Access to Care Toolkit EHB Access Toolkit Bariatric Surgery Procedures Bariatric surgical procedures cause weight loss by ... minimally invasive techniques (laparoscopic surgery). The most common bariatric surgery procedures are gastric bypass, sleeve gastrectomy, adjustable gastric ...

  11. FLUIDIZED BED STEAM REFORMED MINERAL WASTE FORMS: CHARACTERIZATION AND DURABILITY TESTING

    SciTech Connect

    Jantzen, C; Troy Lorier, T; John Pareizs, J; James Marra, J

    2007-03-31

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium low activity wastes (LAW) such as those existing at the Hanford site, at the Idaho National Laboratory (INL), and the Savannah River Site (SRS). The addition of clay, charcoal, and a catalyst as co-reactants with the waste denitrates the aqueous wastes and forms a granular mineral waste form that can subsequently be made into a monolith for disposal if necessary. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage and ring structures and iron bearing spinel minerals. The mineralization occurs at moderate temperatures between 650-750 C in the presence of superheated steam. The cage and ring structured feldspathoid minerals atomically bond radionuclides like Tc-99 and Cs-137 and anions such as SO4, I, F, and Cl. The spinel minerals stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low-activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium bearing waste (SBW) in pilot scale facilities at the Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The results of the SPFT testing and the activation energies for dissolution are discussed in this study.

  12. FLUIDIZED BED STEAM REFORMED MINERAL WASTE FORMS: CHARACTERIZATION AND DURABILITY TESTING

    SciTech Connect

    Jantzen, C; Troy Lorier, T; John Pareizs, J; James Marra, J

    2006-12-06

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium low activity wastes (LAW) such as those existing at the Hanford site, at the Idaho National Laboratory (INL), and the Savannah River Site (SRS). The addition of clay, charcoal, and a catalyst as co-reactants with the waste denitrates the aqueous wastes and forms a granular mineral waste form that can subsequently be made into a monolith for disposal if necessary. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage and ring structures and iron bearing spinel minerals. The mineralization occurs at moderate temperatures between 650-750 C in the presence of superheated steam. The cage and ring structured feldspathoid minerals atomically bond radionuclides like Tc-99 and Cs-137 and anions such as SO{sub 4}, I, F, and Cl. The spinel minerals stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium bearing waste (SBW) in pilot scale facilities at the Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The results of the SPFT testing and the activation energies for dissolution are discussed in this study.

  13. Durability aspects of polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Sethuraman, Vijay Anand

    In order for the successful adoption of proton exchange membrane (PEM) fuel cell technology, it is imperative that durability is understood, quantified and improved. A number of mechanisms are known to contribute to PEMFC membrane electrode assembly (MEA) performance degradation. In this dissertation, we show, via experiments, some of the various processes that degrade the proton exchange membrane in a PEM fuel cell; and catalyst poisoning due to hydrogen sulfide (H2S) and siloxane. The effect of humidity on the chemical stability of two types of membranes, [i.e., perfluorosulfonic acid type (PFSA, NafionRTM 112) and biphenyl sulfone hydrocarbon type, (BPSH-35)] was studied by subjecting the MEAs to open-circuit voltage (OCV) decay and potential cycling tests at elevated temperatures and low inlet gas relative humidities. The BPSH-35 membranes showed poor chemical stability in ex situ Fenton tests compared to that of NafionRTM membranes. However, under fuel cell conditions, BPSH-35 MEAs outperformed NafionRTM 112 MEAs in both the OCV decay and potential cycling tests. For both membranes, (i) at a given temperature, membrane degradation was more pronounced at lower humidities and (ii) at a given relative humidity operation, increasing the cell temperature accelerated membrane degradation. Mechanical stability of these two types of membranes was also studied using relative humidity (RH) cycling. Hydrogen peroxide (H2O2) formation rates in a proton exchange membrane (PEM) fuel cell were estimated by studying the oxygen reduction reaction (ORR) on a rotating ring disc electrode (RRDE). Fuel cell conditions were replicated by depositing a film of Pt/Vulcan XC-72 catalyst onto the disk and by varying the temperature, dissolved O2 concentration and the acidity levels in HClO4. The HClO4 acidity was correlated to ionomer water activity and hence fuel cell humidity. H 2O2 formation rates showed a linear dependence on oxygen concentration and square dependence on water

  14. Minimally invasive aesthetic procedures in young adults

    PubMed Central

    Wollina, Uwe; Goldman, Alberto

    2011-01-01

    Age is a significant factor in modifying specific needs when it comes to medical aesthetic procedures. In this review we will focus on young adults in their third decade of life and review minimally invasive aesthetic procedures other than cosmetics and cosmeceuticals. Correction of asymmetries, correction after body modifying procedures, and facial sculpturing are important issues for young adults. The implication of aesthetic medicine as part of preventive medicine is a major ethical challenge that differentiates aesthetic medicine from fashion. PMID:21673871

  15. Advanced Stirling Convertor Heater Head Durability and Reliability Quantification

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Shah, Ashwin R.; Korovaichuk, Igor; Kalluri, Sreeramesh

    2008-01-01

    The National Aeronautics and Space Administration (NASA) has identified the high efficiency Advanced Stirling Radioisotope Generator (ASRG) as a candidate power source for long duration Science missions, such as lunar applications, Mars rovers, and deep space missions, that require reliable design lifetimes of up to 17 years. Resistance to creep deformation of the MarM-247 heater head (HH), a structurally critical component of the ASRG Advanced Stirling Convertor (ASC), under high temperatures (up to 850 C) is a key design driver for durability. Inherent uncertainties in the creep behavior of the thin-walled HH and the variations in the wall thickness, control temperature, and working gas pressure need to be accounted for in the life and reliability prediction. Due to the availability of very limited test data, assuring life and reliability of the HH is a challenging task. The NASA Glenn Research Center (GRC) has adopted an integrated approach combining available uniaxial MarM-247 material behavior testing, HH benchmark testing and advanced analysis in order to demonstrate the integrity, life and reliability of the HH under expected mission conditions. The proposed paper describes analytical aspects of the deterministic and probabilistic approaches and results. The deterministic approach involves development of the creep constitutive model for the MarM-247 (akin to the Oak Ridge National Laboratory master curve model used previously for Inconel 718 (Special Metals Corporation)) and nonlinear finite element analysis to predict the mean life. The probabilistic approach includes evaluation of the effect of design variable uncertainties in material creep behavior, geometry and operating conditions on life and reliability for the expected life. The sensitivity of the uncertainties in the design variables on the HH reliability is also quantified, and guidelines to improve reliability are discussed.

  16. Enhanced durability of desulfurization sorbents for fluidized-bed applications

    SciTech Connect

    Gupta, R.P.; Gangwal, S.K.

    1992-11-01

    To extend the operating temperature range and further improve the durability of fluidizable sorbents, zinc titanate, another leading regenerable sorbent, was selected for development in the later part of this project. A number of zinc titanate formulations were prepared in the 50 to 300 {mu}m range using granulation and spray drying methods. Important sorbent preparation variables investigated included zinc to titanium ratio, binder type, binder amount, and various chemical additives such as cobalt and molybdenum. A number of sorbents selected on the basis of screening tests were subjected to bench-scale testing for 10 cycles at high temperature, high pressure (HTHP) conditions using the reactor system designed and constructed during the base program. This reactor system is capable of operation either as a 2.0 in. or 3.0 in. I.D. bubbling bed and is rated up to 20 atm operation at 871{degrees}C. Bench-scale testing variables included sorbent type, temperature (550 to 750{degrees}C), gas type (KRW or Texaco gasifier gas), steam content of coal gas, and fluidizing gas velocity (6 to 15 cm/s). The sorbents prepared by spray drying showed poor performance in terms of attrition resistance and chemical reactivity. On the other hand, the granulation method proved to be very successful. For example, a highly attrition-resistant zinc titanate formulation, ZT-4, prepared by granulation exhibited virtually no zinc loss and demonstrated a constant high reactivity and sulfur capacity over 10 cycles, i.e., approximately a 60 percent capacity utilization, with Texaco gas at 750{degrees}C, 15 cm/s fluidizing velocity and 15 atm pressure. The commercial potential of the granulation method for zinc titanate manufacture was demonstrated by preparing two 80 lb batches of sorbent with zinc to titanium mol ratios of 0.8 and 1.5.

  17. Enhanced durability of desulfurization sorbents for fluidized-bed applications

    SciTech Connect

    Gupta, R.P.; Gangwal, S.K.

    1992-11-01

    To extend the operating temperature range and further improve the durability of fluidizable sorbents, zinc titanate, another leading regenerable sorbent, was selected for development in the later part of this project. A number of zinc titanate formulations were prepared in the 50 to 300 [mu]m range using granulation and spray drying methods. Important sorbent preparation variables investigated included zinc to titanium ratio, binder type, binder amount, and various chemical additives such as cobalt and molybdenum. A number of sorbents selected on the basis of screening tests were subjected to bench-scale testing for 10 cycles at high temperature, high pressure (HTHP) conditions using the reactor system designed and constructed during the base program. This reactor system is capable of operation either as a 2.0 in. or 3.0 in. I.D. bubbling bed and is rated up to 20 atm operation at 871[degrees]C. Bench-scale testing variables included sorbent type, temperature (550 to 750[degrees]C), gas type (KRW or Texaco gasifier gas), steam content of coal gas, and fluidizing gas velocity (6 to 15 cm/s). The sorbents prepared by spray drying showed poor performance in terms of attrition resistance and chemical reactivity. On the other hand, the granulation method proved to be very successful. For example, a highly attrition-resistant zinc titanate formulation, ZT-4, prepared by granulation exhibited virtually no zinc loss and demonstrated a constant high reactivity and sulfur capacity over 10 cycles, i.e., approximately a 60 percent capacity utilization, with Texaco gas at 750[degrees]C, 15 cm/s fluidizing velocity and 15 atm pressure. The commercial potential of the granulation method for zinc titanate manufacture was demonstrated by preparing two 80 lb batches of sorbent with zinc to titanium mol ratios of 0.8 and 1.5.

  18. Randomized clinical trial comparing abluminal biodegradable polymer sirolimus-eluting stents with durable polymer sirolimus-eluting stents

    PubMed Central

    Zhang, Haijun; Wang, Xiangfei; Deng, Wei; Wang, Shenguo; Ge, Junbo; Toft, Egon

    2016-01-01

    Abstract Background: The biodegradable polymer drug-eluting stents (DES) were developed to improve vascular healing. However, further data and longer-term follow-up are needed to confirm safety and efficacy of these stents. This randomized clinical trial aimed to compare safety and efficacy of 2 sirolimus-eluting stents (SES): Cordimax—a novel abluminal biodegradable polymer SES and Cypher Select—a durable polymer SES, at 9 months angiographic and 5-year clinical follow-up. Methods: We randomized 402 patients with coronary artery disease to percutaneous coronary intervention with Cordimax (n = 202) or Cypher select (n = 200). Angiographic follow-up was performed at 9 months after the index procedure and clinical follow-up annually up to 5 years. The primary endpoint was angiographic in-stent late luminal loss (LLL). Secondary endpoints included angiographic restenosis rate, target vessel revascularization (TVR), and major adverse cardiac events (MACEs; defined as cardiac death, myocardial infarction, or TVR) at 5-year follow-up. Results: Cordimax was noninferior to Cypher select for in-stent LLL (0.25 ± 0.47 vs 0.18 ± 0.49 mm; P = 0.587) and in-stent mean diameter stenosis (22.19 ± 12.21% vs 19.89 ± 10.79%; P = 0.064) at 9 months angiographic follow-up. The MACE rates were not different at 1 year (5.9% vs 4.0%, P = 0.376); however, MACE rates from 2 to 5 years were lower in the Cordimax group (6.8% vs 13.1%; P = 0.039). Conclusion: Abluminal biodegradable polymer SES is noninferior to durable polymer SES at 9-month angiographic and 1-year clinical follow-up. However, MACE rates from 2 to 5 years were less in the abluminal biodegradable polymer group. PMID:27661023

  19. Gestational age

    MedlinePlus

    Fetal age - gestational age; Gestation; Neonatal gestational age; Newborn gestational age ... Gestational age can be determined before or after birth. Before birth, your health care provider will use ultrasound to ...

  20. Aging Skin

    MedlinePlus

    ... email address Submit Home > Healthy Aging > Wellness Healthy Aging Aging skin More information on aging skin When it ... treated early. Return to top More information on Aging skin Read more from womenshealth.gov Varicose Veins ...

  1. [Nutrition, aging, old age].

    PubMed

    Iván, L

    1998-12-06

    In humans there is evidence that the restriction of total caloric intake appears to be more important than the restriction of any particular macronutrient. Today the mechanism of the effect of caloric restriction is unknown. With advancing age and the occurrence of concomitant illness there is an increased risk of developing nutritional deficiencies. Altered nutritional status is associated with the pathogenesis of a number of common diseases of the elderly, thus it would appear that nutritional modulation and manipulation represents one possible approach to successful aging and a healthy longevity. The conceptual framework of the paper suggests the need of a newer light of the aging processes namely by a holistic human-gero-ecological model and a personality oriented geriatry. There are accentuated the role of the nutrients and vitamins, the food intake and drug-nutrients interactions and the meanings of the differences between the normal and pathological aging.

  2. NREL Determines Better Testing Methods for Photovoltaic Module Durability (Fact Sheet), NREL Highlights, Research & Development

    SciTech Connect

    Not Available

    2011-11-01

    NREL discoveries will enable manufacturers to produce more robust photovoltaic modules. Over the past decade, some photovoltaic (PV) modules have experienced power losses because of the system voltage stress that modules experience in fielded arrays. This is partly because qualification tests and standards do not adequately evaluate the durability of modules that undergo the long-term effects of high voltage. Scientists at the National Renewable Energy Laboratory (NREL) tried various testing methods and stress levels to demonstrate module durability to system voltage potential-induced degradation (PID) mechanisms. The results of these accelerated tests, along with outdoor testing, were used to estimate the acceleration factors needed to more accurately evaluate the durability of modules to system voltage stress. NREL was able to determine stress factors, levels, and methods for testing based on the stresses experienced by modules in the field. These results, in combination with those in the literature, suggest that constant stress with humidity and system voltage is more damaging than stress applied intermittently or with periods of recovery comprising hot and dry conditions or alternating bias in between. NREL has determined some module constructions to be extremely durable to PID. These findings will help the manufacturers of PV materials and components produce more durable products that better satisfy their customers. NREL determined that there is rapid degradation of some PV modules under system voltage stress and evaluated degradation rates in the field to develop more accurate accelerated testing methods. PV module manufacturers will be better able to choose robust materials and durable designs and guarantee sturdier, longer-lasting products. As PV modules become more durable, and thus more efficient over the long term, the risks and the cost of PV power will be reduced.

  3. The Sauvé-Kapandji procedure: indications and tips for surgical success.

    PubMed

    Lluch, Alberto

    2010-11-01

    Arthrodesis is the most reliable and durable surgical procedure for the treatment of a joint disorder, with the main disadvantage of loss of motion of the fused joint. The distal radioulnar joint can be arthrodesed, while forearm pronation and supination are maintained or even improved by creating a pseudoarthrosis of the ulna just proximal to the arthrodesis. This is known as the Sauvé-Kapandji procedure. This procedure is not void of possible complications, such as nonunion or delayed union of the arthrodesis, fibrous or osseous union at the pseudoarthrosis, and painful instability at the proximal ulna stump. All of these can be prevented if a careful surgical technique is used.

  4. Durable Nanolayer Graft Polymerization of Functional Finishes Using Atmospheric Plasma

    NASA Astrophysics Data System (ADS)

    Mazloumpour, Maryam

    . Furthermore, spunbond nonwoven polypropylene fabric, commonly used for hygienic products, was treated with diallyldimethylammonium chloride (DADMAC). Atmospheric pressure glow discharge plasma was used to induce free radical chain polymerization of the ADMAC monomer, which conferred a graft polymerized network on the fabric with durable antimicrobial properties. The effect of different DADMAC concentration, and plasma conditions including the RF power and the time of plasma exposure were studied and the optimum treatment conditions were identified by calculating the surface charge density on the treated fabrics. The presence of poly-DADMAC on the polypropylene surface was confirmed using SEM, FT-IR and TOF-SIMS. Antibacterial performance was investigated using standard test methods (AATCC TM 100) for both gram positive and gram negative bacteria. The antimicrobial results showed 6 log reductions in the bacterial activities of K. pneumoniae and S .aureus, which was unprecedented using a plasma-induced graft polymerization approach.

  5. Chemical durability of hollandite ceramic for conditioning cesium

    NASA Astrophysics Data System (ADS)

    Angeli, Frédéric; McGlinn, Peter; Frugier, Pierre

    2008-10-01

    The aqueous corrosion behavior of Cs-doped hollandite ceramic (BaCs 0.28Fe 0.82Al 1.46Ti 5.72O 16) was studied using several different static experimental protocols, with leachants of varying pH, and at different surface area to volume ratios, for periods ranging from six months to three years. All leach tests were carried out at 90 °C. X-ray diffraction (XRD) and scanning electron microscopy (SEM), coupled with energy dispersive X-ray spectroscopy (EDS), were used to characterize the surfaces of the hollandite before and after leaching. The most pronounced elemental releases, and corresponding changes to surface composition and microstructure, was evident at low pH, in particular pH 1. Cs and Ba releases were highest at low pH, with surface alteration exhibited by the formation of secondary rutile (prevalent at pH 1) and Al- and Ba-depleted hollandite (prevalent at pH 2). After rapid initial Cs release, the alteration rate was extremely low over the pH range from 2 to 10, as well as in pure water experiments with a sample-surface-area-to-solution-volume ratio ranging from 0.1 cm -1 to 1200 cm -1. The rates were about 10 -5 g m -2 d -1, corresponding to alteration thicknesses of a few nanometers per year. Higher rates (5 × 10 -3 g m -2 d -1) were observed only under very acidic conditions (pH 1). Congruency in Cs and Ba releases occurred only at pH 1, with incongruency between the two elements increasing with increasing pH. There were no apparent solubility constraints on Cs releases regardless of the SA/ V ratio, whereas geochemical modeling suggested that Ba releases could have been affected by the formation of BaCO 3, particularly at high SA/ V ratios. Extended leaching (with the leachant renewed once after 261 days of leaching) confirmed the high durability of hollandite with altered thicknesses of less than one nanometer per year over the last two years. Whilst Cs depletion of the hollandite surface was evidenced when leachates were replenished with the

  6. Accelerated Aging of Polymer Composite Bridge Materials

    SciTech Connect

    Carlson, Nancy Margaret; Blackwood, Larry Gene; Torres, Lucinda Laine; Rodriguez, Julio Gallardo; Yoder, Timothy Scott

    1999-03-01

    Accelerated aging research on samples of composite material and candidate ultraviolet (UV) protective coatings is determining the effects of six environmental factors on material durability. Candidate fastener materials are being evaluated to determine corrosion rates and crevice corrosion effects at load-bearing joints. This work supports field testing of a 30-ft long, 18-ft wide polymer matrix composite (PMC) bridge at the Idaho National Engineering and Environmental Laboratory (INEEL). Durability results and sensor data from tests with live loads provide information required for determining the cost/benefit measures to use in life-cycle planning, determining a maintenance strategy, establishing applicable inspection techniques, and establishing guidelines, standards, and acceptance criteria for PMC bridges for use in the transportation infrastructure.

  7. DURABILITY EVALUATION AND PRODUCTION OF MANUFACTURED AGGREGATES FROM COAL COMBUSTION BY-PRODUCTS

    SciTech Connect

    M. M. Wu

    2005-02-01

    Under the cooperative agreement with DOE, the Research and Development Department of CONSOL Energy (CONSOL R&D), teamed with Universal Aggregates, LLC, to conduct a systematic study of the durability of aggregates manufactured using a variety of flue gas desulfurization (FGD), fluidized-bed combustion (FBC) and fly ash specimens with different chemical and physical properties and under different freeze/thaw, wet/dry and long-term natural weathering conditions. The objectives of the study are to establish the relationships among the durability and characteristics of FGD material, FBC ash and fly ash, and to identify the causes of durability problems, and, ultimately, to increase the utilization of FGD material, FBC ash and fly ash as a construction material. Manufactured aggregates made from FGD material, FBC ash and fly ash, and products made from those manufactured aggregates were used in the study. The project is divided into the following activities: sample collection and characterization; characterization and preparation of manufactured aggregates; determination of durability characteristics of manufactured aggregates; preparation and determination of durability characteristics of manufactured aggregate products; and data evaluation and reporting.

  8. Beta cloth durability assessment for Space Station Freedom (SSF) Multi-Layer Insulation (MLI) blanket covers

    SciTech Connect

    Koontz, S.L.; Jacobs, S.; Le, J.

    1993-03-01

    MLI blankets for the Space Station Freedom (SSF) must comply with general program requirements and recommendations for long life and durability in the low-Earth orbit (LEO) environment. Atomic oxygen and solar ultraviolet/vacuum ultraviolet are the most important factors in the SSF natural environment which affect materials life. Two types of Beta cloth (Teflon coated woven glass fabric), which had been proposed as MLI blanket covers, were tested for long-term durability in the LEO environment. General resistance to atomic oxygen attack and permeation were evaluated in the high velocity atomic oxygen beam system at Los Alamos National Laboratories. Long-term exposure to the LEO environment was simulated in the laboratory using a radio frequency oxygen plasma asher. The plasma asher treated Beta cloth specimens were tested for thermo-optical properties and mechanical durability. Space exposure data from the Long Duration Exposure Facility and the Intelsat Solar Array Coupon were also used in the durability assessment. Beta cloth fabricated to Rockwell specification MBO 135-027 (Chemglas 250) was shown to have acceptable durability for general use as an MLI blanket cover material in the LEO environment while Sheldahl G414500 should be used only in locations which are protected from direct Ram atomic oxygen.

  9. Beta cloth durability assessment for Space Station Freedom (SSF) Multi-Layer Insulation (MLI) blanket covers

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L.; Jacobs, Stephen; Le, Julie

    1993-01-01

    MLI blankets for the Space Station Freedom (SSF) must comply with general program requirements and recommendations for long life and durability in the low-Earth orbit (LEO) environment. Atomic oxygen and solar ultraviolet/vacuum ultraviolet are the most important factors in the SSF natural environment which affect materials life. Two types of Beta cloth (Teflon coated woven glass fabric), which had been proposed as MLI blanket covers, were tested for long-term durability in the LEO environment. General resistance to atomic oxygen attack and permeation were evaluated in the high velocity atomic oxygen beam system at Los Alamos National Laboratories. Long-term exposure to the LEO environment was simulated in the laboratory using a radio frequency oxygen plasma asher. The plasma asher treated Beta cloth specimens were tested for thermo-optical properties and mechanical durability. Space exposure data from the Long Duration Exposure Facility and the Intelsat Solar Array Coupon were also used in the durability assessment. Beta cloth fabricated to Rockwell specification MBO 135-027 (Chemglas 250) was shown to have acceptable durability for general use as an MLI blanket cover material in the LEO environment while Sheldahl G414500 should be used only in locations which are protected from direct Ram atomic oxygen.

  10. A review of polymer electrolyte membrane fuel cell durability test protocols

    NASA Astrophysics Data System (ADS)

    Yuan, Xiao-Zi; Li, Hui; Zhang, Shengsheng; Martin, Jonathan; Wang, Haijiang

    Durability is one of the major barriers to polymer electrolyte membrane fuel cells (PEMFCs) being accepted as a commercially viable product. It is therefore important to understand their degradation phenomena and analyze degradation mechanisms from the component level to the cell and stack level so that novel component materials can be developed and novel designs for cells/stacks can be achieved to mitigate insufficient fuel cell durability. It is generally impractical and costly to operate a fuel cell under its normal conditions for several thousand hours, so accelerated test methods are preferred to facilitate rapid learning about key durability issues. Based on the US Department of Energy (DOE) and US Fuel Cell Council (USFCC) accelerated test protocols, as well as degradation tests performed by researchers and published in the literature, we review degradation test protocols at both component and cell/stack levels (driving cycles), aiming to gather the available information on accelerated test methods and degradation test protocols for PEMFCs, and thereby provide practitioners with a useful toolbox to study durability issues. These protocols help prevent the prolonged test periods and high costs associated with real lifetime tests, assess the performance and durability of PEMFC components, and ensure that the generated data can be compared.

  11. Measurement of Exterior Foundation Insulation to Assess Durability in Energy-Saving Performance

    SciTech Connect

    Kehrer, Manfred; Christian, Jeff

    2012-04-01

    The foundation of a house is a sometimes ignored component of the building because of its low visibility. It is increasingly evident, however, that attention to good foundation design and construction significantly benefits the homeowner and the builder by mitigating future problems. Good foundation design and construction practice involves not only insulating to save energy but also providing effective structural design as well as moisture, termite, and radon control techniques as appropriate. Energy efficiency in housing is augmented by use of exterior slab and basement insulation, but high moisture content in the insulation material has led to concerns about its durability. The activity under this task was to extract six different exterior insulation systems that were characterized at installation and have been in the ground for 9 months to 15 years. R-value and moisture content were measured and inspections conducted for evidence of termite intrusion or deterioration. Based on the results, the durability of the various systems has been documented and assessments made of which systems appear to be best practice. Heat flux and temperature measurement data had been archived for some of the exterior insulation tests, thereby providing a unique opportunity to assess energy-saving performance and durability over the long term. The results show that the durability of foundation insulation systems depends on insulation type as well as on foundation type and local boundary conditions, the latter of which may have a marked influence on the durability of energy-saving performance.

  12. Colorful Superamphiphobic Coatings with Low Sliding Angles and High Durability Based on Natural Nanorods.

    PubMed

    Dong, Jie; Wang, Qin; Zhang, Yujie; Zhu, Zhaoqi; Xu, Xianghong; Zhang, Junping; Wang, Aiqin

    2017-01-18

    Superamphiphobic coatings with low sliding angles (SAs) and high durability are very attractive in academic and industrial areas but are very challenging to invent. Here, inspired by Maya Blue, we report for the first time colorful superamphiphobic coatings with low SAs and high durability by the combination of natural palygorskite (PAL) nanorods and organosilanes. The coatings were characterized using a wide range of electron microscopy and other analytical techniques. Different from the previously reported methods, the micro/nanostructure of the superamphiphobic coatings were constructed by using the abundant natural PAL nanorods as the building blocks. Superamphiphobicity of the coatings depends on surface morphology and chemical composition of the coatings, which can be regulated by the concentrations of PAL and organosilanes. The colorful superamphiphobic coatings feature high contact angles and low SAs for various liquids, including water and n-decane. The coatings also showed high mechanical, environmental, chemical, and thermal durability even under harsh conditions. Moreover, the coatings in different colors with comparable superamphiphobicity and durability can be prepared using different cationic dyes applied onto various substrates via the same approach. The colorful superamphiphobic coatings with low SAs and high durability may be useful in various fields, e.g., anticreeping of oils and restoration of cultural relics.

  13. Durability of glasses from the Hg-doped Integrated DWPF Melter System (IDMS) campaign

    SciTech Connect

    Jantzen, C.M.

    1992-08-30

    The Integrated DWPF Melter System (IDMS) for the vitrification of high-level radioactive wastes is designed and constructed to be a 1/9th scale prototype of the full scale Defense Waste Processing Facility (DWPF) melter. The IDMS facility is the first engineering scale melter system capable of processing mercury, and flowsheet levels of halides and noble metals. In order to determine the effects of mercury on the feed preparation process, the off-gas chemistry, glass melting behavior, and glass durability, a three-run mercury (Hg) campaign was conducted. The glasses produced during the Hg campaign were composed of Batch 1 sludge, simulated precipitate hydrolysis aqueous product (PHA) from the Precipitate Hydrolysis Experimental Facility (PHEF), and Frit 202. The glasses were produced using the DWPF process/product models for glass durability, viscosity, and liquidus. The durability model indicated that the glasses would all be more durable than the glass qualified in the DWPF Environmental Assessment (EA). The glass quality was verified by performing the Product Consistency Test (PCT) which was designed for glass durability testing in the DWPF.

  14. Combining Selective Pressures to Enhance the Durability of Disease Resistance Genes

    PubMed Central

    Bourguet, Denis

    2016-01-01

    The efficacy of disease resistance genes in plants decreases over time because of the selection of virulent pathogen genotypes. A key goal of crop protection programs is to increase the durability of the resistance conferred by these genes. The spatial and temporal deployment of plant disease resistance genes is considered to be a major factor determining their durability. In the literature, four principal strategies combining resistance genes over time and space have been considered to delay the evolution of virulent pathogen genotypes. We reviewed this literature with the aim of determining which deployment strategy results in the greatest durability of resistance genes. Although theoretical and empirical studies comparing deployment strategies of more than one resistance gene are very scarce, they suggest that the overall durability of disease resistance genes can be increased by combining their presence in the same plant (pyramiding). Retrospective analyses of field monitoring data also suggest that the pyramiding of disease resistance genes within a plant is the most durable strategy. By extension, we suggest that the combination of disease resistance genes with other practices for pathogen control (pesticides, farming practices) may be a relevant management strategy to slow down the evolution of virulent pathogen genotypes. PMID:28066472

  15. Mechanical durability of superhydrophobic surfaces: The role of surface modification technologies

    NASA Astrophysics Data System (ADS)

    Zhi, Jing-Hui; Zhang, Li-Zhi; Yan, Yuying; Zhu, Jie

    2017-01-01

    Various surface modification technologies have been used to develop superhydrophobic surface, however their durability has been recognized as the major obstacle for the real applications. Here a quantitative investigation was conducted to evaluate the effects of different surface modification methods on the surfaces' mechanical durability. The superhydrophobic surfaces were prepared by the combination of two surface roughing methods (etching and sandblasting) with chemical modifications with four low surface energy materials: silica sol (SS), octadecanoic acid (OA), heptadecafluoro-1,1,2,2-tetrahydrodecyltrichlorosilane (HDFS) and hexadecyltriethoxysilane (HTS). XPS was used to analyze the elements composition and AFM was used to measure the roughness of the surfaces. The durability of these surfaces was tested by a sandpaper abrasion experiment. The collective results showed that the low surface energy materials had significant effects on the surface roughness, which would then play an important role in the durability of these rough surfaces. The SS modified rough surfaces possessed higher roughness and better durability than the surfaces modified by other three low surface energy materials. SS modified rough surfaces could bear 60 cycles of abrasion with 10 g weights on 1500 CW sandpaper.

  16. Low Earth orbit atomic oxygen simulation for durability evaluation of solar reflector surfaces

    NASA Technical Reports Server (NTRS)

    Degroh, Kim K.; Banks, Bruce A.

    1992-01-01

    To evaluate the performance and durability of solar reflector surfaces in the atomic oxygen environment typical of low Earth orbit (LEO), one must expose the reflector surface either directly to LEO or to ground-laboratory atomic oxygen environments. Although actual LEO exposures are most desired, such opportunities are typically scarce, expensive, and of limited duration. As a result, ground-laboratory exposures must be relied upon as the most practical long-term durability evaluation technique. Plasma ashers are widely used as LEO simulation facilities by producing atomic oxygen environments for durability evaluation of potential spacecraft materials. Atomic oxygen arrival differs between ground and space exposure in that plasma asher exposure produces isotropic arrival and space solar tracking produces sweeping arrival. Differences in initial impact reaction probability occur, dependent upon the energy and species existing in these environments. Due to the variations in ground-laboratory and space atomic oxygen, quantification of in-space performance based on plasma asher testing is not straightforward. The various atomic oxygen interactions that can occur with reflector surfaces, such as undercutting in organic substrates at protective coating defect sites, ground-laboratory techniques recommended for evaluating the atomic oxygen durability of reflectors based on asher exposures, and computational techniques which make use of ground-laboratory atomic oxygen exposure to predict in-space LEO durability are addressed.

  17. Durability of crosslinked polydimethylsyloxanes: the case of composite insulators

    NASA Astrophysics Data System (ADS)

    Delor-Jestin, Florence; Tomer, Namrata S.; Pal Singh, Raj; Lacoste, Jacques

    2008-04-01

    Most applications of silicones are linked to their hydrophobic properties and (or) their high resistance to ageing (e.g. thermal ageing and photoageing). However, when placed in extreme environments, these materials can fail as in the case of epoxy/fiber glass composite powerlines insulators, where crosslinked polymethylsyloxanes (PDMSs) are used as the protective envelope (housing) of the insulator. We report on the behavior of both pure/noncrosslinked PDMSs and typical formulations used in industrial insulators, i.e. containing peroxide crosslinked PDMS, alumina trioxide hydrated (ATH) and silica. Special attention is paid on both (i) the sources of potential degradation and (ii) the best analytical methods that can be applied to the study of very complex formulations. (i) Aside from conventional types of ageing such as photo-ageing and thermal, hydrolytic, and service life ageings, treatments with acidic vapors, plasma and ozone possibly generating species from the reaction of a high electric field with air were also performed, which allowed to accelerate electrical and out-door ageings and to obtain differently aged materials. (ii) Aside from conventional analytical methods of polymer degradation such as FTIR/ATR spectroscopy and SEC, TG, hardness measurements, more specific methods like photo/DSC, TG/IR, thermoporosimetry, resistivity and density measurements were also performed to characterize the chemical and physical evolutions of polymer materials. In particular, it was found that treatment with nitric acid vapor has detrimental effects on the properties of both fire retardants (e.g. ATH) and PDMSs, affecting the hardness and resistivity of the formulated material.

  18. Durability of crosslinked polydimethylsyloxanes: the case of composite insulators

    PubMed Central

    Delor-Jestin, Florence; Tomer, Namrata S; Pal Singh, Raj; Lacoste, Jacques

    2008-01-01

    Most applications of silicones are linked to their hydrophobic properties and (or) their high resistance to ageing (e.g. thermal ageing and photoageing). However, when placed in extreme environments, these materials can fail as in the case of epoxy/fiber glass composite powerlines insulators, where crosslinked polymethylsyloxanes (PDMSs) are used as the protective envelope (housing) of the insulator. We report on the behavior of both pure/noncrosslinked PDMSs and typical formulations used in industrial insulators, i.e. containing peroxide crosslinked PDMS, alumina trioxide hydrated (ATH) and silica. Special attention is paid on both (i) the sources of potential degradation and (ii) the best analytical methods that can be applied to the study of very complex formulations. (i) Aside from conventional types of ageing such as photo-ageing and thermal, hydrolytic, and service life ageings, treatments with acidic vapors, plasma and ozone possibly generating species from the reaction of a high electric field with air were also performed, which allowed to accelerate electrical and out-door ageings and to obtain differently aged materials. (ii) Aside from conventional analytical methods of polymer degradation such as FTIR/ATR spectroscopy and SEC, TG, hardness measurements, more specific methods like photo/DSC, TG/IR, thermoporosimetry, resistivity and density measurements were also performed to characterize the chemical and physical evolutions of polymer materials. In particular, it was found that treatment with nitric acid vapor has detrimental effects on the properties of both fire retardants (e.g. ATH) and PDMSs, affecting the hardness and resistivity of the formulated material. PMID:27877973

  19. Computerized procedures system

    DOEpatents

    Lipner, Melvin H.; Mundy, Roger A.; Franusich, Michael D.

    2010-10-12

    An online data driven computerized procedures system that guides an operator through a complex process facility's operating procedures. The system monitors plant data, processes the data and then, based upon this processing, presents the status of the current procedure step and/or substep to the operator. The system supports multiple users and a single procedure definition supports several interface formats that can be tailored to the individual user. Layered security controls access privileges and revisions are version controlled. The procedures run on a server that is platform independent of the user workstations that the server interfaces with and the user interface supports diverse procedural views.

  20. Designing Flightdeck Procedures

    NASA Technical Reports Server (NTRS)

    Barshi, Immanuel; Mauro, Robert; Degani, Asaf; Loukopoulou, Loukia

    2016-01-01

    The primary goal of this document is to provide guidance on how to design, implement, and evaluate flight deck procedures. It provides a process for developing procedures that meet clear and specific requirements. This document provides a brief overview of: 1) the requirements for procedures, 2) a process for the design of procedures, and 3) a process for the design of checklists. The brief overview is followed by amplified procedures that follow the above steps and provide details for the proper design, implementation and evaluation of good flight deck procedures and checklists.

  1. Carbon nanocages: a new support material for Pt catalyst with remarkably high durability.

    PubMed

    Wang, Xiao Xia; Tan, Zhe Hua; Zeng, Min; Wang, Jian Nong

    2014-03-24

    Low durability is the major challenge hindering the large-scale implementation of proton exchange membrane fuel cell (PEMFC) technology, and corrosion of carbon support materials of current catalysts is the main cause. Here, we describe the finding of remarkably high durability with the use of a novel support material. This material is based on hollow carbon nanocages developed with a high degree of graphitization and concurrent nitrogen doping for oxidation resistance enhancement, uniform deposition of fine Pt particles, and strong Pt-support interaction. Accelerated degradation testing shows that such designed catalyst possesses a superior electrochemical activity and long-term stability for both hydrogen oxidation and oxygen reduction relative to industry benchmarks of current catalysts. Further testing under conditions of practical fuel cell operation reveals almost no degradation over long-term cycling. Such a catalyst of high activity, particularly, high durability, opens the door for the next-generation PEMFC for "real world" application.

  2. New Accelerated Testing and Lifetime Modeling Methods Promise Faster Development of More Durable MEAs

    SciTech Connect

    Pierpont, D. M.; Hicks, M. T.; Turner, P. L.; Watschke, T. M.

    2005-11-01

    For the successful commercialization of fuel cell technology, it is imperative that membrane electrode assembly (MEA) durability is understood and quantified. MEA lifetimes of 40,000 hours remain a key target for stationary power applications. Since it is impractical to wait 40,000 hours for durability results, it is critical to learn as much information as possible in as short a time period as possible to determine if an MEA sample will survive past its lifetime target. Consequently, 3M has utilized accelerated testing and statistical lifetime modeling tools to develop a methodology for evaluating MEA lifetime. Construction and implementation of a multi-cell test stand have allowed for multiple accelerated tests and stronger statistical data for learning about durability.

  3. Mixed hydrocarbon/fluoropolymer membrane/ionomer MEAs for durability studies

    SciTech Connect

    Li, Bo; Kim, Yu Seung; Mukundan, Rangachary; Borup, Rodney L; Wilson, Mahlon S; Welch, Cynthia; Fenton, James

    2010-01-01

    The durability of polymer electrolyte membrane (PEM) fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. Commercial viability depends on improving the durability of the fuel cell components to increase the system reliability. The aim of this work is to separate ionomer degradation from membrane degradation via mixed membrane/ionomer MEA experiments. The challenges of mixed MEA fabrication due to the incompatibility of the membrane and the electrode are addressed. OCV accelerated testing experiment (AST) were performed. Development of in situ diagnostics and unique experiments to characterize the performance and properties of the ionomer in the electrode as a function of time is reported. These measurements, along with extensive ex situ and post-mortem characterization, can delineate the degradation mechanisms in order to develop more durable fuel cells and fuel cell components.

  4. Carbon nanocages: A new support material for Pt catalyst with remarkably high durability

    PubMed Central

    Wang, Xiao Xia; Tan, Zhe Hua; Zeng, Min; Wang, Jian Nong

    2014-01-01

    Low durability is the major challenge hindering the large-scale implementation of proton exchange membrane fuel cell (PEMFC) technology, and corrosion of carbon support materials of current catalysts is the main cause. Here, we describe the finding of remarkably high durability with the use of a novel support material. This material is based on hollow carbon nanocages developed with a high degree of graphitization and concurrent nitrogen doping for oxidation resistance enhancement, uniform deposition of fine Pt particles, and strong Pt-support interaction. Accelerated degradation testing shows that such designed catalyst possesses a superior electrochemical activity and long-term stability for both hydrogen oxidation and oxygen reduction relative to industry benchmarks of current catalysts. Further testing under conditions of practical fuel cell operation reveals almost no degradation over long-term cycling. Such a catalyst of high activity, particularly, high durability, opens the door for the next-generation PEMFC for “real world” application. PMID:24658614

  5. Carbon nanocages: A new support material for Pt catalyst with remarkably high durability

    NASA Astrophysics Data System (ADS)

    Wang, Xiao Xia; Tan, Zhe Hua; Zeng, Min; Wang, Jian Nong

    2014-03-01

    Low durability is the major challenge hindering the large-scale implementation of proton exchange membrane fuel cell (PEMFC) technology, and corrosion of carbon support materials of current catalysts is the main cause. Here, we describe the finding of remarkably high durability with the use of a novel support material. This material is based on hollow carbon nanocages developed with a high degree of graphitization and concurrent nitrogen doping for oxidation resistance enhancement, uniform deposition of fine Pt particles, and strong Pt-support interaction. Accelerated degradation testing shows that such designed catalyst possesses a superior electrochemical activity and long-term stability for both hydrogen oxidation and oxygen reduction relative to industry benchmarks of current catalysts. Further testing under conditions of practical fuel cell operation reveals almost no degradation over long-term cycling. Such a catalyst of high activity, particularly, high durability, opens the door for the next-generation PEMFC for ``real world'' application.

  6. Durability of a continuous strand mat polymeric composite for automotive structural applications

    SciTech Connect

    Corum, J.M.; McCoy, H.E. Jr.; Ruggles, M.B.; Simpson, W.A. Jr.

    1995-12-31

    A key unanswered question that must be addressed before polymeric composites will be widely used in automotive structural components is their durability. Major durability issues are the effects of cyclic loadings, creep, automotive environments, and low-energy impacts on dimensional stability, strength, and stiffness. The U.S. Department of Energy is sponsoring a project at Oak Ridge National Laboratory to address these issues and to develop, in cooperation with the Automotive Composites Consortium, experimentally based, durability driven, design guidelines. The initial reference material is an isocyanurate reinforced with a continuous strand, swirl glass mat. This paper describes the basic deformation and failure behavior of the reference material, and it presents test results illustrating the property degradations caused by loading, time, and environmental effects. The importance of characterizing and understanding damage and how it leads to failure is also discussed. The results presented are from the initial phases of an ongoing project. The ongoing effort and plans are briefly described.

  7. Activity and Durability of Iridium Nanoparticles in the Oxygen Evolution Reaction

    DOE PAGES

    Alia, Shaun M.; Rasimick, Brian; Ngo, Chilan; ...

    2016-07-15

    Unsupported iridium (Ir) nanoparticles, that serve as standard oxygen evolution reaction (OER) catalysts in acidic electrolyzers, were investigated for electrochemical performance and durability in rotating disk electrode (RDE) half-cells. Fixed potential holds and potential cycling were applied to probe the durability of Ir nanoparticles, and performance losses were found to be driven by particle growth (coarsening) at moderate potential (1.4 to 1.6 V) and Ir dissolution at higher potential (>/=1.8 V). Several different commercially available samples were evaluated and standardized conditions for performance comparison are reported. In conclusion, the electrocatalyst RDE results have also been compared to results obtained formore » performance and durability in electrolysis cells.« less

  8. Influence of alkali cation on the mechanical properties and durability of fly ash based geopolymers.

    PubMed

    Nikolić, Irena; Zejak, Radomir; Jankovič-Častvan, Ivona; Karanović, Ljiljana; Radmilović, Vuk; Radmilović, Velimir

    2013-01-01

    This research has provided information about the influence of alkali cations (Na+ and K+) on the mechanical properties and durability of fly ash based geopolymers. The results have shown that alkali cations have a strong influence on the mechanical properties of fly ash based geopolymers. K-geopolymers generally reach a higher value of compressive strength in comparison to Na- geopolymers. On the other hand, microstructure and phase composition of fly ash based geopolymers are not influenced by the nature of alkali cations. The ratio of main gel structure forming elements is practically not affected by the nature of alkali cations. Durability of fly ash based geopolymers in different aquatic environments is greatly dependent on the choice of alkali cations. Na- geopolymers are generally more resistant in water and aggressive environments than the K-geopolymers. The best durability of fly ash based geopolymers was observed in sea water.

  9. Low-cost and durable catalyst support for fuel cells: graphite submicronparticles

    SciTech Connect

    Zhang, Sheng; Shao, Yuyan; Li, Xiaohong; Nie, Zimin; Wang, Yong; Liu, Jun; Yin, Geping; Lin, Yuehe

    2010-01-01

    Low-cost graphite submicronparticles (GSP) are employed as a possible catalyst support for polymer electrolyte membrane (PEM) fuel cells. Platinum nanoparticles are deposited on Vulcan XC-72 carbon black (XC-72), carbon nanotubes (CNT), and GSP via ethylene glycol (EG) reduction method. The morphologies and the crystallinity of Pt/XC-72, Pt/CNT, and Pt/GSP are characterized with X-ray diffraction and transmission electron microscope, which shows that Pt nanoparticles (~ 3.5 nm) are uniformly dispersed on GSP support. Pt/GSP exhibits the highest activity towards oxygen reduction reactions. The durability study indicates that Pt/GSP is 2 ~ 3 times durable than Pt/CNT and Pt/XC-72. The enhanced durability of Pt/GSP catalyst is attributed to the higher corrosion resistance of graphite submicronparticles, which results from higher graphitization degree of GSP support. Considering its low production cost, graphite submicronparticles are promising electrocatalyst support for fuel cells.

  10. Low-cost and durable catalyst support for fuel cells: Graphite submicronparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng; Shao, Yuyan; Li, Xiaohong; Nie, Zimin; Wang, Yong; Liu, Jun; Yin, Geping; Lin, Yuehe

    Low-cost graphite submicronparticles (GSP) are employed as a possible catalyst support for polymer electrolyte membrane (PEM) fuel cells. Platinum nanoparticles are deposited on Vulcan XC-72 carbon black (XC-72), carbon nanotubes (CNT), and GSP via ethylene glycol (EG) reduction method. The morphologies and the crystallinity of Pt/XC-72, Pt/CNT, and Pt/GSP are characterized with X-ray diffraction and transmission electron microscope, which shows that Pt nanoparticles (∼3.5 nm) are uniformly dispersed on supports. Pt/GSP exhibits the highest activity towards oxygen-reduction reactions. The durability study indicates that Pt/GSP is 2-3 times durable than Pt/CNT and Pt/XC-72. The enhanced durability of Pt/GSP catalyst is attributed to the higher corrosion resistance of graphite submicronparticles, which results from higher graphitization degree of GSP support. Considering its low production cost, graphite submicronparticles are promising electrocatalyst support for fuel cells.

  11. Activity and Durability of Iridium Nanoparticles in the Oxygen Evolution Reaction

    SciTech Connect

    Alia, Shaun M.; Rasimick, Brian; Ngo, Chilan; Neyerlin, K. C.; Kocha, Shyam S.; Pylypenko, Svitlana; Xu, Hui; Pivovar, Bryan S.

    2016-07-15

    Unsupported iridium (Ir) nanoparticles, that serve as standard oxygen evolution reaction (OER) catalysts in acidic electrolyzers, were investigated for electrochemical performance and durability in rotating disk electrode (RDE) half-cells. Fixed potential holds and potential cycling were applied to probe the durability of Ir nanoparticles, and performance losses were found to be driven by particle growth (coarsening) at moderate potential (1.4 to 1.6 V) and Ir dissolution at higher potential (>/=1.8 V). Several different commercially available samples were evaluated and standardized conditions for performance comparison are reported. In conclusion, the electrocatalyst RDE results have also been compared to results obtained for performance and durability in electrolysis cells.

  12. Instrumentation for durability monitoring of a long-span cable-stayed bridge

    NASA Astrophysics Data System (ADS)

    Hua, X. G.; Ni, Y. Q.; Zhou, H. F.; Ko, J. M.

    2005-05-01

    This paper outlines the design of an instrumentation system for durability monitoring of the world's longest cable-stayed bridge: the Sutong Bridge with a central span of 1088 m. As part of the Structural Health Monitoring And Safety Evaluation System (SHMASES) for the Sutong Bridge, the durability monitoring system is designed to monitor the corrosion in reinforced concrete structures. The sensors for durability monitoring include two categories. The first category refers to the sensors to monitor the causes leading to corrosion, such as temperature and relative humidity. The second category is electrode assemblies which are used to monitor the end results of corrosion. Data from the sensory system are then periodically collected using a portable or remotely computerized data acquisition system. The collected data from this system will provide useful information on maintenance and repair of concrete structures, and are envisaged to be incorporated into the reliability-based safety evaluation system developed for the Sutong Bridge

  13. Prediction of glass durability as a function of glass composition and test conditions: Thermodynamics and kinetics

    SciTech Connect

    Jantzen, C M

    1988-01-01

    The long-term durability of nuclear waste glasses can be predicted by comparing their performance to natural and ancient glasses. Glass durability is a function of the kinetic and thermodynamic stability of glass in solution. The relationship between the kinetic and thermodynamic aspects of glass durability can be understood when the relative contributions of glass composition and imposed test conditions are delineated. Glass durability has been shown to be a function of the thermodynamic hydration free energy which can be calculated from the glass composition. Hydration thermodynamics also furnishes a quantitative frame of reference to understand how various test parameters affect glass durability. Linear relationships have been determined between the logarithmic extent of hydration and the calculated hydration free energy for several different test geometries. Different test conditions result in different kinetic reactivity parameters such as the exposed glass surface area (SA), the leachant solution volume (V), and the length of time that the glass is in the leachant (t). Leachate concentrations are known to be a function of the kinetic test parameter (SAV)t. The relative durabilities of glasses, including pure silica, obsidians, nuclear waste glasses, medieval window glasses, and frit glasses define a plane in three dimensional ..delta..G/sub hyd/-concentration-(SAV)t space. At constant kinetic conditions, e.g., test geometry and test duration, the three dimensional plane is intersected at constant (SAV)t and the ..delta..G/sub hyd/-concentration plots have similar slopes. The slope represents the natural logarithm of the theoretical slope, (12.303 RT), for the rate of glass dissolution. 53 refs., 4 figs.

  14. Durability-Based Design Guide for an Automotive Structural Composite: Part 2. Background Data and Models

    SciTech Connect

    Corum, J.M.; Battiste, R.L.; Brinkman, C.R.; Ren, W.; Ruggles, M.B.; Weitsman, Y.J.; Yahr, G.T.

    1998-02-01

    This background report is a companion to the document entitled ''Durability-Based Design Criteria for an Automotive Structural Composite: Part 1. Design Rules'' (ORNL-6930). The rules and the supporting material characterization and modeling efforts described here are the result of a U.S. Department of Energy Advanced Automotive Materials project entitled ''Durability of Lightweight Composite Structures.'' The overall goal of the project is to develop experimentally based, durability-driven design guidelines for automotive structural composites. The project is closely coordinated with the Automotive Composites Consortium (ACC). The initial reference material addressed by the rules and this background report was chosen and supplied by ACC. The material is a structural reaction injection-molded isocyanurate (urethane), reinforced with continuous-strand, swirl-mat, E-glass fibers. This report consists of 16 position papers, each summarizing the observations and results of a key area of investigation carried out to provide the basis for the durability-based design guide. The durability issues addressed include the effects of cyclic and sustained loadings, temperature, automotive fluids, vibrations, and low-energy impacts (e.g., tool drops and roadway kickups) on deformation, strength, and stiffness. The position papers cover these durability issues. Topics include (1) tensile, compressive, shear, and flexural properties; (2) creep and creep rupture; (3) cyclic fatigue; (4) the effects of temperature, environment, and prior loadings; (5) a multiaxial strength criterion; (6) impact damage and damage tolerance design; (7) stress concentrations; (8) a damage-based predictive model for time-dependent deformations; (9) confirmatory subscale component tests; and (10) damage development and growth observations.

  15. Durable resistance: A key to sustainable management of pathogens and pests

    PubMed Central

    Mundt, Christopher C.

    2014-01-01

    This review briefly addresses what has been learned about resistance durability in recent years, as well as the questions that still remain. Molecular analyses of major gene interactions have potential to contribute to both breeding for resistance and improved understanding of virulence impacts on pathogen fitness. Though the molecular basis of quantitative resistance is less clear substantial evidence has accumulated for the relative simplicity of inheritance. There is increasing evidence for specific interactions with quantitative resistance, though implications o this for durability are still unknown. Mechanisms by which resistance gene pyramids contribute to durability remain elusive, though ideas have been generated for identifying gene combinations that may be more durable. Though cultivar mixtures and related approaches have been used successfully, identifying the diseases and conditions that are most conducive to the use of diversity has been surprisingly difficult, and the selective influence of diversity on pathogen populations is complex. The importance of considering resistance durability in a landscape context has received increasing emphasis and is an important future area of research. Experimental systems are being developed to test resistance gene deployment strategies that previously could be addressed only with logic and observation. The value of molecular markers for identifying and pyramiding major genes is quite clear, but the successful use of quantitative trait loci (QTL) for marker-assisted selection of quantitative resistance will depend greatly on the degree to which the identified QTL are expressed in different genetic backgrounds. Transgenic approaches will likely provide opportunities for control of some recalcitrant pathogens, though issues of durability for transgenes are likely to be no different than other genes for resistance. The need for high quality phenotypic analysis and screening methodologies is a priority, and field

  16. Alternative Refractive Surgery Procedures

    MedlinePlus

    ... LASIK Alternative Refractive Surgery Procedures Laser Surgery Recovery Alternative Refractive Surgery Procedures Dec. 12, 2015 Today's refractive ... that releases controlled amounts of radio frequency (RF) energy, instead of a laser, to apply heat to ...

  17. Cosmetic Procedure Questions

    MedlinePlus

    ... Stretch Marks Sun-damaged Skin Unwanted Hair Unwanted Tattoos Varicose Veins Vitiligo Wrinkles Treatments and Procedures Ambulatory ... Stretch Marks Sun-damaged Skin Unwanted Hair Unwanted Tattoos Varicose Veins Vitiligo Wrinkles Treatments and Procedures Ambulatory ...

  18. Sulfate impurities from deicing salt and durability of Portland cement mortar

    SciTech Connect

    Schluter, M.C.

    1987-06-01

    This thesis reports research on the effects of calcium sulfate in halite on Portland cement durability. Much has been published about sulfate ions causing expansion reactions in Portland cement concrete, on scaling caused by sodium chloride, and the participation of magnesium sulfate in seawater attack. However, little work has been done on the influence of sodium chloride and calcium sulfate solutions as they are found combined in natural halite. Durability studies were conducted using brines containing different amounts of gypsum as an impurity. Damage mechanisms, reaction products and pore structure changes were evaluated. 16 refs., 27 figs., 7 tabs.

  19. Performance, durability and low temperature evaluation of sunflower oil as a diesel fuel extender

    SciTech Connect

    Baranescu, R.A.; Lusco, J.J.

    1982-01-01

    The paper presents the results of a research project to evaluate performance and durability of direct injection turbocharged diesel engines using sunflower oil and blends thereof. Alcaline refined sunflower oil and three different blends of sunflower oil and diesel fuel were comparatively tested against No. 2 diesel fuel for: physical and chemical characteristics, fuel injection system performance, short term engine performance, propensity to nozzle deposits buildup, limited durability operation and low temperature starting capability. Results are presented for the various phases of the project and correlations between the fuel characteristics and engine accept-ability are discussed. 19 figures, 2 tables.

  20. Chemical durability and degradation mechanisms of HT9 based alloy waste forms with variable Zr content

    SciTech Connect

    Olson, L. N.

    2015-10-30

    In Corrosion studies were undertaken on alloy waste forms that can result from advanced electrometallurgical processing techniques to better classify their durability and degradation mechanisms. The waste forms were based on the RAW3-(URe) composition, consisting primarily of HT9 steel and other elemental additions to simulate nuclear fuel reprocessing byproducts. The solution conditions of the corrosion studies were taken from an electrochemical testing protocol, and meant to simulate conditions in a repository. The alloys durability was examined in alkaline and acidic brines.